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Abstract 

The increasing demand of energy prompts the petroleum industry exploitation activities to the 

Arctic region where the low temperature is a strong challenge, both for structural design and 

material selection. For structural materials exhibiting Lüders plateau, it has been reported that 

lowering temperature will increase the Lüders plateau length. In order to obtain a deep 

understanding of the Lüders plateau effect on ductile crack growth resistance, we performed 

numerical analyses with SENT specimens and the Gurson damage model. The Lüders plateau 

was simplified by keeping the flow stress constant and varying the plateau length. The results 

show that the existence of Lüders plateau does not influence the initiation toughness, however, 

will alter the material’s fracture resistance significantly. It is found that the Lüders plateau 

effect is in general controlled by the stress triaxiality level in front of the crack tip. Both the 

strain hardening and the crack depth effects on resistance curves are alleviated due to the 

Lüders plateau. For materials with very small initial void volume fraction the Lüders plateau 

effect is more pronounced. Since the Lüders plateau intensifies the crack driving force and may 

lower down crack resistance curve, special attention should be paid for the application of 

materials with Lüders plateau in the Arctic. 
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1. Introduction 

The Arctic has become an interesting region to petroleum industry, considering its abundant 

undiscovered oil and gas reserves. The assessment conducted by the United States Geological Survey 

indicates that about 30% of the world’s undiscovered gas and 13% of the world’s undiscovered oil may 

be located in that region (Gautier et al., 2009). However, many factors may affect the exploitation 

activities, including harsh environment, heavy drilling and shipping cost, as well as climate 

considerations (Ermida, 2014; Harsem et al., 2011). The low temperature appears to be a key challenge 

for the design and assessment of the infrastructures to be built in the Arctic region. It is well-known that 

most structural steels show obvious temperature dependent mechanical properties, such as yield stress, 

ductile-brittle fracture transition behavior. Previous investigations demonstrate that for some steels, the 

so-called Lüders plateau which is influenced by loading rate, ferrite grain size, yield stress, et al. may 

occur in uniaxial tension test (Beardsmore et al., 2013; Dahl et al., 2018; Hallai and Kyriakides, 2013; 

Han et al., 2017; Liu et al., 2015; Mazière et al., 2017; Ren et al., 2015; Tsuchida et al., 2006). It has 

been reported that lowering testing temperature will increase the Lüders plateau length, see Fig. 1. Ren 

et al. performed tensile tests of a 420MPa structural steel with temperatures varying from 0 to -90 ℃ and 

created a relation between temperature and the Lüders plateau length (Ren et al., 2015). Dahl numerically 

investigated the effect of the yield stress and Lüders plateau length on crack driving force with single 

edge notched tensile (SENT) specimens and found that the increasing yield stress and Lüders plateau 

length will intensifies the crack driving force (Dahl et al., 2018). In Dahl’s work, a horizontal plateau 

was used to simplify the Lüders behavior. The purpose in the present study is to investigate the effect of 

Lüders plateau length on the ductile crack growth resistance. The simplification of the Lüders behavior 

in Dahl’s work is followed in this study. 

 

For elastoplastic fracture, which is the focus in this paper, J-integral and crack tip opening displacement 

(CTOD) are widely used to characterize material’s fracture toughness (Eikrem et al., 2008; Han et al., 

2014; Henry and Luxmoore, 1997; Østby et al., 2007a, b). The specimen size (Xu et al., 2009; Zhao et 

al., 2014), geometry, loading type (Cravero and Ruggieri, 2005) et al. influence the crack tip stress field. 

The deviation of crack tip stress field from the reference one is now generally understood as the crack 

tip constraint. By introducing a second parameter to characterize the constrain level, the value of fracture 

toughness can be transferred from one specimen geometry to another. O’Dowd and Shih (O'Dowd and 

Shih, 1991, 1992) proposed a J-Q formulation to characterize the crack tip stress and strain fields. In 

their formulation, J-integral sets the size scale over which large stresses and strains develop, while Q is 

the constraint parameter to scale the near-tip stress distribution and the stress triaxiality ahead of the 
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crack. The formulation was further extended by Zhang et al. by introducing a parameter M to 

characterize material mismatch (Zhang et al., 1997; Zhang et al., 1996).  
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Fig. 1    Temperature dependence on Lüders plateau for materials with various ferrite grain sizes 

(Tsuchida et al., 2006). 

