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Problem description 

The problem for this thesis has been supplied by Statkraft, which is one of the firms that 

make up Forewind. Forewind has been awarded the Dogger Bank zone for wind farm 

development and the development is planned to be done in stages as a number of individual 

projects within the zone. 

The aim of this master thesis is to study the potential benefit of interconnecting the 

individual projects in within Dogger Bank. Four projects have been selected to be studied 

and three potential layouts are compared. The benefit will be measured in increased profit 

from the wind farm.  

The method that is used for studying the benefit of interconnecting the projects is a 

combination of a reliability analysis and an economic analysis. The reliability analysis will 

provide the amount of energy that is delivered to shore for each of the considered layouts, 

while the economic analysis will balance the increased energy output with the increased 

investment.  

The layouts that are to be studied are the Base Case, in which each project is connected to 

shore through a single radial, Case Two, which superimposes a link between two and two 

projects onto the Base Case scenario, connecting the projects in pairs. And Case Three which 

superimposes a ring system between all four projects onto the Base Case layout.  
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Abstract 
The Dogger Bank zone, which has been awarded to Forewind for development, is planned as 

the world’s largest offshore wind farm with an agreed target of 9 GW installed capacity. Due 

to the size of the wind farm it will be developed as several individual projects (from here on 

referred to as projects) with a rated production of 1.2 GW. Each project is planned to be 

connected to shore via an HVDC link.  

The aim of this master thesis is to investigate the possible benefits of including 

interconnections between the projects. Adding interconnections will be beneficial if the 

revenue from delivering more energy to the UK main grid is larger than the added 

investment cost over the life time of Dogger Bank.  

In this thesis three connection schemes have been studied, in which four projects are 

included. These are: 

Base Case: Each project has an individual radial HVDC connection to shore. No links 

interconnect the projects. 

Case Two: Each project has an individual radial HVDC connection to shore. In addition 

two and two projects are connected in pairs by an HVDC connection with a rating of half 

of the rating to shore. 

Case Three: Each project has an individual radial HVDC connection to shore. In addition 

all four projects are interconnected by an HVDC ring system with a rating of half of the 

rating to shore. 

In addition several analyses have been made on variations of these cases. Among these 

variations were varying reliability parameters, varying the ratings of cables, operating the 

system without HVDC circuit breakers and using HVAC technology for the project 

interconnections. 

By performing reliability analyses and taking into account the actual production the amount 

of energy that is delivered to shore has been calculated for each of the three cases. The total 

costs of the different connection schemes has been studied by taking into account only the 

components that will have different investment costs and operation- and maintenance costs 

in the three cases. A simplified economic analysis was used. The analysis uses an imagined 

expense account and revenue account with the same interest rate, and the profit for each 

year is found as the difference between the revenue account and the expense account.  

For the reliability analyses a tool was developed in Microsoft Excel which has the ability to 

take into account both overlapping faults and variable production for these particular cases. 

The method behind the Excel program, which is presented in this thesis, can be 

implemented in other platforms and be used to study alternative layouts and other systems.  

The results yielded by the analyses show that Case Three is the best option among the three. 

An Expected Situation is defined, in which the layouts are as described above and the 
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reliability variables and prices are as the expected level. The results in the Expected Situation 

show a profit increase of some £ 2 billion in Case Three compared to Base Case. 

When varying the reliability variables it is found as would be expected that increasing the 

parameters (e.g. repair time and rate of failure) leads to a decrease in unavailability of the 

system and thereby a decrease in delivered energy and revenue. It is also found that as the 

availability of the system decreases the benefit of using the Case Two and Case Tree layouts 

increases.  

Variations in cable price and interest rate, which are among the main influences in the 

economic analyses are found to have limited impact on the difference in profit between the 

three cases. High cable prices are found to, to some extent, reduce the benefit of added 

interconnections. Added interest rate tends to favour added interconnections. 

Analyses of the project interconnections show that ratings of approximately 50 % of the 

project rating will be optimal. Congestion in the connections to shore makes the connections 

to shore the limiting factor for energy transmission in most situations. Some more energy is 

delivered when the interconnections are given higher rating, but the increase in revenue 

from this energy is not enough to cover the extra cost of higher rating.  

Because HVDC circuit breakers are a brand new and costly technology analyses were 

performed to evaluate the impact of operating the system without such breakers. The 

analyses show that leaving out HVDC circuit breakers will have a positive impact on the 

Dogger Bank economy. Using HVAC instead of HVDC technology for the project 

interconnections was found to be beneficial because of the high cost of HVDC circuit 

breakers. Comparing the HVAC case with the HVDC case without HVDC circuit breakers 

leaves the two alternatives relatively equal in terms of profit and more thorough analyses 

are needed to decide which of the two offers the best solution.  

Based on the analyses performed in this thesis it is fair to conclude that interconnection of 

the projects should not be disregarded in the development of the Dogger Bank zone. 
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Sammendrag 
Dogger Bank området, som er tildelt Forewind for utvikling, er planlagt som verdens største 

offshore vindpark med et avtalt mål om 9 GW installert effekt. På grunn av parkens størrelse 

vil Dogger Bank utvikles som flere individuelle prosjekter (heretter omtalt som prosjekter) 

med nominell produksjon på 1.2 GW. Hvert av disse prosjektene er planlagt tilknyttet land 

gjennom en HVDC link. 

Målet med denne masteroppgaven er å undersøke de potensielle fordelene av å inkludere 

sammenkoblinger mellom prosjektene. Slike sammenkoblinger vil være fordelaktige dersom 

de økte inntektene som følger av å levere mer energi til UKs sentralnett er større enn 

økningen i investeringskostnader over Dogger Banks levetid. 

I denne oppgaven har tre tilknytningsalternativ som inkluderer fire prosjekter blitt studert. 

Disse er: 

Base Case: Hvert prosjekt har en individuell radiell HVDC tilknytning til land. Prosjektene 

er ikke knyttet sammen. 

Case To: Hvert prosjekt har en individuell radiell HVDC tilknytning til land. I tillegg er to og 

to prosjekter koblet sammen i par med en HVDC tilknytning med kapasitet lik halvparten 

av prosjekt effekten. 

Case Tre: Hvert prosjekt har en individuell radiell HVDC tilknytning til land. I tillegg er alle 

de fire prosjektene koblet sammen i et HVDC ring nett med kapasitet lik halvparten av 

prosjekt effekten. 

I tillegg har flere analyser blitt gjennomført for å studere variasjoner i disse casene. Blant 

disse variasjonene var variasjoner i pålitelighetsparametre, variasjoner i kabel kapasitet, drift 

av systemene uten HVDC effektbrytere og bruk av HVAC teknologi for 

prosjektsammenkoblingene. 

Ved å gjennomføre pålitelighetsanalyser og ta hensyn til produksjonsmønsteret til 

prosjektene ble det beregnet hvor mye energi som faktisk leveres til land i de tre tilfellene. 

De totale kostnadene av de ulike tilknyttningsalternativene er evaluert ved å kun hensynsta 

de komponentene som vil ha ulik investerings- og vedlikeholdskostnad i de tre alternativene. 

En forenklet økonomisk modell er benyttet for analysene. Modellen baserer seg på en tenkt 

utgiftskonto og en tenkt inntektskonto, begge med samme rente. Fortjenesten for hvert 

enkelt år finnes som forskjellen mellom inntekts- og utgiftskontoene. 

Til pålitelighetsanalysene er det blitt utviklet et verktøy i Microsoft Excel som hensynstar 

både overlappende feil og varierende produksjon i de systemene som evalueres her. 

Metoden som er benyttet, og som er presentert i oppgaven, kan overføres til en annen 

plattform og da benyttes til å studere andre systemer også.  
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Resultatene fra analysene viser at Case Tre er det beste av de tre alternativene. En Forventet 

Situasjon har blitt definert og er en situasjon med layoutene som beskrevet over og alle 

priser og pålitelighetsvariabler som forventet. Resultatene fra den Forventede Situasjonen 

viser at fortjenesten i Case Tre er omtrent £ 2 milliarder høyere enn i Base Case. 

Når pålitelighetsvariablene varieres viser analysene, som forventet, at når parametrene 

(f.eks reparasjonstid og feilrate) økes, synker påliteligheten til systemet og følgelig også 

mengden energi levert til land og inntektene. Analysene viser også at når påliteligheten til 

systemet synker øker fordelen av sammenkoblinger mellom prosjektene. 

Variasjoner i kabelpris og renteverdi, som er blant hovedfaktorene i den økonomiske 

analysen vil ha relativt liten påvirkning på forskjellen mellom de ulike casene. Høye 

kabelpriser fører til en noe reduser fordel av sammenkoblingene. Økt rente tenderer til 

favorisering av økt sammenkobling. 

Analyser av prosjektsammenkoblingene viser at kabler med kapasitet rundt 50 % av nominell 

produksjon per prosjekt er optimalt. På grunn av produksjonen fra nærmeste prosjekt vil 

kablene til land vil som regel være belastet nok til at disse er begrensende komponent i 

overføringen. Noe mer energi leveres til land når sammenkoblingene har høyere kapasitet, 

men inntektene fra dette er ikke nok til å dekke de økte investeringskostnadene. 

Ettersom HVDC effektbrytere er en helt ny og dyr teknologi har analyser blitt gjennomført 

for å undersøke effekten av å drifte systemet uten slike brytere. Analysene viser at å utelate 

HVDC effektbrytere vil ha en positiv påvirkning på økonomien i Dogger Bank. Det ble også 

funnet at å benytte HVAC teknologi fremfor HVDC teknologi i sammenkoblingene mellom 

prosjektene gav positiv innvirkning på økonomien på grunn av den høye kostnaden av HVDC 

effektbrytere. En sammenlikning av systemet med HVAC teknologi og med HVDC teknologi 

men uten HVDC brytere viser at disse tilfellene gir relativt lik fortjeneste og grundigere 

analyser er nødvendige for å bestemme hvilket alternativ som er det beste.  

Basert på analysene som er gjennomført i denne masteroppgaven er det rimelig å 

konkludere med at sammenkobling av prosjektene ikke bør forkastes i den videre utviklingen 

av Dogger Bank. 
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Preface 
This thesis is the final report of a five year master degree in electrical power engineering at 

NTNU. The problem to be studied was provided by Statkraft and concerns the layout of the 

grid connection of the Dogger Bank wind farm.  

The task of studying the potential benefits of interconnecting the Dogger Bank Projects has 

been both interesting and challenging. The master thesis follows a pre-master thesis project 

in which I studied control in multi-terminal HVDC systems. My interest for both wind power 

and HVDC technology has left me very interested in the results of the analyses.  

Some of the challenges encountered in the work on this thesis have had a great influence on 

the final product. Most important among these were the choice of platform for the analyses 

and obtaining the input data for the analyses. A further explanation of the process of 

deciding on a platform and of the impact both challenges have had on my thesis is given 

below. 

The main obstacle that has been encountered is the choice of platform for the analysis. As 

work was started on the thesis DigSilent Power Factory (from here on referred to as Power 

Factory) was chosen as the preferred platform. This choice was made both because both 

Kjetil Uhlen and myself were familiar with it after using it in one of his courses at the 

university, albeit for other types of analyses, and because Power Factory offered the 

possibility of combining reliability calculations and power flow analyses. After several failed 

attempts at using this software it was however discovered that large parts of the reliability 

analysis software did not function as intended, something which was confirmed by support. 

After discarding Power Factory as platform the choice fell on Microsoft Excel (from here on 

referred to as Excel). Based on my limited knowledge of reliability analyses the RelRad 

methodology appeared to be a suitable methodology and based on how the analysis is 

performed Excel seemed like a natural choice. It should be mentioned that at the time I 

regarded the reliability analyses as a relatively limited part of the scope, this changed 

gradually as the work progressed. 

As will be described in the thesis RelRad methodology is not well suited in itself for analysing 

systems like those studied in here. This was quickly discovered and attempts at modifying 

the method for use on these systems were started. Vijay Venu Vadlamudi has throughout 

the work on the reliability analysis been very helpful and supportive and contributed with his 

knowledge on the subject. However we did not succeed at finding a method that could be 

applied to these systems which would give the output necessary for the analysis, and so the 

work on expanding the RelRad methodology was continued. Eventually a satisfactory 

solution was obtained. 

Having established a methodology the next step was creating spread sheets in Excel that 

allowed studying the different layouts. This proved to be a rather more extensive job than 

anticipated and much time was spent on attempting to find good solutions for the 
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calculations of one layout at the time. The calculations necessary for the analysis of Case 

Three is very much more extensive than for the others, combined with there being very 

many more situations that must be analysed. When the Excel sheet was extended to include 

this layout the amount of data became so large that Excel had problems operating. In 

addition there were found to be some limitations to Excels handling of circular references 

which made the calculations harder. Following this development I considered changing the 

platform again and this time turning to Matlab. For calculating the availability of the 

components and doing the analysis for the Base Case, Excel is still the preferred option, but 

the troubles that were encountered when the amount of data became larger would be 

solved much more easily by Matlab. After pondering the option of switching platform and 

discussing this with Vijay Venu Vadlamudi, who strongly advised against it, I decided not to 

switch as I felt sure that recreating the spread sheet as a program in Matlab would take too 

much time considering how much time was left of the work on the thesis. This has led to the 

method being less flexible than I could have hoped and though it is sufficient for the 

analyses performed here the Excel sheet should not be used in further studies. The 

methodology that has been developed and the procedure that is applied could however at a 

later stage be implemented into Matlab or similar and thereby increasing flexibility and 

allowing for more extensive studies.  

Another challenge has been obtaining the input data to the analysis. Reliability data are 

available for most of the included components, though necessarily different sources use 

different data based on different studies. A more challenging spot has been obtaining prices. 

Because component prices are subject to competition these are kept secret. The prices that 

are used in this thesis are therefore prices that Statkraft has provided me with. The prices 

are however for a large part estimates and some are therefore subjected to sensitivity 

analyses as part of the thesis. At the beginning of the work with the thesis I wanted to 

include electric losses in the analyses. By including losses the amount of energy that is 

delivered through the system is lowered and though the percentage impact of the reliability 

analysis on lossless and actual systems is the same, the lowered amount of energy leads to 

less income and therefore less favourable analysis results for the more complex systems. 

Obtaining values of electric losses proved to be even more challenging than obtaining the 

prices, because the losses could not be calculated without more extensive studies by the 

suppliers, which they were, understandably, unwilling to do for free. In order for the 

inclusion of losses to make sense the component price would need to be related to that 

specific component, which as described was not possible.  

Because of the trouble of getting good input data and the building of the reliability analysis 

being so much more time consuming than anticipated the resulting analysis has become less 

accurate, less flexible and less extensive than was my intention at the beginning of the 

master period. However I am glad to say, I have through the work on this thesis collected 

data, created a method for analysis and performed several analyses. The result of the 

analyses point a direction for which layouts should be studied further as was the target.  
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Introduction 
The Dogger Bank zone, which has been awarded to Forewind for development, is planned as 

the world’s largest offshore wind farm with an agreed target of 9 GW installed capacity. Due 

to the size of the wind farm it will be developed as several individual projects of 1.2 GW, 

each of which is planned to be connected to shore via an HVDC link. The aim of this master 

thesis is to investigate the possible benefits of including interconnections between the 

projects.  

The benefit of using interconnections between the projects is that it would lead to an 

increase in reliability for the transmission system connecting the projects to shore, by adding 

to the number of available current paths. In the event of a fault on the primary route to 

shore the power can then be redirected through one of the alternatives. 

The downsides of including interconnections is the added investment cost this will lead to 

and the increased complexity of the system. The added investment cost could be sufficiently 

high to remove all benefit that is achieved through delivering more energy to shore and it is 

the main purpose of this thesis to investigate whether this is the case.  

The objective of this thesis is to study four projects in three different layouts, and based on 

this offer a recommendation of which layouts should be considered in the further 

development of the Dogger Bank zone. The recommendation will be made based on 

reliability analyses and economical analyses. The reliability analyses will yield the added 

amount of energy that can be transmitted due to the interconnections. The economical 

analyses will take into account the added revenue from the delivered energy and the 

increased investment costs of the interconnections and return the difference in profit 

between the layouts.  
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Part I. Background 

Chapter 1. The Dogger Bank Zone 

 Dogger Bank Chapter 1.1

In 2010 Forewind was awarded the rights to develop the Dogger Bank zone. This happened 

as part of the United Kingdom's third competitive leasing round for offshore wind, in which 

nine development zones with 25 GW of combined target generating capacity were awarded.  

