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Abstract

In this thesis, we propose an intradaily spread trading strategy based on a stochastic process model. We

go on to examine whether this strategy can be profitably applied in Brent Crude oil futures markets over

the Jan-2015 to Apr-2018 period. For this purpose, tick-by-tick trading data of 63 unique Brent Crude oil

futures contracts are used to construct intradaily data sets with 5-minute resolution. By considering the 9

most liquid futures contracts and by constructing 18 different calendar spreads for trading, we perform a

thorough backtest of the intradaily trading strategy. Under optimistic assumptions, our strategy achieves

a maximum Sharpe ratio of 4.3. Under conservative assumptions, however, Sharpe ratios are negative

for all parameter choices. We conclude that intraday spread trading in Brent Crude futures based on the

stochastic process model put forward in this thesis is not profitable. Although we show that such strate-

gies may be highly profitable under optimistic assumptions, we emphasize that results are very sensitive

to small changes in bid-ask spreads and the timing of trade execution. As these model parameters are

difficult to estimate correctly without order book data, we conclude that a cautious approach should be

taken when implementing these parameters in a backtest.
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Samandrag

I denne oppgåva foreslår vi ein intra-dagleg handelsstrategi for par av framtidskontraktar basert på ein

stokastisk prosessmodell. Vi held fram å undersøkja om denne strategien kan verta lønsamt anvendt

i marknaden for framtidskontraktar for råolje av typen Brent, i perioden januar 2015 til april 2018. Til

dette føremålet vert brukt tikk-for-tikk-handelsdata for 63 framtidskontraktar for råolje av typen Brent

til å konstruera eit intra-daglig data-sett med oppløysing på 5 minutt. Ved å vurdera dei 9 mest lik-

vide framtidskontraktane og ved å setje saman 18 ulike månads-par for handel, utfører vi ein grundig

tilbakeprøving av handelsstrategien. Med optimistiske parameterval oppnår strategien vår eit maksimalt

Sharpe-tilhøve på 4.3. Under konservative parameterval er likevel Sharpe-tilhøvet negativt for samtlege

parameterval. Vi konkluderer med at intra-dagleg handel basert på den stokastiske prosessmodellen pre-

sentert i denne oppgåva ikkje er lønsamt for framtidskontraktar for råolje av typen Brent. Sjølv om vi viser

at slike strategiar kan vere svært lønsame under optimistiske parameterval, legg vi vekt på at resultata er

svært kjenslevare for små endringar i bud- og tilbudskursar, samt samtidigheita i handel. Då desse mod-

ellparametrane er vanskelege å anslå riktig utan tilgong på opne bud- og tilbudsdata, konkluderer vi med

at ei varsam tilnærming bør takast ved implementering av desse parametrane i ein slik tilbakeprøving.
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Chapter 1

Introduction

In this thesis, we examine whether a popular quantitative trading strategy known as spread trading1 can

be profitably applied in Brent Crude oil futures markets on an intradaily basis. We examine tick-by-tick

trading data of 63 unique Brent Crude futures contracts, from which we construct designated intradaily

data sets with 5-minute resolution. By considering the 9 most liquid futures contracts, and constructing

18 different calendar spreads for trading, we perform a thorough backtest of an intradaily spread trading

strategy based on a stochastic process model.

Spread trading is conceptually simple: identify a pair of securities that tend to move together over

time, in order to exploit any unusual deviations in their relative pricing. Profits are made by simulta-

neously entering short positions in relative winners and long positions in relative losers when sufficient

deviations from equilibrium are observed, and by unwinding the positions upon convergence. Spread

trading is thus an attempt to profit from temporary deviations from the "correct" relative pricing of se-

curities. There is a notable number of studies on spread trading in the literature. Some of them produce

exceptional results, such as Gatev, Goetzmann, and Rouwenhorst (2006), while Do and Faff (2009) prove

the lack of persistence in the spectacular findings made by others. Both of the aforementioned papers

study daily data of stock prices. The more recent paper of Liu, Chang, and Geman (2016) perform back-

testing of high-frequency spread trading strategies in oil-related stock and achieve a Sharpe ratio of 7.2.

The focus on stochastic process modelling of spreads in this thesis is largely motivated by the results

achieved by Liu et al. (2016). Further, to our knowledge, there has not been conducted studies of intraday

spread trading in futures markets.

A distinct trait of futures markets is that going long and going short is equally easy. For long-short

strategies, this clearly favours futures markets compared to e.g. the stock market, where borrowing shares

can be difficult and often entails high borrowing costs.

We look specifically at Brent Crude oil futures traded at the ICE because it is one of the most liquid

commodities futures market in the world. Hundreds of thousands of "lots" change hands every day,

where one lot represents one thousand barrels of crude oil - the minimum quantity of crude oil allowed

for trading. In dollar figures, these volumes represent a daily turnover in the range of tens of billions of

1Spread trading and pairs trading are two terms describing the same concept. Both terms are used in the literature, and we
will use both terms interchangeably in this thesis.

3



4 CHAPTER 1. INTRODUCTION

dollars. This contributes largely to the motivation for this thesis. The size of the financial trade in Brent

Crude oil is - in lack of a better word - massive.

Our contribution to the existing literature is twofold: first, we conduct a detailed empirical study of

intraday prices of Brent Crude futures; second, we examine whether a spread trading strategy based on

a stochastic process model can be profitably applied in Brent Crude oil futures markets on an intradaily

basis.

The rest of this thesis is structured as follows. Chapter two reviews selected literature on spread trad-

ing and statistical arbitrage. Chapter three introduces the dataset with descriptive statistics and explains

the methodology for constructing intradaily data series from tick data. Chapter four presents our im-

plementation of the stochastic spread trading strategy and the backtesting environment. Chapter five

presents our main results and findings. Chapter six concludes and suggests topics for further research.



Chapter 2

Spread trading

2.1 Conceptual description

2.1.1 Statistical arbitrage

Statistical Arbitrage is a broad term used to describe financial trading strategies that rely on mean-reversion

in the relative prices between two or more securities1 (often within similar industries or exposed to simi-

lar risk factors). The trading strategy is motivated by the fact that prices of certain securities tend to move

together. Using historical data and statistical methods, the trader identifies the typical trading patterns

of the securities and use this as a basis for creating a long-short portfolio of the securities in such a way

that the total exposure is market-neutral (β ≈ 0). This may result in both winning and losing trades in

the short-term, but if there are gains on average, it leads to profits over time. According to Gatev et al.

(2006), the strategy was first made popular by Wall Street ”quant” Nunzio Tartaglia of Morgan Stanley

in the mid-1980’s, where he assembled a team of physicists, mathematicians and computer scientists

to uncover arbitrage opportunities in the equities markets. Since then, statistical arbitrage-style trading

has become wildly popular with investment banks and hedge funds, and increasingly so with quantita-

tive hedge funds after the exponential increase in computing power and speed of execution available to

market participants.

2.1.2 Pairs trading (Spread trading)

The pairs trade is a sub-category of statistical arbitrage, with only two securities involved in each statis-

tical arbitrage portfolio (hence the name ”pairs trading”). If the relative price between the securities can

be shown to be mean-reverting, a long-short strategy involving the two securities can be used. A long

position is taken in the ”undervalued” security and a short position in the ”overvalued” security. The un-

derlying assumption is that the ”mispricing” between the securities will be corrected by the market in the

future. Entry and exit signals for the trade is typically generated based on historical means of the relative

(log) price spreads and thresholds set by the trader. The mean-reversion of a spread is often attributed to

some fundamental relationship between the series. E.g. the costs and margins of oil refineries in the case

1In this thesis we use the term security for any tradable financial asset, including: debt, equity and derivatives.
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6 CHAPTER 2. SPREAD TRADING

of the crack spread, or the underlying business in the case of two stocks from the same industry.

The ”Law of One Price” (LOP), which is central in modern finance theory, postulates that two assets

yielding identical outcomes should have the same price. In practice, few assets are truly identical and

factors such as transaction costs further complicate the LOP in real-world markets. Gatev et al. (2006)

suggests that random liquidity shocks can affect the market in the short-term, causing prices to diverge.

Trading professionals engaging in pairs trading may consider assets which are quite different (e.g. stocks

of two companies), but use statistical methods to detect historical patterns which suggest a ”LOP-type”

relationship between them. Two important points should be made in this context:

1. Because it is based on relative pricing, statistical arbitrage traders do not need to focus on the eco-

nomically correct price of the underlying assets (Gatev et al., 2006). The strategy does not depend

on whether the underlying securities are priced ”correctly” or whether the general market goes up

or down.

2. Because pairs trading assumes mean-reversion, the gains cannot be ”locked in” from the outset

as with identical assets. This is a dilemma for the professional trader, as the upside is ”capped”

(assuming mean-reversion), but the downside is potentially unlimited (if not mean-reverting). Be-

cause of this, risk management is of particular importance in pairs trading, as there sometimes can

be large disconnects between two securities due to fundamental reasons that are not possible to

predict using statistics.

2.2 Pairs trading approaches in the literature

In its general form, the overarching principle of spread trading rules can be split into a two-step algorithm

(Gatev et al., 2006):

1. Find securities that ”move together” (ranking pairs)

2. Take a long-short position when they diverge and unwind upon convergence (trading signals)

There are many different approaches to spread trading found in the literature, but all of them centre

around the two steps outlined above. In particular, the underlying idea of mean-reversion in relative

pricing is always present. Please refer to Krauss (2017) for an in-depth review of the literature on pairs

trading strategies.

Two very popular approaches to pairs trading are: 1) the distance approach, and 2) the cointegration

approach. In this section, we will present the most important findings in the literature from both camps.

Further, we will describe a third approach, which has shown to be very promising and will be the main

focus of this thesis: 3) modelling the spread as a stochastic process.

2.2.1 The Distance approach

In a much-cited paper, Gatev et al. (2006) coins what is known as the distance approach to pairs trad-

ing. Focusing on the US stock market from 1962-2002, all possible pairs of stocks are ranked based on
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minimizing the sum of the Euclidian squared distances (SSD) of the normalized price time series in a 12-

month formation period. The top 20 pairs in terms of lowest distance are then chosen for trading in the

following 6-month period. The equation for the sum of Euclidean squared distances is shown in equation

(2.1), in which P A,t is the normalized price series of A and vice versa for B.

ssd(P A ,PB ) =
T∑

t=1
(P A,t −PB ,t )2 (2.1)

In the trading period, the spread for each pair is monitored and trades are opened when the spread de-

viates more than two standard deviations from the average determined in the formation period (Gatev

et al., 2006). The threshold is a parameter that can significantly affect trading profits. In particular, there

is a trade-off between making an increased number of trades with lower gains per trade (lower thresh-

old), and making fewer trades with higher gains per trade (higher threshold). In practice, the threshold

could be set for each pair using data-mining or machine learning methods, but this can result in obvious

problems of overfitting.

The distance approach has gained traction due to its quite intuitive way of identifying price time se-

ries which stay close to each other. Some additional advantages of the distance approach are that it is easy

to implement and model-free, and thus less prone to errors arising from data snooping bias or param-

eter optimization in-sample (overfitting). A common critique is the sub-optimal nature of the distance

approach, in that its ranking can be biased towards pairs with low volatility2. Further, as cointegration

testing is not part of the distance approach, it is vulnerable to spurious correlations between asset prices

that are not in fact fundamentally related (Alexander, 2008).

For the S&P500, Gatev et al. (2006) achieve Sharpe Ratios which were 4 to 6 times larger than that of

the market in the period from 1963 to 2002. This is a significant finding, but possibly an outdated one.

We suspect that the risk-adjusted returns achieved with statistical-arbitrage style strategies have declined

since its inception in the 70’s, largely due to three factors:

1. Increased adoption of statistical arbitrage-style strategies

2. Increased data availability and processing capacity

3. Increased speed of execution

Arbitrage opportunities are simply discovered and exploited (much) faster now than in the 1970’s. This

is also documented in the literature: Do and Faff (2009) prove diminishing returns from pairs trading by

continuing the original study of Gatev et al. (2006) through 2008. Looking into the "popular" financial

literature, one can also find evidence for why spread trading profits seem to have diminished. Lewis

(2014) details how high-frequency trading strategies dramatically changed American markets in the mid-

00’s, effectively eating into transaction costs for all parties involved in securities trading.

2Note that this is not always analytically true, but results from Gatev et al. (2006) indicate such an effect empirically. Refer to
Krauss (2017) for calculations and more details.
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2.2.2 The Cointegration approach

Vidyamurthy (2004) is among the most cited works on the cointegration approach, presenting a theoreti-

cal framework for pairs trading using the statistical concept of cointegration. Cointegration is the formal

statistical concept which express that two or more time series never stray too far from each other. Given a

set of time series variables (X1, X2, ..., Xk ), which are integrated of order 1, they are said to be cointegrated

if a linear combination of them (α1X1+α2X2+·· ·+αk Xk ) is found to be integrated of order 0 (stationary

mean-reverting). In the setting of pairs trading, the pair is said to be cointegrated if equation (2.2) have

stationary residuals (εt ). Equation (2.2) is often called the cointegrating regression, and the κ signifies the

proportion of B which should be held for each unit of A. The log spread3 Y (t ) is then defined by equation

(2.3), and µ is the mean which the spread is expected to revert back to:

log (P A,t ) =µ+κ · log (PB ,t )+εt (2.2)

Y (t ) = log (P A,t )−κ · l og (PB ,t ) =µ+εt ∼ N (µ,σ) (2.3)

If the two time series variables in a spread are found to be cointegrated, we conclude that spread between

them will be mean-reverting. We can thus use a spread trading strategy and go long in one contract

and short in the other when the spread deviates sufficiently from the mean, expecting to make a profit

when it converges. The stronger the significance of the cointegration test (and longer the time-horizon

of the test), the more confident we can be that the relationship also will hold in the future. The Engle-

Granger test is used for testing for cointegration among the (log) prices of pairs (Vidyamurthy, 2004),

and is presented in section E of the methodology chapter4. The trading threshold in the cointegration

approach is commonly based on a certain number of standard deviations (σ) relative to the mean (µ),

estimated based on the parameters of the cointegrating regression in (2.2).

Among empirical applications, Rad, Low, and Faff (2015) conduct a large-scale study on US CRSP

data5 from 1962 to 2014, combining the cointegration and distance approaches. Following the work of

Gatev et al. (2006), pairs of stocks are first ranked based on minimizing the 12-month SSD. Secondly, the

Engle-Granger cointegration test is applied to all pairs and used to filter out those which do not show

a statistically significant cointegration relationship. Third, the κ (slope coefficient of the cointegrating

regression) is used to determine the proportions of units traded in B relative to 1 unit of A. Trading signals

are based on a similar approach as Gatev et al. (2006). The results of Rad et al. (2015) are comparable to

those of Gatev et al. (2006). One reason for this is presumably that the ranking of pairs is essentially equal

in both cases, with Rad et al. (2015) only adding another ”layer” of filtering using cointegration tests.

Thus, Rad et al. (2015) still suffers from an inferior ranking system which is biased towards low volatility

pairs, hurting the profitability of the pairs trade. Some empirical studies using the cointegration approach

implement other ranking methodologies than that of Rad et al. (2015). In Dunis, Rudy, Giorgioni, and

Laws (2010) and Caldeira and Moura (2013), pairs are tested for cointegration and then ranked based on

3Throughout the paper we consistently use log (x) to reference the natural logarithm of x, i.e. ln(x) in some literature.
4Other tests for cointegration, such as the Johansen test, is much utilized in general statistical arbitrage methods involving

more than two securities. It is not used in this master thesis.
5CRSP: Center for Research in Security Prices at Chicago Booth School of Business
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the Sharpe Ratio they achieve in the formation period, while Vidyamurthy (2004, p.104-116) focus on the

frequency of mean crossovers for the spread in a given period to determine whether it will produce many

trades.

2.2.3 The Stochastic Process approach

A number of papers (Elliott, Van Der Hoek, and Malcolm (2005), Do, Faff, and Hamza (2006), Avellaneda

and Lee (2010), Bertram (2010), Cummins and Bucca (2012), Liu et al. (2016)) model the spread as a

mean-reverting stochastic process6. Several models of the log spread are employed, most notably mean-

reverting Gaussian Markov chains (state space model) in the discrete case and the Ornstein-Uhlenbeck

(OU) process in the continuous case. As we will only use the continuous model in this thesis, we limit our

focus to the OU-process.

