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environmental input-output analysis Most countries show a relative decoupling of economic growth from domestic resource use,
industrial ecology implying increased resource efficiency. However, international trade facilitates the exchange
multiregional input-output database of products between regions with disparate resource productivity. Hence, for an under-
system of integrated and standing of resource efficiency from a consumption perspective that takes into account the
impacts in the upstream supply chains, there is a need to assess the environmental pres-
sures embodied in trade. We use EXIOBASE3, a new multiregional input-output database,
to examine the rate of increase in resource efficiency, and investigate the ways in which
international trade contributes to the displacement of pressures on the environment from
Supporting information is linked the consumption of a population. We look at the environmental pressures of energy use,
to this article on the JIE website greenhouse gas (GHG) emissions, material use, water use, and land use. Material use stands
out as the only indicator growing in both absolute and relative terms to population and
gross domestic product (GDP), while land use is the only indicator showing absolute de-
coupling from both references. Energy, GHG, and water use show relative decoupling. As
a percentage of total global environmental pressure, we calculate the net impact displaced
through trade rising from 23% to 32% for material use (1995201 1), 23% to 26% for water
use, 20% to 29% for energy use, 20% to 26% for land use, and 19% to 24% for GHG
emissions. The results show a substantial disparity between trade-related impacts for Orga-
nization for Economic Cooperation and Development (OECD) and non-OECD countries.
At the product group level, we observe the most rapid growth in environmental footprints
in clothing and footwear. The analysis points to implications for future policies aiming to
achieve environmental targets, while fully considering potential displacement effects through

international trade.
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Introduction

Considering the current rate of economic growth, improv-
ing resource efficiency requires a strong decoupling between
development and environmental impact. The United Nations
Environment Program (UNEP) highlights the scale of the chal-
lenge (UNEP 2011) along with the urgency and potential of
resource efficiency measures in achieving decoupling (UNEP
2014). However, the growing international flow of goods and
services makes the relationship between trade and the environ-
ment increasingly important to understand (Liu et al. 2015).
Knowledge about international spillovers of resources burdens
or environmental impact will help in assessing progress toward
national environmental targets and the United Nations Sus-
tainable Development Goals (SDGs) (e.g., Peters et al. [2011]
for climate policy).

The rapid growth in trade preceding the 2008 global fi-
nancial crisis, the subsequent stagnation, and the more recent
push to reliberalize global trade relationships in order to help
economies recover from recession has put the trade agenda back
in the spotlight. Over 50% of goods and over 70% of services
traded are used as intermediate inputs to produce other goods
and services (Lanz et al. 2009). The average number of bor-
ders that an exported good crosses before final consumption
is approximately 1.7 (Muradov 2016). This implies that most
exported goods are not consumed within the country of im-
port, but are processed further. Previous research has shown
that such trade flows have significant effects on the environ-
ment. Around one quarter of the global land use is embodied
in trade (Weinzettel et al. 2013), as well as over 40% of mate-
rials (Wiedmann et al. 2015), 20% to 30% of global water use
(Lenzen et al. 2013b), and over 20% of greenhouse gas (GHG)
emissions (Peters and Hertwich 2008).

