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Problem description

As the market share of intermittent renewable power production in Germany
grows, the need for short term optimization of power marketing drives trad-
ing activity towards the EPEX Intraday power market. However, optimizing
trading decisions in the market is hard, for three reasons; firstly, it is assumed
that only limited liquidity is available through the Limit Order Book; secondly,
unique features of the market complicates the modeling of the stochasticities;
and finally, because it is assumed that decisions for consecutive delivery prod-
ucts affect each other.

The motivation for the thesis is to explore the modeling assumptions that are
made in the contemporary scientific literature, and evaluate the impact that
each assumption has on the profit of the trader. The desired output is a set
of recommended modeling assumptions for a hydropower producer with limited
energy storage, as well as a rationale for the recommendation.

Based on a thorough review of the contemporary scientific literature, a set of
cases is outlined, where each case is related to one specific modeling assump-
tion. For each case, a mathematical model is presented, and implications of
the modeling assumption are explained conceptually. Finally, the contribution
from each of the recommended modeling assumptions to the trading profit is es-
timated using scenarios based on an extensive analysis of historical market data.
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Abstract

As the German Intraday power market has grown steadily over the last seven
years, the academic and commercial interest in mathematical optimization of
decision making related to the market has grown. The relevant decisions in-
clude both production and trading of 24 hourly delivery products. The trading
is organized as a continuous auction implemented as a limit order book for each
delivery product. The market opens soon after the clearing of the Day-Ahead
market and closes just before delivery. As both the delivery products and the
trading decisions for a given delivery product happen sequentially, the decision
structure has a doubly dynamic trading structure that makes it hard to opti-
mize. Additionally, the liquidity in the market is limited, further complicating
the optimization.

Due to the high complexity of the problem, existing papers that attempt to op-
timize decision making related to the Intraday market make several simplifying
assumptions. In order to find the best combination of modeling assumptions
to make, an extensive literature review is performed, focusing on the model-
ing assumptions in each paper. It is found that there is disagreement in the
contemporary literature about how to best model the problem. In particular,
the relevant papers optimize either order placement in the market, or physical
power dispatch, and neglect the other type of decision.

In this thesis, the Intraday Trading Problem (ITP) is defined to include both the
order placement and the production optimization. The ITP is further broken
down into three subproblems: the price forecasting problem, the cost estimation
problem and the strategy formulation problem. Based on the points of disagree-
ment in the related literature, a set of modeling assumptions is defined, mostly
relating to the strategy formulation problem. The goal of the thesis is to explore
which of the modeling assumptions that are the most profitable to make, and
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estimate the impact on the objective function of making a given combination of
assumptions. Based on the set of modeling assumptions, a proposed benchmark
model and six models inspired by the existing literature are defined. In order to
test the model, a detailed analysis of historical EPEX Intraday order book data
is performed, and a model of the market is developed. The estimation of all the
relevant market parameters is a significant expansion compared to the market
analyses performed in the existing literature. Small scenario trees are devel-
oped based on the market analysis, and the models are tested on a ”forest” of
semi-optimized, semi-randomized scenario trees. It is found that the proposed
benchmark model outperforms the alternative models with a 4-41% premium
on the objective value. Finally, the theoretical reasons for the improved perfor-
mance is discussed, and three avenues for future research are outlined.



Sammendrag

Parallelt med veksten til det tyske Intraday-kraftmarkedet i løpet av de siste syv
årene, har interessen for matematisk optimalisering av beslutninger knyttet til
markedet vokst innen b̊ade akademia og næringslivet. Relevante beslutninger for
en trader i markedet inkluderer b̊ade fysisk produksjon og budgiving. Handelen
er organisert som en kontinuerlig auksjon implementert som 24 ordrebøker; en
for hvert timelange leveranseprodukt. Markedet åpner kort etter at Day-Ahead
markedet har klarert, og stenger like før leveranse. I og med at b̊ade den fysiske
produksjonen av leveranseproduktene og budgivingen for hvert enkelt lever-
anseprodukt skjer sekvensielt, har beslutningene en dobbelt dynamisk struktur,
som gjør at det er vanskelig å ta optimale beslutninger i markedet. I tillegg er
likviditeten i markedet begrenset, noe som ytterligere kompliserer optimeringen.

Grunnet problemets høye kompleksitet gjør den eksisterende optimeringslitter-
aturen innen emnet flere forenklende antakelser. For å finne det beste settet
med modelleringsantakelser, studerer vi den eksisterende litteraturen i detalj,
med fokus p̊a modelleringsantakelsene i hver artikkel. Vi finner at de ulike ar-
tiklene p̊a emnet har motstridende anbefalinger for hvordan det bør modelleres.
Særlig tydelig er skillet mellom artiklene som optimerer allokering av produk-
sjonsressurser, men utelater budgivingsbeslutningene – og de som optimerer
budgivingen, gitt at man har en forh̊andsbestemt produksjonsplan.

I denne masteravhandlingen defineres Intraday Trading Problem (ITP), som om-
fatter b̊ade budgiving og produksjonsbeslutninger. ITP dekomponeres videre
i tre delproblemer: prisprognoseproblemet, kostnadsestimeringsproblemet og
strategiformuleringsproblemet. Basert p̊a punktene med uenighet i den eksis-
terende litteraturen defineres et sett av modellantakelser, med hovedfokus p̊a
strategiformuleringsproblemet. Målet med avhandlingen er å utforske hvilke av
modelleringsantakelsene som er mest lønnsomme å gjøre, og å ansl̊a virknin-
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gen p̊a objektivfunksjonen av gitt kombinasjon av antagelser. Basert p̊a settet
med modelleringsantagelser, er det utviklet en anbefalt referansemodell og seks
alternative modeller som er inspirert av den eksisterende litteraturen. For å
teste modellen er en markedsmodell utviklet basert p̊a en detaljert analyse av
historiske ordrebokdata fra EPEX Intraday. Estimeringen av alle de relevante
markedsparameterne er en betydelig utvidelse av tidligere forskning p̊a omr̊adet.
Videre utvikler vi begrensede scenariotrær basert p̊a markedsanalysen, og mod-
ellene testes p̊a en ≪skog≫ av semi-optimaliserte, semi-randomiserte trær. Vi
finner at de alternative modellene taper med 4-41% relativt til den foresl̊atte
modellen. Til slutt diskuteres de teoretiske årsakene til at den anbefalte mod-
ellen sl̊ar de andre, og tre veier for videre forskning skisseres.
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Chapter 1

Introduction

As observed by Akersveen and Graabak (2017), the share of renewable en-
ergy production compared to consumption in Germany has grown from 5.8% in
2004 to 14.6% in 2015 (Eurostat, 2017). As renewable intermittent production
facilities must deal with stochastic production, the need for more short-time
optimization is growing (Hassler, 2017). The German Intraday market has po-
tential to cover this need, and it has grown from 5.6TWh in 2009 (EPEX, 2009)
to 41TWh in 2016 (EPEX, 2016), an impressive 33% year over year growth
rate. While volumes are still small enough that a single large trader can disrupt
the price trajectory for a given day, this may not hold true for long. The mar-
ket is still small compared to the Day-Ahead market (EPEX, 2016), but falling
Day-Ahead margins have power producers on the lookout for new market op-
portunities (Klaboe and Fosso, 2013). Garnier and Madlener (2015) state that
”The more liquid and competitive the intraday market is, the more efficient it
is to balance forecast errors intra-daily”.

However, optimizing trading in the Intraday market is hard and costly. The
trading happens continuously, both during normal working hours and through-
out the night. Skilled traders are short in supply, and expensive to keep up
at night. Prices are volatile, more so than for the Day-Ahead market (Garnier
and Madlener, 2014) and subject to unpredictable Urgent Market Messages and
changes in weather forecasts. As the market still is young and changing, little
theory exists on how to optimize the trading strategy in it.

In comparison, trading in the Day-Ahead market requires only the preparation
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of one order curve for each hour for each day. The orders are aggregated to a
supply curve, and each producer receives the clearing price for the entire mar-
ket; this removes the incentive to bid above marginal cost for a price taking
producer, in contrast with how the pay-as-bid Intraday market forces suppli-
ers to bid strategically. This makes optimal bidding more complicated in the
Intraday market than in the Day-Ahead market. Large volumes are traded on
the Day-Ahead market, and a producer with competitive marginal cost can be
confident that their order will clear. Significant theory exists on how to optimize
orders in the Day-Ahead market.

In this thesis, the Intraday Trading Problem is defined. While former papers
have focused either on the allocation of production throughout the day or on
the trading of a given delivery product, this thesis includes both production
and trading optimization in the model. As both the delivery products and the
trading decisions for a given delivery product happen sequentially, this leads to
a doubly dynamic decision structure. Furthermore, the Intraday Trading Prob-
lem is decomposed into three parts; the Price Forecasting Problem, the Cost
Estimation Problem and the Strategy Formulation Problem.

The goal of this thesis is to explore which assumptions that are profitable to
make about the Intraday Trading Problem, and in particular the Strategy Fore-
casting Problem, and to estimate the impact on the objective function of several
common combinations of assumptions.

In order to do so, an extensive literature review is performed. It is found that
the contemporary literature has focused more on solution methods than on the
modeling, and that there are several traders in the market for which no relevant
model has been published. Thus, a proposed benchmark model is developed.
Inspired by the models in the related literature, six alternative models with
different combinations of assumptions are developed. The assumptions focus in
particular on the relation between production and trading, on the coordination
of decisions across delivery products, on the value of trading strategies that can
alter between sales and purchases, and on the modeling of a market with limited
liquidity.

The models are tested for a hydropower producer in small problem instances
with a realistic market model. The market model is based on a detailed analysis
of commercial order book data. Moreover, the rationale for each of the assump-
tions are explored theoretically.
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It is found that our proposed model beats the ones that are based on assumptions
found in the contemporary literature by 4-41% in the given problem instances.
Some of the alternative models make very different production decisions from
the proposed model, or are unable to obtain good prices for their marketed
power. Additionally, the benchmark model successfully exploits the production
flexibility of the hydropower producer to offer liquidity to the market at a pre-
mium, whereas some of the alternative models don’t.

The modeling assumptions in the Intraday market is still an underexplored
area, and three avenues for future research are outlined. Firstly, there is need
for stronger evidence for our findings; do these profit improvements still apply
for different traders - maybe with a larger reservoir or production capacity, or
different production assets? How large is the gain when the models are back-
tested on historical data, or in simulations with different market parameters?
Secondly, it is necessary to be able to scale the problem instances if the model is
to be applied in practice. A reformulation to a dynamic model seems necessary
in this regard, but would require significant work in order to be tractable, as
the state space grows very large. Finally, there is still potential for conceptual
modeling improvements that expands the applicability of the model to other
market situations or risk preferences.

The rest of the thesis is structured in the following way: in chapter 2 the back-
ground for the thesis is covered, including an introduction to the EPEX Intraday
market and a thorough literature review. The focus of the chapter is to give
a good understanding of the aspects that are relevant for modeling choices in
the optimization of trading in the EPEX Intraday market as well as intraday
production decisions, and to present an overview of the modeling choices in the
contemporary literature. In chapter 3 the questions that this thesis attempts
to answer are outlined in more detail, and a set of modeling assumptions is
introduced. Chapter 4 covers how to express the assumptions mathematically
as a multistage stochastic linear program, and outlines one proposed bench-
mark model and six alternative models based on combinations of the modeling
assumptions. Then, the modeling of the market is explored more in-depth in
chapter 5, and the parameters of the market model are estimated based on em-
pirical data. Scenarios are generated based on the estimated parameters, and
the models are tested on these scenarios. Results for the models in the different
cases are compared. In chapter 7 the results are interpreted, and a theoretical
explanation of the implications of all of the modeling assumptions is provided.
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Chapter 2

Background

In this chapter, the background for this thesis is presented. Key aspects of trad-
ing in power markets in general, and EPEX Intraday in particular, are presented
in section 2.1. It should be noted that section 2.1 is strongly based on former
work by the authors of this thesis (Akersveen and Graabak, 2017), and partly
an excerpt from that report. In section 2.2, the related literature is analyzed
in-depth. Modeling assumptions are explored with particular detail, and used
as a foundation for the rest of the thesis. While this section also is inspired by
(Akersveen and Graabak, 2017), it mainly contains original content.

Henceforth, a set of assumptions is created and used throughout the rest of the
thesis. In particular, it is assumed that the optimization of the decisions that are
relevant to the EPEX Intraday include both trading and production, and that
the relevant constraints include physical, legal and trading-related constraints.
This is referred to as the Intraday Trading Problem (ITP) for short, though the
problem includes production too. The goal of research on the optimization of
the EPEX Intraday decisions is to provide practical advice to the relevant de-
cision makers. Thus, the proposed models in the EPEX Intraday optimization
research should make assumptions that contribute to the objective function of
the relevant decision makers. Additionally, the models should be tractable to
solve with a reasonable amount of computational resources. The decision mak-
ers are interchangeably referred to as traders or producers, though obviously
they may be both at the same time.

For simplicity, the view of a selling trader is taken throughout the entire the-
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sis when explaining a concept unless something else is specified, although both
selling and buying is permitted for the model proposed in chapter 4.

2.1 Introduction to power markets and the EPEX
Intraday

In this section, key aspects of trading in power markets in general, and EPEX
Intraday in particular, are covered. Initially, a rationale for the current power
market structure, as well as a brief introduction to three of the physical power
markets, is included in sections 2.1.1-2.1.3. Section 2.1.4 covers the main actors
in the EPEX Spot markets. In section 2.1.5, legal requirements to the traders
in the EPEX Intraday market are covered, and section 2.1.6 introduces limit
order book concepts.

Electrical power is a special commodity for several reasons. Production must at
all times equal demand; it isn’t possible to store in large scale. Even momentary
imbalances will affect the frequency and voltage of the power supply, potentially
damaging large amounts of expensive electrical equipment. Larger imbalances
may cut the power supply entirely, disconnecting large customer groups through
no fault of their own.

Demand is highly seasonal, with both annual, weekly and daily cyclic patterns
(see figure 2.1.1). Typically, demand is high in winter, on weekdays and in the
morning and afternoon, whereas it is low in summer, in weekends and during
the night. With increasing penetration of solar power, supply is also becoming
more cyclic.
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Figure 2.1.1: Average power load per day in the period 2015-01-01 - 2017-09-29
(ENTSO-e, 2017b)

The power grid is the only infrastructure that is well suited to transmit elec-
trical power across large distances. Once a production (or consumption) unit
is connected to the grid, the production of that unit becomes physically indis-
tinguishable from the production of other grid-connected units; the power flow
is subject to the laws of physics governing the power grid. Thus, consumers
will experience the exact same power quality regardless of which vendor they
purchase their power from. This makes it harder for consumers to discriminate
between producers and vice versa, making electrical power a near-perfect com-
modity.

Consumption is nearly completely inelastic for low volumes (Malic, 2017), cre-
ating a strong incentive for price making producers in an oligopoly to artificially
withhold production. In current power markets, the short-term elasticity is low
for all volumes as customers usually are shielded from short term fluctuations
in the power price. This may change as the adoption of smart meters increases
so that consumption can be measured over arbitrarily short time intervals, po-
tentially creating an incentive for demand response that is absent today.

Due to the above-mentioned complications, a complex market structure has
been developed to provide power to the customers with high security of supply,
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high power quality and relatively low prices. In the following paragraphs, we
describe the three power markets that are the most relevant for this thesis.
While there also exist other, longer-term financial markets, they aren’t physical
markets - that is, markets where the underlying traded asset is a certificate to
produce one unit of energy. All of the following markets are physical energy-only
markets, in the sense that only the sale of energy is rewarded. Other desiderata
like available production capacity in the case of demand spikes are not rewarded
in such markets. An overview of the markets can be seen in figure 2.1.2.

Figure 2.1.2: Power markets timeline

2.1.1 The Day-Ahead Market

The purpose of the Day-Ahead Market is to assign sufficient production capacity
to cover demand for each hour of the following day. In this market, producers
are asked to place their orders for power certificates for the next day. Each
power certificate gives the right and obligation to produce one unit of energy
(MWh), constantly distributed over one specific hour on the next day. The
period of validity for the power certificate is referred to as the delivery product,
and there is a separate auction for each delivery product. The prices of the orders
for each delivery product are generally expressed as a function of the cleared
volume, p = p(v). After gate closure, the orders are sorted in a nondecreasing
aggregated supply curve, and the cheapest orders with a total volume equaling
the predicted consumption volume for the given hour are cleared. The producers
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with the cleared orders will receive a compensation equal to the asking price of
the ”marginal producer” - that is, the most expensive order that cleared. This
is denominated a pay as cleared-market, and removes the incentive to order
strategically for a producer without market power; the optimal order for the
individual producer will equal their marginal cost. The clearing price is also
called the spot price, as the Day-Ahead market is also referred to as the spot
market. Consecutive markets are collectively referred to as post-spot markets,
although the Intraday market is sometimes included in the spot markets. In
2016, 235 MWh were sold in the Day-Ahead market EPEX (2016).

2.1.2 The Intraday Market

In contrast to the Day-Ahead market, the EPEX Intraday market is a pay-
as-bid market - that is, traders receive their asking price, plus an eventual
spread. The Intraday market is a continuous auction, similarly to conventional
stock markets, starting shortly after the production plan based on the Day-
Ahead orders has been published, and closing 5 minutes before the time of
delivery for each delivery product; the latter is referred to as ”gate closure”.
The continuous auction is organized through a limit order book where traders
can place orders digitally. In the last 25 minutes of the Intraday trading window,
referred to as the intrazonal Intraday market, only orders placed in the same
control area can be matched. The four German control areas can be seen in
figure 2.1.3. Note that the gate closure times have been changed recently. The
pay-as-bid feature allows each trade to clear independently of other trades,
speeding up clearing in the Intraday market. This is suitable for a market
that is designed to allow producers to adjust and reoptimize their production
plans over shorter time horizons than the Day-Ahead market, but comes at a
price; it incentivizes placing orders above marginal cost, and opens for inefficient
allocation of production. In the Intraday market, delivery products with both
hourly and quarterly duration are traded. 41 MWh were traded in the Intraday
market in 2016 (EPEX, 2016). It is possible to place orders that apply to
multiple delivery products (blocks) that an eventual buyer will have to buy as
a bundle.

2.1.3 The Balancing Market

On a systems level, the rationale for the Balancing Market is to close any real-
time discrepancies between load and production. In practice, this implemented
by charging market participants in the Day-Ahead and Intraday markets for
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Figure 2.1.3: The control areas of Germany (Robinius et al., 2017)

deviations between the individual net production and the commitment made in
the former markets (see section 2.1.5 for further explanation). Such deviations
may arise if the traders were unable to close their open position in the EPEX
Intraday, if forecasts change near gate closure, et cetera. Production capacity is
allocated for the Balancing market one week in advance. The price of power in
the Balancing market is denominated imbalance price (alternatively ”reBAP”)
is volatile compared to the prices of the Day-Ahead and Intraday markets, as
figure 2.1.4 suggest. It is calculated as the total net cost of balancing energy
divided by the net balancing energy provided (Regelleistung, 2017). There are
two imbalance regulations. The Up-regulation arises if the power consumption
is greater than the power generation, and the Down-regulation operates if the
power consumption is less than the power generation. The imbalance price is
very volatile and high on expectation, incentivizing producers to close their po-
sition before the Balancing market opens. This cost is usually symmetrical for
the Up and Down regulating balance markets (ENTSO-e, 2017a). The imbal-
ance prices are published with a 20 day lag the 20th of every month (ENTSO-e,
2017a). In addition to the economic incentive to avoid the Balancing market,
”The German regulator legally requires Balancing Responsible Parties [see sec-
tion 2.1.5] to minimize their use of the imbalance market to the largest possible
degree” (Malic, 2017).
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Figure 2.1.4: Comparison of Day-Ahead and balancing prices 2016-12-21. Data
from (EPEX, 2017b) and (ENTSO-e, 2017a).

2.1.4 Intraday market participants

Utilities, aggregators, power retailers and purely financial traders are referred
to collectively as traders in the Intraday market. The traders can be catego-
rized by their production or consumption technology. There are several features
that determine the traders’ behavior; the storage capacity, production capac-
ity, flexibility of production, marginal production cost and their intertemporal
constraints. Producers with small storage capacity relative to production may
have one discharge cycle per day, whereas producers with very large storage
capacities may have only one discharge cycle annually. The difference between
the maximum and minimum production level determines the flexibility in to-
tal market commitment. Production inflexibility is likely to yield significant
imbalance costs for the trader. For producers, these bounds typically are non-
negative whereas for consumers (that is, retailers and demand aggregators) they
are negative, but storage units may make it possible to reverse production. Hy-
dropower producers typically model their resource inflow as deterministic over
24-hour decision horizons, whereas other intermittents have stochastic inflow
even Intraday. Thermal producers typically have intertemporal costs and con-
straints; that is, costs and constraints related to the ramping (and starting or
stopping) of their production. While both start-up costs and ramping times
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are heterogeneous for different thermal producers (i.e. generally larger for coal
producers than gas producers) this is not detailed further here, as thermal pro-
ducers aren’t the main focus of this thesis. The relevant types of traders are
summarised in table 2.1.1. In the table, High/low means that a parameter
may take a high value for some and a low value for others. (No) means that
something usually isn’t true.

Table 2.1.1: Trader types and their trading-relevant features

Trader
type

Storage
Production
flexibility

Energy
inflow

Production
reversibility

MPC

Hydro (Flow-of-the-river) No No Stochastic No 0
Intermittent w/o storage No No Stochastic No 0
Power retailer No No Stochastic No 0
Financial trader No No Deterministic No 0
Thermal power No Yes Controllable No Fuel
Hydropower dams High/low Yes Stochastic No VoS
Demand aggregators Low Yes Stochastic (No) VoS
Intermittent w/ storage Low Yes Stochastic Yes VoS
Pumped hydro High/low Yes Stochastic Yes VoS

Here, MPC refers to the marginal production cost. VoS refers to the Value of
Storage, which is the alternative cost of storage that is spent during the day.
If the long-term production schedule is optimized - typically with a stochastic
dynamic program - the Value of Storage is ”the shadow price (...) i.e. the
Lagrange multipliers corresponding to the reservoir constraints” (Javanainen
et al., 2005). In addition to the Value of Storage, demand aggregators may
face a comfort cost, which corresponds to the tradeoff between load flexibility
and consumer preferences; if the flexible demand is used to heat office spaces,
temperatures near the upper or lower bounds of the agreement between the
consumers and the demand aggregator will presumably be less comfortable for
the users of the building. Depending on the agreement between the consumers
and the demand aggregator, this cost may be implemented as constraints. This
cost is not discussed further in this thesis.

Note that the medium- to long term Value of Storage contains assumptions
about the short-term production. As illustrated by Javanainen et al. (2005),
the expected returns to extra storage are decreasing on the margin - or con-
versely, if more energy is sold in the short term than originally planned, the
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value per unit of the end-of-day remaining storage increases. For producers
with small enough reservoirs that the Intraday production decisions alter the
remaining storage level significantly, the Value of Storage unit cost may there-
fore be heterogeneous as a function of storage level. This heterogeneity works
as a link between the short- and long term optimization of power trading.

Henceforth, marginal production cost refers to costs driven by the Value of
Storage, fuel or intertemporals. Alternative costs of future trades (ACs) refer to
the lost option of trading later in the ID trading window if trades are performed
now, and may or may not include imbalance costs depending on if the balancing
market is included in the model or not. Note that this alternative cost is thus
much more short-term than the Value of Storage, as the first considers only the
current day, and the other typically has a decision horizon of a year. Marginal
costs refer to the combination of the ACs and the MPC; for a seller, this is the
expectation of the maximum of future prices and marginal production costs.

2.1.5 Post-spot power market regulations

In this section, some of the more relevant regulations that traders in the EPEX
Intraday Market need to comply with are discussed. Specifically, market ma-
nipulation, insider trading in the light of Urgent Market Messages (UMMs),
Balance Responsible Parties (BRPs) and the Order-to-Trade Ratio (OTR) fine
are discussed. These topics have been chosen for their relevance to the later
modeling choices. According to the EPEX Code of Conduct (EPEX, 2017a),
”Any engagement in, or attempt to engage in, market manipulation on a Phys-
ical Power Contract is prohibited.”. Market manipulation includes, but is not
limited to, both cooperative collusion and price fixing behavior. The second
part is the most relevant for this thesis. In the same document, inside informa-
tion is defined as non-public information that ”would be likely to significantly
affect prices”. One example of this is if the availability status of a generator
unexpectedly changes - for instance, if the generator breaks down. In this case,
an Urgent Market Message is created, and no trading can be performed until
the UMM has been published.

In the EPEX Operational Rules (EPEX, 2017c), Balance Responsible Parties
are responsible for the delivery of physical power. As stated in Doorman et al.
(2011), ”All market participants interact with the market through a (...) BRP,
or are a BRP themselves (...) The BRP is generally obliged to try to (...) com-
ply with this balance in real time”. ”This balance” refers to that the Balancing
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Group (BG) that the BRP manages should have a total production equal to
its total commitment from the Day-Ahead and Intraday markets. Furthermore,
the paper explains that it is BRPs, and not market participants directly, that
pay the imbalance price if the BG as a whole is imbalanced. The BRP will
usually organize in such a way that these costs are transferred to the individual
market participants in it, however.

The Operational Rules also define the Order-to-Trade Ratio, which is a fine
for placing an illegally high number of unmatched orders, to prevent traders
from spamming the market with orders. If the number of orders per transaction
for a given delivery product over the entire trading window is larger than 50,
the trader is alerted. If no orders clear, the OTR is defined as the number of
orders. The first four alerts every month are free of charge, after which each
OTR costs 100e. While not saying so explicitly, the Operational Rules give the
impression that persistently extreme OTRs may cause loss of market access.

2.1.6 Trading in limit order book markets

In limit order books, all transactions consist of a limit order, and a matching
market order. The limit order is placed in the limit order book with the standard
order parameters, whereas the market order does not need a price specification
as it automatically matches the limit orders with the best available prices in
the limit order book. A trader placing a limit order is referred to as a market
maker, as they provide liquidity to the market (Guo et al. (2017), Cont et al.
(2014), Cont and Kukanov (2017)). The term that is used for a trader that
places a market order, is liquidity taker.

The limit order book is two-sided, so both sellers and buyers may place either
limit orders, market orders or both in the market. Sell orders and buy orders
may also be referred to as ask order and bid orders, and these terms are used
interchangeably throughout the thesis.

The price of a market order is set to the volumetric weighted average of the
cleared volumes of the matched limit order prices. For limit orders, the clearing
process is more complex. Limit orders may clear fully, partly or not at all, and
the clearing may happen initially or later. This is determined by the following
factors:

1. In order to clear initially, several previously placed bid (ask) limit orders
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with higher (lower) or equal price to that of the ask (bid) order must be
available in the market. This means that the orders must be in the same
control area, or cross-zonal trading must still be allowed. The clearing
volume is equal to the smaller of the volume of the ask (bid) order and the
volumes available at good enough prices in the market. The transaction
price is set to the volumetric weighted average of the cleared volumes of
the previously placed orders.

2. If the order didn’t clear initially, or cleared only partly, it may clear (fully
or partially) in a later stage if it is the ask (bid) order with the lowest
(highest) price available in the market, and either a bid (ask) market
order is placed or a bid (ask) limit order with a higher (lower) price is
placed. If the ask (bid) order is not the one with the lowest (highest)
price available in the market, but the new order is large enough to clear
all the better orders in the market, the ask (bid) order may clear (fully
or partially) anyways. The transaction price will be equal to that of the
ask (bid) order itself. The clearing in a later stage requires that it still is
open.

