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Abstract

Transthoracic echocardiography examinations are usually performed according to a protocol comprising dif-
ferent probe postures providing standard views of the heart. These are used as a basis when assessing cardiac
function, and it is essential that the morphophysiological representations are correct. Clinical analysis is often
initialized with the current view, and automatic classification can thus be useful in improving today’s work-
flow. In this article, convolutional neural networks (CNNs) are used to create classification models predicting
up to seven different cardiac views. Data sets of 2-D ultrasound acquired from studies totaling more than 500
patients and 7000 videos were included. State-of-the-art accuracies of (98.3±0.6)% and (98.9±0.6)% on single
frames and sequences, respectively, and real-time performance with (4.4±0.3) ms per frame was achieved. Fur-
ther, it was found that CNNs have the potential for use in automatic multiplanar reformatting and orientation
guidance. Using 3-D data to train models applicable for 2-D classification, we achieved a median deviation of
(4±3)◦ from the optimal orientations.

Keywords: Transthoracic echocardiography, Standard view classification, Convolutional neural network,
Deep learning

Introduction

Transthoracic echocardiography (TTE) is widely
used for assessment of cardiac function. The exami-
nations are usually performed according to protocols
involving different probe postures providing several
views of the heart (Lang et al., 2015). Image quality
varies substantially between patients and is operator
dependent, which increases inter-observer variability
and decreases the feasibility of detailed quantitative
measurements in the clinic. Cardiac view classifi-
cation (CVC), that is, determining the image plane
through the heart, is the essential first interpretation
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step in any TTE examination. Clinical implementa-
tion of automatic solutions is currently limited, but
we believe it could affect several elements of everyday
practice.

Finding valid cardiac views has traditionally been
difficult for apprentices. The European Association
of Echocardiography recommends a minimum of 350
examinations to acquire basic competence for stan-
dard TTE (Popescu et al., 2009). Together with the
requirement for expert resources, didactic tools using
real-time CVC can potentially reduce this number
by providing standardization through active quality
assurance and probe alignment guidance. Further,
a new group of users are adopting echocardiography
through the introduction of hand-held devices, mak-
ing ultrasound (US) more available in general. An
implementation with low hardware requirements can
be used on such devices and thus provide support in
point-of-care situations where cardiologists normally
are absent (Morris, 2015).

Tools used when diagnosing cardiac diseases are of-



ten initialized with specification of current view, and
in most cases this must be done manually by the
operator. Automatic classification can improve the
workflow and adaptivity of quantitative tools and al-
low continuous scanning and on-site analysis of sev-
eral quantitative parameters without pushing a sin-
gle button on the ultrasound scanner. In addition,
such a solution could enhance user experience in 3-
D US acquisitions by improving automatic extraction
of relevant 2-D image planes from volumes (Lu et al.,
2008).

Finally, CVC can also complement patient
database archives by automatically labeling record-
ings and thus enable better search functionality,
data mining and categorization utilities. In turn,
this could, for example, improve follow-up by auto-
matically extracting corresponding views at different
stages of patient care.

Related work and state of the art

Penatti et al. (2015) reviewed cardiac view classi-
fication for TTE up to 2013. Most studies consider
a selection of three or four of the most common car-
diac views: apical two chamber (A2C), apical four-
chamber (A4C) and apical long-axis (ALAX), as well
as the parasternal long-axis (PLAX) and parasternal
short-axis (PSAX). Some consider additional views,
such as apical five chamber, subcostal four-chamber
(SC4C) and vena cava inferior (SCVC), together with
a class for unknown data. Examples of relevant views
are shown in Fig. 1.

Prior studies claim to achieve overall accuracies as
high as 98% on image sequences, such as reported by
Wu et al. (2013). In general, inclusion of more views
have reduced accuracy considerably. To the best of
our knowledge, Park et al. (2007) reported the largest
data set, containing 1080 and 223 image sequences for
training and validation, respectively.

Most previous studies have used a support vec-
tor machine classifier on features extracted with var-
ious methods. Recently, deep convolutional neural
networks (CNNs) have had great success in many
image classification tasks (LeCun et al., 2015). As
opposed to traditional machine learning approaches
with hand-crafted features, these methods learn both
the feature extraction and classification directly from
the training data. After Krizhevsky et al. (2012) won
the annual ImageNet challenge (ILSVRC) in 2012 us-
ing a CNN (Russakovsky et al., 2015), it has become

the predominant approach for solving computer vi-
sion and recognition tasks.