Recently, with the development of time series of global eco-
nomic models for environmental analysis, studies have started
to uncover the dynamics of consumption, trade, and environ-
mental impacts over time, as well as the role of outsourcing
in the growth of emissions (Arto and Dietzenbacher 2014;
Peters et al. 2011) and materials (Wiedmann et al. 2015).
EXIOBASE3! (Stadler et al. 2018) is a global multiregional
input-output (MRIO) model that has been developed to an-
alyze the change in the relationships between consumption,
trade, and environmental impacts over time. The database has
been developed to assess the major growth in trade since the
mid-1990s, a time when most statistical offices around the world
adopted the System of National Accounts (SNA) (UNSD
1993) in order to make international data current and compara-
ble. EXIOBASE3 focuses on economic and associated environ-
mental data from 1995 onward (until 2011 for all indicators, but
economic accounts and some environmental accounts are up-
dated to later years) under the SNA and the associated System
of Environmental and Economic Accounting (United Nations
et al. 2014; Wood et al. 2015). EXIOBASE3 captures eco-
nomic, environmental, and trade data for all European Union
(EU) countries, 16 other major economies, and five rest of the
world regions. With data on input-output (I-O) transactions,
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labor inputs, energy supply and use, GHG emissions, material
extraction, land and water use, as well as emissions to air, wa-
ter, and soil, it provides a comprehensive up-to-date coverage
of the global economy. EXIOBASE3 provides the first time se-
ries with adequate disaggregation of the agricultural, forestry,
and mining sectors for proper consideration of the land, wa-
ter, and material pressures related to these sectors, as well as
a detailed division of energy extraction and transformation in-
dustries. This puts EXIOBASE3 in a unique position compared
to other existing MRIO databases, such as Eora or WIOD (for a
comparison of MRIO databases, see Tukker and Dietzenbacher
[2013] or updated results on www.environmentalfootprints.
org).

In this paper, we use EXIOBASE3 to investigate the role
of international trade and consumption in relation to in-
creased resource efficiency. We seek to understand the role
of different global regions in the rapid growth of traded
goods, and point toward the areas where consumption has
seen the greatest growth in environmental impact, and re-
liance on traded goods. We present key results in the pa-
per, and fully elucidated Supporting Information available
on the Journal’s website for additional country and regional
analysis.

Methods

Analyses of environmental impacts embodied in trade and
consumption are based on the following elements: For a given
country r, we take trends in production-based accounts ppred
and consumption-based accounts D, A detailed explana-
tion on how to calculate production and consumption-based
accounts can be found in Wood and colleagues (2015) and is
summarized below.

The production-based account Dfmd, also called footprint,
is available directly as a sum of the direct inputs/emissions in
each sector, while the consumption-based account D™ is cal-
culated through the Leontief model with environmental exten-
sions (Miller and Blair 2009):

D™ = SLY + Fh

where S is the environmental intensity matrix showing envi-
ronmental pressure per unit output of intermediate producers
(industry); L is the Leontief Inverse or “total requirements ma-
trix” showing intermediate inputs required per unit of final
product; Y is the matrix of final demand by consuming coun-
try (source—or region of production—by consumer), and Fh
is the direct environmental pressures by final consumers (e.g.,
resource consumption in households). We use the EXIOBASE3
database, with time-series data from 1995 to 2011.2 A full de-
scription of the database, methods to obtain the database, and
product and country coverage is available in a publication in
this special issue (Stadler et al. 2018). This paper presents re-
sults from version 3.4 as of September 2017, a minor update
to the v3.3 release at the end of the European-funded DESIRE
project (see www.fp7desire.eu).
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We quantify five environmental pressures in this study:
GHG emissions; energy use; material use; water consumption;
and land use. For GHG emissions, we included emissions from
fuel combustion, industrial emissions (including cement, chem-
icals, and other noncombustion processes), agriculture, and
waste (Intergovernmental Panel on Climate Change [IPCC]
categories 1 to 5 and 7). The aggregation of different well-
mixed GHG (carbon dioxide [CO;], methane, nitrous oxide,
and sulphur hexafluoride) was performed using the GWP100
metric (Myhre et al. 2013), which is widely applied in cli-
mate assessments and has been used extensively in life cycle
assessment to calculate the carbon footprints of product flows
(Goedkoop et al. 1998; Heijungs et al. 2010). Energy consump-
tion was quantified as emission relevant energy use (i.e., energy
use at point of combustion or point of final production in the
case of hydro, solar, etc.). This excludes energy products used
for nonenergy purposes (e.g., lubricants or plastics). The en-
ergy accounts on EXIOBASE3 were constructed using statistics
on energy consumption from the International Energy Agency
(IEA). Material use comprises the domestic material extraction
used, which is compiled based on the various available interna-
tional data sources, including the Food and Agriculture Orga-
nization of the United Nations, the IEA, and the British and
U.S. Geological Surveys, and following the Eurostat material
flow guidelines (EUROSTAT 2013). Water consumption cov-
ers the total blue water consumption in agriculture and livestock
production, by industries and businesses, as well as direct con-
sumption by final consumers, and corresponds to the amount of
water extracted from nature minus the amount of water returned
to nature. This indicator is used to account for anthropogenic
water appropriation (Lutter et al. 2016), but does not account
for its contribution to water stress (Yang et al. 2013). Land use
was quantified by adding the total surface area of land occupied
by agricultural production and permanent pasture, to that by
forestry activities (for production of roundwood and industrial
firewood) to that by infrastructure such as urban areas, dams,
and roads. This indicator does not differentiate between the
productivity in different land areas (Haberl et al. 2007). How-
ever, because of the uncertainty surrounding impact metrics of
land use (such as the impact on biodiversity of land use for
forestry vs. land use for farming), it is still useful to quantify the
total land pressure as a resource constraint. Full details of the
data used to construct these extensions are available in Stadler
and colleagues (2018).

