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Abstract

The global energy production from renewable sources is increasing, with high penetration of both
wind and solar in key regions. Ocean Wave Energy is projected to contribute with an increasing
share of the future power supply, and the focus of this work is to investigate the requirements
for connecting wave energy to the power grid, in context of the Fred. Olsen (FO) Wave Energy
Project.

Most Wave Energy Converters (WECs) produce highly distorted power due to the reciprocal
motion induced by the ocean waves. Some WEC systems have integrated energy storage that
overcomes this limitation, but adds significant expenses. As an alternative approach, this work
investigates direct power export that relies on aggregate smoothing among several WECs. By
optimizing the position of the WEC devices with respect to the incoming waves, fluctuations
may be mutually canceled out between the devices.

FO has closely monitored the global development within wave energy for about two decades,
and has worked actively on developing WECs since 2002. The latest WEC system, named
Lifesaver, has been in operation since April 2012 and is the basis of this thesis work. The
Lifesaver system is described in detail, and comprehensive data on operational performance is
presented.

The major cost driver for grid integration is the peak to average power ratio, which can be as
high as 20 in the early power conversion stages. Thus, it is crucial to improve the power quality
early in the conversion chain so that the downstream power system is efficiently utilized. The
simulations undertaken in this work indicate that a high quality power output can be achieved
at the farm level, but that significant oversize factors will be required in the intermediate power
systems within the farm.

Cost-benefit analysis of the system show that a grid connected system at the current tech-
nology level will return marginal profitability. Therefore, several alternative approaches are
investigated that could serve as a bridge towards future large scale systems. This includes au-
tonomous systems that could supply power to remote ocean based units such as measurement
and surveillance buoys, aquaculture facilities and support systems for the off-shore oil and gas
industry.

In general, the findings show that the WEC system is well suited for grid integration, al-
though it becomes clear that significant development remains before wave energy can become an
important supplement in the energy mix. Moreover, there seems to be a market for autonomous
systems that is economically viable at the current technology level that could allow for immediate
deployment of commercial systems.
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CHAPTER 1. INTRODUCTION

1.1 About this work

This Ph.D thesis investigates electricity production from marine renewable energy sources, with
focus on Wave Energy Converters (WECs). The thesis consist of the main part of 107 pages,
and 11 publications that are attached in Appendix A-K. The main part is written as a complete
and continuous document, and can be read without referencing the attached publications.

The Ph.D program has been organized as a collaboration between the privately owned com-
pany Fred. Olsen (FO), which is actively developing WEC systems, and the Norwegian University
of Science and Technology (NTNU). The program is funded by the Norwegian Research Council
through the Næringsphd program.
Main contributions by this work:

• Design, build and operation of medium sized WECs based on non-resonant point absorbers
(Chapter 1, 2, 3, Appendix B, G, K)

• PTO and generator optimization, mechanical and electrical configuration, high overspeed
operation
(Chapter 2, Appendix A, C)

• PTO force control and power control optimization
(Chapter 2, 3, Appendix B, C, J)

• Active and reactive power control optimization for point absorber systems
(Chapter 3, Appendix J)

• Design and simulation of multi-body systems, arrays and farms
(Chapter 4, Appendix D, E,F,F,I)

• Power management for WEC farms and power export to grid
(Chapter 4, Appendix F, I)

• WECs as power source for autonomous systems
(Chapter 5)

• Energy storage design, operation and control
(Chapter 3, Appendix B, K)

• Experience with cost optimization of WECs
(Chapter 7)

• Definition of the power rating of a general WEC system
(Chapter 1)

A detailed description of the thesis outline is presentetd in the Structured Contents on page iv.

1.2 Global wave energy potential

According to the Intergovernmental Panel on Climate Change (IPCC) [28] and the International
Energy Agency (IEA) [18], an increasing amount of the future global energy demand will have
to be supplied by renewable sources to avoid dangerous global warming. Ocean waves represent
an untapped source of energy that could be an important contribution to the future energy mix.
The global gross wave energy resource is estimated to 3.7 TW [26], which is similar to the global
electricity consumption of approximately 2.7 TW [44]. However, most of the available energy
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1.3. WAVE ENERGY CONVERSION PRINCIPLES AND POWER EXPORT

is located in remote areas, and only a small fraction of the total wave energy potential can be
considered as useful energy.

Figure 1.1: Global wave energy potential. Source: WorldWaves data/OCEANOR/ECMWF

The power flux of ocean waves is described in kW/m, and refers to the average power that
passes a cross section of one meter width and infinite depth, perpendicular to the wavelength.
An analogy is the power exerted per meter by waves breaking onto a beach. Fig.1.1 displays the
global wave energy potential in kW/m. The power flux P can be calculated from the significant
wave height Hs and period Tp by Equation 1.1, where ρ represents the density of sea water and
g is the gravitational constant. Usually, the simplified equation to the right is used, which gives
the power directly in kW/m.

P =
ρg2

64π
·Hs

2 · Tp ⇒ P ≈ 0.5 ·Hs
2 · Tp (1.1)

1.3 Wave energy conversion principles and power export

Fig. 1.2 shows the main conversion methods for wave energy, and illustrates the large variety
of systems, as many of these systems also have subcategories. The Fred. Olsen system is
based on the point absorber principle shown in Fig. 1.2(a), which is thought to be one of the
simplest and most effective concepts, and is also used by competing companies such as Ocean
Power Technologies (OPT) [36], Seabased [5, 9] and Wavestar [15]. One interesting property of
the point absorber is the ability to resonate with the incoming wave field, much like a dipole
antenna. This gives the point absorber a theoretical power capture of 6·π times its width with
respect to the incoming energy [10].

The attenuator principle illustrated in Fig. 1.2(b) is used by Pelamis Wave power [16] and
is well suited for slack moored configuration. The gyroscopic device pictured in Fig. 1.2(c) is
explored by SeaRev [40]. Fig 1.2(d) shows an underwater buoyant device that utilizes differential
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CHAPTER 1. INTRODUCTION

(a) Point absorber (b) Attenuator (c) Rotating mass

(d) Underwater buoyant (e) Hinged flap (f) Bulge

(g) Oscillating Water Column (h) Overtopping

Figure 1.2: General wave energy conversion principles. Source:Aquaret
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1.3. WAVE ENERGY CONVERSION PRINCIPLES AND POWER EXPORT

pressure in a submersed air volume and is tested in the Carnegie system [6]. The Bulge system
shown in Fig. 1.2(f) is based on floating rubber hoses that pumps water, and is believed to be in
an early development phase. Common to these systems is that they are flexible with respect to
location and depth. The remaining systems, the hinged flap (Fig. 1.2(e)), the oscillating water
column (Fig. 1.2(g)) and the overtopping device (Fig. 1.2(h)), are typically fixed structures that
are mounted on the sea floor or along the shore line, although some floating versions of these
systems also exists.

In addition to being an alternative energy source, wave energy also supplies a different power
profile than the other renewable sources. This can be very valuable for power systems with
high share of renewable energy, as the availability of the source will influence heavily on the
electricity price. This can help to lift wave energy into the market as some of the increased cost
can be displaced by increased total availability of the renewable power system. This is illustrated
in Fig. 1.3, which shows a simulation of several renewable sources feeding to a common power
system.

             Mon              Tue              Wed              Thu              Fri              Sat              Sun
0%

20%

40%

60%

80%

100%

G
ri

d
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ap
ac

it
y

 

 

Sun

Tidal

Wave

Wind

Fossil

Demand

Figure 1.3: Simulated energy balance with high penetration of renewable energy

Although wind and wave have strong correlation, it is clear that the combination of these helps
the overall power balance. This is mainly because wind turbines only can produce power from
weather systems surrounding the wind park, while wave energy converters can produce power
from weather systems far away. The situation simulated in Fig. 1.3 shows a typical situation
where a low pressure system is building up (Mon-Tue). When the weather system reaches its
apex (Tue-Wed), both wind and wave produce at full power. As the weather system drifts off
(Thu), the wind production quickly drops, while the WECs maintain production at a moderate
decay. In this example, there are two occasions, Thursday night and Friday night, where wave is
the sole renewable energy producer. Thus, for a region aiming for full renewable energy coverage,
wave energy will be valuable to the power system.

Solar power output is directly linked to the solar influx and typically has a strong negative
correlation with wind and wave. Low pressures that carry strong winds usually also bring a thick
cloud cover. Thus, solar is very effective in combination with wave and wind. Although solar
systems have a low capacity factor of only 10-20% [45], most of the power production takes place
during day at peak demand, which helps making solar and attractive renewable resource.

Tidal power systems are directly influenced by the lunar cycle, and have little correlation
with the local weather, which makes tidal power an excellent contributor to the power system.
Tidal power fluctuates with mixed patterns of 12-hour cycles and 24-hour cycles due to earth’s
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CHAPTER 1. INTRODUCTION

rotation, and has underlying 14 and 28-day cycles due to the moons rotation around the earth.
This makes the tidal power output highly predictable, but also results in some of the production
occurring out of pace with demand. Like wave, tidal is still in early development with few systems
in commercial operation.

1.4 Challenges with Wave Energy Converters

Although WEC systems have been under development for more than two hundred years [8],
no commercial system have been developed yet. The problems are multifaceted, being of both
practical and physical nature. FO has identified five main challenges:

• High force, low speed
The average effective surface elevation speed of good production waves is typically less than
0.5 m/s, and can be found by direct calculation of the wave height and period. Thus, a
WEC that shall produce 100 kW will require a production force of at least P = F ·v 200 kN,
as given by the general definition of work in Equation 1.2 and 1.3. This is equivalent to 20
tons and results in large production machinery, referred to as the Power Take-Off (PTO), to
produce a limited amount of power. As comparison, an average sports car with a 100 kW
engine would only weigh around 1 ton, while the 100 kW wave energy converter would
require the ability to effectively and efficiently lift 20 such cars, and also cost less than a
single car. Thus, the challenge of the PTO is to produce high force at low cost, which is
covered in Chapter 2.

W = F · s (1.2)

Ẇ = F · ṡ ⇔ P = F · v (1.3)

• Cost of design iterations
Testing and developing WECs requires access to real ocean waves, either by going offshore,
or by testing in a wave tank. Both options are costly and make design iterations expensive.
The former option is also limited by strict weather windows restricting maintenance, repair
and rebuild.

• Harsh environment
The ocean is a harsh environment with rough conditions. Unlike ships, a WEC system
cannot divert from bad weather, and has to be designed for the worst-case weather situation
on the site. The extreme mooring loads are many multiples higher than the average loads,
and the worst-case weather situation will be a major cost driver.

• High power fluctuations
WECs have to extract power from the reciprocal motion of the waves. This varying speed
directly causes reduced output power quality of the PTO, as the machinery cannot run
constantly at its optimal speed. In addition to affecting the cost of the PTO, this also
transfers to the downstream power system and requires installed overcapacity.

• Limited power rating
The incoming waves have limited wavelength, which limits the maximum size of most of the
WEC technologies. As presented in section 7.3, the FO system is limited to a maximum
rated power capacity of around 1 MW.
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1.5. ELECTRICAL OUTPUT POWER QUALITY

1.5 Electrical output power quality
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Figure 1.4: Power output from various power sources when operated in optimal conditions

Most power plants have the capability to produce the nominal output power specified by
the rated generator capacity. This is valid for wind turbines, hydro power stations and thermal
power stations, and is due to the ability to obtain close to nominal speed on the generator
during production. Most WECs however, have generators that operate with varying speed,
which reduces the average output power below the rated power. Depending on the mode of
operation, the generator may also be allowed occasionally to exceed the nominal power rating.
This is illustrated in Fig. 1.4, and makes wave energy converters very different from other types
of power plants in its export power quality.

The challenge is how the power shall be managed to reach the high power quality required for
export to grid. As illustrated in Fig. 1.5, there are two origins of the disturbances, the first is the
regular wave to wave fluctuation plotted in Fig. 1.5(a). Secondly, waves tend to gather in groups
to form sub harmonic fluctuations with respect to the wave period. Fig. 1.5(b) illustrates that
this effect requires power smoothing over a period far beyond the regular wave period, required
smoothing periods up to 200 seconds has been suggested [32]. To avoid heavy investments
in energy storage, the main concept pursued in this work is to level out the power by natural
smoothing within a farm of multiple converters. Fig. 1.6 shows the improvement in power quality
that is believed to be required through the power chain for a commercially attractive system.
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Figure 1.5: Typical power output fluctuation measured at Lifesaver

The colored fields illustrates the power quality where the red color represents peak power and
the green color represents rated power. The light green color indicates the allowed short-term
overrun at rated power. Several methods are explored to meet this target including optimal
positioning of devices, utilization of energy storage in various segments of the power system and
forcing peak shaving through power dumping. Each segment of the power system is analyzed
individually through Chapters 2, 3 and 4.

Figure 1.6: Possible power quality improvement through the power transfer chain

1.6 Conventions for rating WECs

As of today, there is no agreed convention on how to rate the power capacity of a WEC, and
several figures are used interchangeably. This causes confusion about the real energy export
capability and makes it difficult to compare WECs

The wind industry has many of the same issues as WECs, and the rated power for a wind
turbine has to be accompanied by a figure for the lowest wind speed that can produce rated
power, typically between 11-13 m/s wind speed. To describe the quality of a wind site, the
number of full load hours that can be obtained with the specified wind turbine is given. This
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1.7. FRED. OLSEN WAVE ENERGY PROJECT

cause a natural balance between rated capacity and load hours, as an overrated turbine would
result in poor load hour rating.

FO has adopted this method for WEC rating, and propose to implement this as an interna-
tional standard. The approach consists of three steps:

• Design wave state
Firstly, the design wave state must be chosen, which serve as the design target for optimal
WEC performance. For most WEC sites the design wave state is likely to be in the range
2.0-3.0 m Hs.

• Rated power
The average power output in the design wave state defines the rated power for the device.

• Annual load hours
The annual energy output divided by rated power gives the annual load hours and describe
the power quality from the WEC system. This parameter is site specific, and a realistic
interval for typical sites should be presented for the device.

This method was applied on Lifesaver, which was initially targeted for the Wavehub test site.
The wave state that delivers most energy per year on Wavehub is 2.75 m Hs / 6.5 s Tz, and
this was selected as design wave state. Lifesaver was simulated to produce 75 kW in this wave
state, which then becomes rated power. Simulating a full year of production at Wavehub resulted
in approximately 5 000 annual full load hours, and the three rating parameters have thus been
defined. Lifesaver can then easily be compared with other renewable resources.

This method has a few shortcomings compared to the wind turbine case, mainly related
to power quality. While a 2 MW wind turbine would only require 2 MW of export capacity,
a 100 kW WEC would require significantly more than 100 kW of export capacity. Thus, the
WEC rating could be accompanied by numbers for RMS power rating and peak power rating,
which would say more about the required export infrastructure. These numbers are, however,
less important for drawing the larger picture, and implementing only the three initially listed
parameters would provide a powerful tool for comparing WECs, and for comparison to other
energy sources.

1.7 Fred. Olsen Wave Energy Project

FO started with Wave Energy around 2000 with the development of the WEC system FO3,
which consisted of a matrix of point absorbers fixed to a semi-submersible platform of the Aker
H3 type, pictured in Fig. 1.7(a). Model tests were performed in a test tank in collaboration with
Marintek, Trondheim, and both survival capabilities and power production capabilities were
verified. However, due to the high level of uncertainty with such a system, it was decided to
build a 1:3 scale system for initial sea trials. This resulted in the test platform Buldra which were
equipped with five individual PTOs. Buldra is pictured in Fig. 1.7(b) on site outside Jomfruland,
Norway, where it was installed during the winter of 2005.

The Buldra tests uncovered some important differences between the real sea environment and
the test tank. The actual power output was lower than anticipated, and the total cost of the
system was too high. However, the test period also gave significant experience and resulted in
new ideas on how the system could be improved. System cost was identified as the key factor,
and the FO team investigated extensively on cost down strategies, which led to the design guide
lines listed in section 1.8. The conclusion was to cancel the FO3 project and pursue an alternative
system path.
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(a) Full scale device (b) Buldra

Figure 1.7: The FO3 project

The next stage started with the attempt of removing all components and structure from the
FO3 system that was not absolutely necessary. It was decided to stay with the point absorber
concept since it had demonstrated good performance, and since it was viewed as one of the
simplest systems due to its directional insensitivity. One of the great challenges with the platform,
in addition to the high cost, was the strong guides and structures required to absorb the lateral
forces between the point absorbers and the platform. The FO team concluded on dropping the
platform concept entirely, and instead pursue free-floating point absorbers.

The small-scale test device B33 was designed as a proof-of-concept device, and was quickly
assembled out of polystyrene. It measured ca 1x1 m, weighed less than 100 kg and was fitted
with a simple gearbox and induction motor PTO. The system was manually operated and tested
close to shore outside Risør, Norway during the autumn 2007 and winter 2008, and was operated
from a land based observation post. The PTO and instruments were directly connected to the
control box on shore through a short sea cable. The control box contained the motor drive to
control the PTO and data logger equipment. B33 demonstrated the viability of the concept,
and gave valuable learning on operating systems in real sea conditions. However, B33 was
not accurate enough, and had several limitations that prevented accurate measurements of the
produced power. Also, the location close to shore caused strong wave reflections that distorted
the power output. It was decided to proceed with a more thoroughly designed prototype.

The next step was the B22 system, which was designed as an autonomous offshore device.
It was equipped with a complete control and communication system, and had a well-designed
PTO system that could accurately produce and measure a realistic power output. However, as
the project saw the opportunity for fast advancement to a full scale prototype, the B22 program
deviated from the original plan, and was instead used to provide design inputs into the full scale
project Bolt R©. B22 was operated outside Risør, Norway from the summer of 2008 until the
spring of 2009.

In parallel with the internal R&D work performed by FO, a European research project named
SEEWEC [29] was established to investigate the FO3 system. The SEEWEC project consisted
of several European companies and universities and was EU funded. This collaborative work led
to the full-scale system Bolt R©, which was a hydraulic-electric hybrid system developed in close
collaboration with BoschRexroth R©. Bolt R© was installed outside Risør, Norway in June 2009 and
had, per December 22, 2010, produced 3 360 kWh of energy [17]. The system is pictured on site
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(a) B33 (b) B22

(c) BoltR© (d) Lifesaver

Figure 1.8: Single point absorber systems developed by FO in the period 2006-2012

outside Risør in Fig. 1.8(c).
Based on the success with Bolt R©, FO decided to use the knowledge and experience gained

so far to proceed to the next generation design. An agreement with several UK companies was
made with funding from the UK Technology Strategy Board (TSB). The goal of the project was
to improve the Bolt R© concept towards a commercial level where it could be launched at the
Wavehub test site [43], and hence the project name Bolt2Wavehub. The project resulted in
the full-scale system Lifesaver, consisting of a 16 m toroidal floater with up to five individual
all-electric PTO systems. Lifesaver was installed on the test site Fabtest in April 2012 and is
planned to stay in operation until March 2014. The Bolt2Wavehub project and the Lifesaver
system is explained in detail in Chapter 3.

Until now, FO has not had a single serious event with any of the WEC systems, which has
allowed for continuous long term testing in real sea conditions. This has proved invaluable for
building experience with wave energy.

1.8 FO design guide lines

Through many years of design and operation of WEC systems, FO has developed a set of design
guidelines to work towards a commercially attractive system. The guidelines are focused on the
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FO technology, but are believed to be valid for most WEC systems.

• All floating structure should contribute to energy production
This is a lesson learned from the FO3 system, were an expensive support structure held
the absorbers. This structure was quite large compared to the point absorber structures,
while it did not contribute to energy production. It was decided that as a first cost down
move, all inactive structure had to be removed.

• Light-weight system
Although ballast in a floating system can be inexpensive, the secondary effects of heavy
systems can significantly drive up cost. The system mass is directly proportional to the
submersed volume, which in turn drives the drift forces on the system. Hence, cost of the
storm moorings will be directly affected, in addition to the required extra support structure,
and the cost of structure itself. Mass should be regarded an expensive commodity, and
should be kept as low as possible. FO has made it a common practice to evaluate the
system on a rated kW/kg basis.

• Tight-moored system
Floating systems have to react against some sort of fixed body to produce force, and hence
power. The options are to react against a stiff mooring tied to the sea floor, or to have a
dual body or multi-body system where body elements react against each other. A common
example is to use a heave plate, which is a large viscous friction plate, below the point
absorber. Such solutions require the fixed body to have a mass of at least 1

2F0g, where
F0 is the production force and g is the gravity constant. This extra mass must be offset
with an equal amount additional buoyancy, which add yet more mass. FO has decided on
a path toward tight moored systems to improved the kW/kg rating.

• All mooring forces must contribute to energy production
Moorings contribute significantly to the total system cost and the required mooring forces
should be kept as low as possible. Moreover, the mooring system should be designed
to utilize the force effectively for energy production, and all moorings should be PTO
production moorings. However, while in the developing phase, all WEC systems should
be equipped with strong secondary mooring systems until the system behavior is fully
understood. Backup moorings have proven to be crucial on several occasions in the FO
project.

• Electro-mechanical PTO
FO initially experimented with hydraulic PTO systems as they perform well with high force
and low speed. However, when evaluating cost, efficiency and controllability, hydraulic
systems show performance issues due to the large variation in speed, and the low average
speed of WECs. Hydraulics also has limited ability to perform active filtering to damp
unwanted system behavior, which is common in WECs due to the large speed variations.
FO has achieved far better performance with electro-mechanical systems that are based on
mechanical gear and variable speed drive, as described Chapter 2.

• Unlimited stroke length
The WEC has to be designed with a given stroke, which is the length it can follow the wave
motion. The difference between the ultimate stroke, often statistically calculated from the
10-year wave, the average stroke during normal production is very large, and it is tempting
to design the WEC with a limited stroke that is optimized for production performance.
However, this requires the system to handle the impulse that occurs when end of stroke
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is reached. The maximum impulse Jmax can be calculated by Equation 1.4, where vmax

is the maximum WEC speed, m is the WEC mass, mi is the mass equivalent of the PTO
rotational inertia and ma is the added mass of the surrounding sea water. The shock
absorber systems absorbing such an impulse showed to be extensive and FO has chosen to
avoid end stops, and instead ensure enough stroke length to accommodate for the extreme
waves.

Jmax = vmax (m+mi +ma) (1.4)

• Early saturation in PTO force
There are large variations in speed and force between the largest waves and the most com-
mon waves. When designing the PTO, a force saturation threshold must be selected, from
where some of the wave power is left untapped. A strong PTO has the possibility to extract
more power through advanced reactive control, described in Appendix J, however, when
cost optimizing the system, it becomes evident that the PTO machinery is more expensive
than the floater, and that the PTO should be designed to reach nominal production already
in low waves. An example of this kind of cost optimization is shown in section 7.3, and
demonstrates very clearly the importance of early saturation of the PTO force.

• Above surface device
WECs may benefit from being mounted subsurface, or to use submersion as a survival
strategy in bad weather. However, having subsurface system components complicates ac-
cess and design, and conflicts with the rapid prototyping principle [30], which calls for fast
development iteration cycles. Until the WEC systems are fully developed and matured,
the WECs should be above surface.

• KISS - Keep it simple stupid
A Wave energy device requires a high level of complexity just to maintain basic functions,
and any unnecessary added complexity should be avoided. Especially for the early stages
it is much more important to develop the robustness and reliability of the WEC system
rather than maximizing energy output.

1.9 Concluding remarks

This chapter has presented the problem description for this doctoral thesis. In addition, the FO
Wave Energy Project has been described with focus on the history of WEC development, and the
general experience gained by FO on WEC development has been presented. The next chapters
will originate from this problem description and experience, and Chapter 2 and 3 will give a
detailed presentation of the existing Lifesaver system and the technology behind it. Chapter 4
and 5 attacks the stated issues with power quality and power control, Chapter 6 presents the
theoretical modeling work behind the system and Chapter 7 and 8 wraps up the thesis by
presenting the economical performance figures for the system, future possibilities and finally, the
conclusion of the thesis.
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Chapter 2

Power Take-Off system design

Synopsis
This chapter describes the Power Take-Off machinery used by Fred. Olsen and goes through
the practical aspects and the experience gained during pre-testing and sea trials of the Lifesaver
system. Generator design, configuration and rating is addressed in detail, and a method to reduce
the required power rating by high overspeed is presented. The generator is powered through a
frequency converter, and the configuration and applied control model is demonstrated.
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CHAPTER 2. POWER TAKE-OFF SYSTEM DESIGN

2.1 Introduction

The purpose of the Power Take-Off (PTO) system is to convert linear motion into electrical
power. Although the PTO ultimately is defined by its output power, it is more sensible to
evaluate and rate the PTO based on the available damping force. As established by Equations
1.2 and 1.3, produced power equals wave force wave times speed. Since the wave speed is too
low to impose any restrictions on the drive train, the PTO cost is mainly force driven. The
rated force defines the dimensions of shafts, bearings and pulleys. The gearbox gives flexibility
to utilize the speed capability of the generator, thus, power becomes and important factor for the
high-speed components. However, the selected gear ratio also has strong impact on the moment
of inertia, which may restrict the gearing. FO therefore uses force as the main parameter for
PTO rating with the cost performance indicator N/e.

Linear reference frame

The PTO operates with both linear and rotational motion, and FO has selected linear motion
as reference frame. The total gear ratio n is introduced to describe the relationship between
generator rotational speed and the PTO linear speed, and is defined by Equation 2.1. Here, ωgen

refers to the generator speed in rad/s, and vpto refers to the PTO linear speed in m/s. Mgen

is the generator torque and Fpto is the linear PTO force, while ngear and rdrum refers to the
rotational drive train gear ratio and the radius of the winch drum, as illustrated in Fig. 2.1.

Generator

r2

r3rdrum

Mooring line ωgenωdrumvpto

Belt pulley

Belt pulley

Drive belt

Drum

Figure 2.1: Illustration of the linear to rotational gear ratio

n =
ngear

rdrum
=

ωgen

vpto
=

Fpto

Mgen
(2.1)

The effect of inertia is included by introducing the inertia mass equivalent parameter mi,
which is found by using the kinetic energy comparison described by Equations 2.2 and 2.3,
where I denotes the rotational moment of inertia of the generator. By substituting

ωgen

vpto
by n,

according to Equation 2.3, Equation 2.4 is found. The equation can be used for all parts of the
drive train by using the correct inertia and gear ratio.

Ek−lin = Ek−rot (2.2)

1

2
mi · vpto2 =

1

2
I · ωgen

2 (2.3)

mi = n2 · I (2.4)
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2.2 Mechanical configuration

Figure 2.2: Power chain: Mechanical conversion

The FO PTO system is realized as a winch and rope system, as illustrated in Fig. 2.3. The
generator can only produce power during upwards motion, and has to operate in motoring mode
during downwards motion to wind the rope back on to the drum. The target force for the
Bolt2Wavehub project was ten tons and resulted in the PTO configuration parameters listed in
Table 2.1.

Figure 2.3: Principal sketch of the PTO and WEC

The PTO gearbox is realized as a belt drive system based on Gates R© carbon fiber timing
belts. The belt drive is very robust against shock loads and operates well with reciprocating
motion. The belts are coated with polyurethane and are resistant against the highly corrosive
environment at sea. FO has used the belt drive system for all the single body systems, and the
gear concept has demonstrated excellent performance. The belt drive is also very flexible as belts
and pulleys can be easily replaced. This is a highly valuable property for a prototype, since there
is high risk of accidentally subjecting the drive train to excessive internal or external loads.

The Bolt2Wavehub drive train has been further developed from the original concept, and the
balanced split drive configuration is a new design for the Bolt2Wavehub project developed and
patented by FO. This has the advantage of better utilizing the first step, as torque is created on
both sides. Secondly, it balances the forces over the main pulley and the generator so that the
bearing loads are minimized. This allows the generator to be mounted with the pulley directly
on the shaft, which avoids a complex setup with flexible coupling. The actual drive train design
is shown in Fig. 2.4.
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Property Value
Maximum production force 100 kN
Nominal generator speed 400 rpm
Maximum generator speed 1 800 rpm
PTO nominal production power 15 kW
Generator nominal power 80 kW
Inverter nominal power 120 kW
Gear ratio 38.5 1/m
Equivalent inertia (mi) 3 000 kg

Table 2.1: PTO specifications

Figure 2.4: Actual PTO design
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The total gear ratio of the drive train is 38.5, which is limited by the generator capacity and
the resulting inertia. It has been found in simulations that a maximum speed of 6 m/s must be
allowed. Since the drive train can carry full load at this speed, the power capacity is 600 kW,
which leads to a very poor power utilization factor of 1/40 when compared to the nominal power
output of 15 kW. This is the result of the large speed variations, and is exaggerated by the rope
winch system that only allows for unidirectional production force. Bottom fixed or multi-body
systems may operate with bi-directional damping force, which would double the PTO utilization
factor. The FO system selection is based on total cost evaluation and concludes in favor of the
unidirectional solution.

2.3 Generator selection

Figure 2.5: Power chain: Generator

For a dynamic drive system like the PTO, finding a suitable generator becomes very hard as
there are many parameters that must be optimized. In this section, only the mechanical proper-
ties are discussed, as the electrical parameters are closely linked with the inverter configuration
discussed in section 2.4. The main parameters are:

• Maximum mechanical speed

• Maximum torque

• Rotational inertia

• Efficiency

• Torque precision

• Cost

The maximum speed and torque must be matched with the PTO rating, and is typically an
iterative process of finding a match between the drive train gear ratio and a specific generator
system. Since this is a dynamic application, it is also important to keep the rotational inertia as
low as possible. Fig 2.6 shows the linear equivalent of the drive system. To simplify the system,
the PTO is used as the fixed reference frame, and the sea floor is thought to be moving as the
equivalent of wave motion. On leftward motion, the PTO produces power, and on rightward
motion, the PTO has to supply pullback force to rewind the PTO and maintain rope tension.
As illustrated in the drawing, the major part of the dynamic mass will be in the generator, and
is a significant challenge to the system. Firstly, the dynamic mass must be accelerated back and
forth in each wave, causing unwanted power cycling in the drive train. This leads to reduced
generator efficiency and utilization, and requires electric power to be cycled against the grid or an
on-board energy storage. Secondly, high dynamic mass complicates the pull back regulation and
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Figure 2.6: PTO dynamic model

makes the system more vulnerable to unwanted dynamic behavior, which will increase the risk of
slack rope situations and require larger regulation margin. Thirdly, in slack rope situations, the
impulse force that occurs during re-tensioning will be proportional to the dynamic mass. Hence,
generator inertia is a crucial parameter that must be kept as low as possible.

The standard induction machine, which is the typical workhorse of industrial processes, is
designed with little attention to inertia. It typically has a massive iron rotor, and is therefore
unsuited for dynamic control applications. Machines that are optimized for this type of operation
utilize other materials and clever design to reduce the rotor mass, and are usually based on
permanent magnets since these provide higher torque density and lower inertia. Hence, the
requirements seem to push toward servo machines, as opposed to standard generators.

Efficiency is also an important parameter, and although it is closely linked with the electrical
configuration, the major parameters inflicting on efficiency are determined early in the design
phase. The major loss factors in the generator are resistive loss in the windings, hysteresis loss
and eddy currents in the iron, both due to stator and rotor magnetic field and bearing loss. It
proved difficult to find generator systems that were designed with good dynamic performance
that also showed good efficiency, but a suitable system were finally found in the extensive Siemens
portfolio, that also allowed for customization to the customer needs. Siemens also supplied a
detailed efficiency map, showed in Fig. 2.16, which also indicates the control boundaries, as
discussed in section 2.5. Since the Siemens machine is optimized for accurate servo control it
delivers much higher torque precision than would be required for a bulk power producer like the
WEC, which results in an unnecessarily costly system.

2.4 Inverter and Generator configuration

Figure 2.7: Power chain: Inverter

The mechanical properties of the generator were found in the previous section. The electrical
parameters are given by the pole count, rotor configuration and winding properties. The electrical
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properties result in the torque/current relationship and the speed/voltage relationship, which
links the mechanical and electrical properties.

VOUT

+

-

EMS

RjωL

Figure 2.8: Equivalent circuit for PM gener-
ator

PMSM
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DC

DC

AC

PMSM
AC

DC

PCC

ENERGY
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Figure 2.9: Principal diagram for BOLT2

Faradays’ law of induction, as given in Equation 2.5 defines the relationship between the
induced voltage ε, and rate of change in magnetic flux ϕ through a conductive loop. From
this, Equation 2.6 can be derived which gives the induced voltage in n loops with area A that
rotates with speed ω in magnetic field with constant flux density B. This shows the relationship
between open circuit voltage and speed of a PMSM. Since the magnetic flux generated by the
permanent magnets and the geometrical properties are constant, Equation 2.6 can be simplified
into Equation 2.7 where vout is the open circuit voltage and k is a constant. The equivalent
circuit of the generator is shown in Fig. 2.8.

From this, and by including the electrical impedance of the machine, the nominal conditions
can be expressed as given by Equation 2.8, where In is the nominal current and Vn is the nominal
voltage. This shows that the number of pole windings works as a scaling factor between nominal
current and voltage. However, the inverter that powers the machine has a fixed nominal voltage,
and as shown in Equation 2.9, where Pn is the nominal power, ωn is the nominal speed and Mn

is the nominal torque, the pole winding count defines the nominal power and the nominal speed
of the machine. Higher number of windings leads to lower nominal speed. The nominal torque
is defined by the physical size and properties of the machine that were defined in the previous
stage of the design process.

ε = −dϕ

dt
(2.5)

ε (t) = n · ω ·B ·A · sin (ωt) (2.6)

vout (t) = k · n · sin (ωt) (2.7)

Vn

In
= k · n (2.8)

Pn = Vn · In = ωn ·Mn (2.9)

Above nominal speed, the output voltage must be kept within limits by field weakening. For
PMSMs, this leads to a reduction in available torque that is inversely proportional to the speed,
and works as a constant power limit. Figure 2.10(a) illustrates this for a typical PMSM that
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allows for running with a mechanical speed of twice the nominal electrical speed. A more extreme
design with ten times overspeed range is plotted in Fig. 2.10(b) and illustrates the power limiting
effect with this approach. These plots show the ideal conditions, real systems would typically
show less power for higher speeds due to reduced efficiency and limitations on the field-weakening
control.
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Figure 2.10: Ideal torque and power curves for PMSM

In context of the rather extreme peak to average speed ratio of the WECs it would be
interesting to explore an extreme overspeed ratio of the generator. Bolt R©, for instance, was
operating with an average speed of 0.3 m/s in the most common wave state, but had to handle
above 5 m/s in the most extreme wave state, which leads to a peak-to-average speed ratio of
16.7. The generator overspeed ratio is inversely proportional to installed power, and an increased
overspeed ratio will therefore lead to cost reductions through the entire power chain and improve
the capacity factor. Reduced installed power will also lead to lower power absorption from the
high waves, and systems with very high maximum to nominal speed ratios are investigated to
identify the optimal system configuration.

The overspeed optimization is performed by creating generator models for a list of different
overspeed ratios. These models are then implemented into the simulation model described in
Chapter 6, and a full simulation run for all the wave states in the scatter is performed for each of
the generator models. The resulting annual energy production for the different overspeed ratios
is listed in Table 2.2. Annual energy and load hours are shown in Fig. 2.13 and 2.12 respectively.
The basis for the power normalization is 75 kW, which is the rated power for Lifesaver.

A first important observation is that the overspeed ratio can be raised to five without signif-
icant loss of annual production. This corresponds to a five times reduction in installed power.
Further increase must be done as part of an economical optimization, and Fig. 2.11 shows the
average power production for every hour through a year sorted in descending order, where each
line represents a generator configuration with a given overspeed ratio. The figure is a good tool
for sizing of the export system and clearly shows the effect of the overspeed ratio. A higher
overspeed ratio results in a lower peak power rating, less fluctuation in power production and
more load hours. This is mostly achieved by reducing production from the high sea states, but
some energy is also lost in the low sea states due to the high irregularities of the waves.

It can be seen from Fig. 2.11 that the overspeed ratio does not appear as a constant power
limit, but instead leads to a continuous reduction. This is because the overspeed ratio defines
the peak instantaneous power while the exported energy is given by the average power over 20
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2.4. INVERTER AND GENERATOR CONFIGURATION

Overspeed Annual Load Peak
ratio energy hours power

[pu · hours] [hours] [pu]

1 5093 1840 2.77
3 5081 1928 2.64
5 5017 2180 2.3
7 4878 2511 1.94
10 4593 3026 1.52
15 4070 3690 1.1
20 3547 4128 0.859
30 2832 4773 0.593
40 2368 5244 0.452
50 2041 5611 0.364

Table 2.2: WEC performance with different overspeed ratios
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Figure 2.11: Annual power distribution per hour
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minutes. The goal is maximum utilization of the export capacity, and it is likely that other
measures such as energy storage and averaging between groups of WECs also will be required.

There are, however, practical and physical limits to how high the overspeed ratio can be.
The most important limitation for the Bolt2Wavehub system is that enough torque must be
reserved to ensure adequate pull back force. For PM machines, the active field-weakening control
also becomes very demanding for high speeds, and is limited by the magnetic properties of the
machine. The Bolt2Wavehub generator is wound for a nominal speed of 400 rpm, while the
maximum mechanical speed is 1800 rpm, which gives an overspeed ratio of 4.5. This generator
has demonstrated very good performance, but has also suffered from minor issues at high speed.
Hence, an overspeed ratio of five seems sensible for the Lifesaver system.

An important side effect of operating PMSM beyond nominal speed is that the natural elec-
tromotive force of the machine, VEMF , exceeds the nominal voltage rating. This relationship is
linear with speed, with potential to cause damage at high overspeed. To overcome this, a Voltage
Protection Module (VPM) is mounted directly on the generator terminals to short-circuit the
generator in case of excessive voltage, as shown in Fig 2.14. This protects against failures in the
electrical system and is important to avoid dangerous power surges into the electrical system.
However, it should be noted that as long as the power circuitry is intact, the terminal voltage
would be kept within range, even if active field-weakening control fails, since the generator will
be short-circuited through the rectifier. Hence, the VPM module will only react against physical
failures in the system.

2.5 Control principle

The amount of absorbed power from a point absorber is given by the control strategy applied on
the PTO. In general, the optimal energy extraction is achieved when the point absorber is moving
with a 90◦ phase shift to the waves. Several methods of approaching this production mode are
described, the best known being reactive control [37–39] and latching control [19]. Fig. 2.15
shows an electrical equivalent circuit for the WEC where the dynamic behavior is modeled as an
RLC circuit. The PTO is represented by a power extracting element (resistance) and a reactive
element (reactance). The goal of reactive control is to tune the reactive element of the PTO so
that it compensates for the reactive elements of the WEC to maximizes power extraction.

However, with the current design of Lifesaver, the PTO is too weak to have significant impact
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Figure 2.15: Equivalent circuit for Wave Energy Converter and Power Take Off
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by advanced control, as demonstrated in Appendix J. This is a result of following the design
guide lines specified in section 1.8. Passive damping therefore serves as the primary power
extraction method. Nevertheless, in the lowest sea states, advanced control algorithms may
improve output [37], but is not currently implemented on Lifesaver.

The PTO damping force FPTO is defined in Equation 2.10 for the PTO speed v and imple-
ments passive damping with the damping coefficient B, while respecting the selected force limit
FLim and the intrinsic generator power limit given by the nominal speed vnom and the maximum
force FMax. The equation is referred to the linear reference frame with positive direction defined
upwards. Thus, the damping coefficient B must be negative to extract power, and is optimized
towards the highest efficiency region of the machine to produce the highest possible net power
output. F0 represents the pretension force required for pullback, and the damping function is
limited to only react on positive motion. The resulting force and speed characteristics are plotted
in Fig. 2.16, where the thick line shows the optimal force that results in maximum net power from
the generator. Two saturation mechanisms limits the damping force, the first is the mechanical
force limit of the gearbox and is reached already at 0.27 m/s. The second is the power limit of
the generator, which is reached at 1.55 m/s. The linear region from 0 - 0.27 m/s corresponds to
a damping coefficient of ca -350 kNs/m, which is the selected damping coefficient for Lifesaver.

FPTO(v) =

⎧⎨
⎩

min (F0 +Bv, FMax · v/vnom) : v ≥ vnom
min (F0 +Bv, FLim) : vnom ≥ v ≥ 0

F0 : v < 0
(2.10)
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Figure 2.16: Efficiency plot for the generator used at Bolt2Wavehub

2.6 Drive train verification tests

As most of the uncertainty in the Bolt2Wavehub project was related to the PTO function,
operation and control, two PTOs were built and assembled ahead of the WEC system. The
two PTOs were connected against each other in a back-to-back configuration so that one could
drive the other. The first PTO, referred to as the driver, was set to replicate the expected wave
motions, while the second PTO, referred to as the driven, was operating according to its normal
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wave production program. Continuous tests for several days were performed at full load to verify
the PTO function. Several issues emerged, both in the mechanical system and in the control
system, which would cause damage if left unattended. It is much easier to perform repairs and
system tests in a controlled environment, and this illustrates the importance of performing a
thorough commissioning before launching sea trials. After the errors were corrected the PTOs
showed excellent operation.

In addition to the wave production tests, a complete mapping of the drive train loss properties
was also performed. This was done by running fixed speed runs with constant speed and torque.
To allow for continuous unidirectional running, the drum and rope were replaced with a chain
drive that connected the two PTOs together. Thus, the power transfer chain consisted of five
gear steps when the chain drive was added to the two gear steps of each PTO. To estimate the
loss on a single PTO, the loss was assumed to be evenly distributed over the gear steps, so that
the PTO loss was 2/5 of the total loss. The chain drive was expected to have lower efficiency
than the carbon belts, however, some friction is also introduced by the generator bearings, and
these effects were expected cancel out to some extent.

Mloss = M0 + cM ·Ma + cn · na (2.11)

The resulting torque loss and power efficiency is plotted in Table 2.3 and 2.4. The tables
indicates three loss mechanisms, which is expressed in Equation 2.11, where M0 denotes the
static friction, cM denotes friction constant due to torque load, cn denotes the viscous friction
and other loss effects linked to speed. Ma and na is the actual torque and speed.

The test plan also called for dynamic tests of the drive train to investigate the frequency
response of the drive train. This was mainly planned by running frequency sweeps, where the
driver set speed is super-positioned with a small fluctuating speed. The frequency of the fluctuat-
ing speed can then be gradually shifted to scan the drive train response to a range of frequencies.
However, due to time constraints and concerns that the chain drive would not handle the dy-
namic behavior, these tests were omitted. The chain drive actually broke down later in the test
program, which strengthened this view. However, in retrospect, it is clear that more time should
have been spent on dynamic effects, as demonstrated in the next section.

2.7 Experience from sea trials

The PTOs have demonstrated successful operation through the sea trials, and have survived
rough wave states up to 5.1 m Hs, with maximum waves of ca ten meters. However, several
dynamic issues have been discovered that cause oscillations in the system and will lead to reduced
lifetime if left unattended. Fig. 2.17 shows a typical case during normal production. In this
example, the PTO is limited to 50 kN of damping force, and the pullback force is set to 10 kN.
The figure shows how the PTO force follows the production force function on upward motion
and maintains the pullback force on downward motion.

The concern is the oscillations that occur when the control model switches from a damped
system to a saturated system. This cause a step response in the system behavior that leads
to the observed ringing. Some distortion at this switchover was expected, but the measured
fluctuations showed to be much more pronounced than anticipated, and must be caused by
dynamic spring effects somewhere in the system. To further investigate this issue a research
project was established in collaboration with NTNU to analyze the dynamic response of the
system. The work concluded that spring effects in the primary mooring is the main contributor to
the oscillations, and that the problem can be mitigated thorough active compensation control [24].
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Speed [rpm]
50 100 150 200 250 300 350 400 450 500

T
o
rq
u
e
[N

m
]

0 42 48 49 49 54 58 58 58 57 57
125 40 46 44 41 50 62 57 61 57 49
250 48 52 52 50 49 61 57 59 62 63
375 47 55 55 50 67 44 53 72 59 80
500 54 56 59 61 45 64 68 73 52 71
625 55 61 58 51 52 67 70 66 74 73
750 54 63 51 54 54 77 65 72 82 73
875 62 67 58 73 73 72 69 54 79 60
1000 60 64 56 78 77 70 83 86 77 77
1125 67 52 76 63 67 85 95 82 98 70
1250 65 77 82 61 63 88 81 89 92 95
1375 58 79 60 84 86 88 82 93 96 87
1500 75 80 82 114 126 81 87 135 93 120
1625 78 89 89 129 123 85 119 151 108 125
1750 83 96 108 112 111 93 143 123 143 130
1875 87 96 97 100 89 145 133 108 126 -
2000 87 105 103 101 119 152 91 127 148 -

Table 2.3: Drive train torque loss [Nm]

Speed [rpm]
50 100 150 200 250 300 350 400 450 500

T
o
rq
u
e
[N

m
]

0 - - - - - - - - - -
125 81.8 79.6 79.7 81.1 77.8 74.6 75.7 74.2 75.1 76.8
250 87.8 86.1 85.8 86.1 86.5 83.8 84.3 84.4 83.3 83.2
375 91.8 89.8 89.1 90.3 87.2 91.2 89.2 86.1 88.1 84.8
500 92.9 92 91 90.7 93.3 90.2 89.6 88.9 91.5 89.3
625 93.8 93.1 93 94.2 93.5 91.7 91.2 91.7 90.7 90.7
750 95 93.9 94.8 94.8 94.4 91.9 93 92 91 92
875 95 94.4 95 93.4 93.6 93.7 93.6 94.9 92.7 94.3
1000 96.7 95.6 96.6 93.9 93.8 94.4 93.1 93.1 93.8 93.5
1125 96.3 97.7 94.7 96.2 95.4 93.9 93 94 92.9 94.9
1250 96.7 95.5 94.8 96.5 95.9 94.5 94.9 94.1 93.9 93.5
1375 98.7 95.8 97.5 95.3 95.1 94.9 95 94.5 94 94.7
1500 97.3 96.2 96.2 94.1 93.4 95.5 95.1 92.6 94.6 93.3
1625 97.6 96.1 96.1 93.6 94.4 95.9 94 92.4 94.3 93.5
1750 98.5 96.2 95.3 95 95.1 95.6 93.3 94 93.2 93.9
1875 97.7 97.5 96.4 95.8 96.1 93.6 94 95.2 94.3 -
2000 98.3 96.4 96.3 96 95 93.7 96.2 94.6 93.8 -

Table 2.4: Drive train power efficiency [%]
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Figure 2.17: Force vibrations observed on mooring during normal operation

Another result of the same problem arises in high-speed cases. When the PTO reaches
the nominal speed and has to saturate the production power due to field weakening, a system
condition occurs where the damping coefficient becomes negative. This has a destabilizing effect
on the system, and causes the PTO to accelerate due to positive feedback. This was expected
during system design, as the force ramp down will reduce the floater submersion, but the effect
was expected to decay as soon as the floater had reached its maximum speed. However, due to
the dynamical softness of the system, this effect causes violent oscillations that have caused the
PTO to trip on overspeed on a few occasions. This problem is believed to be easier to solve,
as these occurrences are quite infrequent, so that more drastic approaches can be used without
significantly affecting annual produced energy.

2.8 Concluding remarks

This chapter has described the PTO design in detail, and has addressed the many mechanisms
affecting PTO performance. Important findings are the importance of inertia in the PTO system,
both on dynamic behavior and on energy expenditure during pullback. It was also demonstrated
that significant expenses can be saved on the inverter and power system by configuring the
generator with nominal speed far below the maximum allowed speed. An overspeed ratio of
around five has been found to be beneficial.
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Chapter 3

Wave Energy Converter design
and operation

Synopsis
This chapter presents Fred. Olsens latest WEC system Lifesaver, which is a 16 m toroidal point
absorber with 75 kW rated power capacity. The mechanical and electrical system configuration
is explained in detail, and results and experience from the sea trials at the FabTest test site
outside Falmouth, England is presented. This includes a complete production scatter diagram
for Lifesaver.
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CHAPTER 3. WAVE ENERGY CONVERTER DESIGN AND OPERATION

3.1 System description

The purpose of the Bolt2Wavehub project was improve the power output from the Bolt� system,
and the initial goal was to achieve 100 kW average power output in the design wave state Hs =
2.75m / Tz = 6.5s. Bolt had a damping force of 40 kN, and it quickly became evident that it
would not be possible at that technology level to achieve 100 kW with a single PTO, thus several
multi-PTO solutions were investigated, and the configuration with five PTOs positioned along
the edge of the buoy showed to be most promising. This configuration allowed the PTO force to
be kept within 100 kN, which was believed to be a maximum limit for the winch system at the
time. An important outcome of the multi-PTO configuration is the ability to produce from both
heave, pitch and roll motion, as opposed to the single PTO configuration, which only produces
from heave. In total, this resulted in a rated power expectation of 75 kW, which was considered
to be satisfactory, the additional damping force and floater size required to obtain 100 kW was
viewed as to much risk at this level.

In the SEEWEC project [29], it was found that the shape of the floater was of less importance,
especially when the system is not operated with reactive control, the important parameter is the
submersed cross-section area. Hence, FO had great flexibility on designing the hull, both with
respect to production method and transport requirements. The team also discovered that, due
to the pitch and roll-damping capability, the hull would produce more power with a ring design
than a compact design, as the improved diameter would lead to a longer arm on the rotational
movements. This led to the characteristic toroidal WEC system Lifesaver, pictured in Fig 3.1
which name is inspired by its rescue buoy like proportions.

Figure 3.1: Lifesaver on site outside Falmouth, England.

As can be seen from the picture, Lifesaver was only installed with three of the five PTOs, as
this was believed to be satisfactory for understanding the system, and also allow for experience
to be gained on the first PTOs so that the remaining PTOs could be built to a higher standard.
The PTOs are designed to be modular and independent so that the WEC system can maintain
operation in case of failure of one or more of the PTOs. This also allows for simplified service, as
a failing PTO could be brought to shore while maintaining power production on the remaining
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PTOs. The basic properties of the Lifesaver system are listed in Table 3.1.

Table 3.1: Lifesaver key parameters
Floater outer diameter 16 m
Floater inner diameter 10 m
Floater height 1.0 m
Mass 55 tons
Water depth 55 m
Number of PTO slots 5
Currently installed number of PTOs 3
Damping force per PTO 100 kN
WEC rated export power 75 kW
Total installed generator capacity 400 kW

Lifesaver is a flat absorber with low mass that gives a high resonance frequency and thus a
Response amplitude operator, RAO, [11] close to one for most of the relevant wave states. This
gives a stiff system that is well suited for passive damping and less suitable for reactive control.
The absorber is tightly moored to the sea floor by a winch and connects to the generator through
a gearbox, as shown in Fig 2.3. This point-absorber principle is a well known conversion system
that has been extensively researched and tested [20]. Pre-tension in the mooring line is supplied
either by a spring equivalent system or by the main generator itself.

3.2 Power system

Lifesaver has an advanced power system that allows for operating standardized industrial power
equipment without grid connection, while still keeping the option of grid connection open. Elec-
trically, all PTOs are connected to a common DC-bus that serves as the backbone of the power
system. This allows for natural power exchange between the PTOs and the power components,
and ensures a natural balance in the power flow. As can be seen in Fig. 3.2 this configuration is
the same for both the stand-alone and the grid connected solution. In the grid connected option
the available power surplus on the DC-Link is converted to AC and transformed to grid. The
capacitor bank indicated on the schematics could serve as intermediate energy storage before
transfer to grid, however recent studies have shown that this is not required and that capacitor
bank only needs to be sized for the control stability of the inverters.

In the stand-alone solution on the other hand, a significant energy storage is required to make
up for the negative power periods caused by pullback. Several options were considered, pointing
towards the ultracapacitor bank as the most suitable solution for the system. The ultracapacitor
bank is connected directly on the DC-link, and is backed by a battery bank through a bi-
directional DC/DC converter. In addition, a power dump system is required to handle excess
energy. Fig. 3.2(b) shows the detailed schematics for the stand-alone system, and the specific
system components and solutions are explained in detail in the following paragraphs.

Capacitor bank

The requirement for the capacitor bank is to supply the required energy for winding in 10 m of
rope on each PTO with 10 kN of pull force. It must also handle wind-in speeds of several meters
per second. With a system efficiency of 0.8, and taking into account all five PTOs, the required
energy can be calculated to 625 kJ by Equation (1.2), while Equation (1.3) indicates a required
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Figure 3.2: Lifesaver topology

Figure 3.3: Maxwell technologies R© 48V ultra-
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power of several hundred kilowatts. Equation (3.3) shows the energy storage capacity We of a
capacitor based on capacitance C and nominal voltage Vn.

