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Abstract

We analyze empirically what drives changes in the volatility smile for WTI crude oil, by cal-

culating at-the-money implied volatility and a proxy for implied skewness on nearby future

options from 25.07.2006 to 03.03.2016. To our knowledge no previous research use a proxy

for implied skewness when examining what drives changes in implied skewness for WTI crude

oil. We examine if macroeconomic conditions, physical oil market fundamentals and financial

variables can explain what drives changes in implied volatility and implied skewness. Our re-

sults for implied volatility supports the findings of Robe and Wallen (2016). The results for

implied skewness shows that physical oil market fundamentals contributes significantly in ex-

plaining changes in implied skewness. Storage capacity in Cushing is proxied by the slope

of the WTI crude oil term structure, and is significant when in state of backwardation. Higher

degree of backwardation, more available storage capacity, has a positive effect on implied skew-

ness. OPEC spare capacity is close to significant at a 10% level and is measured by a dummy

variable. High OPEC spare capacity has a positive effect on implied skewness. In addition the

control variable for time to maturity is significant and increasing time to maturity has a negative

effect on implied skewness.
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Sammendrag

I denne masteroppgaven analyserer vi empirisk hva som driver endringer i volatilitetssmilet for

WTI råolje. Vi kalkulerer at-the-money implisitt volatilitet og en proxy for implisitt skjevhet på

første posisjon opsjoner på futures fra 25.07.2006 til 03.03.2016. Til vår kjennskap har ikke en

proxy for implisitt skjevhet tidligere blitt brukt til å forklare drivere av implisitt skjevhet for WTI

råolje. Vi undersøker om makroøkonomiske faktorer, fysiske oljemarkedsfaktorer og finansielle

variabler kan forklare hva som driver endringer i implisitt volatilitet og implisitt skjevhet. Våre

resultater for implisitt volatilitet støtter funnene til Robe og Wallen (2016). Resultatene for

implisitt skjevhet viser at fysiske oljemarkedsfaktorer har signifikant forklaringskraft på im-

plisitt skjehvet. Lagringskapasitet i Cushing målt ved helningen til terminstrukturen til WTI

råolje, og er signifikant ved backwardation. Høyere grad av backwardation, større tilgjengelig

lagringskapasitet, har positiv effekt på implisitt skjehvet. OPEC ledig produksjonskapasitet er

nær signifikant for et 10% signifikansnivå, og er målt ved en dummy variabel. Høyere ledig

produksjonskapasitet hos OPEC har positiv effekt på implisitt skjevhet. I tillegg er kontrollvari-

abelen tid til forfall signifikant, og lengre tid til forfall har negativ effekt på implisitt skjevhet.
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1 Introduction

Crude oil prices have great impact on the global economy, and have been subject to high volatil-

ity in the last decades. One example being the financial crisis in 2008 when the price fell 70

percent in only few moths, and then recovered before falling again from over $100 per barrel

in July 2014 to a 12-year low of $26 in January 2016. However from 2012 until 2014 implied

volatility for crude oil were very low. Crude oil is the most actively traded commodity, and

futures and options on crude oil are highly liquid. Options on crude oil are used to hedge and

trade economic agents’ expected forward-looking views on uncertainty.

The objective of our thesis is to examine what drives changes in forward-looking volatility and

skewness for WTI crude oil. We calculate volatility smiles from 25.07.2006 to 03.03.2016 for

nearby future contracts. Previous literature has concluded that investors do not only care about

volatility, but are interested in skewness as well (Mitton and Vorkink, 2007; Barberis and Huang,

2008). Understanding which factors influence the distribution of WTI crude oil prices would

improve forecasts on both volatility and skewness, giving commercial and non-commercial mar-

ket participants better insight when trading WTI crude oil. Both upside and downside extreme

values are interesting, as different market participants are interested in hedging different sides.

Buyers of crude oil would like to hedge upside-risk, while sellers would like to hedge downside-

risk. Positive implied skewness means that it is expensive to hedge upside-risk, and negative

implied skewness means that it is expensive to hedge downside-risk (Alexander, 2008c). Thus

understanding what drives implied skewness is essential for risk-managers.

The literature that is close to ours is Robe and Wallen (2016). They analyze empirically what

drives implied volatility for crude oil, using macroeconomic, physical and financial variables.

First we replicate Robe and Wallen (2016) using a different time period, including a more

volatile period after 2014. Secondly we calculate a proxy for implied skewness, and examine if

the variables Robe and Wallen (2016) use for implied volatility could also explain what drives

changes in implied skewness. To our knowledge this has not been done before.

Our findings for implied volatility support the results of Robe and Wallen (2016). We find that
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uncertainty in equity markets, measured by the VIX-index, has significant impact on WTI crude

oil implied volatility. This contributes to understanding the low levels of implied volatility

for WTI crude oil in 2012 to 2014, since it coincides with the low levels of the VIX-index.

Physical oil market fundamentals also contributes in explaining WTI crude oil implied volatility,

with significant explanatory variables like OPEC spare capacity and storage tension in Cushing,

measured by a proxy.

Implied skewness have fewer significant explanatory variables than implied volatility, but our

results suggest that physical oil market fundamentals is key to understand what drives changes

in implied skewness. Storage-tension is significant with a positive effect when the market is in

a state of backwardation, reflecting that low supply relative to demand leads to higher prices

and more positive implied skewness in the WTI crude oil market. OPEC spare capacity has

positive effect and is close to significant at a 10% level. This indicate that high OPEC spare

capacity could reflect positive forward-looking skewness, because high OPEC spare capacity

tend to occur when WTI crude oil prices are low. In addition the control variable for time to

maturity is significant with a negative effect, meaning that longer time to maturity decreases

implied skewness, resulting in a more left-skewed distribution.

1.1 Related Literature

Several studies investigates the information content of option-implied volatilities. Day and

Lewis (1993), Szakmary et al. (2003) and Haugom et al. (2014) find that including implied

volatility significantly improves volatility forecasts. Implied volatility for crude oil is also found

to be a better fit for firms investment behaviour than historic volatility measures (Borenstein

and Kellogg, 2014). Navatte and Villa (2000) and Finta and Ornelas (2018) conclude that

implied skewness gives better information than historic skewness for forecasting skewness.

Doran and Krieger (2010) finds that measures containing information from the volatility skew

has predictive power over future direction of the underlying asset price. Thus it is undoubtly

important to understand what drives changes in implied volatility and implied skewness, which

is the goal of this thesis.

Previous research show that macroeconomic factors, crude oil fundamentals and financial vari-

ables have impact on WTI crude oil. Robe and Wallen (2016) complements these studies by

using several variables in each category to explain what drives implied volatility for WTI crude
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oil. We contribute to the literature by examining if these variables also explain what drives

implied skewness for WTI crude oil.

Mixon (2002) examines whether macroeconomic factors have a relationship with the implied

volatility surface for equities, and finds a clear relationship, but with diminishing effect on

longer maturities. A link between the implied volatility surface for the S&P 500 and key

macroeconomic variables have also been found by Guo, Han and Zhao (2014). Mork, Olsen

and Mysen (1994) finds that macroeconomic factors and oil prices correlate, indicating a rela-

tionship between macroeconomic factors and the movements in oil prices. In a similar vein we

examine if macroeconomic factors can help explain changes in implied volatility and implied

skewness for WTI crude oil. Our results shows that macroeconomic factors have no significant

explanation power on either implied volatility or implied skewness.

Studies (Chevillon and Rifflart, 2009; Kaufmann, 2011) show that OPEC, and thereby physical

market conditions, have influence on the crude oil price. Kaufmann (2011) argue that the crude

oil price changes in 2007-2008 partly can be explained by changes in OPEC spare capacity. We

include OPEC spare capacity without Saudi Arabia in our analysis, and find that it contributes in

explaining changes in implied volatility. It is also close to a 10% significance level for implied

skewness, indicating that it could help explain changes in implied skewness as well. Buyuksahin

et al. (2013) test if the spread between WTI and Brent crude oil are related to storage conditions

in Cushing. We complement Buyuksahin et al. (2013) and find that storage conditions are

significant for both implied volatility and implied skewness, confirming that storage conditions

have impact on the distribution of WTI crude oil.

Guo, Han and Zhao (2014) find evidence that there exist a relationship between the implied

volatility surface and financial variables, first and foremost the VIX-index. Previous research

have found spillover effects from implied volatility in the crude oil market, measured by the

OVX-index, and implied volatility in the equity market (Maghyereh, Awartani and Bouri, 2016;

Liu, Ji and Fan, 2013). This is confirmed by our study where we find that VIX has significant

effect on implied volatility for WTI crude oil. VIX can therefore be viewed as a better measure

for market sentiment than macroeconomic factors. We do not find VIX to be significant for

implied skewness. This is expected, because larger fluctuations in the price does not necessarily

impact the markets view about future skewness.

Würsig (2017) explain implied volatility, skewness and kurtosis for WTI crude oil with the
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same variables as Robe and Wallen (2016). He extracts the implied moments from risk-neutral

density functions. Our study differ to Würsig’s (2017) in the way that we use a proxy for implied

skewness. The advantage of our method for calculating implied volatility and implied skewness

is that it requires less computational power and is faster to implement than the method used by

Würsig (2017). Comparing our results with Würsig (2017) we have similar results for implied

volatility, but find more significant variables for implied skewness.

We complement the work of Ohnsorge, Stocker and Some (2016). They use the same proxy for

implied skewness as we uses in this thesis. They use the proxy for implied skewness on S&P

500, term spreads and average of Brent and WTI crude oil forward prices to forecast global risk.

Our focus is instead to identify determinants for what drives changes in implied skewness for

WTI crude oil

1.2 Structure

The rest of the thesis is as follows. Chapter 2 and 3 details the theory and estimation of im-

plied volatility and implied skewness. Chapter 4 presents the exogenous regressors. Chapter 5

presents descriptives and stationarity tests, while Chapter 6 presents the empirical results from

the regression models. Chapter 7 concludes.

4



2 Theory

This chapter explains the theory behind implied volatility smiles, and how the information in

volatility smiles can be used to retrieve at-the-money implied volatility and implied skewness

via a proxy for implied skewness. We start this chapter with an explanation of volatility.

2.1 Volatility

According to Alexander (2008b) the precise definition of volatility for an asset is the spread

in the stochastic process that is used to model the log returns. Volatility is often measured as

standard deviation (σ), and is a good measure for risk when returns are normally distributed.

However this is rarely the case, thus volatility does not give a full description of the risk that the

investor takes. Despite this, volatility is the most commonly used measure for risk. According

to Alexander (2008b) we can not observe volatility, we can only make estimates and forecast

volatility.

Estimating volatility according to the formula given by a model gives an estimate of

volatility that is ’realized’ by the process assumed in our model. But this realized

volatility is still only ever an estimate of whatever volatility had been during the

period used for the estimate (Alexander, 2008b, pp.94).

