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Abstract

This paper considers a two-component system with failure interactions. Com-
ponent 1 is repairable and component 2 is non repairable and is subject to
an increasing degradation. One considers two different shock models. In
model 1, component 1 failure causes random gradual damages to component
2 and increases its degradation level. In model 2, component 1 failure may
cause the failure of component 2 with a given probability while the failure of
component 2 is catastrophic and induces the failure of the whole system. For
each model, three maintenance policies are proposed. In each policy, compo-
nent 1 undergoes imperfect corrective maintenance actions and component 2
is perfectly repaired. An explicit expression of the long run average mainte-
nance cost is developed and the existence of the optimal policy is discussed.
Numerical examples are given to illustrate the effectiveness of the proposed
models.

Keywords: two-component systems, failure interaction, imperfect repair,
virtual age method, long-run average cost optimization.

Notation

General notations

F (·)(f(·)) the lifetime distribution (density) function of component 1
L the failure threshold of component 2
Y (t) the degradation level of component 2 at time t
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σL the failure time of component 2
GσL the distribution function of σL, ḠσL(t) = 1−GσL(t)
N(t) the number of component 1 failure by time t
E(N(t)) the expectation of N(t)
pn(t) the probability that the number of component 1 failures at

time t is n
Xi the inter-maintenance time between the (i−1)st and the ith

repair of component 1
a the age-reducing factor of component 1
Bi(t) the effective age of component 1 after the ith repair by time

t
Vi(t)(vi(t)) the cumulative distribution (density) function of Bi(t)
c1 the repair cost of component 1
c2 (c3) the preventive (corrective) replacement cost of the system
T policy the maintenance policy under which the system is renewed

at its failure or when the age of component 2 reaches T ,
which occurs first

N policy the maintenance policy under which the system is renewed
at its failure or at the Nth failure of component 1, which
occurs first

(N, T ) policy the maintenance policy under which the system is renewed
at its failure, or at the Nth failure of component 1 or at the
age T of component 2, which occurs first

Notations with respect to type 3 failure interaction

Zi the damages caused to component 2 by the ith failure of
component 1, Zi , i = 1, 2, · · ·

H(·) the distribution function of Zi, i = 1, 2, · · ·
H∗(n)(·) the n-fold convolution of H(·) with itself
Fs(t) the lifetime distribution of component 2 by time t
C∞(T ) the long run average maintenance cost of the system under

T policy
C∞(N) the long run average maintenance cost of the system under

N policy
C∞(N, T ) the long run average maintenance cost of the system under

(N, T ) policy
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Notations with respect to type 1 failure interaction

r probability that the failure of component 1 has no effect on
component 2

r̄ probability that the failure of component 1 causes the in-
stantaneous failure of component 2, r̄ = 1− r

FsI(t) the lifetime distribution of component 2 by time t
h1(t) the failure rate of component 1 when it is minimally repaired

at failure
C∞I(T ) the long run average maintenance cost of the system under

T policy
C∞I(N) the long run average maintenance cost of the system under

N policy
C∞I(N, T ) the long run average maintenance cost of the system under

(N, T ) policy

Notations in the numerical example

λ, b the parameters of Weibull distribution used to describe the
lifetime of component 1

µ the parameter of Exponential distribution used to describe
the damages caused to component 2

α, β the parameters of Gamma process used to describe the degra-
dation process of component 2

1. Introduction

In multi-component systems, for the sake of simplification, very often it is
assumed that the failure of a component has no effect on failures of the other
components [1, 2, 3]. However, in practice this assumption rarely holds. In
most of multi-component systems, the failure of one component may affect
the operational components by increasing their failure rates or their degrada-
tion levels. This is often the case for mechanical or electrical systems, when
one component failure causes unexpected vibrations, frictions, overheating.
For example, the non-uniform load sharing between mesh gear pairs may
result in the degradation or even failure of multiple mesh gear systems [4]; in
a mining operation, the conveyor belt containing numerous rollers is exerted
to transport ore. The failure of one roller may increase the failure rate of the
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consecutive rollers [5]. These dependencies among components can signifi-
cantly affect the system availability, maintenance costs, customer decisions,
etc. Therefore, it is crucial to take them into account in system reliability
analysis and in the development of maintenance policy.

In reliability engineering, stochastic dependence in multi-component sys-
tems was firstly introduced by Murthy et al. ([6, 7]). They considered two
types of dependencies for a two-component system called type I and type
II failure interactions. In type I failure interaction model, the failure of
a component may induce the instantaneous failure of the other component
with a given probability. In type II failure interaction model, the failure
of a component only affects the failure rate of the other one. Later, Naka-
gawa et al. [8] proposed a Type III failure interaction model also known as
shock damage interaction where the failure of one component induced ran-
dom accumulated damage to the other component. Since then, an extensive
literature has been developed to formalize the failure dependence, to pro-
pose relevant models and to assess their impacts on the system reliability
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

It is worth mentioning that in the existing literature for maintenance
planning of two-component systems with failure interactions, the following
hypotheses can be observed:

• the failure processes of all components are modeled by either their
failure rates or their degradation processes [9, 10, 11, 12, 13, 16, 17, 19];

• at least one component is not ageing with time. It turns into the
failure state when its damage induced by random shocks exceeds a
pro-determined level[8, 14, 18];

• maintenance actions are either minimal repair or perfect repair[8, 9, 10,
11, 14, 16, 17, 18, 19].