Wm = F · s (3.1)

Pm = F · v (3.2)

We =
1

2
C · Vn

2 (3.3)

A third requirement for the capacitor bank is that it must handle peak voltages up to 830 V.
A configuration of 17 serial connected modules of the Maxwell technologies R© 48 V module [35]
fulfill all these requirements, and is the selected configuration. The module is shown in Fig.
3.3. Each module contains 18 serial connected ultracapacitors that are conditioned by an active
balancing network. The balancing network allows for bypassing some of the charging current on
each cell and is controlled so that all the cells are at equal voltage. If the nominal voltage on the
entire module is exceeded, some current is by-passed to ensure balance between modules. Some
technical parameters for the capacitor bank is listed in Table 3.2.

A drawback with direct connection to the DC-Link is that capacitor voltage will have to stay
within the operational limits of the DC-Link components. Thus, the full energy potential for
the capacitor cannot be utilized as it cannot be allowed to fluctuate between zero and nominal
voltage. However, for the ultracapacitors to maintain the specified lifetime, discharge below
1
2Vnom is not permitted during normal operation. Since the Siemens inverters used allow for
high fluctuations on the DC-Link, this problem can be mitigated somewhat. On Lifesaver the
system is allowed to fluctuate between 500 V and 760 V in normal operation, which corresponds
to 65% of the available energy. Hence, only 35% more energy could cycled through the energy
storage if a separate converter were used for the ultracapacitor bank.

Property Value
Nominal voltage 816 V
Capacitance 4.88 F
Nominal energy 1.63 MJ
Useful energy (400V-776V) 1.08 MJ
Max continuous current 100 A
Max peak current 1 100 A
Short circuit current 4 800 A
Nominal power at 600V 60 kW
Peak power at 600V 660 kW
Modules in bank 17
Cells per module 18
Cell capacitance 1.5 kF
Cell voltage 2.70 V
Cycle life 106

Table 3.2: Ultracapacitor bank specifications

The capacitor module has a specified cycle life of 106 cycles. If every charge/discharge cycle
during power production is counted, this number will be reached in less than one year of operation
due to the wave frequency. However, most of the cycles are caused by low waves with low
energy. Maxwell technologies R© offered to simulate the expected life time of the capacitor system
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specifically for Lifesaver. The simulation inputs are plotted in Fig. 3.4 and shows capacitor
bank voltage profiles from three different wave states, low, high and extreme. The three wave
states have a defined probability of 0.4, 0.1 and 1/365 respectively. The remaining probability
of approximately 0.5 is the down time expected during calm weather, and is quite high due to
the sheltered conditions on the FabTest site. Based on these inputs Maxwell technologies R© has
estimated the lifetime to 15 years.

DC-Link charger

The DC-Link charger converts energy from the battery bank to the capacitor bank. This is
mainly required for three purposes:

• During startup when the capacitor bank have to be pre-charged and the PTOs have to pull
in and tension the ropes.

• During service when the PTO winches have to be maneuvered.

• In extreme wave states when the required pullback energy might exceed the available energy
in the capacitor bank. The pullback process and energy balance is described in section 3.2.

Figure 3.5: DC-Link charger: Inverters and laboratory power supplies in 19” rack configuration.

The specifications for the DC-Link charger are as follows:

• Supply up to 5kW of power

• Supply output voltage in the range 0-600VDC

• Handle voltage on the output terminals in the range 0-830VDC

• Handle input voltage in the range 22.0-29.0VDC

• Allow for current limited operation

• Controllable over LAN
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From a power electronics point of view the best solution would be to use a DC/DC boost
converter that directly converts the battery voltage to 600 VDC. An even more interesting
solution would be to merge the DC-charger and the battery charger, which will be described in
the next section, into a single bi-directional converter. A possible solution for this is the Reduced
Matrix Converter, which is based on bi-directional RB-IGBTs. This concept has been explored
in detail and has for instance been proposed for off-shore wind turbines [14]. However, no off-
the-shelf converters based on these topologies that meet all the requirements could be found.
Development of such a system from scratch is costly and time consuming, especially when taking
into account the required support for maintenance and service. This approach was therefore
rejected.

Instead a modular two-step solution based on a standard 24 VDC to 230 VAC inverter and
a 230 VAC to 600 VDC laboratory power supply is selected. This takes the power via 230 VAC,
which is a drawback, but greatly increases the number of off-the-shelf components available. The
power supply selected is controllable by LAN, it can supply any voltage in the range 0-630VDC
and can operate in current limited mode with set currents in the range 0-4.2 A. This leads to
a maximum supply power of 2650 W. However, it cannot handle more than 660 VDC on the
output terminals and have to be shield from the voltages on the DC-Link by a reverse blocking
diode. The inverter and power supplies are 19” rack modules and can be seen in Fig. 3.5.

Battery charger

On board systems such as communication, data logging and monitoring equipment consume a
considerable amount of power from the 24V battery bank. This power must be generated by some
means, and the obvious solution is to use the generated wave energy. This is not straightforward
however, given the high- and fluctuating voltage level on the DC-Link. A solution based on off-
the-shelf wind turbines or PV cells would seem easier to implement. Nevertheless, FO decided
that it was worth the extra effort to develop the system, as the purpose of the prototype is to
prove the viability of wave energy. Moreover, an external power system with the required power
rating would be large and potentially fragile to the extreme weather conditions experienced at
sea. The battery charger has the following requirement specification:

• Handle input voltage in the range 0-830 VDC

• Operate with input voltage in the range 600-830 VDC

• Supply output voltage in the range 20-29 VDC

• Supply up to 125 A of charging current

• Control charging current based on input voltage

• Comply with 3-stage battery charging principle

• Controllable by field-bus (Profibus)

FO decided that the easiest approach to meet these requirements was to base the battery charger
on the same motor drive inverter that powers the PTO generators. They can naturally handle
the input voltage range, they are programmable, they natively support closed-loop control and
FO already has the required knowledge to operate and program them.

The concept is illustrated in Fig. 3.6 and is based on an inverter that powers a three-phase
400/24 V transformer to supply a 3-phase bridge rectifier. Finally, the output power is smoothed
through an inductive filter and fed into the battery bank. To simplify the configuration, the
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Figure 3.6: Battery charger topology

Figure 3.7: Implemented battery charger configuration: A) Inverter, B) Transformer, C) Recti-
fier, D) Choke
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transformer and chokes are designed with the same cores and fixed in a common frame. The
actual implemented system can be seen in Fig. 3.7.

The inverter is operated in scalar mode, which allows for controlling the output frequency
directly. The output voltage is regulated proportional to the output frequency to adapt to the
constant motor inductance to operate at nominal current. This principle is directly transferable
to the transformer and gives a system where the output voltage of the transformer can be
controlled without risk of excessive magnetizing currents. The nominal output frequency of the
inverter is set to 200 Hz as this reduces the transformer size, while still allowing for standard
50/60 Hz transformer design methods to be applied.

The charger program is implemented as a closed-loop feedback control with an inner current
control loop and an outer voltage control loop, as shown in Fig. 3.8. The current loop uses
the inverter output current as feedback while the voltage loop regulates on the actual battery
voltage, which is measured by an external sensor. The three-stage battery charger program is
implemented by controlling the current and voltage references. The maximum allowed charging
current is set to 125 A, the maximum charging voltage is set to 28.8 V and the trickle charging
voltage is set to 27.6 V. The trickle charging stage triggers when the charging current falls below
10% of the nominal charging current.

vref PI Conv. Battery vactPI

i re
f

f re
fv reg i reg

e e
iact

- -

Figure 3.8: Battery charger control principle

The battery charger must adjust the charger power to the DC-Link voltage to ensure stable
behavior for all WEC production levels. This is implemented by setting maximum allowed
charging current as a linear function with zero power at 650 VDC and full power at 720 VDC.
This prevents the battery charger from draining the capacitor bank at low power production
levels.

Brake chopper

The WEC is expected to produce a power surplus in all wave states above cut-off. This excess
energy will cause the DC-Link voltage to rise and must be taken away to balance the system.
This is normally done by switching in a resistor that dissipates the excess energy. For good
controllability, the system is typically controlled by Pulse Width Modulation (PWM) at around
1 kHz. This setup is usually referred to as a brake chopper and is very common in motor drive
systems.

On Lifesaver a standard brake chopper system supplied by Siemens is used, which will start
dumping energy at 776 V. The brake chopper has a linear PWM region where the duty cycle
is increased proportional to the voltage until saturation occurs around 790 V and the resistor
bank is constantly switched on. The resistor bank is a large array of air-cooled heating elements
that is placed on top of the power system box on Lifesaver. It is visible on Fig. 3.1 on page 34
as the gray structure to the upper-right. Air-cooling was selected in favor of water-cooling for
simplified access and maintenance.

The brake choppers operate as stand-alone units and only monitor the DC-Link voltage.
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Figure 3.10: Measured DC-Link voltage dur-
ing brake chopper operation

They do not require any external regulation or control. Three brake choppers are installed in
parallel with individual resistors as shown in Fig. 3.9. Each brake chopper has a nominal power
of 50 kW and a peak power of 250 kW, which leads to a total braking power of 150 kW nominal
and 750 kW in peak, and a fully redundant system.

Lifesaver is not expected to go beyond the nominal power on average as the production will
be curtailed in high to extreme wave states. However, the peak power limit of 750 kW may
occasionally be breached by single large waves appearing in high sea states. This requires active
power control and is described in the next section. Fig. 3.10 shows the actual response of the
DC-Link system during brake chopper operation. The rapid fluctuation around 760 V is caused
by the startup and shutdown of the brake chopper and not the actual PWM during operation.
The issue is believed to be caused by inaccurate control of the brake chopper at low power levels
and could be eliminated by improved control. Since this does not cause problems for the general
operation, and since the voltage fluctuations are relatively low, it has been decided to leave it as
it is.

DC-Link power control

The purpose of the DC-Link power control is to keep the capacitor bank and the DC-Link voltage
within the allowed range, and to ensure required energy for pullback. The DC-Link power control
is not a centralized control function, but is accomplished as the sum of several components and
functions operating together. The DC-Link conditioning can be divided into three levels, green,
yellow and red, as illustrated in Fig. 3.11. Within the green region, the capacitor bank voltage
is conditioned by the DC-charger in the low voltage end and the brake chopper in the high
voltage end. The PTOs are allowed to operate with optimal generation and motoring force. If
the production exceeds the brake chopper capacity or the consumption exceeds the DC-charger
capacity the yellow region is entered. Operation of all PTOs is then progressively constrained
to counteract further aggravation. In the unlikely event that the absolute limits are breached
and the DC-Link voltage enters the red region, all PTOs immediately shut down. For the high
voltage case, the VPMs also fires to protect the DC-system and to bring the generators to a
controlled stop.

The battery charger will start charging the batteries at 650V and will ramp up to full charging
power of 125A / 3.6kW at 720V. These thresholds are set to optimize for production in low waves
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Figure 3.11: Capacitor bank energy illustrated as a volume.

to maintain an untouched reserve of pullback energy between 650V and 540V. In the higher wave
states, the capacitor bank is expected to maintain close to fully charged condition with voltage
above 720V most of the time. It is important to include blanking voltage between the DC-
charger shutdown threshold and the battery charger startup threshold to avoid circulation of
power between the two converters. The DC-charger can supply a maximum voltage of 630VDC,
and the startup threshold of 650VDC ensures adequate safety margin.

In the extreme wave states the capacitor bank is completely cycled in each wave, which can
be seen in Fig. 3.4 at 510 sec. This will cause cyclic charging between the battery bank and
capacitor bank as the missing pullback energy must be borrowed from the battery bank. This
is only expected occasionally during worst-case conditions and should not affect battery life
significantly.

The DC-Link charger will normally operate whenever the DC-Link voltage is below 540V.
However, if the WEC is in a low production state, the 540V level is instead used as a trigger for
cut-off and causes the entire WEC to shutdown. The WEC will then go into power save mode
and measure the waves periodically to determine when power production can start up again.
This is handled by the top-level WEC control.

3.3 Sea Trials in Falmouth Bay

Lifesaver was launched for sea trials in April 2012 at FaBTest, which is a UK test site for pre-
commercial WEC concepts. FaBTest is located in Falmouth bay outside Cornwall, England, as
shown in Fig. 3.12, and is envisioned to be a preparation site for WECs planned for commercial
operation at the Wavehub site [43], and has a moderate wave climate with good balance between
production hours and availability for maintenance. Moreover, Falmouth bay has several large
dock yards capable of doing advanced mechanical work and heavy lifts that are suitable for
supporting WEC deployment. The tidal range in the Falmouth area can be as high as six meters
which pose no problem for the Lifesaver system, but could be a limitation for other WEC devices.
The water depth at the test site is around 50 m. Hence, FabTest is an excellent test site for
performing the initial sea trials on Lifesaver.

The Lifesaver system is designed with focus on modularity, maintainability and reliability.
All mechanical and electrical parts are placed above surface for easy access, and the modular
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Figure 3.12: Location of the UK test sites
Wavehub and FaBTest

Figure 3.13: Lifesaver during PTO lifting op-
eration

and autonomous PTO configuration allows for maintaining system operation and power export
with one or more PTOs out of service. Fig. 3.13 shows an example of maintenance work at
Lifesaver, where one of the PTOs were lifted off for on-shore repairs. Over the past year a large
amount of operational experience and data has been acquired. All signals and measurements
are logged continuously at 200 Hz while in operation, and gives a comprehensive database for
analysis. Together with the advanced simulation model, this helps build a detailed understanding
of the system, and complements the theoretical model of the system. Based on this experience,
a detailed power export scatter diagram has been assembled and is presented in Table 3.3.
The diagram lists the average electrical power exported to the DC-bus for all wave states with
the current control settings. A more detailed version of the scatter diagram is available in
Appendix G. Thus, the presented figures in Table 3.3 are about 30 % lower than the theoretical
production potential with optimal control parameters. The scatter diagram is based on a five
PTO configuration.

Table 3.3: Exportable power [kW] from Lifesaver for various wave states
Wave period (Tz) - [s]
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(h

s)
-
[m

]

0.25
0.5 1.4 1.5 1.6 1.6 1.4 1.3 1.1 1.0 0.9 0.7 0.6 0.4 0.4
0.75 4.0 4.2 4.5 4.4 4.0 3.8 3.3 3.1 2.9 2.4 2.1 1.7 1.5
1 7.6 8.0 8.5 8.3 7.7 7.3 6.5 6.1 5.7 4.8 4.2 3.3 2.9

1.25 12.4 12.9 13.6 13.5 12.4 11.8 10.5 9.9 9.2 7.8 6.4 5.4 4.4
1.5 18.1 18.8 19.7 19.7 18.0 17.1 15.4 14.4 13.3 11.0 9.1 7.7 6.5
2 31.8 32.7 34.0 33.2 31.3 29.5 26.6 24.7 22.9 19.5 15.8 13.8 12.3
2.5 47.9 48.3 49.5 48.5 45.6 42.9 38.7 36.4 33.5 28.3 23.5 21.0 20.3
3 63.9 65.3 63.0 59.9 56.5 51.1 48.2 44.8 37.3 33.6 30.2 28.6
3.5 80.0 76.8 72.8 69.1 62.7 59.6 56.1 48.3 45.1 41.4 37.7
4 92.9 89.2 84.4 80.3 73.7 70.2 66.3 58.9 54.9 49.6 46.3
5 109 104 98.9 92.9 88.5 84.8 78.3 72.7 67.1 61.6
6 113 107 103 99.4 93.5 86.7 81.4 75.6
7 123 119 115 111 105 98.2 93.2 86.5
8 127 124 119 114 107 103 96.3
9 129 126 121 114 110 103
10 130 125 120 116 109

Lifesaver is planned to stay in operation at FabTest until June 2014. After a thorough
inspection and refurbishment, the device will be moved to a more energetic WEC site at a non-
disclosed location for continued testing and demonstration. This is expected to commence during
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spring 2015. In the new test site, a grid cable will also be available to demonstrate power export
to shore.

3.4 Measured power production

The actual measured power production from Lifesaver for the entire test period is plotted against
the wave state in Fig. 3.14(a). The wave measurements are taken from a wave measurement buoy
situated 1 km from the location of Lifesaver. Qualitatively, the measured response shows good
correlation to the simulated results, and shows performance equal to similar tests performed by
others [42]. However, when comparing directly to the simulated results presented in Table 3.3,
it can be seen that the measured power production is somewhat lower, and also that there is a
large spread in output power for the the same wave state. There are several reasons for these
power differences, some are related to the selected control parameters and some are related to
the system:

• Number of PTOs
The simulations are performed on a system consisting of five PTOs, while Lifesaver cur-
rently only has three PTOs installed.

• Sub-optimal control parameters
After installation, much time was spent on verifying system operation through stepwise
parameter changes. This has caused a large amount of production data with sub-optimal
parameter settings, and is the cause of many of the poor production series close to the
design wave state.

• Unwanted system behavior
In higher production states, the winch and floater system occasionally showed rapid vibra-
tions in the primary mooring force, as plotted in Fig. 3.14(b). This is believed to be caused
by the dynamic response of the primary mooring, which results in an unforeseen aggregate
system response. Similar behavior has been described in related systems [41], and pose a
challenge to tight moored WEC systems. On Lifesaver, the oscillations are mainly excited
when the generator shifts from damping control to saturation control, and can be reduced
by smoothing this shift. Until the issue with oscillations is managed, conservative control
parameters are set for the high wave states. This is the cause for the low production in the
high wave states.

• Secondary mooring system
Due to the strict regulations on FaBTest, Lifesaver is equipped with a strong five-point
catenary mooring system, in addition to the regular production moorings. This is undesired
from an energy point of view and is expected to cause some reduction in production. An
example of the mooring forces experienced in the secondary mooring lines is plotted in
Fig. 3.14(d). The effects of the moorings are currently not taken into consideration in the
simulation model. To get a better understanding, this should be included in the model,
and could for instance be implemented as described in reference [12].

• Floater height
The floater was intentionally designed shallow to reduce the system cost and the horizontal
forces, and to gain experience with required height and draft in an optimized system. Data
from on-board draft sensors show that the waves are frequently over-topping the device
already in the design wave state. Some power production is believed to be lost to this
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(a) Exportable electrical power for various sea states
measured through one year on FaBTest
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(b) Oscillations encountered in primary moorings due
to system dynamics
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(c) Difference between actual produced power and sim-
ulated produced power for various sea states. Simula-
tions are performed with actual parameters and config-
uration used at FaBTest.
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(d) Forces encountered in secondary moorings during
normal production in a high sea state. The mooring
lines are evenly distributed along the floater circumfer-
ence in counter-clockwise order.
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Figure 3.14: Measurement results from FaBTest
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due to reduced buoyancy and stability. In the simulation model, the buoy is modeled with
infinite height. The effect of over-topping is difficult to model and the impact of this on
production output is unknown.

To investigate further on these effects, the simulation model was adjusted to match the num-
ber of PTOs and the control parameters used in the measured production series. Fig. 3.14(c)
shows the difference between simulated produced power and actual produced power for all pro-
duction series. The figure shows a good correlation between measured production and simulated
production, but with a clear tendency of the measured production being lower than the simulated
production. This is most likely caused by the combination of the secondary mooring damping
and the unwanted over-topping of the device.

Upon close study of Fig. 3.14(c), several non-conform measurements point out. The steps
observed to the left in the plot are caused by wave states that where not simulated, and the
corresponding measurements are removed from the plot. The horizontal lines are caused by
merging the observed wave states into the simulated windows of wave height and period, and
there is an obvious trend of improved production towards the top of the wave height window.
There is also a trend towards lower power deficit at higher periods, but the cause of this is
currently not identified. Some groups of data points show large deviations from the general
trend, mainly the lower row of orange to red dots and the band of dark blue dots at 2-3 m Hs.
The former is believed to caused by a measurement problem in the wave rider buoy where long
swells with high period and low amplitude is sometimes missed in mixed wave patterns. The
latter group is probably caused by manual intervention causing startup or shutdown, which leads
to lower average power for the measurement series. In an attempt to investigate further on the
deviation between simulated and measured production, Fig. 3.14(f) was produced, and shows
all production series up to date in chronological order. The figure could reveal time dependent
effects on the measured production, such as degrading or improving friction in the PTOs, but
the figure does not give any clear trend towards this.

The generator system at Lifesaver estimates the actual torque on the generator shaft with
high precision, and also measures the exported electrical power. This opens for accurate mea-
surement of the generator efficiency and can be used to verify the figures obtained through
simulations. The actual conversion efficiency is calculated and presented in Fig. 3.14(e), and
includes the measured generator and inverter loss, in addition to the estimated mechanical loss.
The figure shows that there is a strong dependency between system efficiency and wave height,
which is supported by the theoretical work, and is mainly linked to the generator speed. As the
damping force follows the thick black line drawn in Fig. 2.16, it can be seen that the speed has
to go beyond the 0.3 m/s threshold to enter force saturation before the efficiency starts to move
towards an acceptable level.

As Lifesaver is currently not grid connected, the system has to produce net positive power
to stay in operation. When the net production drops below zero, the system automatically shuts
down and enters a power save mode with minimum power consumption. Shutdown typically
occurs between 0.5 m and 0.6 m Hs, but has been measured as low as 0.4 m Hs for higher
periods. This ability to maintain net power production at such low levels is unique for Lifesaver
when compared to FO’s earlier devices, and is made possible by the electro-mechanical PTO
configuration, as opposed to the earlier systems that relied on hydraulics, either directly or
indirectly. This allows for high uptime, and may result in continuous production on high energy
sites. High uptime results in more load hours and is good for the energy balance as the WEC
will always consume some power for monitoring purposes.
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3.5 System operation and availability

Lifesaver has been in operation for more than two years and has given significant experience on
how to operate and maintain a WEC system over time. The key performance indicators up to
date are listed in Table 3.4 and shows that the system has been available for production for the
majority of the deployment time. A graphical presentation of the KPIs is plotted in Fig. 3.15
and gives an impression of the of accessibility of the device, and the WEC production state.
As FO gained experience with the system, it was discovered that Lifesaver could maintain net
positive power production down to Hs = 0.5 m, and subsequently the wave height threshold for
production startup was lowered in September 2012. This contributed to a significant share of the
increased production availability seen in Fig. 3.15 after this date, together with rougher weather
as the autumn season set in. The accumulated energy production for the first year of the test
period is plotted in Fig. 3.16.
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Figure 3.15: Upper plot: Lifesaver accessi-
bility (Green = accessible for heavy lift, Blue
= accessible for maintenance). Lower plot:
Lifesaver production state (Green = produc-
tion, White = ready for production, Black =
Planned or unexpected downtime).
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Figure 3.16: Accumulated electrical energy
produced at Lifesaver

It is important to note that the goal of the Bolt2Wavehub project is not to maximize power
output, but to gain experience with all the operational aspects of running a wave energy power
plant. The FaBTest site was selected for its high availability for maintenance and moderate wave
climate, which allows for close monitoring of the device, and is crucial for providing practical
feedback into the design process, and to understand the operational expenditures (OpEx) of
operating the device. Moreover, the device has been used as a test bench for testing out different
maintenance methods. In one instance, when a mechanical component had to be replaced in all
three PTOs early in the test period, two different maintenance approaches were tested out. The
first PTO was lifted off and brought ashore for maintenance, as shown in Fig. 3.13, while the
second PTO was serviced on site. It became clear that heavy-lift operations between two moving
objects demanded much calmer weather than on-board maintenance, and the latter method was
chosen for the remaining PTO, and has later been adopted as the preferred approach. Except
for the heavy-lift trial, all maintenance during the test period has been performed on site.

The most critical component on Lifesaver for reliable power production is the production
mooring, usually referred to as primary mooring, due to the high wear on the winch. FO has put
serious effort towards investigating alternative line types and winch mechanisms. Most of the
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Table 3.4: Key performance indicators
Production hours 1 468 h
Electrical energy produced 4 644 kWh
Mechanical energy absorbed 7 192 kWh
Overall efficiency 64.6 %
Average power during production 3.2 kW
Time on site 376 days
One or more PTOs ready for production 234 days
All PTOs ready for production 23 days
Longest continuous production period 24 days
Time available for maintenance 211 days
Availability hull 100 %
Availability communication 98 %
Availability scientific instrumentation 79 %
Availability control dependent instrumentation 100 %
Availability storm moorings 100 %
Availability cooling system 99 %

downtime on Lifesaver is related to the primary moorings, either due to planned maintenance
for switching winch components, or due to unexpected failures in the primary mooring. The
winch concept currently pursued is a high performance system with high potential lifetime, but
is more fragile to abnormal loads and wear mechanisms, which has caused problems in the early
stages of testing. The issues with the primary moorings are not yet solved, but significant steps
have been taken towards a reliable system in close collaboration with with the manufacturer, and
we have reason to believe that the reliability will be improved to a level suitable for commercial
operation within the remainder of the Bolt2Wavehub project.

3.6 Concluding remarks

Lifesaver has showed good performance at FaBTest with no major incidents or problems, and
has demonstrated acceptable power production and reliability. The FaBTest test site has a
moderate wave climate with good availability for maintenance, and has proved to be a valuable
test site for gaining operational experience and testing out various maintenance methods. The
practical work has shown a clear advantage towards on-board maintenance, as opposed to bring-
ing heavy equipment ashore. The main failure mode causing downtime on Lifesaver is failing
primary moorings. This is a well-known challenge with this kind of device, and FO is pursuing
several paths towards solving this issue. Although the primary moorings are not yet performing
flawlessly, significant steps have been taken in the right direction, and there is reason to believe
that the problem will be solved within the remainder for the test period. Thus, Lifesaver should
soon be ready to operate on a commercial level, although elevated monitoring and maintenance
must be expected for still some time.
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Chapter 4

Wave farm design

Synopsis
In Chapter 4, a wave farm consisting of multiple Lifesaver devices is analyzed with focus on
optimal positioning with respect to output power quality and accumulated power output. The
detailed power system layout required for grid code conformity is described and the amount of
produced power that can be exported is evaluated. The ratings of the power components are
found by optimizing the component cost versus the value of the transferred energy.
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4.1 Introduction

As demonstrated in Chapter 1, the power level and power quality from a single WEC is to low to
efficiently utilize installed grid export capacity. In a grid connected wave energy system, power
must be leveled, either by storing energy or through aggregate power smoothing, which takes
advantage of the natural wave propagation through a series of WECs. Substantial work has
previously been performed within this topic, and the articles [4, 22, 40] demonstrate successful
integration of WECs into farm systems.

The main goal with respect to power quality is to reduce the required rating on the power
transfer system to reduce cost. The focus in this chapter is the specific integration of multiple
Lifesavers into a WEC farm system, and the potential for economical optimization of the power
transfer chain from wave to wire. It is convenient to split the system into three system levels for
the analysis:

• WEC
The WEC represents a single buoy equipped with one or more PTOs. The PTOs produce
power at low voltage DC (approximately 600 VDC).

• Array
Several WECs are mechanically and electrically interconnected into an array. The array is
equipped with a DC/AC converter and step-up transformer for power export.

• Farm
The farm us built up by several arrays to meet the required rated output power capacity.
The exported power from the arrays is collected in the farm hub and exported to grid.

The function, configuration and design of these system levels are described in the next sections.

(a) System levels (b) Network types

Figure 4.1: Wave farm configuration

4.2 Array topology

The arrays are practically sized groups of closely spaced WECs. FO’s current design philosophy
is to mechanically link the buoys together, as indicated in Fig. 4.3. This allows for running the
electrical cables directly between the buoys, and makes it possible to share parts of the mooring
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Figure 4.2: Power chain: Array inverter

system. Moreover, the mechanical interconnection can make it possible to handle an array as
a single unit during tow out and installation. Although such a closely spaced configuration
would attract strong lateral forces, the savings on moorings, cables and installation is expected
to outweigh the cost of added mechanical reinforcement.

Figure 4.3: Artistic impression of an array of Lifesavers

The WECs interconnects on the DC-bus of the PTO inverters and has a bus voltage of
approximately 600 VDC. A guide line current limit of 1 000 A is selected to avoid impractically
large and complex cable systems on the flexible interconnectors between the WECs, which leads
to a total power capacity of 600 kW on the array bus radials. The total array capacity may
be increased further by using alternative network configurations with several parallel arms, as
illustrated in Fig. 4.1(b).

The power produced within the array is collected in the array power hub, and is converted
to medium voltage AC for export. The array power hub holds a DC/AC converter and step-
up transformer, as illustrated in Fig. 4.4. The power hub may also hold an energy storage to
reduce the fluctuations in power output, which can reduce the required export capacity. The
balance between energy storage capacity and power transfer capacity must be optimized from
an economical view point, and is investigated in section 4.6.

The array can also be configured to improve the array output power quality with clever
positioning of the individual WECs, and the idea is to ensure that the incoming waves interferes
sequentially with the WECs, which requires the array to be oriented along the incoming wave
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Figure 4.4: Electrical configuration of an array

direction. However, this causes shadowing effects where the rear absorbers operate in the wake
for anterior absorbers, which reduces power output. Maximized power capture is obtained when
the array is oriented with the broadside against the waves, so that no shadowing effect occurs.
This problem is illustrated in Fig. 4.5, and was extensively studied in the articles attached in
Appendices C,D and E.

Figure 4.5: Array configuration

Appendix C shows that the array should have a size that corresponds to at least one wave-
length along the predominant wave direction to ensure sufficient power smoothing. This is
equivalent to a row of about seven devices of the Lifesaver type, and this is used as array size in
this analysis. The effect of interference between the WECs is studied by using the methodology
established in section 6.2, and significant reduction in production output power is demonstrated
as the devices moves into the shadow of anterior devices. A complete simulation scan of all array-
to-wave angles between 0◦ and 90◦ where performed, which covers all possible wave directions
and array installation angles due to symmetry. The typical interference patterns found by the
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(a) Power output factor for seven individual WECs in an
array as function of installation angle. At 0◦ the array is
oriented with the broadside against the waves.

(b) Hydrodynamic interference between WECs in an
array due to diffraction and radiation. The waves
originate from the lower left corner.

Figure 4.6: Interference within the array

simulation model is shown in Fig. 4.6(b), and the results plotted in Fig. 4.6(a) shows the power
correction factor for each of the seven absorbers for different array-to-wave angles. The simulated
output power from a WEC in an array is multiplied with the corresponding correction factor
to calculate the actual power output including interference effects. The array-to-wave angle is
defined as zero when the waves hit the array on the broad side. The plot demonstrates the effect
of shadowing, and indicates a reduction in power output of almost 50% for the rear devices in
the 90◦ case. Based on this analysis, an installation angle of 45◦ is found to be optimal and is
used as basis for this work.

The selection of seven absorbers in the array leads to a total installed power of 525 kW in
the array, and fits quite well with the earlier established limit of 600 kW per branch. One of the
absorbers must house as the array power hub, and while one of the end absorbers would have
easiest access for both the export cable and personnel for inspection, placing it in the middle of
the array would half the required cable rating between the absorbers. The centralized alternative
could possibly allow for doubling the array size to 14-16 absorbers.

4.3 Farm topology

Figure 4.7: Power chain: Grid transmission

Several arrays can be interconnected to form a wave farm. There is virtually no limit to how
large a wave farm can be, however large farms could require additional substations and voltage
levels to improve the power transfer capacity within the internal farm network. Positioning of the
individual arrays must follow the same guidelines as for the WECs, the goal is to minimize the

55



CHAPTER 4. WAVE FARM DESIGN

shadowing effects and to maximize the power smoothing effect. The farm configuration shown
in Fig. 4.8 seeks to achieve this by following the diagonal principle established in section 4.2. In
an attempt to increase the absorbed power, the arrays are organized into two main arms to form
a wedge profile that should focus the waves and increase the total power output. This effect is
hoped to compensate for some of the lost power due to negative interference between the WECs
and will subject to detailed analysis.

Figure 4.8: Depiction of anticipated WEC
farm consisting of 42 buoys

Figure 4.9: Illustration of interactions be-
tween absorbers in farm
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The entire farm configuration was programmed into to the multi-body simulation model to
evaluate the farm layout and to analyze the aggregate interaction within the farm. A typical
interference pattern produced by the simulation is pictured in Fig. 4.9. The farm setup was
based on the configuration shown in Fig. 4.8, which consists of six arrays of seven absorbers,
which leads to a total of 42 absorbers. Since the system is no longer symmetrical, all directions
from 0◦ to 360◦ must be simulated. Fig. 4.11 shows the resulting correction factors for the design
wave state, and demonstrates that several of the absorbers actually achieve power amplification
from this setup. The WEC numbers correspond to Fig. 4.8, where the bottom WEC is number
one, and the WEC numbers ascends along the y-axis. The total power factor for the entire farm
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4.4. INSTANT POWER OUTPUT

is plotted in Fig. 4.10, and verifies the positive effect of the wedge profile as each WEC produce
more power on average in the farm than in stand-alone configuration. As expected, the effect is
stronger for shorter waves, as these are influenced more by the WECs. The figure demonstrates
the success of the wedge profile as the average correction factor is above unity. However, it
must be taken into account that this kind of analysis is very sensitive to small changes in wave
direction and frequency, and actual performance could deviate significantly from the simulated
results. These results should therefore be used with care.

The farm electrical power system topology is illustrated in Fig. 4.12. The power cables
from the arrays are brought together in the farm power hub for transmission to grid at medium
voltage AC. The farm power hub may hold a transformer to further step-up the voltage before
transfer, depending on the voltage at the Point of Common Coupling (PCC). The farm could
also hold extra power conditioning equipment and energy storage, if necessary, and is discussed
with respect to grid code requirements in section 4.7.

WAVE FARM
SUBSTATION

ARRAY 1

ARRAY 2-N

PCC

MEDIUM
VOLTAGE

MED/HIGH
VOLTAGE

Figure 4.12: Electrical configuration of a farm

4.4 Instant power output

To take the high variability of the incident waves into consideration, the instant power output
of the farm is calculated based on the time domain simulation model described in Chapter 6.
Each WEC is simulated individually by calculating the incident waves for the specific WEC
location, and the power output time series of one hour with 10 Hz resolution is returned for each
WEC. Fig. 4.13(a) plots the power output from all 42 WECs individually, and demonstrates the
power output delay between the devices as the waves propagates through the farm. The figure
also shows how the shape of the wave changes as it propagates, which is caused by the different
frequency components of the wave traveling at different speeds.

As previously discussed in section 1.5, and illustrated in Fig. 1.5 on page 10, the WEC
output power fluctuations are caused by two different mechanisms, the fluctuation within a
single wave, and fluctuations between wave groups. The main purpose of the array is to even out
the fluctuations within a single wave so that the array produces a stable and positive output.
This effect is demonstrated in Fig. 4.13(b), which plots the individual power output of the seven
WECs within one array. If the waves were perfectly regular, this could ideally lead to constant
power output for an array that was designed to perfectly fit to the wave length. However, due
wave group effects, the power output from an array is quite distorted. The purpose of the farm
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(a) Individual WEC power for entire farm
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(b) Individual WEC power for the first array
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(c) Average power from each array in a farm
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Figure 4.13: Farm behavior at design wave state with optimal wave direction

is to provide smoothing in the wave group domain, and Fig. 4.13(c) shows the aggregate output
of the six arrays in the farm. The smoothing effect is clearly demonstrated, and also indicates
that larger farms with additional arrays spatially distributed would further improve the power
output quality.

Since most of the described wave effects are frequency driven, it is interesting to also evaluate
the frequency response of the system. Fig. 4.13(d) shows the power output curves in the frequency
domain, and demonstrates that the farm to some extent works as a low pass filter. Most of the
high frequency fluctuations are effectively damped, while the lower frequencies pass with less
attenuation. In general, the figure demonstrates the success of the farm configuration, in that
the slow fluctuations in the 10-100 sec domain are effectively damped. However, the figure also
demonstrates that some of the high frequency fluctuations pass virtually undamped. There is for
instance a strong peak around 0.35 Hz that shows little attenuation. This disturbance is most
likely caused by interference patters within the farm, and such side effects must be expected
in a system of this complexity level. High frequency fluctuations are of less concern since they
can be smoothed out with a small energy storage. Nevertheless, these effects will increase the
complexity of the control system, and may reduce the output power quality, especially with
respect to flicker, which is discussed in section 4.7.
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4.5. ANNUAL POWER OUTPUT

4.5 Annual power output

The instant power simulation in the previous section gives a good understanding of the exported
energy and the power system behavior for a specific wave state. The next step is to estimate the
annual power output of the farm so that the system performance can be evaluated in economical
terms. This will have to take into account the changing wave states and the actual wave directions
for a specific site, and the natural choice is to use the Wavehub site that has been closely
monitored for several years. FO has access to most of these data and a detailed wave scatter
diagram has been established that takes into account wave height, period and direction. The
process of establishing these wave data is described in section 6.3.

Based on the wave climate details, an extensive database was built that contains production
data for all the individual buoys in the farm for all the wave states and directions in the wave
scatter. In total this amounts to ca 12 000 individual WEC simulations, which required about
four weeks of CPU time on a normal desktop computer. However, by using three multi-core
computers running multiple processes in parallel, the entire simulation set was completed in less
than five days. Each wave state was simulated for one hour with a resolution of 0.25 m on wave
height, 0.5 s on period and 15◦ on direction. This totaled 10 GB of simulation data, and must
be viewed as a brute force method, as several steps could have been taken reduce the simulation
task. Nevertheless, with the easy access to processing power, there was no reason to optimize
the simulation, which would have added complexity.

A full year of wave production from the entire farm was created by concatenating the required
wave states from the database based on the probability given in the wave scatter diagram. The
time series were expanded or trimmed to match the actual number of annual hours for each wave
state. Since the wave climate scatter only holds statistical data that gives the probability of a
wave state, it was not possible to create an annual time series that replicates the actual weather
patterns, instead the time series consists of wave states in ascending order. This does not affect
power output or the power system in this case, but becomes important for long term storage
solutions, which is covered in Chapter 5.

The annual output from the farm amounts to 16.73 GWh, which equals 5 312 annual full load
hours, according to the simulation. This is the gross production from the farm and does not
take into consideration losses or power capping in the farm power collection system. To find the
actual load and utilization of the power transfer components, annual distribution diagrams are
created that shows the power distribution over the year. These diagrams are made by sorting
all the samples from the power time series in descending order. This shows the number of hours
per year each power level occurs and gives a good impression of the system utilization and
provides useful input to the power system optimization performed in the next section. Several
power distribution diagrams are plotted in Fig. 4.14 with corresponding time series examples to
demonstrate the relationship between time series data and the annual distribution. Fig. 4.14(a)
and 4.14(b) shows the raw output from WECs without taking into consideration the interference
between the absorbers. The WEC power output has power peaks up to 10 pu, but is capped in the
figure to better show the array and farm response. In Fig. 4.14(c) and 4.14(d) the output power
is corrected for interference between the absorbers. Fig. 4.14(e) and 4.14(f) shows an example
including power capping and storage in the power system. The figures show that the installed
power capacity above unity is poorly utilized, and methods to improve this are addressed in the
next section.
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(a) Raw time series example
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(b) Raw annual distribution
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(c) Corrected time series example
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(d) Corrected annual distribution
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(e) Cap and stored time series example
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(f) Cap and stored annual distribution

Figure 4.14: Annual power output distribution
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4.6 Power system optimization

The next step is to size the power system in more detail by evaluating the cost of installed transfer
capacity versus the revenue of exported power. The mechanisms have already been described and
are based on limiting the power transfer capacity, and possibly using energy storage. The goal
is to find the power system sizing that maximizes revenue. Table 4.1 lists the economical input
data used for the optimization, and are very rough figures based on general experience gained
through the FO wave energy project. Thus, the results from this analysis should be viewed as
guidelines; the merit is to draw the general picture on what an economically optimized system
would look like.

System Unit cost
DC/AC inverter 80 e/kW
AC/AC transformer 45 e/kW
Energy storage (U.cap) 25 e/kJ
Cable cost 100 e/kW
Array converter 125 e/kW
Farm converter 145 e/kW
WEC device (75 kW) 500 ke/unit
Energy export income* 360 e/MWh
*Energy income based on UK strike price of 305 £/MWh

Table 4.1: System economics

To achieve optimal operation of the power system, complete understanding of the loss mech-
anisms and limitations must be established so that the system can be pushed to its limit. Power
components are usually rated for a nominal current In that can be safely transferred during
normal operation. For a power system operating with fluctuating power output, calculating the
actual component load becomes more complex as several mechanisms come into play. The major
limitation for most components is the heat dissipation due to resistive loss, which is given by
Equation 4.1 where PL is the power loss, In is the RMS current and R is the component electri-
cal resistance. To obtain the actual temperature of the component, a thermal model comprising
heat conductivity and heat capacity could be applied, as described in Appendix H, however a
much simpler approach used here is to set the RMS integration time to match the thermal time
constant of the component. Equation 4.2 defines the RMS current, where i is the instant current,
I is the RMS current and T is the integration time. Equation 4.3 shows the discrete implemen-
tation of the RMS calculation used on the simulation data, which calculates the moving RMS
value for the sample p with the integration time equal to k samples.

PL = In
2 ·R (4.1)

I =

√
1

T

∫ T

0

i (t)
2
dt (4.2)

Ip =

√√√√1

k

p+k∑
j=p

ij
2 (4.3)

The RMS calculation covers the majority of the component power loss, although there are
other important mechanisms that must be considered. The power electronics components are
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Entity Property Value Unit
Array

RMS current limit In A
Peak current limit 2 · In A
RMS integration time 60 s
Energy storage capacity En J

Farm
RMS current limit In A
Peak current limit 1.4 · In A
RMS integration time 600 s
Energy storage capacity En J

Table 4.2: Input parameters for the Cap and Store function

based on semiconductors that have fixed voltage drops when they are forward biased, which
causes non-resistive losses in addition to the resistive loss. This is the case for both the IGBTs
and the diodes in both the generator drive inverter and the DC/AC inverter in the array. Since
this analysis relates to the maximum ratings of the components, these non-resistive effects will
not affect the boundaries of the Safe Operating Area (SOA) , but will cause non-linear effects
in the load model. Since this will have little effect in this analysis, the non-resistive effects are
not handled separately. A second important factor is non-linear effects that may appear above
nominal load. Magnetic circuits may go into saturation, and internal thermal stress may be
excessive. Thus, a peak current limit independent of the RMS limit must be defined. Table 4.2
lists the defined parameters used in the cap and store model.

The table defines separate properties for the farm power collection point and the array con-
verter. Since the array converter is a part of the wave power system, an allowed peak power of
double the nominal is allowed, as it is believed that the surrounding switchgear and protection
equipment can be specified towards this. The DC/AC inverter is expected to have low thermal
mass, and the thermal time constant is estimated to 60 seconds. Due to the effect of thermal
cycling in power electronic components, pushing the power components towards the nominal
operating temperature may be disadvantageous. The effects of thermal cycling due to the wave
power fluctuations are studied in Appendix H. The farm power system on the other hand, is ex-
pected to consist mainly of transformers and cables with high thermal mass. Therefore, a higher
integration time of 600 s is selected. However, since the power must stay within the grid-code
requirements, the peak current is set to 1.4 In, which is believed to be an acceptable short-term
over-current in most systems.

The energy storage incorporated in the simulation model is considered ideal, hence no model
related to this is included. However, based on the good experience with the ultracapacitor bank
used on Lifesaver, which was described in section 3.2 on page 35, the natural choice would be
to use the same system as a starting point. The ultracapacitor bank has demonstrated close to
ideal behavior and is compatible with the stated approach. The installed capacity of the energy
storage is normalized to pu · s, which is relates to the number of seconds the energy storage can
supply or absorb the nominal power output, referred to as 1 pu.

Fig. 4.15 shows an example of the cap and store function in action. In the start of the plot,
all produced power is exported directly, and the green export curve perfectly covers the blue
production curve. Installed transfer capacity in this case is 1.5 pu, which allows the peak power
to go up to 3 pu in short periods. However, as the power components heat up, represented by
the raising RMS power, the peak power rating must be cut back to nominal, which cause power
production in excess of the transfer capacity. This overproduction is initially absorbed by the
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Figure 4.15: Illustration of the cap and store function

energy storage, which starts to charge at t=25 s. At t=43 s the energy storage is full and power
production must be curtailed, the lost power is represented by the red curve. It can also be
seen that the RMS power actually overshoots the maximum limit of 1.5 pu, which is due to
shortcomings in the selected control model and should not be allowed in a real system.

Performing dynamic control of the RMS power actually showed to be quite challenging, as
information about the future waves is required to optimize the control. For instance, if the
controller knows that there is only a few large waves coming in, it can chose export at maximum
power as there will be time for the converter to cool off after the waves has passed. However, if
there is a long sequence of waves coming, the converter would quickly become exhausted, and
would be forced to reduce to nominal export rating. In this case, the controller should export
at a more modest level, and accept some power loss already from the start. This would allow
more power to be transferred. There is large potential for improvement for the case shown in
Fig. 4.15, but the current configuration is believed to be sufficient for this study.

The power system optimization is performed in two stages. Firstly the array converter power
rating and energy storage capacity rating is evaluated based on transferred power and component
cost. Secondly, the total power transfer system for the farm is evaluated, taking into consider-
ation the array power system definition. The purpose of the optimization is to maximize the
economic performance, and economic indicators for the system must be defined. This analysis
is based on calculation of Levelized Cost of Energy (LCoE), which take into account the net
present value of current and future cash flows for the power plant. LCoE describes the required
revenue from electricity sales for the power plant to reach breakeven over its projected life time.
Equation (4.4) defines the LCoE calculation where It, Mt and Ft denotes the expenditure for
investment, maintenance and fuel for the year t. The electricity generation in year t is expressed
as Et, r denotes the discount rate and n is the projected lifetime. In this simulation the discount
rate is set to 4 %.
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LCoE =

∑n
t=0

It+Mt+Ft

(1+r)t∑n
t=1

Et

(1+r)t

(4.4)

Pn [pu]
1.5 2 2.5 2.75 3 3.5 4 5

E
n
[p
u
·s]

0 185.4 176.5 173.8 173.4 173.4 173.8 174.6 176.3
1 183.0 175.7 173.7 173.5 173.6 174.1 174.9 176.6
2 181.8 175.4 173.8 173.7 173.8 174.5 175.3 177.0
3 180.9 175.3 174.0 173.9 174.1 174.8 175.6 177.3
5 180.1 175.3 174.4 174.5 174.7 175.5 176.3 178.0
7 180.0 175.6 174.9 175.1 175.4 176.1 177.0 178.7
10 180.2 176.3 175.8 176.0 176.4 177.2 178.0 179.8

Table 4.3: Levelized cost of energy at array level [e/MWh]

Table 4.3 lists the result of a complete scan of several configuration pairs of installed transfer
capacity and energy storage. For each case, the actual revenue of the power that is transported
to grid is compared with the cost of the power system. The goal is to find the optimum where
any added transfer capacity does not produce additional revenue. The table shows an optimum
for installed capacity of three times the average power output and is highlighted in the table. It
is also interesting to note that the economical evaluation does not recommend including energy
storage, as it seems that additional transfer capacity is less costly.

Pn [pu]
1.5 2 2.5 2.75 3 3.5 4 5

E
n
[p
u
·s]

0 591 788 984 1083 1181 1378 1575 1969
1 669 866 1063 1162 1260 1457 1654 2048
2 748 945 1142 1240 1339 1536 1733 2126
3 827 1024 1221 1319 1418 1614 1811 2205
5 984 1181 1378 1477 1575 1772 1969 2363
7 1142 1339 1536 1634 1733 1929 2126 2520
10 1378 1575 1772 1870 1969 2166 2363 2756

Table 4.4: Cost of array converter power system [ke]

Pn [pu]
1.5 2 2.5 2.75 3 3.5 4 5

E
n
[p
u
·s]

0 8.20% 3.06% 1.04% 0.58% 0.31% 0.08% 0.02% 0.00%
1 6.78% 2.44% 0.80% 0.44% 0.23% 0.06% 0.01% 0.00%
2 5.96% 2.08% 0.66% 0.36% 0.18% 0.04% 0.01% 0.00%
3 5.33% 1.79% 0.55% 0.29% 0.15% 0.03% 0.01% 0.00%
5 4.53% 1.40% 0.39% 0.19% 0.09% 0.02% 0.01% 0.00%
7 4.05% 1.17% 0.29% 0.14% 0.06% 0.01% 0.00% 0.00%
10 3.61% 0.96% 0.20% 0.09% 0.04% 0.01% 0.00% 0.00%

Table 4.5: Annual lost energy due to power capping in array converter
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Table 4.4 lists the actual cost of the power system for the different configuration pairs. Since
the cost of the entire WEC farm is 21 million euros, the array power system costs are relatively
small at around 5% of the total. Table 4.5 lists the lost power due to the restrictions in the power
system. The results demonstrate that an efficient system configuration must allow for some lost
power production, nevertheless, the optimal case shows that only 0.3% of the annual energy is
lost.

Pn [pu]
1 1.2 1.4 1.6 1.8 2

E
n
[p
u
·s]

0 194.4 185.2 180.5 178.4 177.9 178.2
1 191.1 183.1 179.6 178.4 178.2 178.6
2 190.6 182.6 179.3 178.5 178.5 178.9
3 190.6 182.6 179.3 178.6 178.8 179.3
5 191.0 183.0 179.8 179.2 179.5 180.0

Table 4.6: Levelized cost of energy at farm level [e/MWh]

So far the analysis has only calculated the cost including the array converters. The same pro-
cedure must be repeated for the farm converter, and Table 4.6 lists the resulting LCoE obtained
by performing the same analysis for the entire farm and shows an optimal configuration of 1.8
times overcapacity and no energy storage. The actual grid cost capacity could be significantly
higher depending on the distance from the connection point and the additional requirements for
equipment. This would lead the system design towards less installed capacity, and as can be seen
from Table 4.7, the loss of production is marginal also for lower capacity alternatives. Higher
cost could also favor solutions including energy storage, and as illustrated in Table 4.6, the cost
differences between energy storage and additional transfer capacity is quite small. The cost of
the power system components is listed for reference in Table 4.8.

Referred to the rated power of the WEC devices, the farm produces 5 290 annual full load
hours. However when the exported power is referred to the installed export capacity, the installed
overcapacity significantly reduces the amount, as listed in Table 4.9, which yet again demonstrates
the difference between wave energy and wind energy. Due to the more stable long-term power flux
from the ocean waves, the wave farm produce more full load hours on average than wind turbines,
but when the short-term fluctuations are taken into consideration, most of this advantage is
displaced by the need for oversized power components.

Pn [pu]
1 1.2 1.4 1.6 1.8 2

E
n
[p
u
·s]

0 9.83% 5.12% 2.37% 0.96% 0.41% 0.31%
1 8.09% 3.82% 1.70% 0.75% 0.36% 0.31%
2 7.67% 3.35% 1.34% 0.59% 0.34% 0.31%
3 7.51% 3.17% 1.16% 0.50% 0.32% 0.31%
5 7.34% 3.02% 1.03% 0.42% 0.31% 0.31%

Table 4.7: Annual lost energy due to power capping in farm converter
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Pn [pu]
1 1.2 1.4 1.6 1.8 2

E
n
[p
u
·s]

0 551 662 772 882 992 1103
1 630 740 850 961 1071 1181
2 709 819 929 1040 1150 1260
3 788 898 1008 1118 1229 1339
5 945 1055 1166 1276 1386 1496

Table 4.8: Cost of farm converter power system [ke]

Pn [pu]
1 1.2 1.4 1.6 1.8 2

E
n
[p
u
·s]

0 4790 4200 3705 3288 2939 2648
1 4883 4258 3730 3295 2940 2648
2 4905 4278 3744 3300 2941 2648
3 4913 4286 3750 3304 2942 2648
5 4922 4293 3756 3306 2942 2648

Table 4.9: Annual full load hours referred to installed power capacity

4.7 Grid codes

The wave farm will have to comply with the grid codes in the hosting country, which is a
set of rules and specifications on how the power system shall operate. Many of the grid code
requirements can be handled at the connection point by installing the correct equipment and
protection devices, but some of the requirements may have consequences that reach deeper into
the system. This section will explore some of the typical grid codes that may have impact on
the wave energy farm.