Forewind is a consortium of four companies who joined together for the Dogger Bank 

project. The companies in Forewind have special competence in different areas relevant for 

the project and together they have an economic strength and technological knowledge that 

enables them to face the challenges of such a large project. 

The companies that constitute Forewind are RWE, SSE, Statkraft and Statoil. RWE is one of 

the UK’s leading developers and operators of renewable energy plants. SSE is the largest 

non-nuclear electricity generator in the UK and is involved in wind, wave, tide and hydro 

power projects. Statkraft is Europe’s largest generator of renewable energy, and the leading 

power generator in Norway. Statkraft produces and develops hydropower, wind power, gas 

power and district heating. Statoil is the largest Norwegian oil and gas company. The 

company also have some renewable power projects and is the developer of the world’s first 

floating wind turbine. Statoil has 40 years of experience with offshore operation and the 

challenges that are specific to this environment.[2] 

Dogger Bank is planned as the world's largest offshore wind farm with an agreed target 

installed production capacity of 9 GW. The Dogger Bank development area is located in the 

North Sea off the east coast of Yorkshire [3]. The zone is far offshore and stretches from a 

distance of 125 km offshore to 290 km offshore, covering a total area of 8 660 km2. 

Because Dogger Bank is such a huge zone, it will be developed sequentially in four stages, 

known as “tranches”. Within each tranche there will be identified a number of projects 

areas, each with a capacity of up to 1.2 GW. Six such areas have already been defined, and 2 

more are being considered. Development consent orders (applications) have already been 

submitted for the first two, and two more will follow shortly. From here on these smaller 

projects are referred to as projects, while Dogger Bank or the Dogger Bank Project is used to 

refer to the cluster of these projects.  

The projects are planned to have individual export link to shore, connecting them to the 

National Grid integrated transmission system. The links will eventually be owned and 

operated by an Offshore Transmission Owner (OFTO). As a natural scope for wider 

optimisation of the zone, investigations are being made into the advantages of co-ordinating 

offshore networks in order to reap potential benefits of introducing alternative routes to 

market for the generation. 
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The fact that the projects are currently being developed individually means that in the 

development of each project is made no assumption of the other projects being realized, 

apart from that no decision should be made which causes problems for development of any 

of the remaining projects. At a later point in the planning it is natural to look for advantages 

of co-contracting projects that are ready for contracting, but assuming more projects will be 

implemented by a certain point in time leads to a larger uncertainty in the economic 

evaluations of the projects. During the planning phase the projects are therefore planned for 

having no interconnections1 between them, causing the grid connection of each project to 

be a single HVDC link to shore.  

Planning the projects as part of a whole could lead to a completely different connection 

scheme for the projects being chosen, possibly with interconnections between them and 

fewer links to shore. Planning Dogger Bank as one large project however leads to a great risk 

in terms of potential overinvestments if some of the projects are not realised and also a 

greater dependency on the order in which different parts of Dogger Bank are built.  

This thesis aims at studying the effects of using interconnections in the primarily radial 

network structure and also evaluating the potential benefit of considering the first four 

projects as a whole, neglecting the risk of some projects not being built.  

Only the first four projects are considered in order to reduce the scope of the analysis. These 

four projects are to be connected to shore at two different substations.  

 Wind farm Layout Chapter 1.2

As described in Chapter 1.1 the Dogger Bank zone has been split into several individual 

projects areas. This split was performed after careful evaluation of the alternatives. Among 

the factors that were taken into account is what rating of equipment would provide the 

most cost effective solution. It was concluded that 1.2 GW installed capacity in each project 

was the best option. This led to potentially eight projects of equal rating. Due to the time 

limitations of the thesis only four projects will be studied here.  

An analysis of only four out of eight projects is not sufficient to make any conclusions as to 

the final system layout, primarily because there are many more possible layouts for a total of 

eight projects. There is however a potential for drawing conclusions as to the effect of 

different schemes of interconnection, and evaluate whether increasing the level of 

complexity of the system appears to be economically beneficial. 

The grid structure of the projects has for the purpose of this thesis been broken into two 

main parts, each with two sub parts in order to enable the description of and referring to 

these parts separately. These parts are: 

                                                      
1
 For the purpose of this thesis the term interconnection is used to describe links which connect one project to 

another. The links that connect the projects to the onshore grid are called connections to shore. 
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 Internal grid – The part of the grid which in all three layouts is used by a single project only  

o Collection grid – The radials that connect the WTGs to the collection points 

o Upstream connection – The grid connecting the collection points to the offshore converter 

station 

 Transmission grid – The grid that is used to transmit the power from the offshore converters to 

shore 

o Connection to shore – Each project’s HVDC link to shore 

o Project interconnection – The cables and relay system used to connect the projects to one 

another. 

Chapter 1.2.1 Internal project layout 

Extensive studies have been performed by Forewind to find the optimal number and 

placement of wind turbine generators, WTG, within each of the projects2. Although the 

individual wind farm’s capacity and positioning of the WTGs, substation platforms and in-

field cables will be finalised at a later stage in development, an indicative concept has been 

proposed by Forewind in order to inform the consenting process and to establish red line 

boundaries around the consented areas.  

A conceptual base case wind farm was developed for the sake of cost of energy modelling in 

order to establish project- and wider zone economics. This base case  was identified after 

detailed optioneering and cost modelling of the various options available for the entire wind 

farm design, taking due account of wind energy capture, wake losses, investment costs, 

operation and maintenance costs, availability, losses and economies of scale. The steps in 

this analysis are briefly described below. 

First the optimal placement of the WTGs was found taking into account factors such as wake 

effect and cost. The results gave a wind farm with large well-spaced wind turbines. The 

spacing is larger than for most wind farms, an option which is available because the projects 

are so big and optimizing for efficient generation gives a better pay-off than for smaller 

projects. After the WTG location had been chosen a study was performed which showed 

that two collection points in each project would be the best option. An algorithm for 

optimising the position of these two collection points and the distribution of WTGs on radials 

was then used to decide the collection grid layout3. It was also found to be economically 

optimal to have one converter station for each project, placed midways the two collection 

points.  

The collection grid of the individual projects is thus found to be optimal with one converter 

station which is connected to two collection points at which the transformers are situated. 

Each of these collection points is then connected to a varying number of radial cables to 

                                                      
2
 The location of the wind turbines is not final, but provides an assumption for use in the early planning phase. 

The final turbine location will be decided in the front-end engineering and building phase. 
3
 Collection grid refers to the grid upstream of the collection points, or more specifically the radial connections 

than connect the WTGs to the collection points. 
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which a varying number of WTGs are connected. Because these layouts are confidential a 

mock collection grid layout is shown in Figure 1 as an illustration. 

 

Figure 1: Example of project layout 

This analysis further resulted in an indicative concept in which each project should comprise 

the following main components and systems: 

 Installed wind farm capacity of up to 1200 MW 

 WTGs with step-up transformers and switch gear 

 In-field cables collecting the generation from the WTGs at either 33 kV or 66 kV, linking into: 

o Two to four AC offshore substation platforms, with step-up transformers and switch gear  

o AC subsea cable circuits connecting the AC offshore substation platforms to a single offshore converter 

platform 

 One pair of HVDC cables linking the wind farm converter to: 

o An onshore converter located near the onshore main integrated transmission infrastructure (MITS) 

o One AC underground cable circuit at 400 kV linking the onshore converter to the MITS  

The upstream connection is the furthest upstream part of the grid which is included in this 

thesis, hence its name, and can be designed in a number of ways, for this thesis one specific 

and likely layout has been selected and is visualized in Figure 2. 

 

Figure 2: Upstream connection single line diagram 

As can be seen from the figure the upstream connection consists of two radial connections 

from the offshore converter station to the respective collection points. These two radials are 
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exactly equal as the rating of the two collection points are the same, and the converter 

station is located geographically midways between the collection points, ensuring that 

cables 1 and 2 are of equal length. These cables will however be of different length for the 

different projects, only within each project the two cables are identical. The transforming 

from collection grid voltage level (which will likely be 33 kV of 66 kV) to the upstream 

connection voltage level (which will likely be selected to be between 132 kV and 220 kV) is 

done by two transformers running in parallel4. The transformers are equipped with 

individual protection systems which implies that if one of the transformers should fail, 

power can still be transmitted through the other transformer. The rating of each of these 

transformers is 50 % of the project rating. If both transformers are available all produced 

power can be transmitted through the transformers, but should one of them fail, the 

transmission capacity would be reduced accordingly and some power may not be possible to 

transmit. 

At the converter station a converter-transformer is used to transform the voltage level from 

the collection grid voltage level to the converter AC voltage level. The voltage level on the AC 

side of the converter must be higher than the HVDC voltage level, which is ± 300 kV. The 

main function of the transformer is to be a part of the control system for the converter. 

The converter is a voltage source converter, which allows more flexibility in operation than 

its alternative, the line commutated converter. 

Chapter 1.2.2 Base Case Layout, Single Radial to Shore 

The Base Case scenario is a rather straight forward system layout. In the Base Case each of 

the projects is equipped with one radial connection to shore and there are no 

interconnections between any projects.  

A purely radial system has the advantage of simplicity. By using only one link the power flow 

is easily controlled, there is much operational experience with such systems and the risk of 

unnecessary investments in components that will be used only upon connecting to another 

project, which turns out not to be realized for some reason or other, is removed. 

The downside of using a purely radial system is that there is little or no redundancy. It would 

be possible to make the system more redundant but this would in most cases require a large 

investment. In order to create the HVDC link with N-1 standard it would be necessary to use 

twice as many of most components because the Base Case only contains one component 

with 100% rating. Installing for example two converter stations, each of 100% nominal rating 

                                                      
4
 The transformers will not in reality operate in parallel. The actual setup is more complex with half of the rated 

power being collected at a busbar and led through transformer 1 and the remaining half being collected at 
another busbar and led through transformer 2. In the event of a fault on one of the transformers this 
transformer will be de-energized and a switch between the busbars which is normally open will be closed, 
leading all the power through the energized transformer. For simplicity in the analysis of this thesis this step 
has been ignored, as it will be of little importance for the system reliability. 
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would be very costly. It should be noted that for a wind farm connection N-1 operation may 

not be the desired reliability level. Because win farms relatively rarely operate at nominal 

power, 100% rating of the connection during a fault in one component might not be 

necessary and it might be found that for example 50% rating during a fault may be sufficient 

to ensure that the wind farms reliability is at the desired level. 

The system layout of the Base Case is shown in Figure 3. 

 

Figure 3: Base Case Single Line Diagram 

Chapter 1.2.3 Case Two Layout, Two Project Interconnection 

In the Case Two layout the projects are 

connected in pairs, so that for example Projects 1 

and 2 and Projects 3 and 4, respectively, are 

connected by a link. This link can be either an 

HVDC link or an HVAC link. In the case of an HVAC 

link the link would be connected at Node 3. In the 

case of an HVDC link the link would be connected 

at Node 4, see Figure 4.  

In order to simplify the operation of the system 

the switchgear at either end of the link will likely 

be operated as normally open, and close only in 

the event of a fault on a connection to shore. 

The disadvantage of choosing the Case Two 

layout is that the simplicity and individuality 

present in the Base Case are lost, or at least 

reduced. In the case of Projects 1 and 2 being 

interconnected and Project 1 being realized first, 

some additional investments are necessary when 

building Project 1 in order to allow for a later 

connection to Project 2.  

The benefit of using the Case Two layout is that 

the redundancy of the connection to shore is 

increased. In the case where Project 1’s Figure 4: Case Two Single Line Diagram 
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connection to shore is unavailable and Project 2 is not delivering rated power, Project 1 can 

utilize the remaining transmission capacity of Project 2’s connection to shore.  

The increase in redundancy should increase the system reliability, but the extent of this is 

dependent on the relaying system that is used. In the case of an HVAC link normal HVAC 

circuit breakers can be applied and the reliability increase should be relatively high. In the 

case of an HVDC link the relaying system can be based on HVDC circuit breakers, or on HVAC 

circuit breakers, the choice between the two schemes could have a large impact on the 

reliability of the system. This point is further discussed in Chapter 3. 

The system layout of Case Two is illustrated in Figure 4. 

Chapter 1.2.4 Case Three Layout, Four Project Ring System 

In Case Three all four projects that are considered in this thesis are connected in a ring. By 

using this layout the dependency on realization of all four projects in order to avoid 

unnecessary investments is increased further from Case Two. On the other hand the 

redundancy in the system is greatly increased and the amount of power delivered to shore 

should therefore be significantly increased.  

As for Case Two there is a possibility of using either HVAC or HVDC cables to form the ring. 

The benefit of using HVDC interconnections is mainly that the cable costs will be much lower 

than in the HVAC case. The downside of HVDC interconnections is the need for expensive 

HVDC circuit breakers, or alternatively reduced availability due to the lack of such breakers. 

The system layout for Case Three is illustrated in Figure 5. 
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Figure 5: Case Three Single Line Diagram 

Chapter 1.2.5 Rating of links and connections to shore 

One option that has not so far been discussed is that the connections to shore do not have 

to be equal to the project rating. Because variations in the rating of the connections to shore 

are relevant for all of the above layouts this is not considered a separate case, but rather a 

point that should be analysed for all of the above cases. 

In the Base Case there is clearly no benefit from increasing the rating of the connection to 

shore, as the additional capacity could never be utilized. For the Base Case the only 

reasonable option is therefore that the rating is equal to or lower than the project rating. 

The benefit of lowering the rating of the connection to shore is that this reduces the 

investment cost of the system. For a system with constant production at the rated level, this 

would not be beneficial, at least to the end that it would be better to reduce the rating of 

the entire system. For a wind farm system on the other hand, where the production is 

variable there could be economical benefits from reducing the rating of the connection to 

shore. This point is illustrated in Figure 6. 
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Figure 6: Illustration of how, for variable generation, reduced transmission capacity does not lead to equal 
reduction in transmitted power [Statkraft] 

In Case Two there is an alternative path to shore for the produced power. In this layout 

there may be benefits of many different combinations of increased and decreased rating of 

the two connections to shore. Assuming for instance that the distance to shore is shorter for 

Project 1 than for Project 2, a possibility for the two connections to shore is that Project 1 

has a higher than 100 % rating and Project 2 has a lower than 100 % rating. This could be a 

good solution because the unavailability of power cables is proportional with the length of 

the cable. The connection of Project 1 would in this case be available more often than the 

connection of Project 2, and hence, reducing the impact of a fault in Project 2’s connection 

to shore could improve the availability of the system. Another possibility is to increase the 

rating of both connections to shore in order to reduce the impact of a fault in either one of 

the connections. The third option is to reduce the rating of both projects with the same 

argumentation as was used for the Base Case. When a link between the projects is added 

there is naturally also the possibility of setting the rating of this link to below rated project 

power. As for the Base Case, increasing the rating is an illogical option, but reducing it may 

improve the project economy. 

Case Three provides a total of eight links and connections whose rating should be studied. 

Unlike in Case Two where the link should not be rated above 100 % of project rating, Case 

Three can benefit from links of rating up to 300 % of project rating. Similarly the rating of the 

connections to shore could be increased to as much as 400 % of project rating. 

One of the possibilities when it comes to reducing the rating of a connection to shore is to 

reduce it to zero, leaving the system with one less connection to shore. This layout makes 

the project without the link 100 % dependent on another project also being realized.  

Chapter 1.2.6 Meshed Systems 

One last case that should be evaluated for the four projects is the implementation of a 

meshed system. The evaluation of this layout will not be a part of this thesis because 

extending the model in Excel to include this option would be too time consuming.  
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By implementing a meshed system there will be less dependency on the order in which 

other projects are realized compared to in a ring system. That is, there is still a dependency 

of other projects to be completed for the reliability to reach the desired level, however the 

dependency is shifted towards a dependency on any project to be completed rather than a 

specific one. Of course the interconnections cannot just be built at random between 

whichever projects are completed first, but a larger degree of freedom is possible. 

As for the other layouts it is possible to implement this layout with HVAC or HVDC. 

Increasing the complexity of the system increases the potential problems with using the 

untested MTHVDC system, however the cost becomes more of a factor for systems with 

more interconnections and HVDC cables are significantly cheaper than HVAC cables.  

Chapter 1.2.7 Final remarks 

One trend that is seen through this list of possible layouts is that the price of redundancy 

falls as the number for interconnections5 increases because the connections between the 

projects are very much shorter and therefore cheaper than making redundant connections 

to shore. Another trend is the reduced dependency on the order in which the other projects 

are completed. For the Base Case there is no dependency on the other projects, but for the 

others there is a reduced dependency from one specific project needing to be completed, to 

one of two others needing to be completed and further to any one of the other projects 

needing to be completed for the reliability to increase to a satisfying level. 

