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HIGH PSEUDOMOMENTS OF

THE RIEMANN ZETA FUNCTION

OLE FREDRIK BREVIG AND WINSTON HEAP

Abstract. The pseudomoments of the Riemann zeta function, denoted
Mk(N), are defined as the 2kth integral moments of the Nth partial
sum of ζ(s) on the critical line. We improve the upper and lower bounds

for the constants in the estimate Mk(N) ≍k (logN)k
2

as N → ∞ for
fixed k ≥ 1, thereby determining the two first terms of the asymptotic
expansion. We also investigate uniform ranges of k where this improved
estimate holds and when Mk(N) may be lower bounded by the 2kth
power of the L∞ norm of the Nth partial sum of ζ(s) on the critical
line.

1. Introduction

Let k be a positive real number, and let ζ(s) =
∑∞

n=1 n
−s denote the

Riemann zeta function. Over the past century, the moments

(1) Mk(T ) =
1

T

∫ T

0
|ζ(1/2 + it)|2k dt

have received considerable attention. The cases k = 1 and k = 2 were
computed by Hardy and Littlewood [12] and Ingham [13], respectively, who
found that as T → ∞,

M1(T ) ∼ log T and M2(T ) ∼
1

2π2
(log T )4.

Keating and Snaith [14] conjectured that

(2) lim
T→∞

Mk(T )

(log T )k2
= a(k)g(k)

for every fixed positive real number k. Here a(k) denotes the Euler product

(3) a(k) =
∏

p

(

1− 1

p

)k2 ∞
∑

j=0

d2k(p
j)

pj
, dk(p

j) =

(

j + k − 1

j

)

,

and g(k) is a specific function arising from random matrix theory.
One motivation for studying the moments (1) is their connection to large

values of the Riemann zeta function on the critical line. Set

(4) M(T ) = max
0≤t≤T

|ζ(1/2 + it)|.
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The Lindelöf hypothesis states that M(T ) ≪ε T ε for every ε > 0, and
it follows from the Riemann hypothesis that logM(T ) ≪ log T/ log log T .
Clearly, (4) can be computed as the following limit of the moments

(5) M(T ) = lim
k→∞

[Mk(T )]
1/(2k).

Farmer, Gonek and Hughes [7] demonstrated that the conjecture (2) cannot

hold uniformly for k ≥ C
√

log T/ log log T for some specific constant C.
However, by inserting the largest possible k into (5), they conjectured that

M(T ) = exp

((

1√
2
+ o(1)

)

√

log T log log T

)

.

This conjecture was also derived by other methods.
In the present paper, we investigate similar problems for pseudomoments

of the Riemann zeta function. The pseudomoments exhibit some of the same
properties as the moments (1), while being comparably tractable in many
cases. For a Dirichlet series f(s) =

∑∞
n=1 ann

−s, its Nth partial sum is

SNf(s) =

N
∑

n=1

ann
−s.

The kth pseudomoment of the Riemann zeta function is the limit

(6) Mk(N) = lim
T→∞

1

T

∫ T

0
|SNζ(1/2 + it)|2k dt.

Expanding the integrand and computing, we get that M1(N) ∼ logN . The
study of pseudomoments was initiated by Conrey and Gamburd [6], who
demonstrated that if k is a fixed positive integer, then

(7) lim
N→∞

Mk(N)

(logN)k2
= a(k)γ(k).

Here a(k) is the Euler product (3) and γ(k) is the volume of the convex
polytope

(8) Pk =







(xij) ∈ R
k2 : xij ≥ 0,

k
∑

i=1

xij ≤ 1,

k
∑

j=1

xij ≤ 1







.

In particular, setting k = 2 in (7) gives that M2(N) ∼ (logN)4/π2.
Bondarenko, Heap and Seip [4] investigated (6) for continuous k. A special

case of their main result implies that for every fixed real number k > 1/2, it
holds that

(9) Mk(N) ≍k (logN)k
2

as N → ∞. The situation for 0 < k ≤ 1/2 is less clear, we refer again to [4]
and to the recent work of the second named author [11].
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The estimates for the implied constant in the upper bound of (9) were
recently substantially improved in [3]. Setting1

(10) C(k) = lim
N→∞

Mk(N)

(logN)k2
,

the previously known lower and upper bounds combine to

exp(−(2 + o(1))k2 log k) ≤ C(k) ≤ exp(−(1 + o(1))k2 log k),

as k → ∞. The main goal of the present paper is to sharpen this estimate
and to obtain a uniform range of k where this improved estimate holds.

Theorem 1. Uniformly for 2 ≤ k ≤ c
√
log logN it holds that

Mk(N)

(logN)k2
≥ exp

(

−k2 log k − k2 log log k +O(k2)
)

.

Uniformly for 2 ≤ k ≤ C1 logN/ log logN it holds that

Mk(N)

(logN)k2
≤ exp

(

−k2 log k − k2 log log k +O(k2)
)

.

The upper bound does not hold for k = C2 logN/ log logN .

In Theorem 1 and throughout the paper we will let constants such as C1

and C2 be sufficiently large or small depending on the context in which they
are used.

Remark. The statements of Theorem 1 also hold for k ≥ 1/2+δ for any δ > 0
in view of the results from [4]. However, the main interest of the asymptotic
estimates is large N and large k. We will therefore generally assume that N
and k are large enough for various logarithms to be positive.

Theorem 1 is in agreement with the asymptotic behaviour of the constants
appearing in the Keating–Snaith conjecture (2). We also note that Harper
[9] has very recently obtained similar results for the analogous moments on
the line σ = 0,

(11) lim
T→∞

1

T

∫ T

0
|SN ζ(it)|2k dt.

It should be made clear that the techniques used in the proof of Theorem 1
are different from those of [9]. It is in fact easy to check that our proof
does not work for σ < 1/2. However, our techniques are quite flexible on
the critical line and it is possible to extend Theorem 1 to moments of other
Dirichlet polynomials considered in [4].

The key ingredient in the proof of Theorem 1 is Weissler’s inequality for
Dirichlet polynomials (see [2, 19]). This inequality allows us to estimate

1Although we do not know that the limit (10) exists when k is not an integer (in which
case the existence follows (7)), we will slightly abuse the notation and assume that C(k)
exists. This can be justified by noting that the upper and lower bounds are actually upper
and lower bounds for lim sup and lim inf of the limit (10), respectively.
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non-integer pseudomoments through estimates for integer pseudomoments
of homogeneous completely multiplicative twists. We will estimate these
twisted integer moments by the theory for certain multiple Dirichlet series
developed in [1, 6, 12] for the lower bound and using Rankin’s trick for the
upper bound.