 

For ductile fracture, the crack resistance curve is used to characterize the material’s ability to resist crack 

extension. The resistance can be characterized by the J-integral or CTOD. The resistance curve is usually 

measured with compact tension specimen, single edge bending specimen or SENT specimen. The 

behavior of resistance curve is also affected by the crack tip constraint level (Xu et al., 2010), as well as 

the material’s mechanical (hardening) and damage parameters (initial void volume fraction). The effects 

of specimen geometry, specimen size, loading type, pre-strain (Eikrem et al., 2008) et al. on crack 

resistance curve have been widely investigated. However, studies on the effect of low temperature 

induced Lüders plateau on ductile crack growth are very limited, if available. 

 

It should be noted that a pipeline usually have two failure modes, namely the tension failure with possibly 

a defect (crack), and compression failure by wrinkling or buckling. Lüders plateau may have strong 

influence on both failure modes (Hallai and Kyriakides, 2011a, b). In order to limit the scope, tension 

failure with crack is the focus of this study. To obtain a deep understanding of the effect of Lüders 

plateau length on ductile crack growth resistance, we performed a series of numerical analyses with 

SENT specimen. The Gurson damage model introduced in section 2 was used to simulate the crack 

growth. A family of Lüders plateau length ranging from 0 to infinite，representing two limit material 

models (material without Lüders plateau and the perfectly plastic material), was investigated. More 
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information about the numerical procedure and material properties are presented in section 3. 

Discussions on effects of the crack depth, Lüders plateau length, strain hardening, as well as the initial 

void volume fraction on the resistance curve are discussed in section 4. Concluding remarks are 

presented in section 5. 

2. The Gurson damage model 

The mechanism of ductile fracture failure in metallic materials is widely acknowledged as the micro 

voids nucleation, growth and coalescence. Gurson (Gurson, 1977) proposed a constitutive model for 

ductile materials incorporating voids, considering the hydrostatic stress effect on plastic yielding and 

void growth. The original Gurson damage model was further modified by Tvergaard and Needleman 

(Tvergaard, 1981, 1982; Tvergaard and Needleman, 1984). Finally the yield surface has the following 

form and known as Gurson-Tvergaard-Needleman model: 
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where q is von Mises stress, 
f is the flow stress of the matrix material and is a function of equivalent 

plastic strain. m is the mean stress; 1q and 2q are the parameters introduced by Tvergaard; f is the void 

volume fraction. In this study, 1 1.5q   and 2 1q   are used for all the numerical analyses.  

 

The Gurson damage model has gained wide attentions and some new extended versions have been 

developed. By introducing the competition of homogeneous void growth model and the Thomason’s 

plastic limit load model, a so-called complete Gurson model which can not only simulate the void 

nucleation, growth and, but also the coalescence process without a pre-selected critical void volume 

fraction was developed by Zhang (Zhang et al., 2000; Zhang, 1996). Based on the Gurson-Tvergaard-

Needleman model, Grange and Besson proposed a model taking into account plastic anisotropy and 

visco-plasticity to model the ductile fracture of Zircaloy-4 sheets (Grange et al., 2000). Nahshon and 

Hutchinson developed an extended model by incorporates damage growth under low triaxiality straining 

for shear-dominated states (Nahshon and Hutchinson, 2008).  

 

In this study, the increase of the void volume fraction is solely contributed by the void growth and no 

void nucleation is considered during loading. Due to the incompressible nature of the matrix material, 

the void volume increment can be expressed as: 

 

 (1 ) :p

growthdf f d    (2) 
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where p is the plastic strain tensor and I is the second-order unit tensor. When the void volume fraction 

reaches to the critical value cf , void coalescence occurs. In this study, an arbitrary value, 0.02cf  , is 

used for all the analyses. Tvergaard and Needleman introduced a function to simulate void coalescence: 

 * *
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where *

11uf q . When the condition cf f  is satisfied, 
*f  replaces f  in Eq. (1). As the void volume 

fraction increases to 
Ff , the element is assumed to lose load carrying capacity and cracks are expected 

to propagate. An empirical equation, 00.2 2Ff f  , is considered in this study. 

