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Abstract

In this study, a thermo-elasto-viscoplastic model is developed for a low density cross-linked polyethylene

(XLPE) in an attempt to describe the combined effects of temperature and strain rate on the stress-strain

response and the self-heating of the material at elevated strain rates. The proposed model consists of two

parts. On the one side, Part A models the thermo-elastic and thermo-viscoplastic response, and incorporates

an elastic Hencky spring in series with two Ree-Eyring dashpots. The two Ree-Eyring dashpots represent

the effects of the main α relaxation and the secondary β relaxation processes on the plastic flow. Part B, on

the other side, consists of an eight chain spring capturing the entropic strain hardening due to alignment of

the polymer chains during deformation.

The constitutive model was implemented in a nonlinear finite element (FE) code using a semi-implicit

stress update algorithm combined with sub-stepping and a numerical scheme to calculate the consistent

tangent operator. After calibration to available experimental data, FE simulations with the constitutive

model are shown to successfully describe the stress-strain curves, the volumetric strain, the local strain rate

and the self-heating observed in the tensile tests. In addition, the FE simulations adequately predict the

global response of the tensile tests, such as the force-displacement curves and the deformed shape of the

tensile specimen.
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1. Introduction1

The use of polymers in structural applications has increased during the last decades. Some examples are2

shock absorbers in cars designed for pedestrian protection, thermal insulation of pipelines in the offshore3
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oil industry and electrical insulation of high-voltage cables. The mechanical behaviour of polymers is com-4

plex and factors such as strain rate, temperature and stress triaxiality have a great impact on the structural5

behaviour of polymer components. Thus, it is a challenging task to obtain accurate numerical predictions6

of the mechanical response of polymeric materials under different loading scenarios. Prototype testing has7

therefore become a normal way to qualify materials and structural components for given applications in the8

industry. Qualifying materials in this manner is both costly and time consuming; thus there is a need for9

sufficiently accurate and easy-to-use material models. By using reliable material models, a limited set of ex-10

periments can be conducted for calibration purposes, and subsequently, numerical analyses of the structural11

component can be used either to optimize geometry or to investigate the effect of using different materials.12

There is a number of available material models for polymers. Haward and Thackray [1] were the first13

to decouple the stress into one part where the elastic response was modelled by Hookean elasticity and14

a single Eyring dashpot [2] was employed to represent the inelastic flow, and a second part concerning15

entropic strain hardening using a Langevin spring derived from non-Gaussian chain statistics [3]. This16

model was extended to a three-dimensional (3D) formulation by Boyce et al. [4], who also incorporated17

strain softening and pressure sensitivity. Further development of the entropic strain hardening was done by18

Arruda et al. [5], resulting in the well-known eight chain model used in the current study. Regarding the19

flow process, Ree and Eyring [6] extended the original model by Eyring [2] to include several relaxation20

processes, which in our work are restricted to two, namely the main α relaxation and the secondary β21

relaxation [7, 8].22

An important aspect regarding the Ree-Eyring flow process is that it does not include strain hardening.23

A common way of including strain hardening has been to introduce a backstress, see e.g. [1, 4, 9, 10]. A24

problem that may arise from this approach is that self-heating, due to the viscous flow, can be underesti-25

mated. This leads to difficulties when trying to describe thermal softening in polymers at elevated strain26

rates [11–13]. Another way of including strain hardening was proposed by Hoy and Robbins [14]. Using a27

multiplicative rate sensitivity formulation where the hardening modulus was scaled by the flow stress, they28

obtained good results for the strain rates and temperatures covered in their study. However, investigating29

different polymers at strain rates yielding isothermal conditions, Govaert et al. [15] showed that the mod-30

elling approach of Hoy and Robbins [14] did not work in general. Instead they suggested to introduce a31

backstress in addition to viscous strain hardening, where the viscous strain hardening may either be mod-32

elled by stress-scaling of the hardening modulus [14], or by introducing a non-constant strain dependent33
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activation volume in the Eyring model as proposed by Wendlandt et al. [16]. The latter approach is thor-34

oughly evaluated by Senden et al. [17]. Their work shows the problematic behaviour in cyclic loading if35

the entire strain hardening is incorporated in the strain dependent activation volume (or strain dependent36

reference strain rate), namely that instead of continuing strain hardening when going from tension to com-37

pression, the model will predict strain softening since the activation volume will start to decrease when the38

loading direction is reversed. To avoid this unphysical behaviour, a portion of the strain hardening has to be39

modelled by an inelastic backstress.40

The viscous behaviour contributes to self-heating in a material. In the studies performed by Adams41

and Farris [18] and Boyce et al. [19], it was found that about 50 − 80% of the total mechanical work42

was converted into heat in glassy polymers. On the other hand, studying a semi-crystalline high density43

polyethylene (HDPE), Hillmansen et al. [20, 21] observed that almost the entire mechanical work was44

converted into heat. A similar observation was also done by Johnsen et al. [11] on a cross-linked low45

density polyethylene (XLPE). Since heating of the polymer material will introduce thermal softening, it is46

evident that a correct prediction of heat generation during deformation is crucial in order for the constitutive47

model to capture the material behaviour over a range of strain rates. Consequently, taking thermomechanical48

coupling into account is important in this situation, and in particular accounting for heat conduction within49

the material and heat convection to the surroundings. There are many examples of thermomechanically50

coupled constitutive models. Arruda et al. [13] and Boyce et al. [19] combined an elastic Hookean response51

with non-Newtonian viscous flow and kinematic hardening based on the alignment of the polymer chains.52

Adopting a similar approach, Richeton et al. [22] presented a model able to span the glass transition53

temperature. More recent developments were made by Garcia-Gonzalez et al. [23] who extended the54

isothermal model proposed by Polanco-Loria et al. [24] to include thermomechanical coupling. This model55

combines an elastic Neo-Hookean response with rate-dependent yielding and plastic flow governed by the56

Raghava yield function [25] and kinematic hardening modelled by an eight chain spring. Another extension57

of the Polanco-Loria et al. [24] model was done by Ognedal et al. [26], who added isotropic hardening58

of the Raghava yield surface. Anand et al. [27] and Ames et al. [28] presented a thermomechanically59

coupled constitutive model describing the large deformation behaviour of amorphous polymers, including60

loading/unloading and torsion. In another study, Maurel-Pantel et al. [29] proposed a visco-hyperelastic61

constitutive model to capture large deformations and self-heating in a semi-crystalline polyamide 66. In62

the study by Srivastava et al. [30], the model presented by Anand et al. [27] was extended to span the63
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glass transition temperature. The material model’s ability to span the glass transition temperature is of64

course desirable, but it inevitably introduces additional parameters and adds complexity to the calibration65

procedure. Thus, we have chosen to limit our study to temperatures above the glass transition, namely the66

leathery region [8] between the glass transition and melting temperatures.67

The thermomechanical behaviour of a cross-linked low density polyethylene (XLPE) material was stud-68

ied experimentally in Johnsen et al. [11] using the experimental set-up described in Johnsen et al. [31].69