Nevertheless volatility is easy to compute and widely used to measure risk by both practitioners

and theorists. Volatility is normally calculated on historical data, looking back at what happened

in the past. In contrast implied volatility, which is used in this thesis, is a forward-looking

measure, calculated using option theory.

2.2 Black-Scholes

The Black-Scholes formula gives the fair price of European options (Black and Scholes, 1973).

The formula has several assumptions, which are required for the formula to hold. One of them

is that asset prices (S) follows a Geometric Brownian Motion with constant drift, which we

elaborate in Section 2.3. The key assumption that leads to the formula is that no one can make

5



arbitrage profits by owning a portfolio that contains variable quantities of the asset and the

option (Taylor, 2005). The formula assumes that investors are risk neutral, in other words the

personal risk preferences of the investor is not consider when valuating the option.

The Black-Scholes formula for a call option is:

cBS , (S,T, X ,r, q,σ) = Se−qT N (d1)−X e−r T N (d2) (2.1)

Where d1 and d2 is defined as:

d1 =
l og ( S

X )+ (r −q + 1
2σ

2)

σ
p

T
(2.2)

d2 = d1 −σ
p

T (2.3)

Equation 2.1 calculates the price of a standard European call option. Where cbs is the call

premium, S is current price on the underlying, T is time to maturity, X is strike price, r is the

risk-free interest rate, q is convenience yield, σ is standard deviation and N is the cumulative

standard normal distribution.

To calculate the price of a standard European put option we have to rewrite the equation or

use the put-call parity. The put-call parity is a theoretical relationship between the prices of

European call and put options with the same underlying asset, strike price and time to maturity

(Hull, 2012). The relationship can be written as, where p is the put premium:

c +X e−r T = p +S (2.4)

The put-call partiy can be rewritten to give the price of a standard European put-option:

p = c +X e−r T −S (2.5)
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2.3 Implied Volatility

All inputs in the Black-Scholes formula are directly observable in the market except for the

volatility parameter σ. The volatility parameter can be backed out using the option price ob-

served in the market. Thus we can use the Black-Scholes formula to calculate implied volatility.

The implied volatility for a European call option, traded at the price cmar ket , is the σi mpl i ed

that solves the following equation:

cmar ket = cBS(S,T, X ,r, q,σi mpl i ed ) (2.6)

Implied volatility reveals the markets expectations for future volatility. Options with different

strikes and equal time to maturity on the same underlying should have the same implied volatil-

ities if the assumptions of the Black-Scholes model holds. Then the return of the underlying

would follow a lognormal distribution. However this is not the case in reality, because traders

do not act according to the assumptions of the Black-Scholes formula. We will therefore ob-

serve a surface of market implied volatilities, by strike and maturity of the option (Alexander,

2008c).

The implied volatility of options with the same maturity, but different strikes, forms a volatility

smile when plotted as a function of the options strike price. Normally implied volatility is

lowest when the options are at-the-money, and increasing with higher difference between strike

price and the price of the underlying asset. For options with long maturity the volatility smile is

less pronounced than for options with short maturity (Hull, 2012). Puts and calls for European

options should have the same implied volatility because of put-call parity, but in practice they

often differ because of transaction costs, bid-ask spreads, and so forth (McDonald, 2014).

The Black-Scholes model presented in Section 2.2 assumes that the price of the underlying asset

evolves according to a geometric Brownian motion with constant drift, where µ is the drift, σ is

the volatility of the process and w is a wiener process.

dS =µSd t +σSd w (2.7)

The geomtric Brownian motion assumes constant volatility, but implied volatility is not con-

stant for different strikes (Alexander, 2008c). This implies that real-world option prices does
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not follow the assumptions of the Black-Scholes option pricing model. The existence of the

volatility smile curve shows that market participants make more complex assumptions about

the price process than the geometric Brownian motion. Therefore the volatility smile give the

investors valuable information about how the market views future uncertainty.

2.3.1 Barone-Adesi & Whaley implied volatility

For standard European options there are no possibilities of early exercise. It is therefore pos-

sible to use the method explained Section 2.3 to back out the implied volatility of the option.

For American options there is a possibility for early exercise, which makes the Black-Scholes

method invalid. For American options there are no analytic solutions, like the Black-Sholes

formula for European options. Some popular approaches are to use binomial trees or finite-

difference methods, but these methods are computationally expensive. Instead we use the ap-

proximation derived by Barone-Adesi and Whaley (1987). The advantage of using this ap-

proximation is that it can be calculated without extensive data power, and still maintain high

accuracy. One should be aware that the accuracy decreases with increasing time to maturity, so

the method is best when used for short maturities (Barone-Adesi and Whaley, 1987).

This is initially a method for computing the price of American options. This is done by adjusting

for the possibility of early exercise. After adjusting for the possibility of early exercise the

method can be used to calculate implied volatility for American options. In the case of future

options on commodities there are no dividends, and the price of an American call option will be

equal to the price of an European option. For puts on the other hand, there is always a possibility

of early exercise (Barone-Adesi and Whaley, 1987). Therefore, when using future options on

commodities to calculate implied volatility, this method is only necessary for put options.

For American future options on commodities the price of a put option is calculated using the

following quadratic approximation derived by Barone-Adesi and Whaley (1987):

P (S,T ) =


p(S,T )+ A1(S/S∗∗)q1 , when S > S∗∗, and

X −S, when S ≤ S∗∗
(2.8)

Where:

A1 =−(S∗∗/q1){1−exp(b−r )T N [−d1(S∗∗)]} (2.9)
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A1 is the premium for the possibility of early exercise, S∗∗ is the critical commodity price where

the option is exercised early, b is convenience yield, q1 is a parameter derived in Barone-Adesi

and Whaley (1987), and the rest is the same as for the black-scholes formula in Section 2.2.

When already having the option price, implied volatility is calculated with the same technique

as when using Black-Scholes, simply backing out the volatility that gives the same theoretical

price as the observed price.

2.4 Proxy for Implied Skewness

The volatility smile contains information about the future price movements of the underlying

assets. Many studies use the pioneering work done by Breeden and Litzenberger (1978) to

model the Risk-Neutral distribution of the underlying asset, and then calculate higher moments.

We will also focus on the information contained in the volatility smile, but we will use a proxy

for implied skewness, instead of calculating the Risk-Neutral distribution. The advantage of this

method is that it requires less computational power and is faster to implement. Mixon (2011)

argues that week to week changes in the volatility smile can be a good proxy for changes in

skewness.

The definition of positive skewness (right-skewed) is a distribution were the upper tail is heav-

ier, thus has higher probability than the lower tail. Opposite we have negative skewness (left-

skewed) when the lower tail is heavier than the upper tail (Alexander, 2008a). The normal

distribution is symmetrically and has a skewness of zero. However the distribution for almost

all financial assets are skewed.

Multiple skew measures have been researched in the literature. Differences in out-of-the-money

put and call volatilities have been used, both based on percentage moneyness(Bates, 1991) and

deltas (Hull, Nelken and White, 2005). However Mixon (2011) finds that these skew measures

are dependent on the level of at-the-money volatility, and instead he argues for standardizing

the measures by dividing on at-the-money volatility. We use the skew measure that Mixon

(2011) prefers as a proxy for implied skewness, but reorganize the equation to become more

intuitive and make the proxy move in the same way as the implied skewness of the underlying

distribution. Equation 2.10 shows the proxy for implied skewness that we use in this thesis.

Proxy for implied skewness= 25-delta call volatility − 25-delta put volatility
50-delta volatility

(2.10)
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According to Mixon (2011), the big advantage of this measure is that it has minimal depen-

dence on the level of at-the-money volatility. When using deltas we also gain the advantage

that implied volatility is closer to linear in delta space than in strike space. Using 25 delta im-

plied volatilities also secure liquidity at the points where the proxy is calculated, instead of, for

example, using the endpoints of the smile, which could have very low liquidity.
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3 Estimating Implied Volatility and Skewness

In this chapter we clarify the estimation of implied volatility and implied skewness for our data.

We have used nearby contracts when calculating implied volatility and implied skewness, to

narrow the scope of our thesis. When applying the formulas described in Chapter 2, we have

chosen to use MATLAB. We also give a brief introduction to our data. See Appendix A for

more information about the data used in this chapter and a practical approach to calculating

volatility smiles.

3.1 WTI Crude Oil

Our data consists of futures and future options on WTI Crude oil, which is the most actively

traded commodity. Historic future prices can be seen in Figure 3.1. We see that the price have

large fluctuations around well-known events, such as the financial crisis in 2008. We will look

closer at historical events in Section 3.7 and 6.4.
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Figure 3.1: Historical WTI crude oil future price from 30.03.1983 to 02.02.2018. Source: Datastream.
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3.2 Future Options

Options on futures gives the right to enter into a futures contract at a predetermined premium by

a certain date (Hull, 2012). We use future options on WTI crude oil, which is American options

and therefore the holder can exercise the contract at any time during the life of the option. If the

investor exercise the call option he gets a long position in the underlying futures contract and a

cash amount equal to the most recent settlement price of the future minus the strike price (Hull,

2012).

The main reason that futures on commodities and futures options on commodities are so popular

is that they are more liquid and easier to trade than the underlying asset (Hull, 2012). For

investors, both private and institutional, liquidity is very important, because it secures low bid-

ask spreads and helps investors avoid being locked in a position. Hedging oil risk with options

and future options have become very popular, and as Figure C.7 in the appendix shows, open

interest in WTI crude oil futures continues to grow as it has become a more widespread method

of hedging oil market risk. Another explanation being the increased investment activity from

non-commercial participants, as described more in detail in Section 4.3.3.

3.3 Bounds for Future Options

Before calculating implied volatility we check if arbitrage conditions are satisfied. These

bounds are derived from the put-call parity (Hull, 2012). Since WTI crude oil futures does

not pay dividend we use the bounds for European options on calls. The price of put or call

options can not be negative, so the bounds of the call options is, where F0 is the future price:

c Ê (F0 −X )e−r T (3.1)

When a call option is deep in the money, the corresponding put option is deep out of the money,

then the price of the put p is very close to zero. Since the difference between call price c and

its lower bounds equals p, the price of the call option must be very close to its lower bound

Hull (2012). Put options may be exercised early, therefore we define the lower bound for an

American put option as:

P Ê X −F0 (3.2)
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3.4 Calculating Implied Volatility

When calculating one-month implied volatilities we use both put and calls, depending on strike

prices relative to the price of the underlying future. Implied volatility for call options are cal-

culated using the black-scholes method for extracting implied volatility explained in Section

2.2. For puts we have used the quadratic approximation derived by Barone-Adesi and Whaley

(1987) explained in Section 2.3.1. For options with strikes below the underlying future price

we have calculated implied volatility using put options, and call options when the strike price

is above the underlying future price. This means that we have out-of-the-money options at both

sides of the volatility smile. When the options are exactly at-the-money, meaning that the strike

price and the price of the underlying asset is identical, we have calculated implied volatility for

both put and call options, and used the arithmetic mean.