Chapter 2. HVDC Systems 
This chapter aims at giving an introduction to High Voltage Direct Current, HVDC, 

technology, its positive and negative attributes and the reason for using HVDC in the Dogger 

Bank projects. 

The chapter is split into four sub chapters. The first of these describes the technology and 

explains how it differs from HVAC technology. The second sub chapter discusses the benefits 

and disadvantages of HVDC and described how the technology is used. The third sub chapter 

discusses the use of HVDC technology in grid systems, and the last sub chapter discusses the 

envisioned European Supergrid. 

 HVDC Technology Chapter 2.1

HVDC point-to-point connections consist of two converter stations between which there is a 

DC link [4]. A more detailed description of the system layout is displayed in Figure 7.  

                                                      
5
 Note that redundancy and reliability are not linearly proportional 
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Figure 7: Single line diagram showing the layout of a DC point-to-point connection 

The figure shows an HVDC link which interconnects two AC systems. The transmission line is 
an HVDC cable6 or overhead line. The cable is modelled with both resistive and inductive 
elements. Under steady state operation only the resistive elements will affect the system, 
the inductive elements are included because of the transient periods that will occur when 
there are deviations from steady state operation of the DC system.  

Connected at both ends of the cable are converter stations. The AC/DC converter will 
produce two types of losses; current dependent losses and current independent losses. The 
current dependent losses are modelled by resistive and inductive elements while the current 
independent losses cannot be modelled in circuit diagrams as simple as in Figure 7. The 
block which reads AC/DC represents the lossless converter.  

Attached to the converter stations, on the AC side are filters and converter/coupling 
transformers. For the simpler types of converter the output AC current will contain a large 
amount of harmonics that needs to be removed by a filter before the power can be fed into 
the AC system. For more complex converter types the amount of harmonics can be 
significantly reduced and the filters can thus be made obsolete.  

The transformers have a threefold task of transforming the voltage level between the AC 
system’s level and the level of the HVDC connection, creating a galvanic separation and be 
part of the control system for the converters. 

There are two main technologies that are used for HVAC/HVDC converters; namely Line 
Commutated Converters and Voltage Source Converters. The main difference between these 
two is the semiconductors they use for switching the current in order to change its wave 
shape. The converter technology will be further described in Part IV.Chapter 13.5. 

 Use of HVDC technology Chapter 2.2

Low costs and low losses make HVDC an attractive technology for extra-long distance bulk 

power transmission. Until now large central generators have dominated most power 

systems. As renewables replace fossil fuel power generation, remote generation becomes 

more common. This leads to an increased need for extra-long distance bulk power 

transmission, and hence an increased focus on HVDC technology.   

The low losses result from the absence of skin effect which in AC systems is a result of the 

frequency of the current.  The result of the skin effect is to force current to have an uneven 

distribution across the conductor cross section. Current will mainly flow in the conductor’s 

                                                      
6
 Often there are more than one cable, though this depends on the HVDC layout (balanced monopole, bipolar 

etc.) that is used. 
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outer circumference causing inefficient use of the conductor material as more current will 

flow in a smaller area, giving a higher over-all resistance.  

The lower price of the HVDC systems result mainly from the use of cheaper and fewer 

cables. DC systems, needing only two conductors, one for positive voltage and one for 

negative7, have a huge advantage over AC systems requiring three conductors, one for each 

phase. As mentioned the conductor utilisation is better in HVDC cables compared to HVAC 

cables due to the skin effect. Because DC transmission utilises the conductors better, the DC 

cables will need less conducting material and will hence be cheaper. The reason why HVDC is 

primarily used for long distance power transmission is that the AC/DC converter contributes 

strongly to both losses and cost of a connection. Long distance is therefore needed to make 

the benefit of the cables outweigh the negative impact of the converter. 

An additional factor that makes HVDC transmission better suited than HVAC transmission 

over long distances is the impact of reactive power. 

The cable inductance is proportional to the cable length, and consequently this parameter 

becomes high for long cables. In AC systems reactive power is generated by cables as a 

function of the cable inductance, and hence long cables generate much reactive power. 

Reactive power displaces active power in cables and therefore less active power can be 

transmitted through long AC cables. As there is no reactive power in DC cables this problem 

does not apply to HVDC cables and consequently their power carrying capacity is 

significantly higher for long distance cables. At a certain length the amount of reactive power 

will cause congestion in AC cables and they cannot carry any active power. It is possible to 

improve the power carting capacity of AC cables by installing reactive compensation, 

however this is an expensive option for submarine systems.  

HVDC links are only cheaper for connections over large distances. This is because even if the 
cables or lines are cheaper for HVDC than for HVAC technology, they do require the added 
investment in AC/DC converters, which are expensive. There are a number of different 
estimates as to what is the break-even distance, meaning, the distance at which the two 
technologies cost the same. These estimates range from some 40 km, to about 500 km. This 
is likely a result of very varying input to the calculations, such as constantly varying prices of 
metal, unavailable component prices and variations in cable laying conditions, to mention a 
few. But if the break even distance is hard to estimate based on the literature, there is no 
doubt that as the distance increases the cost of HVDC transmission improves compared to 
HVAC transmission. There is also the added disadvantage of HVAC’s power carrying capacity 
falling to zero as the reactive power in the cable becomes too large. This means that if HVAC 
transmission is to be used for extra-long distances reactive compensation is needed, further 
increasing the cost. 

                                                      
7
 For HVDC systems based on monopole with ground return only one cable is needed, most HVDC layouts 

however use two cables. 
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 Multi-Terminal HVDC Chapter 2.3

There appears to be no strict definition of HVDC grids. However there seems to be 

agreement on that HVDC grids are systems in which three or more HVDC terminals are 

connected in system in such a way that power can flow from one, via the next, to a third 

node without converting to AC along the transfer. Some make the distinction between multi-

terminal HVDC (MTHVDC) systems and HVDC grids. In this case MTHVDC is a system as 

described above while an HVDC grid also requires redundancy of connections by forming a 

ring, or even a meshed layout. In this thesis the term MTHVDC is used and meshed or ring 

MTHVDC is used to specify the more complex grid structures.  

 
Figure 8: MTHVDC system layout 

 
Figure 9: System of HVDC links 

 

Figure 8 and Figure 9 illustrate the difference between an MTHVDC system and a system 

made up of individual links.  

One of the more interesting properties of VSC HVDC (HVDC systems based on VSC 

converters) is that it can be used for multi-terminal HVDC (MTHVDC) systems. While there 

are two [5, 6] existing LCC based MTHVDC systems in operation these have very little 

flexibility compared to what is normally expected from grid type systems. Among others the 

need to shut down the entire system in order to change direction of power flow makes these 

systems very cumbersome compared to a VSC MTHVDC system which will have the ability to 

control the power flow based on much the same principle as is used in AC systems. 

MTHVDC systems are technically challenging but provide some important benefits. There are 

two main situations in which MTHVDC would be considered, each of which provide different 

benefits. 

If the system would otherwise be built as an AC system where the distances are very long 

then substituting the HVAC system for an HVDC system gives lower cost and lower losses.  

If the system would otherwise be built as a system of many point-to-point HVDC connections 

then the switch to MTHVDC would significantly reduce investment costs, by needing fewer 

converters, and possibly reducing the electric losses, depending on how power flows in the 

system and which converter type would have been selected for use in the point-to-point 

option.  
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 The European Supergrid Chapter 2.4

Traditionally power systems have been built based on large scale power generation close to 

the load centres. This has led to power systems with relatively limited transmission 

capability between large load centres and instead many weakly interconnected areas that 

produce the power that is needed in that region. 

The increased awareness of the problems associated with energy systems based on fossil 

fuels such as, global warming, limited resources and varying security of fuel supply8, has led 

to more focus on using renewable energy sources. As renewable energy sources can only 

rarely be exploited in large scale near load centres (due to limited space and also taking into 

account other regards such as noise-pollution etc.) there is an on-going shift towards more 

remote large scale power production. At the same time there is a shift towards more small 

scale production which occurs both near the load centres (e.g. rooftop solar power 

production) and in more remote locations (e.g. small scale wind and hydro power 

production).  

The connection of more small scale power production primarily calls for an upgrade of the 

grid, which is underway through the smart grid revolution. The shift towards large scale 

remote power production calls for an additional, extensive change of the power grid as new 

power lines need to be built to transmit the power from the remote generation plant to the 

load centres. Because the distances are typically long, HVDC connection is often considered. 

The number of new connections that will be necessary in the coming years if this trend 

continues is such that it has been suggested building a new grid of these, using a high 

voltage level and creating connection points to the existing power grid at strategic points. 

Such a grid could be made on a European level, interconnecting several countries and 

thereby tying the power markets closer together and at the same time increasing energy 

security. 

Because this proposed grid will consist of many very long distance connections it has been 

considered to make the grid entirely or partly by using HVDC connections. Particularly in 

areas where cables are needed rather than overhead lines, such as subsea, HVDC would be 

the only possible solution. In a grid consisting at least partly of HVDC connections two main 

configurations are possible. The HVDC connections can be used as individual HVDC links in 

an HVDC system or they can form an HVDC grid. 

The European Supergrid is envisioned by many although there are currently no concrete 

plans for building such a grid. It seems however that most of the visions of the European 

Supergrid have the North Sea Supergrid as a starting point.  

                                                      
8
 Fossil fuels provide higher security of supply than most renewable resources as most renewables power 

generation must be done instantaneously when the resource is available. However political issues may lead to 
sudden stops in delivery from certain areas, and many of the main countries in fossil fuel production are in 
politically unstable regions. 
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The North Sea Supergrid is pictured as the first stage of the European Supergrid, 

interconnecting the North Sea countries and allowing for connection of large scale, 

particularly far-offshore wind power production and also loads such as offshore oil and gas 

platforms. As this grid would have to be based on subsea cables only HVDC is a viable option.  

 

Figure 10: North Sea Supergrid layout proposed by EWEA 

An interesting part of the plans for a North Sea Supergrid, from the perspective of this thesis, 

is that most scenarios use Dogger Bank as a natural node in the grid, see Figure 10. By 

including Dogger Bank in the North Sea Supergrid there is a possibility of selling the power at 

a higher price than would otherwise be possible because when continental Europe has high 

load and low production the prices will go up, and Forewind could choose to sell the power 

to Europe9. From the perspective of the grid developers the main benefit of including Dogger 

Bank might be the available transmission capacity to shore during periods with less than 

rated production at the wind farm. Should Dogger Bank be completed in its entirety Dogger 

Bank is expected to contribute approximately 10 % of the UK’s electricity need in 2020[7]. 

This means that Dogger Bank will likely have a great influence on the electricity prices in the 

UK. It also means that if production suddenly drops, due to the wind conditions or faults, 

feeding electricity from another source into the same onshore connection points could be 

beneficial. Taking into account having a connection to another grid could lead to other result 

                                                      
9
 If Dogger Bank is receiving CfD pricing from the UK, it is unlikely that Forewind would be granted this 

advantage, though the UK government may want to utilize the possibility. CfD is described in Part III.Chapter 9. 
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of the cost benefit analyses that are performed in this thesis. For example higher rating of 

connections to shore, and increased interconnection number and rating would in all 

likelihood become increasingly beneficial, as the amount of energy delivered from the 

Dogger Bank node increases.  

The main problem with the idea of including Dogger Bank in the European Supergrid is that 

Dogger Bank will be built before, probably long before, the Supergrid and hence it is not in 

the interest of Forewind to make investments in infrastructure that will only be used if the 

Supergrid is realized.  

Chapter 3. Relaying systems 
This chapter will provide a brief intro into relaying systems because they have a huge impact 

on the power system reliability. 

 Definitions Chapter 3.1

[8] Describes relaying as “the branch of electric power engineering concerned with the 

principles of design and operation of equipment which detect abnormal power system 

conditions and initiate corrective action as quickly as possible in order to return the power 

system to its normal state.”  Relaying is then further divided into two separate requirements 

by stating that a reliable relaying system must be both dependable and secure. 

“Dependability is defined as the measure of certainty that the relays will operate correctly 

for all the faults for which they are designed to operate. Security is the measure of certainty 

that the relays will not operate incorrectly for any fault.”[9] 

The definitions given above provide an idea of the challenges of relaying. Although the 

definitions of dependability and security do not overlap, in reality they are somewhat 

contradictive. The contradiction arises from the want of a dependable system that will act on 

all faults, and the want of a secure system that never operates if it is not supposed to. In 

order to achieve any one of these two requirements one is almost guaranteed to interfere 

with the other. [9] 

In [5] it is stated that general requirements of a relaying system is: 

 Selectivity  

Detect and isolate the faulty item only 

 Stability 

Leave all healthy circuits intact 

 Sensitivity 

Detect even the smallest fault 

 Speed 

Minimize damage to components, surroundings and personnel. 

 Simple/inexpensive 

Minimize the risk of wrong settings due to complications 

 Security 
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Dependable: Always trip when requested 

Secure: Never trip when not supposed to 

Isolating faults is necessary to prevent the fault current from a faulty device to cause faults 

in other equipment and also to de-energize the component to allow repair. In order to 

successfully isolate a fault the following has to happen: 

 The relay system must realize that a fault has occurred 

 The faulty component must be recognized 

 The relevant circuit breakers must be triggered to open 

 The circuit breakers must open  

Methods for fault recognition and identification of the faulty component will not be 

discussed here and for the sake of the analyses performed as part of this thesis it is assumed 

that excellent methods for both challenges are applied. 

In this thesis the relaying system is of great importance as the main focus is to determine the 

amount of energy that is supplied from Dogger Bank to shore, which is strongly dependent 

on the availability of the system. The relaying system plays an important part in determining 

the impact of a fault on the system. If the relaying system is not dependable then the impact 

of a fault will be increased. Similarly, by having an extensive relaying system the chances of a 

fault in one component inflicting a fault on another component is significantly reduced. 

Additionally the redundancy of relay components could be increased, this would lead to a 

higher dependability for the relaying system, even if each component’s dependability is 

unchanged.  

A relaying system consists of different kinds of switches and breakers as well as 

communication devices, measurement equipment etc. For the analyses performed here only 

the circuit breakers and disconnector switches are considered. For later, more extensive 

analyses more components should be included. 

 HVAC Circuit Breakers Chapter 3.2

In AC grids a fault can be isolated by opening the circuit breakers (CB) at both (or all) 

connection points of the faulty component. The CB operates by mechanically separating the 

breaker contacts. As the contacts are moved apart an arc will ignite through which the 

current continues flowing. When the current reaches its natural zero crossing, due to being 

an AC current, the arc will extinguish. If the dielectric strength of the medium between the 

contacts is by now sufficiently high that it cannot be overcome by the voltages present, then 

the arc will not reignite and the CB is open. [9] 

Circuit breakers are the only part of switchgear that can interrupt fault current and then 

close again on signal. Fuses can be used instead of CBs in, but these need to be replaced 

manually after an interruption. Fuses are not available for high voltage levels. 
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One of the situations that is of interest in this thesis is that more than one current path is 

available, one of which is prioritized. In this case the prioritized current path would be the 

only current path actually connected to the power source, the other paths would be 

connected through switchgear operated as normally open. Normally open would be used in 

order to avoid faults in other parts of the system from interfering with the power source and 

current path in question and also simplifies the power flow control. Should a fault occur that 

requires the connection to the rest of the system then the switchgear would close. A CB is 

now necessary to re-open the connection as result of a fault, while also Load Switches10, LS, 

can be used in the case of disconnection during normal operation. From this it is clear that 

though DSs, LSs and CBs can be used for the operating mode, only CBs fulfil all requirements 

and is therefore the natural choice of switchgear for this situation.  

In order to achieve selectivity in the protection system, that is, only de-energize the 

necessary parts of the system when a fault occurs it is important that any radial part of the 

system has sufficient switchgear to clear all, or nearly all, faults that occur in the radial. 

Because no CB is 10 % dependable there will always be a need for backup CBs to cover the 

cases when a fault occurs and the primary CB does not operate. If the fault is not contained 

to a single radial then larger parts of the system will be affected. If for example the 

component closest to a branching point experiences a fault and its protection system does 

not operate, then the CBs on all the other branches of the branching point must be tripped 

to ensure that the fault does not propagate further. This will also be the case when the 

busbar at the branching point experiences a fault. Naturally there will always be the 

possibility that even two lines of defence are insufficient, and the fault will propagate and 

trip a third line of defence. 

