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Problem Description
The objective of this thesis is to apply dynamic factor modelling to the study of
two commodities highly material to the Norwegian economy. We contribute to the
literature in the following ways:

Co-movement and composition analysis - Considering a large data set
of globally traded commodities, we apply a dynamic factor model (DFM)
approach in order to estimate the level of co-movement in global commod-
ity markets, and decompose individual commodity price returns into global,
sectoral, and commodity-specific components. Specifically, we estimate the
share of individual commodities’ price movements attributable to each of the
following sources: 1) broader, common trends in global commodity markets
and the global business cycle, 2) common trends within sub-groups of related
commodities, and 3) shocks unique and isolated to the individual commodity
markets. We focus our analysis on two major Norwegian export commodities,
Atlantic salmon and Brent Crude oil.

Spot price forecasting - We assess the DFM framework’s applicability to
the task of forecasting monthly spot prices for Atlantic salmon and Brent
Crude oil. There exists no previous studies dedicated to forecasting these
commodities using a DFM approach, so with our study, new ground is broken.
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Abstract
This thesis studies the price movements of two major Norwegian export commodi-
ties, Atlantic salmon and Brent Crude oil, using a dynamic factor modelling ap-
proach. We pursue two different avenues of research, namely co-movement and

composition analysis of commodity price returns and forecasting of future spot
prices.

In the first study, we investigate dynamic co-movement in global commodity
markets via a restricted dynamic factor model (DFM) and decompose commodity
returns into global, sectoral, and idiosyncratic components. This decomposition
allows us to estimate the degree to which global, sectoral and commodity-specific
factors explain the fluctuations in individual commodity prices. We find that our
DFM constitutes a crude, but effective, tool for analyzing commodity price move-
ments. Studying Atlantic salmon and Brent Crude, we find that a moderate, but
significant, fraction of their price movements over the sample period (1980-2018)
can be attributed to shocks to a global factor representing common, demand-driven
trends in global commodity markets. Notably, a sub-sample analysis reveals that
since 2000, the global factor’s importance has increased significantly for both com-
modities, indicating an increased level of integration with global commodity mar-
kets.

In the second study, we use the DFM framework to forecast the prices of At-
lantic salmon and Brent Crude oil. Specifically, the monthly spot price is predicted
1-3 months ahead using data from 2006 to 2018. We assemble a comprehensive
set of predictors for each commodity, and carry out model selection by employing a
genetic algorithm. The resulting models’ out-of-sample performances are assessed
and compared against more commonly used forecasting models and results from
the literature. We find that our forecasts improve upon all benchmarks across all
horizons for both commodities. Our results indicate that there is value to be gained
from forecasting based on latent, estimated factors representing co-variation within

a set of recognized predictor variables, rather than based on the predictor variables
directly.
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Sammendrag
Formålet med denne oppgaven er å studere prisbevegelsene til to viktige norske
eksportvarer, atlantisk laks og Brent råolje, gjennom en tilærming basert på dy-
namisk faktormodellering (DFM). Vi utfører to ulike analyser, en sambevegelse-
og komposisjonsanalyse av prisendringer i råvarer, samt predikering av månedlige
spotpriser.

I den første analysen utforsker vi sambevegelser i globale råvaremarkeder gjen-
nom å anvende en dynamisk faktormodell til å dekomponere avkastningen på rå-
varepriser inn i globale, sektor-spesifikke og idiosynkratiske komponenter. Denne
dekomponeringen tillater oss å estimere til hvilken grad globale, sektor-spesifikke og
råvare-spesifikke faktorer og hendelser forklarer hver enkelt råvares prissvingninger.

I den andre analysen bruker vi DFM-rammeverket til å predikere prisene
på atlantisk laks og Brent råolje, nærmere bestemt den månedlige spotprisen 1-
3 måneder frem, ved å bruke data som spenner fra 2006 til 2018. Vi konstruerer
et omfattende sett med prediktorer for hver råvare, og utfører modellseleksjon ved
å benytte en genetisk algoritme. De resulterende modellenes prediksjonsevne blir
vurdert og sammenlignet med ofte anvendte predikeringsmodeller, samt resultater
fra litteraturen. Vi finner at våre resultater slår alle benchmarks over alle tidsho-
risonter for både atlantisk laks og Brent råolje. Disse resultatene indikerer at det
ligger verdi i predikering basert på latente, estimerte faktorer som representerer
samvariasjon innad i et sett med anerkjente prediktorvariabler, i stedet for basert
på prediktorvariablene direkte.
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1 Introduction
Insights into the sources/drivers, co-movement and future paths of commodity
prices are valuable to a wide range of stakeholders. Among these are a nation’s eco-
nomic institutions, due to movements in commodity prices feeding through to real
economic activity and thus influencing fiscal and monetary policy considerations.
It is of particular importance for a small, open, commodity-dependent economy like
that of Norway to understand the price dynamics of its major commodities. Fur-
ther, insights into the future price trajectory of a commodity is of obvious interest
to industry participants along all parts of the value chain. Commodity producers
make their production or extraction decisions on the basis of what they believe the
future price path will be. Similarly, value-added providers continuously plan and
adjust their operations according to the expected costs of their main input factors,
i.e. the prices of commodities. Financially, an understanding of price behaviour
and access to accurate price predictions are essential to risk management, stock
and bond valuations, as well as a multitude of investment decisions.

However, gaining genuine insights into the dynamics of commodity prices is a
complex task. Prices are affected by a wide variety of factors, ranging from environ-
mental and biological factors, to more fundamental economic factors. Furthermore,
over the last decades, commodity markets have become subject to increased finan-
cialization - leading to further increased complexity of price dynamics (Cheng and
Xiong, 2014). The complexity of commodity markets is illustrated in the World
Bank’s note on the food price surge from 2006 to 2008, concluding that drivers
of price change included factors such as long-term demand and supply, higher en-
ergy prices, increased bio-fuel production, depreciation of the U.S. dollar, adverse
weather conditions and monetary policy responses (Mitchell, 2008). Another ex-
ample can be found with the price of oil. According to Hamilton (2008), the oil
price’s statistical properties largely resemble that of a random walk and is there-
fore an economic variable that should be close to impossible to predict. In short,
valuable insights into the movements of commodity prices are inherently difficult
to obtain.

This fact notwithstanding, the aim of our thesis is to investigate the price
movements of two commodities highly material to the Norwegian economy: At-
lantic salmon and Brent Crude oil. With this selection, we examine one commodity
from each of what are arguably the two most interesting sectors in a Norwegian
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context, namely the offshore and seafood sectors. The offshore sector is the coun-
try’s largest export sector by far, responsible for about 50% of Norwegian export
value (SSB, 2018). Seafood is the largest product category in the country’s second
most important export sector (main land), and considering the aquaculture indus-
try’s growth ambitions along with the expected future decline in petroleum-related
revenue, its importance seems destined only to increase.

In order to best analyze and model our selected commodities and capture
their complex time series dynamics, we have chosen a dynamic factor modelling
approach. Dynamic factor models (DFMs) efficiently summarize the information
contained in large data sets by extracting a small number of latent factors repre-
senting the co-variation within the set. Common to factor models in general is the
idea that the observed variables can be modelled as a linear combination of fac-
tors. What separates DFMs from other factor models is the fact that their factors
are unobservable - they are extracted from the given data and capture underlying
trends. Further, time dynamics are incorporated, which allows for both lagged
and contemporaneous relationships. These features enable modelling of complex
relationships among large sets of variables. In any case, the main advantage of a
DFM approach is enhanced information utilization and dynamic modelling abilities
relative to standard time-series analysis1, without the loss of parsimony.

DFMs are increasingly used in data rich environments. The general model
framework originates from Sargent and Sims (1977) and Geweke (1977). Their
motivation was based on the notion that if a variable is affected by a large number
of different factors, then all these factors contain useful information and should
be included in the analysis and modelling of this variable. The model frame-
work combines cross-sectional and standard time-series analysis, which has made
it compelling to the fields of economics and finance where common shocks can drive
co-movement of a large number of interrelated variables. As a result, economists
are increasingly looking to these models for policy analysis (Forni et al., 2005).
Recent applications of the framework includes investigating the world’s risky asset
markets, factor analysis and now-casting of gross domestic products (GDP), and
forecasting of housing prices, to mention a few (e.g., see Miranda-Agrippino and
Rey, 2015; Giannone et al., 2008; Emiris, 2016).

1Such as linear regression and vector autoregressive (VAR) models.
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As can be seen, representing economic variables through a dynamic factor
model set-up opens many interesting avenues of research. In this study we focus
on two specific commodity-related applications, namely co-movement and compo-

sition analysis of commodity returns and forecasting of commodity spot prices.
Henceforth, we refer to these two studies as Application A and Application B, re-
spectively.

In Application A we investigate dynamic co-movement in global commodity
markets via a DFM applied to a large data set of globally traded commodities. This
approach enables us to decompose commodity price returns into global, sectoral,
and commodity-specific components. Specifically, we estimate the share of individ-
ual commodities’ price movements attributable to each of the following sources: 1)
broader, common trends in global commodity markets, 2) common trends within
sub-groups of related commodities, and 3) shocks unique and isolated to the in-
dividual commodity markets. In our analyses, an emphasis is put on the price
movements of Atlantic salmon and Brent Crude oil. The insights obtainable from
this application of the DFM should be of interest to actors ranging from salmon
farmers to the Norwegian Central Bank.

In Application B, we generate 1-3 month-ahead forecasts for Atlantic salmon
and Brent Crude oil spot prices by combining the use of DFMs with a comprehen-
sive set of predictors. We specify the DFMs optimally by using a genetic algorithm
for model selection. In the last decades, dynamic factor modelling has become a
popular tool for forecasting macroeconomic variables, for which it produces solid
results (e.g., see Bańbura and Modugno, 2014; Emiris, 2016; Jansen et al., 2016).
With Application B, we break new ground by testing whether the approach can
be successfully applied to forecasting commodity prices as well, and thus provide
potentially significant economic value to a wide range of stakeholders.

Each of the applications described require their own unique adaptation and
implementation of the general DFM framework. The two applications also provide
distinctly different insights. So why include two such different applications in
the same study? Because together they constitute both a comprehensive analysis
of the commodity markets we seek to investigate, as well as a solid testament
to the general DFM framework’s usefulness and applicability to the modelling of
commodity prices.

3



Our thesis is structured in the following manner. In Section 2, we discuss some
characteristics of the markets/industries for both Atlantic salmon and Brent Crude
oil. Insights from this section will inform the analyses performed in the subsequent
sections. For readers somewhat unfamiliar with these commodity markets, the
section should provide them with the necessary fundamentals.

In Section 3, we present the general econometric model framework, and
show how a dynamic factor model cast in state-space form constitutes the ba-
sis for the work in both Application A and Application B. In this section we
also explain how we solve the complex task of estimating the dynamic factor
models through maximum likelihood estimation, which we implement using an
Expectation-Maximization (EM) algorithm combined with a Kalman smoother,
and how the employment of such algorithms offer several benefits in empirical
modelling.

Section 4 is dedicated to Application A. First, we provide motivation for, and
discuss literature relevant to, this specific application. Our data set of globally
traded commodities retrieved from the World Bank is subsequently presented, be-
fore our specific methodology is laid out. We explain how we through constructing
and estimating a restricted dynamic factor model are able to obtain a three-level
factor representation of our commodity time series, and assign economic interpreta-
tions to each of these factors. Finally, we present and discuss our empirical results.
We succeed in providing novel insights into the extent to which global, sectoral, and
commodity-specific shocks contribute to the price movements of Atlantic salmon
and Brent Crude oil.

Section 5 is dedicated to Application B. First, we provide motivation for this
application of the DFM framework and review relevant literature. Second, we
introduce our modelling approach; we present the set of predictor variables, the
benchmark models, and explain how we perform model selection using a genetic
algorithm. Finally, we assess our forecasts and compare their performance against
benchmark models and results found in comparable studies. Our DFM approach
produces promising results, as we outperform the benchmark models across all
horizons for both commodities.

Section 6 wraps up our thesis. Here we summarize the findings from Appli-
cation A and Application B, provide concluding remarks, as well as suggestions to
further research and how our work can be improved and extended upon.
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2 Industry and Market Characteristics

Brief introductions to the markets and industries of what are arguable two of the
most interesting commodities in a Norwegian context, Atlantic salmon and Brent
Crude oil, are provided below.

2.1 Atlantic Salmon
World population is expected to exceed nine billion in 2050, putting enormous
pressure on our ability to produce sufficient amounts of food. Resources for in-
creased land based protein production is likely to be scarce, and significant growth
in capture fisheries on already over-exploited wild fish stocks seems unlikely. Many
therefore look to the aquaculture industry to fill the coming supply-demand gap
(Marine Harvest, 2017). And today, aquaculture is in fact the fastest growing food
production system in the world, and as of 2014 aquaculture production constitutes
more than half of all fish consumed by humans (FAO, 2016). Simply put, farmed
fish is a commodity for the future.

Atlantic salmon is a leading species within today’s modern aquaculture indus-
try.2 The most significant producer countries of this species are Norway, Chile,
Canada, Great Britain and Faroe Islands (Solibakke, 2012). Out of these, Norway
and Chile are the most important producers, with respectively 54 and 23 percent
of the market share in terms of volume. Total production in 2016 was around 2
million tonnes gutted weight equivalents (GWE) (Marine Harvest, 2017).

In the past, the aquaculture industry was characterized by many small busi-
nesses, but has gradually consolidated through mergers and acquisitions. Vertical
integration has also been increasing in the industry, with large companies now
holding ownership in the entire value chain, from smolt production to processing
plants. The largest Norwegian salmon aquaculture companies today are Marine
Harvest, Salmar and Leroy Seafood (Marine Harvest, 2017).

2Atlantic salmon’s leading position is due to decades of industrialization and increasing pro-
ductivity, where technological development and productivity growth has gradually lead to lower
production costs, increased competitiveness, and lower prices for consumers (Asche et al., 2013).
Though considered a leading species, Atlantic salmon production still constitutes only a small
share of global aquaculture in terms of volume produced, and there exists a huge potential for
industrialization in the rest of the aquaculture sector.
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Supply and Demand Characteristics
The Atlantic salmon industry is characterized by tight supply-demand conditions,
and shifts in both factors display strong explanatory power with regards to Atlantic
salmon price dynamics (Oglend, 2013). It is also characterized by a long produc-
tion cycle and strong seasonality effects. Due to limited opportunity to adjust
production volumes in the short-to-medium term given the long production cycle,
positive (negative) demand effects are to a large extent adjusted by positive (neg-
ative) price movements rather than increased (decreased) supply. This indicates
a potential for strong demand-side effects on price movements from consumption
markets. Brækkan and Thyholdt (2014) measured demand shifts3 in all salmon-
importing regions of the world using an index approach for the 2002-2011 period.
They found that demand growth for salmon is highly unstable and characterized
by large variations between regions and over time within regions.4 It is indicated
that these variations partly explain the high volatility of salmon prices over the
last decade.

At the same time, a range of studies have found tight correlations between
shifts in supply-side factors, such as costs, and salmon price movements (e.g., see
Oglend, 2013; Asche and Bjorndal, 2011). As the industry has matured, costs have
shifted from being productivity driven, to becoming more affected by input-factor
prices (Asche and Oglend, 2016). Prices tend to be higher when costs increase,
indicating the presence of pass-through effects.

In the last decade, the industry has seen stagnation in productivity and in-
creased costs due to higher feed prices, as well as biological issues such as parasites
and disease (Marine Harvest, 2017). The recent surge in salmon prices we see in Fig-
ure (1) is considered to be a product of strong demand growth, supply-limitations
due to disease problems and stringent regulations, as well as upwards-trending pro-
duction costs. The weighting and relative importance of these factors however, is
not entirely clear.

3Shifts in quantity demanded for a given price.
4We note that total global demand growth for salmon in this period was about 94 percent.
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Figure 1: The historical development of the price of Atlantic salmon. The price

of farmed Atlantic salmon has increased substantially in recent years. This new

trend follows a long period of consistently falling prices. At the same time, price

volatility has increased.

2.2 Crude Oil
Oil is a global commodity that is sold and delivered to most corners of the world.
After crude oil is extracted from a field, it is sent to a refinery where the various
hydrocarbons are separated, transformed and processed in order to make oil prod-
ucts. Oil products are used mainly as fuel, with the transport sector being the
largest consumer. Covering about 32 percent of the world’s total energy demand,
it is the world’s largest source of energy, followed by coal and gas (International
Energy Agency, 2017). However, an increasing proportion is now used outside the
energy sector, with the petrochemical industry being the second largest consumer
of oil (International Energy Agency, 2017).

Saudi Arabia was the world’s largest producer of crude oil in 2016, followed
by Russia and the United States (International Energy Agency, 2017). Norway
is a relatively small player in the global oil market, with its production covering
about two percent of the world’s global demand for crude oil. However, almost all
oil produced on the Norwegian shelf is exported, and accounts for about 25% of
total Norwegian export value (SSB, 2018).

The international oil industry consists of a multitude of different players in-
volved in various stages of the value chain, including exploration & production
(E&P), transport, processing and marketing. The major E&P companies can be
divided into the following two groups: State-owned companies and international oil
companies. State-owned companies in the producer country often play a significant
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financial and administrative role, and many are also technically and operationally
active. Examples of state-owned companies are Equinor, Saudi Aramco, National
Iranian Oil Co., and Pemex. Among the international oil companies, the most im-
portant actors are considered to be Shell, Exxon-Mobil, BP and Chevron (including
Texaco).5

Although largely treated as a singular commodity in this section, it is impor-
tant to note that there exists a multitude of types. The crude oil types differ in
desirability, determined by characteristics such as density, sulphur level, and ex-
traction location. Buyers of crude oil need an easy way to value the commodity
based on its quality and location. Benchmark oils such as Brent, Western Texas
Intermediate (WTI) and Dubai/Oman serve this purpose. The Brent benchmark
is the most widely used marker, referenced in about 2/3 of crude contracts (Wall
Street Journal, 2018). It refers to oil from four different fields in the North Sea.
Crude from this region is light and sweet, and thus ideal for the refining of diesel,
petrol and other strongly demanded products. Being extracted offshore, it is also
easy to transport to distant locations. The historical price series of Brent is de-
picted in Figure (2).
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Figure 2: Historical development for the spot price of Brent Crude oil.

Supply and Demand Characteristics
Crude oil is traded on a global scale among many different actors: oil producing
countries, oil importing countries, oil companies, refineries, and speculators. In
the long run, oil is considered a fairly elastic commodity, where movements on the
supply and demand, or production and consumption, sides are well reflected in the
price (Hagen, 1994; Stevens, 1995).

5These are generally integrated companies, i.e. involved in all stages of the value chain.
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Oil consumption is naturally linked to global macroeconomic aggregates such
as real GDP growth and Industrial Production. Demand for oil, both consumer
market and industrial, tends to increase (decrease) along with increasing (declining)
economic growth rates. Unexpected changes in oil consumption driven by the global
business cycle has been shown to yield high explanatory power for various price
shocks, such as the 2003-2008 surge (Kilian, 2009).

