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Exchange-only spin qubits hosted in 28Si-based triple quantum dots do not suffer from decoherence caused by
randomly fluctuating nuclear-spin ensembles and can be relatively robust against electrical noise when operated
at a sweet spot. Remaining sources of decoherence are qubit relaxation, leakage out of the qubit subspace, and
dephasing due to residual effects of charge noise, the latter two of which are the focus of this work. We investigate
spin-orbit-mediated leakage rates to the three-spin ground state accompanied by virtual (i) tunneling, (ii) orbital
excitation, and (iii) valley excitation of an electron. We find different power-law dependencies on the applied
magnetic field B for the three mechanisms as well as for the two leakage rates, ranging from ∝B5 to ∝B11, and
identify the sweet spot as a point of minimal leakage. We also revisit the role of electrical noise at the sweet spot
and show that it causes a decay of coherent qubit oscillations that follows a power law ∝1/t (as opposed to the
more common exponential decay) and introduces a π/2 phase shift.
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I. INTRODUCTION

The development of semiconductor quantum-dot spin
qubits seems to be a promising path towards the material-
ization of large-scale quantum computation [1]. In order to
overcome the practical challenge of creating highly localized
oscillating magnetic fields, implementations of such qubits
have seen a development from single-dot single-spin systems
to a more complicated triple-dot three-spin exchange-only
(XO) qubit that can be fully operated by only electric fields
[2–7]. Furthermore, hosting spin qubits in purified 28Si, in-
stead of the more traditional III-V materials, led to a signif-
icant improvement of observed qubit coherence times due to
the negligible fraction of spinful nuclei in the material [8–14].

Remaining sources of decoherence for the 28Si-based XO
qubit are (i) electric noise in the environment of the qubit lead-
ing to qubit dephasing [15,16], (ii) electron-phonon coupling
that can cause (spin-conserving) qubit relaxation [5], and (iii)
spin-mixing mechanisms such as spin-orbit (SO) interaction
that can enable leakage out of the qubit subspace to the three-
spin ground state |↓ ↓↓〉 [15,17]. Some of these mechanisms
have already been studied: It was found that the effects of
charge noise can be strongly suppressed by manipulating the
qubit at a so-called sweet spot (SS), where the qubit splitting
is, to leading order, insensitive to electric fluctuations [7,18],
and electron-phonon coupling was shown to cause slow qubit
relaxation (estimated as �rel � 10 Hz) that is proportional to
the fifth power of the qubit splitting [19]; some effects of SO
interaction can also be suppressed during gate operations in
double quantum dots by shaping the pulse of the two-qubit
coupling [20,21] or by using superexchange coupling in a
triple-quantum-dot setup [22].

In this work we study some of the remaining questions. We
first investigate the SO-induced leakage rates from the two
qubit states to the ground state |↓ ↓↓〉. Since a SO-assisted
spin flip requires finite motion of the electron, such a leakage
process must involve virtual excitation of a different orbital

state [17]; here we consider the contributions from virtual
tunneling, on-site orbital excitation, and valley excitation sep-
arately. For these three mechanisms we find different power
laws for the dependence of the two rates on the applied
magnetic field B, ranging from �leak ∝ B5 to �leak ∝ B11, and
we also show that the SS is the point where both the qubit
relaxation and leakage rates are minimal. Finally, we also re-
visit the role of charge noise at the SS, and we show that slow
electric fluctuations in the qubit’s environment cause a power-
law decay ∝1/t of coherent qubit oscillations, as opposed to
the exponential decay that is usually assumed [23,24].

The rest of this paper is organized as follows: In Sec. II
we introduce our description of the system and the model
Hamiltonians we use. In Sec. III we present our analytic
results for the leakage rates based on the three mechanisms
mentioned above. Then, in Sec. IV, we corroborate these
results with a numerical evaluation of the dominating leakage
rates, across the whole (1,1,1) charge region. In Sec. V we
investigate charge-noise-induced dephasing, and in Sec. VI
we finally present our conclusions.

II. MODEL

We consider a linear array of three circular quantum dots
with radius σ and interdot distance d (center to center), as
schematically depicted in Fig. 1(a). Assuming a large orbital
level splitting on the dots, we allow each dot i to contain ni ∈
{0, 1, 2} excess electrons, and the triplet (n1, n2, n3) will here-
after be used to label the different charge configurations. We
model the system using a Hubbard-like Hamiltonian [5,6,25],

Ĥ =
∑

i

[
U

2
n̂i (n̂i − 1) − Vin̂i

]
+

∑
〈i,j〉

Ucn̂i n̂j

+
∑

〈i,j〉,α

tij√
2
ĉ
†
i,αĉj,α +

∑
i,α

1

2
gμBBĉ

†
i,ασ αα

z′ ĉi,α, (1)
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FIG. 1. (a) Reference frame of the system. The quantum dots
(dashed gray circles) lie in the xy plane. An in-plane magnetic
(Zeeman) field B is applied at an angle ϑ with the interdot axis,
which, in turn, is at an angle χ with the crystallographic [100]
direction. (b) Charge stability diagram, showing the charge ground
state of the electrostatic part of the Hamiltonian (1) as a function of ε

and Vm, using Uc = 0.3U and V2 = 2Uc − V1 − V3. (c) Qualitative
sketch of the lower part of the spectrum of (1) as a function of ε in
the regions labeled “RX” in (b), where we assumed t12 = t23. The
gray arrows indicate the leakage processes investigated here. In this
plot all variables are in arbitrary units.

where n̂i = ∑
α ĉ

†
i,αĉi,α , with ĉ

†
i,α being the creation operator

for an electron with spin α in the orbital ground state of dot i,
and σ̂z′ is the diagonal Pauli matrix, acting in spin space. As
in Refs. [5,26], the first line describes the electrostatic energy
and includes an on-site charging energy U , gate-tunable local
potentials Vi , and a nearest-neighbor charging energy Uc.
The second line adds nearest-neighbor (spin-conserving)
interdot tunnel couplings and a Zeeman splitting due to an
externally applied magnetic field B, which we assume to be
in plane. The tunnel coupling parameters could be effectively
renormalized due to phase differences between the valley
states on neighboring dots [27]; we assume such effects are
included in the tij we use.