We define environmental pressures displaced through trade
(Ghertner and Fripp 2007) as the difference between the
production-based account and the consumption-based account

(cf. Peters et al. 2011):
T, = Dfmd _ ch.ons

where T is positive for those countries which are net exporters
of environmental pressure and negative for those countries
which are net importers of environmental pressure. In order
to illustrate the impacts of globalization on the patterns of dis-
placement of environmental pressure, we focus in particular on
the analysis of changes over time.
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We calculate the percentage of imported environmental
pressure by setting up a bilateral calculation of producer to
consumer D g, such that:

D,, = GSLY

where Y is the matrix of final demand by consuming country
of dimensions (p*n, n), where p is the number of production
sectors in each country (200) and n is the number of countries
(49), 8 is each individual environmental pressure per unit output
diagonalized, L is the Leontief Inverse, and G is an aggregation
matrix that collapses the product-by-country dimension (p, n)
to just countries (n). The percentage of imported emissions is
then D" =Y, D, /3, D;. Globally, it becomes D™ =
25 Drs /22, Dy . Note that we are calculating net transfer
or displacement here, and not all impacts embodied in gross
trade flows (Peters 2008).

Resource efficiency indicators are calculated by dividing the
consumption account D™ by population statistics (World
Bank 2015a) or gross domestic product (GDP) in 2011 inter-
national dollars (corrected for purchasing power parity [PPP])

(World Bank 2015b).

Results
Growth in Global Environmental Impacts

On a global scale, achievements in resource efficiency, which
are characterized by either absolute or strong relative decou-
pling from GDP, have been limited. Table 1 illustrates the
development of various indicators in the period 1995-2011.
Material use has shown the strongest increase, from 8.3 to
11.3 tonnes/capita (+36%), outstripping growth in GDP. We
also see an equal growth of GHG emissions to emissions-
relevant energy use, which implies that we have not achieved a
global decarbonization of the energy supply. Land and water re-
sources, which are more directly subject to natural constraints,
have increased the least, with blue water consumption rising
from 190 to 200 cubic meters (m’)/capita for water consump-
tion, and the total surface area of land used for productive
purposes showing a reduction of 0.3 hectares (ha)/capita. Land-
use area has slightly decreased on an absolute level, principally
due to slight reductions in area of permanent meadows and
pasture and nonplanted forestland. It is the only indicator that
presented (small) absolute decoupling from GDP.

The strong growth in material use, as well as the strong link
between material use and GHG emissions in capital-intensive
low-carbon technologies (Hertwich et al. 2014) and in infras-
tructure building due to the use of carbon-intensive materials
such as cement and steel (Miiller et al. 2013; Sodersten et al.
2018) provide a cause for concern for future growth. Likewise,
the International Resource Panel of the UNEP has recently
shown that an increase in resource efficiency is key for meeting
climate-change targets in a cost-effective manner (Ekins et al.
2016).