3. The probability that a limit order clears is referred to as the clearance
probability, and the risk that a limit order does not clear is referred to as
execution risk (Cont and Kukanov (2017), Tsoukalas et al. (2017)).

When placing an order in a limit order book, it is possible to predefine when
the order should expire, referred to as canceling an order. Order cancellation
is also possible to determine dynamically. So-called Iceberg orders are large or-
ders that are partitioned into small pieces and each piece is activated only after
the former clears, to avoid excessive price impact, but again, this is possible
to determine dynamically by placing several consecutive orders. Finally, it is
possible to make the activation of an order conditional on the future states of
the order book (e.g. ”activate the order if transactions occur at prices above
X”). For the rest of the thesis, it is assumed that the only such specification
that is used is the predetermined order duration.

2.2 Related literature

As mentioned in chapter 1, there are two separate axes of time related to the
ITP: the trading time and the production time. Figure 2.2.1 shows the trading
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time on the x-axis and production time on the y-axis. In this section, papers
covering one or the other of these axes are covered. Papers that apply relevant
methods in other contexts (i.e. more conventional markets) are also mentioned.
In figure 2.2.1, the double dynamics are illustrated, with the orange dots illus-
trating a trading stage for a delivery product in the Intraday market.

Figure 2.2.1: The double dynamics of 48 delivery products inspired by Belsnes
et al. (2016)

The dynamics in trading time resemble those in conventional limit order books;
that is, markets where limit orders are placed continuously, and later removed
by market orders or limit order cancellations. There is a rich literature on how
to model the dynamics in conventional LOB markets and how to trade well in
them (see e.g. Alfonsi and Schied (2010) for a review). In the conventional LOB
literature, it is typically assumed that the target inventory is known in advance,
and it is explored how this inventory level can be reached through the placement
of sell and buy orders. The optimization problem for the trader is referred to
either as an Order Execution Problem, Order Placement Problem or Market
Making Problem depending on the specifics of how the decisions are modeled
(Guo et al., 2017). Order Placement Problem is the most general of these terms,
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so it is used throughout this thesis. LOB theory has also been applied to Intra-
day power markets, including contributions from Garnier and Madlener (2015),
Aı̈d et al. (2015), Tan and Tankov (2016) and Edoli et al. (2016). Skajaa et al.
(2015) also share some similarities with these papers, though it is less based on
the general limit order book research.

For traders with intertemporals or storage, the dynamics in production time are
relevant too; decisions for one delivery product affects the utility of decisions
related to other delivery products. The problem of determining how much of a
stored resource to spend per stage over a period consisting of several stages is
referred to as a Dynamic Resource Allocation Problem. Dynamics in produc-
tion time is considered by Gönsch and Hassler (2016), Hassler (2017), Löhndorf
et al. (2013), Farinelli and Tibiletti (2017) and Engmark and Sandven (2017),
among others. For all of these papers, storage allocation is the reason for the
dynamics in production time.

For both of these two branches of the literature, we have selected papers that
explicitly state that they focus on optimization of decision making, and other
forms of decision support, for producers that are marketing their power through
the Intraday continuous auction market. Other branches of the literature focus
on estimating the value of Intraday trading in addition to the Day-Ahead trad-
ing, or multimarket optimization, or market design, but those have not been
considered here. The two branches of papers are collectively referred to as ITP
papers, though each paper covers a different subset of our definition of the ITP.

To the best knowledge of the authors, no paper as of yet considers both of the
double dynamics; in fact, the concept itself is a novel contribution in this thesis.
For this reason, it is hypothesized that the recommended framework of all of
the papers either is in contradiction to, or neglects at least one consideration
that has non-trivial impact on the objective function of a large subset of the
traders in the market. Put differently, the hypothesis is that there exist sev-
eral traders in the EPEX Intraday that would be unwise to apply either of the
proposed frameworks because each of them systematically overlook at least one
relevant concept; in particular, the traders that are the most affected by these
double dynamics are unable to optimize Intraday decisions well with any one of
the proposed frameworks. It should be noted that each of the papers (except
Edoli et al. (2016)) explicitly focus on a subset of the traders in the market, so
it should be no surprise that their proposed frameworks are less applicable for
other types of traders.
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The rest of this section is structured as follows; in section 2.2.1, the modeling in
the literature of the relevant decisions for the ITP is outlined. Then, in section
2.2.2, assumptions about the price dynamics and attempts to forecast prices
are covered. Section 2.2.3 considers the implications of limited liquidity on the
price dynamics more closely. Section 2.2.4 looks into several features that dis-
tinguishes the EPEX Intraday from conventional limit order books. In section
2.2.5, the other sections are summarized, and hypotheses for potential improve-
ments to the recommendations of the contemporary literature are proposed.

2.2.1 Decision making and solution methods

The papers focusing on a single delivery product consider the optimal trading
rate - the change in the production commitment per unit of time. In continuous
time, this means that order volumes are infinitesimally small, and thus can be
modeled as a rate rather than a set of individual orders. Garnier and Madlener
(2015) models time as discrete, so the order volume in each stage (which is the
discrete-time equivalent of the trading rate) is considered instead.

It is thus assumed that the desired final commitment is already known; that is,
the production quantity (which is interchangeably referred to as a dispatch or
dispatch schedule in the literature) is not optimized in these papers. As Edoli
et al. (2016), Tan and Tankov (2016) and Garnier and Madlener (2015) focus on
an intermittent producer without storage, this makes sense, as the production
isn’t flexible and therefore is treated as a constraint. Aı̈d et al. (2015) is the
exception, which awards the trader some thermal power in addition to the wind
power. They assume that the trader is a retailer (in addition to being a power
producer) which has a target production equal to the consumption of their cus-
tomers. The thermal production kicks in if the intermittent production falls
short of the market commitment. Thus, Aı̈d et al. (2015) is the only trading
focused paper which also includes a (partial) optimization of the dispatch. Fur-
thermore, Aı̈d et al. (2015) and Garnier and Madlener (2015) allow the trader
to deviate from the predetermined dispatch schedule for an imbalance cost (but
not to redefine the dispatch schedule).

All of the aforementioned ITP papers assume that the market price is well de-
fined at any given time, and that orders can only be placed at this price. This
is similar to the literature on the Order Execution Problem in conventional
markets (e.g. Gatheral and Schied (2013), Alfonsi and Acevedo (2014)), and
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implies that the trader may only use market orders. In the Order Placement
Problem and the Market Making Problem (Guo et al. (2017)), the trader is
also allowed to place limit orders, which necessarily makes the price a relevant
decision variable, but no paper was found investigating the implications for a
trader that may post limit orders at prices of their own choice in the Intraday
market. It should be mentioned that Garnier and Madlener (2015) accounts
for the uncertain clearing of the limit order, without considering the price as a
decision variable.

In contrast, the research on the Dynamic Resource Allocation focuses on the
dispatch schedule. Thus, the production volume per delivery product is the only
decision being made, and no attention is paid to how to acquire the commit-
ment in the limit order book market. Neither order volume, -timing or -price
nor the number of orders are modeled as decisions. By allowing only one deci-
sion per delivery product, the strategy proposed in the dispatch-focused papers
does not adjust to new price information after a production decision has been
made - it isn’t adaptive in trading time. For instance, it is not specified if the
trader should increase production if prices unexpectedly rise, or what to do if
an order does not clear. A partial exception in this regard is Engmark and
Sandven (2017), who explicitly state that the model should be run several times
throughout the day to update the recommended decisions based on the new in-
formation, and allow the trader to place orders in three different price segments.

Figure 2.2.2 shows the assumptions that each group of papers make about the
axes of decision dynamics. As shown, the trading-focused papers (left chart)
consider each delivery product separately, assuming that decisions (illustrated
by a dot) are independent across delivery products. The dispatch-focused pa-
pers (center chart) on the other hand make only one decision per market per
delivery product, and thus ignore the dynamic properties of the continuous auc-
tion market structure. To our knowledge, this thesis is the first to consider the
full double dynamics of the Intraday Trading Problem (right chart). Note that
not all papers include all three markets, and all of the covered papers assume
that the Day-Ahead decision has already been made.

The dispatch-focused papers only allow either selling or buying, depending on
the direction of the initial open position - that is, the difference between the
initial commitment from the markets and the production schedule. In contrast,
the trading-focused papers allow for the placement of both sell and buy orders,
regardless of the current open position.
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Figure 2.2.2: Modeling of dynamics by different groups of the contemporary
literature.

To solve the Order Placement Problem, Garnier and Madlener (2015) use an
options valuation approach to find an analytic solution in each node, and then
apply backward induction to solve it for all scenarios and stages. Aı̈d et al.
(2015), Tan and Tankov (2016) and Edoli et al. (2016) model cannot apply the
same approach as both time and the probability distributions for the stochas-
tic parameters are modeled as continuous. However, all of them are able to
find (approximate) closed-form solutions to the Hamilton-Jacobi-Bellman Par-
tial Differential Equation (Evans and James, 1989), which is similar to the in-
famous Bellman equation, but applies in continuous time. Skajaa et al. (2015)
take an algorithmic approach where each trader may define acceptance criteria
on their own, and then place a market order if the criteria are fulfilled.

Gönsch and Hassler (2016) and Hassler (2017) build on the work of Powell (2011)
and solve the dynamic resource allocation problem using approximate dynamic
programming (ADP). Furthermore, Hassler (2017) compares the ADP approach
with several heuristics, and finds that some of the heuristics show promising
results for the heuristics that focus on the available storage level. Löhndorf
et al. (2013) combines ADP with stochastic dual dynamic programming, and
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calls the resulting solution method approximate dual dynamic programming.
Farinelli and Tibiletti (2017) uses dynamic programming and solves the convex
optimization problem in each node with the Interior Points Method (Boyd and
Vandenberghe, 2004). Finally, Engmark and Sandven (2017) uses a stochastic
mixed integer program to optimize

2.2.2 Price dynamics and -forecasts

This section covers the assumptions that the ID-related papers make about price
dynamics, and how they attempt to forecast prices. First, the relevant concepts
are introduced.
Stochastic processes are ”ways of quantifying the dynamic relationships of se-
quences of random events”, according to Pinsky and Karlin (2010). Examples of
stochastic processes are the standard Brownian motion, the geometric Brownian
motion and the Ornstein-Uhlenbeck dynamic. The transition function for the
standard Brownian motion has a normally distributed probability density func-
tion, whereas the geometric Brownian motion is the equivalent with a lognormal
distribution. While the Brownian motions don’t necessarily have a non-zero drift
coefficient, Ornstein-Uhlenbeck dynamic does. For this process, the drift is as-
sumed to be in the direction of the empirical mean of the process, making it
a mean-reverting process (Pinsky and Karlin, 2010). All of the aforementioned
processes have the Markov property, which means that the current state is suf-
ficient to determine the probability distribution for the next stochastic draw
(Alexander, 2008b). In contrast, consecutive draws in an autoregressive process
(AR-N process) are correlated, so that the last N elements of the history of the
process are relevant to its future values. A martingale process has the martin-
gale property, which means that the expected value of the process at any given
time in the future is equal to its current value (Alexander, 2008c).

The assumption of no arbitrage is common in financial modeling. It states that
”we cannot make an instantaneous profit from an investment that has no un-
certainty” (Alexander, 2008a). As predictable price drifts could be a source
of arbitrage, a common way to prevent arbitrage is to assume that prices are
martingales.

There is a fundamental difference between how the two groups of former papers
on optimization of trading in the Intraday market considers prices. The papers
that focus on the dynamics in trading time consider the price process of only
one delivery product.
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Garnier and Madlener (2015) and Tan and Tankov (2016) assume that this price
follows a Geometric Brownian Motion. Furthermore, the price is assumed to be
a martingale.

Edoli et al. (2016) instead considers an Ornstein-Uhlenbeck dynamic, to cap-
ture the speed of the mean reversion. The rationale for the mean reversion is
that the value of the underlying security for a given trader after gate closure
is equal to her marginal cost. Thus, all traders in the market have a privately
known benchmark for what price they should be willing to accept. In contrast
to conventional financial assets, where the future divided from a security may
be highly uncertain, each trader is certain about their marginal production cost,
so this benchmark should serve as an anchor point for the price, causing signif-
icant mean reversion. In addition to the theoretical argument, it is commonly
observed that commodity prices show strong mean reversion.

Aı̈d et al. (2015) make less restricting assumptions, and consider the three cases
where the price is a martingale, submartingale and supermartingale, without
constraining the shape of the probability distribution. In this case, the lack of
a martingale property is caused by price jumps. Price jumps may for instance
be caused by urgent market messages about generator outages, or publications
of surprising weather forecasts.

Overall, there are several reasons why it may sometimes be rational to assume
non-zero price drift. In addition to the mean reversion and jumps proposed by
Edoli et al. (2016) and Aı̈d et al. (2015), Tan and Tankov (2016) points out that
energy futures in general (including ID-prices) often have a negative trend. This
is referred to as contango and may occur if risk averse buyers pay a premium
to secure their supply of energy early (Alexander, 2008c). If markets aggregate
information slowly due to noisy data, prices may show autoregressive properties
(Dontoh et al., 2003). Moreover, if several market parameters are stochastic,
but only there only is one type of financial asset, the outcome space is larger
than the number of available bets, which means that the market is incomplete.
In such markets, there may not exist a fundamental price at all, let alone one
with a martingale property (Staum, 2007). Examples of market parameters that
may be modeled as stochastic include the spread, the price volatility and the
order depth.

The dispatch-focused on the other hand focus simplify the price process and as-
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sumes that there exists only one representative price for each delivery product;
this may be the market price at the time of a scheduling decision (e.g. Farinelli
and Tibiletti (2017)), or the (volume-weighted) average prices over the trading
window (e.g. Hassler (2017)) for each delivery product. The prices of the deliv-
ery products with early gate closure is known before a decision is made for later
delivery products. Thus, the price of past delivery products is used to predict
the prices of delivery products with trading windows that are still open.

A variety of forecasting techniques are used; notably, both ”technical” autore-
gressive forecasts (Hassler (2017), Engmark and Sandven (2017)) and ”funda-
mental” techniques based on supply- and demand-forecasts (Löhndorf et al.,
2013) appear in the literature. Farinelli and Tibiletti (2017) and Gönsch and
Hassler (2016) assume that the price follows a discrete time Gaussian process.

There are several implicit assumptions behind these models; for instance, it is
assumed that the representative price is a good approximation of the price that
a trader can achieve on average for her trades throughout the trading window.
Moreover, it is assumed that the optimal order placement strategy either does
not matter much or can be determined independently of the optimization of
production schedules, without significant profit loss. This breaks with Rudlang
et al. (2014), which states that production volumes should be price dependent.
Also, the information about the future price of one delivery product revealed by
the current price of the same delivery product is neglected, as the prediction is
exclusively based on the prices of other delivery products. This would not make
sense if prices were martingales; if the expected future price for one delivery
product is equal to the current price for the same delivery product, there is no
reason to base predictions on the prices of other delivery products.

Since the ”representative price” isn’t necessarily close to the current price at
the timing of an order placement, there is a considerable risk that an order
placed at the representative price won’t clear, or that it clears at an unfavorable
price. No documentation of the relevance of the representative price was found
in the dispatch-focused ITP literature; and to the best knowledge of the authors
of this thesis, no strategies were proposed for how to mitigate losses when the
representative price is a poor approximation.
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2.2.3 Limited liquidity and order book dynamics

Aside from stating the assumption about the stochastic process that the price
follows (and its corresponding price drift), the trading-focused papers don’t
attempt to justify their price assumptions (about volatility or other market pa-
rameters) with extensive empirical research. Such an analysis would quickly
have lost its value anyways; the growth in liquidity in the market has been
so strong historically, that it is not unreasonable to assume that some mar-
ket parameters have changed since the papers where published. The dispatch
schedule-focused papers consider only the single point forecast for each price
process, so other market parameters are largely irrelevant. In the following
section, other parameters that are usually considered in the conventional LOB
research are elaborated on.

In a limit order book, there is significantly more information than only the mar-
ket price; the volume of orders at a given price and time is referred to as the
order depth. The ask (resp. bid) order with the lowest (highest) price is referred
to as the best quoted order, and the corresponding price is the best quoted price.
The difference between the best quoted prices is called the spread. The spread
is seen as a measure of the liquidity of the market, and it is smaller the more
liquid the market is - typically only one or two tick marks in liquid markets
(Cont et al. (2010)). Typically, the base price that is used as a proxy for some
fundamental market price is the mid-price, which is in the middle of the best
quotes, one half-spread away from each of them (see e.g. Cont et al. (2010)). If
the trading time is discretized into stages, other approximations of the funda-
mental market price include the volumetric weighted average transaction price,
or the high, low, first and last transaction prices for each stage.

2.2.3.1 Limit order premium

Recall that limit orders are placed in the limit order book, whereas market or-
ders remove limit orders from the limit order book when they are placed, as
they immediately clear. For a trader, the market order thus presents a cer-
tain transaction opportunity; it will clear at whatever price is available. The
limit order on the other hand clears if a counterpart finds the price acceptable;
otherwise it is left in the limit order book until the end of the trading window
without any transaction occurring. The volumes of all the transactions related
to a limit order may sum to anywhere between 0 and the stated order volume.
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Any clearing between 0 and 100% is referred to as partial order clearing. The
advantage of the limit order relative to the market order is that it offers the
opportunity to earn better unit profits than what is available in the market at
the moment. This can be seen as a premium rewarded for providing liquidity
to the market (so-called market making), to compensate for the added risk.

In the conventional LOB literature, it is common to assume that the limit order
premium is equal to the spread (Guo et al. (2017), Horst and Naujokat (2014),
Cont et al. (2010)), and that the spread is narrow. This is a sensible approx-
imation if response times of traders are short relative to the time it takes the
mid-price to move; in that case, traders can refresh the details of their limit
order so that the price stays close to the best quoted price in the market, and
the difference between the clearing prices of a limit and a market order will be
equal to the spread (given that the limit order clears). It is also necessary to
assume that clearing times are short relative to the time it takes for the mid-
price to move, so that limit orders and market orders posted at the same time
are comparable; otherwise, liquidity takers will have access to price informa-
tion that market makers do not, which constitutes a risk for the market makers
(Ruchti, Goettler et al. (2009)). Even if the two assumptions don’t hold, it is
still reasonable to assume that the limit order premium is strongly correlated
with the size of the spread. In particular, when liquidity approaches infinity
and the tick size goes to zero, the spread vanishes and the limit order premium
converges to zero. Thus, the distinction between a market order and a limit
order is pointless in a perfectly liquid market.

Note that the spread is modeled as a cost in the Order Execution Problem (sim-
ilar to the costs in section 2.1.4). Spreads, transaction costs and price impacts
are collectively referred to as trading costs. In the Market Making Problem,
where the trader may place limit orders, the spread may have a positive contri-
bution to the objective function and it is therefore not a cost.

Of the ITP papers, only Garnier and Madlener (2015) and Engmark and Sand-
ven (2017) include an execution risk that implies they allow the trader to place
limit orders, and only Engmark and Sandven (2017) allow the trader to de-
termine the prices of the placed orders. This may seem strange, considering
that the conventional LOB research find limit orders highly profitable (see e.g.
Horst and Naujokat (2014), Guo et al. (2017), Cont et al. (2010), Gonzalez and
Schervish (2017)). However, Horst and Naujokat (2014) state that ”To the best
of our knowledge, the problem of when to cross the bid ask spread has not been
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addressed in the mathematical finance literature on limit order markets”. The
conventional LOB research has only recently started to tackle the problem, so
it is no surprise that it didn’t instantly propagate to research on more complex
limit order books like the Intraday market.

2.2.3.2 Modeling price impacts from trading

When liquidity is limited enough, orders have a price impact in several ways,
and different papers include different subsets of these forms of price impact.
The terminology differs somewhat between the papers, but the following list
attempts to use the most common terms only.

• The instantaneous price impact reflects that the order depth at a given
time is less than infinite, so that the average clearing price of a large order
is less than or equal to that of a small order. The instantaneous price
impact from a given reduces the profitability of the same order. This
type of order is modeled both in conventional limit order markets (e.g. by
Alfonsi et al. (2012)) and versions of it has been modeled in the Intraday
market by Aı̈d et al. (2015), Tan and Tankov (2016), Garnier and Madlener
(2015), Engmark and Sandven (2017) and Skajaa et al. (2015).

• The transient price impact reflects that a recent market order has ex-
hausted the liquidity in a market. Given sufficient time, the transient
price impact decays and becomes negligible. The transient price impact is
discussed by Gatheral and Schied (2013), Cont et al. (2014) and Bouchaud
et al. (2004), and references therein.

• The permanent price impact arises because traders adapt strategically to
the behavior of other traders. Large market orders, limit orders or limit
order cancellations shifts the perception the traders have of the demand
in the market, altering their trading strategy for the rest of the trading
window. If some of the strategic adaptation is temporary, it may add
to the transient price impact rather than the permanent price impact.
Permanent price impact is modeled by Cont et al. (2014), Gatheral and
Schied (2013), Bertimas et al. (1999) and Huberman and Stanzl (2004),
among others.

It is commonly assumed that all forms of price impact are in an adverse direc-
tion, when adverse is defined as unprofitable for orders in the same direction
as the original order. For instance, sell orders lower prices, which makes selling
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less profitable (both instantaneously and in the future). It is common to as-
sume that each price impact is an increasing function of volume, but the exact
shape of the price impact is an ongoing field of research (Huberman and Stanzl
(2004), Cont et al. (2014)). However, an assumption of no dynamic arbitrage
gives some indication of theoretically sensible shapes; in particular, transient
and permanent price impact should be linear in order volume and symmet-
ric for sales and purchases (Huberman and Stanzl (2004), Weber and Rosenow
(2005)). Moreover, the decay of the transient price impact should have a convex
shape (for instance exponential), else it will give rise to another form of price
impact called transaction triggered price impact (Alfonsi et al. (2012)). The
reason for these constraints is that other shapes of the long-term price impact
may create profitable round trips; a net zero change in commitment, where the
price impact from the early orders makes it possible to get great prices for the
later orders in the opposite direction, producing a net profit in expectation. As
the instantaneous price impact only affects the price of the same order that
causes it, it can never produce arbitrage opportunities on its own. Whether the
empirical shapes of the price impacts comply with these theoretical constraints
or not in the Intraday market has not been investigated further, but it would
be an interesting area of research.

As all price impacts are increasing in order volume, there is a tradeoff between
the different forms of price impact; a ”one-shot” strategy may eliminate the
transient and permanent price impact (since they only affect later orders) but
cause great instantaneous price impact; whereas the instantaneous price impact
is reduced by distributing the trading activity throughout the trading window.

Both the transient and permanent price impact affect the profitability of future
orders; thus, they create path dependencies in the trading optimization problem.
In addition to this, the permanent price impact is a simplification that reduces a
game theoretical problem to an optimization problem that utilizes that only the
system-level response of the traders matter, and not their individual strategic
adaptations. In the papers about limit order books, this is handled by assuming
that the price impact has a nice shape that allows for a closed-form expression
of the optimal control derived from the Hamilton-Jacobi-Bellman partial differ-
ential equation.

Of the formerly mentioned ITP papers, Skajaa et al. (2015), Engmark and Sand-
ven (2017) and Garnier and Madlener (2015) include simplified versions of the
instantaneous price impact, while Aı̈d et al. (2015) and Tan and Tankov (2016)
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include both the instantaneous and permanent price impacts. However, Aı̈d
et al. (2015) uses the term transient price impact to refer to the instantaneous
price impact, while Tan and Tankov (2016) refers to it as a volume penalty. The
other papers don’t include any price impact.

2.2.3.3 Implications of multiple correlated price processes

When the price processes of the consecutive delivery products are positively
correlated, movements in one of the prices convey information about the de-
velopment of the other prices. If trading of one delivery product has a price
impact on the given delivery product, one should therefore expect to have some
price impact on the other delivery products too. The rationale is that traders
who observe increased supply (demand) of one delivery product should expect
similar changes the supply (demand) of other delivery products in the same di-
rection, and adjust their trading strategies accordingly. Since the cross-impact
is caused only by the changed expectations of other traders, it is exclusively
permanent and possibly transient (Mastromatteo et al. (2017), Bertimas et al.
(1999)).

Recall that non-standard shapes of the transient and permanent price impacts
may cause dynamic arbitrage opportunities. In a similar way, an assumption
of no dynamic arbitrage constrains the shape of the cross-impact. In partic-
ular, it should be linear as a function of volume and symmetrical for ask and
bid orders, just like the conventional transient and permanent price impacts
(Schneider and Lillo, 2016). Additionally, the cross-impact matrix should be
a symmetrical matrix, so that a round trip involving several delivery products
will have a net zero price impact on all of the delivery products (Mastromatteo
et al. (2017), Bertimas et al. (1999)). Note that the cross-impact matrix does
not necessarily have to equal the price correlation matrix, though it may be a
reasonable assumption; for instance Mastromatteo et al. (2017) assumes that
”have assumed that the impact matrix has the same eigenvectors as the correla-
tion matrix itself (...) prevents arbitrage opportunities and price manipulation
strategies”.

None of the ITP papers model any form of cross-impact, as none of them simul-
taneously include several delivery products and a model of the limit order book
simultaneously.
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2.2.4 Unique features of the EPEX Intraday market

There are several aspects of the Intraday market that distinguishes it from a
conventional LOB. In this section, three of these are covered. Section 2.2.4.1
outlines how former papers have modeled the regulations covered in section
2.1.5. Section 2.2.4.2 focuses on the modeling of the imbalance price, while
2.2.4.3 concerns the production costs.

2.2.4.1 Regulations

In this section, the modeling of the relevant regulations mentioned in section
2.1.5 of the related research is discussed. In particular, the modeling choices
related to insider trading, market manipulation, the balancing market and the
Order-to-Trade ratio fine are considered.

Neither of the covered ID papers mentions insider trading; however, neither of
the models in the papers use information that would count as insider informa-
tion, so this is justifiable.

Profitable market manipulation opportunities could arise if the transient-, permanent-
or cross-price impact is modeled with non-standard shapes that allow for dy-
namic arbitrage through profitable round trips. However, none of the covered
ID papers discuss market manipulation; for Edoli et al. (2016), Gönsch and
Hassler (2016), Hassler (2017), Löhndorf et al. (2013) and Farinelli and Tibiletti
(2017) this follows naturally from the assumption of no market power; similarly,
Garnier and Madlener (2015), Skajaa et al. (2015) and Engmark and Sandven
(2017) only include the instantaneous price impact, which never creates prof-
itable round trips on its own; finally, Aı̈d et al. (2015) and Tan and Tankov
(2016) make the standard set of assumptions about the shape of the permanent
price impact that avoids arbitrage - thus, market manipulation will always be
assumed to be unprofitable. Thus, none of the models permit market manipu-
lation.

Both Hassler (2017) and Garnier and Madlener (2015) attempt to avoid the
added complexity of allowing for active use of balancing markets. The former
paper claims that use of the balancing markets does not scale to a Nash Equi-
librium. However, an incremental increase in the demand for balancing services
would increase the price of using them, making it less profitable to rely on the
balancing market. It is therefore not clear to the authors of this thesis why such
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a strategy not would converge to an equilibrium.

Garnier and Madlener (2015) on the other hand apply an asymmetric defini-
tion of illegal speculation in the balancing market; they claim that an over-
adjustment to an open position of the market amounts to balancing market
speculation, whereas failing to close the open position is perfectly OK. There-
fore, the residual for the balancing market should always be in the same direction
as the original forecast error. It is not explained why the use of the Balanc-
ing market in one direction apparently is acceptable, whereas use in the other
direction amounts to illegal speculation, ceteris paribus. Without such an ex-
planation, it seems more natural to interpret any large adjustment as active use
of the balancing market, regardless of the direction of said adjustment.