CNNs have attracted significant attention from the
US image analysis community, where hand-crafting
generic features can be difficult. Chen et al. (2015)
was among the first to report use of CNNs for US
view classification, more specifically for locating the
fetal abdominal standard plane. Currently, a body
of related work in the domain of fetal US image
classification exists that methodologically also uses
CNNs (Baumgartner et al., 2017; Huang et al., 2017;
Bridge et al., 2017). In addition, much research for
TTE currently involves the use of CNNs. Perrin et al.
(2017) and Narula et al. (2016) have used it for eval-
uation of cardiac function. Abdi et al. (2017) used
it to automatically assess the quality of up to five
views using a regression-based recurrent approach.
Recently, Gao et al. (2017) used CNNs for classifying
eight different cardiac views using a method fusing
hand-crafted and learned features. Their database
consisted of 432 image sequences, and they achieved
an average accuracy of 92.1% validating on 152 image
sequences.

Main contributions

In the work described here, our aim was to de-
velop fully automated and robust methods for real-
time CVC using CNNs and facilitate their use in a
clinical setting. We also investigated the potential
for applying these methods to automatic extraction
of 2-D views from 3-D volumes and orientation guid-
ance for finding optimal views in 2-D US. Compared
with previous studies, the contributions of this paper
are as follows:

• Annotation and training on significantly more
patient data than previously included, with ex-
tensive patient-based cross-validation and test-
ing ensuring unbiased results

• Consideration of up to seven of the most com-
mon cardiac views: A2C, A4C, ALAX, PSAX,
PLAX, SC4C and SCVC, in addition to a class
for unknown data

• Analysis of two common network topologies and
a proposed network design based on recent work
in the field with the aim of being both accurate
and effective
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Figure 1: Seven cardiac views in transthoracic echocardiography obtained in arbitrary stages of the heart cycle. Examples of the
apical four chamber (A4C), long-axis (ALAX), two chamber (A2C), parasternal long axis (PLAX), short-axis (PSAX), subcostal
four-chamber (SC4C) and vena cava inferior view (SCVC) is illustrated, in addition to a nonassignable sample labeled unknown.

• Experiments on orientation guidance for finding
optimal apical views and a comparison between
models trained with either 2-D or 3-D data

• Analysis of computational requirements and per-
formance

Convolutional neural networks

Three CNNs were investigated for cardiac view
classification. Compared to the problems in which
typical image classification networks are designed, we
consider CVC easier. The consensus on increasing
network depth to achieve better results does not nec-
essarily hold for such tasks, and we believe that com-
petitive performance can be achieved with less com-
plex networks. We therefore address this issue by
combining observations from relevant work and pro-
pose a network that aims to balance the accuracy and
effectiveness for this use.

For extensive details of the investigated networks,
the reader is referred to relevant articles (Krizhevsky
et al., 2012; Szegedy et al., 2016). Herein, we intro-
duce them briefly and emphasize their differences and
our changes to the original topology. Furthermore, we
accentuate the background of our design choices.

AlexNet architecture

The winner of ILSVRC 2012 is a CNN referred to as
AlexNet. It is a simple feed-forward network with five

blocks of convolutional layers followed by rectified lin-
ear activation units (ReLU) and maximum pooling.
Local response normalization is used after the first
two convolution layers. The final part of the network
is composed of two fully connected layers with ReLU
and dropout regularization, whereas the final clas-
sifier is a fully connected layer followed by softmax
activation.

Compared with the original topology, the local re-
sponse normalization layers were removed for this
study, and batch normalization(Ioffe and Szegedy,
2015) was used instead for additional regularization,
as suggested by Canziani et al. (2016).

Inception architecture

Some of the most influential proposals after
AlexNet came from the authors of “Network In Net-
work” (NIN) (Lin et al., 2013), who suggested using
bottlenecks (e.g., convolutions with kernel size 1 × 1)
to combine features between layers. The key in-
sights from their article inspired Szegedy et al. (2015)
to create the Inception architecture (introduced as
GoogleNet). The principal difference from other net-
works is the building blocks, referred to as Inception
modules. Each block consists of parallel routes of
convolutions with varying kernel size, in addition to
a pathway with pooling. Fig. 2 is a schematic of a
typical module with bottlenecks and batch normal-
ization. Several editions of Inception have been pre-
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sented since its introduction, but the fundamental
philosophy of parallel routes in depth is the same.