Let the log spread be defined as Y (t ) = l og (P A,t ) − log (P A,t ) (i.e. κ = 1 from equation 2.3). The

Ornstein-Uhlenbeck (OU) process is then satisfying the stochastic differential equation (2.4). θ is the

mean reversion rate, taken to be strictly positive (θ > 0). σ is the estimated volatility of the process, while

µ is the log spread mean. dW is the increment of the continuous-time Wiener process W (t ).

dY = θ(µ−Y (t ))d t +σdW (2.4)

The parameters can be estimated quite easily using OLS (as shown in appendix H), or by using more

advanced methods such as the Kalman filter. Do et al. (2006) points out that there are several advantages

in modeling the spread as an OU-process:

1. It captures mean-reversion fully as an OU-process is defined such that spread variable will be nor-

mally distributed. Because mean-reversion is the underlying assumption in pairs trading, the OU-

process can be an approximation of empirical relationships.

2. Having estimated the parameters of an OU-process, forecasting is simplified. The parameters can

be used directly for thresholds in generating trading signals (e.g. k standard deviations, given an

estimated volatility), or in ranking spreads according to the expected half-life of mean reversion

(see Chan (2013, p.46) for details).

3. The estimation of parameters is tractable (e.g. OLS or Kalman filter), making it feasible for compu-

tation on a large scale pairs trading strategy (thousands of pairs, with frequent recalculation).

The stochastic process approach also faces criticism. Both Do et al. (2006) and Cummins and Bucca

(2012) note that the OU-process model of the spread is rigid and the assumption of a Gaussian distribu-

tion is in conflict with the well-known fat tails of financial return data.

Bertram (2010) develop analytic solutions for optimal entry and exit thresholds for pairs trading

strategies, assuming that the log spread follows a zero-mean OU-process. Using stochastic calculus

6In Krauss (2017), these articles are categorized under ”time series approaches”. We find it more appropriate to name the
approach after its main trait; namely the use of a theoretical stochastic process model.
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and general properties of OU-processes, expressions for expected trade length, variance, expected re-

turn and Sharpe Ratios are found. Bertram (2010) also acknowledge that the Gaussian assumption of

OU-processes is in conflict with the empirical behaviour of financial data, but highlights the usefulness

of analytic solutions in studying the dynamics of spreads. Cummins and Bucca (2012) provide the first

large-scale application of the framework developed by Bertram (2010), backtesting a total of 861 spreads

in energy futures using daily data over the 2003-2010 period. The energy futures contracts considered in

the paper are WTI, Brent, heating oil and gas oil traded on the NYMEX and ICE. Several types of spreads

are traded, including: calendar spreads, locational spreads and crack spreads. The results are impressive,

with daily mean returns in the range of 0.07%−0.55% and Sharpe Ratios mostly larger than 2 for the top

10 strategies. Even though the focus of this master thesis somewhat overlaps Cummins and Bucca (2012),

there are three important differences: First, we utilize intradaily data from a newer period (2015-2018) in-

stead of daily data, and narrow our focus to Brent Crude calendar spreads only. Second, we target strate-

gies with much shorter trade lengths than the averages of Cummins and Bucca (2012), which for many

strategies was 10-20 days. Third, our methodology is inspired by the ”doubly mean-reverting” frame-

work of Liu et al. (2016) (detailed in the next paragraph) rather than the optimal thresholds developed by

Bertram (2010).

In a particularly promising paper, (Liu et al., 2016) use ”high-frequency” 5-minute data and intro-

duce a new framework of ”doubly mean-reverting” processes to model the spread. Using a conditional

modelling approach, the log spread model is split in two: 1) A long-term spread L(t ), and 2) A short-term

spread Y (t ) which is conditional on the long-term spread L(t ). Inspired by Fourier series expansion, this

approach seeks to model ”local” intraday oscillations around a long-term dynamic spread. Both L(t )

and Y (t ) are modelled as Ornstein-Uhlenbeck processes, with Y (t ) being conditional on L(t ). The OU-

process parameters are re-estimated every day, to be used for ranking and intraday trading signals in the

following trading day. (Liu et al., 2016) rank pairs based on two criteria: 1) highest short-term volatility,

and 2) lowest long-term volatility. This ranking method seeks to find spreads that are stable in the long

run but exhibit large, short-term oscillations. The empirical results from their backtest, covering spreads

of 26 US oil company stocks over approximately three years (June 2013 - April 2015, and 2008), are as-

tonishing. The authors achieve annualized Sharpe Ratios in the range of 3.9 to 7.2 after accounting for

transaction costs.



Chapter 3

Data

3.1 Data description and manipulations

3.1.1 An introduction to the data set

Our main dataset consists of historical tick-data for 63 unique Brent Crude futures contracts, traded on

the Intercontinental Exchange (ICE) from 2 January 2015 to 25 April 2018. To exemplify, our dataset in-

cludes tick data for e.g. ICE BRN AUG-18, the front-month contract at the time of writing; it also includes

tick data for ICE BRN MAY-16, a contract that was traded up until expiry on 31 March 20161. We also

have daily settlement data for all Brent Crude futures contracts traded on the ICE from 2000 - 2018. The

data has been retrieved via the Montel2 energy data API, which in turn is connected to the ICE. In order

to engage in spread trading, we need to ensure some degree of simultaneity in the prices of the contracts

studied. We solve this by aggregating tick data into 5-minute bars (described in section 3.1.2). Further,

we subset the trading hours of Brent Crude futures on the ICE into a 10-hour window from 9:00AM to

7:00PM in order to avoid missing data when liquidity is low (details in section 3.1.4).

By tick data, we are referring to data of all trades executed at the ICE in the given contracts over

the time period studied (the left side of figure 3.3 provides an illustration). Although three years and

four months of data might seem to be a short period for a backtest, we argue for the opposite: as we

are studying short-term trading strategies, the dataset is in fact enormous. To illustrate: in a data set

consisting of 20 years of daily observations, one would have a total of 20 ·250 ≈ 5000 unique data points.

By aggregating tick data to 5-minute intervals throughout a daily trading window of 10 hours (from 9 AM

to 7 PM), our dataset would consist of approximately 103,000 observations. Thus, in terms of unique data

points, our dataset is about 20 times larger than a data set consisting of 20 years of daily data.

The ICE Brent Crude futures contract

The ICE Brent Crude futures contract is a deliverable contract based on EFP3 delivery with an option

to cash settle. All contracts are specified with EFP delivery in a particular month (e.g. December), and

1An overview of all contracts studied in this thesis is found in appendix B.
2Montel is a data provider and news agency for the European energy markets. Montel is an authorized distributor of ICE data.
3Exchange Futures for Physical. Details of the settlement are found on the ICE website.

11
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synthetic positions such as contracts with ”yearly delivery” can be financially engineered with a basis

in the monthly contracts. The minimum unit of trading is one (1) lot, which is equal to 1,000 bar-

rels. It should thus be noted that the minimum tradeable position size in April 2018 is approximately

∼ 75U SD/bbl ·1000bbl = 75,000U SD . The prices are quoted in US Dollars and the minimum tick size is

one cent (0.01 USD) per barrel. All open contracts are marked-to-market and settled in cash on a daily

basis; the daily settlement price is calculated as the volume-weighted average price (VWAP) of trades

during a two minute settlement period from 7:28:00 PM, British Summer Time (BST). The contracts are

traded a total of 22 hours each day in London, New York and Singapore. Trading hours in London are

from 1 AM to 11 PM, BST.

The Brent Crude futures price dynamics in 2015-2018

The price of crude oil is highly sensitive to fundamental supply and demand factors. Factors impacting

the price of crude oil can be factors such as geopolitical tension and events, changes in global demand

for petroleum products, increases in technological productivity, the rise of unconventional oil production

(e.g. shale) and so forth. Looking at figure 3.1, we observe that the market for Brent Crude futures has

been turned ”upside down” in the 2015-2018 period. Firstly, the front-month contract (ICE BRN M1)

went through a large decline from 55 USD/bbl in January 2015 to 28 USD/bbl in January 20164, before

”steadily” rising to about 74 USD/bbl at the end of April 2018. A similar range of prices is observed in

the other contracts (M1-M30), though with lower realized volatility. Secondly, the forward curve has gone

from being highly contangoed in September 2015 to being highly backwardated in April 2018. This shift

in the term structure is also reflected in both log spreads and the implied roll yields of most contracts

traded.

As detailed in appendix G, the log spread of futures prices should theoretically be given by the roll

yield multiplied with the difference in maturities. Figure 3.1 thus illustrates an important detail for the

application of a pairs trading strategy in Brent Crude futures: the mean of the spread seems to be some-

what stable over a short-to-medium term horizon of 1 month but can change substantially over time due

to changes in the term structure. We are careful about drawing early conclusions (tests for cointegration

over both the long- and short-term are presented in section 3.2.2), but the overview provided in figure 3.1

serves as motivation to take a short-term approach to spread trading in Brent Crude futures.

3.1.2 Data aggregation

The original data series contains ∼ 235 million trades in total, in the period from January 2015 to April

2018. Individual contracts are traded as much as tens of millions of times during their lifespan. The sheer

size of the dataset, combined with the event-driven nature of tick data, makes the dataset difficult to an-

alyze. It also poses two main problems in the context of pairs trading. Firstly, simultaneity in prices is

necessary to ensure that spreads are indeed tradeable. Because tick data is not comparable across dif-

ferent contracts (ticks do not occur simultaneously in both contracts), we need to aggregate the data in

4To put the oil price crash of early 2016 in perspective: in late June 2014, the front-month contract was trading at 115 USD/bbl.
18 months after, in January 2016, the oil price had fallen by 87 dollars since its peak - a decline of more than 75%
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some manner. Secondly, as historical order book data (bid-ask prices and volumes) has not been avail-

able for this thesis, we argue that a high-frequency approach with very granular time resolution or a tick

based approach would not give meaningful results, even for highly liquid securities (e.g. sub-1-minute

resolutions). Market microstructure would almost certainly have a big impact on the results, which we

would not be able to control for without order book data.

We aggregate raw tick-data into a format more suitable for analysis and backtesting. In the literature,

data logged over the course of some predefined time interval (e.g. every 5 or 10 minutes) seems to be the

norm, and we choose to follow this norm as well. Our procedure involves looping through all rows of tick

data and in order to map the aggregated data onto a new time axis as illustrated in figure 3.3, with result-

ing 5-minute bars on the right side. The resulting time series include the following information for each

bar: opening price, closing price, volume-weighted average price (VWAP), traded volume and number of

trades. As an example, the ”close” price for an interval is simply the last traded price in the interval. The

VWAP, on the other hand, is the volume-weighted average price for all trades in the interval. The curious

reader may verify the procedure of creating open and close prices for an interval by comparing tick data

and aggregated data in figure 3.3.

We aggregate data into bars of 5-, 10-, 30- and 60-minute resolution. We perform this aggregation for

all contracts, resulting in 63 individual time series for each specific time resolution.

Artificial volatility in spreads

The use of aggregated data with open/close prices can cause ”artificial” volatility in the log spreads. The

reason for the phenomenon is that the closing and opening prices of a 5-min interval (or any other choice

of an interval) might not be simultaneous in both contracts. The close in one contract might be a trade

twenty seconds ago, while for the other contract it might be a trade one second ago. This does not imply

that there is a change in the tradable spread between them, which could only be identified by looking

at bid-ask data. While we acknowledge the risk of basing some of our trading decisions on short-term

volatility that might not be tradable, this can be mitigated by setting appropriate thresholds for the strat-

egy (details in methodology section 4.2.2).

3.1.3 Rolling of contracts and expiry-related concerns

Absolute and relative contracts

In this thesis, we will refer to contracts on both an ”absolute” and a ”relative” basis. By relative, we refer

to the contract which is currently in a given distance from maturity, e.g. the front month is referred to

as ICE BRN M1. When referring to a time series of e.g. ICE BRN M1, this is the continuous time series

of rolled contract positions such that it always represents the front month, depending on the schedule

for rolling. By absolute, we refer to a specific contract of a given maturity, e.g. ICE BRN MAY-18. These

contracts are the actual contracts traded on the exchange. By treating contracts on an absolute basis

in our backtesting model, we avoid the pitfalls related to including false returns across roll dates in our

performance metrics. When reaching the chosen roll date of a contract, all open positions are sold out.
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Figure 3.2: Comparison of time resolutions. Figure 3.2a show daily and 5-min data for the period 2-Jan-18
to 15-Jan-18. The red box indicate the time-interval for figure 3.2b.

Rolling procedures

Selecting the exact time for contract rolling might seem trivial, as one could just trade contracts until

they expire and then move on to the next. We choose to roll over contracts on the penultimate day of

trading, as there are several unfortunate effects related to last-day trading in Brent Crude futures. Firstly,

any open positions at the time of expiry are physically settled unless the option to settle in cash is exer-

cised. Delivery is unwanted from a short-term trading strategy perspective, as the cash-settlement price

is not published until the next trading day following expiry. For this reason, we stay clear of final settle-

ment both in cash and in physical crude oil. Secondly, open interest and volumes in the front-month

contract decreases rapidly towards expiry after topping out at some point during the final two months of

the contract’s lifespan. This makes trading more risky closer to expiry, as liquidity quickly runs thin. The

development of open interest and volume in contracts approaching maturity for the ICE BRN MAY-18

contract over the last year of trading is shown in figure 3.4a and open interest for M1-M6 in its last month

of trading is shown in figure 3.4b. Similar stylized patterns as these are found in most contracts when

they are ”in front” (traded as M1).

3.1.4 Choosing a subset of the data for trading

Why we subset the aggregated data

As briefly mentioned in earlier sections, missing data is a problem which occurs when aggregating tick-

data into e.g. 5-minute bars and there are no trades in the interval. In fact, this is a fundamental problem
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TradeInDay TradeID TradingTime Price Volume ContractName
4086 1211784482 2018-01-09 09:00:00 68.09 2 ICE BRN MAR-2018
4087 1211784481 2018-01-09 09:00:00 68.09 1 ICE BRN MAR-2018
4088 1211784478 2018-01-09 09:00:00 68.10 1 ICE BRN MAR-2018

...
...

...
...

...
...

4379 1211785472 2018-01-09 09:04:16 68.08 1 ICE BRN MAR-2018
4380 1211785468 2018-01-09 09:04:16 68.08 1 ICE BRN MAR-2018
4381 1211785496 2018-01-09 09:04:30 68.08 1 ICE BRN MAR-2018
4382 1211785495 2018-01-09 09:04:30 68.08 4 ICE BRN MAR-2018
4383 1211785494 2018-01-09 09:04:30 68.08 1 ICE BRN MAR-2018
4384 1211785501 2018-01-09 09:04:51 68.07 1 ICE BRN MAR-2018
4385 1211785568 2018-01-09 09:05:00 68.08 4 ICE BRN MAR-2018
4386 1211785569 2018-01-09 09:05:00 68.08 1 ICE BRN MAR-2018
4387 1211785570 2018-01-09 09:05:00 68.08 1 ICE BRN MAR-2018
4388 1211785567 2018-01-09 09:05:00 68.08 2 ICE BRN MAR-2018

...
...

...
...

...
...

6075 1211791231 2018-01-09 09:24:24 68.13 1 ICE BRN MAR-2018
6076 1211791235 2018-01-09 09:24:48 68.13 1 ICE BRN MAR-2018
6077 1211791234 2018-01-09 09:24:48 68.13 1 ICE BRN MAR-2018
6078 1211791247 2018-01-09 09:24:49 68.13 1 ICE BRN MAR-2018
6079 1211791246 2018-01-09 09:24:49 68.14 1 ICE BRN MAR-2018
6080 1211791250 2018-01-09 09:25:09 68.13 1 ICE BRN MAR-2018
6081 1211791252 2018-01-09 09:25:11 68.13 1 ICE BRN MAR-2018
6082 1211791254 2018-01-09 09:25:15 68.13 1 ICE BRN MAR-2018

...
...

...
...

...
...

7486 1211794109 2018-01-09 09:29:58 68.05 1 ICE BRN MAR-2018
7487 1211794108 2018-01-09 09:29:58 68.05 1 ICE BRN MAR-2018
7488 1211794105 2018-01-09 09:29:58 68.06 1 ICE BRN MAR-2018
7489 1211794106 2018-01-09 09:29:58 68.06 1 ICE BRN MAR-2018
7490 1211794107 2018-01-09 09:29:58 68.06 1 ICE BRN MAR-2018
7491 1211794104 2018-01-09 09:29:58 68.06 1 ICE BRN MAR-2018
7492 1211794115 2018-01-09 09:29:59 68.05 1 ICE BRN MAR-2018
7493 1211794175 2018-01-09 09:30:00 68.07 1 ICE BRN MAR-2018
7494 1211794176 2018-01-09 09:30:00 68.07 1 ICE BRN MAR-2018

...
...