To summarize, both papers fail to convincingly argue why use of the Balancing
market cannot simply be limited by raising the spread between the imbalance
prices in the objective function drastically, and capping the maximum imbal-
ance volume. Alternatively, Aı̈d et al. (2015) assumes a quadratic imbalance
cost, which will make it progressively more expensive to utilize the balancing
market and thus avoid too large deviations from schedule.

Finally, none of the papers mention the Order-to-Trade ratio fine. As men-
tioned, the papers that focus on the dispatch schedule largely don’t mention
trading altogether, whereas the trading-focused papers place only market or-
ders, which always clear. The omission of the Order-to-Trade ratio fine is thus
justifiable. The exception is Garnier and Madlener (2015), which includes the
execution risk, and thus opens for the possibility that an order won’t clear.
However, the paper was written before the current Code of Conduct was writ-
ten, so the Order-to-Trade ratio was likely introduced at a later point in time
(EPEX, 2017a).

To summarize, the balancing market is the only regulatory issue that is covered,
and only in some of the relevant papers. However, none of the other regulatory
issues seem to be a problem, given the proposed models, so they may be disre-
garded safely.
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2.2.4.2 Imbalance price forecasting

Of the former ITP papers, few attempt to forecast the imbalance price. In par-
ticular, Garnier and Madlener (2015), Edoli et al. (2016), Skajaa et al. (2015)
and Löhndorf et al. (2013) don’t mention it at all. Aı̈d et al. (2015), Tan and
Tankov (2016) and Farinelli and Tibiletti (2017) briefly analyze the sensitivity
of the solution to the imbalance price without performing a corresponding em-
pirical analysis to determine realistic values of the parameter. Tan and Tankov
(2016) underscores the unprofitability of adjusting imbalances through the bal-
ance market: ”In the adjustment market, the bid-ask spread is very wide, which
may be interpreted as a penalty imposed on the agents for using this market”.
Gönsch and Hassler (2016) specifically assume that the imbalance price is 2.0
times the representative ID price and Hassler (2017) assume a multiplier of 1.25.

2.2.4.3 Modeling of production costs

As most of the papers about optimization of trading in the Intraday market focus
on renewable production, fuel costs are largely irrelevant. Garnier and Madlener
(2015), Tan and Tankov (2016) and Edoli et al. (2016) therefore omit production
costs altogether, as they focus on intermittent production. The dispatch-focused
papers discuss the alternative cost of the Value of Storage. While Farinelli and
Tibiletti (2017) assume that the Value of Storage is homogeneous for a given
production facility (and Gönsch and Hassler (2016) and Hassler (2017) don’t
model the value of storage directly), Hassler (2017) finds that heuristics based
on the storage level may increase profits. These heuristics are simplified ways
to handle that the Value of Storage is a heterogeneous (monotonously non-
increasing) function of the storage level. Löhndorf et al. (2013) and Engmark
and Sandven (2017) assume that the total Value of Storage in the reservoir is
convex and can be approximated by a piecewise linear function. Additionally,
Engmark and Sandven (2017) include the start-up cost of the generators, creat-
ing path dependencies between consecutive delivery products. Aı̈d et al. (2015)
is the only paper with thermal production, and quadratic production cost is
assumed. Skajaa et al. (2015) perform no optimization, and therefore no cost
function is included.
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2.2.5 Concluding remarks

The existing literature on trading in the Intraday market largely fall in two
categories; one is focused on the placement of orders in a continuous auction
market with a limit order book, but disregards the impact of optimization of
the dispatch schedule and the interdependencies between delivery products; the
other is focused on the optimization of the dispatch schedules across all delivery
products, but neglects the dynamics of the continuous auction market, and dis-
regards the details of trading in such a market. Both categories of papers have
implemented fast solution algorithms that solve the respective problems faster
than the chosen benchmarks in each paper.

Of the covered papers in this thesis, no paper models the placement of limit
and market orders, and no paper optimizes the placement of multiple orders for
multiple delivery products. No paper optimizes both the order placement and
the dispatch schedule simultaneously (though Aı̈d et al. (2015) and Engmark
and Sandven (2017) model approximations of this). Only a few papers consider
the link between the short- and long term optimization of power trading (i.e.
through heterogeneous marginal Value of Storage). Some papers make strict
assumptions about the shape of the production costs, which limits their rele-
vance for traders with other cost functions. Moreover, the empirical justification
for the assumed market parameters is often lacking. In short, highly efficient
solution algorithms have been implemented to solve models that (at least for a
significant subset of the traders in the market) are answering the wrong question.

For this reason, it is hypothesized that it is possible to improve the modeling of
the trading in the Intraday market by optimizing production and trading simul-
taneously, by allowing for both sell- and buy orders, and both limit- and market
orders. The first improvement implies that the double dynamics are modeled,
which is particularly relevant for producers with intertemporal costs or storage
reservoirs; the two categories may respectively reduce costs or increase revenues
through shifting production to other delivery products, so the production deci-
sions of consecutive delivery products are interconnected. It is believed that this
improvement is possible to achieve with only weak assumptions about produc-
tion costs, and in realistic market assumptions. Moreover, such improvements
may be tested and quantified by simulating the market based on empirical data.
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Table 2.2.1a: Key features of the most relevant strategy formulation papers

Paper Trader type Solution method Decision variable
Garnier & Madlener (2014) Intermittent Options-based Order placement
Aı̈d et al. (2015) Thermal+Wind Analytic Trading rate (+dispatch)
Tan & Tankov (2016) Wind Analytic Trading rate
Edoli et al. (2016) PV Analytic Trading rate
Skajaa et al. (2017) Wind Logic-based Order placement
Gönsch & Hassler (2016) Intermittent+ Numeric: ADP Dispatch plan
Hassler (2017) Intermittent+ Numeric: ADP Dispatch plan
Löhndorf et al. (2013) Hydro Numeric: ADDP Dispatch plan
Farinelli & Tibiletti (2017) Hydro Numeric: IPM Dispatch plan
Engmark & Sandven (2017) Hydro Numeric: SMIP Dispatch (+orders)
This thesis Hydro Numeric: MSLP Dispatch+orders

Table 2.2.1b: Key features of the most relevant strategy formulation papers

Paper ∣T ∣ > 1? ∣D∣ > 1?
Price
Impact

Buy+
Sell?

Limit+
market?

Production
Costs

Garnier & Madlener (2014) Yes No IPI Yes Limit only N/A
Aı̈d et al. (2015) Yes No I+P PI Yes Market only Quadratic
Tan & Tankov (2016) Yes No I+P PI Yes Market only N/A
Edoli et al. (2016) Yes No No Yes Market only N/A
Skajaa et al. (2017) Yes No IPI Yes Market only N/A
Gönsch & Hassler (2016) No Yes No Sell only Market only N/A
Hassler (2017) No Yes No Either/or N/A N/A
Löhndorf et al. (2013) No Yes No Either/or N/A Convex
Farinelli & Tibiletti (2017) No Yes No Either/or N/A Linear
Engmark & Sandven (2017) (No) Yes IPI Either/or Limit only Convex
This thesis Yes Yes IPI Yes Yes Convex

In tables 2.2.1a and 2.2.1b, the key features of the former ITP optimization
papers are summarized and compared to this thesis. The ”Trader type” col-
umn describes which kinds of traders the research is relevant for. Intermittent+
means that the solar and/or wind power plant has co-located storage. The ”So-
lution method” column describes the solution algorithm that is recommended
in the paper. Analytic means that a closed-form solution is derived for the
Hamilton-Jacobi-Bellman PDE. Logic-based means that no optimization prob-
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lem is solved at all. ADP is short for Approximate Dynamic Programming (see
Powell (2011)), ADDP is short for Approximate Dual Dynamic Programming
(see Löhndorf et al. (2013)), IPM is short for Interior Points Method (see Boyd
and Vandenberghe (2004)), SMIP is short for Stochastic Mixed Integer Program
and MSLP is short for Multistage Stochastic Linear Program. The ”Decision
variable”-column summarizes the decisions that are made by the models in the
paper. Approximately half the papers focus on order placement or trading rates,
whereas the other half focuses on the dispatch decision.

The ”∣T ∣ > 1?” takes the value ”Yes” if the paper considers several trading stages
per delivery product and ”No” otherwise. For Engmark and Sandven (2017) it
takes the value ”(No)”, as several trading stages aren’t included in their model,
but they recommend that the model is rerun throughout the day. Similarly, the
”∣D∣ > 1?”-column asks whether the paper considers multiple delivery products.
The ”Price Impact” lists the forms of price impact that the paper includes,
where ”I”, ”T” and ”P” correspond to instantaneous, transient and permanent
price impacts respectively. The ”Buy+Sell?”-column considers if the paper al-
lows for the placement of both bid and ask orders. If only one type of order is
allowed per DP, it is referred to as ”Either/Or”. The ”Limit+Market?”-column
similarly considers if both limit and market orders may be placed by the model
in the paper. This is often not stated explicitly, but it is implicit in the mod-
eling of e.g. clearance probabilities (which only are relevant for limit orders).
The ”Production cost” column describes the assumptions that are necessary to
make about production costs for the model to work. If costs are approximated
as piecewise linear, it is assumed that the underlying cost function is convex.
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Chapter 3

Formulating and
decomposing the Intraday
Trading Problem

Recall from section 2.2 that former papers typically have solved different parts
of the Intraday Trading Problem (ITP): either the Order Placement Problem,
or the Dynamic Resource Allocation Problem. In this chapter, the problem
of how to optimize the Intraday production and trading decisions together is
outlined. The overall objective is to maximize profit generated from trading-
and production decisions for all delivery products with an hourly duration in
the EPEX Intraday market on a specific day, for a hydropower producer with
a small reservoir. For the rest of the thesis, a novel decomposition of the ITP
into three parts is used:

1. The Price Forecasting Problem (PFP) is about predicting the future as-
pects of the market, particularly the prices that the trader may hope to
be able to obtain.

2. The Cost Estimation Problem (CEP) considers the marginal cost of pro-
duction for a given power producer.

3. The Strategy Formulation Problem (SFP) takes the marginal cost curve
and the price forecast as input parameters, and formulates an optimal
order placement strategy and a dispatch schedule dynamically.
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The rest of this chapter is structured in the following way: in section 3.1, the
components of the ITP are outlined further. In particular, the decisions and
objectives of each optimization problem is outlined. Section 3.2 outlines the
general features of the SFP in more detail. In section 3.3, different versions of
the SFP is described for a set of different assumptions.

3.1 The three components of the Intraday Trad-
ing Problem

Due to the instantaneous price impact, the price one may hope to obtain in the
market is a function of the desired trading volume, and the Price Forecasting
Problem could naturally be thought of as a residual demand forecasting problem.
The alternative formulation makes it obvious how the decomposition follows
the logic of standard microeconomics, where the Price Forecasting Problem is
analogous to predicting a demand curve (and possibly other relevant features of
the market), the Cost Estimation Problem attempts to establish a supply curve,
and the Strategy Formulation Problem is concerned with finding a policy for
converging to the equilibrium where the two curves intersect. The main focus
of this thesis is on the modeling of the Strategy Formulation Problem, as it is
considered the core of the Intraday Trading Problem. The PFP and CEP are
playing important supporting roles, providing necessary input parameters to the
SFP. Thus, the modeling of the PFP and CEP must be sufficient to evaluate
the proposed model for the SFP in realistic conditions.

Figure 3.1.1: Intraday Trading Problem breakdown
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3.1. THE THREE COMPONENTS OF THE INTRADAY TRADING
PROBLEM

3.1.1 Requirements to a model of the Price Forecasting
Problem

The Price Forecasting Problem consists of determining the market parameters.
This may include both deterministic and stochastic parameters, and indeed
the act of determining which parameters to model as deterministic, and which
to model as stochastic. Examples of such parameters may be the price drift,
volatility, and distribution, as well as order depths, magnitudes of the different
price impacts, premiums for limit orders and the bid/ask spread, as well as rela-
tions between these parameters and correlations between parameters for differ-
ent delivery products or trading stages. If the outcome space for the stochastic
parameters is too large to consider, it may be necessary to create a reduced
outcome space that preserves the key properties as well as possible. This is
often referred to as scenario reduction in the stochastic programming literature.

The key requirement of a market model is that it preserves the true incentive
structure of the trader. In the trading literature, this primarily means to avoid
false arbitrage opportunities. Traditionally, this is done by assuming a driftless
price process and imposing trading costs - spread, transaction costs, et cetera.
Dynamic arbitrage in a market with limited liquidity is avoided by making the
standard assumptions about the shape of the price impacts. For instance, Al-
fonsi and Schied (2010) state that ”any reasonable market impact model should
not admit price manipulation strategies in the sense that there are no “round
trips” (i.e., trading strategies with zero balance in shares) whose expected trad-
ing costs are negative”. There are several methods that aim at preserving the
incentives of the trader in the scenario reduction phase; one example is moment
matching, which ensures that the statistical moments of the original probability
distribution - such as expected value and variance - are preserved (Kaut and
Wallace, 2003); another is the minimization of the filtration distance, which is a
measure of how different the available information is in each node (de Oliveira
et al., 2010). One example of why the statistical moments may matter is that a
high price drift may create arbitrage opportunities, and Dupačová et al. (2000))
state that ”Selection of scenarios should respect the no-arbitrage properties”.
For the same reason, it is necessary that some information is revealed in each
trading stage; with perfect information, a model may easily find false arbitrage
opportunities.
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3.1.2 Requirements to a model of the Cost Estimation
Problem

The Cost Estimation Problem consists of determining which of the costs de-
scribed in section 2.1.4 that are relevant for the given producer over short-term
decision horizons, and to estimate their magnitudes. This may depend on for-
mer trading decisions made by the producer. For instance, if a thermal producer
already has committed a significant volume in the Day-Ahead market, start-up
costs may be irrelevant because the generators will be running anyways - even
if the start-up costs are very large.

Just like the PFP, the key requirement of a production cost model is that it pre-
serves the true incentive structure of the trader. For the hydropower producer
in question, it is assumed that the relevant cost driver is the Value of Storage.
Moreover, for reasons relating to the coordination between long- and short-
term optimization explained in section 2.1.4, the marginal Value of Storage is
assumed to be heterogeneous and monotonous non-increasing as a function of
storage volume. The reason for the choice of hydropower as the production type
is that it makes the double dynamics highly relevant.

3.1.3 Requirements to a model of the Strategy Formula-
tion Problem

The key requirements of the model of the SFP are that it produces high profits in
the actual market environment, requiring manageable computational resources.
As the liquidity in the market has been increasing fast, the market has changed
fast in the past. If the growth continues, it is important that the model not only
performs well in the current market environment, but also in similar realistic
market environments that may soon be reality. If the decision maker is risk
averse, the model of the SFP should take this into account.

3.2 Formulating the Strategy Formulation Prob-
lem

As formulated by Akersveen and Graabak (2017), the Strategy Formulation
Problem takes the variable costs of production and the price forecast as input
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parameters, and formulates an optimal order placement strategy for a trader.
The goal is to maximize the expected profit from placing orders in the German
short-term power markets. The revenue source is cleared sell orders in the In-
traday market, less the cost of cleared buy orders - or vice versa, when prices
are negative. The relevant costs are transaction costs, production costs, and
imbalance costs. Large orders or many consecutive orders may have short- or
long-term price impact, reducing the revenue source from cleared orders; thus
the market is assumed to be weakly inefficient.

The trader can place market orders and limit orders for a set of delivery prod-
ucts. The order prices, volumes and time of placement and cancellation must be
determined, in addition to an optimal dispatch plan. Only cleared orders gen-
erate revenues. Order placement and clearing is done continuously within the
frame of the Intraday trading windows for each delivery product. The decision
horizon is the time from Intraday gate opening until the latest time of delivery
of any considered delivery product.

The optimal Intraday order placement strategy depends on the commitment
from the Day-Ahead market (and other physical markets such as the reserve
markets, though for simplicity they are left out here). If parts of the commit-
ment is not produced, the imbalance is traded in the balancing markets. The
production decision is constrained by the upper and lower bounds on the pro-
duction capacity for a given trader. The produced energy either stems from an
inflow of energy, or stored energy. Storage of energy is limited to the storage
capacity, and changes in storage levels are subject to conservation of energy. In
order to retain the license to trade in the Intraday market, traders must comply
with the relevant regulations.

3.3 Developing a set of assumptions for the Strat-
egy Formulation Problem

In this thesis, the set of relevant assumptions to consider is selected based on
the assumptions that are made in the contemporary literature. In particular,
disagreements in the related literature about which assumptions to make about
a concept is used as a heuristic that the topic is worthy of further exploration.
The assumptions are described conceptually in the following sections.
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3.3.1 Assumption 1: Predetermined or informed produc-
tion decisions?

The purpose of considering this assumption is to demonstrate that when the
target inventory - which in the Intraday power market is referred to as the opti-
mal production quantity - is a function of a stochastic parameter throughout the
trading window, there is value in delaying the production decision until more
information is available. The producer is assumed to be risk neutral and the
market is perfectly liquid. This is illustrated using a trader with some spare
production capacity (henceforth referred to as an open position), who is al-
lowed to determine both the order volumes in each trading stage, and the final
production. She operates a hydropower plant connected to one reservoir, with
a homogeneous marginal production cost. The extension to several reservoirs
is fairly straightforward. Any commitment from the Day-Ahead or Intraday
market incurs a commitment to produce the equivalent amount of energy, and
the Day-Ahead commitment is known in advance. As the balancing market is
assumed to always be less profitable than the Intraday market, and both pro-
duction capacity and order clearing is deterministic, the Balancing market is
safely omitted from the model.

3.3.2 Assumption 2: One or several delivery products

The purpose of the case is to show that the decisions made for one delivery
product affects decisions related to other delivery products in non-trivial ways,
so that simultaneous optimization for several delivery products may increase
profits compared to separated optimization of each delivery product. To illus-
trate this, the initial model is extended to three delivery products. Marginal
production costs are assumed to be similar for all DPs, but may be heteroge-
neous as a function of storage level, because the Value of Storage is a function of
the amount of available storage. The cost heterogeneity shows that short-term
optimization and long-term planning can be coordinated efficiently.

3.3.3 Assumption 3: One- or two-sided trading?

The purpose of the case is to show that when the target inventory is stochastic,
there is value in allowing the model two-sided trading. Even though the initial
open position is in a given direction - say, prices are higher than marginal pro-
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duction costs, so the trader wishes to sell - the direction of the open position
may flip when prices are stochastic. Thus, the second extension of the original
model is to allow the trader to make purchases in addition to sales. The trader
is also allowed to place multiple orders throughout the trading window, and the
set of orders may be a combination of both ask and bid orders. Transaction
costs are introduced, and they are assumed to be symmetric for ask and bid
orders, as well as proportional to the clearing volume of each order.

3.3.4 Assumption 4: Limited order depth

The purpose of the case is to show that limited order depth forces the trader
to distribute the trading throughout the trading window. With this assump-
tion, some market imperfections are introduced; in particular, the order depth
is assumed to be limited. The changes from the perfect market include the
introduction of a bid-ask spread, as well as a cap on the maximum clearing
volume for a given price in each stage. When order book volumes at the best
quoted prices in a stage are exhausted, it is assumed that additional volumes
may be available at worse prices. It is assumed that the order depths in a given
stage are independent of the decisions of the trader in the earlier stages; that is,
the order book is instantly replenished after an order clears, and the transient
and long-term price impacts are both zero. While it is still possible to include
transaction costs, the presence of the bid-ask spread serves the same purpose
and may make it less relevant.

3.3.5 Assumption 5: Limit order premium

The purpose of the case is to show that limit orders broadens the scope of avail-
able strategies to the trader; in particular, a trader that is not too risk averse
may offer liquidity to the market in exchange for higher expected profits. For
this reason, another consequence of the limited order depth is considered; the
market making premium. Recall that while the limit order has a potential for
higher unit profits than the market order, the clearing of it is uncertain. Only
cleared orders have an impact on the objective function. It is assumed that the
transaction premium in one stage may be smaller than the change of the best
quoted price in the next stage - that is, if prices are 55 e/MWh in stage t, but
were only 50 in stage t − 1, it does not imply that the limit order premium was
⩾ 5 in stage t− 1. However, changes in the base price and limit order premiums
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are likely correlated.

3.3.6 Assumption 6: Transient and permanent price im-
pact

The purpose of the case is to show that the modeling of the transient price
impact in the proposed modeling framework grows overly complex, so that new
modeling frameworks are needed to handle this concept. Another consequence
of the limited liquidity is the transient price impact following a limit order that
depletes the order volumes at the best quotes, and the permanent price impact
from strategic competitors in the market. With this assumption, the available
order volumes are no longer independent of the decisions of the trader in earlier
stages. However, the influx of new orders is still assumed to be independent of
the earlier trading decisions, meaning that the permanent price impact still is
neglected with the given assumptions.

3.3.7 Assumption 7: Asynchronous gate closure

The purpose of the case is to be able to model the EPEX Intraday market even
more realistically. The final assumption recognizes that the actual gate closures
of the delivery products happen asynchronously. Thus, trading- and production
decisions for the early delivery products must be made without knowledge of the
last hours of price information for the later delivery products. The difference
from before is therefore that after a few trading stages, the trading windows of
the delivery products start closing with a steady frequency of a few stages per
gate closure. If there are N stages between two consecutive gate closures, this
is equivalent to an assumption of a stage duration of 60/N.
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Mathematical Model

In the following chapter, a model is modularly extended to permit the features
that are relevant for each of the cases described in chapter 3. A Multistage
Stochastic Linear Program (MSLP) is chosen as the modeling framework. The
stochastic processes are modeled in discrete trading time. This framework is
assumed more flexible than the ones that some of the former papers (e.g. Aı̈d
et al. (2015), Tan and Tankov (2016)), have proposed, as it can model more con-
straints and make fewer assumptions about the shape of the cost function. The
dispatch-focused papers consider delivery products as the axis of stochasticity
rather than trading time, so their modeling choices are less directly comparable.

Such a formulation implies that the time during the trading window is dis-
cretized into several stages t ∈ T , from the initial stage t0 to the Gate Closure
t̄GC . Moreover, the probability distributions of the stochastic variables are
discretized, so that the uncertainty can be handled through a set of scenarios
s ∈ S. In the first stage, all scenarios are similar, so that the trader does not
know which scenario she is in. Information is revealed gradually in each trading
stage, until no uncertainty remains at the end of the trading window. In each
stage, the trader may place orders in the market. In the final stage (at Gate
Closure), production is determined.

It should be noted that a dynamic framework was also considered, as it is
a computationally tractable alternative when there are many stages and the
scenario space grows quickly. However, a recourse-based MSLP framework was
considered more suitable for the initial exploration and illustrative cases in this
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thesis. In particular, the state space of a suitable dynamic program grows so
large that significant effort must be put into both the modeling and the solution
algorithm of such a framework, making it better suited at a later point when
the effects of each of the modeling assumptions are better known.

The units of all parameters or variables are in e, MWh, or e/MWh. For in-
stance, reservoir levels and -inflow are measured in MWh, not in terms of water
volumes.

The rest of this chapter is structured in the following way; in sections 4.1.1-4.1.7,
a model is formulated and gradually expanded as new assumptions are included.
It is recommended to be familiar with the assumptions and problem instances
of section 3.3 before reading these chapters. In section 4.2, the gradual changes
are summarized as an MSLP, later referred to as the Benchmark model. Finally,
some sets of model modifications are presented in section 4.3, with the purpose
of approximating the models of the related literature.

4.1 Building an Intraday Trading Problem model

Throughout this section, the seven assumptions are presented in the same order
that they were introduced in chapter 3.

4.1.1 Assumption 1: Predetermined or informed produc-
tion decisions?

The objective is to maximize the expectation of the sum of trading profits from
all trading stages and minimize production costs, over all scenarios. The expec-
tation is calculated as the weighted sum over all scenarios, where each scenario
has the probability ρs. Trading profits are the product of prices Pts and placed
order volumes xts (which equal trading volumes). Production costs are the
product of unit variable costs CQ and production volume qs.

max z = ∑
s∈S

ρs(∑
t∈T

Ptsxts −C
Qqs) (4.1.1)

Trading incurs a commitment to produce the equivalent volume. The commit-
ment is equal to the sum of the traded volumes in the Intraday market and the
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Day-Ahead commitment V DAd .

s.t.∑
t∈T

xts − qs = − V DAd , s ∈ S (4.1.2)

Production is limited by the maximum production capacity Q̄.

qs ⩽ Q̄, s ∈ S (4.1.3)

Production is also limited by the sum of the initially available storage R0 and
the inflow F in during the production interval.

qs ⩽ R0 + F
in, s ∈ S (4.1.4)

Order placement is nonanticipative. The production decision is made with full
information, so no nonanticipativity constraints are needed for the production
variables. In the nonanticipativity constraints, the set of scenarios S is parti-
tioned into subsets Stk for each t ∈ T . The subsets are mutually inclusive and
collectively exhaustive, ⋃

k∈Kt

Stk = S and ⋂
k∈Kt

Stk = Ø. The scenarios that belong

to the same Stk have identical parameter realization of the stochastic parame-
ters until stage t, thus the decisions should also be identical.

xts = xtσ, t ∈ T , k ∈ Kt, s ∈ Stk, σ ∈ Stk (4.1.5)

Sales are nonnegative. From equation (4.1.2), production is also nonnegative
without enforcing it as a variable constraint.

xts ⩾ 0, t ∈ T , s ∈ S (4.1.6)

qs free, s ∈ S (4.1.7)

It is never explicitly enforced that the trader is only allowed to place one order,
but the assumptions ensure that the optimal strategy only has exactly one any-
ways. The reason is that a strategy that is optimal for an infinitesimal, atomic
open position scales perfectly when marginal production costs are homogeneous
and the market is liquid; neither marginal production costs nor prices are a
function of the order volume.
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4.1.2 Assumption 2: One or several delivery products?

When several delivery products are introduced, the relevant parameters and
variables are given an index d ∈ D, where d marks one delivery product and D is
the set of all delivery products. Thus, {Pts, xts, qs, F in} becomes {Ptds, xtds, qds, F ind },
and constraints (4.1.2) to (4.1.7) apply for each d ∈ D.

Moreover, the reservoir constraint (4.1.4) must be adjusted. When there are
several delivery products, the initial storage level for a given delivery product
is set by a flow constraint. The storage level Rs at the beginning of a delivery
hour then becomes a variable rds for all delivery products except the first, where
R0 is the storage level.

From before, production qds and inflow F ind are the factors that may change
the storage level rds (defined as the storage at the beginning of production of
delivery product d). In addition to this, it is assumed that water is allowed to
spill freely (for instance if the reservoir is full). This is added as an overflow
variable foutds .

r(d+1)s − rds + qds + f
out
ds = F ind , d ∈ D, s ∈ S (4.1.8)

foutds ⩾ 0, d ∈ D, s ∈ S (4.1.9)

The initial storage is equal for all scenarios.

r0s = R0, s ∈ S (4.1.10)

The outgoing storage level is nonnegative and upper bounded by the reservoir
capacity, R̄storage.

r(d+1)s ⩽ R̄storage, d ∈ D, s ∈ S (4.1.11)

r(d+1)s ⩾ 0, d ∈ D, s ∈ S (4.1.12)

Until the final delivery product, the model has an incentive to not spill water,
as it can be used in later production. However, spillage during the last delivery
product is not penalized as the remaining storage at the end of the day is not
included in the objective function. A reward equal to the Value of Storage for
remaining water at the end of the production horizon is therefore introduced.
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With this modification, the production is still penalized as it reduces the avail-
able storage.

max z = ∑
s∈S

ρs(∑
t∈T

∑
d∈D

Ptdsxtds +C
Qr(d̄+1)s −C

QR0) (4.1.13)

The last term subtracts the value of the initial storage. It consists only of pa-
rameters, so it will affect none of the actions. However, the objective value
will better reflect the profit throughout the day when the original value of the
storage is accounted for.