Flicker

Flicker refers to rapid fluctuations in grid voltage and is defined in the international flicker
standard IEC 61000-4-15 [1]. The principle is based on luminosity of an incadecent bulb and the
perception to the human eye. The model defines the main property short term flicker, denoted
Pst, that defines the flicker level of a signal over ten minutes. The threshold value of accepted
flicker is defined as unity. The flicker model is integrated into power quality meters and used as
a standard factor for grid power quality measurements. Another parameter, long term flicker,
Plt, is based on the short term flicker and is defined as the cubic average of the short term flicker
over two hours. The threshold value for Plt is 0.65. Since WEC systems generate fluctuating
output power, flicker contribution must be expected. The work of Tissandier et al. [40] shows
that flicker can be an issue for WEC systems, hence it is important to analyze the FO system in
detail with respect to flicker. The flicker estimates calculated in this work are based on an open
source model for flicker provided by Solcept [33], and calculates the actual flicker for a given
input signal. The Solcept model is based on the work of Mombauer [25] and is in accordance
with the international flicker standard.

Flicker is calculated based on line voltage fluctuations, and there is a linear relationship
between flicker value and voltage fluctuation. Thus, the impedance of the connection point of
the WEC farm becomes very important and may be the limiting factor with respect to flicker. To
avoid linking this analysis to a specific grid configuration, a value of the required grid impedance
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(a) Ideal wave direction
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(b) 30◦ offset
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(c) 45◦ offset

0 20 40 60
0

2

4

6

Time [s]

N
o

rm
al

iz
ed

 p
o

w
er

 [
p

u
]

 

 
P

st
 0.148

I
sc−sh

 0.0674 Farm

A
rr

ay
 n

u
m

b
er

1

2

3

4

5

6

(d) 5 seconds moving average

Figure 4.16: Flicker analysis for different wave directions

is included that shows the required stiffness of the grid connection. The value Isc−sh is defined
as the share of the available short-circuit capacity that can be used wave power export. A value
of Isc−sh = 0.1 would for instance indicate that the rated output current from the WEC system
must be less than 10% of the short-circuit capacity at PCC.

There will also be large differences in flicker due to changing wave climate. The output
power level will affect the flicker directly thorough increased amplitude. Moreover, changes in
wave direction will change the excitation pattern of the farm and will strongly affect the power
smoothing effect, and hence cause more flicker. The analysis presented in Fig. 4.16 are based on
the design wave state, which results in power production at rated power. Each subfigure lists
the resulting flicker level Pst for a grid connection with an impedance of 0.01 pu related to rated
power of the WEC farm, and the resulting Isc−sh ratio.

Fig. 4.16(a) shows the ideal case where the waves are entering the farm from the ideal direc-
tion. This results in a moderate flicker level that can utilize ca 10% of the short-circuit capacity
of the grid for electricity production. However, as the wave direction deviates significantly from
the preferred direction, the flicker level rises drastically as shown in Fig. 4.16(b). Fig. 4.16(c)
shows the worst case direction where one of the two arms of the farm hits the incident wave
with the broad side. This causes severe flicker and only allows the WEC farm to utilize 1.9 %
of the short-circuit capacity. Nevertheless, as demonstrated in Fig. 4.16(d), the flicker can be
significantly reduced by filtering. The figure shows the resulting flicker after application of a
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5 second moving average filter on the power output of the case presented in Fig. 4.16(c).
This analysis shows that the WEC farm will produce significant flicker that will have to be

taken into consideration. The flicker levels presented here are very high, but it is also important
to take the size of the wave farm into consideration. The system modeled here has a rated power
of 3.15 MW, which could be insignificant for a strong grid connection point. An important
aspect is how the flicker would aggregate from a larger farm. It is expected to decrease due to
increased smoothing effect, but this is not verified. There are also large possibilities for actively
reducing the flicker through system regulation and/or control of the energy storages. However,
this initial analysis demonstrates that flicker evaluation must be an important parameter in wave
farm design, and that some cost elements related to flicker reduction must be expected, either
by managed power shedding or by filtering equipment.

Fault ride-through

Fault ride-through is a principle that asks for continued power export from the power plant
during a low voltage fault at the PCC. This is important in situations where a fault occurs
somewhere in the grid that causes the grid voltage to drop below accepted voltage. The fault
can typically be power line failure, loss of production capacity or sudden increase in load. The
natural response of a connected power plant would be to perform safety shutdown and wait
for grid balance to be restored. However, if all generation capacity followed this principle, the
power deficit could be rapidly aggravated, causing cascading black outs through the grid. Thus,
the grid code calls for fault ride-through, which means that the power producers shall continue
to deliver power during such an event to help restore grid balance. Since the DC-system for
each array will be separated from the AC grid, this requirement will only influence the DC/AC
inverters in the array hubs. To be fault-ride-through compliant, the inverters would have to be
designed to operate in a wider voltage range. In theory this should not be a problem, but the
actual configuration of the available hardware could be incompatible. Fault ride-through must
therefore be included as a part of the requirement specification.

Reactive power

The wave power station can be asked by the utility to consume or supply reactive power, or alter-
natively to be supporting various voltage regulation strategies that involves transferring reactive
power. This also influences the array hub DC/AC inverters, but should be relatively straight
forward as many converter systems natively support reactive control regulation. However, sig-
nificant transfer of reactive power will displace capacity for active power and will increase the
required power rating of the transfer equipment. This is not investigated further in this work.

Advanced reactive/harmonic correction

The inverters used to convert DC to AC in the array converters are full bridge IGBT converters,
which gives high flexibility and accuracy on controlling the output current flow. This capacity
could be utilized to improve the grid power quality by stabilizing the power flow. Equation (4.5)
and (4.6) shows a technique described by S.Fryze [13] that allows for instant power correction,
that can compensate both imbalanced power flow between phases, fluctuations in power flow
and harmonic distortion [3]. The amount of energy that can be stored to balance the power
flow is adjusted by setting the integration time constant T , i and v refers to the instant current
and voltage indexed by the phase indices a, b and c. The index q̄ refers to the resulting phase
compensation current.
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The wave energy farm is ideally suited to perform such compensation tasks since it already
has the required power system to do so, both in respect of energy storage and converter capacity.
The best solution would be to perform such tasks when the wave energy production is below
nominal so that the spare converter capacity could be utilized. Unfortunately, regulations for
economically compensating such services are not in place today, and it will be difficult to gain
revenue from performing such action. However, for utilities that experience high distortion in
the grid that violates the grid codes could install a WEC farm under the premise that such
correction is performed. Hence, this extra functionality could benefit the system, and help wave
energy to market entry.
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Figure 4.17: Simulation model for instantaneous power quality analysis
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Figure 4.18: Harmonic distortion of the PCC voltage

Fig. 4.17 and 4.18 presents the system setup and results from a simulation with a wave farm
compensating a distorted power system. The simulation case is based on a weak grid scenario
where local distortions cause poor power quality in the system, described by the Total Harmomic
Distortion (THD) referred in Fig. 4.18. As illustrated in the figure, the WEC farm has strong
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Figure 4.19: Combined wave and wind installation.

impact on the low harmonic frequencies that would otherwise be hard handle by passive filters.
Detailed method and results are described in Appendix G.

4.8 Wave and wind integration

One of the major cost barriers for wave farms is the high cost of installing the power cable to
grid. Offsetting the cable costs would require a very large wave farm, causing a large and risky
investment. This poses an investment barrier for wave energy, as investors would like to take
small steps, gaining experience while revenue is generated. One option that could reduce this
problem is co-locating the wave farm with off-shore wind farms. Many of the good wind sites are
also good wave sites, and wind turbines and WECs could share service and maintenance crews
and equipment.

The easiest approach would be to treat the wave and wind farms as separate systems, where
the only point of integration is the power cable. However, there could be large benefits from
doing closer integration where the wind and wave farms also share some of the structure and/or
infrastructure. Fig. 4.19 shows an artistic impression of two WEC arrays directly tied to the
monopile foundation of a wind turbine. This could help saving most of the costs related to
inter-array connections, and could also allow for having the array converter equipment placed
in the wind turbine foundation. Obviously, no wind turbines operators would normally allow
wave farms to tie on to their structures; however, this could be pursued as a partnership with
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a foundation manufacturer, which could supply monopiles with integrated WEC production
capacity.

Some benefit could also be gained in the power system, since the fluctuations caused by the
WECs would be diluted by the power production from the wind turbine. However, the major
cabling cost is related to the shore cable, and since high correlation between wind an wave must
be expected, the power cable to shore must have the capacity to transfer the nominal power from
both wind and wave farms. Nevertheless, as illustrated in section 1.3, there is a benefit on power
quality from combining the wind and wave production.

4.9 Concluding remarks

This chapter has demonstrated the feasibility of the wave farm system, and has showed that
the initial high distortion from the WEC to a large extent can be smoothed out by the spatial
distribution of the WECs. The peak to average power ratio for the analyzed farm seems to be in
the range 1.3 - 1.8, depending on the selection of installed capacity, which is highly dependent
on the cost of the shore cable. In this analysis energy storage showed not to be economically
beneficial, which results in losing approximately 1% of the annual production. However, the cost
gap for energy storage is narrow, and in cases with high cost of the shore cable, energy storage
is likely to be beneficial. Referred to rated power of the wave farm, 5 250 annual full load hours
are produced. However, when referred to the installed transmission capacity this is reduced to
3 000 - 4 000 hours per year, depending on the selected configuration. Nevertheless, for larger
farms, or for combinations with other systems, the required peak to average ratio is expected
to sink towards unity, allowing for more than 5 000 annual full load hours to be transferred to
grid. This will make wave energy one of the most stable renewable resources, despite of the high
level of distortion at the PTO. It is also clear that flicker will be an important factor for system
design that could incur significant cost on the system. The effect of flicker is very dependent on
the grid capacity and must be evaluated on a site-by-site basis. However, it is also demonstrated
that the flicker issue can be managed, and that existing power equipment could be sufficient.
Other grid code requirements, such as fault ride-through and reactive power control seems to be
easily manageable due to the powerful DC/AC converter used and it was also showed that this
capacity could be utilized to perform active correction of existing grid distortions as an extra
service to the grid operator.
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Chapter 5

Autonomous operation

Synopsis
Wave energy converters can potentially open a new area of applications as it allows for large
amounts of power to be produced at sea. This could be utilized in autonomous systems, which are
investigated in this chapter, and places high requirements on the power system to deliver stable
power from the fluctuating power output from the WEC. Moreover, power must be supplied
to the load 24/7, which requires additional on-demand power sources for calm weather. The
general requirements for such systems are discussed and a case with a 100 kW continuous load
requirement is analyzed.
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5.1 Introduction

Wave energy converters produce electrical power at sea, and since the oceans cover approximately
70% of the Earth’s surface, this opens the possibility to operate power consuming systems in
remote locations far from shore. Many such systems exist today, and are mostly powered by solar
panels. For low power systems that requires less than 50 W continuous power, solar is likely to
be the preferred energy source since PV-cells are reliable, light-weight, modular and simple to
operate.

However, devices that require more power becomes very hard to operate with available tech-
nology, as there are few alternatives to PV. Wind turbines can supply additional power, but
places strict requirements on the buoy design and stability, and are vulnerable in rough weather.
Therefore, WECs could show to be very interesting for ocean based autonomous systems with
its ability to tap into the high power density of ocean waves. Moreover, the ability to utilize
existing floater structure and moorings for energy production can make wave energy a low cost
option for autonomous power systems at sea. The following sections explore the requirements
and possibilities for such systems, and discuss the required power system configuration for high
power autonomous system.

5.2 Required power system

The autonomous system must be expected to be demand driven, in this analysis a constant load
is defined, and the produced wave energy will have to be stored and conditioned to supply the
load. The power system must both handle the large power fluctuations during normal operation
due to the incident waves, and the long-term fluctuations due to changing weather. These two
domains of fluctuations are very different and will have to be handled separately. Lifesaver is
designed and operated as an autonomous system with a power system that is centered around an
ultracapacitor bank, as described in Chapter 3. The capacitor bank handles the wave-to-wave
fluctuations and ensures stable power flow to the control and monitoring system. This has proved
to be a successful configuration and is the natural point of origin for designing the autonomous
system.

While the capacitor bank ensures adequate power quality during WEC operation, the chal-
lenge is to handle the weather variations. Fig. 5.1 shows a possible autonomous power system
configuration with wave energy as the primary source and a large battery bank to absorb the
larger power fluctuations. Since the battery bank must be expected to have limited capacity, an
additional power source is required for maintaining the load when the battery bank is empty. In
this case, a diesel generator is selected.

The sizing of the power and energy system components should be the result of economic
optimization. A configuration with wave, battery and diesel is very flexible as these power
systems have very different cost properties. The WEC cost is mainly driven by installed power
capacity, and the cost scales almost linearly with power rating. Since the WEC supplies renewable
energy, the energy itself can be considered free of charge. The WEC total cost is to very little
extent affected by the number of hours it is operated per year. Thus, the WEC should be
regarded as a power scaled component.

The diesel generator has almost the opposite economical properties of the WEC as diesel
generators are inexpensive per installed kW, but are expensive to operate due to the high fuel
cost. Over the lifetime of a diesel generator, the majority of the life cycle cost will be diesel fuel,
and the diesel generator can be considered an energy scaled component.

The battery system serves as the bridge between the renewable source and the diesel system
as it allows for utilizing excess production from the WEC to save fuel. The wave energy that
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Figure 5.1: Autonomous WEC power system

passes through the battery was obtained free of charge, but saves an equal amount of costly
diesel. Thus, the cost savings from the battery is calculated as the total amount of energy that
has passed through the battery multiplied by the energy cost of diesel.

Battery cost is directly linked to the energy storage capacity. In addition, it is important
to consider the battery lifetime, which typically lies in the range 200-2 000 full charge cycles,
depending on battery technology. Since the base cost of a battery is high, it is important to
ensure good utilization of the battery lifetime. Table 5.1 lists a conservative battery cost of
310 e/kWh. If this is considered to be a lithium battery with 1 000 cycles life time, the cost of
energy supplied from the battery over the battery life would be 0.310 e/kWh, which is marginally
less than the listed cost of diesel power. Thus, more than 850 full charge cycles is required on
the battery to return profit.

This push for high battery utilization poses a challenge to WECs since the weather fluctua-
tions are slow and infrequent. Thus, battery systems are unsuitable for providing cost efficient
long-term storage unless the alternative energy cost is very high. The battery bank should there-
fore have limited storage capacity, and the main purpose of the battery should be to even out
rapid weather fluctuations, and to supply stable power when wave power production is marginal,
which would otherwise cause poor utilization of the diesel generator and frequent starting and
stopping.

The combination of renewable energy, diesel and batteries makes a powerful and efficient
system where the renewable source supplies most of the energy. The batteries package enhances
the renewable power system and the diesel system supply the remaining energy needed in calm
periods. Diesel generators are also suitable for adding redundancy due to the low cost, and
provides excellent backup for the renewable power system.

The main design challenge is to find the exact sizing of the WEC and the battery bank.
This should be done by optimization towards a specific load system at a given site so that the
required power output can be matched with the wave energy resource and the typical distribution
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Figure 5.2: Wave time series measured at Wavehub. Converted to actual power output from
WEC [pu].

of weather patterns. Fig. 5.2 shows actual wave data measured at Wavehub, which has been
converted to normalized WEC power output. Unfortunately, FO does not possess a complete
dataset covering a full year of continuous observations, and several datasets have been combined
to produce a full year of data. Seasonal variations are therefore not correctly represented and
the results should be treated with care, however as the focus of this work is to demonstrate the
methodology rather than the exact results, these adaptations are believed to be adequate.

Fig 5.2 shows typical power fluctuations that must be expected due to changing weather. The
stated load factor of 62% refers to the annual energy production divided by rated power. This
number includes energy delivered above rated power, however if power is capped at rated power,
which would correspond to 1 pu in Fig 5.2, the load factor would equal 56.3%. In addition to
the annual load hours, the distribution and length of calm periods, plotted in Fig. 5.3, becomes
very important for the sizing of the energy storage and the consumption of diesel fuel. The calm
periods are calculated by dividing the full year time series into consecutive periods of n days.
All periods with average power output less than the load demand are counted as calm periods.
Rated WEC capacity in this example is three times the load demand. Since the batteries will
require at least 100 full load cycles per year to yield profit, this plot gives a good impression of
the possible battery size.

The WEC can also be oversized to cover the load for an additional days per year, and Fig. 5.4
plots the exact relationship based on the Wavehub data. The figure shows the progressive
nature of the system, added overcapacity results in fewer and fewer added supported days as
the overcapacity increases. The relationship seems to be close to linear up to ca two times
overcapacity, and the optimal system must be expected to be found in vicinity to this.

So far, a complete system for continuous power delivery has been designed and discussed.
Only diesel and batteries has been discussed as alternative power sources to the WEC, however
many alternative technologies for energy storage and energy production exists, for instance could
methanol based fuel cells be applied as an alternative to diesel for low power applications. For
small systems, these considerations are more of practical nature than related to the actual cost
of energy and energy efficiency. Thus, to get a better understanding of the real energy cost, a
large power system will be analyzed in the next section.
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5.3 High power system example

While the realistic power level of a first commercial system for the FO WEC technology would
most likely be in the range of a few kW continuous power, the real benefit and potential for the
WEC system is expected to emerge for significantly higher power levels. Therefore, a system case
with a continuous load requirement of 100 kW is defined and used in the following analysis. This
is within reach of the portfolio of devices that FO can deliver, as addressed in Chapter 7. Three
different cases for deployment are defined, named Near-shore, Off-shore and Ocean. These cases
have different cost properties attached, mainly influenced by cost of maintenance and refueling
due to the distance from the nearest port, and the cost parameters are listed in Table 5.1.

• Near-shore

• Off-shore

• Ocean

Property Value Unit
WEC, cost of power capacity 6 000 e/kW
Diesel, near-shore case, cost of energy 0.375 e/kWh
Diesel, off-shore case, cost of energy 1.0 e/kWh
Diesel, ocean case, cost of energy 10 e/kWh
Battery, conservative, cost of energy capacity 310 e/kWh
Battery, optimistic, cost of energy capacity 125 e/kWh
Hydrogen electrolyzer, cost of power capacity 363 e/kW
Hydrogen fuel cell, cost of power capacity 508 e/kW
Hydrogen storage, cost of energy capacity 16 e/kWh

Table 5.1: Cost properties for hydrogen hybrid WEC system

Table 5.1 also lists cost for the other system components, where the WEC cost is estimated
based on Lifesaver and expected improvements for future systems. Two figures are presented
for battery cost; the conservative case represents existing battery technology and is based on
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estimates for total system cost of a battery system. The optimistic case is based on presented
numbers from the automotive industry and represents expected battery cost for electric vehicles
in five years time. This figure must therefore be considered very optimistic in this context.

It was previously argued that batteries are unsuitable to cover long-term fluctuations in power,
especially for a large system. A 100 kW system would consume an energy amount equivalent
to several hundred kg of batteries every hour, and a system that is able to cover for instance a
week of consumption would be extremely heavy and expensive. This study therefore introduces
hydrogen as alternative energy storage. Hydrogen has some of the same benefits as fuel oil,
while also having the possibility to be produced on site. The hydrogen system consists of an
electrolyzer that can produce hydrogen when excess power is available and pressure vessels that
can store hydrogen as compressed gas. During calm periods, fuel cells will convert hydrogen back
into electricity. In addition, an option of producing electricity from hydrogen by a standard heat
engine was evaluated, but showed very poor cycle efficiency. A similar concept has been tested
out at the island Utsira, Norway [46], where two wind turbines and a hydrogen storage system
were used to supply stable renewable power to the island. In general, the concept showed good
performance, but the fuel cells showed poor reliability. However, with recent advances on fuel
cell performance in the automotive industry there is reason to believe that reliable fuel cells will
be available in the near future.

The key properties for the hydrogen system is listed in Table 5.2, and are used as basis for the
hydrogen storage analysis. The cost and efficiencies of the hydrogen systems listed in Table 5.1
and 5.2 are based on an analysis by the National Renewable Energy Laboratory [34] and results
in a cycle efficiency of only 30%. The poor cycle efficiency is one of the major barriers against
large-scale implementation of hydrogen as energy carrier and energy storage. However, for the
autonomous WEC application, hydrogen may offer the required energy density for sustained
operation. The low efficiency could have less impact since the WEC is likely to be installed with
significant over capacity, hence it will produce excess energy that can be converted to hydrogen.

Property Value Unit
Specific energy hydrogen 123 MJ/kg
Specific energy hydrogen 34.17 kWh/kg
Density of hydrogen 0.08988 kg/m3

Energy density @ atmospheric pressure 3.071 kWh/m3

Energy density @ 200 bar 614.2 kWh/m3

Energy density @ 700 bar 2 150 kWh/m3

Nominal load 100 kW
Electrolytic cell efficiency (PEM) 57 %
Fuel cell (fc) efficiency (PEMFC) 53 %
Gas motor (gm) efficiency ≈ 35 %
Cycle efficiency (fc) 30 %
Cycle efficiency (gm) 17 %
Selected storage pressure 200 bar
Required volume per load hour (fc) 0.54 m3

Required volume per load week (fc) 91.2 m3

Table 5.2: Physical properties for hydrogen storage system

Fig. 5.5 shows the proposed power system for the hydrogen hybrid WEC system, which is
designed around the ultracapacitor stabilized DC-Link. The diesel generator is connected to
the DC-Link through a full bridge converter to handle the large voltage fluctuations that occurs
on the DC-Link as the ultracapacitor bank stores and supplies energy. This was discussed in
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Figure 5.5: Autonomous power system with hydrogen storage
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Chapter 3. This also allows for active speed control of the diesel generator, which can improve the
efficiency at reduced load. The hydrogen electrolyzer and fuel cell can be thought of as battery
like systems and must be operated at a controlled DC-voltage for optimal power transfer. Thus,
DC/DC converters are required for the electrolyzer, the fuel cell and the battery. Finally, the
load converter will supply stabilized power to the load, most likely as standard AC voltage.

As significant costs will be attached to the power system, and especially the WEC system, a
thorough system optimization with respect to power component sizing is important. The anal-
ysis is performed by running multidimensional scans spanning installed WEC capacity, battery
storage capacity, hydrogen storage capacity and hydrogen power capacity. The total capital ex-
penditure (CAPEX) and operational expenditure (OPEX) over five years is calculated for each
case so that the optimal solution is identified. Due to the short project lifetime selected, no
discount rate was included in the calculation. The short lifetime is selected since these kind of
autonomous systems are likely to have shorter horizons. Longer lifetime would strongly favor
the WEC system as the operational cost of diesel is much higher than the running costs of the
WEC system, thus the project life of five years can be viewed as a worst-case scenario.

The analysis has been performed for the three cases Near-shore, Off-shore and Ocean. The
only difference between the cases is the cost of diesel, as defined in Table 5.1, which has great
impact on the system design. The optimized configurations found are listed in Table 5.3, and
the resulting annual energy balance is plotted in Fig. 5.6. Each case is addressed and discussed
separately in the next paragraphs.

Property Unit Near-shore Off-shore Ocean
Total system capex and opex ke 1 317 2 010 2 597
Cost of energy e/MWh 301 459 593
WEC rated power pu 1.0 2.0 3.0
Battery storage capacity pu·h 0.0 1.0 5.0
H2 storage capacity pu 0 50 200
H2 rated power pu·h 0.0 0.5 1.0

Table 5.3: Optimal system configuration
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Near-shore case

Near-shore refers to systems around or closer than 20 km to the nearest port and are viewed as
easily accessible for maintenance and re-fueling. This leads to a cost of diesel marginally higher
than the base cost, and when optimizing the near-shore case it quickly becomes evident that
neither battery storage nor the hydrogen storage can compete with diesel. Hence, the optimal
system consists only of wave and diesel, where the WEC is sized to produce the optimal amount
of energy, and the calm periods are covered with diesel. An example with operation of this power
system is plotted in Fig. 5.7 and shows 50 days of typical operation in Wavehub climate. As
listed in Table 5.3, the optimal system configuration showed to result in a WEC with rated power
equal to the load. This setup results in an annual energy balance of 57% wave energy versus 43%
diesel energy. Approximately 8% of the annual produced wave energy has to be dumped due to
overproduction.
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Figure 5.7: Power and Energy balance for Near-Shore case

Off-shore case

The off-shore case is defined as a remotely located systems within 100 km of the nearest port.
The wave climate for such a location will typically be harsh and would require larger vessels for
maintenance and refueling. This will add significantly to the diesel cost and will make alternative
energy sources more attractive. In this case, hydrogen storage becomes economically attractive
with power capacity sufficient to cover half the load and storage capacity sufficient to support
the full load for 50 hours. As the cost of hydrogen storage capacity is significantly lower than
batteries, one could expect batteries to be unfeasible when the hydrogen infrastructure already is
in place; however, as batteries are significantly more efficient, they are more suitable for covering
the frequent load fluctuations that appear in marginal wave states. While the hydrogen system
would waste 2/3 of the cycled energy, the battery bank can deliver cycle efficiency in excess of
90% and would help maintain full energy coverage from the WEC in less energetic wave states.
Nevertheless, the analysis only worked out in favor for batteries for the optimistic cost level.
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Figure 5.8: Power and Energy balance for Off-Shore case

With conservative battery cost, batteries turned out to be unprofitable in all three cases. In the
off-shore case, the optimum battery size turned out to be one full load hour, which would equal
100 kWh, or a little more than a standard battery package for the Tesla Model S sports car.

Fig. 5.8 shows the power balance for the off-shore case. The two upper bands show the state
of charge of both the battery storage and the hydrogen storage, from empty to full. The plot
illustrates the power flows that occur when cycling the energy storages, and illustrate the amount
of energy that is lost through the hydrogen conversion chain. In the offshore case, the optimal
WEC rating is two times the load rating, hence significant overcapacity is installed to reduce
diesel consumption. This results in annual load coverage of 78% directly from the WEC, and
only 15% coverage from diesel. In addition, 1.5% of the annual energy is indirectly covered by
the WEC through battery storage, and 5% is covered through hydrogen storage. An amount
equal to 11% of the annual load is lost due to hydrogen and battery conversion loss, and 28% is
dumped due to excessive WEC output.

Ocean case

The ocean case is defined as locations beyond 100 km from the nearest port. These systems
could be very remotely located in areas such as the arctic or the oceans and would be difficult
to maintain. It could be that the devices would have to be designed to sustain the entire project
lifetime without maintenance. This result in very high cost of diesel, and the renewable power
and storage system must be designed with abundant capacity to supply as much as possible of
the annual energy. The optimal design results are listen in Table 5.1 and results in a WEC rated
power of three times the load, 200 full load hours of hydrogen storage and five full load hours of
battery storage. The hydrogen system must have full power capacity. This leads to annual energy
coverage from diesel of only 0.75%, all the remaining energy is directly or indirectly delivered by
the WEC. This is demonstrated in Fig. 5.6, which shows the distribution of annual energy from
the different power components. When compared to the offshore case, the major difference is the
amount of dumped energy. The high installed power capacity of the WEC results in 87% of the
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Figure 5.9: Power and Energy balance for Ocean case

annual energy to be delivered directly from the WEC. Of the remaining gap of 13%, 3% is covered
from battery storage and 9% is covered from hydrogen storage. This proves the shortcomings of
the energy storage system as it to a large extent is more profitable to install excess production
capacity than to use storage.

Fig 5.9 shows the time series example for the ocean case. The large amount of diesel consump-
tion in the start of the plot is due to the initial condition of the analysis that starts with empty
energy storages at day zero. The figure illustrates the large installed power capacity compared
to the load, as the WEC production in one instance reaches five times the load consumption in
average power output. Nevertheless, the system proves stable operation within the defined limits
and demonstrates the ability to supply continuous power in a remote location.

Hydrogen storage

A very large pressure vessel would be required to provide the required energy storage for the
ocean case. 200 full load hours at 100 kW amounts to 20 000 kWh and equals 13 200 m3 of H2

at atmospheric pressure. The maximum pressure that is commonly used for hydrogen storage is
700 bar, and would lead to a total required storage volume of 19 m3. This would likely have to
be implemented as several smaller pressure vessels and would have large impact on the system
design. Since the WEC absorber most likely would be designed and built specifically for the
application, it could be possible to integrate the pressure vessels as a part of the hull, possibly
in the load bearing structures so that structure serves dual purposes. Fig. 5.10 illustrates a
configuration built around steel pipes, where the PTOs would be located at the tip of the arms.
The steel pipes will carry the loads exerted on the buoy, and can act as hydrogen pressure vessels.
With a length of 20 m and diameter of 0.7 m, they would deliver a storage volume of 70 m3, hence
an operating pressure of 190 bar would be required to meet the specified storage capacity. Such
a pressure level would place stringent requirements on the pipe design, but could potentially lead
to a cost efficient system with good integration and high material utilization. This suggestion
of integration is inspired by Peugeot Citroën which are exploring an automotive hybrid system
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based on compressed air [7].

Figure 5.10: Hull integrated pressure vessels with load bearing capability

5.4 Concluding remarks

The analysis of autonomous systems shows that wave energy can be applied successfully as a
power source for remote ocean based power systems. Since the wave energy resource is supply
driven, an alternate source of power is required for calm weather; the typical solution would be
diesel generators. The wave resource will typically be more stable than alternative renewable
sources, and has demonstrated the ability to fully supply the load up to 7 500 hours per year.
This is possible by overrating the WEC with respect to the load, and up to three times overrating
has shown beneficial.

Two energy storage solutions was also investigated, batteries and hydrogen storage. Both
solutions have high cost of energy, and turned out to be unprofitable in many of the cases. The
main barriers are the high cost of batteries and the poor cycle efficiency of the hydrogen storage.
The storage solutions were to a large extent penalized by the short project lifetime of 5 years
selected for the analysis, nevertheless, the different cases studied demonstrated that the energy
storage would only supply a small fraction of the annual energy.
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Chapter 6

Modeling and simulation

Synopsis
In this chapter the theoretical models used to simulate the Wave Energy Converter systems are
described. The models cover forces on the system due to incident waves and hydrodynamical
effects, forces from PTOs, efficiency and power output of the system and interference between
absorbers in multi-body systems.
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CHAPTER 6. MODELING AND SIMULATION

6.1 General buoy model

Good simulation models are essential for the wave energy industry to minimize the need for
offshore testing and deployment. They can also raise the understanding of the system and provide
valuable information since states and properties that are difficult or impossible to measure in real
life usually are easily extracted from the model. Several simulation models have been developed
within the wave energy project to simulate different parts of the system. The most advanced
and important model is the general buoy model that simulates the operation of Lifesaver and
other WECs in real sea conditions. The model takes into consideration the ocean properties
with realistic waves, hydrodynamic properties of the WEC, actual WEC motion in six Degrees
Of Freedom (DOF) and PTO behavior, including realistic power output.

[
f
τ

]
= M

[
r̈

θ̈

]
(6.1)

The body motion is governed by Equation (6.1), which is derived from Newtons second
law of motion. The symbols and definitions used in the equations in this section are listed in
Table 6.1. The equation of motion is the backbone of the simulation model, and is implemented
with six degrees of freedom, which covers the x,y,z translations surge, sway and heave, and the
rotations around the local x,y,z axis named roll, pitch and yaw, which are defined in Fig. 6.1.
The local axis system is referred to as R,P,Y axis since they are used to describe the roll, pitch
and yaw rotations, so that these are not confused with the global x,y,z coordinate system that
is independent of the WEC. By using these indices, Equation (6.1) is written on scalar form in
Equation (6.2). Center of gravity is located at the origin of the local axis system, hence there
are only diagonal mass elements in the mass matrix. The linear masses also include the added
mass of the floater at infinite frequency, which explains the differentiation of mass on the linear
axes.

⎡
⎢⎢⎢⎢⎢⎢⎣

Fx

Fy

Fz

τR
τP
τY

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

mx 0 0 0 0 0
0 my 0 0 0 0
0 0 mz 0 0 0
0 0 0 iRR iPR iY R

0 0 0 iRP iPP iY P

0 0 0 iRY iPY iY Y

⎤
⎥⎥⎥⎥⎥⎥⎦
· d2

dt2

⎡
⎢⎢⎢⎢⎢⎢⎣

rx
ry
rz
θR
θP
θY

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.2)

The model is converted to the standard state space form shown in Equation (6.3), which
translates to Equation (6.4) on scalar form. The equation is solved as an initial value prob-
lem, using the Ordinary Differential Equation solver in Matlab. To reduce complexity and save
computation time, some degrees of freedom are locked out, and most of the simulation work is
performed with the three degrees of freedom surge, heave and pitch. However, to maintain order
and flexibility in the equations, all equations are always described with six DOF indices.

ẋ = Ax+ bu (6.3)

⎡
⎢⎢⎢⎢⎢⎣

ṙx
r̈x
ṙy
...

θ̈Y

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a112
a21 a22 a23 · · · a212
a31 a32 a33 · · · a312

...
. . .

a121 a122 a123 · · · a1212

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

rx
ṙx
ry
...
˙θY

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

b1
b2
b3
...

b12

⎤
⎥⎥⎥⎥⎥⎦u (6.4)
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Figure 6.1: Local coordinate system on Lifesaver

The sum of forces and moments on the system is defined according to Equation (6.5) and (6.6),
and are based on sub-models that are defined and implemented separately to form a modular
simulation system that can be rebuilt according to need. The sub-models and the resulting forces
and moments are defined in the next sections.

Σf = Σfpto + f c + fe + ff + fr + fd +mzg · −k (6.5)

Στ = Στ pto + τ c + τ e + τ f + τ r + τ d (6.6)

PTO forces

The PTO forces are modeled based on Equation (2.10) defined on page 28, thus they are time
invariant and only depends on the drum speed. The PTO force vector is found by multiplying
the scalar PTO force with the normal vector from the PTO to the mooring point. However,
finding the drum speeds and force vectors is not straight forward due to the rotation of the local
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Group Property Symbol Unit

Notation
Scalar a
Vector a
Matrix A
Time derivative ȧ da/dt
Normal vector to a aN

Vector for the i-th mode of motion ai

Complex operator iω
Constants

Gravity g 9.81 m/s2

Density of sea water ρ 1025 kg/m3

Properties
Mass m kg
Inertia i kgm2

Geometry
Global position of the WEC rwec [m,m,m]
Global position of the i-th mooring rmi [m,m,m]
Local position of the i-th PTO rptoi

∗ [m,m,m]
Global position of the i-th PTO rptoi [m,m,m]
Mooring-PTO vector for the i-th PTO rmptoi [m,m,m]
WEC rotation θwec [1, 1, 1]
Rotation matrix R [3× 3]

Forces and Moments
Force or Moment from the i-th PTO fptoi/τ ptoi [3× 1]
Resultant PTO forces Σfpto/Στ pto [3× 1]
Hydrostatic buoyancy force f c/τ c [3× 1]
Wave excitation force fe/τ e [3× 1]
Hydrodynamic friction damping ff/τ f [3× 1]
Hydrodynamic radiation fr/τ r [3× 1]
Hydrodynamic diffraction fd/τ d [3× 1]
Resultant force on WEC Σf/Στ [3× 1]

Hydrodyamics
Frequency ω rad/s
Wave surface elevation η m
Wave state energy spectrum S
Incident wave amplitude spectrum Ai

Hydrodynamic force operator χ
Incident wave function φ
Impulse response matrix K

Table 6.1: Equation symbols
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axis system, and the global coordinates has to be transformed to the local coordinates by the
rotation matrix R defined in Equation (6.7).

R (θY , θP , θR) = RY (θY )RP (θP )RR (θR) =⎡
⎣ cos θY − sin θY 0

sin θY cos θY 0
0 0 1

⎤
⎦
⎡
⎣ cos θP 0 sin θP

0 1 0
− sin θP 0 cos θP

⎤
⎦
⎡
⎣ 1 0 0

0 cos θR − sin θR
0 sin θR cos θR

⎤
⎦ (6.7)

The PTO to mooring vector, and the corresponding normal vector is found in Equation (6.8)
and (6.9), by adding the translation of the local coordinate system and multiplying the local
PTO position by the rotation matrix. The actual PTO velocity is found as the cross product
given in Equation (6.10) and the resulting velocity along the PTO to mooring vector is found in
Equation (6.11). By applying the PTO model, which was previously defined in Equation (6.12)
on page 28, the actual rope force is found, and the resulting forces and moments for all five PTOs
are found in Equations (6.13), (6.14) and (6.15).

rmptoi = rwec +Rrptoi
∗ − rmi (6.8)

rmptoiN =
rmptoi

|rmptoi| (6.9)

ṙptoi = ṙwec + r∗ptoi × θ̇wec (6.10)

ṙmptoi = θ̇wec · rmptoiN (6.11)

fptoi = FPTO (|ṙmptoi|) · rmptoiN (6.12)

τ ptoi = fptoi × r∗ptoi (6.13)

Σfpto =
5∑

i=1

fptoi (6.14)

Στ pto =

5∑
i=1

τ ptoi (6.15)

Hydrodynamic forces

This section describes the method for finding the hydrodynamic forces on the body. Realistic
waves are generated based on the JONSWAP spectrum which is representative for the North
Sea [21]. The energy spectrum S(ω) as function of the frequency ω is calculated based on
the JONSWAP definition, and can be converted to the wave amplitude spectrum Ai(ω) by
Equation (6.16). Time series data for the wave surface elevation η is found by the inverse Fourier
transform of the amplitude spectrum Ai(ω), as shown in Equation (6.17), where ϕ refers to
randomly added phase for each frequency step and � represents the real part of the expression.
The simulation model is discrete and operates with a sampling rate of ca 10 Hz, and the inverse
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Fourier transform is performed for each time step so that the coupled effects of the simulation
model, such as surge movement, can be taken into consideration.

Ai (ω) =
√
2 · S (ω) dω (6.16)

η (t) = �
∫ ∞

−∞
Ai (ω) e

i(ωt+ϕ(ω)) dω (6.17)

The hydrodynamic forces from the waves can be divided into excitation forces and radiation
forces [27]. The excitation forces are a combination of hydrostatic forces due to surface elevation
on a fixed body and diffraction forces because of interactions of incident waves with the fixed
body. The radiation forces appear because the body radiates waves due to body movement.
For the point absorber, this causes ring waves propagating away from the absorber. The χ
operator is the excitation coefficient and describes all the forces mentioned here for all degrees
of freedom. Equation (6.18) describes the relationship between the wave surface elevation η
and the amplitude spectrum A (ω). The χ operator is the link between surface elevation and
hydrodynamical forces, as described by Equation (6.18). The direct link between the χ operator
and the hydrodynamical forces are shown in Equation (6.19).[

f (t)
τ (t)

]
= �

∫ ∞

−∞
χ (ω) ·Ai (ω) e

i(ωt+ϕ(ω)) dω (6.18)

[
f (ω)
τ (ω)

]
= Ai (ω) · χ (ω) (6.19)

χi (ω) =

∫∫
SB

φ0
dφi

dni
− φi

dφi

dni
dS (6.20)

The incident waves are described for all frequencies by the function φ0, and the radiated and
diffracted waves are described by the function φi for all frequencies and the i-th mode of motion.
By integration over the area cross section of the body surface SB , the force operator χ is found,
as described in Equation (6.20). The surface normal vector for each mode of motion is denoted
as ni. The radiation forces are calculated by integrating the radiation potential on the body
surface, as showed in Equation (6.21).

Fk (ω) =
6∑

i=1

−ρ

∫∫
S

∂φi

∂ni
nk dS (6.21)

When solved, this force can be separated in two parts, as showed in Equation (6.22). One part
is proportional to the acceleration, the radiation added mass aki, and one part is proportional
to the velocity, the radiation damping bki. The radiation force contribution in a given mode of
motion is the sum of the added mass and radiation contribution in that mode of motion due to
forced oscillation in any mode of motion.

Fk (ω) = −
6∑

i=1

U̇iaki + Uibki (6.22)

However, memory effects in radiation cause time variant behavior that cannot be directly
transformed into a time domain equation. The conventional method is to apply the convolution
integral shown in Equation (6.23), which is computationally hard.
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[
f (t)
τ (t)

]
=

∫ t

−∞
K (t− T )

[
ṙ (T )

θ̇ (T )

]
dT (6.23)

An alternative approach, as described by Kristian et al. [23] is to make a separate state space
model for the radiation forces. First the added mass at infinite frequency is separated out and
added to the system mass matrix M , described in Equation (6.1). Secondly, the new state space
model is created by evaluating the impulse response K of the system. An example of the system
impulse response is plotted in Fig. 6.2.
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Figure 6.2: Example of system impulse response

The added mass and damping coefficients are ordered into the standard state space model
described by Equation (6.26). Equation (6.24) describes the radiation forces as the sum of added
mass and damping of the system in the frequency domain. In Equation (6.25) the added mass at
infinite frequency is separated out. This opens for utilizing the method described by Kristiansen
et al. [23] and rewrite the radiation forces on a state space form where the radiation force is only
a function of the velocity ṙ. The properties are found numerically through Computational Fluid
Dynamics (CFD) by using the Finite Element Method (FEM). For this study, COMSOL was
used to find the hydrodynamic properties.

[
f (ω)
τ (ω)

]
= −

(
A0 (ω)

[
r̈ (ω)

θ̈ (ω)

]
+B (ω)

[
ṙ (ω)

θ̇ (ω)

])
(6.24)

[
f (ω)
τ (ω)

]
= −

(
(A (ω)−A (∞))

[
r̈ (ω)

θ̈ (ω)

]
+B (ω)

[
ṙ (ω)

θ̇ (ω)

])
(6.25)

ẋi = Aixi + biṙi
fr i = cixi + diṙi

(6.26)
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Hydrodynamic drag

The methods used so far to compute the hydrodynamic properties are based on the assumption
of no drag on the system. The actual drag is marginal compared to the damping force applied by
the PTOs, and this approach is believed to be accurate. However, operating the model without
damping is likely to cause adverse effects such as oscillations. In the Lifesaver case, the problem is
mostly related to the surge movement, since the PTOs have little influence on these movements.

Equation (6.27) shows the standard expression for hydrodynamic drag, where Fd is the drag
force, A is the cross section surface area, CD is the drag coefficient and u is the velocity. This
is transformed to vector form in Equation (6.28), and the complete implementation using the
already established hydrodynamic functions is shown in Equation (6.29).

Fd = −1

2
ρ ·A · CD · u2 (6.27)

ff = −1

2
ρ ·A · CD · |u|u (6.28)

ff i =
1

2
ρSi CD

∣∣∣∣∂φ0

∂n
− ṙwec i

∣∣∣∣
(
∂φ0

∂n
− ṙwec i

)
(6.29)

6.2 Multi body model

The general buoy model ignores radiation and diffraction that will occur in multi-body systems,
and each WEC is simulated as if it was alone. Incorporating coupled multi-body effects in
the general buoy model would add very high complexity. The largest effect of interference is
expected to be reduced power output as the energy potential in the waves are reduced as power
is absorbed by the early WECs in the wave field. To compensate for this, a set of correction
factors are calculated in a separate interference analysis, which are multiplied with the original
simulation output to give realistic power output.

The hydrodynamic problem is solved within the framework of linear potential theory, specif-
ically the Laplace equation, resulting in the interaction field illustrated in Fig.4.9. In this paper,
the theoretical basis is only gone through briefly. The work of J.N Newman’s Marine Hydrody-
namics [27] is used as basis for this simulation work.

Since the velocity potential is linear, all contributions to forces and motions are linear. As
a result, the principle of superposition applies. Therefore, it is convenient to split the complex
problem into a set of simpler problems. The full solution is thus the sum of several simpler
solutions. The potential arising from N absorbers in a farm can thus be described as the sum of
contributions defined in Equation (6.30).

φ = φ0 + φD + φR (6.30)

The total velocity potential φ due to the interaction of N absorbers in a farm is the sum of
the excitation potential due to incident waves φ0, the diffraction potential due to the interaction
of the incident potential with all absorbers at rest φD, and the radiation potential φR due to the
independent motion of every absorber in every mode of motion with no incident waves present.

The diffraction problem and the radiation problem are solved independently. Thus, there
are N + 1 independent problems to solve. Further, the radiation potential from each absorber
is separated in 6 independent modes of motion. The total potential φi

N acting on absorber N
in mode i of motion is the sum of every other absorber’s radiation and diffraction potential in
addition to the diffraction and radiation potential from absorber N acting on itself in mode i

92



6.3. WAVE RESOURCE ESTIMATION

of motion. Combining the 6 modes of motions for each absorber, and allowing for all absorbers
to interact, results in a total of N × 6 independent linear equations to be solved for each wave
frequency. With a full description of the velocity potential, it is possible to integrate solutions
in the frequency domain on specific wave climates and optimize the array energy output with
respect to array layout angle and power take off damping coefficient.

In order to represent the interactions within the farm in the time domain model, a set of
correction factors is applied to the power output from the time domain model of an farm without
interactions. Correction factors are calculated individually for each wave direction and wave
period encountered. The correction factor for the individual WECs are plotted as a function of
the wave angle, as illustrated in Fig. 4.5 on page 54 for the design wave period (Tz = 6.5s).

6.3 Wave resource estimation

The simulations are performed based on the WEC prototype test site Wavehub located west
of Cornwall, England as shown in Fig. 3.12. The test site is funded and supported by the
renewable energy program administrated by the British government. The site includes a sub-
sea power substation that allows for electrically connecting the WECs to grid. Wavehub has
been surveyed and monitored for an extensive period, and work is still ongoing to calculate true
statistical wave data for the site. The wave scatter diagram listed in Table 6.2 shows the most
current data known to FO. A directional spectrum for Wavehub is plotted in Fig. 6.3. The site is
heavily dominated by waves from west, and the directional plot has logarithmic scaling to show
all the directions observed.

Period Tz [s]
3.25 3.75 4.25 4.75 5.25 5.75 6.25 6.75 7.25 7.75 8.25 8.75 9.25 9.75

W
a
v
e
h
e
ig
h
t
H
s
[m

]

0.25 1 66 22 9 4 1 0 0 0 0 0 0 0 0
0.75 0 42 347 350 241 178 75 21 1 0 0 0 0 0
1.25 0 0 32 591 677 347 240 143 45 8 2 0 0 0
1.75 0 0 0 32 515 573 258 153 130 46 17 3 0 0
2.25 0 0 0 0 39 397 392 173 99 87 33 5 1 0
2.75 0 0 0 0 0 47 287 234 98 63 52 15 3 0
3.25 0 0 0 0 0 1 55 247 130 55 39 23 7 1
3.75 0 0 0 0 0 0 3 65 170 68 32 17 7 2
4.25 0 0 0 0 0 0 0 4 92 97 36 16 6 2
4.75 0 0 0 0 0 0 0 0 12 89 41 12 6 1
5.25 0 0 0 0 0 0 0 0 0 28 49 12 4 1
5.75 0 0 0 0 0 0 0 0 0 3 38 17 3 1
6.25 0 0 0 0 0 0 0 0 0 0 14 19 2 1
6.75 0 0 0 0 0 0 0 0 0 0 1 12 3 0
7.25 0 0 0 0 0 0 0 0 0 0 0 4 4 0
7.75 0 0 0 0 0 0 0 0 0 0 0 1 4 1
8.25 0 0 0 0 0 0 0 0 0 0 0 0 2 0
8.75 0 0 0 0 0 0 0 0 0 0 0 0 1 1
9.25 0 0 0 0 0 0 0 0 0 0 0 0 0 1
9.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.2: Wavehub scatter diagram, hours per wave state per annum

However, it showed to be difficult to interpolate the sparse directional data base with the
comprehensive non-directional data base as several data points were missing from the directional
data base. Moreover, the range of the directional data did not cover the required range for
the new scatter. Instead of interpolation, and approach of curve fitting was selected. The
directional data were gathered into 24 separate scatters that covered all directions from 0◦-360◦

with 15◦ resolution. For each of these scatters, the simplified function for calculating wave
state probability given in Equation (6.31) was fitted by minimizing the sum of the residuals
defined in Equation (6.32), as shown in Equation (6.33). The new probability function was then
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Figure 6.3: Probability distribution of wave direction on Wavehub. The plot is a logarithmic
polar plot defined by the angle θ and radi ρ.

used to calculate all the wave states in the comprehensive scatter for each direction. At this
moment, the new scatter is solely based on the weak directional scatter. To take advantage of
the comprehensive scatter, the new scatter was normalized so that the sum of all directions on
every wave state equaled the comprehensive scatter. Hence, the only information taken from the
directional scatter is the distribution between the directions. An illustration of the estimated
directional scatter is shown in Fig 6.4.

p (Hs, Tz,β) = β1H
2
s + β2Hs + β3T

2
z + β4Tz + β5 (6.31)

ri = pi − p (Hs, Tz,β) (6.32)

S =
n∑

i=1

r2i (6.33)
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Figure 6.4: Illustration of wave scatter diagram that includes wave height, period and direction
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Chapter 7

Path to commercialization

Synopsis
The major challenge for wave energy converters to enter the marked is reaching grid parity on
cost of energy. In this chapter the general principles of system economics are described and the
necessary steps toward profitability are pointed out. Analysis of future systems and the potential
for scaling up the devices are also presented.
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CHAPTER 7. PATH TO COMMERCIALIZATION

7.1 Current cost level

The major barrier against commercialization of wave energy today is the high cost of the systems.
IEA estimates the cost of installed capacity to be in the range 3 375 - 5 250 e/kW [2], which is high
compared to other renewable sources. Although several newcomers claim to have systems ready
for commercialization, the general consensus among the established actors is that significant
development remains before wave energy is ready to compete in the regular energy market. In
this chapter, the current situation for the FO wave energy project is analyzed and possible paths
forward and some general numbers for system cost are discussed and presented.

The cost of the Lifesaver system can be divided into five categories: Floater cost, PTO
cost, installation cost, cost of auxiliary systems (moorings, cables, peripherals) and operational
costs. Table 7.1 lists the actual cost encountered on Lifesaver according to these categories,
and also present the projected cost for the next generation device. Lifesaver was primarily built
as a prototype to gain operational experience, and is not optimized for low cost of energy, or
low operational cost. A large portion of the operational cost is also linked to planned research
activities such as system reconfiguration and maintenance training. Hence, there is a great cost
reduction potential, as the cost numbers of the next generation device indicates. These projected
costs are based on detailed design of the next device, and are believed to be accurate with a
high level of confidence, and include realistic contingency. The operational costs are given per
device, but assume a cost optimized wave farm so that operations can be shared between the
devices. The operational costs include maintenance cost, full time employment for service crew
and control and monitoring crew, housing, equipment, rental, insurance and logistics. Hence,
these numbers are believed to be realistic and are used as basis for the economical analysis.

Item Lifesaver Next generation Unit
Floater 7.7 1.6 ke/kW
PTO 8.0 2.2 ke/kW
Mooring and auxiliary 7.6 2.1 ke/kW
Installation - 0.95 ke/kW
Operational cost 5.3 0.38 ke/(kW·yr)
Sum CapEx 23.3 5.9 ke/kW
Sum OpEx (NPV, 20 yr, 4%) - 5.2 ke/kW
Sum CapEx + OpEx - 11.1 ke/kW

Table 7.1: System cost for Lifesaver and estimates for next generation device

Since wave energy is an immature energy source, several political incentives exist to facili-
tate the development of this new resource. Several governmental subsidies and mechanisms are
available, such as investment support and feed-in tariffs, the best support regime present as this
work is in writing is believed to be the UK Strike Price, which guarantees wave energy producers
a fixed income of 360 e/MWh [31], regardless of the electricity price. The design target for
the next generation device is 175 kW rated capacity, which shall result in at least 700 MWh
produced electricity per year at Wavehub. The performance simulations in section 7.3 indicates
somewhat higher output power for the selected system, and the numbers stated here are believed
to be conservative. Thus, annual electricity revenue of 250 keper year can be expected for one
device at Wavehub.

To calculate the financial viability for the project, the input data listed in Table 7.2 is used.
These numbers are based on a 5 MW wave farm installed on Wavehub, and does not include cost
of the cable to shore since this is already present at Wavehub. The cost of installation is heavily
dependent on the farm size, and the relatively small project size of 5 MW consisting of only 28
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Property Value Unit
System investment cost 1 029 ke
Installation cost 166 ke
Total investment cost (CapEx) 1 195 ke
Operating cost (OpEx) 67 ke/yr
Electricity price 360 e/MWh
Rated power of device 175 kW
Annual produced energy 700 MWh
Annual electricity revenue 250 ke
Lifetime 20 yr
Required IRR 15 %

Table 7.2: Cost assumptions per device for a 5 MW grid connected wave energy farm at Wavehub

WECs is heavily penalized due to the high startup cost of vessel chartering and site survey, which
results in a unit cost of 166 ke per device. The total project cost is calculated with Equation (7.1),
which describes the Net Present Value (NPV) of an investment that involves future cash flows.
The purpose of the NPV is to incorporate the effect of the interest rate i, which makes future
investments R for the year t less costly than present investments. This has negative impact
on renewable power systems since most of the investment occurs up front, while the revenue
comes from future energy production. In comparison, most fossil-based power systems have
lower investment cost and higher running cost due to fuel expenses. The Internal Rate of Return
(IRR) is the interest rate that results in zero NPV, as shown in Equation 7.2. The IRR shows
the payback rate of the investment, and must be higher than the general bankable interest rate
for the project to be considered profitable. To also cover the added risk due to variable electricity
prices and other unforeseen events, projects of this kind are generally expected to yield at least
15 % IRR.