3. Numerical Procedure 

3.1 Materials properties 

In this study, flow stress-strain curve of the matrix material is described by the following rule: 
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where 
0 , 0  and n  are the yield stress, yield strain and strain hardening exponent, respectively. For 

all the numerical analyses, 
0 400 MPa  , Young’s modulus 200 E GPa  and the Poisson ratio 

0.3v   were used. 
p  and L  are the equivalent plastic strain and the Lüders strain. A horizontal 

plateau is used to model the Lüders behavior and the stress is assumed to equal to the yield stress. When 

0L  , the matrix material returns to follow the power-law hardening rule. Flow stress-strain curve for 

material with 0.1n   and 0.05L   is displayed in Fig. 2, as described by Eq. (4). 

3.2 Numerical procedure 

In the present study, SENT specimens are chosen to study the effect of Lüders plateau on ductile crack 

growth with ABAQUS 6.12. The geometry of the SENT specimen is schematically shown in Fig. 3. A 

fixed specimen width, 50 W mm , is used for all the analyses. Xu and Østby found that the crack 

resistance curve depends significantly on the specimen width (Østby et al., 2007a, b; Xu et al., 2009). 

However, the specimen size effect is out of the scope of this study and will not be focused. The specimen 

length L  is 10 times of the specimen width. a  is the initial crack length. The crack depth effect is 

investigated by varying the ratio of the initial crack length to the specimen width, a W .  
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Fig. 2    Illustration of simplified Lüders plateau on flow stress-strain curve according to Eq. (4). 

 

 

 

Fig. 3    (a) SENT specimen; (b) Global mesh; (c) Local mesh; (d) Definition of CTOD node. 

 

Considering the symmetry of the problem, only one half of the specimen is modeled. 4-node reduced 

integration plane strain elements (CPE4R) are applied. Large deformation is accounted for all the 

analyses. A remote homogeneous displacement boundary condition is applied to induce crack 

propagation. The region with uniform mesh size, see Fig. 3 (b) and (c), is extended to 3.0 mm above the 

symmetric plane with mesh size of 0.1 0.1 mm , except two rows of elements with mesh size of 

(b) 

(d) 

CTOD node 
Initial crack tip 

(c) 
(a) 
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0.1 0.05 mm  at the symmetric plane where the crack is supposed to propagate. Indeed, mesh size will 

affect the predicted resistance curve. For real materials, the mesh size should be determined by 

comparing the resistance curves from experiments and numerical predictions. In this study, we 

qualitatively investigate the Lüders length effect on ductile crack growth and the mesh size effect is not 

considered. The remaining part of the specimen is meshed with relative coarse elements, see Fig. 3 (b). 

When the void volume fraction reached 
Ff , the element failed and the crack extension is measured by 

multiplying the original element length ( 0.1 mm ) with the failed element numbers. Corresponding 

CTOD is measured as 2 times of the displacement of the node neighbor to the initial crack tip, see Fig. 

3 (d). 

 

4. Results and discussion 

4.1 Lüders plateau effect on crack resistance curves 

The crack resistance curves from numerical analyses with the Gurson damage model are presented in 

Fig. 4. The strain hardening exponent and the initial void volume fraction used in this section are 

0.05n   (corresponding to yield tensile ratio Y/T=0.85) and 
0 0.005f  . The length of Lüders plateau 

studied varies from 0 to infinite, considering the two limit cases: strain hardening without Lüders plateau 

and the perfectly plastic material. Lüders plateau length effect can be clearly observed in Fig. 4. For the 

SENT specimen with / 0.1a W  , as can be seen in Fig. 4 (a), with the increase of Lüders plateau length, 

the resistance curve lowers down firstly; up to the case with 0.05L  , the resistance curve starts to shift 

up with the increase of L . For 0.03L   and 0.05L  , the corresponding resistance curves almost 

overlap to each other in the range of crack growth up to 3 mm. It can also be observed that only for 

0.2L   and infiL  , the resistance curves are higher than the reference case with 0L   in Fig. 4 