Figure 1(b) shows part of the charge stability diagram
resulting from the first line of (1), where the regions with
different charge (ground) states are indicated, as a function of
ε = (V3 − V1)/2 and Vm = (V1 + V3)/2 − V2 for Uc = 0.3 U

and V1 + V2 + V3 = 2Uc. Within the (1,1,1) region finite
tunnel couplings tij lead to exchange effects that split the
spectrum in a fourfold-degenerate spin quadruplet and two
doubly degenerate doublets. The additional Zeeman field B

further splits all states with different total spin projection S tot
z ,

and in Fig. 1(c) we qualitatively sketch the resulting lowest
part of the spectrum of (1) in the (1,1,1) region as a function of
ε, where we assume that t12 = t23 ≡ τ and use EZ = gμBB.

At ε = 0 the two spin doublet states with S tot
z =

− 1
2 are |0〉 = (| ↓↓↑〉 + | ↑↓↓〉 − 2| ↓↑↓〉)/

√
6 and |1〉 =

(|↓ ↓↑〉 − |↑ ↓↓〉)/
√

2 and provide a basis for a qubit that
can be controlled fully by electrical means [5–8,15,28]: The
qubit splitting reads (to lowest order in τ ) h̄ω = 2τ 2(U −
Uc )/EoEi , with Eo = U − 2Uc − Vm and Ei = U + Vm,
which can be controlled through τ and Vm, and a small
ε yields a term ∝ε σ̂x in the projected qubit Hamiltonian
[29]. Close to the borders of the (1,1,1) region [the regimes
labeled “RX” in Fig. 1(b)] a small modulation of ε with
frequency ω thus induces Rabi oscillations. This so-called
resonant-exchange (RX) regime has the advantage that the
qubit operations can be fast [6,8]. At the center of the (1,1,1)
region (the sweet spot, labeled “SS”) the qubit should be
operated with larger pulses (resonant or static) [7,14,18], but
here one has the benefit that the qubit splitting is, to leading
order, insensitive to noise in the gate potentials. The qubit
dephasing time T ∗

2 is thus predicted to be orders of magnitude
larger at this point than in the RX regime [23,30]. Below we
will investigate the remaining dephasing at the SS in more
detail.

The leading effects of charge noise can thus be suppressed
by operating the qubit at the SS, and since 28Si is nuclear
spin free, the hyperfine interaction that reduces the dephasing
time in GaAs-based spin qubits to ∼10 ns [6,8,31,32] is not a
concern here. That leaves as possibly dominating decoherence
mechanisms (i) qubit relaxation (transitions from |1〉 to |0〉)
due to electron-phonon coupling and (ii) leakage out of the
qubit space (dissipative transitions to the ground state |Q2〉 =
|↓ ↓↓〉) enabled by SO interaction combined with electron-
phonon coupling [see the gray arrows in Fig. 1(c)] [33–35].
Since phonon-mediated relaxation of the triple-dot XO qubit
has been studied before [5,15,19], we will focus here on the
leakage caused by SO interaction.

We model the SO coupling for each electron with the
Hamiltonian [17,36]

ĤSO = Axxp̂xσ̂x ′ + Ayxp̂yσ̂x ′ , (2)

where p̂ is the electron’s momentum. We exclusively fo-
cus on the spin-flip terms ∝σx ′ [see Fig. 1(a)] and use
Axx = α cos ϑ + β(cos ϑ sin 2χ + sin ϑ cos 2χ ) and Ayx =
α sin ϑ + β(cos ϑ cos 2χ − sin ϑ sin 2χ ), where α and β are
the amplitudes of the Rashba and Dresselhaus terms, re-
spectively. Rashba SO coupling in Si-based quantum wells
is predicted to come from structural inversion asymmetry
arising from electric fields set up by interface effects [37,38].
Dresselhaus SO coupling is usually associated with inversion
asymmetry of the crystal lattice, which is, in principle, absent
in Si [10,39]. However, theoretical work predicted that micro-
scopic details (such as the exact number of atomic Si layers
in the well or roughness of the interfaces) can give rise to a
Dresselhaus-like term that could be comparable to or even
dominate over the Rashba term [40–42]; this was recently
confirmed by several experiments [38,43,44].