4.1.2.1 Implications of heterogeneous marginal production costs

In section 2.1.4 it was stated that the Value of Storage is a function of the
remaining storage, which is affected by the production decision in the Strategy
Formulation Problem. Ideally, the Value of Storage should be recomputed to re-
flect the new storage level if the assumed dispatch plan is violated significantly,
but this is intractable for high-frequency decision making due to the complexity
of the problem. In line with the literature on hydropower dispatch optimiza-
tion, the heterogeneous Value of Storage is piecewise linearly approximated as
a function of storage level (see e.g. Farinelli and Tibiletti (2017), Engmark and
Sandven (2017)).

For the rest of this thesis, it is assumed that suitable heuristics have been applied
and that the marginal Value of Storage accurately reflects the actual alternative
cost of production. When MPCs are heterogeneous, the objective function takes
the following form.

max z = ∑
s∈S

ρs(∑
t∈T

∑
d∈D

Ptdsxtds +C
Q
(r(d̄+1)s)r(d̄+1)s −C

Q
(r0s)r0s (4.1.14)

Here, the function CQ(r(ds) is the average Value of Storage in the reservoir at
the beginning of the production interval d. As it is multiplied with the storage
level, the term is non-linear and potentially non-convex. In order to handle this,
it is linearly approximated. The linearization of the marginal Value of Storage-
function is outlined in the following paragraphs.
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Figure 4.1.1: Hypothetical linear approximation of marginal VoS with virtual
reservoirs.

The Value of Storage is linearized by discretizing the reservoir volume into vir-
tual reservoirs with homogeneous marginal Value of Storage per reservoir. Each
virtual reservoir is connected to a generator, and is indexed by γ ∈ Γ. Together,
the virtual reservoirs with homogeneous marginal Values of Storage approxi-
mate the heterogeneous marginal Value of Storage of the actual reservoir.

qds −∑
γ∈Γ

qdsγ = 0, d ∈ D, s ∈ S (4.1.15)

rds −∑
γ∈Γ

rdsγ = 0, d ∈ D, s ∈ S (4.1.16)

The virtual production variable is free like the initial production, but the total
production is still capped by constraint (4.1.3). All production- and storage-
related constraints apply (4.1.8 - 4.1.12) for each virtual reservoir, with one
important change:

r(d+1)sγ − rdsγ + qdsγ + f
out
dsγ − f

in
dsγ = 0, d ∈ D, s ∈ S, γ ∈ Γ (4.1.17)

Note that the inflow parameter F ind has become a variable f indsγ . The reason
is that the inflow parameter flows into the original, physical reservoir. When
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the physical reservoir is modeled as several virtual reservoirs, it is not prede-
fined which virtual reservoir that receive the inflow volume. When the inflow
parameter is transformed to a vector of variables - one per virtual reservoir -
the model may choose where the inflow should go, and it will choose the virtual
reservoir with the highest water value. The total inflow to the virtual reservoirs
should equal the inflow to the physical reservoir, and virtual storage should be
nonnegative.

∑
γ∈Γ

f indsγ = F ind , d ∈ D, s ∈ S (4.1.18)

f indsγ ⩾ 0, d ∈ D, s ∈ S, γ ∈ Γ (4.1.19)

The non-linear VoS function is approximated by a set of lines.

CQ(rds) ⋅ rds −∑
γ∈Γ

CQγ ⋅ rdsγ = 0, d ∈ D, s ∈ S (4.1.20)

All of the virtual generators have the same production capacity as the original
generator, but equation (4.1.3) still applies, so this is already enforced.

As long as marginal production cost are monotonously non-decreasing as a func-
tion of production volume, the model will choose the virtual reservoir with the
correct Value of Storage - the cheapest one. Otherwise, integer variables with
corresponding constraints can be added to select the correct virtual reservoir.
Non-monotonous MPCs may however create multiple equilibria in the intersec-
tions between supply and demand, which complicates some of the later cases.
Moreover, marginal Value of Storage is monotonously non-increasing as a func-
tion of storage level and storage level is monotonously decreasing as a function
of production volume, so if Value of Storage is the only cause of the hetero-
geneous MPC, they should be monotonously non-decreasing. Thus, this is not
investigated further.

If the gate closures of the delivery products are synchronous (that is, t̄GCd =

t̄GC∂ = t̄GC , if d ∈ D, ∂ ∈ D, d ≠ ∂), as they are with the current formulation,
then all storage related decisions (inflow, overflow and production) are made
with perfect information. Thus, no nonanticipative constraints are needed.
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4.1.3 Assumption 3: One- or two-sided trading?

If it is allowed to both buy and sell, the direction of an order must be specified.
Thus, xtds is renamed xAtds, where the A symbolizes that the order is an ask
order. Similarly, xBtds represents a bid order. Ask orders have a positive profit
contribution, while bid orders have a negative profit contribution. A transaction
cost CC is applied to all clearing orders, and it contributes negatively to the ob-
jective function for both sales and purchases. The resulting objective function
is thus:

max z = ∑
s∈S

ρs(∑
t∈T

∑
d∈D
(Ptds(x

A
tds − x

B
tds) −C

C
(xAtds + x

B
tds))

+CQ(r(d̄+1)s)r(d̄+1)s −C
Q
(r0s)r0s

(4.1.21)

The rationale for the transaction cost is to prevent arbitrage. Transaction costs
may prevent arbitrage opportunities when there is a weak expected price drift
if the double transaction cost from a round trip exceed the expected price dif-
ference (Fruth et al. (2017), Alfonsi and Schied (2010)).

Equation (4.1.22) then must be adjusted so that a production commitment can
be exited with a bid order xBtds.

∑
t∈T
(xAtds − x

B
tds) − qds = − V DAd , d ∈ D, s ∈ S (4.1.22)

By equation (4.1.22), production is no longer positive by definition, so a lower
bound is introduced. The lower bound on production may be different from
zero, if pumps are installed in connection to the dam. The parameter Q

d
is

therefore introduced for the lower bound.

qds ⩾ Q
d
, d ∈ D, s ∈ S (4.1.23)

The new order placement variables are non-negative and nonanticipative like
the former ones, while the production variable still is free and determined with
perfect information.

4.1.4 Assumption 4: Limited order depth

When the available order depth is limited, the modeling of the price changes sig-
nificantly. In particular, there is no longer one well defined price Ptds at which
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ask and bid orders will clear. Instead, there is a range of prices, where different
volumes are available depending on the price. The price range is approximated
by a set of order levels p ∈ P. For each value that the index p may take, there
is a corresponding order level Pp, sorted so that prices with lower indices are
lower: Pp ⩽ Pρ if p ∈ P, ρ ∈ P, p ⩽ ρ. The set of buy order and sell order prices
may be different, so that the price PAp may be different from PBp , even for the
same value of the p-index.

The difference between Pp and Pp+1 is necessarily larger than the minimum
price tick, and may vary with p, t, d, and s. This is referred to as a block-shape
approximation of the order book by Tsoukalas et al. (2017) and Wu and Gao
(2018), and is used by e.g. Fruth et al. (2017), Alfonsi and Schied (2010) and
Horst and Naujokat (2014). To reduce the number of parameters, only the rel-
evant order levels are included. In stage t in scenario s for delivery product d,
the relevant prices are PBptds and PAptds for p ∈ P. Note that these prices may be
different even if they have the same index.

At each order level, a given order volume is available. The volume may differ
between trading stages and delivery products, and be different for ask and bid
orders (in fact, the available order depth at a given order level is necessarily zero
either on the ask or bid side for each order level, since otherwise a transaction
would occur and the orders would be removed. The ask order depth at order
level p in stage t for delivery product d in scenario s is referred to as Aptds.
The corresponding bid order volume is referred to as Bptds. Order placement
variables are modified to specify the order price, so that {xAtds, xBtds} becomes
{xAptds, xBptds}. The trading profit term in the objective function must therefore
include a sum over p too:

max z = ∑
s∈S

ρs(∑
p∈P

∑
t∈T

∑
d∈D
(PBptdsx

A
ptds − P

A
ptdsx

B
ptds −C

C
(xAptds + x

B
ptds))

+CQ(r(d̄+1)s)r(d̄+1)s −C
Q
(r0s)r0s

(4.1.24)

Observe that the ask order(s) xAptds clears with the price PBptds, not PAptds. The
reason is that it clears by matching the bid order(s) with volume Bptds. For the
same reason, xBptds clears with the price PAptds. The difference in price between
two order levels is referred to as the order level penalty, as it is the penalty
that a trader faces for wanting to trade larger volumes than the order depth
at the given order level. The instantaneous price impact is a function of both
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the order depth and the order level penalty. In liquid LOBs, it is assumed that
there are orders on every price tick, but this isn’t necessarily the case in less
liquid markets. For this reason, the term ”order level penalty” is not common
in the literature. Note that in this thesis, ”penalty” refers to a less desirable
price - for either a seller or a buyer - and ”premium” refers to a more desirable
price in either direction, though obviously a buyer desires a discount rather an
actual premium.

Note that with no loss of generality, the model in this thesis always specifies the
order level that an order is placed at (all orders have a p-index), although this
is superfluous when orders clear completely and instantly at the specified price:
they could have been placed as market orders - who have no defined price - and
the outcome would have been the same. This modeling choice ads no computa-
tional complexity, but reduces the decision space and simplifies the syntax.

Order volumes are restricted to the available order depth at a given order level.
The constraints for the ask and bid side are perfectly symmetrical.

xAptds ⩽ Bptd, p ∈ P, t ∈ T , d ∈ D, s ∈ S (4.1.25)

xBptds ⩽ Aptd, p ∈ P, t ∈ T , d ∈ D, s ∈ S (4.1.26)

Note that in reality, ask (bid) orders may have lower (higher) prices than the
orders that are available in the market, and a transaction will still occur. With-
out loss of generality, this inequality is transformed to an equality in the model:
only orders with equal prices will match. This significantly simplifies transac-
tion price calculations, and breaks symmetry.

4.1.5 Assumption 5: Limit order premium

When limit orders (above the already available prices in the market) are al-
lowed, the placed and cleared order volume are no longer necessarily equal. The
placement of an ask order is still referred to as xAptds, whereas the order clearing

is referred to vAptds. A similar terminology is adopted for bid orders.

In the objective function, order volumes are replaced with transaction volumes.
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max z = ∑
s∈S

ρs(∑
p∈P

∑
t∈T

∑
d∈D
(PBptdsv

A
ptds − P

A
ptdsv

B
ptds −C

C
(vAptds + v

B
ptds))

+CQ(r(d̄+1)s)r(d̄+1)s −C
Q
(r0s)r0s

(4.1.27)

Constraints (4.1.25) and (4.1.26) remain the same, but the interpretation of
Aptds and Bptds is now the highest possible available volume. For order levels
with worse than or equal prices than the best quote available, the volume is
certainly available as it already is in the order book. For better prices, the
volume may be made available during the stage, or not. The probability that
the volumes are made available during the stage, is falling as a function of the
premium (discount) received compared to the best bid (ask) quote.

The parameter ΞBptds = {0,1} is chosen to model the execution risk related to
limit orders. If it takes the value 1, it is possible to clear ask orders at the
order level p during stage t for delivery product d in scenario s. Otherwise, it
is not possible to clear such an order. For order levels with prices below the
best quoted price at the beginning of the stage, it is known that ΞBptds is 1 in
advance. For better prices, this is not known in advance, so there is an execution
risk related to the placement of an order at that price.

vAptds −ΞBptdsx
A
ptds = 0, p ∈ P, t ∈ T , d ∈ D, s ∈ S (4.1.28)

Symmetry still applies.

vBptds −ΞAptdsx
B
ptds = 0, p ∈ P, t ∈ T , d ∈ D, s ∈ S (4.1.29)

The order clearing volume variables inherit the nonanticipative properties of the
order placement volume variables from constraints (4.1.28) and (4.1.29). Like
order volumes, transaction volumes are non-negative. It is assumed that limit
orders never clear in the last trading stage, as it is too late to find a counter-
party for the transaction. An illustration of a snapshot of the limit order book
is shown in figure 4.1.2. Note how the bid limit orders are placed with the hope
that ask orders may be placed at better prices than the current best quoted ask
order, which is why the bid limit order levels are shown on the same side as the
accessible ask orders, and vice versa.

53



CHAPTER 4. MATHEMATICAL MODEL

Figure 4.1.2: A block approximation of a hypothetical snapshot of the limit
order book

4.1.5.1 Implications of the execution risk

Constraints (4.1.28) and (4.1.29) state that the cleared volume must be lower
than the order volume that is placed in the same stage. It is thus implicitly
assumed that there are no residual volumes from former stages; orders are can-
celed by default at the end of each trading stage. This simplifies the modeling
somewhat as it reduces the decision space, and it becomes superfluous to model
the residual open order volume from former stages. With a dynamic formula-
tion, such an assumption would be a necessity, as the state space would grow

with a factor of V̄
∣P ∣
p (where V̄p is the maximum order volume per order level

and ∣P ∣ is the number of order levels) if residual open order volumes must be
included.

It may seem like the modeling of the Order to Trade Ratio fine becomes relevant
at this point, since it is now possible to place orders that have a low probability
of clearing. However, this can be solved by preprocessing; if the empirical prob-
ability that a given order clears is too low, the probability that is provided to
the model may be set to 0. Thus, the model will believe that there is no reason
to place such an order (see figure 4.1.3 for a visualization with a hypothetical
distribution, and the modified distribution that is provided to the model), and
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the probability that the Order to Trade ratio is violated approaches zero.

Figure 4.1.3: Hypothetical modified clearance probability for limit orders.

A quick calculation shows that if the lower clearance probability threshold
is 20%, even conservative assumptions makes it very hard to fall below the
2% clearing rate where an Order to Trade ratio alert is issued. Specifically,
three assumptions are made; 51 orders are placed (which is the lowest num-
ber that can trigger and Order to Trade ratio alert, and therefore the num-
ber where an alert is the most likely) in all trading windows; all orders are
placed at the threshold clearance probability; and the clearing of the orders
are statistically independent. In this case, the probability per trading window
that less than 2 orders clear and an Order to Trade ratio alert is issued is
(1− 20%)51 + (1− 20%)50 ⋅ 20% = 1.4 ⋅ 10−5. The risk that this happens more
than four times, even in months with 31 days (where the number of delivery
products is the largest), is clearly negligible - in fact, the probability that the
number of Order to Trade ratio alerts is zero is (1 − 1.4 ⋅ 10−5)31⋅24 = 99%.
Thus, the handling of the Order to Trade ratio constraint is performed in the
preprocessing, and no explicit modeling is needed.

If orders don’t clear as planned, it may happen that the market commitment
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after gate closure is infeasible or very expensive to produce. Thus, the balancing
market becomes relevant. Down- and up-adjustments in the balancing market
are added to the objective function as sales and purchases, respectively.

max z = ∑
s∈S

ρs(∑
p∈P

∑
t∈T

∑
d∈D
(PBptdsv

A
ptds − P

A
ptdsv

B
ptds −C

C
(vAptds + v

B
ptds))

+CQ(r(d̄+1)s)r(d̄+1)s −C
Q
(r0s)r0s + ∑

d∈D
(PBM−ds vBM−ds − PBM+ds vBM+ds ))

(4.1.30)

The adjustment in the balancing market equals the difference between the com-
mitment from the former markets and the production. Equation (4.1.31) re-
places equation (4.1.22).

∑
p∈P

∑
t∈T
(vAptds − v

B
ptds) + v

BM−
ds − vBM+ds − qds = −V DAd , d ∈ D, s ∈ S

(4.1.31)

The use of the balancing market is restricted with a chance constraint, ensuring
that it is at most R̄BM MWh per day with at least ρBM probability.

Pr{∑
d∈D
(vBM+ds + vBM−ds ) ⩽ R̄BM} ⩾ ρBM (4.1.32)

Assuming that there is sufficient liquidity in the market (and flexibility in the
production technology) to avoid the balancing market through the use of mar-
ket orders (even if the prices of the given market orders are poor), the chance
constraint can be simplified to a deterministic constraint.

∑
d∈D
(vBM+ds + vBM−ds ) ⩽ R̄BM , s ∈ S (4.1.33)

Balancing market adjustment is nonnegative. The adjustment is made with
perfect information, so no nonanticipativity constraints are needed.

vBM−ds , vBM+ds ⩾ 0, d ∈ D, s ∈ S (4.1.34)

With the current formulation, the structure of each trading stage is illustrated
in figure 4.1.4, where LOP is short for limit order premium.
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Figure 4.1.4: The structure of a trading stage

4.1.6 Assumption 6: Transient and permanent price im-
pact

It would also be desirable to capture transient and permanent price impact.
Former papers in conventional LOB markets do this by generating scenarios
with the ”unperturbed price”, formulating the problem dynamically, assuming
a nice perturbation, and then solving the Hamilton-Jacobi-Bellman partial dif-
ferential equation analytically. As the stages in the MSLP are solved in the
same program rather than separately as in a DP, this is not a feasible approach;
it would create at non-linear (non-convex) product between the price and the
volume in the objective function.

An alternative approach to modeling the transient price impact was therefore at-
tempted; the full order book could be modeled, so that orders that have cleared
are permanently removed from the order book. As new orders are added inde-
pendently, the impact on the price gradually disappears. However, such a model
grows vastly complex, with thousands of binary variables; the reader is referred
to Appendix A. This is therefore clearly not a tractable approach. Moreover, it
would have been unable to capture the permanent price impact, since the place-
ment and canceling of limit orders by other actors in the market was assumed
to be independent from the actions of the trader.

It is hypothesized that a dynamic linear model formulation could be able to
model the transient and permanent price impact, using the same modeling trick
as the former papers (Aı̈d et al. (2015), Tan and Tankov (2016)), but with a
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numerical solution method. Such an approach would not only require a refor-
mulation of the entire model; the amplitudes of the two price impacts as well
as the decay rate of the transient price impact must also be estimated. Such an
estimation is non-trivial, as it is hard to untangle the causality; even if prices
fall after a given order is placed, the price fall isn’t necessarily caused by the
order placement. For these reasons, the approach is considered out of scope for
this thesis, though it is recommended as a future area of research.

4.1.7 Assumption 7: Asynchronous gate closure

When gate closures happen asynchronously for different delivery products - for
instance, DP11 closes at 10:55, DP12 closes at 11:55 et cetera - the set of trad-
ing stages must be defined separately for each delivery product: t ∈ T becomes
t ∈ Td, and t̄GC becomes t̄GCd . Moreover, all production decisions except the one
for the last delivery product are no longer made with full information. Thus,
nonanticipativity constraints are needed.

qdsγ = qdσγ , d ∈ D, k ∈ Kt, s ∈ Stk, σ ∈ Stk, t = t̄
GC
d , γ ∈ Γ (4.1.35)

The inflow and overflow variables also need nonanticipativity constraints.

f indsγ = f indσγ , d ∈ D, k ∈ Kt, s ∈ Stk, σ ∈ Stk, t = t̄
GC
d , γ ∈ Γ (4.1.36)

foutdsγ = foutdσγ , d ∈ D, k ∈ Kt, s ∈ Stk, σ ∈ Stk, t = t̄
GC
d , γ ∈ Γ (4.1.37)

As production qds is linearly dependent on virtual production qdsγ , it inher-
its the nonanticipative property. Likewise, the storage variable rdsγ is linearly
dependent on the production, inflow and overflow, and inherits the nonantic-
ipative property from them. Balancing market adjustments are nonanticipative.

vBM+ds = vBM+dσ , d ∈ D, k ∈ Kt, s ∈ Stk, σ ∈ Stk, t = t̄
GC
d (4.1.38)

vBM−ds = vBM−dσ , d ∈ D, k ∈ Kt, s ∈ Stk, σ ∈ Stk, t = t̄
GC
d (4.1.39)
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4.2 Modeling the Strategy Formulation Prob-
lem

As the initial model has undergone substantial changes throughout the last few
sections, this section summarizes the changes by presenting the proposed final
version of the model.

The final version of the model assumes that one already has a piecewise lin-
earization of the Value of Storage as a function of storage level, and a descrip-
tion of the relevant market parameter. In particular, it is necessary to have a
description of the uncertainty in the stochastic parameters. The parameters in
the model with an s-index are the scenario probabilities ρs, the prices PAptds and

PBptds, and the limit order clearance parameters ΞAptds and ΞBptds. Thus, those are
the only parameters that vary between the scenarios, and all other parameters
are deterministic. The parameters with a scenario index have known values for
each scenario, but the nonanticipativity constraints ensure that the decisions
that are made are implementable based only on the information that should be
available in the given node.

All former trading-focused ID papers have modeled price as stochastic. This
is a natural choice, as deterministic prices create a false arbitrage opportunity
for the model, which will dominate its decision making. Limit order clearing
has not been modeled as a stochastic process in the ID literature before, but it
is common in the conventional LOB literature. It is a necessary feature if one
wishes to study the tradeoff between limit and market orders; if the clearing of
a limit order is known in advance, there is no such tradeoff as limit orders with
certain clearing dominate the market orders. It could also have been interesting
to include stochasticity in other parameters; for instance, a wind power pro-
ducer could have been modeled with the production inflows F ind as stochastic
parameters F inds and creating a plant with zero marginal production cost. The
choice of stochastic parameters is a tradeoff; while there may be some uncer-
tainty around many parameters, it is necessary to limit the number of stochastic
processes for computational reasons.

In the final version of the model, it is assumed that there is limited liquidity in
the market - limit orders trade at a premium relative to market orders, and large
trading volumes are instantaneously penalized. Transient and permanent price
impact is negligible, however. Both buy and sell market orders can be placed
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in all stages of the trading window. The same applies to limit orders, except
for the very last trading stage for each delivery product, when it is too late to
find a counterparty - the limit order cannot clear at gate closure. Both trading
and production is optimized, and production is optimized at gate closure, just
before delivery. However, gate closures for the different delivery products are
asynchronous, so only the very last production decision is made with perfect
information.

The final objective function includes trading profits, transaction costs, changes
in the Value of Storage and imbalance costs.

max z = ∑
s∈S

ρs(∑
p∈P

∑
t∈T

∑
d∈D
(PBptdsv

A
ptds − P

A
ptdsv

B
ptds −C

C
(vAptds + v

B
ptds))

+CQ(r(d̄+1)s)r(d̄+1)s −C
Q
(r0s)r0s + ∑

d∈D
(PBM−ds vBM−ds − PBM+ds vBM+ds ))

(4.2.1)

4.2.1 Physical constraints

Production is bounded from above by the upper production constraint.

qds ⩽ Q̄, d ∈ D, s ∈ S (4.2.2)

Production is bounded from below by the lower production constraint.

qds ⩾ Q, d ∈ D, s ∈ S (4.2.3)

Production, storage and inflow are decomposed into virtual reservoirs with ho-
mogeneous Value of Storage.

qds −∑
γ∈Γ

qdsγ = 0, d ∈ D, s ∈ S (4.2.4)

rds −∑
γ∈Γ

rdsγ = 0, d ∈ D, s ∈ S (4.2.5)

∑
γ∈Γ

f indsγ = F ind , d ∈ D, s ∈ S (4.2.6)

Virtual storage may be changed by inflow, outflow or production decisions.

r(d+1)sγ − rdsγ + qdsγ + f
out
dsγ − f

in
dsγ = 0, d ∈ D, s ∈ S, γ ∈ Γ (4.2.7)
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The initial virtual storage is equal for all scenarios.

r0sγ = R0γ , s ∈ S, γ ∈ Γ (4.2.8)

The outgoing storage level is nonnegative and capped by the reservoir capacity.

r(d+1)sγ ⩽ R̄storageγ , d ∈ D, s ∈ S, γ ∈ Γ (4.2.9)

The total Value of Storage equals the volume-weighted sum of the aggregated
Value of Storages for the virtual reservoirs.

CQ(rds) ⋅ rds −∑
γ∈Γ

CQγ ⋅ rdsγ = 0, d ∈ D, s ∈ S (4.2.10)

4.2.2 Trading constraints

Order depths may not be larger than the maximum available volumes in the
market.

xAptds ⩽ Bptd, p ∈ P, t ∈ T , d ∈ D, s ∈ S (4.2.11)

xBptds ⩽ Aptd, p ∈ P, t ∈ T , d ∈ D, s ∈ S (4.2.12)

Only placed orders may clear, and only if a counterpart matches the order.

vAptds −ΞBptdsx
A
ptds = 0, p ∈ P, t ∈ T , d ∈ D, s ∈ S (4.2.13)

vBptds −ΞAptdsx
B
ptds = 0, p ∈ P, t ∈ T , d ∈ D, s ∈ S (4.2.14)

4.2.3 Connecting trading and production

The adjustment in the balancing market equals the difference between the com-
mitment from the former markets and the production.

∑
p∈P

∑
t∈Td
(vAptds − v

B
ptds) + v

BM−
ds − vBM+ds − qds = −V DAd , d ∈ D, s ∈ S

(4.2.15)
The use of the balancing market is restricted.

∑
d∈D
(vBM+ds + vBM−ds ) ⩽ R̄BM , s ∈ S (4.2.16)
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4.2.4 Nonanticipativity constraints

Virtual production, inflow, and overflow adjustments are nonanticipative.

qdsγ = qdσγ , d ∈ D, k ∈ Kt, s ∈ Stk, σ ∈ Stk, t = t̄
GC
d , γ ∈ Γ (4.2.17)

f indsγ = f indσγ , d ∈ D, k ∈ Kt, s ∈ Stk, σ ∈ Stk, t = t̄
GC
d , γ ∈ Γ (4.2.18)

foutdsγ foutdσγ , d ∈ D, k ∈ Kt, s ∈ Stk, σ ∈ Stk, t = t̄
GC
d , γ ∈ Γ (4.2.19)

Order placement (and thus -clearing) is nonanticipative.

xAptds = xAptdσ, p ∈ P, t ∈ T , d ∈ D, k ∈ Kt, s ∈ Stk, σ ∈ Stk (4.2.20)

xBptds = xBptdσ, p ∈ P, t ∈ T , d ∈ D, k ∈ Kt, s ∈ Stk, σ ∈ Stk (4.2.21)

The balancing market adjustment is nonanticipative.

vBM+ds = vBM+dσ , d ∈ D, t = t̄GCd , k ∈ Kt, s ∈ Stk, σ ∈ Stk (4.2.22)

vBM−ds = vBM−dσ , d ∈ D, t = t̄GCd , k ∈ Kt, s ∈ Stk, σ ∈ Stk (4.2.23)

4.2.5 Variable domains

Storage, inflow and overflow are nonnegative.

rdsγ , f
in
dsγ , f

out
dsγ ⩾ 0, d ∈ D, s ∈ S, γ ∈ Γ (4.2.24)

rds ⩾ 0, d ∈ D, s ∈ S (4.2.25)

The production variables are free.

qdsγ free, d ∈ D, s ∈ S, γ ∈ Γ (4.2.26)

qds free, d ∈ D, s ∈ S (4.2.27)
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Order placement and -clearing is nonnegative.

xAptds, x
B
ptds ⩾ 0, p ∈ P, t ∈ T , d ∈ D, s ∈ S (4.2.28)

vAptds, v
B
ptds ⩾ 0, p ∈ P, t ∈ T , d ∈ D, s ∈ S (4.2.29)

Balancing market adjustment is nonnegative.

vBM−ds , vBM+ds ⩾ 0, d ∈ D, s ∈ S (4.2.30)

4.3 Alternative models from the contemporary
literature

In this section, the model described in section 4.2 (henceforth referred to as the
Benchmark Model) is modified so that the decisions approximates the output
from models that make different assumptions. These alternative models all lack
one or several of the features of the Benchmark Model. Note that neither of the
alternatives are exact replicas of any given model in the reviewed ITP papers.
Together, the models span the range of assumptions that there is disagreement
about in the literature, and each of the alternative models explores the con-
tribution to the objective value of one modeling assumption. The alternative
models make the following assumptions that Benchmark model does not:

1. That the production quantity is predetermined, and a single order is
placed. It has order volume equal to the production quantity, and or-
der price equal to the representative price that the production quantity
was based on (Alternative 1A).