On a regional scale, we observe substantial differ-
ences in growth rates. Figure 1 presents the growth
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Table | Growth of absolute, per-capita and per-GDP environmental pressures, GDP (PPP), and population between 1995 and 201 |
Units 1995 (per capita) 2011 (per capita)  Absolute growth  Per-cap growth ~ Per GDP Growth
GHG emissions t CO; eq. 5.5 6.3 1.42 1.16 0.88
Energy use GJ 56.0 64.4 1.41 1.15 0.87
Material use tonnes 8.3 11.3 1.67 1.36 1.03
Blue water consumption | m’ 190.6 200.1 1.28 1.05 0.80
Land use ha 1.3 1.0 0.99 0.81 0.61
GDP (PPP) 2011int$ 7,331 9,660 1.61 1.32 1.00
Population billion 5.7 6.9 1.22 1.00 0.76

Note: GDP = gross domestic product; PPP = purchasing power parity; GHG = greenhouse gas; t CO; eq. = tonnes of carbon dioxide equivalents; GJ] =

gigajoules; ha = hectares; m’

in consumption-based footprints per capita and per GDP-PPP
between 1995 and 2011 by region. GHG emissions per capita
have grown slightly more slowly than energy use for all re-
gions, except China, Africa, and the Middle East. In Europe,
the growth of the energy footprint per capita has been accompa-
nied by a decline in emissions. North America has succeeded in
reducing both energy and emission footprints per capita over the
period under consideration. Most of the developing countries
have been characterized by growing energy footprints per capita,
which has helped fuel their rapid economic development, but
relative decoupling between energy and emissions can also be
observed. This decoupling, however, is not visible for China,
where the increase in GHG emissions has outpaced the growth
of emission relevant energy use. This implies the adoption of
more carbon-intensive energy sources with the commissioning
of a large number of coal-fired power plants during that period
(Lin et al. 2014; Feng et al. 2012). This fact is corroborated
by the breakdown of Chinese emissions in the underlying data:
From 1995 to 2011, the share of emissions from energy pro-
cesses (production and combustion of fossil fuels) in total GHG
emissions have grown from 75% to 82% for production-based
accounts (D") and from 75% to 79% for consumption-based
accounts (footprints, D®™). China was also an exceptional case
regarding the growth of material footprints per capita, with
footprints almost tripling, growing much faster compared to all
other regions. This is related in particular to the building up of
transport, housing, and energy infrastructure, which is highly
material intensive; for example, regarding the use of construc-
tion minerals, such as cement, sand, and gravel (Giljum et al.
2016). Growth in land footprint per capita by 30% also sepa-
rates China from other regions, as the land footprint per capita
decreased between 9% and 38% for all other regions during the
period.

When we shift the analysis to account for resource efficiency
(environmental footprints per unit GDP), we notice a change
in the narrative. In terms of resource efficiency, China and
India have achieved the highest relative decoupling between
environmental pressure and GDP growth. For every 1% of GDP
growth, China increased its GHG emissions by 0.56%, while the
OECD countries increased their emissions by 0.8%. The global
average was 0.88% per percentage GDP growth. Again, land
and water indicators show faster decoupling than material and
energy indicators in general, and only India, South America,
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= cubic meters; 2011int$ = 2011 international dollars; per-cap = per-capita.

and Africa are showing faster material decoupling than energy
decoupling.