For the electron-phonon coupling we use the Hamiltonian
[37,45,46]

Ĥe-ph =
∑
k,p

λk,pρ̂k(âk,p + â
†
−k,p ), (3)
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with ρ̂k = ∫
dre−ik·rρ̂(r) being the Fourier transform of the

electronic density operator, â
†
k,p being the creation operator

of a phonon with wave vector k and polarization p, and the
coupling parameters λk,p given by

|λk,p|2 = h̄

2ρ0vpkV
[
�dep

k · k + �u

(
ep

k

)
z
kz

]2
, (4)

with vp being the (polarization-dependent) sound velocity, ρ0

being the electron density, V being the normalization volume,
�u and �d being the uniaxial shear and dilatation deformation
potentials [47], and el

k and et
k being unit vectors along the

longitudinal and transversal directions of phonon propagation.
For localized electrons, such as in quantum dots, 〈p̂〉 van-

ishes, and therefore SO interaction does not directly couple
states that have the same orbital wave function but oppo-
site spin. Spin-flip transitions within the orbital ground state
thus require the excitation of a virtual state which involves
finite motion of the electrons. We will investigate three such
mechanisms: (i) virtual tunneling to a neighboring dot (an
“exchange-enabled” spin flip), (ii) virtual excitation of a
higher orbital on the same dot, and (iii) virtual excitation
of the other valley state, also on the same dot. All three
mechanisms, in combination with the emission of a phonon
to ensure energy conservation, can thus lead to a spin flip
and thereby cause leakage out of the qubit space as discussed
above.

We should note, however, that in realistic systems one often
cannot treat the orbital or valley index of an excited state as
a good quantum number, the actual states being of a mixed
valley-orbital nature [10,48]. For clarity of presentation, we
will first investigate the cases of pure virtual orbital and pure
virtual valley excitation separately and then, at the end of
Sec. III C, discuss how our results relate to the case of mixed
valley-orbital states.

III. ANALYTIC RESULTS

We now investigate the three spin-orbit-mediated leakage
mechanisms in more detail, and we evaluate the leakage rates
�1,0 from qubit states |1〉 and |0〉 to the ground state |Q2〉,
focusing on ε = 0 and symmetric tunnel coupling, t12 = t23 ≡
τ . In all cases we will calculate the rates using a second-order
Fermi’s golden rule,

�α =
∑
k,p

2π

h̄

∣∣∣∣∣
∑

v

〈f |Ĥ ′|v〉〈v|Ĥ ′|i〉
Ev − Ei

∣∣∣∣∣
2

δ(Ef − Ei ), (5)

where Ĥ ′ = ĤSO + Ĥe-ph and the second sum runs over all
possible virtual states |v〉. The initial state |i〉 is |α; vac〉 with
α ∈ {1, 0} (one of the qubit states combined with the phonon
vacuum), and the final state |f 〉 is |Q2; 1k,p〉 (the ground
state combined with one phonon with wave vector k and
polarization p).

A. Virtual spin-flip tunneling

By using p̂ = i
h̄
m∗[Ĥ , r̂], with Ĥ as in (1) and m∗ being

the effective electron mass, one can derive matrix elements
of ĤSO that couple states with different spin and charge
configurations [45,49]. These “spin-flip tunneling” matrix

elements couple both |1〉 and |0〉 to |Q2〉, and phonon emission
is then governed by matrix elements that do not alter the
spin or orbital state of the electrons. Assuming a parabolic
confinement in the quantum dots, and thus a Gaussian ground-
state envelope wave function, the matrix element describing
the emission of a phonon by an electron in a quantum dot j at
position xj reads

〈0j−s; 1k,p|Ĥe-ph|0j−s; vac〉

= i

√
h̄

2ρ0vpkV
[
�dep

k · k + �u

(
ep

k

)
z
kz

]
e− 1

4 (k2
x+k2

y )σ 2−ikxxj ,

(6)

where |0j−s〉 denotes the state of an electron in the ground
state in dot j with spin s and in the lowest valley state (denoted
by the − symbol).

Taking into account all three electrons, we can arrive at
analytic expressions for the leakage rates. Defining �−2 =
E−2

o − E−2
i , we find to leading order in τ/�

�1 ≈ 1

16π

d2

l2
so

τ 4

�4

�2
uE

3
Z

h̄4v5
t ρ0

f ex
1

(
dEZ

h̄vt

)
, (7)

�0 ≈ 3

16π

d2

l2
so

τ 4

�4

�2
uE

3
Z

h̄4v5
t ρ0

f ex
0

(
dEZ

h̄vt

)
, (8)

where lso = h̄/m∗Axx is the relevant spin-orbit length and the
functions f ex

1,0(x) ∼ 1 for x � 1; they are given explicitly in
Appendix A. To arrive at these expressions, we assumed that
EZ � τ 2/Ei,o (which is typically satisfied if B � 10 mT) and
E2

Z � (h̄vt/σ )2 (which, for σ = 15 nm, limits B � 2 T). Fur-
thermore, we used the fact that in Si vl ≈ 2vt , which makes
(vt/vl )5 � 1. For small E2

Z � (h̄vt/d )2 we can expand the
functions f ex

1,0(x) in small x, yielding

�1 ≈ 1

840π

d2

l2
so

τ 4

�4

d4�2
uE

7
Z

h̄8v9
t ρ0

, (9)

�0 ≈ 1

35π

d2

l2
so

τ 4

�4

d2�2
uE

5
Z

h̄6v7
t ρ0

. (10)

We see that �1 ∝ E7
Z and �0 ∝ E5

Z in this limit, and �1 is
smaller than �0 by a factor of (dEZ/h̄vt )2. In the case of
substantially asymmetric tunneling amplitudes (i.e., t12 �= t23)
we find that both rates scale as � ∝ E5

Z.
These rates can be directly compared with the qubit relax-

ation rate, from |1〉 to |0〉, which comes mainly via electron-
phonon coupling [5,34]

�rel = 1

70π

τ 4

�4

d2�2
u(h̄ω)5

h̄6v7
t ρ0

, (11)

where h̄ω is the qubit splitting.
Note that all relaxation rates cancel when 1/� = 0, which

happens at the SS. A qubit operated at this point will therefore
be highly insensitive to both dephasing due to charge noise
and relaxation and leakage. Additionally, the dependence
of Axx on the angles χ and ϑ allows for a reduction of
the leakage rates by varying the device orientation and the
direction of B: In fact, for χ equal to a multiple of π/2, we see
that there are angles ϑ = (n + 1

2 )π for which Axx = 0. Such
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strong angular dependence of spin-orbit-mediated relaxation
rates is already well known from theory and experiments on
double quantum dots [50–53].