Although these hypotheses may facilitate the evaluation of the system relia-
bility as well as the optimization of maintenance policies, they are unrealistic
in practical applications. First, for mechanical or electrical systems, it is nor-
mal to monitor some fatal components instead of the entire system. In such
scenario, the failure processes of the monitored components may be described
by degradation processes, while the rest can be modeled by their failure rates.
Secondly, the natural ageing of a component cannot be ignored. Thirdly, in
addition to minimal repair and perfect repair, imperfect repair is generally
implemented in practical application.
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To overcome these limitations, we consider here a two-component system
with:

• one component ageing on its own and described by a lifetime distribu-
tion with non constant failure rate (component 1),

• one component ageing due to its own described by a degradation model
and also due to the failure interactions (component 2),

• imperfect maintenance (Virtual age method) is carried out to compo-
nent 1.

The main objective is to assess the impact of failure interactions on the
reliability of component 2, and to demonstrate how we can control them
with maintenance actions.

In a nutshell, the main goal of this paper is to propose a modeling frame-
work for maintenance optimization of two-component systems with non-
symmetrical failure interactions. In order to be generic and cover different
practical situations, we consider:

• two types of failure interactions,

• three preventive maintenance policies. In each maintenance policy, the
system is correctively replaced and component 1 undergoes imperfect
corrective repairs whenever it fails.

The paper is organized as follows. In Section 2, the system with type III
failure interaction between components is presented and the assumptions for
maintenance actions are stated. Three maintenance policies are presented
and their optimizations with respect to long run expected cost are discussed.
In Section 3, similar results are calculated with type I failure interaction be-
tween components. Numerical examples illustrating the maintenance policies
are given in Section 4. Finally, some conclusions and perspectives are given
in Section 5.

2. Type III failure interaction

2.1. System description

• The system has two components.

5



• For a brand-new component 1, in absence of maintenance action, it
has a lifetime distribution F (·), F (0) = 0 and density function f(·).
Component 1 is repairable.

• Component 2 is non-repairable and it fails when its degradation level
exceeds a pre-determined threshold L.

• Whenever component 1 fails, a random amount of damage is induced
to component 2. We assume the damages Zj (j = 1, 2, ...) are additive
and identical, independent random variables with distribution H(·).

• The failure of component 2 induces the failure of component 1.

• In absence of damages caused by component 1, let {Y (t), t ≥ 0} be the
natural degradation level of component 2 at time t and σL be the time
at which the degradation level reaches or first exceeds L, L > 0. Then
its distribution function is

GσL(t) = P(σL ≤ t) = P(Y (t) ≥ L), t ≥ 0.

Let pk(t) be the probability that the number of component 1 failure is k
by time t. Let Fs(t) be the lifetime distribution function of component 2, we
have the following equation:

Fs(t) =
∞∑
k=0

pk(t)

∫ ∞
0

GσL−z
(t)dH∗(k)(z). (1)

See Appendix B for more detail on this expression.

2.2. Maintenance model

In order to avoid failure and to extend the lifetime of the system, we
propose to plan corrective and preventive maintenance actions. The following
maintenance actions are carried out.
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2.2.1. Corrective maintenance

Corrective maintenance is carried out at component-level and system-
level respectively according to the following policy:

• the whole system is replaced when component 2 fails;

• component 1 undergoes Kijima model 1 imperfect repair when failed;

• the repair time and system renewal time are negligible.

Regarding Kijima model 1:

• let us note Xi and a, respectively the inter-maintenance time between
the (i − 1)st and the ith repair and the age-reducing factor of com-
ponent 1. The effective age of component 1 after the ith repair is
Bi = Bi−1 + aXi, i = 1, 2, · · · , where the initial age B0 = 0 and the
reduction degree 0 ≤ a ≤ 1.

• denoted by Vn(·) the distribution function of virtual age Bn, N(t) the
number of component 1 failures by time t and pn(t) = P{N(t) = n}.
As shown in [20], it is easy to verify that the probability mass function
of pn(t) is:

pn(t) =

∫ at

0

F̄ (y + at−y
a

)

F̄ (y)
vn(y)dy,

where F̄ (·) = 1− F (·), vn(x) = d
dx
Vn(x), v1(x) = 1

a
f(x

a
) and vn+1(x) =

1
a

∫ x
0

f(y+x−y
a

)

F̄ (y)
vn(y)dy for n ≥ 1.

For more details on virtual age models, refer to Appendix A and [20].

At last, in the following, we will denote c1 the repair cost of component
1, c2 and c3 the preventive replacement cost and the corrective maintenance
cost of the system respectively, with c3 ≥ c2 > c1.

2.2.2. Preventive maintenance

Three following preventive maintenance policies are considered:

1. Age-based policy, called T policy, under which the system is replaced
either at its failure or when component 2 reaches age T , whichever
comes first.
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2. Failure-number-based policy, called N policy, under which the system
is replaced at the Nth failure of component 1 or at the system failure
whichever occurs first.

3. Mixture policy, denoted (N, T ) policy, under which the system is re-
placed at age T of component 2, or at the Nth failure of component 1,
or at the system failure time whichever occurs first.