With regard to the net trade balance for 2011 (figure 2),
we confirm previous results showing that Europe has a resource
deficit across the categories of GHG emissions, material use,
water consumption, land use (Tukker et al. 2016), as well as for
energy use. The pattern of net trade balance did not change
much for Europe from 1995 to 2011, with some indicators
slightly decreasing (land) and others increasing (material use).
North America increased their resources deficit during the pe-
riod, with the increase in net import of energy and materials
being more pronounced over time. The region also became a
net exporter of embodied land in 2011. China changed from
being a small net exporter in 1995 to a large net importer in
2011, and by 2011 shifted to a larger trade surplus of mate-
rial and energy embodied in Chinese products. By 2011, China
was the largest single-country net exporter of embodied emis-
sions and material. Russia remained, throughout the period, a
large net exporter of embodied energy, amounting to the equiv-
alent of 2.6% of global energy use in 2011. By 2011, Russia
was also the country that had the highest exports of embod-
ied land, alongside South America and Australia. All these
regions are exporters of mineral, agricultural, and energy com-
modities, which are land intensive. The remainder of Asian
countries (Other Asia) is also significant in that it had a large
net export of water while having a large net import of material
and land use. The region was also a net importer of embod-
ied energy and emissions in 1995, but in 2011 the production-
and consumption-based indicators were almost in balance. All
Asian regions (China, India, and Other Asia regions) were net
exporters of water, which shows a large water intensity in goods
produced in the region. This was due to the relatively water-
intensive crops in the region. Africa and the Middle East region
were net exporters of all environmental pressures assessed.

Looking at the development of the footprint balance be-
tween Organization for Economic Cooperation and Develop-
ment (OECD) and non-OECD countries over time, two things
become apparent. First, there was a displacement, through in-
ternational trade, of all environmental pressures from OECD
to non-OECD countries both in 1995 and in 2011. Second,
between 1995 and 2011, the imbalance between the two re-
gions became more pronounced for material use (from 7.5% to

9.5%), energy use (from 3.9% to 4.6%), and GHG emissions
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(from 6.1% to 6.3%), while the difference in the net trade of
water (from 8.1% to 7.2%) and land footprints (from 7.2% to
5.3%) decreased.

Increasing Role of International Trade

International trade can promote more efficient access to
natural resources and is thus an important driver of economic
growth (WTO 2010). However, there is concern for potentially
unequal ecological exchange in trade (Moran et al. 2013) and

Wood et al., Growth in Environmental Impacts Embodied in Trade

for having consonant environmental protection embodied in
traded goods (Copeland and Taylor 2004).

Figure 3 shows the percentage of global pressures displaced
through trade—that is, the amount of pressure that occurs in the
upstream supply chain of a country different from that where
the final consumption occurs. This share grew from 24% to
33% for material use, 25% to 28% for water use, 20% to 26%
for land use, 20% to 24% for GHG emissions, and 16% to 21%
for energy use. Material use is the pressure with the highest
displacement through international trade. One of the reasons
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for that might be that materials such as biomass, fossil fuels,
minerals, and metals are commonly exported products, both as
raw materials and further processed and embodied in exported
goods.

While the magnitude of these results is affected by the ag-
gregation of the Rest of the World regions (we only look at
trade between regions, not trade within a region), the growth
rates are generally insensitive to this aggregation. All indicators
show a clear pattern of growth between 1995 and 2007. The fi-
nancial crisis of 2008 resulted in a decline in 2009, lowering the
import share of embodied environmental indicators in the total
footprints, as well as reducing the footprint itself. Economic
recovery from 2010 brought back the imports to the precrisis
levels.

Product-Level Drivers

The analysis at product level can help understand which of
the final products consumed are driving the change in overall
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footprints, and can thus inform policy. Figure 4 shows the
growth of absolute footprints by six consumption categories
(see the Supporting Information on the Web for aggrega-
tion of detailed products to product category): shelter (i.e.,
housing); food; clothing and footwear; mobility; manufactured
products; and services. For the OECD, we see the most rapid
growth in footprints in the apparel product category, with
the material footprint doubling from 1995 values, the water
footprint increasing by 50%, and GHG emissions by 20%.
Likewise, material use has increased by close to 100% for man-
ufactured products. This could be the result of the shift in
products consumed, from higher-priced clothes and footwear
to a higher volume of cheaper goods produced in sweatshops
(cf. Steen-Olsen et al. 2016) and higher availability and lower
prices of goods, such as electronics. This creates a higher vol-
ume of consumption at similar price levels, which will have
lower effects on value-added than on environmental impacts
associated with the production of these goods. For some of
the most polluting product groups (e.g., shelter and mobil-
ity), on the other hand, growth is low in the OECD. For the
non-OECD, we see the same strong growth in apparel and
manufactured products, but also strong growth in shelter and
services.

