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Problem Description 

This project is focused on fresh water production for Pozo Colorado, a district in the Chaco 

region in Paraguay. Scarcity of potable water is a challenge in this region due to the dry and 

hot climate. This is one of the reasons why only 2 % of the population lives here, although the 

region covers almost two thirds of the country’s territory. There are groundwater resources in 

the area that are not yet exploited but this water has a high grade of salinity.  

In this project a desalination plant that applies the technology of reverse osmosis will be 

studied. A PV-based energy supply for the plant should be suggested and assessed in terms of 

technical and economic aspects. For Pozo Colorado, a grid-connected PV-system should be 

evaluated and for areas without grid-connection a stand-alone PV system should be designed. 

Different operational regimes of the plant should be studied in order to find an optimal 

configuration for both the plant and the energy system. The simulation tool HOMER should 

be applied for investigations related to the micro-grid.  

An important part of the project is data gathering during a field trip to Paraguay, which will 

take place in January-February 2014. The project is in collaboration with the non-profit 

organization Ren-PEACE and Engineers Without Borders (IUG) at NTNU. 
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“The cure for anything is salt water - tears, sweat, or the sea” 

- Isak Dinesen, Seven Gothic Tales 
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Abstract 

Fresh water scarcity and drinking water quality is a challenge in Pozo Colorado, a district in 

the northern part of Paraguay. Establishing a brackish water reverse osmosis (BWRO) 

desalination plant that produces potable water from the saline groundwater resources could be 

a solution to the problem. With high solar intensity in the region, a grid-connected battery 

back-up PV system could provide a reliable electricity supply to the plant. For areas that lack 

grid-connection, electricity provision from a stand-alone PV system with diesel generator 

could be a possibility. 

In this master project, a BWRO plant is designed for Pozo Colorado to cover the demand of 

potable water in the village. Three construction stages are suggested for the plant, with 

associated energy supply systems. In all stages, grid electricity is the main energy source. In 

Stage 1, a back-up PV supply with battery storage is designed for the distribution pump only, 

for reliability reasons. In Stage 2 and Stage 3, the PV system is expanded to 12 kWp and then 

further to 20 kWp. Cost estimates for the desalination plant and the energy supply systems are 

presented for every stage. If production over a 25 year period is considered, the water cost in 

Stage 3 will be 15-30 % lower than the current cost of water in Pozo Colorado. With the 

current power price in Paraguay it would not be economically feasible to install PV panels in 

Pozo Colorado without subsidies. From simulations in the software HOMER, it was found 

that the price would have to increase by as much as 75 % in order to make introduction of PV 

modules economically viable. By creation of a synthetic electricity market with seasonal 

variations and higher prices during daytime, it was found that the average price only has to 

increase by 21 % in order to make PV introduction economically feasible. For a situation 

where energy is supplied from a stand-alone PV system, different operational regimes for the 

plant were evaluated. Based on costs of membranes and batteries, it was found that it would 

be more economical to use water as storage medium for solar energy instead of batteries. A 

three-step profile with production during the day and no production during night-time was 

found to be optimal from an economic point of view.  

Overall this project reveals that a BWRO desalination plant supplied by a grid-connected PV 

system is a promising solution for Pozo Colorado. For areas that lack grid-connection, a 

stand-alone PV supply with diesel generator would be feasible, and in such a situation the 

operational regime of the plant will highly affect system configuration and costs. 
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Sammendrag 

Mangel på ferskvann og kvalitet på drikkevannet er en utfordring i Pozo Colorado, et distrikt i 

den nordlige delen av Paraguay. Et anlegg som bruker omvendt osmose til avsalting av det 

salte grunnvannet (BWRO) kan være en løsning på problemet. Det er høy solinnstråling i 

området og derfor kan et nettilknyttet solcelleanlegg med batterilagring fungere som 

energiforsyning. For områder uten nettilknytning kan et frittstående solcelleanlegg med 

dieselgenerator være en løsning. 

I denne masteroppgaven har et BWRO-anlegg blitt designet for Pozo Colorado. Tre 

utbyggingstrinn er foreslått for anlegget med tilhørende energiforsyning. I alle trinnene er det 

nettet som er hovedkilden til elektrisitet. Et back-up solcellesystem med et lite batterilager er 

designet for distribusjonspumpa i Trinn 1, som forsyningssikkerhet. I Trinn 2 og Trinn 3 er 

solcellesystemet videre utvidet til 12 kWp og deretter til 20 kWp. Kostnadsestimater for 

avsaltingsanlegg og energiforsyning er presentert for hvert trinn. Dersom man vurderer 

produksjon over 25-årsperiode vil vannkostnaden i Trinn 3 være 15-30 % lavere enn det den 

er i Pozo Colorado i dag. Men med dagens strømkostnad i Paraguay vil det ikke være 

lønnsomt å installere solceller i Pozo Colorado uten subsidier. Simuleringer i programvaren 

HOMER viste at strømprisen må øke med hele 75 % for å gjøre det lønnsomt å introdusere 

solceller i energisystemet. Et kunstig strømmarked med sesongbasert variasjon og høyere 

priser på dagtid ble laget, og simuleringer viste at gjennomsnittsprisen da bare må øke med  

21 % for å gjøre solceller lønnsomt. For et frittstående solcellesystem ble ulike 

produksjonsprofiler for avsaltingsanlegget vurdert. Basert på kostnader for membraner og 

batterier ble det funnet at det vil være mest lønnsomt å bruke vann som lagringsmedium for 

solenergi i stedet for batterier. En tretrinnsprofil med produksjon på dagtid og ingen 

produksjon om natten var den optimale lastprofilen sett fra et økonomisk synspunkt. 

Dette prosjektet viser at et BWRO-anlegg med et nettilknyttet solcelleanlegg som 

energiforsyning er en lovende løsning for Pozo Colorado. For områder uten nettilknytning er 

et frittstående solcellesystem med dieselgenerator en mulig løsning, og i et slikt tilfelle vil 

produksjonprofilen til anlegget i stor grad påvirke både systemkonfigurasjon og kostnader. 
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Chapter 1     

Introduction 

Water is a basic necessity for all living creatures on Earth. With climate change, increased 

urbanization and population growth, water scarcity is a growing challenge in many countries. 

Lack of fresh water is also a problem in the Gran Chaco, a region that covers the northern part 

of Paraguay, southeastern Bolivia and northern Argentina in South America. Within the 

borders of Paraguay, the Chaco covers almost two thirds of the country’s territory. Despite 

this, it is home to only 2 % of the population. This can partly be explained by an extreme 

subtropical climate and the lack of modern infrastructure, but above all it is the scarcity of 

potable water that impedes settlement in the area.  

Pozo Colorado is a small town in the Paraguayan Chaco, situated by the Trans Chaco 

highway that connects the southern and northern part of the country. Clean potable water is in 

shortage in the district, like in the rest of the region. Currently, the water supply in Pozo 

Colorado is surface water, which is rainwater collected in large ponds in the outskirts of town. 

Due to lack of chemicals for treatment, drinking this water can cause serious health problems 

and in dry periods water shortage is also a challenge. There are groundwater resources in the 

area, however, that have not yet been exploited. The problem is that this water is saline and 

undrinkable unless it is treated.  

Building a desalination plant in Pozo Colorado that produces fresh water from the saline 

groundwater resources could be a solution to the problem of poor water quality and water 

scarcity. Reverse osmosis (RO) desalination is a widely used technology in the World today. 

RO is both energy efficient and has low investment costs compared to other desalination 

methods. The desalination process requires electricity, however, in particular to obtain the 

high pressure that enables RO. Fortunately a new 22 kV supply line was connected to Pozo 

Colorado in January 2014. The region also has high levels of solar irradiation and a PV 

supply could therefore be implemented in the energy system in order to increase reliability. 

The solar resources could also be exploited in a stand-alone PV system for areas without grid-

connection. 
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This project was initiated by the non-profit organization Ren-PEACE in 2013. It is also in 

partnership with the student division of Engineers Without Borders (IUG) at Norwegian 

University of Science and Technology and it is one of IUG’s “Meaningful Masters”. IUG 

funded a field trip to Paraguay that took place in January and February 2014. This master 

thesis is based on a specialization project that was written during autumn 2013 [1]. The 

project report is used as a background for writing this thesis. Initially, the project was based 

on a study conducted by Aldo Marcos at National University of Asunción in 2005 [2]. 

Marcos’ work was a feasibility study for establishing a brackish water reverse osmosis 

(BWRO) plant in Pozo Colorado, in order to supply fresh water for cattle production. As 

energy supply for the plant, Marcos considered a hybrid stand-alone system of solar PV and 

wind energy, with a diesel generator as back-up generation.  

Unlike the project of Marcos, it is the provision of potable water for the villagers in Pozo 

Colorado that is the focus in this master project. Since a grid-connection is recently 

established, a battery back-up grid-connected PV system is designed as energy supply for the 

plant. Next, a stand-alone PV system with diesel generator is designed as a prototype for other 

areas in the Chaco that lack grid-connection. Johannes Waatevik, master student at NTNU, 

has in his master thesis modelled the power systems in detail [3], and some of his work is 

applied in this project.  

This work includes a total of 8 chapters. Chapter 2 gives an overview of Paraguay and the 

existing water and electricity supply situation in Pozo Colorado. It also comprises information 

about the field trip to Paraguay, in addition to theory about RO desalination and battery back-

up grid-connected PV systems. In Chapter 3, a desalination system design is presented for 

Pozo Colorado, with three possible stages of construction. For the stages suggested, energy 

supply systems are recommended in Chapter 4, including introduction to the simulation tool 

HOMER. Load profiles are developed as input parameters to the program based on data from 

an existing desalination plant visited in Paraguay. The energy supply systems are grid-

connected, but includes introduction of PV modules in Stage 2 and 3. Simulation results are 

presented in Chapter 5, with system size and economic figures for both energy system and 

desalination system. The configurations are compared in terms of system costs and water 

costs in the same chapter. In Chapter 6, future electricity price development in Paraguay is 

evaluated. A synthetic electricity market model is created with hourly variations and reduced 

costs during daytime when solar irradiation is high. In the end of this chapter it is studied 

whether fluctuating power costs will have an impact on PV feasibility, from simulations in 
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HOMER. In Chapter 7, the applicability of a stand-alone PV supply is considered. An optimal 

operational regime of the desalination plant is determined based on costs of membrane and 

batteries. Hence, it is assessed whether it is most economical to utilize water or a battery bank 

as storage for solar energy. The optimal load profile is simulated in HOMER and energy 

system size and cost figures are presented at the end of Chapter 7. Chapter 8 includes a 

discussion of the project results, followed by a conclusion and suggestions for further work in 

the end. 
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Chapter 2     

Background and Theory  

2.1 Paraguay 

2.1.1 Country overview 

The Republic of Paraguay is a landlocked country situated in Central South America. It 

borders on Brazil to the east and northeast, Argentina to the south and southwest, and Bolivia 

to the northwest, as can be seen from the map in Figure 2.1. 

 

 

Figure 2.1 Map of South America [4] 



Chapter 2   Background and Theory 

6 

 

Paraguay has a small population and territory compared to its neighbors. In 2012, the country 

had 6.687 million inhabitants and with an area of 400,000 km
2
 it has only about 5 % of the 

territory of Brazil. The majority of the population lives in the southeast region. 61% of the 

people are considered to live in urban areas, a number that is steadily increasing. The capital 

and largest city is Asunción close to the border with Argentina. Asunción is home to about  

1.9 million people, nearly one third of the country’s population. As a large part of the 

population has native heritage, there are two official languages in the country: Spanish, and 

the indigenous language Guarani [5]. 

Paraguay is a developing country, and about one third of the population lives below the 

poverty line. On average, the gross national income per capita was US$ 3,290 in 2012, well 

below the average of US$ 8,999 for developing countries in Latin America [6]. The weak 

economy affects the living standards of the Paraguayan people. Only 66 % of the rural 

population in the country is considered to have access to an improved water source, and as 

few as 43 % of the people living in rural areas have access to improved sanitation facilities  

[5, 6].  

 

2.1.2 The Chaco and Pozo Colorado 

The Paraguayan Chaco is a rural region in the northern part of Paraguay, as can be seen in 

Figure 2.2. It occupies almost two thirds of the country’s territory, but is only home to 2 % of 

the population. The reason for this is the extreme subtropical climate and the lack of modern 

infrastructure. However, it is particularly the scarcity of potable water that impedes large scale 

colonization of the region. The annual mean precipitation in the region is between 800 and 

900 mm, but most of this rain falls during the warm summer months [7]. In comparison, the 

capital, Asunción, has a mean annual precipitation of about 1300 mm [8]. Summer is a very 

hot period in the Chaco, with average temperatures close to 30°C for several months [7]. This 

is the period of the year with the highest plant growth rate, which means that also the 

transpiration from trees and plants and evaporation from the soil is at its highest. Hence, much 

of the rainfall evaporates directly and cannot be captured. 
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Figure 2.2 Map of Paraguay and the Chaco [5] 

 

Pozo Colorado is a district in the Chaco region, 271 km northwest of Asunción, as can be 

seen on the map in Figure 2.2. The district is located in the department of Presidente Hayes 

and the closest big city, Concepción, is situated about 150 km to the east. Pozo Colorado is 

linked to other parts of the country by roads that connect south to north and east to west. The 

whole district has 17,727 inhabitants (2002 census), of whom 1,700 live in the town center 

[2]. More detailed data about Pozo Colorado is presented in Appendix A, which also includes 

a town plan. One of the streets in the center of town can be seen in Figure 2.3.  

Pozo Colorado is no exception regarding the poor availability of water resources in the Chaco 

region. The balance between precipitation and evaporation is challenging and there is low 

access to potable water in the area. Nevertheless, the electricity production in the country is 

largely based on hydro resources in eastern and southern regions. 
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Figure 2.3 Street in Pozo Colorado 

 

2.1.3 Current electricity situation  

Paraguay is a large producer of hydroelectric power, most of it originating from the Itaípu 

dam on the border to Brazil in the south-east and the Yacyretá dam on the border to Argentina 

in the south. In total, the electricity production in Paraguay was 57.6 TWh in 2011, nearly  

100 % comprised by hydropower. Out of this, only 13 % was consumed within the country 

and the majority of the remaining was exported to Brazil and Argentina. The residential sector 

is the dominant electricity consumer in Paraguay with 42 % of the demand. 23 % is consumed 

in industry and the remaining 35 % in commercial and public services. Per capita, the 

consumption was 1,230 kWh/year in 2011, well below the consumption in the neighboring 

country Brazil, where it is around 2,440 kWh/capita/year [9]. Figure 2.4 depicts the 

development in electricity consumption per capita per year for Paraguay and the non-OECD 

American countries from 2000 to 2011. The non-OECD countries include every country in 

America, excluding the US, Canada and Chile. One can detect that consumption in Paraguay 

is well below the regional average but there is a steady increase in consumption through the 

whole period.  
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Figure 2.4 Electricity consumption per capita per year in Paraguay and non-OECD Americas from 

2000-2011 [9, 10] 

 

Although electricity consumption has risen steadily per capita in the period from 2000-2011, 

the increase differs from sector to sector. Figure 2.5 illustrates the development in electricity 

consumption distributed on the industrial sector, the residential sector and the sector of 

commercial and public services. It can be observed that industry has had a slow and steady 

growth in electricity consumption through the whole period. Consumption in the residential 

sector has more fluctuations, while commercial and public services have experienced a large 

increase in consumption after 2009.  
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Figure 2.5 Electricity consumption per sector per year in Paraguay from 2000-2011 [11] 

 

Unlike most of the countries in Latin America, Paraguay still has a public monopoly on 

electricity. The electricity market, including generation, transmission and distribution, is 

controlled by Administración Nacional de Electricidad (ANDE), which also determines the 

electricity tariffs. Power prices have been relatively constant over the past 5 years in 

Paraguay. Figure 2.6 depicts the development in power prices from 2007 to 2011 for six 

different sectors in Guaranis (Gs), in 2013 prices. Only average price data was available for 

2013. It can be observed from the figure that the average price has been quite stable during 

the period although there has been a clear growth from 2011 to 2013. During these two years, 

the average price increased by as much as 16 %. Residential, commercial, industrial and 

general prices have seen a slight increase, while costs in the public lighting sector have 

declined. Costs in the governmental sector were slightly lower in 2011 than in 2007 but prices 

were lower in 2009 and 2010, as illustrated in the figure.  
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Figure 2.6 Power price development in Paraguay per sector, in 2013 prices[12-14] 

 

The transmission grid in Paraguay is mostly centered in the areas around the capital, where 

the majority of the population lives. As illustrated in Figure 2.7, there are mostly 220 kV lines 

in the south, as well as one 500 kV supply line. In the more scarcely populated northern areas, 

there is one main 220 kV line supplying Loma Plata with electricity in the occidental region. 

As indicated on the map, Pozo Colorado has no high voltage electricity supply. However, in 

January 2014, a new 23 kV line was installed from Concepción, in addition to an existing  

23 kV line from Asunción. This expansion will improve the electricity situation in Pozo 

Colorado, resulting in a more stable supply in harsh weather conditions and in periods of high 

electricity demand. With an expected economic growth and more energy-intensive industries, 

the electricity demand in Paraguay is anticipated to increase in the future. This is reflected in 

the report of grid expansions published by ANDE. According to this report, reliability will be 

further increased by 2023 with a new 220 kV line being connected to Pozo Colorado from 

Concepción [15]. 
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Figure 2.7 Map of high-voltage transmission lines in Paraguay in January 2014(green = 500 kV grid, 

red = 220 kV grid, black = 66 kV grid, blue = planned grid expansion during 2014) [15] 

 

2.1.4 Renewable energy potential 

With a warm climate, there are high levels of solar irradiation in the Chaco region. For Pozo 

Colorado, the annual average irradiation is 4.97 kWh/m
2
/day. In comparison, Quito in 

Ecuador, which is situated almost on the equator, has an average of 5.46 kWh/m
2
/day on a 

yearly basis [16]. The bars in Figure 2.8 indicate the variation in irradiation through the year 

for Pozo Colorado. It can be observed that the average irradiation for January is as high as  

6.6 kWh/m
2
/day, whereas June has an average of about 3 kWh/m

2
/day. Yet solar irradiation is 

not the only renewable energy resource in the region. There are also wind resources present, 

indicated by the line graph in Figure 2.8. It can be observed that the wind speeds are at 

maximum between May and October, when irradiation levels are lower. The inverse 
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correlation between these two energy resources could be benefited from in a renewable 

energy system. Due to time limitations it is only the solar resources of Pozo Colorado that are 

considered in this project.  