It is noted that these maintenance strategies are consistent with the stochas-
tic dependencies existing between components: the impact of component 1
failures on component 2 is modeled by either damages or by shocks (this is a
stationary phenomena); however, their occurrence times are time dependent
(this is a non-stationary phenomena). Hence the age of component 2 and the
number of failures experienced by component 1 are then reasonable health
indicators for decision-making.

We provide results on the system long run average maintenance cost under
different maintenance policies.

2.3. Maintenance cost derivation

In this part, the average long run maintenance costs are derived consid-
ering the renewal reward theorem. Indeed, since the system is replaced as
good as new after the failure of component 2, the system replacement inter-
vals are independent and identically distributed. Therefore, the interval ∆
between two replacements can be considered as a renewal cycle and the long
run average maintenance cost EC∞ can be obtained considering the average
maintenance cost on a renewal cycle E(C(∆)) as follows: EC∞ = E(C(∆))

E(∆)
.

2.3.1. T policy

Let us consider the age-based policy, under which the system is replaced
either at its failure or when component 2 reaches age T , whichever comes
first. Let C∞(T ) be the long run average maintenance cost associated to the
age-based policy. Its expression can be obtained as follows:

C∞(T ) =
c3 − (c3 − c2)F̄s(T ) + c1EN(T )F̄s(T ) + c1

∫ T
0
EN(t)dFs(t)

T F̄s(T ) +
∫ T

0
tdFs(t)

, (2)

where EN(t) =
∑∞

n=0 npn(t) is the expected number of component 1
failures by time t, Fs(t) is the component 2 lifetime distribution function
given in equation (1). See Appendix C.1 for detailed calculations leading to
this result.
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2.3.2. N policy

Under this policy, we replace the whole system at the Nth failure of
component 1 or at the failure of component 2 whichever occurs first. Let
C∞(N) be the average long run maintenance cost. It is calculated as follows:

C∞(N) =
c3 − (c3 − c2)

∫∞
0
RN−1(t)dVN(at) + c1

∑N−1
k=1

∫∞
0
Rk−1(t)dVk(at)∫∞

0

∑N−1
k=0 pk(t)Rk(t)dt

, (3)

where Ri(t) =
∫ L

0
(1−GσL−z

(t))dH∗(i)(z), i = 1, 2, · · · , N , R0(t) = 1−GσL(t),
GσL(t) is the probability distribution function of the first hitting time of level
L by the component 2 degradation, H(·) is the cumulative distribution func-
tion of the total damages caused by component 1 to component 2, H∗(n)(·)
is the n-fold convolution of H(t) with itself, pk(t) is the probability that the
number of component 1 failures occur in [0, t] is k, Vk(t) is the distribution
function of the virtual age after the kth repair. See Appendix C.2 for detailed
calculations leading to this result.

2.3.3. (N, T ) policy
In the mixture policy called (N, T ) policy, the system is replaced at age

T of component 2, or at the Nth failure of component 1, or at the time of
component 2 failure whichever occurs first. Assume that the long run average
maintenance cost under this circumstance is C∞(N, T ). Then we have:

C∞(N,T ) =

c3 − (c3 − c2)

(∫ T
0 RN−1(t)dVN (at) +

∑N−1
k=0 pk(T )Rk(T )

)
∫∞

0

∑N−1
k=0 pk(t)Rk(t)dt

+
c1
∑N−1

k=1

∫ T
0 Rk−1(t)dVk(at)∫∞

0

∑N−1
k=0 pk(t)Rk(t)dt

,

where Ri(t) =
∫ L

0
(1 − GσL−z

(t))dH∗(i)(z), i = 1, 2, · · · , N , R0(t) = 1 −
GσL(t), GσL(t) is the probability distribution function of the first hitting time
of level L by the component 2 total degradation at time t, H(t) is the lifetime
distribution of damages caused by component 1 to component 2 until time t,
H∗(n)(t) is the n-fold convolution of H(t) with itself, pk(t) is the probability
that the number of component 1 failures occur in [0, t] is k, Vk(t) is the
distribution function of the component 1 virtual age after the kth repair.
Refer to Appendix C.3 for detailed calculations leading to this result.

9



2.4. Existence of the optimal maintenance policy

In this paragraph, the existences of optimal T ∗ and N∗ minimizing C∞(T )
and C∞(N) respectively are discussed. Sufficient conditions regarding the
existence of the optimal maintenance actions under T policy and N policy
are derived respectively.

2.4.1. Existence of the optimal age-based policy

Under the age-based policy, the optimal and unique age T ∗ which mini-
mizes the long run average maintenance cost exists if the following assump-
tions are satisfied:

lim
T→∞

dEN(T )

dT

∫ T

0

F̄s(t)dt− EN(T )F̄s(T )−
∫ T

0

EN(t)dFs(t) >
c3

c1

, (4)

and
d2EN(t)

d2t
> 0, t > 0. (5)

Particularly, when c3 = c2 and component 1 has a Weibull lifetime distribu-
tion F (t) = 1− exp(−λtb) with minimal repair (a = 1), the optimal T ∗ =∞
when b ≤ 1 which means there is no preventive maintenance in the optimal
policy. See the Appendix D.1 for detailed calculations leading to results.