Indeed, for a non-negative real number ̺ define

(12) Mk,̺(N) = lim
T→∞

1

T

∫ T

0

∣

∣

∣

∣

∣

N
∑

n=1

̺Ω(n)

n1/2+it

∣

∣

∣

∣

∣

2k

dt

where Ω(n) denotes the number of prime factors of n, counting multiplicities.
Then Weissler’s inequality (see Section 4) gives that

(

M⌈k⌉,αk
(N)

)α2
k ≤ Mk(N) ≤

(

M⌊k⌋,βk
(N)

)β2
k

where αk =
√

k/⌈k⌉ and βk =
√

k/⌊k⌋.
In practice it is often useful to have smoother weights in the Dirichlet

polynomial, especially if one is concerned with uniform asymptotics. We
will therefore consider

(13) Sk,̺(N) = lim
T→∞

1

T

∫ T

0

∣

∣

∣

∣

∣

N
∑

n=1

̺Ω(n)

n1/2+it

(

1− log n

logN

)

∣

∣

∣

∣

∣

2k

dt.

In Section 4 we will use that Mk,̺(N) ≥ Sk,̺(N) to deduce the desired lower
bound in Theorem 1 from the following result.

Theorem 2. Fix δ > 0. Uniformly for 0 ≤ ̺ ≤
√
2− δ and positive integers

k = o(
√
log logN) we have the asymptotic

Sk,̺(N) = a(k, ̺)γ(k, ̺)(logN)k
2̺2 + Ek,̺(N)

where the error term satisfies

Ek,̺(N) ≪ (logN)k
2̺2−1/2 exp

(

−k2̺2 log k − k2̺2 log log k +Oδ(k
2)
)

.

The constants are given by

a(k, ̺) =
∏

p

(

1− 1

p

)k2̺2 ∞
∑

j=0

d2k(p
j)̺2j

pj
,

γ(k, ̺) =
1

Γ(1 + ̺2)k2

∫

Pk,̺

k
∏

i=1



1−
k
∑

j=1

x
1/̺2

ij





k
∏

j=1

(

1−
k
∑

i=1

x
1/̺2

ij

)

dx,

where Pk,̺ denotes the twisted polytope

Pk,̺ =







(xij) ∈ R
k2 : xij ≥ 0,

k
∑

i=1

x
1/̺2

ij ≤ 1,

k
∑

j=1

x
1/̺2

ij ≤ 1







.(14)
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Remark. If we do not pursue uniform estimates and seek to investigate
Mk,̺(N) directly, we mention without proof that for a fixed integer k and

fixed 0 < ̺ <
√
2 it is possible to deduce with our techniques that

lim
N→∞

Mk,̺(N)

(logN)k2̺2
= a(k, ̺)

Vol(Pk,̺)

Γ(1 + ̺2)
.

This is an extension of the main result of [6], which corresponds to the
case ̺ = 1, that might be of independent interest. Comparing the twisted
polytope Pk,̺ from (14) to the polytope Pk from (8) we note the striking
geometric effect of the parameter ̺ on the faces of the polytope.

From the proof we will see that, in fact, the statement of Theorem 2
holds uniformly for k2 = o(

√
logN) (and that this can almost certainly be

improved, as can the factor of 1/
√
logN in the error term). However, we

have chosen to state it this way since, as we will see later, the main term is
of size

(logN)k
2̺2 exp

(

−k2̺2 log k − k2̺2 log log k +Oδ(k
2)
)

and so the result would fail to be an asymptotic if k ≥ C
√
log logN since the

factor of 1/
√
logN in the error term would be absorbed into exp(Oδ(k

2)).
Let us next discuss what happens when k → ∞ and N is fixed. In analogy

with (5), we therefore define

M(N) = lim
k→∞

[Mk(N)]1/(2k).

A result regarding norms of Dirichlet polynomials (see [2, Sec. 2.3]), which
is a consequence of their almost periodicity, gives that this limit is equal to

(15) M(N) = sup
t≥0

|SNζ(1/2 + it)| =
N
∑

n=1

1√
n
∼ 2

√
N.

Following [7], we could insert the largest premitted value in the upper bound
of Theorem 1, namely k = C1 logN/ log logN , to get the upper bound

[Mk(N)]1/(2k) ≤ exp

(

(C + o(1))
logN

log logN

)

for some positive constant C. However, this is too small compared to the
true limit (15). This means that the approach to the Lindelöf conjecture
through the Keating–Snaith conjecture discussed in [7] does not carry over
to the pseudomoment setting. We are lead to consider the following.

Problem. Determine the smallest k = k(N) such that [Mk(N)]1/2k ≫
√
N .

This problem is the final topic of the present paper. By the discussion
above, k = C1 logN/ log logN is certainly too small. We will demonstrate

that for a general Dirichlet polynomial f(s) =
∑N

n=1 ann
−s, the optimal k

is π(N). For the partial sums SNζ(1/2 + s), we can do much better, but
we have been unable to resolve the problem. Specifically, we will show that
k = N ε is sufficient for every ε > 0.
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For these arguments, we need to estimate expressions such as

(16) lim
T→∞

1

T
meas

({

t ∈ [0, T ] :

∣

∣

∣

∣

∣

N
∑

n=1

n−1/2−it

∣

∣

∣

∣

∣

≥ λ

})

for large λ. Our approach is to use an old insight of H. Bohr to translate
(16) to the polytorus T

d, for d = π(N). Here we will apply a version of
Bernstein’s inequality for trigonometric polynomials in several variables [17],
Khintchine’s inequality [15] and estimates for smooth numbers [8].

Organization. The present paper contains four additional sections. The
next section contains some preliminary estimates needed for the proof of
Theorem 2. This proof can be found in Section 3. Section 4 is devoted to the
proof of Theorem 1. Finally, in Section 5 some results on norm comparison
for Dirichlet polynomials are obtained.

2. Preliminary estimates

Our starting point is to expand the square and integrate in the right hand
side of (12) to obtain

(17) Mk,̺(N) =
∑

n1···nk=
nk+1···n2k

nj≤N

̺Ω(n1) · · · ̺Ω(n2k)

(n1 · · ·n2k)1/2
.

Consider the associated multiple Dirichlet series

(18) Fk,̺(s) = Fk,̺(s1, . . . , s2k) =
∑

n1···nk=
nk+1···n2k

nj≥1

̺Ω(n1) · · · ̺Ω(n2k)

n
1/2+s1
1 · · · n1/2+s2k

2k

.

In preparation for the proof of Theorem 2 in the next section, we will compile
some preliminary results and estimates for the Dirichlet series Fk,̺ from (18).
Our first lemma relies on a result from [16].