 

 

Figure 2.8 Average daily solar irradiation and average wind speeds in Pozo Colorado [2, 16] 

 

2.2 Previous work 

In 2005, Aldo Marcos submitted his master thesis “Fresh water production in Pozo Colorado, 

Paraguayan Chaco: by Reverse Osmosis using alternative energies, aeolic and photovoltaic - 

Technical and Economic feasibility study” [2] at the National University of Asunción. This is 

a study of the possibility of establishing a desalination plant in Pozo Colorado, using RO 

technology to treat the high salinity groundwater resources in the area. Marcos found that a 

hybrid system consisting of solar PV, wind turbines, diesel generator and battery storage 

would be a promising energy supply for the desalination plant. The purpose of the plant was 

to produce 600 m
3
 fresh water daily for cattle production in the area. The use of renewable 

energy sources in this work provides valuable information for further investigation, and the 

concept of a RO plant for Pozo Colorado is elaborated in this master project.  
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2.3 Partner organizations 

This project is written in cooperation with two organizations. First of all, it is in collaboration 

with the non-profit organization Ren-PEACE. Ren-PEACE is an organization that develops 

“micro-grid projects” in partnership with universities, and their aim is to provide energy from 

renewable energy sources in order to alleviate extreme poverty [17]. This project work is in 

close cooperation with Ren-PEACE, and the possible realization of the project is expected to 

be financed by funds gathered by this organization. 

The student organization Engineers Without Borders at NTNU (IUG) is also involved in this 

project. IUG supports students writing “meaningful masters”; master theses where students 

use their engineering knowledge to improve the lives of people in need. IUG NTNU gives 

advice and field trip funding to students who are interested in involvement in development 

work during their final year at NTNU. This project is one of the meaningful masters that IUG 

provides in 2014. IUG sponsored a field trip to Paraguay during winter 2014, which will be 

furthered described in section 2.4.  

 

2.4 Field trip to Paraguay 

In collaboration with members in Ren-PEACE and with funding from IUG, a field trip to 

Paraguay and Pozo Colorado took place in January-February 2014. Participants on the trip 

were Johannes Waatevik, student at NTNU, Stanislas Merlet, solar energy consultant from 

Multiconsult, and the author. Aldo Marcos, civil engineer, member of Ren-PEACE and author 

of the master thesis presented in section 2.2, was a guide and advisor during the three-week 

stay in Paraguay. 

The objective of the field trip was to gather as much data as possible for further work with the 

project. The data collected was both quantitative and qualitative. Quantitative data was either 

obtained by own measurements, like available space, or by interviewing people. As far as 

possible, information obtained from the citizens of Pozo Colorado was validated by asking 

several people to avoid misinterpretations due to the language barrier. Some quantitative 

information was particularly challenging to obtain, for example water consumption per 

household, and hence an average number was used if there was dissenting information from 

the inhabitants. Data collected about water consumption and the existing water supply system 

in Pozo Colorado is described in section 2.5. 
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A visit to an existing RO desalination plant in Filadelfia, called Aguamin, gave valuable data 

about plant equipment and component costs. This will be further elaborated in section 2.6.4. 

Qualitative data involved general feasibility of the project and evaluation of the site in Pozo 

Colorado. The feasibility of connecting an additional load to the new grid was discussed with 

José Vallejos from ANDE. An overview of the most important qualitative and quantitative 

data collected during the field trip is presented in Table 2.1. 

 

Table 2.1 Quantitative and qualitative data gathered during field trip to Paraguay 

Quantitative data Qualitative data 

Number of inhabitants Willingness of local population 

Water consumption Feasibility of grid-connection 

Available space, distances Practical evaluation of site (shading etc.) 

Costs of grid-connection, building, water Configuration of current water supply system 

Surface water composition Experience from Aguamin RO plant 

Properties of Aguamin RO plant  

 

Next to data collection, an important part of the field trip was to establish contacts that could 

be relevant for realization of the project. In order to successfully implement project plans it is 

essential to involve the local administration and it could also be beneficial to include research 

staff at universities at an early stage. When in Pozo Colorado, a meeting with the head of the 

village, Gregorio Riveros, and the local doctor, Cesar Mareco, gave interesting and important 

information about the local conditions. A picture from the meeting is included in Figure 2.9. 

Meeting the owner of Aguamin RO plant, Ricky Hockh, was crucial to understand the 

challenges of RO desalination in the region, and Hockh could be a useful contact both during 

project implementation and plant operation. Presentation of the project plans at Universidad 

Nacional de Asunción (UNA) and Universidad del Cono Sur de las Americas (UCSA), both 

in Asunción, was rewarding and important contacts have been established in the field of 

research. A photo from the meeting at UCSA is presented in Figure 2.10. 
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Figure 2.9 Meeting with Gregorio Riveros and Cesar Mareco in Pozo Colorado 27
th
 of January 2014 

 

 

 

Figure 2.10 Meeting with professors at Universidad del Cono Sur de las Americas 6
th
 of February 

2014 
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2.5 Existing water supply system in Pozo Colorado 

During the field trip to Pozo Colorado the existing water supply system was inspected. This 

was a result of a European Union project from 2009 that was initiated to improve the drinking 

water supply of the village. The system pumped water from a pond of surface water into three 

storage tanks of 10,000 liters each. In the tanks the water was treated chemically with 

aluminum sulfate, before being stored in a 20,000 liter underground tank. From there it was 

pumped to an elevated tank with a volume of 10,000 liters prior to being distributed to the 

consumers through an underground piping system. The system failed to work properly after 

short time in operation. Parts of the distribution system were unable to withstand the high 

pressure and were therefore damaged. In September 2012 there were no more chemicals to be 

used for treatment. 

Since then, the water has been untreated and some of the villagers have had to walk to the 

pond to fetch water in buckets due to damage on the pipelines. Some people treat the water 

with chlorine at home while others drink the water untreated. Based on information from one 

of the villagers, the water consumption per capita is around 55 l/day, which yields a total 

demand of 93,500 l/day for 1,700 inhabitants. Every household has to pay a monthly fee for 

being connected to the distribution system, in addition to costs of chemicals. Based on an 

average chlorine consumption of 0.234 l/household/month and a fixed connection fee of  

3.3 $/household/month, the cost of water is about 0.38 $/m
3
. This is based on an average 

number of 5 people in each household in the village [18]. Details about water consumption 

and cost of water are summarized in Table 2.2. 

 

Table 2.2 Water consumption and cost of water with the current system in Pozo Colorado [18] 

Consumption per capita 0.055 m
3
/d 

Consumption village 93.5 m
3
/d 

Approximate cost of water 0.38 $/m
3 

 

The configuration of the existing water supply system is sketched in Figure 2.11. As status is 

today, the underground storage tank is not in use and neither are the elevated tanks of 1,000 

liters each. A photo of the source of surface water can be seen in Figure 2.12, the elevated 
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storage tanks are shown in Figure 2.13 and the storage tanks on ground are depicted in Figure 

2.14. Results from a water analysis of the surface water are included in Appendix A. 

 

 

Figure 2.11 Configuration of the existing water supply system in Pozo Colorado 
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Figure 2.12 Surface water pond in Pozo Colorado 

 

 

Figure 2.13 Elevated storage tanks in Pozo Colorado 
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Figure 2.14 Three storage tanks of 10,000 liters each in Pozo Colorado 

 

The current system is not optimal as it is neither a secure nor safe water supply. Without 

chemicals for treatment, the water is not considered to be a safe source of drinking water. 

According to Cesar Mareco, the doctor of Pozo Colorado, there have been several cases of 

diseases due to the poor drinking water quality and there have been incidents of dehydration 

[19]. In addition, the availability of water from the pond is limited in periods of very hot 

weather when evaporation rate is high. In these periods, there are trucks from the government 

driving from Concepción to cover the needs of the people in Pozo Colorado [18]. The water 

distribution system is also a challenge and upgrading the pipes is crucial to obtain a well-

functioning water supply. 

There are, however, groundwater resources in the area that could be extracted and applied for 

drinking purposes. The challenge is that the salinity of this water is high and it is undrinkable 

unless it is desalinated. Compared to typical brackish water, the salinity of the groundwater in 

the area is in the higher-end bracket. As described by Marcos in 2005 [2], a RO desalination 

plant that produces potable water from the groundwater resources could therefore be a 

solution to the problem.  
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2.6 Reverse osmosis technology 

2.6.1 Concept of reverse osmosis 

Osmosis is the natural process where water from a solution with low concentration of 

dissolved solids flows through a membrane to a solution with higher concentration of 

dissolved solids. Figure 2.15 illustrates the direction of flow. The membrane placed between 

the compartments is semipermeable, which means that it will let water and some ions flow 

through it, while it is impermeable to most dissolved substances. Water will continue to flow 

through the membrane until equilibrium is reached and the solute concentration is equal on 

both sides. At equilibrium, there is no more net flow between the compartments. Now, the 

side that once had the higher concentration will have a higher water level than the other 

compartment. As Figure 2.16 indicates, the difference in height between the two 

compartments corresponds to the osmotic pressure of the solution. This is the pressure applied 

on the surface of the semipermeable membrane [20].  

The process of RO occurs when a pressure greater than the osmotic pressure is applied to the 

compartment that first contained the high-concentration solution. Due to resistance in the 

membrane, the applied pressure has to be considerably higher than the osmotic pressure. As a 

result of the pressure increase, water will flow in the reverse direction. This is illustrated in 

Figure 2.17. The water that flows through the membrane will be relatively pure and the 

dissolved solids will remain on the side where the pressure is applied. As a consequence, 

there will be purified water on one side and there will be a concentrated solution in the other 

compartment [20].  

 

 

 

Figure 2.15 Water flow to equalize concentration on the two sides of the RO membrane [20] 
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Figure 2.16 Pressure difference on each side of a RO membrane due to the osmotic pressure 

difference [20] 

 

 

Figure 2.17 A pressure greater than the osmotic pressure is applied on the high-concentrate side and 

water flows to the compartment with lower concentration [20] 

 

The osmotic pressure is a function of the concentration of total dissolved solids (TDS). For 

every 100 mg/l of TDS an osmotic pressure of about 1 psi (≈0.07 bar) will be created. That 

means that brackish water, which typically has a TDS of 3,000 mg/l, would have an osmotic 

pressure of about 2.1 bar, and seawater with a typical TDS of 35,000 mg/l would have an 

osmotic pressure of about 24.5 bar. Hence, the lower salinity of the source water, the less 

energy intensive the purification process will be. Temperature and target product water 

quality are also factors that will affect the energy use. Furthermore, TDS concentration is 

often monitored by measuring electrical conductivity (EC) expressed in micro Siemens per 
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centimeter (μS/cm). The TDS/EC ratio in source water is site dependent but is usually 

between 0.67 and 0.70 [21]. 

In Figure 2.18, the layout of a typical RO membrane is illustrated. The membrane in the 

figure is spiral-wound, which is the dominating membrane element for brackish and seawater 

desalination plants. The outer part of the membrane consists of 40 to 42 flat membrane sheets, 

which are assembled into 20 to 21 membrane envelopes. The envelopes are separated by a 

feed spacer that is approximately 0.7 to 0.9 mm thick. A feed spacer facilitates mixing and 

passage of the feed water along the length of the membrane. In the desalination process, 

pressurized saline feed water is applied on the outer surface of the membrane envelopes. 

Permeate, or fresh water, is collected between the two sheets of the envelope and directed 

towards the center of the membrane element. Permeate from all envelopes is collected in the 

central permeate collector tube, as indicated in Figure 2.18, and from there it is evacuated out 

of the element. The concentrate, or brine, leaves the membrane through the outer parts of the 

tube [21]. Due to risk of fouling, there is a limit to how much fresh water that can be 

recovered in a RO membrane system. For BWRO plants it is typically between 65-85 %  

[21, 22].  

 

 

Figure 2.18 Spiral-wound RO membrane configuration [23] 

 

Compared to other desalination processes, the RO process is very energy efficient. Energy 

consumption per cubic meter of fresh water is presented in Table 2.3, for five different 
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desalination technologies. Compared to the other three, BWRO and sea water reverse osmosis 

(SWRO) are clearly the most energy efficient methods.  

 

Table 2.3 Energy use for alternative desalination technologies (MED = Multiple-effect distillation, 

MSF = Multi-stage flash distillation, VC = Vapor compression, BWRO = Brackish water reverse 

osmosis, SWRO = Seawater reverse osmosis) [21] 

 

 

2.6.2 Key components in a reverse osmosis plant 

A RO plant consists of a number of components that are designed to perform the required 

desalination process. Larger plants would typically have more sophisticated and expensive 

components, whereas smaller plants would normally require fewer and less expensive 

equipment. Regardless of size, the basic system configuration is the same for all RO plants. 

The main components in a RO plant are presented in Figure 2.19. The combination of these 

components, including valves, couplings and fittings, can function independently and is 

referred to as a RO train [21]. 

 

 

Figure 2.19 Schematic diagram of a RO system with energy recovery device, modified from [24] 

 

As can be seen from Figure 2.19, the saline feed water has to be treated before entering the 

membranes to avoid fouling and thereby reduction of membrane performance. Therefore, the 

first stage is the pre-treatment process. Depending on the source water quality, this stage 

 MED MSF VC BWRO SWRO 

Total energy use  (kWh/m
3
) 5.7-7.8 12.7-15.0 8.0-12.0 0.3-2.8 2.5-4.0 
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involves different water treatment processes, like various filtration methods, screening and 

chemical conditioning [21]. Next, the treated water enters the high pressure (HP) pump, 

where the required pressure is obtained. Centrifugal HP pumps are used for all desalination 

plant sizes, however reciprocating pumps are sometimes used for plants with a fresh water 

production lower than 4,000 m
3
/day [25]. A RO plant can consist of one large HP pump or 

several smaller pumps. According to [21], one pump is usually considered to be more 

efficient, but several pumps could be used for reliability concerns or if the plant has to be 

operated in a wide range of production flows. 

After the pressure is increased, the water flows through the membrane modules. The 

membrane type is chosen according to the source water quality, the required product water 

quality and the desired membrane properties. Available on the market are membranes that are 

high-rejection, low-energy, low-fouling or high-productivity membranes. The most common 

spiral-wound membrane that was presented in Figure 2.18 on page 23 has a standard diameter 

of 200 mm and a length of 1.0 m. In a RO plant, the membranes are installed in pressure 

vessels that typically contain 6 to 8 membrane elements each. These vessels are tube-shaped 

and are usually made of plastic or metal [21]. Figure 2.20 presents a series of pressure vessels 

containing membrane elements. 

 

 

Figure 2.20 Pressure vessels containing RO membrane elements [26]  
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The concentrate produced by the RO system has a high pressure and thereby a high energy 

content. Through an energy recovery device (ERD), some of this energy can be recovered and 

thereby the overall energy requirement can be reduced. A system without an ERD would 

normally use two to three times more energy and this will increase for larger systems [24]. 

Different ERDs are available, but the two main types are centrifugal and isobaric ERDs. The 

centrifugal device converts the energy in the concentrate into rotational energy which is used 

directly to run the HP pump. An isobaric ERD, on the other hand, applies a piston to deliver 

the energy to pump new source water into the system and is decoupled from the HP pump. 

The feasibility of installing an ERD is mainly dependent on the plant size and ERDs are 

generally not installed in smaller plants [21].  

The product water exiting the membrane elements is fresh water. Before it is drinkable, 

however, the water has to go through a post-treatment process. In this stage, the water is re-

mineralized and disinfected, depending on the quality requirement on the product water. After 

this process, the fresh water is ready to be distributed to the consumers [21]. 

 

2.6.3 Operational regime 

For desalination plants powered by renewable energy sources the operational regime becomes 

an issue due to the unsteady power delivery and thereby the need for energy storage systems 

(ESS). As the most essential and expensive components of the desalination plant, the RO 

membranes have to be taken into account when the mode of operation is determined. 

Experience from RO desalination plants reveals that it is preferable to operate the membranes 

with a constant water flow in order to protect the membranes. According to [27], varying the 

flux outside of membrane specifications for can cause lower product water quality and also 

reduce the lifetime of the membranes. Hence, a variable production is feasible if entire 

sections of RO membranes are taken out of operation at lower production rates [28]. Little 

research has been conducted on how start and stop in production affects membrane fouling. 

According to [27, 29], membranes can easily tolerate start and stop, as long as flushing of the 

membranes is performed within the first five to ten minutes after shut-down. For flushing, 

fresh water from the operating part of the system can be applied. 

The system pumps should also be considered when determining the operational regime of a 

desalination plant. In recent years, the variable speed drive (VSD) technology has developed 
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and become more prevalent. Adjusting the speed of a drive according to the load can increase 

efficiency and reduce energy consumption. In addition it allows for gentle start-up and 

shutdown which can expand the lifetime of the equipment. In many applications a VSD can 

reduce energy consumption by as much as 30-60 % [30]. With a VSD the system efficiency 

could be maintained on a high level regardless of the required pumping capacity [31]. Hence, 

it would be technically feasible for the pumps in the system to have a variable production 

profile, although optimal membrane operation would result in a relatively constant pumping 

rate. 

 

2.6.4 Example of a reverse osmosis desalination plant in the Chaco 

During the field trip to Paraguay, an existing BWRO desalination plant was visited. Aguamin 

desalination plant is located in Filadelfia, the capital of Boquerón Department in the Gran 

Chaco of Western Paraguay. Filadelfia is placed 191 km north-east of Pozo Colorado along 

the Trans Chaco highway and is also considered to be the capital of the Paraguayan Chaco. 

Like in Pozo Colorado, the groundwater in Filadelfia is of high salinity. According to Ricky 

Hockh [29], owner of the desalination plant, the conductivity of the groundwater is around 

13,000 μS/cm. The plant produces water to partly cover the needs of the people living in the 

town center of Filadelfia and has been in operation since 1998. The maximum production 

capacity of the plant is 240 m
3
/d, which is considerably higher than the demand in Pozo 

Colorado. The water is distributed to the local consumers via a piping system and in tankers 

for larger distances. 

At Aguamin there are two membrane trains of 12 4-inch membranes each, and a pressure of 

about 50 bar is obtained by two HP pumps in series configuration. In the pre-treatment stage 

an anti-crystallization chemical is added to prevent scaling in the membranes, followed by a 

sand filter and a particle filter. According to Hockh, the product water is of high quality and 

therefore only a carbonate filter is necessary as post-treatment. The product water is pumped 

into elevated storage tanks with a capacity of around 1/3 of the daily production, and from 

there it is distributed to the consumers. About 50 % of the feed water can be recovered as 

fresh water and the remaining is brine discharge. The discharge is pumped back into the 

ground to a well deeper than the extraction well. The plant configuration is further specified 

in Figure 2.21 and the HP pumps and pressure vessels can be seen in Figure 2.22. No ERD is 

installed in the plant as it is not economically viable for this size [29]. Membrane and pressure 
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vessel suppliers are listed in Table 2.4 with the associated lifetimes of the components for the 

use at Aguamin [29]. 