Similar studies concerned with the effect of low temperatures on the mechanical behaviour have been per-70

formed, see e.g. Richeton et al. [32], Brown et al. [33], Serban et al. [34] and Bauwens-Crowet [35].71

All of these studies revealed the same trends as observed by Johnsen et al. [11], namely that lowering the72

temperature increases the yield stress in a similar manner as an increase in strain rate, indicating that the73

yield stress may be determined from thermal activation theory [6, 36]. However, in these studies [32–35] the74

strains were obtained by mechanical measurement techniques, as opposed to the local measurements made75

possible by digital image correlation (DIC) in Johnsen et al. [11]. Further, self-heating due to elevated76

strain rates was not reported [32–35].77

In this article, based on the experimental investigation outlined above and described in the next sec-78

tion, we present a thermo-elasto-viscoplastic model to describe the thermomechanical behaviour of XLPE79

at different temperatures and strain rates. The proposed model has two parts: Part A consists of an hyper-80

elastic Hencky spring in series with two Ree-Eyring dashpots. The two Ree-Eyring dashpots model the81

effects of the main α relaxation and the secondary β relaxation processes on the plastic flow. Part B con-82

sists of an entropic eight chain spring modelling strain hardening due to alignment of the polymer chains83

during deformation. The constitutive model is implemented in the commercial finite element (FE) pro-84

gram Abaqus/Standard as a UMAT subroutine. A semi-implicit stress update algorithm is combined with a85

sub-stepping procedure to ensure convergence. The consistent tangent operator is found by numerical differ-86

entiation as proposed by Miehe [37] and Sun et al. [38]. This paper is organized as follows: first, we briefly87

describe the material investigated here along with the main experimental results obtained in [11]. Then the88

constitutive model is presented within a general thermodynamical framework including the heat equation89

used to calculate the temperature increase. This is followed by a brief outline of the numerical integration90

algorithm and the calibration procedure. Finally, the results obtained from simulations are compared to the91

experimental findings allowing some concluding remarks to be drawn.92
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2. Material, experimental set-up, methods and experimental results93

In this study, we consider the material behaviour of a cross-linked low density polyethylene (XLPE)94

material. The material is produced by Borealis under the product name Borlink LS4201S [39] and was95

received from Nexans Norway as extruded high-voltage cable segments where the copper conductor had96

been removed. The dimensions of the cable segments were 128 mm × 73 mm × 22.5 mm (length ×97

diameter × thickness). Material properties of the XLPE material are given in Table 1.

Table 1: Material properties for the XLPE material. All parameters are given for room temperature [11, 31].

Density, ρ0 Specific heat capacity, Cv Thermal conductivity, k Heat transfer coefficient to air, hc Thermal expansion coefficient, α

(kg/m3) (J/(kg·K)) (W/(m·K)) (W/(m2·K)) (K−1)

922 3546 0.56 21 2 · 10−4 [40]

98

Uniaxial tension and compression tests were performed at four temperatures (T = −30 ◦C, T = −1599

◦C, T = 0 ◦C and T = 25 ◦C) and three different cross-head velocities (v = 0.04 mm/s, v = 0.4 mm/s and100

v = 4.0 mm/s). Assuming that all deformation happens over the parallel section of the tensile specimen,101

these cross-head velocities correspond to initial nominal strain rates ė of 0.01 s−1, 0.1 s−1 and 1.0 s−1. A102

detailed description of the experimental set-up can be found in Johnsen et al. [31]. Figure 1 shows the103

cylindrical specimens used in the tension experiments.

25

254

106

R3

Figure 1: Illustration of the tensile test specimen. All measures are in mm.

104

A condensed illustration of the local stress-strain behaviour reported in [11] is given in Figure 2. It105

appears that temperature-time equivalence applies for the XLPE material, namely that a decrease in tem-106

perature has a similar impact on Young’s modulus and the flow stress as an increase in strain rate. Using107

two Ree-Eyring [6] dashpots, Johnsen et al. [11] successfully described the flow stress as a function of108

both temperature and strain rate, while they used a phenomenological expression similar to that proposed109

by Arruda et al. [13] to describe the temperature dependence of Young’s modulus. It is also noted from110

Figure 2 that the locking stretch, defined as the stretch where an abrupt change in strain hardening occurs,111
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Figure 2: Condensed version of all stress-strain curves from experiments showing how the material behaviour is affected by

changing the temperature and the strain rate. Adapted from Johnsen et al. [11].

increases with increasing strain rate. This phenomenon is believed to be caused by increased chain mobility112

due to self-heating at elevated strain rates. The material was also found to be close to incompressible at113

room temperature, while it is moderately compressible at the three lower temperatures. In terms of self-114

heating, it was shown in [11] that the lowest strain rate (ė = 0.01 s−1) gave close to isothermal conditions.115

At the intermediate strain rate (ė = 0.1 s−1) self-heating was observed, but due to the duration of the test,116

heat conduction inside the material and heat convection to the surroundings caused the temperature to de-117

crease at the end of the experiment. For the tests performed at the highest strain rate (ė = 1.0 s−1), close118

to adiabatic conditions were met, resulting in a temperature increase in the material between 20 ◦C and 35119

◦C. Further, uniaxial compression tests revealed that the yield stress is similar in tension and compression.120

The test results from [11] will be shown in full together with predictions from the numerical simulations in121

Section 6.122

A more detailed presentation and discussion of the experimental set-up, the methods used to extract local123

stress-strain data and self-heating from experiments, and the experimental results, are found in Johnsen et124

al. [11, 31].125
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3. Constitutive model126

In this section we present the thermo-elasto-viscoplastic model proposed to describe the thermomechan-127

ical behaviour observed in the experiments on the XLPE material. In addition to the features addressed in128

Figure 2, the model also aims at capturing the volumetric response and self-heating. The model has been129

implemented in the implicit framework provided by Abaqus/Standard as a user subroutine (UMAT).130

3.1. Overview131

As seen from the kinematics in Figure 3a, we use a multiplicative split of the deformation gradient tensor132

F to separate between elastic and plastic deformation [41]. Applying the plastic deformation gradient Fp an133

undeformed material element is mapped from the reference configuration (Ω0) to the elastically unloaded134

intermediate configuration (Ω̃). Finally, compatibility is obtained by mapping the material element from Ω̃135

to the current configuration (Ω) via the elastic deformation gradient Fe, viz.136

F = FeFp (1)

Our material model, see Figure 3b, has two contributions: Part A (intermolecular) describes the hyperelastic137

and viscoplastic behaviour, while Part B represents the orientational hardening due to the alignment of the138

polymer network. From Figure 3b it follows that the deformation gradient is equal in the two parts, viz.139

F = FA = Fe
AFp

A = FB (2)

where subscripts A and B denote Parts A and B of the rheological model, respectively. Polar decomposition140

of the elastic and plastic parts of the deformation gradient of Part A yields141

Fe
A = Ve

ARe
A = Re

AUe
A (3)