...
...

...
...
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TradingTime Open Close VWAP Volume N Trades
2018-01-09 09:00:00 68.09 68.07 68.1015 515 299
2018-01-09 09:05:00 68.08 68.07 68.052 618 381
2018-01-09 09:10:00 68.07 68.11 68.1179 848 495
2018-01-09 09:15:00 68.1 68.17 68.1348 604 419
2018-01-09 09:20:00 68.17 68.14 68.1514 595 400
2018-01-09 09:25:00 68.13 68.05 68.0799 2594 1413
2018-01-09 09:30:00 68.07 68.07 68.0609 1710 786
2018-01-09 09:35:00 68.06 68.02 68.05 911 451
2018-01-09 09:40:00 68.01 68.02 68.0122 1209 599
2018-01-09 09:45:00 68.02 68.01 68.0079 395 171
2018-01-09 09:50:00 68.02 67.98 68.0129 797 349
2018-01-09 09:55:00 67.98 67.96 67.9852 485 277

3.3 Rolling of contracts and expiry-related concerns

Selecting the exact time for contract rolling might seem trivial, as one could just trade contracts until they

expire and then move on to the next. There are, however, several unfortunate effects related to last-day

trading. Firstly, any open positions at the time of expiry are physically settled unless the option to settle

in cash is exercised. Delivery is unwanted from a short-term trading strategy perspective, as the cash-

settlement price is not published until the next trading day following expiry. For this reason, we stay clear

of final settlement both in cash and in physical crude oil. Secondly, open interest and volumes in the

front month contract decreases rapidly towards expiry after topping out at some point during the final

two months of the contract’s lifespan. This makes trading more risky closer to expiry, as liquidity quickly

runs thin. We illustrate the development of open interest and volume in contracts approaching maturity

in Figure 3.2 and Figure 3.3.

3.4 Choosing a subset of the data for trading

We strongly believe that calendar spreads of crude oil futures exhibit some sort of mean-reverting prop-

erty. Before we can start back-testing trading strategies, however, we need to decide on what granularity

of data to use, and in which contracts to trade.

3.4.1 Data granularity/time resolution

Although tick data might seem as the obvious choice for back-testing intradaily trading strategies, there

are several reasons why it might be a bad idea. First of all, it can be incredibly computationally inten-

sive to back-test trading strategies on tick data. In the literature, data logged over the course of some

predefined time interval (i.e. every 5 or 10 minutes) seems to be the norm. For the sake of argument,

let’s assume that we have no computational constraints. The next issue presenting itself in regards to a

backtest would be what type of model to use. The log-Brownian paradigm for modelling securities prices

is well established, and with good reason - it is quite simple to use and it produces sensible results, espe-

cially for modelling i.e. daily changes in stock prices. When considering intraday data, however, it fails to

Figure 3.3: Example of aggregation process of tick data into 5-min data, for the 9th of January 2018 in
the ICE BRN MAR-2018 contract. Tick data on the left and 5-min data on the right. TradeInDay is a
chronological counter showing the trader’s position in the particular day. TradeID is generated from
the data vendor and is not necessarily chronological in a single contract. VWAP is the volume-weighted
average price in the 5-min interval.
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Figure 3.4: Example of long-term development in open interest of the ICE BRN MAY-17 contract, and
comparison of open interest in M1-M6 when MAY-17 is front contract. Number of lots on vertical axis.

of all trading strategies when handling high-frequency intraday data. Uncertainty in the time domain

(when the next trade will happen) is not captured in most models used in the pairs trading literature5,

and the problem of missing data is commonly avoided by subsetting the data or interpolating it in order

to remove blanks. In Liu et al. (2016), the authors remove 5 stocks from their data set due to high numbers

of blanks and subsequently interpolate over blank data points for the remaining stocks. We choose a

middle ground: we remove contracts with too high numbers of blanks, but we do not interpolate over

remaining blanks. The treatment of blanks in our backtest is explained thoroughly in section 4.3.5.

Subsetting procedure

Subsetting is approached in a systematized manner, in which we study the relative number of missing

data points of different subsets. The twelve closest monthly contracts (M1-M12), the half-year contract

(H1) and the two closest yearly contracts (Y0-Y1) are examined over the course of four one-month peri-

ods: April 2015, June 2016, November 2017 and February 2018. We start out looking at 60-minute data

throughout the entire trading hours (1 AM to 11 PM) and then narrow it down both in terms of time res-

olution and trading hours. This process is illustrated in figure 3.5. By averaging the four periods, we see

5The log-Brownian paradigm for modelling securities prices is both easy to apply and it produces sensible results, but it fails
to capture a crucial property of intraday price movements, namely uncertainty in the time domain. Whereas daily data for
most securities have no time uncertainty (price data arrives at a constant rate of once every trading day), this is not the case for
intraday data. The arrival of a tick, or a trade, could arguably be modelled as a Poisson process of some given intensity, with the
realized prices being drawn from some independent distribution. This type of model is out of scope for this master thesis, but
the interested reader is referred to Rogers and Zane (1998) for a detailed description of such a model.
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that M1-M6, Y0, H1 and Y1 achieve filling-rates well above 90%, and for M1-M5 the percentage of missing

data points is approximately 0%. By evaluating a large number of subsets, both in terms of time resolu-

tion and trading hours, we have found 5-minute data from 9 AM to 7 PM to yield satisfactory filling-rates.

Our resulting 5-min dataset includes 120 data points per day, where the time stamp indicates the opening

time of the interval.

In selecting contracts for trading, our objective is twofold. We want to: 1) keep periods with missing

or no data at the lowest level possible to ensure sufficient robustness in the backtest; while also 2) main-

taining the most detailed time resolution possible, to ensure sufficient granularity for intraday trading.

This promotes an "uncertainty principle": we want both robustness and granularity, but must compro-

mise on one in order to achieve the other. We know from section 3.1.3 that volume and open interest

in Brent Crude futures increase rapidly during the last six months of a contract’s lifespan. From this, we

hypothesize that distant-maturity contracts might not be as frequently traded as i.e. M1 or M2. Com-

bined with the subsetting approach illustrated in 3.5, we choose to trade the relative contracts M1-M6,

Y0-Y1 and H1 (an overview of all pairs considered are found in appendix C). When looking at the M7-M12

contracts, intraday liquidity is rapidly decreasing with a high number of missing data points.

3.1.5 Summary of data aggregation and subsetting

Before continuing with the empirical analysis of the data set, we summarize our choices of data aggrega-

tion and subsetting:

1. To achieve price simultaneity, tick data has been aggregated to 5-minute bars. Also, because we do

not have historical order book data, we argue that a very granular resolution (e.g. sub-1-minute)

would not be meaningful due to the potential impact of market microstructure.

2. Time resolution is set to 5-minutes, as this allows us to test a true ”intraday” strategy.

3. The considered pairs for pairs trading are combinations of the relative contracts M1-M6, Y0-Y1 and

H1 (an overview of pairs are found in appendix C), as these are the most liquid contracts.

4. We limit trading hours to 9:00 AM until 7:00 PM, BST. We do this to avoid large periods without

trade data in the contracts selected for trading.

3.2 Empirical study of the intraday data set

In this section we conduct an empirical study of the data subset chosen in section 3.1.4 (5-min resolution

between 9AM and 7PM for pairs listed in appendix C). We give a detailed description of return distribu-

tions, autocorrelation in returns, Conditional Value at Risk (CVaR) for long positions and the covariation

of contracts (both correlation and cointegration). By comparing 5-min data with daily data, we high-

light several interesting features that in our opinion justifies a thorough backtest of an intradaily spread

trading strategy.

We study contract time series on a relative basis for our empirical study. We study log returns, and

we exclude log returns across roll-dates to avoid false returns arising from the rolling of contracts. Log
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returns for contract i are calculated using equation (3.1). We observe ’Close’ prices for 5-min data and

’Settlement’ prices for daily data. We use the daily settlement price as this is the de facto daily closing

price, used by brokerages when marking positions to market.

Ri ,t = log (Pi ,t )− log (Pi ,(t−1)) (3.1)

When analyzing 5-min bars, we exclude overnight log returns (in our case from 7 PM until 9 AM the fol-

lowing day). Overnight returns are excluded because they represent returns over a different time interval

than the 5-minute intervals we have partitioned our data into. This is a subtle detail, but an important

distinction between daily and intradaily data. For daily data, data points are evenly spaced out with one

trading day between them; for intradaily data, overnight returns differ from returns over e.g. a 5-min in-

terval. Further, log returns related to missing data points are considered missing, and thus excluded from

the following analysis 6. A note of caution: aggregating 5-min return series will not yield true daily returns

due to the treatment of blanks and overnight returns. Despite this, the partitioning of the data into 5-min

intervals gives us a solid basis for describing the return characteristics over short time intervals.

3.2.1 Statistical properties of Brent Crude futures contracts

Descriptive statistics

In this subsection, we present descriptive statistics for the log returns of 5-min data and daily data. De-

scriptive stats for 5-min data are found in table 3.1, and for daily data in table 3.2. We highlight the

following from the tabulated data:

1. Negative intraday returns: Mean values for intraday returns are all negative. This is in contrast

to daily returns, which show positive mean returns for the entire period studied. The number of

observations in both samples is high. From this, we conclude that on average, intraday returns

have been negative while overnight returns have been positive7.

2. Wide confidence bounds: Confidence bounds are quite wide relative to the mean for both 5-min

returns and daily returns. The 95% CB for daily returns in the M1 contract ranges from ∼−32% to

∼ 47%, on an annualized basis.

3. Non-Gaussian return distributions: Jarque Bera for both 5-min and daily data are very high, in-

dicating that both distributions are non-Gaussian. 5-min JB is much much higher than daily JB.

Further, 5-min returns show low skewness but very high excess kurtosis. In other words, the 5-min

return distribution has very fat tails. For daily data, there is a slight positive skew for all contracts.

4. Missing values: The number of observations is significantly lower for H1 and Y1 than for the rest

of the contracts studied. This is caused by blanks in the dataset, which leads to undefined log

returns and fewer observations. The return over periods with missing data is not included. This is

6Log returns are calculated before removing the missing data. If blanks were removed first, it would certainly impact the
distribution of 5-min log returns as the time-delta no longer would be exactly 5 minutes for all remaining data points.

7Overnight returns are here defined as the returns from 7.00PM to 9.00AM the following trading day.
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undeniably a source of error, as these returns might "correct" any new information arriving during

the blank period. However, it should be noted that the number of total observations is very large

and thus we consider these effects to be small.

5-minute Intraday aggregated*
Contract Mean CB SD Mean CB SD
M1 -0.0001987% 0.0010407% 0.1691236% -0.0236% 0.1238% 1.8449%
M2 -0.0001693% 0.0010200% 0.1657124% -0.0201% 0.1214% 1.8077%
M3 -0.0001269% 0.0010087% 0.1632578% -0.0151% 0.1200% 1.7809%
M4 -0.0001514% 0.0010130% 0.1616730% -0.0180% 0.1205% 1.7636%
M5 -0.0001922% 0.0010420% 0.1619150% -0.0229% 0.1240% 1.7663%
M6 -0.0002995% 0.0010796% 0.1619711% -0.0356% 0.1285% 1.7669%
Y0 -0.0003001% 0.0009500% 0.1529322% -0.0357% 0.1131% 1.6683%
H1 -0.0005757% 0.0010838% 0.1522441% -0.0685% 0.1290% 1.6608%
Y1 -0.0004800% 0.0009431% 0.1384623% -0.0571% 0.1122% 1.5104%

5–minute
Contract N.obs. Min Max Kurtosis Skewness Jarque-Bera
M1 101 458 -3.64% 2.37% 10.82 -0.07 495 166
M2 101 405 -3.45% 2.33% 10.52 -0.06 467 657
M3 100 634 -3.39% 2.27% 10.16 -0.06 432 608
M4 97 853 -3.07% 2.18% 9.15 -0.06 341 390
M5 92 756 -2.92% 2.17% 8.55 -0.04 282 315
M6 86 473 -3.00% 2.05% 8.62 -0.05 267 623
Y0 99 545 -2.40% 2.05% 8.51 -0.05 300 223
H1 75 801 -2.00% 1.76% 6.66 -0.04 140 182
Y1 82 801 -1.76% 1.59% 6.17 -0.01 131 262

Table 3.1: Descriptive statistics for log returns of intradaily 5-min data. Overnight returns are excluded.
CB is the 95% confidence bound of the mean. *Note: Aggregated over the (T = 120) 5-min periods from
9:00AM to 7:00PM, in similar fashion as when annualizing daily returns. This return only measures the
intradaily component of daily returns, as overnight returns are excluded from the 5-min dataset.

Distributions of returns in different time resolutions

From the empirical finance literature, a well-known stylized fact is that daily return series have fat tails.

Figure 3.6 show histograms of 5-min (A) and daily (B) log returns in the ICE BRN M1 relative contract.

We observe in histogram A that the distribution of 5-min returns has (much) fatter tails than the distri-

bution of daily returns. It is clear that 5-min returns arrange themselves in a highly leptokurtic fashion.

Daily returns also show a leptokurtic tendency. This resonates well with the high levels of excess kurtosis

observed in tables 3.1 and 3.2.

We take a closer look at the return distribution of the front-month contract by considering four differ-

ent time resolutions. For this purpose, we construct Quantile-Quantile (Q-Q) plots, presented in figure

3.7. Looking at plots A through D, the general conclusion is that intraday data have much fatter tails than

what would be expected from a normal distribution. We also notice that return distributions seem to

become more leptokurtic the shorter the time resolution and that the 30- and 60-min data presented in

plots B and C nicely bridges the gap between the 5-min data and the daily data already discussed. Ex-

planations for the highly leptokurtic nature of short-term return distributions can be many. Price shocks
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Daily Annualized*
Contract Mean CB SD Mean CB SD
M1 0.0312% 0.1587% 2.3677% 7.79% 39.68% 37.44%
M2 0.0279% 0.1551% 2.3145% 6.97% 38.79% 36.60%
M3 0.0250% 0.1514% 2.2588% 6.25% 37.85% 35.71%
M4 0.0222% 0.1476% 2.2017% 5.55% 36.90% 34.81%
M5 0.0196% 0.1438% 2.1450% 4.89% 35.95% 33.92%
M6 0.0173% 0.1402% 2.0909% 4.32% 35.04% 33.06%
Y0 0.0116% 0.1407% 2.0998% 2.89% 35.19% 33.20%
H1 0.0005% 0.1219% 1.8186% 0.13% 30.47% 28.75%
Y1 -0.0080% 0.1085% 1.6181% -2.01% 27.12% 25.59%

Daily
Contract N.obs. Min Max Kurtosis Skewness Jarque-Bera
M1 855 -8.80% 11.13% 2.16 0.36 185
M2 855 -8.66% 10.45% 2.14 0.35 181
M3 855 -8.60% 9.87% 2.11 0.33 174
M4 855 -8.55% 9.67% 2.09 0.32 170
M5 855 -8.49% 9.57% 2.08 0.30 167
M6 855 -8.40% 9.51% 2.08 0.29 167
Y0 855 -8.66% 14.97% 4.39 0.59 736
H1 855 -8.16% 9.98% 2.89 0.33 313
Y1 855 -7.73% 7.73% 2.57 0.20 241

Table 3.2: Descriptive statistics for log returns of daily data. In contrast to table 3.1, this include overnight
returns. CB is 95% confidence bound of mean. *Note: Annualized using the standard approach of multi-
plying daily log returns with

p
T and std.dev. with

p
T (trading days assumed to be T = 250).

might pose the most fruitful explanation: the market for crude oil futures is (very) liquid, and as a conse-

quence, any new information is quickly assimilated in the market. In the event of a price shock, we infer

from the distributions of returns that the most extreme movements in prices happen over a short period

of time. The relative size of the shock is much larger for 5-min data than for daily data, simply because

on average, prices change less in 5 minutes than in a day. This is a possible explanation for the highly

leptokurtic return distribution.

We have studied the other relative contracts in a similar fashion, from which identical insights can be

drawn.

Time series and autocorrelation of returns and absolute returns

Figure 3.8 show time series of log returns and absolute values of log returns for 5-min (A) and daily (B)

data. By looking at the top panel for A and B, we can verify the shape of the return distributions previ-

ously observed in figure 3.6. For 5-min data, we verify that returns usually fall in the range of ±0.5%, but

sometimes experience large ’shocks’ with returns of e.g. < −2% in a single 5-minute interval. From the

bottom panels in both A and B, we notice that volatility clustering is an evident feature of returns - this

is a potential risk factor in spread trading. However, as we will later show in figures 3.11 and 3.12, the

relationship between returns in Brent Crude futures contracts of different maturities is quite strong. This

serves as a mitigating factor on the aforementioned risk. We also note that the second half of our sample

seems to have lower variability in returns than the first half. This may also be verified from the chart of
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Figure 3.6: Histograms of 5-min and daily returns for the relative contract ICE BRN M1. The red line is the
Gaussian fit of the data observed. Note that the scale of the x-axis is not the same for the two histograms.

daily data over the period from January 2015 to April 2018 in section 3.1.