 

 

Figure 2.21 Configuration of Aguamin reverse osmosis desalination plant in Filadelfia, Paraguay 

 

 

 

Figure 2.22 High pressure pumps and pressure vessels at Aguamin desalination plant 
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Table 2.4 Brand and lifetimes of membrane and pressure vessels at Aguamin desalination plant 

Component Brand Lifetime (years) 

RO membrane Hydranautics 1 

Pressure vessel Codeline 5 

 

 

2.7 Battery back-up grid-connected PV systems 

2.7.1 General about battery back-up grid-connected PV systems 

In regions where there is high risk of power outage, a battery back-up grid-connected PV 

system could be a useful solution. Such systems would be suitable in places where grid 

reliability is generally poor or in locations where natural disasters occur frequently. 

In Figure 2.23 a basic battery back-up grid-connected PV system is illustrated. The system is 

DC-coupled, which means that the PV array and the battery bank are connected to a common 

DC bus, and there is an inverter to connect the DC and AC bus. In order to prevent the battery 

bank from being overcharged or too heavily discharged, a charge controller is a crucial 

component [32]. As can be seen from the figure, the battery bank is either charged by energy 

from the PV array or from the grid. The PV array, battery storage and inverter in Figure 2.23 

are further described in section 2.7.2, 2.7.3 and 2.7.4. 
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Figure 2.23 Block diagram of a basic DC-coupled battery back-up grid-connected PV system, 

modified from [32] 

 

2.7.2 PV modules 

There is continuous development in the field of PV cell technology and there are many cell 

technologies available on the market. The most commonly used PV cells today are based on 

silicon and are designed in the form of mono crystalline or polycrystalline. The mono 

crystalline cells are more expensive in manufacturing and the module efficiency is typically 

between 12 and 16 %. Modules consisting of polycrystalline wafers have a slightly lower 

efficiency, normally between 11 and 15 %, but are lower in cost [33]. 

The PV array capacity depends on the energy demand that has to be covered in case of grid 

failure. It may be an advantage to establish which periods of the year when power failures are 

most likely to occur, since this is the period when the PV array has to produce energy. The PV 

system has to be designed in such a manner that it can operate as a stand-alone system. When 
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sizing the system, loss factors have to be taken into consideration. By applying equation 

(2.7.1) from [32], the peak power of the PV array, in kWp, can be determined: 

 

         
peak

w cinvth b

E
P

PSSH F    


    
  (2.7.1) 

 

where E is the average daily energy consumption in kWh, Fth is the thermal factor of the PV 

array, ηb is the battery efficiency, ηinv is the efficiency of the inverter, ηw represents the 

system wiring loss factor and ηc is the efficiency of the charge controller. PSSH is the average 

peak sunshine hours per day, which is the length of time in hours that the sun’s irradiance is 

1000 W/m
2
, obtained by integration of irradiance over all daylight hours. Thermal losses 

could be up to 15 % in a worst case scenario and the inverter losses are normally around 6 %. 

Battery charging losses are typically about 10 % and the system wiring losses could be as 

high as 4 %. Losses in the charge controller would normally be around 2-4 % [32]. If all these 

loss factors are applied, the total efficiency will be around 68 % in a worst case scenario. 

When the peak power of the PV array is known, the number of modules can be found, 

depending on the module sizes that are available.  

 

2.7.3 Battery storage 

When determining the size of the battery bank the daily energy demand has to be evaluated. 

Next, the autonomy time of the system has to be considered, which is the time that the system 

can supply energy to the load without solar irradiation, starting with fully charged batteries. In 

addition, it has to be taken into consideration that the batteries are rechargeable and cannot 

withstand deep discharges. Deep discharges can cause irreversible damages to the batteries 

and can reduce the lifetime of the batteries considerably. A charging state lower than 30 % is 

considered a deep discharge for lead-acid batteries, which is the most common battery type in 

PV systems [32, 34], and this must be counted when sizing the battery package [35].  

Although lead-acid batteries can be designed for deep discharges, the number of operating 

cycles depends on the depth of discharge during normal operation. Figure 2.24 indicates how 

the number of cycles decreases with an increasing depth of discharge, for a lead-acid battery 
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from the supplier Rolls. This battery could withstand up to 5000 cycles with a 20 % average 

daily discharge, whereas a 60 % average daily discharge would result in only 2800 cycles. For 

clarification, a 100 % discharge is here equal to the maximum allowable discharge, which is 

usually set to 70 %. 

 

 

Figure 2.24 Cycle life vs. depth of discharge for a flooded lead-acid battery, Rolls series 5000 [36] 

 

The energy consumption, the number of autonomy days and the maximum depth of discharge 

are used to calculate the required storage capacity. The battery capacity, C, in Ah, can be 

determined by equation (2.7.2), from [35]: 

 

         1000
0.7

E A
C

U


 


  (2.7.2) 

 

where E is the average daily energy consumption in kWh, A is the number of autonomous 

days and U is the nominal voltage of the battery. The factor 0.7 is a result of the maximum 

deep discharge of 30 % for lead-acid batteries. A typical lead-acid battery would have a 
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charging efficiency of around 90 %, which implies that only 90 % of the energy that enters 

the battery leaves the battery [32]. The PV array has to make up for these losses, as 

represented by    in equation (2.7.1).  

 

2.7.4 Inverter 

For a grid-connected PV system an inverter will be necessary to produce AC from the DC 

produced by the PV array. For grid-connected PV systems, the inverter must be capable of 

switching from grid-synchronized current source to internally synchronized voltage source in 

cases of grid failure. The inverter is sized according to the maximum instantaneous power 

requirements of the load. Inverter efficiencies vary with the quality of the inverter but a pure 

sine inverter could have efficiencies above 96 %. An inverter is specified by power rating and 

input and output voltage, as well as harmonic distortion and surge capacity [32]. 
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Chapter 3     

Desalination System Design for Pozo Colorado 

3.1 Site for desalination plant 

The current location of the water treatment system in Pozo Colorado is indicated on the photo 

in Figure 3.1. On the southern side of the pond there is a large open space that is owned by the 

local community. This site is indicated by the white circle in Figure 3.1. It was estimated 

during the field trip that this space covers an area of approximately 300 m
2
, which could be 

further extended towards the west. The location close to the existing storage tanks and the 

proximity to the road would make this a suitable site for a desalination plant. Also, the town 

center is close by and the fresh water would not have to be distributed across very long 

distances to reach the consumers. There are no high trees of significance in the area that could 

cause shading for solar PV panels. 

 

 

Figure 3.1 Pozo Colorado overview with water storage pond and water treatment site 
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3.2 Reverse osmosis desalination plant configuration 

A preliminary design for the RO plant in Pozo Colorado has been created, based on the theory 

presented in section 2.6.2, data collected from Aguamin desalination plant presented in 

section 2.6.4 and discussion with Hockh [29]. A possible configuration is presented in  

Figure 3.2, where the area inside the dashed rectangle indicates the components that are part 

of the desalination process. The inner rectangle represents one RO train, which includes 2 HP 

pumps in series and the associated membrane modules. The diagram shows that there are  

5 pumps in the system: 1 well pump, 1 low pressure (LP) pump, 2 HP pumps and  

1 distribution pump. The well pump extracts groundwater from a well into the feed water 

storage tank. In this tank, the sand in the feed water will sink to the bottom, preventing sand 

particles from clogging the system, before it is pumped into the desalination plant by the LP 

pump.  

 

 

Figure 3.2 Preliminary design of a reverse osmosis desalination plant for Pozo Colorado 

 

The RO process is equivalent to the process presented in section 2.6.2, with pre-and post-

treatment, HP pump and membranes. As for Aguamin, the HP pumps are configured in series, 

each of the pumps raising the pressure by a certain amount. To take care of the brine that is 

left-over from the RO process, a discharge well or tank is necessary. If it can be justified from 

a hydrogeological perspective, the brine could be pumped back into the ground as it is done at 



Chapter 3   Desalination System Design for Pozo Colorado 

37 

 

Aguamin. After post-treatment, the fresh water is pumped to elevated storage tanks and from 

there it is distributed to the consumers. The size of the feed water storage tank is not 

considered here, but according to observations from Aguamin it should be around 1/3 of the 

daily fresh water production. The existing elevated storage tanks with a total volume of 

18,000 l could be included in the system, as indicated in the figure. In addition to the 

components presented in the figure, a technical office will be necessary to house the 

desalination units, pumps, motors and a control system for monitoring the plant. 

 

3.3 Construction stages 

The desalination plant could possibly be built in three stages, where production in the first 

stage almost covers the current fresh water demand in Pozo Colorado. This would allow for 

testing the desalination technology on a small scale and learning from any faults that could 

occur. For the second and third stage, the desalination plant could be easily expanded with 

additional RO trains. This could allow for an increase in water consumption, and in addition 

enable distribution of fresh water to people living outside the town center in Pozo Colorado. 

A possible plan for expansion is presented in Table 3.1 and is presented graphically in  

Figure 3.3.  

In Stage 1, the production is 88.6 m
3
/d, which almost covers the current demand of 93.5 m

3
/d. 

It can be observed that production in Stage 2 is double the production in Stage 1, and Stage 3 

can produce triple the amount of Stage 1. The RO membrane type that is considered is 

equivalent to the membranes that will soon be taken into use at Aguamin: Hydranautics 

SWC4+B, with a diameter of 8 inches and a permeate flow rate of 24.6 m
3
/day [37]. This type 

is chosen based on the assumption that the groundwater conditions are close to similar in 

Pozo Colorado and Filadelfia. Further membrane specifications are presented in Appendix C. 

With this membrane type, 4, 8 and 12 membrane units are required for Stage 1, 2 and 3, 

respectively, to obtain the desired water production. Based on experience from Aguamin, 

each membrane train includes 2 HP pumps. It is assumed that the plant availability is 90 %, as 

it is usual for desalination plants to have some down-time through the year [21]. In the 

following chapter the power system that supplies energy to the desalination plant will be 

considered.
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Table 3.1 Project stages for the desalination plant in Pozo Colorado 

Project stage Stage 1 Stage 2 Stage 3 

# RO trains 1 2 3 

# Membrane units 4 8 12 

# HP pumps 2 4 6 

Production capacity (m
3
/d) 88.6 177.1 265.7 

 

 

 

Figure 3.3 Project stages for the desalination plant in Pozo Colorado  
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Chapter 4     

Micro Power System Modeling 

4.1 About HOMER 

HOMER is a micro power optimization model that can be applied to simulate energy systems 

for a variety of applications. Both off-grid and grid-connected power systems can be 

evaluated, and the preferred system set-up is defined by the user. An example of a schematic 

diagram is presented in Figure 4.1, where a grid-connected PV system with converter is 

illustrated. 

 

Figure 4.1 Schematic diagram of a grid-connected PV system in HOMER [38] 

 

For input parameters on technology options, resource availability and component costs, 

HOMER performs three main tasks: Simulation, optimization and sensitivity analysis. In the 

simulation process, energy balance calculations are performed for different system 

configurations in hourly time steps throughout the year, and the life-cycle cost of each 

arrangement is calculated. Next, it is determined whether the system configuration is 

technically feasible, which means if the system is capable of meeting the electric demand 

under the specified conditions. In the optimization process, the different system 

configurations are sorted according to the net present cost (NPC). In order to evaluate the 

effect of a change in certain factors, like economic conditions or resource availability, a 

sensitivity analysis can be performed. In this manner, possible future scenarios can be 
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assessed and qualified decisions can be made [38]. The relationship between the simulation, 

optimization and sensitivity analysis is presented in Figure 4.2. As the figure indicates, a 

single optimization can include multiple simulations, and a sensitivity analysis consists of 

multiple optimizations. 

Solar irradiation data can either be implemented as hourly or monthly values in HOMER. If 

there are only monthly values available, HOMER will synthetically generate hourly data 

based on a built-in algorithm. By applying statistical properties that reflect global averages, 

the program creates solar data for every hour in one year [38].  

 

 

Figure 4.2 Conceptual relationship between simulation, optimization and sensitivity analysis in 

HOMER [38] 

 

4.2 Input parameters 

4.2.1 Energy resources and economics 

Prior to simulations in HOMER, there are a number of parameters that need to be defined. 

First of all, the availability of energy resources is the basis for establishing an energy supply 

system. Since measured solar irradiation data was not available, monthly data for Pozo 

Colorado was obtained from the NASA database [16] and implemented in the model. These 

values are presented in Appendix A. From the monthly irradiation data, HOMER generates 

synthetic hourly solar data that are applied in the simulations.  
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Next, a series of economic figures have to be defined in the program. For a grid-connected 

system, economic data on the unit price of electricity, grid-connection cost, demand rate and 

transformer cost have to be identified. This information was gathered during the field trip to 

Paraguay and relevant cost figures are presented in Table 4.1.  

 

Table 4.1 Cost components of electricity, grid-connection and solar PV system in Paraguay 

 

 

The applied unit electricity cost is the current annual average for Paraguay. This is slightly 

higher than the electricity cost at Aguamin desalination plant in Filadelfia, which is likely 

since Filadelfia is situated in a region with better grid infrastructure than Pozo Colorado. For 

grid-connection it is estimated that the distance to the closest connection point is less than  

15 m. The presented transformer cost is for a 100 kVA transformer, which is larger than the 

energy system considered, but a transformer of this size allows for system expansion. For the 

PV system, an overall price for PV modules, wires and mounting is applied per Watt peak 

Cost component Cost Unit 
Lifetime 

(years) 
Reference 

Electricity 0.08 $/kWh - [14] 

Grid-connection 
200 for 

distance < 15 m 
$ - [14] 

Demand rate 8 $/kW/month - [14] 

100 kVA 

transformer 
3000 $ 25 [14] 

PV system (array, 

wires, mounting) 
2.2 $/Wp 25 [39] 

Converter 0.3 $/Wp 25 [39] 

Battery bank 150 $/kWh 5 [40, 41] 
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(Wp). Converter costs are separated from the PV system. The lifetime of the PV modules and 

converter was set to 25 years [42]. It was assumed that there is no maintenance costs related 

to the PV system and that 2-axis tracking is applied to gain more solar irradiation according to 

the height of the sun. The cost of batteries was not implemented in HOMER but is presented 

since those costs are applied for a back-up energy supply for the distribution pump. Due to a 

hot climate in Pozo Colorado that causes stress on batteries, a lifetime of 5 years is estimated 

for the battery bank. 

In order to discount future costs to present value, an interest rate has to be determined. For the 

simulations, the standard real interest rate in HOMER of 6 % was applied. The lifetime of the 

project was set to 25 years, as the useful lifetime of a desalination plant is normally between 

25 and 50 years [21].  

 

4.2.2 Load profiles and constraints 

For appropriate sizing of the energy supply system, load profiles are essential. The ratings 

applied for each of the stages, from now on denoted by “cases”, are presented in Table 4.2, 

Table 4.3 and Table 4.4. The ratings of the HP pump and the LP feed pump were estimated 

from the pumps that are used at Aguamin desalination plant, assuming a linear correlation 

between flow and capacity rating. For the well pump and distribution pump, the very same 

capacity ratings are used as at Aguamin, as these are standard pumps that are readily available 

off the shelf and can be operated according to their capacity. Based on experience from 

Aguamin, it is estimated that additionally one well pump and one feed pump will be required 

for every membrane train. The electrical load of the technical office housing the desalination 

equipment is estimated to be equivalent to the suggestion in [2]. Due to the available electrical 

grid, constant load profiles are considered 24 h/day for all three stages. It is assumed that 

there is no random variability for the load profiles. 
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Table 4.2 System loads for Case 1 

Component Load/piece (kW) No. pieces Total load (kW) 

HP pump 1.5 2 3.0 

Well pump 2.2 1 2.2 

LP feed pump 0.75 1 0.75 

Distribution pump 2.2 1 2.2 

Technical office 2 1 2.0 

Total load (kW)   10.15 

 

 

Table 4.3 System loads for Case 2 

Component Load/piece (kW) No. pieces Total load (kW) 

HP pump 1.5 4 6.0 

Well pump 2.2 2 4.4 

LP feed pump 0.75 2 1.5 

Distribution pump 2.2 1 2.2 

Technical office 2 1 2.0 

Total load (kW)   16.1 

 

 

Table 4.4 System loads for Case 3 

Component Load/piece (kW) No. pieces Total load (kW) 

HP pump 1.5 6 9.0 

Well pump 2.2 3 6.6 

LP feed pump 0.75 3 2.25 

Distribution pump 2.2 1 2.2 

Technical office 2 1 2.0 

Total load (kW)   22.05 
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Introduction of PV modules is considered for reliability reasons and also for creating an 

energy supply system that could partially be replicated in areas without grid-connection. For 

two of the energy supply configurations, some constraints are implemented in HOMER in 

order to stimulate PV penetration in the system. This is necessary due to the low electricity 

price in Paraguay, which does not favor PV systems without subsidies, as will be further 

described in section 5.2. These limitations will not be incorporated in a real system and are 

only implemented in the simulation program. In order to obtain the values for maximum grid 

purchase, it was estimated that the PV modules can cover the energy demand for the 

additional HP pumps in Case 2 and Case 3 for 8 hours per day, when solar irradiation is at 

maximum. The remaining demand will be covered by electricity from the grid. The grid 

purchase limit was set according to equation (4.2.1): 

 

         
,max tot PVgrid

E E E     , for Case 2 and Case 3  (4.2.1) 

 

where Egrid,max is the maximum annual limit for grid purchase in kWh, Etot is the total energy 

demand per year in kWh and EPV is the energy supplied annually by the PV modules in kWh. 

EPV was estimated according to equation (4.2.2):  
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where PHP is the capacity of the high pressure pump in kW and t is the number of hours where 

energy is supplied to the HP pumps from the PV system. A value of t = 8 h was used for the 

calculations, as this is the time when solar irradiation is at maximum. The limitations on grid 

purchase from all cases are presented in Table 4.5. 

 

 



Chapter 4   Micro Power System Modeling 

45 

 

 

Table 4.5 Maximum electricity purchase from grid per year for all cases, applied in HOMER 

simulations 

Case Egrid,max (kWh) 

1 Unlimited 

2 120,231 

3 163,593 

 

Prior to simulations in HOMER, the preferred configuration of the energy supply has to be 

determined. In the following, configurations for the three cases are presented. 

 

4.3 Energy supply for the project stages 

4.3.1 Energy supply considerations 

During the field trip to Paraguay the current electricity supply to Pozo Colorado was 

inspected; a 23 kV three-phase supply from Asunción, 271 km to the south-east. According to 

Marcos [2], the reliability of this grid was an issue in 2005 and would not serve as a safe 

power supply. As described in section 2.1.3, a new 23 kV supply line was connected from 

Concepción in January 2014. This connection increases the security of supply considerably. 

According to José Vallejos from the planning department of ANDE, connecting an additional 

load of about 50 kW to the new grid would not pose any problems [14]. Based on this 

information, three energy supply systems are suggested in the following: Case 1, Case 2 and 

Case 3. The three energy systems are designed to cover the electricity demand of Stage 1, 

Stage 2 and Stage 3 presented in section 3.3. 