 Disconnector Switches Chapter 3.3

If there is no current in the system one does not need to use circuit breakers to isolate a 

component. One can then choose to use a disconnector switch, DS. Unlike CBs DSs are 

incapable of interrupting a flowing current and can therefore not be used to isolate faults. A 

DS works by simply mechanically opening far enough so that the medium between the 

contacts will resist ignition of an arc when voltage is applied. 

In protection systems DSs can be used as backup devises for CBs in order to maintain a large 

degree of selectivity. In such cases the DSs are not backups in terms of actually interrupting 

currents. In the event of a fault on a CB (during a fault on the component it protects) the 

next line of CBs can be used to interrupt the current. This leaves the relevant components 

de-energized in which case the DS can open. Once the DS is open the “next line of CBs” can 

re-close and only the faulty parts are de-energized. 

                                                      
10

 Load switches are switches that are capable of interrupting normal load currents but cannot interrupt fault 
currents. 
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 HVDC Circuit Breakers Chapter 3.4

For HVDC systems interrupting currents is less straight forward than for HVAC CBs. As the 

current does not oscillate around zero there will be no natural zero crossing, making the 

technology of AC CBs unfit for interrupting the current. 

In November 2012 ABB reported to have successfully created an HVDC circuit breaker [10]. 

The HVDC CB was made as a combination of a power electronics and a mechanical switch. 

The Idea of the CB is that the power electronics are used to create an oscillating current, 

which the mechanical switch is then able to interrupt. The concept that is utilized in the 

breaker is one that has been attempted for a long while and that was described in [9], based 

on the article [4].  

The most important difference between HVAC and HVDC systems when it comes to relaying 

in existing systems is that there has not been any circuit breakers available for HVDC use.  

For point-to-point HVDC connections the problem of interrupting the current has been 

avoided by interrupting the current on the AC side of the converters. This is a cheap and 

practical solution as one would in any case need a CB in this position in order to isolate faults 

in the AC components, and it can easily and quickly interrupt the currents that arise from a 

fault within the system. 

 
Figure 11: Isolating fault on HVAC side of point-to 

point HVDC connection 

 
Figure 12: Isolating fault on HVDC point-to-point 

connection 

 

The isolating procedure in point-to-point connections is illustrated by Figure 11 and Figure 

12 for faults on the HVAC side and the HVDC side of the converters, respectively. 

When implementing MTHVDC the solution of interrupting the current on the AC side 

becomes less practical. Although still feasible such a disconnection would mean a 

disconnection of all terminals in the system causing the entire grid to be out of function 

every time a fault occurs. Disconnector switches can be used in DC systems the same as in 

AC systems. This means the DSs could disconnect once the current in the system is removed, 

allowing the AC CBs to reclose and the non-faulty parts of the system would again be 

operational after a short interruption. However as stated in Chapter 3.1 one of the 

important aims of relays is to limit the negative impact that a faulty component will have on 

the rest of the system. Great efforts have therefore been put into developing efficient HVDC 

circuit breakers.  
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Because relay systems will never become 100 % dependable it is important to decide what 

will happen if a CB should not open on demand. The obvious answer is that the next line of 

CBs will open, this means that, for the case in Figure 12, one or both of the CBs between the 

converters and the transformers do not open. Consequently the protection system will 

trigger the CB(s) on the grid side of the transformer(s). In a case as simple as this the 

implication of the protection system not operating on demand is that the time it takes to 

isolate the fault will be double the ideal time. In more complex systems, with branches, the 

result of the protection system not operating on demand could be that a larger part than 

intended is isolated, because the next line of protection protects a connection point for the 

branches. In such cases it would be beneficial to open disconnector switches in order to 

further isolate the fault, and then close the circuit breakers, re-energizing the non-faulty 

parts of the system. 

The fault recognition, location and CB tripping is different in HVDC systems than in HVAC 

systems. This is not further discussed here as the reliability of the protection system as a 

whole is considered out of scope for this thesis. Some methods that can be applied for these 

parts of the relay system are described in [9]. 
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Part II. Power System Reliability 
To evaluate the benefit of interconnecting the Dogger Bank projects, reliability analyses are 

performed for the different layout cases. Performing these analyses will yield the amount of 

energy that is transmitted from the wind farm collection points to the onshore grid.  

This part of the thesis is dedicated to discussing reliability analyses and present the method 

that will be used as part of this thesis. 

Chapter 4. Background 
The core function of a power grid is to deliver electricity from the generators to the 

customers.  Electricity has some properties that makes it harder to create a good system for 

its transportation compared to other forms of energy. These properties are most notably 

that electricity is produced and consumed momentarily, and that electricity cannot be 

stored11. The implication of these is that if there is no electric connection between 

generation and load, then the load will not be served and the energy that would have been 

converted to electricity by the generator, is lost. Because of this the availability of the power 

grid is essential and it is important to maintain a high availability of the grid.  

Most reliability studies focus on the load points as the essential point of interest. This is 

natural as security of supply is considered the core task of a transmission- and/or 

distribution grid owner. A fault in the system results in a penalty cost[11] of undelivered 

energy in addition to loss of profit from not being able to transmit the energy and repair 

costs. Clearly, if the fault does not influence the amount of energy that is delivered to the 

customers, then the penalty cost and the loss of profit will be zero. This scheme provides the 

grid owners with an economic incentive for maintaining a high reliability in the system. 

In the case of a connection grid for a wind farm the target is that all produced power should 

be delivered to someone who will pay for it. The associated penalty of a fault is in this case 

simply the loss of income from selling the energy and the repair costs.  

The essential difference between say, a distribution grid and a wind farm connection grid is 

hence that in a distribution grid the penalty is a function of the demand of end users not 

being met, independent of where the energy is produced. Whereas for wind farm 

connections the penalty is function of the demand of the producer not being met, 

independent of where the energy is delivered to. This only holds true in cases where the 

restrictions in the grid to which the wind farm is connected do not restrict the supply of 

energy at any connection point.  

                                                      
11

 This is of course a partial truth. Energy cannot be stored as electricity, but the energy can be transferred to a 
lower value energy form, say potential energy as used in hydro power, kinetic energy as used in flywheels or 
chemical energy as used in batteries. However such transitions between energy levels lead to large losses and 
with the exception of pump-storage for hydro power the storage options tend to have low capacity. 
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For a distribution grid the reliability is often measured in terms of energy not served, ENS, 

for wind farm grids the corresponding reliability indice would be energy not delivered, END. 

As the purpose of the analyses performed in this thesis is to evaluate the cost vs. benefit of 

including inter project links the amount of energy that is actually delivered (delivered 

energy) is the parameter of interest. 

Chapter 5. Challenges of overinvestment and unforeseeable faults 
There are many different faults that may occur in a power system, and they can occur due to 

many possible sources of failure. Each of these has an individual probability of occurring and 

their impacts on the system vary. The level of investments made in order to strengthen the 

system and avoid these faults needs to be found based on a balance between the cost and 

the benefit of the investments. This chapter discusses how the level of investment should be 

decided and why a system should not be attempted made 100 % reliable.  

It is impossible to prepare for all events that will lead to a fault in a power system. The 

majority of events could be prepared for by making the system very complex and contain 

multiple parallel components in order to always have a backup if a number of them should 

fail. Constructing a power system with many parallel components in this way would lead to a 

huge investment and the payoff would be small.  

 Overlapping faults Chapter 5.1

If two electrically parallel power cables are buried in the same trench and one of them 

experiences an internal fault, then that cable will be de-energized and all of the power will 

flow in the second cable. If the rating of the second cable is sufficiently high to withstand this 

power flow without overheating, then the system can continue operation without 

interruption. If the rating of the cable is not sufficiently high the system operator must take 

action to reduce the power flow which will affect the customers. If, say, an excavator is 

digging close to the cable trench it is not unlikely that both cables will be damaged. Such an 

overlapping fault leads to both cables being de-energized and no energy will be delivered to 

the customers. One possible way of strengthening the system reliability is by laying a third 

cable in a trench a good distance away. 

However even three cables are insufficient to prevent all faults. For example two excavators 

could be working in the areas of cables 1 and 2 and cable 3 respectively, or one of the cables 

could experience an internal fault while the others were damaged by the excavator, or any 

number of other combinations of faults could occur, some of these are illustrated in Figure 

13 in which internal faults are represented by the red lightning bolts.  



Siri Veila Master Thesis Page 23 of 105 
December 8th 2013 TET 4900 NTNU  

 

Figure 13: Possible situations which will lead to system unavailability in a system with one, two or three 
parallel cables. 

12
 

Because the repair time of cables tend to be long, the overlapping events do not necessarily 

have to occur at the same time. But the closer in time the events are the longer total outage 

time will be. 

As larger investments are made to ensure system reliability, the less likely outages tend to 

become. In the example above the third cable significantly reduces the probability of an 

outage as several internal faults or several external forces are needed to take out the 

system. If attempts are made at ensuring against even more overlapping faults by adding 

components, then the reduction in hours of outage will become lower for each new 

component as the probability of all components failing will be very low. The investments will 

on the other hand be high.  

 Unexpected faults Chapter 5.2

Most of the faults that have a relatively high probability of occurring are easy to foresee and 

therefore plan for. Less likely faults can be harder to predict because there is less experience 

with them and even though these faults can be few and far between, their impact on the 

power system can be significant. One example of such a fault is the Carrington Event [12, 

13]: 

In 1859 the earth experienced the first massive solar storm that there are any 

measurements for, known as the Carrington event. The storm was so massive that it led to 

northern lights being seen as far south as the Caribbean. At the time mankind was starting to 

really experiment with electricity and magnetism, most notably the telegraph system had 

                                                      
12

 The excavator picture was found on http://www.catmodels.com/products/55098-%252d-CAT-5110B-
Excavator-with-Metal-Tracks.html (November 20

th
, 2013) 

http://www.catmodels.com/products/55098-%252d-CAT-5110B-Excavator-with-Metal-Tracks.html
http://www.catmodels.com/products/55098-%252d-CAT-5110B-Excavator-with-Metal-Tracks.html
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been developed and was becoming a very important part of the infrastructure. The 

Carrington event led to a massive geo-magnetic storm in the earth’s atmosphere, causing 

great induced currents in the telegraph lines and thereby leading to many of the appliances 

catching fire. There was nothing to prepare the engineers of that time for the impact of the 

solar storm and the result was a massive unavailability of one of the time’s most important 

parts of infrastructure. 

In March 1989 six million people in Quebec, Canada lost their power supply due to a small 

(relatively to the Carrington event) solar flare. Large parts of the system remained de-

energized for nine hours, some parts were de-energized for days. It was not immediately 

realized what had caused the outage, but eventually it was found to be a result of the solar 

flare.  

After the 1989 event solar forecasts have become a standard forecast to provide to the 

affected industries and also to governments, unfortunately it is hard to obtain good 

forecasts and because of the speed at which the coronal mass ejections that result from the 

solar flares reach the earth, forecasts on upcoming events and a scale of its seriousness will 

be provided only three hours before the event occurs.  

The best way of protecting the power system against the effects of massive coronal mass 

ejections is to allow the stress to even out over many components, which in terms of 

preparation means connecting every part of the power system. A system of many 

components over a small area may be able to reduce the stress of each component to a 

sustainable level, systems of fewer components will experience damage to equipment. 

Before 1989 there was little focus on the impact of solar flares on the power system, 

because really large solar flares had not been experienced the last century, therefore the 

Canadian power system operators naturally did not take this into account. Today there is 

much more awareness of this potential threat, and protection schemes are planned in order 

to, not avoid, but reduce the impact of such a flare. It is estimated that the Carrington event 

is a once per two hundred years event, and being almost two hundred years since the last, 

one is expected to occur in foreseeable future. 

As our knowledge increases there may be more fault cases that it is possible to prepare for 

and this makes it increasingly important to evaluate which investments are worthwhile. In 

order to evaluate what level of investment is reasonable, and thereby which faults should be 

prepared for a cost-benefit analysis is performed, based on a reliability analysis of the 

system.  

 Evaluation of Fault Economy Chapter 5.3

A cost-benefit analysis is used to decide which faults should be attempted avoided. 

Reliability analyses are performed, evaluating what the impact of a fault is in terms of how 

much energy will not be delivered to the customers. As previously described faults result in 
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penalty costs, loss of profit and repair costs. The sum of these for each fault can therefore be 

considered the value of avoiding the fault. The cost of avoiding a fault is the sum of the 

marginal investment cost and the marginal operation and maintenance cost over the 

component’s life span.  

The faults are lined up by merit such that the faults with the highest cost of failure and 

lowest cost of avoiding failure are placed to the left and vice versa. A graph of the cost of 

failure and a graph of the cost of avoiding faults are drawn and the ideal level of investment 

is found by the crossing point of these graphs. All faults to the left of this point should be 

attempted avoided trough the appropriate additional investment.  

 

Figure 14: illustration of Cost-Benefit analysis showing the optimal level of investment 

Such analyses should be performed regularly, and not only in the planning phase of the 

system. The justification for regular analysis of the investment level is that many parameters 

of the analysis change over time. The investments costs will vary as the costs of the 

individual components change. The marginal energy delivery will change with the power 

flow in the system and the amounts of loss in and the reliability of the components. Also 

both the energy price and the penalty cost of undelivered energy will vary with time. 

In the beginning of this chapter it was stated that it is impossible to create a 100 % reliable 

system. This goes to the fact that in addition to the benefit of overinvestments being tiny, 

there are also potential sources of faults that we do not know of. There may evolve a 

bacteria that eats through power lines in a large scale, the plate tectonics of the earth may 

change, the earth may be hit by a meteor etc. There is no limit to what could possibly affect 

the power system, but the events do become less likely as the imagination is set free. There 

are of course also situations in which damage to the power system is of no consequence, if 

for example the earth is hit by a meteor and humans go extinct, there will be no-one to care 

if the power system works or not. These are the extreme cases, but they illustrate the point, 
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no amount of overinvestment can ensure 100 % availability of the power system, and the 

overinvestment will become extreme if one attempts at it.  

Chapter 6. Reliability analysis 

 Reliability indices Chapter 6.1

Reliability analyses are performed to investigate the reliability of a system, but there is no 

one definition of what reliability is. The result of reliability analyses are therefore a number 

of so-called reliability indices, which act as indicators of a variety of system properties and 

which serve to give information on a specific aspect of the system reliability. Some of these 

reliability indices are: ([14]) 

Table 1: Some main reliability indices 

Index type Symbol Explanation 

Primary indices λ Number of failures per year [1/yr] 
 MTTR Mean time to repair [h] 
 U Unavailability [h/yr] 

Customer-oriented 
indices 

SAIFI System average interruption frequency index [1/yr] 
SAIDI System average interruption duration index [h] 
CAIDI Customer average interruption duration index [h/yr] 

Load/Energy-oriented 
indices 

ENS Energy not supplied [kWh] 
AENS Average energy not supplied [kWh] 

 

'The aim of the analysis is to obtain a more thorough knowledge of a system. Reliability 

analyses are based on probability theory and statistical data. This means that all reliability 

analyses are approximate and may contain large uncertainties. It is of course a target to 

reduce the uncertainty of all input data and to make the procedure as thorough as possible 

in order to increase the value of the output.  

 RelRad methodology Chapter 6.2

The RelRad (RELiability in RADial systems) methodology has been developed for studying the 

reliability of radially operated distribution systems.  

RELRAD is an analytical approach, based on the fault contribution from all network 

components and their consequences to the load points’ outages. This differs from failure 

mode or minimum cut set analysis which assesses the individual load points’ reliability 

directly by the minimum cut set. In short the minimum cut set analyses the individual load 

points, while the analytical simulation approach analyses the individual components.[15] 

When applying the RelRad methodology the following is assumed [16]: 

 The grid system is operated radially and any mesh-connections are considered 

reserve connections for use if the primary connection fails. 

 Faults are isolated by the closest circuit breakers. If the circuit breakers fail the 

second closest circuit breakers will isolate the fault. 
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 All faults are considered statistically unrelated. 

 Each fault is assumed repaired before the next fault occurs. 

 Reserve connections are assumed available on demand. 

The idea of the RelRad methodology is that each component is studied to decide its impact 

on all the different load points based on the position of the component and its frequency of 

failure and average repair time.  

The impact a fault has on the different load points depends on the location of circuit 

breakers, disconnector switches and back-feed connections. An example from [14] is 

included. 

 

Figure 15: Example of RelRad methodology [14] 

The example shows a simple distribution system with a supply line, two load points, one CB 

(marked by X), one DS (marked by /), two fuses (each marked by two small circles), a back-

feed and four power cables that can experience faults (components 1, 2, a and b). 

Row-wise each component is evaluated.  