To look closer at the time dependence of returns and volatility, we plot the Autocorrelation Function

(ACF) for both returns and absolute returns in figure 3.9. In plots A and C, we note that persistence in

returns seems to be low or non-existent (correlation coefficients for lags are small in absolute terms and

does not follow any notable pattern). Looking at the 5-min ACF in A, we note that several lags achieve

correlations that fall outside of the confidence boundary. To us, however, this seems to be merely a con-

sequence of the high number of lags studied (600) - some lags will exceed the confidence bound out of

pure chance. Further, as correlation coefficients are small in magnitude (∼ 0.02 at most), this indicates

that there is little persistence in 5-min returns. From C, we note a very slight single-day persistence of

returns for the daily data, as the first lag shows a statistically significant correlation coefficient of negative

∼ 0.075. This is however low, and thus the ACF plots do not indicate significant persistence in returns

for either 5-min or daily return series. Because the ACF plot does not verify the joint hypothesis that

all correlation coefficients for a given number of lags are zero, we also use the Ljung-Box test on the re-

turn data. Test results for the ICE BRN M1 contracts are found in table 3.3. Interestingly, we now find

the null hypothesis of no autocorrelation in 5-min return series to be rejected as p-values for all lags are

significant at a 1%-level. (p<0.01). For the daily return series, we still have no concluding evidence for

autocorrelation for lags more than 1 day.

The lack of autocorrelation in returns does not mean that returns are independent over time - by

plotting the ACF of absolute values of returns we see in B and D that non-linear time dependencies are

highly present. Because absolute returns (or squared returns) are linked to volatility, this confirms the

presence of volatility clustering in both 5-min and daily data. The shape of the 5-min ACF plot in B looks

strange at first but has also been found in the early literature on volatility persistence in Andersen and

Bollerslev (2014, Fig. 4, p.123). Looking closer, we find that all the tops of the ACF in B is centred around

multiples of 120, which is the number of 5-minute periods each day in the sample we study. So what does

B really tell us? It tells us that for 5-min data, persistence in absolute returns is strongest for lags spaced
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Figure 3.7: Q-Q plots for 5-min, 30-min, 60-min and daily time resolutions, for the relative ICE BRN M1
contract. All data series have been transformed into standard normal variables for easier comparison.

exactly one trading day apart. From D, we conclude that there exists significant persistence in absolute

daily returns. We also note that the periodic effect observed for 5-min data has disappeared.

Conditional Value at Risk (CVaR) of long positions in Brent Crude futures

The CVaR metric is intrinsically linked to the time horizon and resolution of the data studied. Figure 3.10

shows the sensitivity of CVaR for different quantile-levels α and different time resolutions.

Firstly, we observe that the CVaR is relatively equal across contracts. The closer to maturity, the

higher the CVaR. As seen in section 3.2.1, the tails of 5-min returns are considerably ”fatter” than that

of other time resolutions. A disproportionate amount of losses occur over very short time-intervals for

Brent Crude futures, which further highlights the importance of risk management in intradaily trading

strategies.
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Lags = 3 Lags = 5 Lags = 20 Lags = 40
5-min daily 5-min daily 5-min daily 5-min daily

Q-statistic 37.154 6.4742 37.679 7.3414 76.706 26.717 111.85 38.594
p-value 0.0000* 0.0907 0.0000* 0.1965 0.0000* 0.1434 0.0000* 0.5336

Table 3.3: Ljung-Box test applied to the ICE BRN M1 time series. The joint null hypothesis are rejected
for all 5-min data tests, and we conclude that autocorrelation is present. Statistically significant results
at the 1% level is indicated by: *p<0.01. The maximum number of lags of 40 are based on the default
specification lags = mi n(bn/2c − 2,40) in the Stata 15 software package (StataCorp, 2017). In our case
n >> 84, and thus the default choice is lags = 40.

A B

Figure 3.8: Comparison of log returns and absolute log returns for 1-day data and 5-min data, for the
relative ICE BRN M1 contract.

Covariation of contracts

In figure 3.11 and 3.12, we present scatter plot matrices for 5-min and daily log returns for the M1-M6,

Y0, H1 and Y1 contracts. We also show the return distributions on the diagonal. Clearly, returns of dif-

ferent contracts exhibit some strong form of interdependency. This further motivates our spread trading

backtest. As explained in appendix G, the log returns of calendar spreads are related to roll-yields (cost of

storage and convenience yield) and spot price returns. Because the spot price is common for both con-

tracts, the relationship between returns for the contracts should be very strong. Comparing the scatter

plot matrices, we observe that the relationship between log returns of contracts of different maturities

are strong for both 5-min and daily data. For 5-min data, however, correlation8 of returns is lower than

for daily data. From the return distributions, we know that 5-min returns have fatter tails than daily re-

turns, and we believe this might be part of the explanation for the lower correlation. The other part of the

explanation might be that for 5-min intervals, details of micro market structure and order flow become

important factors affecting the price. If one contract is being accumulated aggressively while another is

being dumped, chances are that their prices will be affected accordingly. In other words, price move-

ments over very short time periods might be driven by other factors than the underlying fundamentals.

A natural question when studying the covariation of contracts is to look for lead/lag relationships.

We restrict our analysis to the bivariate case, and use a Granger causality test to check for statistically

8Correlation matrices for both 5-min and daily data are found in appendix D.
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A B

C D

Figure 3.9: Plots of the Autocorrelation Function (ACF) for log returns (left) and absolute log returns
(right) in 5-min (top) and daily data (bottom), for the relative ICE BRN M1 contract. 95% confidence
bounds are shown in shaded blue background.

significant lead/lag relationships in the 5-min log returns series. The results for all pairs are found in

table 3.4 and the test procedure is shortly described in the captions of the table. From the p-values, we

see that all test statistics are significant at a 5% significance level, in both directions. The null hypothesis

is thus rejected, and we conclude that lagged values of x are shown to explain some of the variations in y .

Because all pairs show bi-directional Granger causality, we interpret this as another confirmation of the

strong relationship between the contracts.

We argue that this makes an interesting case for short-term spread trading in Brent Crude futures: the

underlying fundamental relationship between contracts is very strong, as will be further demonstrated

in section 3.2.2, but temporary deviations from this relationship may occur due to idiosyncratic factors

affecting contracts in the short-term. This is apparent from the lower correlation of 5-minute returns

relative to daily returns.

3.2.2 Cointegration of contracts

Long-term relationship of contracts

We perform the Engle-Granger routine to test for cointegration in Brent Crude calendar spreads. We use

daily data of log spreads in the period from January 2000 to April 2018.
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Figure 3.10: Sensitivity analysis for CVaR when changing the percentile alpha.

Figure 3.11: Scatter plot matrix for 5-min log return series. Correlation matrix is found in appendix D.
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B is Granger causing A A is Granger causing B
PairsID Contract A Contract B F-statistic p-val Lags F-statistic p-val Lags Nobs
1 M1 M2 53.02 0.000 2 139.2 0.000 6 101392
2 M1 M3 29.59 0.000 1 329.3 0.000 6 100621
3 M1 M4 51.90 0.000 1 454.2 0.000 6 97840
4 M1 M5 8.556 0.003 1 743.9 0.000 5 92743
5 M1 M6 4.645 0.031 1 689.0 0.000 6 86463
6 M2 M3 44.18 0.000 3 273.8 0.000 6 100598
7 M2 M4 67.01 0.000 2 420.4 0.000 6 97829
8 M2 M5 22.03 0.000 2 592.1 0.000 6 92736
9 M2 M6 18.18 0.000 1 672.1 0.000 6 86435
10 M3 M4 225.3 0.000 2 243.9 0.000 7 97311
11 M3 M5 96.99 0.000 2 461.9 0.000 6 92387
12 M3 M6 37.34 0.000 2 577.4 0.000 6 86208
13 M4 M5 132.1 0.000 3 412.1 0.000 5 90763
14 M4 M6 91.20 0.000 2 464.9 0.000 6 84829
15 M5 M6 114.4 0.000 5 288.2 0.000 6 82037
16 Y0 Y1 72.56 0.000 1 560.5 0.000 4 82695
17 Y0 H1 58.25 0.000 1 737.6 0.000 4 75751
18 H1 Y1 287.8 0.000 4 122.3 0.000 5 71856

Table 3.4: Results of a bivariate Granger causality test for all pairs considered on 5-minute data. The
hypothesis tested is: H0: Lagged values of x do not explain the variation in y , i.e. coefficients of x-lags
are all equal to zero. HA : Lagged values of x have a statistically significant effect on y , i.e. at least one of
x-lag coefficients are not zero. The test is computed as a Wald test comparing the unrestricted model (y
is explained by lags of both y and x) and the restricted model (y is explained by lags of y only). Lag length
is chosen using AIC.
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Figure 3.12: Scatter plot matrix for daily log return series. Correlation matrix is found in appendix D.

The first step in the Engle-Granger test, i.e. the test for unit roots in the individual log price series,

is highly significant for all contracts. This means that log price series are non-stationary, as expected.

Proceeding to test for unit roots in the first difference of log prices (log returns), these are proven to be

stationary. As a result, all log price series are proven to be integrated of order 1, I(1).

Step two in the Engle-Granger test is to regress one of the series on the other and run another unit

root test on the residuals of the regression. Test results are presented in table 3.5, while the full procedure

for the EG test routine is explained in appendix E. We conclude that all spreads are cointegrated with high

levels of statistical significance, as all p-values are below 0.02 in the Augmented Dickey-Fuller (ADF) test

on the residuals of the cointegrating regression. We also note that the estimated cointegration coefficient

(κ) is approximately one (1) for all series, indicating that an ”energy-neutral”9 position should be held.

These results suggest that log calendar spreads are in fact mean-reverting in the long run. Figure F.1

in the appendix shows the cointegration regression residuals (i.e. the log spreads, given the resulting κ of

the cointegration regression) of all pairs throughout the period (2000-2018). These plots seem to confirm

our conclusion of long-term mean reversion, but they also show that the spreads have large deviations

from their mean during the financial crisis of 2009 and oil price crash of 2014-2015. This is due to the

rapid changes in the term structure of oil futures at those points in time, which is reflected in the log

spread (see appendix G for theoretical details).

From the analysis above with support in table 3.5, we see two problems emerging when trying to trade

the long-term spread:

9An energy-neutral position is a long-short position with net exposure of zero units of the underlying commodity, e.g. long
one lot and short one lot of crude oil
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Table 3.5: Results from Engle-Granger test for cointegration in daily data from January 2000 to April 2018.
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1. It can take a long time for the spread to mean-revert, resulting in low annualized profits and long

trade lengths.

2. Contracts expire each month, and positions must be rolled over in order to be kept alive. This

entails costs (commissions, bid-ask spreads) and can further reduce trading profits.

Both problems highlighted above are reasons why we wish to focus on short-term spread trading.

Looking for a short-term relationship

As we seek to profit from short-term mean reversion, we now test for cointegration on 5-min log spreads

using the Engle-Granger procedure. To avoid rolling concerns, we test for cointegration in one month

of absolute contract data at the time. We thus run the EG test for all 18 pairs over the 40 consecutive

one-month intervals in our intraday dataset, which results in 18 ·40 = 720 tests in total. The results form

a very large amount of data, and the main conclusion is that cointegration is not possible to prove in the

short-term. In figure 3.13 we present a strip plot (one-dimensional scatter plot) of the p-values for all

tests, across all pairs. The vertical axis represents different spreads, and the horizontal axis represents the

distribution of p-values. Each dot represents a test for a given pair and month in our intraday sample.

We quickly see that p-values are distributed all over the scale. Some tests show significant p-values, but

most tests show high, insignificant p-values. As a consequence, we must conclude that spreads are not

cointegrated on a 5-minute basis, and the cointegration approach (presented in section 2.2.2) to short-

term spread trading is ruled out. In appendix F.2 we have plotted spreads and histograms of the ICE

BRN M1 contract for all 40 consecutive one-month periods. In summary, we observe that a large number

of the spreads have some sort of drift or jumps in them, which indicate that they are non-stationary.

Further, most of the histograms do not exhibit a Gaussian form. But even though we can not apply the

cointegration approach to a short-term strategy, we see from the spread plots in appendix F.2 that many

series seem to have a high degree of oscillations around some kind of ”rolling mean”. This motivates a

similar approach as Liu et al. (2016), in which we model the oscillations around a time-varying mean

in order to make profitable trades in the short-term. In fact, we think that the presence of short-term

divergence from some longer-term fundamental relationship provides an interesting backdrop for an

intradaily trading strategy, and thus we proceed to implement the stochastic approach to spread trading

in chapter 4.
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Figure 3.13: Stripplot (one-dimensional scatterplot) of p-values from ADF test of residuals in Engle-
Granger procedure. Each pair has been tested in 40 consecutive one-month periods. One dot in diagram
represents one test. AIC is used for numbers of lags in ADF test.



Chapter 4

Methodology

4.1 An overview of the backtesting model

To backtest the intraday spread trading strategy, we have built an event-driven backtesting environment

in Python1. The two most important parts of the model is: 1) ranking and 2) trading (signal generation &

execution). These are described in detail in sections 4.2.1 and 4.2.2. The building blocks and flow of the

model are shown in figure 4.1, and the Python code for all functions used are found in appendix J.2. A

short explanation of the model flow follows.

The entire data set from January 2015 to April 2018 is split into trading periods based on a pre-

determined trading period length (N = {1,5,20} days). At the start of each trading period, all possible

pairs are ranked based on volatility and frequency of mean crossovers in the formation period (section

4.2.1 provide details). In our strategy, we trade K accounts. Depending on the number of accounts traded

(K ), we then backtest the top K pairs for the given trading period. The model runs through each times-

tamp in the trading period using intraday 5-minute data. Trading signals are generated based on prices

from the underlying contracts and thresholds determined from the formation period (section 4.2.2 pro-

vide details). Orders are executed and accounted for, including transaction costs and bid-ask spreads.

Combined ranking and trading procedure is repeated for all trading periods. Rolling is handled by not

allowing a trading period to overlap the rolling date; i.e. contracts are re-ranked the day before maturity

of currently traded contracts. Account balances are logged and accumulated return series are produced

for each account at each time step, and this is used for calculating performance metrics at the end.

4.2 Spread trading strategy - the stochastic approach

We adopt a similar approach to spread trading as the one introduced in Liu et al. (2016). The approach

outlined in the paper is based on the stochastic approach (details in section 2.2.3), but two stochastic

processes are used instead of one. For each contract pair, we create a long-term log spread based on

daily settlement prices and a short-term log spread based on 5-minute data. In the formation period, we

model the short-term spread as an Ornstein-Uhlenbeck (OU) process with a time-varying mean based on

1For more details on such a structure, we refer the reader to Chan (2013).

33
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Figure 4.1: Boxmodel of the backtesting model implementation. Python code for the entire program is
found in appendix J.2.

a trailing moving average. We then use the statistical properties of the short-term and long-term spreads

in the formation period to: 1) rank pairs, and 2) generate thresholds for trading signals.

Why do we favour the stochastic approach? An important critique of the distance and classical coin-

tegration approaches to pairs trading are that relationships between securities often are dynamic rather

than static. Based on the initial discussion in Liu et al. (2016), two simple examples are provided:

1. Firstly, the log spread of two securities might experience a (quick) change in mean due to funda-

mental factors. In this case, it would not be identified as a candidate for pairs trading in the distance

approach no matter their later co-movements. Because the oil price is heavily dependent on shocks

in supply (such as geopolitical events), sudden changes in spreads can happen from time to time,

reflecting changes in the forward curve.

2. Secondly, if two securities experience periods of strong co-movements but in some periods this

does not hold, it would not be selected in a cointegration approach - even though profits could be

made in periods. We would also add that the classical cointegration approach described in 2.2.2

is based on the spread returning to a constant mean. In section 3.2.2 we show that short-term

cointegration cannot be proven for the contracts in our data set, and given that the calendar log

spread is dependent on the roll yield (see appendix G for details), the mean of the log spread is not

necessarily constant2.