(a). Similar observation can be found in Fig. 4 (b) and Fig. 4 (c) for SENT specimens with / 0.3a W   

and / 0.5a W  . Compared with the resistance curves in Fig. 4 (a), it can be found that the value of L

corresponding to the lowest resistance curve decreases with the increase of crack depth in Fig. 4 (b) and 

Fig. 4 (c). In Fig. 4 (b), when 0.1L   the resistance curves appear to be higher than the reference 

material without Lüders plateau; while in Fig. 4 (c), same phenomenon can be seen when 0.07L  . It 

can also be found that in Fig. 4 (b) and (c), with the increase of crack growth, the resistance curves for 

0.2L  are even slightly higher than those from the perfectly plastic material at 3a   mm. Fig. 4 

indicates that the crack depth plays a significant role on the effect of Lüders plateau length on the crack 

resistance curve. Usually, the crack resistance curve is dominated by the constraint level ahead of the 
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crack tip. The resistance curve for cracks under higher constraint level is relatively lower than that under 

lower constraint level, and vice versa (Nourpanah and Taheri, 2011; Xu et al., 2010). Fig. 4 suggests 

that the existence of the Lüders plateau influences the constraint level, and the effect of Lüders plateau 

length is also dependent of the specimen geometry constraint level (crack depth here).  

 

The resistance curves in Fig. 4 are then regrouped by the Lüders plateau length and are presented in Fig. 

5. As can be seen in Fig. 5 (a) that for the reference material case with 0L  , the resistance curves 

show obvious crack depth dependence: resistance curve lowers down with the increase of crack depth 

(Xia et al., 1995; Xu et al., 2009). It has been known that for deeper cracked specimen the constraint 

ahead of the crack tip is relatively higher. For the materials with same Lüders plateau in Fig. 5 (b)-(g), 

it can be seen that the gap between the resistance curves decreases with the increase of the plateau length. 

Especially, the resistance curves in Fig. 5 (c)-(g) are very close to each other, displaying minor crack 

depth dependence. It is shown that the existence of the Lüders plateau alleviates the crack depth effect. 

For infiL  in Fig. 5 (h), the crack depth effect plays a dominate role on the resistance curves and 

obvious difference between the crack resistance curves can be noticed. 

 

To understand the Lüders plateau effect on the ductile crack growth resistance, we further investigate 

the void volume evolution at given crack growth. In Fig. 6 (a), values of CTOD at crack growth 

0.1,  0.5a   and 1 mm are plotted against the Lüders plateau length with 0.1a W  . In Fig. 6 (b)-(d), 

the evolution of void volume fraction at the crack tip element corresponding to 0.1,  0.5a   and 1 mm 

is presented with respect to the equivalent plastic strain. It can be seen that at crack initiation ( 0.1a   

mm), the value of CTOD increases slightly with the increase of Lüders plateau length. Correspondingly, 

the evolution of void volume fraction shows relative small dependence on Lüders plateau length, as seen 

in Fig. 6 (b). The equivalent plastic strain at the maximum volume fraction increases slightly with the 

increase of the Lüders plateau length. It should be noted that, when the crack tip element fails (reaching 

the void volume fraction at separation) at smaller equivalent plastic strain, the corresponding CTOD will 

be smaller. The void volume fraction evolution in Fig. 6 (b) well explains the slight increase of CTOD 

with the increase of Lüders plateau length in Fig. 6 (a) at crack initiation.  

 

At crack growth 0.5a  mm, it can be noticed that the values of CTOD in Fig. 6 (a) firstly decrease 

with the increase of Lüders plateau length and then increase. The void volume fraction evolution of the 

element corresponding to 0.5a   mm for all the cases is plotted against equivalent plastic strain in 

Fig. 6 (c). It is straightforward that void volume fraction evolution and the equivalent plastic strain at 

failure are different to each other. For 0.03L  , the void volume fraction grows faster than other cases  
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Fig. 4    The Lüders plateau length effect on the resistance curves of SENT specimen with n=0.05; 

(a) a/W=0.1; (b) a/W=0.3; (c) a/W=0.5. 
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Fig. 5    Crack depth effect on the resistance curves of SENT specimen for materials with 0.05n   and 

different Lüders plateau length; (a) 0L  ; (b) 0.01L  ; (c) 0.03L  ; (d) 0.05L  ; (e) 0.07L  ; 

(f) 0.1L  ; (g) 0.2L  ; (h) infiL  . 
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and fails at smaller equivalent plastic strain. As a result of this, the corresponding CTOD is smaller. For 

all the cases in Fig. 6 (c), only for 0.1L  , the equivalent plastic strains at failure are larger than 0L  . 