Fp
A = Vp

ARp
A = Rp

AUp
A (4)

where R is the rotation tensor, U and V are the right and left stretch tensors, respectively, and superscripts142

e and p denote the elastic and plastic parts. The isochoric deformation gradient tensor F̄ is defined by143

F̄ = J−1/3F (5)

where J = det (F) is the Jacobian determinant, thus implying that det
(
F̄
)

= 1. The isochoric left Cauchy-144

Green deformation tensor B̄ and the isochoric left stretch tensor V̄ are defined as145

B̄ = F̄F̄T = J−2/3FFT = J−2/3B (6)

V̄ =
√

B̄ = J−1/3
√

B = J−1/3V (7)
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Figure 3: Large deformations kinematics using a multiplicative split of the deformation gradient, F, is shown in (a), and (b) shows

the rheological model.

where B = FFT is the left Cauchy-Green deformation tensor. Throughout this study the plastic deformation146

is assumed to be isochoric, i.e., Jp
A = 1 and thus Je

A = J since the decomposition of the Jacobian determinant147

reads J = det (F) = det
(
Fe

A

)
det

(
Fp

A

)
= Je

AJp
A. With respect to the elastic and plastic parts of the deformation148

gradient tensor, we then obtain the following relations:149

F̄e
A = J−1/3Fe

A, B̄e
A = F̄e

A

(
F̄e

A

)T
= J−2/3Be

A, V̄e
A = J−1/3Ve

A (8)

F̄p
A = Fp

A, B̄p
A = Fp

A

(
Fp

A

)T
= Bp

A, V̄p
A = Vp

A (9)

According to the rheological model in Figure 3b, the free energy is decomposed as follows150

ψ = ψA + ψB (10)

where ψA and ψB are the free energies of Parts A and B, respectively. Note that the free energy function is151

here defined per unit reference mass. In the same manner, the Cauchy stress tensor is decomposed as152

σ = σA + σB (11)

where σA and σB are the Cauchy stress tensors acting in Parts A and B of the rheological model.153

3.1.1. Part A - Intermolecular154

Both the elastic and viscoplastic responses of Part A are taken to be isochoric. The elastic response is155

defined by the Hencky free energy [42], i.e.,156

ρ0ψA = µA(θ)tr
[(

ln
(
V̄e

A

))2
]

(12)
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where ρ0 is the initial density of the material and θ is the absolute temperature. The shear modulus of the157

elastic spring is temperature dependent through the following expression158

µA(θ) = µA,ref exp [−aA (θ − θref)] (13)

where θref is a reference temperature, µA,ref is the shear modulus at the reference temperature, and aA is a159

parameter governing the temperature sensitivity.160

The Kirchhoff stress tensor τA is obtained from the free energy function in Equation (12) as [43]161

τA = 2ρ0
∂ψA

∂Be
A

Be
A = ρ0

∂ψA

∂ ln
(
Ve

A

) = 2µA(θ) ln
(
V̄e

A

)
(14)

The above derivation is not trivial and a detailed derivation can be found in [42]. It then follows that the162

Cauchy stress tensor σA is given as163

σA =
1
J
τA (15)

Now we focus on the thermo-viscoplastic part of the constitutive model. Since the yield stress in ten-164

sion and compression was found to be approximately the same [11], the pressure-insensitive von Mises165

equivalent stress is used166

σvm
D =

√
3
2
σ′D : σ′D (16)

where σ′D = σD −
1
3 tr (σD) 1 is the deviatoric part of the driving stress σD = σA. From the rheological167

model (Figure 3b) it is evident that the equivalent driving stress must be balanced by the viscous stress σV168

associated with the Ree-Eyring [6] dashpots. Thus, assuming that the contribution from each dashpot is169

additive [7], we obtain170

σV = σV1 + σV2 =
∑

x=α,β

kBθ

Vx
arsinh

 ṗ
ṗ∗0,x

exp
[
∆Hx

Rθ

] = σvm
D (17)

where α and β denote the contributions from the main and secondary relaxation processes, respectively,171

kB is Boltzmann’s constant, Vx is the activation volume, ṗ is the equivalent plastic strain rate, ∆Hx is the172

activation enthalpy, and R is the universal gas constant. Further, ṗ∗0,x is the deformation dependent reference173

equivalent plastic strain rates given by174

ṗ∗0,x = ṗ0,x exp

−√
2
3

bx|| ln
(
Vp

A

)
||2

 for x = α, β (18)

where ṗ0,x are the values of ṗ∗0,x in the plastically undeformed state in which Vp
A = 1, bα and bβ are the175

parameters governing the deformation dependence, and || ln (Vp)||2 is the Frobenius norm of the Hencky176

strain tensor.177
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The velocity gradient LA and its decompositions are given by178

LA = ḞAF−1
A =

[
Ḟe

AFp
A + Fe

AḞp
A

] (
Fp

A

)−1 (
Fe

A

)−1
(19)

LA = Ḟe
A

(
Fe

A

)−1
+ Fe

AḞp
AF−1

A = Le
A + Lp

A (20)

LA = De
A + We

A + Dp
A + Wp

A (21)

where D and W are in turn the rate-of-deformation tensor and the spin tensor. Due to isotropy, the plastic179

spin in the intermediate configuration W̃p
A is taken to be zero [44, 45]. Another consequence of material180

isotropy is that the Mandel stress tensor in the intermediate configuration becomes symmetric. This in181

combination with an isotropic plastic potential results in a spin-free plastic velocity gradient, i.e. Wp
A = 0182

[46]. The plastic rate-of-deformation tensor is given by the flow rule as183

Dp
A = Lp

A = λ̇
∂g(σD)
∂σD

(22)

where λ̇ is a plastic multiplier and g(σD) is the plastic potential. Assuming that the plastic flow is isochoric,184

the plastic potential is taken as185

g(σD) =

√
3
2
σ′D : σ′D = σvm

D ≥ 0 (23)

where the direction of plastic flow N is obtained from the gradient of the plastic potential,186

N =
∂g(σD)
∂σD

=
3
2
σ′D

g(σD)
(24)

Equivalence in terms of plastic power yields the relation between the equivalent plastic strain rate, ṗ, and187

the plastic multiplier, λ̇, viz.188

σvm
D ṗ = σD : Dp

A ⇒ ṗ = λ̇ (25)

Combining Equations (20) and (22) and inserting λ̇ = ṗ, we obtain the expression for the evolution of the189

plastic deformation gradient, i.e.,190

Ḟp
A = ṗ

(
Fe

A

)−1 ∂g(σD)
∂σD

FA (26)

3.1.2. Part B - Orientational hardening191

The orientational hardening of the material due to the alignment of the polymer chains is captured by192

the eight chain model [5]. Following Miehe [47] we define a modified entropic free energy function, viz.193

ρ0ψB =
κ(θ)

2
(ln (J))2 − 3κ(θ)α ln (J)(θ − θ0) + ρ0ψT(θ) + µB(θ)λ2

lock

[(
λ̄c

λlock

)
ξ + ln

(
ξ

sinh ξ

)]
(27)