2.4.2. Existence of the optimal failure number-based policy

Under the failure-number-based maintenance policy, when c2 = c3, the
optimal N∗ exists if the following assumptions are satisfied:

lim
N→∞

d1(N)
∑N−1

k=1 d2(k)

d2(N)
−

N−1∑
k=1

d1(k) >
c2

c1

, (6)

and
d1(N)

d2(N)
is a convex function with respect to N, (7)

where d1(k) =
∫∞

0
Rk−1dVk(at) and d2(k) =

∫∞
0
pk(t)Rk(t)dt where Ri(t) =∫ L

0
(1−GσL−z

(t))dH∗(i)(z), i = 1, 2, · · · , N , R0(t) = 1−GσL(t).
Refer to Appendix D.2 for detailed calculations leading to results.
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3. Type I failure interaction: description and maintenance models

3.1. System description and maintenance policy

Let us consider another scenario: whenever component 1 failure occurs,
either it has no impact on component 2 with probability r or it induces the
instantaneous failure of component 2 with probability r̄ = 1− r.

Then the failure interaction between the two components can be seen as a
type I failure interaction given by [6]. In this framework, when the conditions
of section 2 hold, similar optimality results are derived. Proofs are presented
briefly since the same methods as in section 2 are adopted. Let FsI(t) be the
lifetime distribution of component 2, F̄sI(t) = 1 − FsI(t). It is easily seen
that

F̄sI(t) =
∞∑
k=0

rkpk(t)ḠσL(t),

where ḠσL(t) = 1−GσL(t). Hence

FsI(t) = 1−
∞∑
k=0

rkpk(t)ḠσL(t). (8)

3.2. Cost calculation for the age-based policy

Denote by C∞I(T ) the average long run cost when it undergoes age-based
policy. It can be proved that:

C∞I(T ) =
c3 − (c3 − c2)

∑∞
n=0 r

npn(T )ḠσL(T ) +
∑∞

n=1(n− 1)c1r
n−1r̄

∫ T
0
ḠσL(t)dVn(at)∫ T

0
F̄sI(t)dt

+

∑∞
n=0 nr

nc1(
∫ T

0
pn(t)dGσL(t) + pn(T )ḠσL(T ))∫ T

0
F̄sI(t)dt

, (9)

where FsI(t) is given in equation (8), other notations have been given in
Section 2. See Appendix E.1 for calculations leading to this result.

3.3. Cost calculation for the failure number-based policy

Suppose that C∞I(N) is the system average long run cost under failure-
number-policy. The following expression is obtained:
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C∞I(N) =
c3 − (c3 − c2)

∫∞
0 rN−1ḠσL(t)dVN (at)∫∞

0

∑N−1
k=0 rkpk(t)ḠσL(t)dt

(10)

+

∑N−1
n=1 (n− 1)c1r

n−1r̄
∫∞

0 ḠσL(t)dVn(at)∫∞
0

∑N−1
k=0 rkpk(t)ḠσL(t)dt

+

∑N−1
n=0 nr

nc1

∫∞
0 pn(t)dGσL(t) +

∫∞
0 rN−1(N − 1)c1ḠσL(t)dVN (at)∫∞

0

∑N−1
k=0 rkpk(t)ḠσL(t)dt

.

See Appendix E.2 for the proof.

3.4. Cost calculation for the mixture policy

Suppose that C∞I(N, T ) is the average long run system cost under (N, T )
policy, then

C∞I(N,T ) =

c3 − (c3 − c2)

(∫ T
0 rN−1ḠσL(t)dVN (at) +

∑N−1
k=0 rkpk(T )ḠσL(T )

)
∫ T

0

∑N−1
k=0 rkpk(t)ḠσL(t)dt

+

∑N−1
n=1 (n− 1)c1r

n−1r̄
∫ T

0 ḠσL(t)dVn(at) +
∑N−1

n=0 nr
nc1

∫ T
0 pn(t)dGσL(t)∫ T

0

∑N−1
k=0 rkpk(t)ḠσL(t)dt

+

∫ T
0 rN−1(N − 1)c1ḠσL(t)dVN (at) + c1

∑N−1
k=0 krkpk(T )ḠσL(T )∫ T

0

∑N−1
k=0 rkpk(t)ḠσL(t)dt

.

Since the result is a combination of results obtained in sections 3.2 and
3.3, detailed calculations are omitted.

3.4.1. Particular case of nonhomogeneous Poisson process

More particularly, when component 1 failure occurs according to a non-
homogeneous Poisson process, we have the following result.

Suppose that the failure rate of component 1 at t is h1(t). When com-
ponent 1 undergoes minimal repair (a = 1), the optimal and unique age T ∗

which minimizes C∞I(T ) exists if

lim
T→∞

h1(T )

∫ T

0

F̄sI(t)dt−
∫ T

0

F̄sI(t)h(t)dt >
c3

rc1

, (11)
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and
dh1(t)

dt
> 0, t > 0. (12)

Besides, when c2 = c3 and component 1 has Weibull lifetime F (t) = 1 −
exp(−λtb), the optimal T ∗ = ∞ when b ≤ 1 which means no preventive
maintenance is the optimal policy. Otherwise the optimal T ∗ can be decided
by only equation (11). See Appendix E.3 for detailed calculations.