B. Virtual orbital excitation

The parabolic potential that confines the electrons in the
quantum dots results in Fock-Darwin eigenstates with energy
splitting Eorb = h̄2/m∗σ 2. The SO interaction couples the
orbital ground state to the first excited state with opposite
spin [17],

〈
1α

j −s̄
∣∣p̂ασ̂x ′ |0j−s〉 = ih̄√

2σ
, (12)

where s̄ denotes the spin state opposite to s and the superscript
α indicates which component of the wave function is in
the excited state [54]. The electron-phonon Hamiltonian also
couples these two orbital states [37],〈

1α
j −s; 1k,p

∣∣Ĥe-ph|0j−s; vac〉

= i

√
h̄

2ρ0vpkV
[
�dep

k · k + �u

(
ep

k

)
z
kz

]
g

(j,α)
10 (k), (13)

with g
(j,α)
10 (k) being the Fourier transform of the overlap

between the ground and first excited states on dot j ,

g
(j,α)
10 (k) = − i√

2
kασe− 1

4 (k2
x+k2

y )σ 2−ikxxj . (14)

The resulting leakage rates, involving the virtual excita-
tion of an orbital state, can straightforwardly be evaluated.
Compared to the exchange-enabled rates, they come with
large powers of EZ/Eorb instead of τ/�, which makes them
typically much smaller. Under the same assumptions as before
we find

�1 ≈ 1

4π

E4
Z

E4
orb

�2
uE

3
Z

h̄4v5
t ρ0

f orb
1

(
dEZ

h̄vt

)
, (15)

�0 ≈ 1

12π

E4
Z

E4
orb

�2
uE

3
Z

h̄4v5
t ρ0

f orb
0

(
dEZ

h̄vt

)
, (16)

where the dimensionless functions f orb
1,0 (x) are given in

Appendix A. For x � 1 they are of the order of (A2
xx +

A2
yx )/v2

t , and for small E2
Z � (h̄vt/d )2 we can again expand

the functions, yielding

�1 ≈ 2

315π

3A2
xx + A2

yx

v2
t

E4
Z

E4
orb

d2�2
uE

5
Z

h̄6v7
t ρ0

, (17)

�0 ≈ 2

10395π

5A2
xx + A2

yx

v2
t

E4
Z

E4
orb

d4�2
uE

7
Z

h̄8v9
t ρ0

. (18)

In this case we thus find that �1 ∝ E9
Z and �0 ∝ E11

Z and
that now �1 is larger than �0 by a factor of (dEZ/h̄vt )−2

(on top of a rather large difference in numerical prefactors),
opposite to the exchange-enabled rates. Comparing the two
mechanisms qualitatively, we see that the factor d2τ 4/l2

so�
4

in the exchange-enabled rates is replaced here by the factor
A2E4

Z/v2
t E

4
orb, which is typically much smaller [55]. Another

qualitative difference is that the “orbital-assisted” rates (15)

and (16) do not depend on the tuning through � and thus
survive at the SS.

We can compare these results with Eq. (12) in Ref. [37],
where the authors calculated the ground-state spin relaxation
rate in a single quantum dot via virtual excitation of an orbital
state. We see that our results are fundamentally the same,
apart from extra factors of (dEZ/vt h̄)2, which result from the
multielectron/multidot nature of our system and account for
interference between spin-flip amplitudes on different dots.
If we were to make the orbital energy splitting substantially
different on each dot, we would also find � ∝ E7

Z for both
relaxation rates.

C. Virtual valley excitation

The band gap in bulk Si is indirect, and the conduction
band has six minima, away from k = 0. In most Si-based
heterostructures strain splits off four of these minima, leaving
two minima at k ≈ ±0.85 kmaxẑ, where ẑ is the growth di-
rection of the structure. Localized electrons in the conduction
band thus have an extra “valley” degree of freedom and can
be described by the wave function

ψ (v) = F (v)(r)
[
α

(v)
1 u1(r)eikzz + α

(v)
2 u2(r)e−ikzz

]
, (19)

where F (v)(r) is the envelope wave function corresponding
to valley v and u1,2(r) is the lattice-periodic part of the
Bloch functions at the conduction band minima at ±kz.
Inhomogeneities such as disorder and interface roughness
typically couple the two minima, resulting in eigenstates with
α

(±)
1 = 1√

2
and α

(±)
2 = ± 1√

2
.