4.2.1 Ranking of pairs in formation periods

The ranking is performed at the start of each trading period and is held constant until the next trading

period (i.e. 1 day, 5 days or 20 days in our study). Ideally, we want pairs with low long-term variance

2Note that we still argue for mean-reversion in the log-spread, but with a time-variant mean instead of a constant one. As
pointed out in Liu et al. (2016), this corresponds to modelling the short-term oscillations around a dynamic long-term mean.
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and high short-term variance. In addition, we want pairs that cross the mean as many times as possible

in the formation period. In this case, we could make lots of trades in the short-term in the belief that

the long-term spread will be somewhat stable. When ranking pairs for trading, we thus use the following

three, equally weighted criteria:

1. Long-term variance (LTV): We want a pair which has lowest possible variability in the long-term

log spread. This is measured by calculating the variance in the daily log spread of settlement values.

Pairs with low long-term variability in log spread will presumably be more stable.

2. Short-term variance (STV): We want a pair with the highest possible short-term variability of the

log spread, in order to exploit extreme movements in the short-term. This is measured by the vari-

ance in an Ornstein-Uhlenbeck (OU) process estimated over the short-term formation window,

with a moving average mean. We do this because we want the largest possible variance relative to

the mean.

3. Mean Crossover Rate (MCR): A higher number of mean crossovers indicates that more trades can

be made (Vidyamurthy, 2004, p.112). A high number of trades with small average profits is better

than some trades with high gains. The former will presumably have a lower Sharpe Ratio (due to

lower variance) and also possibly a lower Calmar ratio (lower chance for large drawdowns). MCR

is measured on intraday data as the number of times the log spread of a pair crosses its moving

average.

Two formation period lengths are used: L = 100 days for the long-term spread and S = 3N days for the

short-term spread, where N = {1,5,20} is the trading period length in days (illustrated in figure 4.4). In

the long-term formation period, relative contracts (e.g. ”ICE BRN M1” vs. ”ICE BRN M2”) are used. In the

short-term formation period, we use the absolute contracts (e.g. ”ICE BRN FEB-2017” vs. ”ICE BRN MAR-

2017”). The reason for this is that short-term intraday dynamics can be quite different across rolling, e.g.

there can be considerable jumps in the spread.

An example ranking made at 1st of July 2015 using a long-term formation period of L = 100 days and

a short-term formation period of S = 3 days is shown in table 4.1.

Long-term spread

For the long-term spread, we rank pairs from lowest to highest estimated volatility (σLT ) in the long-term

formation period of L = 100 days3. The calculation is shown in equation 4.1, of which µLT is the mean of

the log spread in the formation period. The log spread is defined by Yt = log (P A,t )−log (PB ,t ), using daily

settlement prices for the long-term spread.

σLT = 1

L−1

L∑
t=1

(Yt −µLT )2 (4.1)

3Note that the volatility estimates of the spread do not need to be annualized, because we only use it for ranking the spreads
in a formation period of given length.
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Relative contracts Absolute contracts Volatility est. Ranking values (0-17)
PairsID A B A B Long-term Short-term MCR Vol. LT Vol. ST MCR Total

13 M4 M5 DEC-2015 JAN-2016 0.003166 0.102564 104 1 9 0 10
14 M4 M6 DEC-2015 FEB-2016 0.005929 0.114936 77 5 6 3 14
11 M3 M5 NOV-2015 JAN-2016 0.006643 0.116256 62 6 5 4 15
15 M5 M6 JAN-2016 FEB-2016 0.002776 0.082804 62 0 12 5 17
6 M2 M3 OCT-2015 NOV-2015 0.003461 0.079999 80 2 15 1 18

10 M3 M4 NOV-2015 DEC-2015 0.003486 0.082327 77 3 13 2 18
8 M2 M5 OCT-2015 JAN-2016 0.010058 0.121214 41 12 3 8 23
1 M1 M2 SEP-2015 OCT-2015 0.003554 0.080272 53 4 14 6 24
2 M1 M3 SEP-2015 NOV-2015 0.006875 0.107964 34 7 7 11 25

12 M3 M6 NOV-2015 FEB-2016 0.009397 0.120617 39 11 4 10 25
17 Y0 IH1 DEC-2015 JUN-2016 0.008639 0.106385 40 10 8 9 27
4 M1 M5 SEP-2015 JAN-2016 0.013347 0.14166 26 15 1 13 29
9 M2 M6 OCT-2015 FEB-2016 0.012808 0.129284 23 14 2 14 30

18 H1 Y1 JUN-2016 DEC-2016 0.007172 0.098171 27 9 10 12 31
7 M2 M4 OCT-2015 DEC-2015 0.006917 0.076078 45 8 17 7 32
5 M1 M6 SEP-2015 FEB-2016 0.016083 0.152448 16 17 0 17 34

16 Y0 Y1 DEC-2015 DEC-2016 0.015596 0.09441 18 16 11 16 43
3 M1 M4 SEP-2015 DEC-2015 0.01025 0.077553 21 13 16 15 44

Table 4.1: Example of ranking of pairs in formation period, at 1st of July 2015. Long-term formation
period is L = 100 days, and short-term formation period is S = 3 days. All contracts are ranked from 0-17
in each of the three ranking metrics (LT vol, ST vol and MCR) which are summed up to form the total
ranking.

This is in contrast to Liu et al. (2016), which model the long-term spread as an Ornstein-Uhlenbeck (OU)

process and back out the volatility of the process. However, during our tests, we find that the correlation

between our volatility estimates σLT and the OU process volatility estimates are very high. This indicates

that the OU estimation of the long-term spread might not add much value to the ranking, at least in the

case of calendar spreads in Brent Crude futures. We simply find it to be a complicating factor and thus

use the simple volatility of the long-term spread for ranking.

Short-term spread

Because log spreads are non-stationary in the short-term (as shown in 3.2.2), reversion to a constant

mean as tested by the Engle-Granger procedure cannot be assumed. But studying the data for Brent

Crude futures, we find that the log spread does seem to oscillate around a time-varying mean in the

short-term (similar to the dynamics shown in figure 4.2). To be able to trade on this very short-term

variability, we model the short-term spread as an Ornstein-Uhlenbeck (OU) process with a time-varying

mean, as shown in equation (4.2).

dY = θ(µ(t )−Y (t ))d t +σST dW (4.2)

θ is the mean reversion rate, taken to be strictly positive (θ > 0). σST is the estimated volatility of the

process. µ(t ) is a time-varying mean based on the S-day equally weighted moving average of the log

spread in the short-term formation period. Note that µ(t ) is calculated before the OU parameters are

estimated, and thus it is taken as inputs into the short-term spread model. If the movements in the short-
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term log spread are large enough, and the time-varying mean stays relatively constant in our trading

period (N ), a statistical arbitrage approach should be able to generate profits. The short-term process is

estimated using 5-min data in a formation period of S = 3N , and exclude all time steps with incomplete

data (i.e. at least one of the prices is blank). The OU process is estimated using linear regression on the

discretized form of equation (4.2), in accordance with the methodology found in Clewlow and Strickland

(2000). A short description of the estimation procedure is found in appendix H.

4.2.2 Trading signals

During backtesting, we monitor the following variables for each time step (i.e. 5 minutes): the log spread

(Yt ), the time-varying mean of the log spread (µt ), thresholds for the log spread (τt ), the current state

of our position (open/closed) and time remaining until trading period end. Based on these variables we

continuously generate trading signals. A graphical illustration is provided in figure 4.2, and we urge the

reader to actively review it along with details of the entry and exit signals.

Entry signals

The entry signal is triggered when the observed log spread (based on ”Close” values from last time step)

deviates outside a threshold. This threshold is measured relative to the time-varying mean of the spread,

µt . Depending on which direction the log spread is moving, signals are given as:

SHORT A, LONG B: if Yt >µt +τt (4.3)

LONG A, SHORT B: if Yt <µt −τt (4.4)

The threshold τt is set to be the maximum value of: 1) the estimated trading costs plus a minimum

required return (TCmi n), and 2) the α percentile of absolute differences between the time-varying mean

µt and observed log spread Yt in the short-term formation period (T hα). In other words, the idea is to

trade when the log spread breaks the α percentile observed in the formation period, but not unless it will

cover our estimated round-trip trading costs.

τt = max

{
T Cmi n ,T hα

}
(4.5)

T Cmi n = 4 ·
(

(P Ask −P Bi d )+C

0.5(P A,t−1 +PB ,t−1)

)
+ r (4.6)

T hα = Percentileα
(|µt −Yt |

)
, t ∈ F PST (4.7)

In equation (4.6), the bid-ask spread (P Ask −P Bi d ) is assumed to be equal for both legs and C is the

commission average per contract, both in dollar terms. r is a required return for the trader to take a

position, in percentage terms. T hα is theαpercentile of the absolute difference between the time-varying

mean (µt ) and log spread in the short-term formation period (F PST ). Note that the transaction cost

estimate is based on previously observed prices (in the conservative case) and thus represents a potential

error. Also to be noted is our inclusion of a required return for the trader. We do this because otherwise,
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2-Jul-15 3-Jul-15 6-Jul-15 7-Jul-15 8-Jul-15 9-Jul-15
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Trading thresholds,
TCmin

Figure 4.2: Example of how trading signals are generated. The strategy is based on a trading period of
one day and a time-varying mean of 3 days length. (1): The log spread is outside the percentile threshold
(τt ), as defined in 4.5. In accordance with the entry criteria in equation 4.4, we LONG A and SHORT B.
(2): The log spread has crossed back across the time-varying mean (µt ) and our open position is closed,
in accordance with the convergence criteria in equation 4.9. (3): First, an entry signal is triggered. But
shortly after, we reach the end of our intraday trading period and the position is closed out.

trades that just cover the estimated trading costs will be entered into, leaving no room for profits. This

illustrates an important principle of spread trading, in that profits are ”capped” once a position is entered

into (assuming mean-reversion). Because of this, it is important for the trader to choose an appropriate

required return for each trade.

Exit signals

We close the position if 1) the trade ”converge”, or if 2) we are at the end of the trading period specified.

In our definition, the trade has converged when the log spread Yt has crossed ”back” across the S-day

moving average µt . I.e. for a later time t than the signal was entered:

When SHORT A, LONG B: converged if Yt ≤µt (4.8)

When LONG A, SHORT B: converged if Yt ≥µt (4.9)
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The trading period end functions as a ”time stop-loss”, ensuring that non-converging positions are not

held onto for too long (maximum N = {1,5,20} days).

4.3 Backtesting and evaluating strategy performance

4.3.1 Backtesting design - formation periods and data snooping

Following Alexander (2008), the general idea of backtesting is to use an initial training period (formation

period) to fit an econometric model and then apply this model to a new dataset (trading period) in order

to evaluate performance. We split the time-series data of contract prices into formation periods and trad-

ing periods using the approach of ”walk forward validation”. This approach is based on moving through

the time-series data from start to end, using a rolling window behind for formation and a window in front

as the trading period. A graphical illustration is shown in figure 4.3. A motivation for splitting the data

Long formation period (L days)

Short formation period (S days)

Trading period (N days)

Figure 4.3: Graphical illustration of walk forward validation.

sample is the problem of data-snooping bias, in which we are ”using data that we are not supposed to

know at the time when we estimate the model” Alexander (2008, Vol II, p. 363). This problem is of particu-

lar concern in the academic literature on trading strategies. It can also arise when testing a large number

of parameter variations in-sample, of which one might find profitable trading rules by pure chance (sim-

ilar to over-fitting a model). In the literature, it is common to apply White’s Reality Check (a statistical

bootstrapping methodology) in order to test the robustness of the mean of returns. But this should only

be necessary when using the same sample for both optimization and testing. By splitting the data into a

formation period (in-sample) and a trading period (out-of-sample), we mitigate the risk of data-snooping

and therefore do not apply White’s Reality Check on our results.
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In our approach, the ranking of pairs and estimation of threshold parameters is performed in the

formation period. Then the top K ranked pairs from the formation period are traded in the following

trading period. This ensures that we are only using historical data when making decisions. The S-day

moving average which is functioning as the mean of log spreads (µt ) is re-calculated at every time step in

the trading period. Performance of strategies is only measured during the trading period (out-of-sample).

We have not come across any formal rules in the literature on how long formation periods should be.

We approach the choice of formation period length in the following manner (illustrated in figure 4.4):

• The long-term formation period is set to L = 100 days. Such a length would seem to capture long-

term trends in log spread prices, based on looking at historical daily settlement prices before from

2000-2014, i.e. before our backtesting period.

• The short-term formation period is set to S = 3N , three (3) times the trading period length. This is

based on rules-of-thumb in machine learning literature of using ∼ 80% of the data for training and

the rest for validation (e.g. the use of 5-fold Cross Validation). Thus, we implicitly use 3/4 = 75% of

the 5-minute data considered in a particular ranking for formation.

Long formation period (100 days)

Short formation period (3N days)

Trading period (N days)

. . . . . . . .

. . . . . . . .

Figure 4.4: Example of the particular lengths of formation periods and trading period used. Note that the
short formation period and the trading period is based on 5-min data, while the long formation period of
100 days is based on daily data.

4.3.2 Parameters of backtesting model

All parameters used in our backtesting model are listed in table 4.2, along with base case values. The

six first parameters have several base case values, reflecting the fact that our base case consider three

choices of trading period length, three cases of account numbers (top 5, top 10 and all pairs) for both an

optimistic case and a conservative case.

4.3.3 The calculation of returns in a spread trading strategy

In backtesting strategies, we make use of a profit and loss (P&L) statement for each pair traded. Thus,

each pair from the ranking function is given a dedicated account in a single trading period. We then

specify an initial amount held in balance for each account and compute the changes in this account by
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Parameter Unit Base case Description
Trading period length days 1/5/20 Length of trading period, before re-ranking
Trade at same time as signal boolean TRUE/FALSE Optimistic vs. Conservative case
Which type of observations to use for execution str Close/VWAP Optimistic vs. Conservative case
Length of short ranking period days 3/15/60 Set equal to ma_multiple * trading_period_delta
Number of accounts x 5/10/18 The number of top K pairs in ranking to be traded
Cash balance at start (total) USDm 5/10/18 Set equal to 1 USDm per account

Threshold percentile % 95 %
Percentile to use for threshold, based on daily
changes in log spreads in ranking period

Bid/ask spread assumption USD/contract 0,02
Short margin % 100 % Margins needed for short position
Long margin % 100 % Margins needed for long position
Prices used for signals str Close Close prices are always used for signal generation
Moving average multiple x 3
Length of long ranking period days 100 Constant throughout the study
Rebalancing of account balances boolean FALSE At the end of each trading period
Time resolution of trading str 5min Resolution of time series used for trading
Commission cost USD/lot 1,34 Based on information from ICE cost sheets
Lot multiplier x 1 000 Based on product specification from ICE

Required return in addition to trading cost % 0,1%
Needed in order to not execute trades covering
transaction costs only

Trading days per year days 250
Global start date (start of backtesting) date 2015-06-01
Global end date (end of backtesting) date 2018-04-25

Table 4.2: Overview of parameters in backtesting model. The six first parameters are varied in the base
case, while others are held constant. Parameters 7-10 are varied in the sensitivity analysis part of results
section. The parameter variable names in the Python program is found in appendix J.1.

”marking it to market” each time step. This approach mimics the exact dynamics of a trading account

at the major brokerage houses and exchanges and allows us to implement restrictions, such as margin

requirements when deciding on how many lots to buy.

We log data of all trades throughout the backtest and construct accumulated return series for all

traded accounts. By aggregating the total returns across accounts, we also construct accumulated return

series for the entire portfolio of accounts traded. Performance metrics (such as Sharpe Ratios, trades

won/lost, mean returns, drawdowns, etc.) can be calculated using this data.

4.3.4 Performance metrics

An important tenet of modern portfolio theory and quantitative finance is to evaluate strategies on a risk-

adjusted basis. A large number of performance metrics have been developed, and a short-list of both ab-

solute and risk-adjusted metrics are found in table 4.3. First presented in Sharpe (1966), the Sharpe Ratio

has become one of the industry standards for measuring risk-adjusted returns for the strategies of alter-

native investment funds. In this thesis, our main discussion of strategy performance will evolve around

the Sharpe Ratio. For details on the other performance metrics used, we refer the reader to appendix I.

Because of the possibility of autocorrelation in returns, which can overstate the original Sharpe Ratio,

we follow the methodology of Alexander (2008, Vol. I, p.259) and use the Adjusted Sharpe Ratio (ASR).