4. Numerical examples

In this section, first, several quantities and the long run average main-
tenance cost calculated by both their exact expressions and Monte Carlo
simulation are presented to validate our results. Afterward the optimization
of the long run average maintenance cost and the sensitivity analysis under
different maintenance policies are explored.

4.1. Illustrative example

Here we assume component 1 has Weibull cumulative distribution func-
tion F (t) = 1 − e−λtb , t > 0. The amount of damages is exponentially dis-
tributed with expectation µ. It is assumed that µ = 0 when the failure
processes of components 1 and 2 are independent, which means that no
damages are induced to component 2 due to the failure of component 1. The
deterioration of component 2 follows a homogeneous Gamma process which
has been widely used and successfully data-fitted in describing system degra-
dation on the account of erosion, corrosion, crack growth, etc. [21, 22, 23].
Its density function is as follows:

gαt,β(u) =
βαtuαt−1e−βu

Γ(αt)
, α > 0, β > 0,

where

Γ(α) =

∫ ∞
0

uα−1e−udu.

By [24], the first hitting time has the following distribution function:

GσL(t) =
Γ(αt, Lβ)

Γ(αt)
, t ≥ 0,
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where the lower incomplete Gamma function is defined as follows:

Γ(α, x) =

∫ ∞
x

zα−1e−zdz.

To begin with, assume that λ = 0.01, b = 2, a = 0.6, T = 10, N = 2, L =
20, λ = 0.01, b = 2, α = 4, β = 2, c1 = 50, c2 = 250, c3 = 300. Table 1 shows
some quantities obtained by their formulas and Monte Carlo simulation with
105 histories and 95% confidence intervals. All results are coherent.

Formula Simulation 95% confidence interval
p0(T ) 0.3679 0.3670 [0.3576,0.3764]
p1(T ) 0.4211 0.4234 [0.4137,0.4331]
p2(T ) 0.1648 0.1626 [0.1554, 0.1689]
Fs(T ) 0.5820 0.5800 [0.5770, 0.5831]

C∞(T,N) 34.2762 34.2715 [34.1976, 34.3454]

Table 1: Calculations of various quantities by their formulas and the Monte Carlo simu-
lations (N = 105) respectively

4.2. Sensitivity analysis

In this paragraph, the baseline parameters are chosen according to the
results obtained in the previous paragraph ( λ = 0.1, b = 2, a = 0.6, L =
20, λ = 0.1, b = 2, α = 4, β = 2, µ = 1). For the optimization of the long run
average maintenance cost, as it is shown in equation (4) , the existence of
the optimal value depends on the system parameters and the cost ratio: c3

c1
.

The smaller is c3
c1

, the higher is the possibility of the existence of a optimum.
Therefore, under the constraint c3 > c1, we chose close cost values for c1 and
c3 in order to assure the existence of the optimum. It should be mentioned
that this is an example presenting the system properties and optimal mainte-
nance cost rates under different maintenance policies. In reality, parameters
selections are based on the real data and the parameter estimation etc.

4.2.1. Sensitivity analysis with type III failure interaction between units

We set c1 = 50, c2 = 60, c3 = 80. In the following scenario, one parameter
is changed to evaluate the variation of the average cost while other parameters
remain unchanged.

Figure 1 and Table 2 show the long run average maintenance cost C∞(T )
with different parameters setting. The following behaviors are pointed out.

14



0 2 4 6 8 10 12
30

35

40

45

50

55

60

65

70

T

co
st

 r
at

e

 

 
a=0.6
a=0.8
a=1

Figure 1: C∞(T ) with different a
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Figure 2: C∞(T ) with different µ
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Figure 3: C∞(T ) with different λ
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Figure 4: C∞(T ) with different b

• The optimal expected cost C∞(T ) increases with the age-reducing fac-
tor a and the expectation of the damages µ. The larger a is, the worse
is the repair. Therefore, there are more damages caused to component
2 which induces the system failure. As µ represents the expectation
of damages, for large values of a and µ the system fails more often.
It can be observed in Figure 2 that the expected maintenance cost
reaches its minimum when the failure processes of components 1 and
2 are independent (µ = 0). It indicates that the failure dependence
between components has a non-negligible impact on the maintenance
cost. Under these parameters setting, the optimal cost is less sensitive
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to the variations of the expectation of the damages µ. Because in this
case, the failure of component 2 is mostly due to its deterioration in
comparison to damages caused by component 1.

• From Figures 3-4, it can be observed that the optimal expected main-
tenance cost C∞(T ) decreases with the expected lifetime of component
1. The larger the Weibull parameters λ and b are, the smaller is the
lifetime of component 1. Therefore more component 1 failures as well
as the system failure may occur which lead to an increase in the main-
tenance cost.

• It can be noticed in Table 2, the optimal average cost C∞(T ) increases
with respect to the shape parameter α of the Gamma process used
to describe the degradation of component 2 and the maintenance cost
units (c1, c2 and c3). In this scenario, the deterioration of component
2 is faster and the maintenance are more costly. On the contrary,
there is a decreasing tendency of the cost rate with respect to the scale
parameter of the Gamma process b. Because the smaller is b, the slower
is the deterioration of component 2 and so the smaller is its probability
of failure.