10



The shear modulus of Part B is interpreted as a rubbery modulus, i.e.,194

µB(θ) = nkBθ = µB,ref
θ

θref
(28)

where n is the chain density, kB is Boltzmann’s constant, and µB,ref is the shear modulus at the reference195

temperature. In this study the reference temperature is set equal to 298.15 K, while the initial temperature196

is equal to the temperatures at which the experiments were conducted. The bulk modulus κ(θ) could be197

temperature dependent as found by Anand [48], but is taken to be constant in this study, i.e.198

κ(θ) = κB. (29)

The linear thermal expansion coefficient α is assumed to be independent of temperature. Further, λlock is199

the locking stretch, λ̄c =

√
tr

(
B̄
)
/3 is an average chain stretch, and200

ξ = L−1
(
λ̄c

λlock

)
(30)

where L−1 is the inverse Langevin function (L(x) = 1/x − coth x) approximated by the formula proposed201

by Jedynak [49]:202

L−1(x) ≈ x
3 − 2.6x + 0.7x2

(1 − x)(1 + 0.1x)
(31)

The purely thermal contribution to the free energy, which, assuming that the specific heat capacity is tem-203

perature independent, Cv(θ) ≈ Cv, is given as [47, 48]204

ψT(θ) = Cv

[
(θ − θ0) − θ ln

(
θ

θ0

)]
(32)

where θ0 is the initial absolute temperature.205

The Kirchhoff stress tensor, τB, is found after some algebra as [48]206

τB = 2ρ0
∂ψB

∂B
B =

µB(θ)λlock

3λ̄c
L−1

(
λ̄c

λlock

)
B̄′ + κB ln (J)1 − 3κBα(θ − θ0)1 (33)

where 1 is the second order identity tensor and B̄′ = B̄ − 1
3 tr

(
B̄
)

1 is the deviatoric part of B̄. The Cauchy207

stress reads as208

σB =
1
J
τB (34)

Note that the compressibility has been included entirely in Part B of the rheological model. This was done209

to improve the model’s description of self-heating, as will be demonstrated in the following section.210
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3.1.3. Self-heating and dissipation211

The internal energy u, defined per unit reference mass, is given in terms of the free energy ψ and the212

entropy s ≡ −∂ψ/∂θ as213

u = ψ + θs (35)

Local energy balance is expressed as214

ρ0u̇ = τ : D + r − div (q) (36)

where r is external heat sources and q is the heat flux. The deformation power per unit reference volume is215

decomposed according to216

τ : D = τA : (De
A + Dp

A) + τB : D = τA : De
A + τD : Dp

A + τB : D (37)

where τD = JσD, and only the deformation power in the two dashpots contributes to the intrinsic dissipation.217

After some calculations, the rates of change of the free energy and the entropy are obtained as [47]218

ρ0ψ̇ = τA : De
A + τB : D − ρ0θ̇s (38)

ρ0θ ṡ = −θ
∂τA

∂θ
: De

A − θ
∂τB

∂θ
: D + ρ0C̄vθ̇ (39)

where the specific heat capacity C̄v is given by219

C̄v = θ
∂s
∂θ

= Cv −
1
ρ0
θa2

Aµ(θ)tr
[(

ln
(
V̄e

A

))2
]

(40)

Note that beside temperature, this specific heat capacity is also dependent on deformation. Furthermore,220

∂τA

∂θ
= −2aAµA(θ) ln

(
V̄e

A

)
= −aAτA (41)

θ
∂τB

∂θ
= τB − κB [ln (J) + 3αθ0] 1 (42)

The dissipation inequality may be stated as [43]221

D ≡ −ρ0
(
ψ̇ + sθ̇

)
+ τ : D −

q
θ
·
∂θ

∂x
≥ 0 (43)

where x is the position vector in the current configuration. Inserting Equations (37) and (38) yields222

D = τD : Dp
A −

q
θ
·
∂θ

∂x
≥ 0 (44)
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The first term represents the intrinsic dissipation and is non-negative by the flow rule. The last term is the223

dissipation due to heat conduction and is made non-negative by adopting Fourier’s law: q = −k ∂θ∂x , where224

the conductivity k is positive.225

The heat equation is obtained by combining Equations (35) to (42), and the result comes out as226

ρ0C̄vθ̇ = τD : Dp
A + τB : D − θaAτA : De

A − κB [ln (J) + 3αθ0] tr (D) + r − div(q) (45)

This evolution equation for the temperature includes contributions from thermoelastic heating, as in Miehe227

[47], and plastic dissipation in addition to the terms representing heat sources and heat conduction. By228

solving for the temperature rate, the heat equation is used to calculate the self-heating of the material.229

3.2. Numerical integration230

The governing equations of Part A of the constitutive model are compiled in Box 1.231

Box 1: Governing equations of Part A.

σA =
2
J
µA(θ) ln

(
V̄e

A

)
elastic response

σD = σA driving stress

g(σD) =

√
3
2
σ′D : σ′D = σvm

D ≥ 0 plastic potential

Dp
A = ṗN = Fe

AḞp
AF−1

A plastic rate-of-deformation

σV =
∑

x=α,β

kBθ

Vx
arsinh

 ṗ
ṗ∗0,x

exp
[
∆Hx

Rθ

] viscous stress

A semi-implicit stress-update algorithm is used to integrate these equations in time, which implies that232

the direction of plastic flow N and the absolute temperature θ lag one time step behind. Using the relation233

for the plastic rate-of-deformation tensor in Box 1, the inverse plastic deformation gradient is estimated by234

the relation235 (
Fp,i

A,n+1

)−1
=

(
1 − ∆pi

n+1F−1
n+1NnFn+1

) (
Fp

A,n

)−1
(46)

where i denotes the current iteration in time step n + 1, ∆pi
n+1 = ṗi

n+1∆tn+1 is the equivalent plastic strain236

increment, and Nn is the direction of plastic flow calculated from the previous time step, i.e.,237

Nn =
3
2

σ′D,n
σvm

D,n
(47)
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The elastic deformation gradient is then calculated as238

Fe,i
A,n+1 = Fn+1

(
Fp,i

A,n+1

)−1
(48)

which gives us the driving stress, σi
D,n+1 and the von Mises equivalent stress σvm,i

D,n+1, see Box 1. The239

constitutive relations for the two dashpots give a residual function in the form240

f
(
ṗi

n+1

)
= f i

n+1 = σvm,i
D,n+1 − σ

i
V,n+1 = 0 (49)

where the viscous stress σi
V,n+1 is defined in Box 1. Using the secant method, an updated value of the241

equivalent plastic strain rate is obtained by242

ṗi+1
n+1 = ṗi

n+1 − f i
n+1

ṗi
n+1 − ṗi−1

n+1

f i
n+1 − f i−1

n+1

(50)

The iteration procedure continues until a convergence criterion is fulfilled. Note that the iterative scheme243

is not self-started. In iteration i = 1 of the first increment the equivalent plastic strain rates ṗ0
1 and ṗ1