1. Component 1 has a frequency of outage λ=0.2, which means that on average it will 

experience a fault twice every decade. The rate of failure is independent of from 

where in the system one evaluates its impact, hence the same value is used for both 

load points. 
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2. When component 1 fails, then the CB will open and no power will be supplied to 

either load point. However, after some time the DS can open and allow the 

connection of the back-feed. The total time to open the DS and connect the back-

feed is set to 0.5 hours. When the DS is open and the back-feed is connected load 

point A is still isolated, but load point B has restored power supply. This means that 

0.5 hours is the repair time that is relevant for load point B. The repair time of 

component 1 is set to 4 hours. Therefore 4 hours is the relevant repair time for load 

point A. After this time the CB and the DS can be closed, and the back-feed 

disconnected and the system is back to normal. 

3. When both the frequency of failure and the repair time are known the outage time 

per year of each load point that results from faults in component 1 can be calculated 

as the product of these. For load point A the average outage time is 0.8 hours per 

year, while it is 0.1 for load point B. This difference in outage time shows the 

advantage of the back-feed. 

The above evaluation is done for all the four components. After the evaluation the overall 

impact on each of the load points of all the faults combined is calculated. The total outage 

time is found as the sum of the outage times of all individual components. The same goes for 

the frequencies of failure. The average repair time that is needed for a fault in the system is 

found as the total outage time divided by the total frequency of failure. 

         ∑          

 

 

 (1)  

 
          ∑          

 

 

 

 

(2)  

 
             

       

       
 

 

(3)  

The example shows that faults are more likely to influence load point B as the frequency of 

failure for this load point is higher than for load point A. The total outage time is also higher 

for load point B. However the average repair time necessary to restore load point A is higher 

than for load point B. 

In the above example the CB and DS are ideal components. This would not be the case in 

reality. The method for taking into account failures of operation in switchgear is different 

from the other components, because these components can only fail to operate when they 

are actually triggered to13. Therefore a probability of failure on demand must be found for 

CBs and DSs. The combination of a component failing and, for example, a CB also failing to 

operate can be evaluated as a separate component. For this “component” the frequency of 

                                                      
13

 In this thesis the switchgear is assumed 100 % secure. 
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failure would be the failure rate of the component multiplied by the probability of failure of 

the CB. When this approach is used it is important to also include the failure of the 

component without the CB failing to operate and the probability of this occurring is equal to 

the product of the failure rate of the component and (one minus the probability of the CB 

failing to operate). The formulae for including the protection system in the reliability analysis 

is: 

                                                 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   (4)  

                                                     ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    (5)  
In which: 

 Component refers to the component that is protected by the protection system in 

question. 

                          is the number of failures of the component per year in which 

the protection system fails to operate. 

             ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   is the probability of failure to operate on demand of the protection 

system. 

These two new failure rates substitute the single failure rate that would have been used if 

the protection system was assumed to be ideal. 

In some cases the power system has two components operating in parallel. Parallel 

components are not necessarily considered parallel in the reliability sense, as this is a 

question of how they respond to faults. 

 

Figure 16: The difference between series and parallel components in the reliability network model 

Figure 16 shows how the switchgear can separate series and parallel components when it 

comes to reliability analyses. In the figure all cables have equal rating, hence if a fault occurs 



Siri Veila Master Thesis Page 30 of 105 
December 8th 2013 TET 4900 NTNU  

on one of the two cables then the other cable can carry all of the power. The difference 

between the two layouts is however that in the upper scenario, if Cable 1 fails the only way 

to de-energize the cable is by opening the two CBs and thereby de-energizing both cables. In 

a system like this the components are said to be in series in the reliability sense, as a fault on 

either one component leads to unavailability of the entire link, like in a series connection. 

The two cables can therefore for the reliability analysis be studied as if they were series 

connected. The lower scenario has the possibility of de-energizing only the faulty cable. In 

this scenario the entire link will only be de-energized when both cables need experience a 

fault at the same time.  

A third option that is not included in the figure is that the rating of the (electrically) parallel 

cables could be less than the rating of the cables at either side, and thereby lower than the 

link-rating.  If the cables are then connected according to the lower scenario and a fault 

occurs in one of the cables, then the transmission capacity will be lower than under normal 

conditions. In this case the system operator needs information on the new transmission 

capacity in order to control the power flow to be below the rating and avoid overheating in 

the remaining component. 

In the case of (reliability-wise) parallel components the frequency of failure and MTTR of the 

layout must be calculated before the RelRad analysis can be performed. The equations for 

calculating these indices are: 

                 
             

    
 (6)  

 
 

             
           

            
 (7)  

 

Where subscript parallel indicates that the indice holds for the combined system and 

subscript 1 and 2 refers to components 1 and 2 respectively. Similarly there are equations 

for systems of more parallel components. In the expression for λ the sum of MTTRs is 

divided by 8766, this is because the MTTR is given I hours, while the expression calls for the 

MTTR in amount of the year, this division is not included in the reference. 

The main target of the analysis is to obtain the average outage time for each load point and 

this is done based on previously obtained average failure rates, repair times and 

probabilities of protection system not operating on demand.  

The advantages of using this method is that it is fairly simple to keep track of and understand 

everything that happens and as such the analysis can easily be performed manually, even 

though this might be time consuming. Also the method is relatively easy to adjust, as will be 

described in the next chapter. In addition the input is based on experience and should hence 

be reasonably easily obtained, at least if one operates similar systems one self and can rely 

on experience from these.  
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One of the disadvantages of the RelRad method is that there is little certainty connected to 

the result. This would of course be true of any method that attempts at predicting the 

future. As the analysis is based on average values it will likely be accurate if a sufficiently 

long time period is evaluated, but this time period could be longer than the life span of the 

system components. There is also the added uncertainty connected to most components 

having non-uniform failure rates over the course of their life span. Many components are 

subject to quite a lot of failures during their first years of operation, following primarily from 

faults in the installations. The failure rate then normally falls to a lower level that lasts until 

the component begins to age. The last years of the life span of a component the failure rate 

rises again. The frequency of faults of a component can hence be said to follow the bath-tub 

model. Because “the edges of the bath tub” are relatively slim there are few years of 

experience with this and hence the data for these periods is limited. Mostly the average data 

do not take into account these changes in failure rates and consequently the use of the 

average numbers for time periods shorter than the components’ life span results in higher 

inaccuracies in the results. Additional disadvantages of the RelRad method is that 

overlapping faults are not included, and also faults that lead to faults in other components 

are neglected.  

Because the RelRad method was developed to evaluate radial distribution systems it is not in 

itself suited for use in this thesis. Some changes have therefore been made to it, which are 

discussed in the following chapters. 

Chapter 7. Overlapping Faults 
As previously described the RelRad method has some limitations that reduces its value as 

the systems become larger. One of the sources of error that increases with the size of the 

system is the fact that overlapping faults are not taken into account. 

This chapter aims at describing the impact of overlapping faults in a system and provide a 

method for including this effect in a RelRad-based reliability analysis. 

 Probability of overlapping faults Chapter 7.1

The probability of two components failing at the same time is found by multiplying the 

probabilities of a fault in each one of them.  

              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   (8)  

 

The probability of one component failing at the same time as any one other component in a 

systems of N components is given as the sum of the probabilities of each potential overlap. 

This could be expressed as:  

  (           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)  ∑              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

   

   
   

 (9)  
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The probability that any two components should experience overlapping faults is the sum of 

the above expression for all components. 

                       ∑  (           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

   

   

 (10)  

 

From this it follows that if two components have a low unavailability, meaning the 

probability of a failure is low, then the probability of them having overlapping failures is even 

lower. It is also clear from the above expressions that the number of components greatly 

influences the probability of overlapping failures. The relationships above show that as the 

unavailability of some or all components tends to 100% and/or the number of components 

in the system tends to infinity the probability of overlapping failures tends to 1. 

It should be noted that the probability of overlapping faults that is given by the above 

equations is the probability of there being overlapping faults in the system at a given point in 

time, not the probability that overlapping faults will occur over a period. This is a result of 

using the component unavailability rather than the frequency of failure as the basis for 

probability of failure of a component.  

One can for example imagine a system in which there is a component that fails every day, 

but is only unavailable for a few seconds, and another component that fails once every ten 

years and is then out for two days. Over a period of some decades one is guaranteed that 

overlapping failures will occur, but the impact will be very little as the total time during 

which the two components are both out may be less than one minute, the probability of 

overlapping failures over a period is therefore of less interest for the type of analysis which 

will be performed in this thesis, in which the system impact is the essential parameter to 

study. 

 Effect of Overlapping Faults on System Availability Chapter 7.2

One thing is to evaluate the probability of several faults occurring at the same time, another 

is to evaluate whether the impact of this is significant. If two components fail at the same 

time then the overall system unavailability may be reduced if certain criteria are fulfilled. 

This idea is illustrated in Figure 17. 
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Figure 17: Effect of overlapping failures 

 The figure shows the status graph of two components X and Y. The two components are in 

this case connected in series, i.e. the system is down if either one of the components are 

down.  

The top and middle status graphs show the individual MTTF (Mean Time To Failure) and 

MTTR for the two components. If overlapping faults are not considered the total down time 

of the system will be given by the sum of the two components’ individual down times during 

the studied period as indicated by the uppermost line in the frame on the right.  

The lowermost status graph shows the case in which overlapping failures are taken into 

account. In this graph the graph of component X is superimposed on the graph of 

component Y and a new, system status graph is made by using the above mentioned rule 

that when either one of the components are down, then the system is down. The result of 

including the possibility of overlapping faults is illustrated in the frame on the right, in which 

the blue arrows show the “graphical sum” of the down time over the studied period for this 

case. It is evident from the figure that the total down time of the system is reduced when 

overlapping faults are taken into account, compared to when they are not.  

In the case when there are no overlapping failures, the system down time is simply the 

summation of individual down times of the components. When overlapping failures do occur 

then the system down time will always be less than the summation of the individual down 

times of the components.  

From the figure the reduction in down time appears to be significant, but the input MTTRs 

and MTTFs are not realistic and have been chosen completely at random in order to 

illustrate the point, and hence this may not be the case. Also worth noticing is the fact that 

the down time of the system is not reduced by the entire down time of component X (which 

has the lowest down time of the two components). Rather some fraction of component X’s 
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down time is “removed” from the system down time. This results from the fact that the 

overlapping faults do not occur simultaneously, though part of their down times overlap.  

In order for the effect of overlapping faults leading to reduced system unavailability certain 

criteria needs to be fulfilled; 

 the components must be radially connected in a feeder 

 the faults must be discovered when they occur 

 the faults must be independently repaired 

If the components are not radially connected the principle does not apply. If the components 

are connected in parallel14 in a feeder, the unavailability of the system will only occur when 

both components are down and the system unavailability is therefore increased by including 

overlapping faults. If the components are placed in different feeders then the influence on 

the system becomes more complicated as there are more possibilities as to how the system 

is influenced by each of the faults. 

When a fault occurs in a radial feeder it will normally be the case that no current is flowing in 

the feeder, When no current is flowing the probability of a second fault in the feeder is 

significantly reduced for most of the components. The exception from this is cables whose 

main source of faults is non-electricity related physical damage. The fact that the probability 

of a second fault is significantly reduced for other components than cables means that the 

influence of overlapping failures is reduced. But in the cases where a second fault does occur 

it is necessary to notice the fault immediately in order to achieve the above described 

reduced unavailability. If the fault is not noticed until the system is subjected to flowing 

current again, the advantage of using a time period in which the system is down in any case, 

to repair the component will be lost. There is a possibility that some advantage will be given 

by the repair crew already on-site in cases where a second fault is detected upon re-

energizing the system, but this is hard to predict and will in any case contribute very little in 

the larger scheme of things. 

By independent repair of faults it is meant that the restoring to working order of one 

component does not postpone the restoring of another. When components of different 

types fail at the same time different repair crews will likely be used to mend the 

components. In case for example two cables fail at the same time, which may in many cases 

be likely if the cables lie close together, the same repair crew could be used to mend the two 

faults. Using the same repair crew would result in reduced repair time as the requiring of a 

repair vessel and spare components will only need to be done once, but the actual repair 

would happen in sequence, rather than at the same time. 

                                                      
14

 Parallel components are, as previously described, considered to be series connected in the reliability sense 
unless they are equipped with individual protection systems. 
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 Reliability study including overlapping faults Chapter 7.3

In the cases where it is found to be necessary to include the possibility of overlapping faults 

it is necessary to find a way of tweaking the RelRad method in order to allow for overlapping 

faults. It is often stated that the RelRad method cannot be used for overlapping faults, but 

some of the methods that are included in RelRad, such as that of considering parallel 

operation of two components with 100% redundancy, take into account specific cases of 

overlapping faults in order not to overlook significant combinations. 

The parallel-component method is a tool that can in principle be used to study the combined 

unavailability of any two components in a system, but the resulting impact on the system is 

less straight forward as it may not be a case of the system being up or down, but rather the 

system power carrying capacity may be reduced only some fraction due to the combined 

fault. 

An alternative way of evaluating the system is to split it into several different modules and 

evaluating these individually. This is also done in normal RelRad, but the results may be used 

in a different way. 

In order to simplify the system one would oftentimes need to sectionalize the system and 

study each section separately. This is in essence what is done when only a part of a system is 

studied, for example the system in one part of a town or inside one wind farm. Even though 

both of the mentioned systems would be connected to the main grid, one is only interested 

in one particular part. This part is then studied independently of the rest of the system and 

all of the relevant reliability indices are found for this particular section. This section can 

then be further divided into sub-sections in order to simplify calculations. When the 

reliability indices have been found for one of the sub-sections the entire sub-section can be 

replaced by one component whose reliability is given by these indices.  

The procedure can be performed in two main ways. The section can be split into non 

overlapping sections, or into overlapping sections. By using non overlapping sub-sections 

each of the sub-sections are reduced to one component and when the calculations are 

finished for each of these then new calculations are performed for the remaining system, 

which now consists entirely or partly of reduced sub-sections. The number of calculations for 

a system of n sub-section will therefore be n+1.  By using overlapping sub-sections the sub-

sections are created such that one or more sub-sections lie within the next. This way the 

number of calculations is reduced to n for a system of n sub sections, but in this case the 

sequence in which the calculations are done matters, as the innermost sub-sections need to 

be computed first. 

By using this method the sole target of the sub-sections is to simplify the system and hence 

the calculations.  
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An alternative is to use sections in a way that allows for overlapping failures. In this thesis 

the term modules are used for this method, as opposed to sections, this is done simply to 

separate the two methods from each other. 

In this method the idea is that the system is split into modules which are allowed to have 

overlapping faults. The components within one module cannot fail at the same time, but all 

of the modules may experience a fault at the same time. 

Considering the system in Figure 3 a possible sectioning of the system is to consider each 

component and its protection system as separate models. The two transformers that are 

operated in parallel would necessarily be considered as one module together, because the 

RelRad method already contains a method for studying this layout. The resulting modules 

would then be as illustrated by the colours in Figure 18. Because the two branches to the 

two collection points are exactly equal the modules of these branches can be considered as 

pairs. The two modules containing the parallel transformers are hence both called module 1.  

 

Figure 18: Example of module based analysis for Base Case 

This approach requires starting at the generating point. A normal RelRad analysis is 

performed for the first (innermost) module. This involves finding the unavailability of the 

two transformers, with their protection system.  

The result from this analysis will be a graded status graph. The system will in this case not 

simply be either up or down, there is also a third option in which the system’s transmission 

capacity is reduced to 50 %. 

For the innermost module there are 5 possible fault states: 

 Transformer 1.1 fails but the protection system operates 

 Transformer 1.1 fails and its protection system does not operate 

 Transformer 2.1 fails but the protection system operates 

 Transformer 2.1 fails and its protection system does not operate 

 Both transformers fail 
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From the figure it is clear that in the case of both transformers failing the protection system 

does not have any influence on the reliability of the system15, because in any case no energy 

can be supplied.  

These possible outcomes can also be written with probability syntax. T here refers to 

transformer and T1 is hence transformer one, while p refers to protection system. 

   ̅̅̅̅     

   ̅̅̅̅    ̅̅̅̅  

   ̅̅̅̅     

   ̅̅̅̅    ̅̅̅̅  

   ̅̅̅̅    ̅̅̅̅  

In order to evaluate these outcomes some knowledge of the components is essential. First 

and foremost the failure rate of the transformers and their MTTR is necessary. The 

probability of the protection system not operating is also needed. In this thesis it is assumed 

that all circuit breakers are series connected with disconnector switches such that once the 

relevant part of the system is de-energized these switches can be opened to allow repairs of 

the circuit breakers and also provide extra security when repair is done on other 

components. Lastly it is essential to keep in mind that each of the transformers is only rated 

for half of the collection point’s rated power. In order to supply maximum generated power 

both transformers need to be operational. 