NPV (i, N) =

N∑
t=0

Rt

(1 + i)
t (7.1)

NPV (i, N) = 0 ⇒ IRR = i (7.2)

Table 7.3 lists the resulting cash flow through the project duration. The net present value of
the project is negative, which shows that the project is not profitable with the current assump-
tions. However, it was found that for a larger farm, the reduction in installation cost per device
was enough to turn a positive profit margin. These numbers are based on an IRR of 15%, but due
to the high risk with a project of this nature, investors are likely to require higher returns. The
approach of improving profitability by increasing the size of the project must also expect poor
support from investors as larger investments demand lower risk. To make the project practically
viable, a solution that allows for small start up investments must be found.

The high dependency of subsidies is also problematic for the future profitability, as the sub-
sidies are scheduled to be discontinued in the future. The strike price supported by the UK
government is mainly a strategic subsidy meant to boost activity in the renewable energy sector,
however some parts of the subsidies can be expected to last. Firstly, clean energy is likely to
be rewarded in the future and a fixed rate for renewable energy should be expected. Secondly,
as more of the energy is supplied from renewable sources, regulation of the power balance will
become more difficult. As argued in section 1.5, the ability of wave energy to produce a different
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Year Cash flow NPV
0 -1 195 000 e -1 195 000 e
1 183 000 e 159 130 e
2 183 000 e 138 374 e
3 183 000 e 120 325 e
...

...
...

20 183 000 e 11 181 e
Sum NPV - -49 792 e

Table 7.3: Cash flow for a single device for the project duration

power profile than the other renewable resources provides added value that should be favored by
a regulatory subsidy.

7.2 Cost down process

As wave energy conversion is an immature technology compared to the existing renewable tech-
nologies such as PV and wind turbines, extensive investments over long periods must be expected
for building up a wave energy industry that can compete in the energy market. It is also im-
portant to respect the fact that wave energy may show to be an unprofitable energy source in
the long-term. Therefore, WEC development must be organized so that R&D can be performed
through incremental steps requiring small investments. A development path must be identified
that can generate income along the way so that R&D cost can be covered by revenue rather than
upfront investments. Such an approach also ensures early experience from operation and early
customer feedback, which is vital for efficient usage of development resources according to the
Lean startup model [30]. Three cases for possible future project paths are defined for further in-
vestigation, which are illustrated in Fig. 7.1, where Fig. 7.1(a) shows the current status, referred
to as the base case. The three cases are:

1. Grid connected system

2. Remote system

3. Integrated system

Grid connected system

The fastest way to large-scale market entry would be to perform full-scale system deployment on
a site like Wavehub. Such a move could also show to be strategically important since it would be
the first commercial wave farm connected to grid. This could prove the viability of wave energy
as a power source, and could attract others to invest in wave energy. Many wave energy projects
have failed in the past, which has created large skepticism towards wave energy.

The calculations in section 7.1 demonstrated that the project cost where on the borderline
for profitability. This was based on scaling up the Lifesaver system from its current 75 kW
capacity to 175 kW to meet the financial performance requirements, as illustrated in Fig. 7.1(b).
This will also incur significant development costs that has not been discussed yet, these costs
should be expected to be in the 10-20 Me range. For continuing this approach, a path that can
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Figure 7.1: Cost and revenue elements for various development paths

both demonstrate increased return from system investment and a good potential to cover the
development cost must be demonstrated.

The UK strike price of 360 e/MWh is limited to the first 30 MW of installed production
capacity [31], which pose a threat to the future income from wave energy. There is high uncer-
tainty linked to the future subsidies after this threshold has been breached, and the grid approach
should aim to prove profitability within the given framework of the strike price program. Hence,
pursuing the grid-connected case would require investment support.

Based on the calculation presented in section 7.1, deployment of 5 MW farm would cost
33.5 Me. If 16.5 Me of development cost are included, the project will amount to 50 Me. With
an investment funding of 50%, this would result in a healthy return on investment of 20%. The
availability for such funding programs has currently not been recognized, but there is strong
political support in many countries for developing wave energy, and it is fully possible that such
a program could be established.
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Remote systems

A large portion of the global electricity production is not connected to a centralized grid. In
smaller island grids, much of the power is often supplied by diesel generators, with high cost
of diesel due to transportation cost and high oil price. In isolated locations where the wave re-
sources are good, wave energy could be an attractive energy supplier, as illustrated in Fig. 7.1(c).
However, for wave energy to be the preferred choice, the location must be less suitable for wind
and solar power, as these sources could be more attractive alternatives.

The concept of the remote system approach is to identify customers that can benefit from the
FO wave energy system at the current technology level. This could allow for rapid deployment
of small farm systems and would require low investments compared to the grid case. Since
the system could be deployed quickly, involving less development activity, this approach could
also speed up the learning rate. The remote system approach could also be suitable for small
incremental improvements, allowing a larger farm being built up based on the experience gained
on the first devices.

However, as it may be difficult to find sites that can accept the current electricity cost
from Lifesaver, some development effort is likely to be required to reduce the cost of electricity.
Recapping this cost will take more time for a small system and could be a lengthy process. In
addition, many of the possible sites will be in remote locations that will be hard to visit. This
may counteract the ability for fast learning and prototyping as frequent visits to the facility for
development team will be difficult.

Integrated systems

Every floating device that consumes power and is exposed to ocean waves could be a potential
wave energy customer. Devices like offshore-platforms, stationary buoys/vessels and fish farms
could have an integrated wave energy device that delivered power for on-board consumption.
The base electricity price on such a location is likely to be high, given its remote nature. In
addition, the integration of the wave energy device could significantly reduce cost of electricity
since items as floater, moorings and control/communication could be shared with the existing
system, as illustrated in Fig. 7.1(d). If the device is manned, or requires regular maintenance,
a large portion of the operating cost can also be taken out or shared since this is related to
transportation of personnel.

Such a system could be very advantageous, as it may fit very well with the wave power appli-
cation and be directly competitive to alternative renewable sources with the current technology
level. Although the devices are likely to be in remote locations, development, build and operation
is likely to take place in a centralized facility located in an industry cluster close to suppliers.
This is a large benefit to drive quick development.

7.3 Future potential

The Lifesaver system is 16 m in diameter and has a rated power output of 75 kW. It is evident
through simulations that there is a large potential for further up-scaling of the system, and in
an endeavor to investigate the ultimate potential for the FO concept, a comprehensive analysis
has been performed for a large number of theoretical systems. The process is based on the FO
simulation model described in Chapter 6, which has been developed through the entire wave
energy project, and which has become very accurate for these systems.

The analysis is performed by simulating different pairs of floater sizes and PTO sizes. All
configurations are simulated for the design wave state (Hs = 2.75m / Tz = 6.5s), and for a low
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wave state defined as (Hs = 1.25 / Tz = 5.0). In addition, estimates for the system cost is
required to give an impression of the feasibility of the designed systems, and two very simplified
cost functions where established as a best guess based on experience with earlier systems. The
floater cost estimate is given in Equation 7.3 and establishes the cost Cfloater as function of the
floater area A in square meters. The cost curve has progressive rate, which makes each added
square meter more expensive than the previous one. This is due to included volume effects that
demands increased floater height and increased structural support as the area increases.

Cfloater = 500 ·A1.15 (7.3)

CPTO = 60 · F 0.65 (7.4)

Equation 7.4 gives the PTO cost CPTO as function of the PTO production force F in Newtons.
This function is regressive, as economy of scale reduces the specific cost. In addition, improved
efficiency of the larger generator help increase power output. These mechanisms has been verified
by comparison against similar systems developed by FO. By using these formulas, the floater
cost listed in Table 7.4 and the PTO cost listed in Table 7.5 is found. Table 7.4 also lists the
incoming energy on each floater size. This is defined as the wave power flux in the design wave
state multiplied with the width of the floater and describes the amount of energy that interferes
directly with the floater.

Cost [ke] Area [m2] Weight [ton] Draft [m] PWave [kW]

d
[m

]

LS 87.56 123 46 0.36 511
15 114.2 177 60 0.33 479
20 221.4 314 116 0.36 639
25 369.9 491 194 0.39 799
30 562.5 707 295 0.41 959
35 801.9 962 421 0.43 1118
40 1090 1257 572 0.44 1278
50 1821 1963 955 0.47 1598

Table 7.4: Cost [e] of the floater with specified diameter, and incoming energy on this floater in
the design wave state. (LS: Lifesaver)

Number of PTOs
1 3 4 5 6

P
T
O

fo
rc
e
[t
o
n
s] 30 217.9 320.1 354 382.8 408

50 303.7 446.1 493.4 533.5 568.6
75 395.3 580.7 642.2 694.4 740.1
100 476.6 700.1 774.2 837.1 892.3
150 620.3 911.2 1008 1090 1161
200 747.9 1099 1215 1314 1400
300 973.4 1430 1581 1710 1822
400 1174 1724 1906 2061 2197
500 1357 1993 2204 2383 2540
650 1609 2363 2614 2826 3012
800 1841 2705 2991 3234 3448
1000 2129 3127 3458 3739 3986
1250 2461 3615 3998 4323 4608

Table 7.5: Total PTO cost [e] given a total force rating and number of PTOs. (LS: Lifesaver)

The PTO costs in Table 7.5 shows high influence of the number of PTOs in the configuration.
Due to economy of scale, it is beneficial to locate all the damping force in one PTO. However,
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simulations with Lifesaver have shown significantly increased power output with multi-PTO
systems due to the ability to produce power from roll and pitch motion in addition to heave
motion. To get an overview of the production potential of multi-PTO systems, a general scan
that simulated all the buoys in the simulation library was performed. The buoys are simulated
with different number of PTOs, ranging from one to six. The PTO is positioned in center in
the single PTO case, otherwise the PTOs are positioned evenly distributed along the outer edge
0.75 R from center, as illustrated in Fig. 7.2. The incoming wave direction is from north, referred
to the figure, which is believed to be the worst-case direction for power production.

(a) (b) (c) (d) (e)

Figure 7.2: Five different configurations tested with one to six PTOs

The multi-PTO scan showed a clear preference towards three PTOs. Configurations beyond
three PTOs showed slightly increased power output, but the additional produced energy did not
offset the increased PTO cost. Three PTOs seems like the optimal solution as it is the smallest
multi-PTO configuration that can fully exploit the pitch and roll potential, and this configuration
was selected for the PTO and floater scan. Table 7.6 shows the average power production in
the design wave state for the various configuration pairs, and shows a high potential for higher
power output, with the average output power actually exceeding 1 MW for the largest devices
simulated. However, as these numbers are far away from our current power range, they are not
verified against real systems, and must be handled with care.

Total production force [tons]
30 50 75 100 150 200 300 400 500 650 800 1000 1250

d
[m

]

LS 35 52 65 72 80 76 64 54 47 39 33 27 22
15 46 71 95 112 132 138 126 107 92 77 66 56 46
20 49 79 111 139 181 209 233 231 216 185 159 135 115
25 50 82 118 150 207 252 315 348 360 353 328 284 239
30 49 83 121 156 221 276 366 428 469 501 506 486 440
35 48 82 120 156 224 286 391 475 539 607 646 666 654
40 47 82 121 158 229 294 411 509 591 687 757 816 847
50 45 79 117 154 226 295 421 536 638 773 887 1011 1126

Table 7.6: Average power [kW] in design wave state (Hs=2.75m/Tz=6.5s) (LS: Lifesaver)

All configuration pairs were also simulated for the low wave state (Hs=1.25m/Tz=5.5s), and
by assuming 25% occurence of the design wave state and 50% occurence of the low wave state,
the annual prodced energy could be estimated. The weight between design wave state and low
wave state are based on the Wavehub scatter diagram. Table 7.7 lists the resulting annual energy
production, and by incorporating the simplified cost figures calculated from Equation 7.3 and
7.4, the estimated cost of energy is found, as listed in Table 7.8. In this case, a simplified model
for cost of energy is used where the running cost and revenue through the entire project life is
simplified to equal 10 years of revenue. This result in very rough estimates, and the numbers
should only be evaluated on a relative basis.

As expected, the results show a strong dependency between floater size and PTO force. The
table point out the 600 kW device with 500 tons of damping force and 40 m circular disk floater
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Total production force [tons]
30 50 75 100 150 200 300 400 500 650 800 1000 1250

d
[m

]

LS 120 170 206 221 232 218 182 153 133 109 92 75 58
15 173 253 319 361 399 400 357 301 259 216 186 155 128
20 190 295 400 482 595 659 691 664 611 522 450 382 325
25 193 310 435 544 719 847 999 1055 1056 1003 919 798 675
30 194 317 454 578 793 967 1220 1371 1451 1484 1456 1365 1225
35 188 312 452 583 817 1020 1344 1576 1735 1872 1926 1918 1834
40 186 312 456 591 840 1062 1434 1725 1947 2180 2322 2410 2419
50 173 293 433 566 818 1052 1470 1827 2132 2505 2795 3077 3300

Table 7.7: Annual energy [MWh]. Calculated as 25% occurence of design wave state and 50%
occurence of low wave state. (LS: Lifesaver)

Total production force [tons]
30 50 75 100 150 200 300 400 500 650 800 1000 1250

d
[m

]

LS 588 552 575 634 768 973 - - - - - - -
15 431 386 383 399 457 541 775 - - - - - -
20 473 382 344 330 332 352 422 521 645 885 - - -
25 577 433 365 332 304 298 313 348 394 482 593 780 -
30 715 509 409 359 311 290 279 288 306 344 393 476 603
35 920 628 487 415 343 308 279 272 275 291 315 357 421
40 - 760 574 479 383 335 290 272 266 269 279 301 337
50 - - 846 685 521 437 354 314 292 276 269 270 278

Table 7.8: Cost of energy [e/MWh]. Calculated as device cost over 10 years of energy production.
(LS: Lifesaver)

as the most profitable. However, the analysis also demonstrates that the profit gain from up-
scaling is small, and that good system configurations can be found also for smaller systems.
Three systems were selected for a comprehensive analysis and were simulated for all wave states
occurring in the Wavehub scatter. The resulting KPIs are listed in Table 7.9, and the KPIs and
units are defined in Table 7.10.

ΣFpto Abuoy Pnom Eyear Cbuoy Cpto CΣ CP CE

F
lo
a
te
r LS 30 122.5 32.99 181.4 87.56 320.1 407.6 12360 321.1

D25 150 490.9 198.8 1075 369.9 911.2 1281 6442 170.2
D30 300 706.9 352 1884 562.5 1430 1992 5660 151.1
D40 600 1257 633.1 3404 1090 2244 3334 5266 139.9

Table 7.9: Overview of system performance of the three selected systems plus Lifesaver (LS).
Units listed in Table 7.10

All of these systems show promising cost parameters, and to get a more firm understanding
of the actual profitability, a more detailed cost analysis must be performed. The 25 m buoy
configuration was selected as the most realistic next step, and was used as basis for the detailed
analysis. To have contingency on power output, rated power of this system were set to 175 kW,
although the simulation indicate 198 kW. The system has been designed to a moderate level of
detail, with selection and asking quotes for the major components. A rough design of the hull
was also performed. These analysis resulted in the numbers presented in the economical analysis
in section 7.1.

7.4 Concluding remarks

The analysis performed in this chapter demonstrates the possible paths forward for development
of wave energy. An approach of grid connecting a medium sized farm at Wavehub seems to
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Symbol Property Unit
ΣFpto Total production force kN
Abuoy Area of floater m2

Pnom Rated power of device kW
Eyear Annual energy production at Wavehub MWh
Cbuoy Cost of floater ke
Cpto Cost of PTO ke
CΣ Cost of device ke
CP Cost of installed power ke/kW
CE Cost of energy e/MWh

Table 7.10: Units used in Table 7.9

be feasible, but it is clear that such an approach would require significant external investment
support. The analysis demonstrated the feasibility of larger systems and show cost savings
potential for systems up to 1 MW.

Several possibilities exists for performing development through smaller scale systems, the
most lucrative solutions seems to be integration with autonomous buoy systems where structure
costs and mooring costs could be shared or covered by the existing system. For such systems,
wave energy could show to be directly competitive with the existing energy sources.
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Chapter 8

Conclusion

This work demonstrates that, despite of the poor power quality produced from the WECs, high
quality power can be delivered to grid by accumulating power from several WECs. The specific
system example studied consisted of 42 WECs of the Lifesaver type, which results in a total farm
capacity of 3 150 kW. Simulated operation at the Wavehub test site resulted in 5 312 annual load
hours referred to the WEC capacity, however the simulation also showed a recommended capacity
on the transmission line of 180 % of the WEC capacity, which lowers the effective performance to
2 939 annual load hours. For the base case, energy storage did not turned out to be economically
viable. However, for configurations with high transmission costs, or for situations where excess
transfer capacity is not available, the system can be operated towards unity power capacity. This
configuration will favour energy storage to compensate for the lost transmission capacity, and
the optimal case with approximately three seconds of full power storage capacity results in a
loss of only 7.5 % of the annual production output, which results in 4 913 full load hours to be
delivered to grid annually. This is significantly higher than most of the alternative renewable
sources and demonstrates the long term power stability of wave energy.

FO’s cost calculations show that the PTO is the major cost driver in the WEC system. This
enforces a paradigm shift in the PTO control strategy from traditional approaches where the PTO
is designed and optimized to maximize the power output from the floater. Instead, the system
should be designed to maximize the PTO utilization; hence, the floater should be oversized to
push the PTO up to or above rated power as much and often as possible. Simulations indicate a
maximum draft as result of damping force in the range 30-45 cm for the optimal configurations.
This leads to a control philosophy based on passive damping and early saturation, as the PTO
will be too weak to perform effective reactive control. A large portion of the annual energy
should be produced in saturation. However, experience from sea trials has also uncovered some
adverse effects from saturation control that cause unwanted oscillations in the system. This has
been verified by theoretical modeling and shows that there is a delicate balance between damped
and saturated operation.

Several years of design iterations and sea trials has brought FO to a fully electro-mechanical
PTO configuration. Although many hydraulic components show high efficiency at rated speed,
the efficiency drop below rated speed is typically much more pronounced than for electrical ma-
chines, and has great impact on energy production due to the high variability in speed on WECs.
An electro-mechanical configuration that also includes full inverter control of the generator shows
superior control and output performance, and is one of the key factors for the successful oper-
ation demonstrated during sea trials, where net power output has been demonstrated for wave
states down to 0.4 m significant wave height.
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The Lifesaver system has demonstrated two years of successful sea trials at the FaBTest test
site outside Falmouth, England. The only issue causing concern is related to excessive wear on
the primary mooring lines, which has required Lifesaver to be operated at reduced power output.
The situation has been greatly improved during the test period, and the FO team believes that
the problem will be fixed by proper tuning of the mechanical guiding system for the primary
mooring. The current configuration and component selection is expected to provide excellent
performance and lifetime when properly adjusted. Except from this issue, the system has shown
excellent performance and high reliability, and the sea trials demonstrate that Lifesaver is ready
for commercial deployment in applications that can tolerate the current cost and maintenance
level.

As an alternative approach to market entry, autonomous power systems has been investi-
gated. These could typically power ocean based systems such as measurement stations and other
power consumers, and demonstrates a high potential for the FO WEC system. However, to be
competitive with PV and small scale wind turbines, the applications must require a moderate
power level, typically in the kilowatt range, to fully benefit from wave energy and the high energy
density in ocean waves. Currently, no demand for such autonomous power delivery is known, but
this could be because this power capacity has not been available until now. Autonomous WEC
devices could also prove advantageous in polar regions where the availability of solar energy is
low. Most ocean based sites will provide a high number of annual load hours, and by oversizing
the WEC with respect to the load, good coverage for the load can be provided so that only
limited energy storage is required for continuous load support.

The two major hurdles for commercialization of wave energy is the high cost level of wave
energy converters, and the high rate of investments and improvements on the competing renew-
able energy sources such as wind and solar. However, FO has demonstrated a WEC system
that is close to parity with existing feed-in tariffs and current technology, and the major bar-
rier against commercial deployment is the high investments required to cover the fixed costs of
deployment, which requires a very large wave farm to return profit. Alternative approaches for
development has been studied, which suggest alternative paths to commercialization through
small-scale development of various niche markets.

Future work

Several work packages has been identified that should be performed as a continuation of this
work, and will be required for large-scale deployment of the FO technology:

• Significant work remains on the array configuration with respect to the mechanical inter-
connecting between the WECs. This work is based on the presumption that the WECs
can be closely spaced to form a larger integrated unit. Some work has been done to sup-
port this, but a thorough verification including practical tests is required before full-scale
deployment of the FO farm system can be commenced.

• The farm analysis performed in this work is based on the Lifesaver system, and should be
updated with a fully cost optimized next generation system based on the experience from
Lifesaver.

• A thorough verification of the multi-body model and correction factors should be per-
formed, including practical verification.

• The power quality assessment showed high values for flicker, which could be a challenge
for grid connection. Although some solutions to the problem where suggested, a complete
walk-through and verification is required with respect to flicker.
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• A detailed grid connection system should be test-designed for a specific set of grid codes
to demonstrate the required full scale power system.
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system at utsira in norway: Evaluation of system performance using operational data and
updated hydrogen energy system modeling tools. International Journal of Hydrogen En-
ergy, 35(5):1841 – 1852, 2010. http://www.sciencedirect.com/science/article/pii/

S0360319909016759.

114



Appendix A

Conference paper 1

Title: All-Electric Wave Energy Power Take Off Generator Optimized by High Overspeed

Conference/Journal: European Wave and Tidal Energy Conference (EWTEC)

Date: 5.-9. September 2011

Location/Publisher: Southampton, UK

115



APPENDIX A. CONFERENCE PAPER 1

116



All-Electric Wave Energy Power Take Off
Generator Optimized by High Overspeed

Jonas Sjolte∗, Ida Bjerke∗, Even Hjetland∗ and, Gaute Tjensvoll∗
∗Fred Olsen

Fred Olsens Gate 2, N0152 Oslo

E-mail: jonas.sjolte@fredolsen.no, ida.bjerke@fredolsen.no,

even.hjetland@fredolsen.no, gaute.tjensvoll@fredolsen.no

Abstract—Wave Energy Converters (WEC) with all electric
Power Take Off (PTO) systems have large fluctuations in output
power, and have a peak to average power ratio way beyond
most other energy producers. Special care must therefore be
taken when designing such systems for power export to grid.
This paper focus on the electrical design of the PTO and how to
optimize towards an optimum peak to average ratio for export.
The optimization method is based on the possibility to design the
electrical machine with a high ratio between nominal speed and
maximum speed, termed the overspeed ratio. The design method is
implemented into Fred Olsen’s point absorber simulation model
and ran for various overspeed ratios. A full year of production
based on a given scatter diagram is simulated and the resulting
annual production and load hours is presented. The simulations
show that a high overspeed ratio can be beneficial for most direct
driven systems.

Index Terms—Wave Energy, Power take off, Electrical, Gen-
erator, Overspeed, Load hours, Export

I. INTRODUCTION

Wave energy producers are different from most other energy

producers in that the prime mover operates with a sinusoidal

velocity. When such a producer is directly connected to its

generator, the generator also has to operate in a sinusoidal

manner where the speed is continuously fluctuating from

positive to negative. This leads to a continuously fluctuating

power output that has to touch zero in every wave. This

behavior can be seen in figure 1 which shows the power output

from Fred Olsens Wave Energy Converter (WEC) Bolt [1].
In addition to the power fluctuation in a single wave,

the average power between consecutive wave groups is also

fluctuating. This can also be seen in figure 1. These properties

lead to a high peak power to average power ratio, often above

10 [2].
This paper focuses on how the peak to average ratio can

be optimized in the Power Take Off (PTO) design in direct

driven systems. The method pursued is based on designing

the generator and converter system with a nominal speed that

is less than the maximum speed. This is referred to as the

overspeed ratio in the following. When the generator reaches

its nominal speed it enter a power saturation region that help

limit the peak to average power ratio
The peak to average ratio drives both the cost of the

single PTO and the downstream power collection system and

grid connection. This is one of the greatest challenges when

designing a grid connected WEC system. The method explored
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Fig. 1. Typical power output from Fred Olsen’s wave energy converter Bolt
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Fig. 2. Available torque from an electrical machine above and below nominal
speed

in this paper allows for some reduction in the cost driving

elements and should always be included in the design process

for direct driven generators.

There are two reasons why a high peak to average ratio is

bad. The first is that the peak power is driving costs while

average power is driving income. The second is the power

quality at the grid connection point.

117



APPENDIX A. CONFERENCE PAPER 1

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Normalized speed

N
or

m
al

iz
ed

 p
ea

k 
to

rq
ue

Fig. 3. Available torque from a PMSM machine with an overspeed ratio of
20

II. PTO DESIGN

The main design property for a PTO is the production force.

This defines the mechanical structure and strength for most of

the components. Since the velocity of WECs is low, the speed

is not significant to most of the PTO. The PTO cost is therefore

mostly force driven. This also applies to the generator whose

size is determined by the required torque. It is not until one

reaches the generator windings that the power domain is fully

entered. From the generator output and all the way to the grid,

power is the cost driving parameter.

A. Generator design

The generator has to be designed as part of the mechan-

ical PTO design and has to comply with the force and

speed requirements of the system. These are the mechanical

properties of the generator. The electrical properties of the

generator is given by its pole count, rotor configuration and

winding properties. In the following, the generator system is

defined as a frequency converter controlled Permanent Magnet
Synchronous Machine (PMSM).

Faradays’ law of induction, as given in equation 1 defines

the relationship between the induced voltage (ε), and rate of

change in magnetic flux (φ) through a conductive loop. Hence,

the voltage output from a PMSM can be described by equation

2 where vout is the open circuit voltage, n is the number of

pole windings, ω is the electrical frequency and k is a constant

comprising the remaining physical properties of the machine.

From this, and by including the electrical impedance of the

machine, the nominal conditions can be expressed as given

by equation 3 where In is the nominal current and Vn is the

nominal voltage. This shows that the number of pole windings

works as a scaling factor between nominal current and voltage.

The converter however, has a fixed nominal voltage and as

shown by equation 4 where Pn is the nominal power, ωn is

the nominal speed and Mn is the nominal torque, the pole

winding count defines the nominal power and the nominal

speed of the machine. The nominal torque is assumed to be

defined by the physical size and properties of the machine in

an earlier stage of the design process.

ε = −dφ

dt
(1)

vout = k · n · sin (ωt) (2)

Vn

In
= k · n (3)

Pn = Vn · In = ωn ·Mn (4)

Above nominal speed, the output voltage must be kept

within limits by field weakening. For PMSMs, this leads to

a reduction in available torque that is inversely proportional

to the speed. Figure 2 shows the speed torque curve for a

common PMSM.

Now, in context of the rather extreme peak to average

speed ratio it would be interesting to explore an extreme

overspeed ratio of the generator. For instance, Fred Olsens

energy producer ”Bolt” is operating with an average speed of

0.3 m/s in the most common wave state, but has to handle

above 6 m/s in the most extreme wave state. In the following

it will be investigated how the nominal speed can be used as

a design parameter to optimize the PTO design and power

output. Systems with very high maximum to nominal speed

ratios are investigated.

B. Control method

Fred Olsen has acquired a viewpoint that an economical

direct driven electrical system must be designed so sparse

that it is saturated on force and power already in low sea

states. This result in little flexibility on doing advanced control

algorithms such as reactive control or latching control, and in

normal production mode, natural damping serves as the pri-

mary production model. In lower sea states however, advanced

control algorithms can improve output [2]. Natural damping

is defined by equation 5 where the damping coefficient B

is optimized towards the highest efficiency region of the

machine. M and ω is torque and speed on the generator.

M = −B · ω (5)

III. SIMULATION MODEL

The simulation model used [3] [4] simulates the new point

absorber system Bolt2 which is under development by Fred

Olsen [5].

Fe,i (t)−Fr,i (t)−Fd,i (t)−Ci · ζi (t)−FPTO (t) =
d2ζ (t)

dt2
(6)

The simulation model solves the differential equation 6 for

ζ (t) in the time domain. The index denotes the mode of

motion, given by the 6 degrees of freedom of motion for

the floater. The excitation force matrix Fe,i is now the time

dependent force due to incident waves. Fr,i accounts for the
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time dependent forces on the floater due to radiation of waves.

The new term Fd,i accounts for non linear damping terms like

drag forces. ζi is the time dependent motion of the floater, Ci

is the restoring force matrix accounting for the hydrostatic

pressure acting on the floater and FPTO is the time dependent

force applied from the PTO (power take off). The PTO is

modeled as a rope and winch system that is tightly connected

to the sea floor.

The simulation is based on a detailed 6DOF model of

Bolt2 and Fred Olsen therefore keeps the simulation model

confidential. However, the high level of complexity is not

required for this study and a simplified 1DOF model would

produce much the same result. It is therefore possible for a

third party to verify the results published here without detailed

knowledge about the simulation model used.

For each wave state a 20 minutes time series of irreg-

ular waves are generated based on the Wavehub spectrum.

The subsequent excitation forces are then calculated and the

simulation is run for the full length of the time series. The

simulation model also takes into account PTO and generator

losses, and the model outputs a 20 minutes time series of

exported electrical power from the PTO. The average of this

time series is then presented as produced power for that wave

state (i.e in figure 4(b).

The simulation model is developed through many years of

development and testing and is verified against real production

data from several prototypes, among other Bolt.

A. Scatter diagram

All simulations are based on the Wavehub scatter diagram

[6]. The probability scatter is shown in figure 4(a). By simu-

lating the power production for the Bolt2 for all occurrences in

the scatter, an overall performance plot of Bolt2 can be made.

Figure 4(b) shows the simulated operation of Bolt2 in various

sea states. The output power is normalized to the defined

nominal output of Bolt2 as specified later in this section. The

WEC power scatter can now be multiplied with the probability

scatter to calculate annual energy production. This is shown in

figure 4(c). The plot shows the amount of the annual energy

production that occurs in the various sea states.

These three diagrams are an important tool for further WEC

optimization. For instance it can be calculated that the most

frequent wave height is hs=1.25m and occurs 25% of the time.

However, less than 10% of the annual energy is produced on

this wave height. The most producing wave state is hs=2.25

and tz=5.5sec and contributes to 9% of the annual energy.

It can be seen from figure 4(b) that the average power from

Bolt2 increases with wave height. The theoretical maximum

power produced from the PTO, which would occur at constant

optimum speed, is even higher. This is typical for most WECs

and complicates the definition of rated PTO power. Fred Olsen

has decided that the average power in the wave state that

produces most annual energy shall be defined as the nameplate

power rating. Hence, the most producing wave state hs=2.25

and Tz=5.5sec defines unity in figure 4(b).
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Fig. 4.

IV. OVERSPEED OPTIMIZATION

The overspeed optimization is performed by creating gen-

erator models for a list of different overspeed ratios. These

models are then implemented into the simulation model and

a full simulation for all the wave states in the scatter is ran
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Overspeed Annual Load Peak
ratio energy hours power

[pu · hours] [hours] [pu]

1 5093 1840 2.77
3 5081 1928 2.64
5 5017 2180 2.3
7 4878 2511 1.94
10 4593 3026 1.52
15 4070 3690 1.1
20 3547 4128 0.859
30 2832 4773 0.593
40 2368 5244 0.452
50 2041 5611 0.364

TABLE I
WEC PERFORMANCE WITH DIFFERENT OVERSPEED RATIOS
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Fig. 5. Annual power distribution per hour

for each of the generator models. The resulting annual energy

production for the different overspeed ratios is shown in figure

I. The basis for the power normalization is the defined rated

power for Bolt2 as described in section III-A. The normalized

annual energy is normalized power multiplied with hours.

table I

A first important observation is that the overspeed ratio can

be raised to 5 without significant loss of annual production.

This corresponds to a 5 times reduction in installed power.

Further increase must be done as part of an economical

optimization.

For power export, the power distribution of the annual

energy production is of great importance since this defines the

utilization of the electrical export capacity. Figure 5 shows

the average power production for every hour through a year

sorted in descending order. Each line represent a generator

configuration with a given overspeed ratio. The figure is a

good tool for sizing of the export system and it clearly shows

the effect of the overspeed ratio. A higher overspeed ratio

results in a lower peak power rating, less fluctuation in power

production and more load hours. This is mostly achieved by

reducing production from the high sea states, but some energy

is also lost in the low sea states due to the high irregularities

always present.

It can be seen from figure 5 that the overspeed ratio does not

appear as a constant power limit, but instead leads to a contin-

uous reduction. This is because the overspeed ratio defines the

peak instantaneous power while the exported energy is given

by the average power. The goal is maximum utilization of

the export capacity, and it is likely that other measures such

as energy storage and averaging between groups of WECs

also will be used. Another option for improvement of power

quality is therefore to implement a saturation mechanism in

the controller that regulates against a total defined maximum

average power. This can further be improved to aim for a total

export capacity from an array of WECs. This, however, is not

within the scope of this paper and should be subject for further

research.

V. CONCLUSION

The study shows that the overspeed factor can be increased

to a factor of five without significant loss in annual energy

production. Thus, the peak power rating of the converter and

the power export system can be reduced to one fifth without

trading away produced power. Hence, overspeed optimization

should be a part of every design study that involves all electric

PTOs. Further increase in overspeed factor can be done as a

part of economical analysis. This study indicates an annual

loss of energy production of 10% at an overspeed factor of 10.

This is probably around where the lost energy production goes

beyond the cost reduction of the power system. Overspeed

ratios significantly higher than 10 therefore seem less likely.

Further improvements may be achieved by also including

power saturation in the motor controller. This will be subject

to further study.
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Abstract: Fred Olsen has developed a new Wave Energy Converter that is to be launched early 2012.

The first stage of testing will be performed in a location without grid connection. The on-board energy

production system consists of multiple industrial 400V motor drive inverters that are used to control

the generators. Operating such a system off grid requires a complex stand-alone system that can replace

the grid functions. In the following the requirements, the chosen design and the implementation of

such a system is presented. The corner stone in the system is a 1MJ ultracapacitor bank that stabilizes

the power flow and supplies energy for motoring operation. Results from tests up to date are presented.

Keywords: Wave Energy, Power take off, Electrical, Generator, Export, Autonomous, Stand-alone.
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1. Introduction

Fred. Olsen Wave Energy Project (FO) has de-

veloped a new Wave Energy Converter (WEC)

which is going to be launched in Falmouth Bay,

England [1] early in 2012. The prototype is

equipped with a complete power production

system that can export electricity to the grid.

However, during the first test phase the WEC

will be in a location not suitable for grid con-

nection. Therefore, a method that also allow

for operation in stand-alone mode has been de-

veloped and implemented by FO. For scientific

purposes, this approach is equally relevant since

the produced energy can be measured accu-

rately. In the following the requirements for

such a system, the development process and the

resulting implementation is discussed and pre-

sented in detail. Because of confidentiality con-

siderations the Power Take Off (PTO) system

itself and exported power will only be described

in qualitative terms.

1.1 F.O. Wave Energy Project

FO started with Wave Energy in 2000. In 2004

the Wave Energy Converter Buldra R©, built as

a platform with multiple point absorbers, was

launched. Since then FO has tested out various

concepts and built several different prototypes,

all based on the point absorber concept. The

series of experiences have led to the single body

point absorber system Bolt R© shown in figure

1. Point absorbers are not the most efficient

absorber type, but has shown to be successful

on total performance and cost of energy. Bolt R©

has been in operation outside Risør in Norway

since June 2009 and has up to date performed

very well with only minor issues and incidents.

Bolt R© has one single PTO machine which

is configured very much like the sketch shown

in figure 5. It consists of a winch that is tightly

connected to the sea floor. The winch drives the

generator, which is connected through a gear-

box. Bolt R© also has a hydraulic spring system

that supplies a pretension in the rope. This al-

lows for symmetrical production on the gener-

ator. Thus, it can produce power on both up-

ward and downward movement. Since Bolt R©

is a direct connected system, the generator

is moving with the waves. This results in a

Figure 1: FO’s Wave Energy Converter Bolt R©
located outside Risør, Norway was launched in
June 2009 and is still in operation.
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Figure 2: Typical power output from Bolt R© in
low waves

sinusoidal-like export power that closely follows

the surface movements. A typical output from

BOLT R© in a low wave climate can be seen in

figure 2. Bolt had per December 22, 2010 pro-

duced 3 360kWh [2].

1.2 Bolt2Wavehub

Based on the success with Bolt R©, FO decided

to use the knowledge and experience gained so

far and proceed to a next generation design.

An agreement with several UK companies was

made with funding from the UK Technology

Strategy Board (TSB). The goal of the project

is to improve the Bolt R© concept to a commer-

cial level where it can be launched at Wavehub

[3], thus the project name Bolt2Wavehub. The

first prototype WEC, which is currently being

built is not named yet, but is in the following

referred to as Bolt2.

Bolt2 is designed as an all-electric PTO sys-

tem, see figure 5. Bolt2 differs from Bolt R©

on several points. Firstly, it has a toroidal
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Figure 3: Artistic impression of Bolt2
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Figure 4: Simulated performance of Bolt2 at hs
= 1.75m / tz = 5.5sec. The Power is normalized
to the average power production at hs = 2.75m
/ tz = 6.5sec.

shape and 5 individual PTOs. This allows en-

ergy production also from pitch and roll mo-

tion in contrast to Bolt, which only can pro-

duce from heave motion. Combined with the

larger toroidal absorber, this gives good pro-

duction over a larger wave specter. In high

waves, nearly all power is produced by heave

motion, but as the wave length shortens and

the absorber loses heave response the pitch re-

sponse increases and helps to maintain a high

capture ratio. Capture ratio is defined as the

absorbed energy divided by the incoming wave

energy through the absorber cross section.

Secondly, the hydraulic spring system from

Bolt R© has been removed, which includes the

Figure 5: PTO principal sketch for Bolt2

large hydraulic energy storage that supplies the

spring energy. Bolt2 is a fully electrical sys-

tem, and has an electrically connected energy

storage instead. This is connected directly on

the DC-Link so that the generator itself can act

as a motor and pull back the winch on down-

ward movement. This significantly simplifies

the PTO and becomes even simpler in a grid-

connected system where the electrical energy

storage may be omitted. The drawback of the

solution is that the peak to average power ratio

on the generator increases with at least a fac-

tor of 2 since power is produced in one direction

only. This is however given by the nature of the

rope/winch system. Bolt R© and Bolt2 produces

the same rope force characteristics, the only dif-

ference is the configuration of energy storage

and motor/generator. A simulated production

time series from Bolt2 is given in figure 4 and

shows the bi-directional electrical power flow.

2. System description

The electrical system is based on a common
DC-bus that serves as the backbone for the in-
ternal power transfer. All five PTOs can inject
and extract energy as needed. As can be seen
from figure 6 this configuration is the same for
both the stand-alone and the grid connected so-
lution. However, in the stand-alone solution an
extra system to balance the DC-link and sup-
ply power is required to make up for the miss-
ing grid converter. This is done with the bi-
directional DC-Link converter shown in figure
6(b). As discussed in section 2.3 the DC-Link
charger is actually implemented as two inde-
pendent uni-directional systems.

The stand-alone DC-system can only supply
a very limited power, but during normal oper-
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Figure 6: Bolt2 topology

ation the system is expected to always produce
a power surplus on average. The instantaneous
power consumption can be high during pullback
for short periods and is supplied by the capac-
itor bank.

The ultracapacitor bank used as energy
storage should only be discharged to half of the
nominal voltage during normal cycling. The
Siemens components used allow for large fluc-
tuations on the DC-Link voltage and can ac-
tually operate with such a voltage variation.
Therefore the ultracapacitor bank can be di-
rectly connected to the DC-Link and still allow
for full utilization of the energy storage capac-
ity.

2.1 Power Take-OFF system

The purpose of the Power Take-OFF system,
(PTO), is to convert mechanical motion im-
posed by the waves to electrical energy. The
main PTO components are the winch system,
the generator and the inverter. The mechanical
configuration is shown in figure 5.

A high-performance permanent magnet
servo machine is selected as the generator for
the system. These machines are characterized

PMSM

DC +

DC -

INVERTER VPM GENERATOR

Figure 7: Electrical power take off system with
Voltage Protection Module (VPM).

Property Value
Maximum production force 100 kN
Nominal generator speed 400 rpm
Maximum generator speed 1 800 rpm
PTO nominal prod. power 15 kW
Generator nominal power 80 kW
Inverter nominal power 120 kW

Table 1: PTO specifications

by low inertia, high torque density and high ef-
ficiency, which are important properties for a
direct coupled wave energy device with a con-
stantly changing speed. The machine is cus-
tom built after FO specifications to meet the
requirements for Bolt2. As shown in table 1 it
as high ratio between the maximum speed and
the nominal speed to allow for early power sat-
uration. The effect of this on cost and perfor-
mance is described in detail in previously pub-
lished articles [4], [5].

A Permanent Magnet Synchronous Ma-
chine that is driven by an external uncontrol-
lable force, such as the case for a wave power
plant, can be vulnerable to overspeed. If the
machine is forced to exceed nominal speed while
the inverter is not in operation, the system may
be electrically damaged by overvoltage, even
though the machine can handle the speed me-
chanically. Therefore, each PTO is fitted with
a Voltage Protection Module (VPM), which will
automatically short-circuit the generator in the
event of uncontrolled overspeed. This will en-
sure that no harmful energy is allowed to enter
the inverter or the downstream power system.
The VPM used is a standard product supplied
by Siemens and fires at 830V, which is the maxi-
mum allowed voltage for the inverter used. This
defines the upper limit of the operational range
of the capacitor bank as illustrated in figure 15
on page 8.

The PTO is designed as a complete sys-
tem, and only requires a DC-Link connection
and a field bus control connection to operate.
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Figure 8: Maxwell technologies R© 48V ultraca-
pacitor bank module with active cell balancing

This leads to a flexible system where PTOs may
be swapped, serviced and rebuilt without any
changes to the WEC itself.

2.2 Capacitor bank

The energy storage is one of the corner stones in
making the stand-alone system work. Initially,
two solutions were explored: A flywheel based
system and a capacitor based system. The fly-
wheel could be implemented as an extra PTO
system that rotates a mass instead of driving
a winch. However, the performance and modu-
larity offered by the off-the-shelf ultracapacitor
system was thought to outperform the flywheel
solution, as this would have to be custom de-
signed.

The requirement for the capacitor bank is
to supply the required energy for winding in
10m of rope on each PTO with 10kN of pull
force. It must also handle wind-in speeds of
several meters per second. With a system ef-
ficiency of 0.8, and taking into account all five
PTOs, the required energy can be calculated
to 625kJ by equation 1. Equation 2 indicates
a required power of several hundred kilowatts.
Wm is the mechanical energy, F is the mechan-
ical force and s is the distance of motion paral-
lel to the direction of force. Equation 2 is the
time derivative of equation 1 where energy and
distance becomes power and speed. Equation
3 shows the energy storage capacity We of a
capacitor based on capacitance C and nominal
voltage Vn.

Wm = F · s (1)

Pm = F · v (2)

We =
1

2
C · Vn

2 (3)

A third requirement for the capacitor bank
is that it must handle peak voltages up to 830V.
A configuration of 17 serial connected modules
of the Maxwell technologies R© 48V module [6]
fulfill all these requirements, and is the selected
configuration. The module is shown in figure 8.

Each module contain 18 serial connected ul-
tracapacitors that are conditioned by an active
balancing network. The balancing network al-
lows for bypassing some of the charging current
on each cell and is controlled so that all the cells
are at equal voltage. If the nominal voltage on
the entire module is exceeded, some current is
by-passed through the entire module to ensure
module balance. The technical data for the ca-
pacitor bank is given in table 2.

Property Value
Nominal voltage 816 V
Capacitance 4.88 F
Nominal energy 1.63 MJ
Useful energy (400V-776V) 1.08 MJ
Max continuous current 100 A
Max peak current 1 100 A
Short circuit current 4 800 A
Nominal power at 600V 60 kW
Peak power at 600V 660 kW
Modules in bank 17
Cells per module 18
Cell capacitance 1.5 kF
Cell voltage 2.70 V
Cycle life 106

Table 2: Ultracapacitor bank specifications

The capacitor module has a specified cycle
life of 106 cycles. If every charge/discharge cy-
cle during production is counted this number
will be reached in less than one year of opera-
tion due to the wave frequency. However, most
of the cycles are caused by low waves with low
energy. Maxwell technologies R© offered to simu-
late the expected life time of the system specif-
ically based on the expected energy profile of
Bolt2. The input for the simulation is given
in figure 9 and shows capacitor bank voltage
profiles from three different wave states, low,
high and extreme. The three wave states have
a defined probability of 0.4, 0.1 and 1/365 re-
spectively. The remaining probability of ca 0.5
is the down time expected during calm weather.
The initial test site is in a sheltered area which
causes the high down time.

Based on these inputs Maxwell technolo-
gies R© has ensured a lifetime significantly above
the base case.
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2.3 DC-Link charger

The DC-Link charger converts energy from the
battery bank to the capacitor bank. This is
mainly required for three purposes:

• During startup when the capacitor bank
have to be pre-charged and the PTOs
have to pull in and tension the produc-
tion ropes.

• During service when the PTO winches
have to be maneuvered.

• In extreme wave states when the required
pullback energy might exceed the avail-
able energy in the capacitor bank. The
pullback process and energy balance is de-
scribed in section 3.1.

The specifications for the DC-Link charger
are as follows:

• Supply up to 5kW of power

• Supply output voltage in the range 0-
600VDC

• Handle output voltage in the range 0-
830VDC

• Handle input voltage in the range 22.0-
29.0VDC

• Allow for current limited operation

• Controllable over LAN

• Serviceable

• Reliable with MTTF > 20 000h

From a power electronics point of view the
best solution would be to use a DC/DC boost
converter that directly converts the battery
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Figure 9: Capacitor voltage in three
wave states, Low: hs=1.25m/tz=5.5sec,
High: hs=2.75m/tz=6.5sec and Extreme:
hs=8.0m/tz=10.0sec

Figure 10: DC-Link charger: Inverters and lab-
oratory power supplies in 19” rack configura-
tion.

voltage to 600VDC. An even more interesting
solution would be to merge the DC-charger and
the battery charger, that will be described in
the next section, into a single bi-directional con-
verter. A possible solution for this is the Re-
duced Matrix Converter, which is based on bi-
directional RB-IGBTs. This concept has been
explored in detail and has for instance been
proposed for off-shore wind turbines [7]. How-
ever, no converters based on these topologies
that meets all the requirements could be found.
Development of such a system from scratch
is costly and time consuming, especially when
taking into account the required support for
maintenance and service. This approach was
therefore rejected.

Instead a modular two step solution based
on a standard 24VDC to 230VAC inverter and
a 230VAC to 600VDC laboratory power supply
is selected. This takes the power via 230VAC,
which is a drawback, but greatly increases the
number of off-the-shelf components available.
The power supply selected is controllable by
LAN, it can supply any voltage in the range
0-630VDC and can operate in current limited
mode with set currents in the range 0-4.2A.
This leads to a maximum supply power of
2650W. However, it cannot handle more than
660VDC on the output terminals and have to
be shield from the voltages on the DC-Link by
a reverse blocking diode.

The inverter and power supplies are 19”
rack modules and can be seen in figure 10.

2.4 Battery charger

On board systems such as communication, data
logging and monitoring equipment consume a
considerable amount of power from the 24V
battery bank. This power must be generated by
some means, and the obvious solution is to use
the generated wave energy. This is not straight-
forward however, given the high- and fluctuat-
ing voltage level on the DC-Link. A solution
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based on off-the-shelf wind turbines or PV cells
would seem easier to implement. Nonetheless,
FO decided that it was worth the extra effort
to develop the system, as the purpose of the
prototype is to prove the viability of wave en-
ergy. Moreover, an external power system with
the required power rating would be large and
potentially fragile to the extreme weather con-
ditions experienced at sea.

The battery charger has the following re-
quirement specification:

• Handle input voltage in the range 0-
830VDC

• Operate with input voltage in the range
600-830VDC

• Supply output voltage in the range 20-
29VDC

• Supply up to 125A of charging current

• Control charging current based on input
voltage

• Comply with 3-stage battery charging
principle

• Controllable by field bus

FO decided that the easiest approach to
meet these requirements was to base the bat-
tery charger on the same motor drive inverter
that powers the PTO generators. They can nat-
urally handle the input voltage range, they are
programmable, they natively support closed-
loop control and FO already has the required
knowledge to operate and program them.

The concept is as shown in figure 11. The
inverter drives a three-phase 400V/24V trans-
former that supplies to a 3-phase bridge rec-
tifier. Finally, the output power is smoothed
through an inductive filter and fed into the bat-
tery bank. To simplify the configuration the
transformer and chokes are designed with the
same cores and fixed in a common frame. The
actual implemented system can be seen in fig-
ure 12.

The inverter is operated in scalar mode,
which allows for controlling the output fre-
quency directly. The output voltage is regu-
lated proportional to the output frequency to
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Figure 11: Battery charger topology

Figure 12: Implemented battery charger config-
uration: A) Inverter, B) Transformer, C) Rec-
tifier, D) Choke
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Figure 13: Battery charger control principle

keep the motor impedance constant. This prin-
ciple is directly transferable to the transformer
and gives a system where the output voltage of
the transformer can be controlled without risk
of excessive currents. The nominal frequency
output frequency of the inverter is set to 200Hz
as this reduces the transformer size, while still
allowing for standard 50/60Hz transformer de-
sign methods to be applied.

The charger program is implemented as a
closed-loop feedback control with an inner cur-
rent control loop and an outer voltage control
loop as shown in figure 13. The current loop
uses the inverter output current as feedback
while the voltage loop regulates on the actual
battery voltage. This is measured by an ex-
ternal sensor. The three-stage battery charger
program is implemented by controlling the cur-
rent and voltage references. The maximum al-
lowed charging current is set to 125A, the max-
imum charging voltage is set to 28.8V and the
trickle charging voltage is set to 27.6V. The
trickle charging stage triggers when the charg-
ing current falls below 10% of the nominal.

The battery charger shall adjust the charger
power to the DC-Link voltage to allow for sta-
ble steady-state conditions for all production
levels. This is implemented by setting maxi-
mum allowed charging current as a linear func-
tion with zero power at 650VDC and full power
at 720VDC. This prevents the battery charger
from draining the capacitor bank at low pro-
duction levels.
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2.5 Brake chopper

The WEC is expected to produce a power sur-
plus, except for in the lowest wave states close
to cut-off. This excess energy will cause the
DC-Link voltage to rise and must be taken away
to balance the system. This is normally done by
switching in a resistor that dissipates the excess
energy. For good controllability, the system is
typically controlled by Pulse Width Modulation
(PWM) at around 1kHz. This setup is usually
referred to as a brake chopper and is very com-
mon in motor drive systems.

On Bolt2 a standard brake chopper sys-
tem is used which will start dumping energy
at 776V. The brake chopper has a linear PWM
region where the duty cycle is increased pro-
portional to the voltage until saturation occurs
around 810V and the resistor bank is constantly
switched on. The resistor bank is a large array
of air-cooled heating elements that is placed on
top of the absorber. Air-cooling was selected in
favor of water-cooling for simplified access and
maintenance.

The brake choppers operate as stand-alone
units and only monitor the DC-Link voltage.
They do not require any external regulation or
control. Three brake choppers are installed in
parallel with individual resistors as shown in
figure 14. Each brake chopper has a nominal
power of 50kW and a peak power of 250kW.
This leads to a total braking power of 150kW
nominal and 750kW in peak, and a fully redun-
dant system.

Bolt2 is not expected to go beyond the nom-
inal power on average as the production will be
curtailed in high to extreme wave states. How-
ever, the peak power limit of 750kW may occa-
sionally be breached by single large waves ap-
pearing in high sea states. This requires active
production control and is described in section
3.1.

3. Control

Three layers of control are implemented to op-
erate the system:

DC +

DC -

R1 R2 R3

Q1 Q2 Q3

Figure 14: Brake chopper system

1. Top-level control of the WEC

2. Mid-level control of the DC-Link voltage

3. Low-level control of the PTO inverter

The top-level control mainly holds the state
machine functions for the WEC and is only dis-
cussed briefly. The mid-level and low-level con-
trol is discussed in the subsequent sections.