On the supply side, a known characteristic of the oil industry is that market
control has traditionally been concentrated on a few actors. Initially, it was pri-
marily the major international oil companies that had dominant influence through
cartels and cooperation agreements. These companies still have a very strong posi-
tion, but over the years, national governments have gained a stronger control over
production through their national companies. This change has been of great signif-
icance, with oil prices to a larger extent being affected by political considerations.
The Organization of the Petroleum Exporting Countries (OPEC), operating as a
cartel with the largest production capacity, has served a decisive role in the price
formation of crude oil since the 1960s (Fattouh, 2007).6 However, recent devel-
opments, such as the US shale oil revolution and reduced OPEC spare capacity,
have contributed to limiting the organization’s control on global production levels,
abating their function as the major buffer on the supply side. OPEC’s diminishing
ability to operate as swing producer has been identified as an important factor for
the price fluctuations observed in recent years (Olimb and Odegaard, 2010).

Finally, non-fundamental factors such as speculative demand and develop-
ments in the futures markets, have also been shown to significantly impact oil
price determination (e.g., see Kilian and Murphy, 2014; Olimb and Odegaard,
2010; Westgaard et al., 2017).

The interplay of the factors discussed, along with others left unnoted in this
brief review, have lead to a strongly fluctuating crude oil market, providing it
with characteristics such as complex non-linearity, dynamic variation and high
irregularity (Plourde and Watkins, 1994).

6Oil production from OPEC comprised about 40 percent of the world’s oil supply in 2016. In
addition, OPEC holds 3/4 of total reserves (International Energy Agency, 2017).
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3 Econometric Framework
The econometric framework used throughout this thesis is a dynamic factor model
estimated via the Expectation-Maximization (EM) algorithm. The adopted frame-
work is based on the comprehensive work of Doz et al. (2012) and Bańbura and
Modugno (2014). Next, we review the literature pertaining to this econometric
framework and state the rationale and motivation for using it. In Section 3.1 we
present the general dynamic factor model. In Section 3.2 we describe the estimation
procedure, more specifically the EM algorithm.

The steadily increasing volume of financial and economic data available has
spurred the need for methods that are able to efficiently exploit the information
obtainable from large data sets. Several methods have been proposed for em-
pirical modelling in such data-rich environments. One popular approach is the
general-to-specific approach, in which a general model that adequately fits the ev-
idence is simplified, e.g. through variable reduction (e.g., see Hoover and Perez,
1999; Krolzig and Hendry, 2001). This approach is limited by the fact that one
inevitably has to leave out potentially important variables. More conventional
models, such as regressions and vector autoregressive (VAR) models, suffer from
over-parameterization when the number of variables become large. To remedy this
problem, Bayesian estimation methods introduce the notion of informative pri-
ors which opens the possibility of imposing informed restrictions on these models,
hence reducing dimensionality. As a result, Bayesian VAR (BVAR) models have
become popular in forecasting (e.g., Karlsson, 2013; De Mol et al., 2008).

Dynamic factor modelling originated with the work of Sargent and Sims (1977)
and Geweke (1977), and has increasingly gained attention as a method for empirical
modelling in data-rich environments. Different from other large-scale models, the
DFMs represent a flexible framework that handles over-parameterization problems
by summarizing large-scale information into a small number of latent factors. More
specifically, each observed variable is modelled as a sum of factors, where each factor
represents underlying trends in the data. By doing so, noise is reduced and genuine
relationships are captured in a parsimonious manner. Such appealing properties
have made DFMs extensively used in econometric applications (e.g., see Forni et al.,
2000, 2005; Giannone et al., 2008; Bańbura et al., 2011; Miranda-Agrippino and
Rey, 2015). For a comprehensive literature study on dynamic factor models, we
refer to Barhoumi et al. (2013).
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There are several methods for estimating the latent factors in a DFM. For a
long time, principal components (PC) were used as factor estimates in lack of any
better estimators (Bai, 2003; Forni et al., 2009). Doz et al. (2011, 2012) have
later shown that maximum likelihood estimation (MLE) is suitable for DFMs, and
that it is robust to model misspecification.7 Maximum likelihood estimation can be
implemented using the Kalman filter/smoother and the Expectation-Maximization
algorithm. The EM algorithm was first proposed by Dempster et al. (1977) and
Shumway and Stoffer (1982) as an iterative algorithm to find maximum likelihood
estimates of parameters in statistical models where the model depends on unob-
served latent variables. The EM algorithm solves the problem related to situations
where optimization of the likelihood function is analytically intractable, as it is in
the case of DFMs, due to the latent variables and unknown model parameters that
must be estimated simultaneously. A large body of research has made use of the
fact that DFMs may be estimated through maximum likelihood estimation (e.g.,
see Delle Chiaie et al., 2017; Emiris, 2016; Miranda-Agrippino and Rey, 2015).

The rationale for using a state-space model (such as a DFM) over more conven-
tional methodologies such as ARIMA, VAR or other ad hoc/heuristic methods, is
manifold. Although the "ARIMA family" might be considered advantageous due to
being a universal estimator8 with ease of both implementation and estimation, state
space models allow for modelling of more complex processes of large dimensions.
In general, our model allows for; (i) dynamic model parameters that automatically
handle and adjust for structural breaks, shifts and time-varying dynamics; (ii) the
use of different time series simultaneously to estimate one underlying quantity9; (iii)
the construction of interpretable model structures embedded in economic theory;
(iv) modelling of underlying drivers as VAR processes, including lead/lag relations
into the model. These traits make the DFM ideally suited for our dual-purpose
thesis.

7More specifically, it is robust to cross-sectional and time series correlation of the idiosyncratic
components. The implications of this will be further discussed.

8The Wold decomposition theorem states that any co-variance stationary process can be de-
composed into two mutually uncorrelated component processes; (i) a linear combination of lags
of a white noise process and (ii) a process which future values can be predicted exactly by a
linear function of past observations. This property makes ARIMA models popular for forecasting
purposes (Brooks, 2014).

9By this we refer to different time window and time series character (units and properties).
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3.1 The Dynamic Factor Model

Let yt = [y1,t, y2,t, . . . , yn,t]′ be an n-dimensional vector of time series that all
satisfy the assumption of stationarity. We assume that yt admits the following
factor model representation:

yt = ΛFt + εt, (1)

where Ft = [f1,t, ..., fr,t]′ is an r × 1 vector of (latent) common factors. The
variables yt load on the factors through the factor loadings in Λ, which is an n× r
matrix. εt is a vector of idiosyncratic components which capture the remaining
variation not explained by the common factors. The common factors and the
idiosyncratic components are assumed to be zero-mean, stationary processes.

Further, the factors are modelled as a VAR process of order p:

Ft = A1Ft−1 + ...+ApFt−p + ut ut ∼ i.i.d N(0, Q) (2)

The autoregressive coefficients are collected in p matrices A1, . . . , Ap, each of
size r×r. In contrast to static factor models, dynamic factor models provide a rich
representation of the data and exploits potentially crucial information contained
in the lead and lag relationships between the factors (Forni et al., 2005). Taking
the factor dynamics explicitly into account is particularly important in forecasting
applications.

Finally, we assume that the idiosyncratic components follow AR(1) processes:

εt = ρεt−1 + et et ∼ i.i.d N(0, R) (3)

where ρ is a diagonal matrix of size n×n. The common factors and the idiosyncratic
components are assumed to be uncorrelated.

The DFM is said to be exact if the idiosyncratic components (εt) are both se-
rially and cross-sectionally uncorrelated. In an exact model, all the dynamic inter-
actions between the observable variables can be attributed to the r common factors
(Emiris, 2016). However, the assumptions of an exact DFM are often not satisfied
by the data. The common factors are often not able to capture all the co-variation
existing in large data sets if the variables are dissimilar in nature. Fortunately, Doz
et al. (2012) have shown that such approximate DFMs can be estimated by maxi-
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mum likelihood under the assumption of serially and cross-sectionally uncorrelated
idiosyncratic components even if this condition is not satisfied by the data.

Even though the model can be viably estimated when these assumptions are
mildly violated, we aim to further reduce the degree of misspecification. First, we
allow for several types of common factors. Global factors will represent underlying
trends common to all the variables - all variables will load on these factors. Block
factors will represent underlying trends common only to a subset of variables - only
the variables in a given subset will be able to load on the corresponding factor.
This decreases the likelihood of correlated idiosyncratic factors, as we can create
groups of variables likely to have co-varying relationships. In the most general form
of the model, the factor representation consists of any number of global factors
and any number of block factors. Further, as shown above, we choose to model
the idiosyncratic components (εt) as AR(1) processes. Modelling serial correlation
explicitly should leave the residuals et at most weakly correlated across variables.

Equations (4) and (5) make up the matrix representation of the dynamic factor
model setup just described.


y1,t

y2,t
...

yn,t

 =


λ1,1 λ1,2 · · · λ1,r

λ2,1 λ2,2
...

...
. . . λn−1,r

λn,1 · · · λn,r−1 λn,r




f1,t

f2,t
...

fr,t

+


ε1,t

ε2,t
...

εr,t

 (4)


f1,t

f2,t
...

fr,t

 =


a1

1,1 a1
1,2 · · · a1

1,r

a1
2,1 a1

2,2
...

...
. . . a1

r−1,r
a1
r,1 · · · a1

r,r−1 a1
r,r




f1,t−1

f2,t−1
...

fr,t−1

+ · · ·

+


ap1,1 ap1,2 · · · ap1,r

ap2,1 ap2,2
...

...
. . . apr−1,r

apr,1 · · · apr,r−1 apr,r




f1,t−p

f2,t−p
...

fr,t−p

+


u1,t

u2,t
...

ur,t



(5)
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In the upcoming empirical applications, we will be interested in restricting the
model parameters Λ and A1, . . . , Ap in order to tailor the DFM to the given appli-
cation. Through imposing restrictions, we are able to create model structures based
on economic theory, allowing us to interpret the model in a more structural sense.
However, imposing such restrictions comes at the cost of increased complexity in
the implementation of the estimation procedure.

In order to estimate the DFM, it must be cast in state space form. This requires
us to separate the different elements of the model, namely the various factors in
the model, collectively referred to as the state vector, and the model parameters.
For a general model with n variables represented by r factors following VAR(p)
processes, such as the model stated in Equations (1)-(3), the following state vector
xt and model parameters θ need to be estimated:

xt = (f1,t, . . . , fr,t, ε1,t, . . . , εn,t),

θ = (Λ,A1, . . . , Ap, Q, ρ1, . . . , ρn, R)
(6)

The actual state space representation is more of a technical matter, and we refer to
Appendix E for the full state space representation of the models used in Application

A and Application B.

3.2 Estimation
We choose to estimate the DFM by maximum likelihood estimation (MLE), which
we implement using an EM algorithm combined with a Kalman smoother. This is
a viable estimation method for DFMs, as shown by Doz et al. (2011, 2012). EM
algorithms extend maximum likelihood estimation to models with hidden states,
such as the DFMs’ latent factors. While the EM algorithm provides the framework
of the estimation procedure, the Kalman smoother is employed to actually produce
the latent factor estimates. It is an extension of the more well-known Kalman filter,
which is a widely applied concept in time series analysis and econometrics where it
is used to estimate unknown variables from observable, noisy time series. For the
interested reader, we have produced a full technical description of the estimation
procedure and its elements, which can be found in Appendix F.

Next, we introduce the main concepts behind the estimation procedure, as this
should give a sufficient understanding of how the DFMs are estimated throughout
this thesis. In short, the EM algorithm seeks to find the maximum likelihood
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estimates by iteratively improving the estimates of the state vector xt and model
parameters θ. This is done in two separate steps: the Expectation step and the
Maximization step. The key elements of the full EM algorithm are:

• Initialization. The algorithm is initiated by finding estimates of both the
state vector (xt) and model parameters (θ). The initial model parameters
are estimated by performing an Ordinary Least Square (OLS) regression on
the principal components of the observable variables, treating these as the
factors. The initial state vector is estimated via the Kalman filter/smoother,
taking the model parameter estimates as given.

After initialization, the algorithm iterates between the expectation step (E-step)
and the maximization step (M-step). We denote the current iteration by k.

• E-step. The Kalman filter/smoother is used to estimate the expected value
of the state vector, xt, given the current estimate of model parameters and
the observed data; that is, xkt = Eθk−1

[
xt|y1, . . . , yt

]
.

• M-step. The model parameters are estimated by finding the parameters that
maximize the log likelihood function, taking the state vector as given. That
is, θk = argmaxθ L

[
xkt , θ

]
, where L is the log likelihood function. Technically,

this is done by differentiating the log likelihood function, setting it equal to
0, and solving for the model parameters.

The E-step and M-step is repeated until a defined convergence criterion is met.
The convention is to compute the following convergence criterion after the M-step;

ck =
L
[
xk, θk

]
− L

[
xk−1, θk−1

]
1
2
(
L
[
xk, θk

]
+ L

[
xk−1, θk−1

]) , ck
?
< τ, (7)

where τ is the threshold that, when reached, terminates the estimation procedure.
We stop after iteration k if ck < τ .

In order to satisfy the model requirements of our studies, we need to make cer-
tain modifications to the general model framework presented by Doz et al. (2012).
First, we need to be able to model time series of varying lengths and incomplete
time series in general. Bańbura and Modugno (2014) show how the maximum
likelihood estimation of dynamic factor models can be done when dealing with
arbitrary patterns of missing data, and so we implement their proposed changes.
Second, we need to be able to impose restrictions on the model parameters. In
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both applications we restrict the loading matrix Λ, and in Application A we also
restrict the model parameters Q, and A1, . . . , Ap. We combine insights from Wu
et al. (1996), Bork (2009), and Bańbura and Modugno (2014) so that the EM al-
gorithm accommodates these restrictions. In technical terms, this is done through
placing linear restrictions of the form HΛ vec(Λ) = κΛ and GA vec(A) = δA, where
the matrices H and G are selection matrices that select the elements of Λ and A
that are to be restricted. The vectors κ and δ contain the constants of the linear
restrictions. The full estimation procedure, including the Kalman filter/smoother
and the final maximization equations of the model parameters, can be found in
Appendix F.

16



4 Application A: Co-Movement and Com-
position Analysis

Recall that in this application, we seek to investigate dynamic co-movement in
commodity markets via a dynamic factor model approach and decompose commod-
ity returns into global, sectoral, and idiosyncratic components. This decomposition
will allow us to estimate the degree to which global, sectoral and commodity-specific
factors contribute to the movements in individual commodity returns. Our main
subjects of analysis are Atlantic salmon and Brent Crude oil.

Increased understanding of co-movement between commodity markets, as well
as the sources of changes to individual commodity prices, is valuable to a wide
range of actors. For a nation’s economic institutions, knowing the extent to which
specific price movements in its imports and exports are driven by global, sector-
specific or commodity-specific shocks is highly valuable as this affects the impact
these movements may have on a country’s real economy. Illustrating this, Bjørn-
land and Thorsrud (2014) studied how changes in the oil price affect Norwegian
mainland GDP growth, depending on whether it is caused by global demand shocks
or by a shock in the global supply of oil. They found that an oil price decrease
caused by a global demand drop leads to a considerably greater decrease in domes-
tic GDP compared to a price decrease due to over-supply. Kilian (2009) reports
similar findings when studying the effect of oil price shocks on the US economy.
Other major benefits to understanding the composition of commodity price move-
ments, relate to macroeconomic concepts such as the Dutch disease10 and imported
inflation. For a deeper understanding of the usefulness of this form of insight, we
refer to the works of e.g. Bjørnland (1997), Bjørnland and Thorsrud (2016) and
Tang et al. (2014). For industry and financial players, insights into individual
commodities’ integration with global markets can inform e.g. risk management,
hedging strategies and investment decisions.

10The effects of higher prices of natural resources on an exporting country’s real exchange rate:
an appreciation likely leading to substantial reallocations of factors of production, and a decline
in exports of other goods. Price surges due to common trends in global commodity markets are
naturally less likely to contribute to this phenomena.
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Section 4 is organized in the following manner. First, we review literature
relevant to this application. Second, we introduce the information set of glob-
ally traded commodities utilized in our study, before we outline our methodology.
Lastly, we discuss our findings/empirical results.

4.1 Literature Review
Co-movement in commodity markets has been thoroughly studied over the years,
and we now highlight some of the work most relevant to our study. Cheng and
Xiong (2014) find that commodity price dynamics have substantially changed over
the past decade. They emphasize the following; First, even across sectors, commod-
ity prices have tended to move together as a class since the early 2000s; Second,
correlation between commodities and other asset classes is strictly positive, and
increasing, in the same period.11 Further, Kilian (2009) investigated the oil price
shock of 2003 to 2008, and found that the surge in the real price of oil was driven
by repeated positive demand for all industrial commodities. Juvenal and Petrella
(2015) find that co-movement among energy and non-energy commodity prices
increases due to global demand shocks. These authors point at the unexpected
high growth in emerging markets, mainly in China and other emerging economies
in Asia, as the main reason for these observations. Delle Chiaie et al. (2017) ar-
gue that global demand shocks from global economic activity are likely to affect
most commodities by shifting the demand curve in the same manner across mar-
kets. Large amounts of research have been devoted to investigating co-movement
in commodity markets. The consensus from the literature referred to above sug-
gests that the increasingly integrated markets of commodities respond similarly to
shocks related to economic activity. This insight is exploited in our application of
the DFM framework.

We are not the first to use a factor approach to seek insights into commodity
markets (e.g., see Alquist and Coibion, 2014; Byrne et al., 2013; Delle Chiaie et al.,
2017; West and Wong, 2014; Yin and Han, 2015). Common to all these studies is
the utilization of large data sets of traded commodities, for the purpose of exam-
ining co-movement and price drivers present in commodity markets. Alquist and
Coibion (2014) create a theoretical factor structure for commodity prices where
the common factor captures the combined contribution of all aggregate shocks

11Assets classes such as equity, exchange rates and US treasury bills. They state that high
correlation with equities may be a result of increased financialization of commodity markets.
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that affect global commodity markets. Using a Panel Analysis of Nonstationary
and Idiosyncratic Components (PANIC) approach, Byrne et al. (2013) document
a significant degree of co-movement between globally traded commodities. With
their factor model, West and Wong (2014) find that individual commodity prices
show a tendency to revert towards one common factor. The approaches perhaps
most similar to our own, are Delle Chiaie et al. (2017) and Yin and Han (2015),
who both use a three-level dynamic factor model to decompose commodity returns
into global, sectoral, and commodity-specific components. Interestingly, Delle Chi-
aie et al. (2017) indicate that the decomposition provided by their DFM can be
interpreted along a supply/demand dimension, where the global factor mainly cap-
tures global commodity demand, while the idiosyncratic factors mainly capture
industry-specific supply shocks.