Concatenation

Max pooling (3 x 3)

Input

Batch normalization Activation (ReLU)Convolution (K x K)Input

Conv. block (3 x 3) Conv. block (1 x 1)Conv. block (5 x 5)

Conv. block (1 x 1)Conv. block (1 x 1)

Conv. block (1 x 1)

Output

Figure 2: The inception module is a combination of parallel
convolution blocks with different kernel sizes and a pooling
branch concatenated into a single output. Each convolution
block (Conv.) consists of convolutions followed by batch nor-
malization and non-linear activation.

In this study, the third edition of the Inception
architecture (Szegedy et al., 2016) was employed.
The major architectural difference compared with the
original topology is spatial factorization of large spa-
tial filters. On this basis, three different modules
were designed and used throughout the network. In
the lower parts, where the feature maps are relatively
large, the module is similar to that in Fig. 2, except
that the (5 × 5) convolutions are factorized into two
layers of (3 × 3) convolutions. The other modules
use asymmetric convolutions, for example, a (3 × 1)
followed by a (1 × 3) convolution. In addition to fac-
torization, batch normalization is used after convolu-
tion layers. Here we use smaller input images than
intended for this architecture, and to allow better
information flow and avoid convolution filters larger
than the feature maps, we removed the second max-
pooling layer.

Cardiac view classification architecture

The network we propose resembles that in the dis-
cussed work and employs a combination of intro-
duced concepts. Fig. 3 is an overview of the archi-
tecture. The fundamental building blocks consist of
convolutions, batch normalization (Ioffe and Szegedy,
2015) and non-linear activation units. Batch normal-
ization was added to speed up training by allowing
higher learning rates and avoiding use of network
resources to compensate for outlying filter weights
during backpropagation. Parametric rectified linear
units (PReLU) were chosen as the activation unit in

all blocks (He et al., 2015). Compared with the fre-
quently used ReLU, which is zero for negative values,
PReLU allows non-zero gradients for inactive units.
The negative part is a linear function with a learned
slope.

Initially, input is propagated through two compo-
nent blocks with (3 × 3) convolution kernels, fol-
lowed by max pooling. The first and second convolu-
tion layer have 16 and 32 filters, respectively. We use
pooling of size (2 × 2) and equal strides to downsam-
ple without overlap. After the second pooling layer,
data are processed through an Inception module with
three parallel routes. Each route consists of a bot-
tleneck, two of which were followed by blocks with
larger convolution kernels, (3 × 3) and (5 × 5), re-
spectively. This is equivalent to the module in Fig. 2
without the pooling route. The bottlenecks in the In-
ception module reduce the number of filters by 25%,
25% and 50% in the order of small to large convolu-
tion kernels, respectively. Furthermore, the number
of filters is increased by 25% in the following convo-
lution block.

Inspired by the connection scheme in
DenseNet (Huang et al., 2016), the input of
the Inception module is concatenated with the
output and processed into a transition module with
bottleneck and max pooling. This step is repeated
three times, and as emphasized by Redmon and
Farhadi (2016) in the base classifier of the YOLO
object detection system, we doubled the number of
filters before every new pooling layer. As opposed
to their implementation, we control this behavior in
the bottleneck of the transition block. The dense
connectivity pattern further alleviates the vanishing
gradient problem, and perhaps more importantly, it
can enhance feature propagation and reusability.

After the third transition, the data are processed
through two Inception blocks with a constant number
of filters and no pooling. The route with (5 × 5) con-
volution kernels was omitted in these modules, and
dropout regularization was used between them. The
final classification block consisted of a compressing
convolution layer with 11 kernels and number of fil-
ters equal to the class count. This was activated with
another PReLU, before features were spatially aver-
aged and fed into a softmax activation as in NIN.
The spatial pooling replaces the more typical fully
connected layers. This reduces the parameter count
and, it is also claimed, makes the network less vul-
nerable to overfitting (Lin et al., 2013).
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Figure 3: Schematic of the proposed network architecture used for cardiac view classification. Convolution blocks (gray boxes)
are composed of convolutions, batch normalization and PReLU activations. Two versions of the Inception module are employed:
the illustrated one being used in the lower part of the network (dark purple) and a simplified one without the (5 × 5) route in
higher parts of the network (bright purple). The final classifier block consist of another compressing convolution layer with kernel
size (1 × 1) and filter amount equal to the number of views. The output is activated with a PReLU layer. Finally, global average
pooling followed by softmax activation yields a prediction vector as output.