GP parameters Cost units Optimal cost rate
α β c1 c2 c3 C∞(T ∗) T ∗

4 2 50 60 80 32.1556 4
4 1 50 60 80 33.6287 4
2 2 50 60 80 32.0982 4
4 2 50 60 80 32.1556 4
4 2 30 60 80 24.2826 5
4 2 50 70 80 34.4246 5
4 2 50 60 90 32.1280 4

Table 2: The optimal average cost rate under age-T -based policy with different gamma
process parameters and different repair costs

Figure 5 shows the long run average maintenance cost under N policy
C∞(N) with different parameters setting. The repair cost of component 1 is
set to c1 = 10 and other conditions are as in T policy. As expected, it can be
noticed that under N policy the average cost rate increases with the lifetime
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Figure 5: C∞(N) with different parameters

of component 1 and the expectation of the amount of damages µ. A similar
behavior as in the T policy can be pointed out.
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Figure 6: C∞(T,N) with different parameters policy

Figure 6 shows the cost rate C∞(N, T ) under (N, T ) policy with the pa-
rameters given as in the T policy. The cost rate shows a decreasing tendency
with respect to the number of component 1 failure N and is a convex func-
tion with respect to T , the age of component 2. It reaches a minimum with
C∞(1, 6) = 20.9874.
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4.2.2. Numerical analysis with type I failure interaction between units

Here we adopt the original parameters as shown in section 4.2.1 ( α =
4, β = 2, λ = 0.1, b = 2, a = 0.6, L = 20, c1 = 50, c2 = 60, c3 = 80) and set
r = 0.8.
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Figure 7: C∞I(T ) with different r and a
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Figure 8: C∞I(T ) with different λ
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Figure 9: C∞I(N,T ) with different N and T

Figures 7 and 8 show the cost rate C∞I(T ) when we change only one
parameter. Similarly, the variation of the expected cost rate under the (N, T )
policy is illustrated in Figure 9.

The following results can be pointed out.
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• The optimal expected cost C∞I(T ) increases with r which is the prob-
ability that the failure of component 1 has no impact on component
2. Because the greater r is, more imperfect repairs are carried out.
However, the imperfect repair is not effective as it slightly reduces the
age of component 1 (a = 0.6) with a high cost (c1 = 50) compared
to the system replacement costs (c2 = 60, c3 = 80). Similarly, the
optimal expected cost C∞I(T ) increases with the age-reducing factor
of component 1 a. The larger a is, the worse is the repair. There-
fore more maintenance actions due to the failure of component 1 are
implemented.

• The optimal C∞I(N, T ) initially decreases with T , the age of component
2, but turns to increase after reaching a minimum. It is not very
sensitive with N .

5. Conclusions

In this study, we proposed different preventive maintenance policies for a
two component system with two types of failure interactions. The system is
successively supposed to be preventively replaced i) at age T of component
2, ii) at the Nth failure of component 1, iii) at the age T of component 2
or the Nth failure of component 1 which occurs first. Two types of compo-
nent interactions are considered. In type III failure interaction, component
1 failure causes a random amount of damage to component 2 while in type
I failure interaction, component 1 failure induces component 2 failure with
probability r, 0 < r < 1. Component 2 failure is always lethal which results
in the system failure under both type III and type I failure interaction. The
average maintenance costs on the long time horizon are formulated and the
optimizations are discussed. It is shown that the failure interaction between
components has significant effect on the system maintenance cost. The ne-
glect of dependencies between components may lead to bias in the evaluations
of system reliability and maintenance cost. It is therefore necessary to take
the stochastic dependence among components into consideration in the prod-
uct reliability analysis. In our future work, it may be more interesting and
challenging to generalize the two-component system to more complex sys-
tems and analyse the impact of failure dependence on the system reliability
as well as the maintenance cost optimization problem.
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Appendix A. Introduction of virtual age models

In the past several decades, imperfect repair has been extensively inves-
tigated [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. The virtual age methods
are proposed by Kijima et al.[20, 36, 37]. Instead of considering the system
age as the time elapsed since it was new, they assumed the virtual age (or
effective age) as the real condition of the system which is reduced after the
repair. They developed two imperfect maintenance models. Let Bn, An, Xn

be the component virtual age after the nth repair, the repair degree of the
nth repair and the time between the (n − 1)th and nth repair. In Kijima
model 1, it is assumed that the repair can reduce the damage emerged only
during the last survival period which yields Bn = Bn−1 + AnXn, B0 = 0.
While in Kijima model 2, the maintenance effect decreases all damages be-
fore the nth repair which yields: Bn = An(Bn−1 +Xn), B0 = 0. In our study,
we take into consideration Kijima model 1 to describe the imperfect correc-
tive maintenance of component 1. To reduce the calculation complexity, we
suppose the repair degree is a constant and depends neither on time nor on
the failure number n which means: An = a, 0 ≤ a ≤ 1. The repair becomes
minimal if a = 1 and perfect if a = 0. Extended studies of the virtual age
method can be seen in [30, 32, 31, 33] etc.