3.4.1 Interest Rate

To calculate implied volatilities we use the 1 month US treasury bill rate from Datastream.

Because of our roll date on the implied volatilities, explained in Section 3.4.2, the actual time

to maturity is between 1 and 2 months, but we still use the 1 month interest rate, because

interpolating with interest rates with longer time to maturity would have minimal impact on the

result. When calculating the implied volatility the interest rate is customized using datetime-

objects in MATLAB, adjusting for actual time to maturity.

3.4.2 Monthly Rolling of Daily Implied Volatility

When future options and futures move close to the expiration date there is a possibility of low

liquidity. When exploring our data we found that the last trade day of nearby options showed

strange results, because of low liquidity. Robe and Wallen (2016) used open interest for futures

to find that the 7th business day of the month should typically be used to roll between nearby

and first-deferred contract. We choose to use the 7th business day of the month as roll date. In

addition, when the 7th business day is later than the 10th of the month, we roll at the 10th to

avoid possible problems with liquidity.
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3.4.3 At-The-Money

At-the-money options are traditionally the most liquid options. In textbooks, at-the-money is

defined as options with strike price equal to the price of the underlying asset (Hull, 2012). Our

data consist, as explained earlier in this thesis, of future options. In reality the underlying future

will seldom be priced equal to a possible strike, because strike prices come in increments of

$0.50. This requires us to define at-the-money options in a different way. We use the definition

from Xing, Zhang and Zhao (2010), where they define at-the-money options as options with a

ratio of strike price to future price between 0,95 and 1,05. This gives us a wider range of at-

the-money options. To solve the problem that we get multiple options at-the-money we simply

calculate the arithmetic mean implied volatility of the options inside the span to get the at-

the-money implied volatility. From Figure C.1 in the appendix we see that this measure for

at-the-money implied volatility is equal to the 50-delta implied volatility used in the proxy for

implied skewness in Equation 2.10. This supports that how we measure at-the-money implied

volatility is satisfying.

3.5 Volatility Smile

Having calculated volatility smiles for all trade dates from 25.07.2006 until 03.03.2016 we end

up with a total of 2421 smiles. Figure 3.2 show the volatility smile for 30.01.2012, with maturity

date at 19.03.2012. At this date the price of the nearby WTI crude oil future was $98.78, and we

see that the lowest implied volatility is at-the-money, as stated in Section 2.3. We see that for

this date the implied volatilities for out-of-the-money puts are higher than for out-of-the-money

calls. Thus we know that for this date the market believes it is more likely that the crude oil

price will fall to lower levels, instead of increasing. This is known as a negative skew, since

the log price density will be negatively skewed (Alexander, 2008c). This imply that it is more

expensive to hedge downside risk than upside risk. In our thesis we seek to explain why the

smile changes from one date to another, in other words what drives implied volatilities and

implied skewness. In Appendix C.2 we have put more smiles to show how the volatility smile

change over time.
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Figure 3.2: Implied volatility smile with trade date 30.01.2012 and maturity date 19.03.2012. The smile
is calculated with futures and future options on WTI crude oil from CME.

3.6 Implied Skewness

From the volatility smiles in Figure 3.2 we can calculate the proxy for implied skewness ex-

plained in Section 2.4. In practice we would rarely see datapoints at exactly 25- or 50-delta, so

we use the arithmetic mean inside a span of 0.03 around the deltas in Equation 2.10 to avoid

problems with not being able to calculate the proxies. After calculating daily proxies for im-

plied skewness for the whole data set we have 108 missing dates out of a total of 2421 dates.

We correct for this with linear interpolation.

As described in Section 3.5 the smile has a negative skew. Thus we will expect our proxy for

implied skewness for this date to be negative, and the calculations confirm this with a value of

-0.0988.

3.7 Historical At-The-Money Implied Volatility

Figure 3.3 plots at-the-money implied volatility for WTI crude oil from 25.07.2006 to 03.03.2016.

We see that implied volatility was relative stable from 2006 up to the financial crisis starting
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in the fall of 2008. The oil price increased in the same period until it peaked in 2008. One of

the contributing factors for the growing oil price in this period was low OPEC spare capacity,

which was a consequence of high oil demand (Brunetti et al., 2013). The oil price collapsed

in the fall of 2008 after the financial crisis, and at the same time implied volatility raised to

high levels. The financial crisis lead to a low demand for crude oil and OPEC spare capacity

increased. After the financial crisis crude oil prices started to raise again and at the same time

implied volatility was stable and back at the same levels as before the crisis. In August 2011

implied volatility peaked again following the U.S credit rating downgrade (Russia oil row hits

Europe supply, 2007) and sovereign debt crisis in Europe, which lead to uncertainty about the

level of global demand for crude oil. From the fall of 2012 to the fall of 2014 we observe his-

torically low implied volatilities. Robe and Wallen (2016) argue that this could be a reflection

of low uncertainty in financial markets, captured by a historically low VIX-index, or high crude

oil supplies in this period.
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Figure 3.3: Daily volatility from 2006 to 2016. The blue line shows implied volatility calculated from
WTI crude oil future options, and the red line shows 1-year historical rolled volatility using WTI crude
oil continuous future price as underlying.

In the fall of 2014 crude oil prices dropped dramatically, which lead implied volatility to rise.

What caused the drop in oil prices in the fall of 2014 is still an open question and the sever-

ity of the fall was surprising also for industry experts (Baumeister and Kilian, 2016, p.133).
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Baumeister and Kilian (2016) found that over half of the price fall for Brent crude oil from June

2014 to December 2014 was predictable using publicly available information as of June 2014.

They found that both demand shocks prior to July 2014, reflecting unexpected weakening in the

global economy, and supply shocks caused by increased supply and changes in expected crude

oil production helps explain parts of the drop in crude oil price.

Comparing our at-the-money implied volatilities with the ones in Robe and Wallen (2016) we

find that our results are very similar, but systematically lower. The red line in Figure 3.3 shows

the historical 1-year rolled volatility for continuous WTI crude oil futures. The historical rolled

volatility is typically below the blue line representing implied volatility, but they follow each

other closely and show a correlation-coefficient of 0.6747. The difference in implied and ob-

served historical volatility represent a volatility premium taken when the options are issued.

3.8 Historical Implied Skewness

From Figure 3.4 we see that implied skewness fluctuate around a negative skewness of -0.1,

having low volatility up to 2011, where it enters a more volatile period lasting to 2015. We

believe one reason explaining why implied skewness is more volatile from 2011 is that the

market have higher uncertainty of what the future oil price should be. From 2011 until 2014

the WTI crude oil future price fluctuates around $80-$100 and the implied skewness indicates

that the investors expectations shifts from positive to negative skewness in line with the shifts

in the WTI crude oil price. After 2015 implied skewness is less volatile. This might reflect that

the market has adjusted to the new lower crude oil price after the dramatic fall in crude oil price

in the Autumn of 2014, and that the market does not believe that the crude oil price is likely to

keep falling in the future. Figure 3.4 also shows that implied skewness is less volatile than the

historical 1-year rolled skewness. We believe one reason for this is that historical skewness also

includes unexpected shocks that hit the market.

Alexander (2008c) argue that one reason options on equity indexes has a negative skew is that

out-of-the-money puts on equity indexes is a good hedge for the market and therefore many

buy them despite of a high premium. We believe that this reasoning can be transferred to the

crude oil market, because crude oil is the most liquid commodity and a lot of producers uses the

market to hedge downside risk in the crude oil price. The high demand for out-of-the money

puts pushes up the price (Alexander, 2008c, p.236) and may explain why the observed implied
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skewness is negative on average.
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Figure 3.4: Daily skewness from 2006 to 2016. The blue line shows implied skewness calculated using
WTI crude oil future options and the proxy for implied skewness (left hand scale). The red line shows
1-year historical rolled skewness on continuous WTI crude oil futures (right hand scale).
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4 Explanatory Factors

The variables presented in this chapter are consider by Robe and Wallen (2016) to be vari-

ables that contain information about crude oil implied volatility. We expand their analysis by

examining if the same variables can be used to explain implied skewness. We follow their

classification for the variables and split them into three groups: macroeconomic fundamentals,

physical-market conditions and financial variables. Some of the variables in this chapter is only

available at a weekly frequency, therefore the regression in Chapter 6 is based on weekly data.

For more information on the data used in this chapter, see Appendix A.

4.1 Macroeconomic Fundamentals

Empirical evidence tells us that stock market volatility is countercyclical (Corradi et al., 2013)

and we expect the same for crude oil volatility, ceteris paribus. For example when the world

economy is in a recession we will expect a lower demand for crude oil, and thus lower crude oil

price and hence the implied volatility for WTI crude oil is expected to increase. Kilian and Park

(2009) explain that U.S. stock market resilience to higher crude oil prices can be explained by

strong global demand for industrial commodities (Kilian and Park, 2009, pp.1268).

4.1.1 US Economy

Robe and Wallen (2016) use the variable REAL computed using the method developed by Kil-

ian (2009) to measure world economy. REAL is difficult and time-consuming to compute, and

in addition it is not significant in Robe and Wallen’s (2016) regression, therefore we choose to

drop this variable. Since we only have American data we instead use the ADS-index developed

by Aruoba, Diebold and Scotti (2009), which Robe and Wallen (2016) use as a control variable.

They use this variable to consider the possibility that the U.S economy is more important to

explain implied volatility for WTI crude oil than the world economy. We use weekly changes

in the daily index of U.S business activity.

Aruoba, Diebold and Scotti (2009) managed to compute a daily index even though many of

the input variables are available at different frequencies, for example industrial production is
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available at a monthly frequency and employment at a weekly frequency. The index incorporate

many variables and thus provides a continuously updated measurement of the US economy.

ADS does not consist of any oil component and therefore we use contemporaneous changes

in the ADS index in the regression analysis. If there is a big change in the U.S. economy we

expect a change in the implied volatility (Robe and Wallen, 2016). When the index decreases

we expect implied volatility to rise, and opposite when the index increases. Thus we expect that

the U.S economy variable will have a negative sign for implied volatility. For implied skewness

we know intuitively that it should be positive in bad states and negative in good states of the

economy, thereby expecting a negative sign for the ADS-index on implied skewness.

4.2 Physical-Market Conditions

Physical-market conditions capture disruptions caused by the supply side. The surplus produc-

tion capacity for OPEC gives an indicator for the suppliers possibility to react if demand in-

creases. Also the production output for WTI crude oil and a proxy for physical storage-market

conditions is included in this section.