The general energy supply system design is similar for all three cases and is presented in 

Figure 4.3. The configuration is based on the design in the master thesis by Waatevik [3]. 
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Figure 4.3 General configuration of a grid-connected PV system to be implemented in HOMER 

 

As can be seen from the figure, the system is connected to the 23 kV grid through a 

transformer providing voltage reduction to 400 V AC. The well pump, feed pump, technical 

office, as well as the VSDs for the HP pumps are connected to the common AC bus at 400 V. 

The pumps are rated for 3-phase 400 V RMS voltage, while the technical office is supplied by 

single-phase 230 V RMS. The AC bus feeds a voltage source converter (VSC) and the drive 

for the distribution pump is connected to a 700 V DC bus through a dedicated VSC. This VSC 

has to be dimensioned to tolerate the inrush current that occurs at motor start-up, which could 

be about 6 times the nominal current of the motor [43]. The DC bus is also connected to a 

small PV system with a battery bank for energy storage. This is to provide a back-up energy 

supply for the distribution pump, in order to secure the water supply for the village in case of 

power outage. The PV system is connected to the DC bus through a DC-DC converter with a 

maximum power point tracking (MPPT) algorithm. For Case 2 and Case 3, the PV array 

capacity is increased to cover a larger part of the main load. The number of HP pumps, well 

pumps and feed pumps varies from case to case and is represented by m and n in the figure.  

For all cases, the energy supply can be described by equation (4.3.1), if losses are neglected: 
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         tot PVgrid
E E E    (4.3.1) 

 

where Etot is the total energy supplied to the plant, Egrid is the energy supplied from the grid, 

and EPV is the energy provided by the solar panels. Egrid and EPV are indicated in Figure 4.3. 

The configurations implemented in HOMER for every case are described in the following. 

 

4.3.2 Case 1 

For Case 1, only the grid-connected system is simulated in HOMER, as the back-up PV 

supply is connected to provide energy for short periods only. Figure 4.4 depicts the system 

that was simulated in HOMER, with a grid-connected load. The peak load of the system is  

10 kW and the energy demand is 244 kWh/day.  

 

 

Figure 4.4 HOMER set-up for Case 1 

 

 

4.3.3 Case 2 

For Case 2, the energy supply system has the same configuration as for Case 1, although a PV 

array is introduced in the HOMER simulations for Case 2 in addition to the grid-connection. 

The peak load is 16 kW for this case and the daily energy requirement is 386 kWh, as can be 

seen in Figure 4.5. A converter is necessary in order to provide AC supply to the load.  
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Figure 4.5 HOMER set-up for Case 2 

 

4.3.4 Case 3 

For Case 3, the energy supply system has the same configuration as for Case 2, although the 

PV array will be designed for a larger production rate. The peak load is 22 kW for this case 

and the daily energy requirement is 529 kWh, as depicted in Figure 4.6. As for Case 2, a 

converter is necessary in order to provide AC supply to the load.  

 

 

Figure 4.6 HOMER set-up for Case 3 
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Chapter 5     

Economic Aspects 

5.1 Costs of desalination system components 

In order to evaluate the costs of the desalination plant, economic figures for system 

components, maintenance and labor have to be identified. For membranes and pressure 

vessels, the very same lifetimes and supplier as for Aguamin desalination were applied. The 

pumps are standard types that suit their respective purpose and it is estimated that the lifetime 

of the pumps are 25 years if maintenance is conducted regularly [29]. Costs of the main 

components were found on the website of the respective suppliers and are presented in  

Table 5.1. Cost information of building a house in Paraguay is from civil engineer Marcos in 

Asunción [44] and a 50 year lifetime is estimated. The area of 50 m
2
 is based on the size of 

the technical office at Aguamin. Costs related to piping and valves are not included as these 

are considered to represent a minor contribution to the total cost compared to the other 

components. 

 

Table 5.1 Investment costs and lifetimes for the desalination plant 

Cost item Brand $/piece $/m2 
Lifetime 
(years) 

Reference 

HP pump  

1.5 kW 
Grundfos 2,044 - 25 [45] 

Well pump  

2.2 kW 
Franklin 2,655 - 25 [46] 

LP feed pump 

0.75 kW 
Grundfos 1,578 - 25 [45] 

Dist. Pump 

2.2 kW 
Grundfos 2,464 - 25 [45] 

Membranes  

8-inch 
Hydranautics 1,005 - 1 [47] 

Pressure 

vessel 
Codeline 1,750 - 5 [48] 

Technical 

office 50 m
2
 

- - 450 50 [44] 
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In addition to the system components, there are other cost items associated with the 

desalination plant, presented in Table 5.2. Chemical water treatment and plant maintenance is 

necessary, as well as transport of material and personnel to control and operate the plant. 

Costs of chemicals are low at Aguamin desalination plant and the equivalent cost is estimated 

for Pozo Colorado. For transport of material, a gross estimation is made, assuming that all 

transport occurs at the beginning of the project. This cost could be higher or lower. 

Maintenance costs include expenditures associated with routine maintenance of equipment, 

building and piping, in addition to emergency maintenance. An estimation based on average 

maintenance costs presented in [21] is applied for this cost. In order to operate and control the 

plant it is estimated that one person working 50 % is sufficient, as the plant size is relatively 

small and the level of complexity is low [21].  

 

Table 5.2 Other cost items associated with the desalination plant 

Cost item Cost  Reference 

Chemicals 
10 $/m

3
 of product 

water 
[29] 

Transport 

$10,000 for Case 1 

and $5,000 for Case 

2 and Case 3 

- 

Maintenance  
0.048 $/m

3
 of 

product water 
[21] 

Labor 1 employee 

 50 % 
2,500 $/year [49] 

 

 

For the economic figures presented in section 5.3-5.7, an excel file is enclosed electronically 

to this thesis with further details, as described in Appendix G. This file includes estimations 

on costs of desalination system, energy system and water. 

 

5.2 Feasibility of solar PV in Pozo Colorado 

With the power price as low as 8 c/kWh in Paraguay, a solar PV system might not be 

economically viable. However, with a growing economy in the country and thereby an 

increasing power consumption [15], it is likely that the cost of electricity will be higher in the 

future. By applying solar irradiation data for Pozo Colorado and the economic figures 
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presented in section 4.2.1, a simulation was conducted in HOMER to observe the feasibility 

of a PV system for different power prices. Figure 5.1 illustrates the results, with the power 

price on the x-axis, the PV array capacity on the primary y-axis and the actual energy cost on 

the secondary y-axis. It can be observed that it would be economically feasible to start 

installing PV panels if the power price was 0.14 $/kWh, which is 75 % higher than the price 

of today. A cost of $2.5/Wp was applied in the simulations for the PV system, including 

converter.  

 

 

Figure 5.1 Relationship between power price, PV array capacity and levelized cost of energy for an 

increasing power price, from HOMER simulations  

 

Even though HOMER simulations indicate that a PV supply is not economically viable in 

Pozo Colorado with the current electricity price, a PV-based energy supply system could be 

very relevant in other areas that lack grid-connection. For remote areas far from the main 

highways in the Chaco, a PV-powered RO desalination plant could serve as a reliable source 

of fresh water. Therefore, introduction of PV modules will be studied for Case 2 and Case 3, 

as presented in section 4.3. Total costs for Case 1-3, including both energy system and 

desalination system, are studied in the following.  
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5.3 Case 1 

5.3.1 Energy system costs 

For Case 1, a simple HOMER simulation yields the investment cost of the system as well as 

the annual operating costs for purchase of electricity from the grid for a 25 year period. The 

PV panels and the battery bank that serve as a security supply for the distribution pump were 

not included in the HOMER simulations but their respective capacities were estimated by 

applying equation (2.7.1) and (2.7.2). The sizing procedure for the PV system and battery 

bank is presented in Appendix D.  

Resulting from HOMER simulations and PV system sizing, investment costs, operational 

costs and replacement costs for the energy system were established. The economic figures are 

presented in Table 5.3, with the associated energy consumption per produced water volume. 

For the entire energy system, the investment costs are around $9,100. Among the investment 

costs, the cost of the back-up battery bank is dominating next to costs of grid-connection and 

transformer. Operation and maintenance costs for the energy system are only related to the 

yearly electricity costs. Every 5
th

 year there will be expenses related to replacement of the 

battery bank, assuming deep cycling and that the warm climate in Pozo Colorado will shorten 

the battery lifetime considerably [50]. For every cubic meter of produced water, about  

2.75 kWh is necessary. The distribution of the nominal costs for the energy system over a  

25 year period is illustrated in Figure 5.2. In year 25, the negative cost represents the salvage 

value of the battery bank.  

 

Table 5.3 Energy system costs and energy consumption for Case 1, 25 year period 

Component 
Investment cost 

($) 
O&M 

($/year) 
Replacement 
cost ($/year) 

kWh/m3 

Electricity from grid (89,067 

kWh/year) 
3,200 8,101 - - 

Back-up PV system (670 Wp at 

$2.5/Wp)  
1,675 0 - - 

Back-up battery bank (28.2 

kWh at $150/kWh ) 
4,230 0 846 - 

Total 9,105 8,101 846 2.75 
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Figure 5.2 Nominal costs over 25 years for the energy system in Case 1 

 

5.3.2 Desalination system costs 

Based on the cost figures and lifetimes of the components presented in section 5.1, the costs 

of the desalination system for Case 1 were estimated for a 25 year period. Cost details are 

presented in Table 5.4 and Figure 5.3 gives a graphical representation of the costs for the 

whole period. It was estimated that the investment costs for the desalination system are close 

to $50,000 and the operational costs are around $10,000/year including costs of replacement. 

A cost of $1,750 for pressure vessel replacement has to be accounted for every 5
th

 year. The 

negative cost in year 25 represents the salvage value of pressure vessels. 
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Table 5.4 Costs of desalination system for Case 1 

Component # pieces $/piece 
Investment 

cost ($) 
Fixed cost 
($/year) 

Replacement 
cost ($/year) 

HP pump  

1.5 kW 
2 2,044 4,088 - - 

Well pump  

2.2 kW 
1 2,655 2,655 - - 

LP feed pump 

0.75 kW 
1 1,578 1,578 - - 

Dist. pump 

2.2 kW 
1 2,464 2,464 - - 

Membranes  

8-inch 
4 1,005 4,022 - 4,022 

Pressure 

vessel 
1 

1,750 

 
1,750 - 350 

Chemicals - - - 1,000 - 

Technical 

office 50 m
2
 

1 22,500 22,500 - - 

Transport - - 10,000 - - 

Maintenance - - - 1,552 - 

Labor 50 %  

(1 employee ) 
- - - 2,500 - 

Total - - 49,057 5,052 4,372 

 

  



Chapter 5   Economic Aspects 

55 

 

 

 

Figure 5.3 Nominal costs over 25 years for the desalination system in Case 1 

 

5.3.3 Total costs 

The nominal costs for the whole system in Case 1 over a 25 year period are presented 

graphically in Figure 5.4. For both desalination and energy system, the investment costs are 

estimated to be close to $60,000. Costs for operation, maintenance and replacement of 

equipment vary between $17,000 and $23,000 per year. For a constant water production over 

the whole 25 year period, the cost of product water is 0.359 $/m
3
, which is 2.1 cents lower per 

m
3
 than the average price of water from the present system.  

In Figure 5.5, the cost distribution for all system costs are presented. In the diagram, 

investment costs include costs for both the desalination plant and the energy supply system. 

These costs equal 27 % of the total. Energy costs have the highest share of 41 % and the rest 

is distributed on labor, maintenance, chemicals and replacement costs. 
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Figure 5.4 Nominal costs over 25 years for the energy system and desalination system in Case 1 

 

 

 

Figure 5.5 Cost distribution for Case 1 
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5.4 Case 2 

5.4.1 Energy system costs 

For Case 2, simulations in HOMER yield a PV and converter capacity, investment costs of 

the system as well as the annual operating costs for purchase of electricity from the grid for a 

25 year period. As for Case 1, the back-up PV supply with battery bank is not included in the 

simulations but is still part of the energy supply system. Table 5.5 presents capacity ratings of 

the PV modules and the converter that is suggested by HOMER, the amount of PV production 

and grid purchase in kWh per year and the demand coverage per energy source. A PV 

capacity of 12 kW yields a production of about 23,400 kWh/year, which is a demand 

coverage of 16 %. The remaining electricity is supplied from the grid. HOMER estimated a 

converter of 10 kW to be optimal in the system. The energy consumption is 2.20 kWh/m
3
 of 

produced water, slightly lower than for Case 1. 
 
 

 

Table 5.5 HOMER simulation results for Case 2, and energy consumption 

Component Capacity (kW) kWh/year Fraction (%) kWh/m
3
 

PV 12 23,463 16 - 

Converter 10 - - - 

Grid - 119,658 84 - 

Total - 143,121 100 2.20 

 

 

Cost details for the energy system are presented in Table 5.6. As can be observed from the 

table, the total investment cost is around $38,500 for the system, considerably higher than for 

Case 1. Among the investment costs, the cost of the PV system is the dominating component. 

Operational costs are only related to electricity purchase from the grid and are in total around 

$11,000/year. The distribution of the nominal costs for the energy system over a 25 year 

period is illustrated in Figure 5.6, where the negative cost in year 25 represents the salvage 

value of the battery bank. 
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Table 5.6 Energy system costs for Case 2, 25 year period 

Component 
Investment cost 

($) 
O&M 

($/year) 
Replacement 
cost ($/year) 

Electricity from grid (119,658 kWh)  3,200 11,117 - 

PV system  29,400 0 - 

Back-up PV system (670 Wp at 

$2.5/Wp)  
1,675 0 - 

Back-up battery bank (28.2 kWh at 

$150/kWh ) 
4,230 0 846 

Total 38,505 11,117 846 

 

 

 

Figure 5.6 Nominal costs over 25 years for the energy system in Case 2 
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$3,500 for pressure vessel replacement has to be accounted for every 5
th

 year. Again, the 

negative cost in year 25 represents the salvage value of the pressure vessels. 

 

 

Table 5.7 Costs of desalination system for Case 2 

Component # pieces $/piece 
Investment 

cost ($) 
Fixed cost 
($/year) 

Replaceme
nt cost 

($/year) 

HP pump  

1.5 kW 
4 2,044 8,176 - - 

Well pump  

2.2 kW 
2 2,655 5,310 - - 

LP feed pump 

0.75 kW 
2 1,578 3,156 - - 

Dist. pump 

2.2 kW 
1 2,464 2,464 - - 

Membranes  

8-inch 
8 1,005 8,044 - 8,044 

Pressure 

vessel 
2 

1,750 

 
3,500 - 700 

Chemicals - - - 1,771 - 

Technical 

office 50 m
2
 

1 22,500 22,500 - - 

Transport - - 15,000 - - 

Maintenance - - - 3,103 - 

Labor 50 %  

(1 employee ) 
- - - 2,500 - 

Total - - 68,150 7,374 8,744 
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Figure 5.7 Nominal costs over 25 years for the desalination system in Case 2 
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3
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3
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Figure 5.8 Nominal costs over 25 years for the energy system and desalination system in Case 2 

 

 

 

Figure 5.9 Cost distribution for Case 2 
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5.5 Case 3 

5.5.1 Energy system costs 

As for Case 2, HOMER simulations yield capacities of PV modules and converter that can 

cover part of the energy demand in Case 3. In this case, PV modules with a total capacity of 

20 kW is found as optimal, which can cover 20 % of the energy demand. HOMER estimated 

that a converter with a capacity of 16 kW is optimal for the system. The remaining energy 

demand of 80 % is covered by grid electricity. For this case, only 2.03 kWh/m
3
 is necessary. 

Component details are presented in Table 5.8 and a complete simulation report is attached in 

Appendix E. 

 

Table 5.8 PV capacity, converter capacity, PV production and grid purchase for Case 3 from HOMER 

simulations 

Component Capacity (kW) kWh/year Fraction (%) kWh/m
3
 

PV 20 39,405 20 - 

Converter 16 - - - 

Grid - 157,858 80 - 

Total - 197,263 100 2.03 

 

Cost details for the energy system are presented in Table 5.9, including NPC for comparison 

with later scenarios. The estimation of NPC is based on formulas presented in Appendix B. 

Investment costs are about $58,000 and the operational costs of about $14,700 per year are 

related to purchase of grid electricity. The replacement costs are represented by the back-up 

battery bank that will be necessary to replace every 5
th

 year. For the energy system in total, 

the NPC is estimated to $255,895. In Figure 5.10 the nominal costs for the energy system are 

presented graphically over a 25 year period, where the negative cost in year 25 represents the 

salvage value of the battery bank.  
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Table 5.9 Energy system costs for Case 3, 25 year period 

Component 
Investment 

cost ($) 
O&M 

($/year) 
Replacement 
cost ($/year) 

Net 
present 
cost ($) 

Electricity from grid  3,200 14,745 - 191,688 

PV system  48,800 0 - 48,800 

Back-up PV system (670 Wp at 

$2.5/Wp)  
1,675 0 - 1,675 

Back-up battery bank (28.2 kWh 

at $150/kWh ) 
4,230 0 846 13,822 

Total 57,905 14,745 846 255,985 

 

 

Figure 5.10 Nominal costs over 25 years for the energy system in Case 3 

 

5.5.2 Desalination system costs 
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th

 

-10000

0

10000

20000

30000

40000

50000

60000

70000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

C
o
st

 (
$
) 

Year 

Salvage PV system Back-up battery Back-up PV system Grid



Chapter 5   Economic Aspects 

64 

 

year. As for Case 1 and Case 2, the negative cost in year 25 represents the salvage value of 

pressure vessels at the end of the period of analysis. 

 

 

Table 5.10 Costs of desalination system for Case 3 

Component # pieces $/piece 
Investment 

cost ($) 

Fixed 
cost 

($/year) 

Replacement 
cost ($/year) 

HP pump  

1.5 kW 
6 2,044 12,264 - - 

Well pump  

2.2 kW 
3 2,655 7,965 - - 

LP feed pump 

0.75 kW 
3 1,578 4,734 - - 

Dist. pump 

2.2 kW 
1 2,464 2,464 - - 

Membranes  

8-inch 
12 1,005 12,066 - 12,066 

Pressure vessel 3 
1,750 

 
5,250 - 1,050 

Chemicals - - - 2,657 - 

Technical office 

50 m
2
 

1 22,500 22,500 - - 

Transport - - 20,000 - - 

Maintenance - - - 4,655 - 

Labor 50 %  

(1 employee ) 
- - - 2,500 - 

Total - - 87,243 9,812 13,116 
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Figure 5.11 Nominal costs over 25 years for the desalination system in Case 3 

 

5.5.3 Total costs 

The nominal costs for the whole system over a 25 year period are presented graphically in 
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between $36,600 and $46,000 per year. For a constant water production over the whole  

25 year period, the cost of produced water is 0.261 $/m
3
, which is 11.9 cents lower per m

3
 

than the average price of water from the present system.  