Experimental setup

Experiments were divided into two parts. First,
training and evaluation on annotated 2-D data were
conducted using three different CNNs: AlexNet, In-
ception and the proposed CVC architecture. After-
ward, 2-D data extracted from 3-D volumes were in-
cluded and used to train new models using the CVC
architecture. Three-dimensional data were then eval-
uated, together with a comparison between the mod-
els trained with the same architecture on 2-D data.

Database and annotation

Three different data sets of anonymous US data were
included in this study. All data originated from pa-
tient studies approved by the Regional Committee
for Medical Research Ethics and conducted accord-
ing to the Helsinki Declaration. Written informed
consent was obtained from all patients. The sample
data are considered representative of a regular cardi-
ological clinic and give a distribution of both healthy
and ill participants in the relevant age groups.

2D US image sequences

he first data set consists of 4582 US videos with
varying numbers of frames from 205 patients. Ac-

quisition was performed by three senior cardiologists
according to a standard protocol for echocardiogra-
phy using a GE Vivid E9 US scanner (GE Vingmed
Ultrasound, Horten, Norway) with a GE M5S phased-
array transducer. Fifty-six of the patients were diag-
nosed with systolic or diastolic cardiac dysfunction.
The population age ranged from 20 to 91 years with
an average age of 64 years. The second data set
was randomly drawn from the Nord-Trøndelag Health
Study (HUNT) population study (Dalen et al., 2009)
and consisted of 2559 US videos from 265 subjects.
Acquisition was performed by one senior cardiologist
according to the same protocol using a GE Vivid 7
scanner with a GE M5S phased-array transducer. All
subjects were free from known cardiac dysfunction,
and the population had an average age of 49 years.

The videos were annotated manually and catego-
rized into seven different classes: A4C, ALAX, A2C,
PLAX, PSAX, SC4C and SCVC. Subcostal acquisi-
tions were not included in the HUNT study. Fig. 4.
summarizes the data indicating the class balance.
Non-assignable images were labeled unknown, but
the number was not considered sufficient for train-
ing relative to the other classes. Thus, samples from
a laboratory experiment with the goal of acquiring
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arbitrary US images without clinical relevance were
added. The total was 41,450 images from 460 videos.

Figure 4: Overview of the two 2-D data sets. The upper value
is the number of frames in the given class, and the lower value
is the number of videos.

Considerable variations in image quality were dis-
covered, and in a parallel annotation task, the im-
ages were labeled as poor, acceptable or good. The
relative distribution labeled by an expert cardiologist
pre-analysis was (32%, 41%, 27%) from poor to good
respectively.

3D US volume sequences

The 3-D data set consists of 60 anonymous US
volumetric exams with varying numbers of volumes
from the same number of patients. Acquisition was
performed by two senior cardiologists by placing the
probe in the apical position using a GE Vivid E9 US
scanner with a 3V 4D sector array transducer probe.

Data were generated by extracting 2-D images, or
planes, from the 3-D volume around a fixed depth
axis placed in the frustum center. This mimicks the
scenario of rotating a 2-D probe in an apical posi-
tion, generating all possible views oriented with re-
spect to the depth axis. Here we extracted one frame
per degree, yielding a total of 360 images per vol-
ume. Eyeballing and simple caliper measures were
used to choose three different frames (angles) from
each volume as optimal apical views (A4C, A2C,
ALAX). These angles were further used as the peak
of an asymmetric Gaussian weighting when labeling
the data. The tail of the Gaussian label l is deter-
mined by the distance between adjacent peaks and is
given by

lview←,→ = exp

−
(

∆θ←,→√
2σ←,→

)2
 . (1)

Here, ∆θ←,→ is the angular distance from the peak
of a specific view in a given direction. The stan-
dard deviation is the fractional distance to the near-
est adjacent peak in either direction, that is, σ←,→ =
|θview− θadj.view←,→ |/3. An example annotation with ref-
erence to the 17-segment left ventricle model (Lang
et al., 2015) is provided in Fig. 5. This annotation
scheme was chosen to allow a connection between ad-
jacent peaks. Unlike a binary classification, this en-
ables a more robust transition region between optimal
views and may be more suitable for orientation guid-
ing and quality assurance while scanning. It could
also be used to extract the desired 2-D planes auto-
matically from 3-D volumes.