Both SO and electron-phonon interaction can couple op-
posite valley states [37], and virtual valley excitation can thus
cause leakage in a way similar to virtual orbital excitation.
The relevant matrix elements, however, depend sensitively on
details of the confinement along the z direction that are hard
to predict. We thus take a slightly more qualitative approach
and start by employing the dipole approximation e−ik·r ≈ 1 −
ik · r in the electron-phonon Hamiltonian (3), which amounts
to assuming that the emitted phonon has a wavelength much
larger than the electronic confinement length [equivalent to
the assumption E2

Z � (h̄vt/σ )2 used before]. This allows us
to write

〈0j+s; 1k,p|Ĥe-ph|0j−s; vac〉

≈
√

h̄

2ρ0vpkV
[
�dep

k · k + �u

(
ep

k

)
z
kz

]
e−ikxxj k · r+−,

(20)

with r+− = 〈0j+s|r|0j−s〉 being the valley dipole matrix
element. If we use again p̂ = i

h̄
m∗[Ĥ , r], then we can express

the SO Hamiltonian in terms of the same dipole matrix
elements. The precise magnitude of these elements depends
again on microscopic details, and for simplicity we will use
|z+−| � |x+−|, |y+−| and assume x+− = y+− ≡ rd [56,57].
This phenomenological parameter can be related to the mag-
nitude of SO-induced anticrossings in the electronic spectrum
between states with different spin and valley indices; for Si
metal-oxide-semiconductor-based quantum dots |rd | ∼ 1–2
nm has been reported [57].

245409-4



LEAKAGE AND DEPHASING IN 28Si-BASED … PHYSICAL REVIEW B 98, 245409 (2018)

We can now calculate the leakage rates and find, using
again the same assumptions,

�1 ≈ 1

π

A2

v2
t

|rd |4
l4
Z

E2
Z

E2
v

�2
uE

3
Z

h̄4v5
t ρ0

f val
1

(
dEZ

h̄vt

)
, (21)

�0 ≈ 1

3π

A2

v2
t

|rd |4
l4
Z

E2
Z

E2
v

�2
uE

3
Z

h̄4v5
t ρ0

f val
0

(
dEZ

h̄vt

)
, (22)

where, for convenience of notation, we introduced the Zeeman
length lZ = h̄/

√
m∗EZ and Ev denotes the splitting between

the two valley states. The parameter A ∼ α, β sets the strength
of the SO interaction; we cannot resolve the detailed depen-
dence on the angles ϑ, χ in this case since that would require
knowing the exact relative magnitude and phase of x+− and
y+− as well. The dimensionless functions f val

1,0 (x), given in
Appendix A, are again of the order of 1 for x � 1 and can be
expanded in small x when E2

Z � (h̄vt/d )2, giving

�1 ≈ 32

315π

A2

v2
t

|rd |4
l4
Z

E2
Z

E2
v

d2�2
uE

5
Z

h̄6v7
t ρ0

, (23)

�0 ≈ 16

3465π

A2

v2
t

|rd |4
l4
Z

E2
Z

E2
v

d4�2
uE

7
Z

h̄8v9
t ρ0

. (24)

We find again �1 ∝ E9
Z and �0 ∝ E11

Z , as well as that �1 is
larger than �0 by a factor of (dEZ/h̄vt )−2 and that the rates
do not depend on tuning parameters, all qualitatively similar
to the rates based on virtual orbital excitation. Comparing
the rest of the expressions, we find that the valley-assisted
rates are smaller than the orbital-assisted ones by a factor
of ∼|rd |4E2

orb/σ
4E2

v , where typically |rd | ∼ 1–2 nm and σ ∼
10–30 nm, which makes this a very small factor. A significant
variation of Ev or |rd | over the dots would yield relaxation
rates that scale as � ∝ E7

Z in both cases.
In the presence of valley-orbital mixing of the excited

states it is also hard to write analytic expressions for the
dipole matrix elements needed. In this case Eqs. (21)–(24)
are the most useful results, where rd now describes the dipole
matrix element between the ground state and first excited
valley-orbital state and Ev should, of course, be replaced by
the valley-orbital ground-state gap Evo.

IV. NUMERICAL RESULTS

We corroborate our approximate analytic results with a
numerical evaluation of the leakage rates across the whole
(1,1,1) charge region. We focus here on the dominating
exchange-assisted mechanism of Sec. III A, which is also the
only one that shows a dependence on the tuning parameters ε

and Vm.
We start by diagonalizing the Hamiltonian Ĥ + ĤSO, dis-

regarding the excited orbital and valley states. We then iden-
tify in the spectrum the two qubit states |1〉, |0〉 (the spin
doublet states with S tot

z = − 1
2 ) and the quadruplet state |Q2〉.

Using Fermi’s golden rule,

�α = 2π

h̄

∑
k,p

|〈Q2; 1k,p|Ĥe-ph|α; vac〉|2 δ(Ef − Ei ), (25)

we finally calculate the two leakage rates numerically.
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g
(Γ

/
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e
x
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lo

g
(Γ

/
γ
e
x
)

ε/U

|1〉 → |Q2〉
|0〉 → |Q2〉

|1〉 → |Q2〉
|0〉 → |Q2〉

FIG. 2. Spin-flip-tunneling-assisted leakage rates out of the qubit
space across the whole (1,1,1) charge region, from (a) |1〉 and (b) |0〉
to |Q2〉 in units of γex ≡ d2�2

uE
3
Z/l2

soh̄
4v5

t ρ0 (see text for the choice
of parameters). (c) �1,0 as a function of Vm for ε = 0 (circles and
crosses), i.e., along the vertical dashed lines in (a) and (b). Solid
lines show the analytical results from Eqs. (9) and (10). (d) �1,0 as
a function of ε for Vm = −0.3 U , i.e., along the horizontal dashed
lines in (a) and (b).