In Figure 5.13, the cost distribution for all system costs are presented. For this case, 

investment costs equal 23 % of the total and replacement costs represent 26 %. Energy costs 
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Figure 5.12 Nominal costs over 25 years for the energy system and desalination system in Case 3  

 

 

 

Figure 5.13 Cost distribution for Case 3 
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5.6 Stepwise system expansion 

Combining the costs of Case 1, 2 and 3, a cost prediction for the stepwise system expansion 

presented in section 3.3 have been developed. It was assumed that the desalination plant, and 

thereby the energy system, could be expanded every 3 years, in the same procedure as for 

Case 1, Case 2 and Case 3. For the stepwise system expansion, nominal costs for the whole 

system over a 25 year period are presented in Figure 5.14. These costs are presented only to 

give an indication of the magnitude of costs. Investment costs are about $58,000 for the first 

step, additional $50,000 for the next and about $48,000 for the third stage. For a lifetime of  

25 years, this yields a water cost of 0.251/m
3
, 12.9 cents lower than for the present system and 

slightly lower than for Case 3.  

 

 

Figure 5.14 Nominal costs over 25 years for the whole system, stepwise expansion 
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25 year period and the production capacity for the plant over 25 years. The costs of Case 2 

and Case 3 with only electricity from the grid, represented by “Case 2 grid only” and “Case 3 

grid only” are also included.  

It can be observed from Figure 5.15 that the cost of water is slightly lower for both Case 2 and 

Case 3 with grid-connection only, compared to the systems that include solar PV modules. 

For Case 2 with grid-connection, the cost of water is 0.274 $/m
3
, compared to 0.286 $/m

3
 for 

the investigated Case 2 in section 5.4 where a PV system is embedded in the energy supply. 

For Case 3, the water cost is 0.251 $/m
3
 for grid-connection and 0.261 $/m

3
 for the 

configuration with the PV system. It can be observed from the graph that the water costs in all 

the investigated scenarios are lower than 0.38 $/m
3
, which is the cost of water with the present 

system.  

The system costs presented in the previous sections are only approximate and could be higher 

or lower. Since there are often unexpected expenses related to a project, a 20 % increase in the 

NPC of each configuration is evaluated. This is illustrated by the purple bars in Figure 5.15. 

The associated water costs for each case are represented by the green line. It is clear from the 

figure that even with a 20 % increase in NPC, the cost of water will still be lower for all but 

one of the system configurations if compared to the present system. The exception is Case 1, 

which would have a water cost of 0.431 $/m
3
 if there was a 20 % increase in NPC, 0.05 $ 

higher than the current water cost. 
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Figure 5.15 NPC for the whole system and associated water costs for the different system 

configurations, including case of 20 % increase of NPC 

 

In addition to lower water costs for Case 2 and Case 3 with grid-connection only, the 

investment costs for the energy system are also considerably lower compared to the 
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investment in year 0 and annual energy costs for Case 2 and Case 3 with PV system and grid-

connection only, and the associated water costs. The NPC of the whole energy system over a 
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only 6 % lower. With increasing PV system size, the difference is larger. For Case 3, the cost 

of energy per year is 11 % lower than for Case 3 grid only. Despite this, investment costs for 

the energy system is more than 5 times higher, as can be observed from the figure. Over a 25 
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Figure 5.16 Annual energy costs, NPV of energy investment costs, NPC of energy system and 

associated water costs for the different system configurations 
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Chapter 6     

Applicability in a Future Electricity Market 

6.1 Background 

As described in section 2.1.3, Paraguay still has a public monopoly on electricity, unlike its 

neighboring countries. Countries like Brazil, Chile, Colombia and Argentina have been 

progressive in the development of deregulated electricity markets since the early 1980s 

(Chile) and 1990s (Brazil, Colombia and Argentina). These are also countries where hydro-

power based electricity is dominant or represents a significant share of the electricity mix. 

Different deregulation models have been introduced in the four countries and hence the result 

varies between them. For all countries, however, the motivation for introducing a free 

electricity market was to provide cheaper and more reliable electricity in a more efficient way. 

After deregulation, price fluctuations are clearly season dependent in all countries and in dry 

periods prices can be very high due to the large share of hydro power [51].  

With a developing economy and an increasing electricity demand, a deregulated electricity 

market could also be a solution for Paraguay in the future. If a well-functioning deregulation 

model was introduced, electricity could be delivered in a more efficient way and this could 

possibly stimulate expansion of the present power distribution system. A fluctuating 

electricity price could have an impact on the feasibility of solar PV expansion. Therefore, a 

synthetic electricity market could be created for Paraguay, based on experience from areas 

with similar energy mix and climate, and where the electricity sector have already been 

deregulated.  

In terms of energy resources, Brazil is the country in South America that is most similar to 

Paraguay. Hydro-power based electricity comprises about 78 % of the electricity produced in 

Brazil, while in Paraguay it is close to 100 % [52]. Dry and wet seasons largely influence the 

power prices in Brazil, although it varies between the four submarkets that the country is 

divided into. Due to its geographical proximity to Paraguay, the seasonal fluctuations in 

electricity prices in the submarket of south-east/central-west (SE/CW) Brazil could be a base 

for constructing a synthetic electricity market for Paraguay. Figure 6.1 indicates the monthly 

variations in power prices in R$/MWh over a 10 year period in SE/CW Brazil. It can be 
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observed that prices vary according to the seasons and that peaks occur regularly, probably 

caused by periods of low precipitation in combination with high electricity demand.  

 

 

Figure 6.1 Variation in monthly average electricity prices in SE/CW Brazil from January 2004 to 

January 2013 [53] 

 

Only monthly average electricity prices were available for Brazil. Therefore, an additional 

country had to be investigated in order to create an electricity market with hourly variations. 

In a country with a warm climate, electricity prices are likely to rise during hours of high 

temperatures due to an increased demand of cooling. This occurs in California, where 

participants in the electricity market can submit hourly bids and prices vary during the day 

[54]. Typically, prices are higher during the warmest period of the day. This can be observed 

from Figure 6.2, where variation in electricity price and temperature is depicted for a day in 

January and a day in July 2011, in San Diego. One can clearly detect a correlation between 

temperature and cost of electricity, although there is a delay in electricity prices relative to the 

temperature variations. It can be observed that variations in electricity price are larger in July 

than in January. 
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Figure 6.2 Electricity prices and temperature variations in San Diego, California, on 16
th
 of January 

2011 and 16
th
 of July 2011 [55, 56] 

 

6.2 Creation of a synthetic electricity market model 

Based on monthly price variations in SE/CW Brazil and hourly price variations in San Diego, 

a synthetic electricity market model was created for Paraguay. Applying price data from the 

years between 2004 and 2013 from Brazil, typical average monthly variations were estimated 

for Paraguay, based on an overall average cost of 8 c/kWh [14]. The monthly variations are 

presented in Figure 6.3. One can detect a price increase during the warmer summer months 

from October to January.  
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Figure 6.3 Synthetic average monthly variations in power price in Paraguay based on the electricity 

market in SE/CW Brazil 

 

Hourly price variations in San Diego were applied in order to obtain an electricity market 

with hourly fluctuations. Price data from one day in every month of 2011 [55] were averaged 

in order to obtain a price pattern that could be possible if an electricity market was introduced 

in Paraguay. Typical average hourly price variations for Paraguay are presented in Figure 6.4, 

also based on an overall average cost of 8 c/kWh. It is clear from the graph that prices 

increase during daytime and decrease during night-time.  
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Figure 6.4 Synthetic average hourly variations in power price in Paraguay based on the electricity 

market in San Diego 

 

Price data from Figure 6.3 and Figure 6.4 were combined in order to create a model of a 

synthetic electricity market for Paraguay with both monthly and hourly variations. For every 

day within one month, the hourly variation was modelled to be equal. The electricity price in 

Paraguay, cm,h, in month number m and hour number h was calculated by applying equation 

(6.2.1):  

 

         ,, mavg Paraguaym h h
c c f f    , m = 1, 2,…, 12 and h = 1, 2,…, 24         (6.2.1) 

 

where cavg,Paraguay is the average electricity price in Paraguay today (8 c/kWh) and where fm is 

the monthly variation in Brazil relative to the annual average, calculated from equation 

(6.2.2): 
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where (cm,Brazil)y is the electricity price in Brazil in month m in year y and (cavg,Brazil)y is the 

average electricity price in Brazil in year number y. Price data was available for 10 years, 

hence y goes from 1 to 10. The factor fh in equation (6.2.1) was calculated from equation 

(6.2.3): 
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where (cd,SD)h is the electricity price in San Diego on day d in hour number h and (cavg,SD)d is 

the average electricity price in San Diego on day d. 12 days of hourly data were chosen from 

the year 2011, hence d goes from 1 to 12. 

From equation (6.2.1) a synthetic variation in electricity prices was created for every month 

and every hour within one month. The results are presented in Figure 6.5. It can be observed 

that between September and January, the difference between the minimum and maximum 

price is highest. The largest difference occurs in November, when there is 9.32 cents 

difference between minimum and maximum price within the same day. Variations are smaller 

from February to August. April is the month with the smallest variations, with only 4.85 cents 

between minimum and maximum. Moreover, October and November are the months when 

electricity costs are highest, while April is the month of lowest costs. It is obvious from the 

figure that prices are higher in the summer months when solar irradiation is higher. It can also 

be observed that costs are higher during the day, which also coincides with hours of sunlight. 

Further details about creation of the synthetic electricity market can be found in an excel file 

that is enclosed electronically to this thesis, as described in Appendix G. 
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Figure 6.5 Hourly variations in power price for all months in a synthetic electricity market model for 

Paraguay, based on the electricity markets in San Diego and Brazil 

 

6.3 Applicability in Case 3 

The electricity prices presented in Figure 6.5 were implemented in HOMER to study if 

fluctuating costs would have an effect on PV feasibility. The hourly costs are enclosed 

electronically to this thesis in a text file, as described in Appendix G. Apart from electricity 

price data the input parameters were the same as presented in section 4.2. For a grid-

connected system the load profile of Case 3 was implemented, with a constant load. In 

contrast to the previous simulations, no limitations on grid purchase were introduced.  

From simulations it was found that even with a fluctuating power price it would not be 

economically feasible to introduce PV panels in the energy system. However, if prices 

increase by 21 % HOMER estimates that some energy should be generated by PV modules. 

With these prices, 25 kW of PV modules would be economically viable in the system, which 

annually covers about 25 % of the energy demand. Figure 6.6 and Figure 6.7 depict PV 

production and electricity price for a week in January and a week in July, respectively, from 
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the simulations in HOMER. It can be observed that PV production is higher in January due to 

more available irradiation, but at the same time this month has high electricity prices. In July, 

irradiation is lower and hence there is less PV production. This is also a month where 

electricity costs are lower. The correlation between available solar irradiation and electricity 

costs is a link that is valuable for introduction of PV. The hourly price data increased by 21 % 

is also enclosed electronically to this thesis, as described in Appendix G. 

 

 

Figure 6.6 Electricity price (increased by 21 %) and PV production for the first week in January, from 

HOMER simulations 
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Figure 6.7 Electricity price (increased by 21 %) and PV production for the first week in July, from 

HOMER simulations 
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Chapter 7     

Applicability in Stand-alone PV Systems 

7.1 Stand-alone PV system for the desalination plant 

Lack of fresh water is a challenge for the population in large parts of the Chaco region [57]. 

Unlike Pozo Colorado, however, there are populated areas where there is no access to grid 

electricity. In such places, establishing RO plants powered by a stand-alone PV system could 

be a solution, as described in [58]. In order to ensure a reliable electricity supply, an ESS and 

back-up diesel generators are necessary components in the system. The energy supply to the 

plant could be described by equation (7.1.1), if losses are neglected: 

 

         tot genPVE EE                     (7.1.1) 

 

where Etot is the total energy supplied to the plant, EPV is the energy provided by the solar 

panels and Egen is energy supplied by the diesel generator.   

A possible configuration of a stand-alone PV system for the desalination plant is suggested in 

Figure 7.1. The design is based on the power supply presented in the master thesis by 

Waatevik [3]. The system has a common DC bus at 700 V feeding a VSC for the pump loads 

and for supplying AC power to the technical office [3]. The PV array is connected to the DC 

bus through a DC-DC converter with a MPPT algorithm. Similar to the configuration in 

Figure 4.3, the pumps are rated for 3-phase 400 V RMS voltage while the technical office is 

supplied by single-phase 230 V RMS. The diesel generator is connected on the AC side, 

which is common practice in isolated micro-grids [59, 60]. AC generators are also 

recommended over DC generators because of maintenance requirements [32]. The converter 

acts as an inverter in order to convert DC from the PV system and the batteries to AC. When 

the batteries require charging from the diesel generator, the converter functions as a rectifier. 

Again, the VSC has to be dimensioned to tolerate the inrush current at motor start-up, as 

described in section 4.3.1. 
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Figure 7.1 Schematic diagram of a stand-alone PV system with diesel generator and battery storage 

as power supply for a desalination plant, modified from [58] 

 

7.2 Optimal load profile 

7.2.1 Load profile cases 

For a desalination plant powered by a stand-alone PV system, the operational regime of the 

plant will highly affect the system configuration, both of the energy supply system and the 

desalination plant itself. As described in [58], production during night-time will require more 

battery capacity than for a scenario where production ceases during hours of no sunlight. In 

the same article it is described that more membrane area is required if the production rate is 

high during a short period of the day. The article is a publication by the author and is enclosed 

in Appendix H.  

Variation of the production rate through the day is feasible if individual membrane trains are 

out of operation for certain periods of the day, as described in section 2.6.3. Based on this, six 
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different load profiles are studied to observe the difference in required membrane area and 

battery storage between the scenarios. All six scenarios yield a daily water production of 

about 295 m
3
/day, with 100 % availability, and are constructed to represent a range of 

possible production profiles for the desalination plant. An energy consumption of 2 kWh/m
3
 

was applied in the load profile sizing, based on typical energy consumption for BWRO plants 

presented in section 2.6.1 and the energy use in the cases from Chapter 5. In the cases where 

the load is higher during the day, the profile is shaped according to typical global irradiation 

values for Pozo Colorado, presented in Figure 7.2. It can be observed from the graphs that 

solar intensity is highest between 8am and 5pm, although its magnitude varies from summer 

to winter. 

 

 

Figure 7.2 Global irradiation in Pozo Colorado for 1
st
 of January and 1

st
 of July [16] 

 

Figure 7.3 presents Scenario 1, where all production occurs between 8 am and 5 pm and stops 

during night-time. The load profile of Scenario 2 is depicted in Figure 7.4, where production 

is reduced to half during night-time. In Scenario 3, presented in Figure 7.5, production is 

constant at all times. Figure 7.6 presents the load profile of Scenario 4, which reduces 

production to one-third during night-time. For Scenario 5, illustrated in Figure 7.7, production 

is divided into three steps in order to follow solar irradiation. For this scenario, production is 
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at maximum between 10 am and 3 pm, is reduced to half between 8 am and 10 am and 3 pm 

and 5 pm, and to one-third at night-time. Scenario 6, presented in Figure 7.8, has a similar 

production pattern as Scenario 5 but no production during night-time. 

 

 

Figure 7.3 Load profile Scenario 1 

 

 

Figure 7.4 Load profile Scenario 2 
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Figure 7.5 Load profile Scenario 3 

 

 

 

Figure 7.6 Load profile Scenario 4 
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Figure 7.7 Load profile Scenario 5 

 

 

 

Figure 7.8 Load profile Scenario 6 

 

 



Chapter 7   Applicability in Stand-alone PV Systems 

87 

 

In order to evaluate the energy balance for the six scenarios, a series of assumptions have to 

be made. A PV module efficiency of 15 % is estimated based on typical polycrystalline 

module efficiencies that were presented in section 2.7.2, which means that 15 % of the solar 

irradiation is converted to useful energy. The PV modules were sized according to the annual 

average irradiation values for Pozo Colorado in order to obtain PV production data. As a 

result, the system could be oversized for periods with high solar irradiation and undersized for 

the winter period when irradiation is lower. The PV sizing calculations are presented in 

Appendix F. It is assumed that the energy deficit that cannot be covered by excess electricity 

stored in a battery bank can be covered by a diesel generator to avoid plant shut-down. The 

MATLAB script that section 7.2 is based upon is enclosed electronically to this thesis, as 

described in Appendix G.  

Figure 7.9 presents the energy deficit throughout the year for all six scenarios if no energy 

storage is included in the system. The colored lines represent the average amount of energy 

per day that has to be covered by battery storage and diesel generator to provide the 

desalination plant with sufficient energy. It can be observed from the figure that Scenario 3, 

with a constant load profile, has the highest energy deficit. For Scenario 6, where the load is 

zero during night-time and more closely related to the solar irradiation during the day, the 

energy deficit is considerably lower although it has high peak values for some days of the 

year. The deficit is also low for Scenario 1 that also has zero production during night-time. 

For Scenario 2, Scenario 4 and Scenario 5, which all have production during night-time, the 

energy deficit is in between the other three. As a result of the different energy deficits for the 

load profiles, the required battery storage will vary between the scenarios. 
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Figure 7.9 Mean daily energy deficit for Scenario 1-6 without energy storage 

 

The usage pattern of membranes and batteries will also affect the lifetime of the components 

and thereby replacement costs. In addition, the production profile will determine the required 

rating of pumps and motors. All the scenarios have different maximum loads that will have an 

impact on the pump and motor capacities. The cost increase for larger pumps and motors is 

not very high [45], however, and will not be taken into consideration here due to the minor 

contribution to the total costs. Therefore, only issues of membranes and batteries for the 

respective scenarios will be studied in the following. 

 

7.2.2 Membranes and batteries 

Based on the average daily energy deficit presented in Figure 7.9, the battery storage capacity 

can be estimated for all six scenarios. Equation (2.7.2) in section 2.7.3 was applied using the 

average annual energy deficit for each scenario as W and 1 day of autonomy. By using the 

average annual energy deficit for sizing of the energy storage, the battery bank can only cover 

the energy demand for some days of the year. A diesel generator is therefore obligatory in the 
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system to ensure the energy supply for the remaining days. The generator will supply more 

energy during days of low solar irradiation and less during days of higher solar intensity. For 

estimation of the battery capacity, equation (2.7.2) was modified to equation (7.2.1): 

 

         
Annual average energy deficit

0.7
mC    , 1 <= m <= 6             (7.2.1) 

 

where Cm is the battery capacity for Scenario m in kWh. The resulting battery storage 

capacities are presented by the y-axis in Figure 7.10. It can be observed that the scenario of 

constant production, Scenario 3, requires the highest battery bank capacity. In Scenario 6, 

where production follows solar irradiation more closely and there is no production during 

night-time, the battery storage capacity is considerably lower. The storage requirement is also 

low for Scenario 1.  