Appendix B. Calculations leading to equation (1)

To obtain equation (1), let Ti, i = 1, 2, · · · , be the ith system renewal
time. It is obvious that they are identically and independently distributed.
Then

P{T1 ≤ t} = p0(t)P(Y (t) > L) +
∞∑
k=1

P(Y (t) +

N(t)∑
i=1

Zi > L | N(t) = k)P(N(t) = k)

= p0(t)P(Y (t) > L) +
∞∑
k=1

pk(t)

∫ ∞
0

P(Y (t) > (L− z))dH∗(k)(z)

= p0(t)GσL(t) +
∞∑
k=1

pk(t)

∫ ∞
0

GσL−z
(t)dH∗(k)(z)

where Gσx(t) = 1 when x < 0. H∗(n)(t) is the n-fold convolution of H(t)
with itself. Therefore

Fs(t) = p0(t)GσL(t) +
∞∑
k=1

pk(t)

∫ ∞
0

GσL−z
(t)dH∗(k)(z).
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Appendix C. Calculations leading to the cost expression

Appendix C.1. Calculations for results in paragraph 2.3.1

Let ∆T
i , U

T
i be respectively the length of the ith replacement cycle and

the cost incurred during this period, i = 1, 2, · · · . Then {∆T
i , U

T
i } constitutes

a renewal reward process which yields

C∞(T ) =
E(UT

1 )

E(∆T
1 )
.

As

E(UT
1 ) = P(T1 > T )(c2 + c1EN(T )) +

∫ T

0

(c3 + c1EN(t))dP(T1 ≤ t)

E(∆T
1 ) = TP(T1 > T ) +

∫ T

0

tdP(T1 ≤ t)

where P(T1 ≤ T ) = Fs(T ). Therefore equation (2) is straightforward. �

Appendix C.2. Calculations for results in paragraph 2.3.2

Let S1
n be the nth failure time of component 1 which is S1

n =
∑n

i=0Xi.
One shall denote ϕ(t) the degradation level of unit 2 at time t, ∆N

1 the
time elapsed in one replacement cycle, UN

1 the total cost in one replacement
cycle and E(∆N

1 ), E(UN
1 ) be the expectations of ∆N

1 and UN
1 respectively.

Let be Ri(t) =
∫ L

0
(1 − GσL−z

(t))dH∗(i)(z) for i = 1, 2, · · · , N and R0(t) =∫ L
0

(1−GσL(t)). The following equality is verified

P(∆N
1 > t) = P(S1

N > t, ϕ(t) < L)

= P(N(t) < N)P(ϕ(t) < L|N(t) < N)

=
N−1∑
k=0

pk(t)P(Y (t) +
k∑
i=0

Zi < L)

=
N−1∑
k=0

pk(t)Rk(t).
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Thus:

E(∆N
1 ) =

N−1∑
k=0

∫ ∞
0

pk(t)Rk(t)dt. (C.1)

Note that the expected number of component 1 imperfect repairs is

N−1∑
k=1

∫ ∞
0

Rk−1(t)dVk(at),

Therefore,

E(UN1 ) = c3 − (c3 − c2)

∫ ∞
0

RN−1(t)dVN (at) + c1

N−1∑
k=1

∫ ∞
0

Rk−1(t)dVk(at). (C.2)

By the renewal theory C∞(N) =
E(UN

1 )

E(∆N
1 )

, and considering equations (C.1)

and (C.2) the result is obtained.

Appendix C.3. Calculations for results in paragraph 2.3.3

Denote ∆NT
1 , UNT

1 be the length and the cost of one replacement cycle
respectively, then

∆NT
1 =

{
T, ∆N

1 > T,
∆N

1 , ∆N
1 ≤ T ,

where ∆N
1 is the renewal cycle under N policy defined by equation (C.1).

Therefore,

E(∆NT
1 ) =

∫ T

0

tdP(∆N
1 ≤ t) + TP(∆N

1 > T ) =

∫ T

0

P(∆N
1 > t)dt

=
N−1∑
k=0

∫ T

0

pk(t)Rk(t)dt.

As the probability that the system is preventively replaced is as follows:∫ T

0

RN−1(t)dVN(at) +
N−1∑
k=0

pk(T )Rk(T ),
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hence the expected maintenance cost during the period UNT can be derived:

E(UNT
1 ) = c3 − (c3 − c2)

(∫ T

0

RN−1(t)dVN(at) +
N−1∑
k=0

pk(T )Rk(T )

)

+c1

N−1∑
k=1

∫ T

0

Rk−1(t)dVk(at).

The expected long run maintenance cost is derived from the expressions of
E(∆NT

1 ) and E(UNT
1 ) and the renewal reward theorem.

Appendix D. Optimality conditions

Appendix D.1. Calculations for results in paragraph 2.4.1

By differentiating C∞(T ) with respect to T and setting it to zero we
obtain:

dEN(T )

dT

∫ T

0

F̄s(t)dt−
∫ T

0

F̄s(t)dEN(t) =
c3 − (c3 − c2)F̄s(T )

c1

−
(c3 − c2)fs(T )

∫ T
0
F̄s(t)dt

c1F̄s(T )

where fs(·) is the density function related to Fs. Denote the left hand side
as Gau1(T ). Since

dGau1(T )

dT
=

d2EN(T )

d2T

∫ T

0

F̄s(t)dt,

Gau1(T ) is an increasing function of T if d2EN(T )
d2T

> 0. Note that Gau1(0) = 0,
as a result, if also lim

T→∞
Gau1(T ) > c3

c1
, then there is a finite and unique T ∗

which minimizes the average long run cost C∞(T ).
Additionally, when c2 = c3 and unit 1 has a Weibull lifetime distribution