The ASR can be calculated using daily mean returns (R), standard deviation of daily returns (s), number
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of trading days (h) and an adjustment factor (k):

ASR = h ·R

k · s
(4.10)

The daily mean returns are scaled with the number of trading days h (assumed to be 250) as usual, but

the standard deviation needs an adjusted scaling factor in place of
p

h:

k =
√

h +2
ρ

(1−ρ)2 [(h −1)(1−ρ)−ρ(1−ρh−1)] (4.11)

where h is the number of trading days and ρ is the first order autocorrelation of the excess returns of the

particular trading rule.

Absolute metrics Risk-return metrics
Mean return Sharpe ratio
Compound Annual Growth Rate (CAGR) Sortino ratio
Volatility (SD) Treynor ratio
Maximum Drawdown (MDD) Sterling ratio
Length of Max. Drawdown MAR/Calmar ratio
VaR/CVaR K-ratio
Winning/losing trades
Ulcer index

Table 4.3: A short-list of absolute and risk-adjusted performance metrics. Metrics in grey are presented
for the backtest results in this thesis.

4.3.5 Practical notes on the implementation of strategies

Signal vs. execution prices

In our implementation, we distinguish between signal and execution prices. By doing this we can test two

cases: 1) An optimistic case, in which we are able to trade at the same prices we observe (observe Close

and trade at same Close). 2) A conservative case, in which we observe the Close price in the previous

interval and execute trades at the volume-weighted average price (VWAP) in the current interval4. In

the absence of bid-ask order book data, we argue that the latter is a more sensible approximation in the

backtest. In the results chapter, we show that the two approaches yield significantly different returns. We

may also get an idea of the difference between the two approaches by looking at Figure 4.2, discussed

earlier in this chapter. We note that upon signal generation, the spread tends to revert relatively quickly

to within the transaction cost thresholds, making an eventual trade unprofitable when accounting for

transaction costs.

4Daily settlement prices at ICE is calculated as the VWAP from 7:28:00 PM to 7:30:00 PM, BST. Thus, using VWAP at 5-minute
intraday intervals is analogous to a settlement price for the 5-minute interval.
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Handling of missing data

As described in the data chapter (3), we subset the data in such a way that there is a low percentage of

missing values (i.e. timestamps without trades) in the 5-minute intervals we aggregate tick data into. In

the backtest, we approach the issue of missing values in a practical manner. In the event that a blank

occurs, the following happens in the backtest:

1. Trading signals are not updated and set equal to the previous trading signal.

2. No trades can be executed at intervals with missing values.

3. Market value of balances is not updated.

Other practical notes

• We let the proportion of lots in each leg of the trade be equal (energy-neutral). This is further

motivated in the cointegration tests in section 3.2.2.
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Chapter 5

Results

5.1 Performance of trading strategy

As described in the methodology chapter, we have divided our backtest into two cases: an optimistic case

and a conservative case. A short recap of the cases is provided below.

1. Optimistic: We generate trading signals and execute trades at the same observed Close prices.

Here, we assume simultaneity in signal and execution.

2. Conservative: We generate trading signals based on Close prices and execute trades at the VWAP

for the following time interval. Here, we assume a lag between signal and execution.

Our main results are outlined in table 5.1. With support in the tabulated results, we will now state our

main findings.

1. Strategy performance is very sensitive to details of execution. This is our most important find-

ing. By comparing the performance of the optimistic and the conservative case, and by studying

the performance sensitivity to changes in the bid-ask spread (further discussed in section 5.2), we

conclude that even the smallest changes in execution price and timing may derail a strategy. This

is a huge potential pitfall in any intradaily backtest. We try to illustrate the sensitivity to execution

price and timing by varying the degree of simultaneity and the transaction costs. In the absence of

historical order book data, this is the best we can do.

2. Optimistic case performance is (very) good. Spread trading in Brent Crude futures will yield good

risk-adjusted returns if we assume simultaneity in signal and execution. Under our base case as-

sumption of $0.02 bid-ask spread per contract leg, implying a round-trip transaction cost of $0.08

on a per-contract basis for every trade1, we still achieve ASRs between 3.9 and 4.3 and unlevered

annualized returns between 3.33% and 4.08% for 1-day trading periods. We see that these types

of strategies are "ideal" for leverage (if they are sufficiently robust). Wit a modest leverage ratio of

4:1 (many brokerage accounts operate with sub-10% margin requirements for futures trading), the

1$0.02 x 4 legs = $0.08 per round-trip trade plus a negligible fee of $1.34 per lot, or $0.00134 per contract leg.

45
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Strategy parameters Top 5 pairs Top 10 pairs All pairs

Optimistic case TP Ti Return SD ASR MDD Trades Return SD ASR MDD Trades Return SD ASR MDD Trades

1 1d 0.95 3.93 % 1.0 % 4.0 0.1 % 1235 2.23 % 0.8 % 2.8 0.7 % 2797 0.27 % 0.8 % 0.4 2.6 % 5447

2 5d 0.95 3.05 % 0.8 % 3.6 0.1 % 821 1.37 % 0.7 % 1.9 0.9 % 1366 0.37 % 0.8 % 0.5 1.9 % 2115

3 20d 0.95 0.74 % 0.7 % 1.1 0.1 % 243 0.22 % 0.7 % 0.3 1.0 % 390 0.26 % 0.8 % 0.3 0.3 % 580

4 1d 0.9 4.08 % 1.1 % 3.9 0.1 % 1315 2.27 % 0.9 % 2.6 0.8 % 3050 0.08 % 0.8 % 0.1 3.0 % 6067

5 5d 0.9 3.26 % 1.0 % 3.4 0.1 % 916 1.45 % 0.8 % 1.8 1.0 % 1547 0.33 % 0.9 % 0.4 2.2 % 2438

6 20d 0.9 0.86 % 0.8 % 1.1 0.7 % 300 0.15 % 0.8 % 0.2 1.3 % 480 0.08 % 0.9 % 0.1 1.4 % 721

7 1d 0.99 3.33 % 0.8 % 4.3 0.1 % 976 2.02 % 0.7 % 3.1 0.5 % 2183 0.57 % 0.6 % 0.9 1.8 % 4238

8 5d 0.99 2.01 % 0.6 % 3.4 0.1 % 571 0.89 % 0.6 % 1.6 0.8 % 989 0.18 % 0.7 % 0.3 1.4 % 1553

9 20d 0.99 0.47 % 0.5 % 0.9 0.7 % 153 0.18 % 0.6 % 0.3 0.8 % 268 0.40 % 0.8 % 0.5 0.3 % 422

Conservative case TP Ti Return SD ASR MDD Trades Return SD ASR MDD Trades Return SD ASR MDD Trades

10 1d 0.95 -6.36 % 1.0 % -6.5 17 % 1220 -7.01 % 0.9 % -8.1 18.5 % 2767 -7.49 % 0.8 % -9.0 19.6 % 5393

11 5d 0.95 -4.25 % 0.7 % -6.2 12 % 821 -3.59 % 0.6 % -5.6 10.0 % 1364 -3.02 % 0.8 % -3.9 8.5 % 2112

12 20d 0.95 -1.19 % 0.4 % -2.9 3 % 243 -1.01 % 0.5 % -1.9 3.2 % 390 -0.55 % 0.8 % -0.7 2.6 % 580

13 1d 0.9 -6.78 % 1.1 % -6.3 18 % 1300 -7.70 % 0.9 % -8.1 20.1 % 3024 -8.43 % 0.9 % -9.4 21.8 % 6022

14 5d 0.9 -4.79 % 0.8 % -6.4 13 % 916 -4.12 % 0.7 % -6.2 11.3 % 1546 -3.61 % 0.8 % -4.4 10.0 % 2437

15 20d 0.9 -1.48 % 0.4 % -3.4 4 % 300 -1.34 % 0.6 % -2.3 4.1 % 480 -0.88 % 0.8 % -1.0 3.5 % 721

16 1d 0.99 -5.02 % 0.7 % -6.9 14 % 964 -5.43 % 0.7 % -8.0 14.6 % 2161 -5.67 % 0.7 % -8.1 15.3 % 4201

17 5d 0.99 -3.01 % 0.5 % -5.9 8 % 569 -2.58 % 0.6 % -4.7 7.3 % 987 -2.26 % 0.7 % -3.4 6.4 % 1549

18 20d 0.99 -0.73 % 0.4 % -2.0 2 % 153 -0.65 % 0.5 % -1.4 2.0 % 268 -0.16 % 0.7 % -0.2 1.6 % 422

Table 5.1: Performance metrics for base case scenario. Notation: Ti is threshold percentile for generating
signals (see section XYZ for details). Return is mean annualized return. Trades is number of round-trip
trades completed. Numbers to the left under Strategy Parameters is reference numbers for the specific
parameter cases. Refer to appendix A for a complete list of acronyms.

top-performing 1-day strategy will achieve an annualized return of 16.8% at the cost of a 4.0% stan-

dard deviation and a maximum drawdown of 0.3%. This would be an extraordinarily good strategy.

3. Conservative case performance is (very) poor. Without simultaneity in signal and execution,

spread trading profits diminish. None of our parameter choices yields positive returns, and perfor-

mance is at its poorest for 1-day trading periods. We suspect that performance for 20-day trading

periods is slightly less poor simply because we trade less frequently.

4. Higher ranked pairs outperform lower-ranked pairs. Ranking and selection of pairs for trading

works, as we consistently achieve better results with higher ranked pairs. This can be seen in the

results table by comparing performance for top 5-, top 10- and all pairs, respectively. We empha-

size that this is not an after-the-fact comparison of the best to worst performing pairs, but rather

a strategical concept in which we rank pairs based on formation period performance and select

the top K performers for trading in the subsequent trading period. For daily trading periods, this

ranking is thus performed every day. The concept of ranking is further discussed in sections 4.2.1

and 5.3.

5. For winning strategies, shorter trading periods outperform longer trading periods. In a similar

fashion that negative returns are amplified by shorter trading periods for the conservative case,

positive returns are amplified by shorter trading periods in the optimistic case. This should be

fairly intuitive: If we take bets with positive expected value more often, we earn more.
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5.2 The impact of bid-ask spread assumptions on backtest performance

As described in the Methodology chapter, we include the bid-ask spread when calculating transaction

costs. We do this by assuming that we always cross the spread when executing a trade. In a real-life

implementation of the described strategies, we would prefer to observe the actual order book and execute

trades at the offered prices if they are above or below our thresholds, hence removing large parts of the

uncertainty related to the simultaneity of signals and execution. As we do not have access to historical

order book data we instead take the size of the bid-ask spread in as a parameter and assume that we

always have to pay the bid-ask spread. The cost of crossing the bid-ask spread is the largest component

of transaction costs; the fixed fee per lot is only $1.34 ($0.00134 per contract).

Trading strategy performance is highly sensitive to the size of the bid-ask spread. Transaction costs

are driven by the size of the bid-ask spread, which in turn determines 1) what threshold we will base our

trading signals on, and 2) the cost of taking a trade. In this sense, a higher bid-ask spread will result in

1) higher thresholds and 2) higher costs. With higher bid-ask spreads, we will trade less frequently for

lower profits. The data in table 5.2 unambiguously confirm this. For the optimistic case, we see that in-

creasing the bid-ask spread result in lower returns and fewer trades across all pairs selections and trading

period (TP) lengths. Moreover, we note that profits are (heavily) impacted by small changes in the bid-ask

spread. We use the optimistic case to illustrate: For the top 5 pairs with TPs of one day (top left panel),

a spread of $0.01 will yield annualized profits of 14.0% at an ASR of 6.9 - unlevered. Removing the bid-

ask spread altogether, equivalent of assuming that we can trade at the exact prices we observe, the top

5 pairs yield an annualized return of 37.7% at an ASR of 12.5. This is incredibly high. However: just the

slightest increase in bid-ask spreads will hurt profits significantly. At a $0.03 bid-ask spread, returns are

barely positive at 0.6% annualized; at a $0.04 bid-ask spread, returns turn negative. This illustrates a key

property of short-term pairs trading strategies: even the slightest alteration of parameters might break

the strategy, as we rely on highly frequent trades with low expected profits per trade.

Moving along with the conservative case, another interesting feature is to be noted: all implementa-

tions apart from one yield negative returns. The delay between signal and execution hurts profits badly.

The sole positive-return strategy, where we supposedly trade all pairs over 20-day trading periods at an

assumed bid-ask spread of zero, yields 0.22% annualized at an ASR of 0.3. Short-term spread trading in

Brent Crude futures under conservative assumptions is not very promising.

Another interesting conclusion can be drawn from the bid-ask sensitivity in the conservative case. If

we exclude the bid-ask spread of zero, increasing the bid-ask spread will in some cases actually improve

returns. This is especially apparent for 1-day TPs. This may seem counter-intuitive, but the explanation

is straightforward: the conservative case yield negative returns for all but one strategy. As we already have

pointed out, increasing the bid-ask spread will significantly reduce the number of trades we make due to

higher threshold values. By increasing the bid-ask spread, we simply take fewer trades, and because of

the negative expected value of trades, we end up losing less. This is the same, sobering fact that all losing

gamblers will eventually have to face: the only way to improve long-term returns in a game with negative

expected value is to play less.

Choosing an average bid-ask spread for all contracts is not necessarily correct. We hypothesize that
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Strategy parameters Top 5 pairs Top 10 pairs All pairs

Optimistic case TP BA spread Return SD ASR MDD Trades Return SD ASR MDD Trades Return SD ASR MDD Trades

19 1d 0.00 37.68 % 3.0 % 12.5 0.0 % 6111 28.45 % 2.3 % 12.3 0.0 % 9473 20.72 % 1.7 % 12.2 0.0 % 13044

20 1d 0.01 14.00 % 2.0 % 6.9 0.0 % 2910 10.27 % 1.5 % 7.0 0.0 % 5305 6.86 % 1.1 % 6.3 0.2 % 8539

1 1d 0.02 3.93 % 1.0 % 4.0 0.1 % 1235 2.23 % 0.8 % 2.8 0.7 % 2797 0.27 % 0.8 % 0.4 2.6 % 5447

21 1d 0.03 0.60 % 0.5 % 1.2 0.9 % 549 -0.68 % 0.6 % -1.2 3.1 % 1562 -2.54 % 0.7 % -3.8 7.4 % 3657

22 1d 0.04 -0.31 % 0.3 % -0.9 1.3 % 254 -1.55 % 0.5 % -3.3 4.6 % 904 -3.54 % 0.7 % -5.4 9.8 % 2509

23 1d 0.05 -0.55 % 0.3 % -2.1 1.8 % 142 -1.65 % 0.4 % -3.9 4.7 % 561 -3.73 % 0.6 % -5.8 10.3 % 1765

24 1d 0.10 -0.16 % 0.1 % -1.5 0.5 % 10 -0.47 % 0.2 % -2.4 1.4 % 52 -1.75 % 0.4 % -4.2 5.0 % 314

25 5d 0.00 13.12 % 1.6 % 8.0 0.0 % 1869 8.32 % 1.1 % 7.5 0.1 % 2532 5.43 % 1.0 % 5.5 0.2 % 3305

26 5d 0.01 7.23 % 1.2 % 6.1 0.1 % 1348 4.30 % 0.9 % 5.0 0.1 % 1978 2.57 % 0.9 % 3.0 0.2 % 2749

2 5d 0.02 3.05 % 0.8 % 3.6 0.1 % 821 1.37 % 0.7 % 1.9 0.9 % 1366 0.37 % 0.8 % 0.5 1.9 % 2115

27 5d 0.03 0.72 % 0.6 % 1.1 0.9 % 482 -0.40 % 0.6 % -0.6 2.5 % 937 -1.10 % 0.8 % -1.4 3.8 % 1641

28 5d 0.04 -0.32 % 0.5 % -0.6 1.8 % 309 -1.29 % 0.6 % -2.2 3.8 % 699 -1.99 % 0.8 % -2.5 5.7 % 1360

29 5d 0.05 -0.80 % 0.4 % -2.0 2.5 % 193 -1.77 % 0.6 % -3.1 5.1 % 529 -2.60 % 0.8 % -3.3 7.3 % 1149

30 5d 0.10 -0.60 % 0.3 % -2.4 1.8 % 29 -1.69 % 0.5 % -3.6 4.8 % 164 -3.28 % 0.8 % -4.2 9.1 % 549

31 20d 0.00 2.54 % 0.8 % 3.3 0.1 % 355 1.49 % 0.7 % 2.1 0.3 % 502 1.23 % 0.8 % 1.5 0.3 % 692

32 20d 0.01 1.56 % 0.7 % 2.2 0.1 % 305 0.81 % 0.7 % 1.2 0.3 % 452 0.71 % 0.8 % 0.9 0.3 % 642