Lemma 3. Fix δ > 0. Uniformly for 0 ≤ ̺ ≤
√
2− δ and 0 < σ ≤ 1/ log k

it holds that

|Fk,̺(s)| ≤ exp
(

−k2̺2
(

log 2σ + log log k2̺2 +Oδ(1)
))

,

if sℓ = σ + itℓ for 1 ≤ ℓ ≤ 2k.
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Proof. Since Fk,̺(s) has positive coefficients, the maximum is attained for
tℓ = 0. Using that σℓ = σ, we find that

|Fk,̺(s)| ≤
∑

n1···nk=
nk+1···n2k

nj≥1

̺Ω(n1) · · · ̺Ω(n2k)

n
1/2+σ
1 · · ·n1/2+σ

2k

=

∞
∑

n=1

d2k(n)̺
2Ω(n)

n1+2σ
=
∏

p





∞
∑

j=0

d2k(p
j)̺2j

p(1+2σ)j





We will split the Euler product at k2̺2. For the small primes, we first use
that σ ≥ 0 and estimate roughly to find that

∏

p≤k2̺2





∞
∑

j=0

d2k(p
j)̺2j

pj



 ≤
∏

p≤k2̺2





∞
∑

j=0

dk(p
j)̺j

pj/2





2

=
∏

p≤k2̺2

(

1− ̺√
p

)−2k

≤ exp



2kCδ

∑

p≤k2̺2

̺√
p



 = exp

(

Oδ

(

k2̺2

log k

))

,

by the prime number theorem. For the large primes, we use d2k(p
j) ≤ dk2(p

j)
and the estimate − ln(1− x) ≤ x+O(x2), for, say 0 ≤ x ≤ 2/3, to achieve

∏

p>k2̺2





∞
∑

j=0

d2k(p
j)̺2j

p(1+2σ)j



 ≤
∏

p>k2̺2

(

1− ̺2

p(1+2σ)

)−k2

= exp



k2̺2
∑

p>k2̺2

1

p1+2σ
+O(1)



 .

We now put into play the following estimate (see [16, Lem. 3.12]). Uniformly
for σ > 0 and y ≥ 2, it holds that

∑

p>y

1

p1+2σ
= − log 2σ− log log y−γ+O(σ log y)+O(σ2 log2 y)+O

(

1

log y

)

.

We apply this estimate with y = k2̺2 and since σ ≤ 1/ log k we get that

k2̺2
∑

p>k2̺2

1

p1+2σ
= −k2̺2

(

log 2σ + log log k2̺2 +O(1)
)

,

which completes the proof. �

Lemma 3 will also be used in the proof of the upper bound in Theorem 1
found in Section 4. Let us now factor out zeta functions from Fk,̺ and
estimate the arithmetic factor a(k, ̺).
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Lemma 4. Let Fk,̺ be as in (18) for some 0 ≤ ̺ <
√
2 and suppose that

Re(si + sj+k) > 0 for 1 ≤ i, j ≤ k. Then

Fk,̺(s) = Ak,̺(s)

k
∏

i,j=1

ζ(1 + si + sj+k)
̺2

where

Ak,̺(s) =
∏

p

k
∏

i,j=1

(

1− 1

p1+si+sj+k

)̺2
∑

m1+···+mk=
mk+1+···+m2k

mj≥0

̺m1+···+m2k

pm1(
1
2
+s1)+···+m2k(

1
2
+s2k)

.

The product is absolutely convergent if Re(si+sj+k) > −1/2 for 1 ≤ i, j ≤ k,
and in particular

(19) Ak,̺(0) =
∏

p

(

1− 1

p

)k2̺2 ∞
∑

j=0

d2k(p
j)̺2j

pj
= a(k, ̺).

Fix δ > 0. Uniformly for 0 ≤ ̺ ≤
√
2− δ we have that

a(k, ̺) = exp

(

−k2̺2 log(2eγ log k̺) +Oδ

(

k2

log k

))

as k → ∞.

Proof. The first statement about the factorization into Euler products is
standard and we omit the details of the proof (see e.g. [6, 12]).

For the second statement about the asymptotics of a(k, ̺), we split the
Euler product (19) into two parts as in the proof of Lemma 3. We first
consider p ≤ k2̺2 and apply Mertens’ third theorem to the effect that

∏

p≤k2̺2

(

1− 1

p

)k2̺2

=

(

e−γ

log(k2̺2)

)k2̺2 (

1 +O

(

1

log(k2̺2)

))k2̺2

= exp

(

−k2̺2 log (2eγ log(k̺)) +O

(

k2

log k

))

.

For the other factor, we recall from the proof of Lemma 3 that

∏

p≤k2̺2





∞
∑

j=0

d2k(p
j)̺2j

pj



 ≤ exp

(

Oδ

(

k2

log k

))

.
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When p > k2̺2, we again use that d2k(p
j) ≤ dk2(p

j) to obtain the estimate

log
∏

p>k2̺2

(

1− 1

p

)k2̺2 ∞
∑

j=0

d2k(p
j)̺2j

pj

≤ k2
∑

p>k2̺2

(

̺2 log

(

1− 1

p

)

− log

(

1− ̺2

p

))

≪ k2
∑

p>k2̺2

1

p2
≪ 1.

The proof is completed by combining the three estimates. �

Lemma 4 allows us to extract the behaviour of Fk,̺(s) near s = 0 by
estimating the Euler product Ak,̺ and the double product of zeta functions
separately. We begin with the latter, which is straightforward.

Lemma 5. Suppose that Re(si + sj+k) > 0 for 1 ≤ i, j ≤ k and set

S = max
1≤ℓ≤2k

|sℓ|.

If Sk2 = o(1) and ̺ ≥ 0, then

k
∏

i,j=1

ζ(1 + si + sj+k)
̺2 =

(

1 +O̺

(

Sk2
))

k
∏

i,j=1

1

(si + sj+k)̺
2 .

Proof. For each zeta function in the double product we apply the expansion

ζ(1 + s)̺
2
=

1

s̺2
(1 +O̺(|s|)) .

Since s = si + sj+k ≪ S, we get that

k
∏

i,j=1

ζ(1 + si + sj+k)
̺2 = (1 +O̺(S))

k2
k
∏

i,j=1

1

(si + sj+k)̺
2

and by the assumption Sk2 = o(1) we complete the proof. �

The next lemma is the most technical part in the proof of Theorem 2, and
also the part of the argument which forces the restriction k = o(

√
log logN).

Lemma 6. Suppose that Re(si + sj+k) ≥ 0 for 1 ≤ i, j ≤ k and set

S = max
1≤ℓ≤2k

|sℓ|.

Fix δ > 0. If S ≤ 1/ log k and 0 ≤ ̺ ≤
√
2− δ there is a constant Σδ so that

Ak,̺(s) = a(k, ̺)
(

1 +O
(

SeΣδk
2
))

.
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Proof. By the chain rule we get that

Ak,̺(s) = Ak,̺(0) +

∫ 1

0

d

dx
Ak,̺(xs) dx

= a(k, ̺) +

2k
∑

ℓ=1

∫ 1

0
sℓ

∂

∂sℓ
Ak,̺(xs) dx,

(20)

so it remains to show that the partial derivatives satisfy
∣

∣

∣

∣

∂

∂sℓ
Ak,̺(s)

∣

∣

∣

∣

≤ a(k, ̺)eΣ
′

δk
2

when S ≤ 1/ log k. Note that the factor of 2k obtained when we take absolute
values of the right hand side of (20) can be absorbed into the exponential.
By symmetry, we consider only the case ℓ = 1. We first note that since
Re(si + sj+k) ≥ 0, we have that

∂

∂s1
log

k
∏

i,j=1

(

1− 1

p−1−si−sj+k

)̺2

= ̺2
k
∑

j=1

p−1−s1−sj+k log p+O

(

k log p

p2

)

.

and that

∂

∂s1
log

∑

m1+···+mk=
mk+1+···+m2k

mj≥0

̺m1+···+m2k

pm1(
1
2
+s1)+···+m2k(

1
2
+s2k)

= −̺2
k
∑

j=1

p−1−s1−sj+k log p+O

(

eCδk
log p

p2

)

.