This study in context of the existing literature
Our approach is inspired by the body of work discussed above. That being

said, the work we perform here is differentiated from the existing literature on fac-
tor modelling of commodities in several ways. First, most of these papers studied
commodity prices in levels instead of returns, focusing primarily on co-integration
relationships and long term trends. Along with Delle Chiaie et al. (2017) and Yin
and Han (2015), we focus on price movements in terms of monthly log returns. Of
the studies listed, these are also the only ones applying a dynamic factor approach.
From these two papers, we differ in other ways. First, we use a different, and more
updated, set of world commodity data, as well as the employment of a different
model structure. Second, where these works mainly focus on general findings re-
garding co-movement in global commodity markets, we narrow in on commodities
material to the Norwegian economy. Our study is the first to perform a detailed
analysis of Atlantic salmon and Brent Crude oil, and their co-movement with global
commodity markets, using a DFM approach.
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4.2 Data
To perform our analysis, we use a monthly data set of globally traded commodities
spanning the time period 1980-2018. The data set is retrieved from the World
Bank’s commodity database,12 which represents the diversity of the world’s major
commodity markets. As Atlantic salmon is not included in the World Bank’s set of
commodities, we retrieve its price series from Statistics Norway (SSB) and add it to
the data set. We note that the main subjects of our analysis, Atlantic salmon and
Brent Crude oil, are represented by the export price of Norwegian farmed Atlantic
salmon (PSALM, USD/kg) and the Europe Brent spot price (BCO, USD/barrel)
respectively.

Certain modifications to the data set is needed. We remove indices as to avoid
adding collinearity into the model by construction. For the same reason, we remove
variables that are highly correlated (ρi,j > 0.95) so that only one representative
variable is kept. It is worth mentioning that not all time series begin in 1980,
but are included nevertheless, as the estimation procedure allows for time series of
uneven length by treating their unreported period as missing values (see Section
3.2). After this clean-up, we are left with an information set consisting of 44
individual commodities. Table (1) lists all the variables along with descriptive
statistics and certain statistical tests. The variables are grouped according to their
sector affiliation given by the World Bank. Here, Brent Crude belongs to the energy
sector, and we add Atlantic salmon to a renamed Animal protein sector.

An important model assumption to accommodate for is that of stationary
observable variables. As commodities are known to be I(1) processes, we transform
all time series by taking the first difference of log prices to ensure stationarity. All
the log differenced time series reject the null hypothesis of the augmented Dickey-
Fuller (ADF) test at the 1% significance level, as can be seen in Table (1).

12An up-to-date data set can be found at
http://www.worldbank.org/en/research/commodity-markets.
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Table 1: Information set I∗ with descriptive statistics.

Time series Transf. Max Min Mean Std JBa LBb ADFc

Animal Proteins
Atlantic salmon ∆ln 0.165 -0.21 0.005 0.069 46844 80.68 -10.31
Beef ∆ln 0.13 -0.178 0.004 0.044 49.9 112.99 -9.63
Chicken ∆ln 0.12 -0.567 0.005 34.6 98.75 21.12 -8.98
Sheep ∆ln 0.079 -0.062 0.005 0.029 20941 57.06 -10.45
Shrimps ∆ln 0.212 -0.17 -0.001 0.049 97.28 117.1 -7.41
Beverages
Cocoa ∆ln 0.231 -0.195 0.005 0.062 17380 27.74 -12.38
Coffee. Arabica ∆ln 0.269 -0.148 0.003 0.059 48.01 29.2 -11.65
Coffee. Robusta ∆ln 0.183 -0.172 0.004 0.056 45474 38.83 -11.16
Tea. avg 3 auctions ∆ln 0.141 -0.244 0.001 0.049 87.86 43.59 -12.16
Energy
Coal, Australian ∆ln 0.364 -0.329 0.005 0.073 175.84 66.1 -9.61
Coal, Colombian ∆ln 0.234 -0.234 0.004 0.067 154.76 47.62 -6.87
Crude oil, Brent ∆ln 0.187 -0.313 0.004 0.09 45.36 37.07 -11.21
Crude oil, WTI ∆ln 0.217 -0.324 0.003 0.087 43.9 44.63 -10.55
Natural gas, US ∆ln 0.478 -0.393 -0.003 0.138 15.36 18.49 -14.39
LNG, Japan ∆ln 0.342 -4.012 0.005 0.125 12.39 27.86 -7.56
Fats & Oils
Coconut oil ∆ln 0.254 -0.26 0.005 0.074 461.43 64.29 -10.7
Copra ∆ln 0.266 -0.213 0.006 0.078 262.99 59.34 -10.61
Fish meal ∆ln 0.2 -0.11 0.006 0.041 54.07 57.19 -9.24
Groundnut oil ∆ln 0.261 -0.21 0.003 0.051 282.39 133.06 -7.39
Groundnuts ∆ln 0.14 -0.177 0.005 0.056 114.75 139 -7.11
Palm oil ∆ln 0.258 -0.347 0.005 0.069 144.85 50.44 -10.1
Soybean meal ∆ln 0.206 -0.186 0.004 0.062 15.26 51.19 -9.97
Soybeans ∆ln 0.194 -0.199 0.004 0.057 14.76 48.31 -10.01
Fertilizers
DAP ∆ln 0.365 -0.243 0.002 0.056 110.34 31.22 -9.87
Urea ∆ln 0.287 -0.291 0.003 0.078 98.76 37.09 -10.54
Grains
Barley ∆ln 0.233 -0.279 0.002 0.066 53.62 39.4 -9.71
Maize ∆ln 0.22 -0.245 0.003 0.061 40.63 41.91 -11.49
Sorghum ∆ln 0.254 -0.278 0.003 0.065 64.31 37.11 -12.4
Rice, Thai ∆ln 0.35 -0.208 0.005 0.059 447.65 84.91 -8.57
Wheat, US SRW ∆ln 0.258 -0.26 0.003 0.071 40.02 33.54 -11.67
Metals
Aluminum ∆ln 0.148 -0.217 0.002 0.05 59.93 65.63 -10.96
Copper ∆ln 0.231 -0.35 0.006 0.068 271.95 70.81 -9.01
Lead ∆ln 0.24 -0.293 0.008 0.076 66.29 41.85 -11.11
Nickel ∆ln 0.248 -0.382 0.003 0.087 432.07 32.49 -10.41
Tin ∆ln 0.162 -0.243 0.007 0.064 444.40 47.82 -10.45
Zinc ∆ln 0.244 -0.287 0.005 0.067 34.67 46.72 -10.15
Precious Metals
Gold ∆ln 0.112 -0.125 0.008 0.038 27426 20.29 -12.44
Platinum ∆ln 0.233 -0.293 0.002 0.058 291.35 53.62 -10.24
Silver ∆ln 0.195 -0.214 0.006 0.069 297.68 35.34 -11.4
Raw Materials
Logs, Malaysia ∆ln 0.115 -0.111 0.002 0.031 254.77 81.68 -9.78
Logs, West Africa ∆ln 0.144 -0.174 0.003 0.034 214.32 34.96 -11.14
Sawnwood, Malaysia ∆ln 0.064 -0.077 0 0.023 24.46 20.99 -11.33
Plywood ∆ln 0.068 -0.117 0.001 0.023 170.43 26.84 -11.09
Woodpulp ∆ln 0.079 -0.133 0.001 0.035 35.31 140.05 -5.9
a Critical values JB: χ2

2,0.1>4.61, χ2
2,0.05>5.99 & χ2

2,0.01>9.21
b Critical values LB: χ2

6,0.1>10.64, χ2
6,0.05>12.59 & χ4

6,0.01>16.81
c Critical values ADF: τ0.1<-1.62, τ0.05<-1.95 & τ0.01<-2.58
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4.3 Methodology

4.3.1 Model
For the purposes of this application, we model each commodity’s returns with a
three-factor representation. Letting yi,t denote commodity i’s return at time t,
then:

yi,t = λgi f
g
t︸ ︷︷ ︸

global component

+ λsi,jf
s
j,t︸    ︷︷    ︸

sectoral component

+ εi,t︸︷︷︸
Idiosyncratic component

(8)

Each variable is represented by a global factor fgt , a sectoral factor fsj,t (unique
for the commodity’s sector j), and a commodity-specific factor εi,t (also referred
to as the idiosyncratic factor). The scalars λgi and λsi,j are factor loadings, and
specify commodity i’s sensitivity to shocks in the global factor and sectoral factor
respectively. These factors capture the co-movement between commodity returns.
In the extreme case, a commodity with λgi = λsi,j = 0 will have a return that is
completely idiosyncratic, displaying no co-variation with other commodities.

In order to obtain the three-factor representation in Equation (8), which will
allow us to make interpretations of the factors and the model parameters in a
structural sense, we have to impose certain identifying restrictions on the general
model introduced in Equations (1)-(3) from Section 3.1, which are restated below:

yt = ΛFt + εt (1)

Ft = A1Ft−1 + ...+ApFt−p + ut ut ∼ i.i.d N(0, Q) (2)

εt = ρεt−1 + et et ∼ i.i.d N(0, R) (3)

To accommodate for sectoral blocks, we must impose restrictions on the Λ matrix
containing the factor loadings. If variable i does not belong to sector j, we set
λsi,j = 0. We rely on the sectors defined by the World Bank when creating the
sectoral factors. If we order the variables after their sector affiliation, then Λ

becomes a block diagonal matrix.13 In the general model the factors are modelled
as a VAR(p) process, but as there are controversies surrounding the interpretation
of VAR models, we model the factors as AR(p) processes for the purposes of this
application. This is done to keep the model simple and interpretable. We achieve
this by restricting the A1, . . . , Ap matrices to be diagonal. We set the order of

13More precisely, the part of Λ that contains the sectoral factor loadings will be block diagonal.
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the AR processes to one, i.e. p = 1. Other non-zero values for p produce similar
results. Notice that we have assumed that the factors are uncorrelated, i.e. the
factor shocks ut are i.i.d. We achieve this through restricting the co-variance matrix
Q to be diagonal. This implies that we do not allow sector-specific shocks to spill
over into other sectors, which ensures that the factors represent pure sector-specific
trends. All these restrictions are illustrated in the vector representation of the
three-factor representation displayed in Equations (9) and (10).


y1,t
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+
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...
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(10)

Here, Λgj and Λj are vectors with factor loadings for the variables affiliated with
sector j. If the variables i through k, where 1 ≤ i ≤ k ≤ n, belong to sector j then
Λj = (λi,j , λi+1,j , . . . , λk,j)′.
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4.3.2 Model Specification
In the three-factor representation presented in Equation (8) we have given the
impression that the global component is represented by only one global factor.
However, in general, the global component could be represented by any number of
global factors (fgt ). For a given data set, the decision of how many global factors to
include needs to take into account the trade-off associated with improved in-sample
fit and loss of parsimony that occurs when the number of global factors increases.
If we represent the global component by G > 1 global factors, we would have that
fgt = (fg1,t, . . . , f

g
G,t)′ and λgi = (λgi,1, . . . , λ

g
i,G). Several information criteria have

been proposed in order to decide the true number of factors to include (Bai and
Ng, 2007; Hallin and Lĭska, 2007; Breitung and Pigorsch, 2012). We use the two
information criteria proposed by Bai and Ng (2007), and denote these IC1 and
IC2. The number of global factors that gives the lowest value of the information
criteria are chosen. Table (2) reports the criteria for I∗. Both criteria suggest that
one global factor is appropriate.

Table 2: Information criteria for number of global factors

Number of global factors
IC 1 2 3 4 5
Bai & Ng (1) -0.053 0.043 0.139 0.235 0.332
Bai & Ng (2) -0.049 0.051 0.151 0.251 0.352

There is currently no information criterion that gives the optimal number of
factors for dynamic factor models with block structures. Therefore, we have not
been able to provide any robust procedure for determining the optimal number of
factors to represent each sectoral component. We choose to represent each sector
component using one factor. As the sectors are subsets of I∗, and thus consist of
fewer variables to extract co-movements from, we find it reasonable to represent
the sectoral components by the same number of factors or fewer than the global
component. We are left with the option of representing the sectoral components
by one factor.
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4.3.3 Model Estimation
We estimate the model using the EM algorithm as outlined in Section 3.2. The EM
algorithm requires us to set the threshold (τ) of the convergence test (Equation
(7)), which essentially decides to what degree the model should be fitted to the
observed data. A lower threshold results in a more fitted model. The key objective
of this application is in fact to provide the best possible fit between the model
and the data,14 as we want to extract the common factors that best describes the
co-movement between the commodities. Hence, we set the threshold very low,
τ = 10−7.

4.3.4 Variance Decomposition
One way to measure the extent of the common factors’ influence on the variables
is through variance decomposition. By computing each components’ contribution
to the total variation in the observed variables, it is possible to state what fraction
of a variable’s price fluctuations is attributable to a given component (Brooks,
2014). We let φgi , φsi and φεi denote the proportion of the total variation of variable
i attributable to the global, sectoral, and idiosyncratic components, respectively.
We then have that,

φgi =
(
λgi
)2
var(fgt )/var(yi,t)

φsi =
(
λsi,j
)2
var(fsj,t)/var(yi,t)

φεi = var(εi)/var(yi,t),

(11)

where the total variance for variable i is given by:

var(yi,t) =
(
λgi
)2
var(fgt ) +

(
λsi,j
)2
var(fsj,t) + var(εi,t) (12)

For the decomposition in Equation (12) to hold, which is a prerequisite for getting
φgi , φsi and φεi to sum to one, the factors must be uncorrelated. We ensure that
the factors are orthogonal, i.e. uncorrelated, through the restriction of the factor
shocks ut as described earlier.

We remark that we have an approximate dynamic factor model, as mentioned
in Section 3. This implies that some of the commodities with large model residuals
could potentially have idiosyncratic components that are either weakly correlated

14We remark that this is in contrast with the aim of Application B, where we will be concerned
with problems of over-fitting.
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serially or cross-sectionally. One of the reasons for modelling the idiosyncratic
factors as AR(p) processes is to alleviate this issue. As a result, the variance
decomposition is considered approximate orthogonal.

4.3.5 Model Interpretation
Previous studies have suggested that the model components provided by factor
models can be given interpretations beyond representing different levels of com-
modity co-movement (e.g., see Alquist and Coibion, 2014; Bilgin and Ellwanger,
2017; Delle Chiaie et al., 2017). It is suggested that the components can in fact
be interpreted along a supply/demand dimension, where the global factor mainly
captures global commodity demand, while the idiosyncratic factors mainly capture
commodity-specific supply shocks. The arguments are as follows.

Due to the way it is constructed, the global factor captures the price trends
that are common to all commodities in the data set. The literature discussed in
Section 4.1 suggests that demand shocks from global economic activity are likely to
affect most commodities by shifting the demand curve in the same manner across
markets. It is then argued that this is the movement captured by the global factor.
This interpretation has proven to be quite robust, and is for instance strengthened
by previous commodity factor model studies reporting that their global factor shows
a strong positive correlation with recognized benchmarks for global economic activ-
ity such as the Kilian (2009) Index and the Baltic Dry Index (e.g., see Delle Chiaie
et al., 2017). However intriguing, this economic interpretation needs to be nuanced
somewhat. In their theoretical study, Alquist and Coibion (2014) suggest that the
global factor might not solely reflect demand shocks, but potentially also other
common influences that feed through to a large share of commodity prices. They
illustrate this effect with higher energy prices, that typically lead to higher com-
modity prices in general as expensive energy increases production costs in most
industries. Then again, Baumeister and Kilian (2014) find that the pass-through
from shocks to the price of crude oils to other commodities is limited. We will pro-
vide our own assessment of this potentially "contaminating" effect. Furthermore,
due to increased financialization of commodity markets, common trends might also
partly reflect speculative, rather than only fundamental, commodity demand (e.g.,
see Cheng and Xiong, 2014; Ohashi and Okimoto, 2016).
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The sectoral component likely includes both supply and demand forces. Recall
that the sectoral factors capture dynamics common to the commodities in the sector
they represent. The sectoral components might therefore represent both demand
trends common to the sub-group, as well as supply-side shocks spreading within
their sector (e.g. through substitution effects). There is no simple way of separating
the relative contribution from the two sides.

Opposite to demand shocks, supply shocks tend to be isolated to individual
markets or at most to smaller groups of substitutes. Assuming that demand forces
are largely captured by the global and the sectoral components, the idiosyncratic
component can reasonably be expected to mostly represent supply shocks. How-
ever, demand shocks might in some instances be isolated to individual commodities
due to factors such as introduction of specific regulations15, product innovation or
technology shifts. The effects of such demand shocks are likely to appear in the
idiosyncratic component.

The interpretations (with caveats) presented here, will be made use of when
discussing our empirical findings.

15E.g. health regulations, tariffs, political sanctions affecting trade.
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4.4 Empirical Results
This section is divided into three parts. First, we examine the properties of the
global and sectoral factors. Second, we perform variance decomposition analysis
on both a broader sectoral level, as well as for Atlantic salmon and Brent Crude
oil specifically. Lastly, we perform cumulative return decomposition analysis, and
examine historical price shocks for Atlantic salmon and Brent Crude oil in detail,
comparing our findings to economic theory and existing literature on the price
behaviour of the given commodities.

4.4.1 Estimated Factors and Loadings
Appendix A Figure (14) displays plots for the estimated time series for the global
and the 9 sectoral factors, with Appendix A Table (11) displaying the corresponding
factor loadings for all commodities in our data set. Combined with the idiosyncratic
components, these constitute the input data utilized in the analyses performed in
the upcoming sections.

The Global Factor
The global factor time series estimated by our model captures price trends common
to all commodities in our data set. In the previous section we introduced the
perspective that what this factor mainly reflects, is shocks to global (expected
and realized) demand for commodities and the global business cycle. We wish to
investigate this proposition empirically.
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Figure 3: Global factor v. OECD index of Industrial Production. Both time series

are year-on-year and normalized.

28



When plotting the global factor, we observe that its peaks and downturns
corresponds well with major global economic events, including the large expansion
leading up to, and the crash defining, the Global Financial Crisis of 2008. Further,
we find a high, positive correlation when testing the global factor against a recog-
nized benchmark for global economic activity. Figure (3) plots the global factor
along with the OECD Industrial Production Index. The two time series display
a very similar shape and are positively correlated by a coefficient of 0.64. This
corroborates the similar findings from Delle Chiaie et al. (2017).
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Figure 4: Global factor loadings. The figure displays each commodity’s sensi-

tivity to shocks in the global factor. Note that all commodities display a positive
relationship with the factor.
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Figure (4) displays each individual commodity’s loading on the global factor.
Observe that all of the World Bank primary commodities have a positive loading
on the global factor. Thus; in general, when the global factor increases, the prices
in all markets increase. This supports the intuition that an expanding (contracting)
global economy increases (decreases) demand for a broad group of commodities -
moving prices in the same direction. Further, from Figure (4) we also see that
the factor loadings of the energy commodities in the data set are not abnormally
high compared to the rest of the commodities in the set. This is an indication that
potential energy spill-over effects discussed in Section 4.3.5, are unlikely to be a
major driver of the global factor.

In summary; commodity prices consistently increase as the global factor in-
creases, the global factor yields high, positive correlation with several established
benchmarks for global economic activity, and the factor does not seem to be driven
by other common influences such as energy costs. This makes us confident in
mainly interpreting the global factor as representing trends in global commodity
demand and the global business cycle.

The Sectoral Factors
Recall that the sectoral factors capture dynamics common to the commodities in
its sector, in excess of what is extracted by the global factor. From Appendix A
Figure (14), we observe that there are notable differences between the global and
the 9 sectoral factors, indicating that they do in fact represent distinctly different
movements and play different roles at different points over time.