Following is an example of the method for evaluating this module: 

Table 2: Input data to example of RelRad methodology expanded to include overlapping faults 

 Transformer 
 Circuit 

breaker 
Disconnector 

Switch 

MTTR [h] 763 Probability of failure to operate % 10 - 

Failure frequency, λ [1/yr] 0.0308 Manual operating time [h] - 1 

  

The normal RelRad method does not take graded supply capacity into account, this can 

however be easily tweaked. The below table has two columns of MTTR and two columns of 

U. These columns contain the respective indices for when the system is unavailable (100 %) 

and when the transmission capacity is only reduced (50 %).  

Table 3: Results of module 1 in example of expanded RelRad methodology 

   MTTR U 

 λ [1/yr] 50 % 100 % 50 % 100 % 

  ̅̅ ̅̅    ̅̅ ̅̅  0.0308*0.0308*(763+763)/8760 =   0.00017    - 381,5 - 0.063 

                                                      
15

 Naturally the operation of the protection system is also necessary to ensure other components are not 
damaged by the fault currents from the original fault. It is however assumed here that there are other 
protection equipment placed such that the fault will be cleared before permanent damage occurs. This means 
that if for example CB 3.1 fails to operate, CB 5.1, CB 4.1 and CB 1.1 will operate to isolate the fault. 



Siri Veila Master Thesis Page 38 of 105 
December 8th 2013 TET 4900 NTNU  

  ̅̅ ̅̅     (0.0308-0.00017)*(1-0.1) =   0.02757 763 - 21.03 - 

  ̅̅ ̅̅    ̅̅̅̅  (0.0308-0.00017)*0.1 =   0.00306 762 1 2.33 0.00306 

  ̅̅ ̅̅     (0.0308-0.00017)*(1-0.1) =   0.02757 763 - 21.03 - 

  ̅̅ ̅̅    ̅̅̅̅  (0.0308-0.00017)*0.1 =   0.00306 762 1 2.33 0.00306 

      

Sum 0.06143 760.54 1.14 46.72 0.07 

 

The steps that are used in this method are explained below. 

Step 1:  Find the parameters that can be used for overlapping faults of parallel 

components. 

 For parallel components RelRad has a method for calculating the probability of an 

outage of the system. In the RelRad method it is assumed that the system is down if 

and only if both components are down. This is also the case for the system that is 

studied here, the fact that the system is not running at full rating when one of the 

components are down does not influence the effect of both components being 

down. Λ and MTTR is in this case given by equations 6 and 7. 

  

For the above case the values are found to be: λ = 0.0017 1/yr, MTTR = 381,5 h, as 

shown in the table. 

Step 2:  Evaluate the system impact of the outage of both transformers 

 During the time when both transformers are down zero energy will be supplied from 

collection point 1. Therefore the MTTR is placed in the 100 % column because 100 % 

of the energy is lost. The unavailability of the system due to this fault is found by 

multiplying the failure frequency with the MTTR. It is found that there are on average 

0.063 hours per year in which the system is down due to this fault. 

Step 3:  Find the failure frequency of just one transformer failing 

 The failure frequency of the transformers is known, however this number includes 

the number of times that both the transformers fail and the number of times in 

which the protection system does not operate, a new number therefore needs to be 

found to evaluate the impact of just one transformer experiencing a fault. This is 

done by subtracting the number of faults in which both transformers fail and then 

multiplying with the probability of the protection system operating as it should 

(which equals one minus the probability of the protection system not operating on 

demand). The failure frequency for this particular case is found to be 0.02725 1/yr 

based on Equation 5. Because the two transformers are identical and the protection 

systems are identical this number is valid for both transformers. 

Step 4:  Evaluate the impact of one transformer failing 

 When one transformer fails and the protection system operates on demand the 

system remains energized, but only 50 % of the rated power can be supplied. The 

MTTR for the transformer is therefore placed in the 50 % column of the MTTR. This 

holds for both transformers. 
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Step 5:  Find the failure frequency of one transformer and its protection system. 

 The failure frequency of both transformer and protection system is found by 

subtracting the number of failures of both transformers from the failure frequency of 

the transformer and multiplying the result by the probability of the protection 

system not operating on demand as in Equation 4. This comes out to 0.00306 1/yr, a 

number that is valid for both transformers. 

Step 6:  Evaluate the impact of one transformer and its protection system failing 

 When a transformer fails and the protection system fails to operate it is assumed 

that the next level of protection is activated and operates. Double protection system 

failures are not considered in this thesis. 

 When the protection system fails it is clear from the system layout that the entire 

module is de-energized and no power can be delivered from collection point 1. 

However, once the module is de-energized the disconnector switch in series with the 

faulty protection system can be opened and the open circuit breakers can now be 

closed, leaving the system in the same state as if the protection system had worked.  

 Since the manual operating time for the disconnector switch in this case is set to one 

hour this is the amount of time in which no energy can be delivered from collection 

point 1, one hour is set in the 100 % column of the MTTR. During the remaining 762 

hour of the transformer’s repair time only 50 % of the rated energy at collection 

point 1 cannot be delivered and 762 hours is therefore written in the 50 % column of 

the MTTR. The resulting unavailability shows that during on average 2.33 hours per 

year only 50 % of the rated energy can be delivered through this module due to this 

specific fault. Only for 0.003 hours per year no energy can be delivered through this 

module due to this fault. This holds for both transformers. 

Step 7:  Evaluate the reliability of the module 

 When all the components in the module have been evaluated the average yearly 

outage of the module can be found by summing all the outage durations in the 50 % 

column and all the outage durations in the 100 % column. These two sums can then 

be used to produce a graded status graph for the module.  

 The results show that for 46.72 hours per year the module only allows 50% of the 

rated energy to be delivered. This translates into 0.53 % of the time. The module 

allows no energy to be transmitted during 0.07 hours per year, which is 0.0008 %. 

The status graph for this system would be as indicated in Figure 19.Note that the size 

of the different levels is not proportional, as one would not be able to see the 

different states in that case. 
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Figure 19: Status graph module 1 

For the time being it is assumed that the power generation has no down time and also that 

rated power is delivered 100 % of the time. This is of course not probable for any generation 

source and completely impossible for a wind farm, but for simplicity this has been left out so 

far. Using this assumption leads to the module just discussed setting the limits on delivered 

power. This means that from now on the entire module can be replaced by the generator, 

though the generating pattern of the generator is now the pattern shown in Figure 19. 

The next step in the analysis is to evaluate the second module, which contains Node 2.1 and 

its protection system. A RelRad analysis is performed to determine the unavailability of the 

module. A fault in this module results in unavailability of the entire feeder, and hence there 

are only two states for this module, up and down. The resulting hours of outage are found to 

be 6.6528 hours per year, or 0.076 %.  

When the reliability data of module 2 has been calculated the effect of module 1 is included. 

At this stage it is useful to think of module 1 as a generator with the generating pattern 

shown in Figure 19. As the production from the “generator” is not constant, the effect of 

module 2 must be evaluated for each level of production. As can be seen from the figure 

there are three levels of production and it was found that module two has two possible 

states, this gives a total of 2*3=6 combinations. For each combination the probability of it 

occurring, and the amount of power that is delivered through module 2 when it occurs must 

be determined. This procedure is illustrated in Table 4. 
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Table 4: Overview of method for combining modules 

Module 2 Probability Module 1 Probability Resulting State Probability 

Up 99.924% 100 % Up 99.4692 % 100 % Up 99.3936 % 

  50 % Up 0.53 % 50 % Up 0.5296 % 

  Down 0.0008 % Down 0.0008 % 

Down 0.076 % 100 % Up 99.4692 % Down 0.0756 % 

  50 % Up 0.53 % Down 0.0004 % 

  Down 0.0008 % Down 0.0000 % 

 

For each of the combinations the probability is found by multiplying the probabilities of the 

states of each module, while the delivered power is found as the lower value of the 

production and the capacity (If the production is less than the transmission capacity the 

production is the limiting factor, while if the transmission capacity is lower than the 

production the production must be reduced accordingly and the transmission capacity is the 

limiting factor).   

When the analysis is finished it is evident from the above table that there are several 

combinations that give the same amount of delivered power, in the above case the four 

bottom combinations give zero delivered power. In order to limit the amount of 

combinations that needs to be evaluated for the following modules the combinations that 

leave the same amount of delivered power can be combined. This is done by summing the 

probabilities of the relevant combinations. For the current case this leaves three possible 

levels of delivered power which constitute the production pattern of the “generator” that 

replaces module 2. This procedure is then used for all radially connected modules. 

In the above example a perfect generator at the collection point was assumed. In reality (in 

the system here considered) this generator is not perfect but has a production pattern 

similar to a wind turbine power curve, this means that the production varies non-linearly 

with wind speed. The power curve will be a relatively smooth curve, but needs to be 

discretized for the purpose of this analysis. The level of accuracy of the analysis is dependent 

on the number of levels that the power curve is split into. 

The method for taking the power curve into account is essentially the same as for the 

combining module 1 and 2, with just one very important difference. Because all projects, and 

hence all collection points in Dogger Bank are subjected to approximately the same wind 

speed at any given moment the production levels need to be kept separate from each other. 

This is simple enough as it simply means that combinations of states, in which the collection 

point power is different, cannot be combined as was suggested above. In the case where the 

production is for instance 10 % then the production will be the limit for the module-

combinations that give 50 % and 100 % transmission capacity, and the delivered power will 

in this case be 10 % with a probability of the sum of the two upper combinations in Table 4 

multiplied by the probability of 10 % production. In the combinations that give 0 % 

transmission capacity this is clearly the limit and zero power will be delivered with a 
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probability of the sum of the four bottom rows in Table 4 multiplied by the probability of 10 

% production. The difference that needs to be taken into account when the production is 

part of a wind farm, is that even though the bottom four rows in the table will give zero 

delivered energy independently of the production level, these needs to be kept separate and 

cannot be summed for different levels of production. The reason for this becomes evident at 

module 4, where there are two “generators” present. 

Table 5: Example of combination of variable production and module unavailability gives an 

example of the concept of how the calculation is performed for different levels of 

production. In this example produced power is combined with module 1. It has previously 

been described that module 1 should be calculated before the modules are combined in this 

way. In this example module 1 is not calculated beforehand, this is done in order to show 

which outcomes can be combined. 
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The columns in the table are split in four groups, each of two columns. The first group 

presents the produced power delivered to the collection point. The first column gives the 

power level and the second the respective probability of occurrence.  

The second group presents the module availability. After using the module based approach 

for evaluating the module one should have a list of percentage unavailabilities (giving the 

percentage amount of power that cannot be transmitted through the module due to various 

faults) and their respective probabilities of occurring. In the above table the actual faults are 

included in order to clarify the method. It should however be noted that in the example 

above protection system faults are ignored, though they should of course be included in the 

module based approach and through this being included in the step explained in the table. 

The two columns in this group contain the fault, which should be replaced by the percentage 

unavailability of the module. The second column contains the probability of the outage state 

occurring. 

The third group contains the result of combining the two previous groups. The amount of 

power delivered through the module is given by the lower number of the produced power 

and the module’s power carrying capacity. The probabilities of each of these are given by the 

product of the probabilities of the produced power and the available power carrying 

capacity. 

The fourth group removes duplicates in the level of power delivered through the module. 

This is done by summing the probabilities of all equal power levels for each level of produced 

power. At this point it is important to note that duplicates cannot be removed from the 

column as such, but only for the different levels of production.  

The table shows how each of the different levels of produced power lead to several levels of 

power delivered through the node. In the example above only five levels of production are 

included, whereas in the analysis that is performed in this thesis the level of detail is much 

higher, and hence the number of possible outcomes is increased proportionally.  

When more than one “generator” is present in a module it is necessary to first simplify these 

into one. In module 4 there are two generators, in order to combine these into one all 

possible combinations of delivered power from the two generators must be evaluated. 

Because the collection points contain the produced power from wind turbines that are close 

to each other it is not a possible combination that collection point 1 produces 100 %, while 

collection point 2 produces 10 % of rated power. It is of course likely that the two are not 

subject to exactly the same wind speed, but the difference between them will be relatively 

small, and for simplicity it is therefore assumed that all collection points in Dogger Bank are 

subjected to the same wind speed. This means that for each of the production levels there 

are 2*2=4 combinations (for production below 50 % of rated production) or 3*3=9 

combinations (for production above 50 % of rated production). When the “generators” are 

combined this is done by summing the amount of power delivered in from each of them, and 
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multiplying the probabilities of the corresponding levels. When the two “generators” have 

been combined into one, module 4 can be calculated like any other module. 

The modules do not necessarily have to comprise only one component and its protection 

system, but could include more components. It should however be noted that by using 

normal RelRad methodology within the module one will define a scenario in which only one 

fault can occur at the time, but any one fault in module x can overlap any fault in module y. 

By taking this into account one can see the benefit of using modules that comprise 

components connected in such a way that a fault on any one of them will lead to the other 

components being de energized. In the system in Figure 3 for example one can imagine a 

module that combines the two transformers and Node 2 of each of the radials. By combining 

these components in one module one effectively defines these as components that cannot 

have overlapping faults. This is a reasonable assumption because if one of the components 

fail the feeder will be de energized and hence the probability of a failure, or at least of a 

failure being noticed, on the other component is minimal.  

By using modules containing more than one component one further improves the method 

by introducing a means of ignoring combinations of faults that will never occur, while those 

that may occur are taken into account. 

Chapter 8. Method for studying the reliability of the projects 
This thesis studies several possible layouts for the inter-project grid. The methodology for 

studying these are discussed in the following sub chapters. 

 Terminology Chapter 8.1

At this point it is necessary to specify some terms in order to ensure a common 

understanding of the following procedure. First of all the power produced at the generators, 

which in reality is the power produced by a number of wind turbines, and delivered to the 

collection point, is referred to as the produced power. The power that is delivered to Node 4 

is referred to as the node power. For each of the levels of produced power, there are 

multiple levels of node powers that are possible due to the outage of components in the 

links connecting the collection points with Node 4. The power that is delivered to shore from 

one project, via the project’s own link to shore is referred to as the Base Case power 

delivered to shore. This term is chosen as in the Base Case this is the only power that will be 

delivered to shore. 

 Studying the upstream connection Chapter 8.2

The upstream connection is the term that in this thesis will be used to refer to the grid that 

connects each of the offshore converter stations to the project collection points. This 

connection is a two branched radial connection and contains only HVAC components, save 

the converter which could be considered to be an HVDC component and its downstream 

protection system which is an HVDC protection system. 
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Figure 20: Upstream connection 

When this system is studied the modular method described in Chapter 7.3 is utilized. It is 

assumed that all components may experience overlapping faults to the extent that all 

components in the system may experience a fault at the same time.  

When variable power production is to be taken into account some simplifications need to be 

made. The first and most important simplification that must be made is the discretisation of 

the power curve of the wind turbines. This is done because the analysis algorithm does not 

allow for continuous data16. For this thesis Microsoft Excel has been chosen as the platform 

for the reliability study of the system. For more extensive analyses a program should be 

written in for example Matlab. One of the limitations of using Excel is that the program is not 

designed for using variable sizes of data, meaning matrices of variable sizes, and hence in 

order to do this complex formulae must be used and this will slow the computing and make 

the sheets less understandable and harder to debug. For this reason there are some limits to 

the extent to which the system can be evaluated, most notably in that the level of accuracy 

in the discretisation of the power curve cannot be changed at a later stage.  

Based on the estimated wind conditions the production is calculated. The power curve used 

in this thesis has been discretized to integer values of wind speed. This leaves a curve along 

the lines of the curve in Figure 21. 

                                                      
16

 It would be possible to extend the algorithm to allow continuous data, but since the algorithm has been 
made with Excel as the platform, this is not possible in its current form. Excel limits the analysis to discrete data 
as it is not made for continuous data. 
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Figure 21: Example power curve for wind turbine or wind farm 

Both coarser and finer discretisations could be applied, however this is the form of the data 

supplied by Statkraft and the level of accuracy is considered to be sufficient for this kind of 

analyses. The data has further been refined to take into account wake effects and electric 

losses in the internal grid of a project, leading up to the collection point. This leads to this 

data being usable directly as the production at each of the collection points.  

For this upstream connection the module based analysis is used up to and including the 

offshore converter.  