Figure 5: Sketch of an example annotation with reference to
the left ventricle segment model (17 divisions). The curves
correspond to the confidence label of a specific cardiac view,
where higher values suggests optimal orientation.

Preprocessing

The data were scan converted from beamspace data
stored in DICOM format. The 3-D data were stitched
when necessary. No image enhancement filters were
applied. For training, the images were intensity nor-
malized and downsampled to a size of (128 × 128)
pixels. No data augmentation was applied.

Learning details

Training was performed over a maximum of 100
epochs using mini-batch gradient descent with a
batch size of 64. In machine learning, one epoch is
defined as a complete pass of training data, whereas
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the batch size is the number of examples shown for
each weight update. We used the categorical cross-
entropy and mean absolute error (MAE) loss func-
tions (Goodfellow et al., 2016)for training on 2-D
and 3-D data, respectively. An adaptive moment es-
timation method for stochastic optimization named
Adam (Kingma and Ba, 2014) was used with a max-
imum learning rate of 10−4. Uniform Glorut initial-
ization (Glorot and Bengio, 2010) was used on the
convolution layers before training. The model was
evaluated on unknown data between epochs, where
the best model was saved underway. The data were
fully shuffled after every epoch. To avoid unnecessary
training time and overfitting, early stopping routines
based on validation accuracy were used with a pa-
tience of 20 epochs.

As seen in Fig. 4, the training data are clearly
unbalanced, with a ratio of 1:29 between the least
and most represented class. To combat possible bias
toward high representations, the training data were
downsampled before every new epoch by randomly
drawing frames from each US acquisition based on
its ratio compared with the least represented class.
This allows training on equal amounts of data from
each class and every epoch; by performing this on a
per-sequence basis, representations from each acqui-
sition are also included. Note that we still use the
term epoch, although it breaks the definition of pass-
ing the entire dataset.

To setup the learning environment, the framework
Keras was utilized with Tensorflow (Abadi et al.,
2015) as backend. Experiments was carried out on
a workstation installed with an Ubuntu 16.04 operat-
ing system. The hardware consisted of an Intel Core
i7-6820HK CPU with a clock speed of 4.10 GHz, 32
GB RAM and a NVIDIA GeForce GTX 1070 GPU
with 8GB of memory.

Methods and metrics for evaluation

A 10-fold patient-based cross-validation technique
was performed, separating the first data set into
training and validation partitions. For each run, this
corresponds to omitting 20 or 21 patients from the
2-D data. The same was done for the 3-D data, in
which each fold consists of six patients. Such patient-
based model validation will give a better impression
of the expected results on new patient data. To the
best of our knowledge, this is the first publication on
the topic in which patient-based cross-validation is
extensively used. To further evaluate the model we

included an independent data set for testing purposes
only.

In addition to accuracy, validation metrics such as
precision and recall were used because of the imbal-
anced class frequency in the 2-D data. They are de-
fined as TP/(TP +FP ) and TP/(TP +FN), respec-
tively, where TP is the true positives, FP the false
positive and FN the false negative. The model accu-
racy is defined as the ratio of true predictions to all
predictions.

Further, for validation on 3-D data, the MAE is
calculated over the angle interval for all volumes of
every subject as

MAE =

∑θmax
θ=0 |ltrueθ − lpredθ |

θmax
, (2)

where the angle θ ∈ [0, θmax] = [0, 2π), and ltrueθ , lpredθ

is the true and predicted labels for a given angle. In
addition, we performed a qualitative inspection com-
paring the predictions to ground truth by visualizing
them together.

To determine the classification time per incoming
image in a deployed setting, an experiment in which
images are loaded individually in a loop and classified
with the trained models was conducted. This mimics
a clinical scenario in which frames are acquired and
processed one by one. A total of 30,000 images were
processed for each experiment, and for every model
we investigated the change in inference time using the
GPU. As a hardware invariant measure for runtime,
the number of floating point operations was added.
This was calculated using the profiler tool released
through the Tensorflow framework.