4.2.1 OPEC Surplus Production Capacity

We expect that high OPEC crude oil surplus will, ceteris paribus, put a lower pressure on crude

oil volatility. Intuitively this must be so, because high surplus makes it possible for suppliers

to react if demand increases. Studies have justified this argument empirically. For example,

Brunetti et al. (2013) argue that the increased demand for oil after 2003 drained OPEC spare

production and lead to higher oil price volatility. Robe and Wallen (2016) argue that lower

crude oil prices leads to higher surplus production capacity, reflecting weak macroeconomic

environments like we observed after the Lehman crisis. We expect high OPEC spare capacity

to occur when the crude oil price is low. Thus expecting a heavier upper tail for the crude oil

distribution. In other words we expect a positive effect on implied skewness from OPEC spare

capacity.

We follow Robe and Wallen (2016) and use the non-Saudi OPEC spare capacity as a variable to

help explain implied volatility and implied skewness. They have three arguments for excluding

Saudi Arabia. First, Büyükşahin and Robe (2011) argue that the clearest evidence of a major

change in world energy market fundamentals is reflected in this variable (Büyükşahin and Robe,
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2011, p.22). Second, Saudi oil is not light or sweet and therefore not a good substitute for

other types of crude oil, because oil refineries can not easily shift between different types of

crude oil. Third, there does not exist any publicly available estimate for Saudi surplus capacity

(Buyuksahin et al., 2013).
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Figure 4.1: OPEC Spare capacity without Saudi Arabia from 25.07.2006 to 03.03.2016. The y-axis
shows barrels per day in thousands. Source: EIA.

We have used monthly data from U.S. Energy Information Administration (EIA) to construct

a time series. Figure 4.1 show how OPEC spare capacity has developed over time. The spare

capacity was low in the period from 2006-2008. In this period the crude oil spot price ranged

between $33 and $145. Opposite results were found when OPEC spare capacity increased

in 2009-2010, when the spot price was less volatile and fluctuated around $75 (Brunetti et al.,

2013). However we observe that this pattern does not hold after mid-2014 when crude oil prices

dropped dramatically. OPEC spare capacity remains at low levels despite low crude oil price.

Late 2014 OPEC decided to moderately increase their production to sustain their position in

the crude oil market, expecting that U.S. production would decrease when the crude oil price

dropped below their break-even points. The oil production did not start to fall before mid-

2015, partly because the break-even points were not broadly understood by the industry. This

contributed to the fall in crude oil price from $108 in mid-2014 to $32 January 2016 (Kleinberg

et al., 2018).
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Following Robe and Wallen (2016) who adopted the method from Brunetti et al. (2013) we

design a dummy variable that takes the value 0 when spare capacity is low and 1 when spare

capacity is high. We choose to set the separator between high and low spare capacity at 1

million barrels per day.

In addition, we include an interaction variable between the dummy variable for OPEC spare

capacity, and the change in U.S. crude oil production described in Section 4.2.2. Decreased WTI

crude oil production should increase forward-looking volatility when OPEC has little capacity

to produce more crude oil. Contrary, if there are hikes in WTI crude oil production it should

reduce forward-looking volatility. Ceteris paribus we expect a positive sign for the interaction

term, because both crude oil spare production capacity and output changes are both negatively

related to crude oil implied volatility (Robe and Wallen, 2016, p.328). We established earlier

in this section that high OPEC spare capacity would indicate more positive skewness. For oil

production we explain in Section 4.2.2 that we expect a positive effect on implied skewness. In

sum we therefore expect a positive sign for the intereaction term on implied skewness.

4.2.2 North-American Crude Oil Production

The shale oil revolution was stimulated by high crude oil prices after 2003 that made shale

oil technology cost competitive. Since then the cost of producing has gone down, leading to

the shale oil revolution that took place in 2009 (Kilian, 2016, pp.185). An increase in local

crude oil supply is expected to give lower implied volatility for WTI crude oil because of lower

price pressure. However this may not be the case if WTI crude oil faces difficulties in reaching

international markets (Robe and Wallen, 2016). For implied skewness we expect a positive sign,

because more local supply would most likely lead to lower crude oil prices and lower returns.

In other words an increase in local supply is expected to give higher positive forward-looking

skewness (more right-skewed distribution). We include the weekly changes in US production,

lagged one week to avoid endogeneity issues.

4.2.3 Cushing Storage Capacity and Utilization

WTI crude oil is priced at Cushing, Oklahoma, and is connected to the international market via

pipelines to the Gulf coast. In early 2011, the production of crude oil in United states’ midwest

and Canada exceeded the pipeline capacity, leading to a substantial difference in crude oil prices
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in the United states midwest and "on the water" locations (Borenstein and Kellogg, 2014). This

is in line with other studies done on the topic aswell (e.g. Buyuksahin et al., 2013; Fattouh,

2010; Pirrong, 2010), suggesting that infrastructure constraints in Cushing, Oklahoma, leads to

differences in prices of WTI crude oil and other types of crude oil.

Until 2007 the logistical bottleneck was to get enough oil into Cushing which often resulted in

WTI prices rising to high levels compared to other benchmarks. After 2007, when the crude

oil production increased, the new bottleneck became storage capacity in Cushing (Buyuksahin

et al., 2013). Traders might not want to hold the future contract to expiration because of high

transportation and storage cost for WTI crude oil, and therefore Robe and Wallen (2016) believe

that futures around expiration might have higher volatility.

We follow the method used in Robe and Wallen (2016) and estimate the Cushing storage con-

ditions with the slope of the term structure of WTI futures prices. This proxy is based on the

work by Fama and French (1987, 1988).

We choose to use the inventory proxy presented in Geman and Ohana (2009). The proxy is

presented in Equation 4.1, and gives us the one-year adjusted spread. We have used the annual

LIBOR interest rate to adjust for interest rate fluctuations. Figure 4.2 shows the term structure

from 25.07.2006 to 03.03.2016. When the slope (blue line) is above the black reference-line

the net cost of carry is positive (contango), and likewise we have negative net cost of carry

(backwardation) when the slope is below the reference-line.

Adjusted spread = 13Future−1Future∗ (1+LIBOR)

1Future
(4.1)

After calculating the daily slope-variable from 25.07.2006 to 03.03.2016 in matlab, we had 46

dates with missing variables. We correct for this with linear interpolation.

Figure 4.2 shows that the term structure of WTI crude oil futures is mostly in backwardation

until 2009, where it changes to contango. This means that until 2009 there is enough storage

space, but during the financial crisis the demand for WTI crude oil fell, and storage capacity

became a bottleneck. The same happened in the fall of 2014, but this time it was caused by

increased supply because of the shale-oil boom.
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Figure 4.2: Slope of the WTI crude oil term structure from 25.07.2006 to 03.03.2016 calculated us-
ing Equation 4.1. When the slope is above the black reference-line we have a state of contango, and
backwardation when the slope is below the reference line.

Robe and Wallen (2016) expect a positive relation between storage tension and WTI crude oil

implied volatility, meaning that both high and low storage capacity leads to increased implied

volatility. We use dummy-variables for the states of backwardation and contango, and multiply

them with the level of the slope. In the regression we thereby expect a positive effect on implied

volatility both in contango and backwardation, thus a positive sign for contango and a negative

sign for backwardation is expected. A higher absolute level of the slope-variable would thereby

mean higher implied volatility. Meaning that we have a convex(U-shaped) relationship between

the forward curve and volatility (Kogan, Livdan and Yaron, 2009).

Contango indicates low storage space, hence more of the produced oil must reach the market,

giving a higher possibility of lower prices. Therefore we expect a negative effect on implied

skewness when in contango. Backwardation means enough available storage capacity in Cush-

ing, indicating a bottleneck in getting enough oil into Cushing, meaning that the price will

increase due to higher demand relative to supply. In other words backwardation is expected to

give increased positive implied skewness, which means a negative sign for the coefficient. To

avoid endogeneity issues we follow Robe and Wallen (2016) and use one-day lagged values for

the slope variable in the regression.
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4.3 Financial Variables

Robe and Wallen (2016) were the first to investigate if financial variables could help explain

implied volatility in the oil market. Their hypothesis is that the financial market can have

spillover effects to the commodity market. Xiong (2013) highlight that commodity markets’

financialization has impacted commodity prices and returns. In this section we will present the

financial variables used by Robe and Wallen (2016).

4.3.1 VIX

The VIX-index is an index issued by the Chicago Board Options Exchange. The index measure

expectations of near-term volatility in the equity market. The equity market is proxied by the

S&P 500 stock index. The VIX-index has been viewed by investors as a good measurement of

investor sentiment and market volatility since its introduction in 1993 (VIX, 2018). The index

is often cited as a measurement of fear in the market.

Gromb and Vayanos (2010) argue that there is a possibility of cross-asset arbitrage between

the equity market and the energy market, more accurately the WTI crude oil market in our

thesis. This indicates that there could be a relationship between volatility in the equity and oil

market, and that the VIX-index can explain a portion of the implied volatility on WTI crude oil.

We expect the VIX-index to have a positive relation with implied volatility on WTI crude oil.

However higher volatility does not necessarily impact the skewness, so we do not expect the

VIX-index to have significant explanation-power on implied skewness.

Figure 4.3 shows the historical price of the VIX-index in blue and the OVX-index in red. The

OVX-index is a measure of volatility expectation for crude oil by using the same methodology

as the VIX (OVX, 2018). Because the OVX-index was created in 2007, we don’t have the same

amount of data for the OVX as the VIX. From the graph we see that the two indexes move

closesly together from 2008 to 2015, where they part, but still move in the same direction most

of the time. This supports that there is a relationship between volatility in the equity and oil

market.
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Figure 4.3: Historical values of the VIX and the OVX-index. The blue line show the VIX-index from
25.07.2006 to 03.03.2016. The the red line show the OVX-index from 03.03.2008 to 03.03.2016. Source:
CBOE.

From the blue line in Figure 4.3 we see that the VIX-index spikes whenever there is a economic

crisis or there is a global event that increases uncertainty in the financial markets. For example

the index spiked after the Lehman-brother crisis in 2008 and the U.S credit rating downgrade in

August 2011.

4.3.2 Paper Market Liquidity

Robe and Wallen (2016) argue that implied volatility for crude oil and market liquidity should

be inversely related. They control for the trading volume for both the underlying future and

for the options. Our dataset only contains information about the trading volume for the futures

and therefore we only control for this. To capture paper-market liquidity we use Monday-to-

Monday changes in WTI matching-maturity futures trading volume (Robe and Wallen, 2016).

The sequential information arrival hypothesis developed by Copeland (1976) says that indi-

viduals demand curve changes sequentially when new information is available to them. The

theory predict a positive correlation between the absolute value of price changes and volume

(Copeland, 1976, p.1167). Thus we could expect a positive correlation between implied volatil-
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ity for WTI crude oil and future trading volume. An empirical study by Girma and Mougoué

(2002) support the sequential information arrival hypothesis, they find that lagged volume and

open interest has significant explanatory power for petroleum future spreads volatility. However

the empirical research is indecisive, and new research by Abdullahi, Kouhy and Muhammad

(2014) find no causal relationship between volume and return for WTI crude oil futures using

daily data from 2008 to 2011, thereby rejecting the sequential information arrival hypothesis.