Here we used the same trick used on the small primes in Lemma 3 and that
Re(si + sj+k) ≥ 0 twice. Specifically, we estimated

∑

m1+···+mk=
mk+1+···+m2k

mj≥M

̺m1+···+m2k

pm1(
1
2
+s1)+···+m2k(

1
2
+s2k)

≪
(

k2̺2

p

)M (

1− ̺√
2

)−2k

for M = 2 in the numerator and M = 1 in the denominator.
By logarithmic differentiation we therefore obtain

∂

∂s1
Ak,̺(s) ≪ |Ak,̺(s)|

(

eCδk + k
)

∑

p

log p

p2
,

and it is sufficient to show that |Ak,̺(s)| ≤ Ak,̺(0)e
Σδk

2
. We will split the

ratio Ak,̺(s)/Ak,̺(0) into four parts, which will be estimated separately.
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I. For primes p ≤ 2k2 we use Taylor expansions to estimate

(

1− 1

p

)−k2̺2 k
∏

i,j=1

(

1− 1

p1+si+sj+k

)̺2

= exp



̺2
k
∑

i,j=1

(

1

p
− 1

p1+si+sj+k

)

+O

(

k2̺2

p2

)





≤ exp



̺2
k
∑

i,j=1

C|S| log p
p

+O

(

k2̺2

p2

)





under the assumption that S log p is bounded. Summing over p ≤ 2k2 and
using the prime number theorem yields a total contribution

∏

p≤2k2

(

1− 1

p

)−k2̺2 k
∏

i,j=1

(

1− 1

p1+si+sj+k

)̺2

≤ exp(O(k2)),

where we used that S ≤ 1/ log k.
II. Since Re(si + sj+k) ≥ 0 we get that

(21)

∣

∣

∣

∣

∣

∑

m1+···+mk=
mk+1+···+m2k

mj≥0

̺m1+···+m2k

pm1(
1
2
+s1)+···+m2k(

1
2
+s2k)

∣

∣

∣

∣

∣

≤
∞
∑

j=0

d2k(p
j)̺2j

pj

so the ratio between these two are bounded by 1. We apply this estimate
only for p ≤ 2k2.

III. For primes p > 2k2 we consider

(22)

k
∏

i,j=1

(

1− 1

p1+si+sj+k

)̺2
∑

m1+···+mk=
mk+1+···+m2k

mj≥0

̺m1+···+m2k

pm1(
1
2
+s1)+···+m2k(

1
2
+s2k)

.

We will use (21) combined with the estimate
∣

∣

∣

∣

∣

k
∏

i,j=1

(

1− 1

p1+si+sj+k

)̺2
∣

∣

∣

∣

∣

≤
(

1 +
1

p

)k2̺2

≤
∞
∑

j=0

∣

∣

∣

∣

(

k2̺2

j

)∣

∣

∣

∣

1

pj

obtained by the fact that Re(si+sj+k) ≥ 0. Before we apply these estimates,
we observe that the first order terms in (22) cancel in a similar way to
what we found in the logarithmic differentiation above. After combining
this observation with the two estimates, we find that the absolute value of
(22) is smaller than

1+

∞
∑

j=2

1

pj

∑

j1+j2=j

∣

∣

∣

∣

(

k2̺2

j1

)∣

∣

∣

∣

̺2j2d2k(p
j2) ≤ 1+

∞
∑

j=2

(k̺)2j(j + 1)

pj
≤ 1+

Cδk
4̺4

p2
,
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where we use that dk(p
j) ≤ kj and that if α ≥ 1, then

∣

∣

∣

∣

(

α

j

)∣

∣

∣

∣

≤ αj .

We then get a total contribution which is smaller than

∏

p>2k2

(

1 +
Cδk

4̺4

p2

)

≤ exp



C ′
δk

4̺4
∑

p>2k2

1

p2



 = exp

(

Oδ

(

k2

log k

))

.

IV. As the final part in the proof of Lemma 4, we find that

∏

p>2k2

(

1− 1

p

)k2̺2 ∞
∑

j=0

d2k(p
j)̺2j

pj
≥
∏

p>2k2

(

1− 1

p

)k2̺2 (

1 +
k2̺2

p

)

≫ 1

Combining estimates I–IV completes the proof. �

3. Proof of Theorem 2

Throughout this section, we let L = logN to simplify various expressions
and computations that will appear. We will also assume that δ > 0 is fixed
and that 0 ≤ ̺ ≤

√
2− δ.

To prove Theorem 2, we first want to express the smoothed version of
(17) as a 2k fold contour integral of (18) by applying Perron’s formula in
each variable nℓ. The smoothing factor yields additional convergence in the
integrals that allows us to obtain uniform estimates.

To extract the leading term of this integral our plan is to apply, what
is in essence, the saddle point method. This involves identifying the point
where the main contribution of the integral arises from, then truncating the
integrals at a low height around this point and expanding the integrand in
terms of Taylor and Laurent series. After extracting the main term and
the arithmetic factor a(k, ̺), we re-extend the integrals and apply Perron’s
formula again to compute the geometric factor γ(k, ̺).

To obtain a representation of Sk,̺(N) as a 2k fold integral, we want to
use the following version of Perron’s formula. For c > 0, it holds that

(23)
1

2πi

∫ c+i∞

c−i∞
xs

ds

s2
=

{

log x, 1 ≤ x < ∞,

0, 0 < x < 1.

Expanding the integral (13) as in (17), we find that

Sk,̺(N) =
∑

n1···nk=
nk+1···n2k

nj≤N

̺Ω(n1) · · · ̺Ω(n2k)

(n1 · · · n2k)1/2

2k
∏

ℓ=1

(

1− log nℓ

logN

)

=
1

(logN)2k(2πi)2k

∫ c+i∞

c−i∞
· · ·
∫ c+i∞

c−i∞
Fk,̺(s)

2k
∏

ℓ=1

N sℓ
dsℓ
s2ℓ

,
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where we applied (23) with x = N/nℓ for 1 ≤ ℓ ≤ 2k. We now substitute
sℓ 7→ sℓ/L and find that

(24) Sk,̺(N) =
1

(2πi)2k

∫ σ+i∞

σ−i∞
· · ·
∫ σ+i∞

σ−i∞
Fk,̺(s/L)

2k
∏

ℓ=1

esℓ
dsℓ
s2ℓ

where σ = Lc. Our goal is now to choose σ > 0 and truncate the integrals
at a suitable height T . Specifically, we will obtain the following result.