When looking at the effect of trade on footprints of different
products, we see that it depends on the product category and on
the environmental indicator. Figure 5 shows the growth in the
global environmental footprints of GHG emissions, material

Wood et al., Growth in Environmental Impacts Embodied in Trade

use, water consumption, and land use for the six product cat-
egories. We excluded energy use because of a similar trend
observed in GHG emissions and energy use. The upper parts of
the figures show the total global environmental pressure driven
by each of the product categories, while the lower parts of
the figures show the share of pressures displaced through in-
ternational trade in relation to the total footprint of the final
products. Shelter is the largest driver of GHG and material
use and second largest driver of land use, though most impacts
occur domestically. This is likely due to the construction of
infrastructure, which is emission and material intensive, and
mostly relies on domestically sourced goods (such as gravel and
cement). Food is responsible for the majority of the impacts
on water consumption and has a significantly higher share of
impacts on land use than all other products. As for material use,
most environmental impacts happen domestically.

Globally, imports are responsible for at least 50% to 70%
of the environmental pressures associated with clothing and
footwear, while for manufactured products they account for
about 40% to 60%. While clothing and footwear represent a
low share of the total absolute environmental impacts, manu-
factured products’ GHG emissions and material use have risen
rapidly since the first half of the 2000s. When looking at spe-
cific regions, however (see the Supporting Information on the
Web), we see that imports are important for OECD countries
and have increased considerably since the 2000s, and especially
so for Europe, where up to 80% of environmental pressures
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occurred outside the country where the final goods are being
consumed in 2011.

Discussion
Distance to Environmental Targets

In Tukker and colleagues (2016), four of the environmental
indicators on carbon, water, land, and materials were assessed
in comparison to an indicative target. These were defined as: a
carbon footprint of 2.0 to 2.5 tonnes of CO; per capita to stay
within a 2° target; a material footprint of 5 to 10 tonnes per
capita (see Bringezu 2015); a water footprint of circa 150 m’ per
capita (with ranges of 100 to 600 m?); and a land use footprint
of 10 ha per capita (Hoekstra and Wiedmann 2014). In light of
these indicative targets, we see that already since the work of

Tukker and colleagues (2016) based on 2007 data, the global
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economy further exceeded these limits for material extractions,
water use, and GHG emissions. It was only in the case of land
use that a slowdown in growth could be observed. However,
besides global per-capita averages, one should pay attention to
the unequal distribution of the footprints per inhabitant. High
per-capita footprint levels in industrialized countries, in combi-
nation with the increasing pressure through open trade, drove
the global economy further away from achieving these targets.
With the increasing growth of developing nations, this again
poses questions related to the limits of achieving the required
decoupling of global and regional environmental pressures from
economic growth, in order to keep socioeconomic activities
within the planetary boundaries (Steffen et al. 2015). While
international trade can improve the efficiency in resource use
for production worldwide (Cole 2004), a decrease of environ-
mental pressures at the global level could not be observed, and
the net transfer of environmental pressures from non-OECD



to OECD countries has not decreased. Further investigation of
the role of international trade in the relative decoupling of eco-
nomic growth and environmental pressures is needed to assess
whether international trade is contributing to linking resource
availability with production, without leading to socioeconomic
losses or increasing nonregulated and/or nonfinancial environ-
mental impacts.

