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Abstract

Dynamic modeling is an important tool to gain better understanding of complex bioprocesses and to deter-
mine optimal operating conditions for process control. Currently, two modeling methodologies have been
applied to biosystems: kinetic modeling, which necessitates deep mechanistic knowledge, and artificial neural
networks (ANN), which in most cases cannot incorporate process uncertainty. The goal of this study is to
introduce an alternative modeling strategy, namely Gaussian processes (GP), which incorporates uncertainty
but does not require complicated kinetic information. To test the performance of this strategy, GPs were
applied to model microalgae growth and lutein production based on existing experimental datasets and
compared against the results of previous ANNs. Furthermore, a dynamic optimization under uncertainty
is performed, avoiding over-optimistic optimization outside of the model’s validity. The results show that
GPs possess comparable prediction capabilities to ANNs for long-term dynamic bioprocess modeling, while
accounting for model uncertainty. This strongly suggests their potential applications in bioprocess systems
engineering.

Keywords: Optimization under uncertainty; Gaussian Process; Artificial neural network; Machine
Learning; Bioprocess

1. Introduction

The synthesis of sustainable bioproducts from microalgae through photosynthetic related metabolic path-
ways has become a promising research field because of its outstanding advantages over traditional fossil fuel
based processes (Brennan and Owende, 2010; Zhang et al., 2015a). Specifically, in the energy and food sec-
tors the development and deployment of microalgae based technologies have seen substantial interests within
the last decade (Kuddus et al., 2013; Mata et al., 2010). For example, these emerging technologies represent
a variety of promising alternatives for the next generation of renewable and environmentally friendly trans-
portation fuels such as biodiesel and biohydrogen (Tamburic et al., 2011; Adesanya et al., 2014). Meanwhile,
they have been recently adopted by different countries such as the United States, China and Mexico to
produce nutritious food supplements and animal feeds, of which the global market has been predicted to
undergo considerable growth (Chu, 2012; Zhang et al., 2015b). Furthermore, they have been successfully
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industrialized to produce different high-value bioproducts that are widely used in the cosmetic, pharmaceu-
tical and food industries (e.g. lutein, C-phycocyanin and astaxanthin), which are otherwise produced from
expensive, energy intensive and low efficient manufacturing routes using non-renewable sources (Fábregas
et al., 2001; Sun et al., 2015).

In particular, the biorenewable product investigated in the current study is lutein, which is of great
interest to the health, pharmaceutical, and food sectors. In the United States the demand of lutein is
predicted to increase from $150 million in 2000 to $309 million in 2018, with an annual growth rate of over
6% up to 2024 (Ho et al., 2015; del Rio-Chanona et al., 2017b). However, the current feedstock for lutein
production is marigold, a plant with extremely low lutein content (0.02-0.1% wt (fresh flowers)) and low
growth rate requiring large separation costs (Yen et al., 2011). A promising alternative to produce lutein
is from microalgae due to their rapid growth rate, higher lutein content (up to 0.5% wt) and capability of
utilizing abundant sustainable resources such as solar energy, atmospheric CO2 and waste water for their
growth and product synthesis (Xie et al., 2013).

To drive the industrialization of sustainable lutein production from microalgae, a robust mathematical
model is required for precise process control over a long-term time horizon, so that both process safety
and efficiency can be guaranteed. Moreover, by utilizing state-of-the-art process optimization strategies for
mathematical models, dynamic optimization can be further carried out to increase process profitability (del
Rio-Chanona et al., 2015). As bioprocesses are in general sensitive to changes of operating conditions, it
is expected that by implementing dynamic optimization a significant improvement on product yield can be
obtained compared to the recent literature results (Malek et al., 2016; Xie et al., 2013; del Rio-Chanona
et al., 2016a).

So far, two modeling methodologies have been employed to simulate dynamic behavior of the underlying
biosystem for microalgal biomass growth and lutein synthesis, namely kinetic modeling and artificial neural
networks (ANN) (Garćıa-Camacho et al., 2016; del Rio-Chanona et al., 2016a). In this paper, however, a
third methodology, Gaussian process (GP) regression, is proposed to simulate this system and compared
against the previous two, so that its feasibility and capability for bioprocess modeling can be thoroughly
explored for the first time. Recently, GPs have become an increasingly popular non-parametric method
for both regression and classification problems (Rasmussen and Williams, 2006). GP regression was first
proposed by O’Hagan and Kingman (1978) and then popularized in Neal (2012).

The GP regression framework not only provides a prediction for unknown outputs, but also provides a
measure for prediction uncertainty, which is a distinct advantage compared to other commonly used black-
box methods. Furthermore, in Rasmussen (1996) it was shown that GPs are able to forecast outputs with
comparable performance to other modeling approaches like ANNs or local learning methods. GPs have
been shown to be a powerful tool for derivative-free optimization, since the uncertainty measure can be
exploited to evaluate functions more efficiently for both single-objective optimization (Jones et al., 1998;
Shahriari et al., 2016) and multi-objective optimization (Bradford et al., 2018). Although GPs have been
predominantly used to model static nonlinearities, it is notable that they have also been demonstrated and
applied to simulate dynamic systems in several studies (Kocijan et al., 2005; Brahim-Belhouari and Bermak,
2004; Girard et al., 2003; Urtasun et al., 2006; Wang et al., 2005; Bradford and Imsland, 2018). Particularly
for studies of long-term bioprocess modeling and optimization, despite the fact that GPs have never been
adopted in this domain, they are expected to possess two outstanding advantages over the most commonly
used methods (i.e. kinetic model and ANN), which are:

1. Compared to ANNs, GPs provide a clear measure of prediction uncertainty which is crucial when
modeling complex biological systems. In addition, although ANNs might be preferred over GPs in
some cases (e.g. when there is a large amount of training data) because of the matrix inversion
that is required for the construction of GP predictions, in macro-scale bio-manufacturing studies it is
infeasible to obtain datasets in the order of hundreds of thousands or millions. Hence, GPs are clearly
a comparable or even superior tool to ANNs in this domain.

2. Compared to kinetic models, GPs do not need a full understanding of the complex metabolic mech-
anisms that take place in the specific biosystem. Specific to bioprocess applications, in most cases,
intensive collaborative effort of the scientific community is required to identify the essential biochem-
ical kinetic information before a kinetic model is ready to be constructed. On the contrary, GPs are
black-box models that can be used to simulate and optimize processes in the early stage of research,
hence efficiently forwarding the assessment and prototyping stages for process design and scale-up.
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As a result, in the current research GPs are set as the default black-box modeling strategy for algal lutein
production. Given that for bioprocesses there is a need to predict long time horizons (in the order of days),
two approaches have been proposed in literature to accomplish this (del Rio-Chanona et al., 2017b):

One approach is to train a model on all control inputs and the initial state to obtain predictions at
the full-time horizon. While this approach is easy-to-implement, it has several considerable disadvantages.
Once trained, the model cannot be extended to make predictions at time horizons with different lengths. In
addition, for large time horizons the number of inputs quickly becomes large, requiring a high dimensionality
of the GP to be learnt and hence too many data-points. Alternatively, the iterative method can be used,
which trains a GP to predict one-step ahead and applies this GP recursively to obtain a prediction for the
full time horizon. The iterative method has several advantages compared to one-step ahead predictions. It
can be easily used for different time horizons with different lengths and provide any k-step ahead forecast
including the joint probability distribution of the states at the desired points. In addition, the dimensionality
of GPs is much smaller in the iterative method when control inputs are present and therefore more data
efficient.

In this paper, a general procedure to execute dynamic modeling using GPs is outlined. For this the
iterative method was selected and applied to predict the evolution of multivariate states for lutein production.
In Girard et al. (2003) it was shown that the noise in the one-step ahead prediciton needs to be propagated to
be conservative enough. Therefore, we propagated the resulting probability densities of the GPs using exact
moment matching (by moments we refer to the mean and covariance) for the squared exponential covariance
function. The methodology exhibited in Kocijan et al. (2005) given for single variate state systems was
extended to the multivariate case by using results from machine learning (e.g. reinforcement learning) in
Deisenroth and Rasmussen (2011).