3 20d 0.02 0.74 % 0.7 % 1.1 0.1 % 243 0.22 % 0.7 % 0.3 1.0 % 390 0.26 % 0.8 % 0.3 0.3 % 580

33 20d 0.03 0.14 % 0.7 % 0.2 0.8 % 203 -0.25 % 0.7 % -0.4 1.6 % 347 -0.13 % 0.8 % -0.2 1.7 % 536

34 20d 0.04 -0.29 % 0.7 % -0.4 1.5 % 173 -0.62 % 0.7 % -0.9 2.3 % 310 -0.47 % 0.8 % -0.6 2.5 % 498

35 20d 0.05 -0.56 % 0.7 % -0.8 1.9 % 141 -0.88 % 0.7 % -1.3 3.0 % 273 -0.73 % 0.9 % -0.9 3.2 % 457

36 20d 0.10 -0.82 % 0.4 % -1.9 2.4 % 44 -1.40 % 0.6 % -2.5 4.2 % 137 -1.55 % 0.9 % -1.8 5.4 % 307

Conservative case TP BA spread Return SD ASR MDD Trades Return SD ASR MDD Trades Return SD ASR MDD Trades

37 1d 0.00 -1.11 % 0.4 % -2.8 3.4 % 6071 -0.79 % 0.4 % -1.9 2.7 % 9405 -0.51 % 0.5 % -1.0 1.8 % 12946

38 1d 0.01 -7.82 % 1.0 % -8.2 20.4 % 2892 -6.94 % 0.8 % -9.1 18.3 % 5256 -6.08 % 0.7 % -8.7 16.3 % 8462

10 1d 0.02 -6.36 % 1.0 % -6.5 16.9 % 1220 -7.01 % 0.9 % -8.1 18.5 % 2767 -7.49 % 0.8 % -9.0 19.6 % 5393

39 1d 0.03 -4.29 % 0.8 % -5.4 11.8 % 547 -5.82 % 0.8 % -6.9 15.6 % 1553 -7.39 % 0.9 % -8.2 19.4 % 3629

40 1d 0.04 -2.55 % 0.5 % -4.8 7.1 % 252 -4.40 % 0.7 % -6.2 12.0 % 899 -6.58 % 0.9 % -7.6 17.5 % 2481

41 1d 0.05 -1.82 % 0.5 % -4.0 5.2 % 141 -3.37 % 0.6 % -5.5 9.3 % 555 -5.72 % 0.8 % -6.8 15.4 % 1746

42 1d 0.10 -0.27 % 0.2 % -1.7 0.8 % 10 -0.62 % 0.2 % -2.6 1.8 % 51 -2.02 % 0.5 % -4.3 5.7 % 311

43 5d 0.00 -0.34 % 0.4 % -0.8 1.6 % 1871 -0.34 % 0.5 % -0.7 1.7 % 2533 -0.21 % 0.7 % -0.3 1.9 % 3305

44 5d 0.01 -3.43 % 0.5 % -6.4 9.5 % 1350 -2.64 % 0.6 % -4.7 7.5 % 1979 -2.01 % 0.7 % -2.8 5.7 % 2749

11 5d 0.02 -4.25 % 0.7 % -6.2 11.7 % 821 -3.59 % 0.6 % -5.6 10.0 % 1364 -3.02 % 0.8 % -3.9 8.5 % 2112

45 5d 0.03 -3.85 % 0.7 % -5.5 10.7 % 481 -3.71 % 0.7 % -5.5 10.3 % 935 -3.54 % 0.8 % -4.4 9.8 % 1638

46 5d 0.04 -3.27 % 0.6 % -5.1 9.1 % 310 -3.63 % 0.7 % -5.3 10.1 % 699 -3.84 % 0.8 % -4.6 10.6 % 1358

47 5d 0.05 -2.56 % 0.5 % -4.7 7.2 % 194 -3.39 % 0.7 % -5.0 9.4 % 529 -4.00 % 0.8 % -4.7 11.0 % 1148

48 5d 0.10 -0.77 % 0.3 % -2.9 2.3 % 29 -2.08 % 0.6 % -3.8 5.9 % 164 -3.76 % 0.8 % -4.5 10.4 % 548

49 20d 0.00 -0.05 % 0.4 % -0.1 0.8 % 356 -0.09 % 0.5 % -0.2 1.1 % 503 0.22 % 0.8 % 0.3 0.3 % 693

50 20d 0.01 -0.76 % 0.4 % -2.0 2.3 % 306 -0.62 % 0.5 % -1.2 2.1 % 453 -0.20 % 0.8 % -0.2 1.7 % 643

12 20d 0.02 -1.19 % 0.4 % -2.9 3.5 % 243 -1.01 % 0.5 % -1.9 3.2 % 390 -0.55 % 0.8 % -0.7 2.6 % 580

51 20d 0.03 -1.51 % 0.4 % -3.4 4.4 % 203 -1.34 % 0.6 % -2.4 4.0 % 347 -0.86 % 0.8 % -1.1 3.4 % 536

52 20d 0.04 -1.70 % 0.5 % -3.4 4.8 % 173 -1.56 % 0.6 % -2.7 4.6 % 310 -1.11 % 0.8 % -1.3 4.1 % 498

53 20d 0.05 -1.79 % 0.5 % -3.4 5.1 % 141 -1.75 % 0.6 % -2.9 5.1 % 273 -1.34 % 0.9 % -1.6 4.7 % 457

54 20d 0.10 -1.11 % 0.4 % -2.9 3.2 % 44 -1.73 % 0.5 % -3.2 5.0 % 137 -1.85 % 0.9 % -2.1 6.2 % 307

Table 5.2: Sensitivity analysis with respect to assumptions of bid-ask spread in trading. Notation: TP is
Trading Period length. BA spread is bid-ask spread assumed for all contracts when trading. Return is
mean annualized return. Trades are the number of round-trip trades completed. Numbers to the left
under Strategy Parameters are reference numbers for the specific parameter cases. Refer to appendix A
for a complete list of acronyms.
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bid-ask spreads tend to increase with decreasing contract liquidity. Thus, we are likely overestimating

transaction costs for near-term contracts while possibly underestimating transaction costs for longer-

term contracts. This poses a few problems. From the section on the ranking of pairs, we know that

mid-term spreads yield the best spread trading profits. If these profits are simply an artefact of overly op-

timistic bid-ask spread assumptions, we would have to conclude that spread trading cannot be profitably

applied in the markets studied.

5.3 A closer look on the ranking of pairs

As described in section 4.2.1, we rank and select pairs for trading based on three criteria: long-term vari-

ance (LTV), short-term variance (STV) and mean crossover rate (MCR). As we are looking to profit from

short-term, mean-reversion based trading strategies, we prefer pairs that have low LTV, high STV and a

high MCR. Ranking works well for the optimistic case: as observed in figure 5.1, top-ranked pairs clearly

outperform lower ranked pairs in terms of Adjusted Sharpe Ratios. In this section, we seek to explain

which contracts are selected for trading and why. Our metrics of choice for this analysis will be the selec-

tion frequency, which we define as the percentage of time a specific pair is selected as a top N-th pair in

the ranking function, and the average rank achieved. We show selection frequencies and average ranks

for all traded pairs in tables 5.3 - 5.5.

By examining tables 5.3 - 5.5, it will become apparent to the reader that not all calendar spreads are

equally desirable for short-term trading. Some pairs are frequently selected among the top pairs, while

others are seemingly always at a disadvantage. By simply looking at the colour coding of the three tables,

it becomes apparent that certain pairs are superior or inferior regardless of trading period (TP) length.

Among the top rankings, we see that the M5-M6 pair is selected far more often than any other pair: it

is the most preferable pair for short-term trading 66.5%, 68.9% and 75.4% of the time for TPs of 1 day, 5

days and 20 days, respectively. For 20-day TPs M5-M6 has an average rank of 1.4, and it is never ranked

below 4. Further this, we discover that the second best pair is also uncontested for its spot: M4-M5 is the

top pair 20% of the time across all TPs and ranked top 3 more than 5 out of 6 times. The average rank of

M4-M5 is 2.5 for all TPs.

Following the two highly superior pairs, M3-M4 and M4-M6 are next in line: top 3 pairs every second

to third time across TPs, and more often than not in in the top 5 (65.7% at worst; above 90% for M3-M4

with a 20-day TPs). M3-M4 is occasionally the top pair for 1- and 5-day TPs: 6.7% and 8.5% of the time,

respectively. M2-M3 follows, with an average rank of 6.7 for 1-day TPs.

We now examine the top 10 pairs. We observe that spreads with M2 as the first leg are increasingly

coming into favour, with the shorter time-delta pairs being selected for top 10 much more often than not

(M2-M3 is a top 10 pair 9 out of 10 times for 1-day TPs, M2-M4 about 7 in 10 times). M2 spreads achieve

average ranks between 6.0 and 11.6 across TPs, with the average rank increasing with time-delta. The

observant reader may have noticed that spreads with M1 as the first leg are still disfavoured. M1-M2, the

most liquid spread, has an average rank of 12.0 for 1-day TPs. For 20-day TPs the average rank improves

to 9.2, still in the lower half. The remaining spreads that include M1 rank poorly. The average rank of the

4 pairs all falls between 12.9 and 14.0.
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The bottom end of selection frequencies help us confirm the notion created early on - that spreads

with high time-deltas consistently rank lower than spreads with low time-deltas. Y0-Y1 is the lowest

ranked pair. With average ranks of 14.7, 15.6 and 15.8 for 1-, 5- and 20-day TPs, it confirms our theory

that high time-delta spreads are inferior.

The top ranking pairs share two distinct characteristics. All of the pairs have short time-deltas (one or

two months), and all of the pairs are comprised of mid-term contracts (M3, M4, M5 and M6). This is an

interesting finding. From figure 3.1 in chapter 3, we know that pairs with lower time-deltas are typically

lower in absolute values than pairs with higher time-deltas, simply due to the legs’ proximity to each other

on the forward curve. This implies a smaller spread in dollar value, a smaller spread relative to tick-sizes,

and we can confirm from figure 4.1 that the MCR of close spreads is much larger on average than that of

wider spreads. Going back to the data section once more, we also showed in figure 3.1 that log spreads

and roll yields vary heavily with time-deltas. Log spreads for neighbouring contracts on the forward curve

might be as low as 1%, while at the same time well above 10% for wider spreads such as Y0-Y1. For roll

yields the opposite is true - the roll yield of close spreads are much higher in absolute terms than that of

wider spreads. The most important finding, however, is the difference in volatility between spreads. The

long-term volatility of close spreads is much lower than that of wider spreads. This impacts the ranking

contribution from both LTV and MCR and is in turn what makes the wide spreads inferior to the close

spreads.

We are still left with one important question: why does the ranking function prefer mid-term con-

tracts over near-term contracts? We propose two possible explanations. Firstly, i.e. M5 and M6 are (a lot)

less liquid than M1 and M2. We hypothesize that arbitrage opportunities and deviations from the LOP are

more common in less liquid contracts. In this context, the reason why M1-M2 is inferior to M5-M6 might

just be that the volumes traded in front- and second front-month contracts are (much) higher than the

volumes traded in more distant contracts. We observe that the STV of M1-M2 usually ranks lower than

the STV of M5-M6, and we can argue that the difference in traded volumes is what causes the differences

in volatility. The other possible explanation is that the observed short-term volatility in M5-M6 and other

less liquid spreads is, in fact, artificial volatility. We fear that with thinner volumes comes larger bid-ask

spreads and that the observed short-term volatility in contracts may simply be buyers and sellers crossing

a sizeable bid-ask spread. Another potential cause of artificial volatility can be the 5-minute frequency

at which data is sampled. The closing prices of each leg, together making up the spread, may, in theory,

be traded several minutes apart, and may not represent simultaneously available trading prices. If prices

are not simultaneously available, and if short-term volatility is primarily caused by the bid-ask bounce,

we are prone to significantly over-estimating STV and hence the profit potential of our spread trading

strategy.
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Table 5.3: Cumulative selection frequency from ranking of pairs. Trading period equal to 1 day (TP =
1day). Color coding: white < 25%, light gray 25-75%, dark gray > 75%.
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Figure 5.1: Adjusted Sharpe Ratio (ASR) for each account in base case (95% threshold, 0.02 USD bid-ask),
for optimistic and conservative case.
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Chapter 6

Conclusion

In this thesis, we propose an intradaily spread trading strategy based on a stochastic process model. We

go on to examine whether this strategy can be profitably applied in Brent Crude oil futures markets. Un-

der optimistic assumptions, our strategy achieves a maximum Sharpe ratio of 4.3, which is in line with

the existing literature of stochastic approaches. For energy commodities and using daily data, Cummins

and Bucca (2012) achieved Sharpe ratios of around 2 for the top 10 strategies in the 2003-2010 period.

In the case of oil companies and using intradaily data in the 2013-2015 period, Liu et al. (2016) achieved

Sharpe ratios of up to 7 using a ”doubly mean-reverting” approach which has in part inspired this thesis.

However, under conservative assumptions, our Sharpe ratios are negative for all parameter choices.

Although our strategy may be highly profitable under optimistic assumptions, we emphasize that results

are very sensitive to small changes in bid-ask spreads and the timing of trade execution. In particular, we

question the assumption of price simultaneity (both generating signals and trading on the same prices)

used in e.g. Liu et al. (2016).

Top-ranked pairs are consistently the most profitable pairs in the backtest. This could indicate that

the ranking function actually identifies pairs which are superior. However, we note that the top pairs are

typically comprised of medium-term contracts, i.e. M3, M4, M5 and M6. In our empirical study, we have

shown that contracts with longer time to maturity are less liquid than closer contracts. Because of this,

we hypothesize that we may be underestimating the size of bid-ask spreads for our most profitable pairs,

and hence might be overestimating profits. In our view, this should motivate a conservative approach to

trading strategy assumptions.

Although profitable intraday spread trading strategies have been documented in e.g. Liu et al. (2016),

we advise caution when backtesting such strategies. After studying 5-min data of Brent Crude futures, we

admit that there are several factors affecting intradaily pricing that we are not able to explain well enough

without order book data. This includes the size and variability of bid-ask spreads, order flow dynamics,

timing of signal generation and trade execution, simultaneity of prices and so forth. We acknowledge that

many of these factors may affect spread trading profits, and without a robust way to describe them, we

argue that a cautious approach should be taken when implementing these parameters in a backtest. This

is the reason why we let the conservative case dictate our final conclusion - namely, that intraday spread

trading in ICE Brent Crude futures based on the stochastic process model put forward in this thesis is not
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profitable.

6.1 Further work

Even though statistical arbitrage strategies have been studied in academic papers for several decades,

there is still room for innovative work. To the best of our knowledge, intraday approaches to spread

trading are still only lightly covered in the academic literature. We propose four main branches for further

work on intraday spread trading.

1. Stochastic process models with non-Gaussian distributions: Most of the current stochastic pro-

cess approaches evolve around modelling the spread using an Ornstein-Uhlenbeck (OU) process,

which assumes a Gaussian distribution. Due to the leptokurtic nature of log spreads, models based

on other distributions might be more appropriate. In particular, conditional modelling approaches

which take into account intraday patterns in distributions of returns would be of interest.

2. Order book data for backtesting: None of the papers we find in the literature currently incorporate

order book data in testing strategies. When using daily data and trading liquid instruments, this is

acceptable; but for intraday strategies (particularly those with short holding periods) order book

data of Level-1 (or preferably Level-2) is necessary to achieve high confidence in the results.

3. Order book data for spread signals: In the literature, the last observed close price of both legs in the

spread are commonly used to calculate the log spread for signal generation. With order book data,

other approaches could be studied to identify whether they contain an additional informational

value in generating trading signals. Some suggestions are:

(a) The mid-price (average of bid and ask) in both legs to form log spreads.

(b) Log spreads based on bid in one leg and ask in the other, e.g. log (P A,ask )− log (PB ,bi d ). In this

way, one could monitor spreads that are ”immediately” executable.

(c) Log spreads based on a volume weighted average of bid and ask prices in the order books of

both legs (up/down to a certain level in the book).