 Studying the connections to shore Chapter 8.3

Calculating the reliability of the connections to shore (which here refers to the part of the 

connection that is downstream of Node 4) of the different projects is very straight forward 

using the module based analysis. The only thing to be aware of at this point is that it might 

be interesting to evaluate the system with different levels of redundancy of the cable, which 

will be a significant contributor to the unavailability of the link. It might also be of interest to 

evaluate redundancies in the other components. No such redundancies have been 

considered in this thesis as it has been considered out of scope.  

The module based analysis should include all components from the onshore transformer up 

to and including the cable. Because it is assumed that the UK National Grid is able to 

consume whatever power the link supplies to shore, the onshore transformer can be 

considered as connected to a stiff grid, which can be modelled as a perfect load. Should this 

not be the case and one wishes to include unavailability in the National Grid this load could 

be modelled as a variable load in much the same way as the variable production is 

considered at the other end, with the exception that the onshore connection points are not 

necessarily subject to the same availability in the grid. 
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 Obtaining the project node powers Chapter 8.4

As described in Chapter 8.4 there are several possible levels of power delivered to Node 4 

for every given level of production. Below are some examples of the amount of power that 

may be delivered to Node 4 for some levels of produced power. 

At the current stage in the method the availability of Node 4 is not considered. By this 

approach the result is valid for both the Base Case (in which there is no Node 4) and the 

HVDC interconnected layouts. Note also that at this point 100 % refers to the project rating, 

rather than the collection point rating as was the case in the previous chapter. 

Table 6: Node power for 100 % of rated produced power 

100 % All components are up 

75 % One transformer is down 

50 % The link from one collection point to Node 4 is down  
Two non-parallel transformers are down  

25 % The link from one collection point to Node 4 is down in addition to a transformer in the 
other link 
Any three transformers are down 

0 % Both links from collection point to Node 4 are down 
Table 7: Node power for 75 % of rated produced power 

75 % All components are up 

62.5 % One transformer is down 

37.5 % The link from one collection point to Node 4 is down  
Two non-parallel transformers are down  

25 % The link from one collection point to Node 4 is down in addition to a transformer in the 
other link 
Any three transformers are down 

0 % Both links from collection point to Node 4 are down 
Table 8: Node power for 50 % of rated produced power 

50 % All components are up 
One transformer is down 
Two non-parallel transformers are down 

25 % The link from one collection point to Node 4 is down  
The link from one collection point to Node 4 is down in addition to a transformer in the 
other link 
Any three transformers are down 

0 % Both links from collection point to Node 4 are down 
Table 9: Node power for 0 % of rated produced power 

25 % All components are up 
One transformer is down 
Two non-parallel transformers are down  
The link from one collection point to Node 4 is down  
The link from one collection point to Node 4 is down in addition to a transformer in the 
other link 
Any three transformers are down 

0 % Both links from collection point to Node 4 are down 



Siri Veila Master Thesis Page 49 of 105 
December 8th 2013 TET 4900 NTNU  

 

These node powers illustrate the point that different amounts of power are delivered to 

Node 4 depending on both the production and which components are up and down at a 

given point in time. 

By obtaining such tables, also containing the probability of each state, for all the considered 

levels of produced power the node power has been found, this is information that is of 

importance in the following procedure. 

 Obtaining the power not supplied to shore and unutilized transmission Chapter 8.5

capacity. 

Once the node powers and their probabilities have been identified the next step is to 

identify the amount of power that is delivered to Node 4, but not supplied to shore. This 

energy is the energy that can be supplied to another project if there is sufficient 

transmission capacity for it. This power is here referred to as interconnection point power. 

The interconnection point power is the power that is delivered to Node 4 but not to shore. 

Because the connection to shore only has two states of transmission17 (up, if all components 

are up, down if any component is down) the interconnection point powers are of equal value 

as the node power, but the probability of each of the possible power levels differ in the two 

cases. The probability of each of the interconnection point power levels is equal to the 

probability of the corresponding node power level multiplied by the probability of the 

connection to shore being down and by the probability of Node 4 being up.  

As for all wind farm projects the generation varies much and only for a relatively small part 

of the year the rated power is produced. Because the connection to shore is designed to 

transfer the rated power of the project there are large parts of the year when the 

connection is operated at a current, and hence a temperature, below the connection’s 

rating. The amount of additional power that could be transferred through the connection to 

shore without overheating the components is of interest and needs to be calculated. This 

power will be referred to as available transmission capacity as it is a measure of how much 

additional power the connection is capable of transmitting without breaking its limits.  

The available transmission capacity is found by subtracting the node power from the project 

rating. Hence each node power has a corresponding available transmission capacity. The 

probabilities of the available transmission capacity levels occurring is found by multiplying 

the probability of the corresponding node power by the probability of the connection to 

shore being up and by the probability of Node 4 being up. 

                                                      
17

 As described in Part II.Chapter 8.3 the analysis can be made to include more levels of transmission capacity 
by using different redundancy schemes, but this is not considered in this thesis. 
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After using this procedure on all four projects the result is, for each level of produced power, 

a set of some interconnection point powers and available transmission capacities and the 

probabilities of each of these occurring in each of the projects. 

It should be noted that above the assumption is the Base Case scenario in which all projects 

are equipped with their own links of 100 % rating. In order to study cases where the rating of 

the connections are varied the equations need to be tweaked in order to allow this. 

 Base Case Chapter 8.6

In the Base Case there are no interconnections between any systems and each project is 

connected to shore through a single radial connection. In this case the Interconnection point 

power and available transmission capacity are of no importance as there is no way of 

utilizing the two. The system availability is therefore, logically, evaluated based on the node 

power and the connection to shore. This is done by considering the connection to shore 

module as the last module in the system. Notice that for the Base Case there is no Node 4, 

therefore the probability of Node 4 being up should not be included. 

The amount of energy that is delivered to shore in the Base Case is found as the sum of the 

product of each level of delivered power and its corresponding probability, multiplied 8766 

h/yr. This gives the amount of energy delivered per year. 

 Two Project Interconnection Chapter 8.7

One of the possible layouts of the four projects that are 

studied here is an interconnection of two and two 

projects. This means for example an interconnection of 

projects 1 and 2, and 3 and 4 respectively. The four 

projects may be combined through interconnections in 

three different combinations, and the most optimal of 

these should be found and studied. In the following an 

interconnection of projects 1 and 2 is used as an 

example. 

When studying the two project interconnection scheme 

the aim is to find out how much more energy can be 

delivered to shore by including the link. Before the 

evaluation is done some assumptions must be made. The 

most important assumption is that the electrically 

shortest route to shore is considered to be the project’s 

own link to shore. This implies that if the project’s link to 

shore is available, the system operator will always route 

the produced power through this current path. The other 

assumption is that HVDC CBs are available and can be 

used in the system. If HVDC CBs are not available the 

Figure 22: System layout for 
nterconnection between two projects 
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analysis must be made somewhat differently and an additional operation is necessary to 

obtain the result this will be explained towards the end of this sub-chapter. 

From this point on particularly the procedure becomes more suited for a Matlab (or similar) 

program as the method becomes a little extensive in Excel.  

The first point to consider is how much energy is delivered through the projects’ own links. 

This is easily calculated by multiplying the Base Case energy by the probability of Node 4 

being up. The second point is how much power is delivered from Project 1 through 

Connection 2 to shore. And the third point is how much power is delivered from Project 2 

through Connection 1 to shore. The latter two points of interest are equal, but mirrored. 

Only the first of these will therefore be explained. 

This method is more easily understood by considering the system to be of a form as shown 

in Figure 23. Note that in this figure the load and generator at each of the nodes will never 

be available at the same time (illustrated by different colours), as this condition has already 

been taken into account by the Base Case energy. 

 

Figure 23: Simplified figure of the layout as seen from the two project’s Node 4 

The amount of power delivered from Project 1 to Node 4 of Project 2 is determined by the 

rating of the inter project link. This link will never be rated above 100 %, because more 

power than this cannot be supplied as there is no source for it. There may however be god 

reasons to choose a lower rating. The amount of power delivered is as before determined by 

the limiting factor which is the lower of the rating of the link and the interconnection point 

power.  

The power that is actually delivered to shore is determined by the limiting factor of the 

power delivered through the inter project link and the available transmission capacity of 

Node 4, Project 2. At this point it is again necessary to make all possible combinations of 

delivered power and available transmission capacity for each level of produced power, and 

evaluate how much power is delivered to shore in each of the cases. The probability of each 

of these combinations are found by multiplying the probability of the relevant state at each 

of the two nodes and the probability of the link being available. 
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The amount of energy delivered to shore for this connection scheme is found by the same 

method as in the Base Case.  

An additional operation is needed to evaluate the energy delivered if the system is not 

equipped with HVDC CBs. When CBs are not present the entire system will have to shut 

down whenever a fault occurs in one of the HVDC components, that is, converters and HVDC 

cables. The total outage time due to such faults are calculated by summing the faults per 

year (λ) of each relevant component, and multiplying this by the switching time for the DSs. 

If say the system consists of three cables with outage rates of 0.1, 0.2 and 0.3 faults per year 

and the switching time is 1 hour then the outage time is (0.1+0.2+0.3)*1=0.6 hours per year. 

The impact of any other faults, and also the impact of the HVDC faults after they are isolated 

are calculated in the Excel sheet by setting the switching time to zero. As an example say this 

is 10 TWh.  By multiplying this amount of energy by one minus the fraction of the year in 

which the system is shut down due to HVDC faults the total delivered energy is found. In this 

example this gives: 10 TWh * (1 – 0.6 h / 8766 h/year) = 9.9993 TWh. 

 Four project ring system layout Chapter 8.8

Connecting all four projects in a ring system is another possible layout. The projects are not 

placed in a perfect square and as such there are large differences in the length of the links 

that make up the ring system. A rough example of the ring system layout is shown in Figure 

24. The blue lines illustrate the ring system, while the orange lines illustrate the connections 

to shore. 

 

Figure 24: Illustration of ring system layout 

When evaluating the effect of using a ring system the same starting point as was used for 

the two project layout is used. This is illustrated in Figure 25. 
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Figure 25: Simplified illustration of four project ring layout 

The analysis of the ring system is a rather large and complex one. This results from there 

being several levels of produced power, for which there are several possible amounts of 

inter project power and available transmission capacity. There are four projects which can 

be combined in many ways and also the links that make up the ring may be unavailable, one 

or more at a time. In addition, as this is a ring system, an iterative loop is necessary to 

evaluate what power flows where in the ring. 

The procedure will be equal for all levels of produced power and therefore the procedure is 

explained for only one of these. Assuming that there are three levels of inter project power 

and three corresponding levels of available transmission capacity. In addition there is a 

certain probability of the node being unavailable, which is of importance because if power is 

to be sent from for example project 4 to project 2 then this power will be sent through Node 

4 in projects 4, 1 (or 3) and 2. Should one of these be unavailable there will therefore be no 

such transmission. This leaves seven states of each project. Because all possible 

combinations of these seven states in the four projects are possible, 74 = 2401 combinations 

are possible. In addition there are 42 = 16 possible layouts, resulting from the inter project 

links being up or down. In total there are therefore 38416 combinations that need to be 

studied for each level of produced power. 

Consider first counter clockwise transmission. The amount of power that is delivered from 

project 1 to project 4 is given by the amount of power that is delivered from Project 2 to 

Project 1 and the amount of interconnection point power available at Project 1 and the 

rating of the link between projects 1 and 4. This amount is found through the following logic, 

here expressed by aid of pseudo code (note that X is used to express the amount of power 

that is transmitted through the interconnection links, while P refers to the interconnection 

point power of a project): 
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 Power is only delivered from project 1 to the ring system if the current state of project 1 

has a power level above zero.  

 

If P1 > 0 

    P1_ring = P1 

Else 

    P1_ring = 0 

 

o In this case the power delivered from Node 4, Project 1 towards Node 4, Project 4 is 

the sum of the power from Project 1 and the power that is transmitted from Node 4, 

Project 2 to Node 4,  Project 1. 

 

XNode_4, Project_1 = P1_ring + X2-1 

 

 If the power level of the current state is below zero in Project 1, then some of the power 

delivered from Node 4, Project 2 to Node 4, Project 1 will be delivered to shore via the 

link of Project 1. 

 

If (P1 < 0) AND (X2-1 >0) 

    P1_Shore = Minimum(P1 ; X2-1) 

 

This means that some of the available transmission capacity is no longer available  

 

P1 = P1 - P1_Shore 18 

 

o In this case the power delivered from Node 4, Project 1 towards Node 4, Project 4 is 

the remaining power delivered from Node 4, Project 2 to Node 4, Project 1 

 

XNode_4, Project_1 = X2-1 – P1_shiore 

 

 The power that is actually delivered from Node 4, Project 1 to Node 4, Project 4 may be 

limited by the rating of the interconnection 

 

X1-4 = Minimum(XNode_4, Project_1
 ; L1.4_rating) 

 

 Power can only be delivered in this link if both projects’ Node 4 is available 

 

If (Node 4, Project 1 AND Node 4, Project 4) = UP 

                                                      
18

 For programming purposes it is important to notice that P1 should always be updated based on the original 
value of P1. That is P1 = P1_original – P1_shore 
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    X1-4 = X1-4 

Else 

    X1-4 =0 

When the amount of power transmitted to Node 4, Project 4 has been calculated then this 

same pattern is repeated throughout the circle. X1-4 works as a basis for calculating the 

amount of power that is sent to shore through the link of Project 4 and then to find how 

much power is transmitted to Node 4, Project 3 and so on until X2-1 is calculated and the 

circle is closed. At this point an iterative loop must be run to find the actual values of X2-1. As 

a starting point for the iterative loop setting X2-1 = 0 would be a reasonable choice. 

After the iterative loop is solved the power levels of the projects with positive power levels 

need to be updated. This is done as follows: 

If for example projects 1, 2 and 3 have positive power statuses and project 4 has a negative 

power status then the amount of power delivered to shore in project 4 is the amount of 

power that has been “spent” from the other projects. Because Project 1 is electrically closer 

to Project 4 (out of the three) for power transmission in the counter clockwise direction, this 

project will have priority in delivering power through this link. This means that if the amount 

of power delivered to shore is say 400 MW and the status of Project 1 is 300 MW, then the 

updated status of Project 1 is zero, as all of this power would be delivered to shore. The 

remaining 100 MW must then originate from Project 2 or Project 3, and the same evaluation 

is performed for each of these. Should the case be that the power delivered to shore is 300 

MW and the power status of Project 1 is 400 MW, then the updated power level of Project 1 

is 100 MW. 

When all power levels are updated the clockwise transmission can be evaluated in the same 

way as the counter clockwise. There is one important problem with this method, which is 

that the electric losses are only in a very small degree taken into account. As electric losses 

are not included in this analysis this does not make much of a difference here, but it means 

that the amount of energy that is supplied to shore will not necessarily be sent to shore 

through the same routes in reality. The total amount of energy (neglecting the electric 

losses), should however be correct. 
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Part III. Economy 
This sub chapter provides an overview of the factors that contribute to the economy of 

Dogger Bank, but with a particular focus on the elements that are relevant for the economic 

analysis that will be performed as part of the simulations in order to evaluate which of the 

above mentioned grid layouts will turn out to be the most cost effective. 

Chapter 9. Income 
The revenue of Dogger Bank will be the product of the price of power and the amount of 

power delivered to the national grid. As a part of the UK’s economic schemes for increasing 

the amount of renewable energy production in the country the government offers a 

Contract for Difference, CfD, for many renewable energy projects, among them offshore 

wind power. 

The Financial Times defines CfD as follows [17]: 

A contract for difference (CFD) is essentially a contract between an investor and an 

investment bank or a spread-betting firm. At the end of the contract, the parties exchange 

the difference between the opening and closing prices of a specified financial instrument, 

including shares or commodities. 

CFDs do not carry votes like ordinary stock but enable investors to gain economic exposure to 

a listed company for a fraction of the cost of buying shares. They also escape stamp duty and 

can be bought in size without triggering obligations to disclose the holding. A form of 

synthetic dividend is normally also payable. 

A CFD is simply an agreement between two parties – the investor and the CFD provider – to 

pay each other the change in the price of an underlying asset. Depending on which way the 

price moves, one party pays the other the difference from the time the contract was agreed 

to the point where it ends. 

So like spread bets, CFDs involve the investor taking an opposing view to the insurer, 

speculating that an asset price will rise, by buying (‘long’ position), or fall, by selling (‘short’ 

position). Also like spread bets, CFDs incur no stamp duty as they do not involve buying an 

asset, only agreeing to receive or pay the movement in its price. And because you only have 

to put down a small deposit on trades, called ‘margin’, you can make large profits – or losses 

– on the money you commit, from small moves in the price. So CFDs give you the advantages 

of owning shares without many of the inconveniences. However, they differ from spread bets 

in their tax treatment. 