In a different vein an increase in activity in derivatives market is generally known to be con-

nected with an increase of information arrival (Brunetti et al., 2016). When this information

is incorporated into the current prices, forward-looking volatility might fall (Robe and Wallen,

2016). Therefore we can not predict the total effect of the futures volume on implied volatility,

since it depends on which of the above effects that dominates. We do not expect that the liq-

uidity have any affect on implied skewness, since it does not affect the probability for higher or

lower crude oil prices.

4.3.3 Financial Traders’ Positions in Crude Oil Paper Markets

Robe and Wallen (2016) argue that although there is not an agreement in the literature that

commodity index traders impact commodity price levels, there is an agreement that commodity

index traders are long-only and passive. Thus their position in WTI crude oil is not likely to hold

predictive power for implied volatility for WTI crude oil. However it is more likely that more

active market participant like hedge funds could have a predictive power for implied volatility

(Robe and Wallen, 2016).

Hedge funds market share has increased significantly over time, from 2000 to 2006 hedge funds

market share grew more than threefold (Brunetti, Büyükşahin and Harris, 2016, p.2). Brunetti,

Büyükşahin and Harris (2016) find little evidence that financial speculators destable the market.

On the contrary they find that hedge funds stabilize the market and provide valuable liquidity to

the market. Alquist and Gervais (2013) find that changes in positions for non-commercials did

not predict oil-price changes. They argue that the increased crude oil price from 2003-2008 can

be explained by macroeconomic fundamentals and not financial speculation.

Following Robe and Wallen (2016) we include a proxy for hedge fund activity in our analy-

sis. They use trader-posistion data for WTI futures published by the U.S Commodity Futures

Trading Commission (CFTC) for the NYMEX’s WTI futures markets and use the methodology
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from Working (1960) to calculate the Working T index. The CFTC’s weekly Commitments of

Traders report (COT) break down the total open interest between the positions of commercials

hedgers and non-commercials. From 2009 the report also split non-commercials between hedge

funds and other non-commercial traders. Even though this adjustment came in 2009, data con-

taining this information is available from 2006 (Robe and Wallen, 2016, p.331), limiting our

research to the period when the information is available.
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Figure 4.4: Historical development from 25.07.2006 to 03.03.2016 of Working T index, subtracted with
1. Source: Quandl.

Figure 4.4 show a long-term increase in the Working T index, and that the index is quite volatile.

We expect a positive relationship with implied volatility for WTI crude oil, because hedge funds

enter markets when they expect a price movement to occur. For implied skewness we do not

expect the variable to be significant, since hedge funds take long positions as well as short

positions in the market.

4.3.4 Time-To-Maturity

Following Robe and Wallen (2016) we include a variable for number of days left before expi-

ration on the underlying future. Based on Samuelson (1965) we should expect an increase in

the implied volatility when delivery date gets closer. Samuelson argues that more information
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is available to the investor closer to maturity, causing increased volatility (Bessembinder et al.,

1996). Thus longer time to maturity would decrease implied volatility. For implied skewness

we do not expect the variable to be significant, since time-to-maturity is not expected to impact

the WTI crude oil future price. Table 4.1 summarise the expected signs for each independent

variable for the regression models on both implied volatility and implied skewness.

Beta Variable Implied Volatility Implied Skewness
β1 lagged dependent variable + +
β2 Overall financial uncertainty (Vix-index) +
β3 U.S business cycle (∆ADS-index) - -
β4 ∆Oil output - +
β5 Dummy for OPEC Spare capacity - +
β6 ∆Oil output * Spare + +
β7A Oil storage constraints - (backwardation) - (backwardation)
β7B Oil storage constraints + (contango) - (contango)
β8 Financial speculation (∆Working T index) +
β9 Days to expiration (TTM) -
β10 ∆Futures volume +/-

Table 4.1: Expected signs for the regression results on both implied volatility and implied skewness.
Blank spaces implies that we do not expect the variable to have any impact.
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5 Data

This chapter presents the descriptive statistics and stationarity tests for each variable used in our

regression models.

5.1 Descriptives

Table 5.1 shows the descriptive statistics of our data at a weekly frequency from 25.07.2006

until 01.03.2016, giving a total of 490 observations. The mean for implied volatility is 0.22 and

is lower than the mean calculated by Robe and Wallen (2016), as discussed in Section 3.7. They

find a mean of 0.38 for implied volatility for 1 month WTI crude oil.

Implied skewness has a mean of -0.09 and support our assumption in Section 3.8 that the implied

skewness fluctuates around -0.1. In average there is thereby more expensive to hedge downside

risk than upside risk in the WTI crude oil market.

Variable Mean Median Max Min StDev Skewness Kurtosis Obs
Implied Volatility 0.2235 0.2045 0.7186 0.0700 0.1033 1.7128 6.8694 490
Implied Skewness -0.0901 -0.0915 0.1610 -.3082 0.0654 0.0587 4.5339 490
VIX 0.2109 0.1822 0.8006 0.0997 0.1009 2.1886 9.1228 490
∆ADS 0.0032 -0.0001 0.5253 -0.4687 0.0973 0.1359 7.5272 490
∆Oil Output 0.0011 0.0009 0.1414 -.02216 0.0207 -1.8689 43.0554 490
Dummy Spare 0.2571 0 1 0 0.4375 1.1113 2.2350 490
Backwardation -0.0231 0 0 -0.1416 0.0382 -1.5329 4.0113 490
Contango 0.0548 0.0227 0.5998 0 0.0838 2.5316 11.4487 490
∆Working T 0.0007 0.0001 0.1179 -0.1595 0.0313 -0.3560 6.0270 490
Time to maturity 55.9918 56 72 39 8.8162 -0.0004 1.8221 490
∆Futures Volume -0.0019 0.0310 1.3812 -1.5024 0.4973 -0.3086 2.9184 490
OVX 0.3838 0.3497 0.9893 0.1474 0.1572 1.2145 1.8621 413

Table 5.1: Summary statistics at a weekly freuqncy from 25.07.2006 to 01.03.2016 for the variables
used in the regressions. For information about where data is collected from, see Appendix A.1.

The mean and median for contango is higher in absolute value than for backwardation. His-

torically the crude oil market has been dominated of backwardation. However Figure 4.2 show
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that for our time-period contango is more dominating and has higher peaks than backwarda-

tion. This may effect our regression results for storage tension in times of backwardation. The

descriptive statistic for the other variables are similar with the findings of Robe and Wallen

(2016).

5.2 Tests of Stationarity

For the regression-coefficients to be valid we check if the variables are stationary. When a time-

series is stationary there is no trends or patterns that can lead to invalid results. A time-series is

defined as stationary if:

E(yt ) =µ (5.1)

V ar (yt ) = E [(yt −µ)(yt −µ)] =σ2 (5.2)

Cov(yt2, yt1) = E [(yt2 −µ)(yt1 −µ)] =Ωt2−t1, ∀t2, t1 (5.3)

The first and second condition is that the time-series should have constant mean and variance

over time, meaning that the data is independent of time. This means that most observations

will be close to the mean, but how close depends on the variance. The third condition is that

a joint distribution between adjacent variables in the data generating process is independent

of time Alexander (2008a). Economic variables on level-form are normally not stationary.

Normally we solve the problem by using first difference form, and at the same time making

them stationary. For example Figure 4.4 shows that Working T is not stationary, and including

it in the regression without using first difference changes could lead to severe consequences for

the regression results.

One consequence of using a non-stationary variable in regression analysis is spurious regres-

sions (Studenmund, 2016). Spurious regressions is regressions where a independent variable

have the same underlying trend as the dependent variable, making it significant and normally

giving the model high overall fit. While the model seem to give good results, there is no real

underlying causal relationship between the variables.
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Variable Augmented Dickey-Fuller Phillips-Peron
Implied Volatility 0.3489 0.0003***
Implied Skewness 0.0002*** 0.0000***
VIX 0.0210** 0.0022***
∆ADS 0.0000*** 0.0000***
∆Oil Output 0.0000*** 0.0000***
Dummy Spare 0.4704 0.4629
Dummy Spare * ∆Oil Output 0.0000*** 0.0000***
Backwardation 0.1058 0.1125
Contango 0.0709* 0.0072***
∆Working T 0.0000*** 0.0000***
Time to maturity 0.0000*** 0.0000***
∆Futures Volume 0.0000*** 0.0000***
* p < 0.10, ** p < 0.05, *** p < 0.01

Table 5.2: Stationarity tests. ***, ** and * indicate the significance level at the 0.01, 0.05 and 0.1,
respectively. We have used 4 lags for the Augmented Dickey-Fuller test, following Robe and Wallen
(2016). For the Phillips-Perron test we have used the default lag-number set by STATA, as explained in
Appendix B.2.

Table 5.2 shows the results of our stationarity-tests. We have conducted both a Augmented

Dickey-Fuller and a Phillips-Peron test. The tests are explained in Appendix B.1 and B.2. For

p-values we use the MacKinnon approximate p-value (MacKinnon, 1994).

The test results in Table 5.2 shows stationarity for most variables, except for the spare-dummy,

which is not expected to be stationary, and backwardation. Backwardation is close to being

significant at 10% significance level, and is most likely not stationary because of few periods of

backwardation and thereby not enough datapoints. Implied volatility is stationary according to

the Phillips-Perron test, but not according to the Augmented Dickey-Fuller test. We will threat

it as stationary, as implied volatility is viewed as stationary by investors, even though it may not

always be confirmed by unit root tests (Alexander, 2008c).
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6 Empirical Analysis

This chapter presents the empirical results and tests for misspecification. In addition, we analyse

large residuals from the regression model on implied volatility and explain that they represent

unexpected shocks to the crude oil market. The last part of this chapter contains an robustness-

check with an alternative measure of forward-looking volatility.