The results are shown in Fig. 2, where we plot the leakage
rates in units of γex ≡ d2�2

uE
3
Z/l2

soh̄
4v5

t ρ0. We used t12 =
t23 ≡ τ = 16 μeV, U = 50τ, Uc = 15τ, EZ = 2τ and set
the angles ϑ = χ = 0. We assumed Si/SiGe quantum dots
with σ = 10 nm and d = 100 nm, and we used the material
parameters α = 609 m/s, �d = 5 eV, �u = 9 eV, ρ0 = 2330
kg/m3, vl = 9150 m/s, vt = 5000 m/s [30,46,58,59] and the
transverse effective mass m∗ = 0.19me [58,60], for which we
find γex = 960 kHz. The value of β is irrelevant in this case
since Axx is independent of β for our choice of angles ϑ and
χ . Figure 2(a) shows the rate �1, and Fig. 2(b) shows the
rate �0. We see that the magnitude of the rates ranges from
∼10−12 γex to ∼10−5 γex, which is typically much smaller
than the decoherence rates due to other mechanisms, such as
phonon-mediated qubit relaxation (transitions from |1〉 to |0〉)
and dephasing caused by charge noise. Vertical and horizontal
dashed lines indicate the line cuts that we show in Figs. 2(c)
and 2(d). Here we plot the leakage rates as a function of Vm

for ε = 0 [Fig. 2(c)] and as a function of ε for Vm = −0.3U

[Fig. 2(d)]. Circles and crosses present numerical results, and
the solid lines in Fig. 2(c) show the analytical results of
Eqs. (9) and (10), which indeed agree well with the numerical
results.

At the SS the qubit can also be operated electrically by
tuning the tunnel barriers, without the need of leaving this
point of low decoherence, as has been pointed out before
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[18]. Our numerical calculations confirm that at the SS the
relaxation rates between any two states in the lowest part
of the spectrum (including the qubit relaxation rate �rel) are
strongly suppressed, not only for t12 = t23 as in Fig. 2 but
for any combination of tunneling energies. The triple-dot spin
qubit can thus be operated at the SS via a modulation of
the tunneling amplitudes (the always-on exchange-only qubit
[15]) while being highly insensitive to charge noise, relax-
ation, and SO-assisted leakage. The constant contributions
of virtual valley and orbital excitation to the leakage rates
(see Secs. III B and III C) are estimated to be ∼10−10 γex for
our choice of parameters and therefore do not affect these
conclusions qualitatively.

V. DEPHASING AT THE SS

Dephasing in 28Si-based triple-dot spin qubits is believed
to mainly come from electric noise in the qubit’s environment
[13,24]. As a first approximation, one can understand such de-
phasing by assuming the noise manifests itself as fluctuations
of the gate potentials, Vi (t ) = Vi + δVi (t ), that are Gaussian
and have zero mean. To leading order, the qubit frequency
then acquires a time dependence ω(t ) = ω + δω(t ), with
δω(t ) = ∑

i (∂ω/∂Vi )δVi (t ), and a qubit prepared in the co-
herent superposition |ψ (0)〉 = |+〉 = 1√

2
(|0〉 + |1〉) will thus

evolve as |ψ (t )〉 = 1√
2
(|0〉 + ei[φ(t )+δφ(t )]|1〉), where δφ(t ) =∫ t

0 dt ′ δω(t ′). The noise-induced dephasing can then be char-
acterized by investigating the expectation value 〈eiδφ(t )〉: Since
the fluctuations δω(t ), and thus the fluctuations δφ(t ), are
Gaussian, only the second cumulant in the expansion of
〈eiδφ(t )〉 is nonzero, resulting in low-frequency noise in an
exponential decay of the coherent qubit oscillations ∼e−t2/T 2

ϕ ,
where the exact form of the dephasing time Tϕ depends on the
detailed noise spectrum [23,24,61,62].

Exactly at the SS, all first-order derivatives ∂ω/∂Vi van-
ish, and therefore this type of dephasing is highly sup-
pressed. To understand the remaining charge-noise-induced
dephasing at the SS, one could thus try to use the
same approach but now focus on the next order, δω(t ) =∑

i,j (∂2ω/∂Vi∂Vj )δVi (t )δVj (t ). In this case, however, the
fluctuations δω(t ) [and thus δφ(t )] are no longer Gaus-
sian, and one would thus have to include all cumulants in
the expansion of 〈eiδφ(t )〉 [63]. Therefore it is more conve-
nient to investigate the explicit time evolution of the qubit
[5,7,15,28]. Assuming for simplicity quasistatic fluctuations
[23,61,62], we can evaluate the time-dependent probability
P (t ) = |〈+|ψ (t )〉|2 to find the qubit in the state |+〉 and
average this probability over the fluctuations δVi [64]. To good
approximation we then find (see Appendix B for details)

〈P (t )〉 = 1

2
+ cos(ωt − arctan[t/Tϕ])

2
√

1 + t2/T 2
ϕ

, (26)

where Tϕ = h̄(U − Uc )3/4τ 2ξ 2 is the dephasing time, with
ξ 2 = 〈(δVi )2〉 being the variance of the fluctuations. At
the SS the leading-order contribution of the charge noise
to dephasing thus results in (i) a time-dependent phase
shift in the qubit oscillations, which goes to −π/2 for
t � Tϕ , and (ii) a decay of the coherent oscillations with a

0

0.25

0.5

0.75

1

1 10

〈P
(t

)〉

t (ns)
1000 10000

FIG. 3. Numerically calculated time-dependent return probabil-
ity |〈+|ψ (t )〉|2 after initializing in |+〉, averaged over 105 different
sets of δV1,2,3 taken from a normal distribution with ξ = 5 μeV (thin
blue line). The thick black line shows the envelope function of the
oscillations as predicted by Eq. (26), and the dashed red line shows
the best fit obtainable assuming an exponential envelope of the form
1
2 + 1

2 e−t2/T̃ 2
ϕ .

power-law behavior, ∼Tϕ/t for large times, in contrast to
the exponential decay ∼e−t2/T 2

ϕ one finds away
from the SS, whenever

∑
i (∂ω/∂Vi )δVi (t ) �∑

i,j (∂2ω/∂Vi∂Vj )δVi (t )δVj (t ) [24]. One can also use a
detailed cumulant-expansion approach to describe quadratic
coupling to Gaussian noise, which leads to the same long-time
behavior as we found here [63].