The paper is structured as follows. In Section 2 we introduce the reader to Gaussian processes. Section
3 outlines the experimental set-up of the algal lutein production process with various operating conditions
and shows how this data can be used to build GPs for the dynamic modeling of biosystems. In Section
4 a description of the recently constructed ANNs for comparison to the GP is given. In the Results and
Discussion section (Section 5) the GP regression results are presented and compared against the ANNs.
Meanwhile, a dynamic optimization with stochastic constraints was performed in this section to maximize
lutein yield by varying flow rate and light intensity, while taking advantage of the probabilistic nature of the
GP.

2. Introduction to Gaussian process regression

2.1. Multivariate Gaussian distribution

To explain the principle of the GP modeling framework, we need to first introduce some concepts com-
monly used in probability theory. A random variable follows a univariate Gaussian distribution if its probabil-
ity density function is given by Equation 1, where x ∈ R is the result of a single test. A Gaussian distribution
is defined by its mean µ (expectation), and its variance σ2. This is generally written as x ∼ N

(
µ, σ2

)
.

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (1)

Let us generalize this definition into higher dimensions. For a given random n-dimensional vector x =
[x1, ..., xn]

T
with mean µ = [µ1, ..., µn]

T
, its covariance matrix Σ = cov(x) is defined as a n × n matrix

of which the entry at the ith row and jth column is calculated by Equation 2, where µi and µj denote
the expectation of xi and xj , respectively. In general, any symmetric positive semidefinite matrix can be
used as a covariance matrix. This necessitates the diagonal elements to be non-negative, since these are
variances. The vector x ∈ Rn is said to have a multivariate Gaussian distribution if every linear combination
of its components (x1, ..., xn) is a univariate Gaussian distribution. The probability density function of
this multivariate Gaussian distribution is written as Equation 3, and commonly denoted as x ∼ N (µ,Σ),
where µ and Σ are the mean and covariance matrix of these random variables, respectively. It is worth
mentioning that the covariance cov (xi, xj) is a measure of the correlation between the component xi and
the component xj . Thus, if these components are independent, the covariance coefficient becomes 0. For
example, a standard multivariate Gaussian distribution is defined such that each component is independent,
the mean µ = 0 and the covariance matrix is given by Σ = In×n.
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cov (xi, xj) = E [(xi − µi) (xj − µj)] (2)

p (x) =
1

(2π)
n/2 | Σ |1/2

exp

(
−1

2
(x− µ)

T
Σ (x− µ)

)
(3)

where | · | denotes the determinant
There are two important identities for multivariate Gaussian distributions, which are essential in GP

regression. Let us assume that we are given a joint vector of x and y that are distributed as a multivariate
normal distribution as shown in Equation 4.[

x
y

]
∼ N

(
µx

µy
,

[
Σx Σx,y

Σy,x Σy

])
(4)

The marginal distribution of x (the distribution of x alone) is then given by Equation 5.

x ∼ N (µx,Σx) (5)

The conditional distribution of x given y can be denoted by Equation 6.

x|y ∼ N
(
µx + Σx,yΣ−1

y

(
y − µy

)
,Σx −Σx,yΣ−1

y Σy,x

)
(6)

where x|y denotes the probability distribution of x given that we know the value of y. Therefore, the
distribution on the right-hand side of Equation 6 has lower variances (the diagonal elements of the covariance
matrix) than the marginal distribution of x in Equation 5, since we are exploiting the knowledge that the
value of y gives us on x.

2.2. Introduction to Gaussian process regression

In this section we give a short introduction to GP regression. For a more detailed and complete overview
please refer to Rasmussen and Williams (2006); Ebden (2015); Jones et al. (2001). GPs generalize multivariate
Gaussian distribution to infinite dimensions defining a functional space and hence describe a distribution
over infinite dimensional vector functions. Formally, a GP is a collection of random variables of which any
finite subset follows a Gaussian distribution. GP regression aims to model an unknown latent function f(x)
using noisy observations y of f(x), which are related as follows:

y = f(x) + ε, ε ∼ N (0, σ2
ε ) (7)

where x ∈ Rn denotes an arbitrary input vector and ε is Gaussian distributed measurement noise with a
variance of σ2

ε .
Assume we want to make a prediction of f(x) at some arbitrary input x. Before we have sampled the

function at this point, i.e. before we obtain observations of f(x) at this input x, this value will be uncertain.
For GPs we model this uncertainty of the value of the function at x as the realization of a normally distributed
random variable f(x) with mean µ and variance σ2. Intuitively, we are assuming the function value at x to
have a typical value of µ, which can be expected to lie with a probability of 99.7% in the range [µ−3σ, µ+3σ].
The mean µ of f(x) in the most general case may be given by an arbitrary function m(x), which defines the
“average” shape of the function.

To define a covariance function, we consider two arbitrary input vectors x and x′, which again have not
been sampled and consequently the values of the function at these points are uncertain. However, if we
assume the unknown function, which we wish to model, to be continuous, then the function values f(x)
and f(x′) will be close if the distance between x and x′ is small. This prior information can be modeled
statistically by assuming that the random variables f(x) and f(x′) are strongly correlated if the distance
||x − x′|| is small. Correlation means that f(x) will tend to be large if f(x′) is large, as long as x and
x′ are close together. On the other hand if x and x′ are far apart, then the values of f(x) and f(x′) are
virtually independent. In particular, in this paper we assume the correlation between the random variables
is given by the squared-exponential (SE) covariance function, which is a stationary covariance function. A
stationary covariance function is a function of x−x′, such that the covariance function is translation invariant
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k(x,x′) = k(x − x′,0). The SE covariance function can be defined as follows (Rasmussen and Williams,
2006):

covf (f(x),f(x′)) = Ef ((f(x)−m(x)) (f(x′)−m(x′))) = k(x,x′) = α2 exp

(
−1

2
(x− x′)TΛ(x− x′)

)
(8)

where x,x′ are arbitrary inputs, Λ = diag([λ−2
1 , . . . , λ−2

n ]) is a diagonal matrix with a length scale λi for
each input and α2 is the signal variance. Ef is the expectation over the function space. The mean function
can be viewed as the ’typical’ shape of the function, while the covariance function specifies the covariance
between any two function values at two separate inputs. The SE covariance function is such that if x = x′

then k(x,x′) = α2 reaches the maximum; while if ||x − x′|| → ∞ the correlation tends to zero as required.
The parameters λi determine how fast the correlation tends to zero as one moves in the ith dimension of
the input vector. Small values of λi model functions that are significantly dependent on the ith dimension,
i.e. the function value can rapidly change when varying the ith variable of such functions. Conversely large
values of λi lead to functions that are close to invariant with respect to the ith variable. In addition, the
SE covariance function not only assumes the latent function to be continuous, but also smooth since it is
infinitely differentiable.

A GP generalizes the Gaussian distribution to infinite dimensions and describes a distribution over
functions. It is fully specified by a mean function m(x) and a covariance function k(x,x′). We write f is
distributed as a GP as follows:

f(x) ∼ GP (m(x), k(x,x′)) (9)

The noisy observations y also follows a GP due to the additive property of Gaussian distributions with
the same mean, but with a different covariance function to account for the measurement noise:

y ∼ GP (m(x), k(x,x′) + σ2
ε δ(x,x

′)) (10)

where δ(x,x′) = 1 iff x = x′ and else δ(x,x′) = 0, known as the Kronecker-delta.
Equations 9 and 10 define the prior of the function, since no data has been used yet. Afterwards this

prior is updated using input-output data available from observations. For GP regression we need to first
define the prior of the GP by choosing the mean function and covariance function, which encapsulate our
prior beliefs, if available, about the function to be modeled. In this report we assume a mean function of
zero as given in Equation 11, which is a common choice in Machine Learning (Rasmussen and Williams,
2006). A zero-mean of the data is achieved in this report by scaling the data. In essence this means that we
are assuming the function to be overall zero mean, such as a sine function.

m(x) = 0 (11)

We assume the covariance function to be given by the SE defined in Equation 8. As previously described
this encapsulates our belief that the function to be modeled is smooth.