Lemma 7. If k = o(T ), then

Sk,̺(N) =
1

(2πi)2k

∫ k+iT

k−iT
· · ·
∫ k+iT

k−iT
Fk,̺(s/L)

2k
∏

ℓ=1

esℓ
dsℓ
s2ℓ

+O

(Ck,̺(N)

k2k−1T

)

where Ck,̺(N) = |e2k2Fk,̺ (k/L, . . . , k/L) |. If k ≤ C1 logN/ log logN , then

(25) Ck,̺(N) ≤ (logN)k
2̺2 exp

(

−k2̺2 (log k + log log k +Oδ(1))
)

.

Proof. Let us first explain the choice σ = k. From Lemma 3 we get that
∣

∣

∣

∣

∣

Fk,̺(s/L)
2k
∏

ℓ=1

esℓ

∣

∣

∣

∣

∣

≤ exp
(

2kσ − k2̺2
(

log(2σ/L) + log log k2̺2 +Oδ(1)
))

,

provided σ/L ≤ 1/ log k. A calculus argument gives that the optimal value is
2σ = k̺2, but we will for notational simplicity use σ = k. The effect of this
suboptimal choice is absorbed in the Oδ(1) term. If k ≤ C1 logN/ log logN
then σ/L ≤ 1/ log k, and we obtain (25).

We now consider the error when truncating (24) at height tℓ = T for each
integral. We take absolute values inside the integrals and extract Ck,̺(N).

What remains are 22k−1 combinations of integrals of the following types:

1

2π

∫ k+iT

k−iT

ds

|s|2 ≤ 1

2π

∫ k+i∞

k−i∞

ds

|s|2 =
1

2k
(26)

1

2π

(
∫ k−iT

k−i∞
+

∫ k+i∞

k+iT

)

ds

|s|2 =
1

πk

(π

2
− arctan(T /k)

)

≤ C

T(27)

since k = o(T ) and

arctan x =
π

2
− 1

x
+O(x−3)

as x → ∞. Since k = o(T ), the integrals (27) are smaller than the integrals
(26). Hence the largest contribution from the error is obtained by choosing
the maximal number of integrals like (26). However, there is always at least
one integral like (27), so we conclude that the total error is at most

Ck,̺(N)× 22k−1 × 1

(2k)2k−1

C

T ≪ Ck,̺(N)

k2k−1T
as desired. �
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We will now investigate the integral

(28) Ik,̺(N,T ) =
1

(2πi)2k

∫ k+iT

k−iT
· · ·
∫ k+iT

k−iT
Fk,̺(s/L)

2k
∏

ℓ=1

esℓ
dsℓ
s2ℓ

,

appearing in Lemma 7, where the parameter T will be chosen later. To
extract the main term from this integral, we will apply Lemma 4, Lemma 5
and Lemma 6.

Lemma 8. Let Ik,̺(N,T ) be as in (28) and set

(29) Jk,̺(T ) =
1

(2πi)2k

∫ k+iT

k−iT
· · ·
∫ k+iT

k−iT

k
∏

i,j=1

1

(si + sj+k)̺
2

2k
∏

ℓ=1

esℓ
dsℓ
s2ℓ

.

Suppose that k = o(T ), and that k2T /L = o(1). Then

Ik,̺(N,T ) = Lk2̺2a(k, ̺)

(

Jk,̺(T ) +O

(

T
L
ek

2(Σδ+2+o(1))

(2k)k2̺2

))

.

Proof. With the assumptions on k and T we get from Lemma 4, Lemma 5
and Lemma 6 that in the domain of integration it holds that

Fk,̺(s/L) = Lk2̺2a(k, ̺)

k
∏

i,j=1

1

(si + sj+k)̺
2

(

1 +O

(T
L ek

2(Σδ+o(1))

))

.

We complete the proof by noting that
∣

∣

∣

∣

∣

∣

1

(2πi)2k

∫ k+iT

k−iT
· · ·
∫ k+iT

k−iT

k
∏

i,j=1

1

(si + sj+k)̺
2

2k
∏

ℓ=1

esℓ
dsℓ
s2ℓ

∣

∣

∣

∣

∣

∣

≤ e2k
2

(2k)k2̺2
1

(2k)2k
,

where we move the absolute values inside and use (26). �

We now use Perron’s formula in reverse to extract the geometric factor
from the integral appearing in Lemma 8.

Lemma 9. If k = o(T ) and Jk,̺(T ) is as in (29), then

Jk,̺(T ) = γ(k, ̺) +O

(

1

T
ek

2(2+o(1))

(2k)k2̺2

)

where γ(k, ̺) is the geometric factor in Theorem 2.

Proof. We first re-extend the integrals and estimate as in Lemma 7. Since
Re(sℓ) = k for 1 ≤ ℓ ≤ 2k, we have that

∣

∣

∣

∣

∣

∣

k
∏

i,j=1

1

(si + sj+k)̺
2

2k
∏

ℓ=1

esℓ

∣

∣

∣

∣

∣

∣

≤ e2k
2

(2k)k2̺2
.
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We then follow the second part of the proof of Lemma 7 line for line to obtain
the stated error term. What remains is to show that γ(k, ̺) = Jk,̺ where

(30) Jk,̺ =
1

(2πi)2k

∫ k+i∞

k−i∞
· · ·
∫ k+i∞

k−i∞

k
∏

i,j=1

1

(si + sj+k)̺
2

2k
∏

ℓ=1

esℓ
dsℓ
s2ℓ

.

We begin with the integral representation of the gamma function,

Γ(̺2) =

∫ ∞

0
e−xx̺

2 dx

x

and substitute x 7→ (si + sj+k)xij for Re(si + sj+k) > 0 which gives that

1

(si + sj+k)̺
2 =

1

Γ(̺2)

∫ ∞

0
e−(si+sj+k)xijx̺

2

ij

dxij
xij

.