F (t) = 1− exp(−λtb), it is obvious that EN(t) = λtb which yields d2EN(t)
d2t

=

λb(b − 1)tb−2. Therefore d2EN(t)
d2t

≤ 0 for b ≤ 1 which implies Gau1 is a
decreasing function of T . Hence T ∗ = ∞. On the other hand, for b > 1,
d2EN(t)

d2t
> 0 and the condition in equation (5) is always hold.
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Appendix D.2. Calculations for results in paragraph 2.4.2

Let us suppose C∞(N + 1)− C∞(N) ≥ 0. This yields to:

d1(N)
∑N−1

k=1 d2(k)

d2(N)
−

N−1∑
k=1

d1(k) >
c2

c1

, (D.1)

where d1(k) =
∫∞

0
Rk−1dVk(at) and d2(k) =

∫∞
0
pk(t)Rk(t)dt where Ri(t) =∫ L

0
(1−GσL−z

(t))dH∗(i)(z), i = 1, 2, · · · , N , R0(t) = 1−GσL(t).
Denoted by Gau2(N) the left hand side of equation (D.1), then

Gau2(N + 1)−Gau2(N) =
N∑
k=1

d2(k)

(
d1(N + 1)

d2(N + 1)
− d1(N)

d2(N)

)
.

Therefore, as we have discussed in paragraph 2.4.1, the unique and optimal
N∗ exists when equation (6) and (7) hold.

Appendix E. Cost calculation under type I failure interaction

Appendix E.1. Calculations for results in paragraph 3.2

Let P cm
1 (T ) and P cm

2 (T ) be the probabilities that the system is replaced
before T due to the shock caused by component 1 and due to the natural
degradation of component 2 respectively. Let P pm(T ) be the probability that
the system is replaced at time T . These probabilities are given as follows:

P cm
1 (T ) =

∫ T

0

∞∑
n=1

rn−1r̄ḠσL(t)dVn(at),

P cm
2 (T ) =

∫ T

0

∞∑
n=0

rnpn(t)dGσL(t),

P pm(T ) =
∞∑
n=0

rnpn(T )ḠσL(T ).

As a result, the expected cycle cost is calculated as follows:

c3 − (c3 − c2)P pm(T ) +
∞∑
n=1

(n− 1)c1r
n−1r̄

∫ T

0

ḠσL(t)dVn(at)

+
∞∑
n=0

nrnc1(

∫ T

0

pn(t)dGσL(t) + pn(T )ḠσL(T )).

24



As the expected length of one replacement cycle is

T F̄sI(T ) +

∫ T

0

tdFsI(t) =

∫ T

0

F̄sI(t)dt,

So the average long run cost under age-based policy is obtained by the renewal
reward theorem.

Appendix E.2. Calculations for results in paragraph 3.3

Let P cm
1 (N) and P cm

2 (N) be the probabilities that the system is correc-
tively replaced due to the system failure induced by component 1 or due to
the natural system failure respectively. Let P pm(N) be the probability that
the system is replaced at the Nth unit 1 failure. They are given by

P cm
1 (N) =

∫ ∞
0

N−1∑
n=1

rn−1r̄ḠσL(t)dVn(at),

P cm
2 (N) =

∫ ∞
0

N−1∑
n=0

rnpn(t)dGσL(t),

P pm(N) =

∫ ∞
0

rN−1ḠσL(t)dVN(at).

So the expected cost over a replacement cycle is given by:

E(C(∆I)) = c3 − (c3 − c2)P pm(N) +
N−1∑
n=1

(n− 1)c1r
n−1r̄

∫ ∞
0

ḠσL(t)dVn(at)

+
N−1∑
n=0

nrnc1

∫ T

0

pn(t)dGσL(t) +

∫ ∞
0

rN−1(N − 1)c1ḠσL(t))(t)dVN(at).

As the total time elapsed in one cycle ∆I satisfies:

P(∆I > t) =
N−1∑
k=0

rkpk(t)ḠσL(t),

which implies

E(∆I) =

∫ ∞
0

N−1∑
k=0

rkpk(t)ḠσL(t)dt.

From the renewal reward theory, the calculation of C∞I(N) is straightfor-
ward.
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Appendix E.3. Calculations for results in paragraph 3.4

In the following, we call component 1 failure as minor failure if it has
no effect on component 2 and major failure otherwise. Component 1 failure
occurs according to a non-homogeneous Poisson process when it undergoes
minimal repair while the system is supposed to be replaced when component
2 fails. Assume h1(t) to be the component 1 failure rate at time t, from the
decomposition property of the Poisson process, the minor failure of compo-
nent 1 occurs according to a non-homogeneous Poisson process with intensity
rate rh1(t). Denoted by SMn the nth minor failure time of component 1, hence

P(SMn ≤ t) =
∞∑
i=n

(rH1(t))i exp(−rH1(t))

i!
,

where H1(t) =
∫ t

0
h1(θ)dθ. By the similar method as we mentioned in previ-

ous paragraph 3.2, C∞I(T ) can be rewritten as

C∞I(T ) =
c3 − (c3 − c2)F̄sI(T ) + c1

∫ T
0
F̄sI(t)rh1(t)dt∫ T

0
F̄sI(t)dt

.

Thus the optimal condition of T ∗ is derived by adopting the method in para-
graph 3.2.
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