2. That the production quantity is predetermined, before the trading is op-
timized (Alternative 1B).

3. That each delivery product is optimized separately, without coordinating
between them (Alternative 2 ).

4. That trading is one-sided; only selling (or buying) is allowed (Alternative
3 ).

5. That only market orders can be placed - no limit orders (Alternative 4A).
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6. That the trader falsely assumes the market to be liquid; only market orders
can be placed, and the instantaneous price impact is neglected (Alternative
4B).

This is done to try to quantify the cost of limiting Intraday trading models in
different manners. In order to do so, it is necessary to make realistic assumptions
about the parameters of the production system and the market, including the
production and storage capacities, the inflow of power, the marginal production
costs, the Day-Ahead commitment, the imbalance prices and bounds on the use
of balancing markets, the bid-ask spread, the limit order premium, the order
depths, and the properties of the prices of orders in the market, such as drift,
mean reversion, autocorrelations and volatility.

4.3.1 Alternative 1A: Predetermined production, one sin-
gle order

The abstract of Hassler (2017) states that ”we present a model (...) for the
short-term trading of intermittent energy production”. Similar formulations can
be found in the rest of the dispatch-focused ITP literature. However, recall from
section 2.2 that these papers optimize only the production decision, and leave
out the order placement decisions. There are several assumptions that may
make this a reasonable choice, and two of them are explored in this thesis. The
first possible interpretation of the dispatched-focused ITP papers is that they
assume that the details of the order placement decisions don’t matter much for
the final profit, as long as the resource allocation of the stored energy is optimal.
In this case, a very simple trading strategy is sufficient - for instance, one single
order may be placed after the production decision has been made. There are
thus two algorithmic steps that must be approximated; the optimization of the
dispatch schedule, and then the clearing of the single order.

In order to optimize production, a representative price is chosen. If the price
drift is weak, the current price is a good approximation of the representative
price. The first stage best ask- and bid prices for each delivery product are
therefore assumed to apply for the entire trading window, and the model is run
as normally. The value of the objective function will be wrong since the actual
price scenarios throughout the trading window aren’t used, but the dispatch
decisions Q̂d, d ∈ D are saved.

qds = Q̂d, d ∈ D, s ∈ S (4.3.1)
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∑

p∈Pbad,B
d

xAptds = 0, t ∈ T , d ∈ D, s ∈ S
(4.3.2)

∑

p∈Pbad,A
d

xBptds = 0, t ∈ T , d ∈ D, s ∈ S
(4.3.3)

In constraints 4.3.2 and 4.3.3 Pbadd is the set of prices that is worse than the
representative price for the given delivery product, where ”worse” is defined in
different directions for ask and bid orders; PBpd is in Pbad,Bd if and only if it is

lower than the representative price P̂Bd , while PApd ∈ P
bad,A
d iff PApd > P̂

A
d . Note

that P̂Bd = P̂Ad if the spread is zero. In the objective function, the price received
for all cleared orders are equal to the representative price.

max z = ∑
s∈S

ρs(∑
p∈P

∑
t∈T

∑
d∈D
(P̂Bd x

A
ptds − P̂

A
d x

B
ptds −C

C
(vAptds + v

B
ptds))

+CQ(r(d̄+1)s)r(d̄+1)s −C
Q
(r0s)r0s + ∑

d∈D
(PBM−ds vBM−ds − PBM+ds vBM+ds ))

(4.3.4)

One may ask why a single order is approximated with several added constraints
and a change to the objective function - why not just place one order? The
answer is that the current model assumes an order is withdrawn if it does not
clear in the stage when it is placed. Moreover, orders may not clear partially
in our formulation, though the single large order would likely clear partially
several times. The necessary modifications to allow orders to clear partially and
last for several stages are thus significant.

4.3.2 Alternative 1B: Predetermined production, adap-
tive trading

An alternative way to interpret the papers mentioned in the former section is
that they assume that trading can be optimized independently, taking in the
optimized production decisions as constraints to the order placement problem.
To approximate this process, it is once again necessary to separate between the
dispatch optimization and the order placement optimization. The dispatch op-
timization is performed in the exact same way as described in section 4.3.1.
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Once again, constraint 4.3.1 is added to perform the order placement optimiza-
tion with a production constraint.

With the additional constraint, the base model is rerun on the original price
scenarios. The value of the objective function is a realistic approximation of the
best feasible profit when dispatch and order placement is optimized separately.
Actually, the fact that the representative prices of all delivery products is known
before the gate closure of the first delivery product may be an unrealistic as-
sumption, providing information that the dispatch optimization algorithm isn’t
supposed to have yet. In that case, the objective value would be an optimistic
bound on the value of a nonanticipative policy for the given approach.

4.3.3 Alternative 2: Uncoordinated delivery products

Several of the contemporary ID trading papers (notably Garnier and Madlener
(2015), Aı̈d et al. (2015), Tan and Tankov (2016), Edoli et al. (2016) and Skajaa
et al. (2015)) optimize trading separately for each delivery product. To approx-
imate this, the base model is run several times consecutively, with only one
delivery product per run. After each run, the initial storage parameters R0γ for
the next run are set equal to the final storage in the last run.

4.3.4 Alternative 3: Sell-only

Most of the contemporary papers allow for both sales and purchases of power
(though not necessarily for the same delivery product). In this section, the ben-
efits from allowing two-sided trading is explored. This is solved by constraining
the buy volume to zero.

xBptds = 0, p ∈ P, t ∈ T , d ∈ D, s ∈ S (4.3.5)

4.3.5 Alternative 4A: No limit orders

Only Garnier and Madlener (2015) and Engmark and Sandven (2017) allow for
the placement of orders with less-than-unity clearance probability. Implicitly,
this means that the models in all other papers place exclusively market orders,
never limit orders. The assumption that trading is performed through market
orders only is approximated by setting the placed order volumes at the limit
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order levels to zero. The set of limit orders are denoted PLO,Atds and PLO,Btds for
ask and bid orders, respectively.

xAptds = 0, p ∈ PLO,Atds , t ∈ T , d ∈ D, s ∈ S (4.3.6)

xBptds = 0, p ∈ PLO,Btds , t ∈ T , d ∈ D, s ∈ S (4.3.7)

4.3.6 Alternative 4B: False liquidity

Edoli et al. (2016), Gönsch and Hassler (2016), Hassler (2017), Löhndorf et al.
(2013) and Farinelli and Tibiletti (2017) include no penalty for large trading
volumes. To model the impact of this assumption, the base model is run twice,
with slightly different modifications. In the first run, the order depths are mod-
ified so that the entire order volume in the market is available at the best prices.
As prices are assumed to be better than they actually are, the objective value
from this run will be too high. However, the order placement decisions x̂Atds
and x̂Btds are saved, and the model is rerun with the original order depths. A
constraint is added on the order placement variables, so that they sum to the
order placement in the original run. Thus, the impact on the objective value of
neglecting the instantaneous price impact can be estimated.

∑
p∈P

xAptds = x̂Atds, t ∈ T , d ∈ D, s ∈ S (4.3.8)

∑
p∈P

xBptds = x̂Btds, t ∈ T , d ∈ D, s ∈ S (4.3.9)

Note that order volumes are moved to the best price that is already quoted
in the market. This is a worse price than the best limit order price. For this
reason, it would be desirable to exclude limit orders from this analysis.

4.3.7 Summarizing the alternative models

The relation between the alternative models and the assumptions that each of
them make can be observed in table 4.3.1. If a model has a given feature, the
corresponding cell in the table says ”Yes”, otherwise it says ”No”. Note that
while alternative model 1A allows either sales or purchases, both are not allowed
for the same delivery product. ”AM” is short for alternative model and ”BM”
is short for the Benchmark model. ”IMI” is still short for the immediate price
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impact.

Table 4.3.1: Relation between alternative models and modeling assumptions

∼ AM1A AM1B AM2 AM3 AM4A AM4B BM
Informed production No No Yes Yes Yes Yes Yes
Adaptive trading No Yes Yes Yes Yes Yes Yes
Coordinated DPs Yes Yes No Yes Yes Yes Yes
Two-sided trading (No) Yes Yes No Yes Yes Yes
Accounts for IMI Yes Yes Yes Yes Yes No Yes
Limit orders Yes Yes Yes Yes No No Yes
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Chapter 5

Numerical simulations

This chapter contains a thorough description of how the parameters of the math-
ematical programs of chapter 4 are determined. Section 5.1 describes how the
limit order book is represented using scenario parameters. Here, a mapping
from parameter values to the state of a limit order book is described. Going
forward, the set of parameters are split in two; the stochastic parameters and
the deterministic parameters, covered in section 5.2 and 5.3 respectively. Note
that parameters are given the label deterministic also if they can be determined
deterministically conditional on some realization of stochastic parameters, be-
cause such parameters don’t increase the number of scenarios.

In total, the Intraday market consists of 24 separate markets, one for each de-
livery product. The markets are open from the day ahead until right before
delivery, but only a subset of the total market is considered here. In figure 5.0.1
a categorization of the market can be seen.
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Figure 5.0.1: Categorization of delivery products and trading stages

Figure 5.0.2: Average prices for the DayClose category compared to other de-
livery products in the Close phase.

Figure 5.0.2 illustrates the great diversity in delivery product average prices.
The differences seen in this figure advocate using parameters that are specific
for the delivery product and the trading stage. However, having a restricted
dataset, this would induce a non-negligible probability of overfitting the data.
To reduce this risk, delivery products in the same category are treated as simi-
lar. Readers should notice that the categorization in figure 5.0.1 is based mostly
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upon common sense. For instance, it seems natural that the trading patterns
of the night delivery products behave similarly as little new information arrives
from the gate closure of one delivery product to another and both the demand
and supply sides of the market follow similar patterns for the consecutive de-
livery products. In the future, more effort could be placed on investigating the
optimal number of categories to be used and whether there exist more appro-
priate thresholds than those proposed in figure 5.0.1.

The categorization proposed above yields 16 categories with different sets of
parameters. Going forward, we describe how the parameter values have been
determined for the DayClose category. That is, the parameters of delivery
product 11-16 and trading stages later than 90 minutes prior to gate closure
are described here. The same logic and analyses can indeed be applied to the
other categories as well, but such analyses have not been performed in the work
related to this thesis. It cannot be concluded from the analyses presented in
this chapter to what extent the same assumptions would fit the other categories
well or not.

5.1 A parametric representation of a limit order
book

The cornerstone of our limit order book representation, is the stochastic BasePrice,
corresponding to the market mid-price for a delivery product in a given timeslot.
A timeslot is defined as a 5-minute interval of the limit order book, and market
parameters can be defined at the beginning, end or over the duration of the
timeslot. For instance, the mid-price is defined at the beginning of the times-
lot, while the highest transaction price is defined over the duration of a timeslot.

The stochastic price processes take different values for each delivery product.
The BestQuotedPrices are defined using the BasePrice. The BestQuotedPrices
are assumed to be symmetric around the BasePrice and have a delivery product-
specific price premium relative to the BasePrice equal to half the spread of the
given delivery product. The orders at at each order level also have a given
order volume. The prices of other order levels are determined based on the
BestQuotedPrices. While each order level may in reality consist of multiple
orders with heterogeneous volumes, this is irrelevant for the given trader; only

71



CHAPTER 5. NUMERICAL SIMULATIONS

the total volume available at an order level is decision relevant.

As it should also be possible to place limit orders, some parameters need to
be determined for the limit orders to be well defined. In addition to an or-
der volume and a price premium relative to the BestQuotedPrices, the limit
orders have a less-than-certain clearance probability. These relationships can
be visualized as in figure 5.1.1. In this figure, the order book has a base price
of 50 e/ MWh and a spread of 1.4 e/ MWh. In the figure, three levels of
buy market order levels and two sell market order levels can be seen. Also,
each side has three potential limit order levels. In fact, the set of parameters
of the figure corresponds to a realization of the intrazonal parameters for DP11 .

Figure 5.1.1: A hypothetical snapshot of the market situation

5.2 Stochastic processes

Recall from chapter 4 that there are two types of stochasticity in the model;
the base price, and the limit order clearing. In this section, the process for
determining the probability distributions for both of these types of stochastic
processes is described in detail in sections 5.2.1 and 5.2.2. As the scenario space
becomes vast, several techniques are used to reduce it in section 5.2.3. In section
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5.2.4, a rationale is presented for why the models should be tested on a ”forest”
of semi-optimized, semi-randomized scenario trees, rather than one optimized
scenario tree in line with the norm in stochastic programming. Then, a method
for creating such a ”forest” of scenario trees is presented.

Table 5.2.1: The market parameters and the modeling assumptions

Symbol Parameter Modeling assumptions
Pptds Base price Conditional on the former price, DP, TTGC
ΞAptds.Ξ

B
ptds Clearing indicator Conditional on the spread

In table 5.2.1, the assumptions about the two stochastic parameters are sum-
marized. Moreover, it is observed that the statistical properties of the relevant
delivery products are very similar in the relevant phase of the trading window,
so the processes are assumed to be identically distributed for all delivery prod-
ucts (see for instance figure 5.0.2. Other figures throughout the chapter also
document that the limit order books for the given category behave similarly).

5.2.1 Modeling the base price process

Three aspects of the mid-price process were explored in order to model it; the
expected drift in a given state, the volatility, and the distribution of the predic-
tion error. Each of them are explored in turn in this section.

The analyses are based on the historical order book data acquired from Agder
Energi Gmbh. For each delivery product of the date range 2016-03-01 - 2017-
02-28, orders were processed sequentially to simulate the Intraday market. The
applied clearing algorithm can be found in appendix C. The market simulations
were then aggregated into five minute blocks containing information about trans-
actions in the five minute block as well as instantaneous order book features such
as the prices and volumes of the best available buy and sell orders at the time
of block change. Only the data for the relevant delivery products and trading
timeslots were considered. From this, the occurrences of price transitions were
counted to form a Markov Transition Matrix with the mid-price in one timeslot
along each row, and the mid-price in the next timeslot along each column. In
this matrix, the prices were discretized into 0.5e/ MWh price bins. Underflow
and overflow bins were set to −10e/ MWh and 120e/ MWh respectively.
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Table 5.2.2: Section-specific symbols (Modeling the base price premium)

Symbol Interpretation
pts The price in stage t and scenario s
r The rate of mean reversion
µ The empirical mean price
εts The prediction error in stage t and scenario s
σ The standard deviation of the prediction error

5.2.1.1 Estimating the price drift

Three potential sources of drift were hypothesized initially; first, if prices were in
backwardation or contango (see section 2.2.2) there would be an average trend
throughout the relevant part of the trading window; second, autocorrelation
could cause the price drift to depend on prices in former stages; finally, mean
reversion could cause the expected drift to be negatively proportional to the
current deviation from the mean. If none of these sources of drift were con-
firmed. it would be assumed that the price was a martingale.

Figure 5.2.1: Average price trajectories of DP11-DP15. No trend is observed.
The slight increase in the last timeslot is omitted from the market model, as the case

study is limited to a smaller number of stages than the full DayClose category.
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The average trend throughout the DayClose part of the trading window was
near-zero (see the lower half of figure 5.0.2), so for this part of the trading
window prices don’t seem to be in backwardation nor contango on average.
The partial autocorrelation ”measures the correlation between an observation k
periods ago and the current observation, after controlling for observations at
intermediate lags” (Brooks, 2014). The plot of the partial autocorrelation in
figure 5.2.2 suggests that only the marginal benefit of including more than one
lag when predicting base price is rather low for all the Day delivery products,
thus the Markov property seems to hold for the base price.

Figure 5.2.2: Partial autocorrelation plot

Figure 5.2.3 shows expected drift in the next stage relative to the current price
in the DayClose category. As the trend of the regressed line is lower than that of
the identity line, one can conclude the price processes do have the mean rever-
sion property. In fact, increasing the current price with 1 EUR/MWh decreases
the expected price drift by approximately 27 cents. It should be noted that
prices rarely take values above 70 e/MWh, so the available data in that price
range is sparse and has received little weight in the regression.
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Figure 5.2.3: Base prices are mean reverting.
Observations with an occurrence frequency of less than five are filtered out.

It is therefore assumed that the price is mean reverting and therefore not a
martingale. In particular, the price is modeled with equation (5.2.1). In the
equation, r is the rate of mean reversion for the price, µ is the empirical mean
and εts is the prediction error.

p(t+1)s = pts + r(µ − pt) + εts (5.2.1)

5.2.1.2 Estimating the price volatility

The goal is then to estimate the variance of the ε in equation (5.2.1). Three
hypotheses are tested; first, the variance is estimated as a function of time to
gate closure. As shown in figure 5.2.4, for the DayClose category, the average
45-minute rolling standard deviation of figure 5.2.4 appears constant. The high
and fluctuating variance in the rest of the trading window strengthens the case
for focusing only on the DayClose category. Thus, the first hypothesis is dis-
carded and replaced by a hypothesis stating that the variance can be estimated
as a constant function.
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Figure 5.2.4: Average 45 minute rolling standard deviation plots

Moreover, the variance as a function of the price was calculated, to see if the
variance as a constant percentage of the price is a better approximation of the
historical variance than a constant nominal value. Using the Markov Transition
Matrix for the mid-price, the variance in the frequency-weighted average price
in stage t+1 was calculated for all prices in stage t, using the predicted price in
stage t+1 as the mean. As one can observe in figure 5.2.5, the variance is not
a function of the price.
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Figure 5.2.5: Volatility is constant as a function of price

For this reason, a constant nominal variance is chosen. The error term in equa-
tion (5.2.1) is thus identically distributed and independently drawn for each
stage for each scenario, with a mean of zero and a known standard deviation of
approximately 2.71 e.

5.2.1.3 Estimating the shape of the error probability distribution

The question then becomes what shape the probability distribution for the error
term follows. A new matrix was created, where the initial distributions in the
Markov Transition Matrix were shifted to a mean of zero by subtracting the
average value along each row. Based on this matrix and the linear regression of
the standard deviation, yet another matrix was created by counting the number
of transitions that were within 0.2σ intervals. Having standardized the data to
a mean of 0 and a standard deviation of 1, the data was smoothed by taking
the weighted average over a range of 4e to reduce noise. Thus, the distribution
for 50e in figure 5.2.6 is the average from 48e to 52e, weighted for the number
of times that the input price has taken the given value. Finally, the data was
adjusted to form a probability distribution along each row, by dividing by the
sum of the row. If the error term was normally distributed, each row should
resemble a standard normal distribution after these adjustments.
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Figure 5.2.6: The shape of the distribution for the prediction error.

As figure 5.2.6 shows, a normal distribution is a good approximation of the price
forecast error at a wide range of prices. As the shape, volatility and expectation
of the price are known for all initial price levels, a full model for the price dy-
namics is developed. The initial price in all scenarios for all delivery products
is set to 50.

5.2.2 Modeling the limit order parameters

The second type of stochastic processes is the clearance of limit orders. To the
authors’ best knowledge, no previous research has attempted to model the limit
order parameters as accurately as what is done in this thesis - recall from section
2.2.3 that it is common to assume a narrow spread and near-zero clearance prob-
ability for premiums that are larger than the spread. Thus, the highest possible
premium that a limit order can get is more or less known. As the liquidity is
lower in the EPEX Intraday market than most conventional LOBs, this is as-
sumed to be an inaccurate description of the limit order clearance probability.
However, the clearance probability for a limit order is assumed to be a univari-
ate probability distribution, with the premium measured as a percentage of the
spread as the only input variable. This is in line with the historical literature on
the topic (e.g. Guo et al. (2017), Horst and Naujokat (2014), Cont et al. (2010)).
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The order clearing mechanism of the Intraday market was simulated using the
purchased order book data, in order to derive transaction information. The
transactions were aggregated into five minute-blocks. A transition probability
matrix was then derived for each side (bid and ask), containing the empiri-
cal probability of a transaction occurring within the next five minute block at a
given price premium relative to current spread equal to BestTransactionPricePremium
.

Table 5.2.3: Section-specific symbols (Determining the limit order parameters)

Symbol Interpretation
N Number of limit order levels
A,B,C,D Parameters of the exponential regression function.
W Rectangle width lower bound
ρClear Clearance probability lower bound
∆Pt Highest limit order premium during stage t

PSpreadt The spread in stage t

For ask limit orders, BestTransactionPricePremium corresponds to the highest
transaction price of the upcoming five-minute trading stage less the BestQuotedPrice,
where the BestQuotedPrice corresponds to the highest order price of any cur-
rently open bid order. Similarly, for bid orders, BestTransactionPricePremium
corresponds to BestQuotedPrice less the lowest transaction price of the upcom-
ing five-minute trading stage. Here, the BestQuotedPrice corresponds to the
lowest order price of an open ask order.

A reverse cumulative probability matrix for each side (bid and ask) was com-
puted based on the transition matrices. The entries of these matrices can be un-
derstood as the probabilities that the BestTransactionPricePremium is at least
∆Pt conditional on the input PSpreadt . Pr(BestTransactionPricePremiumt ⩾

∆P ∣ DayClose, PSpreadt ). Then, for some set of uniformly distributed per-
centile levels {0.95, 0.85, 0.75, 0.65, 0.55, 0.45, 0.35, 0.25, 0.15, 0.05} the relative

limit order premium ∆P /PSpreadt , corresponding to each percentile level is com-

puted for all values of PSpreadt . The relative limit order premiums were then

determined using the occurrence frequency-weighted average over all PSpreadt -
values. The output of these analyses can be seen in figure 5.2.7. The figure
shows the relation between the relative limit order premium and the probability
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of clearing. For instance, one can conclude from the figure that a sell order
having a price equal to the best quoted buy price plus 0.14 ⋅ PSpreadt has 80%
clearance probability during the next five minutes.

Figure 5.2.7: Reverse cumulative distribution

Next, this discretized function was approximated by a continuous reverse cu-
mulative distribution. The sigmoid function f(x) = D + A−D

1+( x
C )B proved to fit

the distribution function for the buy orders well for A = 0.97,B = 1.38,C =

0.41 and D = 0.01. This distribution was then approximated by a new, discrete
set of price premiums where orders could be placed. The set of discrete points
should approximate the reverse cumulative distribution as well as possible, while
limiting the variable space and the scenario space. N = 3 limit order levels was
assumed to be a sufficient number.

The problem of determining which subset of limit order price level premiums to
include in the model is equivalent to finding the N non-overlapping rectangles
bounded by the reverse cumulative distribution and the lines x = 0 and y = 0
that maximizes the total area covered by the rectangles. This minimizes the
area between the rectangles and the reverse cumulative distribution is mini-
mized, thus approximating it well. This can be solved using the mathematical
program of equation (5.2.2)-(5.2.5). In this program, the decision variables, xi,
can be interpreted as the x-value of the right-hand side of rectangle i = 1, ...,N .
Equation 5.2.3 forces the rectangles to be non-overlapping, and ensures that all
xi > 0 when combined with equation 5.2.4. Equation 5.2.5 prevents the model
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from choosing x-values with probability less than some parameter ρClear. The
function f(x) must approximate the reverse cumulative distribution.

In order to avoid highly unlikely limit order price levels, the limit order clearance
probability is bounded from below at ρClear = 20%. Lower clearance probabil-
ities would allow higher premiums, but the data foundation for such events is
assumed too sparse to take advantage of, and one would risk violating the Order
to Trade ratio constraints (see section 4.1.5.1). Also, the minimum rectangle
width W is set equal to 0.01.

max
x1.....xN

N

∑
i=1

f(xi)(xi − xi−1) (5.2.2)

xi − xi−1 ⩾W. i = 1.....N (5.2.3)

x0 = 0 (5.2.4)

f(xN) ⩾ ρ
Clear (5.2.5)

The problem of finding the optimal regression parameters as well as the problem
of placing the rectangles were both solved using the Nonlinear Generalized Re-
duced Gradient method (GRG Nonlinear) of the Microsoft Excel 2016’s Solver
tool. The solution of program (5.2.2)-(5.2.5) can be seen in figure 5.2.8. The
program suggests to include sell limit order price levels at 23%, 55% and 111%
spreads over BestQuotedPrice for buy orders, having clearance probabilities of
67%, 55% and 20% respectively. Thus, these limit order price levels are applied
in the models of this thesis. A similar model for buy orders (see appendix D)
suggests to include limit order price premium levels of 18%, 43% and 118%
spreads under BestQuotedPrice for sell orders, having clearance probabilities
64%, 38% and 20% respectively. The limit order volumes are set equal to the
volume of the best quoted buy and sell orders in all stages.

Table 5.2.4: Optimal limit order quantities for the DayClose category

Price premiums relative to spread Clearance probabilities
Sell orders 23% - 55% - 111% 67% - 55% - 20%
Buy orders 18 % - 43 % - 118 % 64 % - 38 % - 20 %
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Figure 5.2.8: The buy order limit order quantities.

Figure 5.2.9: The sell order limit order quantities.

The resulting prices at the three given premiums then become:

PBptds = −Spread ⋅ BuyVolumePremiump + P
B
(p=4)tds, p ∈ {1,2,3} (5.2.6)

PAptds = Spread ⋅ SellVolumePremiump + P
A
(p=4)tds, p ∈ {1,2,3} (5.2.7)
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Here, PA(p=4)tds and PB(p=4)tds are the best quoted prices on the ask and bid size
respectively. Though these parameters add no stochasticity, they are included
here as they relate to the limit order processes.

5.2.3 Reducing the number of stochastic processes

So far, the stochastic processes have been described as if they are independent
of each other. With five delivery products with one price process each and
two limit order clearing processes (one for buy and one for sell), there are 15
stochastic processes in total. If each price may take 130 values and the limit
order premium may take 4 values on each side, this means that the number of
branches per stage is 1305 ⋅ 410 = 4 ⋅ 1016. While the number of branches per
stage is lower later in the trading window after the gate closures of the first
delivery products, the scenario space still becomes intractably large. Moreover,
the correlations between the delivery products - and between the price process
and the limit order clearings on each side - have not been accounted for.

Table 5.2.5: Section-specific symbols (Reducing the number of stochastic pro-
cesses)

Symbol Interpretation
ηtsj A draw in a stochastic process.
εtds The price prediction error of DP d.
σε The volatility of the prediction error.

wdj
The weight of a stochastic draw ηtsj
for the error term of the price of DP d.

λj The eigenvalue corresponding to eigenvector j.
Udj The element of eigenvector j corresponding to DP d.
ηAts, η

B
ts The limit order premiums on the ask and bid side.

In table 5.2.6, the empirical correlations between the price trajectories of the Day
delivery products are shown. Here, one should notice that the price processes of
the different delivery products are strongly correlated (during the relevant part
of the trading window) and that correlations of consecutive delivery products
are higher than the correlations between non-consecutive delivery products. In
order to be able to compute the correlation between price processes of different
lengths, a zero-padding transformation has been done to the shorter processes.
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The correlation matrix suggests that the price processes of the different delivery
products should indeed be modeled as correlated processes.