For each term of the k2 factors in the product over i, j in (30), we apply this
identity to the effect that

Jk,̺ =
1

Γ(̺2)k2

∫ ∞

0
· · ·
∫ ∞

0

1

(2πi)2k

∫ k+i∞

k−i∞
· · ·
∫ k+i∞

k−i∞

×





k
∏

i=1

esi(1−
∑k

j=1 xij)
k
∏

j=1

esj+k(1−
∑k

i=1 xij)





2k
∏

ℓ=1

dsℓ
s2ℓ

k
∏

i,j=1

x̺
2

ij

dxij
xij

,

where the interchange in order of integration is valid by absolute convergence.
The sℓ-integrals are now separable and so here we may apply (23) in the form

1

2πi

∫ c+i∞

c−i∞
es(1−X) ds

s2
=

{

1−X, if X ≤ 1,

0, if X > 1,

with c = k > 0 in each variable to find that

Jk,̺ =
1

Γ(̺2)k2

∫

Pk

k
∏

i=1



1−
k
∑

j=1

xij





k
∏

j=1

(

1−
k
∑

i=1

xij

)

k
∏

i,j=1

x̺
2

ij

dxij
xij

where Pk is the polytope (8). We then apply the substitution x̺
2

ij 7→ xij in
each variable to find that

Jk,̺ =
1

Γ(1 + ̺2)k2

∫

Pk,̺

k
∏

i=1



1−
k
∑

j=1

x
1/̺2

ij





k
∏

j=1

(

1−
k
∑

i=1

x
1/̺2

ij

)

dx

where Pk,̺ is the twisted polytope (14) and so Jk,̺ = γ(k, ̺) as desired. �

By combining all the results of this section, we finally obtain a proof of
Theorem 2.
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Final part in the proof of Theorem 2. By Lemma 7, Lemma 8 and Lemma 9,
we get the desired main term with an error term that satisfies

Ek,̺(N) ≪ Ck,̺(N)

k2k−1T + Lk2̺2a(k, ̺)

(

T
L
ek

2(Σδ+2+o(1))

(2k)k2̺2
+

1

T
ek

2(2+o(1))

(2k)k2̺2

)

,

so we choose T =
√
L, recall (25) and Lemma 4 to obtain

Ek,̺(N) ≪ Lk2̺2−1/2 exp
(

−k2̺2(log k + log log k +Oδ(1))
)

provided k2 = o(
√
L). To ensure that this is smaller than the main term, we

require that L−1/2eOδ(k
2) → 0, which means that k = o(

√
log logN). �

4. Proof of Theorem 1

Let 0 < q < ∞ and define

(31) ‖f‖q =
(

lim
T→∞

1

T

∫ T

0
|f(it)|q dt

)

1
q

for f(s) =
∑N

n=1 ann
−s. The limit exists for any Dirichlet polynomial f and

every 0 < q < ∞ (see [2]). We also set

(32) ‖f‖∞ = sup
t∈R

|f(it)|,

and recall that ‖f‖q → ‖f‖∞ as q → ∞. Note that the pseudomoments we
are interested in (6) can alternatively be expressed as

(33) Mk(N) = ‖fN‖2k2k
for fN(s) = SNζ(1/2 + s) and M(N) = ‖fN‖∞ in light of (15).

Let ̺ be any non-negative real number, and set

W̺f(s) =

N
∑

n=1

̺Ω(n)ann
−s.

The following version of Weissler’s inequality [19] for Dirichlet polynomials
can be extracted from [2, Sec. 3].

Lemma 10 (Weissler’s inequality). Suppose that 0 < q1 ≤ q2 < ∞ and let

0 < ̺ ≤
√

q1/q2. Then

‖W̺f‖q2 ≤ ‖f‖q1
for every Dirichlet polynomial f(s) =

∑N
n=1 ann

−s.

Our plan is to use Lemma 10 to relate Mk(N) for non-integers k ≥ 1 to
the twisted moments M⌊k⌋,̺1(N) and M⌈k⌉,̺2(N).



HIGH PSEUDOMOMENTS OF THE RIEMANN ZETA FUNCTION 17

4.1. Proof of the upper bound in Theorem 1. We begin with the proof
of the upper bound in Theorem 1, which will be deduced from Lemma 3,
Lemma 10 and Rankin’s trick.

Lemma 11. Fix δ > 0 and suppose that 0 < ̺ ≤
√
2− δ. Uniformly for

every integer 1 ≤ k ≤ C1 logN/ log logN we have that

Mk,̺(N)

(logN)k2̺2
≤ exp

(

−k2̺2
(

log(k2̺) + log log(k̺) +Oδ(1)
))

.

Proof. Let

dk,N (n) =
∑

n1···nk=n
nj≤N

1.

We rewrite (17) using dk,N and apply Rankin’s trick to the effect that

Mk,̺(N) =
Nk
∑

n=1

d2k,N (n)̺2Ω(n)

n
≤ N2kσ

∞
∑

n=1

d2k(n)̺
2Ω(n)

n1+2σ
= N2kσF (σ, . . . , σ).

We then apply Lemma 3 with σ = k̺2/ logN . The requirement σ ≤ 1/ log k
from Lemma 3 is satisfied for k ≤ C1 logN/ log logN . �

Proof of the upper bound in Theorem 1. If k ≥ 2 is an integer, we directly
use Lemma 11 with ̺ = 1. If k ≥ 2 is not an integer, we first use (33) and

Lemma 10 with q1 = 2⌊k⌋, q2 = 2k and ̺ =
√

k/⌊k⌋ (in reverse) to obtain

Mk(N)

(logN)k2
≤
(

M⌊k⌋,̺(N)
)k/⌊k⌋

(logN)k2
=

( M⌊k⌋,̺(N)

(logN)⌊k⌋2̺2

)̺2

.

We then use Lemma 11 and that ⌊k⌋2̺4 = k2, to obtain

Mk(N)

(logN)k2
≤ exp

(

−k2 (log k + log log k + Cδ)
)

uniformly for ⌊k⌋ ≤ C1 logN/ log logN . Since k ≥ 2, we applied Lemma 10

with ̺ =
√

k/⌊k⌋ ≤
√

3/2 and the requirement 0 ≤ ̺ ≤
√
2− δ of Lemma 11

is satisfied with e.g. δ = 1/2.
For the second statement, we check that if k = C2 logN/ log logN , then

log logN − log k − log log k = − logC2 − log

(

1 +
logC2 − log log logN

log logN

)

.

The assumption that the upper bound in Theorem 1 holds the prescribed
value of k yields that

Mk(N) ≤ (logN)k
2
exp

(

−k2 log k − k2 log log k + Ck2
)

= exp
(

k2 (− logC2 + C + o(1))
)

which contradicts the trivial bound Mk(N) ≥ 1 as N → ∞ if C2 > eC . �
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4.2. Proof of the lower bound in Theorem 1. For the proof of the lower
bound in Theorem 1, we require the estimate

a(k, ̺)γ(k, ̺) = exp(−k2̺2 log k − k2̺2 log log k +Oδ(k
2))

where a(k, ̺) and γ(k, ̺) are the constants appearing in Theorem 2. The first
factor is handled by Lemma 4 and the second we will deduce below. Once
we know these estimates, we will apply Lemma 10 after relating Mk,̺(N)
to the smoothed moments Sk,̺(N).

A precise asymptotic expansion for the volume of the Birkhoff polytope

Bk =







(xij) ∈ R
k2 : xij ≥ 0,

k
∑

i=1

xij = 1,
k
∑

j=1

xij = 1







,

which appear in the formulas for the moments (11) when k ≥ 1 is an integer
(see [10, 12]), can be found in [5]. Extracting the first two terms of this
formula gives

log Vol(Bk) = −k2 log k + k2 +O(k log k).