We can also calculate the averaged probability 〈P (t )〉
numerically, again assuming quasistatic charge noise. Using
the same parameters as before, we tune the Hamiltonian
(1) to the SS (ε = 0, Vm = −0.3 U ) but then add random
offsets δV1,2,3, taken from a normal distribution with ξ =
5 μeV [14]. We diagonalize the resulting Hamiltonian, iden-
tify the two qubit states |1〉 and |0〉, and create an initial state
|+〉 = 1√

2
(|0〉 + |1〉). We then evaluate numerically the time-

dependent qubit state |ψ (t )〉 = exp{− i
h̄
Ĥ t}|+〉, and from this

we can calculate P (t ) for the specific set of δVi chosen. This
procedure is repeated 105 times, and the resulting average
〈P (t )〉 is shown by the blue curve in Fig. 3. As expected, we
see an oscillating probability that decays to 1/2 over time. The
black solid line shows the envelope function of the decaying
oscillations, as given by Eq. (26), where we have Tϕ ≈ 4 μs
for our choice of parameters. We see that the power-law decay
predicted by (26) matches the numerical results very well. For
comparison we include a best fit of the form 1

2 + 1
2e−t2/T̃ 2

ϕ (red
dashed line), which yields T̃ϕ ≈ 12.4 μs but indeed shows a
much worse agreement with our numerical results than the
power-law from (26).

VI. CONCLUSIONS

Leakage out of the qubit subspace in XO qubits hosted
in 28Si-based triple quantum dots is caused mainly by SO
interaction via virtual spin-flip tunneling. Together with spin-
conserving phonon emission, this results in tuning-dependent
leakage rates that scale as �1 ∝ E7

Z and �0 ∝ E5
Z and are

strongly reduced at the SS, where the qubit is minimally
sensitive to charge noise as well. We found that the other
two mechanisms of leakage we investigated, virtual orbital
and valley excitation, result in much smaller relaxation
rates, scaling as �1 ∝ E9

Z and �0 ∝ E11
Z ; they are constant
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throughout the entire (1,1,1) charge region, thus becoming
the most relevant mechanism of leakage only at the SS.
Further, we showed that also (spin-conserving) qubit re-
laxation, enabled by electron-phonon coupling, is minimal
at the SS, making this an ideal operation point in many
respects.

We also investigated the residual effects of charge noise
at the SS, which are most likely the dominating source of
pure dephasing at that point. We found that slow electric
fluctuations result in dephasing that makes coherent qubit
oscillations decay as ∝1/t , in analogy to Refs. [63,64]; this

in contrast to the exponential decay that dominates elsewhere
in the (1,1,1) charge region.
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APPENDIX A: DETAILED ANALYTIC RESULTS

The dimensionless functions used in the analytic results
presented in Sec. II read explicitly

f ex
1 (x) = 4

5
+ 1

16x5
[128x(x2 − 9) cos x − 2(4x2 − 9)(x cos 2x + 64 sin x) + (16x2 − 9) sin 2x], (A1)

f ex
0 (x) = 4

15
+ 1

16x5
[2x(4x2 − 9) cos 2x − (16x2 − 9) sin 2x], (A2)

f orb
1 (x) = 8

105

(
a2

xx + a2
yx

) + 1

32x6

[
3a2

yx (8x2 − 15) + 2a2
xx (8x4 − 78x2 + 135)

]
cos 2x

+ 1

64x7

[
a2

yx (16x4 − 84x2 + 45) − 2a2
xx (64x4 − 258x2 + 135)

]
sin 2x, (A3)

f orb
0 (x) = 8

35

(
a2

xx + a2
yx

) + 1

64x7

{
512x

[
3a2

yx (2x2 − 15) + a2
xx (x4 − 39x2 + 270)

]
cos x

− 2x
[
3a2

yx (8x2 − 15) + 2a2
xx (8x4 − 78x2 + 135)

]
cos 2x + 512

[
a2

yx (x4 − 21x2 + 45) − a2
xx (8x4 − 129x2 + 270)

]
× sin x − [

a2
yx (16x4 − 84x2 + 45) − 2a2

xx (64x4 − 258x2 + 135)
]

sin 2x
}
, (A4)

f val
1 (x) = 16

105
+ 1

64x7
[2x(16x4 − 132x2 + 225) cos 2x − (112x4 − 432x2 + 225)] sin 2x, (A5)

f val
0 (x) = 16

35
+ 8

x7
[x(x4 − 33x2 + 225) cos x − (7x4 − 108x2 + 225) sin x]

− 1

64x7
[2x(16x4 − 132x2 + 225) cos 2x − (112x4 − 432x2 + 225) sin 2x], (A6)

where the spin-orbit velocities in (A3) and (A4) are rescaled
with the transverse phonon velocity, axx,yx ≡ Axx,yx/vt .