The number of membranes required for each scenario was estimated based on the maximum 

production capacity per day that is specified for the membrane type. The very same 

membrane type as presented in section 3.3 was applied, with a maximum permeate flow rate 

of 1.025 m
3
/h. For the scenarios where production varies throughout the day, the period with 

the highest production determines the number of membranes required. Equation (7.2.2) was 

applied to estimate the number of membranes: 

 

         
max

max 0,1,2,..., 24mt
m

Q
M t

Q

 
   

 
                (7.2.2) 

 

where Mm is the number of membranes in Scenario m, Qmt is the permeate production rate in 

m
3
/h for Scenario m in hour number t and Qmax is the maximum permeate production rate per 

membrane of 1.025 m
3
/h. 

The x-axis in Figure 7.10 presents the resulting number of membranes required for each 

scenario. It can be observed from the figure that the number of membranes and the battery 

storage have an inverse correlation. For Scenario 3 that requires the highest battery bank 
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capacity, only 12 membranes are needed. Scenario 6, on the other hand, requires as much as 

41 membranes.  

 

 

Figure 7.10 Number of membranes and battery bank size for Scenario 1-6 

 

As described in section 2.7.3, the number of cycles that a battery can withstand decreases with 

the depth of discharge that the battery is subjected to. For the six load profiles, the lifetime of 

the battery bank will vary with charge level of the battery and energy demand of the plant. 

Naturally, for the scenarios where there is production during night-time, there will be more 

stress on the batteries. According to [61], 1 cycle with a depth of discharge of 100 % is 

roughly equivalent to 2 cycles with a depth of discharge of 50 %. It can also be observed from 

Figure 2.24 in section 2.7.3 that the relationship between number of cycles and discharge rate 

is close to linear. Data from Figure 2.24 was applied in the calculations, where the lead-acid 

battery can withstand 1,500 cycles at a 100 % discharge rate. Here, a 100 % discharge is 

equivalent to a 30 % state of charge (SOC), which is the limit for lead-acid batteries, as 

described in section 2.7.3. Due to the hot climate in Pozo Colorado, a factor of 0.7 was 

applied to the lifetimes to account for reduction in lifetime caused by high temperatures [50].  

  



Chapter 7   Applicability in Stand-alone PV Systems 

91 

 

By adding the number of battery cycles for every scenario, the lifetime of the battery bank in 

years was estimated according to equation (7.2.3): 

 

         100

365

1

(Battery lifetime)  for 0.3 < SOC < 1

(1 ( ) )

th
m d

t

d

f n
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





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             (7.2.3) 

 

where m is the scenario number, fth is the thermal loss factor of 0.7, n100 is the number of 

cycles at 100 % discharge rate (1,500) and (SOC)t is the state of charge at the end of day t 

starting with fully charged batteries 12am midnight. The minimum value of SOC is set to  

30 % in order to avoid damage on the batteries. The resulting lifetimes for the battery bank for 

every scenario are presented in Figure 7.11. The numbers were rounded down to the closest 

integer for simplicity. For Scenario 6, the battery lifetime is 5 years, for Scenario 2-5 it is  

3 years and for Scenario 1 it is 4 years, as can be seen from the graph. The lower graph in 

Figure 7.11 presents the size of the battery bank for every scenario. The largest battery banks, 

in Scenario 2-5, have the shortest lifetimes as these are the scenarios where there is 

production during night-time. In Scenario 1 and Scenario 6 there is no production during the 

night and this leads to longer lifetime for the battery bank. 
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Figure 7.11 Lifetime and size of battery bank for Scenario 1-6 

 

Next to the battery bank, the operational regime of the plant will affect the lifetimes of the 

desalination equipment. As described in section 2.6.3, RO membranes can tolerate start and 

stop and it is therefore assumed that a reduced usage time would increase the lifetime of the 

membranes. Start and stop in production  requires flushing of the system for every shut-down, 

which is performed primarily to prevent fouling and clogging in the membrane structures. 

According to [21], fouling is mainly connected to the quality of the source water and the 

performance of the pretreatment facilities in the desalination plant. Based on this information 

and data from Table 2.4 in section 2.6.4 from Aguamin desalination plant, it is estimated that 

a lifetime of 1 year for the membranes is representable if the plant has a continuous operation. 

This is a rough estimation as the source water in Pozo Colorado is likely to differ from the 

groundwater in Filadelfia but yet it gives an indication of membrane lifetimes for different 

operational regimes. Based on a lifetime permeate production of 8,979 m
3
/membrane, the 

lifetimes of the membranes in years were estimated for Scenario 1-6 according to equation 

(7.2.4):  
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         (Membrane lifetime)  
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q M

Q


                 (7.2.4) 

 

where m is the scenario number, qlifetime is the lifetime permeate production of  

8,979 m
3
/membrane, Mm is the number of membranes for Scenario m and Qannual is the total 

permeate production of 96,980 m
3
/year. It is assumed that frequent start and stop in 

production will have no negative effect on the membranes [28]. The results are presented in 

Figure 7.12, with the associated number of membranes in the lower graph. It can be observed 

that Scenario 1 and Scenario 6 are the load profiles with the highest membrane lifetimes of 

2.4 and 3.4 years, respectively. For Scenario 3, which has the very same production profile as 

Aguamin, the lifetime is 1 year and for the remaining scenarios the membranes have lifetimes 

between 1.5 and 2.3 years. As can be observed from the graphs, the number of membranes is 

proportional to the lifetime. The combination of membrane and battery lifetimes will affect 

the costs of the system, which will be further studied in the following.  

 

Figure 7.12 Lifetime and number of membranes for Scenario 1-6 
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7.2.3 Economic evaluations 

In order to determine the most cost-effective load profile, the NPC of membranes and 

batteries was estimated according to the formulas in Appendix B. A cost of $150/kWh was 

applied for the batteries and $1,005/membrane as presented in section 4.2.1 and 5.1, 

respectively. For the battery bank, the salvage value at the end of the analysis period is 

included in the estimations for every scenario. This is not included in the evaluation of the 

membrane costs as the lifetimes are considerably shorter and this will not have a large effect 

on the total costs. An interest rate of 6 % was applied in the calculations.  

For Scenario 1-6, the NPC of batteries and membranes are presented in Figure 7.13 and 

Figure 7.14, respectively. Not surprisingly Scenario 1 and Scenario 6, which have no 

production during night-time, have the lowest battery costs. Scenario 3 with constant 

production has the highest battery costs. The opposite trend can be observed from the NPC of 

membranes but here the differences in cost between the scenarios are minor compared to the 

battery costs. 

 

 

Figure 7.13 Net present cost of batteries for Scenario 1-6 
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Figure 7.14 Net present cost of membranes for Scenario 1-6 

 

The number of membranes and the battery storage for each scenario, next to the sum of the 

NPCs for batteries and membranes are presented in Figure 7.15. As can be observed from the 

bar chart, Scenario 6 is the most cost-effective load profile, followed by Scenario 1 that has  

8 % higher NPC. Scenario 3 is by far the most expensive option. The NPC of Scenario 3 is 

more than double the NPC of Scenario 6. Hence, the scenario with the lowest battery storage 

and the highest number of membranes is the most cost-effective load profile. Based on this 

economic evaluation, Scenario 6 was simulated in HOMER. 
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Figure 7.15 Number of membranes, battery size and NPC of membranes and batteries for Scenario 1-

6 

 

7.3 Energy balance considerations 

7.3.1 Input parameters 

Prior to simulation in HOMER, input parameters had to be defined for Scenario 6. The load 

profile presented in Figure 7.8 was implemented. For the four time periods the load 

requirements are presented in Table 7.1. As described in section 7.2.2, it is necessary to 

include a back-up diesel generator in the system to obtain a reliable electricity supply for the 

plant. Therefore, costs of fuel and generators had to be implemented in HOMER, next to 

lifetime of the diesel generators. These values are presented in Table 7.2. The components of 
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the power system were implemented in HOMER as presented in Figure 7.16. The peak load is 

84 kW and the daily energy demand is 590 kWh. 

 

Table 7.1 Load profile data for Scenario 6 to be simulated in HOMER 

Time period Load (kW) 

8am – 10am 42.18 

10am – 3pm 84.34 

3pm – 5pm 42.18 

5pm – 8am 0 

 

 

Table 7.2 Diesel, generator costs and generator lifetime 

Parameter Value Reference 

Diesel cost 1.3 $/l [44, 62] 

Generator cost 1 3,375 $/5 kW [63] 

Generator cost 2 5,475 $/10 kW [63] 

Generator cost 3 8,799 $/30 kW [63] 

Lifetime diesel generator 15,000 operating hours Default in HOMER 

 

 

 

Figure 7.16 HOMER system configuration 
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7.3.2 Simulation results 

The simulation in HOMER yielded capacities for the PV system, diesel generator, battery 

storage and converter. The results are presented in Table 7.3. This combination of energy 

system components is able to cover the whole energy demand of the desalination plant. The 

PV system has a capacity of 165.7 kW in total. For energy storage, the battery bank has a 

rating of 86.4 kWh, not far from the value estimated for Scenario 6 in section 7.2.2. The 

security of supply is ensured by a dispatchable diesel generator of 69 kW. To enable DC/AC 

and AC/DC conversion, a converter of 93 kW is necessary in the system. In total, the system 

has a production of 391,955 kWh. This is distributed on 88 % from the PV array and 12 % 

from the diesel generator, as presented in Table 7.3. Excess production from the PV system is 

higher in summer than in winter and is in total 138,332 kWh/year or 42 % of the total PV 

production. A full simulation report is included in Appendix F. 

 

Table 7.3 Capacity of the energy system components, production rates and excess production, 

Scenario 6 

Component Capacity 
Production 

(kWh/year) 
Fraction (%) 

Excess production 

(kWh/year) 

PV system 165.7  kW 326,469 88 138,332 

Generator 69  kW 46,318 12 0 

Battery bank 86.4  kWh - - - 

Converter 93  kW - - - 

Total   391,955 100 138,332 

 

In Figure 7.17, the monthly energy production from the diesel generator and PV system is 

presented. It can be observed that the PV production is higher in months of high solar 

intensity. During the winter months, PV production is lower and hence production from the 

diesel generator increases in this period.  
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Figure 7.17 Monthly energy production from diesel generator and PV system 

 

Compared to Case 3 investigated in Chapter 5, investment costs will be considerably higher 

for Scenario 6 due to the stand-alone PV system. Costs of investment, operation and 

replacement are presented in Table 7.4, next to salvage value at the end of the 25 year period 

and NPCs. Investment costs are around $450,000 for the energy system and the NPC is about 

$800,000. Costs of diesel represent the operational costs of the system, which is around 

$24,000 per year. Replacement costs involve the generator and battery bank and these costs 

total about $4,000 per year if distributed annually. 

 

Table 7.4 Energy system costs for a 25 year period, Scenario 6 

Component Investment ($) 
Fuel 

($/year) 

Replacement 

($/year) 
Salvage ($) NPC ($) 

PV modules 364,540 - - - 364,450 

Generator 15,281 23,901 878 -3,365 328,678 

Batteries 45,600 - 3,104 -5,312 79,969 

Converter 27,900 - - - 27,900 

Total 453,321 23,901 3,982 -8,677 801,087 
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The nominal costs over a 25 year period are presented graphically in Figure 7.18. It can be 

observed from the graph that the PV system cost is highly dominant in year 0. During 

operation it is primarily diesel costs and in addition some replacement costs for the battery 

bank and the diesel generator. The diesel generator and the battery bank have a salvage value 

that is indicated by a negative cost in year 25. 

 

 

Figure 7.18 Nominal costs over 25 years for the energy system, Scenario 6 
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Chapter 8      

Discussion 

8.1 Desalination plant configuration 

The preliminary system design presented in section 3.2 was based on state-of-the art RO 

plants and particularly Aguamin desalination plant in Filadelfia. This is not necessarily a 

suitable design for Pozo Colorado, although the optimal configuration probably will be 

similar. In order to develop a more appropriate design, drilling a well for investigation of the 

groundwater conditions is obligatory. Flow rates of the groundwater would determine the 

number of wells and the required distance between them. Feed water composition is also 

central when membrane types are considered. Groundwater conditions could be very different 

in Pozo Colorado and Filadelfia; therefore another membrane type could be necessary in Pozo 

Colorado than the type presented in section 3.3. A higher system pressure and thereby larger 

HP pump capacity could be required as well, depending on the salinity of the feed water.  

Different pre- and post-treatment of the water could also be necessary in Pozo Colorado 

compared to Aguamin, depending on feed water quality and the preferred product water 

quality. This could affect operational costs of the desalination system. Due to lack of 

knowledge about the groundwater, a series of assumptions had to be made in order to suggest 

a plant design. In the economic evaluations, costs of drilling were not included as it is 

unknown to which depth it would have to be drilled. Since little is known about the existing 

water distribution system, costs for upgrading the pipes were not included either. 

As described in section 2.6.1, feed water salinity has a large impact on the energy required for 

desalination. Lower salinity would reduce the system pressure and thereby the electricity 

demand for driving the HP pumps. With both groundwater and surface water available, 

blending the two water sources could possibly be a solution to reduce salinity prior to entering 

the membrane modules, as depicted in Figure 8.1. This depends on the availability of surface 

water, which could be drastically reduced in dry periods. In addition, the surface water quality 

is a central factor. An experienced RO system supplier should be consulted for development 

of a suitable system configuration for Pozo Colorado.  
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Figure 8.1 Blending of surface water and groundwater in feed water storage tank prior to desalination 

 

The stages of construction presented in section 3.3 could be a good solution if the system is to 

be tested on a small scale in the beginning. However, if clean water is more readily available 

for the inhabitants in Pozo Colorado at a reasonable price, water consumption is likely to 

increase. Therefore, surface water should possibly be a back-up supply at the initial stage. 

This would also be a gradual transition from the current water supply and the system that the 

inhabitants of Pozo Colorado are accustomed to using.  

 

8.2 Energy supply for the desalination plant 

From Figure 5.16 in section 5.7 it was clear that the saving potential by installing a PV system 

increases with energy demand. This is natural as more energy can be substituted by solar 

energy that is free of charge. However, investment costs are still high for a PV system, which 
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could be an obstacle for installation in Pozo Colorado due to the available grid. Table 8.1 

presents cost figures of the three cases that have a production of 266 m
3
/d. Case 3 grid only 

clearly has the lowest energy investment costs and a 100 % renewable share if grid electricity 

is considered to be only from hydro power. Case 3 and Scenario 6, which both include PV 

modules in the energy system, have considerably higher investment costs. Reliability will be 

higher in Case 3 and Scenario 6, however, since the PV modules ensure the energy supply in 

case of power outage (Case 3 and Scenario 6) and the diesel generator serve as a reliable 

energy supply in periods of low solar irradiation (Scenario 6). The NPC of the energy system 

in Case 3 is only 11 % higher than Case 3 grid only since solar energy is free of charge and 

will reduce operational costs in Case 3. For the stand-alone supply in Scenario 6, the energy 

mix will only be about 88 % renewable due to the diesel generator. This could have been 

increased if a limitation to generator use was implemented in HOMER, although this would 

have caused a higher NPC. 

 

Table 8.1 NPC for a 25 year period and renewable share of Case 3, Case 3 grid only and Scenario 6 

Case/scenario of 

study 

Energy 

investment ($) 

NPC energy 

system ($) 

PV share (%) Renewable 

share (%) 

Case 3 57,905 255,200 20 100 

Case 3 grid only 9,105 230,187 0 100 

Scenario 6 453,321 801,087 88 88 

 

The cost figures presented in Chapter 5 and Chapter 7 are only approximations that might 

deviate from real costs. No maintenance costs were included for diesel generator, battery 

storage and PV modules. For the generator, it is mainly oil change and tune-up of the engine 

that is required. Deep-discharge batteries normally requires addition of water for maintenance 

and for the PV modules it is mainly regular cleaning for dirt on the surface that is necessary 

[32]. Although these costs are not very dominant, they will increase project costs slightly. For 

neither of the cases the cost of a boost converter is included, which would further increase 

energy investment costs. Next, the battery lifetime applied for the back-up PV supply system 
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might be a little short for Case 1, 2 and 3. Compared to the battery lifetimes in Scenario 1-6 

presented in section 7.2.2, which are batteries used daily, it is likely that the back-up battery 

will have a longer lifetime. Uncertainties like risk level of power outage and depth of 

discharge make it difficult to estimate the battery lifetime, but a longer lifespan would reduce 

the project costs. Transport costs are also gross estimations and might be significantly 

different.  

As described in section 2.1.4, there is an inverse correlation between wind and solar resources 

in Pozo Colorado. For a stand-alone energy supply, it could therefore be evaluated if wind 

turbines should be included in the system. Installing wind turbines would yield a lower PV 

capacity, which would also result in less excess energy production during summer. However, 

this would increase the complexity of the system and it has to be evaluated if introduction of 

another energy source will be beneficial in terms of economic and operational feasibility. 

 

8.3 Future electricity prices 

In the process of creating a synthetic electricity market model there are of course a series of 

uncertainties involved. First, for creation of the hourly variations, the usage of electricity in 

California and Paraguay will differ due to level of wealth and lifestyle. Second, the 

introduction of an electricity market is likely to have a different effect if it was introduced in 

Paraguay today, compared to Brazil, which was used as a basis for developing monthly 

variations. Moreover, it is certain that Brazil, and also Chile and Colombia, have experienced 

large fluctuations in the power price after deregulation, as described in section 6.1. Prices 

have been seen to increase in dry periods and in general vary between the seasons. With large 

hydro power dependency, this could also occur in Paraguay in a free electricity market. In 

addition, there is economic development and the country experiences an increase in electricity 

consumption per capita, as presented in section 2.1.3. Between 2011 and 2013, the average 

electricity price increased by as much as 16 %, as presented in the same section. Therefore, a 

21 % increase in the overall price is not unlikely to occur if the market was deregulated, 

which was the minimum increase for PV feasibility in section 6.3. If the public monopoly on 

electricity persists, on the other hand, the power price would have to increase by as much as 

75 % to make PV economically feasible, as described in section 5.2. This is a large increase 

and is not very likely to occur in the near future when the historical price development is 

studied.  
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8.4 Operational regime 

It is crucial to carefully consider the operational regime when designing a RO plant supplied 

by a stand-alone PV system. Continuous operation will require a large ESS and hence 

increased costs of investment and operation. On the other hand, a variable production 

necessitates oversizing of the desalination system. As mentioned in section 2.6.3, RO 

membranes should preferably operate within their design conditions to prevent fouling and 

reduction in lifetime. According to [28], however, there is dissenting information in literature 

about how load variations affect membrane performance. Although it seems that it is widely 

assumed among membrane producers that frequent start and stop has a negative effect on the 

membranes [64], research in this field is limited. Therefore, it was assumed that start and stop 

in production has no effect on membrane lifetime. This was also assumed by [28] in an 

attempt to optimally operate a RO plant according to fluctuating electricity costs and is 

therefore considered to be a reasonable assumption at this stage of the project.  