We note that if a latent factor is extracted from a group of very weakly cor-
related variables, the likelihood estimation procedure may end up prioritizing the
variation in one or a few variables somewhat co-varying with the remaining vari-
ables in the group. Highly unequal λsi ’s within the sector are an indication of this
having occurred. While nearly all of our sectoral factors seem to represent genuine
sector-wide co-movements, the energy factor is somewhat dominated by the two
crude oil benchmarks. This finding will inform our upcoming analysis of Brent
Crude.

30



4.4.2 Variance Decomposition
Estimating variance decompositions is our main tool for assessing the degree of
co-movement in the commodity returns. Recall that through this method, we are
able to determine what fraction of a variable’s price fluctuations is attributable to
the global, sectoral and idiosyncratic components. Table (3) displays the sector
averages for the variance explained by the global and sectoral components for the
full sample period (1980-2018), as well as for two sub-sample periods (1980-1999
and 2000-2018).

Table 3: Variance decomposition of returns (φgi and φsi ), sector averages.

Global component Sectoral component

Full sample 1980-1999 2000-2018 Full sample 1980-1999 2000-2018

All 8.73% 4.29% 17.10% 27.97% 30.31% 24.81%
Animal proteins 5.57% 5.92% 9.38% 11.32% 10.14% 5.16%
Beverages 3.57% 0.56% 8.73% 32.65% 37.86% 23.75%
Energy 11.32% 4.48% 21.48% 42.04% 49.98% 34.09%
Fats & oils 7.89% 9.34% 15.70% 28.00% 30.77% 24.72%
Fertilizers 6.22% 2.85% 4.22% 34.23% 9.61% 46.72%
Grains 8.27% 3.62% 12.68% 29.87% 33.23% 28.60%
Metals 15.87% 2.13% 40.01% 19.58% 21.43% 20.98%
Precious metals 13.70% 3.43% 24.53% 43.71% 56.96% 40.28%
Raw materials 5.02% 3.41% 7.95% 26.33% 28.31% 22.83%

Table (3) reports that global shocks account for a moderate fraction of com-
modity price variability. Over the full sample period, an average of 8.7% of the
price fluctuations in the commodities in our data set is attributable to the global
factor. For the sectoral factors, this number is 28%. Thus, global and sectoral
shocks account for about a third (36.7%) of fluctuations in commodity prices,
leaving two-thirds to being explained by commodity-specific forces. We notice that
the commodity groups most responsive to global shocks, are the two metals sectors.

We also estimate our model separately for the time periods of 1980-1999
and 2000-2018. Interestingly, the sub-sample analysis reveals that there has
been a significant change in the relative importance of the three components.
Between 1980-1999, the average variance explained by the global, sectoral and the
idiosyncratic components is 4.3%, 30.3% and 65.4% respectively. For the second
sub-sample the equivalent numbers are 17.1%, 24.8% and 58,1%. Notably, the
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global factor’s explanatory power has increased significantly across commodities
and sectors over the last decades. Not only does the total average variance
explained by the global components greatly increase (up 12.8%) between the
sub-samples, we do in fact observe that the global components’ importance
has increased significantly for every single sector. We interpret this as a clear
indication of more integrated commodity markets. In other words, our findings
support the consensus from the literature discussed in Section 4.1.16

Atlantic salmon and Brent Crude oil
Moving from general to commodity-specific insights, we now use variance decom-
position to examine the price fluctuations of Atlantic salmon and Brent Crude oil
specifically.

Table 4: Variance decomposition of commodity returns for Atlantic salmon and

Brent Crude oil (φgi and φsi ).

Global component Sectoral component

Full sample 1980-1999 2000-2018 Full sample 1980-1999 2000-2018

Atlantic salmon 7.99% 4.98% 9.17% 1.37% 2.48% 1.90%
Brent Crude oil 12.45% 1.97% 28.54% 73.88% 86.98% 60.94%

Table (4) reports that shocks to the global factor contributes moderately to
the variation in the Atlantic salmon time series. Specifically, the variance decompo-
sition shows that Atlantic salmon’s global component explains 7.99% of the price
fluctuations over the sample period, which can be interpreted as 8% of the vari-
ability in Atlantic salmon returns over this period being due to effects from global
commodity trends.17 Interestingly, the sub-samples indicate that this relationship
has changed significantly over the last 40 years, with variance explained increasing
from 5.0% to 9.2% between the sample windows. We conclude that although the
relationship is moderate, Atlantic salmon can not be said to be disconnected from

16Most notably Cheng and Xiong (2014) and Juvenal and Petrella (2015). These papers mainly
attribute this development to demand shocks from the unexpected high growth in emerging mar-
kets, along with the emergence of commodity index investment starting around 2004.

17As an ancillary metric, we can examine correlation. The correlation between the Atlantic
salmon time series and the global factor is 0.26 over the full sample period, indicating that the
Atlantic salmon returns tend to move in the same direction as the global factor.
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broader trends in global commodity demand or the real economic cycle.18

Regarding the sectoral component, it has proven difficult identifying any sig-
nificant co-movement between Atlantic salmon and other animal proteins, in excess
of that captured by the global factor. It would have been interesting to assess the
co-movement between Atlantic salmon and a pure seafood sector block. However,
shrimp is the only seafood commodity in the World Bank database.19 In any
case, we note that the model does detect some common movement within the Ani-
mal protein sector, but that Atlantic salmon’s sector loading is fairly low. We also
note that any significantly lagged relationships between the commodities, including
some substitution effects, will not be captured in this modelling of co-movement of
returns. There are however other relationships one could have hypothesized to be
present among the set of animal protein commodities. An example could be events
of larger protein consumption elasticity in response to changes in real economic
activity, compared to the full set’s average commodity demand elasticity.

Atlantic salmon stands out as a commodity with highly idiosyncratic price
behaviour, with the variance decomposition indicating that it is shocks mostly
isolated to the Atlantic salmon market that is driving the vast majority of the
price movement. The large idiosyncratic component represents shocks related to
commodity-specific supply, as well a the potential existence of idiosyncratic de-
mand. The salmon supply’s inherent dependence on biological, environmental and
seasonal factors, makes it a natural contributor to the commodity’s idiosyncratic
price fluctuations.

Moving on to Brent Crude, we find the following relationships. The variance
decomposition shows that its global component explains 12.45% of the variability
over the sample period. Further, the vast majority of the remaining variation in
the Brent price is attributable to its sectoral component with 73.88% of variance
explained. This isn’t very surprising, given the fairly tight level of integration
between the markets for Brent and WTI benchmark oils, combined with the ob-
servation that these commodities somewhat dominate our model’s energy sectoral
factor.20 Most interesting, however, are the findings from the sub-sample analysis

18We note that market financialization resulting from the 2006 introduction of the Fish Pool
ASA futures market, might have contributed to Atlantic salmon’s increased co-movement with
global commodity markets.

19A solution would of course be to introduce external time series to our data set. Unfortunately,
we have been unable to acquire suitable time series for relevant seafood commodities spanning
the long sample period.

20Observing the energy factor in Appendix A Figure (14), we clearly see that major jumps in
the factor corresponds to major historical events assumed largely isolated to the oil markets.
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regarding the global component. Namely, we observe that the variance explained by
the global component has increased from 1.97% in 1980-1999 to 28.54% in 2000-
2018. So while the vast majority of the variation in Brent Crude prices up until
2000 was attributable to sectoral and commodity-specific shocks, since 2000 close
to 30% of the fluctuation is explained by the commodity’s sensitivity to shocks to
the global factor. Corroborating the findings from the variance decomposition, the
correlation between the time series has also increased significantly the last decades,
from 0.27 between 1980-1999 to 0.53 between 2000-2018.

In summary we find that although mostly defined by sectoral or commodity-
specific shocks, the price fluctuations of both Atlantic salmon and Brent Crude
are to a significant extent formed by common trends in global commodity markets.
Furthermore, for both commodities, the global factor has increased substantially
in importance over the last decades.

4.4.3 Cumulative Return Decomposition
The properties of logarithms allow us to simply add monthly log returns in order
to find the total return over a longer time period. As the global, sectoral, and
idiosyncratic components in the three-factor representation (Equation 8) are log
return time series, we can accumulate their returns to obtain the total return of
each component for a given time period. These components’ accumulated returns
will together add up to the total return of the given commodity. With this decom-
position we are able to assert what proportion of the total return over a specific
period can be attributed to global, sectoral, and idiosyncratic effects.

This allows us to zoom in at specific price events and answer questions such as:
which factors contributed the most to a given price movement? Are there any forces
pulling the price in the same or opposite direction? The upcoming subsections are
dedicated to cumulative return decomposition of specific, noteworthy price events
for Atlantic salmon and Brent Crude.

Before we delve into the price event analysis, we will give a brief introduction
and explanation of the cumulative return plot. Figure (5) shows the cumulative
return of Atlantic salmon and Brent Crude from 2004 through 2018. The black
solid lines represent the total return accumulated since 2004. Correspondingly,
the coloured bars indicate the total accumulated returns attributable to the global,
sectoral and idiosyncratic components up until each point in time. The coloured
bars are stacked, so that they together add up to the total return.
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Figure 5: Return decomposition from 2004:M1 - 2018:M3. The figure presents

decompositions of cumulative normalized log returns for Atlantic salmon and Brent

Crude oil.

Several aspects of the three-factor representation can be observed through Fig-
ure (5). If we examine the global components (in blue), we observe that they are
identical in shape; the global components are just scaled versions of the global fac-
tor (fg), as each variable has a unique loading (λgi ’s) on the global factor. Further,
as Atlantic salmon and Brent Crude belong to different sectors, their sectoral com-
ponents (in red) have different shapes. It is worth noting that relative to the total
accumulated return (black solid line) they also vary in scale, indicating the relative
importance or contribution of the sectoral factor to the return of the respective
commodities. Lastly, we note that the idiosyncratic components (in grey) capture
the remaining, unexplained part of the returns.

Next we will examine noteworthy price events for Atlantic salmon and Brent
Crude, and gauge our model output against the existing literature.
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Event analysis, Atlantic Salmon
Figure (6) displays cumulative return decompositions of four historical episodes
of particular interest with respect to the Atlantic salmon market.
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Figure 6: Return decomposition of Atlantic salmon price events (cumulative nor-

malized log returns).

We observe an incredible surge in the salmon price between primo and medio
2006. Our decomposition illustrated in Figure (6.I) indicates that this shock was
driven by mostly idiosyncratic forces. Looking to the literature, supply-limiting
factors such as adverse weather conditions and disease problems in Chile in early
2006, can help explain the tight market and high prices displayed that year, accord-
ing to Globefish (2006). Oglend (2013) further illuminates potential supply-side
causes for this price movement. He points to the fact that if biomass is lower than
expected prior to the most potent production period, farmers must be compen-
sated by higher prices in order to give up the valuable high growth period. And
that in such circumstances there is not enough fish to satisfy both consumption
and "production" demand. Players who want fish on the spot market must there-
fore bid up the price. These spikes appear on occasion, and did so in the spring of
2006, Oglend (2013) argues. What about potential demand-side factors? Actually,
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Brækkan and Thyholdt (2014) find the second largest positive demand shift (20%)
in their sample period (2002-2011) from 2005 to 2006. Comparably, we find that
the global component and sectoral compents contributed moderately (15%) to the
observed price spike in this time period.

Excluding the 2006 spike, from 2004 to medio 2008 we observe a trend of a
gradual increase in the salmon price that seems to be largely driven by a steady
increase in the global factor (see Figure (5)). This increase matches the world
macroeconomic expansion that started in the early 2000s and lead up to the 2008
financial crisis. And, as illustrated in Figure (6.II), in the second half of 2008 we
see that a dramatic fall of the global factor, representing an across-the-board rapid
decline in commodity prices, causes the salmon price to fall. In this time interval,
we are comfortable in asserting that the movement in the Atlantic salmon price
was almost exclusively driven by shocks to global economic activity.

In 2011 we see a large decline in the salmon price, and it remained low until
2013. The return decomposition illustrated Figure (6.III) attributes most of the
decline to idiosyncratic forces, though there is also a significant contribution from
the global and sectoral components (22%). One event worth discussing here is the
Chilean salmon crisis. Starting in late 2007 the Chilean salmon industry experi-
enced severe disease issues. This had a significant negative effect on production
from 2009 until at least early 2011, leading to an increased supply/demand gap.
However, from 2011 the supply increased significantly. Even taking in to consider-
ation the somewhat limited overlap with Norwegian export markets, this increased
supply from Chile undoubtedly contributed to the observed price shock in 2011,
and the sustained lower prices the following years. An idiosyncratic supply shock,
that is. Simultaneously, Brækkan and Thyholdt (2014) finds a significant demand
drop in the EU for Norwegian salmon in 2011. This demand shock corresponds well
with an observed decline in the global factor in the same time period, indicating
that this drop was part of a general trend.

Starting in late 2015, another surge in the spot price for salmon occurred.
Most industry experts explain the recent surge based on increased global demand
for salmon, combined with a limited ability to increase supply due to stringent reg-
ulations, and parasite and disease issues. These supply-limitations will naturally
be isolated to the salmon industry, and are therefore in line with the very large
idiosyncratic component estimated in this time period, displayed in Figure (6.IV).
An example of such a factor is the toxic algae bloom appearing in Chile in this
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period, leading to Chilean production volumes falling by almost 20% (Terazono,
2016). Regarding the argued increase in demand for salmon, if this was in fact a
major price driver, we can categorize it as being of a largely idiosyncratic nature,
given that we don’t observe any significant increase in the general demand for
commodities.

Event analysis, Brent Crude Oil
Figure (7) displays cumulative return decompositions of four episodes of particu-
larly large shocks to the price of Brent Crude oil.
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Figure 7: Return decomposition of Brent Crude oil price events (cumulative nor-

malized log returns).

Figure (7.I) and Figure (7.II) display the two largest oil price shocks that
occurred in the late 1900s. Specifically, the 56% cumulative decline in the price of
oil in early 1986, occurring after Saudi Arabia abandoned its policy of stabilizing
the price of crude oil, and the spike occurring at the outbreak of the Gulf War in
the early 1990s. The return decompositions suggest that sector-specific factors
were in fact essentially the sole drivers of these price events.
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Referring back to the Brent Crude graph in Figure (5), we see that it sug-
gests that a surge in the global factor was the primary driver for the strong rise
in oil prices in the run-up to the Global Financial Crisis. This is in line with the
previously addressed narrative that the rise of emerging-market economies in Asia
lead to a series of positive demand shocks in the global oil market (Kilian, 2009).
Correspondingly, Figure (7.III) shows that the 2008 price drop associated with
the GFC was mainly driven by a drop in the global factor. Note that the observed
contribution from the sectoral component could indicate that the energy/oil sec-
tor was more strongly impacted by this crisis than global commodity markets in
general.

Figure (7.IV) displays the drop in the oil price that occurred between June
and December 2014, hitting the Norwegian economy hard. We find that around
20% of the negative return in this period is attributed to the global component,
while the rest is attributed to the sectoral component. This closely matches the
findings of Baumeister and Kilian (2016), who attribute $11 of the $49 decline to
the cumulative effects of negative demand shocks, tracing this to a slowing global
economy. They find the remaining decline being due to positive shocks to current
oil production, as well as an unpredictable shock to oil price expectations in July
2014 which lowered the demand for oil inventories.

In summary, the findings from the event analyses performed for Atlantic
salmon and Brent Crude oil above, demonstrate that our DFM can assist in the
discussion of sources of major price events for the two commodities.

4.5 Concluding Remarks
In this study, we have investigated the co-movement in global commodity markets
and decomposed individual commodity price movements into global, sectoral, and
idiosyncratic components. By considering a large set of globally traded commodi-
ties retrieved from the World Bank, we obtained a global factor by isolating the
movement common to all commodities. By grouping related commodities together,
and then isolating the co-movement within each group, we obtained the sectoral
factors. The remaining commodity-specific movement was captured by idiosyn-
cratic components. In our analyses, a particular focus has been put on the major
Norwegian export commodities of Atlantic salmon and Brent Crude oil. The study
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yielded some interesting empirical results.
We find empirical support for an interpretation of the global factor as mainly

reflecting trends in global commodity demand. Through variance decomposition
analysis, we find that a moderate, but significant, share of the fluctuations in the
price of Atlantic salmon and Brent Crude oil over the past 40 years can be ascribed
to shocks to this factor. Most notably however, a sub-sample analysis reveals that
the global factor’s importance has significantly increased for both commodities,
with φgsalmon=9% and φgbco = 29% since 2000. Interestingly, the same trend can in
fact be seen across all commodity sectors. This indicates that Atlantic salmon and
Brent Crude have taken part in a general trend of increased integration between
global commodity markets. Regarding sectoral and commodity-specific movement,
we find that while monthly Atlantic salmon returns are of a highly idiosyncratic
nature, Brent Crude displays stronger co-movement with its sector. We do how-
ever note that the energy sector factor estimated could be considered as largely
representing trends in the markets for oil more so than truly sector-wide energy
commodity trends.

Further, we find that our model forms a crude, but effective, tool for interpret-
ing specific commodity price events. The model output can be used to scrutinize
existing narratives on commodity price shocks, and identify relationships unob-
servable from analysis of individual time series. We believe a DFM approach to
analysis of commodity price composition can hold several advantages over other
commodity-specific structural models. Conventional structural models typically
rely on consumption and production data, but these are often not trivial to acquire,
are released with significant time lags or do not even exist for many commodities.
This DFM methodology, on the other hand, only relies on publicly available com-
modity price data.

Major benefits from understanding the composition of commodity price move-
ments relate to macroeconomic concepts influencing fiscal and monetary policy
stances, as well as industry and finance considerations regarding risk, hedging and
investment decisions. We argue that a DFM approach to decomposing commod-
ity prices should be considered a valuable addition to the existing toolkit used for
examining these markets.
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5 Application B: Forecasting
Application A demonstrated the DFM framework’s ability to decompose price
movements and provide insights into the broader sources of these movements. In
Application B we switch our focus to the future - to the issue of forecasting com-
modity spot prices. We use the dynamic factor model framework to produce price
forecasts for Atlantic salmon and Brent Crude oil at multiple horizons. This is
achieved through constructing a comprehensive set of predictors for both com-
modities, carrying out a model selection procedure assisted by a genetic algorithm,
and finally estimating the dynamic factor models.

Insights into the future price trajectory of a commodity is of obvious interest
to a wide range of players. Participants along all parts of the value chain make
important decisions regarding their strategy, operations and risk management on
the basis of what they believe the future price paths of relevant commodities will be.
With regards to our selected commodities, more accurate forecasts of their highly
volatile prices would be valuable to stakeholders ranging from E&P companies and
salmon farmers, to refineries and salmon processors, not forgetting end-consumers,
regulators and financial players.

Section 5 is organized as follows. First, we review literature relevant to the
forecasting of Atlantic salmon and Brent Crude oil. Second, we present the in-
formation sets used to forecast the spot prices of the two commodities, before we
explain our methodology approach in detail. Finally, we assess the forecasting per-
formance of the DFMs against other benchmark models and look at how the DFMs
measure up against results found in the literature.