APPENDIX B: CHARGE NOISE AND DEPHASING AT THE
SWEET SPOT

In the absence of significant hyperfine interaction, the
main source of decoherence for exchange-based spin qubits
is believed to be (low-frequency) charge noise on the gate
electrodes [14–16]. Such noise results in fluctuations of the
on-site potentials as used in the Hamiltonian Ĥ in Eq. (1),

Vi (t ) = Vi + δVi (t ). (B1)

This causes the projected qubit Hamiltonian to fluctuate as
well,

Ĥqubit = h̄

2
[ω0 + δωz(t )]σ̂z + h̄

2
δωx (t )σ̂x . (B2)

We focus on pure dephasing in this qubit basis; that is,
we investigate how the phase of the qubit gets randomized
through the fluctuations in the qubit splitting δωz(t ). To this
end, we consider the system to be prepared in the state
|+〉 = 1√

2
(|0〉 + |1〉) at t = 0. After some time t , the sys-

tem evolved into the state |ψ (t )〉 = 1√
2
(|0〉 + eiφ(t )|1〉), where

φ(t ) = ω0t + δφ(t ), the unknown part of the phase being
δφ(t ) = ∫ t

0 δωz(t ′)dt ′.
The expectation value of this random component of the

phase can be found by evaluating ln〈eiφ(t )〉. For simplicity
we will assume quasistatic (time independent during each
individual time evolution) Gaussian noise in Vi :

δφ(t ) = t

3∑
i=1

∂ωz

∂Vi

δVi + t

2

∑
i,j

∂2ωz

∂Vi∂Vj

δViδVj + O(δV 3).

(B3)

Usually, one then focuses on the leading (first-order) term,
which is linear in the fluctuations δVi . This makes δωz also a
Gaussian variable, and then one can do a cumulant expansion
of the logarithm,

ln〈eiδφ(t )〉 =
∞∑

n=1

κn

(it )n

n!
, (B4)

with κn being the nth cumulant of the distribution of δωz, and
use the fact that for Gaussian variables with zero mean only
the second cumulant κ2 = ∑

i (∂ωz/∂Vi )2〈δV 2
i 〉 is nonzero.
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This yields the familiar result ln〈eiφ(t )〉 = − 1
2 t2κ2, from

which one can extract an approximate dephasing time.
At the sweet spot, however, where we expect this dephas-

ing time to be maximal, the first derivative of ωz vanishes (per
definition [18,24]), and one has to use the next (second-)order
term in the series expansion of the phase (B3). A subtle point,
sometimes overlooked, is that, although the fluctuations δVi

are Gaussian, the product δViδVj of two Gaussian random
variables is not Gaussian anymore. This implies that the cu-
mulant expansion has many more nonzero terms that become
relevant at long times, causing ln〈eiφ(t )〉 �= − 1

2 t2κ2 [63]. One

can use such an equality only as long as ∂ωz

∂Vi
� ∂2ωz

∂Vi∂Vj
, a

condition that is not satisfied at the sweet spot.
To extend the analysis to the sweet spot we focus on

the Schrödinger equation resulting from the effective qubit
Hamiltonian instead. We will consider only a diagonal
Hamiltonian,

ih̄
∂

∂t
ψ (t ) = h̄

2
(ωz + δωz)σ zψ (t ), (B5)

and use again the initial condition |ψ (t = 0)〉 = |+〉 =
1√
2
(|0〉 + |1〉), with |0〉 and |1〉 being two eigenvalues of the

qubit Hamiltonian for δωz = 0. In this case, the probability of
finding the qubit in the initial state |+〉 after time t is

P = |〈+|ψ (t )〉|2 = cos

(
t[ωz + δωz]

2

)2

. (B6)

For the exchange-only qubit at the sweet spot, the fluctuation
δωz is given by the second-order term

δωz = τ 2

(U − Uc )3
[(δV2 − δV1)2 + (δV2 − δV3)2], (B7)

where we again have set t12 = t23 ≡ τ .

In order to average over the fluctuations, we define two
variables, x1 = δV2 − δV1 and x2 = δV2 − δV3, that we will
consider independent for simplicity. These variables have
mean zero and standard deviation

√
2ξ (with ξ being the

standard deviation of the original variables δVi) and can be

combined into one χ2-distributed random variable y = x2
1

2ξ 2 +
x2

2
2ξ 2 . With this the probability becomes

P = 1

2

∫ ∞

0
dye−y/2 cos2

[
t

2h̄

(
2τ 2

U − Uc

+ 2σ 2τ 2

(U − Uc )3
y

)]
.

(B8)

This integral can be solved analytically, yielding

P = 1

2
+

cos
(
t 2τ 2

h̄(U−Uc ) − arctan
[
t

4τ 2ξ 2

h̄(U−Uc )3

])
2
√

1 + t2 16τ 4ξ 4

h̄2(U−Uc )6

. (B9)

We see that, as expected, the probability oscillates with a
frequency 2τ 2/h̄(U − Uc ) (while also gradually acquiring a
phase shift that goes to −π/2 for t → ∞). The amplitude of
the oscillations decays within the envelope function

Penv = 1

2
+ 1

2
√

1 + t2 16τ 4ξ 4

h̄2(U−Uc )6

, (B10)

which, for long times, predicts a decay ∝Tϕ/t with a de-
phasing time of Tϕ = h̄(U − Uc )3/4τ 2ξ 2. This is in contrast
to the exponential decay ∝e−t2/T 2

ϕ that is predicted by the
“cumulant expansion method” [23,24]. A simple simulation
of the time evolution of the state |+〉 under the action of
quasistatic random noise at the sweet spot corroborates this
result (see Sec. V).
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