If a membrane fouling factor was introduced for frequent start and stop, all scenarios but 

number 3 would be affected. Scenario 5 and Scenario 6 would be particularly penalized due to 

the 3-step load profile and thereby four starts and stops per day. Yet the difference in NPC 

between the scenarios, particularly Scenario 1 and Scenario 6 relative to the other four, is 

relatively large and a fouling factor would probably not affect which scenario that is the most 

economical.  

Determining the most optimal operational regime for the desalination plant is a 

multidisciplinary task and the study conducted in this thesis is only a first step to solve the 

problem. The impact of variable production on RO membranes would require knowledge 

from people with insight in membrane technology. Tests during operation would have to be 

performed on the membranes in order to evaluate the effect of start and stop in production. 

Also, electrical engineers should be involved to assess the battery storage requirements and 

hence the optimal energy system configuration according to the production pattern. When 

these results are ready, the optimal operational regime could be found from economic 

evaluations.  
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8.5 Accuracy of results 

When evaluating the accuracy of the results from this project it is essential to distinguish 

between the results that were based on a number of assumptions and the simulation results 

from HOMER. Calculations for developing load profiles, battery and membrane properties 

and economic figures are very accurate. The assumptions that the calculations were based on, 

on the other hand, make the results more imprecise. This is necessary at this stage of the 

project, however, since there are a number of variables that are not identified. In addition it is 

difficult to develop exact cost estimations without consulting suppliers directly.  

The simulations in HOMER were also based on a number of assumptions that became input 

parameters to the program. First of all, the hourly solar irradiation data that was created 

synthetically in the program from monthly values can lead to some inaccuracies. Tests show, 

however, that there are small differences between simulation results using synthetic and real 

data in HOMER. For key performance output variables like PV production, generator run 

time and battery throughput the difference is typically less than 5 %. For key economic output 

variables like NPC the difference is normally less than 2 % [38].  

Second, the load profiles implemented in HOMER were assumed to have no random 

variability. This could lead to some inaccuracies in the simulation results, as there will be 

natural fluctuations in feed water salinity and temperature, which will change the required 

feed pressure in the plant [21]. Hence, the motor load could vary to some extent. A percentage 

variability could have been introduced, which would have caused more fluctuations in the 

load. Since this was omitted, it is possible that the energy system size and hence the energy 

system costs presented were slightly too low.  

 

8.6 Social effects 

Building a desalination plant in Pozo Colorado could lead to a series of positive social effects. 

First of all, a safe and clean water supply means that there will be less diseases and thereby a 

healthier population. Compared to the system of today, where many people cannot afford 

chemicals for water treatment, clean fresh water will be readily available for everyone. 

Second, with a stable source of water the town will be a more attractive place to live, which 

can lead to more development in the area. Utilization of the groundwater resources could also 
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serve as an example for other places in the region where underground water has never been 

exploited. 

Finally, a pilot plant in Pozo Colorado could be a source of knowledge about water cleaning 

technologies and renewable energy sources. Students from schools and universities could 

possibly gain experience in natural sciences by visiting the plant, learning how technology 

could be used to improve people’s living conditions. The already established contacts at UNA 

and UCSA in Asunción could perhaps lead to research programs related to the desalination 

plant, which could be beneficial for further development of the project.  
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Conclusion 

Three possible stages of construction have been presented for a BWRO desalination plant in 

Pozo Colorado, with associated energy supply. At the initial stage, the system was supplied 

by electricity from the utility grid only, in addition to a small PV system with battery storage 

to serve as a security of supply for the distribution pump. For the two following stages, the 

energy system could be expanded by introducing solar PV modules, and this has been 

simulated in HOMER. Investment costs will be higher with PV modules in the energy system 

but introduction of PV was considered in order to make the system more suitable in areas 

without grid-connection, in addition to reliability concerns. Moreover, it was found for all 

stages that the cost of water will be lower than the current water cost in Pozo Colorado, if 

production over a period of 25 years is considered. As the cost figures are only estimates, it is 

likely that they will be higher in a real system.  

The cost of electricity in Paraguay is currently very low. With simulations in HOMER it was 

shown that the power price would have to increase by 75 % in order to make it economically 

feasible to start installing PV modules in Pozo Colorado. Hence, introduction of PV in the 

energy system would not be economically viable without subsidies. If the electricity sector is 

deregulated in Paraguay in the future, it is more likely that installation of PV modules will be 

economically feasible for the plant in Pozo Colorado. By creation of a synthetic electricity 

market with seasonal variations and higher prices during daytime,  it was found from 

simulations in HOMER that the average price has to increase by only 21 % in order to make it 

economically feasible to start installing PV modules.  

For areas in the Chaco that lack grid-connection, a configuration of a stand-alone PV system 

with diesel generator was suggested. Six different load profiles were studied; one with 

continuous production and five scenarios where production is adjusted to available solar 

irradiation at different levels. It was shown that required membrane area and battery storage 

capacity vary largely between the six scenarios. In order to find the most cost-effective load 

profile, the scenarios were evaluated on the basis of net present costs of membrane and 

batteries. It was found that a two-step adjustment in load during the day with no production 

during night-time was the most cost-effective scenario. Hence, using water as storage for 

solar energy rather than batteries would be optimal from an economic perspective. From 

simulations in the software HOMER, the optimal ratings of PV modules, battery storage and 
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diesel generator have been estimated for this scenario: 165.7 kWp of PV modules, a battery 

storage capacity of 86.4 kWh and a diesel generator with a rating of 69 kW. Investment costs 

for this scenario are particularly high due to the PV supply and there will also be operational 

costs related to fuel for the generator.  

For further work, the main task will be to perform test drilling in order to analyze the 

groundwater conditions in Pozo Colorado. Thereafter a more suitable plant design can be 

developed and more accurate cost valuations can be made. This process has to be conducted 

in cooperation with an experienced RO supplier and hydrologists should possibly also be 

involved. An important task would be to determine whether the leftover brine should be 

pumped back into the soil or if other methods should be used. An engineer should be 

consulted for evaluation of the energy supply system and it should be assessed whether wind 

turbines could be a supplement to the PV system. When more information is available about 

the system design, a detailed business plan should be developed. For proper distribution of the 

water it is crucial that the existing piping system is upgraded. 

Hopefully, Ren-PEACE will be capable of collecting sufficient funds to initiate the project in 

Pozo Colorado. In April 2014, the organization applied for funding from the National Council 

of Science and Technology (CONACYT) in Paraguay for developing a research project about 

the desalination plant. Contacts already established at two of the universities in Asunción 

could be important for project implementation. Another essential factor is the willingness of 

the population in Pozo Colorado to introduce a new water supply system, which was high 

during the time of visit in January 2014. With this project, along with the work of Johannes 

Waatevik, the village is hopefully a step closer to project implementation and a safe and clean 

water supply. If all goes well in Pozo Colorado, the solution could be replicated in other 

areas. Hence, it could ensure the delivery of potable water to people living in rural parts of the 

Chaco and stimulate development and settlement in the region.  
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Appendix A   Pozo Colorado Data 

About the district 

Citizens: 17,727 in the district of Pozo Colorado (1,700 in the town Centre) [2] 

Altitude: 97 m.  

Latitude: -23.5  

Longitude: -58.8 [16] 

 

Irradiation data [16]  

 

 

 

 

 

 

 

 

 

Month kWh/m
2
/day W/m

2
 

January 6.62 275.8 

February 5.94 247.5 

March 5.38 224.2 

April 4.31 179.6 

May 3.51 146.3 

June 3.06 127.5 

July 3.46 144.2 

August 4.17 173.7 

September 4.84 201.7 

October 5.58 232.5 

November 6.25 260.4 

December 6.57 273.8 

Average 4.97 207.1 
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Town plan 

 

 

 



Appendix A   Pozo Colorado Data 

117 

 

Surface water properties and constituents (surface water collected in Pozo Colorado in 

January 2014 and analyzed at NTNU in February/March 2014) 

Due to the state of the water sample at the time of analysis, only a few analyses could be 

conducted. 

Dissolved organic carbon (DOC): 12.4235 mg/l 

Total organic carbon (TOC): 14.8964 mg/l 

Conductivity: 392 μS/cm at 21.8°C 

Isotope μg/l Isotope μg/l 

Li7  10.485 Th232 0.0135 

Be9 0.031 U238 0.6617 

B11 180.86 Na23 48,293 

Se82 0.05 Mg25 7,700 

Y89 0.326 Al27 171.15 

Zr90 0.036 Si29 7,261 

Cd114 0.01 P31 74 

Mo98 0.991 S34 11,026 

Sn118 0.005 K39 4 002 

Cs133 0.0466 Ca44 20,076 

Ce140 0.420 Sc45 0.008 

Pr141 0.0489 Ti49 2.42 

Nd146 0.2620 V51 6.821 

Sm147 0.0755 Cr52 0.16 

Tb159 0.0159 Mn55 98.707 

Dy163 0.0738 Fe56 191.39 

Ho165 0.0133 Co59 0.489 

Er166 0.0356 Ni60 0.65 

Tm169 0.0042 Cu63 1.26 

Yb172 0.0229 Zn66 1.18 

Lu175 0.0037 Ga69 0.083 

Ta181 0.0002 Rb85 0.803 

Hf178 0.0274 Sr88 199.35 

Ir193 0 Ag109 0.003 

Pt195 0 Sb121 0.394 

Au197 0.0113 Ba137 30.34 

W182 0.0308 La139 0.167 

Hg202 0.008 Ge72 0.030 

TI205 0.0024 As75 11,713 

Pb208 0.429 Nb93 0.006 

Bi209 0.0082     
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Appendix B   Economic Formulas 

All formulas from [65]. In all formulas, n is year number and i is the interest rate. 

If a cost is expected in the future, the net present worth of this cost can be calculated by 

multiplication with the present worth factor (PWF): 

                          
 

      
    

 

If there are equal annual payments, the annual payment has to be multiplied by the compound 

amount factor to obtain the present value: 

                           
         

 
   

 

If the net present value of an investment is known, the equivalent annuity formula could be 

applied to show the investment as a series of equal cash flows for the length of the 

investment: 
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Appendix C   Membrane Specifications 

Data from [47] 

 

Membrane: Hydranautics SWC4 + 

 

Size (mm): 8.0 x 40 

 

Flow Rate (gpd): 6,500 

 

Rejection Rate: 99.8% 

 

Pressure rating (PSI): 800
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Appendix D   PV System Sizing for Back-up Supply 

Capacity of distribution pump: 2.2 kW 

Estimated hours of operation: 9 h/d 

Energy requirement: 19.8 kWh/d 

Battery bank: Assume 1 day of autonomy. Applying equation (2.7.2) to find the capacity, C: 

           [  ]   
          

         
                           

To serve as a security of supply, it is assumed that the probability for an electricity outage is 

every 10 days. Hence, the battery bank can be charged from the PV system for 10 days (if it 

cannot be charged from the grid). This yields the daily energy requirement from the PV 

modules: 

        
        

    
             

The average peak sunshine hours for Pozo Colorado (6.18 h) were calculated by applying 

MATLAB to integrate the irradiation over a year from hourly irradiation data created 

synthetically in the software PVsyst, from “globirr2.txt”. This data was applied in [1] and is 

enclosed electronically to this thesis (MATLAB script presented below): 

file=load('globirr2.txt');    % loading irradiation file 
time = file(:,1); 
irr = file(:,2); 
  
y = trapz(time,irr); % area below graph in Wh/m

2 
  
averageperday = y/365; % average daily irradiation 
  
hoursof1000Wm2 = averageperday/1000; % hours of 100 W/m

2
 per day on average 

 

With the peak sunshine hours calculated, applying equation (2.7.1) yields the PV module 

capacity: 
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Appendix E   HOMER Simulation Results Case 3 
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Appendix F   PV Production and HOMER Simulation Results 

Scenario 6 

Assumptions: 

 Average annual irradiation: 4.97 kWh/m
2
/d [16] 

 Energy demand: 2 kWh/m
3
 of permeate produced, based on the energy consumption 

in Case 3 presented in section 5.5.1. This yields a demand of 590 kWh/d for a 

production of 295.2 m
3
/d. With 90 % availability the production will be 266 m

3
/d but 

the plant is designed according to 100 % availability.  

 PV module efficiency : 15 % [33] 
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Simulation results from HOMER: Scenario 6 
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Appendix G   List of Files Enclosed Electronically in DAIM 

File name Type  Content 

Costestimations Excel file 

Cost estimations of 

desalination system and 

energy systems 

Electricitymarket Excel file 

Generation of synthetic 

hourly electricity costs 

data for 1 year for 

Paraguay 

Loadprofiles MATLAB script 
Evaluation of optimal load 

profile 

globirr2 Text file 

Global irradiation values 

for Pozo Colorado, applied 

in MATLAB script 

Hourlyprices_paraguay Text file 
Synthetic hourly prices 

imported in HOMER 

Hourlyprices_paraguay_1.21multiplier Text file 

Syntethic hourly prices 21 

% increase imported in 

HOMER 
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Appendix H   Paper Presented at EVER Conference 2014 

 

Title: “System Design and Load Profile Shaping for a Reverse Osmosis Desalination Plant 

Powered by a Stand-Alone PV system in Pozo Colorado, Paraguay” 

Presented at the Ninth International Conference on Ecological Vehicles and Renewable 

Energies  in Monte-Carlo, Monaco , 26
th

 March 2014 
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Abstract— Groundwater is a common source of 

drinking water all over the world. In some places the 

groundwater resources are brackish, which means that it 

is of high salinity and undrinkable unless it is desalinated. 

Brackish Water Reverse Osmosis (BWRO) desalination is 

a method that can be applied to produce potable water 

from saline groundwater resources. This requires 

electricity to drive the high pressure pumps that enable 

reverse osmosis. In this article, a preliminary BWRO plant 

design for a village in Paraguay is presented, supplied by a 

stand-alone PV system with battery storage. The energy 

requirement of the desalination plant is estimated for 

sizing the power supply and storage systems. Two different 

load profiles are evaluated by simulations in PVsyst; the 

first scenario is based on constant load for maximum 

utilization of the membrane capacity, while the second 

scenario is based on partly adapting the load to the solar 

irradiation. The second scenario implies an increase of the 

plant size, since parts of the plant are stopped during 

nighttime, but allows for reducing the battery capacity 

since more of the energy for desalination is used when it is 

directly available from the PV system. The presented 

results demonstrate how system designs that allow for 

operation schemes with reduced freshwater production 

during the night will be economically beneficial due to a 

larger reduction in investment cost for battery storage 

than the cost increase due to larger membrane installation. 

Keywords— Brackish Water Reverse Osmosis, Stand-

alone PV System, Load Profile, System Design 

I. INTRODUCTION  

Water is crucial for life and a basic need for all living 
creatures on Earth. However, with increased urbanization, 
population growth and climate change, water scarcity is a 
growing challenge in the world today. Lack of freshwater 
is also a problem in the Chaco, a region in the northern 
part of Paraguay in South America. This region occupies 
almost two thirds of the country’s territory, but is only 

home to 2 percent of the population. This can partly be 
explained by an extreme subtropical climate and the lack 
of modern infrastructure, but above all it is the scarcity of 
potable water that impedes activities the area [1]. Pozo 
Colorado is a village in the Chaco, with 1,700 inhabitants. 
The village has groundwater resources, but the water is 
saline and undrinkable unless it is treated. The amount of 
total dissolved solids (TDS) in the water is around 15,000 
mg/l [2], a very high level for brackish water, which by 
definition has a TDS between 1,000 and 15,000 mg/l [3]. 
According to World Health Organization [4], drinking 
water should have a TDS content below 500 mg/l. To 
obtain this, the brackish water has to go through a 
desalination process. Among the available desalination 
technologies, membrane processes are the most prevalent, 
and Reverse Osmosis (RO) is today the most common 
process. This is also the most energy-effective technique 
compared to other desalination processes [5], [6].  

As the name implies, RO is when the natural process of 
osmosis occurs in the reverse direction. Desalination by 
RO is thus obtained by applying a pressure higher than the 
osmotic pressure to the water with the highest 
concentration of dissolved solids. A semi-permeable 
membrane is placed between the two compartments 
containing the solutions, which will let water and some 
ions flow through it, while it is impermeable to most 
dissolved substances. As a result of the pressure increase, 
water will flow from the solution with higher 
concentration of dissolved solids to the solution with lower 
concentration. As a consequence, there will be purified 
water on one side and there will be a concentrated solution 
in the other compartment [7]. However, not all of the fresh 
water can be recovered in the process due to risk of fouling 
in the membranes. Depending on the system configuration 
and the feed water salinity, between 65 and 85 % fresh 
water can be recovered in a RO process [8]. 

A brackish water reverse osmosis (BWRO) plant could 
be a solution for Pozo Colorado, to supply potable water to 

mailto:ingerid.zeiner@gmail.com
mailto:Jon.A.Suul@sintef.no
mailto:aldomarcos@tigo.com.py
mailto:marta.molinas@ntnu.no


the village. However, the process requires electricity, in 
particular to drive the high pressure pump that enables RO. 
Considering the limitations of the existing power 
distribution grid and the high levels of solar irradiation in 
the region, a stand-alone PV system could be a possible 
energy supply to the BWRO plant. There are already 
several existing BWRO plants supplied by PV worldwide 
[3], [9], [10]. In this article, the energy requirement for a 
BWRO desalination plant is evaluated for the fresh water 
demand in Pozo Colorado. A preliminary plant design is 
chosen and a stand-alone PV system is designed to supply 
the plant with energy. Next, two production scenarios are 
evaluated with respect to the amount of PV panels and 
batteries that are required for each case. The simulation 
tool PVsyst is used to consider the size of PV panels and 
batteries. Based on the simulation results, it is evaluated 
which scenario that is optimal when it comes to battery 
storage requirements, and a simple analysis of the 
investment costs is conducted to find the most cost-
effective mode of operation. 

II. PLANT CONFIGURATION AND POWER SUPPLY 

For proposing a PV-based power supply system, a 
preliminary system design of the desalination plant, and an 
estimation of the energy requirements are needed, as will 
be outlined in the following.  