3.1 DC-Link control

The purpose of the DC-Link control is to keep
the capacitor bank and the DC-Link voltage
within the allowed range, and to ensure the re-
quired energy for pullback. The DC-Link con-
trol is not a centralized control function, but
is accomplished as the sum of several compo-
nents and functions operating together. The
DC-Link conditioning can be divided into three
levels, green, yellow and red, as illustrated by
figure 15. Within the green region, the capac-
itor bank voltage is conditioned by the DC-
charger in the low voltage end and the brake
chopper in the high voltage end. The PTOs
are allowed to operate with optimal generation
and motoring force. If the production exceeds
the brake chopper capacity or the consumption
exceeds the DC-charger capacity the yellow re-
gion is entered. Operation of all PTOs is then
constrained to to counteract further aggrava-
tion. In the unlikely event that the absolute
limits are breached and the DC-Link voltage en-
ters the red region, all PTOs immediately shut
down. In the high voltage case, the VPMs also
fires to protect the DC-system and to bring the
generators to a controlled stop. Since the rope
tension will be lost in this case, no further ex-
treme movements on the PTOs are to be ex-
pected.

Capacitor maximum
VPM threshold

Brake chopp max
Brake chopp start

Batt chrg start

DC chrg stop

Lower cut off

Voltage

Figure 15: Capacitor bank capacity illustrated
as a volume of energy. The energy is propor-
tional to the square of the voltage, which cor-
relates to a paraboloid

The battery charger will start charging the
batteries at 650V and will ramp up to full
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charging power of 125A / 3.6kW at 720V. This
is optimized for production in low waves to
maintain an untouched reserve of pullback en-
ergy between 650V and 540V. In the higher
wave states, the capacitor bank is expected to
maintain a close to fully charged state with
voltage above 720V most of the time. It is
also important to maintain blanking voltage be-
tween the DC-charger shutdown threshold and
the battery charger startup threshold to avoid
circulation of power between the two convert-
ers. The DC-charger can supply a maximum
voltage of 630VDC and the startup threshold
of 650VDC ensures adequate safety margin.

In the extreme wave states it is possible
that the capacitor bank is completely cycled
in each wave, which can be seen in figure 9
at 510sec. This will cause cyclic charging be-
tween the battery bank and capacitor bank as
the missing pullback energy must be borrowed
from the battery bank. This is only expected
occasionally during worst-case conditions and
should not significantly affect battery life.

The DC-Link charger will normally operate
whenever the DC-Link voltage is below 540V.
However, if the WEC is in a low production
state, the 540V level is instead used as a trigger
for cut-off and causes the entire WEC to shut-
down. The WEC will then go into power save
mode and measure the waves periodically to de-
termine when production can start up again.
This is handled by the top-level WEC control.

3.2 PTO Control

The absorbed power form a point absorber is
greatly influenced by the control strategy ap-
plied by the PTO. In general the optimal energy
extraction is achieved when the point absorber
is moving with a 90◦ phase shift to the waves
[8]. Several methods of approaching this pro-
duction mode are described, the best known be-
ing reactive control [9], [10] and latching control
[11]. Figure 16 shows an electrical equivalent

FE(t)

RWEC CWECLWEC

RPTO

Absorber equivalent

PTO
equivalent

Incoming
waves

XPTO

Figure 16: RLC equivalent circuit of the PTO
and WEC system
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at Bolt2Wavehub. The thick line shows the
torque that result in maximum exported power
from the generator. The thin line shows maxi-
mum available torque from the generator. The
dashed line shows the mechanical limit for the
gearbox.

circuit for the WEC where the dynamic behav-
ior of the WEC is modeled as an RLC circuit.
The PTO is modeled as a power extraction el-
ement (resistance) in series with a reactive ele-
ment (impedance). The goal of reactive control
is to tune the reactive element of the PTO so
that it compensates for the reactive elements of
the WEC as a whole and thus maximize power
extraction.

With the current design of Bolt2 the PTO
force is too low to have significant impact by
reactive control. This is mainly caused by
the large area of the absorber that leads to a
high spring constant and a high resonance fre-
quency. Passive damping is therefore selected
as the primary production model. In the low-
est sea states however, advanced control algo-
rithms may improve output [12], but is not im-
plemented yet. A recent and ongoing study by
NTNU, that specifically investigates the Bolt R©
project, indicates that a production boost can
be expected from reactive control in wave states
with low amplitude and high frequency.

The large and flat absorber shape is selected
as a result of economical optimization and FO
acquired viewpoint that the absorber should be
large enough to push the PTO into saturation
already in moderate wave states.

τ = −B · ω (4)

Passive damping is defined by equation 4.
The damping coefficient B is optimized to pro-
duce the highest possible net power output. τ
is the generator torque and ω is the generator
speed. Figure 17 shows the torque and speed
characteristics for the generator used on Bolt2.
The thick line shows the optimal torque that
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maximizes the generated electrical power. Two
important saturation mechanisms are present;
the first is the mechanical force limit of the
gearbox. This is reached already at 0.27 m/s.
The second is the power limit of the generator
that is reached at 1.55 m/s. The linear region
from 0 - 0.27 m/s corresponds to a damping co-
efficient of ca 350 kNs/m, which is the chosen
value for B on Bolt2.

4. Discussion

The stand-alone system design presented seem
to fulfill the requirement specification. Since
system is meant for research only, some of the
less efficient solutions are justified. However,
systems like the ultracapacitor bank can also be
useful in a grid connected system, but should
not be adapted as is. The direct connection
to the DC-Link forces the whole production
system to operate with high variations on the
DC-voltage, which result in lower efficiency and
constrained operation. The latter is caused by
the shifting of the field-weakening point and
complicates high speed regulation. Therefore
the energy storage should de-coupled from the
DC-Link with a separate converter to improve
the system efficiency.

5. Conclusion

A stand-alone power system for the wave en-
ergy converter Bolt2 has been designed and
built. Most of the system components have
been tested individually, but no complete sys-
tem tests have been performed yet. Full sys-
tem commissioning is expected during Novem-
ber and December 2011. Sea launch is expected
early 2012 and is expected to lead to a com-
prehensive understanding of the system perfor-
mance during 2012.
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All-Electric Wave Energy Power Take Off System
with Improved Power Quality at the

Grid Connection Point
Jonas Sjolte, Ida Bjerke, Aina Crozier, Gaute Tjensvoll, and Marta Molinas, Member, IEEE

Abstract—Wave Energy Converters (WEC) with all electric
Power Take Off (PTO) systems have large fluctuations in output
power, and have a peak to average power ratio way beyond
most other energy producers. Special care must therefore be
taken when designing such systems for power export to grid.
This paper focuses on the electrical design of the PTO and how
to optimize towards an optimum peak to average ratio for export.
The optimization method is based on the possibility to design the
electrical machine with a high ratio between nominal speed and
maximum speed, termed the overspeed ratio. The design method is
implemented into Fred Olsen’s point absorber simulation model
and run for various overspeed ratios. A full year of production
based on a given scatter diagram is simulated and the resulting
annual production and load hours is presented. The simulations
show that a high overspeed ratio can be beneficial for most direct
driven systems.

Index Terms—Wave Energy, Power take off, Electrical, Gen-
erator, Overspeed, Load hours, Export

I. INTRODUCTION

Wave energy producers are different from most other energy

producers in that the prime mover operates with a sinusoidal

velocity. When such a producer is directly connected to its

generator, the generator also has to operate in a sinusoidal

manner where the speed is continuously fluctuating from

positive to negative. This leads to a continuously fluctuating

power output that has to touch zero in every wave. This

behavior can be seen in figure 2 which shows the power output

from Fred Olsens Wave Energy Converter (WEC) BOLT R© [1].

In addition to the power fluctuation in a single wave,

the average power between consecutive wave groups is also

fluctuating. This can also be seen in figure 2. These properties

lead to a high peak power to average power ratio, often above

10 [2].

This paper focuses on how the peak to average ratio can

be optimized in the Power Take Off (PTO) design in direct

driven systems. The method pursued is based on designing

the generator and converter system with a nominal speed that

is less than the maximum speed. This is referred to as the

overspeed ratio in the following. When the generator reaches

its nominal speed, it enters a power saturation region that helps

limit the peak to average power ratio.
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Fig. 1. Fred Olsens Wave Energy Converter BOLT R© located outside Risør,
Norway
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Fig. 2. Typical power output from BOLT in low waves

The peak to average ratio drives both the cost of the single

PTO and the downstream power transmission system and

grid connection. This is one of the greatest challenges when

designing a grid connected WEC system. The method explored

in this paper allows for some reduction in the cost driving

elements and should always be included in the design process

for direct driven generators.

There are two reasons why a high peak to average ratio is

unfortunate. The first is that the peak power is driving costs

while average power is driving income. The second is the

power quality at the grid connection point.

135



APPENDIX C. CONFERENCE PAPER 3

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Speed [rpm]

N
or

m
al

iz
ed

 T
or

qu
e 

&
 P

ow
er

Torque
Power

Fig. 3. Available torque from an electrical machine above and below nominal
speed
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Fig. 4. Available torque from a PMSM machine with an overspeed ratio of
20

A. Fred Olsens Wave Energy Project

Fred Olsen, FO, started with Wave Energy in 2000. In 2004

FO built and launched Buldra R©, the Wave Energy Converter

based on the Aker H3 semi-submersible platform. Since then

FO have tested out various concepts and built several different

prototypes which have led to the the single body point absorber

system BOLT R©. This has not shown to be the most efficient

wave energy absorber, but has shown to be most successful on

total performance for cost of energy. BOLT R© has been in oper-

ation outside Risør in Norway since June 2009 and is shown

in figure 1. Currently FO is building the next generation of

BOLT R©, currently called BOLT2, through the BOLT2Wavehub
project. This is a joint project between Fred Olsen and several

UK companies funded by the UK Techonology Strategy Board,

TSB. The goal of the project is to further develop BOLT into

a commercial system that is ready for operation at the UK

wave test facility Wavehub [3].

II. PTO DESIGN

Fred Olsen’s WEC concept is based on a flat absorber with

low mass that gives a high resonance frequency and thus a

Response amplitude operator, RAO, [4] close to one for most

of the relevant wave states. This gives a stiff system that is

well suited for passive damping and less suitable for reactive

control. The absorber is tightly moored to the sea floor by a

winch. The winch connects to the generator through a gearbox.

This is shown in figure 5 and is a well known conversion

system that has been researched and tested by several parties

[5]. Pre-tension in the mooring line is supplied either by a

secondary spring equivalent system or by the main generator

itself.

Fig. 5. Principal sketch of the WEC

The main design property for a PTO is the production force.

This defines the mechanical structure and strength for most

of the components. Since the WEC velocity is far below the

critical speed for most of its components, speed and thus

power has little impact. The PTO cost is therefore mostly

force driven. This also applies to the generator where the

size is determined by the required torque. It is not until one

reaches the generator windings that the power domain is fully

entered. From the generator output and all the way to the grid

connection point, power is the main cost driving parameter.

A. Generator design

The generator has to be included in the mechanical PTO

design and has to comply with the force and speed require-

ments of the system. These are the mechanical properties of

the generator. The electrical properties of the generator is given

by its pole count, rotor configuration and winding properties

[6]. The electrical properties give the torque/current relation

and the speed/voltage relation, which links the mechanical and

electrical properties. In the following, the generator system

is defined as a frequency converter controlled Permanent
Magnet Synchronous Machine (PMSM) [7]. Figure 7 shows

how the generator system is electrically integrated into the

WEC system. As suggested by the figure several WECs can

be connected together on the DC-Link for power smoothing

before the power is transformed to AC.

Faradays’ law of induction, as given in equation 1 defines

the relationship between the induced voltage (ε), and rate

of change in magnetic flux (φ) through a conductive loop.
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From this equation 2 can be derived which gives the induced

voltage in n loops with area A that rotates with the speed ω
in magnetic field with constant flux density B. This shows

the relationship between open circuit voltage and speed of a

PMSM. Since the magnetic flux generated by the permanent

magnets and the geometrical properties are constant, equation

2 can be simplified into equation 3 where vout is the open

circuit voltage and k is a constant. The equivalent circuit of

the generator is shown in figure 6.

From this, and by including the electrical impedance of the

machine, the nominal conditions can be expressed as given

by equation 4 where In is the nominal current and Vn is the

nominal voltage. This shows that the number of pole windings

works as a scaling factor between nominal current and voltage.

The converter however, has a fixed nominal voltage and as

shown by equation 5 where Pn is the nominal power, ωn is

the nominal speed and Mn is the nominal torque, the pole

winding count defines the nominal power and the nominal

speed of the machine. The nominal torque is assumed to be

defined by the physical size and properties of the machine that

was decided in an earlier stage of the design process.

ε = −dφ

dt
(1)

ε (t) = n · ω ·B ·A · sin (ωt) (2)

vout (t) = k · n · sin (ωt) (3)

Vn

In
= k · n (4)

Pn = Vn · In = ωn ·Mn (5)

Above nominal speed, the output voltage must be kept

within limits by field weakening. For PMSMs, this leads to

a reduction in available torque that is inversely proportional

to the speed. Figure 3 shows the speed torque curve for a

common PMSM.

In context of the rather extreme peak to average speed ratio

it would be interesting to explore an extreme overspeed ratio

of the generator. BOLT R© for instance is operating with an

average speed of 0.3 m/s in the most common wave state,

but has to handle above 5 m/s in the most extreme wave state.

The overspeed ratio is inversely proportional to installed power

and an increased overspeed ratio will therefore reduce the cost

through the power chain and improve the capacity factor. In

the following systems with very high maximum to nominal

speed ratio are investigated.

B. Control strategy

The absorbed power form a point absorber is greatly influ-

enced by the control strategy applied by the PTO. In general

the optimal energy extraction is achieved when the point

absorber is moving with a 90◦ phase shift to the waves. Several

methods of approaching this production mode are described,

the best known being reactive control [8], [9] and latching
control [10]. Figure 8 shows an electrical equivalent circuit for

the WEC. The dynamic behaviour of the WEC is modeled as

an RLC circuit and the PTO is modelled by a power extracting

element (resitance) and a reactive element (impedance). The

goal of reactive control is to tune the reactive element of the

PTO so that it compensates for the reactive elements of the

WEC as a whole and thus maximizes power extraction.

FE(t)

RWEC CWECLWEC

RPTO

Absorber equivalent

PTO
equivalent

Incoming
waves

XPTO

Fig. 8. Equivalent circuit for Wave Energy Converter and Power Take Off

However, with the current design of the BOLT concept

the PTO is too small to have significant impact by advanced

control. Passive damping therefore serves as the primary
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production model. In the lowest sea states however, advanced

control algorithms can improve output [2], but is not currently

performed. The reason for the small PTO is the result of

economical optimization and Fred Olsen acquired viewpoint

that direct driven electrical PTOs should be designed so that

they are saturated on force and power already in low sea states.

Passive damping is defined by equation 6 where the damp-

ing coefficient B is optimized towards the highest efficiency

region of the machine to produce the highest possible net

power output. M and ω is torque and speed on the generator.

Figure 9 shows the torque and speed characteristics for the

generator used on BOLT2 [11]. The thick line shows the

optimal torque that result in maximum net power from the

generator. The first saturation mechanism is the mechanical

force limit of the gearbox and is reached already at 0.27

m/s. The second is the power limit of the generator, which

is reached at 1.55 m/s. The linear region from 0 - 0.27 m/s

corresponds to a damping coefficient of ca 350 kNs/m which

is the chosen value for B on BOLT2.

M = −B · ω (6)
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Fig. 9. Efficiency plot for the generator used at Bolt2Wavehub. The thick line
shows the torque that result in maximum exported power from the generator.
The thin line shows maximum available torque from the genearator. The
dashed line shows the mechanical limit for the gearbox.

III. SIMULATION MODEL

The simulation model used [12], [13] simulates BOLT2 (ref

section I-A) for operation at Wavehub.

Fe,i (t)− FD,i (t) = M
d2ζ (t)

dt2
(7)

FD,i (t) = Fr,i (t) + Fd,i (t) + Ci · ζi (t) + FPTO (t) (8)

The simulation model solves the differential equation 7 for

ζ (t) in the time domain. The index denotes the mode of

motion, given by the 6 degrees of freedom of motion for the

floater. The excitation force matrix Fe,i is the time dependent

force due to incident waves and M denotes the mass of the

system. FD,i accounts for the sum of all the damping forces

given in equation 8. Here Fr,i accounts for the time dependent

forces on the floater due to radiation of waves. The term Fd,i

accounts for non linear damping terms like drag forces. ζi is

the time dependent motion of the floater, Ci is the restoring

force matrix accounting for the hydrostatic pressure acting on

the floater and FPTO is the time dependent force applied from

the PTO. The PTO is modeled as a rope and winch system

that is tightly moored to the sea floor.

The simulation is based on a detailed 6DOF model for

BOLT2 and Fred Olsen therefore keeps the simulation model

confidential. However, the high level of complexity is not

required for this study and a simplified 1DOF model would

produce much the same result. It is therefore possible for a

third party to verify the results published here without detailed

knowledge about the simulation model used.

For each wave state a 20 minutes time series of irreg-

ular waves are generated based on the Wavehub spectrum.

The subsequent excitation forces are then calculated and the

simulation is run for the full length of the time series. The

simulation model also takes into account PTO and generator

losses, and the model outputs a 20 minutes time series of

exported electrical power from the WEC. The average of this

time series is then presented as produced power for that wave

state as shown in figure 10(b).

The simulation model is developed through many years of

development and testing and is verified against real production

data from several prototypes, including BOLT.

A. Scatter diagram

All simulations are based on the Wavehub scatter diagram

[3] shown in table I. A probability representation for the

scatter is shown in figure 10(a). By simulating the power

production for Bolt2Wavehub for all occurrences in the scatter,

an overall performance plot can be made. Figure 10(b) shows

the simulated operation of BOLT2 in various sea states. The

output power is normalized to the defined nominal output of

BOLT2 as specified later in this section. The WEC power

scatter can now be multiplied with the probability scatter to

calculate annual energy production. This is shown in figure

10(c). The plot shows the amount of the annual energy

production that occurs in the various sea states.

These three diagrams are an important tool for further WEC

optimization. For instance it can be calculated that the most

frequent wave height is hs=1.25m and occurs 25% of the time.

However, less than 10% of the annual energy is produced on

this wave height. The most producing wave state is hs=2.25

and tz=5.5sec and contributes to 9% of the annual energy.

It can be seen from figure 10(b) that the average power from

BOLT2 increases with wave height. The theoretical maximum

power produced from the PTO, which would occur at constant

optimum speed, is even higher. This is typical for most WECs

and complicates the definition of rated PTO power. Fred Olsen

has decided that the average power in the wave state that

produces most annual energy shall be defined as the nameplate

power rating. Hence, the most producing wave state hs=2.25

and Tz=5.5sec defines unity in figure 10(b).

138



Wave period Tz [sec]
3,5 4,5 5,5 6,5 7,5 8,5 9,5 10,5 11,5

Si
gn

ifi
ca

nt
 w

av
e 

he
ig

ht
 h

s [
m

]

0,25 26 79 44 18 0 0 0 0 0
0,75 499 832 491 140 18 0 0 0 0
1,25 184 1051 604 307 70 26 9 0 0
1,75 0 587 701 333 149 53 26 0 9
2,25 0 96 534 254 123 44 9 0 0
2,75 0 0 237 228 105 26 9 9 0
3,25 0 0 26 175 123 44 9 0 0
3,75 0 0 0 79 96 35 18 0 0
4,25 0 0 0 9 44 26 9 9 0
4,75 0 0 0 0 26 18 9 0 0
5,25 0 0 0 0 18 26 18 0 0
5,75 0 0 0 0 0 18 9 0 0
6,25 0 0 0 0 0 9 0 0 0

TABLE I
SCATTER DIAGRAM AT WAVEHUB, HOURS PER WAVE STATE

IV. OVERSPEED OPTIMIZATION

The overspeed optimization is performed by creating gen-

erator models for a list of different overspeed ratios. These

models are then implemented into the simulation model and

a full simulation for all the wave states in the scatter is run

for each of the generator models. The resulting annual energy

production for the different overspeed ratios is shown in table

II. Annual energy and load hours are shown in figures 13 and

12 respectively. The basis for the power normalization is the

defined rated power for BOLT2 as described in section III-A.

The normalized annual energy is normalized power multiplied

with hours.

A first important observation is that the overspeed ratio can

be raised to 5 without significant loss of annual production.

This corresponds to a 5 times reduction in installed power.

Further increase must be done as part of an economical

optimization.

A. Capacity factor optimization

For power export, the capacity factor is of great importance.

The capacity factor is defined as the annual exported energy

divided by installed power and shows how well the electrical

export capacity is utilized. Capacity factor is usually expressed

as the corresponding number of hours per year that the

installed power is fully utilized, termed load hours. Figure 11

shows the average power production for every hour through

a year sorted in descending order. Each line represents a

generator configuration with a given overspeed ratio. The

figure is a good tool for sizing of the export system and clearly

shows the effect of the overspeed ratio. A higher overspeed

ratio results in a lower peak power rating, less fluctuation

in power production and more load hours. This is mostly

achieved by reducing production from the high sea states, but

some energy is also lost in the low sea states due to the high

irregularities always present.

It can be seen from figure 11 that the overspeed ratio does

not appear as a constant power limit, but instead leads to a

continuous reduction. This is because the overspeed ratio de-

fines the peak instantaneous power while the exported energy

is given by the average power over 20 minutes. The goal is
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Fig. 10. Simulated performance of BOLT2 at Wavehub

maximum utilization of the export capacity, and it is likely

that other measures such as energy storage and averaging

between groups of WECs also will be used. Another option

for improvement of power quality is therefore to implement a

saturation mechanism in the controller that regulates against

a total defined maximum average power. This can further be

improved to aim for a total export capacity from an array of
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Overspeed Installed Annual Load Max avg
ratio power energy hours power

[pu] [pu · hours] [hours] [pu]

1 33.3 5093 1840 2.77
3 11.1 5081 1928 2.64
5 6.67 5017 2180 2.3
7 4.76 4878 2511 1.94

10 3.33 4593 3026 1.52
15 2.22 4070 3690 1.1
20 1.67 3547 4128 0.859
30 1.11 2832 4773 0.593
40 0.833 2368 5244 0.452
50 0.667 2041 5611 0.364

TABLE II
WEC PERFORMANCE WITH DIFFERENT OVERSPEED RATIOS
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Fig. 11. Annual power distribution per hour

WECs. This, however, is not within the scope of this paper

and should be subject for further research.

V. CONCLUSION

The study shows that the overspeed factor can be increased

to a factor of five without significant loss in annual energy

production. Thus, the peak power rating of the that involves

all-electric PTOs. Further increase in overspeed factor can be

done as a part of economical analysis. This study indicates

an annual loss of energy converter and the power export

system can be reduced to one fifth without trading away

produced power. Hence, overspeed optimization should be a

part of every design study production of 10% at an overspeed

factor of 10. This is probably around where the lost energy

production goes beyond the cost reduction of the power

system. Overspeed ratios significantly higher than 10 therefore

seem less likely.
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Abstract—Wave Energy Converters (WECs) with direct electric
Power Take Off systems have large fluctuations in output power,
and have a peak to average power ratio far above most other en-
ergy producers. Moreover, the typical average power production
from a WEC is lower than that of other power plants, typically
less than 1 MW. Array connection of several WECs can mitigate
these shortcomings by increasing both the power output and
quality. The focus of this paper is to analyze Fred. Olsen designed
WEC system Bolt2Wavehub and the effect of expanding to a
small array. The required specifications for the array geometry,
the electrical configuration and the overall system are discussed
and a specific array design consisting of 7 WECs is suggested
as a solution and analyzed in detail. The results show that the
peak to average power ratio can be reduced by a factor of 4 if
the array covers a full wave length.

I. INTRODUCTION

Wave energy producers are different from most other energy

producers in that the prime mover operates with a sinusoidal

velocity. When such a producer is directly connected to its

generator, the power output will be continuously fluctuating

with zero crossings in every wave. This behavior can be seen

in Fig. 2 which shows the simulated power output from Fred

Olsen’s (FO) Wave Energy Converter (WEC) Bolt2. The Bolt2

power plant is pictured in an early stage of design in Fig. 1.

A power flow with such a high level of distortion is

unsuitable for direct export to the grid, mainly because of

the poor utilization of installed conversion and transmission

capacity. For instance, in the example of Bolt2, as will be

shown later, the required installed capacity would have to be

around twenty times the average exported power. In addition,

with such a high level of distortion, fulfilling the grid code

requirements could prove difficult.

WEC systems based on the point absorber principle have an

inherent limitation on installed power. When the absorber size

approaches the wavelength, the vertical movement and hence

the absorbed power decay towards zero. This limitation is

often referred to as Budal’s upper boundary [1]. The practical

maximum power limit for these devices is estimated to be in

the range 30-600 kW, with passively damped systems in the

low end and systems based on advanced reactive control in

Fig. 1. Artistic impression of Bolt2
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Fig. 2. Simulated power for Bolt2

the high end.

The obvious approach to deal with these issues and meet

the requirements on both power level and power quality is

to rely on array systems. By installing additional WECs, the

output power can be added up, and by electrically connecting

the array elements together on a common bus the power can
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Fig. 3. FO’s Wave Energy Converter Bolt R© located outside Risør, Norway,
was launched in June 2009, and is still in operation.

be effectively shared to reduce the peak to average ratio. Many

studies have been performed earlier on farm solutions showing

a favorable outcome [2], [3]. The focus of this paper is to

analyze the case of the Fred. Olsen Wave Energy Project

on how to create an array system based on the new Bolt2

prototype built within the Bolt2Wavehub project.

A. Fred. Olsen Wave Energy Project

FO started with Wave Energy in 2000, leading to the first

Wave Energy Converter prototype Buldra R©, built as multiple

point absorber platform and launched in 2004. Since then

FO has tested out various concepts and built several different

prototypes, all based on the point absorber principle. The series

of experiences have led to the single body point absorber

system Bolt R© as pictured on site in Fig. 3. Even though

the point absorber principle may not be the most efficient

absorber type, it has shown to be successful in terms of total

performance and cost of energy. Bolt R© has been in operation

outside Risør in Norway since June 2009 and has till date

performed very well with only minor issues and incidents. As

on December 22, 2010 she had produced 3 360 kWh [4], and

is expected to exceed 6 000 kWh during 2012.

Based on the success with Bolt R©, FO has decided to use

the knowledge and experience gained so far to proceed with

the next generation design. An agreement with several UK

companies was made with funding from the UK Technology
Strategy Board (TSB). The goal of the project is to improve the

Bolt R© concept to a commercial level where it can be launched

at Wavehub [5], and hence the project name Bolt2Wavehub.

The first prototype WEC built within the project, referred

to as Bolt2, is designed with five individual all-electric Power
Take Off (PTO) systems. The PTOs are tightly moored to

the sea floor by a winch and drum system, which directly

ties surface movements to the generator through a custom

designed transmission system. Thus, the generator moves with

a sinusoidal velocity pattern with zero crossings in every

wave. Since the winch system will require active power for

pull-back during downward movement the generator is ran
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Fig. 4. Typical power output from Bolt R© in low waves

in motoring mode with a low pull-back torque during half

the wave cycle. This accounts for the periods of active power

consumption indicated in Fig. 2. The exact configuration and

mode of operation of the device is explained in detail in earlier

publications [4], [6]–[9] and is not within the scope of this

paper.

II. ARRAY CONFIGURATION

When designing the array, several properties have to be

taken into consideration. The following list is a suggestion

of the aspects that should be prioritized, and is mainly based

on the experience gained from single WEC systems in the FO

Wave Energy Project.

• Power smoothing
Ensuring the highest possible power quality from the

array is one of the key factors. This is achieved by

distributing the absorbers over a distance along the wave

direction so that the incoming wave crest hits one ab-

sorber at a time.

• Shadowing
To ensure maximum energy capture, the absorbers should

be placed so that the shadowing effects from nearby

absorbers are minimized. This is achieved by placing the

absorbers on a line perpendicular to the incoming wave

direction, which contradicts the preceding item.

• Easy access
The array must be designed so that all the absorbers are

easily accessible for installation, maintenance and repair.

This generally points towards one-dimensional arrays as

opposed to two-dimensional arrays.

• Mooring configuration
The mooring system is one of the major cost drivers

in wave energy power plants, and care should be taken

during the array design so that this can be efficiently

utilized and shared between the absorbers.

• Small and simple
As wave energy is still in early development and little

experience has been gained, focus should be put towards
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Fig. 5. Proposed configuration for small array of Bolt2 WECs

small and simple array systems with few absorbers. Array

concepts that require large number of absorbers and/or

a high level of complexity to be successful should be

postponed until wave energy production has reached a

mature level.

• Common electrical bus
To ensure effective balancing of power through the array

the WECs should be interconnected on a common electri-

cal bus. This will allow the power to float freely between

the devices so that the grid connection point will see the

array as a single power producer.

Based on these considerations FO has designed the array

illustrated in Fig. 5 as a first step for further study and

simulation. The array consists of seven absorbers of the Bolt2

type, as indicated by the yellow circles, and has an angle of 45◦

with the predominant wave direction, which is expected to give

the best compromise between power smoothing and capture

efficiency. Further, the simple one-dimensional design with all

the absorbers in one row allows for easy access and possibly an

efficient mooring system. With the proposed number of seven

absorbers, the array covers a full wavelength in the important

wave states, which is essential for Bolt2 as it produces positive

power only during half the wave cycle.

The proposed power system for the array is an extension of

the Bolt2 multi-PTO concept, where all production units are

connected on a common DC-Link. This is made possible by

the 3-phase AC/DC inverters that control each generator of the

Permanent Magnet Synchronous Machine (PMSM) type. Full

converter configuration is required for continuous generator

operation in the heavily varying speed specter induced by the

waves. The generator is controlled as a linear damper with

torque saturation on upwards movement of the WEC and as

with constant wind-in torque on downwards movement. This

causes the bi-directional power flow described in Fig. 2.

The common DC-Link coupling allows the produced power

to be balanced out between the WECs without additional

transmission or conversion equipment. The grid side inverter

harvests the produced power from the DC-Link, and the power

is further transformed and transferred to the point of common
coupling (PCC). All the components in the grid connection

PMSM
AC

DC

DC

AC

PMSM
AC

DC
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ENERGY
STORAGE

DC-
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WEC 1

WEC 2-7

Fig. 6. Electrical configuration of the array

chain have to be sized according to the array peak power, and

because of the improvement in power quality, there can be

substantial cost reductions. As sketched in Fig. 6 the power

quality can be improved further by introducing an energy

storage before the grid converter, however this is not within

the scope of this work, but is currently being investigated.

III. SIMULATION MODEL

The model used for the array simulation is based on the

single absorber model for Bolt2 [10], [11]. The simulation

model solves Equation (1) for ζ (t) in the time domain. The

index denotes the mode of motion, given by the six degrees of
freedom (DOF) of motion for the floater. The excitation force

matrix Fe,i is the time dependent force due to incident waves,

and M denotes the mass of the system.

Fe,i (t)− FD,i (t) = M
d2ζ (t)

dt2
(1)

FD,i (t) = Fr,i (t) + Fd,i (t) + Ci · ζi (t) + FPTO (t) (2)

FD,i accounts for the sum of all the damping forces in

Equation (2). Here, Fr,i accounts for the time dependent forces

on the floater due to radiation of waves. The term Fd,i accounts

for non linear damping terms, mainly the drag forces. ζi is the

time dependent motion of the floater, Ci is the restoring force

matrix accounting for the hydrostatic pressure acting on the

floater, and FPTO is the time dependent force applied from

the PTO. The PTO is modeled as a rope and winch system

that is tightly moored to the sea floor.

Since the simulation is based on a detailed 6DOF model for

Bolt2, FO keeps the simulation model confidential. However,

the high level of complexity is not essential for this study

and a simplified 1DOF model would produce much the same

result. It is therefore possible for a third party to verify the

results published here without detailed knowledge about the

simulation model used.

To simulate a wave state, a 20-minute time series of

irregular waves is generated based on the Wavehub spectrum.

The subsequent excitation forces are then calculated and
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Fig. 7. Peak to average power ratio for array versus single absorber

the simulation is performed for the full length of the time

series. The simulation model also takes into account PTO

and generator losses, and the model outputs a 20-minute

time series of exported electrical power from the WEC. The

simulation model has undergone many years of development

and testing and is verified against real production data from

several prototypes, including Bolt.

Array simulations are performed by running the simulation

model separately for each absorber in the array. All absorbers

are simulated for the same wave, and the expected wave

propagation through the array is taken into account. However,

since there is no interaction between the absorbers in the

model, each absorber output is given without shadow effects,

as if the absorber was producing alone. This is expected

to exaggerate the the simulated produced power. A method

to compensate the shadowing effects is under development

to address this shortcoming. However, the simulation in its

current form is believed to give a good indication of the power

smoothing effects and the peak to average ratio of the array.

IV. RESULTS

The resulting output power from the array is plotted in Fig.

7, where the ordinate is normalized to the average output

power, which equals the peak to average ratio. The benefit

of the array configuration is clearly demonstrated, as seen in

the reduction of the peak to average ratio from 20 to 5. In

Fig. 8, the power is plotted individually for all the absorbers

in the array. Upon close study of Fig. 8, it can be seen how the

waveform changes as the wave propagates through the array.

To explore further the power properties and the sensitivity

on array configurations, simulations with varying numbers of

absorbers in the array were performed, following the same

design principle. The resulting peak to average ratios for arrays

consisting of 1-20 and 20-101 absorbers are plotted in Fig. 9

and Fig. 10 respectively. The latter configuration is unrealistic

as will be argued later, but gives an impression of the power

quality that could be obtained from larger systems.
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Fig. 9. Peak to average ratio for small arrays

As can be seen from the 1-20 array analysis, there is a

quick drop in the peak to average ratio as the first few devices

are added. When the array covers approximately one full

wavelength at around 7 WECs, the peak to average ratio level

out at around 5. The jump seen at WEC number 8 is probably

related to the transition of covering more than one wavelength,

thus encountering higher harmonic disturbance. These effects

are related to specific wave states and are expected to be

canceled out when all the wave states are taken into account.

However, cases must be expected in all the wave states where

adding a new WEC will increase, instead of reducing the peak

to average ratio. This should be analyzed and optimized for

the specific location of the farm.

It can be seen from the result of the 20-101 analysis that the

peak to average ratio i still descending, but at a lower rate.

While the effect observed in the previous case was mainly

related to smoothing within a single wave, the effect seen

here is related to smoothing between successive waves. Earlier

studies and experience from other systems have shown that

the power must be smoothed over 100-200 seconds [3] to be
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suitable for direct injection to grid. This can be done either

by energy storage or by covering an area that corresponds to

the required smoothing time.

λ =
g · T 2

2π
(3)

λ = c · t (4)

c =
g · T
2π

(5)

L =
g · T
2π

tavg (6)

The basic behavior for ocean waves are governed by Equa-

tions (3)-(5) [12], where λ denotes the wave length, g is the

gravity, T is the wave period and c is the wave velocity. From

these, Equation (6) can be derived which gives the required

array length, L, to smooth the absorbed power over an average

time tavg . The wave state with hs=2.75 m and Tz=6.5 s, where

hs is the significant wave height and Tz is the zero crossing

time period, is defined by FO as the benchmark wave state for

production optimization. For this wave state the required array

length is 1-2km. This corresponds to 80-160 units of the Bolt2

type if the approach specified earlier is followed, alternatively

the required area could be covered by several smaller arrays.

V. DISCUSSION

Even though the large array analysis indicates that the

peak to average can be brought close to unity, this solution

seems less practical. As the PTOs are equipped with indus-

trial 400 VAC electrical machinery, the voltage level on the

common DC-Link will be around 600 VDC. On this voltage

level, there are practical limits to the amount of power that

can be transferred, and also limits on how large distances that

can be tolerated. Since the system is also likely to require

flexible cable systems to handle the absorber motion, nominal

current capabilities above 1000 A seems less likely, and so this

level is used as a limit. If the grid side inverter is placed in the

middle of the array, this limits the total array power to 1.2 MW

without intermediate conversion. Also the length of the cables

poses a limitation, especially if the cables are brought down

to the seabed between the absorbers, as the voltage drop ratio

will be significant.

Intermediate voltage conversion could be implemented on

the DC-link to increase the voltage level, but the required

converters would only benefit from the improved power quality

provided by the subordinate array branch. Thus, the converter

must be designed with a higher peak to average rating than

provided by the full array. Even if the limitations on transmis-

sion are ignored, the concept of having one large line array

with more than twenty absorbers seems less favorable. In an

optimized array design, the mooring systems and electrical

systems are likely to be designed so that there exists some

level of dependence between the absorbers. This could cause

the entire array to go off-line upon failure of a single absorber,

during repair, or during regular maintenance. This could be

acceptable for small arrays, but would require fail-safe systems

to be implemented on larger array systems. Based on this it

could be interpreted that the arrays should be designed smaller

with around ten absorbers. Larger farms should consist of

several independent smaller arrays. The array power systems

should handle the peak to average ratio of around five. Several

steps can be taken to further improve the power quality such

as energy storage, and production capping. This will be the

subject of further study.

VI. CONCLUSION

This analysis shows that connecting the Bolt2Wavehub

system in a small array successfully brings the peak to average

ratio down from 20 to 5. This is the result of power smoothing

within a single wave, and requires the array to cover at least

one wavelength. Further power smoothing by increasing the

array is possible, but looks less favorable because of large

geographical area that needs to be covered. Thus, it seems

reasonable that the peak to average power ratio of 5 should
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be tolerated, and that the grid power export system must be

designed accordingly.
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Abstract—Power electronics and advanced motion control has
allowed for creating Wave Energy Converters (WECs) with the
generator directly coupled to the sinusoidal motions of the prime
mover. However, this gives large fluctuations in output power,
and the resulting peak to average power ratio exceeds most
other energy producers. Moreover, the typical average power
production from a WEC is lower than that of other power
plants, typically less than 1 MW. Array connection of several
WECs can mitigate these shortcomings by improving both the
power output and power quality. Earlier studies performed on
arrays by Fred. Olsen has shown a favorable outcome, and has
demonstrated a reduction factor of four in the peak to average
ratio for a small array. These results were obtained by simulating
for the design wave state at the optimum wave direction. To
obtain a complete power profile this work focus in simulating a
full year of production by implementing the full scatter including
wave directions for the Wavehub site. Also the previously ignored
interaction forces within the array are taken into account. This
allows for mapping annual load hours, installed power and the
expected power quality at grid connection point.

I. INTRODUCTION

Wave Energy Converters (WECs) are different from most

other energy producers in that the prime mover operates

with a sinusoidal velocity. When such a producer is directly

connected to its generator, the power output is continuously

fluctuating with zero crossings in every wave. This behavior

can be seen in Fig. 2 for the single absorber case, which

shows the simulated power output from Fred Olsen’s (FO)

WEC Bolt2. The Bolt2 power plant is pictured in an arrayed

configuration in Fig. 1.

A power flow with such a high level of distortion is

unsuitable for direct export to the grid, mainly because of

the poor utilization of installed conversion and transmission

capacity. For instance, in the example of Bolt2, as can be

seen from Fig. 2, the required installed capacity would have

to be approximately twenty times the average exported power.

In addition, with such a high level of distortion, fulfilling the

grid code requirements could prove difficult.

WEC systems based on the point absorber principle also

have an inherent limitation on installed power. When the

absorber size approaches the wavelength, the vertical move-

ment and hence the absorbed power decay towards zero.

This limitation is often referred to as Budal’s upper boundary

[1]. The practical maximum power limit for these devices is

estimated to be in the range 30-600 kW, with passively damped

Fig. 1. Artistic impression of Bolt2 array at Wavehub

0 200 400 600 800

0

5

10

15

20

25

Time [s]

N
o

rm
al

iz
ed

 p
o

w
er

 [
p

u
]

 

 

Single

Array

Fig. 2. Peak to average power ratio for array versus single absorber

systems in the low end and systems based on advanced reactive

control in the high end.

In an endeavor to improve the export power quality, FO has

undertaken a study of arrayed systems. The first step of the

work was presented in our paper [2], and investigated the basic

geometrical properties of the array, and the potential for power

quality improvements. The analysis was performed for one

specific wave state, on one wave direction only, and was based

on the geometry shown in Fig. 8. The results are plotted in

Fig. 2 and demonstrates a favorable outcome on power quality,

reducing the peak to average ratio by a factor of four. This was
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Fig. 3. FO’s Wave Energy Converter Bolt R© located outside Risør, Norway,
was launched in June 2009, and is still in operation.

achieved by orienting the array so that the incoming wave crest

only interacts with one absorber at the time. The simulation

was performed for the design wave state, hs=2.75m / Tz=6.5s,

where hs is the significant wave height and Tz is the zero

crossing time period. The analysis was of qualitative nature

only, not taking into account the changing nature of a real site.

Also, the simulation ignored the interaction forces between the

absorbers, referred to as the shadowing effects.

To continue the study, the goal of this paper is to quantify

the annual performance of the array by analyzing the array for

each specific wave state. The annual produced energy can then

be calculated by summing up all the wave states. A full year

of power production will be simulated based on the Wavehub

climate. Shadowing effects are taken into account by a separate

hydrodynamic study, and the subsequent power correction is

imported into the simulation model. All the work is based on

the seven WEC array showed in Fig. 8.

A. Fred. Olsen Wave Energy Project

FO started with Wave Energy in 2000, leading to the

first Wave Energy Converter prototype Buldra R©, built as

multiple point absorber platform and launched in 2004. Since

then FO has tested out various concepts and built several

different prototypes, all based on the point absorber principle.

The series of experiences have led to the single body point

absorber system Bolt R© as pictured on site in Fig. 3. A typical

production curve from a low wave state is plotted in Fig. 4.

Even though the point absorber principle may not be the most

efficient absorber type, it has shown to be successful in terms

of total performance and cost of energy. Bolt R© has been in

operation outside Risør in Norway since June 2009 and has till

date performed very well with only minor issues and incidents.

As on December 22, 2010 she had produced 3 360 kWh [3],

and is expected to exceed 6 000 kWh during 2012.

Based on the success with Bolt R©, FO has decided to use

the knowledge and experience gained so far to proceed with

the next generation design. An agreement with several UK

companies was made with funding from the UK Technology
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Fig. 4. Typical power output from Bolt R© in low waves

Fig. 5. PTO principal sketch for Bolt2

Strategy Board (TSB). The goal of the project is to improve the

Bolt R© concept to a commercial level where it can be launched

at Wavehub [4], and hence the project name Bolt2Wavehub.

The project is currently in progress with the new Bolt2

prototype already launched early in April 2012.

II. SYSTEM DESCRIPTION

The array is based on the WEC Bolt2 which is a toroidal

absorber with five individual all-electric Power Take Off (PTO)

units. The PTOs are tightly moored to the sea floor by a winch

and drum system, which directly ties surface movements to the

generator through a custom designed transmission system. The

wave to wire coupling is illustrated in Fig. 5. Since the winch

system requires active power for pull-back during downward

movement, the generator is ran in motoring mode with a low

pull-back torque for this part of the wave cycle. This accounts

for the negative power intervals seen for the single absorber

case in Fig. 2.

The absorbed power from a point absorber is greatly

influenced by the control strategy applied by the PTO. In

general the optimal energy extraction is achieved when the
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point absorber is moving with a 90◦ phase shift to the waves

[5]. Several methods of approaching this production mode are

described, the best known being reactive control [6], [7] and

latching control [8]. Figure 6 shows an electrical equivalent

circuit for the WEC where the dynamic behavior of the WEC

is modeled as an RLC circuit. The PTO is modeled as a power

extraction element (resistance) in series with a reactive element

(impedance). The goal of reactive control is to tune the reactive

element of the PTO so that it compensates for the reactive

elements of the WEC as a whole and thus maximize power

extraction.

With the current design of Bolt2 the PTO force is too

low to have significant impact by reactive control. This is

mainly caused by the large area of the absorber that leads to a

high spring constant and a high resonance frequency. Passive

damping is therefore selected as the primary production model.

In the lowest sea states however, advanced control algorithms

may improve output [9], but is not implemented yet. The large

and flat absorber shape is selected as a result of economical

optimization and FO acquired viewpoint that the absorber

Fig. 8. Proposed configuration for small array of Bolt2 WECs

should be large enough to push the PTO into saturation already

in moderate wave states.

τ = −B · ω (1)

Passive damping is defined by Equation (1). The damping

coefficient B is optimized to produce the highest possible net

power output. τ is the generator torque and ω is the generator

speed. Fig. 7 shows the torque and speed characteristics for

the generator used on Bolt2. The thick line shows the optimal

torque that maximizes the generated electrical power. Two

important saturation mechanisms are present; the first is the

mechanical force limit of the gearbox. This is reached already

at 0.27 m/s. The second is the power limit of the generator

that is reached at 1.55 m/s. The linear region from 0 - 0.27 m/s

corresponds to a damping coefficient of ca 350 kNs/m, which

is the chosen value for B on Bolt2. The system is described

in more detail in earlier publications [3], [10]–[13].

The array is created by installing seven of the Bolt2 WEC

in a row as illustrated in Fig.8 and Fig. 1. The array angle

to the dominating wave direction is initially 45◦, but will be

optimized as a part of this work. The covered length along

the incoming wave direction ensures that an incoming wave

crest only interact with one absorber at the time, thus ensuring

smoother output power. Spacing perpendicular to the wave

direction is necessary to ensure good energy capture, thus the

angle of 45◦ seems to be a good compromise.

The proposed power system for the array is an extension of

the Bolt2 multi-PTO concept, where all production units are

connected on a common DC-Link. This is made possible by

the 3-phase AC/DC inverters that control each generator of the

Permanent Magnet Synchronous Machine (PMSM) type. Full

converter configuration is required for continuous generator

operation in the heavily varying speed specter induced by

the waves. The generator is controlled as a linear damper

with torque saturation on upwards movement of the WEC and

with constant wind-in torque on downwards movement, which

causes the bi-directional power flow as discussed earlier.

The common DC-Link coupling allows the produced power

to be balanced out between the WECs without additional

transmission or conversion equipment. The grid side inverter
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Fig. 9. Electrical configuration of the array

harvests the produced power from the DC-Link, and the power

is further transformed and transferred to the point of common
coupling (PCC). All the components in the grid connection

chain have to be sized according to the array peak power, and

because of the improvement in power quality, there can be

substantial cost reductions. As indicated in Fig. 9 the power

quality can be improved further by introducing an energy

storage before the grid converter, however this is not within

the scope of this paper, but is currently being investigated.

III. SIMULATION MODEL

The simulations are performed with focus on the WEC

prototype test site Wavehub located west of Cornwall, England

as shown in Fig. 10. This is a joint project funded and

supported by a renewable energy program administrated by

the British government. The site includes a sub-sea power

substation that allows for electrically connecting the WECs

to grid. Wavehub has been surveyed and monitored for an

extensive period and work is still ongoing to calculate true

statistical wave data for the site. In this paper preliminary data

are used which are expected to give a good impression of the

power quality, but should be updated for an accurate estimate

for annual energy production. The directional spectrum is

heavily influenced by waves from west and the directional

plot plotted in Fig. 11 had to be plotted on a logarithmic scale

to show all directions observed.

The model used for the array simulation is based on the

single absorber model for Bolt2 [14], [15]. The simulation

model solves Equation (2) for ζ (t) in the time domain. The

index denotes the mode of motion, given by the six degrees of
freedom (DOF) of motion for the floater. The excitation force

matrix Fe,i is the time dependent force due to incident waves,

and M denotes the mass of the system.

Fe,i (t)− FD,i (t) = M
d2ζ (t)

dt2
(2)

FD,i (t) = Fr,i (t) + Fd,i (t) + Ci · ζi (t) + FPTO (t) (3)

Fig. 10. Location of the UK test sites Wavehub and Fabtest
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Fig. 11. Probability distribution of wave direction on Wavehub. The plot is
a logarithmic polar plot defined by the angle θ and radi ρ.

FD,i accounts for the sum of all the damping forces in

Equation (3). Here, Fr,i accounts for the time dependent forces

on the floater due to radiation of waves. The term Fd,i accounts

for non linear damping terms, mainly the drag forces. ζi is the

time dependent motion of the floater, Ci is the restoring force

matrix accounting for the hydrostatic pressure acting on the

floater, and FPTO is the time dependent force applied from

the PTO. The PTO is modeled as a rope and winch system

that is tightly moored to the sea floor.

Since the simulation is based on a detailed 6DOF model for

Bolt2, FO keeps the simulation model confidential. However,

the high level of complexity is not essential for this study

and a simplified 1DOF model would produce much the same

result. It is therefore possible for a third party to verify the

results published here without detailed knowledge about the

simulation model used.

To simulate a wave state, a 20-minute time series of

irregular waves is generated based on the Wavehub spectrum.

The subsequent excitation forces are then calculated and

the simulation is performed for the full length of the time

series. The simulation model also takes into account PTO
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1,75 0 587 701 333 149 53 26 0 9
2,25 0 96 534 254 123 44 9 0 0
2,75 0 0 237 228 105 26 9 9 0
3,25 0 0 26 175 123 44 9 0 0
3,75 0 0 0 79 96 35 18 0 0
4,25 0 0 0 9 44 26 9 9 0
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6,25 0 0 0 0 0 9 0 0 0

TABLE I
WAVEHUB SCATTER DIAGRAM

and generator losses, and the model outputs a 20-minute

time series of exported electrical power from the WEC. The

simulation model has undergone many years of development

and testing and is verified against real production data from

several prototypes, including Bolt.

Array simulations are performed by running the simulation

model separately for each absorber in the array. All absorbers

are simulated for the same wave, and the expected wave

propagation through the array is taken into account.

A. Hydrodynamic interactions within the array

The hydrodynamical problem is solved within the frame-

work of linear potential theory, specifically Laplaces’ equation,

resulting in the interaction field illustrated in Fig. 12. In

this paper the theoretical basis is only gone through briefly.

A number of books have been written on the subject of

linear potential theory, among other J.N Newman’s ”Marine

Hydrodynamics” [16].

Since the velocity potential is linear, all contributions to

forces and motions are linear. As a result the principle of

superposition applies. Therefore it is convenient to split the

complex problem into a set of simpler problems. The full

solution is thus the sum of several simpler solutions. The

potential arising from N absorbers placed in a string can thus

be described as the sum of the following contributions.

φ = φ0 + φD + φR (4)

The total velocity potential φ due to the interaction of N

absorbers on a string is the sum of the excitation potential

due to incident waves φ0, the diffraction potential due to the

interaction of the incident potential with all absorbers at rest

φD, and the radiation potential φR due to the independent

motion of every absorber in every mode of motion with no

incident waves present.

The diffraction problem and the radiation problem is solved

independently. Thus there are N + 1 independent problems

to solve. Further the radiation potential from each absorber

is separated in 6 independent modes of motion. The total

Fig. 12. Illustration of the wave interaction with the array. The wave direction
is from southwest and thus causes amplification on the southern side of the
array and attenuation on the northern side.

potential φi
N acting on absorber N in mode i of motion is

thus the sum of every other absorbers’ radiation and diffraction

potential in addition to the diffraction and radiation potential

from absorber N acting on itself in mode i of motion. Com-

bining the 6 modes of motions for each absorber allowing for

all absorbers to interact results in a total of N×6 independent

linear equations to be solved for each wave frequency.

With a full description of the velocity potential it is possible

to integrate solutions in the frequency domain on specific wave

climates and optimize the array energy output with respect to

array layout angle and power take off damping coefficient.

In order to represent the interactions within the array in the

time domain model a set of correction factors is applied to the

power output from a time domain model of an array without

interactions. These are plotted individually for each WEC in

the array as a function of array angle in Fig. 13. The method

is only meant as a first step but is expected to give reasonable

results with respect to yearly average energy output and is

therefore regarded as valid within the scope of this paper.

IV. RESULTS

The simulation returns accurate power time series for all

observed wave states at Wavehub. By weighing the time series

according to the scatter, it is possible to create a continuous

time series for the exported power with high resolution that

covers a full year. By sorting the samples in descending

order the resulting dataset plotted in Fig. 14 emerges. This is

probably the most important plot for evaluating the utilization

of installed power as it gives a clear picture of the power

distribution from the array. It is important to note that the

plot is given with sub-second resolution and must be viewed

as an instantaneous power analysis. It does not give a good

impression of how the power is distributed through a day or

a year. But it shows in detail how the installed converter and

the grid connection are utilized.
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Fig. 13. Power correction factors for absorbers in array calculated from
shadowing effects
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Fig. 14. Annual power hours produced by array on Wavehub for different
installation directions.