1 have244

to be estimated, while in the remaining increments ṗ1
n is set equal to the converged value from the previous245

increment ṗn, and ṗ0
n is kept constant and equal to ṗ0

1.246

Concerning Part B of the rheological model, the stress tensor σB,n+1 is given explicitly by the deforma-247

tion gradient Fn+1 and the temperature from the previous timestep θn, i.e.,248

σB,n+1 =
µB(θn)λlock

3λ̄c,n+1
L−1

(
λ̄c,n+1

λlock

)
B̄′n+1 + κB ln (Jn+1)1 − 3κBα(θn − θ0)1 (51)

Following the work of Miehe [37] and Sun et al. [38], the consistent tangent operator, Ct, is found249

by numerical differentiation. The deformation gradient is perturbed in such a way that only one of the six250

unique components of the rate-of-deformation tensor is changed at the time, i.e.,251

∆F(kl)
± = ±

ε

2
[(ek ⊗ el)F + (el ⊗ ek)F] (52)

where ε is the perturbation coefficient set equal to 10−8 and ek for k = 1, 2, 3 are the Cartesian base vectors.252

The perturbed deformation gradient, F̂(kl), is then obtained as253

F̂(kl)
± = F + ∆F(kl)

± (53)

For each of the twelve deformation gradients thus obtained, the Cauchy stress tensor σ
(
F̂(kl)

)
is calculated.254

Using a central difference scheme, the consistent tangent operator Ct is estimated as255

Ct
i j(kl) =

σi j
(
F̂(kl)

+

)
− σi j

(
F̂(kl)
−

)
2ε

(54)
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In Voigt notation this means that for each plus-minus perturbation of the deformation gradient, we obtain256

column (kl) in the 6 × 6 tangent operator
[
Ct] with row indices i j = 11, 22, 33, 12, 13, 23.257

To ensure convergence, sub-stepping is used to limit the strain increment during the time step. The258

number of sub-steps, N, is controlled by the criterion259

N = max
{

nint
[
∆εeq

εcr
+ 0.5

]
, 1

}
(55)

where nint is the nearest integer function, ∆εeq =

√
2
3∆εεε′ : ∆εεε′ is the equivalent logarithmic strain incre-260

ment, ∆εεε′ = ∆εεε− 1
3 tr (∆εεε)1 is the deviatoric logarithmic strain increment tensor obtained by integrating the261

rate-of-deformation tensor D over the time increment [50]262

∆εεε =

∫ tn+1

tn
D dt (56)

Furthermore, εcr is a critical value set equal to strain-to-yield. If N > 1, new deformation gradients are263

calculated from the velocity gradient at the beginning of the time step, i.e.,264

Ln =
Fn+1 − Fn

∆tn+1
(Fn)−1 (57)

For sub-step number q, the deformation gradient, Fq is then calculated as265

Fq =

(
1 +

q∆tn+1

N
Ln

)
Fn for q ∈ [1,N] (58)

4. Material model calibration266

Direct calibration from the experimental data was performed to obtain initial values of the parameters267

in the constitutive model. These initial values were then used in an optimization procedure, see Section 5.2.268

A brief review of the direct calibration procedure is given in the following.269

4.1. Shear modulus270

The shear modulus was estimated from already available experimental data given in Johnsen et al. [11].271

As shown in Figure 4, a clear strain rate and temperature dependence of the shear modulus was observed.272

This strain rate dependence of the shear modulus is, however, not incorporated in Equation (13). The273

material parameters in Equation (13) were found to be equal to µA,ref = 46 MPa and aA = 0.03 K−1 from a274

least squares fit to the experimentally obtained shear moduli, see Figure 4.275
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Figure 4: Temperature and strain rate dependence of the shear modulus of the material. Data adapted from [11].

4.2. Flow stress276

The coefficients in the Ree-Eyring flow model [6] were identified from the stress-strain curves by using277

the flow stress, σ0.15, at a fixed longitudinal strain magnitude of εL = 0.15 for all investigated temperatures278

and strain rates. The least squares fit of Equation (17) to the experimental data is shown in Figure 5 along279

with the obtained parameters in Table 2. These six initial parameters were obtained from the twelve discrete280

experimental points in the space spanned by stress, strain rate and temperature using the Solver function in281

Excel. The material parameters obtained from the least squares fit have magnitudes that are comparable to282

similar parameters reported elsewhere in the literature, see e.g. [7, 51].

Table 2: Initial material parameters (before optimization) in the Ree-Eyring model, Equation (17).

Vα ṗ0,α ∆Hα Vβ ṗ0,β ∆Hβ

(nm3) (s−1) (kJ/mol) (nm3) (s−1) (kJ/mol)

3.45 1.38 · 1028 188.6 3.10 5.79 · 1039 204.3

283
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Figure 5: Temperature and strain rate dependence on the flow stress of the material. Data taken from [11].

4.3. Strain hardening284

There are two contributions to strain hardening in the model: (1) orientational hardening σB in Part B285

capturing the effect of polymer chain alignment, and (2) isotropic hardening from the deformation dependent286

reference strain rates in the viscous dashpots in Part A.287

The orientational hardening is modelled by the eight chain spring [5]. Simply put, the spring accounts288

for how the polymer chains align due to stretching and give rise to the abrupt change in strain hardening289

when approaching the locking stretch. To estimate the value of the reference shear modulus µB,ref and290

the locking stretch, λlock, a simple one-dimensional (1D) model was used. First we calculate the axial291

component of the stress from Equation (34) as292

σ =
µB(θ)λlock

3Jλ̄c
L−1

(
λ̄c

λlock

) (
λ̄2 − λ̄2

c

)
(59)

where J = λ1−2ν, λ̄c =

√
1
3

(
λ̄2 + 2

λ̄2ν

)
and λ̄ = J−1/3λ. Using a Poisson’s ratio ν equal to 0.49, found from293

available experimental data in [11], and comparing the onset of strain hardening from Equation (59) with294

that from the experimental stress-strain curve at the reference temperature θref = 298.15 K, we find the295

values µB,ref = 2.0 MPa and λlock ≈ 5.2.296
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Next, the deformation dependent reference strain rates are found by fitting the expression for the viscous297

stress, σV in Equation (17), to the flow stress minus the stress contribution from Part B at different levels of298

deformation while keeping all parameters except the reference strain rate constant. From Figure 6 it is read-299

ily seen that there is a decrease in the reference strain rates as the deformation is increased. Equation (18) is
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Figure 6: Reference strain rates, ṗ∗0,x, as a function of longitudinal logarithmic strain.