5.1 Literature Review
Insights from the literature on the characteristics and dynamics of the two com-
modities were provided in Section 2. In Section 3, the essential literature on the
general DFM framework was addressed. This review therefore limits itself to dis-
cussing literature directly related to the forecasting of the spot prices of Atlantic
salmon and Brent Crude oil.
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Atlantic salmon

Accurate spot price forecasts are of obvious interest to salmon market participants.
However, a search for studies that directly forecast the salmon price produces
surprisingly few results. To our knowledge, only three other studies have been
published in the last 20 years. Most recently Sandaker et al. (2017) predicted
the conditional distribution of weekly prices from 2006 to 2017 using a quantile
regression model. A large part of their study is dedicated to finding key predictors
of the spot price through the use of a genetic algorithm. However, it is unclear
how well their models perform at point-forecasting the median price out-of-sample,
which makes their results difficult to compare against. Further, Bloznelis (2018)
compares 16 different forecasting models in his comprehensive study of short-term
price forecasting. Interestingly, none of the models significantly improves upon the
naïve random walk model. This could be due to a very limited set of predictors.
Lastly, Guttormsen (1999) proposes six potential forecasting techniques in his quest
to find a simple and reliable method to assist salmon farmers in their decision-
making. With a Classical Additive Decomposition (CAD) he produces results of
correctly predicted direction between 70% and 90% of the out-of-sample cases -
however providing no evidence for a general superior model. Moreover, with the
salmon market having evolved since then, his study from 1999 could be considered
somewhat outdated.

Brent Crude oil

In contrast to Atlantic salmon, direct oil price forecasting is widely explored in the
literature, with a wide range of methods utilized. A few studies, arguably the most
relevant, are addressed here. Most recently, Westgaard et al. (2017) identified key
explanatory variables with a forward selection algorithm and forecasted monthly oil
returns with a predictive regression model. Their results suggest that financial vari-
ables are superior in predicting the Brent spot price. It is however unclear whether
their predictive regression outperforms the random walk on a general basis. Beck-
ers (2015) explores a reduced form VAR model with seasonal "dummy" variables
by including explanatory variables such as the Kilian Index, interest spreads, oil
production and inventories. He finds that the VAR outperforms the random walk
for longer horizons, but is not generally better for shorter horizons. However, a few
studies have managed to outperform the no-change benchmark for monthly fore-
casts; Baumeister and Kilian (2012) report mean squared prediction errors (MSPE)
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that improve 18% and 25% on a no-change model at 1-month and 3-month forecast
horizons, respectively. They achieve this using a VAR model on a combination of
futures and commodities. Chen (2014) uses monthly data to investigate the pre-
dictive content of oil-sensitive stock price indices for spot crude oil prices using a
predictive regression model. Using the NYSE Arca Oil Index as a predictor, he
is able to improve 24% on the no-change model’s MSPE at the 1-month horizon.
Common to these studies is that their models perform well at shorter horizons (1-3
months), both in absolute terms and relative to benchmark models.

This study in context of the existing literature
To our knowledge, ours is the first study utilizing dynamic factor models to forecast
price changes for either Atlantic salmon or Brent Crude oil. Therefore, we certainly
provide new knowledge on the abilities of such state-space approaches to forecast
commodity price movements. The studies discussed above use more or less similar
predictor variables in their forecasting models - variables we will adopt in our
analysis. However, in contrast to the other studies, we will utilize the variables
indirectly. That is, our predictors will instead be latent, unobservable factors
extracted from, and based on, the information and co-movement found within
sets of variables recognized as key predictors. With our study, we test whether
modelling based on such latent factors can improve upon the price change forecasts
from the existing literature.

5.2 Data
In our forecasting, we use monthly data in the time period from January 2006 to
April 2018. We create separate information sets for each of the two commodities.
Each set includes demand-side, supply-side, and other/financial predictors along
with the variable to be forecasted. The predictors we include for Atlantic salmon are
largely based on the work of Sandaker et al. (2017), who identify superior predictors
through a comprehensive variable selection process. The predictors we include for
Brent Crude are largely based on the variables identified by Westgaard et al. (2017)
and Olimb and Odegaard (2010). These studies follow a systematic and thorough
approach as they identify and provide justifications for superior predictors. We
supplement with the NYSE Arca Oil Index identified by Chen (2014), found to
have substantial predictive value.
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Table 5: List of predictor variables, Atlantic Salmon.

ID Name Trans. Lag(s) Window Effect
CEU Consumption, Europe ∆ln 3, 6, 12 YoY ⇑
CEM Consumption, Emerging markets ∆ln 3, 6, 12 YoY ⇑
EURNOK Currency pair, EUR/NOK ∆ln 3, 6, 12 MoM ⇑
CLDUSD Currency pair, CLD/USD ∆ln 3, 6, 12 MoM −
TRO Norwegian trout, spot price ∆ln 1-6 MoM ⇑
MAC Norwegian mackerel, spot price ∆ln 1-6 MoM ⇑
SHR Shrimp (Mexican), spot price ∆ln 1-6 MoM ⇑
MEA Meat price index ∆ln 1-6 MoM ⇑
BEF Beef (U.S.), spot price ∆ln 1-6 MoM ⇑
CHI Chicken (U.S.), spot price ∆ln 1-6 MoM ⇑
FED Feed consumption (NOR) ∆ln 1-6 YoY ⇓
LIC Sea lice occurence (NOR) ∆ln 3, 6, 9, 12, 15 YoY m
SEA Average sea temperature (NOR) ∆ln 3, 6, 9, 12, 15 YoY ⇓
SMO Smolt release (NOR) ∆ln 3, 6, 9, 12, 15 YoY ⇓
BIO Standing biomass, salmon (NOR) ∆ln 3, 6, 9, 12, 15 YoY ⇓
HVS Harvest volumes, salmon (NOR) ∆ln 3, 6, 9, 12, 15 YoY ⇓
HVT Harvest volumes, trout (NOR) ∆ln 3, 6, 9, 12, 15 YoY ⇓
FSM Fish meal (Any origin), spot price ∆ln 1-6 MoM ⇑
RAP Rapeseed oil (Malaysia), spot price ∆ln 1-6 MoM ⇑
SOY Soybeans (U.S.), spot price ∆ln 1-6 MoM ⇑
WHE Wheat (U.S.), spot price ∆ln 1-6 MoM ⇑
PSALM Norwegian farmed Atlantic salmon, spot price ∆ln 1-6 MoM ⇑
OSLSFX OSLO Seafood Index ∆ln 1-6 MoM ⇑
MHG Marine Harvest Group stock ∆ln 1-6 MoM ⇑
BCO European Brent spot ∆ln 1-6 MoM m

In order to satisfy the assumption of stationarity, most of the variables need
to be transformed. All prices and indexes are transformed by taking the difference
of log levels. All rates and spreads are kept at level. The remaining variables
are kept at level if they are stationary, and are log-differenced otherwise. We
identify seasonal variables by examining each variable’s autocorrelation function.
There are several variables that exhibit yearly seasonality, most notably average

sea temperature and sea lice occurence. For these variables we use a year-over-year
(YoY) time window; for the rest we use a month-over-month (MoM) time window.

We add auxiliary variables in the form of lagged variables to each information
set. Where literature have studied lagged relationships between predictors and the
variables of interest, we include the lags recommended. For all other predictors we
include variables lagged 1 to 6 months. For Atlantic salmon, the final information
set contains 25 unique predictors and 136 variables in total. For Brent Crude oil,
the final information set contains 25 unique predictors and 150 variables in total.
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Table 6: List of predictor variables, Brent Crude oil.

ID Name Trans. Lag(s) Window Effect

MSP US money supply ∆ln 1-6 MoM ⇑
UEM US unemployment rate - 1-6 - ⇑
GDP World GDP index ∆ln 1-6 MoM ⇑
USD Trade weighted USD ∆ln 1-6 MoM m
TBIL US 3 month treasury bill rate ∆ln 1-6 MoM ⇓
AGR Agricultural commodity index ∆ln 1-6 MoM ⇑
N_GAS U.S. Natural gas spot price ∆ln 1-6 MoM ⇑
IMP US net petroleum import volumes ∆ln 1-6 MoM ⇓
KIL Kilian Index - 1-6 - ⇑
OPEC_PR OPEC production ∆ln 1-6 MoM ⇓
OPEC_SC OPEC surplus capacity ∆ln 1-6 MoM ⇓
NOPEC_PR Non-OPEC production ∆ln 1-6 MoM ⇓
RIG Rotary rigs in operation ∆ln 1-6 MoM ⇓
OECD_INV OECD inventories ∆ln 1-6 MoM ⇓
OPEC_INV OPEC inventories ∆ln 1-6 MoM ⇓
US_INV U.S inventories ∆ln 1-6 MoM ⇓
REF US refinery utilization ∆ln 1-6 MoM m
BCO Europe Brent spot price ∆ln 1-6 MoM ⇑
OSX PHLX Oil Service Index (OSX) ∆ln 1-6 MoM ⇑
NYME NYSE Arca Oil Index ∆ln 1-6 MoM ⇑
F_SP NYMEX futures spread ratio - 1-6 - m
BB_SP Yield of BoA Merrill (BB) Index - 1-6 - ⇓
CRA NYMEX crack spread - 1-6 - ⇑
MET Metal index ∆ln 1-6 MoM ⇑
GLD Gold spot price ∆ln 1-6 MoM ⇑

The full lists of predictors used for Atlantic salmon and Brent Crude can be
found in Table (5) and (6), respectively. In the table, we also list the transformation
applied to each predictor, and where we difference the variable we list the time
window (MoM/YoY) used. Additionally, we specify which lags of each predictor is
included. Finally, we provide the hypothesized direction of change in the forecasting
subject corresponding to a positive change in the given predictor variable. For
descriptive statistics and statistical test, see Table (12) and Table (13), both found
in Appendix B.
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5.3 Methodology

5.3.1 Design of Forecasting Exercise
Our forecasting strategy for this application is as follows. We start with an initial
in-sample period spanning January 2006 to March 2015, a total of 112 months. As
the time series extend to April 2018, this leaves us with an out-of-sample period
of 36 months. This decision is simply a trade-off between model calibration and
performance evaluation.21 In order to realistically replicate the situation facing
the forecaster, we follow an expanding window approach. That is, after obtain-
ing forecasts for a given horizon we expand the in-sample data to include new
information before producing the next forecast. This procedure is repeated until
the hold-out period is exhausted. Finally, we produce the actual forecasts using
an "iterated" h-step-ahead forecasting strategy. That is, we make use of the one
month-ahead forecast to produce the two month-ahead forecast, and so on. The
alternative would be to employ a horizon-specific approach, i.e. specifying and
estimating separate models for each of the forecast horizons. The advantages of
our approach are simplicity and seemingly better forecast accuracy if the model
is correctly specified (Marcellino et al., 2006). However, creating one model that
performs superiorly for a wide range of horizons is close to impossible. We limit
our study to 1-3 month-ahead forecasts.

5.3.2 Model
We use the general DFM introduced in Section 3.1 as a basis for the model presented
here. For the purpose of forecasting we model the variables we seek to forecast as
a linear combination of factors fj,t, where j ∈ [1, . . . , r]. Letting yi,t denote the
return of variable i at time t, we have that:

yi,t = λi,1f1,t + λi,2f2,t + · · ·+ λi,rfr,t + εi,t (13)

21A reasonable share of the observations should be dedicated to model calibration as we want
our model to increase its ability to separate noise from genuine dynamics in the data. At the same
time, too small an out-of-sample period leads to difficulties associated with statistical inference
of forecasting results.
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The unobservable factors fj,t represent common variation found in groups of
predictors. By modelling the factors as a VAR(p) process we are able to forecast
the factor values. With forecasted factor values we can provide forecasts for all the
observed variables. If we let f̂j,t+h denote the forecasted value of factor j, then we
find the h-month-ahead value of variable i, denoted ŷi,t+h, by finding the expected
value of Equation (13):

ŷi,t+h = λi,1f̂1,t+h + λi,2f̂2,t+h + · · ·+ λi,rf̂r,t+h (14)

We note that being able to forecast the predictors themselves is merely a by-
product of utilizing a dynamic factor model. The information set, model set-up
and methodology are all tailored to the variables of interest (Atlantic salmon and
Brent Crude), as it is the model’s ability to forecast these variables that we wish
to optimize and evaluate.

The factor representation described above is fairly general, and we make few
modifications to the general dynamic model framework introduced in Equations
(1)-(3), that are restated below:

yt = ΛFt + εt (1)

Ft = A1Ft−1 + · · ·+ApFt−p + ut ut ∼ i.i.d N(0, Q) (2)

εt = ρεt−1 + et et ∼ i.i.d N(0, R) (3)

The factors in this model are all so-called block factors, i.e. factors that are common
only to subsets of the variables. It would of course be possible to specify global
factors here as well (factors representing co-movements common to all variables).
However, as we are dealing with a quite diverse set of variables we do not expect to
find global factors particularly useful. Thus, we only use block factors. To achieve
this we have to impose restrictions on the Λ matrix that allow us to specify which
variables should load on a given factor; that is, if variable i should not load on factor
j, then we restrict λi,j = 0. We note that specifying which variables should load
on a given factor is equivalent to specifying which variables a factor should extract
co-variation from. The block factors can be created so that they only capture the
common variation among certain variables, e.g. all variables related to supply-side
effects. The factors are modelled as a VAR(p) process in which the factor shocks
ut are free to co-vary. We set the order of the VAR process to six, i.e. p = 6.

47



Modelling the dynamics with such a high degree of freedom enables us to provide
forecasts over longer horizons.

For a matrix representation of the Equations (1) and (2) for the model used
in Application B, we refer to the matrix representation found in Equations (4) and
(5) in Section 3.

We note that there are no information criteria available to specify the number
of factors to include in the case of a restricted loading matrix. As we are not able to
make a more informed decision, we find it sufficient to represent the co-movement
in any subset of variables by one factor only.

5.3.3 Model Selection
While DFMs were primarily developed as an approach to efficiently making use of
the rich information available within large-scale data sets, the extraction of dynamic
latent factors can be considered a valuable trait regardless of data set size. In fact,
for our forecasting purpose, quick empirical testing of different model set-ups has
indicated that we do not seem to obtain improved forecasting performance by
adding on large numbers of predictors. With this in mind, we have instead chosen
to employ a more sophisticated model selection procedure, where we focus more
on the benefits of latent factors than on the inclusion of high numbers of predictor
variables.

Optimal model selection refers to the task of selecting the superior model
among many candidate models. In our case, the number of candidate models is
large and equal to all possible combinations of block structures given the data set of
potential variables. Quick computations show that the search space of candidate
models is vast, and it would be computationally infeasible to do an exhaustive
search.22 We take two measures in order to reduce the size of this optimization
problem. First, we restrict the search space to a limited set of latent factors.
Second, we employ a genetic algorithm (GA) to select an optimal model from the
restricted search space.

We restrict the search space by specifying the maximum number of factors
that may be included in the model and also by restricting the maximum number
of variables in each block. We set the maximum number of factors to six, and
allow the factors to extract co-variation from a maximum of six variables. We let
the dependent variable load on all factors as this encourages the factors to find co-

22With 100 variables and 10 factors, the loading matrix would contain 1000 elements. Restrict-
ing the variable is a binary decision; hence, there are 21000 ≈ 1030 possible combinations
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movements between the given variable and its predictors. Setting these restrictions
essentially reduces the problem to one of variable selection.

Variable selection, or variable subset selection, is the process of selecting a
subset of variables to be used in model construction. For each factor, we wish to
select six variables from the information set. We include the option of selecting
an "empty" variable, which essentially gives the option of selecting fewer than six
variables. This selection procedure is needed for each factor. The search space is
considerably reduced, but is still large, so an exhaustive search is still computa-
tionally infeasible.

We choose to employ a GA to select an optimal model from the remaining
search space. Here, we limit ourselves to shortly explain the principles behind the
GA and how we make use of it in our application. For a thorough introduction to
GAs and their applications we refer to Mitchell (1996).

A GA is a heuristic that is used to find or generate a sufficiently good solution
to an optimization problem. It is inspired by the process of natural selection or
"survival of the fittest", and borrows terminology from biology. Below is an outline
of the main steps of the genetic algorithm procedure used to select an optimal
model:

Step 1) Initiate the GA by creating a population consisting of stochastically
produced individuals. In our case, an individual represents a unique model specifi-
cation. That is, a unique selection and grouping of variables from which the factors
are created. For each individual we estimate the corresponding model and run the
forecasting scheme described earlier.

Step 2) Assign each individual a fitness value. The fitness value allows us
to compare the individuals up against each other, indicating which individuals are
"fit" and which are "unfit". In our case, a measure of forecast error is used as fitness
value23, and we specify that lower measures indicate fitter individuals.

Step 3) Create a new population of individuals based on the current pop-
ulation using operators such as crossovers, mutations, and selection. The fittest
individuals are transferred directly over to the new population, as these represent
better forecasting models. Further, as a way of exploring the search space we cre-
ate new unexplored combinations by combining individuals (e.g. select half the
variables from one set-up and half the variables from another set-up, and combine
them into a new set-up) or by slightly altering individuals (e.g. switching a current

23We use the MASE metric, which is introduced in Section 5.3.5.
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variable with a new one). In our case, an example would be to pick some blocks
from each of two model setups, and combine the blocks into a new setup to get a
new individual. Another example is just altering a setup by adding or removing a
variable.

Step 4) Repeat Step 2 and 3 until some convergence criterion is met. The
fittest individuals in the final population represent models that are likely to be
close to some local optimum in the search space.

Following this procedure, we have obtained a selection of models which
produce the best forecasts among the models in the given search space. These
models’ performances are further assessed to find the very best performing model
out-of-sample. The model that performs best on average is chosen as the final,
superior, model.

5.3.4 Model Estimation
When using numerical estimation procedures, the model selection is intertwined
with the estimation procedure as one has to decide a convergence criterion for the
model estimation, and the models must be estimated in order to compare them.
This is an important decision in estimation of forecasting models, as the models
should avoid becoming over-fitted to the in-sample data. Over-fitting occurs when
estimated models correspond too closely to a particular data set, and may therefore
fail to predict future observations reliably.

We estimate the dynamic factor models using the EM algorithm as outlined
in Section 3.2. The EM algorithm requires us to set the convergence threshold
(τ). A lower threshold results in a greater fine-tuning of the model to the in-
sample data, i.e. lowering the threshold gives an increasingly over-fitted model.
We set the threshold value based on an empirical performance assessment of out-
of-sample forecasts, letting the convergence threshold vary. We find empirically
that τ = 0.001 yields the best results.
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5.3.5 Benchmark Models
We specify several benchmark models so that we can compare the DFMs’ fore-
casting performance against widely used forecasting methods. The benchmarks
included are both univariate and multivariate models often applied to forecasting.
Below, we give a brief description of each model and the motivation for including
them. We refer to Appendix D for a full description of each model. All models are
used to forecast both Atlantic salmon and Brent Crude, and are optimally specified
using the initial in-sample data. All models follow the forecasting strategy outlined
in Section 5.3.1.