Based on the findings in the initial array study [2], the power

is capped at five times the average production in the design

wave state, and the power curve is normalized to this average

power. The variations between the different wave directions

are not so distinct in Fig. 14, but becomes clearer in Fig. 15

and Fig. 16. These plots show the annual energy and the power

quality as function of array angle. Both figures are linked and

closely related to the result set presented in Fig. 14, as will

be showed shortly.

To simplify the simulations, the array is only simulated

for incoming wave directions over one quadrant. Since the

array is symmetrical from right to left and from front to

aft, this is valid. When the array operates with zero angle

to the waves, the absorbed power is maximized. However,

since the power quality is poor at this angle, significant

energy is lost due to power capping. On the other hand, with

90◦ array angle significant energy is lost to the shadowing

effect. Subsequently, the optimal array angle turns out to be

30◦ for this configuration. The optimal angle is expected to
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Fig. 15. Annual energy produced with different installation angles
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Fig. 16. Array peak to average factor as function of installation angle

move towards higher numbers as the power system is further

optimized with lower peak power ratings. The design angle

of 45◦ therefore still seems to be a good choice, but must be

verified when the electrical system design is complete.

By Fourier transforming the power time series the power

output can also be evaluated in the frequency plane. Fig. 17

shows the frequency plot for the design wave state hs=2.75m

/ Tz=6.5s at different array angles. It clearly shows the effect

of array smoothing at higher frequencies. However, at the

low frequencies there is little effect as the corresponding

wave travel distance becomes much larger than the array. The

peak observed around 0.1 Hz coincides with the 7 s wave

period. Except for this peak, there are no distinct points in the

spectrum, which is related to the stochastic nature of ocean

waves.

The annual energy is found by integrating the power curve

in Fig. 14. By dividing the annual energy on the installed

power, the annual full load hours are found. This is a bench-

mark figure used to quantify the utilization factor of installed

transfer capacity, and is widely used for renewable energy
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Fig. 17. Frequency plot of exported power from array

power plants. The resulting annual full load hours for this

analysis turns out to be approximately 1 000 hours, which is

quite low when compared to land based wind that is believed

to average 2 000 hours. However, the system is still in an early

stage of design and there are still several steps of optimization

that has to be performed. For instance, it can be seen by

visual inspection of Fig. 14 that the installed power capacity

factor can be reduced from five to three without significant loss

of annual energy. This would improve the annual load hours

to approximately 1 500 hours. However, such an optimization

must be performed for the complete system including energy

storage and other measures, and this path is not pursued further

in this work.

V. CONCLUSION

This analysis shows that the annual energy from the array

installed at Wavehub is mostly in accordance with expecta-

tions, and in accordance with earlier analysis. Some reduc-

tion is observed in both annual energy and in availability

as the shadowing effects are accounted for. The reduction

in availability is believed to be caused by the shadowing

effects impacting stronger on the low wave states. The array

achieves approximately 1 000 annual load hours in the current

configuration, and must undergo further improvements to reach

the preferred range of 1 500 - 3 000 load hours. Several

steps of optimization can be utilized, including active power

capping and introduction of intermediate energy storage. These

measures will be subject to further study.

ACKNOWLEDGMENT

Thanks to Even Hjetland for help with graphical design and

thanks to www.freemaps.no for making vectorized open source

maps freely available.

REFERENCES

[1] J. Falnes and J. Hals, “Heaving buoys, point absorbers and arrays,”
Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol. 370, no. 1959, pp. 246–277,
2012. [Online]. Available: http://rsta.royalsocietypublishing.org/content/
370/1959/246.abstract

[2] J. Sjolte, G. Tjensvoll, and M. Molinas, “All-Electric wave energy
converter connected in array with common DC-Link for improved power
quality,” in 3rd International Symposium on Power Electronics for
Distributed Generation Systems (PEDG’12), Aalborg, Denmark, Jun.
2012.

[3] I.Bjerke, E.Hjetland, G.Tjensvoll, and J.Sjolte, “Experiences from field
testing with the bolt wave energy converter,” in European Wave and
Tidal Energy Conference (EWTEC11), 2011.

[4] “The wave power climate at the wave hub site,” November 2006, journal:
Applied Wave Research Review of Wave Power Climate.

[5] J. Falnes, Ocean Waves and Oscillating Systems: Linear Interactions
Including Wave-Energy Extraction. Cambridge University Press, 2002.

[6] E.Tedeschi and M.Molinas, “Effect of control strategies and power
take-off efficiency on the power capture from sea waves,” in IEEE
Transactions on Energy Conversion, 2011, in Press.

[7] E. Tedeschi, M. Molinas, M. Carraro, and P. Mattavelli, “Analysis of
power extraction from irregular waves by all-electric power take off,” in
Energy Conversion Congress and Exposition (ECCE), 2010 IEEE, sept.
2010, pp. 2370 –2377.

[8] J.Falnes, “Principles for capturie of energy from ocean waves: phase
control and optimum oscillation,” NTNU, Tech. Rep., 1997, http://folk.
ntnu.no/falnes/w\ e/index-e.html\#RAPPORTAR.

[9] E. Tedeschi and M. Molinas, “Impact of control strategies on the rating
of electric power take off for wave energy conversion,” in Industrial
Electronics (ISIE), 2010 IEEE International Symposium on, july 2010,
pp. 2406 –2411.

[10] J.Sjolte, I.Bjerke, E.Hjetland, and G.Tjensvoll, “All-electric wave energy
power take off generator optimized by high overspeed,” in European
Wave and Tidal Energy Conference (EWTEC11), 2011.

[11] J. Sjolte, I. Bjerke, A. Crozier, G. Tjensvoll, and M. Molinas, “All-
electric wave energy power take off system with improved power quality
at the grid connection point,” in 2012 IEEE PES Transmission and
Distribution Conference and Exposition, 2012, In press.

[12] ——, “All-electric wave energy converter with stand-alone 600vdc
power system and ultracapacitor bank,” in 2012 EVER International
Conference and Exhibition on Ecological Vehicles and Renewable En-
ergies, 2012, In press.

[13] E.Hjetland, I.Bjerke, G.Tjensvoll, and J.Sjolte, “A brief introduction to
the bolt-2-wave project,” in European Wave and Tidal Energy Confer-
ence (EWTEC11), 2011.

[14] M.Molinas, O.Skjervheim, P.Andreasen, T.Undeland, J.Hals, T.Moan,
and B.Sorby, “Power electroncis as grid interface for actively controlled
wave energy converters,” International Conf. on Clean Energy Power
(ICCEP07), Tech. Rep., 2007.

[15] O.Skjervheim, B.Sorby, and M.Molinas, “All electric power take off for
a direct coupled point absorber,” Proceedings of the 2nd International
Converence on Ocean Energy (ICOE2008), Tech. Rep., 2008.

[16] J. Newman, Marine Hydrodynamics. Mit Press, 1977. [Online].
Available: http://books.google.no/books?id=nj-k\ lAmaBYC

159



APPENDIX E. CONFERENCE PAPER 5

160



Appendix F

Conference paper 6

Title: All-Electric Wave Energy Converter Array with Energy Storage and Reactive Power
Compensation for Improved Power Quality

Conference/Journal: Energy Conversion Congress and Exposition (IEEE/ECCE)

Date: 15.-20. September 2012

Location/Publisher: Raleigh, NC, USA

161



APPENDIX F. CONFERENCE PAPER 6

162



All-Electric Wave Energy Converter Array with
Energy Storage and Reactive Power Compensation

for Improved Power Quality

Jonas Sjolte
Fred. Olsen / NTNU

Norwegian University of

Science and Technology

Email: jonas.sjolte@fredolsen.no

Gaute Tjensvoll
Fred. Olsen

Oslo, Norway

Email: gaute.tjensvoll@fredolsen.no

Marta Molinas
Norwegian University of

Science and Technology

Trondheim, Norway

Email: marta.molinas@ntnu.no

Abstract—Power electronics and advanced motion control has
allowed for creating Wave Energy Converters (WECs) with the
generator directly coupled to the sinusoidal motions of the
prime mover. However, this results in large fluctuations in
output power, and the resulting peak to average power ratio
exceeds most other energy producers. Moreover, the typical
average power production from a WEC is lower than that of
other power plants, and array connection of several WECs is
necessary to help mitigate these shortcomings. Earlier studies
performed on arrays by Fred. Olsen (FO) has shown a favorable
outcome, and has demonstrated a reduction factor of four in
the peak to average ratio for a small array. These results were
obtained without further power conditioning and resulted in poor
utilization of installed capacity. In an endeavor to fully optimize
the WEC system for grid connection, this study investigates three
possibilities for power quality improvements: Introduction of
energy storage, implementation of controlled power capping and
implementation of reactive power compensation. By simulation
of annual production for a specific production site, the resulting
power quality improvements are estimated, and demonstrates
that the WEC system can obtain a power quality level close
to wind power. Reactive power compensation demonstrate the
ability to increase the power quality and to improve the local
power balance by optimizing the grid utilization during no
production periods.

I. INTRODUCTION

Wave Energy Converters (WECs) are different from most
other energy producers in that the prime mover operates
with a sinusoidal velocity. When such a producer is directly
connected to its generator, the power output is continuously
fluctuating with zero crossings in every wave, resulting in
a high peak to average ratio. This behavior can be seen in
Fig. 2 which shows the power output from Fred Olsen’s (FO)
Lifesaver power plant, pictured on site in Fig. 1. Since the
performance of FO’s systems are measured and simulated to
a high level of detail, only normalized results are presented in
this paper to protect the intellectual property of FO. However,
this is not believed to reduce the value of the results as they
should be valid for this type of WEC in general. Unity power
in the normalization is defined as the average exported power
in the design wave state, hs = 2.75m / Tz = 6.5s, where hs is
the significant wave height and Tz is the wave period. This is
regarded as the installed production capacity.

In an endeavor to improve the export power quality, FO
has undertaken a study on arrayed systems. The first step of

Fig. 1. Lifesaver on site outside Falmouth
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Fig. 2. Actual production and system operation measured on Lifesaver

the work was presented in our paper [1] and investigated the
basic geometrical properties of the array and the potential for
power quality improvements. The analysis was performed for
the design wave state with a wave direction of 45◦ to the
array, and concluded on the geometry illustrated in Fig. 3.
The resulting array power is compared to the single WEC
power and plotted in Fig. 4. The power is normalized to
the average design production for both configurations, and
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Fig. 3. Artistic impression of array at Wavehub based on Lifesaver
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Fig. 4. Peak to average power ratio for array versus single absorber

effectively demonstrates the improvement in power quality,
reducing the peak to average ratio by a factor of four. This
is mainly the result of the orientation of the array which
causes the incoming wave crest to interact with one absorber
at the time. This analysis was of qualitative nature only,
not taking into account the changing nature of the real sea.
Also, the simulation ignored the interaction forces between
the absorbers, referred to as the shadowing effects.

The next step in the array study, presented in our paper [2],
investigated the total performance of such an array system for
real sea conditions with focus on annual energy production.
The simulations are performed for the WEC prototype test
site Wavehub located west of Cornwall, England, as illustrated
in Fig. 5. Wavehub is a joint project funded and supported
by a renewable energy program administrated by the British
government. The site includes a sub-sea power substation that
allows for electrically connecting prototype WECs to grid.
Wavehub has been surveyed and monitored for an extensive
period, and work is still ongoing to calculate true statistical
wave data for the site. For the study undertaken here, pre-
liminary data were used, which are expected to give a good
impression of the power quality, but should be updated for an
accurate estimate for annual energy production.

The simulation also took into account the interaction forces
between the absorbers in the array by the application of a sep-

Fig. 5. Location of the UK test sites Wavehub and Fabtest

arate hydrodynamical model. This model was not integrated
into the main simulation model, but produced a lookup table
of power correction factors for the array for all encountered
wave states and wave directions. The full power production
simulation was performed for the full wave scatter diagram
for Wavehub, and the annual power distribution and total
energy production was calculated. Until this point the installed
electrical transfer capacity has been unconstrained, which
leads to poor power utilization and only 1 000 annual full load
hours for this case.

To continue the array study the goal of this work is to
investigate how the installed electrical power can be optimized.
Three methods are to be applied:

• Power capping
• Energy storage
• Reactive power compensation

The first two methods will improve the availability by reducing
the installed power. The last method is a possibility to use the
spare conversion capacity to improve the power quality at PCC
by reactive power compensation. This may improve the power
balance at PCC also during no load periods, allowing the WEC
to supply some base load capacity.

This work is based on earlier presented simulation methods
and results, and takes the raw output power from these as
input. The simulation is not elaborated here, but is described
in detail in our earlier publications [1]–[3].

A. Fred. Olsen Wave Energy Project

FO started with Wave Energy in 2000, leading to the first
Wave Energy Converter prototype Buldra R©, built as multiple
point absorber platform and launched in 2004. Since then
FO has tested out various concepts and built several different
prototypes, all based on the point absorber principle. The series
of experiences have led to the single body point absorber
system Bolt R© as pictured on site in Fig. 6. Even though
the point absorber principle may not be the most efficient
absorber type, it has shown to be successful in terms of total
performance and cost of energy. Bolt R© has been in operation
outside Risør in Norway since June 2009 and has till date
performed very well with only minor issues and incidents. As
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Fig. 6. FO’s Wave Energy Converter Bolt R© located outside Risør, Norway,
was launched in June 2009, and is still in operation.

Fig. 7. Principal sketch of FO’s WEC system

on December 22, 2010 she had produced 3 360 kWh [4], and
is expected to exceed 6 000 kWh during 2012.

Based on the success with Bolt R©, FO decided to use the
knowledge and experience gained so far to proceed with
the next generation design. An agreement with several UK
companies was made with funding from the UK Technology
Strategy Board (TSB). The goal of the project is to improve the
Bolt R© concept to a commercial level where it can be launched
at Wavehub [5], and hence the project name Bolt2Wavehub.
The project resulted in the full scale WEC Lifesaver pictured
in Fig. 1, which was launched early in April 2012. The name is
inspired by the shape of the buoy which is similar to a rescue
buoy. Lifesaver is situated outside Falmouth, UK on the marine
research test site Fabtest, see Fig. 5. Lifesaver has not been in
operation long enough for a comprehensive statistical analysis,
but preliminar results indicate that the system operates close
to expectations. An example of the device in production is
shown in Fig. 2 which shows speed, torque and power from
one of its generators during normal production.
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DC
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Fig. 8. Electrical configuration of the array

II. SYSTEM DESCRIPTION

The array is based on the WEC Lifesaver which is a toroidal
absorber with five individual all-electric Power Take Off (PTO)
units. The PTOs are tightly moored to the sea floor by a winch
and drum system, which directly ties surface movements to the
generator through a custom designed transmission system. The
wave to wire coupling is illustrated in Fig. 7. Since the winch
system requires active power for pull-back during downward
movement, the generator is ran in motoring mode with a low
pull-back torque for this part of the wave cycle. This accounts
for the positive power intervals seen in the production output
from Lifesaver in Fig. 2.

The array is created by installing seven of the Lifesaver
WEC in a row as illustrated in Fig. 3, with an array angle
to the dominating wave direction of 45◦. The covered length
along the incoming wave direction ensures that an incoming
wave crest only interacts with one absorber at the time, thus
ensuring smoother output power. Spacing perpendicular to the
wave direction is necessary to ensure good energy capture,
and the angle of 45◦ has proved to be a good compromise.

The proposed electrical power system for the array is an
extension of the Lifesaver multi-PTO concept, where all pro-
duction units are connected on a common DC-Link [6]. This
is made possible by the 3-phase AC/DC inverters that control
each generator of the Permanent Magnet Synchronous Ma-
chine (PMSM) type. Full converter configuration is required
for continuous generator operation in the heavily varying speed
specter induced by the waves. The generator is controlled as
a linear damper with torque saturation on upwards movement
and with constant wind-in torque on downwards movement,
causing the bi-directional power flow discussed earlier.

The common DC-Link coupling allows the produced power
to be balanced out between the WECs without additional
transmission or conversion equipment. The grid side inverter
harvests the produced power from the DC-Link, and the
power is further transformed and transferred to the point of
common coupling (PCC). Since all the components in the
grid connection chain, from the DC-Link to the PCC, have
to be sized according to the array peak power, there can be
substantial cost reductions from lowering the peak to average
ratio.
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Fig. 9. 48V balanced ultracapacitor module by Maxwell Technologies.
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Fig. 10. Illustration of energy storage capacity at Lifesaver. The power
management system is controlled based on the capacitor voltage.

By closer study of Fig. 4 it can be seen that the output power
peaks are short in time. These peaks can be filtered out either
by absorbing the energy in an energy storage or by reducing
the power production during these high waves to comply with
a lower level of installed power. The former method is more
costly, but will retain the annual production, whilst the latter
method is free, but sacrifices some of the annual production.
The optimal solution is likely to be a combination of the
two methods and should be decided based on economical
optimization. This work will explore the effects of these two
methods and give a qualitative impression on how the system
should be sized.

The energy storage is regarded as ideal with respect to
efficiency, power capacity and lifetime, and only the energy
capacity is taken into consideration. Based on experience form
earlier systems, and Lifesaver in particular, ultracapacitors
are believed to be the most suitable technology for this kind
of application. They offer high efficiency, high power, good
power density and reasonable lifetime in this power regime.
One important design parameter which greatly affects the
ultracapacitor system is whether it is directly connected on
the DC-Link or connected behind a intermediate converter. A

direct connected system will have almost no practical power
limit, but will require large voltage fluctuations on the DC-
Link. During normal operation, ultracapacitors should only
be cycled between the nominal voltage Vnom and 1

2Vnom.
If the power converters of the WEC can operate within
this window, the ultracapacitor energy can be fully utilized.
Lifesaver utilizes this possibility and has a 1 MJ ultracapacitor
bank connected directly to the DC-Link. The energy storage
consists of 17 modules in series of the Maxwell module
pictured in Fig. 9. These modules are internally balanced
and can handle the maximum DC-Link voltage of 830V. The
control of the DC-Link and energy storage for Lifesaver is
illustrated in Fig. 10.

However, for a larger system, like a complete wave farm,
it is likely that the system would suffer from other adverse
effects caused by the fluctuating DC-Link, such as reduced
inverter efficiency and reduced power quality at PCC due to
DC-Link undervoltage, and subsequent hijacking by the diode
rectifier. This can be avoided by introducing an intermediate
converter between the DC-Link and the ultracapacitor bank,
which allows the DC-Link voltage to be constant, but intro-
duces the installed conversion capacity as a new boundary
condition to the energy storage. As stated initially, the energy
storage is simplified and regarded as ideal to simplify the
model and reduce the parameters that influence on the results.
Based on the experience with Lifesaver this simplification does
not significantly affect the results.

Design of the control method used for the energy storage is
a study on its own. It should be controlled so that the exported
power follows the smoothest possible curve, whilst ensuring
maximum possible energy export. These are conflicting inter-
ests as the attempt to smooth the output power may result in
the energy storage being unnecessarily full when a large wave
train is passing by, thus resulting in unwanted power shedding.
In this work, this problem is simply solved by running the
export converter at full capacity whenever there is energy in
the storage. This will guarantee maximized power export, but
will also generate an unnecessarily distorted output power.

III. ACTIVE POWER ANALYSIS

The simulation model for the energy storage takes the raw
production data output from the array simulation as input and
calculates the amount of stored energy and the resulting export
power. The simulation output is plotted in Fig. 11 which shows
the energy and power for a system with 2 pu installed power
capacity and 10 pu·s installed energy storage in the design
wave state. The figure also illustrate the crudeness of the
current control, which causes abrupt changes in output power
when the energy storage clearly could have been exploited to
produce a smoother output.

The output power from the array simulation is feed into
the energy storage model and scanned through several pa-
rameter pairs for installed energy and power. The resulting
annual energy outputs are listed as pu-hours in Table I. The
table clearly shows the effect of the energy storage, but also
demonstrates the need to sacrifice some of the annual energy
to avoid unrealistic system ratings. An annual production of
4 600 pu·h is considered for further investigation. This amounts
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Fig. 11. Power balance with energy storage in design wave state
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0 3676 3911 4096 4243 4457 4599 4950
5 4045 4238 4380 4490 4641 4736 4950
10 4197 4380 4514 4613 4736 4810 4950
15 4291 4473 4595 4683 4795 4854 4950
20 4356 4531 4650 4728 4830 4884 4950
30 4454 4616 4726 4791 4869 4915 4950
45 4530 4686 4779 4845 4913 4934 4950
60 4574 4725 4823 4881 4928 4944 4950
90 4624 4768 4860 4913 4944 4950 4950
120 4646 4794 4886 4922 4950 4950 4950

TABLE I
ANNUAL ENERGY [PU·H], FOR VARIOUS CONFIGURATIONS

to 7% reduction from the theoretical maximum of 4 950 pu·h.
The corresponding values are highlighted in Table I, and the
annual power distribution is plotted for each of the cases
resulting in the plots shown in Fig. 12. The figure demonstrate
a significant improvement from the starting point of 1 000 load
hours, and shows that WEC systems can be grid intergrated
with relatively simple measures.

The analysis is based on instantaneous power export on a
sub-second scale. This is believed to be valid for the solid
state based inverters which have limited overload capacity.
However, it could be expected that the remaining part of
the grid connection chain, mainly the transformer and the
cable to PCC, could have a higher overload capacity based
on its high thermal mass. This could for instance allow for
a system with 2 pu inverter capacity to have only 1.5 pu
of installed transfer capacity, which would further improve
the system availability. The availability must be calculated
for each specific configuration for each specific site, but in
general this analysis shows that with these steps wave energy
can achieve an annual availability comparable to wind energy.

IV. REACTIVE POWER ANALYSIS

The calculations in the preceding section demonstrates
promising numbers for availability, but it also shows that
there is free capacity in the grid inverter for most of the
time. Depending on the technology used in the grid inverter,
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Fig. 12. Annual power distribution for the energy/power pairs highlighted
in Table I

this spare capacity could be exploited for reactive power
compensation. With the size of the current WEC system, an
IGBT based inverter is likely, which gives great flexibility for
alternative compensation methods. For this work, an IGBT
based system is assumed.

Reactive power compensation can be performed by many
methods, and to different levels of sophistication, the simplest
being power factor correction by optimizing the phase shift
angle ϕ between voltage and current. Since this can be com-
pensated by simpler and cheaper methods, it seems sensible
to focus on more complex forms of distortion. With the
increasing use of power electronics, such distortions are also
becoming more common, raising the need for compensation.

This work will be based on the work and methods presented
by Akagi et al [7]. They present two general methods to
quantify and isolate distortions, the p-q method which is based
on Clarke-transformation to the αβ0 reference frame, and a
second method referred to as the abc method that can be
applied directly on the abc phase voltages and phase currents.
This analysis will be based on the abc method.

In instantaneous reactive power compensation one of the
key elements is to identify the current components that does
not contribute to active power transfer and that should be
compensated. The abc method identifies this directly through
application of Equation (1) and (2), where ik is the load
current, vk is the phase voltage, p3φ is the three phase
instantaneous power, iqk is the resulting compensation current
and the index k refers to the three phases (k ∈ {a, b, c}). The
abc method only deals with instantaneous power and reactive
power.

⎡
⎣ iqa

iqb
iqc

⎤
⎦ =

⎡
⎣ ia

ib
ic

⎤
⎦− p3φ

va2 + vb2 + vc2

⎡
⎣ va

vb
vc

⎤
⎦ (1)

p3φ = vaia + vbib + vcic (2)

A secondary effect which may cause sub-optimal energy
transfer is fluctuations in active power, which is not addressed
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by the abc method. However, a similar method, referred to
as Generalized Fryze Currents presented by Fryze in 1932
[8] deals with this by introducing the average power in
the calculation. The Fryze method is based on the constant
evaluation of the actual admittance of the load. The method is
based on Equation (3) and (4) where iq̄k is the Fryze current
and ge is the admittance. The Fryze method must be tuned
with a corresponding time constant to decide the duration of
the power smoothing. This must be matched to the available
energy storage and the expected load fluctuations. In this
simulation a time constant of 6π is chosen, which corresponds
to three full periods at 50Hz.⎡

⎣ iq̄a
iq̄b
iq̄c

⎤
⎦ =

⎡
⎣ ia

ib
ic

⎤
⎦−Ge

⎡
⎣ va

vb
vc

⎤
⎦ (3)

Ge =
1

T

∫ T

0

ge (t) dt =
1

T

∫ T

0

(
vaia + vbib + vcic
va2 + vb2 + vc2

)
dt

(4)
In this work the goal of the compensation is better utilization

of the power transmission lines to the central grid as WEC
systems are most likely to be placed in remote locations
along the coast line with weak connections. A relevant WEC
application could be to improve the power balance in coastal
towns by installing small WEC farms, thus avoiding expensive
power line upgrades. However, renewable energy producers
cannot guarantee production at peak load demand, thus adding
little improvement to the power balance.

IS =

√
Ip

2 + Iq
2 (5)

Nevertheless, it may be that by performing reactive power
compensation in periods of no or little active power pro-
duction, the power line apparent power could be improved
sufficiently to guarantee the peak load demand. This can
be evaluated analytically by the orthogonal vector sum of
RMS values, as given in Equation (5), where the line cur-
rent IS is evaluated based on the active current Ip and the
reactive current Iq . Even though the compensation currents
iqk, k ∈ {a, b, c} are not necessarily sinusoidal, the principle
of orthogonality is still valid as the average product of iqk and
ipk is zero. For this case study the following system properties
are defined:

• Load with semi-weak connection to grid.
Zline = 0.012 + j0.19 pu which gives a short circuit
capacity of 5 pu

• Installed electrical WEC capacity is 0.10 pu of the power
line capacity

• At peak load demand the distortion current is at least
0.10 pu

• Power line utilization is 1.0 pu at peak load demand

Based on this example it will be investigated how the WEC
can utilize reactive compensation to improve the load balance,
also during no production periods. During peak load, IS equals
1 pu, and Iq equals 0.1 pu in the worst case scenario. By
complete compensation of Iq , IS can be reduced to Ip. This
result in approximately 0.50% reduction of IS . The small

Vs

PCC
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load

Distorted
load

Imeas

WEC

Power line

Fig. 13. Simulation model for instantaneous power quality analysis
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Fig. 14. Compensation current calculated by the ABC method

effect is caused by the square relationship of IS , which weigh
the higher values heavier. If instead the distortion current
is intitially 0.3, and is reduced to 0.2, the reduction in IS
improves to 2.5%. This evaluation becomes more difficult
for the Fryze method, as the compensation current may also
contain active current parts, Ip. However, this may also lead
to better results from the Fryze method, as reducing the Ip
current will have higher impact on IS .

To investigate further on these issues, a simulation model is
created based on the earlier stated assumptions. The simulation
model is defined as illustrated in Fig. 13, and is based
on the case parameters listed above. The distorted load is
implemented as a current source connected on the DC side
of a 3-phase rectifier. The active load is realized by a 3-
phase resistor. The resulting total load current is measured
as indicated in Fig. 13, and the compensation factors for the
Fryze case and abc case are calculated. The resulting iqk and
iq̄k currents are plotted in Fig. 14 and 15 respectively.

The two compensation currents look very similar, the only
significant difference being the sinusoidal-like curve sections
with approximately 0.05 pu amplitude. The flat sections in the
iq currents in Fig. 14 coincide with the short-circuit between
the two opposite phases during rectifier commutation, and are
caused by the instant change in power during this interval.
The average power based Fryze method is not affected by
this. Fig. 17 shows the resulting harmonic distortion for the
three simulated cases. The effect of compensation is well
demonstrated, and is also supported by the calculated Total
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Fig. 15. Compensation current calculated by the Generalized Fryze method
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Fig. 16. Current measured at PCC without reactive compensation

Harmonic Distortion (THD) for these cases. In the cases
were the WEC compensation current was unconstrained, the
harmonic distortion was almost completely canceled out, and
the remaining harmonic distortion is mainly due to the limited
rating of the WEC inverter.

The WEC inverter is also constrained by a 10 kHz first
order filter to simulate the natural restrictions in a real system.
This is to high as a realistic system probably would operate
at a switching frequency around 2 kHz. In addition, the
required feedback current control loop for the Voltage Source
Inverter (VSI) would limit the ability to compensate the higher
harmonics from 20 and upwards. Since most of the distortion
in this simulation occurs at lower frequencies, this error is not
expected to significantly impact on the results.

To investigate further on the possibility of the Fryze method
to also compensate active current instabilities, a second load
case is defined where the current source load behind the
rectifier fluctuates with 75 Hz. The resulting line current is
plotted in Fig. 19 and shows how the phase currents are
unbalanced. Fig. 20 shows the results from simulating both
load cases for the three compensation cases. The difference
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Fig. 17. Frequency analysis of PCC voltage. Higher harmonics.
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Fig. 18. WEC export current during linear sweep from maximum active
power production to maximum reactive power compensation

between the two compensation methods is well demonstrated
for the two load cases. For the first load case they perform
almost equally good, but for the second load case the Fryze
method outperforms the abc method. Also, if the two load
cases are compared to the uncompensated case, it can be seen
that the Fryze method obtains a reduction in line current of
1.6% for the second load case compared to 0.8% reduction
for the first load case.

The final step to verify the system operation is to investigate
how the system behaves when combining active power produc-
tion from the WEC array and reactive power compensation.
The system is modeled so that the active power production
dictates the power export, and the remaining current capacity is
used for reactive compensation. The actual compensation cur-
rent is obtained by linearly scaling the reference compensation
current to match the free RMS current capacity. To demon-
strate the dynamic shift between active and reactive power
production, a sweep method was used where the converter
starts at maximum active power export and gradually shifts
to reactive power export. Fig. 18 shows the resulting WEC
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Fig. 19. Special case with rectifier load fluctuating at 75 Hz.
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Fig. 20. Resulting line current RMS values for the two load cases.

output current during the sweep. Although it is difficult to
see from the figure, the output current is purely sinusoidal at
t=0. The high level of distortion in the compensation current
quickly distorts the sinusoidal waveform when it is phased in.
Fig. 21 shows the resulting RMS line current for the two load
cases during the sweep. The initial 0.025 seconds are taken
out as they are distorted due to RMS calculation ramp-up.
The figure shows the expected 10% drop in line current at
full active power export, and the remaining 1% when only
reactive compensation is performed. In general, the combined
operation works fine, the WEC converter always stays within
its nominal rating, all active power is transferred and the
reactive power compensation operates in a stable mode in spite
of the changing amplitude.

V. CONCLUSION

This analysis shows that the availability of the WEC array
can be greatly improved by a small amount of production
shedding and a small energy storage. The initial unconstrained
case produced only 1 000 annual load hours, but by shedding
7% of the annual production, and by introduction of a 10 s
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Fig. 21. Line RMS current during active to reactive power sweeps

energy storage, the availability was increased to 2 300 annual
load hours. By increasing the energy storage to 30 s the
availability is raised to 3 000 annual load hours without further
production shedding. Most of the production shedding occurs
in wave states above the design wave state. The analyzis is
performed based on preliminary data for Wavehub, and must
be repeated when the Wavehub study is complete. Utilization
of the free export capacity for reactive power compensation
showed good effect with great impact on harmonic distortion
up to the 19. harmonic. Some improvement of peak load
capacity can also be expected, but is very system specific
and must be investigated for a specific configuration. For the
systems modelled here, improvements in transfer capacity of
0.5% - 2.5% was demonstrated without energy production
from the WEC.
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Abstract—Fred. Olsen has operated the Wave Energy Con-
verter Lifesaver at the FaB Test wave energy test site since April
2012. After one year of operation, significant experience has
been gained, and a large amount of test data has been acquired.
This paper presents the key performance data gathered through
this test period, and compares the actual production with the
expected figures obtained through theoretical simulation. The
practical aspect of operating a WEC is also discussed, and
figures for availability, uptime and accessibility for maintenance
is presented. In general, the actual results show good correlation
with the simulation models. Through the test period, Lifesaver
has performed very well without major incidents, and has demon-
strated a moderate reliability acceptable for pre-commercial
testing.

I. INTRODUCTION

Lifesaver, pictured in Fig. 1, is a Wave Energy Con-
verter (WEC) system developed by Fred. Olsen (FO). She

is an electro-mechanical system for producing electricity from

ocean waves for grid export. The system consists of a 16 m

wide toroidal floater, three production machines and one

electrical conversion package. She was installed at sea on

31. March 2012 for commissioning and sea trials, and has

currently been in continuous service for one year. Lifesaver is

currently not grid connected, and is equipped with a sophisti-

cated stand-alone power system to emulate the grid connection

functions to allow normal operation of the electrical machinery

[1].

Lifesaver is operated at FaB Test, which is a UK test site

for pre-commercial WEC concepts located in Falmouth bay

outside Cornwall, England. The exact location of FaB Test

is shown in Fig. 3. FaB Test is envisioned to be a prepa-

ration site for WECs planned for commercial operation at

the Wavehub site [2], and has a moderate wave climate with

good balance between production hours and availability for

maintenance. Lifesaver is designed with focus on modularity,

maintainability and reliability. All mechanical and electrical

parts are placed above surface for easy access, and the modular

and autonomous Power Take-Off (PTO) configuration allows

for maintaining system operation and power export with one

or more PTOs out of service. Fig. 2 shows an example of

maintenance work at Lifesaver, where one of the PTOs were

lifted off for on-shore repairs.

Fig. 1. Lifesaver on site outside Falmouth, England.

Fig. 2. Lifesaver during PTO lifting operation

A. The FO Wave Energy Project

FO started with Wave Energy in 2000, and in 2004 the

Wave Energy Converter Buldra, built as a platform with

multiple point absorbers [3], was launched. Since then, FO

has tested out various concepts and built several different

prototypes, all based on the point absorber principle. The series

of experiences have led to the single body point absorber
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Fig. 3. Location of the UK test sites Wavehub and FaB Test

concept, as realized by our latest prototype Lifesaver. Point

absorbers are not necessarily the most efficient type of WEC

measured in terms of captured energy, but have shown to be

successful on total performance and cost of energy.

Until now, FO has operated four WECs based on the single

body point absorber in real sea conditions. The first, named

B33, was a small proof-of-concept device that was operated

outside Risør, Norway during the autumn of 2007 and the

winter of 2008. B33 showed good results, leading to the

second device, named B22, which was equipped with a full-

scale control, communication and production system. B22 was

operated outside Risør, Norway from the summer of 2008 until

the spring of 2009. Based on these experiences, FO started the

next development phase in collaboration with a selected few

European companies and universities through the SEEWEC
project. This work led to the full-scale system Bolt R© that was

installed outside Risør, Norway in June 2009. Bolt has, as on

December 22, 2010, produced 3 360 kWh of energy (Bjerke

et al.) [4].

Based on the success with Bolt R©, FO decided to use

the knowledge and experience gained so far to proceed to

the next generation design. An agreement with several UK

companies was made with funding from the UK Technology
Strategy Board (TSB). The goal of the project was to improve

the Bolt R© concept towards a commercial level where it can

be launched at Wavehub [2], and hence the project name

Bolt2Wavehub. The project resulted in the Lifesaver system

and is planned to stay in operation at FaB Test until October

2013.

Until now, FO has not had a single serious event with any

of the WEC systems, which has allowed for continuous long

term testing in real sea conditions. This has proved invaluable

for building experience with wave energy converters. Based

on our experience, the problems and issues that arise in real

sea conditions are multifaceted and goes beyond the scope of

the tests undertaken.

II. SYSTEM DESCRIPTION

Lifesaver is based on the point absorber principle, which has

been extensively researched and is well described in literature

(Falnes et al., 2003, 2012) [5], [6]. Several companies and

academic institutions have explored point absorbers for energy

production. The Swedish based company Seabased, that works

in close collaboration with Uppsala University, has developed

a point absorber system with high resemblance to the FO

system, except for that the production machinery is placed

at the sea floor [7]. US based Ocean Power Technologies has

developed the PowerBuoy, which is a slack moored dual body

point absorber [8]. Similar systems have been researched and

tested by the Oregon State University program SeaBeavl [9],

and has also been realized in systems as IPS and Wavebob
[10]. Common for all these systems is that they endeavor to

maximize the power absorption from the sea by tuning the

system to resonate with the waves. FO pursued this control

principle on our first devices, but has later dropped this

approach as it was found to costly to implement on the FO

systems.

FO has designed the Lifesaver floater structure towards high

surface area and low mass to obtain a cost efficient system with

respect to absorbed power. This geometry results in a high

resonance frequency and thus leads to a Response Amplitude
Operator (RAO) (Falnes, 2002) [11] close to unity for most of

the relevant wave states. The system is therefore quite stiff and

well suited for power production by passive damping control.

The absorber is tightly moored to the sea floor with a PTO

system that produces power from heaving, pitching and rolling

motion. The point absorber system is independent of wave

direction, which may simplify the mooring system and makes

the system robust against mixed directional waves. Table I lists

the general system properties of Lifesaver.

TABLE I
LIFESAVER KEY PARAMETERS

Floater outer diameter 16 m
Floater inner diameter 10 m
Floater height 1.0 m
Mass 55 tons
Water depth 55 m
Number of PTO slots 5
Currently installed number of PTOs 3
Damping force per PTO 100 kN
WEC rated export power 70 kW
Total installed generator capacity 400 kW

The PTOs are realized as winch and rope systems, as

illustrated in Fig. 4. The generator can only produce power

during upwards motion, and has to operate in motoring mode

during downwards motion to maintain rope tension. The

control principle utilized on Lifesaver is based on passive

damping, but is heavily influenced by saturation on both

torque and power, as indicated by the maximum net power

curve in Fig. 6. The control principle is described in more

detail in our previous publications [1], [12]. The generator

used on Lifesaver is a high performance permanent magnet

machine manufactured by Siemens R© and is designed for

industrial servo applications. It has high torque output and low

inertia, and is suitable for direct-drive applications with low

gear ratio or entirely without gearbox. The machine also has

high efficiency, as demonstrated by the efficiency map plotted

174



Fig. 4. Principal sketch of the WEC, showing one PTO. Lifesaver is designed
for five individual PTOs, but is currently installed with three individual PTOs.
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Fig. 5. Electrical system configuration on Lifesaver

in Fig. 6. The generator is powered through a full bridge

converter, which gives full control of the generator torque with

high precision and quick response. In total, this gives a very

powerful package with high performance that is well suited

for the reciprocal wave motions. The electrical configuration

of the WEC and the PTOs can be seen in Fig. 5, which is

quite similar to other WEC concepts (Boström, 2011) [13]

and (Rahm, 2010) [14], but is somewhat more advanced since

the FO system also includes the full-bridge converter on the

generator side.

WECs are different from most other power plants in that the

prime mover operates with a sinusoidal-based velocity pattern.

However, due to the irregularities caused by the random nature

of ocean waves, and their varying frequency components, the

peak to average power ratio will typically be around ten for

a converter system like Lifesaver [15]. This is mainly due to

the wave to wave variations that results in groups of waves

referred to as wave trains [16]. This behavior results in high

peak to average power ratios and poor power quality. FO has

researched extensively on this issue and found that the power

quality can be enhanced to an exportable level by clever system

design without adding significant costs. This work has been

published in a series of articles [12], [17]–[20].

III. SIMULATION MODEL

The simulation model used for Lifesaver is based on the

work done at NTNU for the Buldra R© platform (Molinas et al.,

2007, Skjervheim et al., 2008) [21], [22]. The model solves

Equation (1) for ζ (t) in the time domain, where the index

i denotes the mode of motion, given by the six degrees of
freedom (DOF), for the floater. The excitation force matrix

Fe,i contains the time dependent forces due to incident waves,

and M denotes the mass of the system.

Fe,i (t)− FD,i (t) = M
d2ζ (t)

dt2
(1)

FD,i (t) = Fr,i (t) + Fd,i (t) + Ci · ζi (t) + FPTO (t) (2)

FD,i accounts for the sum of all the damping forces in

Equation (2), where Fr,i accounts for the time dependent

forces on the floater due to radiation of waves. The term

Fd,i accounts for non-linear damping terms, mainly the drag

forces. ζi is the time dependent motion of the floater, Ci is the

restoring force matrix accounting for the hydrostatic pressure

acting on the floater, and FPTO is the time dependent force

applied from the PTO. The PTO is modeled as a rope and

winch system that is tightly moored to the sea floor. Detailed

performance curves for Lifesaver is presented in our article

[23].

Since the simulation is based on a detailed 6DOF model

of Lifesaver, FO keeps the simulation model confidential.

However, the high level of complexity is not essential to

verify the basic principles presented in this work. It is possible

for a third party to qualitatively verify the published results

without detailed knowledge of the Lifesaver simulation model.

Depending on the simulation at hand the model may be

simplified by locking out some degrees of freedom, or by using

simplified functions for parts of the system. For the power

simulations presented here, the model was run in 3DOF mode

with only heave, surge and pitch motion.

To simulate a wave state, a 20-minute time series of irregular

waves is generated based on the JONSWAP wave spectrum

[24]. The wave state is defined by the significant wave height

Hs, the zero crossing period Tz and the wave direction

θ. The subsequent excitation forces are then calculated and

the simulation is performed for the full length of the time

series. The simulation model also takes into account PTO

and generator losses, and the model outputs a 20-minute

time series of exported electrical power from the WEC. The

simulation model has undergone many years of development

and testing, and is verified against real production data from

several prototypes, including Bolt and Lifesaver.
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Fig. 6. Efficiency map for the generator used on Lifesaver

The simulation model also estimates the conversion effi-

ciency so that accurate figures for exportable electrical power

can be calculated. Most of the energy conversion loss occurs

in the generator, and in the design wave state, the generator

operates with an efficiency of around 80 %. This is the

result of economical optimization of the system, and the

relatively low system efficiency is the result of the large speed

fluctuations enocuntered at the generator shaft. The details of

this optimization are explained in our publications [1], [12],

[23]. A detailed efficiency map for the generator was produced

by Siemens and is the basis for the efficiency plot presented

in Fig. 6. This allows for calculating the generator power loss

to a high level of precision. The mechanical efficiency of the

winch and gearbox is estimated based on actual tests during

PTO commissioning, where two PTOs were connected in a

back-to-back configuration.

IV. RESULTS

Over the past year a large amount of operational data

has been acquired. All signals and measurements are logged

continuously at 200 Hz while in operation, and gives a com-

prehensive database for analysis. Together with the advanced

simulation model, this helps build a detailed understanding

of the system, and complements the theoretical model of the

system. The theoretical production from Lifesaver is listed

in Table II and shows the simulated exportable power for

all relevant wave states. This simulation is performed with

the current control parameter setting at Lifesaver, which is

somewhat conservative. Thus, the presented figures in Table II

are about 30 % lower than the theoretical production potential

with optimal control parameters.
Wavehub has been used as the design base for sizing the

power system on Lifesaver. The wave state that produces most

energy annually at Wavehub is Hs = 2.75 m / Tz = 6.5 s,

and is chosen as the design wave state for Lifesaver. The

estimated production potential in this wave state is 70 kW

on average, and this figure is selected as the name plate rating

for Lifesaver. Defining rated power from a WEC is not straight

forward as there usually is no clear and practical limit to how

much power the WEC can produce. This is illustrated by the

Lifesaver production scatter in Table II, which shows that the

output is increasing with wave height, even though the power

system is optimized for the design wave state. The method for

defining rated power proposed by FO is site dependent and

will vary with with the site case. However, it gives a good

impression of the practical power that can be expected from

the device, and that can be comparable to other renewable

energy sources.

A. Measured power production
The actual measured power production from Lifesaver for

the entire test period is plotted against the wave state in Fig. 7.

The wave measurements are taken from a wave measurement

buoy situated 1 km from the location of Lifesaver. Qualita-

tively, the measured response shows good correlation to the

simulated results, and shows performance equal to similar tests

performed by others [25]. However, when comparing directly

to the simulated results presented in Table II, it can be seen

that the measured power production is somewhat lower, and

also that there is a large spread in output power for the the

same wave state. There are several reasons for these power

differences, some are related to the selected control parameters

and some are related to the system:

• Number of PTOs
The simulations are performed on a system consisting of

TABLE II
SIMULATED EXPORTABLE POWER [KW] FROM LIFESAVER WITH FIVE PTOS AND CURRENT CONTROL SETTINGS

Wave period (Tz) - [s]
2 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 9 10 11 12 14 16 18 20 22

W
av

e
h

ei
g

h
t

(h
s)

-
[m

]

0.25
0.5 0.3 0.8 1.2 1.4 1.5 1.6 1.6 1.4 1.3 1.1 1.0 0.9 0.7 0.6 0.4 0.4 0.1 0.0

0.75 2.7 3.6 4.0 4.2 4.5 4.4 4.0 3.8 3.3 3.1 2.9 2.4 2.1 1.7 1.5 0.9 0.7 0.5 0.3 0.2
1 5.3 6.9 7.6 8.0 8.5 8.3 7.7 7.3 6.5 6.1 5.7 4.8 4.2 3.3 2.9 2.1 1.7 1.3 1.0 0.8

1.25 8.9 11.4 12.4 12.9 13.6 13.5 12.4 11.8 10.5 9.9 9.2 7.8 6.4 5.4 4.4 3.6 3.0 2.4 1.9 1.6
1.5 16.9 18.1 18.8 19.7 19.7 18.0 17.1 15.4 14.4 13.3 11.0 9.1 7.7 6.5 5.7 4.6 3.7 3.0 2.6
2 30.9 31.8 32.7 34.0 33.2 31.3 29.5 26.6 24.7 22.9 19.5 15.8 13.8 12.3 10.7 8.9 7.2 5.9 5.1

2.5 47.9 48.3 49.5 48.5 45.6 42.9 38.7 36.4 33.5 28.3 23.5 21.0 20.3 17.3 13.9 11.8 9.6 8.4
3 63.9 65.3 63.0 59.9 56.5 51.1 48.2 44.8 37.3 33.6 30.2 28.6 23.6 19.7 16.6 13.7 12.3

3.5 80.0 76.8 72.8 69.1 62.7 59.6 56.1 48.3 45.1 41.4 37.7 30.7 25.9 21.7 18.3 16.4
4 92.9 89.2 84.4 80.3 73.7 70.2 66.3 58.9 54.9 49.6 46.3 37.7 31.6 26.8 22.8 21.0
5 109 104 98.9 92.9 88.5 84.8 78.3 72.7 67.1 61.6 51.1 43.3 37.5 32.3 29.4
6 113 107 103 99.4 93.5 86.7 81.4 75.6 63.7 54.4 47.6 41.9 38.5
7 123 119 115 111 105 98.2 93.2 86.5 74.7 64.9 57.5 51.0 47.4
8 127 124 119 114 107 103 96.3 83.7 74.7 66.9 60.2 56.1
9 129 126 121 114 110 103 91.5 83.1 75.0 69.1 65.1
10 130 125 120 116 109 98.1 90.0 82.3 76.5 73.0
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Fig. 8. Oscillations encountered in primary moorings due to system dynamics

five PTOs, while Lifesaver currently only has three PTOs

installed.

• Sub-optimal control parameters
After installation, much time was spent on verifying

system operation through stepwise parameter changes.

This has caused a large amount of production data with

sub-optimal parameter settings, and is the cause of many

of the poor production series close to the design wave

state.

• Unwanted system behavior
In higher production states, the winch and floater sys-

tem occasionally showed rapid vibrations in the primary

mooring force, as plotted in Fig. 8. This is believed

to be caused by the dynamic response of the primary

mooring, which results in an unforeseen aggregate system

response. Similar behavior has been described in related

systems (Vicente et al, 2013) [26], and pose a challenge to

tight moored WEC systems. On Lifesaver, the oscillations

are mainly excited as the generator shifts from damping

control to saturation control, and can be reduced by

0 10 20 30 40
0

10

20

30

40

50

60

70

80

Time [s]

F
o

rc
e 

[k
N

]

 

 

1

2

3

4

5

Fig. 9. Forces encountered in secondary moorings during normal production
in a high sea state. The mooring lines are evenly distributed along the floater
circumference in counter-clockwise order.

smoothing this shift. Initial results indicate that the pri-

mary moorings have strong non-linear components, this

will be verified by practical tests of the moorings during

the Autumn 2013. Until the issue with oscillations is

managed, conservative control parameters are set for the

high wave states. This is the cause for the low production

in the high wave states.

• Secondary mooring system
Due to the strict regulations on FaB Test, Lifesaver is

equipped with a strong five-point catenary mooring sys-

tem, in addition to the regular production moorings. This

is undesired from an energy point of view and is expected

to cause some reduction in production. An example of

the mooring forces experienced in the secondary mooring

lines is plotted in Fig. 9. The effects of the moorings

are currently not taken into consideration in the simu-

lation model. To get a better understanding this should

be included in the model, and could for instance be

implemented as described by (Fitzgerald and Bergdahl,

2008) [27].

• Floater height
The floater was intentionally designed shallow to reduce

the system cost and the horizontal forces, and to gain

experience with required height and draft in an optimized

system. Data from on-board draft sensors show that the

waves are frequently over-topping the device already in

the design wave state. Some power production is believed

to be lost to this due to reduced buoyancy and stability. In

the simulation model, the buoy is modeled with infinite

height. The effect of over-topping is difficult to model

and the impact of this on production output is unknown.

To investigate further on these effects, the simulation model

was adjusted to match the number of PTOs and the control pa-

rameters used in the measured production series. Fig. 10 shows

the difference between simulated produced power and actual

produced power for all production series. The figure shows a

good correlation between measured production and simulated
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Fig. 10. Difference between actual produced power and simulated produced
power for various sea states. Simulations are performed with actual parameters
and configuration used at FaB Test.

production, but with a clear tendency of the measured produc-

tion being lower than the simulated production. This is most

likely caused by the combination of the secondary mooring

damping and the unwanted over-topping of the device.

Upon close study of Fig. 10, several properties points out.

The steps observed to the left in the plot are caused by

wave states that where not simulated, and that has been taken

out. The horizontal lines are caused by merging the observed

wave states into the simulated windows of wave height and

period, and there is an obvious trend of improved production

towards the top of the wave height window. There is also a

trend towards lower power deficit at higher periods, but the

cause of this is currently not identified. Some groups of data

points show large deviations from the general trend, mainly

the lower row of orange to red dots and the band of dark

blue dots between 2 and 3 m Hs. The former is believed

to caused by a measurement error in the wave rider buoy

where long swells with high period and low amplitude is

sometimes missed in mixed wave patterns. The latter group

is probably caused by manual startup and shutdown, which

will lead to a low average power for the measurement series.

In an attempt to investigate further on the deviation between

simulated and measured production, Fig. 11 was produced,

and shows all production series up to date in chronological

order. The figure could reveal time dependent effects on the

measured production, but the figure does not give any clear

trend towards this.

The generator system at Lifesaver estimates the actual

torque on the generator shaft with high precision, and also

measures the exported electrical power. This allows for ac-

curate measurement of the generator efficiency and can be

used to verify the figures obtained through simulations. The

actual conversion efficiency is calculated and presented in

Fig. 12, and includes the measured generator and inverter loss,

in addition to the estimated mechanical loss. The figure shows

that there is a strong dependency between system efficiency

and wave height, which is supported by the theoretical work,
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Fig. 11. Difference between actual produced power and simulated produced
power for all logged data sets. Each data set lasts for 20 min. Simulations are
performed with actual parameters and configuration used at FaB Test.
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Fig. 12. Conversion efficiency: Ratio between actual exported electrical
power and actual absorbed mechanical energy for various sea states experi-
enced at FaB Test.

and is mainly linked to the generator speed. As the damping

force follows the thick black line drawn in Fig. 6, it can be

seen that the speed has to go beyond the 0.3 m/s threshold

to enter force saturation before the efficiency starts to move

towards a reasonable level.

As Lifesaver is currently not grid connected, the system has

to produce net positive power to remain in operation. When

the net production drops below zero, the system automatically

shuts down and enters a power save mode with minimum

power consumption. Shutdown typically occurs between 0.5 m

and 0.6 m Hs, but has been measured as low as 0.4 m Hs for

higher periods. This ability to maintain net power production at

such low levels is unique for Lifesaver when compared to our

earlier devices, and is made possible by the electro-mechanical

PTO configuration, as opposed to the earlier systems that relied

on hydraulics, either directly or indirectly. This allows for

high uptime, and may result in continuous production on high

energy sites. High uptime results in more load hours and is
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good for the energy balance as the WEC will always consume

some power for monitoring purposes.

B. System operation and availability
Lifesaver has been in operation for more than one year as

this paper is being written, and has given significant experience

on how to operate and maintain a WEC system over time. The

key performance indicators up to date are listed in Table III

and shows that the system has been available for production for

the majority of the deployment time. A graphical presentation

of the KPI is plotted in Fig. 13 and gives an impression of

the time line of accessibility of the device, and the WEC

production state. As experience with the system was gained,

it was discovered that Lifesaver could maintain net positive

power production down to Hs = 0.5 m, and subsequently the

wave height threshold for production startup was lowered in

September 2012. This contributed to a significant share of the

increased production availability seen in Fig. 13 after this date,

together with rougher weather as the autumn season set in. The

accumulated energy production for the test period is plotted

in Fig. 14.