4. Extensions to more general intraday statistical arbitrage models: We have limited our study to:

i) Calendar spreads in Brent Crude, and ii) Only trading a single pair of securities in each account

(spread trading). A possible extension would be to consider related products (e.g. WTI crude oil,

heating oil, gasoil) and portfolios of securities.
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Appendix A

Acronyms

ACF Autocorrelation Function

ADF Augmented Dickey-Fuller (test)

API Application Programming Interface

ASR Adjusted Sharpe Ratio

BA spread Bid-Ask spread

BRN Brent

CAGR Compound Annual Growth Rate

CB Confidence Bound

CVaR Conditional Value at Risk

ICE Intercontinental Exchange

IS In-sample

LTV Long-Term Variance

MA Moving Average

MCR Mean Crossover Rate

MDD Maximum Drawdown

OS Out-of-sample

OLS Ordinary Least Squares (Regression)

P&L Profit & Loss statement (Income Statement)

Q-Q Quantile-Quantile (plot)
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SD Standard Deviation

STV Short-Term Variance

TP Trading Period

VaR Value at Risk

VWAP Volume Weighted Average Price



Appendix B

ICE Brent Crude futures contracts studied

2015 2016 2017 2018 2019 2020 2021
ICE BRN MAR-2015 ICE BRN JAN-2016 ICE BRN JAN-2017 ICE BRN JAN-2018 ICE BRN JAN-2019 ICE BRN JAN-2020 ICE BRN JUN-2021
ICE BRN APR-2015 ICE BRN FEB-2016 ICE BRN FEB-2017 ICE BRN FEB-2018 ICE BRN FEB-2019 ICE BRN JUN-2020 ICE BRN DEC-2021
ICE BRN MAY-2015 ICE BRN MAR-2016 ICE BRN MAR-2017 ICE BRN MAR-2018 ICE BRN MAR-2019 ICE BRN DEC-2020
ICE BRN JUN-2015 ICE BRN APR-2016 ICE BRN APR-2017 ICE BRN APR-2018 ICE BRN APR-2019
ICE BRN JUL-2015 ICE BRN MAY-2016 ICE BRN MAY-2017 ICE BRN MAY-2018 ICE BRN MAY-2019
ICE BRN AUG-2015 ICE BRN JUN-2016 ICE BRN JUN-2017 ICE BRN JUN-2018 ICE BRN JUN-2019
ICE BRN SEP-2015 ICE BRN JUL-2016 ICE BRN JUL-2017 ICE BRN JUL-2018 ICE BRN JUL-2019
ICE BRN OCT-2015 ICE BRN AUG-2016 ICE BRN AUG-2017 ICE BRN AUG-2018 ICE BRN AUG-2019
ICE BRN NOV-2015 ICE BRN SEP-2016 ICE BRN SEP-2017 ICE BRN SEP-2018 ICE BRN SEP-2019
ICE BRN DEC-2015 ICE BRN OCT-2016 ICE BRN OCT-2017 ICE BRN OCT-2018 ICE BRN OCT-2019

ICE BRN NOV-2016 ICE BRN NOV-2017 ICE BRN NOV-2018 ICE BRN NOV-2019
ICE BRN DEC-2016 ICE BRN DEC-2017 ICE BRN DEC-2018 ICE BRN DEC-2019

Table B.1: An overview of all ICE BRN contracts studied in the Jan-2015 to Apr-2015 period.
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Appendix C

Pair combinations

PairsID Contract A Contract B
1 ICE BRN M1 ICE BRN M2
2 ICE BRN M1 ICE BRN M3
3 ICE BRN M1 ICE BRN M4
4 ICE BRN M1 ICE BRN M5
5 ICE BRN M1 ICE BRN M6
6 ICE BRN M2 ICE BRN M3
7 ICE BRN M2 ICE BRN M4
8 ICE BRN M2 ICE BRN M5
9 ICE BRN M2 ICE BRN M6
10 ICE BRN M3 ICE BRN M4
11 ICE BRN M3 ICE BRN M5
12 ICE BRN M3 ICE BRN M6
13 ICE BRN M4 ICE BRN M5
14 ICE BRN M4 ICE BRN M6
15 ICE BRN M5 ICE BRN M6
16 ICE BRN Y0 ICE BRN Y1
17 ICE BRN Y0 ICE BRN H1
18 ICE BRN H1 ICE BRN Y1

Table C.1: Overview of all pair combinations which are considered for trading in each ranking. The con-
tract names are given on a relative basis, but absolute contracts are used as underlying price series when
a timestamp for trading is given. E.g. would Contract A for PairsID 1 at 2 January 2018 be the ICE BRN
MAR-18 contract.
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Appendix D

Correlation matrices

M1 M2 M3 M4 M5 M6 Y0 H1 Y1
M1 1.000 0.980 0.965 0.945 0.922 0.899 0.951 0.868 0.861
M2 0.980 1.000 0.969 0.949 0.928 0.904 0.954 0.873 0.866
M3 0.965 0.969 1.000 0.951 0.931 0.910 0.949 0.876 0.868
M4 0.945 0.949 0.951 1.000 0.932 0.911 0.937 0.876 0.866
M5 0.922 0.928 0.931 0.932 1.000 0.912 0.919 0.872 0.859
M6 0.899 0.904 0.910 0.911 0.912 1.000 0.899 0.862 0.846
Y0 0.951 0.954 0.949 0.937 0.919 0.899 1.000 0.887 0.885
H1 0.868 0.873 0.876 0.876 0.872 0.862 0.887 1.000 0.889
Y1 0.861 0.866 0.868 0.866 0.859 0.846 0.885 0.889 1.000

Table D.1: Correlation matrix of log returns for the 5-minute intraday data.

M1 M2 M3 M4 M5 M6 Y0 H1 Y1
M1 1.000 0.998 0.996 0.994 0.992 0.990 0.948 0.952 0.941
M2 0.998 1.000 0.999 0.998 0.997 0.995 0.951 0.958 0.949
M3 0.996 0.999 1.000 1.000 0.999 0.997 0.952 0.961 0.953
M4 0.994 0.998 1.000 1.000 1.000 0.999 0.955 0.965 0.958
M5 0.992 0.997 0.999 1.000 1.000 1.000 0.956 0.968 0.962
M6 0.990 0.995 0.997 0.999 1.000 1.000 0.957 0.971 0.966
Y0 0.948 0.951 0.952 0.955 0.956 0.957 1.000 0.992 0.978
H1 0.952 0.958 0.961 0.965 0.968 0.971 0.992 1.000 0.995
Y1 0.941 0.949 0.953 0.958 0.962 0.966 0.978 0.995 1.000

Table D.2: Correlation matrix of log returns for the daily data.
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Appendix E

Engle-Granger routine for testing

cointegration of time series

The concept of cointegration has already been described in section 2.2.2, and in this section, we focus

on the Engle-Granger routine to testing for cointegration of two securities A and B. We will only briefly

describe the routine and the reader is referred to Brooks (2014, p.361-363) for further technical details. In

order to verify that the (log) price series are cointegrated, we follow a two-step algorithm:

1. Verify that the order of integration for each of the two time series is one, i.e. I(1)

2. Test for cointegration by testing the cointegrating residuals for stationarity

E.1 Testing for I(1) process in both time series

The Augmented Dickey-Fuller (ADF) test is used to test for a unit root in a time series yt . The testing

procedure is applied by estimating the regression model described in equation E.1, of which p is a chosen

number of lags. In this thesis, we use the Akaike Information Criterion (AIC) to choose the number of lags.

∆yt =ψyt−1 +
p∑

i=1
αi∆yt−i +ut (E.1)

The ADF statistic is now defined in equation E.2. Relevant critical values can be found in the statistical

tables in appendix of Brooks (2014) or given in standard statistical software packages. The null hypothesis

is a unit root is present in yt . Thus, a rejection would result in concluding that the series is stationary (or

trend-stationary depending on the exact test).

ADF statistic = ψ̂àSE(ψ)
(E.2)

If a unit roots are found in the series, this implies that it is not stationary. We then take the first difference

of the series and run the test again. If the first differences are stationary, this would imply that the original

series is integrated of order one, I(1).
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E.2 Testing for stationarity in residuals of cointegrating regression

Two series are cointegrated if a linear combination of them are found to be a stationary time series. The

Engle-Granger approach is to run an OLS regression (the cointegrating regression) of one time series onto

the other, and then test to see if the residuals are stationary. If they are, this would imply that the series

are cointegrated. In our case, let Xi ,t = l og (Pi ,t ). The resulting regression equation is found in (E.3).

Xi ,t =µ+κX j ,t +εt (E.3)

In order to test for cointegration, we use the Augmented Dickey-Fuller (ADF) test on the residuals (εt ).

The test statistic is calculated as before, but it should be noted that the critical values are now changed

because we are applying it to the residuals of a regression. The reason for this is that the test is now

operating on the residuals of an estimated model rather than raw data (Brooks, 2014, p.377).

Because the Engle-Granger method is based on an OLS regression, it does not find all possible coin-

tegrated relationships between the two time series. In fact, the Engle-Granger approach seeks out the

stationary linear combination that has the minimum variance (Alexander, 2008, Vol II, p.235).



Appendix F

Additional plots

F.1 Spreads from cointegrating regression on daily data

For the long-term spread, we test for cointegration on daily settlement data for the whole Jan-2000 to

Apr-2018 period. The results of the Engle-Granger routine was presented in section 3.2.2 and all pairs

were shown to be cointegrated with high significance levels. Residuals for all pairs are shown in figure F.1,

and confirm that the spreads are stationary in the long-term (with some exceptions of rapid changes in

term structure in 2009 and 2014-2015).

F.2 Spreads from cointegrating regressions on M1-M2 pair for 5-minute data

For the short-term spread, we test for cointegration with 5-minute data on 40 one-month intervals in the

Jan-2015 to Apr-2018 period. The residuals time series and histograms for the M1-M2 pair (PairsID 1)

are shown in figure F.2-F.5. Some plots indicate mean-reversion in residuals, but most do not. We thus

conclude that the M1-M2 pair cannot be deemed cointegrated on a short-term basis. Similar results are

found for all the other pairs, and plots are not included in this thesis due to the high number of plots it

would result in (18 ·40 ·2 = 1440). The results for all pairs are summarized by distributions of p-values in

figure 3.13 in section 3.2.2.
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Figure F.1: Log spreads of all pairs from the cointegrating regression. The Engle-Granger results for daily
data is found in table 3.5.
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Figure F.2: Residuals of cointegrating regressions on 5-minute data for ICE BRN M1 in 12 separate one-
month intervals.
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Figure F.3: Residuals of cointegrating regressions on 5-minute data for ICE BRN M1 in 12 separate one-
month intervals. Continued from figure F.2.
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Figure F.4: Residuals of cointegrating regressions on 5-minute data for ICE BRN M1 in 12 separate one-
month intervals. Continued from figure F.3.



74 APPENDIX F. ADDITIONAL PLOTS

Figure F.5: Residuals of cointegrating regressions on 5-minute data for ICE BRN M1 in 4 separate one-
month intervals. Continued from figure F.4.



Appendix G

Theoretical models for futures prices and

calendar spreads

Futures contracts with different maturities often have different prices in the markets, and form the for-

ward curve (or term structure) for the particular commodity (e.g. Brent Crude oil). The study of futures

prices and forward curves is rightfully an own field of study, and we will only touch upon the theoretical

concepts needed to understand the spreads considered in this thesis.

A simple theoretical pricing model for commodity futures shown in equation (G.1) is widely found

in the literature (e.g. McDonald (2014) or Clewlow and Strickland (2000)). S(t ) is the spot price of the

commodity, c is the continuously compounded cost of holding the spot asset (including both borrowing

costs and carry costs), δ is the continuously compounded convenience yield of the asset, t is the current

time and T is the time of maturity (both measured in years). γ is the roll-yield, i.e. the yield a long-

investor in the future can expect to earn by holding the future to maturity if the underlying spot price of

the asset does not change.

F (t ,T ) = S(t )e(c−δ)(T−t ) = S(t )e−γ(T−t ) (G.1)

Using this futures pricing model and knowledge about the underlying, namely Brent Crude oil, we

can make some considerations regarding the calendar log spreads we focus on in this thesis. For two

contracts A and B , the log spread Y (t ) is shown in equations (G.2)-(G.5).

Y (t ) = log
(
FA(t ,TA)

)
− log

(
FB (t ,TB )

)
(G.2)

= log (S A)−γA(TA − t )− l og (SB )+γB (TB − t ) (G.3)

=−γA(TA − t )+γB (TB − t ) (G.4)

≈−γ(TA − t )+γ(TB − t ) = γ(TB −TB ) (G.5)

In equation (G.4) the spot price falls out as we are considering calendar spreads (S A = SB ), and in equation

(G.4) we make an approximation by assuming that the roll yield for the two contracts A and B is equal.

The resulting Y (t ) show that the log spread is a function of the roll yield of the contracts (assumed to

be equal) and the difference in maturity time. An important observation from equation (G.5) is that the
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log spread does not depend on the spot price of the underlying. Thus, if the roll return is mean reverting

over time we are dealing with log spreads which should also mean-revert.

Changes in roll-yield over time come from the fact that the term structure is changing. The reasons

for this is out-of-scope for this thesis, but some hypotheses can be drawn from the components of the

roll yield: if the storage costs and borrowing costs stay roughly the same over time, it is the change in

convenience yield which drives changes in roll-yields.



Appendix H

Estimation of parameters in

Ornstein-Uhlenbeck (OU) processes

To estimate the mean reversion rate and the volatility of a process, we adopt the approach of Clewlow

and Strickland (2000, p.28). The discretised version of the OU-process is described by:

∆xt = xt −xt−1 = θ(µt−1 −xt−1)∆t +σ∆Wt (H.1)

∆xt =β1Zt−1 +εt (H.2)

in which β1 = θ∆t , Zt−1 =µt−1 −xt−1.

Further, it can be shown that:

∆Wt ∼ N (0,∆t ) =
p
∆t N (0,1) (H.3)

which implies that εt in equation (H.2) can be described as:

εt ∼σ
p
∆t N (0,1) = N (0,σ2∆t ) (H.4)

Using all the relations described in equations (H.1)-(H.4), we can estimate the parameters of the OU

process by OLS linear regression and the following equations:

θ = β1

∆t
(H.5)

Var(εt ) =σ2∆t ⇔σ=
√

Var(εt )

∆t
(H.6)

It could be noted that the σ in an OU process is quoted in absolute units, not as per cent which is the

case in the case of Geometrical Brownian Motion.
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Appendix I

Description of performance metrics

Mean

Mean of daily returns in the sampling period.

SD Standard Deviation of daily returns in the sampling period. Calculated using the equally weighted

volatility model described in Alexander (2008, Vol II).

ASR Adjusted Sharpe Ratio. Defined in section 4.3.4 of the Methodology section.

CAGR

Compound Annual Growth Rate. Calculated using the accumulated return and sampling period

length. Indicate the expected growth rate that compounds to total accumulated return.

Max DD.

Maximum Drawdown. Measures the maximum loss attained from a peak to a trough, before a new

peak is attained. Used in calculating risk-adjusted metrics such as Calmar ratio.

VaR Value-at-Risk. Measure the magnitude of losses which might be incurred in a single day at a given

significance level. Extensively covered in Alexander (2008, Vol IV).

CVaR

Conditional Value-at-Risk. Measure the expected tail loss (ETL) which might be incurred in a single

day at a given significance level. Extensively covered in Alexander (2008, Vol IV).

# trades

The number of trades incurred in the sampling period for a given trading rule.

Avg. Trade length

The average length of each trade.

Days per trade

The number of days per trade.
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Appendix J

Backtesting program

J.1 Parameters used in model

Parameter Unit Variable name in model
Trading period length days trading_period_delta
Trade at same time as signal boolean trade_and_signal_simultaneity
Which type of observations to use for execution str execution_basis
Length of short ranking period days short_len
Number of accounts x account_K
Cash balance at start (total) USDm totalCashBalance
Threshold percentile % threshold_percentile
Bid/ask spread assumption USD/contract bid_ask_spread
Short margin % short_margin
Long margin % long_margin
Prices used for signals str signal_basis
Moving average multiple x ma_multiple
Length of long ranking period days long_len
Rebalancing of account balances boolean rebalance_at_tp_end
Time resolution of trading str time_resolution
Commission cost USD/lot commisions_pr_lot
Lot multiplier x lot_multiplier
Required return in addition to trading cost % log_req_return
Trading days per year days trading_days_in_year
Global start date (start of backtesting) date start_date_global
Global end date (end of backtesting) date end_date_global

Table J.1: Overview of parameters in backtesting model. The six first parameters are varied in the base
case, while others are held constant. Parameters 7-10 are varied in the sensitivity analysis part of results
section. The parameter variable names in the Python program is listed in the third column.
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J.2 Python code

The Python code for all functions used in ranking and backtesting the pairs for all trading periods are

shown on the next pages. Each function contains a small descriptional comment in the start. The pro-

gram is highly specialized for computationally efficient backtesting in a specific server-setup and is not

directly executable on a new computer/server without configuration of certain variables. It is mainly

provided for transparency in our backtesting methodology.
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