6.1 Methodology

The goal of this thesis is to examine what drives changes in forward-looking volatility and skew-

ness for WTI crude oil. We measure the front month implied volatility and implied skewness

for WTI crude oil on Tuesdays and regress each on: the one week lagged implied volatility

or implied skewness, one-day lagged VIX (Monday), contemporaneous changes (Tuesday) in

macroeconomic fundamentals for the U.S. measured by the ADS Index, oil market fundamen-

tals measured by a SPARE dummy, the net cost of carry measured by the one-day lagged term

structure SLOPE, the changes in North American production lagged one week, changes in the

intensity of speculation measured by the Working T index lagged one week, a control variable

for time to expiration and a liquidity control variable measured by changes in the relevant future

volume. This leads to the two following regression equations:

Implied Volatilityt =α+β1Implied Volatilityt−1 +β2VIXt−1 +β3∆ADSt−1

+β4∆Oil Outputt−1 +β5SpareDummyt +β6(∆Oil Outputt−1 ∗Sparet )

+β7ASLOPEt−1

∣∣∣Backwardation
+β7B SLOPEt−1

∣∣∣Contango
+β8∆WorkingTt−1

+β9TTMt +β10∆Futures Volumet−1 +εt (6.1)
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Implied Skewnesst =α+β1Implied Skewnesst−1 +β2VIXt−1 +β3∆ADSt−1

+β4∆Oil Outputt−1 +β5SpareDummyt +β6(∆Oil Outputt−1 ∗Sparet )

+β7ASLOPEt−1

∣∣∣Backwardation
+β7B SLOPEt−1

∣∣∣Contango
+β8∆Workingst−1

+β9TTMt +β10∆Futures Volumet−1 +εt (6.2)

6.2 Empirical Results

Variables Implied Volatility Implied Skewness
Lagged dependent 0.53437*** 0.77395***

(0.02348) (0.02833)
VIX 0.29354*** -0.00442
(One-day lagged) (0.01821) (0.01990)

ADS -0.00897 -0.02139
(One-day lagged change) (0.01278) (0.01886)

Oil Output -0.04676 0.01988
(One-week lagged pct change) (0.06336) (0.09330)

Dummy SPARE -0.01702*** 0.00739
(0.00311) (0.00458)

Dummy Spare * Oil Output 0.05153 0.18186
(One-week lagged pct change) (0.17739) (0.26122)

Backwardation 0.16432*** -0.13231**
(One-day lagged slope) (0.03683) (0.05419)

Contango 0.26511*** 0.01295
(One-day lagged slope) (0.02216) (0.02544)

Working T -0.00553 0.04189
(One-week lagged change) (0.03872) (0.05713)

Time to maturity 0.00329*** -0.00107***
(0.00014) (0.00020)

Futures Volume 0.01131*** -0.00278
(One-day lagged change) (0.00250) (0.00362)

Constant -0.14865*** 0.03436***
(0.00904) (0.01281)

Observations 490 490
Adjusted R-squared 0.9335 0.6397
* p < 0.10, ** p < 0.05, *** p < 0.01

Table 6.1: Regression results at a weekly frequency from 25.07.2006 to 01.03.2016 for implied volatility
and implied skewness. ***, ** and * indicate the significance level at the 0.01, 0.05 and 0.1, respectively.
Regression results are reported with standard error in parentheses. For information about where data is
collected from, see Appendix A.1.
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Table 6.1 shows regression results for both implied volatility and implied skewness. In Ap-

pendix A.4 we have included the regression results for more parsimonious regression models

including only the significant variables. From Table A.4 in Appendix A.4 we see that the parsi-

monious regressions have the same sign and significance as the regressions presented in Table

6.1, thereby supporting that our regressions is robust.

6.3 Results Implied Volatility

In this section we present the regression result in Table 6.1 for implied volatility for each vari-

able. Adjusted R-squared is 0,93, indicated that we have managed to capture the most important

determinants of forward looking volatility on WTI crude oil.

6.3.1 Lagged Implied Volatility

Lagged implied volatility is positive and significant, meaning that if implied volatility a week

ago was high, we expect high implied volatility today. This is natural since volatility tend to

move in clusters.

6.3.2 VIX

Gromb and Vayanos (2010) argue that there could be a spillover effect between volatility in

equity markets and energy markets. We therefore expect a positive relationship between VIX

and WTI crude oil implied volatility. Table 6.1 shows that VIX has significant impact on implied

volatility for WTI crude oil. When uncertainty in the equity market increases, implied volatility

for WTI crude oil tend to rise aswell. Our findings align with the findings of Robe and Wallen

(2016). They argue that this can help explain the very low levels of implied volatility in 2012-

2014, since uncertainty in the equity market was very low for the same time period.

6.3.3 Business Cycles

We expect that an increase in U.S activity measured by the ADS index would have a inverse

relation with WTI crude oil implied volatility. Similar to Robe and Wallen (2016) we find that

the ADS-index is not statistically significant.
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6.3.4 Oil Production Fundamentals

The market for WTI crude oil expect less volatility in the future when OPEC spare capacity is

high, because OPEC can change their production if the demand for crude oil increases. OPEC

spare capacity outside Saudi Arabia is significant and has the expected negative sign. Higher

production surplus capacity is associated with lower implied volatility for crude oil. Our re-

gression results confirm Robe and Wallen’s (2016) conclusion that it is important to control for

physical constraints on the production of crude oil.

Both U.S. oil output, and the interaction term between U.S. oil output and spare capacity are

not statistical significant, corresponding with the results of Robe and Wallen (2016).

6.3.5 Oil Storage

From Table 4.1 and Section 4.2.3 we see that we expect a positive sign for contango. Contango

is a proxy for low storage capacity in Cushing, which drives WTI crude oil prices down, because

oil can not be stored and needs to enter the commodity market. This leads to increased implied

volatility. Table 6.1 shows that contango is significant and positive in our regression, confirming

the theory from Section 4.2.3. This is in line with the findings of Robe and Wallen (2016).

However, 6 month implied volatility contango is not significant in their results, indicating that

low storage capacity only boost implied volatility in the short term (Robe and Wallen, 2016).

Backwardation is a proxy for high storage capacity and represent the bottleneck of getting

enough oil into Cushing, resulting in WTI crude oil prices rising to higher levels. Thus we

expect a negative sign in the regression, meaning that a higher level of backwardation increases

implied volatility. However our results in Table 6.1 shows a significant positive coefficient,

which is not in line with our expectations. A possible explanation could be that we have few

periods of backwardation, as shown in Figure 4.2. We believe that increasing the time-period to

include more periods of backwardation could change the results.

Robe and Wallen (2016) does not find backwardation to be significant for 1 month implied

volatility, but find it significant and positive for 6 month implied volatility. They calculate

the slope-variable using the difference between nearby and first-deferred futures. We use the

difference between nearby and 13 month futures, as shown in Equation 4.1, meaning that we

calculate the slope-variable further out on the term structure than Robe and Wallen (2016). How
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far out on the term structure you calculate the slope-variable can have an impact on the result,

but as far as we know, there have not been conducted any studies on the subject.

6.3.6 Speculative Activity in Oil Markets

To check if intensity of oil-market speculation have any effect on WTI crude oil implied volatil-

ity we use the Working T index. The expectation is that increased speculation should increase

implied volatility. However both our results and the results of Robe and Wallen (2016) show

that the Working T index is not significant, and do not help explain forward-looking volatility

for WTI crude oil. Robe and Wallen (2016) point out that this might be because we only have

public available information in the Working T index.

6.3.7 Paper Market Liquidity

We expect two opposite effects on implied volatility for WTI crude oil futures trading volume,

and therefore no expected sign. An increase in future volume is significant positive related to

WTI crude oil implied volatility, supporting the sequential information arrival hypothesis. Robe

and Wallen (2016) also finds that future volume is significant and positive related to implied

volatility. In addition they control for option volume in their regression, but did not find this

variable to be significant.

6.3.8 Time-To-Maturity Effects

We expect that longer time to maturity should decrease implied volatility, because of the Samuel-

son (1965) effect. Our results in Table 6.1 shows the contradictory. We detected this pattern

when looking at daily volatility smiles for each month, as the at-the-money implied volatil-

ity trends downward closer to maturity. A possible explanation for this is that liquidity in

WTI crude oil futures decreases the last weeks before maturity, because most traders close out

their positions or roll over to contracts with longer maturity, generating a kind for seasonality

(Brunetti et al., 2013). This is supported by Ripple and Moosa (2009), which finds that trad-

ing volume and open interest dominate the Samuelson effect for WTI crude oil. On the other

hand, Robe and Wallen (2016) finds the expected negative sign. Including open interest in the

regression could give more insight into this matter.
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6.4 Residual Analysis Implied Volatility Regression

Our model take into account macroeconomic fundamentals, physical-market conditions and

financial variables. High residuals should thereby reflect unexpected shocks in the crude oil

market, or reflect shocks on other omitted variables. Robe and Wallen (2016) study monthly

Short Term Energy Outlook published by the EIA and identify declines in world production

greater than 1 percent. They find that high residuals take place when there are unexpected oil

market disruptions.
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Figure 6.1: Timeline of the residuals from the regression on implied volatility from 25.07.2006 to
01.03.2016.

Figure 6.1 shows the residuals from the regression model on implied volatility. We find the

same pattern as Robe and Wallen (2016) have in their analysis for the overlapping time period.

At the 13th February 2007 we have a high residual. This might reflect that at 8th January 2007

Russia cut oil supplies to Poland, Germany and Ukraine, aimed to prevent Belarus illegally

shipping off oil (Russia oil row hits Europe supply, 2007). Like Robe and Wallen (2016) we

can clearly identify the period of the financial crisis that started in the fall of 2008 and lasted

approximately a year. In August 2011 we also observe high residuals, which is likely caused

by the US credit-rating downgrade that took place in August 2011, when Standard & Poor’s

downgraded the long term sovereign credit rating from AAA to AA+ (Peston, 2011).

38



After the US credit rating shock follows a long period with small residuals. From October 2014

to February 2015 we observe increased residuals, likely caused by the dramatic and unexpected

drop in crude oil prices (Baumeister and Kilian, 2016). The last high residual in our sample is at

12th January 2016. This can be explained by the WTI crude oil price. From 1st January 2016 to

12th January 2016 the WTI crude oil price fell by about 18%, ending at $30.42. After studying

the residuals from the regression on implied volatility we agree with Robe and Wallen’s (2016)

argument that high residuals can be explained by unexpected shocks.

6.5 Results Implied Skewness

As Table 6.1 shows, we do not find as many significant variables for implied skewness as we find

for implied volatility. This is partly expected since higher moments of the distribution is harder

to explain, because higher moments have more spikes. In addition several of the independent

variables in Chapter 4 is not expected to impact implied skewness. The regression model for

implied skewness shows an adjusted R-squared of 0.64, which is medium high. This shows that

the regression model manage to describe parts of what drives changes in implied skewness. In

the following analysis for implied skewness we choose to only focus on the significant variables.

6.5.1 Lagged Implied Skewness

Table 6.1 shows that implied skewness a week ago is highly significant in explaining implied

skewness today. This is expected when we look at the Figure 3.4, which shows that implied

skewness tends to move in periods between positive and negative. In other words implied

skewness moves in clusters.

6.5.2 Oil Storage

We expect a negative effect for contango on implied skewness. Contango represent low storage

space and thus high supply relative to demand, which gives a pressure on lower WTI crude oil

price. Our regression does not confirm our expectation since contango is not significant.

For backwardation we expect a positive effect on implied skewness, indicating a negative sign in

the regression. This is because higher levels of backwardation indicates a bottleneck of getting

enough oil into Cushing, giving oil distributors limited possibility to answer demand-shocks.