TABLE III
KEY PERFORMANCE INDICATORS

Production hours 1 468 h
Electrical energy produced 4 644 kWh
Mechanical energy absorbed 7 192 kWh
Overall efficiency 64.6 %
Average power during production 3.2 kW
Time on site 376 days
One or more PTOs ready for production 234 days
All PTOs ready for production 23 days
Longest continuous production period 24 days
Time available for maintenance 211 days
Availability hull 100 %
Availability communication 98 %
Availability scientific instrumentation 79 %
Availability control dependent instrumentation 100 %
Availability storm moorings 100 %
Availability cooling system 99 %

It is important to note that the goal of the Bolt2Wavehub

project is not to maximize power output, but to gain experience

with all the operational aspects of operating a wave energy

power plant. The FaB Test site was selected for its high

availability for maintenance and moderate wave climate. This

allows for close monitoring of the device, which is crucial for

providing practical feedback into the design process, and to

understand the operational expenditures (OpEx) of operating

the device. Moreover, the device has been used as a test bench

for testing out different maintenance methods. For instance,

when some mechanical components had to be replaced in all

the PTOs early in the test period, two different maintenance

approaches were tested out. The first PTO was lifted off and

brought ashore for maintenance, as shown in Fig. 2, while

the second PTO was serviced on site. It became clear that

heavy-lift operations between two moving objects demanded

much calmer weather than on-board maintenance, and the

latter method has been adopted as the preferred approach.

Except for the heavy-lift trial, all maintenance during the test

period has been performed on site.
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Fig. 13. Upper plot: Lifesaver accessibility (Green = accessible for heavy
lift, Blue = accessible for maintenance). Lower plot: Lifesaver production
state (Green = production, White = ready for production, Black = Planned or
unexpected downtime).
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Fig. 14. Accumulated electrical energy produced at Lifesaver

The most critical component on Lifesaver for reliable power

production is the production mooring, usually referred to as

primary mooring, due to the high wear on the winch. FO

has put serious effort on investigating alternative line types

and winch mechanisms. Most of the downtime on Lifesaver is

related to the primary moorings, either due to planned mainte-

nance for switching winch components, or due to unexpected

failures in the primary mooring. In case of a failure, the other

PTOs will still be operating as before, due to the independence

of the individual PTOs. The winch concept currently pursued

is a high performance system with high potential lifetime,

but is more fragile to abnormal loads and wear mechanisms,

which has caused problems in the early stages of testing.

The issues with the primary moorings are not yet solved, but

significant steps have been taken towards a reliable system in

close collaboration with with the manufacturer, and we have

reason to believe that the reliability will be improved to a

level suitable for commercial operation within the remainder

of the Bolt2Wavehub project. However, an increased level of
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maintenance and monitoring must be expected for a prolonged

period, also in commercial operation, and makes high energy

sites like Wavehub less attractive in the near future due to the

difficult maintenance regime.

V. CONCLUSION

Lifesaver has showed good performance at FaB Test with no

major incidents or problems, and has demonstrated acceptable

power production and reliability. The FaB Test test site has a

moderate wave climate with good availability for maintenance,

and has proved to be a valuable test site for gaining operational

experience and testing out various maintenance methods. The

practical work has shown a clear advantage towards on-board

maintenance, as opposed to bringing heavy equipment ashore.

The main failure mode causing downtime on Lifesaver is

failing primary moorings. This is a well known challenge with

this kind of device, and FO is pursuing several paths towards

solving this issue. Although the primary moorings are not yet

performing flawlessly, significant steps have been taken in the

right direction, and there is reason to believe that the problem

will be solved within the remainder for the test period. Thus,

Lifesaver should soon be ready to operate on a commercial

level, although elevated monitoring and maintenance must be

expected for still some time. Operation on high energy sites

is therefore less likely in the near future.
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Abstract—Power electronics and advanced motion control has
allowed for creating Wave Energy Converters (WECs) with the
generator directly coupled to the sinusoidal motions of the prime
mover. However, this gives large fluctuations in output power,
and the resulting peak to average power ratio exceeds most
other energy producers. The typical cycle time of ocean waves
is 5-7 seconds with subharmonic wave train fluctuations of 30-
200 sec. These slow power fluctuations may cause significant
thermal cycling of the IGBT powered inverter, with reduction in
lifetime as result. In this work the Fred Olsen WEC system is
used as a staring point, and a detailed thermal model for the
inverter is implemented and simulated. Based on the study of
earlier publications on IGBT reliability the resulting lifetime of
the system is estimated. This study indicate that thermal cycling
may impact on the system lifetime and that some oversizing is
required.

I. INTRODUCTION

Wave Energy Converters (WECs) are different from most

other energy producers in that the prime mover operates with

a reciprocating velocity. With modern power electronic based

variable speed drives the producer can be connected directly

to the generator, however this leads to a constantly fluctuating

output power that touches zero in every incoming ocean wave.

This behavior can be seen in Fig. 2, which shows the actual

power output from Fred Olsen’s (FO) WEC Bolt shown in Fig.

1. The heavily distorted output power poses a great challenge

for the conversion system to grid. This has been addressed and

explored in several earlier publications by FO [1], [2]. Another

important effect of the fluctuating power is the reduction in

power component lifetime. One of the crucial parameters for

lifetime estimation for IGBTs is the thermal environment and

the number of thermal cycles the device undergo. This paper

will investigate how the IGBT based inverter system specified

for the FO concept is affected and what lifetime can be

expected.

A. Fred. Olsen Wave Energy Project

FO started with Wave Energy in 2000, leading to the first

Wave Energy Converter prototype Buldra R©, built as multiple

point absorber platform and launched in 2004. Since then

FO has tested out various concepts and built several different

prototypes, all based on the point absorber principle. The series

of experiences have led to the single body point absorber

system Bolt R© as pictured on site in Fig. 1. Even though

the point absorber principle may not be the most efficient

Fig. 1. FO’s Wave Energy Converter Bolt R© located outside Risør, Norway,
was launched in June 2009, and is still in operation.
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Fig. 2. Typical power output from Bolt R© in low waves

absorber type, it has shown to be successful in terms of

total performance and cost of energy [3]. Bolt R© has been in

operation outside Risør in Norway since June 2009 and has till

date performed very well with only minor issues and incidents.

As on December 22, 2010 she had produced 3 360 kWh [4].

Based on the success with Bolt R©, FO has decided to use

the knowledge and experience gained so far to proceed with

the next generation design. An agreement with several UK
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Fig. 3. PTO principal sketch for Bolt2
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Fig. 4. WEC electrical system schematics

companies was made with funding from the UK Technology
Strategy Board (TSB). The goal of the project is to improve the

Bolt R© concept to a commercial level where it can be launched

at Wavehub [5], and hence the project name Bolt2Wavehub.

The project is currently in progress with the new Bolt2

prototype already launched early in April 2012.

II. SYSTEM DESCRIPTION

The Power Take Off (PTO) units are tightly moored to the

sea floor by a winch and drum system, which directly ties

surface movements to the generator through a custom designed

transmission system. The wave to wire coupling is illustrated

in Fig. 3. Since the winch system requires active power for

pull-back during downward movement the generator is ran in

motoring mode with a low pull-back torque for this part of

the wave cycle.

The power system for the WEC is shown in Fig. 4. Several

PTO units are connected together on a common DC-Link. This

is made possible by the 3-phase AC/DC inverters that control

each generator of the Permanent Magnet Synchronous Ma-
chine (PMSM) type. Full converter configuration is required

for continuous generator operation in the heavily varying speed

specter induced by the waves. The generator is controlled
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Fig. 5. RLC equivalent circuit of the PTO and WEC system
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shows the torque that result in maximum exported power from the generator.
The thin line shows maximum available torque from the generator. The dashed
line shows the mechanical limit for the gearbox.

as a linear damper with torque saturation on upwards WEC

movement, and with constant wind-in torque on downwards

movement.

The common DC-Link coupling allows the produced power

to be balanced out between the PTOs without additional

transmission or conversion equipment. The grid side inverter

harvests the produced power from the DC-Link, and the power

is further transformed and transferred to the point of common
coupling (PCC).

The absorbed power from a point absorber is greatly

influenced by the control strategy applied by the PTO. In

general the optimal energy extraction is achieved when the

point absorber is moving with a 90◦ phase shift to the waves

[6]. Several methods of approaching this production mode are

described, the best known being reactive control [7], [8] and

latching control [9]. Figure 5 shows an electrical equivalent

circuit for the WEC where the dynamic behavior of the WEC

is modeled as an RLC circuit. The PTO is modeled as a

power extraction element (resistance) in series with a reactive

element. The goal of reactive control is to tune the reactive

element of the PTO so that it compensates for the reactive

elements of the WEC as a whole and thus maximize power
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extraction.
With the current design of Bolt2 the PTO force is too

low to have significant impact by reactive control. This is

mainly caused by the large area of the absorber that leads to a

high spring constant and a high resonance frequency. Passive

damping is therefore selected as the primary production model.

In the lowest sea states however, advanced control algorithms

may improve output [10], but is not implemented yet. The

large and flat absorber shape is selected because of economical

optimization and FO’s acquired viewpoint that the absorber

should be large enough to push the PTO into saturation already

in moderate wave states.

τ = −B · ω (1)

Passive damping is defined by Equation (1). The damping

coefficient B is optimized to produce the highest possible net

power output. τ is the generator torque and ω is the generator

speed. Fig. 6 shows the torque and speed characteristics for

the generator used on Bolt2. The thick line shows the optimal

torque that maximizes the generated electrical power. Two

important saturation mechanisms are present; the first is the

mechanical force limit of the gearbox. This is reached already

at 0.27 m/s. The second is the power limit of the generator

that is reached at 1.55 m/s. The linear region from 0 - 0.27 m/s

corresponds to a damping coefficient of ca 350 kNs/m, which

is the chosen value for B on Bolt2. This control method results

in the operation characteristic plotted in Fig. 7 and the typical

output time series as shown in Fig. 8. The system is described

in more detail in earlier publications [2], [4], [11]–[13].

III. IGBT RELIABILITY

Solid-state devices have in general good reliability and long

lifetime as there are no moving parts involved that may wear

out. However, the devices are fragile to excessive voltage and

currents, and can be damaged even by very short duration

shocks above maximum ratings. In well-designed systems, the

solid-state devices are well protected from such events with

little threat to lifetime. The second mechanism of importance

that may wear down the transistor over time is thermal stress.

Fig. 9 illustrates the common sandwich structure of com-

mon IGBT devices with several boundary layers of different

materials. As these materials have different coefficients of

thermal expansion, there will be exerted a mechanical stress

on the interface between the layers. Over time this stress may

cause reduced thermal and/or electrical conductivity [14], [15]

which may degrade the device and eventually cause a positive

feedback effect which worsens the issue an breaks the device.
The most common failure mode is referred to as bond lift

off which is caused by fatigue in the electrical connections

to the chip. The cause of failure is usually detachment of

the solder between the chip and the bond wire. There is

continuous progress in mitigating these negative effects, and

newer devices suffer less from these problems, but they are

still present.
Fatigue as a result of thermal stress is directly linked to the

number of thermal cycles the device undergo. Numbers vary
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Fig. 7. Normal generator operation

for cycle lifetime, but may be as low as 1 000 extreme load

cycles from minimum rating to maximum rating (typically

−40◦C−120◦C). In the paper by Ciappa et al [16], empirical

results indicate a logarithmic relationship between lifetime and

the magnitude of the thermal cycles. ΔT=40◦C has a specified

lifetime of 5·106 cycles while an increase to ΔT=80◦C results

in a lifetime of 105 cycles.

Several publications describe methods on how to estimate

the thermal cycling lifetime [17], but they all are based on

detailed knowledge about the exact physical structure of the

device and the thermal flux inside. To estimate the lifetime

the following work will focus on creating an accurate thermal

model of the device that simulates the actual temperature in

the different parts of the device experienced under normal

operation.

Several mechanisms may cause thermal cycling, the most

obvious being startup and shutdown of the system. Also,

modes of operation that involves power fluctuation or low

frequency may cause thermal cycling of the IGBTs. Typical

examples of applications that undergo thermal cycling are

trains, lifts, arc welding, automotive, renewable energy, wave
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Fig. 8. WEC short term power fluctuations
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Fig. 9. Illustration of thermal stress in module

energy. For wave energy, the problem is mostly linked to

power fluctuations. The lowest output frequency at nominal

current is 15 Hz, and frequency cycling is therefore of less

concern.

In general, there are two frequency domains for the power

fluctuation. One caused by the wave-to-wave movement with

a period of 4-10 seconds. The second is the wave train

fluctuation that consist of groups of waves with close to the

same energy content, which fluctuates in a 20-200 second

pattern [18]. These two frequency domains are also visible in

Fig. 8, which shows the simulated output power from Bolt2.

IV. SIMULATION MODEL

The simulation model consists of two parts, one model

for the thermal behavior of the device and one model that

estimates the transistor and diode loss based on generator

torque and speed profiles. Earlier simulations have shown that

a wave state must be simulated for at least 20 minutes to

become statistically stable. Since this is very high in contrast

to the fast switching speed of the transistors, the discrete

switching model that simulates the exact transistor operation

is abandoned.

Instead, a continuous linear model is implemented that

estimates the average losses based on stationary RMS values

for voltage, current and phase shift. The stationary values

are calculated from time series data for generator speed and

torque, as shown in Fig. 7, by solving the motor equations

illustrated by the phase plot in Fig. 11. The total equivalent

circuit for the inverter and generator is shown in Fig. 10. The

model is based on Pulse With Modulation (PWM) control of

the IGBTs, and since the difference between the switching

frequency and the wave frequency is so large, dynamic effects

from the feedback control are neglected.

The transistor duty cycle D defined as the transistor on to

off ratio can be calculated by Equation (2) where vs is the

instant generator voltage, Vd is the DC-Link voltage and VS

is the generator RMS voltage given with the phase shift ϕ to

the current. All the calculations are evaluated for one electrical

cycle of ωt.

D (ωt) =
vs (ωt)

2Vd
=

VS

√
2

2Vd
sin (ωt+ ϕ) (2)

Based on the duty cycle it is possible to estimate the con-

tinuous diode and transistor conduction loss Pcd and Pct from

the instantaneous current iS and the equivalent on resistance

and on voltage Rd0 / Rt0 and Vd0 / Vt0, as given in Equations

(3) - (6).

pcd (ωt) = i (ωt) {i (ωt) ·Rd0 + Vd0} (3)

pct (ωt) = i (ωt) {i (ωt) ·Rt0 + Vt0} (4)

Pcd =
1

2π

∫ π

0

pcd (ωt) · {1−D (ωt)} dωt (5)

Pct =
1

2π

∫ π

0

pct (ωt) ·D (ωt) dωt (6)

The calculation for continuous switching loss is based on the

simplified estimate that the dissipated energy for one switching

operation can be estimated by the power transferred by the

IGBT multiplied with a constant switching time Tsw. The

constant PWM switching frequency of the inverter is fs. The

resulting continuous switching loss is given by Equation (7).
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Pst =
1

2π

∫ π

0

Vd · i (ωt) · Tsw · fs dωt (7)

The thermal model used is drawn in Fig. 12 and implements

the heat capacity of the chip, case and heat sink, and the

thermal conductivity between these elements. This is modeled

for both the diode and the transistor.

The exact parameters for the thermal model are listed in in

Table I. The values are taken from a datasheet for a similar

system. The electrical parameters for the generator and inverter

listed in Table II are taken from the Bolt2 system, and are fully

accurate.

The simulations were ran for approximately 15 minutes in

the design wave state and the temperature data series was

Diode chip heat capacity 0.156 J/K
Diode case heat capacity 0.36 J/K
Diode chip/case resistivity 0.0843 K/W
Diode case/hsink resistivity 0.241 K/W
Transistor chip heat capacity 0.268 J/K
Transistor case heat capacity 0.7 J/K
Transistor chip/case resistivity 0.027 K/W
Transistor case/hsink resistivity 0.123 K/W
Heat sink heat capacity 50 J/K
Heat sink to ambient resistivity 0.5 K/W
Ambient temp 40 ◦C

TABLE I
THERMAL PARAMETERS

Switching frequency 2 kHz
Switch time 100 ns
DC-Link voltage (Vd) 600 V
Generator torque/current ratio 10.8 Nm/A
Generator speed/voltage ratio 6.59 Vs/rad
Generator resistance (RS ) 0.038 Ω
Generator inductance (LS ) 0.0014 H

TABLE II
ELECTRICAL PARAMETERS

collected for all measured elements of the solid state device.

V. RESULTS

From the results plotted in Fig. 13, 14 and 15 it immediately

becomes clear that the diode takes most of the burden, and that

the IGBT sees little thermal stress. This is likely to be caused

by the mode of operation with the PMSM in generating mode,

requiring low one time duty cycle from the IGBT and thus low

conduction loss. The resulting conduction loss in the diode is

equally higher. The PMSM in generator mode operates much

like an active front-end device and the inverter should have

been optimized with IGBT modules matched for this, instead

of the typical motor mode configuration.

From the IGBT chip parameters it can be seen that the

device has much better thermal properties for thermal transfer

than the diode. This is because the device is designed for

motoring mode. Devices for active front-end converters are
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usually balanced more in favor of the diode.

It is not straightforward to calculate the annual thermal

cycles for this system. To get an accurate result all load cases

for the entire year should be simulated individually. FO has

performed such simulations earlier to estimate annual energy

production, but they are very time consuming. To simplify the

case it is estimated that the full year of production corresponds

to 1 500 hours of production at the design wave state. The

number of cycles per hour is thus only simulated for the design

wave state, and is plotted in Fig. 16. By multiplying these

results with the annual production, the annual number of cycles

with ΔT = 40◦ C becomes 9 000. By calculating for all thermal

cycle levels, and by using the results obtained by Gappa and

Fichtner [16] the resulting cycle lifetime is estimated to be

500 years.

It therefore seems like thermal cycles does not influence

the IGBT lifetime in its current configuration. However, if

the IGBTs are reduced and optimized so that ΔT increases

by 40 ◦C in Fig. 16, estimated lifetime drops to 10 years,

and immediately becomes the limiting factor for the system
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lifetime. Thus, it becomes clear that the system must be

designed with a significant margin, and that thermal cycles

must be taken into consideration during design. The effect of

thermal cycling of diodes is not studied in this paper, but the

same issues and effects must be expected here. The diode

is cycled heavily compared to the IGBT, and a significant

reduction in lifetime must be expected. The system should

therefore be designed with more focus on diode performance.

VI. CONCLUSION

The analysis shows that the lifetime does not seem to be

heavily influenced by thermal cycling in the current configura-

tion for this Wave Energy Converter application. However, it is

clear that balance between the IGBT and the anti-parallel diode

in the chip is poor. Also, the IGBT is significantly oversized

for the application, however if it was to be matched exactly to

its load case, thermal cycling would pose a threat. It therefore

seems like the system should be optimized by using IGBT

modules for front-end devices to improve the internal chip

balance between the diode and the IGBT, and that the system
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in general should be oversized with some margin to ensure

adequate lifetime.
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Abstract: Most Wave Energy Converters (WECs) produce highly distorted power due to the

reciprocal motion induced by ocean waves. Some WEC systems have integrated energy

storage that overcomes this limitation, but add significant expenses to an already costly

system. As an alternative approach, this article investigates the direct export option that

relies on aggregate smoothing among several WECs. By optimizing the positioning of the

WEC devices with respect to the incoming waves, fluctuations may be mutually canceled

out between the devices. This work is based on Fred. Olsen’s WEC system Lifesaver, and

a WEC farm consisting of 48 devices is designed in detail and simulated. The major cost

driver for the electrical export system is the required oversize factor necessary for transfer

of the average power output. Due to the low power quality, this number can be as high as

20 at the entry point of the electrical system, and it is thus crucial to quickly improve the

power quality so that the downstream power system is efficiently utilized. The simulations

undertaken in this work indicate that a high quality power output can be achieved at the farm

level, but that a significant oversize factor will be required in the intermediate power system

within the farm.

Keywords: wave; energy; array; farm; power; quality; peak; average; ratio
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1. Introduction

Wave Energy Converters (WECs) are different from most other energy producers in that the prime

mover operates with a sinusoidal velocity. When such a producer is directly connected to its generator,

the output power is continuously fluctuating with zero crossings in every wave, resulting in a high

peak-to-average power ratio. Fred. Olsen’s (FO) power plant Lifesaver, pictured in Figure 1, illustrates

this typical behavior, as plotted in Figure 2. This level of power distortion is unlikely to be suitable

for export to the grid as the utilization of installed power capacity is very low. In this article, the

method of aggregate power smoothing from multiple WECs in order to improve the power quality will

be investigated. As the incoming wave energy is close to constant when averaged over longer periods of

time, the power production can be equally averaged by covering a large distance of the incoming wave.

Substantial work has previously been performed within this topic, and the articles (Tissandier et al.,
2008) [1], (Kavanagh et al., 2011) [2] and (Blavette et al., 2012) [3] demonstrate successful integration

of WECs into a farm system. The focus of this work is the specific integration of Lifesaver into a

WEC farm system, and the potential for economical optimization of the power transfer chain from wave

to wire.

Figure 1. Lifesaver on site outside Falmouth, England.

The power quality is very poor when the wave energy enters the WEC, mainly due to two factors.

Firstly, the sinusoidal shape of the incoming wave causes a sinusoidal movement of the power take-off
(PTO) system, and does not allow the PTO to run constantly at rated speed. Secondly, waves tend to

group into wave trains that consist of series of waves with similar amplitude (Salter, 1988) [4]. This adds

subharmonic fluctuations with respect to the incoming wave period and further reduces the utilization

factor of installed PTO power. Moreover, WEC systems that utilize the mooring line as a production

force can only extract power during the upwards motion. This unidirectional production pattern adds

another doubling to the peak-to-average ratio. This can subsequently add up to a total peak-to-average

ratio in the high tens, depending on the system configuration.
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Figure 2. Actual production and system operation measured with Lifesaver.
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Figure 3. Illustration of the improved power quality through the power transfer chain.

The power quality is given as the peak-to-average ratio and illustrated with orange bars.

The nominal oversize factor is denoted with parentheses (i.e., the name plate rating on the

generator divided by the average produced power).
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Lifesaver has a peak-to-average ratio of approximately 60 on the entry point of mechanical wave

power. Thus, in the design wave state, the PTO is designed for power peaks up to 60 per unit (pu), while

only 1 pu is transferred on average. If the PTO was constantly operated at rated speed and rated force,

on average 60 pu of power could be transferred. This exceptionally low utilization factor is a major

challenge for the profitability of WECs and must be managed carefully. Moreover, it is important to
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quickly reduce the peak-to-average ratio in the downstream power system towards the grid. The poor

mechanical utilization factor is not necessarily an issue in and of itself, as the mechanical transmission

cost can be low compared to the cost of the total system. However, it is important that this poor utilization

factor not be carried forward to the rest of the system. Figure 3 illustrates the gradual increase in power

quality that is required from an economical point of view, and is the focus of this work. The underlying

details of the figure will be explained and analyzed in detail in the following sections.

1.1. The FO Wave Energy Project

FO started with Wave Energy in 2000, and, in 2004, the Wave Energy Converter Buldra, built as a

platform with multiple point absorbers, was launched. Since then, FO has tested out various concepts

and built several different prototypes, all based on the point absorber concept. The series of experiments

have led to the single body point absorber concept, as realized by our latest prototype Lifesaver. Point

absorbers are not the most efficient when measured in terms of captured energy, but have nonetheless

proven to be successful on total performance and energy costs.

Until now, FO has operated four WECs based on the single body point absorber in real sea conditions.

The first, named B33, was a small proof-of-concept device that was operated outside Akland, Norway

during the autumn of 2007 and the winter of 2008. B33 showed good results, leading to the second

device, named B22, which was equipped with a full-scale control, communication and production

system. B22 was operated outside Risør, Norway from the summer of 2008 until the spring of 2009.

Based on these experiences, FO started the next development phase in collaboration with a selected

few European companies and universities through the Sustainable Economically Efficient Wave Energy

Converter (SEEWEC) project. This work led to the full-scale system Bolt R©Bolt that was installed outside

Risør, Norway in June 2009. Bolt is pictured in Figure 4 on site and has, since 22 December 2010,

produced 3360 kWh of energy (Bjerke et al.) [5].

Figure 4. FO’s Wave Energy Converter Bolt R©, located outside Risør, Norway has been in

operation since June 2009.
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Based on the success of Bolt R©, FO decided to use the knowledge and experience gained so far to

proceed to the next generation of design. An agreement with several UK companies was made with

funding from the UK Technology Strategy Board (TSB). The goal of the project was to improve the

Bolt R© concept towards a commercial level where it can be launched at Wavehub [6], and hence the

project name Bolt2Wavehub. The project resulted in the full-scale system Lifesaver, consisting of a 16 m

toroidal floater with five individual all-electric PTO systems. Lifesaver was installed on the test site

Fabtest in April 2012 and is planned to be in operation until March 2013, when it has to be brought ashore

due to the strict UK regulations. Fabtest is a UK test site for pre-commercial WEC concepts located in

Falmouth Bay outside of Cornwall, England. The exact location of Fabtest is shown in Figure 5.

Figure 5. Location of the UK test sites Wavehub and Fabtest.

Thus far, FO has not had a single serious event with any of the WEC systems, which has allowed

for continuous long-term testing in real sea conditions. This has proved invaluable for building a

knowledge base with wave energy. However, the problems and issues that arise in real sea conditions are

multifaceted and thus exceed the scope of the undertaken tests.

2. System Description

FO’s WEC concept is based on the point absorber principle, which is well described in the literature

(Falnes et al., 2003, 2012) [7,8] and has been extensively researched. FO has designed a floater structure

with high surface area and low mass that is cost efficient with respect to absorbed power. This geometry

results in a high resonance frequency and thus leads to a Response Amplitude Operator (RAO) (Falnes,

2002) [9] close to unity for most of the relevant wave states. The system is therefore quite rigid and

well suited for power production by passive damping control. The absorber is tightly moored to the sea

floor with a PTO system that produces power from the heaving motion. The point absorber system is

independent of wave direction, which simplifies the mooring system and makes the system robust in

mixed directional waves.
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2.1. Power Take-Off (PTO)

The PTO system is realized as a winch and rope system, as illustrated in Figure 6. The generator can

only produce power during upwards motion, and has to operate in motoring mode during downwards

motion to maintain rope tension. The detailed control principle utilized by FO is described in our

previous publications [10,11]. The generator is a high performance permanent magnet machine

manufactured by Siemens R© and is designed for industrial servo applications. It has high torque output

and low inertia, and is suitable for direct-drive applications with low gear ratio or entirely without a

gearbox. The generator is powered through a full bridge converter that gives full control of the generator

torque with high precision and quick response, which in total gives a very powerful package with high

performance that is well suited for the reciprocal wave motions. The electrical configuration of the

generator and converter can be seen in Figure 7(b).

Figure 6. Principal sketch of the WEC.

Figure 7. Array design. (a) Array configuration; (b) Electrical configuration.
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As discussed earlier, the unidirectional production principle increases the peak-to-average ratio with

a factor of two as the production becomes asymmetrical. The consequent reduction in power quality

transfers to the generator and the converter, reducing the utilization factor on these components to

50%. Symmetrical production may be achieved by implementing a separate spring system that produces

enough pre-tension to tense the rope and also pull the generator at full power during the downward

motion. As this will be an expensive and powerful system, the costs must be carefully weighed against

the increased generator and converter costs of the asymmetrical system. Our earlier prototype Bolt R©,

shown in Figure 4 is designed with the symmetrical option based on a hydraulic spring system.

When cost-optimizing the PTO, the rated production force turns out to be the design property with

the highest cost impact, since it governs the strength and the physical size for most of the mechanical

components. The rated power has the second highest cost impact and influences mostly the generator

and the converter. There is also a high potential for cost savings on the inverter by extensive utilization

of field weakening control, as described in our previous work [11]. The third driving cost parameter is

the ability to handle mechanical inertia by the implemented control system. As the system has to follow

the reciprocal motion of the waves, the dynamical drive train response is very important. Also, a high

inertia will cause high power fluctuations due to change in kinetic energy. The inertia is dominated by

the generator and can be reduced by moving towards more expensive direct drive generators with high

torque and low speed. Thus, there will be a cost balance between good control and low inertia on the

generator. Hence, it is important to keep in mind that the power rating of a PTO alone is not sufficient to

give a clear picture of the PTO cost. However, to simplify further analysis, power rating is used as the

key performance indicator in the following sections.

2.2. Array

To increase the output power, and to improve the output power quality, several WECs may be linked

together into an array. Figure 7(a) shows the proposed layout that was put forward in our previous study

described in [12,13]. The fundamentals behind this design is the need to space the WECs along the

incoming wave direction to gain power quality from intermediate wave smoothing, while simultaneously

achieving a good capture ratio, which requires spacing perpendicular to the incoming wave direction.

Thus, a 45◦ angle to the incoming wave direction was found to be optimal. Also, the array design should

endeavor to cover a full wave length along the predominant wave direction to maximize the effect of

power smoothing. With Lifesaver as the basis, this amounts to around seven absorbers per array.

It is FO’s point of view that the devices within the array should be positioned close together and

interconnected so that the array can be viewed and operated as a single system. Furthermore, this allows

for sharing a common mooring system and simplifies the electrical connections between the devices as

the cable can run along the floater topside. The exact configuration of the mechanical interfaces is not

yet decided, but preliminary studies indicate that a combination of strong moorings pulling the devices

apart and flexible bumper connections between the devices can maintain the mechanical integrity of the

array within reasonable cost. In this work, a spacing of 2 m is chosen between the devices to account for

the interface structure. Figure 8 illustrates an array based on Lifesaver with this configuration.
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Figure 8. Artistic impression of array based on Lifesaver.

The array is electrically connected to DC by coupling the DC-Link on the inverters. The configuration

is illustrated in Figure 7(b), and shows how the power can flow freely between the WECs without

additional conversion or transmission equipment. This allows a producing WEC to directly transfer

power to a consuming WEC that is running in pull-back, and allows the sum of WEC powers to be

directly transferred. However, the low DC-link voltage poses a practical limit to the size of the array due

to the sea cables that have to run between the WECs. As a rule of thumb, 1000 A is used as a current

limit for low voltage sea cables. This limits the number of WECs in the array to around ten, and supports

the earlier stated figure of seven absorbers in the array. Thus, this array size is adopted for the following

simulation work.

As the allowed current transfer capacity is fully utilized within the array, the array output must

be transformed to a higher voltage before export from the array. The middle WEC should act as a

mother WEC and house the electrical conversion equipment and connect to the export cable. Since the

aggregated array power is low voltage DC, an active front-end inverter and a transformer is required

to convert the output to medium voltage AC. The cost of this equipment is directly influenced by the

peak power requirement and power quality at this point. In our earlier publication [13], we showed that

the peak to average ratio would be directly reduced by a factor of 3–5 due to natural power smoothing

between the devices. The peak-to-average ratio could be further improved towards 1.5 by implementing

a small energy storage, as shown in our work [14]. As will be demonstrated in the following, the peak

power rating for the current configuration is close to three, which will require a rated installed converter

capacity of about twice the average exported power. This is illustrated in Figure 3 on page 3.

2.3. Farm

The array could be directly connected to the grid as it outputs standard AC power. However, since

the power utilization is only about 50%, it will be beneficial to further improve the power quality by

creating a WEC farm that consists of several arrays. The arrays must be positioned in the farm according

to the same principles of the WEC placement in the array. Hence, no array must shield another array

from the predominant wave direction. Also, for effective power smoothing, the incoming wave along

the predominant wave direction should only interfere with one WEC at a time. A proposed farm

configuration consisting of six arrays that complies with this is shown in Figure 9(a), and implemented

in the following simulation work. Some interference is expected between the absorbers, which in general
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reduces the power output from the rear WECs. The wedge-shaped layout could compensate some of this

by amplifying the incoming wave, but this has not yet been verified by hydrodynamical analysis, and

must be treated with care.

Figure 9. Wave farm design. (a) Farm configuration; (b) Electrical configuration.
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While the smoothing effect of the array mainly comes from evening out the power fluctuations within

a single wave, the smoothing effect for the farm comes from balancing out the differences between waves

in an incoming wave train. As demonstrated by Stephen Salter (Salter, 1988) [4], smoothing of about

100–200 seconds is required to effectively smooth out wave train fluctuations. This corresponds to a fetch

of 1–2 km and is far greater than the farm configuration suggested here. Some cyclical power fluctuations

must therefore be expected also on the farm output, and a peak-to-average ratio of approximately 1.25

is expected. The proposed electrical configuration for the farm is shown in Figure 9(b) and shows how

the medium voltage power from each array is collected for export. A second step-up transformer may

be included to further increase the output voltage. The main benefit of the improved power quality from

the farm is better utilization of the shore cable connecting to the grid.

3. Simulation Model

The simulations are performed on the basis of the WEC prototype test site Wavehub located west of

Cornwall, England as shown in Figure 5. The test site is funded and supported by the renewable energy

program administrated by the British government. The site includes a sub-sea power substation that

allows for electrically connecting the WECs to the grid. Wavehub has been surveyed and monitored for

an extensive period and work is still ongoing to calculate true statistical wave data for the site. The wave

scatter diagram and the directional spectrum for Wavehub is plotted in Figure10(a) and Figure 10(b),

respectively. The directional scatter is heavily dominated by waves from the west, and the directional

plot must be logarithmically scaled to show all the directions observed.

The model used for the farm simulation is based on the single absorber model for Lifesaver

(Molinas et al., 2007, Skjervheim et al., 2008) [15,16]. The simulation model solves Equation (1)

for ζ (t) in the time domain. The index denotes the mode of motion, given by the six degrees of freedom
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(DOF) of motion for the floater. The excitation force matrix Fe,i is the time-dependent force due to

incident waves, and M denotes the mass of the system.

Fe,i (t)− FD,i (t) =M
d2ζ (t)

dt2
(1)

FD,i (t) = Fr,i (t) + Fd,i (t) + Ci · ζi (t) + FPTO (t) (2)

FD,i accounts for the sum of all the damping forces in Equation (2), where Fr,i accounts for the time-

dependent forces on the floater due to radiation of waves. The term Fd,i accounts for non-linear damping

terms, mainly the drag forces. ζi is the time-dependent motion of the floater, Ci is the restoring force

matrix accounting for the hydrostatic pressure acting on the floater, and FPTO is the time-dependent

force applied from the PTO. The PTO is modeled as a rope and winch system that is tightly moored to

the sea floor. Detailed performance curves for Lifesaver are presented in our previous article [17].

Figure 10. Wave climate at Wavehub. (a) Wavehub scatter diagram. Hours per wave state;

(b) Probability distribution of wave direction on Wavehub. The plot is a logarithmic polar

plot defined by the angle θ and radi ρ.
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Since the simulation is based on a detailed 6DOF model for Lifesaver, FO keeps the simulation

model confidential. However, such high level of complexity is not essential for this study, and a

simplified 1DOF model would produce almost the same result. It is therefore possible for a third party to

qualitatively verify the results published here without detailed knowledge of the simulation model used.

To simulate a wave state, a 20-minute time series of irregular waves is generated based on the

JONSWAP wave spectrum [18]. The wave state is defined by the significant wave height hs, the zero

crossing period tz, and the wave direction θ. The subsequent excitation forces are then calculated and

the simulation is performed for the full length of the time series. The simulation model also takes into

account PTO and generator losses, and the model outputs a 20-minute time series of exported electrical

power from the WEC. The simulation model has undergone many years of development and testing, and

is verified against real production data from several prototypes, including Bolt R© and Lifesaver.
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Array and farm simulations are performed by running the simulation model separately for each

absorber in the array/farm. All absorbers are simulated for the same wave scenario, and the wave

propagation through the array is modeled in detail to produce an authentic result. The simulation model

does not take interference between the WECs into consideration. This is handled by separate modeling

work and is described in the next section.

3.1. Hydrodynamic Interactions within the Array

The hydrodynamical problem is solved within the framework of linear potential theory, specifically

the Laplace equation, resulting in the interaction field illustrated in Figure 11(a). In this paper, the

theoretical basis is only covered briefly. The work of J.N Newman’s Marine Hydrodynamics [19] is used

as basis for this simulation work.

Figure 11. Hydrodynamical interference between absorbers. (a) Illustration of the

wave interaction with the array. The wave direction is from southwest and thus causes

amplification on the southern side of the array and attenuation on the northern side; (b) Power

correction factors for absorbers in array calculated from shadowing effects (Tz = 6.5 s).
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Since the velocity potential is linear, all contributions to forces and motions are linear. As a result,

the principle of superposition applies. Therefore, it is convenient to split the complex problem into a set

of simpler problems. The full solution is thus the sum of several simpler solutions. The potential arising

from N absorbers placed in a string can thus be described as the sum of the following contributions.

φ = φ0 + φD + φR (3)

The total velocity potential φ due to the interaction of N absorbers on a string is the sum of the

excitation potential due to incident waves φ0, the diffraction potential due to the interaction of the

incident potential with all absorbers at rest φD, and the radiation potential φR due to the independent

motion of every absorber in every mode of motion with no incident waves present.

The diffraction problem and the radiation problem are solved independently. Thus, there are N + 1

independent problems to solve. Furthermore, the radiation potential from each absorber is separated
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in 6 independent modes of motion. The total potential φi
N acting on absorber N in mode i of motion

is the sum of every other absorber’s radiation and diffraction potential, in addition to the diffraction

and radiation potential from absorber N acting on itself in mode i of motion. Combining the six

modes of motions for each absorber, and allowing for all absorbers to interact, results in a total of

N × 6 independent linear equations to be solved for each wave frequency. With a full description of

the velocity potential, it is possible to integrate solutions in the frequency domain on specific wave

climates and optimize the array energy output with respect to array layout angle and power take off

damping coefficient.

In order to represent the interactions within the array in the time domain model, a set of correction

factors is applied to the power output from a time domain model of an array without interactions.

Correction factors are calculated individually for each wave direction and wave period encountered.

The correction factor for the individual WECs are plotted as a function of the array angle in Figure 11(b)

for the design wave period (Tz = 6.5 s). Currently, only interactions within arrays are taken into

consideration, and the hydrodynamical effect of the wave farm is not modeled. A detailed farm study

will be required to produce an accurate figure for annual energy production, but based on experience

with similar modeling, the interactions are not believed to have significant impact on the simulated

power quality. The results presented here are therefore believed to be accurate and valid for evaluating

power quality.

4. Results

The wave energy farm is simulated for the WEC design wave state, which is defined as 2.75 m

significant wave height hs and 6.5 s zero-crossing period Tz. Production from each of the 48 WECs

is simulated for the same 20 minute window, and the actual power output from each WEC is stored.

Figure 12(a) shows the simulated raw output power from each of the 48 WECs. The power from each

absorber is individually colored with a rainbow color map, and the power scale is normalized to rated

average output power for one WEC. The plot illustrates the time-shifting effect of the power peaks as

the waves propagate through the array. It also clearly shows the lack of power smoothing as the wave

trains passes through the farm in that the power peaks do not reach maximum power for some portion of

the time.

By adding up the power from each WEC according to the array and farm configuration, the aggregated

power from each of the six arrays is calculated and plotted in Figure 12(b) by applying the same plot

method as in the previous figure. The plot demonstrates the improvement in power quality as the power

fluctuations within a single wave is smoothed out with a reduction in peak-to-average ratio from ten to

three. As the rated capacity of an inverter may be exceeded for short periods, an array inverter with

double power capacity of the rated power is likely to suffice. Still, this will require a converter with

twice the cost compared to an average exported power, and measures to further improve the power

quality should be kept in mind. Our previously published paper [14] indicates a final peak-to-average

ratio for the array between 1.5 and 3 after energy storage is included, the exact figure being a result of

economic optimization.
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Figure 12. Simulation results. All values are normalized to the average output power of

the unit (WEC/array/farm). (a) Individual power output from all 48 WECs; (b) Aggregated

power output from each of the six arrays; (c) Aggregated power output from the entire wave

farm. The red curve shows the output power smoothed with a 10-second low pass filter;

(d) Illustration of the power quality improvement as the power is aggregated in the farm;

(e) Output power in frequency domain; (f) Output power distribution.
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The total aggregate wave farm power is calculated by adding up the six array outputs. The result is

plotted in Figure 12(c) and shows a further improvement of power quality. The resulting peak-to-average

power ratio is 1.56 in this case, which is higher than the target of 1.25. However, it can be seen that there

is a high frequency distortion on the power signal that seems to relate directly to the wave fluctuations

from the WECs. These rapid fluctuations can be filtered down quite easily with a small energy storage,

and the red curve in Figure 12(c) shows the total farm output power smoothed with a 10-second filter. In

this case, the peak-to-average ratio is reduced to a healthy 1.28, which is regarded as satisfactory. At this

level, almost the whole of the installed conversion and transfer capacity can be utilized with negligible

cost impact due to reduced power quality. The calculated rms value of the output power is only 1.63%

higher than the average power.

In Figure 12(d) a power time series from WEC, array and farm are plotted together to illustrate the

power quality improvement as power is aggregated. The power in each case is normalized to the rated

power of the unit. A small energy storage seems favorable given the high fluctuations still present on

the farm power output, but it is not necessarily required to be located in the farm connection point.

If distributed energy storages were instead installed on each of the arrays, and controlled or tuned to

compensate the aggregated fluctuations on the farm output, the energy storage could serve dual purposes

by also reducing the array peak-to-average power, which would further improve the power quality before

transformation to AC. This may save the expensive converter capacity and must be subjected to detailed

economical investigation.

To investigate further the frequency components causing the fluctuations, a frequency analysis of the

output power was performed. Figure12(e) shows the result of a fast Fourier transform (FFT) analysis

during the different power stages. Power is normalized to rated output for each stage. In general, the

figure shows the expected characteristics with a decreasing level of distortion as power is aggregated.

The peak of the spectrum coincides well with the wave period, and it can be seen how the farm has high

attenuation at 0.1 Hz and significantly lower attenuation at 0.01 Hz in comparison with the WEC. The

local minimum observed at 0.05 Hz on both the farm output and the array output is expected to be caused

by low excitation in combination with good attenuation at this frequency. The frequency plot can serve

as a powerful tool when optimizing the farm layout.

As an illustration of the utilization of installed power capacity, Figure 12(f) shows the power/time

distributions at the three farm levels. The plot is created by sorting all the points in Figure 12(d) in

descending order. This plot is an effective tool for optimizing the the power components in the power

transfer chain as it visualizes the energy that is produced on various power levels. For instance, it shows

that both the array and the farm output have steep inclines close to the y-axis. The allowed peak power

of the power transfer equipment can be drawn as horizontal lines on the plot. The area between output

power line and the horizontal line will then represent lost power due to the transfer capacity deficit, while

the area below the horizontal line represents the power that can be transferred. For instance, it can be

seen directly from the figure that the array peak-to-average transfer capacity can be reduced from 2.5

to 2.0 with only a small energy sacrifice. As these curves currently represent only one wave state, they

should be used with care. When a complete analysis is performed, these data serve as valuable inputs to

the economical cost model.
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Thus far, the analysis has only been performed for the design wave state, and for the optimal wave

direction. A complete analysis should be performed, taking into account all sea states and directions

encountered throughout a year to find the annual produced energy with the given system configuration.

The smoothing effects will be less efficient from unfavorable wave directions and will cause higher peak

production than the installed capacity. This is not a problem in and of itself, but will force the WECs to

hold back production and exporting less power due to the downstream restrictions. A thorough analysis

with annual data will show the exact amount of power shedding and give a good basis for detailed scaling

of the power components. However, based on experience from our previous work [13], and given the

strong directionality at the Wavehub site, which is the basis of this work, it is believed that the current

findings are realistic and only require minor adjustments after a comprehensive analysis.

5. Conclusions

This work shows that a wave energy farm can be grid connected with adequate power quality and

good utilization of installed transfer capacity without major power conditioning components. The power

transfer chain is believed to be economically efficient, although some components within the wave

farm require significant over-capacity. Earlier studies of annual power have shown annual full-load

export capacity of approximately 3500 hours per year [14], and with the improvements that the farm

configuration brings, it is believed that an annual full-load export capacity of more than 4000 hours

per year will be attainable. This is better than land-based wind turbines which, on average, provide

approximately 2500 full-load hours per year [20], and is believed to be competitive with offshore wind

farms. This analysis has been performed only on the most dominant wave state, and therefore future

work should involve a complete study based on the annual wave climate.
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Abstract: Fred Olsen is currently testing their latest wave energy converter (WEC),

Lifesaver, outside of Falmouth Bay in England, preparing it for commercial operation at the

Wavehub test site. Previous studies, mostly focusing on hydrodynamics and peak to average

power reduction, have shown that this device has potential for increased power extraction

using reactive control. This article extends those analyses, adding a detailed model of the

all-electric power take-off (PTO) system, consisting of a permanent magnet synchronous

generator, inverter and DC-link. Time domain simulations are performed to evaluate the

PTO capabilities of the modeled WEC. However, when tuned towards reactive control, the

generator losses become large, giving a very low overall system efficiency. Optimal control

with respect to electrical output power is found to occur with low added mass, and when

compared to pure passive loading, a 1% increase in annual energy production is estimated.

The main factor reducing the effect of reactive control is found to be the minimum load-force

constraint of the device. These results suggest that the Lifesaver has limited potential

for increased production by reactive control. This analysis is nevertheless valuable, as it

demonstrates how a wave-to-wire model can be used for investigation of PTO potential,

annual energy production estimations and evaluations of different control techniques for a

given WEC device.
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1. Introduction With increasing oil prices and the consequent focus on shifting the world

energy-dependency towards renewable resources, wave energy has regained increased attention. It is

estimated that when today’s technology is fully matured, around 140–750 TWh will be commercially

exploitable annually [1]. If all potential technology is realized, this number can be greatly increased,

with some scenarios as large as 2,000 TWh, corresponding to approximately 10% of the global electricity

consumption in 2008 [2]. One of such technologies, developed by the Fred Olsen Wave Energy Project

Bolt2Wavehub, named Lifesaver, was deployed in early 2012 as a stand-alone system at Falmouth Bay,

England. The next step is to make it commercially ready and launch it at Wavehub [3].

The control method used on the wave energy converter (WEC) greatly affects the output power,

and the selection and optimization of control method for the Lifesaver system will be the focus of this

work. The theoretical control method for optimal power extraction is well-established, thanks to the

pioneering work of Falnes [4,5]. He shows that the optimal power extraction occurs when the system is

controlled with a 90◦ phase-shift between wave motion and absorber motion, a method referred to as

complex-conjugate control or reactive control. Due to the irregular nature of ocean waves, such a

production mode can only be maintained by active control of the power extraction system and requires

the real-time phase and frequency information of the incoming waves. Falnes and his team have

suggested practical solutions and optimization methods toward this [6,7], but attaining accurate real-time

wave information has proven difficult, and several methods of sub-optimal control have been suggested

to make up for this [8].

During the current deployment, the performance of the Lifesaver power take-off (PTO) and the

impact of the control strategy on the PTO is of great interest. The design process of Lifesaver has

shown that the production machines are by far the most expensive component in the system and that

the absorber hull is relatively cheap in comparison. This forces a major shift in control strategy from

the traditional control method that focuses on maximizing the absorber output. Instead, Lifesaver is

optimized towards maximizing the PTO utilization, which leads to a control method based on damping,

where the production force is proportional to the absorber speed. In this control mode, the production

force are in phase with the production speed and are referred to as active forces, as opposed to a

complex-conjugate control that requires reactive forces, which reduce the PTO utilization [9]. The

damping control selected at Lifesaver also avoids the need of real-time wave information and allows

for a simple and robust time-invariant control.

However, initial investigations indicate that Lifesaver might have potential for increased power

extraction with reactive control during calmer sea states [10], by utilizing free production capacity.

These investigations have so far focused on the hydrodynamic model of the WEC and on optimizing

average power while reducing the peak-to-average power ratio, while less attention has been paid to the

physical limitations of the generator, switchgear and the rest of the PTO system. The purpose of this
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study is therefore to develop a full wave-to-wire model of Lifesaver with an all-electric PTO system.

The model is used to evaluate the effect of different control strategies on the PTO capabilities under

different sea state conditions. Such a study is interesting, since the power extraction capabilities of a

WEC device will be strongly dependent on the impact of the control strategy implemented. Depending

on the WEC device, parameters and physical constraints of the PTO system, a control strategy with a

reactive component can potentially increase the energy production and, therefore, be an important factor

for the commercial exploitation possibilities of the WEC concept.

1.1. Description of the Investigated System

Lifesaver consists of five point absorbers with individual PTO systems connected together on a toroid

shaped device. The PTOs are all-electric systems sharing a common DC-Link and uses an electric energy

storage to power the generators and to maintain continuous rope tension. This means that each generator

will have to operate in motoring mode and wind in the rope on downward movement of the device,

meaning that some energy will have to be supplied to the system in this part of the oscillatory cycle.

Having the PTOs on a common platform gives obvious economical advantages and allows, among other

things, to utilize the pitching motion created on the device by the sea. Lifesaver is pictured on site outside

Falmouth, England, in Figure 1. Figure 2 illustrates the function of the PTO and WEC system.

Figure 1. Lifesaver on site outside Falmouth, England.

For the purpose of this study, a simplified representation of the system is defined, which consists

of a single point absorber coupled to an all-electric PTO system (generator and inverter including the

DC-link). This module is defined as the basis for the design of the wave-to-wire model in this paper. To

model the full Lifesaver system, several modules are employed in parallel to simulate multiple PTOs.

Lifesaver is prepared for operation with five PTOs, which is the basis for this work, but currently only

operates with three PTOs.
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Figure 2. Lifesaver power take-off (PTO) function.

2. Hydrodynamic Model

The hydrodynamic model of Lifesaver has the following input:

• Wave elevation time-series;

• Load force, FL, given by the load force parameters, damping, BL, and added mass, ML.

The output of the model is the velocity, η̇, and acceleration, η̈, of the device. In this work, the

hydrodynamic model is realized as a one degrees of freedom (DOF) model and only models heaving

motion. In simulation work that demands high accuracy, we use a more complex three-DOF model that

takes into account heaving, surging and pitching motion. However, as this work focus on the electrical

performance, with a relative comparison of the output result, we believe that the simplified one-DOF

model is sufficient for this work.

2.1. Generation of Wave Elevation Time Series

A common way to model the sea is by using an energy spectrum. There are various mathematical

models that are used for defining such spectra, and the most widely known is the two-parameter

Bretschneider spectrum [11]. The preferred analytical form of the frequency spectrum, S (ω), is given

in Equation (1).

S(ω) =
5

16
H2

s

ω4
0

ω5
e−

5ω4
0

4ω4 (1)

here, Hs is the significant height of the sea state; and ω0 is the peak frequency. Figure 3 shows the

Bretschneider spectra for different values of the peak frequency. The time-domain wave elevation of the

real sea waves can be regarded as the super-position of different frequency sinusoidal waves. Thus, the

energy spectrum can be used to represent the sea by summing a large, but finite, number of different

frequency components of infinitesimal height and random phase. The elevation due to each such wave

components can be expressed by Equation (2) [12].

ζn(t) =
√
2S(ωn)dω sin (ωnt+ φn) (2)
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here, φn is the randomly generated offset angle for each wave component; n. By summing these waves,

the wave elevation time-series is created as described by Equation (3). A typical output time-series is

plotted in Figure 4.

Figure 3. Bretschneider spectra for different values of the peak period, Tp[s].
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Figure 4. Time-series of a Bretschneider spectrum, Hs = 7m and Tp = 11s.
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2.2. Forces Acting on the WEC System

Mη̈ = fe(t) + fs(t) + fr(t) + fm(t) (4)

Equation (4) calculates the force balance for a buoy excited by an incoming wave, where η is the

device position with respect to the equilibrium position; and M is the equivalent mass of the WEC

system, consisting of the mass of the WEC and the inertia of the power take off system [13]. fe is the

excitation force; fr is the radiation force; fm is the machinery force, or the force related to the power

take off system; and fs represents the hydrostatic force. In this model, the mooring forces, viscous

forces and environmental forces are disregarded.

2.2.1. Hydrostatic Force

The hydrostatic force is the resultant force of gravitational forces and forces acting on the buoy due

to displaced water and is calculated with Equation (5), where ks represents the hydrostatic stiffness.