Next we assume that N observations are available at N different inputs given by the following two
quantities:

X = [x1, . . . ,xN ] , y = [y1, . . . , yN ]
T

(12)

We can then represent the uncertainty of n function values based on the prior from the mean and
covariance functions with the help of a random vector F = [f(x1), . . . , f(xN )]

T
at n separate input vectors

given by the matrix X. This random vector has a mean vector defined as 0 and a covariance matrix equal
to:

ΣF = [k (xi,xj)]N×N (13)

where ΣF is a N ×N matrix with (i, j) element given by Equation 8.
Equation 13 gives us the covariance matrix for the latent function values. We however observe y and

not f(x), which is perturbed by Gaussian distributed measurement noise with a variance of σ2
ε as shown in
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Equation 7. The uncertainty of the observation matrix y can then be expressed in the same way as F with
a mean function of 0 and a covariance matrix given by:

Σy =
[
k (xi,xj) + σ2

ε δ(xi,xj)
]
N×N (14)

The hyperparameters defining the prior GP are commonly unknown a priori, and hence an important step
in GP regression is the determination of the hyperparameters from the available data. The hyperparameters
that define the GP are given by the parameters of the covariance function in Equation 8 and by the noise of y
in Equation 7. These are jointly denoted by the vector Θ = [log(λ1), . . . , log(λn), log(α), log(σε)]

T , where the
parameters were log-transformed to ensure positiveness. The hyperparameters of the GPs in this study were
efficiently found using a maximum a posteriori (MAP) estimate, which is more efficient for smaller data sets
than the more commonly used maximum likelihood (ML) approach (Rasmussen and Williams, 2006). This
is due to the prior introduced in MAP preventing overfitting compared to ML (Sundararajan and Keerthi,
2001). In this work, we assume independent Gaussian distributions on the hyperparameters:

Θj ∼ N (µΘj , σ
2
Θj ) (15)

where µΘj is the mean and σ2
Θj

the variance of the prior Gaussian distribution for the hyperparameter Θj .
Following from the uncertainty expression of the data as multivariate Gaussian distribution with co-

variance matrix as in Equation 14 and the prior distribution of the hyperparameters in Equation 15, the
log-likelihood of the posterior density of the hyperparameters can be stated as follows (Rasmussen and
Williams, 2006):

L(Θ) =− 1

2
log(|Σy|)−

1

2
yTΣ

−1

y y − N

2
log(2π)+∑

j

(−1

2
log(2π)− 1

2
log(σ2

Θj )−
1

2σ2
Θj

(Θj − µΘj )
2)

(16)

Notice that function L(Θ) is still a function of the training targets y, and hence the difference between the
predicted outputs and the target outputs (the ys) will be minimized in a similar fashion as would happen
with an ANN training framework. The covariance matrix Σ−1

y can be efficiently factorized using Cholesky
decomposition, since it is a symmetric positive semidefinite matrix. Once the hyperparameters are fixed,
the inverse matrix product can then be solved efficiently. Since the elements of the covariance are however
nonlinear functions of the hyperparameters, the factorization needs to be recalculated for each iteration of
these.

The MAP estimate of Θ is then given by:

ΘMAP ∈ arg max
Θ

L(Θ) (17)

Once we have calculated the MAP estimate of Θ, we can use GPs to predict the value of f (x) and y at
unknown inputs. First consider the joint distribution of the data and the function value f (x), which can be
established using the mean and covariance function of the prior:[

f (x)
y

]
∼ N

([
0
0

]
,

[
Σf Σf,y

Σy,f Σy

])
where Σy is given in Equation 14, Σf = k (x,x), Σf,y = [k (x,x1) , . . . , k (x,xN )] and Σy,f = ΣT

f,y.
As set out at the beginning, we want to know the value of f (x) given the data available to us, which is

represented by the random vector y. We can now apply the identity given in Equation 6 that gives us the
distribution of f (x) given the observations of y, which can be stated as follows:

f (x) |y ∼ N
(
Σf,yΣ−1

y y,Σf −Σf,yΣ
−1

y ΣT
f,y

)
(18)

The mean in this case is the best estimate of f (x) given the data available, while the variance gives us a
measure of uncertainty to this estimate. To obtain the posterior of the observation of f (x) we simply need
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to add the observation noise to the variance:

y|y ∼ N
(
Σf,yΣ−1

y y,Σf −Σf,yΣ
−1

y ΣT
f,y + σ2

ε

)
(19)

where y is the observation of f (x) according to Equation 7.
We have now shown how GPs can be used to obtain predictions at arbitrary inputs. The overall procedure

involves these three steps:

1. Choose mean and covariance function depending on the prior knowledge of the underlying function.

2. Determine the hyperparameter values by maximizing likelihood using observations of the underlying
function.

3. Make predictions at arbitrary inputs using Equations 18 and 19, where the mean represents the predici-
ton and the variance the corresponding uncertainty.

An example of GP regression can be seen in Figure 1 with the prior and posterior shown.
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Figure 1: Illustration of a GP of a 1-dimensional function perturbed by noise. On the left the prior of the GP is shown with
mean 0 and standard deviation of ∼ 2 with 5 samples drawn from the GP prior, each of which corresponds to a separate
function. On the right the GP was given additional information (8 observations of the latent function) and fitted to these
observations to obtain the posterior. Again the mean and 5 samples are shown. One can notice that close to these observations
the uncertainty is greatly reduced, however areas far from observations exhibit greater uncertainty.

3. Gaussian process dynamic modeling for bioprocesses

3.1. Algal lutein production process experimental set-up

The experiment of microalgal lutein production consists of 3 states and 2 control variables. The 3
states are biomass concentration, nitrate concentration and lutein production and the 2 control variables
are incident light intensity and nitrate inflow rate. The microalgae species Desmodesmus sp. F51 was used
for lutein production and experimental temperature was fixed at 35◦C. A 1 L photobioreactor (15.5 cm
in length and 9.5 cm in diameter) was used in these experiments with an external light source on both
sides. Initial biomass concentrations were kept constant and incident light intensities were varied between
150 µmol m−2s−1 to 600 µmol m−2s−1. Nitrate influent was supplied to the reactor to compensate for the
culture nitrate consumption from the 60th hour until the end of the experiment with a fixed inflow rate of
3 mL hr−1. Influent nitrate concentration was chosen as 0.1M or 0.5M. All the runs were carried out over 6
days.

The states were measured every 12 hours over 144 hours, hence 12 measurements were taken for each
experimental run. In total 7 different experiments were conducted. All of the experiments were replicated
twice and the detailed presentation of experimental design and measurement techniques can be found in del
Rio-Chanona et al. (2017a). The operating conditions of these experiments are summarized in Table 1.
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Table 1: Operating conditions of 7 algal lutein production experiments

Operating conditions Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7
Initial Biomass (g L−1) 0.07 0.07 0.07 0.07 0.07 0.07 0.07
Initial Nitrate (mM) 8.8 30 8.8 8.8 8.8 30 8.8

Inflow rate (mL h−1) 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Influent nitrate (M) 0.5 0.5 0.1 0.1 0.1 0.5 0.1

Light intensity (µmol m−2s−1) 300 600 150 480 600 480 300

The aim of this section is to introduce GP regression in the context of a discrete time, dynamic black-
box model for a biosystem given a set of time series measurements (data sets). It is emphasized that the
measurements are taken at a constant sampling frequency. Therefore, in this paper we consider the dynamic
system to be in the form of:

x(t) = F (x(t− 1),u(t− 1)) (20)

where t is the discrete time, x ∈ Rn denotes the states, u ∈ Rm denotes the control inputs and F : Rn×Rm 7→
Rn resembles the nonlinear transition dynamics. It is assumed that the control inputs u are deterministic.