Together with the network definition, the storage
requirements are determined mainly by the number
of parameters needed to initialize the network. This
number is calculated using the Keras framework.

Results

Analysis on 2D data

Experimental results from patient-based cross-
validation using three different network topologies
trained on 2-D data are given in Table. 1. The trained
models were tested on an independent and unknown
test set, yielding the results outlined in Table. 2. The
sequence validation was performed using a majority
vote approach. The CVC model yielded competi-
tive results despite having significantly fewer learned
parameters. Compared with the other models, the
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model variance is lower for the CVC network. Low
average inference time per image was achieved for all
networks using the frameworks Tensorflow and FAST
(Smistad et al., 2015). This was without any empha-
sis on inference optimization. Utilizing the GPU, the
CVC network classifies approximately 230 frames per
second, while AlexNet manages twice that amount.
This was without any emphasis on inference opti-
mization. Using the GPU, the CVC network clas-
sifies approximately 230 frames per second, whereas
AlexNet manages twice that number. This is well
within the limits of real-time view classification in
this context.

To the best of our knowledge, the results surpass
current state of the art on 2-D B-mode data and in-
dicate that neural networks are well suited for ul-
trasound view classification tasks. Accessible bench-
mark data would be needed for a proper comparison
with related work, but it is believed that the diversity
and size of the data set used in this study at worst
yield an equal baseline.

Analysis on 3D data

The averaging of MAE over all volumes of every
subject is illustrated in Fig. 6. This is calculated from
the classification of 360 angles/images per volume.
The worst and best cases are indicated, together with
the medians of all subjects. The predictions and the
ground truth from these cases are illustrated in Fig 7.
The median MAE of all subjects was (3.8±2.4)%, and
the median deviation from true to predicted peak was
(4 ± 3)◦. The median MAE using the CVC model
trained on 2D data only was (11.3± 9.7)%.

Figure 6: Mean absolute error (MAE) values of all subject
volumes. The median MAE of all subjects is given by the
horizontal line.

Discussion

Technical considerations

Patient-based cross-validation indicates that the
CVC network is best in terms of relevance and ac-
curacy metrics. The standard deviation is almost
halved for the cross-validation models, and it has the
smallest parameter space. Testing on an indepen-
dent and unknown data set also suggests better gen-
eralization. Excluding the subcostal and unknown
views, the overall accuracy from cross-validation is
(98.1± 0.7)%, making the test results within the cal-
culated variation. The slight and consistent under-
estimation can have multiple origins; for instance,
it could be a small degree of overfitting toward the
training/validation data set (e.g., scanner, probe and
operators and their preferences). The trained models
would probably benefit from a broader representation
domain.

Compared with AlexNet, the other networks have
smaller receptive fields and less coarse downsampling
and, at least for the first layers, preserve more pixel
information from the input image. On the other
hand, less expressiveness is captured in the learned
features. Though the Inception module can retain
this to some extent by having a route with a semi-
large kernel, it may seem that adding features bene-
fits generalization more in this scenario. Though it is
hard to pinpoint the specific reason why CVC mod-
els surpass the results of the other networks on this
task, we believe that the combination of Inception
modules, dense connections, activation, bottlenecks
and number of features (more than AlexNet, fewer
than Inception) strengthens the generalization.

The subcostal window proves to be the hardest to
classify; arguably, lack of training data is the probable
cause. Even if this is the driving factor of these algo-
rithms, still views with distinct characteristics tend
to simplify the classification. For example, in Fig. 1,
we see that the parasternal views seem to have more
interclass variance than the apical views and have a
higher success rate on unknown data despite learning
from less.

Image quality is dependent on the acquisition en-
vironment and setup: the parameters used on the
scanner, expertise of the physician and status of pa-
tient morphophysiology. On an abstract level, this
information is embedded into the sequences from a
specific patient, and by omitting the use of patient-
based validation, the model would gain a fictitious
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Table 1: Experimental results from cross-validation on dataset I using three different network topologies. Validations are per
single frame and image sequence (in parenthesis for precision and recall). Bold metric indicate best score. Runtime measurements,
number of floating point operations and trainable parameters are also given.