Table 5.2.6: Delivery product correlations

DP11 DP12 DP13 DP14 DP15
DP11 100% 69% 62% 57% 61%
DP12 100% 72% 63% 66%
DP13 100% 73% 58%
DP14 100% 69%
DP15 100%

Principal Component Analysis (PCA) is a technique for reducing the number of
stochastic parameters in a multivariate stochastic process, while keeping as much
as possible of the original variation (Alexander (2008a), Alexander (2008b)). A
PCA was performed on the correlation matrix, and the results can be found in
table 5.2.7.

Table 5.2.7: PCA analysis of the correlation matrix

Principal component 1 2 3 4 5
Eigenvalues 3.01 0.87 0.48 0.34 0.29
DP11 0.29 0.90 -0.16 0.27 -0.02
DP12 0.46 0.08 0.84 -0.25 -0.14
DP13 0.50 -0.06 -0.30 -0.49 0.65
DP14 0.49 -0.19 -0.42 -0.17 -0.72
DP15 0.47 -0.37 0.04 0.77 0.21

Each principal component is orthogonal to the other principal components by
definition. The principal component matrix can thus serve as a map from a
set of uncorrelated processes to a set of processes with correlation equal to the
ones described in table 5.2.6. If a subset of the principal components are cho-
sen, the proportion of variance explained is equal to the sum of the eigenvalues
corresponding to the subset, divided by the sum of all the eigenvalues (Kreinin
et al., 1998). A choice of two principal components leads to a proportion of
explained variance of (3.01 + 0.87)/(3.01 + 0.87 + 0.48 + 0.34 + 0.29) = 84%,
which is considered acceptable. As two principal components are chosen, two
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independent standard normal draws are made, and the percentile of the error
term in the price transition function is a weighted sum of the values of the two
draws, and then adjusted to the correct variance.

εtds =
σε

wd,1 +wd,2
(wd,1ηts,1 +wd,2ηts,2), p ∈ P, t ∈ T , d ∈ D, s ∈ S (5.2.8)

The motivation for the use of the cumulative probability functions, is that εptds
and ηtsj follow different probability distributions. As the distributions have sim-
ilar shape, the correlations are conserved through the transformations (Høyland
et al., 2003). The first two columns U1 and U2 of the principal component ma-
trix and their corresponding eigenvalues λ1 and λ2 are used to calculate the
weights wd,j . The resulting weights are found in table 5.2.8.

wdj =
√
λjUdj , d ∈ D, s ∈ S, j ∈ {1,2} (5.2.9)

Table 5.2.8: Weights for the price parameters

Principal component wd,1 wd,2
DP11 0.50 0.84
DP12 0.80 0.07
DP13 0.86 -0.05
DP14 0.85 -0.18
DP15 0.81 -0.35

While these weights have no intrinsic interpretation, the pattern of the weights
is interesting. In particular, the weights of the first column of the weight-matrix
are all in the same direction, and have very similar values (especially for DP12-
DP15). This process will therefore contribute the most to the overall drift in
the market (across delivery products). On the other hand, the second column
of the weight-matrix has a wide range of values in either direction, so it will
contribute the most to the difference between the price changes of the delivery
products.

For simplicity, it is assumed that the limit order premiums on the same side
(bid or ask) are perfectly correlated across delivery products. Moreover, it is
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assumed that the clearing of both sell- and buy limit orders are explained by
the same stochastic processes that drive the price. In particular, the weights for
the limit order premiums are found in table 5.2.9. The weights are not based
on an extensive empirical analysis, but they have some desirable properties; the
bid limit order clearing is negatively correlated with the drift in the market,
whereas the ask limit order clearing is positively correlated with the drift. The
clearing of both sides is positively correlated with differences in price movements.

Table 5.2.9: Weights for the limit order clearing parameters

Principal component 1 2
Bid limit order premium -0.50 0.50
Ask limit order premium 0.50 0.50

Using these weights, the two random standard normal variables are mapped
to a random uniform variable. In equations 5.2.10 and 5.2.11, FN(⋅) takes the
cumulative distribution of a normally distributed input variable. As the un-
weighted variance of the ηtsj-variables not is equal to the weighted variance,
this is adjusted for to get the correct uniform distribution.

ηLOP,Bts = FN(2 ⋅ (−0.50ηts,1 + 0.50ηts,2)), t ∈ T , s ∈ S (5.2.10)

ηLOP,Ats = FN(2 ⋅ (0.50ηts,1 + 0.50ηts,2)), t ∈ T , s ∈ S (5.2.11)

An order at a given limit order premium clears if the clearance probability of
the given limit order is higher than the value of the random uniform variable.
Thus, the 15 stochastic processes have been reduced to two stochastic processes.

5.2.4 Creating a ”forest” of scenario trees

When the scenario space is too large, it is common in the field of stochastic
programming to approximate it by a reduced scenario tree. The scenario tree
is typically developed using one or several of the techniques described in e.g.
Høyland et al. (2003), Dupačová et al. (2003) and Heitsch and Römisch (2009),
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and the goal is to create the ”best” approximation of the initial scenario space
that can be solved tractably. ”Best” is usually defined as a tree that gives an
accurate representation of the incentive structure of the trader; for instance,
(Kaut and Wallace, 2003) state that ”We are not concerned about how well the
distribution is approximated, as long as the scenario tree leads to a “good” de-
cision. In other words, we are not necessarily searching for a discretization of
a distribution that is optimal (or even good) in the statistical sense”. Common
measures of the quality of the scenario reduction includes in-sample and out-
of-sample stability (Kaut and Wallace, 2003), filtration distance (de Oliveira
et al., 2010), moments of the probability distribution of the stochastic param-
eters (Høyland et al., 2003), or statistical measures such as the Wasserstein
distance or Fortet-Mourier distance (Hochreiter and Pflug, 2007).

Many papers are constrained to selecting only one scenario tree - if the goal is
to output a good decision, several scenario trees that result in conflicting recom-
mended decisions are mainly useful to test the out-of-sample stability, and not
to produce the recommendation in itself. In this thesis, the recommendation is
one level of abstraction higher - it is about how to model the problem of optimal
trading, not about how to trade. We are therefore not restricted to only one
scenario tree. Actually, performing well in many semi-realistic environments
would be an argument in favor of a given model, since the market has been
changing fast historically and may continue to develop over the next few years.
For this reason, it is preferable to compare the models in many semi-realistic
settings, rather than only one stylized scenario tree. In order to ensure that the
proposed model is robust to changes in the environment, the models are evalu-
ated in 500 semi-randomized scenario trees that all have some of the desirable
properties described in the scenario reduction literature. This also reduces the
risk that one model will outperform another simply because of the assumptions
in the scenario generation process, and not because it actually is better.

Table 5.2.10: Section-specific symbols (Creating a ”forest” of scenario trees)

Symbol Interpretation
ηtsji A realization i of a draw in a stochastic process j
ρtsji The probability of the realization ηtsji
E(ηj) The expectation of a draw for stochastic process η
Is The set of draws i in a scenario s
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The scenarios in a scenario tree are described by the values of the underlying ran-
dom variables ηtsj . For each scenario tree, the random variables are restricted
to a binomial distribution, similarly to e.g. Garnier and Madlener (2015) and
in line with traditional option pricing research (Cox et al., 1979). This gives a
branching factor of 4 per stage. In order to create a full forest of scenario trees,
some randomization is needed. Therefore, the value in the first branch for each
stochastic variable is drawn randomly from a normal distribution. The value of
the second branch and the probabilities of the two branches are optimized to
approximate the original probability distribution.

Together, the four branches in each stage needs to replicate the as much as
possible of the relevant properties of the original probability distribution for all
the original stochastic parameters. For a trading model, the first moment of
the price (the drift) is obviously important to conserve, to prevent arbitrage. It
is assumed that the second moment also is important to conserve. As the sum
of probabilities must equal one, there are only two degrees of freedom, so no
more than two moments can be exactly matched. The equations for the moment
matching process are:

∑
i∈{1,2}

ρtsjiηtsji = E(ηj) = 0, t ∈ T , s ∈ S, j ∈ {1,2} (5.2.12)

∑
i∈{1,2}

ρtsjiη
2
tsji −E(ηj)

2
= ∑

i∈{1,2}
ρtsjiη

2
tsji = Var(ηj) = 1, t ∈ T , s ∈ S, j ∈ {1,2}

(5.2.13)
The index i here represents a draw. As ηtsj,1 is already known at this point and
ρtsj,1 + ρtsj,2 = 1, the equations are solved with respect to ηtsj,2 and ρtsj,1.

ηtsj,2 = (−ηtsj,1)
−1 t ∈ T , s ∈ S, j ∈ {1,2} (5.2.14)

ρtsj,1 = (η2
tsj,1 + 1)−1 t ∈ T , s ∈ S, j ∈ {1,2} (5.2.15)

The probability of a scenario then becomes ∏t∈T ∏j∈{1,2} ρtsji, i ∈ Is, s ∈ S,
(where Is is the set of draws in the scenario), as the underlying random vari-
ables are statistically independent. Note that although the moment matching
is performed on the underlying random variables, it is the moments of the price
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processes and limit order premiums that are relevant. However, the multiplica-
tion with the weights from the PCA is a linear transformation, and the matching
of the first two moments is conserved through linear transformations when the
underlying random variables are independent (Høyland et al., 2003).

The output prices are rounded to the closest 0.50 e. Repeating this process
for each leaf node in the scenario tree until the tree spans all stages for all sce-
narios, a scenario tree is constructed by forward iteration. The process is then
repeated 500 times, and each of the resulting scenario trees is a semi-realistic,
semi-randomized approximation of the original scenario space.

Figure 5.2.10: The scenario structure is non-recombining.
With two binomial stochastic processes, there is a branching factor of 4 per node.
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Figure 5.2.11: 1/4th of the price trajectories for DP15 for the first scenario tree.
Only one branch from the last stage is included, due to constraints in Excel. Note

that scenarios with very high or low prices have lower probability, so the figure
exacerbates the volatility of the price.

5.3 Setting the deterministic model parameters

When testing the model, there are two types of deterministic parameters that
must be determined; trader specific parameters (section 5.3.1) and market pa-
rameters (5.3.2 and 5.3.3). The main difference between these two classes is that
in a real-world case, market parameters are similar for all traders, whereas the
trader specific parameters differ between traders. Based on empirical data, it
is argued that the market parameters should be partitioned into a set of inter-
zonal market parameters and a set of intrazonal market parameters. The choice
of parameter values are meant to be realistic, while at the same time generating
easily understandable results.

5.3.1 Trader specific parameters

The trader specific parameters of table 5.3.1 are derived in cooperation with
TrønderEnergi AS. TrønderEnergi is a Norwegian renewable energy producer
located in the Trøndelag region. The parameters and their interpretations are
introduced in chapter 4 and will not be explained in depth here. Together, the
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parameters of this section are sufficient to model a hydropower producer with
pumping capacity and a small reservoir.

Table 5.3.1: Trader specific parameters

Symbol Parameter Value
F ind Asset inflow 100 MWh
V DAd Day-Ahead Commitment 50 MWh
R̄storage Reservoir bound 1000 MWh
R̄0 Initial storage level 700 MWh
Q, Q̄ Production bounds -50, 200 MWh

To account for the nonlinearity created by heterogeneous marginal Value of
Storage, five virtual reservoirs with homogeneous marginal production costs
are created. Each reservoir has a production cost, storage capacity and initial
storage. This is summarized in table 5.3.2.

Table 5.3.2: Virtual reservoirs

Parameter VR1 VR2 VR3 VR4 VR5
Production cost 63.5 55 52 49.5 40
Storage capacity 60 260 360 260 60
Initial storage 60 260 360 20 0

5.3.2 Interzonal market parameters

The historical EPEX Intraday order book data of the period 2016-03-01 - 2017-
02-28 was used to determine the deterministic market parameters too. An
overview of the deterministic market parameters and their modeling assump-
tions can be seen in table 5.3.3. The following sections attempt to outline in
detail how each market parameter can be modeled and why this is a reasonable
modeling choice.
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Table 5.3.3: The market parameters and the modeling assumptions

Symbol Parameter Modeling assumptions
Aptd,Bptd Order level volumes Function of TTGC

Pptds Order level prices Function of price, TTGC
PBM+ds , PBM−ds Imbalance price Function of price, DP

In table 5.3.3, ”TTGC” is short for time to gate closure.

5.3.2.1 Determining the order level parameters

For each order level p, the MSLP takes in two parameters; the order price Pptds
and the accessible order volume Aptd (alternatively Bptd). We have decided to
include five order levels for market order placement in our model. With three
limit order levels, the total number of order levels is eight. This is assumed to
be enough for the model to act like in a real world setting as additional order
levels would have less attractive prices. As indices p ∈ {1,2,3} are reserved for
limit orders, p ∈ {4,5,6,7,8} are reserved for market orders, where order level 4
represents the best quote in either direction.

The order level prices are determined as in equation (5.3.1 - 5.3.4). From
these equations, it is possible to conclude that three sets of quantities must
be determined for the order level prices to be well defined; the Spread, the
BuyVolumePenalty and the (SellVolumePenalty) .The Spread is the difference
between the BestQuotedPrice on the ask and bid side, whereas the BuyVolumePenalty
(SellVolumePenalty) is the relative price change between the BestQuotedPrice
on the buy (sell) side and each of the other buy (sell) market order levels. Anal-
yses on the historical data are done in order to determine these quantities.

PB(p=4)tds = Ptds − 0.5 ⋅ Spread (5.3.1)

PA(p=4)tds = Ptds + 0.5 ⋅ Spread (5.3.2)

PBptds = BuyVolumePenaltyp ⋅ P
B
(p=4)tds, p ∈ {5,6,7,8} (5.3.3)

PAptds = SellVolumePenaltyp ⋅ P
B
(p=4)tds, p ∈ {5,6,7,8} (5.3.4)
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Figures 5.3.1 demonstrate the development of the average spread relative to the
transaction price for each of the Day delivery products. Here, one can see that
there are significant fluctuations throughout the trading window of each delivery
product. When considering the DayClose category only, the spread looks much
more predictable; the mean spread can be accurately predicted by a piecewise
stationary function. It is suggested to set the spread parameters equal to the
constant levels of such an approximation, one level for the interzonal market
and one for the intrazonal market. The average values of the interzonal market
are presented in table 5.3.4. f

Figure 5.3.1: Spread trajectory percentile plot

Table 5.3.4: Mean spread levels

DP Interzonal DayClose spread
DP11 0.7 e/MWh
DP12 0.8 e/MWh
DP13 0.8 e/MWh
DP14 0.9 e/MWh
DP15 1.0 e/MWh
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Figure 5.3.3 and 5.3.2 shows the trajectories of the average order level prices of
the second best, the third best, the fourth best and the fifth best quoted buy and
sell order price levels relative to the price of the best order level for each delivery
product and each trading stage. These average values constitute the accessible
order price premiums relative to the best price of the 2nd to the 5th price level.
The premiums can be seen in table 5.3.5 and 5.3.6, whereas the corresponding
order volumes can be seen in appendix B. At first sight, the plots look very
similar across delivery products. At closer inspection, one can see that there
are some differences. The x-axes are slightly changed from delivery product to
delivery product. Also, there are some differences in DayClose values. These
values are summed up in table 5.3.5 - 5.3.8. To cope with a wide range of prices,
including negative ones, the relative penalties are multiplied by the initial price
of 50e/MWh to form absolute penalties in the model preprocessing. These
absolute penalties are applied throughout the trading window and are added
to (subtracted from) the best quoted ask (bid) price levels instead of being
multiplied with them (as originally shown in equations 5.3.3 and 5.3.4).

Table 5.3.5: Interzonal DayClose average BuyOrderPenalty of the five best ac-
cessible buy orders

DP 1st 2nd 3rd 4th 5th
DP11 100 % 99 % 98 % 97 % 95 %
DP12 100 % 99 % 97 % 96 % 95 %
DP13 100 % 98 % 97 % 95 % 93 %
DP14 100 % 97 % 95 % 93 % 91 %
DP15 100 % 97 % 95 % 93 % 91 %

Table 5.3.6: Interzonal DayClose average SellOrderPenalty of the five best ac-
cessible sell orders

DP 1st 2nd 3rd 4th 5th
DP11 100 % 102 % 106 % 110 % 113 %
DP12 100 % 103 % 110 % 116 % 120 %
DP13 100 % 104 % 109 % 112 % 115 %
DP14 100 % 112 % 119 % 123 % 127 %
DP15 100 % 112 % 124 % 129 % 135 %
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Figure 5.3.2: Sell order level penalties relative to best sell prices
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Figure 5.3.3: Buy order level penalties relative to best sell prices
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Table 5.3.7: Interzonal DayClose average volumes of the five best accessible buy
orders [MWh]

DP 1st 2nd 3rd 4th 5th
DP11 31 32 32 30 31
DP12 30 31 32 30 31
DP13 30 31 33 32 31
DP14 29 31 33 32 30
DP15 26 30 32 33 29

Table 5.3.8: Interzonal DayClose average volumes of the five best accessible sell
orders [MWh]

DP 1st 2nd 3rd 4th 5th
DP11 22 24 21 23 22
DP12 22 21 20 20 21
DP13 21 23 19 21 22
DP14 22 23 22 22 23
DP15 20 23 22 21 24

5.3.2.2 Determining the imbalance prices

As stated by Wärtsilä (2014), the imbalance prices are very hard to predict; ”it
it is near impossible for market participants to manage their imbalance exposure
in the spot markets on an informed basis”. Figure 5.3.4 illustrates how a sim-
ple, linear regression model with the price of a delivery product at gate closure
as input variable would look like. The figure is based on historical EPEX data
fetched from ENTSO-e (2017a) and EPEX (2018) in the time period 2014-02-01
- 2017-10-31.

The EPEX Operational Rules prevent traders from trading actively in the imbal-
ance markets (EPEX, 2017c). Thus, it is an important feature of the imbalance
price parameters that they do not incentivize imbalance market trading. Recall
that two imbalance price parameters are needed per delivery product; one for
the + imbalance price and one for the - imbalance price. It is therefore assumed
that the imbalance price equals the price in the last trading stage, but with a
very large spread, referred to as the imbalance price penalties. These penalties
are found by partitioning the dataset of imbalance prices in two - one for when
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Table 5.3.9: Proposed imbalance price penalties relative to the close price

Balancing market Imbalance penalty
+ Imbalance 142.05 e/MWh
- Imbalance -127.42 e/MWh

the price is higher than the Intraday close price, and one for when it is lower
- and then taking the average difference between the close price and the im-
balance prices for each set. The resulting imbalance price penalty parameters
can be seen in table 5.3.9. Note that this is not the most empirically accurate
model, but it incentivizes the model to comply with the present regulations.

Figure 5.3.4: Imbalance prices vs Intraday close prices

5.3.3 Intrazonal market parameters

Trading across trading zones can only be done until 30 minutes before delivery.
In the trading window of the intrazonal Intraday market, the liquidity decreases
significantly. Thus, the market parameters must be modified correspondingly.
One rather trivial way of handling this is by scaling the parameters. For the
DayClose category, a set of proposed multipliers are presented in table 5.3.10.
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These multipliers are based on empirical studies. The price does not seem to
change predictably as the time passes interzonal gate closure. However, the
average spread doubles (see table 5.3.11) and the order depths are halved (see
table 5.3.12-5.3.13). Recall from section 4.1.5 that no limit orders can be placed
in the last trading stage of a delivery product. Thus, in models with one stage
per hour, it is not necessary to define intrazonal limit order premiums.

Table 5.3.10: Scaling factors used to approximate the intrazonal Intraday market

Parameter Scaling factor
Price 1
Spread 2
Volume penalty 1
Order depths 0.5

Table 5.3.11: Average interzonal and intrazonal spreads for DP11-DP15

DP Interzonal DayClose spread Last 30 minutes DayClose spread
DP11 0.7 e/MWh 1.4 e/MWh
DP12 0.8 e/MWh 1.5 e/MWh
DP13 0.8 e/MWh 1.7 e/MWh
DP14 0.9 e/MWh 1.6 e/MWh
DP15 1.0 e/MWh 1.7 e/MWh

Table 5.3.12: Average interzonal and intrazonal sell order price levels for DP11-
DP15 [MWh]

DP Interzonal order volumes Intrazonal order volumes
DP11 22-24-21-23-22 10-10-11-12-11
DP12 22-21-20-20-21 9-11-11-12-11
DP13 21-23-19-21-22 9-10-11-11-11
DP14 22-23-22-22-23 9-10-10-10-11
DP15 20-23-22-21-24 8-11-10-11-11

The order volumes are presented on the form (1st-2nd-3rd-4th-5th)
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Table 5.3.13: Average interzonal and intrazonal buy order price levels for DP11-
DP15 [MWh]

DP Interzonal order volumes Intrazonal order volumes
DP11 31-32-32-30-31 15.5-16-16-15-15.5
DP12 30-31-32-30-31 15-15.5-16-15-15.5
DP13 30-31-33-32-31 15-15.5-16.5-16-15.5
DP14 29-31-33-32-30 14.5-15.5-16.5-16-15
DP15 26-30-32-33-29 13-15-16-16.5-14.5

The order volumes are presented on the form (1st-2nd-3rd-4th-5th)
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Chapter 6

Results

The Benchmark model of section 4.2, as well as the alternatives from section 4.3,
have been implemented and evaluated using the Gurobi Optimizer. The models
have been run on identical scenario trees, and the parameters are set based on
the findings of chapter 5. This chapter is centered around the side-by-side com-
parison of the outcome of the model runs. These analyses are found in section
6.1. As the main purpose of this chapter is to explore the effects of different
sets of modeling assumptions, most focus is placed on interpreting the model
output. However, computational and technical studies, as well as an evaluation
of the sample space, can be found in section 6.2.

A 64-bit Windows 10 PC with 3.40 GHz Intel® CoreTM i7-6700 CPUs and 32
GB RAM was used to run the models. The models are implemented using the
Gurobi Optimizer (Version 7.5.2) with a Named-user academic license. In order
to generate comparable results, the models are run on scenarios with a similar
structure and scope. This is specified in table 6.0.1.
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Table 6.0.1: Model parameters

Symbol Parameters
∣T ∣ Number of trading stages 6
∣D∣ Number of delivery products 5
∣S ∣ Number of scenarios per scenario tree 1024
∣Γ∣ Number of virtual reservoirs 5

Number of stages per gate closure 1

Each alternative model is solved for 500 scenario trees. Each scenario tree takes
between 20 and 100 seconds to solve for each of the alternative models as well
as the Benchmark model. However, solution times are not in focus here, for
two reasons; firstly, because the alternative models are implemented by adjust-
ing the Benchmark model, so they aren’t necessarily solved as efficiently as a
simpler model based on the same set of assumptions could be; and secondly, be-
cause the problem instances here are smaller than practical applications would
require, and the solution times may not scale proportionally for each model as
the problem instances are scaled. Note that ”problem instance” here refers to
a full scenario tree.

6.1 Decisions and objective values of each model

In section 6.1.1 to 6.1.6, three aspects are shown for each model; the objective
value (referred to as the model performance) - both in absolute terms and in
comparison with the Benchmark model; the performance for a wide range of
scenario tree percentiles; and the average order volumes placed at each order
level. A summary of the performances and decisions of each model is included
in section 6.1.7.

The distribution of the expected profit for the Benchmark model can be observed
in figure 6.1.1. Each scenario tree is counted once. In figure 6.1.2, the profit
in scenario percentile 10, 25, 50, 75 and 90 are visualized for all scenarios. As
one can see, the model makes a stable profit of 20-40 000 ein most scenarios
in most scenario trees, but achieve very high profits in a few scenarios in a few
scenario trees.
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Figure 6.1.1: Distribution for the performance of the Benchmark model
(N =500).
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Figure 6.1.2: Profit in 5 selected percentiles of scenarios for all scenario trees.

In figure 6.1.3, the average order volume placed at each order level for DP15 in
one of the scenario trees is shown. For order level 1-3 one may see that limit
orders have lower clearance probability. A higher order level corresponds to a
worse price;. Order level 1 has the best price due to a high limit order premium;
while the large order level penalty makes 8 the least attractive order level in
either direction.
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Figure 6.1.3: Average order volumes placed per order level by the Benchmark
model for DP15 (N =1).
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6.1.1 Alternative 1A: Predetermined production, single-
order

Figure 6.1.4: Predetermined production with a single order placement, vs.
Benchmark model (N =500)

In figure 6.1.4 one can observe the performance of alternative model 1A on the
vertical axis and the Benchmark model on the horizontal axis. The identity
line represents the line where the models perform equally well. Dots below
the identity line represent scenario trees where the Benchmark model outper-
forms the alternative model. As the alternative model performs poorly in all
scenario trees, it seems unlikely that this interpretation of the dispatch-focused
ITP papers is correct. Further analysis of this alternative model is therefore
superfluous.
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6.1.2 Alternative 1B: Predetermined production, adap-
tive trading

Figure 6.1.5: Predetermined production with adaptive trading strategy vs.
Benchmark model (N =500)

As one may see in figure 6.1.5, this interpretation of the dispatch-focused ITP
papers seems more reasonable.

Table 6.1.1: The performance of the predetermined production-model at differ-
ent percentiles

Percentile 2.50 % 10 % 50 % 90 % 97.50 % Mean
Absolute performance 15807 16549 18579 24214 30378 19739
Relative performance 57 % 63 % 73 % 80 % 83 % 72 %

In table 6.1.1, the performance of the alternative model at different percentiles
of the set of scenario trees is shown. It is consistently outperformed by the
Benchmark model.
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Figure 6.1.6: Average order volumes placed per order level by the Predetermined
production model for DP15 (N =1).

In figure 6.1.6 the order placement of the alternative model is shown. Observe
how the model avoids limit orders completely, as the uncertain clearing of limit
orders is an unacceptable risk for a model with inflexible production.
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6.1.3 Alternative 2: Uncoordinated delivery products

Figure 6.1.7: Uncoordinated delivery products vs. Benchmark model (N =500)

Table 6.1.2: The performance of the uncoordinated DP-model at different per-
centiles

Percentile 2.50 % 10 % 50 % 90 % 97.50 % Mean
Absolute performance 20382 21322 24499 32548 45007 26417
Relative performance 89 % 92 % 96 % 98 % 99 % 96 %
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Figure 6.1.8: Average order volumes placed per order level by the Uncoordinated
DPs model for DP15 (N =1).

6.1.4 Alternative 3: Sell-only

Figure 6.1.9: Sell-only vs. Benchmark model (N =500)
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Table 6.1.3: The performance of the sell-only model at different percentiles

Percentile 2.50 % 10 % 50 % 90 % 97.50 % Mean
Absolute performance 15178 15265 15499 16169 16855 15642
Relative performance 32 % 46 % 61 % 69 % 73 % 59 %

Figure 6.1.10: Average order volumes placed per order level by the Sell only
model for DP15 (N =1).
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6.1.5 Alternative 4A: No limit orders

Figure 6.1.11: No limit orders vs. Benchmark model (N =500)

Table 6.1.4: The performance of the no limit orders-model at different per-
centiles

Percentile 2.50 % 10 % 50 % 90 % 97.50 % Mean
Absolute performance 19711 20464 23344 30860 42995 25220
Relative performance 86 % 88 % 92 % 94 % 95 % 91 %
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Figure 6.1.12: Average order volumes placed per order level by the No limit
orders model for DP15 (N =1).