Therefore an increase in demand for WTI crude oil would result in higher WTI crude oil prices.
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This is illustrated in Figure C.3 in the appendix, which shows an equilibrium in the WTI crude

oil market, with the typical demand and supply curves found in this market. A hypothetical

positive shift in the demand curve would lead to an increased WTI crude oil price. Thus higher

backwardation should indicate more positive skewness, which means a negative sign for the

coefficient. Our regression on implied skewness shows that backwardation is significant and

has the expected negative sign, confirming our expectations.

For our time period we conclude that high storage capacity in Cushing helps explain more

positive implied skewness, but we do not find evidence that low storage capacity in Cushing

have impact on implied skewness.

6.5.3 Oil Production Fundamentals

The dummy variable that measures OPEC spare capacity without Saudi Arabia is expected to

have a positive sign for implied volatility since high spare capacity is a reflection of lower WTI

crude oil prices and therefore leads to more positive implied skewness. From the regression

results in Table 6.1 we see that the spare dummy has the expected positive sign and a p-value

of 0.107, which means that the variable is almost statistically significant at a ten percent level.

Therefore we argue that this variable could be an important factor in explaining changes in

implied skewness over time.

6.5.4 Time-To-Maturity Effects

We expect time to maturity to have no effect on implied skewness. However the regression

results in Table 6.1 show that time to maturity is significant and negative. This means that closer

to maturity we observe more positive skewness. To our knowledge there is no documented

economic reason for this effect. Studies (Whaley, 1986; Hull and White, 1987) find that both

the Black-Scholes and the Barone-Adesi and Whaley method have increasing overpricing of

options with increasing time to maturity. This may impact the shape of the volatility smile.

Therefore the negative effect on implied skewness from increased time to maturity could be a

result of using different methods for each side of the volatility smile.
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6.6 Testing for Misspecification

We have used VIF-criterias to check for multicollinearity. Table 6.2 shows VIF-values for both

regressions. None of the VIF-indexes is above 5, which is a rule of thumb for when mul-

ticollinearity is severe according to Studenmund (2016). This indicate that we do not have

any problems with multicollinearity, but we can not completely rule out the possibility of multi-

collinearity, because the test has no hard-and-fast decision rule. From Table A.3 in the appendix

we see that none of the explanatory variables have correlations above 0.8, which is often viewed

as a critical value for when multicollinearity is severe. This is another argument supporting that

we have no multicollinearity in our regression models.

Residual tests for normality, heteroskedasticity, autocorrelation and linear form are found in

Table 6.3. First, we see that both the regression models have residuals that do not follow the

normal distribution. Secondly, we see that the regression model for implied volatility has a

problem with heteroskedasticity. This can also be seen from the residual plot in Figure C.4 in

the appendix. Even though we have heteroskedasticity the OLS results will be unbiased, but

they might not be the most efficient of all linear unbiased estimators (Alexander, 2008a). For

the regression model for implied skewness we do not have heteroskedasticity according to the

Breusch-Pagan test.

Variable Implied Volatility Implied Skewness
Lagged Implied Volatility 4.05
Lagged Skewness Proxy 1.08
VIX 2.32 1.28
∆ADS 1.06 1.07
∆Oil Output 1.19 1.19
Dummy Spare 1.28 1.28
Dummy Spare * ∆Oil Output 1.16 1.16
Backwardation 1.37 1.36
Contango 2.37 1.44
∆Working T 1.01 1.02
Time to maturity 1.06 1.03
∆Futures Volume 1.06 1.03

Table 6.2: VIF-values for the regression models on implied volatility and implied skewness.

Both regression models test positive for autocorrelation. The estimators are still unbiased, but

here as well it might not be the most efficient unbiased estimators (Alexander, 2008a). When

it comes to the Ramsey RESET test none of the models reject the null hypothesis for a 5%
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significance level. However the regression model for implied volatility is significant for a 10%

significance level. This means that there might be a non-linear combination of the explanatory

variables that have predictive power on the dependent variable. For the regression model for

implied skewness the p-value is 0.5402, and thereby no chance of rejecting the null hypothesis.

Test Implied Volatility Implied Skewness
Jarque-Bera 0.0000*** 0.0000***
Breusch-Pagan 0.0000*** 0.1129
Breusch-Godfrey 0.0002*** 0.0009***
Ramsey RESET test 0.0671* 0.5402
* p < 0.10, ** p < 0.05, *** p < 0.01

Table 6.3: Summary of misspecification-tests for residuals from regression models for implied volatility
and implied skewness. ***, ** and * indicate the significance level at the 0.01, 0.05 and 0.1, respectively

Autorcorrelation, heteroskedasticity and non-normal distributed residuals violates the assump-

tions for OLS, and at the same time inspire further research. An extension of this master thesis

could include other regressions-methods, such as generalized least squares to correct for auto-

correlation, or weighted least squares to correct for heteroskedasticity (Studenmund, 2016). An

alternative is to use White’s robust standard errors instead of the standard errors of the OLS

estimators, or to follow the Newey-West procedure (Alexander, 2008a).

6.7 Alternative Measure of Forward-Looking Volatility

As explained in Section 4.3.1 the OVX-index is calculated in the same way as the VIX-index,

but for crude oil. As Robe and Wallen (2016) we test the robustness of our regression results by

replacing implied volatility with the OVX-index in the regression model. Table 6.4 shows the

results of the regression with the OVX-index as the dependent variable. Since the OVX-index

was first introduced in 2007 we only have 413 observations in this regression, compared to 490

observations in the regression for implied volatility.

The results of the regression are highly similar to the initial regression presented in Table 6.1.

These results supports that our regression with calculated implied volatility is robust. We have

the same significant variables, the only difference being that time to maturity is only significant

at a 5% significance level instead of 1%. It is interesting that this robustness check support

the results for time to maturity in the initial regression in Table 6.1. Compared with Robe and

Wallen’s (2016) regression results on the OVX-index, we find similar results, except that they

do not find time to maturity to be significant.
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Variables OVX-index
Lagged IV 0.70105***

(0.04286)
VIX 0.49193***
(One-day lagged) (0.03369)

ADS -0.02393
(One-day lagged change) (0.02302)

Oil Output -0.07168
(One-week lagged pct change) (0.11660)

Dummy Spare -0.04854***
(0.0.00557)

Dummy Spare * Oil Output 0.11250
(One-week lagged pct change) (0.31057)

Backwardation 0.63298***
(One-day lagged slope) (0.07746)

Contango 0.35720***
(One-day lagged slope) (0.03950)

Working T 0.02688
(One-week lagged change) (0.07077)

Time to maturity 0.00054**
(0.0.00026)

Futures Volume 0.01479***
(One-day lagged change) (0.00454)

Constant 0.09186***
(0.01718)

Observations 413
Adjusted R-squared 0.913
* p < 0.10, ** p < 0.05, *** p < 0.01

Table 6.4: Regression results at a weekly frequency from 04.03.2008 to 01.03.2016 with the OVX-
index as the dependent variable. ***, ** and * indicate the significance level at the 0.01, 0.05 and 0.1,
respectively. Regression results are reported with standard error in parentheses. For information about
where data is collected from, see Appendix A.1.
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7 Conclusion

In this thesis we calculate volatility smiles from 25.07.2006 to 03.03.2016 for WTI crude oil us-

ing nearby futures and future options. We use factors from Robe and Wallen (2016) to examine

what drives changes in implied volatility and implied skewness. To our knowledge our study is

the first that determines drivers of implied skewness using a proxy for implied skewness.

Our results for implied volatility support many of Robe and Wallen (2016) findings. We confirm

that both physical oil market fundamentals for WTI crude oil and financial uncertainty in the

equity market, measured by the VIX-index, contain information about implied volatility. This

helps explain the record low levels of implied volatility for WTI crude oil, since it reflects the

low levels of uncertainty in the financial market. The U.S. business cycle is not significant,

showing that the VIX-index is a better measure for market sentiment.

Our results for implied skewness have fewer significant explanatory variables than implied

volatility, but our results suggest that physical oil market fundamentals is key to understand

what drives changes in implied skewness. Storage-tension is significant with a positive effect

when the market is in a state of backwardation, meaning that low supply relative to demand

results in more positive forward-looking skewness. OPEC spare capacity without Saudi-Arabia

is almost significant. This reflect that high OPEC spare capacity tend to occur when WTI crude

oil prices are low, which leads to more positive forward-looking skewness. In addition the con-

trol variable for time to maturity is significant with a negative effect, meaning that longer time

to maturity decreases implied skewness, resulting in a more left-skewed distribution.

Our result have importance for investors and participant in oil-related industries that want to

reduce WTI crude oil risk, because we find significant factors that explain changes in forward-

looking volatility and skewness. These factors can be used to understand and predict changes

in the distribution of WTI crude oil over time.

An interesting expansion of our thesis would be to test the prediction ability of implied volatility

and implied skewness for our models. One way to do this is comparing predictions from our

models with an ARIMA benchmark model. Forecasting distributions of WTI crude oil and
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predict VaR estimations could also be interesting future research. Another possible extension

includes using a proxy for kurtosis and examine if the same variables explain kurtosis as well.

Including realised volatility as an explanatory variabel in the model using intraday data could

also be a fruitful extension.

We find a clear connection between WTI crude oil implied volatility and general equity market

uncertainty measured by the VIX. Similar results could likely be found for other commodities.

Further research is however necessary to make such a generalization. To strengthen our findings

for the crude oil market, reasearch on other types of crude oil and options with longer maturities

could also be a potential extension.
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A Data

A.1 Databases

Our regression is based on data from 25.07.2006 to 03.03.2016. Data was made available from

supervisor, except for continuous WTI crude oil futures, 1-month US treasury bill rate, annual

LIBOR interest rate and the OVX-index. Table A.1 shows where the data is collected from:

Variables Database
WTI crude oil future options CME
WTI crude oil futures CME
VIX CBOE
OVX CBOE
OPEC spare capacity EIA
Oil Output EIA
ADS Quandl
Working T Quandl
Continuous WTI crude oil futures Datastream
1-month US treasury bill rate Datastream
Annual LIBOR interest rate Datastream

Table A.1: This table shows where all data is collected from. CME is Chicago Mercantile Exchange,
CBOE is Chicago Board Options Exchange, and EIA is U.S. Energy Information Administration.

A.2 Practical Approach Calculating Volatility Smiles

The most time-consuming part of this thesis is the calculation of volatility smiles. We use MAT-

LAB to do the calculation, because it could handle large data sets and have built in functions

for finance. To calculate the volatility smiles we start out with csv-files with future options

and futures for WTI crude oil. After importing the data we organize it so each future option is

matched with the underlying future. Then we import interest rates and match them according

to the trade dates. Having imported and organized all the data, we calculate implied volatility

for each future option. After calculating implied volatilities we get one volatility smile for each

time to maturity at each day. To narrow the scope of the thesis we decided only to use nearby

contracts. Having the volatility smiles we retrieve at-the-money implied volatility and implied

skewness.
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Table A.2 show an overview of how many options we used to calculate daily volatility smiles.