Univariate models
Hyndman (2010) suggests a minimum of two specific benchmarks for predic-
tion; one naïve method and one standardized method such as an ARIMA model.
ARIMA stands for autoregressive integrated moving average, and represents a
group of univariate models. First, we include a naïve no-change model, formally
an ARIMA(0, 1, 0). We note that the naïve no-change model is applied to log price
levels; that is, the model assumes that the price is constant from one period to the
next, implying a zero return. The naïve no-change model is often included as a
benchmark model due to its simplicity but also because it is widely recognized as
a tough-to-beat benchmark.

Next, we include a more general ARIMA(p, d, q) model. The lag orders p and
q are optimally specified according to the AIC.

Multivariate models
As the DFM is a multivariate model, we find it reasonable to include another mul-
tivariate model to compare performance against. Multivariate forecasting models
benefit from having access to explanatory variables that may add predictive power
to the models. Therefore, we include a VAR(p) model. VAR models have been ex-
tensively used in the literature to forecast commodity price changes, and is therefore
a solid benchmark to include. We provide the VAR models with five key predic-
tors recognized by Sandaker et al. (2017) and Westgaard et al. (2017) for Atlantic
salmon and Brent Crude oil, respectively. Further, we specify the models’ lag or-
ders p according to the optimal AIC. The predictors included in the VAR, as well
as further information about the model specification, can be found in Appendix D.
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5.3.6 Performance Assessment
The performance of a given forecast can be assessed from both statistical and
economic perspectives. Bloznelis (2016) categorizes statistical performance criteria
into four groups; (i) measures related to the absolute forecast errors, (ii) measures of
forecast accuracy relative to some naïve model for a specified sample, (iii) measures
indicating whether a forecast is more accurate only in sample or also in population,
(iv) measures indicating whether the forecast errors are unpredictable, i.e. whether
the forecast errors possess properties similar to that of white noise. We assess the
model performances using measures within all these categories. An economically
relevant performance measure is how much a market participant could gain from
utilizing a given forecast as compared to a benchmark forecast. Our focus will be
on the statistical performance criteria, but we also illustrate the use of an economic
performance assessment.

As a measure related to the absolute forecast errors we include the root-mean-

square forecast error (RMSE), which represents the sample standard deviation of
the forecast errors. Large forecast errors are penalized heavily in this measure.
Letting yt denote the realized values and ŷt denote the forecasts, RMSE is defined
as follows:

RMSE
(
h, yt, ŷt

)
=

√√√√ 1
t1 − t0 + 1

t1∑
t=t0

[
yt+h − ŷt+h|t

]2
(15)

We also choose to include the relative RMSE (rRMSE) metric suggested by Emiris
(2016), which is just the ratio of two models’ RMSE measures. This is used as
an indicator of relative performance; values below unity suggests that model 1
outperforms model 2 out-of-sample and vice versa. We define rRMSE as follows:

rRMSE
(
h, yt, ŷt,1, ŷt,2

)
=

RMSE
(
h, yt, ŷt,1

)
RMSE

(
h, yt, ŷt,2

) (16)

We include the mean absolute scaled error (MASE) as a measure of forecast
accuracy relative to a naïve model. MASE is defined as the mean absolute error
(MAE) out-of-sample of the given model relative to the in-sample MAE of a naïve
no-change forecast. Alexander (2008b) states that the MASE metric has significant
interpretation benefits; a MASE of 0.5 implies that the model’s average forecast
error is half of the average forecast error of a naïve no-change model in-sample.
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Hyndman and Koehler (2006) define MASE as follows:

MASE
(
h,M

)
= 1
t1 − t0 + 1

t1∑
t=t0

[
|et+h|

1
t0

∑t0
t=2 |yt − yt−1|

]
,

where et+h = yt+h − ŷt+h|t (forecast error)

(17)

We apply the widely used Diebold-Mariano (D-M) test (Diebold and Mariano,
1995; Diebold, 2015) which tests the null hypothesis that two losses due to two
forecast errors are from the same population. If the null hypothesis is rejected the
losses are deemed to be drawn from significantly different populations, indicating
that the model that performed best is likely to also be better over time. We will
let rRMSE indicate the relative performance, and complement that measure with
the D-M test statistic. One must specify a loss function to use in the D-M test; as
we use a squared error metric (RMSE), we use squared forecasting errors as a loss
function, in line with Emiris (2016). See Appendix C for the details on the D-M
test.

We perform statistical tests on the forecast residuals to assess whether their
properties resemble those of white noise, which would indicate that they are unpre-
dictable. The properties of white noise are normality, insignificant serial correlation
and homoscedastisity. These properties are tested through the Jarque-Bera test,
Ljung-Box test and Engle’s test of autoregressive conditional heteroscedasticity
(ARCH). All statistical tests are defined in Appendix C.

Finally, we include sample correlation and hit rate. The sample correlation
is simply the correlation between the forecasted and realized values. Hit rate is
defined as the percentage of forecasts that correctly predict the direction of the
realized value, i.e. having the same sign (+/-). It is formally defined as:

Hit Rate
(
h,M

)
= 1
t1 − t0 + 1

t1∑
t0

I{sign(et+h) = sign(yobst+h − yobst ) (18)

The hit rate is neither a pure accuracy nor correlation test metric in a strict sense,
but does provide complementary information regarding predictive power on a more
practical economic level. In fact, the metric is easily related to risk management
on a general basis, which will be explored further in the results section.
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5.4 Empirical Results
This section presents the selected DFMs and provides a statistical evaluation of
the 1-3 month forecasts produced. We consider Atlantic salmon and Brent Crude
oil separately.

5.4.1 Atlantic Salmon
We present the DFM identified in the model selection process as the best-
performing, before we assess its performance and compare it to the benchmark
models and literature.

Dynamic Factor Model
The final model contains six variables, some both lagged and current; the trout
price (TRO), meat index (MEA), salmon consumption in Europe (CEU), salmon
consumption in emerging markets (CEM), currency pair EUR/NOK (EURNOK),
and Marine Harvest Group (MHG) stock price. Table (7) reports which variables
each block factor, fj , extracts information from, along with each variable’s corre-
sponding factor loading (λi,j).

Table 7: DFM model set-up used to forecast Atlantic salmon

f1 λi,1 f2 λi,2 f3 λi,3 f4 λi,4 f5 λi,5

∆PSALMt 0.44 ∆PSALMt -0.18 ∆PSALMt 0.09 ∆PSALMt -0.09 ∆PSALMt -0.22
∆TROt 0.32 ∆TROt−3 0.01 ∆TROt−3 0.02 ∆EURNOKt -0.36 ∆MHGt−1 -0.42
∆CEMt−6 0.36 ∆CEMt 0.04 ∆CEMt 0.43 ∆EURNOKt−3 -0.21
∆CEUt−6 0.32 ∆MEAt 0.03 ∆CEUt 0.55 ∆EURNOKt−6 -0.34

The resulting factor representation used to predict Atlantic salmon spot price re-
turns is:

∆PSALMt+h = λ1f1,t+h + λ2f2,t+h + λ3f3,t+h + λ4f4,t+h + λ5f5,t+h + εt+h (19)

The estimated latent factors are presented in Figure (8). We observe strong
seasonal patterns in factors f1 and f3, capturing the known seasonality effects
associated with the salmon market. Specifically, factor f1 represents co-variation
between Atlantic salmon, consumption in EU lagged six months, consumption in
EM lagged six months, and trout. The respective factor loadings show that all
variables respond similarly, both in direction and in size, to shocks in f1. Positive
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Figure 8: Estimated latent factors for forecasting of Atlantic salmon.

shocks implies increased consumption in both EU and EM and increased prices of
both salmon and trout six months later. It is reasonable to think that the factor
represents certain demand effects affecting the highly similar Norwegian seafood
products. Factor f5 is interesting, as a positive shock to it increases the MHG
stock return this month and the salmon spot price next month. This could indicate
price discovery effects in the MHG stock. In general however, we emphasize that
making economic interpretations based on the factors and their associated variables
is not straight-forward, as the factor dynamics are complex and hard to entangle.
The economic interpretability is of minor interest in this application of the DFM
framework.
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Model Performance
The full performance assessment of the models is found in Table (8), where all
forecasting accuracy measures across all models and horizons are presented.

Table 8: Model performance metrics for the out-of-sample period from April 2015

to April 2018, Atlantic Salmon

Forecasting accuracy Forecasting errors a

Horizon Model rRMSE b MASE Hit Rate Correlation JB LB ARCH

h = 1 DFM - 0.736 0.750 0.636 0.746 0.627 0.385
No-change 0.820∗∗∗ 0.924 - - 0.610 0.754 0.929
ARIMA 0.745∗∗∗ 1.091 0.500 0.100 0.220 0.248 0.569
VAR 0.860∗∗ 0.910 0.667 0.286 0.410 0.620 0.929

h = 2 DFM - 0.762 0.750 0.617 0.777 0.516 0.445
No-change 0.815∗∗∗ 0.924 - - 0.610 0.754 0.929
ARIMA 0.698∗∗∗ 1.187 0.417 −0.039 0.155 0.277 0.835
VAR 0.824∗∗∗ 0.954 0.556 0.197 0.240 0.799 0.822

h = 3 DFM - 0.767 0.694 0.62 0.807 0.581 0.501
No-change 0.906∗∗∗ 0.924 - - 0.610 0.754 0.929
ARIMA 0.799∗∗∗ 1.138 0.417 −0.068 0.169 0.521 0.926
VAR 0.881∗∗∗ 0.983 0.556 0.062 0.448 0.912 0.529

a p-values reported for Jarque-Bera (JB) test for normality, Ljung-Box (LB) test for auto-

correlation, Engle’s ARCH test for heteroscedasticity. From a white noise perspective, large

p-values indicate desirable properties.
b rRMSE is reported as DFM relative to the given model, values below unity indicate that the

DFM outperforms the model. Asterisks (*, **, ***) denote that the H0 of equal forecast ac-

curacy between DFM and model is rejected at the (.10, .05, .01) significance level, respectively

(Diebold-Mariano test).

The broader story told by Table (8) is that the DFM produces superior fore-
casts across all horizons and that all measures seem to support this claim. First,
all rRMSE24 scores are in the range of 0.69-0.91, well below unity, stating that
the DFM outperforms all benchmarks markedly. The D-M test statistic is rejected
at the 0.01 significance level in all cases but one (where it is rejected at the 0.05
significance level), indicating that the DFM’s forecasts are consistently25 superior
compared to all benchmark models. The DFM’s hit rates are all greater than 0.69,
even as high as 0.75 at the 1- and 2-month horizons, which are large improvements
relative to flipping a coin at the beginning of each month.

24rRMSE is reported as DFM relative to the given model, values below unity indicate that the
DFM outperforms the model.

25By that we mean that our model is generally better, independent of sample period.
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The DFM’s abovementioned performance may also be assessed visually, which
is done in different ways in Figure (9). It is clear from Figure (9.I) that the
model largely manages to capture the dynamics of the Atlantic salmon returns.
This is further illustrated in Figure (9.III) where the price development, found by
accumulating the forecasted returns, is shown. The squared forecast errors, often
referred to as realized error volatility, in Figure (9.II) are consistently smaller than
the other models, with the exception of the spike in March 2017. Looking at these
squared errors, we see that DFM manages to capture high peaks and low downturns
better than the other models, which exhibit very large squared errors at certain
points. Figure (9.IV) shows that the DFM accumulates about 2/3 and 1/2 of the
realized forecasting errors relative to the VAR and ARIMA, respectively. This is
perhaps the most illustrative picture of the DFM’s relative performance.

As the literature review uncovered, there are only two other studies that are
directly comparable in that they directly forecast the price or returns of Atlantic
salmon. Bloznelis (2018) considers weekly prices, but provides forecasts up to 5
weeks ahead. Of the 16 models in total tested by Bloznelis (2018), all report a
MASE score above 1.25 at the 4 and 5 week horizons, horizons that should be
comparable to our 1-month horizon. Over any horizon, his best-performing model
is the vector error correcting model (VECM), which report a MASE score of 0.94 for
a 1-week horizon. In comparison, our 1 month-ahead score is 0.74. This indicates
that monthly data might be more suitable for forecasting Atlantic salmon returns
beyond the immediate short-term. This seeming improvement on the weekly fore-
casts could be a result of the lower frequency data (monthly) containing less noise,
but could also simply be a result of the model selection, i.e. the DFM simply
performs better at forecasting than the other models. Assessing the performance
of the DFM applied to weekly prices would be an interesting exercise.

The fact that Guttormsen (1999) is the only other comparable study highlights
the need for more benchmark studies within this field. He predicts weekly prices of
different weight classes of salmon and achieves, somewhat remarkably, hit rates well
above 0.80 for most weight classes and some even above 0.90 by using a Classical
Additive Decomposition (CAD) method. However, none of the models he proposes
are able to produce forecasts errors that beat the naïve no-change model on a
general basis. His study must be considered somewhat outdated anyway, as there
have been substantial changes to the salmon market the last two decades, including
considerably higher price volatility.
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Figure 9: Out-of-sample forecasts for 1-month-ahead Atlantic salmon returns from April 2015 to April 2018, including evalu-

ation of forecast errors
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The forecast error diagnostics show that none of the test hypotheses can be
rejected at the 10% significance level for any of the included models’ forecast errors,
indicating that we cannot reject that any of the forecast errors possess white-noise
properties. However, these tests suffer to a certain degree from the modest sample
size. Nonetheless, both the DFM and no-change model report p-values above 0.5
across all test and all horizons26, indicating that the forecast errors to a large degree
possess desirable properties. The histogram of the forecast errors for the DFM at
the 1-month horizon, shown in Figure (10), shows that there are some abnormalities
compared to the fitted normal distribution. This indicates that there may be more
information that could be captured. However, summarizing the results from this
exercise, the DFM appears to possess desirable properties and seems like a suitable
model for forecasting Atlantic salmon returns.

Figure 10: Histogram of forecast errors for DFM, 1-month horizon, Atlantic

salmon

Many of the metrics discussed in this section can be considered as somewhat
esoteric econometrics. Price direction, however, should be a fairly intuitive
concept for industry participants to utilize in their planning and decision making.
With a hit rate of 0.75, our model-based forecasts predict the correct direction
of 1-month ahead returns 75% of the time, on average. We consider a simplified
example to illustrate the potential economic value associated with this. During
the out-of-sample window used in this analysis, the average difference in monthly
salmon prices was 0.92 USD/kg. This fluctuation imposes a great deal of
uncertainty onto salmon farmers on the issue of e.g. harvest-timing. Lets assume

26The exception being the DFM at h=1, with a p-value of 0.385 for Engle’s ARCH test
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that we want to plan the harvest of 1 tonnes of Atlantic salmon. The following
choice must be made: harvest this month or wait. This choice will be based
mainly on two pieces of information: 1) the expected price development, and 2)
operational costs incurred (saved) by delaying (carrying out) harvest. Excluding
operational costs from the calculations, and given the average sample price
movement given above, the expected profit of using our DFM forecast in such a
situation is: 1, 000kg · 0.92USD/kg(0.75 − (1 − 0.75)) = 460 USD. This simple
example illustrates how accurate forecasts can reduce risk and increase expected
profits.

5.4.2 Brent Crude Oil
We present the DFM identified in the model selection process as the best-
performing, before we assess its performance and compare it to the benchmark
models and literature.

Dynamic Factor Model
The model contains six variables, some both lagged and current; PHLX oil service
sector index (OSX), metal index (MET), OPEC production volumes (OPEC_PR),
US net petroleum imports (IMP), trade weighted US dollar (USD) and the Kilian
index (KIL). In Table (9), we show which variables each block factor, fj , extracts
information from, along with each variable’s corresponding factor loading (λi,j).

Table 9: DFM model set-up used to forecast Brent Crude oil

f1 λi,1 f2 λi,2 f3 λi,3 f4 λi,4

∆BCOt 0.35 ∆BCOt 0.12 ∆BCOt 0.02 ∆BCOt 0.34
∆OSXt 0.25 ∆OSXt 0.19 ∆IMPt−3 0.57 ∆USDt -0.23
∆METt 0.54 ∆OSXt−1 0.13 ∆KILt 0.12

∆OPEC_PRt -0.63

The resulting factor representation used to predict Brent Crude oil spot price re-
turns is:

∆BCOt+h = λ1f1,t+h + λ2f2,t+h + λ3f3,t+h + λ4f4,t+h + εt+h (20)
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Figure 11: The estimated factors in DFM used to forecast Brent Crude oil.

Estimated factors are presented in Figure (11). The first factor, f1, represents
contemporaneous co-variation between oil, the OSX index and the metal index.
That is, a unit shock to the factor would shift all three variables upwards, albeit
with different magnitude. The factor may capture trends associated with the
business cycle, supported graphically by the clearly pronounced effects of the
global financial crisis. We note that in Application A, the metals sector was found
to be the most co-varying with the global factor. The remaining factors do not
offer similar appealing interpretations. However, the total set of latent factors
provide solid oil price forecasts.

Model Performance
The full performance assessment of the models are found in Table (10), where all
forecasting accuracy measures across all models and horizons are presented.
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Table 10: Model performance metrics for the out-of-sample period from April 2015

to April 2018, Brent Crude oil

Model Performance Forecast Errorsa

Horizon Model rRMSEb MASE Hit Rate Correlation JB LB ARCH

h = 1 DFM - 0.894 0.694 0.638 0.388 0.943 0.696
No-change 0.798∗∗ 1.069 - - 0.266 0.913 0.661
ARIMA 0.715∗∗∗ 1.192 0.611 −0.061 0.970 0.847 0.087
VAR 0.687∗ 1.148 0.556 −0.168 0.078 0.873 0.052

h = 2 DFM - 0.955 0.667 0.491 0.741 0.736 0.456
No-change 0.877 1.069 - - 0.266 0.913 0.661
ARIMA 0.752∗ 1.120 0.528 −0.337 0.187 0.913 0.766
VAR 0.845∗ 1.038 0.667 −0.025 0.195 0.904 0.151

h = 3 DFM - 0.972 0.639 0.218 0.838 0.814 0.731
No-change 0.971 1.069 - - 0.266 0.913 0.661
ARIMA 0.877∗ 1.187 0.472 −0.215 0.404 0.854 0.395
VAR 0.965 1.033 0.667 0.005 0.117 0.917 0.147

a p-values reported for Jarque-Bera (JB) test for normality, Ljung-Box (LB) test for auto-

correlation, Engle’s ARCH test for heteroscedasticity. From a white noise perspective, large

p-values indicate desirable properties.
b rRMSE is reported as DFM relative to the given model, values below unity indicate that the

DFM outperforms the model. Asterisks (*, **, ***) denote that the H0 of equal forecast ac-

curacy between DFM and model is rejected at the (.10, .05, .01) significance level, respectively

(Diebold-Mariano test).