Environmental Leakage

In the trade discourse, there has been strong concern that
environmental regulation will cause the relocation of industry
to other regions with lax environmental standards (e.g., un-
der globally disparate carbon taxes). In the literature, this has
been discussed as the Pollution Haven Hypothesis (Copeland
and Taylor 2004). This is clearly an issue for the governance
of global environmental impacts, but while we cannot directly
test this hypothesis (there are many methodological challenges
in empirically testing using MRIO analysis [Zhang et al. 2017]),
our results do not suggest a strong case for this happening thus
far. In the period analyzed, clearly a great deal of “environmen-
tal leakage” occurred, in that impacts displaced through trade
generally grew in the order of 50%. However, we saw the great-
est growth in unregulated environmental pressures, rather than
in GHG emissions that have come under climate regulation in
Europe. Material use and gross energy use showed the greatest
increase over time—two pressures that relate to the increasing
secondary and tertiary nature of our economies. The growth of
materials and energy embodied in internationally traded prod-
ucts was thus more a result of other drivers, such as restructuring
in the international division of labor, than of the implementa-
tion of specific climate policies (compare Liu et al. [2016]). At
the regional level, the industrialization and increasing role of
China and other Asian countries in international supply chains
contributed to an increase of environmental pressures displaced
through trade (Dietzenbacher et al. 2012). Their highly car-
bonized energy mix resulted in increased emissions embodied
in exported products, while for material indicators, there is an
even more significant increase (doubling) of material use em-
bodied in clothing and footwear and in electronics.

The Role of Infrastructure in Shaping Global
Developments

Both at the global level and notably for many emerging
economies, such as China, a huge increase in material use
and related footprints could be observed over the past 20 years
(table 1, figure 1), leading to an increasing material intensity
of the global economy over our period of analysis. The main
underlying driver for this huge increase is the significant in-
vestment in infrastructure, which emerging economies such as
China are currently undertaking (Wang et al. 2014; Giljum
et al. 2015; UNEP 2016; Minx et al. 2011). This infrastruc-
ture, serving both domestic and foreign consumption, relates
to housing and manufacturing infrastructure (buildings, facto-
ries), transport infrastructure (roads, railways, harbors, etc.) as
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well as energy infrastructure (such as power plants). On the
one hand, these infrastructure-related activities slow down the
reduction in pollution intensity in emerging countries, such as
China (Guan et al. 2014). On the other hand, the fast growth in
material consumption due to infrastructure activities in emerg-
ing economies is consequently transferred to developed regions,
such as the EU, via rapidly increasing levels of materials and
emissions embodied in imports (see Giljum et al. 2016). This
infrastructure not only determines the material patterns of to-
day, but will also influence other environmental performances
heavily in the future, for example, regarding energy use and
GHG emissions (Feng et al. 2012). Infrastructure thus should
receive priority attention when designing strategies to achieve a
sustainable economy and sustainable production and consump-
tion patterns (Clarke et al. 2014) as indicated in the SDGs
(United Nations 2015).

Footprint Trends at the Product Level

Manufactured goods are the product group with the high-
est growth rate in environmental impacts. As such, the focus
on manufactured goods is becoming increasingly important for
European resource efficiency policy, where the consumption of
clothing and footwear, mobility (including vehicles), and other
manufactured goods represented the greatest growth in environ-
mental pressures. In general, material use is the indicator with
the highest growth rates, which is related to the metabolic tran-
sition that many emerging economies are currently undergoing

(UNEP 2016).

Trade Levels

Intensified international trade over the last 20 years has
made regions more interdependent on one another’s supply of
resources. The value chains have become more global (OECD
2013), and an increasing number of products are traded in order
to be processed further and exported to the country of final
consumption. While the global financial crisis had a significant
impact on global trade relations, leading to a sharp drop of the
role of imports determining regional footprints, in our results
we saw a catchup of all accounts to levels before the crisis,
confirming similar previous reports, specifically for GHG (Peters
etal. 2012).