300

proposed to describe the deformation dependence of the reference strain rates ṗ∗0,α and ṗ∗0,β. A least squares301

fit of Equation (18) to the data in Figure 6 yielded: bα = 7.2 and bβ = 12.0.302

5. Numerical model303

5.1. Finite element model304

All simulations were run in the commercial finite element program Abaqus/Standard, with the con-305

stitutive model implemented through a UMAT subroutine. Due to the symmetry of the tensile specimen306

and to save computational time, axisymmetric boundary conditions were employed in addition to one sym-307

metry plane, as indicated in Figure 7. Consequently, the transverse deformation anisotropy observed in308

the experimental tests is not included. Four-node axisymmetric elements with reduced integration and one309

thermal degree of freedom (CAX4RT) were used in all simulations with an element size of approximately310
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0.1 mm × 0.05 mm in the parallel part. Running on a standard workstation the analysis time ranged from311

approximately 2 to 12 minutes. Only a 1 mm portion of the grips was included in the model to reduce the

Axisymmetry line

Symmetry line

0.5v

1 mm

r, r0

ε  and  ΔθL

Surface film

Figure 7: Axisymmetric finite element model with mesh and boundary conditions.

312

computational time. The cross-head velocity, v, of the testing machine was applied as a velocity boundary313

condition at the positions indicated in Figure 7. Self-heating, ∆θ, and longitudinal strain, εL, were extracted314

from the indicated element in Figure 7, while the transverse strains were calculated as an average over the315

cross section at the symmetry line, i.e., ε1 = ε2 = ln (r/r0), where r and r0 are the current and initial radius316

of the parallel section, respectively. The Cauchy stress was then found as317

σ =
F
A

=
F
πr2 (60)

where A is the current cross-sectional area, and F is the force extracted from the boundary conditions on318

the symmetry line.319

In addition to the mechanical boundary conditions, a surface film was applied on the free surface of320

the tensile specimen, see the area highlighted with red in Figure 7. The surface film was used to simulate321

heat convection to air. Heat conduction within the material itself and heat convection to the surroundings322

were handled by the thermal solver in Abaqus. The values of the heat convection to air parameter, hc,323

the thermal conductivity, k, and the initial specific heat capacity, Cv, are given in Table 1. Lastly, the324

entire axisymmetric model was given an initial temperature equal to the surrounding temperature using the325
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predefined field feature in Abaqus/Standard.326

5.2. Material parameters327

The material parameters obtained in the Section 4 were used as initial values in a numerical optimization328

procedure where FE simulations of the tensile tests were run and the parameters varied manually to fit the329

experimental data. More specifically, the parameters related to the flow stress given in Eq. (17) and the bulk330

modulus κB were manually optimized. Since the initial parameters given in Table 2 for the viscous stress331

were obtained based on the initial nominal strain rate ė, the first step in the manual optimization procedure332

was to use the actual logarithmic strain rate ε̇L at the longitudinal strain magnitude where the flow stress333

was extracted. This procedure was repeated until yielding in the FE simulation was predicted at the correct334

stress magnitude. After a correct description of yielding was achieved, the parameters bα and bβ governing335

the deformation dependence of the reference plastic strain rates ṗ0,α and ṗ0,β were manually optimized to336

obtain a correct description of the strain hardening. Lastly, the volumetric strain obtained from simulation337

was compared with the experimental values to obtain an optimized value of the bulk modulus κB. The338

manual optimization was performed against the experimental results given in Figure 8 and 9. An alternative339

to this manual optimization procedure would have been to use an optimization software, e.g. LS-OPT. The340

material parameters used in the subsequent numerical simulations are presented in Table 3.341

Table 3: Parameters in constitutive model.

Part A µA,ref aA θref ∆Hα Vα ṗ0,α bα ∆Hβ Vβ ṗ0,β bβ

(MPa) (K−1) (K) (kJ/mol) (nm3) (s−1) (-) (kJ/mol) (nm3) (s−1) (-)

46 0.028 298.15 179.5 4.72 2.36 · 1025 3.0 196.1 3.19 6.13 · 1036 10.0

Part B µB,ref κB λlock

(MPa) (MPa) (-)

2.0 1500 5.2

6. Results and discussion342

A comparison of the numerical results and the experimental results obtained by Johnsen et al. [11] are343

presented in the following. All numerical and experimental values were obtained from uniaxial tension344
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tests. Note that the results from the repeat tests presented in [11] are omitted, thus only the representative345

experimental results are included in this study.346

6.1. Stress-strain curves347

Figure 8 presents the axial component of the Cauchy stress tensor as a function of the longitudinal348

logarithmic strain from both simulations and experiments. Twelve configurations of temperature and strain349

rate were investigated in total: four temperatures T of 25 ◦C, 0 ◦C, −15 ◦C and −30 ◦C and for each350

temperature three nominal strain rates ė of 0.01 s−1, 0.1 s−1 and 1.0 s−1.351

As shown in Figure 8, the overall behaviour of the material is well described by the constitutive model,352

although the strain rate effect on Young’s modulus (Figure 4) is not captured since viscoelasticity is not353

incorporated. It appears from Figure 8 that the yield stress is accurately represented for all test configura-354

tions by the incorporated Ree-Eyring [6] flow theory. Furthermore, we see that the strain hardening is well355

described up to the onset of network hardening for all configurations except at room temperature. At room356

temperature the onset of network hardening occurs too early in the simulations. However, as seen from357

Figure 8, the onset of network hardening is continuously shifted to higher strain levels as the temperature358

is decreased. This is caused by the constant locking stretch in combination with the reduced shear modulus359

(Equation (28)) for decreasing temperatures in Part B of the constitutive model.360

6.2. Volume change361

The volumetric strain from the simulations was calculated using the longitudinal strain from the indi-362

cated element in Figure 7 and the average transverse strain over the cross section, viz.363

εV = εL + 2ε1 = εL + 2 ln
(

r
r0

)
(61)

Figure 9 compares the volumetric strain from simulations and experiments for all test configurations. Qual-364

itative agreement between numerical predictions and experimental results is achieved at all investigated365

temperatures.366

In agreement with what is observed in experiments [11], reducing the initial temperature results in367

more negative volumetric strain at moderate deformations in the numerical simulations. This is due to368

the formation of a more prominent neck, causing the strain field to become more heterogeneous. The369

heterogeneity of the strain field causes our method of calculating the volumetric strain, i.e., using the average370

longitudinal and transverse strain over the cross section, to be less representative of the actual state inside371
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ė = 1.00 s−1
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ė = 0.01 s−1

Simulation
Experiment

(b) T = 0 ◦C

0.0 0.4 0.8 1.2 1.6 2.0

Longitudinal logarithmic strain, εL

0

20

40

60

80

100

120

C
au

ch
y

st
re

ss
,σ

(M
Pa

)
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Figure 8: Cauchy stress vs. longitudinal logarithmic strain from uniaxial tension tests and numerical simulations at three different

nominal strain rates, ė = 0.01 s−1, ė = 0.1 s−1, and ė = 1.0 s−1, and at four different temperatures, (a) T = 25 ◦C, (b) T = 0 ◦C, (c)

T = −15 ◦C and (d) T = −30 ◦C.