The DFM outperforms the benchmark models at all horizons, but is best at
predicting 1 month ahead. At the 1-month horizon, the DFM reports 20% lower
RMSE scores than any other model. At this horizon, its forecasts are found to be
significantly superior to all benchmark models, with the Diebold-Mariano statistic
being rejected at the 0.10 significance level or less. It performs significantly better
than the ARIMA model across all horizons, which is clearly inferior to the other
models at all horizons. It should be noted that ARIMA models need quite a large
estimation sample in order to perform optimally. Nevertheless, our results might
indicate that univariate models are not ideal for modelling Brent Crude oil returns.
Further, the DFM manages to keep the MASE below unity across all horizons,
a feat none of the benchmark models manage at any horizon. At the 2-month
horizon, the DFM still delivers the best forecasts, although not as significantly so
as it managed for 1-month ahead predictions. At the 3-month horizon, it still has
a small edge on the others, yet smaller as the horizon increases. It should be noted
that the hit rate stays above 60% across all horizons, even when performance is
deteriorating.

62



2015-07 2016-01 2016-07 2017-01 2017-07 2018-01
-3

-2

-1

0

1

2

N
o
rm

a
li

z
e
d
 r

e
tu

rn
s

2015-07 2016-01 2016-07 2017-01 2017-07 2018-01
-8

-6

-4

-2

0

2

4

N
o
rm

a
li

z
e
d
 r

e
tu

rn
s

BCO

DFM

VAR(3)

ARIMA(5,1,2)

2015-07 2016-01 2016-07 2017-01 2017-07 2018-01
0

2

4

6

8

2015-07 2016-01 2016-07 2017-01 2017-07 2018-01
0

10

20

30

40

50

Figure 12: Out-of-sample forecasts for 1-month-ahead Brent Crude oil returns from April 2015 to April 2018, including

evaluation of forecast errors
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Examining the forecasts and realized returns in Figure (12.I), one can see that
the DFM has managed to forecast large returns better than the benchmarks. This
becomes clearer looking at the squared errors in Figure (12.II) and (12.IV), where
we observe that the DFM manages to forecast better in volatile periods while all
models achieve decent results in normal periods. Together, the figures report that
the DFM accumulates significantly lower forecast errors and thereby provides more
reliable indications on the future price trajectory than the other models.

Our forecasting model’s performance is comparable to the very best results
found in literature. Both Baumeister and Kilian (2012) and Chen (2014) report
MSPE values of their models relative to a no-change model. Simply by finding the
square root of these MSPE ratios, we get measures that are directly comparable
to the RMSE of the DFM relative to the no-change model. At a 1-month horizon
Baumeister and Kilian (2012) report a ratio of 0.905, and Chen (2014) reports a
ratio of 0.848, with forecasts that are significantly superior to the no-change model
(at 5% significance level according to the D-M test). Both these studies are inferior
to our 1-month ahead results (0.798). Further, it is interesting to note that the oil
service sector index (OSX) plays such a prominent role in the selected DFM (see
Table (9)), which supports Chen (2014)’s main finding that there is substantial
predictive content in oil-sensitive stock prices. We note that the models proposed
by Baumeister and Kilian (2012) perform the best at forecasting 3 months ahead,
where he reports an RMSE ratio of 0.862, significantly superior to the no-change
model, and also outperforming the DFM. Seeing that the DFM’s performance
is steadily declining with horizons, it is reasonable to think that the predictors
included in the model are more suited for shorter-term forecasting.27 Further, the
fact that these two models perform best at different horizons may indicate that a
horizon-specific forecasting strategy could be more fitting when forecasting crude
oil prices, i.e. specifying a unique model for each horizon and forecast directly not
iteratively.

We find that the DFM is significantly better at predicting correct 1-month
ahead price change direction relative to the abovementioned literature. Westgaard
et al. (2017), who use mostly the same predictors as this study, report a hit rate
of 0.58. Chen (2014) reports a hit rate of 0.62 and Baumeister and Kilian (2012)
report one of 0.55 (although for WTI Crude oil). Thus, with a reported 1-month
ahead hit rate of 0.69, the DFM predicts correct monthly direction about 70 % of

27We note that the GA-assisted model selection used 1-month MASE as a selection criterion.
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the time. Models with hit rates this high should be of interest to anyone speculating
in the oil market.

The forecast error diagnostics show that both the DFM and the no-change
model manages quite well across all horizons, as no test hypotheses can be rejected
at the 0.10 significance level. Both the ARIMA and the VAR struggle with het-
eroscedasticity, implying that there may be periods where they perform far worse
than others. Looking at Figure (12.II) again, we see that they perform quite poorly
in the period from April 2015 to April 2016 but quite well in the period of February
2017 to April 2018, causing the Engle’s ARCH test null hypothesis of homoscedas-
ticity to be rejected at the 0.10 significance level. It is worth noting that the DFM’s
reported p-value for the Jarque-Bera test at the 1-month horizon is slightly low,
and looking at the histogram in Figure (13) the errors exhibit some non-normal
features. The Brent Crude price is affected by a multitude of factors, and it is
reasonable to think that there is information not currently captured by the model.
However, it is clear that the model has been able to capture some information with
predictive value, as it outperforms the other models.

Figure 13: Histogram of forecast errors for DFM, 1-month horizon, Brent Crude

oil
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5.5 Concluding Remarks
In this study, we have utilized a DFM framework to forecast Atlantic salmon and
Brent Crude oil spot price returns. The data used ranges from January 2006
to April 2018, primarily consisting of predictors recognized in the literature as
having predictive content. We specified a DFM for each commodity, assisted by
a genetic algorithm-based model selection procedure. We computed 1-3 month
forecasts using the DFM and three other benchmark models over a 36-month out-
of-sample period, following an expanding-window approach. The forecasts were
assessed using a wide selection of performance measures.

We find that the DFM improves heavily upon the benchmark models in pre-
dicting Atlantic salmon returns across all horizons. It is actually found to be
superior to the others at the 1% significance level. Neither Bloznelis (2018) nor
Guttormsen (1999) are able to find models that consistently forecast better than the
naïve no-change model. Our novel approach, on the other hand, outperforms the
no-change model, with both MASE scores and RMSE ratios well below unity, and
does so consistently according to D-M test statistic. This study definitely serves
as a contribution to the very limited literature concerning forecasting of salmon
prices. The approach proposed in this study shows great promise in predicting
Atlantic salmon returns and should be of great interest to market participants.

The DFM also excels at forecasting Brent Crude returns 1 month ahead. At
this horizon it is both significantly superior to the benchmark models and improves
upon results found in the literature. It still improves upon the other benchmarks
when forecasting longer than a month ahead, however not by as much and not
significantly so. We find results in the literature seemingly outperforming the DFM
at the 3-month horizon, indicating that the variables included in the DFM might
contain predictive content most relevant at a shorter horizon. Adapting a direct,
horizon-specific, forecasting approach may be more suitable for forecasting Brent
Crude oil returns. The DFM’s best results are very promising, and the framework
deserves further attention.
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6 Conclusion
The objective of this thesis has been to investigate the price movements of what are
arguable two of the most interesting commodities in a Norwegian context, Atlantic
salmon and Brent Crude oil, through two specific implementations of the general
DFM framework estimated via the EM algorithm.

In Application A, we estimated the level of co-movement in global commodity
markets, and orthogonally decomposed individual commodity returns into global,
sectoral, and idiosyncratic components. This decomposition allowed us to estimate
the extent to which global, sectoral and commodity-specific factors contribute to
commodity price movements. The study yielded some interesting empirical results.

Focusing in on our main subjects of analysis, we find that a moderate, but
significant, share of the movements in the price of both Atlantic salmon and Brent
Crude over the sample period (1980-2018) can be attributed to shocks to a global
factor representing common, demand-driven trends in global commodity markets.
Interestingly, a sub-sample analysis reveals that, since 2000, the global factor’s
importance has significantly increased for both commodities (Brent Crude in par-
ticular), indicating an increased level of integration with global commodity markets.
Further, we find that the DFM forms a crude, but effective, tool for gaining genuine
insights into the anatomy of specific price movements for these commodities. Solely
based on readily available commodity price data, the model output can assist in
the interpretation of specific price events, and scrutinize existing narratives on the
main drivers of these shocks.

While designing and implementing the DFM has been a demanding economet-
ric exercise, we believe that actually making use of the model should be manageable
to most. As a result, we argue that the DFM should be considered a valuable ad-
dition to the analysis toolkit used by stakeholders seeking a better understanding
of commodity price composition.

Through Application B we have assessed the dynamic factor model’s applica-
bility to the task of forecasting monthly spot prices for Atlantic salmon and Brent
Crude oil, and at the same time tested whether forecasting based on latent factors
can provide economic value in this context. Our forecasting results suggest that
the DFM performs very well in predicting the two commodities’ returns on a gen-
eral basis, and reports forecast errors possessing largely desirable properties (white
noise).
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The DFM outperforms all benchmarks at forecasting Atlantic salmon and
Brent Crude returns across all horizons. For Atlantic salmon, we find that our
forecasts are significantly superior to all benchmark forecasts at a 1% significance
level, according to the D-M test. The DFM represents a solid contribution to a
limited body of research concerned with directly forecasting the price of Atlantic
salmon. Regarding Brent Crude, the DFM is best at forecasting 1 month ahead,
where its forecast are significantly superior to all benchmark forecasts and outper-
forms results found in the literature. At longer horizons, it still outperforms the
benchmark models, though not significantly so.

Our results from Application B strongly indicate that there is value to be
gained from forecasting based on latent, estimated factors representing co-variation
within a set of recognized predictor variables, rather than based on the predictor
variables directly.

In conclusion, our thesis has joined the ranks of a growing number of studies
demonstrating the versatility and usefulness of applying dynamic factor models to
complex econometric problems.

Further Research
Since our DFM forecasting approach has yielded such promising results, a natural
extension of our work would be to extend the scope of Application B. For salmon
farmers, for instance, the addition of both shorter and longer term forecasts than
were provided in this thesis would be of interest. The DFM could be modelled
using weekly data to produce forecasts better aimed at harvesting decisions. Also,
one could attempt to extend the monthly data model presented in our study in
order to produce forecasts for longer horizons in order to provide decision support
related to e.g. timing of smolt release.

Furthermore, the model selection problem related to our approach is inher-
ently combinatorial, with an exhaustive search being computationally intractable.
Hence, reasonable restrictions to the search space were needed to suit our computa-
tional capacity and limited time frame. Widening the search space could potentially
lead to better forecasts, as this would make it possible to bring more variables into
the models. In any case, we believe that our novel forecasting approach of com-
bining a genetic algorithm for model selection with a DFM is worthy of further
investigation.
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Appendix

A Factor plots and loadings
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Figure 14: Return plots of the estimated dynamic factors
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Table 11: Estimated Model Parameters of all Commodity Log Returns.

Factor Loadings (Λ̂)

Variables Global Animal Proteins Beverages Energy Fats & Oils Fertilizers Grains Metals Precious metals Raw materials

Atlantic salmon 0.256 0.063 - - - - - - - -
Beef 0.250 0.054 - - - - - - - -
Chicken 0.049 0.092 - - - - - - - -
Sheep 0.217 0.121 - - - - - - - -
Shrimps 0.020 0.218 - - - - - - - -
Cocoa 0.184 - 0.168 - - - - - - -
Coffee, Arabica 0.123 - 0.336 - - - - - - -
Coffee, Robusta 0.163 - 0.395 - - - - - - -
Tea 0.202 - 0.112 - - - - - - -
Coal, Australian 0.388 - - 0.061 - - - - - -
Coal, Colombian 0.403 - - 0.053 - - - - - -
Crude oil, Brent 0.319 - - 0.168 - - - - - -
Crude oil, WTI 0.316 - - 0.155 - - - - - -
LNG, Japan 0.106 - - -0.037 - - - - - -
Natural gas, Europe 0.117 - - 0.074 - - - - - -
Coconut oil 0.190 - - - 0.191 - - - - -
Copra 0.177 - - - 0.135 - - - - -
Fish meal 0.309 - - - 0.037 - - - - -
Groundnut oil 0.252 - - - 0.099 - - - - -
Groundnuts 0.231 - - - 0.088 - - - - -
Palm oil 0.292 - - - 0.125 - - - - -
Soybean meal 0.343 - - - 0.07 - - - - -
Soybeans 0.374 - - - 0.077 - - - - -
DAP 0.075 - - - - 0.541 - - - -
Urea 0.296 - - - - 0.299 - - - -
Barley 0.303 - - - - - 0.266 - - -
Maize 0.259 - - - - - 0.577 - - -
Rice 0.282 - - - - - 0.013 - - -
Sorghum 0.258 - - - - - 0.531 - - -
Wheat 0.182 - - - - - 0.297 - - -
Aluminum 0.400 - - - - - - 0.351 - -
Copper 0.454 - - - - - - 0.431 - -
Lead 0.285 - - - - - - 0.415 - -
Nickel 0.316 - - - - - - 0.402 - -
Tin 0.379 - - - - - - 0.191 - -
Zinc 0.296 - - - - - - 0.531 - -
Gold 0.278 - - - - - - - 0.657 -
Platinum 0.411 - - - - - - - 0.531 -
Silver 0.300 - - - - - - - 0.669 -
Logs, Malaysia 0.040 - - - - - - - - 0.657
Logs, West Africa 0.339 - - - - - - - - 0.147
Sawnwood 0.113 - - - - - - - - 0.392
Plywood 0.064 - - - - - - - - 0.452
Woodpulp 0.268 - - - - - - - - 0.139

a Notes: The table reports the estimated factor loadings (Λ̂) for all commodities in the information
set I∗ over the sample period 1980:M1 - 2018:M3. The loadings quantify the sensitivity of each
commodity i to shocks in the global and sectoral factors. Note that it is the product of the loading
and the factor that determine the respective components’ contribution to the individual commodity
fluctuations.
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B Information Sets

Table 12: Forecasting information set for Atlantic salmon with descriptive statistics.

Time series, (unit) Source Lag(s)a Trans. Time window ȳ σ JBb LB c ADF d

Consumption of salmon, Europe (tonnes) Marine Harvest Group 3,6,12 ∆ln YoY 0.05 0.08 0.41 251.34 -5.26
Consumption of salmon, Emerging Markets (tonnes) Marine Harvest Group 3,6,12 ∆ln YoY 0.1 0.13 44.27 298.85 -3.48
Currency pair, Euro to Norwegian krone (EUR/NOK) Oanda.com 3,6,12 ∆ln MoM 0.00 0.02 37.95 43.43 -9.48
Currency pair, Chilean dollar to US dollar (CLD/USD) Oanda.com 3,6,12 ∆ln MoM 0.00 0.03 191.05 37.39 -11.19
Norwegian trout, spot price (USD/kg) Norwegian Seafood Council 1-6 ∆ln MoM 0.00 0.07 44.70 72.74 -9.1
Norwegian mackerel, spot price (USD/kg) Norwegian Seafood Council 1-6 ∆ln MoM 0.00 0.09 43.35 37.57 -20.39
Shrimp (Mexico), spot price (USD/pound) Worldbank.com 1-6 ∆ln MoM 0.00 0.05 97.27 113.57 -5.17
Meat price index FAO.org 1-6 ∆ln MoM 0.00 0.03 25.48 171.94 -6.69
Beef (US), spot price (USD/pound) FAO.org 1-6 ∆ln MoM 0.00 0.04 67.16 70.99 -8.69
Chicken (US), spot price (USD/pound) Worldbank.com 1-6 ∆ln MoM 0.00 0.03 54.45 69.21 -11.78
Feed consumption, Norway (tonnes) Fiskedir.no 1-6 ∆ln YoY 0.00 0.12 15.43 365.97 -3.69
Sea lice occurence, Norway (#lice/fish) Lusedata.no 3,6,9,12,15 ∆ln YoY 0.03 0.45 28.22 414.12 -3.53
Sea temperature. Norway (C◦) Lusedata.no 3,6,9,12,15 ∆ln YoY 0.00 0.13 17.76 387.35 -2.76
Smolt release, Norway (#individuals) Fiskedir.no 9,12,15,17 ∆ln YoY 0.04 0.54 696.42 15.52 -11.12
Standing biomass salmon, Norway (tonnes) Fiskedir.no 3,6,9,12,15 ∆ln YoY 0.08 0.12 629.48 219.76 -0.13
Harvest volumes salmon, Norway (tonnes) Fiskedir.no 3,6,9,12,15 ∆ln YoY 0.07 0.15 234.46 195.76 -4.67
Harvest volumes trout, Norway (tonnes) Fiskedir.no 3,6,9,12,15 ∆ln YoY 0.02 0.19 98.98 145.67 -3.22
Fishmeal, spot price (USD/metric ton) Worldbank.com 1-6 ∆ln MoM 0.00 0.04 43.8 55.17 -7.46
Rapeseed oil, spot price (USD/metric ton) Worldbank.com 1-6 ∆ln MoM 0.00 0.05 23.61 72.95 -7.35
Soybeans, US, spot price (USD/metric ton) Worldbank.com 1-6 ∆ln MoM 0.00 0.06 35.39 43.87 -8.47
Wheat, US, spot price (USD/metric ton) Worldbank.com 1-6 ∆ln MoM 0.00 0.08 18.98 30.14 -9.4
Norwegian farmed Atlantic Salmon, PSALM (USD/kg) SSB.no 1-6 ∆ln MoM 0.01 0.15 13.18 48.27 -9.02
OSLO Seafood Index, OSLOFX (USD) Yahoofinance.com 1-6 ∆ln MoM 0.05 0.08 23.05 70.46 -11.22
Marine Harvest Group (MHG) stock price (USD/share) Yahoofinance.com 1-6 ∆ln MoM 0.01 0.07 25.04 67.47 -8.46
Europe Brent Crude oil, BCO (USD/barrel) EIA.gov 1-6 ∆ln MoM 0.00 0.09 44.77 40.13 -8.38

a The specific lag structures are based on the variable selection findings in Sandaker et al. (2017).
b Critical values JB : χ2

2,0.1>4.61, χ2
2,0.05>5.99 & χ2

2,0.01>9.21
c Critical values LB : χ2

6,0.1>10.64, χ2
6,0.05>12.59 & χ4

6,0.01>16.81
d Critical values ADF : τ0.1<-1.62, τ0.05<-1.95 & τ0.01<-2.58
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Table 13: Forecasting information set for Brent Crude oil with descriptive statistics.