6.1.6 Alternative 4B: False liquidity

Figure 6.1.13: False liquidity vs. Benchmark model (N =500)
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Table 6.1.5: The performance of the false-liquidity at different percentiles

Percentile 2.50 % 10 % 50 % 90 % 97.50 % Mean
Absolute performance 14298 15293 18988 27597 40283 21082
Relative performance 66 % 69 % 75 % 83 % 87 % 75 %

Figure 6.1.14: Average order volumes placed per order level by the False liquid-
ity model for DP15 (N =1).

Note that a slack of 1 MWh was added to the constraint on the order place-
ment in the False liquidity model, as numerical instability sometimes made the
problem infeasible. The actual order volumes at the worst order levels should
therefore probably be marginally higher.
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6.1.7 Summary of the model performances

Figure 6.1.15: Comparison of the performance of all the models (N =500)

Figure 6.1.15 shows the performance of all alternative models relative to the
Benchmark model for all scenario trees, sorted from worst to best. The Benchmark
model dominates all of the other models in all scenario trees.

Table 6.1.6: Performance and standard deviation of 5 alternative models and
the Benchmark model (N =500).

∼ AM1B AM2 AM3 AM4A AM4B Benchmark
Avg. obj.value 19 739 26 417 15 642 25 220 21 082 27 673
St.dev 4 353 6 753 461 6 337 7 022 7 137

In table 6.1.6, the average objective value and the standard deviation in objec-
tive value is shown for 5 alternative models and the Benchmark model. ”AMB1”
is short for alternative model 1B, predetermined production - and similarly for
AM2-AM4B. In table 6.1.7 the same is shown for the relative performance and
the standard deviation of the relative performance. Note that this standard
deviation is very low for several of the alternative models.
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Table 6.1.7: Relative performance and standard deviation of 5 alternative mod-
els and the Benchmark model (N =500).

∼ AM1B AM2 AM3 AM4A AM4B Benchmark
Average obj.value 72 % 96 % 59 % 91 % 75 % 100 %
Relative st.dev 7 % 3 % 10 % 2 % 5 % 0 %

Table 6.1.8: Roundtrip Ratio and production quantities of 5 alternative models
and the Benchmark model for DP15 (N =1).

∼ AM1B AM2 AM3 AM4A AM4B Benchmark
RTR [%] 0,3 % 8,3 % 0,0 % 0,5 % 1,0 % 8,8 %
Production [MWh] -42 111 140 78 80 75

In table 6.1.8, RTR is short for roundtrip ratio. It is defined as ∣vAptds−v
B
ptds∣/(v

A
ptds+

vBptds) for each combination of trading stage and scenario, and then averaged
over trading stages and scenarios. A market maker that offers limit orders to the
market may have a non-zero RTR, but traders that are limited to market orders
should not buy and sell in the same stage, as it is equivalent to paying the spread
and transaction cost twice, with no benefit to the trader. As all former analy-
ses of the decisions of the models, this table is based on average numbers over
all scenarios in the first scenario tree, considering only the last delivery product.

6.2 Computational study

As the small problem instances in this thesis are of an exploratory nature, and
therefore significantly smaller than practical applications would require, the
computational study is not the main value of the thesis. It is however interesting
to attempt to identify the main obstacles to scaling the instance size, given the
current formulation.

6.2.1 Calculating the scenario space

If i is the number of branches per stage, n the number of stochastic processes
and ∣T ∣ the number of stages, the total number of scenarios is in⋅∣T ∣, assuming
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synchronous gate closures. If it is desirable to have many stages and a fine-
grained probability distribution for each stochastic process, n must be small.
Examples of scenario spaces for different assumptions about ∣T ∣, n and i can be
found in table 6.2.1. The numbers account for the effects of asynchronous gate
closures, by reducing the number of stochastic processes in the stages where the
trading windows of some of the delivery products are closed. For the PCA-based
scenarios, the number of stochastic processes is constant until the gate closure
of the last delivery product.

Table 6.2.1: Scenario spaces for different problem instances.

Case DPs Stages Branch/DP LOs? Scenarios
Full day, high frequency 24 360 2080 Yes 1 ⋅ 1017599

Full day, low frequency 24 30 2080 Yes 4 ⋅ 101393

6 stages, binomial price 5 6 2 No 32768
6 stages w/LOs 5 6 32 Yes 4 ⋅ 1022

6 stages no LOs, w/ PCA (2) 6 2 No 1024

In table 6.2.1, LO is short for limit order, DP is short for delivery product and
PCA is short for principal component analysis. The price is represented by a
discretized normal distribution with 130 branches, before it is simplified to a
binomial distribution for the last 3 cases. In the last case, the number of DPs is
actually 5, but the PCA is used to reduce dimensionality from 5 to 2 stochastic
processes. As one can easily observe from the table, the scenario space quickly
grows intractably large when the number of DPs, stages and branches per DP
grows. This is the rationale for the number of approximations and simplifica-
tions that have been performed.

6.2.2 Technical study

Changing the set size parameters may affect the scenario space. The number
of variables and constraints grow exponentially as a size of added stages, since
more scenarios are required in order to keep some uncertainty throughout the
entire trading window.
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Figure 6.2.1: Problem size as a function of number of trading stages

If it is assumed that two stochastic processes are sufficient to model even more
delivery products, the scenario space does not grow as a function of the number
of delivery products, so the increase in the number of variables and constraints
is only linear.
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Figure 6.2.2: Problem size as a function of number of deliver products

Similarly, increases in the number of order levels or virtual reservoirs do not
increase the scenario space, and the growth in the number of variables and con-
straints is therefore linear.
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Chapter 7

Discussion

In this chapter, the results in chapter 7 are discussed. In section 7.1, the deci-
sions and objective values of each of the alternative models are analyzed, and
the reliability of the results is examined. In section 7.2 the applicability of the
findings is discussed, and avenues of future research are outlined.

7.1 Interpretation of results

What can be concluded from the results presented in section 6? In this section,
this question is decomposed in two parts; first, the link between the decisions
and the objective values of each model is discussed, and then the reliability of
the results is examined. The interested reader is referred to appendix E for a
more in-depth, case-based discussion of the contribution of each of the modeling
assumptions that differ between the models in this thesis.

Based on the dispatch-focused branch of the literature, a natural hypothesis
could be that the production decision is particularly important to the objective
value. An indeed; in tables 6.1.8 and 6.1.6 one may observe that the two mod-
els that deviate the most from the recommendation of the Benchmark model -
namely the Predetermined production and Sell only models - are the two that
perform the worst. However, the Uncoordinated DPs model also deviates from
the recommendation, while performing almost as well as the Benchmark model.
The No limit orders and False liquidity models on average produce approxi-
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mately optimally, but perform worse.

A hypothesis of the reason for the poor performance of the False liquidity model
could be that the high trading cost from transactions at poor order levels (see
figure 6.1.14) is pulling down the performance of an otherwise good model. This
is in line with the conventional LOB literature (see e.g. Mastromatteo et al.
(2017)). However, this hypothesis still does not explain why the Uncoordinated
DPs model beats the No limit orders model despite the drawback of being un-
able to coordinate the production decisions for consecutive delivery products.

The final component of the decision making that is underscored in this thesis
is the ability to make the spread (Cont et al., 2010). By offering liquidity to
the market in the form of risky bid and ask limit orders, traders may achieve
profitable round trips. In conventional LOBs, banks often take a market making
role. However, taking such a role requires that you are somewhat agnostic to
your final inventory at the end of the trading window, since the clearing of the
limit orders is uncertain. In the Intraday market, banks are not agnostic to the
final inventory, since any non-zero final inventory will incur a large imbalance
cost for traders without production assets. Making the spread is thus hard for
traders that don’t have flexible production. The low liquidity in the EPEX
Intraday makes it a particularly interesting strategy for such producers. In par-
ticular, it is a good strategic fit for producers with gently sloping marginal pro-
duction costs - such as the hydropower producer in our case - since the marginal
costs of a deviation from the target inventory will be lower. Using the analogy
to traditional microeconomics (in line with e.g. Aı̈d et al. (2015), who state that
”the optimal strategy consists in making (...) the forecast marginal cost equal to
the forecast Intraday price.”), figure 7.1.1 illustrates this cost. Observe that the
colored area for the producer with gently sloping marginal production costs is
far smaller than the area for a deviation of similar size for the other producer.
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Figure 7.1.1: Marginal costs of deviation from the target inventory for producers
with steep and gently sloping marginal production costs.

Making the spread thus requires that the trader is able to place limit orders on
both sides of the limit order book, and has gently sloping marginal costs. This
is not the case for the False liquidity, Sell only and No limit order models, and
the Predetermined production model sacrifices the production flexibility before
the trading decisions are made. Thus, only the Uncoordinated DPs model and
the Benchmark model are able to do this, as observed from the Roundtrip ratio
in table 6.1.8.

Thus, three hypotheses for the differences in the objective values of the models
have been identified. Together, they explain much of the observed results in this
thesis. Note however that there is a risk of inferring too much from the results
in this thesis. In particular, the exact objective values of the models and their
performances relative to the Benchmark model are sensitive to the assumptions
in the cases. For instance, the net inflow after subtracting the Day-Ahead com-
mitment has a value of just above 11 keeven if no action is taken by the model,
which is ”free profit” for all of the models. For this reason, the numbers may
not reflect actual Intraday profits for traders in the market.

A common issue in the conventional LOB literature is that it is hard to avoid
false arbitrage, and it cannot be categorically excluded in this thesis either.
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However, the Sell only model cannot take arbitrage opportunities even if they
exist, since it can only trade in one direction. Thus, the difference in the ob-
jective value between the Sell only model and the other models is an upper
bound on the impact of arbitrage opportunities. However, as further explained
in appendix E, the value of two-sided trading has extra value when the target
end-of-day inventory is stochastic, so the value of false arbitrage opportunities
should be significantly lower than this difference. As one may observe from figure
6.1.9, the nominal difference is lowest in the worst scenarios for the Benchmark

model. For this reason, it is explored if the main conclusions are very different
if only the worst 20% of scenarios are included for each model. As seen in table

Table 7.1.1: The performance of the alternative models in the 20% worst sce-
narios

∼ AM1B AM2 AM3 AM4A AM4B Benchmark
Average obj.value 16 451 21 278 15 250 20 424 15 309 22 114
Relative obj.value 74 % 96 % 69 % 92 % 69 % 100 %

Finally, it should be underscored that even if a strongly superior expected profit
for the Benchmark model in verifiably realistic market conditions had been ob-
served, it would not necessarily imply that it should be applied by the traders in
the market. All former ITP papers have documented that their proposed model
scales to practical problem instances, whereas the scalability of the proposed
model in this thesis remains to be seen. Moreover, traders with different risk
preferences may prefer models with lower variance in the performance, such as
the No limit orders model (see table 6.1.6).

7.2 Applicability of the findings

Under which assumptions do the findings apply? In this section, the assump-
tions behind the results are highlighted, and the potential to remove assumptions
is discussed. At first, the assumptions relating to the market are discussed in
7.2.1, and then the assumptions about the trader are discussed in 7.2.2.
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7.2.1 Market assumptions

Only the DayClose category of the market was explored in the numerical simu-
lations, due to the high similarity between the behavior of the delivery products
and the high liquidity in this phase. It may seem trivial to extend the analy-
sis to other categories of the market, as the market parameters like the price,
limit order clearance probability and instantaneous price impact may simply
be adjusted to values that are representative to other segments. However, some
categories may have so quantitatively different market parameters that the mar-
ket dynamics are qualitatively different, and other concepts are needed to model
them well. For instance, the liquidity at night seems to be so low that the mar-
ket is incomplete, because several market parameters become stochastic (see
figure 5.2.1).

The problem instances in the numerical simulations are quite limited, and it
would be desirable to test the proposed models on a larger scale. However,
as documented in section 6.2, the proposed MSLP framework does not scale
because the scenario trees grow too large for the available memory. A refor-
mulation of the Benchmark model to a dynamic program may be able to scale
to larger problem instances as the memory requirements are lower. However,
the state space of such a dynamic program would become very large. With 5
delivery products with 1000 available storage volumes and 250 possible mar-
ket commitments per delivery product, the endogenous state space is already
10005 ⋅2505 = 1027. When exogenous state variables are added - such as 5 prices,
each of which may take a large number of values - it is obvious that a lot of effort
is needed in order to find even approximate solutions to the dynamic program.
Considering the strong performance of the Uncoordinated DP model, it may be
possible to model each delivery product separately, in which case the dynamic
program looks more tractable.

An additional benefit of being able to solve a dynamic formulation of the
Benchmark model would be the ability to model the transient and permanent
price impacts. Similarly to Aı̈d et al. (2015) and Tan and Tankov (2016), one
would be able to differentiate between the unaffected (potentially martingale)
price process, and the actual prices that have been affected by the trading
behavior of the trader herself. If such price impacts are modeled, additional
effort is needed to ensure that the model makes realistic assumptions about the
shapes of the price impacts, so that it does not find false arbitrage opportunities.
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An implicit assumption in several of the papers in the contemporary ITP liter-
ature is that the model not is adapted at scale. As only market orders are used,
the market does not converge to an equilibrium as adoption grows, because the
liquidity in the market disappears. As our model permits both limit and market
orders, large-scale adaption would converge to an equilibrium where the limit
order premium reflects the risk preferences of the traders in the market, so this
is not an issue with the Benchmark model.

7.2.2 Trader assumptions

The Benchmark model assumes that the trader is risk neutral, but it is possible
to extend the model to a formulation that allows for risk aversion. In order to
do so, linear measures of risk, such as the Conditional Value-at-Risk (see e.g.
Alexander (2008d)) must be added to the objective function. This may reduce
the strength of the preference for the Benchmark model over models that take
lower risk, such as the No limit orders model.

The choice of parameters for the production system in this thesis may have
affected the results. In particular, the number of stages and delivery products,
the storage capacity, initial storage, production capacities, Day-Ahead commit-
ment, marginal production cost curve and power inflow were identical for all
scenarios. Unlike the other parameters in the model, these parameters are not
based on a rigorous empirical analysis. Changing these parameters may change
the optimal trading behavior in many ways. For instance, the preference for
limit orders falls if marginal production costs are far lower than market prices.
In order to test the model for realistic production parameters, it is proposed
that the model is applied to the production systems of actual traders in the
market.
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Conclusion

In this thesis, the Intraday Trading Problem has been defined. The problem
includes both production- and order placement- decisions related to the contin-
uous auction Intraday power market. The goal of the ITP is to maximize the
profits of the trader over a decision horizon that spans the part of the trading
windows for the delivery products when the market is liquid. The goal of the
thesis was one level of abstraction higher; it was to discover which modeling as-
sumptions about the ITP that are the most profitable to make, and to estimate
the impact on the objective function of making alternative assumptions that are
proposed in the existing literature.

There are four main contributions in this thesis. First, an extensive literature
review was performed, producing a set of modeling assumptions that there are
disagreements about in the contemporary literature, and a novel definition and
decomposition of the ITP was proposed. In particular, this thesis was the first
to recognize the double dynamics of the decision structure in the ITP, resulting
from the coordinated optimization of the trading and production of multiple
delivery products.

Second, a detailed market analysis has been performed. An extensive list of
relevant market parameters was included, all of which were estimated empiri-
cally. In particular, the modeling of the clearing of limit orders in a market with
limited liquidity went beyond the existing literature.

Third, seven models were developed using an MSLP framework, and the mod-
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els were compared in limited scenario trees based on the market analysis. The
proposed Benchmark model outperformed all of the alternatives inspired by
the existing literature in all scenario trees. The alternative models fell short
of the proposed Benchmark model by 4-41%. The Sell only-, Predetermined
production- and False liquidity models achieve 69-75% of the performance of
the Benchmark model, whereas the No limit orders- and Uncoordinated DPs
models achieve 91-96%.

Fourth, the profit gains of each of the relevant assumptions were discussed
through a theoretical lens, and probable explanations of the profit gains were
found. The differences in performance can be partly explained by suboptimal
production decisions, higher trading costs and inability to ”make the spread”.
One alternative model was discarded due to unrealistically poor performance.

It was noted that the specific percentages of profit gain are sensitive to the pa-
rameters of the case. However, the finding that the proposed Benchmark model

significantly outperforms most of the alternatives inspired by the related liter-
ature in the small scenario trees described in section 5 was considered robust,
after tests on 500 scenario trees.

Three avenues of future research are proposed. First, the empirical evidence of
the findings should be strengthened through backtesting on empirical market
data and simulations based on different assumptions. Second, it is necessary
to scale the problem instances in order to apply the model in practice. It is
hypothesized that a reformulation to a dynamic program could handle larger
problem instances, though the resulting state space is vast and would require
sophisticated solution methods. If such a reformulation does not work, further
tests of the performance of the Uncoordinated DPs model can reveal if it is a
viable alternative model. Finally, improved modeling of the transient and per-
manent price impacts, as well as the inclusion of risk measures in the objective
function, would expand the applicability of the model.
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Appendix

A A model with transient and permanent price
impact

In order to capture the transient price impact, a further reformulation of the
model proposed in section 4.2 (the Benchmark model) is considered. In this ap-
pendix, such a reformulation is developed. The reformulation uses integer vari-
ables, and is therefore a Multistage Stochastic Integer Linear Program (MSILP).
A nonlinear formulation is provided first, and an outline for how to linearize the
nonlinear constraints are included at the end.

The assumption behind the model that includes the transient price impact is
that the inflow of orders in each stage are parameters Anewptds and Bnewptds. The
order depth in the stage is a variable, aptds and bptds. As the trader places an
order in the market, she thus alters the future order depths for the rest of the
trading window. The impact on the order book is immediately visible as a given
order volume is added to or removed from the limit order book, but as many
stages pass, the impact of the one order drowns in the noise of the many the
new orders that are added in each stage. In order to model these assumptions,
several reformulations to the Benchmark model are needed.

In particular, the price indeces p may no longer be defined based on the mid-
price in a given stage, since said mid-price is unknown. PAptds therefore refers to
the same price for all t and s, and one may therefore remove the t, d and s inde-
ces. Moreover, one may define that PAp = PBp = Pp, for simplicity. As Pp, p ∈ P
refers to a constant set of prices, this set must span the entire range of possible
prices. In order to keep the desired granularity of order prices to determine or-
der prices accurately, the set of order levels is therefore much larger than before.
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The scenarios also need to be redefined. Based on the inflow of orders Anewptds and
Bnewptds and the rules of the clearing mechanism in the market, the limit order
premium and the mid-price may be uniquely determined. Thus, the stochastic-
ity is in the inflow itself. As there are very many parameters Anewptds and Bnewptds in
total, the number of stochastic processes should be far smaller than the number
of stochastic parameters; it is necessary to define relations between the order
inflows in ways that reduces the scenario space while maintaining the decision
relevant aspects of the model. This is not considered further here.

In the Benchmark model, it is assumed that transactions only occur when two
opposite orders with the same price clear - that is, if the spread between the
two orders was zero. In reality, orders may clear if the spread between itself
and an opposite order is negative. This is not a concern when one of the parties
in every transaction is the trader that the model represents, since it will adjust
its decisions accordingly without loss of generality. When order depths in the
market are modeled as variables and not parameters, transactions between two
external traders also have to be modeled. Thus, this is no longer a valid assump-
tion. It is therefore assumed that orders clear if the spread between the orders
is negative, and there exists no pair of opposite orders with a larger negative
spread.

In the Benchmark model, the purpose of constraints (4.2.13) and (4.2.14) is
to force the cleared volume to equal min(xAptds,Bptd) (or min(xBptds,Aptd), by
symmetry). This is with a binary parameter, since the minimum of the two
were either equal to xAptds or zero. That is no longer possible, and new variables
become necessary to keep account of the order clearing. For simplicity, assume
that a limit order has a duration equal to one stage, so that it is canceled im-
mediately after the orders in the next stage arrive. In this case, the clearing of
an order is expressed in in equation (A.1).

vAptds −min{xAptds,
p̄

∑
p̃=p

bp̃tds} −max{0,min{
p̄

∑
p̃=p

Bnewp̃(t+1)ds −
p−1

∑
p̃=0

(ap(t+1)ds +A
new
p(t+1)ds),

xAptds −
p̄

∑
p̃=p

bp̃tds}} = 0, p ∈ P, t ∈ Td, d ∈ D, s ∈ S

(A.1)



Here it is assumed that P ∶ p ∈ P ⇐⇒ p ∈ {0,1...p̄}. Equation A.1 decom-
poses the cleared volume of the order into two parts, where one part is the
immediate clearing in stage t and the other part is the clearing in stage t + 1.
min{xAptds,∑

p̄
p̃=p bp̃tds} represents the immediate (partial) clearing of the order

xAptds, if there is a volume ∑
p̄
p̃=p bp̃tds available at the prices that are better than

p in stage t. If the available volume at better prices is smaller than the order
volume xAptds, some of the residual order volume xAptds −∑

p̄
p̃=p bp̃tds may clear as

new order volumes ∑
p̄
p̃=pB

new
p̃(t+1)ds are placed in the next stage. However, if there

exist competing orders at better prices, ∑
p−1
p̃=0(ap(t+1)ds +Anewp(t+1)ds), then those

will have priority. Thus, ∑
p̄
p̃=pB

new
p̃(t+1)ds −∑

p−1
p̃=0(ap(t+1)ds +Anewp(t+1)ds) is the new

order volume that is available for the given order in the next stage, just before
the order xAptds is canceled. If either ∑

p̄
p̃=pB

new
p̃(t+1)ds −∑

p−1
p̃=0(ap(t+1)ds +Anewp(t+1)ds)

or xAptds −∑
p̄
p̃=p bp̃tds is negative, the cleared volume in stage t + 1 is zero. By

symmetry, a similar equation can be formulated for a bid order xBptds.

The variables for the available order volumes, aptds and bptds must be up-
dated for every stage. Inflow of orders Anewptds and Bnewptds increase the avail-
able order volumes, unless they match with opposite orders and clear. Or-
ders placed by the model, xAptds and xBptds remove orders from the limit order
book. If other traders are allowed to cancel orders, this may be approximated
by a decay rate ΛAptds and ΛBptds. Assuming that the external order canceling
takes place at the end of a stage, the outbound order volume from a stage is
ΛBptdsmax{0, bptds −max{0,∑

p
p̃=0 x

A
p̃tds −∑

p̄
p̃=p bp̃tds}}. In stage t + 1, Bnewp(t+1)ds is

added to the outbound balance in t, and potential matching orders ∑
p
p̃=0A

new
p̃tds

are subtracted, after accounting for competing orders with priority, ∑
p̄
p̃=p bp̃tds.

Denoting the outbound order volume b̃ptds, the resulting order depth flow con-
straint thus becomes:

bp(t+1)ds −max{0, b̃ptds +B
new
p(t+1)ds −max{0,

p

∑
p̃=0

Anewp̃tds −

p̄

∑
p̃=p

b̃p̃tds}}

= 0, p ∈ P, t ∈ Td, d ∈ D, s ∈ S

(A.2)

b̃ptds −ΛBptdsmax{0, bptds −max{0,
p

∑
p̃=0

xAp̃tds −
p̄

∑
p̃=p

bp̃tds}}

= 0, p ∈ P, t ∈ Td, d ∈ D, s ∈ S

(A.3)



By symmetry, similar equations apply to the ask order depth.

i) Linearizing the min- and max-statements

If the objective function of a problem is strictly increasing in x and A and B
are parameters of the problem, a constraint on the form x = min{A,B} can be
linearized by replacing it with x ⩽ A, x ⩽ B (and by symmetry, x = max{A,B}
can be linearized in a resembling way if the objective function is strictly de-
creasing in x). In this case however, we have nested min- and max-statements,
the objective function doesn’t pull in the right direction for all of them, and
inside some of the min- and max-expressions there are decision variables. Such
a linearization would fail in several ways; for instance, the placed order volumes
xAptds would be very large, since the model would not know that the market
rules consider an order placement as a commitment to trade if a counterparty is
found, so it would consider the order volume merely as an option to trade; more-
over, it may pretend that two external opposite orders with very good prices
did not match each other, in order to reserve both the orders for itself. After
all, the model has no intrinsic incentive to encertain that the external orders
clear in the correct fashion.

For this reason x = min{A,B} must be expressed with two binary variables.
If M is defined so that M ⩾ x is true for all feasible x and δA ∈ {0,1},
M(1−δA)−a+x ⩾ 0) allows δA = 1 only when x ⩾ A. Using a similar constraint
for δB , δA + δB = 1 states that either x ⩾ A or x ⩾ B. Combined with x ⩽ A and
x ⩽ B, it follows that x must equal min{A,B}. As the constraints above apply
for p ∈ P, t ∈ Td, d ∈ D, s ∈ S, the number of binary variables grows very large if
such a formulation is attempted. Moreover, for each binary variable there is one
M, so the formulation is very weak. Thus, this approach is deemed intractable.
No further work has been done with this model.

B Historical volumes of five best open orders

In the figure grids of figure B.1 and B.2, the development of the volumes of the
five best buy and sell orders are shown. For the DayClose category, the volumes
seem somehow constant.



Figure B.1: Sell premium order level volumes plot



Figure B.2: Sell premium order level volumes plot



C Order clearing algorithm

Data: Buy orders, sell orders, sorted chronologically
Result: Set of transactions, DP order book feature list
initialization;
while unopened orders exist do

CurrentOrder := order Sort opposite side clearable orders by price
forall Opposite side clearable orders do

if price of OppositeSideClearableOrder better than price of
CurrentOrder then

create transaction;
reduce volumes of involved orders by transaction volume;

else
continue;

end

end
if timeslot of CurrentOrder is later than TimeOfNextSnapshot then

append market data to RecordedMarketData;
TimeOfNextSnapshot += minutes(5);

else
continue;

end
Sort opposite side clearable orders chronologically;
Append order to opened buy / sell orders;

end
Algorithm 1: Order clearing algorithm

An implementation of the pseudocode written in Python 3.6 can be found
in the attached file market.py.

D A model for determining buy limit order quan-
tities

The program of equation (D.1)-(D.4) maximizes the total area ofN non-overlapping
rectangles bounded by the x-axis, the y-axis and a cumulative distribution of
clearing probabilities as a function of price premiums. The program is very
similar to that of (5.2.2)-(5.2.5), but obviously, the cumulative function f(x)
is different and some minor changes must be done to the constraints. These



model changes are results of the rectangle x-coordinates being negative in the
program of (D.1)-(D.4). Specifically, all variables xi must be non-positive, the
minimum rectangle width W must be a negative number and the signs in the
objective function are changed. The program was executed using Microsoft
Excel 2016’s Solver tool with the parameters W = −0.01, ρCPR = 0.2 and
f(x) = Ax3 +Bx2 +Cx +D with A = 0.87,B = 2.4,C = 2.28 and D = 0.98.

max
x1,...,xN

N

∑
i=1

f(xi)(xi−1 − xi) (D.1)

xi − xi−1 ⩽W, i = 1,2, ...,N (D.2)

x0 = 0 (D.3)

f(xN) ⩾ ρ
CPR (D.4)

E Conceptual explanation of the impact of each
assumption

What is the mechanism by which each of the assumptions that have been dis-
cussed so far contribute to the objective function? Are the given mechanisms
simple enough that most of the profit increase can be captured by simpler mod-
els with clever heuristics, or are the decisions altered in ways that are hard to
approximate in the pre- or postprocessing of the decisions? In this section, the
conceptual explanation of the recommended choices for modeling assumptions
provided, and it is argued that the mechanisms are hard to approximate through
pre- or postprocessing.

i) Assumption 1: Predetermined or informed production
decisions?