Commonly, the stiffness is considered a constant value, and thus, the force is proportional to device

displacement, η [8].

fs = ksη (5)

2.2.2. Radiation Force

An oscillating device will create a diffraction wave, and the force acting on the device due to this wave

is referred to as the radiation force. In the frequency domain, it is typically expressed by Equation (6),

where mr is the added mass of the water oscillating with the device and Rr is the radiation resistance.

As these parameters are frequency dependent, the time domain expression of the radiation resistance can

be described by Equation (7) [14].

F̂R(ω) = mr(ω)η̈ +Rr(ω)η̇ (6)

Fr(t) = mr(∞)η̈ +

∫ t

0

k(t− τ)η̇(τ)dτ (7)

In the first term of the right-hand side of this expression, mr(∞) is the added mass at infinite

frequency. The second term is a convolution integral, where the convolution kernel, k, can be considered

the radiation force impulse response. As discussed by Hals [8], a good approximation is to replace this

convolution term by the state-space equivalent represented by Equations (8) and (9).

Fr(t) = Ckz(t) + Dkη̇(t) (8)

ż(t) = Akz(t) + Bkη̇(t) (9)

Taghipour, Perez and Moan show in [15] how the Realization Theory can be used in order to identify

the state-space parameters, Ak, Bk, Ck and Dk. By identifying the discrete radiation impulse response
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through inverse Fourier transform of k(ω), as shown in Equation (10), a state-space system with a

corresponding impulse response is generated.

k(ω) = iω{mr(ω)−mr(∞)δ(ω)}+Rr(ω) (10)

The values for radiation resistance and the added mass of Lifesaver in the frequency domain are

known and supplied by Fred Olsen for a range of frequencies. This impulse response fitting is realized

using the Matlab Robust Toolbox function imp2ss, which is based on the Hankel Singular value

decomposition proposed by Kung [16]. Using this, a state-space system is generated and a good

representation of the radiation force is obtained. A more thorough explanation of how the radiation

force is modeled for Lifesaver is given in [10].

2.2.3. Excitation Force

The force that the incident wave exerts on the WEC body is called the excitation force. It is given by

the elevation of the sea, ζ , and the excitation force coefficient, HFζ , as defined in Equation (11).

Fe,c(ω) = HF,ζ(ω)ζ(ω) (11)

this coefficient is known and supplied by Fred Olsen for a range of frequencies. In a similar way, as for

the radiation force, the time domain expression of the excitation force becomes a convolution term [8],

as described by Equation (12).

Fe,c(t) =

∫ t

0

hFζ(t− τc)ζ(τ)dτ (12)

A state space representation of the convolution term is then found in the same manner as outlined

for the radiation force; by impulse response fitting with the discrete excitation force impulse response

extracted from the excitation force coefficients.

2.2.4. Load Force

The load force, FL, or machinery force, is the force applied to the system by the PTO. The magnitude

of this force, and how this force is applied, greatly influences the power extraction capabilities of the

WEC. Typically, the load force is represented by one component proportional to the device velocity and

a second component proportional to the device acceleration, as stated by Equation (13). BL is considered

the machinery damping; while ML is the machinery added mass. Input into the wave-to-wire model is

therefore either the load force or the load force parameters.

FL = BLη̇ +MLη̈ (13)
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3. Electric Power Take-off System

The Lifesaver PTO system, which is the basis for the model developed in this article, is

all-electric. The stand-alone system, currently deployed outside the coast of England, consists of the

following components:

• Permanent Magnet Synchronous Machine;

• Inverter/Rectifiers;

• Ultra-capacitor Bank;

• DC-link Charger;

• Battery Charger;

• Brake Charger and Dump Resistor.

In Lifesaver, all the PTO rectifiers are coupled in a common DC-link, as illustrated in Figure 5. The

point absorber with PMSMand an inverter/rectifier is considered a complete system, which only needs to

connect to a DC-link to operate. The scope of this section is to model one such module and to consider

the DC-link as a constant voltage of 600 V. The electric system considered for the model is shown in

Figure 6. The main specifications of the PTO, as defined by Fred Olsen, are given in Table 1.

Figure 5. Current topology of the stand-alone system for Lifesaver.

Figure 6. Schematic representation of the all-electric PTO system.
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Table 1. Lifesaver PTO characteristics.

Property Value Unit

Generator nominal speed 400 rpm

Generator maximum torque 3700 Nm

DC-bus voltage 600 V

Angular to linear gear ratio 38.5 1/m

PTO maximum force 100 kN

PTO minimum force 10 kN

PTO nominal speed 1.1 m/s

3.1. PWM Converter Modeling

The PWMconverter is modeled with a time constant equal to unity in the comparably slow wave

energy system. This implies that the voltage applied by the converter is considered to follow the reference

voltage perfectly and instantly. This approach has the following advantages:

• Simulation time is significantly reduced. Even for low switching frequencies in the converter

bridge, the simulation time becomes tenfold times longer than with the unity block solution;

• No filter is needed in the system in order to evaluate voltage measurements, as the harmonic

distortion due to the high frequency switching is not present.

For the simulations that are being performed in this article, there are two important attributes to

consider for the PWM converter. One is the maximum value of the voltage, which is set by the constant

value of the DC-bus, and the other is the losses that occur in the converter. The first condition is handled

by direct saturation of the voltage in the current controller and by advanced field-weakening control,

as explained later. The losses are more difficult to evaluate, since not enough data is available of the

converter used in the Lifesaver system. However, the inverter efficiency is included in the efficiency

model provided in Section 3.3, so that a complete figure for the mechanical to electrical conversion

efficiency is produced. The inverter losses are small compared to the generator and contributes with

3%–10% of the total losses.

3.2. Modeling and Control of the Permanent Magnet Synchronous Generator

In this model of the Lifesaver PTO, the generator is considered a 28 pole surface-mounted PMSM.

The generator characteristics used for the model are given in Table 2.

For given voltages, uq and ud, on the generator terminals, the current equations for the PMSM are

commonly expressed as stated by Equations (14) and (15) [17].

did
dt

= −RS

L
id + ωeiq +

1

L
ud (14)

diq
dt

= −RS

L
iq − ωe

(
id +

ΨPM

L

)
+
1

L
uq (15)
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here, ωe is the electric angular frequency of the generator; id and iq are the d- and q-axis current; ΨPM

is the rotor permanent magnet flux; while Rs and L are the stator resistance and inductance, as defined

in Table 2. For a surface mounted PMSM, the inductance in the d- and q-axis can be considered equal.

Table 2. Generator characteristics.

Property Value Unit

Rated Power, Pn 83.7 kW

Rated Voltage, Vn 400 V

Number of Poles, np 28

Torque Constant, kT 10.8 Nm/A

Winding Resistance, Rs 0.038 Ω

Inductance, L 1.4 mH

Inertia, Jgen 1.31 kgm2

Permanent Magnet Flux,ΨPM 0.257 Wb

3.2.1. Current Control

As is known from d-q reference frame analysis [17], there is a cross coupling between the q-axis

and the d-axis in Equations (14) and (15). This can be avoided by feed-forward technique, defining a

reference voltage, vd = ud + ωeLiq and vq = uq − ωeLid − eq. This gives two independent first-order

equations in the d-q frame, as given by Equations (16) and (17). The transfer functions from current, i;

to voltage, v, can thus be written as stated by Equation (18).

vd = Rsid + Ls
did
dt

(16)

vq = Rsiq + Ls
diq
dt

(17)

i(s)

u(s)
=

1
Rs

1 + Ls

Rs
s

(18)

These current loops are controlled using PIregulators. Figure 7 shows the block diagram with the

PI-controller, PWM and converter bridge included. As discussed earlier, the transfer block of the PWM

and converter bridge is set to be unity.

Figure 7. Block diagram of current control loop. Notably, the PWM + converter block is

represented by a unity gain.
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The parameters of these PI regulators are tuned according to the modulus optimum [18], canceling

out the electrical time constant, Ti =
Ls

Rs
. This results in the open-loop transfer function expressed

in Equation (19). Determination of gain, Kp, is done through evaluating the term for the closed loop

transfer function. As it is desirable to have a closed loop transfer function gain equal to unity, a value for

Kp can be approximated.

GOL = Kp
1 + Tis

Tis

1
Rs

1 + Ls

Rs
s
= Kp

1
Rs

Ls

Rs
s
= Kp

1

Lss
(19)

M(ω) =
GOL

1 +GOL

=
Kp

Lsjω +Kp

= 1 (20)

To obtain unity closed-loop gain, Kp >> Lsω, as shown in Equation (20). As the value for

Ls = 1.4 mH and ωe,max < nmax
2π
60
npp ≈ 5, 000, it is considered that Kp = 25 is sufficiently large

for all operation areas. In Figure 8, the current control with de-coupling and PI controllers is shown

implemented in the Simulink block, named current control.

Figure 8. Current control implemented in Simulink.

3.2.2. Torque Control

In order to make sure that the limitations of the electric PTOs are not exceeded, torque control is

required. For low-speed operation, this is realized by maintaining a constant damping, BL, and added

mass, ML. However, control is required to saturate the load-force at its maximum value, as well as to

implement the field weakening control reference current-values. Initially, the torque control method over

the entire range of operation speeds is designed to function as described in Figure 9. Here, Imin refers to

the minimum torque constraint to keep tension in the rope.

The input into the torque-control flowchart in Figure 9 is the iq reference current and the generator

speed, ωe. The reference current is obtained based on the reference torque from Equation (21). The

reference torque is calculated from the mechanical model of the wave energy converter in Equation (22),
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where ρg is the total gear ratio, including the linear-to-rotational radius, thus having the unit, [ 1
m
]. The

generator speed is also calculated from the mechanical model and is given by Equation (23).

iq,ref =
Te,ref

3
2
npΨPM

(21)

Te,ref =
1

ρg
(Bη̇ +MLη̈) (22)

ωe = npρgη̇ (23)

Figure 9. Flowchart representing the idea behind the determination of current reference for

the torque control.

The speed at which field weakening begins, ωmax = ωfw, can be expressed by the generator

characteristics, as seen in Equation (24). The method used for determining the field weakening reference

d- and q-axis currents is based on the robust field weakening control strategy described by (Pan and

Liaw, 2005) [19].

ωfw =
−2RsImaxΨPM +

√
(2RsImaxΨPM)2 − 4(Ψ2

PM + LI2max)(R
2
sI

2
max − V 2

max)

2(Ψ2
PM + L2I2max)

(24)

3.3. Generator Efficiency

As the detailed properties of the generator and converter are not known, it is not possible to make an

accurate model of the system losses based on theoretical analysis. However, from the manufacturer of

the generator and converter module, the efficiency at a number of operating points have been provided

to Fred Olsen. This has been used to develop a polynomial expression for the combined generator and
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converter losses as a function of generator torque, Te; and speed, ωe, as given by Equation (25). Due to

a confidentiality agreement with the manufacturer, the actual figures cannot be disclosed. However, the

resulting efficiency map plotted in Figure 10 gives a good understanding of the system performance.

Ploss = a1T
4
e + a2T

2
e + a3|ωe|+ a4ω

2
e + a5|ωe||Te|+ a6|ωe|T 2

e (25)

Figure 10. Generator and converter efficiency map.
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4. Wave-to-Wire Modeling

The complete wave-to-wire Simulink model of the WEC system of Lifesaver is shown in Figure 11.

Previous investigations [10] show a large increase in average generated power when complex conjugate

control is applied to the Lifesaver buoy. To further investigate this potential, full wave-to-wire

simulations will be performed, where the physical limitations and efficiency of the all-electric PTO

system are also included. When the control is being referred to as complex conjugate, it is meant

that the load parameters are being tuned according to complex conjugate control equations [9] in the

non-saturated mode of operation.

4.1. Simulation Results for a Passive Loaded System

The system is simulated for a low wave state with Hs = 0.5m and Tp = 6.5 s. The load coefficient

is calculated as explained in [10] and results in damping, BL = 90 kNs/m. In Figures 12 and 13, the

input wave elevation and the corresponding generator speed is plotted. Notably, the generator speed is

well below the torque saturation speed for the entire simulation time. The d-axis current, q-axis current

and generator torque are shown in Figure 14, and in accordance with the generator speed plot, these

plots show that torque saturation does not occur for this simulation. The constant zero d-axis current
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also indicates that field weakening does not occur. The mechanical extracted power, generator losses

and output electrical power is plotted in Figures 15 and 16.

Figure 11. Simulink wave-to-wire model of the wave energy converter (WEC), Lifesaver.

The average extracted mechanical power for this simulation is found to be 1.75 kW, and the generator

losses are 0.56 kW. This gives an average efficiency of 66.85% and an electrical output power of 1.17 kW.

The low efficiency is typical in low wave states, where the generator has to operate with high torque and

low speed.

Figure 12. Plot showing input wave elevation time series. Hs = 0.5m and Tp = 6.5 s.
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Figure 13. Generator speed for the input wave elevation shown in Figure 12. The red line

indicates torque saturation speed; the black line indicates field weakening speed. The system

is passively loaded.
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Figure 14. Converter operation for the passively loaded case.
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Figure 15. Generator operation for the passively loaded case.

(a) Mechanical extracted power

(b) Generator losses

(c) Electrical output power

Figure 16. Mechanical extracted power (blue), generator losses (red) and electrical output

power (green). The WEC system is passively loaded.
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4.2. Simulation Results for a Reactive Controlled System

Now, a wave-to-wire simulation is performed for a similar wave elevation input as seen in Figure 12.

The load parameters are tuned according to [10]. This gives a damping, BL = 22.1 kNs/m, and an

added mass, ML = 84.4 tons. The generator speed for such a controlled system can be seen in Figure 17,

and as expected, the generator speed is significantly increased when compared to the reference case of

passive loading shown in Figure 13. When the generator speed increases above 190.5 rpm, the q-axis

current and the torque saturate, as is seen in Figure 18. In Figure 19, the generator speed and torque are

plotted in the same normalized figure. In this case, in contrast to the passively loaded system, the torque

is not in phase with the generator speed.

Figure 17. Generator speed for the input wave elevation shown in Figure 12. The red line

indicates torque saturation speed; the black line indicates field weakening speed. The WEC

system is reactively controlled.

From linear control analysis, it is demonstrated that when a reactive component is added to the applied

force, negative power-flow will occur [9]. This can also be understood from the plot of generator speed

and force, as seen in Figure 19, where there is a phase difference between these two values. When

dealing with the changing direction of the power flow, it is important to evaluate the losses correctly.

In the Simulink model, the absolute value of the losses is calculated. The electrical output power is

then found by Equation (26). This means that the electrical power will have lower magnitude than the

mechanical power in the positive power sequence, but larger magnitude than the mechanical power when

the electrical power is negative. The time domain plots for these values are plotted in Figures 20 and 21.
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Figure 22 shows in a more detailed way how these powers compare to each other between 135 and

145 seconds.

Pel = Pmech − |Ploss| (26)

Figure 18. Converter operation for the reactively loaded case.
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Figure 19. Zoomed-in generator speed (blue) and generator force (red) plotted together and

normalized. The WEC system is reactively controlled.
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Figure 20. Generator operation for the reactively loaded case.

(a) Mechanical extracted power

(b) Generator losses

(c) Electrical output power

Figure 21. Mechanical extracted power (blue), generator losses (red) and electrical output

power (green). The system is reactively controlled.
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Figure 22. Close-up of mechanical extracted power (blue), generator losses (red) and

electrical output power (green). The WEC system is reactively controlled.
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It is important to keep in mind the fact that losses do not behave bidirectionally [20] and that the

accumulated average of the losses can become even larger than the average extracted mechanical power.

The performed simulation is an example of this; the average extracted mechanical power is 2.57 kW,

while the average losses are 2.72 kW. This means that the average output electrical power is −0.15 kW,

and the permanent magnet machine consumes more power due to losses than it produces.

4.2.1. Performance of Passive Loading vs. Reactive Control

The key result from these simulations is that when taking generator losses into account, the

performance of reactive control close to complex conjugate control is not satisfactory [9]. In fact, average

delivered power to the grid is negative, meaning that in average power flows from the grid to the ocean. In

order to understand why such conditions occur, a few properties about reactive control has to recognized.

In order to achieve reactive control, the machinery that supplies the load force not only receives energy,

but also has to return some energy. We recognize that by the increased bi-directional power flow, which

results in high peaks of received power and lower peaks in returned power. On average, the power is

therefore positive. However, as J. Falnes comments in [4], this calls for an energy conversion efficiency

preferably close to unity, which is not the case for the Lifesaver generator. The above observations lead

to the following conclusions:

• Approximate complex conjugate control leads to increased mechanical power extraction;

• However, the generator efficiency becomes more important, as the bi-directional power peaks both

contribute to the average losses;

• As Lifesaver has an average generator efficiency of around 80% in the design wave state and lower

efficiency in the lower wave states, the losses can become very large;

• Due to this, approximate complex conjugate control does not give maximum electrical

power output.
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In the following sections, a simulation trial for determining the optimal control parameters for a given

sea state will be outlined.

4.3. Maximizing Electrical Output Power-Table for Sub-Optimal Operation Parameters

Optimal control of a wave energy converter is often thought of as the control that gives maximum

power extraction or maximum energy absorbed from the sea. However, a practical definition should be

the set of control parameters, which gives the maximum electrical power delivered to the grid respecting

the physical limits of the WEC device. From now on, the term optimal control (or sub-optimal) is used

with this definition in mind. It has been shown that linear control theory is not a suitable approach

to identify these optimal control parameters for irregular waves. Instead, an analytical solution to the

problem can be attempted from the expression of the average extracted power in Equation (27) and the

loss approximation expression in Equation (25).

Popt,el(Rl, LL) = max (PM − |Ploss|) (27)

This expression becomes a non-trivial equation to solve as the generator losses is a fourth-order

expression dependent on the control parameters, as well as the generator speed. A simplified approach is

therefore pursued by running a number of simulations with different load parameters to identify optimal

control for each sea state by trial and error. The goal of these simulations is, however, to make a map of

optimal control parameters for different sea states.

4.3.1. Example Identification of Optimal Control Parameters for a Low Wave State

The identification of optimal control parameters is performed by scanning step-wise through all values

for BL and ML. The resulting output is illustrated in Table 3 with some values listed. Notably, the

leftmost column corresponds to the purely damped system.

The losses are listed in Table 4. Notably, it is observed that maximum generator losses occur when

the system is complex conjugate-controlled. This is due to the accumulated average losses of the high

bidirectional peaks in power. The losses are lowest for the upper left corner of the table, where the control

parameters go towards zero. This is natural as it corresponds to a no-load operation of the generator, and

the losses are purely rotational losses.

Combining the two tables, the corresponding electric output table can be seen in Table 5. As seen

from the map, an optimal set of control parameters is identified for this sea state with an added damping,

BL = 120 kNs/m, and an added mass of ML = 40 tons. Notably, the average electric output power is

increased by 11.9% compared with the optimal passive load case.
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Table 3. Average extracted mechanical power [kW].
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Table 4. Average losses [kW].

BL ×103 (Ns/m)

0 10 20 30 40 50 60 70

M
L
×1

0
3
(k
g
)

20

35

40

45

50

59

70 1

77.5

80

90 0.643

100 0.713 0.968

110

120 0.853 1.08 1.21

140 0.992 1.31

180

234



Energies 2013, xx 23

Table 5. Output electric power [kW].
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4.3.2. Observations from Mapping of Control Parameters

From a number of simulation results for the different sea states, some general observations can be

made from the optimal control parameter mapping.

• Combining the maps of output mechanical power and generator losses, a map of optimal control

parameters with respect to electrical output power is made;

• For sea states with low significant wave height, the optimal control parameters have a larger

component of added mass and smaller component of added damping;

• For the sea states with low significant height, the average power is increased by a significant factor,

i.e., 10% for Hs = 0.5;

• When the significant wave height increases, the optimal control parameters shift towards a larger

factor of added damping;

• For the sea states with a higher significant wave height, the increase in average power compared

with the reference case of passive loading goes towards zero;

• For a sea state with lower peak periods, the optimal control parameters have a larger

damping factor;

• For increasing peak periods, the optimal control parameters have larger fraction of added damping.

This means that the optimal control moves towards complex conjugate control;

• Average power extraction decreases with increasing peak period of the sea. This is caused by the

reduced generator speed and the subsequent generator performance reduction [21,22].

4.4. Energy Calculations-Potential Increase in Annual Energy Production with Optimal Control
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By using sea-state statistics, estimations of annual energy production can be made. Previous

estimations have been made for the Lifesaver concept [23], and some preliminary investigations have also

been performed into a potential increase in annual energy production using reactive control. However,

the latter paper does not take into account the generator force limitation or generator losses, and these

factors become very significant under reactive control in particular [24]. This means that an investigation

into increased energy production using reactive control with generator limitations is a very interesting

and novel addition to the former research.

Identification of the optimal control parameters for all sea-states has not been performed. Only

selected sea-states were used as a representation of the whole spectra. From the wave scatter diagram in

Table 6, one can define the following three sea states:

• Hs = 0.75m and Tp = 4.5 s are the sea states that represents the low energy sea states;

• Hs = 1.75m and Tp = 5.5 s represent the medium energy sea states;

• Hs = 3.25m and Tp = 6.5 s represent the high energy sea states.

Table 6. Wave scatter diagram for Wavehub location. Blue area represents low-energy

sea-states, green represents medium energy sea-states and red represents high

energy sea-states.

Defining the different sea states in Table 6 as one of these three and summing the total annual

hours results in Table 7. Using the similar approach, as seen in the previous section, Table 7 lists the

average power extraction for each of the three defined sea states for both optimal passive loading and

optimal control parameters from an electrical output perspective. The results show that an annual energy

production increase of 1% is a fair estimation for Lifesaver if optimal reactive control is implemented.

236



Energies 2013, xx 25

Table 7. Power and energy calculations for the representative sea states

Low energy Medium energy High energy Total

Hours per wave state 2182 4370 2468 8760

Av. Pow. Pass.(kW) 6.70 19.04 31.40 -

Av. Pow. Opt. (kW) 7.02 19.24 31.47 -

Diff (%) 4.78 1.4 0.22 -

Ener. Pass.(MWh) 14.62 83.22 77.53 175.37

Ener. Opt.(MWh) 15.32 84.10 77.70 177.12

Difference (%) 4.78 1.40 0.22 1.0

5. Discussion

The main motivation of this article was to develop a full wave-to-wire model of the Lifesaver WEC

and to use this model to investigate how to control the device in order to extract maximum power under

given physical constraints. Based on this, the key observations are summarized below:

• A full wave-to-wire model of Lifesaver point absorber with all-electric power take off system has

been made in Matlab and Simulink;

• The main characteristics of the Lifesaver generator and power take off system have been modeled

using classical representation of a Permanent Magnet Synchronous Machine complete with field

weakening operation and a simplified model of the inverter and DC-link;

• A control method has been demonstrated that enforces the force, voltages and currents within

the different rating constraints of the power take-off system, even for the sea states with high

significant wave height;

• Wave-to-wire simulations show that Lifesaver has limited potential for increased power extraction

using reactive control, due to the force and efficiency limitations of the generator; Analysis shows

that the if the device is optimally controlled, only a 1% increase in annual energy production can

be expected compared to the reference case of passive loading.

5.1. Aspects of Practical Implementation in Lifesaver

As Lifesaver is currently deployed in the ocean for an extensive testing period, the results reported in

this article can also be experimentally verified. There is naturally some degree of uncertainty regarding

how realistic the developed model is of the real-life Lifesaver WEC. This is especially due to the

following factors:

• Hydrodynamic model of Lifesaver is not completely accurate;

• The validity and accuracy of the simplified PMSM model used;

• The damping coefficients used by Lifesaver in the sea are not the same found to give optimal power

extraction in the model.
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Still, it is interesting to investigate the effect of reactive control on the physical device. A control

strategy can be suggested for a preliminary test of Lifesaver’s response to reactive control based on the

observations done in this model. As a rule of thumb, the results in this investigation finds that optimal

control of Lifesaver occurs with an added mass of approximately 10% of the added damping. However,

undertaking such an investigation might not be desirable if the theoretical maximum annual increase in

energy is only 1%. It is therefore important to analyze the initial test in detail in order to evaluate if the

limited potential described in this article could be valid also in reality.

5.2. Implications for a Generic WEC

Several of the observations in this article could be very useful for a generic point absorber and can

thus be implemented in the planning and research of future wave energy devices. Primarily, this is

true regarding how to develop a wave-to-wire model based on hydrodynamic measurement data of the

device and on the electric power take-off ratings. Perhaps the most interesting point is that such a

wave-to-wire model can be used to investigate control techniques and decide on favorable power

electronics and generator ratings at an early stage of the concept development. In order to do this,

one would need hydrodynamic parameters, like the excitation force coefficient, radiation resistance and

the mass of the device for a range of different frequencies. These can either be obtained by model testing

of a prototype or by some software analysis (using WAMITand ACQUA).

6. Conclusions

Wave-to-wire simulations show that implementing reactive control with load parameters close to

approximate conjugate control does not give increased electrical output power. This is because the high

peak-average ratio of approximate complex conjugate control gives large accumulated average losses,

and in the extreme examples these, losses can be larger than the average extracted mechanical power,

meaning electric power is, on average, extracted from the grid. An intermediate control strategy based on

a smaller component of added mass is found to be the optimal control strategy from an electrical output

power point of view, and the optimal control parameters for a set of representative sea states is identified.

Annual energy estimations are performed based on a set of representative sea states. Compared to the

reference case of passive loading, the optimally controlled Lifesaver shows an annual increase in energy

production of 1%. This indicates that Lifesaver has low potential for increased power extraction using

reactive control, and it is recognized that this is due to the non-negative minimum force restriction of

the power take-off system and the limited efficiency of the generator. These results should be verified

by practical implementation on Lifesaver, but must be weighed against the cost of updating the control

software, as the expected production gain is marginal.

The limited effect of reactive control on Lifesaver has been demonstrated through a series of

wave-to-wire simulations. This analysis of the power take-off capability of the Lifesaver WEC is

nonetheless valuable, especially for future development of point absorber wave energy devices. In

addition to demonstrating the development of a wave-to-wire model of a WEC, perhaps the most

important contribution of this investigation is in highlighting some of the major advantages, properties

and drawbacks of the PTO capabilities of all electric direct-driven point absorbers.
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Abstract:

Purpose - This paper describes the design and function of Fred. Olsens Wave Energy Con-
verter system Lifesaver with special focus on the stand-alone electrical system that is imple-
mented for operation without grid-connection.

Design/methodology/approach - The paper focus on the detailed design of the DC-Link
system that drives the industrial 400 VAC inverters and generators for the production sys-
tem. The DC-Link is stabilized by an ultracapacitor bank and has no external source or
grid-connection.

Findings - The system has been tested through extensive sea trials since April 2012 and has
proved its function. Some results from real sea testing are presented.

Practical implications - This paper proves the viability of the specified design and may
serve as a basis for the design if similar systems in the future.

Originality/value - This paper presents a Wave Energy Converter system that has proven
successful operation through practical tests, and is therefore regarded as a high value paper as
there is limited experience on this subject.

Keywords Wave Energy Converter, All-electric, Prototype, Fabtest, Lifesaver, Fred Olsen
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1 Introduction

Fred. Olsen (FO) has endeavored on developing a commercial Wave Energy Converter (WEC)
that can convert ocean wave energy into electricity suitable for grid injection. Ocean Wave
Energy shows a great potential for power extraction with high power density and good avail-
ability. However, after more than 100 years of development, trial and error, wave energy has
not yet reached a commercial level. The greatest challenges seems in FO’s point of view to be
mainly two issues: Designing a system with high reliability that can tackle the harsh ocean
environment, and handling the large fluctuations in incoming power that demands heavily over-
sized mechanical and electrical conversion capacity. Both issues can be handled through good
engineering, however the challenge is to achieve this within a reasonable cost.

Figure 1: FO’s Wave Energy Converter Lifesaver, located in Falmouth Bay, England, was
launched in April 2012.

The FO team has been working steadily toward the goal of commercial wave power through
several years of development, and our latest WEC named Lifesaver, was installed in Fal-
mouth Bay test area (FABTEST) outside Cornwall, England in April 2012 (Hjetland et al)
[1]. Lifesaver has three individual Power Take-Off units that produce electricity from an
electro-mechanic winch drive, and is equipped with a complete power production system. Life-
saver is pictured in on site Fig. 1 and the actual power output from the three PTOs in normal
production is plotted in Fig. 2. The power level is normalized to the rated output power for the
device, and the plot demonstrates the poor power quality typical for wave energy converters.
However, as shown in our series of articles [2, 3, 4, 5], this issue can be handled effectively in a
larger WEC farm, and the power quality does not seem to be a threat to effective grid export.

During the first test phase at FABTEST grid connection is not available, thus Lifesaver
is designed as a dual option system that can operate both in stand-alone and grid connected
configuration. Since the on-board electrical conversion system is based on 400 VAC industrial
drives and machinery, an advanced power system was designed to supply the required on-board
power. There are no auxiliary power sources (i.e. diesel generator, wind turbines, PV cells) in
the system and all power for on-board systems are drawn from the produced wave energy. This
is realized with an ultracapacitor bank that is connected directly on the common DC-Link,
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Figure 2: Typical power output from Lifesaver, as produced at FABTEST. The output power
is normalized to the rated output power for the power plant.

and can be viewed as the corner stone in the system. The system also relies on a battery
bank with bi-directional DC/DC converters to handle startup and service modes, and a power
dump system is installed to handle excess energy during production. This article focus on the
stand-alone power system designed for Lifesaver and describes the requirements, design and
development. Some results from the on-going sea trials are also presented.

1.1 Fred. Olsen’s Wave Energy Project

FO started with Wave Energy in 2000 and in 2004 the Wave Energy Converter Buldra, built as
a platform with multiple point absorbers, was launched. Since then FO has tested out various
concepts and built several different prototypes, all based on the point absorber concept. The
series of experiences have led to the single body point absorber concept, as realized by our
latest prototype Lifesaver. Point absorbers are not the most efficient absorber type measured
in captured energy, but has shown to be successful on total performance and cost of energy.

Up to date FO has operated four WECs based on the single body point absorber in real sea
conditions. The first, named B33, was a small proof-of-concept device that was operated outside
Akland, Norway during the autumn 2007 and winter 2008. B33 showed good results, leading to
the second device, named B22, that was equipped with a full-scale control, communication and
production system. B22 was operated outside Risør, Norway from the summer 2008 until spring
2009. Based on these experiences FO started the next development phase in collaboration with
a few selected European companies and universities through the SEEWEC project. This work
lead to the full-scale system Bolt that was installed outside Risør, Norway in June 2009. Bolt
is pictured in Fig. 3 on site and has per December 22, 2010 produced 3 360 kWh of energy
(Bjerke et al) [6].
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Figure 3: FO’s Wave Energy Converter Bolt, located outside Risør, Norway has been in oper-
ation since June 2009.

Based on the success with Bolt, FO decided to use the knowledge and experience gained so
far to proceed to the next generation design. An agreement with several UK companies was
made with funding from the UK Technology Strategy Board (TSB). The goal of the project was
to improve the Bolt R© concept towards a commercial level where it can be launched at Wavehub
[7], thus the project name Bolt2Wavehub. The project resulted in the full-scale system Lifesaver,
which consists of a 16 m toroidal floater with five individual all-electric PTO systems. Lifesaver
was installed on FABTEST in April 2012 and is planned to be in operation until March 2013,
when she has to be brought ashore due to strict UK regulations.

Up to date FO has not has not had a single serious event with any of the WEC systems,
which has allowed for continuous long term testing in real sea conditions. This has proved
invaluable for building experience with wave energy. Based on our experience the problems
and issues that arise in real sea conditions are multifaceted and outreaches far beyond the
scope of the tests undertaken.

2 System description

Lifesaver is an all electric WEC system based on direct electric winch drives that are moored
to the sea floor. The PTO principle is sketched in Fig. 4 and demonstrates the mechanical
simplicity of the system. To keep tension in the winch system upon downwards movement,
the generator is operated in motoring mode, effectively winding the rope back in on the drum.
This causes the negative power periods that can be seen in Fig. 2.

On the electrical side, all PTOs are connected to a common DC-bus that serves as the
backbone for the power system. This allows for natural power exchange between the PTOs
and the power components, and ensures a natural balance in the power flow. As can be seen in
Fig. 5 this configuration is the same for both the stand-alone and the grid connected solution.
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Figure 4: PTO principal sketch for Lifesaver

In the grid connected option the available power surplus on the DC-Link is converted to AC
and transformed to grid. The capacitor bank indicated on the schematics could serve as an
intermediate energy storage before transfer to grid, however recent studies have shown that
this is not required and that capacitor bank only needs to be sized for the control stability of
the inverters.

In the stand-alone solution on the other hand, a significant energy storage is required to
make up for the negative power periods caused by pull-back. Several options were considered,
pointing towards the ultracapacitor bank as the most suitable solution for our system. The
ultracapacitor bank is connected directly on the DC-link, and is backed by a battery bank
through a bi-directional DC/DC converter. In addition, a power dump system is required to
handle excess energy. Fig. 5(b) shows the detailed schematics for the stand-alone system, and
the specific system components and solutions are explained in detail in the following sections.

2.1 Power Take-Off system

Property Value
Maximum production force 100 kN
Nominal generator speed 400 rpm
Maximum generator speed 1 800 rpm
PTO nominal production power 15 kW
Generator nominal power 80 kW
Inverter nominal power 120 kW

Table 1: PTO specifications

The purpose of the Power Take-Off (PTO) system, is to convert mechanical motion imposed
by the waves to electrical energy. The main PTO components are the winch system, the gen-
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erator and the inverter. The mechanical configuration is shown in Fig. 4. A high-performance
permanent magnet servo machine manufactured by Siemens is selected as generator for the sys-
tem. These machines are characterized by low inertia, high torque density and high efficiency,
which are important properties for a direct coupled wave energy device with a constantly chang-
ing speed. The machine is custom built after FO specifications to meet the requirements for
Lifesaver. One of the most important characteristics of the machine is the high ratio between
nominal and maximum speed, as listed in Table 1. This allow for early power saturation and
results in reduced cost on the inverter and power transfer system. The effect of this on cost
and performance is described in detail in previously published articles [2],[8].

A permanent magnet machine that is driven by an external uncontrollable force, such as the
case for a wave power plant, can be vulnerable to overspeed. If the machine is forced to exceed
nominal speed while the inverter is not in operation, the system may be electrically damaged
by overvoltage, even though the machine can handle the speed mechanically. Therefore, each
PTO is fitted with a Voltage Protection Module (VPM), which will automatically short-circuit
the generator in the event of uncontrolled overspeed. This will ensure that no harmful energy
is allowed to enter the inverter or the downstream power system. The VPM used is a standard
product supplied by Siemens and fires at 830V, which is the maximum allowed voltage for the
inverter used. This defines the upper limit of the operational range of the capacitor bank as
illustrated in Fig. 15 on page 16.

The PTO is designed as a complete system, and only requires a DC-Link connection and
a field bus control connection to operate. This leads to a flexible system where PTOs may be
swapped, serviced and rebuilt without any changes to the WEC itself.

2.2 Capacitor bank

The energy storage is the corner stones in the stand-alone system. Initially, two solutions
were explored: A flywheel based system and a capacitor based system. The flywheel could be
implemented as an extra PTO system that rotates a mass instead of driving a winch. However,
the performance and modularity offered by the off-the-shelf ultracapacitor system was thought
to outperform the flywheel solution, as this would have to be custom designed.

The requirement for the capacitor bank is to supply the required energy for winding in 10 m
of rope on each PTO with 10 kN of pull force. It must also handle wind-in speeds of several
meters per second. With a system efficiency of 0.8, and taking into account all five PTOs, the
required energy can be calculated to 625 kJ by Equation 1. Wm is the mechanical energy, F is
the mechanical force and s is the distance of motion parallel to the direction of force. Equation
2 is the time derivative of equation 1 where energy and distance becomes power and speed, and
indicates a required power of several hundred kilowatts. Equation 3 shows the energy storage
capacity We of a capacitor based on capacitance C and nominal voltage Vn.

Wm = F · s (1)

Pm = F · v (2)
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Figure 7: Maxwell technologies R© 48V ultracapacitor bank module with active cell balancing

We =
1

2
C · Vn

2 (3)

A third requirement for the capacitor bank is that it must handle peak voltages up to 830 V.
A configuration of 17 serial connected modules of the Maxwell technologies R© 48 V module [9]
fulfill all these requirements, and is the selected configuration. The module is shown in Fig.
7. Each module contain 18 serial connected ultracapacitors that are conditioned by an active
balancing network. The balancing network allows for bypassing some of the charging current
on each cell and is controlled so that all the cells are at equal voltage. If the nominal voltage on
the entire module is exceeded, some current is by-passed through the entire module to ensure
module balance. The technical data for the capacitor bank is given in Table 2.

A drawback with direct connection to the DC-Link is that capacitor voltage will have to
stay within the operational limits of the DC-Link components. Thus the full energy potential
for the capacitor cannot be utilized as it cannot be allowed to fluctuate between zero and
nominal voltage. However, for the ultracapacitors to maintain the specified lifetime they are
not allowed to be charged below 1

2
Vnom during normal operation. Since the Siemens inverters

used allow for high fluctuations on the DC-Link, this problem can be mitigated somewhat. On
Lifesaver the system is allowed to fluctuate between 500 V and 760 V in normal operation, which
corresponds to 65% of the available energy. Hence, 35% more energy could cycled through the
energy storage if a separate converter were used for the ultracapacitor bank.

The capacitor module has a specified cycle life of 106 cycles. If every charge/discharge cycle
during production is counted this number will be reached in less than one year of operation due
to the wave frequency. However, most of the cycles are caused by low waves with low energy.
Maxwell technologiesR© offered to simulate the expected life time of the system specifically
based on the expected energy profile of Lifesaver. The input for the simulation is given in Fig.
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Property Value
Nominal voltage 816 V
Capacitance 4.88 F
Nominal energy 1.63 MJ
Useful energy (400V-776V) 1.08 MJ
Max continuous current 100 A
Max peak current 1 100 A
Short circuit current 4 800 A
Nominal power at 600V 60 kW
Peak power at 600V 660 kW
Modules in bank 17
Cells per module 18
Cell capacitance 1.5 kF
Cell voltage 2.70 V
Cycle life 106

Table 2: Ultracapacitor bank specifications

8 and shows capacitor bank voltage profiles from three different wave states, low, high and
extreme. The three wave states have a defined probability of 0.4, 0.1 and 1/365 respectively.
The remaining probability of approximately 0.5 is the down time expected during calm weather.
The high down time expected is due to the sheltered conditions on the first test site. Based on
these inputs Maxwell technologies R© has ensured a lifetime significantly above the base case.
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Figure 8: Capacitor voltage in three wave states, Low: hs=1.25 m / Tz=5.5 sec, High:
hs=2.75 m / Tz=6.5 sec and Extreme: hs=8.0 m / tz=10.0 sec
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Figure 9: DC-Link charger: Inverters and laboratory power supplies in 19” rack configuration.

2.3 DC-Link charger

The DC-Link charger converts energy from the battery bank to the capacitor bank. This is
mainly required for three purposes:

• During startup when the capacitor bank have to be pre-charged and the PTOs have to
pull in and tension the production ropes.

• During service when the PTO winches have to be maneuvered.

• In extreme wave states when the required pullback energy might exceed the available
energy in the capacitor bank. The pullback process and energy balance is described in
section 3.1.

The specifications for the DC-Link charger are as follows:

• Supply up to 5kW of power

• Supply output voltage in the range 0-600VDC

• Handle output voltage in the range 0-830VDC

• Handle input voltage in the range 22.0-29.0VDC

• Allow for current limited operation

• Controllable over LAN

• Serviceable

• Reliable with MTTF > 20 000h
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From a power electronics point of view the best solution would be to use a DC/DC boost
converter that directly converts the battery voltage to 600VDC. An even more interesting
solution would be to merge the DC-charger and the battery charger, that will be described
in the next section, into a single bi-directional converter. A possible solution for this is the
Reduced Matrix Converter, which is based on bi-directional RB-IGBTs. This concept has
been explored in detail and has for instance been proposed for off-shore wind turbines [10].
However, no converters based on these topologies that meet all the requirements could be
found. Development of such a system from scratch is costly and time consuming, especially
when taking into account the required support for maintenance and service. This approach was
therefore rejected.

Instead a modular two step solution based on a standard 24VDC to 230VAC inverter and
a 230VAC to 600VDC laboratory power supply is selected. This takes the power via 230VAC,
which is a drawback, but greatly increases the number of off-the-shelf components available.
The power supply selected is controllable by LAN, it can supply any voltage in the range 0-
630VDC and can operate in current limited mode with set currents in the range 0-4.2A. This
leads to a maximum supply power of 2650W. However, it cannot handle more than 660VDC
on the output terminals and have to be shield from the voltages on the DC-Link by a reverse
blocking diode. The inverter and power supplies are 19” rack modules and can be seen in Fig.
9.

2.4 Battery charger
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Figure 10: Battery charger topology

On board systems such as communication, data logging and monitoring equipment consume
a considerable amount of power from the 24V battery bank. This power must be generated
by some means, and the obvious solution is to use the generated wave energy. This is not
straightforward however, given the high- and fluctuating voltage level on the DC-Link. A
solution based on off-the-shelf wind turbines or PV cells would seem easier to implement.
Nonetheless, FO decided that it was worth the extra effort to develop the system, as the purpose
of the prototype is to prove the viability of wave energy. Moreover, an external power system
with the required power rating would be large and potentially fragile to the extreme weather
conditions experienced at sea.The battery charger has the following requirement specification:

• Handle input voltage in the range 0-830VDC

• Operate with input voltage in the range 600-830VDC
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Figure 11: Implemented battery charger configuration: A) Inverter, B) Transformer, C) Recti-
fier, D) Choke

• Supply output voltage in the range 20-29VDC

• Supply up to 125A of charging current

• Control charging current based on input voltage

• Comply with 3-stage battery charging principle

• Controllable by field bus

FO decided that the easiest approach to meet these requirements was to base the battery charger
on the same motor drive inverter that powers the PTO generators. They can naturally handle
the input voltage range, they are programmable, they natively support closed-loop control and
FO already has the required knowledge to operate and program them.

The concept is described in Fig. 10. The inverter drives a three-phase 400V/24V transformer
that supplies to a 3-phase bridge rectifier. Finally, the output power is smoothed through an
inductive filter and fed into the battery bank. To simplify the configuration, the transformer and
chokes are designed with the same cores and fixed in a common frame. The actual implemented
system can be seen in figure 11.

The inverter is operated in scalar mode, which allows for controlling the output frequency
directly. The output voltage is regulated proportional to the output frequency to keep the
motor impedance constant. This principle is directly transferable to the transformer and gives
a system where the output voltage of the transformer can be controlled without risk of excessive
magnetizing currents. The nominal output frequency of the inverter is set to 200Hz as this
reduces the transformer size, while still allowing for standard 50/60 Hz transformer design
methods to be applied.
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The charger program is implemented as a closed-loop feedback control with an inner current
control loop and an outer voltage control loop as shown in Fig. 12. The current loop uses the
inverter output current as feedback while the voltage loop regulates on the actual battery
voltage. This is measured by an external sensor. The three-stage battery charger program is
implemented by controlling the current and voltage references. The maximum allowed charging
current is set to 125 A, the maximum charging voltage is set to 28.8 V and the trickle charging
voltage is set to 27.6 V. The trickle charging stage triggers when the charging current falls
below 10% of the nominal charging current.

vref PI Conv. Battery vactPI

i re
f

f re
fv reg i reg

e e
iact

- -

Figure 12: Battery charger control principle

The battery charger must adjust the charger power to the DC-Link voltage to allow for stable
steady-state conditions for all production levels. This is implemented by setting maximum
allowed charging current as a linear function with zero power at 650 VDC and full power at
720 VDC. This prevents the battery charger from draining the capacitor bank at low production
levels.

2.5 Brake chopper

DC +

DC -

R1 R2 R3

Q1 Q2 Q3

Figure 13: Brake chopper system

The WEC is expected to produce a power surplus, except for in the lowest wave states
close to cut-off. This excess energy will cause the DC-Link voltage to rise and must be taken
away to balance the system. This is normally done by switching in a resistor that dissipates
the excess energy. For good controllability, the system is typically controlled by Pulse Width
Modulation (PWM) at around 1 kHz. This setup is usually referred to as a brake chopper and
is very common in motor drive systems.
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On Lifesaver a standard brake chopper system supplied by Siemens is used which will start
dumping energy at 776 V. The brake chopper has a linear PWM region where the duty cycle
is increased proportional to the voltage until saturation occurs around 790 V and the resistor
bank is constantly switched on. The resistor bank is a large array of air-cooled heating elements
that is placed on top of the power system box on Lifesaver. It is visible on Fig. 1 on page 2
as the gray structure to the upper-right. Air-cooling was selected in favor of water-cooling for
simplified access and maintenance.

The brake choppers operate as stand-alone units and only monitor the DC-Link voltage.
They do not require any external regulation or control. Three brake choppers are installed in
parallel with individual resistors as shown in Fig. 13. Each brake chopper has a nominal power
of 50 kW and a peak power of 250 kW. This leads to a total braking power of 150 kW nominal
and 750 kW in peak, and a fully redundant system.

Lifesaver is not expected to go beyond the nominal power on average as the production
will be curtailed in high to extreme wave states. However, the peak power limit of 750kW may
occasionally be breached by single large waves appearing in high sea states. This requires active
production control and is described in the next section. Fig. 14 shows the actual response of
the DC-Link system during brake chopper operation. The rapid fluctuation around 760 V is
caused by the startup and shutdown of the brake chopper and not the actual PWM during
operation. The issue is believed to be caused by inaccurate control of the brake chopper at low
power levels and could be eliminated by improved control. Since this does not cause problems
for the general operation, and since the voltage fluctuations are relatively low, it has been
decided to leave it as it is.
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Figure 14: DC-Link voltage during brake chopper operation
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3 Control

Three layers of control are implemented to operate the system:

1. Top-level control of the WEC

2. Mid-level control of the DC-Link voltage

3. Low-level control of the PTO inverter

The top-level control mainly holds the state machine functions for the WEC and is only
discussed briefly. The mid-level and low-level control is discussed in the subsequent sections.

3.1 DC-Link control

The purpose of the DC-Link control is to keep the capacitor bank and the DC-Link voltage
within the allowed range, and to ensure the required energy for pullback. The DC-Link control
is not a centralized control function, but is accomplished as the sum of several components
and functions operating together. The DC-Link conditioning can be divided into three levels,
green, yellow and red, as illustrated in Fig. 15. Within the green region, the capacitor bank
voltage is conditioned by the DC-charger in the low voltage end and the brake chopper in the
high voltage end. The PTOs are allowed to operate with optimal generation and motoring
force. If the production exceeds the brake chopper capacity or the consumption exceeds the
DC-charger capacity the yellow region is entered. Operation of all PTOs is then constrained
to counteract further aggravation. In the unlikely event that the absolute limits are breached
and the DC-Link voltage enters the red region, all PTOs immediately shut down. For the high
voltage case, the VPMs also fires to protect the DC-system and to bring the generators to a
controlled stop. Since the rope tension will be lost in this case, no further extreme movements
on the PTOs are to be expected.

The battery charger will start charging the batteries at 650V and will ramp up to full
charging power of 125A / 3.6kW at 720V. These thresholds are set to optimize for production in
low waves to maintain an untouched reserve of pullback energy between 650V and 540V. In the
higher wave states, the capacitor bank is expected to maintain a close to fully charged condition
with voltage above 720V most of the time. It is also important to maintain blanking voltage
between the DC-charger shutdown threshold and the battery charger startup threshold to avoid
circulation of power between the two converters. The DC-charger can supply a maximum
voltage of 630VDC and the startup threshold of 650VDC ensures adequate safety margin.

In the extreme wave states it is possible that the capacitor bank is completely cycled in
each wave, which can be seen in Fig. 8 at 510 sec. This will cause cyclic charging between the
battery bank and capacitor bank as the missing pullback energy must be borrowed from the
battery bank. This is only expected occasionally during worst-case conditions and should not
significantly affect battery life.

The DC-Link charger will normally operate whenever the DC-Link voltage is below 540V.
However, if the WEC is in a low production state, the 540V level is instead used as a trigger

256



Capacitor maximum
VPM threshold

Brake chopp max
Brake chopp start

Batt chrg start

DC chrg stop

Lower cut off

Voltage

Figure 15: Capacitor bank capacity illustrated as a volume of energy. The energy is proportional
to the square of the voltage, which correlates to a paraboloid

for cut-off and causes the entire WEC to shutdown. The WEC will then go into power save
mode and measure the waves periodically to determine when production can start up again.
This is handled by the top-level WEC control.

3.2 PTO Control

FE(t)

RWEC CWECLWEC

RPTO

Absorber equivalent

PTO
equivalent

Incoming
waves

XPTO

Figure 16: RLC equivalent circuit of the PTO and WEC system

The absorbed power form a point absorber is greatly influenced by the control strategy
applied by the PTO. In general the optimal energy extraction is achieved when the point
absorber is moving with a 90◦ phase shift to the waves [11]. Several methods of approaching
this production mode are described, the best known being reactive control (Tedeschi et al,
2010-2011) [12, 13, 14] and latching control (Falnes, 2002) [15]. Fig. 16 shows an electrical

257



APPENDIX K. JOURNAL PAPER 3

velocity [m/s]

Fo
rc

e 
[k

N
]

0.5 0.7
0.8

0.85

0.9

0.92

0.93

Mechanical limit

Max net power curve η

0 1 2 3 4 5
0

20

40

60

80

100

120

140

0

0.2

0.4

0.6

0.8

1

Figure 17: Efficiency plot for the generator used at Lifesaver. The thick line shows the torque
that result in maximum exported power from the generator. The thin line shows maximum
available torque from the generator. The dashed line shows the mechanical limit for the gearbox.

equivalent circuit for the WEC where the dynamic behavior of the WEC is modeled as an RLC
circuit. The PTO is modeled as a power extraction element (resistance) in series with a reactive
element (impedance). The goal of reactive control is to tune the reactive element of the PTO
so that it compensates for the reactive elements of the WEC as a whole and thus maximize
power extraction.

With the current design of Lifesaver the PTO force is too low to have significant impact by
reactive control. This is mainly caused by the large area of the absorber that leads to a high
spring constant and a high resonance frequency. Passive damping is therefore selected as the
primary production model. In the lowest sea states however, advanced control algorithms may
improve output (Tedeschi and Molinas, 2012) [16], but is not implemented yet. A recent study
by NTNU that specifically investigates the Bolt project indicates that a production boost can
be expected from reactive control in wave states with low amplitude and high frequency (Ulvin,
2012) [17]. The large and flat absorber shape is selected as a result of economical optimization
and FO’s acquired viewpoint that the absorber should be large enough to push the PTO into
saturation already in moderate wave states.

τ = −B · ω (4)

Passive damping is defined by Equation 4. The damping coefficient B is optimized to
produce the highest possible net power output. τ is the generator torque and ω is the generator
speed. Fig. 17 shows the torque and speed characteristics for the generator used on Lifesaver.
The thick line shows the optimal torque that maximizes the generated electrical power. Two
important saturation mechanisms are present; the first is the mechanical force limit of the
gearbox. This is reached already at 0.27 m/s. The second is the power limit of the generator
that is reached at 1.55 m/s. The linear region from 0 - 0.27 m/s corresponds to a damping
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coefficient of ca 350 kNs/m, which is the chosen value for B on Lifesaver.

4 Discussion

The stand-alone system design presented has demonstrated its function at FABTEST, and had
operated for six months without any issues when this article was written. Most of the solutions
that are known to be sub-optimal are specific for this test phase and will not be required in
a grid connected, commercial power plant. The ultracapacitor bank has performed very well
in the system, and could potentially be continued on a grid connected system to smooth the
produced power before transfer. However, it is important to note the special solution chosen
on Lifesaver where the capacitor bank is directly connected on the DC-Link. This forces all the
inverters to follow the capacitor fluctuations as energy is moved in and out of the energy storage.
This may reduce the inverter and generator efficiency as they will be operating outside their
optimal voltage, and will distort the generator control by shifting the field-weakening point
which complicates high speed regulation. It therefore seems like the energy storage should
be decoupled from the DC-Link with a separate converter for better utilization of both the
capacitor bank and the inverters in a commercial system.

5 Conclusion

A stand-alone power system based on ultracapacitors has been designed and built for the wave
energy converter Lifesaver. After six months of continuous sea trials the system has shown no
operational issues, and rated energy and power seems to be well sized. The energy transfer
system between the capacitor bank and the battery bank operates well within the safe operating
area, and a long lifetime for the system can be expected. The system is fully operational and
has not yet had any need for service or replacement.
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