It can be seen in Fig. 6 (a) that when 0.1L  , the values of CTOD are larger than 0L  . Otherwise, 

the corresponding values of CTOD are smaller than the reference case with 0L  . The sequence of 

equivalent plastic strains at failure in Fig. 6 (c) agrees well with the distribution of CTOD in Fig. 6 (a) 

for 0.5a  mm. Similar results can be found at 1a  mm in Fig. 6 (d). 

 

For 0.3a W   and 0.5a W  , CTODs at crack growth 0.1,  0.5a   and 1 mm are plotted against the 

Lüders plateau length and are presented in Fig. 7 and Fig. 8, together with void volume fraction evolution 

of the corresponding current crack tip elements. Similar observations can be found in Fig. 7-8 as those 

found in Fig. 6. It is noticed that for 0.3a W  , the evolution of void volume fraction almost collapse 

into one for all the cases analyzed in Fig. 7 (b), indicating that the Lüders plateau length has no effect 

on crack initiation toughness. The same results can be seen in Fig. 8 for 0.5a W  . Results in Fig. 6-8 

demonstrate that the value of CTOD at crack initiation is not influenced by Lüders plateau length for the 

cases analyzed. It can also be noticed that for 0.2L   with 0.3a W   and 0.5a W  , the values of 

CTOD at 0.5a   and 1 mm are even higher than those of the perfectly plastic material, because of the 

delayed void volume fraction evolution for 0.2L  , as seen in Fig. 7 (c)-(d) and Fig. 8 (c)-(d). 

 

To further study the effect of Lüders plateau length on ductile crack growth, the stress triaxiality 

evolution of the crack tip elements corresponding to 0.5a  mm with 0.1a W   is plotted against the 

equivalent plastic strain in Fig.8. It can be seen for all the cases analyzed, the stress triaxiality increases 

slightly and then decrease with the increase of equivalent plastic strain. It has been shown that the 

equivalent plastic strain at failure, f , depends significantly on the stress state (Bai et al., 2009; Bao 

and Wierzbicki, 2004; Tu et al., 2018). In some studies (Bao and Wierzbicki, 2004; Tu et al., 2018), an 

average stress triaxiality, 
*T , which considering the loading history, has been used to characterize the 

constraint, Eq. (5): 

 

  *
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f fT T d
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      (5) 

 

 

 

 



12 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6    (a) CTOD vs. Lüders plateau length at 0.1a  , 0.5 and 1 mm with 0.1a W  ; (b) Evolution 

of void volume fraction of current crack tip element corresponding to 0.1a  mm; (c) Evolution of 

void volume fraction of current crack tip element corresponding to 0.5a  mm; (d) Evolution of void 

volume fraction of current crack tip element corresponding to 1a  mm. 

 

In the following, the value of the average stress triaxiality in Fig. 9 for each case is calculated by Eq. (5) 

and shown in Fig. 10 as a function of Lüders plateau length. Values of the average stress triaxiality of 

the elements at 1a   mm for SENT specimen with 0.5a W   are also presented. It can be seen in Fig. 

10 that for SENT specimens with 0.1a W   at 0.5a   mm, the average stress triaxiality shows 

opposite trend in Fig. 6 (a), indicating that fracture toughness under higher constraint tends to be lower. 

This also applies for SENT specimens with 0.5a W   at 1a   mm, as shown by the red curve in Fig. 