In this section, the optimal trading strategies for sell-only traders with homo-
geneous marginal production costs in a liquid market is explored for different
price assumptions and cost levels. A problem instance with only one delivery
product and a two-stage trading window is used. The optimal 1st stage decision



is explored for different assumptions about price drift and variance. As both
marginal revenue and cost are constant as a function of trading volume until the
production capacity is reached, the optimal strategy reduces to either HOLD
or SELL (implicitly: the entire open position) in the first stage, depending on
whether marginal costs are above or below prices.
Recall that the goal of this section is to show the value of delaying the pro-
duction decision. If production has already been determined, production costs
are unaffected by the trading decisions. In this case, the only concern for the
trader is to obtain the best price for the sold volume. The timing of the placed
order(s) therefore should be no different for traders with marginal production
costs. Thus, if traders with different production costs decide to time their or-
ders differently when they are allowed to determine the production quantity ex
post, the incentive to do so must be caused by the value of postponing the trad-
ing decision. In this section, the trader is allowed to determine the production
quantity ex post.

In table E.1, ”1” indicates that an order is placed and ”0” indicates that an
order is not placed. ”[0, 1]” indicates that the trader is agnostic to whether a
trade is placed or not, given that she is profit maximizing. Trades in the first
stage happen when profits from trading are higher than future expected profits
from the same trade volume. Trades happen in the second stage if prices are
higher than marginal production costs and the volume hasn’t already been sold
in the first stage. Since the second stage decision is fairly trivial, the following
discussion is exclusively focused on the first stage decision.

Some background information about figure E.1 and table E.1:

• First stage prices are always 50 e/MWh.

• S-Sub means that prices are strongly submartingales; they are expected
to rise by a wide margin (specifically, 2nd stage prices are 66, 56 or 46
e/MWh with equal probability).

• W-Sub means that prices are weakly submartingales; they are expected to
rise somewhat (61, 51 or 41).

• Mar means that prices have the martingale property; the expectation in
the second stage equals the price in the first stage (60, 50 or 40)

• W-Sup means that prices are weakly supermartingales; they are expected
to fall somewhat (59, 49 or 39).



• S-Sup means that prices are strongly supermartingales; they are expected
to fall by a wide margin (54, 44 or 34).

• In all scenarios, it is expected that S-Sub > W-Sub > Mar > W-sup > S-Sup

in the 2nd stage.

• Recall from section 2.2 that the assumption of non-martingale prices doesn’t
necessarily break with the Efficient Market Hypothesis; thus, the market
may still be assumed to be liquid and efficient.

• HV is a case of weakly supermartingale prices with a very high variance
(99, 49 or -1).

• MC is short for (expected) marginal cost, and is the probability weighted
maximum per scenario of the marginal production cost and the market
price in the next stage. For the last stage, as there does not exist any next
state, it is equal to the marginal production cost.

• Low and High denotes the two producers with low (25 e/MWh) and high
(45 e/MWh) marginal production cost, respectively.

• H, M and L denotes high, medium and low realizations of the second stage
price, respectively, and all scenarios are assumed to be equally likely. Sce-
narios H and L are symmetrical around scenario M for all price assumptions.

Table E.1: Trades placed by one low cost and one high cost producer in a
two-stage problem with three scenarios, for 6 different price expectations.

Price-
assumption

MC -
Low

MC-
High

Low=
SELL?

High=
SELL?

S-Sub 56,0 56,0 0 0
W-Sub 51,0 52,3 0 0
Mar 50,0 51,7 [0, 1] 0
W-Sup 49,0 51,0 1 0
S-Sup 44,0 48,0 1 1
HV 57,7 64,3 0 0

The key takeaways from the table are the following:

• Marginal costs in the first stage equal the expectation of the maximum of
the price in the second stage, and the marginal production costs. They



Figure E.1: Prices in stage 1 and 2 for the different scenarios under different
price assumptions.

thus incorporate the alternative cost of later trades, as pointed out in
section 2.1.4.

• In the first stage, an order is placed if marginal costs are lower than the
price. If marginal costs and prices are equal (as it is for the low cost trader
when prices are martingales), the trader is agnostic to whether a trade is
placed or not.

• The second strategy can be summarized as ”sell if you haven’t sold already
and prices are above marginal production costs”. As it is so trivial, it was
omitted from the table.

• The only price assumption where the low and high cost producers have
strictly different preferences (that is; there is no overlap between the sets
of optimal strategies for the two producers) is the weakly supermartingale
case.

• The low cost producer is agnostic to the first stage strategy with the
martingale price assumption when she is strictly profit maximizing, but it
is reasonable to assume that all else equal, the trader will prefer to close
an open position early rather than later.



• Even when prices are martingales, the high cost producer has a preference
for trading in the second stage over the first stage. Moreover, marginal
costs are much higher in the HV scenario than in the W-sup scenario, even
though expected prices are the same. These counterintuitive situations
are caused by the same phenomenon, which is explored more in depth in
the following paragraphs.

The differing strategies can be explained in the following way: If the marginal
production cost is between the extrema of the probability distribution for the
price (higher than the lowest possible price and lower than the highest possible
price) in the second stage, the trader doesn’t capture (all of the) the downside
of the variance in the second stage, while capturing some of the upside. If the
trader is risk neutral as a function of profits, she will display risk seeking be-
havior as a function of price (see figure E.2), since the mapping from price to
profit is convex. In the weakly supermartingale case, this effect outweighs the
expected price drop for the high cost producer, but not for the low cost producer
which is outside of the price range. However, in the strongly supermartingale
case, prices are expected to fall too much, so both producers opt for the first
stage.

In order to explain this, two concepts are introduced. The option value is the
value of delaying the production decision, absent price drift. The textithold
value is the expected profit increase from selling in stage 2 rather than 1. It is
thus the sum of the option value and the expected gain from the price drift. In
this case, the option of waiting for the high variance stage is outweighed by the
expected price drop, so the hold value is negative. Note that by this definition
of the hold value, it doesn’t by itself determine if trading in the first stage is
profitable, only if it is more profitable than trading in the last stage.

Note that the traders in table E.1 sell in the first stage whenever the marginal
costs - which include the alternative cost of later trades - are lower than the
current prices. When prices and marginal costs are equal, the risk neutral trader
is agnostic to the timing of the trade.



Figure E.2: Profits are a convex function of price.

In figure E.2 part A, marginal production costs are 50 e/MWh, and the price
difference between the scenarios is 5 e/MWh. The black dots mark the price
levels where one scenario has a price equal to the marginal cost. The reason
for the convexity can be explained in the following way: assume that the trader
changes her price assumptions so that second stage prices in all scenarios in-
crease with 1e/MWh compared to the initial assumption. For the scenarios
where the prices are below marginal production costs, this doesn’t affect the
profits, as the trader won’t sell anyways. For such a change in price assump-
tions, the expected increased profits is thus equal to the probability that prices
are higher than marginal costs in the second stage, multiplied with the change
in expected prices. Expected profits thus increase more if it already was likely
that prices were higher than marginal costs; if the worst price outcome is higher
than marginal costs, the slope of the mapping from expected price to expected
profits is 1; if the best price outcome is lower than marginal costs, there is no
slope; and finally, if the marginal costs are between the extrema of the probabil-
ity distribution for the second stage prices, the slope is between 0 and 1. Note
that this analysis only applies to a uniform price update across all scenarios; if
the shape of the probability distribution for the second stage changes in more
complex ways than a shift of the expected value, the analysis also becomes more
complex. Also note that if the price probability distribution was continuous, the
mapping from price to profit would be continuously differentiable over the do-
main of the price, rather than piecewise linear.

In figure E.2 part B, the orange dots represent the same function as the orange
line in part A. The option value is positive when the marginal production costs
are between the extrema of the price probability distribution. Absent price



drift, it is largest when marginal production costs equal the expected value of
the price. A formal proof is not supplied here, but intuitively, the reason for
this is that the risk neutral trader has no relevant information a priori about
whether to ”SELL” or ”HOLD” in the second stage when the expected price is
equal to marginal production costs; for all other price expectations, one of the
strategies will be superior-in-expectation to the other before the second stage
price is revealed. Thus, the value of the information gain is largest when ex-
pected prices are equal to marginal costs.

Figure E.3: Price drift may offset or increase the hold value.

Introducing price drift, the benefit of the option value may be offset or ampli-
fied by the difference in expected prices. The hold value thus may be negative
even if the option value is positive, as illustrated in the left part of figure E.3.
In the right part of the figure, the positive price drift creates a positive hold
value, particularly when prices are certain to be higher than the MPCs. The
resulting HOLD- and SELL-regions in the first stage are illustrated in figure E.4.



Figure E.4: HOLD- and SELL-regions in two different coordinate systems.

The key takeaway is that optimal order strategies are different for producers
with different marginal costs. This shouldn’t be surprising, as different ob-
jective functions may cause different behavior in general. However, it implies
that one producer with heterogeneous marginal costs will have different opti-
mal strategies for the different cost segments of the production portfolio; orders
corresponding to the cheap production of one generator may be placed at a
different time from orders corresponding to the expensive production of another
generator. This is sufficient to demonstrate the necessity of allowing multiple
orders to be placed in the market - at least for some price trajectories - when
costs are heterogeneous. Note that heterogeneous MPC is not a necessary cri-
terium for distributed order placement; for instance, short-term price impacts
may have the same effects.

The reason that order placement is distributed throughout the trading window
is that the option to determine production with more information holds posi-
tive value, as long as the last-stage prices may fall on either side of the marginal
production cost. Thus, the finding that order placement should be distributed
throughout the trading window implies that production should be determined
as late as possible without violating production ramping constraints.



ii) Assumption 2: One or several delivery products?

For this case, the assumption of a weakly negative price drift (-1 e/MWh) from
section i) is kept. The trading windows of the DPs are still two-stage, and they
are synchronous in time. The price is known in the first stage and may take
one out of three values for each DP in the second stage, and the price processes
are uncorrelated. It is assumed that the trader has sufficient storage capacity,
so that the open position may be closed through either one of the limit order
books associated to the delivery products. The trader still focuses only on sell-
ing, as this assumption simplifies the explanations. As observed in section i),
the expected price fall creates a weak incentive to sell in the first stage, but
other considerations may switch that decision.

The initial prices of the DPs are sorted in chronological order in the column ti-
tled ”DP1-DP2-DP3”. The price difference for a given delivery product between
each scenario is denoted ”2nd stage price diff” in table E.2. The MPC is set so
that it is always lower than the 2nd stage best price, to remove the risk-seeking
effect from the convex price-profit mapping in section i): in particular, it is 0 for
the V-Low and 25 for the Low cost producer. Thus, the traders are incentivized
to sell in the first stage when there is only one delivery product with the given
assumptions.

In table E.2, the effects of several assumptions about initial prices and price
volatility is explored for a fixed number of delivery products. However, the
number of delivery products, capacity constraints on production or storage,
intertemporals and marginal production cost heterogeneity may also alter the
resource allocation across delivery products and thus the trading activity across
stages. The impact of these considerations is explained qualitatively below the
table.



Table E.2: 1st stage decisions for two producers with different homogeneous
marginal costs in a two-stage trading window with three delivery products.

DP1-DP2
-DP3

Max
price

2nd stage
price diff

Corre-
lation

MC-
V-low

MC-
Low

V-Low=
SELL?

Low=
SELL?

50-NA-NA 50 10 0 49.0 49.0 1 1
50-50-50 -:- 10 0 55.7 55.7 0 0
50-30-10 -:- 10 0 49.0 49.0 1 1
50-30-10 -:- 20 0 51.2 51.2 0 0
50-30-10 -:- 20 1 49.0 49.0 1 1

The key takeaways from the table are the following:

• NA is short for not applicable, and refers to DP2 and DP3 in row 1 when
only one DP exists. In this case, the trader sells in the first stage due to
the negative price drift.

• In row 2, when prices for several DPs are equal initially, several prices
may be the highest price in the second stage. Thus, the probability that
at least one of the 2nd stage prices beats the 1st stage price is higher, and
the marginal cost is higher.

• In row 3, when initial prices are sufficiently different, this effect disappears
and only the highest priced DP matters (note that row 2 is identical to
the W-sup scenario in table E.1.

• In row 4, when the price volatility (”2nd stage price diff”) is higher, this
may compensate for initial price differences. This effect is separate from
the one in section i); as marginal costs for the V-Low and Low producers
are identical, the 2-nd stage price must always be better than MPCs,
so the domain of the probability distribution is in the affine part of the
price-profit mapping.

• In row 5, when price processes are correlated, the benefit from several
delivery products falls. All else equal, a higher correlation means lower
potential for cross-DP arbitrage, until only one price process matters when
they are perfectly correlated.

• To summarize, the trading decisions are different for different assumptions
about the number of DPs, the initial price difference, the volatility of each
process and the correlation between the price processes.



Figure E.5: Price scenarios with low/high initial price differences and high/low
2nd stage variance.

Figure E.5 shows the price trajectories from row 2 and 3 in table E.2) respec-
tively. In the left half, prices start out at 50, and may take the values 59, 49 or
39 in the 2nd stage. In the right half, prices start out at 50, 30 and 10 (below
the chart) respectively, and may change with +9, -1 og -11 to the second stage.
As one can observe, low initial price difference creates many combinations of
scenarios for the three prices where the best 2nd stage price is higher than the
best 1st stage price, increasing the HOLD-value in the first stage. The max-
imum of several martingale processes is not in general a martingale - even if
the individual price processes have negative drift, the ”Best price”-process may
have positive drift.

If the number of delivery products (with approximately similar first stage prices)
is increased, the incentive to wait is increased, as it is more likely that at least
one price will spike. If storage capacity- or production capacity constraints are
tight, the ability to reallocate resources across delivery products is reduced,
reducing the ability to sell at will and therefore the incentive to wait for price
spikes. If there are non-negligible ramping constraints or ramping costs, changes
in production between consecutive delivery products become a relevant consid-
eration, and the trader will be incentivized to smooth production. Similarly, if
marginal production costs are heterogeneous and monotonously non-decreasing
as a function of production volume, stable production is incentivized because
production spikes become more costly.

To conclude, the introduction of multiple DPs increases alternative costs of fu-
ture trades and thus the HOLD value, until physical constraints become binding



or the trading prices of the delivery products or the marginal production costs
diverge sufficiently. Thus, not only the allocation of resources between delivery
products, but also the optimal trading strategy for each delivery product, is
changed when multiple delivery products are taken into account. The number
of DPs, initial price differences, volatility per price process and correlations be-
tween processes determine how much the HOLD value increases, and the ability
to arbitrage between DPs. This has different implications for different types of
traders:

• The introduction of multiple delivery products therefore changes the strat-
egy of traders with non-zero but finite storage capacity, heterogeneous
marginal production costs or intertemporals (including hydropower pro-
ducers, intermittent producers with co-located storage and most thermal
producers as well as responsive demand aggregators) in non-trivial ways;
both towards DPs with higher prices, and towards other trading stages
than before. Thus, these types of traders are likely better off with a model
that optimizes for several delivery products than a model that focuses on
one delivery product only.

• For traders with zero storage capacity, homogeneous marginal production
costs and zero intertemporals (including flow-of-the-river hydropower, in-
termittent producers without co-located storage, purely financial traders,
power retailers and other non-responsive demand aggregators) there is no
reason to consider several delivery products at once (as long as the market
is perfectly liquid), as the optimal strategy can be found by optimizing for
each delivery product separately.

• Finally, a theoretical trader with infinite storage capacity, homogeneous
production cost and no intertemporals need only consider the delivery
product with the best price at any time, and can therefore behave as if
there is only one delivery product with prices equal to that of the ”Max
price” column. How to set a proper Value of Storage for such a producer
is a separate question however, as the relevant decision horizon would be
very large for an unconstrained reservoir.

iii) Assumption 3: One- or two-sided trading?

Gatheral et al. (2012) find that ”optimal strategies always exist and are non-
alternating between buy and sell trades when price impact decays as a convex
function of time” - so one may question why Garnier and Madlener (2015), Aı̈d



et al. (2015), Tan and Tankov (2016) and Edoli et al. (2016) propose models
that allow both selling and buying. Would it not be better to have a buy-only
and a sell-only model, and then add their decisions together? As Gatheral et al.
(2012) state, ”A general trading strategy in which buy and sell trades can alter-
nate should thus be described by adding a nonincreasing strategy and a nonde-
creasing [one]” (though both models are only needed if the initial open positions
for different delivery products are in different directions, otherwise a sell-only
or a buy-only model is sufficient for one-sided trading). After all, there is a risk
that two-sided trading models discover arbitrage opportunities that arise from
the modeling choices, and that don’t exist in the real world. The trading behav-
ior of such models will be dominated by the apparent arbitrage opportunities,
and hardly provide useful information about optimal trading strategies in reality.

However, Gatheral et al. (2012) assumes that the target inventory is known,
and that the trader places only market orders. The first assumption is not true
for a flexible producer in the Intraday market - if prices fall, one may wish to
reduce production, and if prices spike, one may wish to increase it, so if prices
are stochastic, the target inventory is stochastic too (the observant reader will
recall that unlike the hydropower producer in this thesis, Garnier and Madlener
(2015) and Tan and Tankov (2016) model inflexible intermittent producers.
However, the production capacity of the intermittent producer is stochastic, so
the argument still applies). The option to adjust production - and by extension,
the market commitment - in either direction, thus holds value even if the model
finds no arbitrage opportunities. For this reason, the optimal strategy of a two-
sided trading model will not necessarily equal the superposition of the optimal
strategies of a buy-only and a sell-only model, even absent round-trips that are
profitable-on-expectation ex-ante. This effect is illustrated with an example in
this section.

For simplicity, only one delivery product is explored, though the arguments can
be extended to several delivery products. Recall the W-sup case with the weak
negative drift from section i). Despite the expected loss from the negative price
drift, the high-cost producer chose the ”HOLD”-strategy, because the option
value was larger than the loss from the drift. For a two-sided trading model,
the option value would be of no concern, since it would be able to exit the pro-
duction commitment in the second stage if prices fall below marginal production
costs - as long as the market is liquid, the set of feasible final market commit-
ments cannot be restricted by any first-stage decision, as the exact reverse trade
in the second stage will cancel any commitment from the first stage. The option



value of buying and selling cancel each other out perfectly, and the two-sided
algorithm will attempt to exploit the price drift and arbitrage the market.

If transaction costs are imposed, and they are large enough to make round-trips
unprofitable (even with some price drift), the two-sided trading model will no
longer arbitrage the market. Moreover, the transaction cost will create an aver-
sion against early trading - similarly to how the option value delays trading for
a one-sided trader - to avoid the risk of double transaction costs from potential
round trips. In particular, a first stage sell order x will only be placed if:

2 ⋅Cc ⋅ pRT (x) ⩽ E(Drift) (E.1)

, where CC is the transaction cost and pRT (x) is the probability that the opti-
mal production level in stage two is lower than the market commitment x from
stage 1 (because stage 2 prices are below marginal production costs), so that a
buy order is placed in the 2nd stage an a round trip has occurred. Thus, the
left hand side of equation E.1 is the expected unit cost of a (possible) round
trip, given a sell order volume x in the first stage. On the right hand side
the expected price drift E(Drift) is equal to the expected unit profit from the
early trade relative to a later trade. The equation therefore states that during
a round trip, you pay the transaction cost twice, but earn the drift once - and
when there is no round trip, you only earn the drift by timing the market cor-
rectly. To prevent arbitrage, the inequality should never be true for pRT (x) = 1,
a certain round-trip.

Now, assume a modification of the W-sup case where all prices are 1 e/MWh
higher in all stages and scenarios, but the trader had to pay a transaction cost
of 1 e/MWh (which is far higher than the actual transaction cost, but it is set
for illustrative purposes only). The first stage price is thus 51 e/MWh, and the
2nd stage prices are 60, 50 and 40 e/MWh. For the sell-only model, the payoffs
are identical to before, so it still chooses a ”HOLD” strategy in the first stage.
Assume that the initial market commitment already is at the minimum produc-
tion level, so no purchases are feasible. The buy-only model will thus propose
to ”HOLD”, and the superposition of the sell-only and buy-only algorithm is to
”HOLD”.

For the two-sided trading model, the unit transaction costs of a round trip are 2
e/MWh and the price drift is 1 e/MWh. According to equation E.1, the model
will sell in the first stage until the probability that the 2nd stage price is lower



than the MPCs is 1/2. As MPCs are homogeneous until the production con-
straint and the 2nd stage price is lower than the MPCs in only 1/3 scenarios, the
two-sided trading model will sell the entire production capacity in the first stage.

The second assumption in Gatheral et al. (2012), that only market orders are
placed, don’t have to be true either. If a model allows for limit orders, the trader
may choose to provide liquidity to the market using strategies such as ”making
the spread” (Cont et al., 2010), which are profitable on expectation but involve
risk.
The optimal strategy for the two-sided trading model is thus not in general equal
to the superposition of a sell-only and a buy-only model, even absent arbitrage
opportunities. One reason for the difference is that the two different factors
that create wait-and-see incentives for the two- and one-sided trading mod-
els (transaction costs and option value, respectively) aren’t necessarily equally
strong. Because the final target inventory is unknown, it may be necessary to
model the trading in the Intraday market with a model that is able to adjust
the market commitment in either direction. Another reason for the difference
is that two sided trading allows for new types of strategies such as ”making the
spread”. The rationale for including both buy and sell orders in the same model
is thus that it allows the model to better assess the true option value of delaying
a trade, and that it expands the space of possible trading strategies.

iv) Assumption 4: Limited order depth

The W-sup price assumption from section i) is once again chosen because the
traders have a preference for trading in one stage over the other, but this pref-
erence is weak enough to be counteracted by other effects. Recall that the low
cost trader had a preference for a ”SELL” strategy in the first case, due to
the expected negative price drift. Assume that the initial open position was 30
MWh, and that the order depths available at the best quotes in each stage is
limited to 20 MWh. More volumes are available, but the volume penalty is at
2 e/MWh. Thus, the first stage price is 50 e/MWh for the first 20 MWh, and
then 48 e/MWh after that. The marginal cost in the first stage is equal to the
expected price in the second stage, which is 49, so the optimal strategy is to sell
20 MWh in the first stage and 10 MWh in the 2nd stage, with a 10 e higher
objective value.

In conclusion, the optimal order placement depends on both the expected drift,



order depth, volume penalty and size of the open position. The rationale for
modeling the instantaneous price impact is that the trader is better able to
assess the true impact of an order clearing on the objective function. While
there may exist heuristics that approximate the instantaneous price impact -
for instance, one may artificially cap the placed order volume in a given stage
- this is one of the less complicating factors among the proposed assumptions,
so the gain in terms of model tractability from implementing such a heuristic
would be small.

v) Assumption 5: Limit order premium

In this section, two different cases are presented to demonstrate two different
aspects related to limit order premiums. At first, assume that the high-cost
sell-only producer from section i) is in the final stage of the trading window,
and that limit orders now can clear in the last stage. Recall that the marginal
production costs are equal to 45 e/MWh, and assume that the best quoted
price is 47, and that the volume of the best quoted order is larger than the open
position. Also recall that with the assumptions in section i), the trader would
have placed a market order to match the best quote.

However, there is now a non-zero probability that limit orders with prices above
the best quote will clear, if they are matched during this stage. In particular,
there is a 50% probability that a limit order with a low premium relative to the
best quote of 2.5 e/MWh will clear, and a 20% probability that a limit order
with a high premium of 6.0 e/MWh will clear. The limit orders either clear
completely, or not at all.

The unit profit from the market order is 47−45 = 2 e/MWh for the high-cost pro-
ducer. The expected unit profit from the low limit order is (2.5+ 2) ⋅ 0.50 = 2.25
e/MWh, and the expected unit profit from the high limit order is (6+2) ⋅0.20 =
1.6 e/MWh. The high-cost producer will therefore opt for the low limit order in
this case. Alternatively, if the price had been 40 e/MWh, it is trivial to observe
that the high limit order is the only one with the possibility of contributing
positively to the profits of the high-cost producer.

The low-cost producer with MPCs of 25 e/MWh would however opt for the
market order in both of these cases, as the unit profits of the market order are
22 and 15 e/MWh when the price is 47 and 40, respectively. The potential for



additional 2.5-6 e/MWh unit profits therefore can’t compensate for the risk of
no profit at all. Once again, traders with marginal costs closer to the market
price are more risk seeking than traders with MPCs far away from the market
price (see figure E.6). Correspondingly, for a given producer with homogenous
MPCs, the incentive to place limit orders is higher when prices are lower.

Figure E.6: Costly supply and cost-sensitive demand is the most prone to use
limit orders.

So far, the focus has been on one- or two-stage trading windows. Does the
trading behavior change notably during the trading window if it is extended to
more stages? A three-stage trading window with a weak negative price drift is
assumed (see figure E.7), in order to explore this question. All price scenarios
are still equally likely. Order depths are still assumed to be larger than the open
position, and the trader may place either a market order, low limit order or high
limit order (with the same premiums and clearance probabilities as before). As
the trader is focused on selling and there may be a spread between the best
quoted ask and bid orders, the ”price” should now be interpreted as the best
quoted bid price rather than the mid-price.



Figure E.7: Price scenarios in a three-stage trading window.

As the incentive to place limit orders is higher when prices are lower, one should
expect that the preference for limit orders is stronger in the middle node in the
third stage, than in the first stage. However, this turns out to not be the case,
as shown in figure E.8.

Figure E.8: Optimal order placement in a three-stage trading window.

In figure E.8, M symbolizes a market order, LL symbolizes a limit order with a
low premium, and LH symbolizes a limit order with a high premium. From the
figure, one can clearly see that within the same stage the incentive to demand a



high premium relative to the best quoted price increases as the best quoted price
decreases - particularly in stage 3, where there are a range of possible prices.
It is also clear that the preference for high premiums is higher earlier in the
trading window. The reason is that the alternative cost of future trades drives
up the marginal costs. By computing the expected value of the best option in
the last stage, one may find the marginal cost in each node by backwards induc-
tion (see the attached file LimitVSMarketOrders.xlsx for detailed calculations).
The marginal costs can be seen on the left side of figure E.9, while the differ-
ence between prices and marginal costs can be seen on the right side of the figure.

Figure E.9: Marginal costs, and the difference between prices and marginal
costs, in a three-stage trading window.

As one can observe from figure E.9, the marginal costs and prices are very sim-
ilar in all but the last stage. Unless one expects a steep negative price drift,
prices can only be slightly above marginal costs that include the alternative cost
of future trades. As limit orders are preferred to market orders when prices are
close to marginal costs, the trader will prefer limit orders early in the trading
window. This is in line with the findings of Guo et al. (2017) in conventional
LOBs, who state that ”as time goes by, the optimal strategy shifts from the more
aggressive types to the more conservative ones”.

Note that the analysis above assumes that the open position is small relative to
the liquidity in the market. If this is not the case, and the instantaneous price
impact is significant, it may be necessary to close more of the open position
early in the trading window, making the trader more conservative in the first
stages too. For instance, Kumaresan and Krejić (2015) state that ”Non-trivial



order sizes cannot be executed as a single market order”. Also, the findings only
consider a fixed clearance probability for two possible limit order premiums. In
reality, the premium may take any value between the best quote and the max-
imum price in the market, and the clearance probability for a given premium
may fluctuate throughout the trading window. Horst and Naujokat (2014) find
that the trader should only place market orders when the spread is low enough
(assuming that the spread is a good measure of the highest limit order premium
with a high clearance probability).

The rationale for the assumption is that it expands the decision space to include
orders with better unit profits when they clear, which in some situations have a
higher expected value than the market orders. The optimal premium in a given
stage depends on the spread, the marginal production costs of the individual
producer, the size of the open position, the number of stages left, the assump-
tions made about the price dynamics for the rest of the trading window and the
assumptions about the liquidity in the market, and it is therefore far from trivial
to approximate the preferences for order premiums through the use of heuristics.
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