Uncertainty and Variability

Results presented in this paper are based on EXIOBASE3, a
top-down model of the global economy with disaggregated agri-
cultural, food, mining, and manufacturing sectors. EXIOBASE
is the highest-resolution global MRIO with harmonized prod-
uct classifications (compare Eora, with variable product resolu-
tion from 25 to over 400 commodities in different countries).
However, there is still significant aggregation compared to in-
dividual product flows, or compared, to for example the most
detailed trade classification of roughly 4,000 goods. A signifi-
cant amount of work has been done to understand the relative
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variability and uncertainty caused by the use of MRIO ap-
proaches, including (1) variability due to choice of model, (2)
product-level aggregation uncertainty, (3) regional aggregation
uncertainty, and (4) stochastic uncertainty. We do not go into
these sources of variability and uncertainty here. For under-
standing of variability between MRIO results, we refer to the
website www.environmentalfootprints.org, where all MRIO re-
sults are available in a common classification. This follows up
earlier work by Owen and others (Owen et al. 2014, 2016;
Wieland et al. 2017), who analyze the sources of differences
in MRIO models, and Moran and Wood (2014), who quantity
the level of convergence in MRIO results for carbon footprints.
The question of aggregation error has been investigated through
the work of Steen-Olsen and colleagues (2014) across multiple
models, and in the case of EXIOBASE (de Koning et al. 2015;
Wood et al. 2014; Bouwmeester and Qosterhaven 2013; Stadler
et al. 2014). Much less work has been done on stochastic un-
certainty, although some authors (Lenzen 2011; Lenzen et al.
2010, 2013a; Moran and Wood 2014; Karstensen et al. 2015)
address the issue, finding significant cancellation of stochastic
errors (assuming no correlation) at the country level, resulting
in stochastic errors of carbon footprints in line with stochastic
error of production-based accounts (roughly 5% to 15%). A fi-
nal area of research to point at is showing the differences in using
subregional production-side models, for example, in the region-
alization of I-O tables, or the significant impact on embodied
exports with the separation of production-side impacts for pro-
cessing exports (Dietzenbacher et al. 2012; Su et al. 2013). The
summation of this work points to the importance of having high
product and regional resolution, particularly for environmen-
tal analysis. More work needs to be done in this area, but at
the same time, the institutionalization of MRIO and footprint-
based approaches in, for example, the OECD (Yamano 2015),
will allow for the research frontier to move in this direction

(Tukker et al. 2018).

Conclusion

Achieving absolute decoupling of environmental pressure
from economic growth will require strong improvements in re-
source efficiency. In this paper, we used EXIOBASE3 to look
at a range of environmental pressures, the rate of decoupling
as well as the impact that growth in international trade has
had. We find strongest growth in material use indicators, rel-
atively to population and income. Energy and GHG emission
indicators follow similar, but less pronounced, trends. Material
goods are responsible for a significant portion of the growth,
both in absolute levels and as a percentage of traded impacts.
Impacts embodied in trade are growing for all indicators, and we
confirm the impact that global trade has in the displacement
of environmental impacts to developing regions. The results
have implications for the realization of SDGs, and the fact that
assessments must take into account the inter-regional displace-
ment of impacts, and the need for proactively addressing the
growing material metabolism of our economies.
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Notes

1. Aggregated results of EXIOBASE 3 are available at www.
environmentalfootprints.org/mriohome. The full database (as spec-
ified in table 1) will be published on www.exiobase.eu and
aggregated results of EXIOBASE 3 are available at www.
environmentalfootprints.org/mriohome. New versions and bug-
fixes of EXIOBASE will be announced on the EXIOBASE email
list at https://goo.gl/sAhvD4

2. EXIOBASE 3 additionally contains a now-casted time series from
2012 to 2016. These data are nonhomogenous across the environ-
mental pressures and is not included in the results presented here.
Contact the authors for further info.
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