(a) AlexNet with BN

Precision (%) Recall (%)

A4C 97.7 (98.4) 96.0 (97.6)
ALAX 92.1 (95.0) 95.9 (97.7)

A2C 94.7 (96.5) 96.2 (97.0)
PLAX 96.4 (97.6) 98.1 (99.0)
PSAX 95.7 (97.8) 95.2 (96.7)
SC4C 88.4 (93.6) 96.8 (97.3)
SCVC 94.3 (98.5) 92.2 (94.4)

Unknown 99.2 (95.8) 98.7 (100.0)

Overall accuracy(%):
Frame 96.4± 1.2
Sequence 97.5± 1.3

Runtime [ms]:
GPU 2.0± 0.2
CPU 8.1± 0.2

Operations [GFLOPS]: 0.25
Parameters: ∼20.6M

(b) Inception ver. 3 (Modified)

Precision (%) Recall (%)

A4C 97.9 (98.8) 97.8 (99.0)
ALAX 96.8 (99.0) 95.6 (96.2)

A2C 96.5 (97.5) 96.7 (98.2)
PLAX 97.0 (97.8) 98.4 (99.5)
PSAX 96.5 (98.6) 97.0 (97.6)
SC4C 92.6 (96.1) 96.3 (94.9)
SCVC 97.7 (100.0) 92.9 (95.8)

Unknown 99.1 (99.1) 98.8 (100.0)

Overall accuracy(%):
Frame 97.4± 1.1
Sequence 98.5± 0.8

Runtime [ms]:
GPU 10.7± 0.6
CPU 20.4± 0.5

Operations [GFLOPS]: 1.45
Parameters: ∼21.8M

(c) Proposed CVC Network

Precision (%) Recall (%)

A4C 98.5 (99.0) 98.5 (99.3)
ALAX 98.1 (99.2) 96.2 (98.0)

A2C 96.9 (97.5) 97.8 (98.3)
PLAX 98.5 (99.5) 99.1 (100.0)
PSAX 98.7 (100.0) 97.9 (98.2)
SC4C 92.7 (94.0) 99.1 (100.0)
SCVC 99.4 (100.0) 95.3 (94.4)

Unknown 99.6 (99.8) 99.6 (100.0)

Overall accuracy(%):
Frame 98.3± 0.6
Sequence 98.9± 0.6

Runtime [ms]:
GPU 4.4± 0.3
CPU 15.9± 0.4

Operations [GFLOPS]: 0.80
Parameters: ∼10.6M

Table 2: Experimental results on test dataset II using three different network topologies. Validations are per single frame and
image sequence (in parenthesis for precision and recall). Bold metric indicate best score.

(a) AlexNet with BN

Precision (%) Recall (%)

A4C 93.7 (96.0) 99.3 (99.7)
ALAX 97.3 (99.0) 90.7 (93.1)

A2C 95.4 (96.4) 93.1 (95.2)
PLAX 93.1 (96.6) 98.3 (99.4)
PSAX 98.9 (99.7) 95.9 (98.3)

Overall accuracy(%):
Frame 95.5± 0.7
Sequence 97.3± 0.6

(b) Inception ver. 3 (Modified)

Precision (%) Recall (%)

A4C 94.7 (96.7) 99.5 (99.8)
ALAX 97.7 (99.1) 90.0 (92.2)

A2C 95.1 (96.1) 94.3 (96.0)
PLAX 94.6 (96.6) 98.9 (99.6)
PSAX 99.1 (99.7) 96.9 (98.3)

Overall accuracy(%):
Frame 96.1± 1.6
Sequence 97.5± 1.4

(c) Proposed CVC Network

Precision (%) Recall (%)

A4C 96.2 (97.8) 99.6 (99.8)
ALAX 98.6 (99.5) 93.1 (95.3)

A2C 96.6 (97.6) 96.0 (97.4)
PLAX 97.5 (99.3) 98.7 (99.7)
PSAX 99.4 (99.9) 98.3 (99.5)

Overall accuracy(%):
Frame 97.4± 0.6
Sequence 98.5± 0.5

advantage in predicting allegedly unknown data. Ex-
amples of poor images from the data set are provided
in Fig. 8, where the model has predicted the views as
indicated under every image. The variation in qual-
ity from Fig. 1 is apparent, and we discover that the
model has more conflicts with ground truth when im-
ages are poor. Of 54 misclassified sequences in the
cross-validation, 42 were classified in this category,
whereas the remainder were acceptable.