In simple words Equation 20 means that the system at time step t will be predicted using measurements
and inputs at the previous time step t−1. This is the general approach when a real experiment is conducted,
where past data are used to predict and hence optimize the process at a future time.

For a biosystem the states are commonly given by concentrations, while a common input is the feed rate
of a substrate. For example for the lutein case study the state vector is given by x = [CX , CN , CL]T , where
CX represents the concentration of algal biomass, CN the concentration of nitrate and CL the concentration
of lutein; while the control inputs are given by u = [Li, FN ]T , where Li denotes the light intensity and FN
the inflow rate of nitrate.

3.2. Data preparation

To model the multi-input, multi-output system in Equation 20, we employ independent GPs for each
output, i.e. each output is modeled by a separate GP. The training procedure is therefore the same as
outlined in Section 1.2. The data is consequently given, such that each GP can be trained with the same
multivariate inputs, but with different single dimensional outputs.

GPs are identified from input-output data pairs, and can be adopted to approximate the dynamic be-
havior described by Equation 20 given a set of measurements. The first step consists of preparing avail-
able data points for the GP training. Assuming several laboratory experiments have been conducted, we
are commonly given the initial conditions x(0) and the measurements of x(t) at constant time intervals
over different experimental runs with known controls u(t). From s distinct experimental runs, we obtain
data over s time series (data sets), which gives us data in the form of

{
x(i)(0), . . . ,x(i)(Ti)

}
i∈{1,...,s} and{

u(i)(0), . . . ,u(i)(Ti − 1)
}
i∈{1,...,s}, where Ti denotes the number of time intervals in experimental run i. We

assume that the sampling rate of all experiments remains constant. In this research we use the augmented
vector xa(t) = [x(t),u(t)]T ∈ Rn+m as inputs and the differences ∆x(t) = x(t)−x(t−1) + ε ∈ Rn as regres-
sion targets, where ε denotes measurement noise. The regression targets define what we want to predict,i.e.
we aim to predict the change of the states at each stage using GPs.

The input-output data is consequently given by collecting the measurements of all experiments in the
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matrices X′ and Y′:

X′ =



[x(1)(0)
T
,u(1)(0)

T
]

...

[x(1)(T1 − 1)
T
,u(1)(T1 − 1)

T
]

[x(2)(0)
T
,u(2)(0)

T
]

...

[x(2)(T2 − 1)
T
,u(2)(T2 − 1)

T
]

...

[x(s)(0)
T
,u(s)(0)

T
]

...

[x(s)(Ts − 1)
T
,u(s)(Ts − 1)

T
]



T

, Y′ =



x(1)(1)
T − x(1)(0)

T

...

x(1)(T1)
T − x(1)(T1 − 1)

T

x(2)(1)
T − x(2)(0)

T

...

x(2)(T2)
T − x(2)(T2 − 1)

T

...

x(s)(1)
T − x(s)(0)

T

...

x(s)(Ts)
T − x(s)(Ts − 1)

T



T

(21)

where X′ ∈ R(n+m)×N are the training inputs, Y′ ∈ Rn×N are the training targets and is the total number
N of input-output data pairs.

Note that what we are proposing is for the GP to predict the change of the states over a fixed time
interval given previous states and inputs (e.g. given biomass concentration, lutein concentration, nitrate
concentration, light intensity and nitrate input at time t − 1, we can predict the increase or decrease on
biomass concentration, lutein concentration and nitrate concentration from time t− 1 to time t).

The GPs were trained with transformed data. To train the GPs, the inputs were scaled to lie in [0, 1].
The input scaling was chosen as a popular feature scaling procedure that have been shown to improve the
prediction quality (Aksoy and Haralick, 2001). Unlike the output, the equations used for the input do
not assume zero mean and instead account for the mean of the input, consequently a zero mean scaling is
not required. The outputs were scaled to have mean 0 to match the zero mean assumption introduced in
Section 1.2 and a standard deviaiton of 1. Transformations also help to set the priors of the hyperparameters
introduced in Section 1.2 (Equation 15), since normalized data behave in a more predictable fashion. The
described transformations are accomplished as follows:

X(i) = AX′
(i) − b (22)

where Xi and X(i) are the ith row and column of matrix X respectively, X′i and X′
(i)

are the ith row and
column of matrix X′ respectively, b = [min X′1, . . . ,min X′n+m]T and
A = diag([1/(max X′1 −min X′1), . . . , 1/(max X′n+m −min X′n+m)])

Y(i) = CY′
(i) − d (23)

where Y(i) is the ith column of matrix Y, Y′
(i)

the ith column of the matrix Y′, d = [Y′1, . . . ,Y′n]T and
C = diag([1/std1, . . . , 1/stdn]), where Y′i is the sample mean and stdi the sample standard deviation of row
i of matrix Y′.

3.3. Training of Gaussian processes

The inputs of the GP is the concatenated vector of states and deterministic control inputs [xT ,uT ]T ,
where x = [CX , CN , CL]T represents the concentration of biomass (CX), concentration of nitrate (CN ) and
concentration of lutein (CL), while u = [Li, FN ]T denotes the light intensity (Li) and inflow rate of nitrate
(FN ). The training outputs are given by the differences of the states at each time step in the training data.
The three independent GPs, one for each state, were constructed based on the procedure outlined in the
subsequent sections. The parameters were optimized over their log-values with priors set on their log-values
as well to ensure positiveness as was shown in Section 1.2 in Equation 15. The same Gaussian priors were
used for all states with mean and variances given in Table 2, which were set to ensure that the parameters do
not take too large or too small values and hence to prevent overfitting. It is possible to use the same Gaussian
priors for all states due to the data transformation outlined in Section 2.2. The standard deviation of the
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initial state was taken to be 5% of the initial state, based on the current experimental measurement accuracy.
The initial covariance matrix is hence given by Σx(0) = diag([(0.05CX(0))

2
, (0.05CN (0))

2
, (0.05CL(0))

2
]).

Table 2: Variance and mean of Gaussian prior distributions on the log of the hyperparameters

Hyperparameter Mean variance
log(λ1), . . . , log(λn) 0.0 1.0
log(α) 0.0 2.0
log(σε) -6.0 4.0

The detailed training procedure is explained in the following subsections.

3.4. Gaussian process prior
The GP regression framework is designed for one-step ahead predictions by identifying a latent function

f(·) to predict ∆x(t) given xa(t− 1):

∆x(t)|xa(t− 1) = f(xa(t− 1)) + ε, ε ∼ N (0,Σε) (24)

to approximate the subsequent states by:

x(t)|xa(t− 1) ≈ x(t− 1) + f(xa(t− 1)) (25)

where ε ∈ Rn represents the measurement noise, which is assumed to be normally distributed with covariance

matrix Σε = diag([σ
(1)
ε

2
, . . . , σ

(n)
ε

2
]).

In Figure 2 an illustration is shown for a latent function representing a time series of state x that is
modeled by a GP using several noisy observations.

Figure 2: Illustration of a latent function of a times series modeled by a GP through a finite number of measurements. The
confidence region predicted by the GP is also shown.

Commonly, GPs are employed for multi-input, single-output problems as was introduced in Section 1.2.
An effective extension proposed in this research to multi-outputs is to use a separate, independent GP for
each output (Rasmussen and Williams, 2006), where independence means that the outputs are assumed to
be uncorrelated. The latent function in Equation 25, is therefore given by:

f(xa) = [f (1)(xa), . . . , f (n)(xa)]T (26)
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where each component f (i)(xa)) is modeled separately by a GP and xa is an arbitrary input.
Given that essentially the same process is carried out n-times with different output data, a superscript

(i) was added to refer to the separate GPs for each output dimension. We can therefore write that f (i)(xa)
is distributed as a GP as follows, the same as Section 1.2:

f (i)(xa) ∼ GP (m(i)(xa), k(i)(xa,x
′
a)) (27)

where x′a is an arbitrary input, m(i)(xa) and k(i)(xa,x
′
a) are separate mean and covariance functions for

each component f (i)(xa) with different parameter values.