the material, leading to the fictitious negative evolution of the volumetric strain in the beginning. A method372

to avoid this problem is to try estimating the heterogeneity of the strain field in the experiments, as proposed373
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Figure 9: Volumetric strain vs. longitudinal logarithmic strain from uniaxial tension tests and numerical simulations at three

different nominal strain rates, ė = 0.01 s−1, ė = 0.1 s−1, and ė = 1.0 s−1, and at four different temperatures, (a) T = 25 ◦C, (b) T = 0
◦C, (c) T = −15 ◦C and (d) T = −30 ◦C.

by Andersen [52] and used by Johnsen et al. [31]. However, since the volumetric strain presented in Figure 9374

is calculated in a similar manner in experiments and simulations, this method was not further explored in375

this study. Furthermore, the contribution from thermal expansion to the volumetric strain can be estimated376
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by377

εV,thermal = 3α∆T (62)

This contribution was estimated in Johnsen et al. [11] and was found to be small compared to the total378

volumetric strain.379

6.3. Self-heating380

The temperature increment due to self-heating in the material is given as a function of longitudinal381

logarithmic strain in Figure 10. Good qualitative agreement is found between simulations and experiments.382

At small strains the model correctly describes the thermoelastic cooling effect. In the uniaxial tension tests383

at the lowest strain rate, close to isothermal conditions are predicted. At the intermediate strain rate the384

predicted temperature increment from simulations is in good agreement with experimental observations.385

However, at the highest strain rate, the model does not generate enough heat. This is due to the interplay386

between the elastic and plastic components of Part A, see Figure 3b. Since the elastic stiffness in Part A387

is reduced for increasing temperature the consequence is a negative contribution to heat generation, which388

has to be compensated by the plastic dissipation in the viscous dashpots and the entropic spring in Part389

B. Furthermore, as the initial temperature decreases, the elastic stiffness increases, thus reducing elastic390

deformation and in effect the elastic rate-of-deformation. This is the reason why the constitutive model391

predicts a higher temperature increase as the initial temperature is lowered.392

Another possible explanation for the observed discrepancies could be inaccuracies in the measured393

heat on the surface of the specimen during testing, along with uncertainties in the experimentally obtained394

thermal constants. The laser flash method [53] was used to obtain the specific heat capacity and the thermal395

conductivity. Due to limitations in the testing apparatus, it was not possible to measure the parameters at396

low temperatures. Consequently, the specific heat capacity and thermal conductivity were estimated at three397

elevated temperatures of 25 ◦C, 35 ◦C and 50 ◦C. The thermal conductivity (k = 0.56 W/(m·K)) was more398

or less constant over the investigated temperatures with a standard deviation of 0.048 W/(m·K), while the399

specific heat capacity varied almost linearly with temperature, see Johnsen et al. [31]. However, the values400

obtained at room temperature were used for both the specific heat capacity and the thermal conductivity in401

the simulations.402

The thermal camera used in the experiments by Johnsen et al. [11] was limited to temperatures above403

−20 ◦C, as indicated by the dashed line in Figure 10d. It should also be mentioned that the jagged shape404
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ė = 0.01 s−1

Simulation
Experiment

(c) T = −15 ◦C

0.0 0.4 0.8 1.2 1.6 2.0

Longitudinal logarithmic strain, εL

0

5

10

15

20

25

30

Te
m

pe
ra

tu
re

ch
an

ge
,∆

θ
(K

)

No measurement
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Figure 10: Temperature change vs. longitudinal logarithmic strain from uniaxial tension tests and numerical simulations at three

different nominal strain rates, ė = 0.01 s−1, ė = 0.1 s−1, and ė = 1.0 s−1, and at four different temperatures, (a) T = 25 ◦C, (b) T = 0
◦C, (c) T = −15 ◦C and (d) T = −30 ◦C.

of the temperature increment vs. longitudinal strain curves at temperatures below 25 ◦C is caused by the405

influx of liquid nitrogen during the tension test.406
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6.4. Force-displacement curves407

As a further validation incorporating the response of the entire tension test sample, force vs. displace-408

ment curves are shown in Figure 11. The evolution of the force up to the peak value is well captured, along409

with the subsequent force drop. In the simulations of the room temperature experiments, the force levels410

are in general overestimated. This is attributed to a too high value of the shear modulus in Part B, in com-411

bination with a too low value of the locking stretch, thus overestimating the strain hardening. For the tests412

at 0 ◦C, good agreement is found between simulation and experiment for the two lowest strain rates. At the413

highest strain rate there is not enough reduction in force after the peak force is reached, which for this con-414

figuration is caused by the deformation dependent reference strain rates. For the two lowest temperatures,415

a combination of the aforementioned effects is observed. At −30 ◦C the force reduction is overestimated416

due to the reduced shear modulus in Part B (µB ≈ µB,ref ·
243.15
298.15 = 0.81µB,ref), while at −15 ◦C the force417

in the simulation stabilizes earlier than in the experiment because of the isotropic hardening of the viscous418

dashpots.419

6.5. Strain rate420

As shown in Figure 12, there is an overall good agreement between the strain rate from simulations,421

extracted from the indicated element in Figure 7, and the strain rate from experiments. At room temperature422

the strain rate in the simulations decreases too rapidly. This is due to strain hardening from Part B of the423

model, which reduces the strain rate by propagating the neck too early. As seen from Figure 12, this effect is424

continuously decreased as the initial temperature is reduced, which is caused by the reduced shear modulus425

in Part B. The reduced shear modulus delays the onset of network hardening, which again allows for a more426

prominent neck to form. This causes, or rather maintains, the strain rate for a longer period before the neck427

starts to propagate causing the strain rate to decrease. Furthermore, when the neck is fully propagated, the428

strain rate stops decreasing and a sudden increase in strain rate is observed in all experiments and in the429

simulations at the two lowest temperatures. This is caused by the re-straining of the specimen which occurs430

when the neck is fully propagated to the shoulders.431

6.6. Strain-displacement curves432

A comparison of the local strain in the most deformed section of the specimen vs. the global displace-433

ment curves from simulations and experiments is given in Figure 13. The displacement in the finite element434

model was extracted at the nodes where the velocity boundary condition was applied, see Figure 7.435
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ė = 0.10 s−1
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Figure 11: Force vs. displacement curves from uniaxial tension tests and numerical simulations at three different nominal strain

rates, ė = 0.01 s−1, ė = 0.1 s−1, and ė = 1.0 s−1, and at four different temperatures, (a) T = 25 ◦C, (b) T = 0 ◦C, (c) T = −15 ◦C

and (d) T = −30 ◦C.