Another interesting observation is that the images
in Fig. 8 were acquired from two different patients
and amount to approximately 15% of the total se-

quential error. By observation, sequences from the
patient shown in the upper part of the figure have
an abnormal artifact in the left ventricle. The other
patients generally have noisy and virtually invisible
structures. Both types of issues can cause classifi-
cation problems and could potentially be present in
all image sequences from a specific patient. By dis-
tributing sequences from the same patient in both the
training and validation data sets, the model could
effectively adapt to the irregularity. Patient-based
cross-validation and independent tests should thus
be emphasized when assessing results from generated
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(a) Worst - MAE = (8.1 ± 5.6)% (b) Median - MAE = (3.8 ± 1.9)% (c) Best - MAE = (2.9 ± 2.0)%

Figure 7: Evaluation on 2D images extracted from 3D volumes with orientation angle with respect to the depth axis. The models
used are trained with data from the 3D volumes. The dotted curves correspond to the assigned labels, while the filled curves is
the model predictions.

Figure 8: Example of poor cardiac ultrasound images from two
different apical four chamber sequences classified by the pro-
posed view detection model. Green label indicates the ground
truth label, and the size corresponds to the fractional predic-
tion of the model. The left side shows frames where the model
has conflicts with ground truth.

models.

Compared with other work, our results seem
promising. Methods and potential applications have
some overlap with the research conducted by Abdi
et al. (2017) on quality assessment of cine loops. How-
ever, their multistream regression network required
20 consecutive image frames to assess one label; to
discriminate between views, every frame had to be
passed through a shared layer architecture and into
five different view-specific layers. This could be feasi-

ble for distinguishing views because Abdi et al. state
that it is in real time, but their focus is on quality
assessment of a given view; classification is not inves-
tigated.

In three dimensions, annotation of optimal views
was difficult becaue variations in image features were
insignificant for small angle intervals. This held espe-
cially for the four- and two-chamber views, whereas
the long-axis view was easier because the diameter of
the left ventricular outflow tract could be used as a
reference in most cases. With this in mind, we still
achieve a low median deviation of the predicted to
true peaks in all patients, and by inspecting Fig. 7,
we argue that the long-axis view appears more robust.
In general, models trained with 3-D data achieve a
low MAE. The performance of models trained with
2-D data, as expected, experiences more fluctuation,
and it can be difficult to detect the optimal view.
The reason might be variations in image quality and
views slightly off orientation. The latter are not dis-
tinguished in the 2-D data set, as we assumed that
every examination contains the best possible view for
every patient. Results could therefore be expected to
have a saturating behavior around the optimal view.

Clinical perspective

As stated in the Introduction, automatic CVC has
several clinical applications, such as improving work-
flow, enabling more automation and guiding inexpe-
rienced users. The results on the second independent
data set in this study indicate that the accuracy of
the proposed CVC methods based on CNNs is real
even for data acquired with other scanners and by
different operators. This accuracy, together with the
measured low runtime and the real-time video, sug-
gests that this method is ready for further testing in a
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clinical setting. Development and end-to-end fashion
allow low threshold deployment and applicability in
many settings without any tuning or in-depth knowl-
edge of the methods. No parameters are required;
only an input image is needed. Results also indicate
that including training data from heart volumes can
improve guiding utilities and quality assurance while
scanning. Despite this, models trained with 2-D data
will probably be better suited for database utilities,
such as data mining, search and categorization. It is
easier to add more views, and the accuracy is very
high.

Training opportunities for new health care person-
nel are limited, and expert knowledge is often capti-
vated by workload or centralization. We believe these
increasingly relevant problems could be addressed by
tools such as automatic CVC. However, separate clin-
ical studies on training effects, standardization and
workflow must be induced to support this statement.

Conclusion

In the study described here, different neural net-
works were investigated for cardiac view classifi-
cation. State-of-the-art results for standard 2-D
echocardiography were achieved. The proposed net-
work had a small number of trainable parameters and
achieved real-time inference with high accuracy. Al-
though the demonstration looks robust when training
on 2-D data, our initial experiments into apical view
guidance based on 3-D data indicated room for fur-
ther work. Using slices of 3-D volumes for training
improved the results significantly, and we believe that
further development toward real-time quality assur-
ance and guidance from US images is plausible when
including such data.
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