A. System configuration of the Desalination Plant 

The chosen design for the RO plant in Pozo Colorado 
is based on the system layouts presented in [3] and 
information provided by [11]. The flow diagram of the 
system is presented in Fig. 1, where the dashed line 
indicates the components that are part of the desalination 
process. The diagram shows that there are three pumping 
stages in the system; the well pump, the high-pressure 
pump for the RO process and a distribution pump. For the 

practical construction of the system, these pumping stages 
will most likely be based on several parallel pumps for 
improving system reliability, and the plant might also have 
several wells at some distance from each other. In the 
following, this will however not be considered in detail. 
As seen from Fig. 1, the system includes an energy 
recovery device to extract energy from the brine discharge 
stream, to reduce the overall energy requirement. A system 
without an energy recovery device would normally use 
two to three times more energy and this will increase for 
larger systems [3].  

There are three storage tanks in the system; for feed 
water, fresh water and brine discharge. The size of the 
tanks is not considered here but there should be some extra 
available space for feed water and fresh water to allow for 
a varying production and consumption. 

B. Energy requirement 

For appropriate sizing of the desalination plant, the 
fresh water demand has to be estimated. Based on general 
information about average water consumption for rural 
villages, a fresh water demand of 150 l/person/day is 
estimated for Pozo Colorado [2], [12], [13]. This 
consumption is for purposes of drinking, cooking, personal 
hygiene and some watering. With 1,700 inhabitants the 
total demand is 255,000 l/day. Due to the high salinity of 
the feed water, a recovery rate of 70 % is assumed based 
on information from [8]. This requires 365,000 liters to be 
pumped from the underground well every day. 

The high pressure pump for the RO process is the most 
energy intensive part of the system and dominates the 
energy requirement of the desalination plant. The energy 
that is needed depends on the salinity of the feed water, the 
temperature and the required quality of the produced fresh 
water. To be able to accurately determine the energy 
requirement for the RO process, a detailed water analysis 

 
Fig. 1. Flow diagram for the BWRO plant in Pozo Colorado 



is necessary. Since such results have not yet been available 
for the particular site, assumptions are made on basis of 
information available from literature and from existing 
BWRO plants. In general, RO-based desalination of high 
salinity brackish water on a larger scale has energy 
consumption in the range between 2.2-2.6 kWh/m3 [8]. 
Thus, a conservative energy requirement of 3 kWh/m3 is 
assumed, considering the water salinity in Pozo Colorado 
is at a very high level for brackish water. This yields a 
total energy requirement of 765 kWh/day for a fresh water 
demand of 255 m3/day. The rating of the desalination plant 
and its high pressure pump depends on the operational 
regime and will be further discussed in section III. The 
fresh water demand and energy requirement for the RO 
process are summarized in Table 1. 

In addition to the high pressure pump, the system will 
include one or several well pumps that can supply the 
plant with feed water. A pump for distribution of the water 
will also be needed. The pump loads are estimated 
according to (1), where P is power in W, ρ is the density of 
water in kg/m3, g is the gravitational constant in m/s2, Q is 
the water flow in m3/s and ηp is the pump efficiency [14]. 
H is the total dynamic head in meters, which is a sum of 
the static head Hs and the friction losses Hf in the pipes. 

 





p

gQH
P  (1) 

Head loss due to friction in the pipes is calculated from 
the Darcy-Weisbach equation1. For the well pump, a 
constant water flow of 365 m3/day and a static head of 
18.3 m [2] is assumed, while the tank is considered to be  
2 m above ground level, resulting in a static head of  
20.3 m. With an average pump efficiency of 75 % [14], 
and considering some additional losses of inlet filters in 
the pipes, the well pump is estimated to require 1.2 kW. 
For the distribution pump, only friction losses according to 
the Darcy-Weisbach equation1 are assumed, considering 
an average pipe length of 400 m and a flow of 255 m3/day. 
With the same assumptions regarding efficiency and 

                                                           

1 Darcy-Weisbach equation for friction losses:
2

2
f

L v
H f

d g
, where f is 

Darcy’s friction factor depending on the flow and the roughness of the pipe, L 

is the length of the pipe in m, V is the fluid velocity in m/s, d is the pipe 

diameter in m and g is the gravitational constant in m/s2. In the calculations it 

is assumed a diameter of 0.15 m, a water velocity of 0.238 m/s from a 

constant water demand for the well pump, and a water velocity of 0.17 m/s for 

the distribution pump. It is assumed that there are smooth pipes. The pipe 

length is assumed to be 30 m for sizing of the well pump and 400 m for sizing 

of the distribution pump. 

additional losses as for the well pump, this results in a load 
of approximately 1 kW.  

A technical office is also necessary to house the 
desalination units and equipment for control and 
monitoring of the process. Based on adjustment of the 
feasibility study of a BWRO plant for Pozo Colorado, in 
[2], a constant load of 2 kW is assumed for the technical 
office. The energy consuming units are summarized in 
Table 2. 

C. Power Supply 

A possible layout of the stand-alone solar PV system 
that could supply the BWRO plant with energy is 
illustrated in Fig. 2. The system has a common DC-bus at 
600 V, feeding dedicated Voltage Source Converter (VSC) 
variable speed drives for the main pump loads and for 
supplying AC power to the technical office and the 
distribution pumps. The main pumps are assumed to be 
rated for 3-phase 400 V RMS voltage, while the technical 
office and the distribution pumps are supplied by single-
phase 230 V RMS. A battery bank is included in the 
system for storage, to supply the system with energy when 
there is not sufficient production from the PV panels, or to 
be charged when production is higher than consumption. 
The charge controller prevents the batteries from being 
overcharged or too heavily discharged. The PV array is 
connected to the DC-bus through a DC-DC converter with 
a maximum power point tracking (MPPT) algorithm. A 
diesel-generator for back-up power could be connected to 
the system, or there could be a connection to the local 
distribution system for the same purpose, but details on 
back-up power supply is not further considered.  

III. LOAD SHAPING FOR THE DESALINATION PLANT 

One of the most important issues to consider when 
designing an isolated micro-grid is the load profile. For a 
PV-based system, the power rating of the solar panels and 
the battery storage capacity are dependent on the energy 
demand and the variation throughout the day. To minimize 
the storage requirements, the load should therefore 
preferably operate only when irradiance is available from 
the sun. This might, however, not be compatible with the 
load requirements. Thus, it is essential to consider if the 
system components are capable of adapting to a variable 
production when determining a load profile. 

A. General considerations on the BWRO load profile 

For the high pressure pumps of the RO desalination, a 
variable speed drive can be used to adjust the pressure and 

TABLE 1 FRESH WATER DEMAND AND ENERGY REQUIREMENT FOR THE 

RO PROCESS 

Energy requirement for the RO process 3 kWh/m3 

Fresh water demand 255 m3/day 

Total energy demand, RO process 765 kWh/day 

TABLE 2 OTHER ENERGY CONSUMING UNITS AND ASSOCIATED LOAD 

Well pump 1.2 kW 

Distribution pump 1 kW 

Technical office 2 kW 

Total 4.2 kW 



flow of the system, and by that allow for a variable 
production [15]. For the membranes, it is however not 
desirable to have a varying flux outside the operation point 
they are designed for. Thus, significant variations in load 
can cause lower water quality and reduce the lifetime of 
the membranes [11]. Rather than reducing the production 
rate of each membrane during the night and when fresh 
water demand is low, it would therefore be preferable to 
shut down parts of the plant. If the plant consists of two or 
more trains of membranes with one high pressure pump 
each, one or more membrane trains could be shut down 
while others are kept in operation. It is then necessary to 
flush the membranes with fresh water from the production 
train in operation within the first five to ten minutes after 
shutdown [11]. Considering a design with two equal 
membrane trains and reduced production during nighttime, 
each part of the plant could then be shut down 
interchangeably every second night, or when demand is 
lower. This procedure would enable a variable production 
rate without significantly compromising the membrane 
lifetime. 

The distribution of the solar irradiation has to be 
considered when determining the most suitable load 
profiles for the system. Between 8 am and 5 pm the solar 
irradiation is at its highest at the investigated site [16], and 
considering a varying load profile, the freshwater 
production should be at maximum during this timeframe. 

In the following, two different scenarios are evaluated; 
one where production is constant throughout the day and 
one where production is reduced to half during the hours 
with little or no solar irradiation.  

B. Case 1 

In the first case, the desalination plant operates 
continuously and produces fresh water at a constant rate 
for 24 hours per day. Hence, this case allows for maximum 
utilization of the membranes. With a specific energy 
consumption of 3 kWh/m3 and a freshwater demand of 
255 m3/day, this requires a rating of the high pressure 
pumps of Ppump = 32 kW. Assuming 2 equal high pressure 
pumps for improved reliability, each of them must be rated 
at 16 kW. For this case, the well pump and the distribution 
pump are also assumed to operate continuously with loads 
of Pwell and Pdist respectively. However, the distribution 
pumps would probably operate with a variable load 
depending on the freshwater demand throughout the day, 
but considering its low contribution to the total energy 
demand, a constant load is assumed as a conservative 
assumption with respect to the energy storage 
requirements. The technical office is in full operation all 
the time with a load of Ptech, due to the constant need for 
surveillance and control of the desalination plant. The total 
constant load for this scenario as expressed by (2) adds up 
to 36.2 kW and the daily energy requirement is 869 
kWh/day. 

 1 , 0 24Case well pump dist techP P P P P t        (2) 

 
Fig. 2. Configuration of stand-alone solar PV system as energy supply for the BWRO plant in Pozo Colorado 



C. Case 2 

In the second investigated case, fresh water production 
is reduced to half during the hours of little or no solar 
irradiation. This implies that only 50 % of the membranes 
are operating during these hours and are not fully utilized 
at all times. Compared to Case 1, the two high pressure 
pumps have to be of a larger size to enable this production 
scenario. To produce 255 m3/day, each high pressure 
pump will require 23.2 kW. As mentioned in section III.A, 
the period of the day with the highest solar irradiation is 
between 8 am and 5 pm, and the total load will be 50.6 kW 
during these 9 hours when solar energy is most available. 
The load will then be reduced to 26.8 kW during the 
remaining 15 hours, when one of the membrane trains is 
out of operation. As for Case 1, the well pump and the 
technical office operate continuously. The distribution 
pump is for simplicity assumed to operate at half of the 
load between 5pm and 8am, due to the reduced water 
demand during nighttime. In total the energy requirement 
for this scenario is 859 kWh/day. The load profile for Case 
2 can be expressed by (3) and is illustrated in Fig. 3. 
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IV. SIMULATION RESULTS 

The simulation software PVsyst was applied to 
appropriately size the PV array and the battery storage 
according to the energy needs [17]. Incorporated in the 
program are a series of algorithms that leads to a PV 
system design. The peak power, P, of the PV array is in 
general sized according to (4), although additional loss 
factors are included in the simulation program. In (4), W is 
the average daily energy consumption in kWh, PSSH is the 
average peak sunshine hours per day, Fth is the thermal 
efficiency of the PV array and ηinv is the efficiency of the 

inverter. For the simulations it is assumed that there is no 
shading of the PV panels. 

 
th inv

W
P

PSSH F 


 
 (4) 

The capacity of the battery bank, C, is in PVsyst 

estimated according to (5), where W is still the daily 

energy consumption, A is the number of autonomous 

days, SOCmin is the minimum allowable State of Charge 

(SOC) relative to the total storage capacity of the 

battery, U is the nominal voltage of the battery, and ηb is 

the battery efficiency: 

 
min b

W A
C

SOC U 




 
 (5) 

A. Simulation parameters 

The two cases explained in the previous section have 
been simulated in PVsyst to be able to evaluate the 
required combination of PV panels and batteries for the 
different load profiles. Monthly solar irradiation data for 
Pozo Colorado was obtained by PVsyst from the NASA 
webpage [16], and hourly data was created synthetically in 
the program. A default value of 5% for the loss of load 
probability was used for the simulations. The panel tilt, the 
autonomy time of the system, the battery type, the PV cell 
type and the type of converter also had to be defined. The 
chosen parameters and components are summarized in 
Table 3. 

In both investigated scenarios, the sizing of the stand-
alone system is performed so that the load is fully covered, 
or close to fully covered, during the summer months when 
irradiation levels are high. This is to avoid oversizing the 
system, and it is assumed that the remaining energy can be 
supplied by another source when irradiation is low during 
the winter months.  

B. Case 1 

When production is constant throughout the day, a 
large battery bank will be necessary to supply energy to 
the plant for hours of little or no solar irradiation. The total 
energy requirement is approximately equal for both 
scenarios, which indicates that the power rating of the 
solar panels will be almost identical. The simulation 
results from Case 1 are summarized in Table 4. A total of  

 
Fig. 3. Load profile for Case 2 

TABLE 3 PARAMETERS USED FOR SIMULATIONS IN PVSYST 

Parameter/component Chosen value/type 

Azimuth angle 0° 

Panel tilt 4° for summer, 40° for winter 

Autonomy time 1 day 

Loss of load probability 5 % 

Battery  Lead-acid, vented, 12 V 

PV module Polycrystalline, 580 Wp 

Converter MPPT 
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319 kW peak of solar PV modules and 1,094 kWh of 
battery storage is found to be necessary. This covers the 
load fully in September and November, and the load is 
close to being fully covered in January-April and in 
October. In May-August, the energy shortage is higher due 
to lower solar irradiation, and also December has a low 
rate of coverage. The loss of load time fraction is 4.4 %, 
which indicates that the demand is not met for 4.4 % of the 
time. 4.8 % of the energy is missing and only 33.7 % of 
the energy is used directly, which implies that 66.3 % of 
the utilized energy is stored in the battery before it is used. 
Overall 95.4 % of the demand is met by the combination 
of the PV panels and the battery storage on average per 
year.  

C. Case 2 

When production is lowered during nighttime, the 
battery requirement will naturally be lower because there 
is more direct use of the energy from the sun. In this 
scenario, the simulation yields the same power rating for 
the PV modules as in Case 1, however only 895 kWh of 
battery storage is required. The relationship between 
supply and demand is approximately the same as for Case 
1. The loss of load time fraction is 4.9 % and the missing 
energy is 4.6 %. Compared to Case 1, the direct use of 
solar energy is higher, being 43.9 %. This is due to the 
higher production during the hours of higher solar 
irradiation. Overall 95.6 % of the demand is met on 
average per year. The simulation results from Case 2 are 
summarized in Table 5. 

V. DISCUSSION 

The load profiles that are used in this article indicate 
the approximate energy requirement for producing 255 m3 
of fresh water per day in Pozo Colorado by applying 
BWRO desalination. From the simulation results it is 
confirmed how less battery storage is required when fresh 
water production is lowered during nighttime. Thus, for 

the specified Case 2, more of the solar energy is used 
directly to operate the desalination plant without being 
stored in the batteries, compared to Case 1 with constant 
load. This is beneficial since some of the conversion losses 
from charging and discharging the batteries are omitted, 
and since the required investment in battery storage is 
reduced. The required PV array capacity is however 
equivalent for the two scenarios, due to the very similar 
energy demand. Thus, the load profile will have little 
influence on the size and the investment cost for the PV 
system, but significant influence on the cost of the battery 
storage.  

From the presented case descriptions, it should be clear 
that the required area of the RO membranes will highly 
depend on the operational regime of the plant. If there is a 
high production rate during a short period of the day, a 
larger membrane area will be necessary for the same daily 
production than if production is lower and more evenly 
distributed over each 24 hour period. Hence, a larger 
membrane area is necessary in Case 2 than in Case 1. It is 
evident that there will be a difference in system costs in 
the two cases and a cost comparison of the two production 
scenarios is therefore relevant when determining the most 
optimal mode of plant operation. In addition to membrane 
area, the size of system components like pumps and 
motors will be affected by the operational regime. This is 
however considered to represent a minor contribution to 
the total costs compared to the PV, battery and RO 
membrane installations. Since the rating of the PV panels 
are almost identical in the two investigated cases, it can 
therefore be sufficient to consider the size and cost of the 
RO membranes and the battery storage for identifying the 
most cost-effective system design. Thus, the net present 
cost (NPC) of membranes and battery storage for the two 
production scenarios is presented in Table 6, considering a 
period of analysis of 15 years. It is assumed a price of 
$150/kWh for lead-acid batteries [18], [19], and the 
chosen membrane units has a price of $629.99/unit and a 
permeate flow of 1.67 m3/h [20]. A lifetime of 5 years is 
assumed for the membranes [8] and it is estimated that the 
batteries can withstand 1,100 cycles which yields a 
lifetime of approximately 3 years. For the calculations, a 
rate of return of 6 % is applied. Installation and 
maintenance costs are not considered and neither are costs 
of other system components, as they are expected to have 
limited influence on the total system cost. 

TABLE 4 SIMULATION RESULTS, CASE 1 

 Simulation result 

PV modules 5 in series x 110 in parallel = 319 kWp  

Batteries 28 in series x 11 in parallel = 3,256 Ah or 

1,094 kWh 

Loss of load time fraction 4.4 % 

Missing energy 4.8 % 

Direct use 33.7 % 

Esupplied/Eload average 95.4 % 

TABLE 5 SIMULATION RESULTS, CASE 2 

 Simulation result 

PV modules 5 in series x 110 in parallel = 319 kWp  

Batteries 28 in series x 9 in parallel = 2,664 Ah or  

895 kWh 

Loss of load time fraction 4.9 % 

Missing energy 4.6 % 

Direct use 43.9 % 

Esupplied/Eload average 95.6 % 

TABLE 6 NET PRESENT COST (NPC) OF MEMBRANES AND BATTERY 

STORAGE IN CASE 1 AND CASE 2 (15 YEARS PERIOD OF ANALYSIS) 

 NPC Case 1 (US$) NPC Case 2 (US$) 

Filmtec BW30-400 membranes  12,008 17,154 

Lead-acid battery storage  664,772 543,808 

Total NPC (US$) 676,730 560,962 



As can be seen from Table 6, the NPC for Case 2 is 
significantly lower than for Case 1. This clearly shows that 
it is beneficial from an economic perspective to shape the 
load profile to correspond more closely to the solar 
irradiation. Thus, further investigations on how the RO 
process can be operated with variable load without 
compromising the lifetime of the membranes will be 
relevant for studies on how the total cost of the system can 
be minimized. The sizes of motors, pumps and other 
system components will also be affected by the production 
rates, and have to be included if a full financial analysis is 
to be conducted. 

VI. CONCLUSION 

A possible system design for a BWRO desalination 
plant powered by a stand-alone PV system with battery 
storage has been studied for Pozo Colorado in Paraguay. 
The investigation has been based on estimates for the total 
fresh water demand, which has been used to determine the 
total energy requirement of the plant. Two different 
production scenarios for the desalination plant have been 
evaluated; one scenario where production is constant 
throughout the day and another scenario where production 
is reduced during nighttime. From simulations in the 
software PVsyst the required rating of PV panels and 
batteries have been estimated for both cases. It was shown 
how the size of the battery bank can be considerably 
reduced if there is higher production during hours with 
available solar irradiation. A simple cost analysis has also 
shown that this can lead to significant reductions in 
investment costs for the overall system, even if larger 
rating of the RO membranes is required. 
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