As shown in Equation 24, ∆
(i)
x is a noisy observation to f (i)(xa) perturbed by additive Gaussian noise:

∆(i)
x = f (i)(xa) + εi, εi ∼ N (0, σ(i)

ε

2
) (28)

Due to the additive property of Gaussian distributions, the observation ∆
(i)
x of f (i)(xa) also follows a GP

with the same mean, but larger covariance, see Equation 10:

∆(i)
x ∼ GP (m(i)(xa), k(i)(xa,x

′
a) + σ2

ε δ(xa,x
′
a)) (29)

Without loss of generality we consider the prior mean function to be zero for each GP, m(i)(xa) := 0.
We propose to use the squared-exponential (SE) covariance function for all the GPs, which is a frequently
applied stationary covariance function (O’Hagan and Kingman, 1978). The SE covariance function can then
be stated as follows for each GP (Rasmussen and Williams, 2006):

k(i)(xa,x
′
a) = α(i)2

exp

(
−1

2
(xa − x′a)TΛ(i)(xa − x′a)

)
(30)

where each SE function is parametrized with different parameter values to model the separate GPs indicated

by i, Λ(i) = diag([λ
(i)
1

−2
, . . . , λ

(i)
n

−2
]) and α(i)2

is the signal variance.
The hyperparameters that define the GPs are given in Equations 28 and 30 and are given by the vectors

Θ(i) = [log(λ
(i)
1 ), . . . , log(λ

(i)
n ), log(α(i)), log(σ

(i)
ε )]T . The GPs for one-step ahead predictions are obtained by

using the data defined in Equations 22 and 23. For each output dimension in Y, i.e. for each row in Y, a
separate GP needs to be trained (fitted) . In particular, given N training points, n independent GPs are
trained with the same input data X and different response data y(i) = YT

i , where y(i) ∈ RN is the transpose
of the ith row of Y, YT

i . The following steps need to be carried out for all i = 1, . . . , n independent GPs
and are basically implemented based on the steps outlined in Section 1.2.

3.5. Gaussian process posterior

The prior GP of f (i)(xa) and the observation ∆
(i)
x can be expressed as:

f (i)(xa) ∼ GP (0, k(i)(xa,x
′
a)), ∆(i)

x ∼ GP (0, k(i)(xa,x
′
a) + σ(i)

ε

2
δ(xa,x

′
a)) (31)

To build the posterior distribution of these functions knowledge of the observations needs to be incorpo-
rated. This is accomplished by considering the joint distribution of observations y(i) and the response at an
arbitrary input xa, f (i)(xa), of the latent function. We assume the input xa to be deterministic. This is the
same process we used for the derivation in Section 1.2 and can be denoted as follows:[

f (i)(xa)
y(i)

]
∼ N

([
0
0

]
,

[
Σ

(i)
f Σ

(i)
f,y

Σ
(i)
y,f Σ

(i)
y

])
(32)

where Σ
(i)
f = k(i) (xa,xa), Σ

(i)
f,y = [k(i) (xa,x1) , . . . , k(i) (xa,xN )], Σ

(i)
y,f = Σ

(i)T
f,y and Σ

(i)
y ∈ RN×N is the

covariance matrix of the data whose entries are given by Σ
(i)
yjk = k(i)(xaj ,xak) + σ

(i)
ε

2
δ(xaj ,xak), where xaj

refers to the vector of the jth column of X.
By conditioning f (i)(xa) on the observations according to the joint Gaussian distribution given in Equa-

tion 32 and using the identity given in Equation 6, we obtain the posterior predictive distribution of f (i)(xa)
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(Rasmussen and Williams, 2006):

f (i)(xa)|y(i) ∼ N (m
(i)
f (xa), σ

(i)
f

2
(xa)) (33)

m
(i)
f (xa) = Σ

(i)
f,y(Σ(i)

y )−1y(i) (34)

σ
(i)
f

2
(xa) = Σf −Σ

(i)
f,y(Σ(i)

y )−1Σ
(i)
y,f (35)

where the mean m
(i)
f refers to the best-estimate of the latent function value, while the variance σ

(i)
f

2
is a

measure of the uncertainty of this prediction.

The predictive distribution of the observation ∆
(i)
x at the test-input is given by the same expressions,

except that the term σ
(i)
ε

2
needs to be added to the right hand side of Equation 35 (Ebden, 2015):

∆(i)
x |y(i) ∼ N (m

(i)
f (xa), σ

(i)
f

2
(xa) + σ2(i)

ε ) (36)

3.6. Hyperparameter training

The first step for GP regression is to determine hyperparameter values using MAP, since these are
generally unknown a priori. This again has to be carried out for every GP separately. In this work, we
assume independent Gaussian distributions on the hyperparameters:

Θ
(i)
j ∼ N (µ

(i)
Θj
, σ

(i)
Θj

2
) (37)

where µ
(i)
Θj

is the mean and σ
(i)
Θj

2
the variance of the prior Gaussian distribution for the hyperparameter Θj ,

which are specified in Table 2 for the lutain case study.
Following from Equation 32, the log-likelihood of the posterior density of the hyperparameters can be

stated as follows (Rasmussen and Williams, 2006):

L(i)(Θ) =− 1

2
log(|Σ(i)

y |)−
1

2
y(i)T (Σ(i)

y )−1y(i) − N

2
log(2π)+∑

j

(−1

2
log(2π)− 1

2
log(σ

(i)
Θj

2
)− 1

2σ
(i)
Θj

2 (Θj − µ(i)
Θj

)2)
(38)

The MAP estimates of Θ are then given by:

Θ
(i)
MAP ∈ arg max

Θ
L(i)(Θ) (39)

We now have separate optimal hyperparameter vectors Θ
(i)
MAP for each output y(i). We will refer to

k(i)(xa,x
′
a) as the covariance function with hyperparameter values according to Θ

(i)
MAP and hyperparameters

with superscript (i) as optimal values from Θ
(i)
MAP in the subsequent sections.

3.7. One-step ahead predictions

Next with the hyperparameters determined previously, predictions can be made one-step ahead through
the GP framework, using the predictive distribution given in 33-36. The functions f (i)(xa) were defined to
be able to predict the difference vector at each time-stage, which can be used for one-step ahead predictions
as follows (Deisenroth and Rasmussen, 2011):

x(t)|x(t− 1) ∼ N (mx(t),Σx(t)) (40)

mx(t) = mx(t− 1) + Cmf (xa(t− 1))− d (41)

Σx(t) = CΣf (xa(t− 1))CT (42)

xa(t− 1) ∼ N (A−1([mx
T (t− 1),mu

T (t− 1)]T + b), A−1(diag(Σx(t− 1),Σu(t− 1))A−T ) (43)
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where mf (xa(t− 1)) = [m
(1)
f (xa(t− 1)), . . . ,m

(n)
f (xa(t− 1))]T is a stacked vector of independent predictions

and the corresponding diagonal matrix of the variances at x(t − 1) is Σf (xa(t − 1)) = diag([σ
(1)
f

2
(xa(t −

1)), . . . , σ
(n)
f

2
(xa(t − 1))]). The equations for m

(i)
f and σ

(i)
f

2
can be found in Equations 34 and 35. Let us

emphasize that mf (xa(t− 1)) refers to a difference and hence it needs to be added to mx(t− 1) to calculate
the mean of the state at the following time step mx(t). The defintions of A,b,C and d can be found in
Equations 22 and 23, and are used to transform the predictions of the GP to obtain predicitons of the true
states denoted by x, while xa needs to be transformed to match the transformation of the input data.