We have been unable to find a similar result for the polytope Pk from (8),
however one can extract a similar result2 from the following proof.

Lemma 12. Suppose that ̺ > 0 and that k is a positive integer. Then

Γ(1 + ̺2)−k22−2k−k2̺2k−k2̺2 ≤ γ(k, ̺) ≤
(

Γ(1 + k̺2)
)−k

.

In particular, if ̺ is bounded and k → ∞, we have that

(34) log (γ(k, ̺)) = −k2̺2 log k +O(k2).

Proof. Recall that

γ(k, ̺) =
1

Γ(1 + ̺2)k
2

∫

Pk,̺

k
∏

i=1



1−
k
∑

j=1

x
1/̺2

ij





k
∏

j=1

(

1−
k
∑

i=1

x
1/̺2

ij

)

dx

where Pk,̺ is the twisted polytope (14). We will find smaller and larger sets
where the integrand can be easily estimated and the volume easily computed.

Lk,̺ =

{

(xij) ∈ R
k2 : 0 ≤ xij ≤

1

(2k)̺2

}

,

Uk,̺ =







(xij) ∈ R
k2 : xij ≥ 0,

k
∑

j=1

x
1/̺2

ij ≤ 1







.

Clearly Lk,̺ ⊂ Pk,̺ ⊂ Uk,̺, so we obtain the lower and upper bounds for
γ(k, ̺) by integrating over Lk,̺ and Uk,̺, respectively. Now,

∫

Lk,̺

k
∏

i=1



1−
k
∑

j=1

x
1/̺2

ij





k
∏

j=1

(

1−
k
∑

i=1

x
1/̺2

ij

)

dx ≥
(

1− 1

2

)2k

Vol(Lk,̺)

2One finds that, to leading order, log Vol(Pk) = −k2 log k +O(k2).
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and clearly Vol(Lk,̺) = (2k)−k2̺2 . Combined, this yields the lower bound

γ(k, ̺) ≥ Γ(1 + ̺2)−k22−2k−k2̺2k−k2̺2 .

For the upper bound, we simply use that the integrand is bounded from
above by 1 to obtain

γ(k, ̺) ≤ Vol(Uk,̺)

Γ(1 + ̺2)k2
.

We then use the well-known formula for the volume of the ℓr-ball in R
n,

Vol











x ∈ R
n :

n
∑

j=1

|xj |r ≤ 1









 =
2n (Γ(1 + 1/r))n

Γ(1 + n/r)
,

with r = 1/̺2 and n = k which gives a total upper bound of

γ(k, ̺) ≤ 1

Γ(1 + k̺2)k
.

The upper bound in (34) is deduced by

1

(Γ(1 + k̺2))k
≤ exp

(

−k2̺2 log k + k2̺2(1− 2 log ̺)
)

,

where we used Stirling’s formula of the form Γ(1 + x) ≥ (x/e)x. �

Proof of the lower bound in Theorem 1. For k ≥ 2, we set ̺ =
√

k/⌈k⌉ and
combine (33) with Lemma 10 to find that

Mk(N) ≥
(

M⌈k⌉,̺(N)
)̺2 ≥

(

S⌈k⌉,̺(N)
)̺2

since clearly 1 − log n/ logN ≤ 1 when 1 ≤ n ≤ N . From Theorem 2, we
know uniformly for k = o(

√
log logN) that

S⌈k⌉,̺(N) ∼ (logN)⌈k⌉
2̺2a(⌈k⌉, ̺)γ(⌈k⌉, ̺).

However, by choosing some sufficiently small c, we may ensure that absolute
value of the error term in Theorem 2 is smaller than, say, 1/2 times the main
term uniformly for 2 ≤ k ≤ c

√
log logN . Using the fact that ⌈k⌉2̺4 = k2

and the estimates from Lemma 4 and Lemma 12, we can now complete the
proof by similar computations as in the proof of the upper bound presented
above. �

5. Norm comparisons for Dirichlet polynomials

For an integer d ≥ 1, let T
d denote the polytorus

T
d = {z = (z1, . . . , zd) : |zj | = 1 for 1 ≤ j ≤ d} ,

and for 0 < q ≤ ∞ let Lq(Td) denote the usual Lq space with respect to the
normalized product Lebesgue arc measure µd(z) = µ(z1)× · · · × µ(zd). The
main tool of the present section is the Bohr correspondence, which allows
us to compute the limit measure (16) and the norms (31) and (32) on the
polytorus T

d.
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Let N ≥ 2 be a positive integer and set d = π(N). Every positive integer
n ≤ N has the unique prime factorization

n =

d
∏

j=1

p
κj

j .

The Dirichlet polynomial f(s) =
∑N

n=1 ann
−s corresponds to a polynomial

in d variables by replacing each prime number p−s
j with an independent

complex variable zj. Specifically, we set

F (z) =

N
∑

n=1

anz(n), where z(n) =

d
∏

j=1

z
κj

j .

By Kronecker’s theorem, the flow

(35) Td(t) =
(

2−it, 3−it, . . . , p−it
d

)

is dense on T
d. This implies that the norm (32) is preserved under the Bohr

correspondence,

‖f‖∞ = sup
z∈Td

|F (z)| = ‖F‖L∞(Td).

Using the ergodic theorem for the Kronecker flow (35), it is proved in [2]
that the norms (31) are also preserved,

(36) ‖f‖q = ‖F‖Lq(Td) =

(
∫

Td

|F (z)|q dµd(z)

) 1
q

.

The same ergodic argument also gives that

lim
T→∞

1

T
meas ({t ∈ [0, T ] : |f(it)| ≥ λ}) = µd

({

z ∈ T
d : |F (z)| ≥ λ

})

.

A more elementary proof of (36) can be found in [18, Sec. 3].
We are mainly interested in comparing ‖fN‖2k and ‖fN‖∞ for the specific

Dirichlet polynomial fN (s) = SNζ(1/2+s). However, we first investigate the

case of a general Dirichlet polynomial f(s) =
∑N

n=1 ann
−s. We will apply

a version of Bernstein’s inequality for trigonometric polynomials in several
variables (see [17, Sec. 5.2]).

Lemma 13. Let F (z) be a polynomial of degree k in d variables. Then
∣

∣

∣F (eiθ1 , . . . , eiθd)− F (eiϑ1 , . . . , eiϑd)
∣

∣

∣ ≤ π

2
k‖F‖L∞(Td) sup

1≤j≤d
|θj − ϑj|,

for every θ = (θ1, . . . , θd) and ϑ = (ϑ1, . . . , ϑd) in (R/[0, 2π))d.

Remark. It is not known whether the constant π/2 in Lemma 13 can be
replaced with the smaller constant 1, which is the correct statement for
d = 1. If this indeed holds, then π2 in Theorem 14 can be replaced with 2π.
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A straightforward argument (see below) shows that if F is a polynomial of
degree k in d variables, then ‖F‖Lq(Td) ≫ ‖F‖L∞(Td) whenever q ≥ d log k.
However, for Dirichlet polynomials we can do better, since the degree of the
variables corresponding to large primes is restricted. We will see later that
the exponent π(N) in the following result is sharp.