10 and blue curve in Fig. 8 (a). It can be inferred that Lüders plateau alters the crack tip constraint.  
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Fig. 7    (a) CTOD vs. Lüders plateau length at 0.1a  , 0.5 and 1 mm with 0.3a W  ; (b) Evolution 

of void volume fraction of the current crack tip element corresponding to 0.1a  mm; (c) Evolution 

of void volume fraction of the current crack tip element corresponding to 0.5a  mm; (d) Evolution 

of void volume fraction of the current crack tip element corresponding to 1a  mm. 
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curves for SENT specimens with hardening exponents 0.1,  0.15n   (corresponding to Y/T=0.67 and 

0.52) are presented in Fig. 11 and Fig. 12, respectively. Resistance curves for the perfectly plastic 

material have also been compared. The effect of Lüders plateau length on the resistance curves in Fig. 4 

can also be found in Fig. 11 and Fig. 12. It can also be observed that the values of CTOD at crack 

initiation are approximately identical for SENT specimens with same geometry and hardening exponent, 

showing weak dependence on Lüders plateau. Resistance curves for the perfectly plastic material are 

much higher than those of strain hardening materials, for specimens with the same geometry.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8    (a) CTOD vs. Lüders plateau length at 0.1a  , 0.5 and 1 mm with 0.5a W  ; (b) Evolution 

of void volume fraction of the current crack tip element corresponding to 0.1a  mm; (c) Evolution 

of void volume fraction of the current crack tip element corresponding to 0.5a  mm; (d) Evolution 

of void volume fraction of the current crack tip element corresponding to 1a  mm. 
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Fig. 9    Stress triaxiality vs. equivalent plastic strain of SENT specimen with a/W=0.1. 
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Fig. 10    Average stress triaxiality vs. Lüders plateau length. 

 

Compared with the results in Fig.3, Fig. 11 and Fig. 12, it can be found that for SENT specimens with 

same geometry, L  corresponding to the lowest resistance curve shows slight strain hardening 

dependence and decreases with higher hardening exponent. It can also be observed that the effect of 

Lüders plateau length on the resistance curves depends on strain hardening. For specimens with 

/ 0.1a W   and materials with 0.05n  , the resistance curves tend to be higher than the reference case 

( 0L  ) when 0.2L  ; while for materials with 0.1n   and 0.15n  , it occurs when 0.1L   and 

0.07L  , respectively. For specimens with / 0.3a W   and / 0.5a W  , same observations can be  
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Fig. 11    The Lüders plateau length effect on the resistance curves of SENT specimens with n=0.1; 

(a) a/W=0.1; (b) a/W=0.3; (c) a/W=0.5. 
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Fig. 12    The Lüders plateau length effect on the resistance curves of SENT specimens with n=0.15; 

(a) a/W=0.1; (b) a/W=0.3; (c) a/W=0.5. 
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found. Especially for specimens with / 0.5a W   and materials with 0.15n   in Fig. 12 (c), only for 

0.01L   the resistance is lower than the case with 0L  , otherwise the resistance curve is higher. It 

can be concluded that Lüders plateau may modify the ductile crack growth, however, the degree of 

modification depends strongly on the plateau length, crack depth, as well as material’s strain hardening. 

 

The resistance curves in Fig. 4, Fig. 11 and Fig. 12 are then regrouped by Lüders plateau length, crack 

depth in Fig. 13-15. It can be seen that for materials with or without Lüders plateau, the initiation 

toughness is nearly identical for specimens with the same geometry and Lüders plateau length, showing 

weak dependence on strain hardening. For 0L  in Fig. 13-15, a higher resistance curve can be found 

for material with lower strain hardening exponent, in consistence with previous study (Eikrem et al., 

2008). Difference between the resistance curves reduces with increasing crack depth, for 0L  in Fig. 

13-15. For materials with Lüders plateau, strain hardening effect on the crack resistance curves is also 

observed. In Fig. 13-15, it is shown that with the increase of Lüders plateau length, resistance curves for 

SENT specimens with different hardening exponents tend to present slight difference, showing weakly 

strain hardening dependence. Especially, for 0.2L   in Fig. 13 (g), the resistance curves almost overlap 

each other when 3a   mm for SENT specimens with 0.1a W  . Same results can be found in Fig. 14 

(d)-(g) and Fig. 15 (d)-(f). For SENT specimens with given crack depth, the strain hardening effect is 

reduced due to the Lüders plateau, and larger Lüders plateau corresponds to larger reduction. 