Let yx be the observation of x(t), then yx has the same mean as x(t), but a larger covariance:

yx(t)|x(t− 1) ∼ N (mx(t),Σx(t) + Σε) (44)

where yx(t) has the same distribution as x(t) with the difference that the measurement noise Σε needs to
be added to the covariance matrix.

3.8. Multi-step ahead prediction

Using the one-step ahead predictions from the GPs we wish to make multi-step ahead predictions by
repeatedly applying Equations 41, 42 and 43. It is, however, important to emphasize that the input to the
GP is now a normally distributed random variable, while in GP regression the input is generally assumed
to be deterministic. In the one-step ahead predictions in Section 2.7 the input was essentially deterministic,
since we conditioned on it.

In other words, the propagation of uncertainty for a multi-step prediction is demonstrated here. In
particular, we assume a joint Gaussian distribution on the test input xa, p(xa) = N (mxa ,Σxa). Obtaining
the predictive distribution p(f(xa)|Y,mxa ,Σxa) of f(xa) at the test input xa is now obtained by integrating
out xa, which is however analytically intractable, so that an approximation method is needed (Deisenroth and
Rasmussen, 2011). We assume that the predictive distribution of f(xa)|Y,mxa ,Σxa is Gaussian, such that
the distribution is fully specified by its mean and covariance. For the SE covariance function in Equation 30
exact moment matching is possible, i.e. the predictive distribution p(f(xa)|Y,mxa ,Σxa) is approximated by
a Gaussian which has the same mean and covariance as the true distribution (Deisenroth et al., 2009). In the
multivariate case the predictive mean vector mf (xa) for an uncertain input xa is given by Equation 45. The
target dimensions in general co-vary such that the covariance matrix Σf (xa) is not diagonal anymore. The
covariances on the diagonal can be found using Equation 47, while the cross-covariances can be determined
using Equation 48. The expressions for the mean and covariance of f(xa)|Y,mxa ,Σxa) are then given by
equations involving quantities of all GPs (Deisenroth and Rasmussen, 2011):

f(xa)|Y,mxa ,Σxa ∼ N (mf (xa),Σf (xa)) (45)

mf (xa) = q(i)Tβββ(i) (46)

Σ
(ii)
f (xa) = α(i)2

+ βββ(i)TQ(ii)βββ(i) − tr((Σ(i)
y )−1Q(ii))−m(i)

f (xa)2 (47)

Σ
(ij)
f (xa) = βββ(i)TQ(ij)βββ(j) −m(i)

f (xa)m
(j)
f (xa) (48)

where βββ(i) = (Σy
(i))−1y(i), mf (xa) = [m

(1)
f (xa), . . . ,m

(n)
f (xa)]T , q

(i)
p = α(i)2|ΣxaΛ

(i)+I|−1/2exp(− 1
2 (mxa−

xap)
T (Σxa + (Λ(i))−1)−1(mxa − xap)) and

Σf (xa) =


Σ

(11)
f (xa) . . . Σ

(1n)
f (xa)

...
. . .

...

Σ
(n1)
f (xa) . . . Σ

(nn)
f (xa)


Q(ij)
pq = k(i)(xap,mxa)k(j)(xaq,mxa)|R|−1/2 × exp

(
1

2
(ν −mxa)TR−1Σxa(ν −mxa)

)
(49)

where R = Σxa(Λ(i) +Λ(j)) + I and ν = Λ(i)(xap−mxa) +Λ(j)(xaq−mxa). The superscripts i and j refer
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to the various quantities with respect to the ith and jth Gaussian process, respectively, of the n independent
Gaussian processes trained. The vector xap is the pth training input contained in X, i.e. the pth column of
X.

We are now able to make multivariate, multi-step ahead predictions by recursively applying Equations 45
to 49 together with the following equations to propagate the state through the predicted ∆x(t) (Deisenroth
and Rasmussen, 2011):

x(t) ∼ N (mx(t),Σx(t)) (50)

mx(t) = mx(t− 1) + Cmf (xa(t− 1))− d (51)

Σx(t) = Σx(t− 1) + CΣf (xa(t− 1))CT + 2cov(∆x(t− 1),u(t− 1)) (52)

xa(t− 1) ∼ N (A−1([mx
T (t− 1),mu

T (t− 1)]T + b),A−1(diag(Σx(t− 1),Σu(t− 1))A−T ) (53)

where cov(∆x(t− 1),u(t− 1)) is 0 and Σu = [0]m×m for deterministic control inputs u(t− 1). For the case
when one is interested in a feedback control law, such that the input is given as some function of the current
state, u(t− 1) = κ(x(t− 1)), please refer to Deisenroth (2010). mx(t) is the best estimate of the state at k
with corresponding covariance Σx(t).

Let yx(t) be the observations of x(t), then yx(t) has the same mean as x(t), but a larger covariance:

yx(t) ∼ N (mx(t),Σx(t) + Σε) (54)

where yx(t) has the same distribution as x(t) with the difference that the measurement noise Σε needs to
be added to the covariance matrix.

The initial state x(0) and covariance matrix Σx(0) need to be given from which the state can be then
propagated to an arbitrary time horizon recursively. The initial state is generally known, while the covariance
matrix can be obtained by error propagation. For the lutein case study these were stated in Section 2.3.

4. Artificial neural network

In this section a brief introduction is given to artificial neural networks (ANNs). Currently, ANNs are
used as the standard black-box modeling tool to simulate both traditional chemical engineering processes
and emerging biological systems. In order to demonstrate the outstanding characteristics of GPs, in this
research ANNs are considered as the benchmark to investigate the simulation and prediction capabilities
of GPs for bioprocess systems engineering. In particular, a state-of-the-art ANN construction strategy was
recently developed to simulate microalgal lutein production in del Rio-Chanona et al. (2017b). Thus, this
ANN model will be used to compare against the current constructed GPs.

In general, an ANN is a system of nodes or ’neurons’, based on graph theory, organized in layers which
are bound together by a series of mono-directional connections and are meant to represent biological learning
and computation. These nodes accept inputs and generate outputs which are then either returned or used as
inputs to another layer of neurons (Garćıa-Camacho et al., 2016; Hosen et al., 2011; Xiong and Zhang, 2004).
The source and destination of the connections depend on the structure of the type of network chosen. In
specific, the ANN presented in the recent study was built up based upon a type called multi-layer perceptron
(del Rio-Chanona et al., 2017b), where connections only point to the next layer, as in the feed-forward case.
A schematic of a multilayer ANN is illustrated in Fig. 3. Other architectures have been developed over
years, however, they are not within the scope of this study.
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Figure 3: Schematic of an ANN with a single hidden layer, k inputs and m outputs

Within the last decade, there has been a push toward the use of ANNs in chemical engineering (Him-
melblau, 2008), where they have found use as estimators and as part of simulation of processes (Pareek
et al., 2002; Nelofer et al., 2012; Feng et al., 2013; Mohd Ali et al., 2015). As an example, ANNs have
been employed for modeling and prediction in traditional processes such as in distillation, fuel production
and in the design of fuel cells (Ochoa-Estopier et al., 2012; Feng et al., 2013; Baroi and Dalai, 2014). They
have been also extensively used to simulate difficult processes such as the influence of parameters in catalyst
preparation through experimental data (Gunay et al., 2012), or even to extract such rules from existing
literature (Odabasi et al., 2014). More importantly, the modeling of different useful processes involving mi-
croorganisms have been successfully tackled by ANNs (Vats and Negi, 2013; Nasr et al., 2013). Furthermore,
there has been newly reported research focusing on applying ANNs to identify optimal operating conditions
for the production of microalgae biorenewables, such as the work published in Mohamed et al. (2013) and
del Rio-Chanona et al. (2016b).