Theorem 14. Let F (z) =
∑N

n=1 anz(n). Set d = π(N) and for 0 < λ < 1
consider the set

Xλ =
{

z ∈ T
d : |F (z)| ≥ λ‖F‖L∞(Td)

}

.

Then

µd(Xλ) ≥
(

1− λ

π2

)π(N)

e−
√
N .

Proof. Since T
d is compact, there is at least one point

w = (eiϑ1 , . . . , eiϑd)

where the supremum is attained, so that ‖F‖L∞(Td) = |F (w)|. Let

z = (eiθ1 , . . . , eiθd)

denote an arbitrary point on T
d. Define d1 = π(

√
N) and d2 = d − d1. It

follows from the triangle inequality and Lemma 13 that

|F (z) − F (w)| ≤ |F (z1, z2)− F (w1, z2)|+ |F (w1, z2)− F (w1, w2)|

≤ π

2
‖F‖L∞(Td)

(

logN

log 2
sup

1≤j≤d1

|θj − ϑj|+ sup
d1<j≤d

|θj − ϑj|
)

.

Here we used that if z2 is fixed, then F (·, z2) has degree at most

max
1≤n≤N

Ω(n) ≤ logN

log 2

in z1 and conversely if z1 is fixed, then F (z1, ·) has degree 1 in z2. Moreover,

|F (z)− F (w)| ≥ |F (w)| − |F (z)| = ‖F‖L∞(Td) − |F (z)|.
so in particular, w ∈ Xλ whenever

λ ≤ 1− π

2

(

logN

log 2
sup

1≤j≤d1

|θj − ϑj|+ sup
d1<j≤d

|θj − ϑj|
)

.

Hence w ∈ Xλ also holds whenever

sup
1≤j≤d1

|θj − ϑj | ≤
1− λ

π(logN)/ log 2
and sup

d1<j≤d
|θj − ϑj | ≤

1− λ

π
.

Note that for any ϑ ∈ R/[0, 2π) we have that

µ1

({

z = eiθ ∈ T : |θ − ϑ| ≤ ξ
})

=
ξ

π
,
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so we therefore conclude that

µd(Xλ) ≥
(

1

π

)d(1− λ

π

)d1+d2 ( log 2

logN

)d1

≥
(

1− λ

π2

)π(N)

e−
√
N ,

where we in the final inequality used that d1 = π(
√
N). �

Setting λ = 1/2 in Theorem 14, we find that

‖F‖L2k(Td) ≥
(

∫

X1/2

|F (z)|2k dµd(z)

) 1
2k

≥ 1

2
‖F‖L∞(Td)

(

µd(X1/2)
)1/2k

.

In particular, if k ≥ π(N) then ‖F‖L2k(Td) ≥ (4π2e)−1‖F‖L∞(Td). By the
Bohr correspondence, we have hence proved the following result. We will
also present a different proof below, which was shown to us by K. Seip.

Corollary 15. If f(s) =
∑N

n=1 ann
−s and k ≫ N/ logN , then

‖f‖∞ ≪ ‖f‖2k.
Proof. Let Ψ(x, y) denote the number of integers less than x whose prime
factors are all less than y. The estimate

(37) Ψ(x, log x) ≪ e
c log x
log log x ,

can be found in [8, pp. 270–271]. Now take k to be an integer of size N/ logN

and consider the function fk, where f(s) =
∑N

n=1 ann
−s. This function is a

Dirichlet polynomial with at most Ψ(Nk, N) nonzero terms, so the Cauchy–
Schwarz inequality gives that

‖f‖k∞ = ‖fk‖∞ ≤
√

Ψ(Nk, N)‖fk‖2 ≪ e
c N
logN ‖fk‖2 = e

c N
logN ‖f‖k2k

by (37) and hence ‖f‖∞ ≪ ‖f‖2k whenever k ≫ N/ logN ∼ π(N). �

To see that k = N/ logN cannot generally be improved in Corollary 15
(and hence in Theorem 14), we will use Khintchine’s inequality (see [15]).

Lemma 16. If 2 ≤ q < ∞ and d = π(N), then
∥

∥

∥

∥

∥

∥

∑

p≤N

apz(p)

∥

∥

∥

∥

∥

∥

Lq(Td)

≤ Γ
(

1 +
q

2

)1/q





∑

p≤N

|ap|2




1
2

.

In particular, we choose ap = 1 for p ≤ N , so that F (z) =
∑

p≤N z(p) and

‖F‖L∞(Td) = π(N). By Lemma 16 with q = 2k we get that

‖F‖L2k(Td) ≤ Γ(1 + k)1/2k
√

π(N) ≤
√

kπ(N),

since Γ(1 + k) ≤ kk. This shows that for general Dirichlet polynomials, the
exponent k = N/ logN in Corollary 15 cannot be improved.

We will finally demonstrate that this can be substantially improved for

the specific Dirichlet polynomial F (z) =
∑N

n=1 z(n)/
√
n. First, we recall the

following well-known result.
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Lemma 17. Let F (z) =
∑N

n=1 anz(n), set d = π(N) and for y ≥ 2 define

S(N, y) = {n ≤ N : p|n =⇒ p ≤ y}.
If Fy(z) =

∑

n∈S(N,y) anz(n) then ‖Fy‖Lq(Tπ(y)) ≤ ‖F‖Lq(Td) for 1 ≤ q < ∞.

Proof. It suffices to note that the map F 7→ Fy is defined by averaging out the
variables corresponding to primes p > y over the corresponding polytorus,

Fy(z1) =

∫

Tπ(N)−π(y)

F (z1, z2) dµπ(N)−π(y)(z2)

and then use Hölder’s inequality in the inner integral. �

Theorem 18. Set FN (z) =
∑N

n=1 z(n)/
√
n and fix ε > 0. If q ≥ N ε, then

‖fN‖Lq(Tπ(N)) ≫ε

√
N as N → ∞.

Proof. We first note that

FN,y(z) =
∑

n∈S(N,y)

z(n)√
n

is a polynomial in π(y) variables of degree at most logN/ log 2. Using
Lemma 17 and then Lemma 13 as before, we may therefore conclude that

‖FN‖Lq(Tπ(N ) ≥ ‖FN,y‖Lq(Tπ(y)) ≫ ‖FN,y‖L∞(Tπ(y)) =
∑

n∈S(N,y)

1√
n

provided q ≥ π(y) log (logN/ log 2). Choosing y = N ε and using Abel sum-
mation and a standard estimate on smooth numbers (see e.g. [8, Sec. 1]),
we get

∑

n∈S(N,Nε)

1√
n
∼ Cε

√
N.

Here Cε = 2̺(1/ε) and ̺ denotes Dickman’s function. Hence we require that
q ≥ π(N ε) log logN , so certainly q ≥ N ε is acceptable. �
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