Due to the constant locking stretch, the longitudinal strain saturates at approximately the correct level436

for all simulations. However, as has been the case for previous simulation results, the change in the shear437
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ė = 1.00 s−1
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Figure 12: Longitudinal logarithmic strain rate vs. longitudinal logarithmic strain from uniaxial tension tests and numerical

simulations at three different nominal strain rates, ė = 0.01 s−1, ė = 0.1 s−1, and ė = 1.0 s−1, and at four different temperatures, (a)

T = 25 ◦C, (b) T = 0 ◦C, (c) T = −15 ◦C and (d) T = −30 ◦C.
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ė = 0.10 s−1
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Figure 13: Local longitudinal logarithmic strain vs. global displacement from uniaxial tension tests and numerical simulations at

three different nominal strain rates, ė = 0.01 s−1, ė = 0.1 s−1, and ė = 1.0 s−1, and at four different temperatures, (a) T = 25 ◦C, (b)

T = 0 ◦C, (c) T = −15 ◦C and (d) T = −30 ◦C.
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modulus in Part B of the model is clearly evident. At room temperature, the strain saturates more gradually,438

as seen in Figure 13a. As the temperature is decreased, the shear modulus in Part B is continuously reduced439

leading to a rather accurate prediction of the longitudinal strain as a function of global displacement at440

a temperature of −15 ◦C (Figure 13c). At a temperature of −30 ◦C (Figure 13d), the shear modulus has441

been reduced too much, causing the longitudinal strain to saturate at a level which is too high. However,442

it should be noted that the global displacement measured in the experiments is not directly comparable to443

the displacement in the simulations. The reason for this is twofold: (1) the specimen was clamped in the444

testing machine which might have caused some slippage between the clamping rig and the tensile specimen,445

and (2) the finite machine stiffness might have affected the displacement recorded by the testing machine.446

Nevertheless, Figure 13 demonstrates the constitutive model’s capability of capturing both the local and447

global material behaviour of the tensile specimen.448

6.7. Comparison of deformed shape449

Figure 14 shows a comparison between the deformed shape of the specimen from experiments and450

simulations at room temperature and a strain rate of ė = 1.0 s−1. The deformed shape of the finite ele-451

ment model is outlined in red on the images from the experiments. As evident from Figure 14, there are452

some discrepancies between simulation and experiment. At a relatively small displacement of u = 3 mm453

(Figure 14a) the agreement between simulation and experiment is excellent. However, at a displacement454

of 8 mm, the simulation deviates from experiment. The specimen has not contracted enough due to the455

network hardening from Part B which limits the neck formation and accelerates neck propagation. All these456

observations can be explained from Figure 13a where we see that at u = 3 mm there is excellent agreement457

between simulation and experiment. After u ≈ 6 mm the simulation starts to deviate from the experiment458

due to the network hardening in Part B limiting the longitudinal strain, and a displacement of approximately459

35 mm has to be reached before the longitudinal strains from simulation and experiment agree again.460

7. Concluding remarks461

We have presented a thermo-elasto-viscoplastic constitutive model describing the thermomechanical462

behaviour of a cross-linked low density polyethylene (XLPE) at different temperatures and strain rates. The463

constitutive model consists of two parts: Part A represents thermo-elasticity and thermo-viscoplasticity,464

whereas Part B represents entropic strain hardening due to alignment of the polymer chains during defor-465

mation. Assuming that the contributions from the main α and the secondary β relaxation processes are466
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(a) u = 3 mm (b) u = 8 mm (c) u = 21 mm

Figure 14: A comparison of the deformed shape of a specimen tested at T = 25 ◦C and ė = 1.0 s−1 from finite element analysis and

experiment at three magnitudes of displacement: (a) 3 mm, (b) 8 mm and (c) 21 mm. The deformed shape from the finite element

analysis is outlined in red on the images from the experiment.

additive, Ree-Eyring dashpots were successfully used to describe yielding as a function of temperature467

and strain rate. The yield stress of the material was modelled as pressure insensitive, and the plastic flow468

was taken to be isochoric. There were two contributions to strain hardening in the model: (1) kinematic469

hardening from the eight chain spring in Part B, and (2) isotropic hardening introduced by the deformation470

dependent reference strain rates in the viscous dashpots. A phenomenological expression was proposed to471

describe the increase in Young’s modulus as the material was cooled down. The constitutive model was im-472

plemented in a nonlinear finite element (FE) code using a semi-implicit stress update algorithm combined473

with sub-stepping and a numerical scheme to calculate the consistent tangent operator.474

The constitutive model was calibrated from the stress-strain curves obtained in uniaxial tension tests475

performed at four different temperatures and three nominal strain rates, as reported in [11]. Considering476

the stress-strain curves, good agreement between simulations and experiments was achieved, as evident by477

Figure 8. Considering the increase in temperature, qualitative agreement was obtained between numerical478

predictions and experimental values. The predictions by the FE model in terms of volumetric strain, force479

vs. global displacement, local strain rate vs. local strain, global displacement vs. strain and the deformed480

shape of the tensile specimen were in good overall agreement with the experimental counterparts, and these481
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results serve as validation in the sense that the material model, which is calibrated from local stress-strain482

data, is able to predict the global response adequately.483
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[50] Dassault Systèmes, Providence Road, Rhode Island, ABAQUS 6.14 Documentation (2014).607

[51] L. C. A. van Breemen, T. A. P. Engels, E. T. J. Klompen, D. J. A. Senden, L. E. Govaert, Rate- and temperature-dependent608

strain softening in solid polymers, Journal of Polymer Science, Part B: Polymer Physics 50 (2012) 1757–1771. doi:10.609

1002/polb.23199.610

[52] M. Andersen, An experimental and numerical study of thermoplastics at large deformations, Ph.D. thesis, Norwegian Uni-611

versity of Science and Technology, NTNU (2016).612

[53] ISO22007-4:2008, Plastics - Determination of thermal conductivity and thermal diffusivity - Part 4: Laser flash method,613

2008.614

35

http://dx.doi.org/10.1115/1.3564580
http://dx.doi.org/10.1115/1.3564580
http://dx.doi.org/10.1115/1.3564580
http://dx.doi.org/10.1016/j.ijplas.2004.11.007
http://dx.doi.org/10.1016/j.ijplas.2004.11.007
http://dx.doi.org/10.1016/j.ijplas.2004.11.007
http://dx.doi.org/10.1016/0022-5096(89)90033-1
http://dx.doi.org/10.1016/0045-7825(94)00057-T
http://dx.doi.org/10.1007/BF00376130
http://dx.doi.org/10.1007/BF00376130
http://dx.doi.org/10.1007/BF00376130
http://dx.doi.org/10.1007/s00397-014-0802-2
http://dx.doi.org/10.1007/s00397-014-0802-2
http://dx.doi.org/10.1007/s00397-014-0802-2
http://dx.doi.org/10.1002/polb.23199
http://dx.doi.org/10.1002/polb.23199
http://dx.doi.org/10.1002/polb.23199

	Introduction
	Material, experimental set-up, methods and experimental results
	Constitutive model
	Overview
	Part A - Intermolecular
	Part B - Orientational hardening
	Self-heating and dissipation

	Numerical integration

	Material model calibration
	Shear modulus
	Flow stress
	Strain hardening

	Numerical model
	Finite element model
	Material parameters

	Results and discussion
	Stress-strain curves
	Volume change
	Self-heating
	Force-displacement curves
	Strain rate
	Strain-displacement curves
	Comparison of deformed shape

	Concluding remarks