 

4.3 materials with different initial void volume fractions 

The effect of the Lüders plateau length on ductile crack growth may also depends on the material 

toughness level. For this consideration, we have performed numerical analyses, by keeping all the 

parameters the same in section 4.1 and changing the initial void volume fraction. From the viewpoint of 

damage mechanics, materials with smaller void volume fraction show higher toughness. In this section, 

0 0.0005f   is used, which is only 10% of the previous value. The materials used in this section are 

supposed to have higher toughness than the materials used previously in section 4.1. The resistance 

curves for SENT specimens with 0.1a W  , 0.3 and 0.5 are presented in Fig. 16, with L  varying from 

0 to infinite. 

Compared with the resistance curve for the same specimen geometry and L  in Fig. 4, the resistance 

curve in Fig. 16 is remarkably higher, as expected. Similar to Fig. 4, values of CTOD at crack initiation 

( 0.1a   mm) in Fig. 16 are approximately insensitive to the Lüders plateau length. In Fig. 16 (a), the 

resistance curves for the materials with Lüders plateau are lower than the one without Lüders plateau,  
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Fig. 13    Resistance curves for SENT specimens with 0.1a W   and hardening exponent 

0.05,  0.1,  0.15n  . (a) 0L  ; (b) 0.01L  ; (c) 0.03L  ; (d) 0.05L  ; (e) 0.07L  ; (f) 

0.1L  ; (g) 0.2L  . 
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Fig. 14    Resistance curves for SENT specimens with 0.3a W   and hardening exponent 

0.05,  0.1,  0.15n  . (a) 0L  ; (b) 0.01L  ; (c) 0.03L  ; (d) 0.05L  ; (e) 0.07L  ; (f) 

0.1L  ; (g) 0.2L  . 
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Fig. 15    Resistance curves for SENT specimens with 0.5a W   and hardening exponent 

0.05,  0.1,  0.15n  . (a) 0L  ; (b) 0.01L  ; (c) 0.03L  ; (d) 0.05L  ; (e) 0.07L  ; (f) 

0.1L  ; (g) 0.2L  . 
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Fig. 16    The Lüders plateau length effect on the resistance curves of SENT specimens with 

0 0.0005f   and 0.05n  ; (a) a/W=0.1; (b) a/W=0.3; (c) a/W=0.5. 
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except infiL  . Likewise, similar observations can be found in Fig. 16 (b) and (c), except 0.2L   for 

0.5a W  . In addition, values of L  corresponding to the lowest resistance curves for the same 

specimen geometry in Fig. 16 are larger than those in Fig. 4. Compared with the resistance curves in Fig. 

4, it can be concluded that the Lüders plateau effect on resistance curves of materials with smaller initial 

void volume fraction are more pronounced. The existence of Lüders plateau reduces material’s ductile 

crack resistance ability, which is not expected in engineering application for the integrity assessment. 

 

5. Concluding remarks 

In this study, we have investigated the Lüders plateau effect on ductile crack growth with two-

dimensional SENT specimens in plane strain condition. The Gurson damage model is used to simulate 

the crack growth. A family of Lüders plateau length has been studied. It has been observed that the 

existence of Lüders plateau does not influence the initiation toughness but alters material’s ductile 

fracture resistance. The Lüders plateau effect on ductile crack resistance curve depends on the crack 

depth. It has also been found that the Lüders plateau effect is controlled by the stress triaxiality ahead of 

the crack tip. The Lüders plateau effect is also observed for material with smaller initial void volume 

fraction and the effect is more pronounced. For materials with Lüders plateau, both the effects of crack 

depth and strain hardening on crack resistance curve are reduced. The larger the Lüders plateau is, the 

larger reduction will be.  

 

Investigation on the Lüders plateau effect on crack driving force by Dahl have demonstrated that the 

existence of Lüders plateau intensified the crack driving force. Larger Lüders plateau corresponds to 

higher crack driving force (Dahl et al., 2018). Ductile crack growth lies in the competition of crack 

driving force and crack resistance. When the crack driving force is larger than material’s crack resistance, 

ductile fracture proceeds; otherwise, fracture will be suppressed. Combining the results in (Dahl et al., 

2018) and in this study, the Lüders plateau on one side increases the crack driving force; on the other 

side it may reduce material’s ductile crack resistance, depending on the plateau length, crack depth, 

material’s toughness and strain hardening. Attention should be paid for the application of materials with 

Lüders plateau, especially in the Arctic region. 
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