Specific to the previous study where ANNs were applied to simulate microalgae biomass growth and
lutein production (del Rio-Chanona et al., 2017b), a two hidden layer ANN consisting of 15 nodes in each
hidden layer, 5 inputs (biomass concentration, lutein production, light intensity, nitrate concentration, nitrate
inflow rate), and 3 outputs (change of biomass concentration, lutein production, nitrate concentration)
was constructed, together with another one-layer ANN comprising the same inputs and outputs but 20
nodes in the hidden layer. These optimal network structures were determined through the cutting-edge
hyperparameter selection framework, and the ANNs were demonstrated to be of high accuracy and predictive
capability. Thus, they are selected in this study for comparison. The hyperparameter selection algorithm is
the following:
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Algorithm 1 ANN hyperparameter selection

Initialization:
Define the set of possible hidden layers Ω and possible neurons per hidden layer Λ. In this research these
sets were set to Ω = {1, 2, 3}, Λ = {3, 5, 10, 15, 20, 25}.
Define possible neural network structures as Υ = Ω× Λ, where × denotes the Cartesian product.
Define the set of time-series Γ . In this study Γ was defined by all the experimental time-series.

1. For ANNk (neural network structure) in Υ

(a) For i in Γ : Select this time-series i as the test-set and group the rest as the cross-validation
data-set Ψ

(b) Initialize regularization penalty λ to a small value; in this study λ = 0.001

i. For each time-series j in Ψ: Select this time-series j as the cross-validation set and group the
rest as the training-set Θ

A. Train ANNk on Θ
B. Compute training and cross-validation errors
C. Increase regularization penalty λ
D. If training error has stopped its sharp decrease and cross-validation error increases con-

tinue to step (ii). Else, return to (A).

ii. Use ANNk to predict i (test-set) and compute the error

(c) Compile test-set errors for ANNk

2. Compare test-set errors for all ANN structures, and determine the optimal structure for 1 and 2 hidden
layer ANNs

Parameter λ is a penalty imposed to the size of the weights of the ANN to avoid overfitting. In this
implementation, the term divides the weight values, hence it starts at a small value and increases gradually
throughout the algorithm. Step 1,b,i,D allows to compute the best regularization penalty parameter to
reduce overfitting.

5. Results and discussion

5.1. Comparison between Gaussian process and artificial neural network

The performance of the techniques was compared by leaving out the data set for a single experiment
and in turn predicting the trajectory of this experiment using the GP methodology outlined in section
2 (multi-step ahead prediction). For the ANN the same cross-validation procedure was implemented for
networks with 1 and 2 hidden layers. This approach was applied to all experiments, thus in total there
are predictions for all 7 experiments. More importantly, to verify the predictive capability of the GP for
complex biological systems, the comparison between GP and ANNs in the current study is executed through
an offline framework where only initial operating conditions (and nitrate inflow rate) are provided, and the
models have to predict the entire dynamic behavior of the process.

The results are shown in Figures 4-7, on which the predictions from the GP, ANN with 1 hidden layer
and 2 Hidden layers were plotted for each of the 7 experiments. In addition, error bars were added to
the GP predictions showing the 99% confidence regions of the latent functions given by the GPs. The
confidence regions presented are based on the experimental observations as given by Equation 44. This is
the correct confidence region to show, since we are trying to see in how far the experimental data perturbed by
measurement noise is contained within the confidence region, while the true underlying function is unknown.
It is necessary to recall that ANNs are not able to estimate the confidence region of their predicted results.
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Figure 4: Cross-validation for data set 1, where (a) is the dynamic performance for biomass concentration, (b) for nitrate
concentration and (c) for lutein concentration; and for cross-validation for data set 2, (d) is the dynamic performance for
biomass concentration, (e) for nitrate concentration and (f) for lutein concentration
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Figure 5: Cross-validation for data set 3, where (a) is the dynamic performance for biomass concentration, (b) for nitrate
concentration and (c) for lutein concentration; and for cross-validation for data set 4, (d) is the dynamic performance for
biomass concentration, (e) for nitrate concentration and (f) for lutein concentration
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Figure 6: Cross-validation for data set 5, where (a) is the dynamic performance for biomass concentration, (b) for nitrate
concentration and (c) for lutein concentration; and for cross-validation for data set 6, (d) is the dynamic performance for
biomass concentration, (e) for nitrate concentration and (f) for lutein concentration
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Figure 7: Cross-validation for data set 7, where (a) is the dynamic performance for biomass concentration, (b) for nitrate
concentration and (c) for lutein concentration

From Figures 4-7 it can be appreciated that all models show good predictions of the results given the
limited data available, although it is difficult to determine the prediction superiority of one method over the
other. Each method can be seen to be better at predicting certain datasets, while none is always superior.

From the GP predictions it can be seen that the experimental data is rarely outside the confidence interval
provided, this being an encouraging result for future research. However, it can be also seen that the error
propagation is relatively large in the case of the nitrate concentration. This is mainly attributed to the fact
that the measurement noise is taken to be the same for both high and low nitrate concentrations. For low
nitrate concentrations, in fact, percentage-wise the measurement noise is similar to that of the high nitrate
concentration. Nonetheless, in an actual implementation, states would be monitored online and real-time
datasets would be updated to GPs constantly. As a result, the prediction uncertainty would be contained
within a narrower region.

However, in Fig. 5 (d) and Fig. 6 (d) the data points indeed fall slightly outside the confidence regions.
This does indicates two limitations of the GP framework proposed in this paper. The first one is that errors
may not be entirely reliable, since the error propagation involves approximating the true distribution using
only the mean and variance, which may lead to too low noise if the true distribution is either particular skewed
or multi-modal. This could be alleviated in future work by using particle-based approaches instead, which in
the limit approximates the true distribution exactly (Girard et al., 2003). In addition, the hyperparameters
were set using optimization, which ignores the uncertainty of the parameter values themselves. A more
accurate, but expensive solution to this problem is to integrate the hyperparameters out instead (Rasmussen
and Williams, 2006), which could also be tested in future work.

Finally, through a design of experiment framework, it is possible to improve the accuracy of the GP
models. One efficient way to conduct this is to design experiments in areas in which the variance of the GP
is high, since this shows regions that have high sparsity of data-points. Furthermore, if we are interested in
finding optimal operating conditions, it is sensible to try to learn the model more accurately in areas that
are promising. This has been used to great success in the global optimization community by sequentially
designing experiments that trade off exploring unknown regions and exploiting regions in which good op-
erating conditions have already been observed (Sacks et al., 1989). This shows again an advantage of GPs
over ANNs due to the availability of an uncertainty measure.

In addition to the visual comparison given in Figures 4-7, the mean square error (MSE) over each time
series was calculated for each machine learning algorithm, i.e. the difference of the prediction from the
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measurements was squared and averaged over each time series. The values of the MSE for the biomass
concentration, nitrate concentration and lutein concentration can be found in Tables 3, 4 and 5 respectively.
The smallest value (best performing algorithm) among the three models is highlighted in bold.

Table 3: Comparison of MSE for GP, 1 Hidden-layer ANN (1HL-ANN), 2 Hidden-layer ANN (2HL-ANN) from Exp 1-7 for
biomass concentration (g2L−2) . The best performing algorithm in terms of MSE is highlighted in bold.

Exp GP 1HL-ANN 2HL-ANN
1 0.028 0.270 0.010
2 0.052 0.011 0.011
3 0.130 0.002 0.021
4 0.121 0.381 0.068
5 0.086 0.030 0.028
6 0.133 0.057 0.368
7 0.024 0.062 0.015

Table 4: Comparison of MSE for GP, 1 Hidden-layer ANN (1HL-ANN), 2 Hidden-layer ANN (2HL-ANN) from Exp 1-7 for
nitrate concentration (g2L−2) . The best performing algorithm in terms of MSE is highlighted in bold.

Exp GP 1HL-ANN 2HL-ANN
1 13.290 1.552 2.812
2 0.745 4.919 26.448
3 0.006 0.008 0.016
4 0.002 0.454 0.420
5 0.125 0.142 0.015
6 0.226 0.951 10.626
7 0.062 0.019 0.167

Table 5: Comparison of MSE for GP, 1 Hidden-layer ANN (1HL-ANN), 2 Hidden-layer ANN (2HL-ANN) from Exp 1-7 for
lutein concentration (mg2L−2) . The best performing algorithm in terms of MSE is highlighted in bold.