Total per year is the sum used each year, and daily average is the average number of options each

volatility smile contain. Our sample is from 25.07.2006 to 03.03.2016, and that is the reason

why 2006 and 2016 contain fewer options on total than the other years. The daily average is

still similar to the other years.

Year Total per year Daily average
2006 12316 108.99
2007 29388 117.08
2008 44283 175.03
2009 36149 143.45
2010 37387 148.36
2011 41063 162.95
2012 44417 176.26
2013 40693 161.48
2014 35615 141.33
2015 36676 145.54
2016 5953 148.83

Table A.2: Number of options used per year. Daily average is calculated as the average number of
options included in the volatility smile each day.

A.3 Correlation Matrix

Table A.3 contains the correlation matrix for our data.
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A.4 Parsimonious Regression Results

Table A.4 shows the regression results of more parsimonious regression models including only

variables that contributes to determine implied volatility and implied skewness.

Variables Implied Volatility Implied Skewness
Lagged dependent 0.53552 0.77895

(0.02337) (0.02794)
VIX 0.29216
(One-day lagged) (0.01809)

ADS
(One-day lagged change)

Oil Output
(One-week lagged pct change)

Dummy SPARE -0.01724 0.00659
(0.00306) (0.00438)

Dummy Spare * Oil Output
(One-week lagged pct change)

Backwardation 0.16498 -0.11791
(One-day lagged slope) (0.03667) (0.05057)

Contango 0.26492
(One-day lagged slope) (0.02204)

Working T
(One-week lagged change)

Time to maturity 0.00329 -0.00103
(0.00014) (0.00020)

Futures Volume 0.01131
(One-day lagged change) (0.00249)

Constant -0.14833 0.03327
(0.00899) (0.01200)

Observations 490 490
Adjusted R-squared 0.9338 0.6425
* p < 0.10, ** p < 0.05, *** p < 0.01

Table A.4: Weekly regression results from 25.07.2006 to 01.03.2016 for implied volatility and implied
skewness with only the significant variables from the oiginal regressions. ***, ** and * indicate the
significance level at the 0.01, 0.05 and 0.1, respectively. Regression results are reported with standard
error in parentheses. For information about where data is collected from, ses Appendix A.1.
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B Statistical Tests

In this part of the appendix you will find information and theory about the statistical tests used

in this thesis.

B.1 Augmented Dickey-Fuller Test

We use an augmented Dickey-Fuller test to test if all the time-series are stationary. A time series

is stationary if the process is mean reverting, hence the series have a constant mean, variance

and autovariance. The Dicky-Fuller test if the time-series has a unit root or not (Alexander,

2008b). The null hypothesis states that the process is non-stationary and alternative hypothesis

states that the time-series is stationary. The Dicky Fuller test run the following regression:

∆yt =ψyt−1 +
p∑

n=1
αn yt−1 +ut (B.1)

ψ=1-φ, where φ is the unit root. p is the number of lags of the dependent variable included in

the regression. And ut is the residuals. The test statistic is:

Test statistic= ψ

SE(ψ)
(B.2)

SE(ψ) is the standard error. We reject the null hypothesis if the test statistic is more negative

than the critical value. Here it is important to be aware that we can not use the t-distribution,

but have to use the Dickey and Fuller (1979) critical values.

B.2 Phillips-Perron Test

The Phillips-Perron test is a unit-root test in the same way as the Dickey-Fuller test explained

in appendix B.1. The difference is that Phillips-Perron takes serial correlation into account.

The test starts with the same regression as the Dickey-Fuller test, but where the Dickey-Fuller

uses lagged first difference of the variable, the Phillips-Perron test uses Newey and West (1987)

57



robust standard errors. The test involves fitting the following regression (Phillips and Perron,

1988):

yi =α+pyi−1 +εi (B.3)

After fitting the regression we calculate the two test statistics Zρ and Zτ (STATA manual, 2018):

Zρ = n(ρ̂n −1)− 1

2

n2σ̂2

S2
n

(λ̂2
n − γ̂0,n) (B.4)

Zτ =
√
γ̂0,n

λ̂2
n

ρ̂n −1

σ̂
− 1

2
(λ̂2

n − γ̂0,n)
1

λ̂n

nσ̂

Sn
(B.5)

γ̂ j ,n = 1

n

n∑
i= j+1

ûi ûi− j (B.6)

λ̂2
n = γ̂0,n +2

q∑
j=1

(1− j

q +1
)γ̂ j ,n (B.7)

S2
n = 1

n −k

n∑
i=1

û2
i (B.8)

Where ui is OLS residuals, k is the number of covariates in the regression, q is number of

Newey-West lags included when calculating λ̂2
n , and σ̂ is the standard error of p̂ (STATA man-

ual, 2018). To determine the number of Newey-West lags(q) we use the default set in STATA

manual (2018):

4(T /100)2/9 (B.9)

The test statistics is compared with the same critical values as the Dickey-Fuller test statistic,

since they follow the same distribution.
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B.3 VIF

VIF-indexes are calculated to detect multicollinearity, and is calculated in the following way

according to Studenmund (2016). First you have to do a regression that has Xi as dependent

variable and all the other explanatory variables as independent variables:

X1 =α1 +α2X2 +α3X3 +·· ·+αK XK + v (B.10)

When you have done this you find the VIX-index by using the following formula:

V I F (β̂i ) = 1

1−R2
i

(B.11)

The advantage of using VIF-indexes compared to bivariate correlation is that VIF-indexes takes

all independent variables into account when checking for multicollinearity, while correlations

only check pairwise.

B.4 Jarque-Bera Test

The Jarque-Bera test is a test for normality, and test wether a variable follow the normal distri-

bution (Bera and Jarque, 1981). The test uses expected value and variance, denoted by µ and

σ2, and calculates the skewness and kurtosis, denoted by b1 and b2:

b1 = E [µ3]

(σ2)
3
2

(B.12)

b2 = E [µ4]

(σ2)2
(B.13)

The Jarque-Bera test statistic is calculated as follow, where T is the sample size, and follow a

chi-squared distribution with two degrees of freedom:

JB = T

6
[b1 + (b2 −3)2

4
] ∼χ2(2) (B.14)

The null hypothesis is that the data follow a normal distribution. If the test statistic is greater

than the critical value given by the chi-squared distribution, we reject the null hypothesis and
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conclude that the data does not follow the normal distribution.

B.5 Breusch-Pagan Test

The Breusch-Pagan test is a test for heteroskedasticity in a regression model. Heteroskedasticity

means that the residuals does not have constant variance. The test is based on the residuals of

the regression and is modelled in the following way (Studenmund, 2016):

e2
i =α0 +α1X1i +α2X2i +·· ·+αK XK i +ui (B.15)

Having modelled the test, you test the overall significance with a chi-square test, testing if α1

to αK is equal to 0 or not. If all the alphas except α0 is 0, then the variance is α0, which is a

constant. If you reject the null hypothesis, you have a problem with heteroskedasticity in your

regression model.

B.6 Breusch-Godfrey Test

Breuch-Godfrey test is a test for autocorrelation in the regression model. This means that the

residuals are correlated over time. The test is based on the residuals from the initial regression,

and is modelled in the following way, with a new regression on lagged residuals:

ut = ρ0 +ρ1ut−1 +ρ2ut−2 +·· ·+ρp ut−p + vt (B.16)

The null hypothesis is that ρ1 to ρp is equal to 0. If this is rejected we have a case of autocor-

relation. Even with autocorrelation the OLS results will remain unbiased.

B.7 Ramsey RESET Test

The Ramsey regression equation specification error test (RESET) test examines if non-linear

combinations of the fitted values explain the dependent variable (Ramsey, 1969). If a non-

linear combination of the explanatory variables have any power on the dependent variable, the

model might not be linear. The test is modelled in the following way, as an auxiliary regression

with higher order terms of the predicted values together with the explanatory variables:
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yt =α1 +α2 ŷ2
t +·· ·+αp ŷ2

p +∑
βi xi t + vt (B.17)

The test statistic is calculated as T R2, and is chi-squared distributed with p-1 degrees of free-

dom:

T R2 ∼χ2(p −1) (B.18)

The null hypothesis is rejected if the test statistic is greater than the corresponding critical value

in the χ2 distribution. If the null hypothesis is rejected, the non-linear combinations of the

explanatory variables has predictive power, and we may have a misspecified regression model.
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C Additional Figures

C.1 At-The-Money Implied Volatility

Figure C.1 shows that our measure of at-the-money implied volatility defined in Section 3.7

moves close to 50-delta implied volatility. The high correlation between the two measures of

at-the-money implied volatility supports that the measure we use in the regression model is a

good measure.
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Figure C.1: Daily implied volatilities from 25.07.2006 to 03.03.2016. The blue line shows the at-the-
money implied volatility calculated as the arithmetic mean of the implied volatilities with strikes in a
10% span around the future price. The red line shows the 50-delta implied volatility used in the proxy
for implied skewness
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C.2 Volatility Smiles

This section contains four volatility smiles in figure C.2, where the trade dates are one year

apart, illustrating how implied volatility and implied skewness change over time.
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Figure C.2: Implied volatility smiles at the 30th of January for 2012, 2013, 2014 and 2015.
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C.3 Demand and Supply

Figure C.3 contains a plot illustrating the demand and supply in the crude oil market, illustrating

how a change in demand can give big price-changes.
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Figure C.3: The figure shows the typical demand and supply curves in the crude oil market in the short
run, and a positive demand-shock for crude oil, giving an increased price. The reason why the supply-
curve is so steep, is that the supply depends on pipelines and tanker capacity at least as much as to
potential production capacity (Barsky and Kilian, 2004).
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C.4 Residuals

This section contains plots with the residuals of the regressions. Figure C.4 is the residual plot

from the regression on implied volatility, figure C.5 is the residual plot from the regression on

implied skewness and figure C.6 is the residuals from the regression on implied skewness put

on a timeline.
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Figure C.4: Residual plot from the regression model on implied volatility.
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Figure C.5: Residual plot from the regression model on implied skewness.
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Figure C.6: Timeline of the residuals from the regression on implied skewness from 25.07.2006 to
01.03.2016.
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C.5 Open Interest Crude Oil Futures

Figure C.7 shows how futures on crude oil has become more actively traded the last decades.

Open interest is the total number of outstanding futures existing on a given day, delivered on a

particular day. From 2000 to 2018 the open interest has increased fivefold.
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Figure C.7: Average open interest, in thousands, in crude oil futures on U.S exchanges from 1st quarter
2000 to 1st quarter 2018. The figure shows that open interest in WTI crude oil futures have increased
steadily in the last 18 years. Source: EIA.
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