Time series, (unit) Source Lag(s) Trans. Time window ȳ σ JB a LB b ADF c

US unemployment rate (% seas. adj.) Reuters.com 1-6 - - 0.00 0.03 5.07 138.3 -9.82
US money supply (USD) Reuters.com 1-6 ∆ln MoM 0.01 0.01 293.27 47.89 -8.79
GDP index (USD) Quandl.com 1-6 ∆ln MoM 0.00 0 342.52 207.25 -2.87
USD index, trade weighted (#) Reuters.com 1-6 ∆ln MoM 0.00 0.02 7.18 54 -8.45
Treasury bills, 3 month yield (%) Reuters.com 1-6 - - 1.00 1.61 75.39 1369.42 -2.63
Agricultural Commodity Index (USD) Worldbank.com 1-6 ∆ln MoM 0.00 0.03 193.81 67.66 -7.55
Metal index (USD) Worldbank.com 1-6 ∆ln MoM 0.00 0.06 148.5 50.65 -7.65
Gold, spot price (USD) Worldbank.com 1-6 ∆ln MoM 0.01 0.03 98.2 54.34 -7.31
US Natural gas, spot price (USD) Worldbank.com 1-6 ∆ln MoM 0.00 0.04 123.41 62.66 -12.85
US petroleum imports (USD) Worldbank.com 1-6 ∆ln MoM 0.00 0.02 143.76 33.66 -5.12
Kilian index, dev. from trend (%) personal.umich.edu/ lkilian 1-6 - - 3.43 36.06 7.16 972.34 -2.25
OPEC production (turnover by volume) Reuters.com 1-6 ∆ln MoM 0.00 0.01 14.15 25.53 -10.13
OPEC surplus capacity (oil volume) Reuters.com 1-6 ∆ln MoM 0.00 0.11 25.61 34.7 -8.6
Non-OPEC production. (turnover by volume) Reuters.com 1-6 ∆ln MoM 0.00 0.01 2.48 85.5 -12.06
Rotary oil rigs (# in operation. US) Reuters.com 1-6 ∆ln MoM 0.01 0.07 65.56 133.66 -5.21
OECD inventories (inventory volume) Reuters.com 1-6 ∆ln MoM 0.00 0.01 0.76 61.72 -12.85
OPEC inventories (inventory volume) EIA.gov 1-6 ∆ln MoM 0.00 0.02 0.56 41.72 -18.41
US inventories (inventory volume) EIA.gov 1-6 ∆ln MoM 0.01 0.02 0.67 35.72 -9.25
Refinery utilization (% operable capacity, US) Reuters.com 1-3 - - 0.00 0.03 45.74 56.25 -12.57
Europe Brent Crude oil, BCO (USD/barrel) EIA.gov 1-6 ∆ln MoM 0.00 0.09 44.77 40.13 -8.38
PHLX Oil Service Sector index, OSX (USD) Yahoofinance.com 1-6 ∆ln MoM 0.01 0.04 0.57 15.94 -10.8
CBOE Volatility Index, VIX (USD) Yahoofinance.com 1-6 ∆ln MoM 0.00 0.21 19.79 32.54 -14.64
Futures spread, 6month v 1month NYMEX (%) Quandl.com 1-6 - - 1.84 7.15 385.42 32.24 -11.51
BB spread, ICE BofAML US High Yield (%) Quandl.com 1-6 - - 4.18 2.14 377.65 671.32 -0.79
NYMEX Crack Spread (USD) Reuters.com 1-6 ∆ln MoM 0.00 0.09 965.33 18.21 -10.66
a Critical values JB : χ2

2,0.1>4.61, χ2
2,0.05>5.99 & χ2

2,0.01>9.21
b Critical values LB : χ2

6,0.1>10.64, χ2
6,0.05>12.59 & χ4

6,0.01>16.81
c Critical values ADF : τ0.1<-1.62, τ0.05<-1.95 & τ0.01<-2.58
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C Statistical Tests

Diebold-Mariano (1995) Statistic
The test assesses whether the loss due to forecast errors is equally great for two
competing forecasting models. That is; given two plausible models, the null hy-
pothesis (H0) of the D-M test statistic is given by E[Dt]=0 for all t ∈ [t0, t1],
where Dt=f

(
ei,t
)
-f
(
ej,t
)
is the loss differential from model i vs. model j, and f(.)

is a specified loss function.28 The test statistic is defined as follows,

Si,j = Dt√
σ̂/T

, S ∼ N(0, 1)
(21)

where Dt is the sample mean of the loss differential Dt0 , . . . , Dt1 . σ̂ is a con-
sistent estimator of the asymptotic variance of

√
TD. Further, we use a modified

version of the statistic proposed by Harvey et al. (1997) to account for probable
auto-correlation between forecast errors. This comes in handy in cases where the
forecast errors exhibit weakly white noise properties.

Jarque-Bera Test
The Jarque-Bera(JB) test can be applied to any random variable whenever we
need to justify an assumption of normality (see Alexander, 2008a, p.158). The JB
statistic is given by:

JB = T − k
6

(
τ̂2 + 1

4(κ̂− 3)2
)
∼ χ2

2 (22)

where T is the number of observations and k is the number of regressors. The H0

hypothesis is that the time series is equal to that of the normal distribution, while
Ha hypothesis states that the series is not normal. From Equation (22), the series
will be normally distributed if both skewness (τ̂) and kurtosis (κ̂) is close to zero.
The JB test rejects H0 if the test statistic exceeds the critical value for a given
significance level (α).

28We perform the test on normalized log returns and thus have no clear intuitive loss function.
Therefore, we follow the standard approach and use absolute squared function as f(.)
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Engle’s ARCH test
A time series that exhibits conditional heteroscedasticity - or autocorrelation in the
squared series - is said to have autoregressive conditional heteroscedastic (ARCH)
properties (see Brooks, 2014, p.389). Engle’s ARCH test evaluates each time series
for such properties. In this study, we use the test to investigate model residuals.
The null and alternative hypothesis are the following,

Ha : e2
t = α0 + α1e

2
t−1 + ...+ αme

2
t−m + ut

H0 : a0 = a1 + ...+ am = 0.
(23)

where et is the model residual and ut is a white noise process. The test
criteria stated in Equation (23) simply evaluate if the autoregressive constants α
are statistically different from zero or not. Thus, the test rejects the null hypothesis
(H0) if the model residual exhibits ARCH properties and vice versa.

Ljung-Box Q-test
The Ljung-Box Q-test evaluates each time series for auto-correlation. Its advantage
over other similar tests, like the Box-Pierce test, is that it tests for randomness
based on a specific number of lags instead of testing for randomness for each lag.
The statistic is given by

QLB = n(n+ 2)
m∑
k=1

r̂2
k

n− k
∼ χ2

h (24)

where r̂k is the estimated autocorrelation of the series at lag k, and m is the number
of lags being tested and n is the number of observations. The H0 hypothesis is
that the time series consist of random observations, not affect by significant auto-
correlation. The Ljung-Box test rejects H0 if the test statistic exceeds the critical
value for a given significance level (α).

80



Augmented Dickey-Fuller (ADF) Test
The ADF test is an improved Dicky-Fuller (DF) test used to investigate stationarity
in time series. The advantage of the ADF test over the simple DF test is that
by including necessary lagged dependent variables, it solves the problem of auto-
correlation in the residuals. The test of order q, or ADF(q) test, is based on the
auxiliary regression (see Alexander, 2008a, p.217):

∆Xt = α+ βXt−1 + γ1∆Xt−1...+ γq∆Xt−q + εt (25)

There exists several approaches to investigate the H0 hypothesis. One approach is
to use the usual t-statistics of the estimated coefficient β̂. The critical values are
dependent on the number of lags, q. In this paper, all the ADF tests are calculated
with a single lag, i.e. q = 1, as the tests do not yield notably different statistics for
longer lags.
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D Benchmark Models

D.1 VAR(p)
Let Yt = (y1t, ..., y1n)T denote a vector of time series variables. Then, the basic
p-lag vector autoregressive VAR(p) model is given by

Yt = c +Π1Yt−1 + ...+ΠpYp−1 + εt (26)

where Πi are coefficient matrices and εt is a zero mean white noise vector with
model residuals. This multivariate model depends upon which variables comprises
Yt.

For Atlantic salmon, VAR predictors were chosen based on the main findings
of Sandaker et al. (2017) in their recent study of superior Atlantic salmon predic-
tors. The five most significant predictors were: Lagged values of Atlantic salmon,

exchange rates (EUR/NOK), feed consumption, substitute proteins (meat index)

and feed prices (fish meal). All five time series are described in Table (12). Op-
timal model specification was decided through the AIC for the in-sample period
2006-2018. The optimal lag length p was 4.

For Brent crude, VAR predictors were chosen based on Westgaard et al.
(2017)’s superior oil predictors. They concluded that the three most significant
predictors were: The OSX index 29, the credit spread on BB rates high yield bonds

and the 6- vs. 1 mnd NYMEX oil futures spreads - all of which are financial indi-
cators and reflect supply/demand drivers indirectly. Therefore, we include OECD

inventory volume and OPEC production in order to capture some of these fun-
damental effects. The AIC suggests that the appropriate lag length p is 1, but
we chose p=3 as it provides good fit and increases the dynamic abilities to the
benchmark model on longer forecast horizons.

29The PHLX Oil Service Index is designed to track the performance of a set of companies
involved in the oil service sector.
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Table 14: AIC information criteria: VAR

Lag length p

IC 1 2 3 4 5 6

AIC, Atlantic Salmon −2.55e+ 03 −2.56e+ 03 −2.57e+ 03 −2.60e+ 03 −2.59e+ 03 −2.56e+ 03
AIC, Brent Crude −2.59e+ 03 −2.58e+ 03 −2.58e+ 03 −2.57e+ 03 −2.56e+ 03 −2.54e+ 03

D.2 ARIMA(p, d, q)
An ARIMA(p, d, q) (Autoregressive integrated moving average) model is given by

(1−
p∑

k=1
αkLk)(1− d)yt = (1 +

q∑
k=1

βkLk)εt (27)

where α1. . .αp and β1. . .βk are estimated autoregressive and moving average co-
efficients respectively. L denotes the log operator and yt denotes the dependent
variable. The p, d and q denote the number of autoregressive, seasonal and moving
average components, respectively. The univariate ARIMA benchmark depends on
the degree of persistence in the dependent variable.

D.3 ARIMA(0, 1, 0)
The naïve no-change model relates to a special case of an ARIMA model, where the
AR coefficient is equal to 1, i.e. a time series with infinitely slow mean reversion.
The ARIMA(0, 1, 0) model is then simply given by

yt = yt−1 + ut (28)
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E State Space Representation

We present the state space representation of the general model presented in
Equations (1)-(2):

Yt =
(
Λ 0 · · · 0 I 0

)


Ft

Ft−1
...

Ft−p

εt

εt−1


(29)



Ft

Ft−1

Ft−2
...

Ft−p

εt

εt−1


=



A1 A2 · · · Ap 0 0
Ir 0 · · · 0 0 0

0 Ir
...

...
...

...
. . . 0

...
...

0 · · · 0 Ir 0
...

0 · · · · · · 0 In 0
0 · · · · · · · · · 0 In





Ft−1

Ft−2
...

Ft−p

εt

εt−1


+



ut

0
0
...

0
et

0


(30)

Here, Ft = (f1,t, . . . , fr,t)′ and εt = (ε1,t, . . . , εr,t)′.
For Application A we have that:

Λ =


Λg1 Λ1 0 · · · 0

Λg2 0 Λ2
...

...
...

. . . 0
ΛgB 0 · · · 0 ΛB

 , Aq =



aqg 0 0 · · · 0

0 aq1 0
...

0 0 aq2
...

...
. . . 0

0 · · · · · · 0 aqB


(31)

Here, Λb = (λi, . . . , λj)′ if the variables i through j belong to sector b.
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Similarly, for Application B we have that:

Λ =


λ1,1 λ1,2 · · · λ1,r

λ2,1 λ2,2
...

...
. . . λn−1,r

λn,1 · · · λn,r−1 λn,r

 , Aq =


aq1,1 aq1,2 · · · aq1,r

aq2,1 aq2,2
...

...
. . . aqr−1,r

aqr,1 · · · aqr,r−1 aqr,r


(32)

We restrict variable i to not to load on factor f by setting λi,f = 0.
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F The EM Algorithm

As the state variables (xt) are unobserved, the parameters θ in the state space rep-
resentation in Equations (29) and (30) are in general not available in closed form,
and a direct numerical maximisation of the likelihood is often computationally
demanding. Therefore, we estimate these parameters using the Expectation Max-
imization (EM) algorithm. The EM algorithm was proposed by Dempster et al.
(1977) as a general solution to problems for which incomplete or latent data yield
a direct maximization of the likelihood function intractable or difficult to deal with
otherwise. The basic principle behind the EM algorithm is to write the likelihood
as if the data were complete and to iterate between the Expectation step where we
"fill in" the missing data in the likelihood, namely the unobserved latent factors,
and the Maximization step where we re-optimize the likelihood. Iterating between
these steps, the likelihood is bound to be monotonically improving, and converges
towards a local maximum of the likelihood.

We denote the joint log-likelihood of yt and xt, where t = 1, . . . , T , by
L(θ|Y,X), where Y = [y1, . . . , yT ] and X = [x1, . . . , xT ]. Given the available
data ΩT ⊆ Y , the EM algorithm steps can be described in the following way:

• E-step. The expectation of log-likelihood conditional on the data is calculated
using the model parameter estimates from the previous iteration, θk:

L(θ, θk) = Eθk
[
L(θ|Y,X)|ΩT

]
(33)

In the case of latent factors, these are estimated in this step.

• Maximization step. The model parameters are re-estimated through the max-
imization of the expected log-likelihood with respect to θ:

θk+1 = argmax
θ
L(θ, θk) (34)

The estimation problem is now reduced to a sequence of steps, which essentially
involves a pass of the Kalman smoother
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Expectation Step
In the Expectation step (E-step), the EM algorithm finds the expected values of the
latent factors xt which serve as factor estimates. These estimates are found, given
the observable data (yt) and state space model parameters (θk = (Ak, Λk, Qk, Rk)).
In our case, these are found by using the Kalman smoother, which consists of a
forward and a backward pass over the observable data, during which it finds the
statistically optimal estimates of the latent factors.30 The forward pass is better
known as the Kalman filter.

Given a linear dynamics model

yt = Λxt + bt, bt ∼ N(0, R) (35)

xt+1 = Axt + wt, wt ∼ N(0, Q), (36)

that has initial estimates (x0) of the state variables, and a set of observable
values (Yt), the Kalman filter does a forward pass 31 over the data. The state
variables have a conditional covariance, Pt, calculated at each time step. For each
time step, the Kalman filter does a measurement update and a time update of the
state variables and their covariance matrix.

(Measurement update) xt|t = xt|t−1 +Kt(yt − Λxt|t−1) (37)

Pt|t = Pt|t−1 −KtPt|t−1Λ
T (38)

where Kt = Pt|t−1Λ
T
(
ΛPt|t−1Λ

T +R
)−1 (39)

(Time update) xt+1|t = Axt|t (40)

Pt+1|t = APt|tA
T +Q (41)

The Kt is often referred to as the Kalman gain, and is essentially a weighting
that decides how much emphasis should be put on the discrepancy between the
observed value (yt) and the estimated value (Λxt). In dealing with missing values,
i.e. yt is missing, the Kalman gain is simply set Kt = 0. This can be interpreted
as the observable value providing no new information to the estimate of xt. For
further derivation and details of the Kalman filter, we refer to Durbin and Koopman

30The Kalman smoother is the optimal linear filter in cases where a) the model perfectly matches
the real system, b) the entering noise is white (uncorrelated) and c) the covariances of the noise
are exactly known.

31Processing time-stamped data, starting at time t=1 and going forward to t=T
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(2012).
The backward pass of the Kalman smoother provides the optimal estimate

of xt|T (t < T ) by taking all observations from a fixed interval y1, . . . , yT into
consideration. By doing a backward pass32 over the data, the smoothed estimates
(xt|T ) are calculated:

xt|T = xt|t +Dt(xt+1|T − xt+1|t) (42)

Pt|T = Pt|t +Dt(Pt+1|T −APt+1|tA
T −Q)DT

t (43)

where Dt = Pt|tA
TPt+1|t (44)

The Dt is sometimes referred to as the smoother gain. A detailed explanation
of the Kalman smoother and derivations of the backward recursion equations can
be found in Rauch et al. (1965).

Maximization Step
In the maximization step (M-step), the EM algorithm finds the model parameters
θ that maximizes the log-likelihood function, given the observable data yt and the
current estimates of the latent factors xt. That is, the likelihood function L(θ|yt, xt)
is maximized with respect to each of the model parameters, θ = (A,Λ,Q,R). For
a full derivation of the log-likelihood function and maximization of it we refer to
Bańbura and Modugno (2014). Without any model parameter restrictions and
without the feature of handling missing values, the model parameter estimates
would be:

Λk+1 =
(

T∑
t=1
Eθk

[
ytx
′
t|ΩT

])( T∑
t=1
Eθk

[
xtx
′
t|ΩT

])−1

(45)

Ak+1 =
(

T∑
t=1
Eθk

[
xtx
′
t−1|ΩT

])( T∑
t=1
Eθk

[
xt−1x

′
t−1|ΩT

])−1

(46)

Rk+1 = diag
(

1
T

(
T∑
t=1
Eθk

[
yty
′
t|ΩT

]
− Λk+1

T∑
t=1
Eθk

[
xty
′
t|ΩT

]))
(47)

Qk+1 = 1
T

(
T∑
t=1
Eθk

[
xtx
′
t|ΩT

]
−Ak+1

T∑
t=1
Eθk

[
xt−1x

′
t|ΩT

])
(48)

32Processing time-stamped data, starting at time t=T and going backwards to t=0
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The conditional moments of the latent factors (e.g.
∑T

t=1Eθk [xtx′t|ΩT ]) can
be obtained through the Kalman smoother.33

When yt contains missing values, there must be made modifications to the
estimates of Λ and R, as these involve the use of yt. We introduce a diagonal
matrix, Wt, of size n with the ith diagonal element equal to 0 if yi,t is missing,
and equal to 1 otherwise. Including such a selection matrix ensures that only the
available data are used in the calculations. As per Bańbura and Modugno (2014),
the expressions for Λ and R when yt includes missing values are:

vec(Λk+1) =
(

T∑
t=1
Eθk

[
xtx
′
t|ΩT

]
⊗Wt

)−1

vec
(

T∑
t=1

WtytEθk
[
x′t|ΩT

])
(49)

Rk+1 = diag
(

1
T

T∑
t=1

(
Wtyty

′
tW
′
t −WtytEθk

[
x′t|ΩT

]
Λ′k+1Wt −WtΛk+1Eθk [xt|ΩT ] y′tWt

+WtΛk+1Eθk
[
xtx
′
t|ΩT

]
Λ′k+1Wt + (I −Wt)Rk(I −Wt)

))
(50)

Further, as we want to impose restrictions on Λ and A we follow the approach
of Bork (2009) and Wu et al. (1996). They impose linear restrictions to the state
space model of the form HΛ vec(Λ) = κΛ and GA vec(A) = δA. Combined with the
missing values case, the resulting estimates for Λ and A are:

33See Watson and Engle (1983)
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vec(Λrk+1) = vec(Λuk+1) +

( T∑
t=1
Eθk

[
xtx
′
t|ΩT

])−1

⊗Rk

H ′Λ

×

HΛ

( T∑
t=1
Eθk

[
xtx
′
t|ΩT

])−1

⊗Rk

H ′Λ

−1 (
κΛ −HΛ vec(Λuk+1)

)
(51)

vec(Ark+1) = vec(Auk+1) +

( T∑
t=1
Eθk

[
xt−1x

′
t−1|ΩT

])−1

⊗Qk

G′A

×

GA
( T∑

t=1
Eθk

[
xt−1x

′
t−1|ΩT

])−1

⊗Qk

G′A

−1 (
ρA −GA vec(Auk+1)

)
(52)

Here, Ark+1 and Λrk+1 are the estimates of the restricted parameters, while
Auk+1 and Λuk+1 refer to the unrestricted parameter estimates from Equations (46)
and (49).
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