Exp GP 1HL-ANN 2HL-ANN
1 0.045 0.324 0.011
2 0.175 0.967 0.658
3 0.059 0.031 0.144
4 0.145 0.793 0.432
5 0.092 0.631 0.162
6 0.090 1.337 0.227
7 0.064 0.127 0.203

From Tables 3, 4 and 5, it is concluded that the GP shows a comparable performance to the ANN
(either 1 or 2 layers). For example, it can be seen that GP attains the best prediction result on 5 out of
the 7 experiments and comes second for the remaining 2 experiments when predicting lutein concentration.
Similarly, it possesses the best prediction on 4 out of the 7 experiments and comes second twice when
estimating the trajectory of nitrate concentration in the current study. Even though the best prediction
for biomass concentration is always an ANN, the current constructed GP still provides a comparable result
(second best prediction on 4 experiments) for the majority of the experimental tests. This clearly indicates the
great predictive capability of GPs and promising potential for bioprocess systems engineering applications.

Moreover, significant attention should be paid on the fact that the current used ANNs were constructed
based on advanced methodologies through which the optimal structure of ANNs were identified and their
predictive capability is maximized (del Rio-Chanona et al., 2017b). However, as GPs have never been
applied to describe and understand the behavior of complex biological systems, specific strategies capable
of identifying the optimal structure of GPs are not available yet. Therefore, the comparable predictive
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capability and performance of the current GPs against the optimal ANNs strongly suggests the potential of
GPs on bioprocess modeling and optimization.

The most important contribution of the GP is that a confidence region is simultaneously estimated during
process prediction, and it is found that experimental measurements in almost all the 7 experiments fall within
this region. Such a region is essential for sensitive bioprocess optimization and for the implementation of
robust optimization strategies (e.g. worst-case scenario optimization), as the safety of a bioprocess is in
general given higher priority than the process yield. Furthermore, the GP never gave catastrophically
unreliable trajectory predictions. This conclusion further emphasizes that GPs can not only provide an
accurate prediction for long-term biosystems, but also contribute a reliable estimation for dynamic bioprocess
design, modeling and control.

5.2. Dynamic optimization with stochastic constraints

One of the main advantages of GP regression over more common regression methods, such as ANNs, is
that it gives us a measure of prediction uncertainty. In this section, we show how this measure can be used
in optimization to ensure that the optimal solution remains in the validity range of the model. The objective
of the optimization is to find operating conditions to yield the maximum lutein concentration by the end of
the process at the 144th hour, i.e. with a time horizon of length N = 12. The operating conditions are given
by control actions of light intensity and the nitrate inflow rate chosen at each time stage. In addition, the
mean of the initial concentrations of biomass and nitrate was also varied.

The model adopted in this section is determined by using all the data from the 7 experiments given in
Table 1 and following the procedure in Section 2. The control actions are taken to be deterministic. The
first constraint given in brackets in Equation 55 is the stochastic constraint that limits the variance of lutein
at the final stage to be below 0.025 mg L-1, and hence the lutein concentration to lie in a confidence region
of 95% with ±0.025 mg L-1. This measure was chosen, as it directly targets the relevant uncertainty of the
measure to be optimized, while still considering all other uncertainties since these are iteratively used as
noisy input to obtain the final prediction. The overall optimization problem is given below:

Dynamic optimization problem using GP model

max
U,mx(0)

E [CLi (N)] = m(3)
x (xa (N)) (55a)

subject to:
Σ(3,3)
x (N) ≤ 0.025 (55b)

Σx (0) = diag

([(
0.05m(1)

x (0)
)2

,
(

0.05m(2)
x (0)

)2

,
(

0.05m(3)
x (0)

)2
])

(55c)

[0, 0]
T ≤ u (k) ≤ [600, 1.5]

T ∀k ∈ {0, ..., N − 1} (55d)

[0, 0, 0]
T ≤mx(0) ≤ [0.5, 6000, 0]

T
(55e)

(48)− (51) ∀k ∈ {1, . . . , N} (55f)

where U = [u(0), . . . ,u(N − 1)] is a matrix of control inputs at each time interval, Σ
(3,3)
x (t) is the 3rd

diagonal element of the state matrix Σx(t) corresponding to the variance of lutein concentration at time

stage k and m
(i)
x (t) is the ith dimension of the vector mx(t) corresponding to the expected value of the

respective concentrations at time stage k.
The optimization in Equation 55 was conducted using the fmincon function in Matlab with 20 multistart

initial points chosen according to a maximin Latin hypercube. Choosing initial starting points according to
a Latin hypercube scaled to the upper and lower bounds of the decision variables has been shown to yield
good optimization results in Raue et al. (2013). With stochastic constraints for example the optimization
converged to either of six solutions with relatively small variations. The optimal solution yielded a value of
lutein of 4.94mg L-1. The optimal solution was observed twice in the optimization procedure. The mean of
the solutions obtained was 4.4mg L-1 with a standard deviation of 0.33mg L-1. The optimal trajectories are
shown in Figures 8 and 9, where two optimization results are shown, one with the stochastic constraints and
another without.
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Figure 8: Results of dynamic optimization for lutein production. (a), (c), (e): Optimal trajectory of concentrations of biomass,
nitrate, and lutein without stochastic constrain, respectively; (b), (d), (f): Optimal trajectory of concentrations of biomass,
nitrate, and lutein with stochastic constraint, respectively.
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Figure 9: Results of the optimal control scheme for lutein production. (a), (c): Optimal control input of light emission and
nitrate inflow rate without stochastic constraint, respectively; (b), (d): Optimal control input of light emission and nitrate
inflow rate with stochastic constraint, respectively.

From the figures, it is seen that both optimization scenarios yield similar results since the predicted
optimal operating conditions lie on the boundary of the model, i.e. the optimum is close to the conditions
in the second training experiment (Exp2), given in Table 1. Comparing the two scenarios, although the
optimization without stochastic constraints yields a slightly higher final lutein concentration (5.10 mg L-1),
the case with stochastic constraints (4.95 mg -1), can be seen to show a lower uncertainty on all the state
trajectories, in particular when predicting nitrate concentrations. This suggests that in order to reduce
the uncertainty of process optimization and guarantee the safety of underlying biosystems, it is necessary to
embed stochastic constraints into the optimization framework. It is also worth noting that the optimal result
with stochastic constraints is closer to the second training experiment than without it. This was executed to
minimize the uncertainty of the model, i.e. as shown in Figure 1, where uncertainty is substantially higher
away from the measurements. Such a result means that experimental trajectories near optimal solutions can
be highly valuable. Furthermore, in general, the model uncertainty is relatively high, suggesting that more
data should be used to further enhance the optimization results.

6. Conclusions

Overall, a new methodology was introduced to construct a dynamic model for biorenewable synthesis and
process optimization by using Gaussian process regression. By comparing against ANNs, the high predictive
capability and simultaneous uncertainty measure of GPs show an outstanding capacity to simulate and
optimize complex biological processes, particularly in cases where the lack of experimental data becomes
a severe challenge for the construction of kinetic models. Furthermore, a distinctive feature of GPs is
the simultaneous estimation of model uncertainty alongside the real-time optimisation framework, which is
difficult to be achieved by other techniques.

In particular, the provision of a confidence region from GPs has the potential to significantly facilitate
their application in process scale-up and real-time optimal control for both traditional bioprocesses such as
fermentation and newly proposed algae based photo-production systems, since the precise prediction and
control action decision-making throughout the entire process is indispensable to guarantee the safety and
productivity of these systems. An important issue to note, is that, compared to traditional empirical and
phenomenological models, data-driven models are more susceptible to the amount, quality and range of the
data used, this is of paramount importance and should be carefully considered before building such models.
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