For Dogger Bank this means that the owner enters a contract with the UK government 

ensuring a set strike price for all delivered energy. The crude idea is that the energy is sold in 

the power market. Should the momentary price of energy be below the strike price then the 

difference is reimbursed by the government to the wind farm owner. Should on the other 
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hand the momentary price of energy be above the strike price then the difference is paid 

from the wind farm owner to the government. 

The upside of this scheme for the wind farm owner is that the risk of volatile prices is 

removed and so the investment in the wind farm will be safer. The investment being safer 

might also lead to a lowered interest rate on any loans that are made for the investment, 

hence increasing the profit of the project. The downside of CfD from the wind farm owner’s 

perspective is naturally that along with removing the risk connected to volatile prices, the 

potential benefit is also removed. 

From the perspective of the government the benefit of the CfD is the reduced risk connected 

to investing in renewable energy. These new investments would serve to increase the 

amount of clean energy that can replace energy from fossil fuels, which would among other 

things help to achieve the EU’s 20-20-20 goals. The disadvantage to the government of 

entering a CfD agreement is that all risk of volatile prices falls on them and the contract 

could prove to be rather costly. 

One aspect of the CfD that reduces the benefit of the lowered risk is that the CfD strike price 

level is not set very far ahead. In 2013 the UK government released the prices that will be 

used for the coming years up to and including 2019 [18]. These prices are not definite, but 

are called draft strike prices and some adjustments must therefore be foreseen. However 

the problem for the investors would be that while the concession times for wind farms are 

approximately 20 years the CfD prices are only estimated for the first six of these and so the 

risk is only reduced for these years. 

The prices for the CfD that are reported in [18] are: 

Table 10: Draft strike prices for CfD for offshore wind power 

Year 2014/2015 2015/2016 2016/2017 2017/2018 2018/2019 

Price [£/MWh] 155 155 150 140 135 

The prices are given in 2012 values. 

The strike prices under feed-in tariff in the CfD are set based on the cost of building wind 

farms, which was investigated in a Call for Evidence, CfE, started in October 2012.[19] 

For the economic analysis performed as part of this thesis an assumption as to the CfD strike 

prices from year 2020 and onward had to be made. In conversation with Statkraft it was 

agreed that it would be reasonable to use the price 135 £/MWh for the remaining period as 

there is no other information available. It was also agreed that the first project should be 

assumed to be operational in 2014 and giving the price of 155 £/MWh for the first year of 

production.  
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Chapter 10. Expenses 
The expenses connected to the projects are mainly the investment cost, CAPEX, but also cost 

of operation and maintenance (O&M), OPEX, are of importance. For the economic analysis 

performed here there will not be a large focus on the cost of O&M and simple assumptions 

will be made in order to, to some extent, include the added O&M cost connected to 

increasing the number of components. 

The investment cost is of course dependent on which layout is chosen, but also on in what 

order, and in which year the different projects are built. The analysis of the cost is therefore 

made in such a way that the investment cost of each of the projects is added in the year the 

project is built. This means that for Case Two, the investment cost of the first project is 

included in the year of its building, the cost of the second project is not added until the 

second project is actually built, when also the cost of the inter-project link is included. 

Because more components, such as switchgear, are needed in Case Two than in the Base 

Case, to prepare for the interconnection of another project the cost of only one project is 

different in the two cases, reflecting the increased risk of waiting for another project. The 

delaying of the investment cost to the year when the investment is actually made is 

important as it is assumed that the project is financed by loan and the interest rate therefore 

increases the actual cost of the projects.  

The O&M costs are assumed to be constant over the life time of the wind farms, although 

naturally dependent of what projects and inter-project links are in operation. As the cost is 

considered constant it must be adjusted for inflation. The life time of a wind farm is 

generally considered to be 20 years and the licensing will last for approximately this long, 20 

years has therefore been chosen as the amount of time over which to study each of the 

projects. As not all projects are built simultaneously this means that the total time that is 

analysed is dependent on when the last project is built. The O&M costs of each project is no 

longer included after the life time of that particular project is passed. 

Costs of removing the system components and restoring the area to normal are not included 

in the analysis. 

Chapter 11. Risk, discounting, inflation and interest 
The aim of the reliability analysis performed in this thesis, which is discussed in Part II, is to 

determine how much power will actually be delivered to shore from the projects when 

taking into account all possible faults. Because the potential faults and the risk of these 

occurring is already taken into account the amount of power delivered to shore can be 

considered risk free. This does not mean that the produced energy will actually be as 

calculated, but the risks connected with it has been taken into account and the output 

should therefore be a good estimate. 

The purpose of the CfD scheme is to remove the risk of volatile energy prices and upon 

entering a CfD agreement the practical price of energy is therefore settled. 
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When there is no risk that needs to be taken into account for either production or price, the 

income is also risk free. As previously stated the O&M cost is considered to be constant, but 

inflation adjusted, no risk is included for this cost. The investment costs will in reality be 

subject to a level of risk, as the prices of metal in particular are highly volatile which will 

influence the cost of the project components. For the purpose of this thesis however this risk 

is disregarded. 

Removing the risk in income, and neglecting the risk in costs leaves the projects risk free for 

the purpose of the analysis and there is no need to discount the resulting surplus to 2013 

values, as the discounting rate will be set to zero and the 2013 value will be the same as the 

value in any other year. 

The inflation rate that is used in this thesis is provided by Bank of England [6]. According to 

[6] the inflation target of the UK is 2 %, however for the coming years it is expected that the 

inflation level will be 2.5 %. Based on this information the inflation rate in this thesis is set to 

2.5 % per year. 

The interest rate that is of interest to this project is the interest rate a bank will give on a 

loan of the money for investment. For this thesis this interest rate has been assumed equal 

to 4 %, but a sensitivity analysis will be performed to evaluate the impact of this. 

Chapter 12. Method for Economic Analysis 
The economic analysis used in this thesis is a simple one. This is a result of some 

simplification such as constant interest rate, zero discounting rate, constant inflation, and 

constant O&M costs.  

The input to the economic analysis is the cost of all components, the amount of each 

component in each project and each layout and the rating of the components. A 

spreadsheet in excel sums the cost of each individual component and returns the total 

investment cost of each project and each layout. From the reliability analyses the amount of 

energy delivered by each project in each of the layouts.  

The spreadsheet for the economic calculation calculates the cost and income separately. In 

reality the investment will be made by a loan which will be repaid over the course of Dogger 

Bank’s life time, this analysis is however simplified by assuming that the revenue is placed in 

an account with the same interest rate as the loan is subject to. In essence this is the same 

as repaying the loan when the money comes in, and only represents a simplification in the 

calculations. 

The projects are not all built in the same year and therefore the investment costs do not 

appear in the analysis until the year of investment. This is also the first year in which the 

project produces energy and thereby income. Investment cost and income will not really 

come in the same year, as the actual building of the project will take time. The building time 

is however neglected in this analysis. 
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In the same year as the investment of a project is made the O&M cost is included. As this is a 

regular cost for all the years of a project’s operation, this cost is included for 20 years 

following the investment cost, only adjusted for inflation.  

The sum of the investment costs and O&M costs of each year is found and is added to the 

“loan account” for which there is an interest rate, causing the size of the loan to increase 

continually. 

The revenue of Dogger Bank varies only with the CfD rate, as the production is assumed to 

be constant. The product of delivered energy and the CfD strike price of the relevant year 

makes up the year’s revenue. This revenue is then added to the income account which is 

subject to the same interest rate as the loan account.  

The difference between the revenue account and the loan account in the final year of the 

analysis, which is the 20th year of operation for the last-built project, gives the profit of the 

investment. Because only some of the investment costs are included in the analysis this 

profit does not equal the earnings of the project, but the profit can be used to compare the 

different layouts as the remaining investment cost is equal for all the layouts. 
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Part IV. Simulations 

Chapter 13. System Components 
In this part the components that are used in the system are described and their input values 

into the analysis are defined.  

 Relay system Chapter 13.1

The relay system is as previously described of great importance to the reliability of the 

system. There are more than one possible way of operating the relay system, and the 

relevant ones will be discussed here. 

Chapter 13.1.1 HVAC Circuit Breakers 

HVAC CBs are a mature technology and there have been extensive studies of their reliability. 

These analyses provide information on both the failure rate and repair time of the breakers. 

As previously described the components in the relaying system are not considered separate 

components, meaning that faults in the CBs is only considered possible at the moment their 

operation is requested. This means that a failure rate of the CBs is less useful as this gives 

the number of faults per year, while the number of faults per year of a CB is necessarily 

dependent on how many times the CB operates per year.  For this reason a different 

reliability indice is used for CBs, namely a probability of failure on demand.  

Chapter 13.1.1.1 Unavailability 

The literature gives a wide variety of reliability data for HVAC CBs: 

[14] proposes a probability of failure to operate on demand of 10 %. This is significantly 

higher that all the other suggestions that have been found. It is worth mentioning that [14] 

does not provide any reference as to where the probability is found, nor does it make any 

attempt at justify the value. it is therefore not unreasonable to assume that this number is 

used as a mock number, used only to show the principle of how the method works and not 

as an example of an actual value.  

[20] provides MTTR and λ for the CBs. These are set to different levels based on the voltage 

level of, and location of the CB. For 36 kV CBs λ is set to 0.024, while it is 0.0.32 for 150 kV 

CBs. This implies that the probability of a fault is increased with increasing voltage level. The 

MTTR of CBs on land is set to 4 hours, while it is set to 720 hours for offshore CBs on 

platforms, the even higher level of 2160 hours is used for wind turbine installed CBs. This 

shows that the repair time (or possibly replacement time, this is not stated, but the very 

short time of 4 hours suggests this is not a repair time unless only manual opening of the CB 

is necessary to reset it) is very short when travel does not need to be taken into account. 

When acquiring a vessel and travelling offshore is necessary the time required for the repair 

increases dramatically. For the wind turbine mounted CBs the weather conditions have been 

taken into account such that if the weather is bad the repair would have to wait. Like [14] 

this report does not provide any reference or justification of the reliability data used. 
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A third proposed set of reliability data for CBs is found in [21]. Here the data is based on 

experience through the study of approximately 16 000 CB*yeas. For a voltage level of 220 kV 

λ is found to be 1.99 [1/(100 CB*years)] or approximately 0.002 failures per year. This article 

does not discuss the repair time of the CBs.  

The final article that has been studied to find reliability data for circuit breakers is [22]. This 

article bases its analysis on Cigré’s collected data of failures in CBs from a total of 

approximately 9300 CBs of different types. The faults that occur are studied by source, which 

are divided into five categories and all of these are further studied for four types of CBs. The 

SF6 CB with hydraulic drive is clearly the most commonly used of the CBs therefore this type 

is used as a basis for this thesis19. The resulting reliability data when all sources are take into 

account are λ = 0.674 failures per year and MTTR = 93.64985 hours. Compared to the λ in 

[20, 21] this is very high, while as previously stated it is very low compared to [14]. Because 

the reliability data in this article appears to be highly reliable as it is based on Cigré data 

from a large number of CBs and because the article includes MTTR, which is necessary this 

article is chosen as the source of reliability data for HVAC CBs for this thesis. 

The above mentioned failure rate and repair time is not mentioned in the article, because 

the failures of the CB are split into five sub categories. The average values for the CB as a 

whole is therefore calculated based on RelRad methodology with these sources of faults as 

individual components, and assuming that all five sources of error lead to failure of 

operation of the CB. When the average values were calculated the average unavailability of 

the CB was found to be 63.12 hours per year. Translating this to a probability of 

unavailability gives 0.72 %. The fact that the CB will be unable to operate 0.72 % of the time 

means that this is also the probability that the CB will not operate on demand. It is not made 

abundantly clear in the article that the data can be interpreted in this way, however this 

seems to be the logic conclusion to draw.  

From the data in [22] it is clear the there is one source of error that has a much longer MTTR 

that all the others. This source of error thereby causes a potential problem of leading to 

longer repair times for the CB than for the faulty component that tripped the CB. As this is 

not taken into account in the analysis in its current state this would lead to an error in the 

output of the analysis. However the data from [20] suggests that it is possible to replace the 

CB very quickly, though this is not explicitly stated. For these cases it should therefore be 

considered if the CB can be replaced by a spare, which might be kept offshore. When the 

fault occurs the breaker could then be replaced by the spare, repaired and then used as a 

spare. 

The reliability data that will be used for the AC CBs is: 

                                                      
19

 There have not been performed any analysis as to whether this is a reasonable choice and the decision is 
made purely on the bases of it being used more commonly in the studied systems. Based on the author’s 
limited knowledge of these breakers however this appears to be a reasonable choice. 
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Table 11: Reliability analysis input for HVAC circuit breakers 

Probability of failure to 
operate on demand 

0.72 % 

 

Chapter 13.1.1.2 Price 

The price of HVAC switchgear used in this thesis has been offered by Statkraft as a 

reasonable assumption of the combined price of the HVAC switchgear and the platform on 

which it is placed. An approximate price of 10 million NOK was suggested by Statkraft and 

the price in GBP was set to £ 1 million based on an exchange rate of just above 10 NOK/GBP.  

Chapter 13.1.2 Disconnector Switches 

Chapter 13.1.2.1 Unavailability 

For the purpose of this analysis faults in the DSs have not been included. As DSs are 

relatively cheap components it is assumed that if the unavailability of the DSs is considered 

significant their redundancy will be increased. 

One thing that is included for the DSs is their switching time. To physically switch a DS on or 

off takes only about a second, however many DSs are operated manually, and hence their 

switching time is prolonged by the time it takes to get there. Because there will always be 

crew located offshore the switching time has been set to one hour as a starting point for the 

analysis. It is also possible to remotely operate the DSs, this would require an increased 

investment (this investment is not included in the analysis because the communication 

system is considered out of scope for the economic analysis) but would lower the switching 

time to only a few seconds. In the sensitivity analysis, the switching time of the DSs should 

therefore be varied from zero to a few hours. 

The reliability data that will be used for both AC and DC DSs is: 

Table 12: Reliability analysis input for disconnector switches 

Switching time [h] 1 

 

Chapter 13.1.2.2 Price 

Because one DS is included for every circuit breaker, the DSs have not been evaluated with 

an individual price.  

Chapter 13.1.3 HVDC Circuit Breakers 

HVDC circuit breakers were announced to have been achieved in November 2012. Because 

they are such a new invention they are not yet at the market, and ABB are currently looking 

for pilot projects where the CBs can be installed and tested in a real system. In a 

conversation with Leif-Willhelm Ramslie who is involved with ABBs HVDC CB project he said 

a final price for the first commercial HVDC CBs has not yet been decided. In a report by 

Sweco, written for Forewind there is made mention of a price assumption provided by ABB. 
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This price assumption is that the price of HVDC CBs will add 10 - 20% to the price of a VSC 

station. Because there is made no references to where this information was obtained in the 

Sweco report, apart from that it comes from ABB, Leif-Willhelm Ramslie was asked to 

confirm that this estimate was reasonable. According to him the estimate seemed 

reasonable, though naturally this is no guarantee for the actual price.  

Chapter 13.1.3.1 Unavailability 

Because DC CBs are not yet on the market there is no knowledge as to the reliability of these 

breakers. For this reason the same data as for AC is used as a basis.  

Due to generally being more complex than its AC counterpart and, among other things, 

containing IGBT components which, based on the converter data, fail relatively often it is 

reasonable to assume that the unavailability of the DC CBs will be higher than what is the 

case for AC CBs. Sensitivity analysis of the unavailability of these breakers is therefore 

necessary. 

The starting point reliability data for the DC CBs for use in the analysis is: 

Table 13: Reliability analysis input for HVDC circuit breakers 

Probability of failure to 
operate on demand 

0.72 % 

 

Chapter 13.1.3.2 Price 

The price of HVDC circuit breakers is not yet finalized by ABB s the CB is still some way away 

from commercialisation. An estimate of the price level has however been offered as is 

reported in a report by Sweco written for Forewind. In this report ABB is reported to have 

proposed that using HVDA CBs will increase the price of the converter station by 10 % – 20 

%. Sweco appears to interpret this as follows: 

In a point-to-point connection there is a need for eight HVDC CBs (bipolar layout, in a 

balanced monopolar layout four HVDC CBs are needed). The total cost of these eight CBs will 

be somewhere between 10 % and 20 % of the price of the converter stations. If eight CBs 

costs say 20 % of the cost of two converter stations, then one CB will cost 5 % of one of the 

converter stations.  

A price of 5 % of the converter cost has been used in this thesis.  

 Cables Chapter 13.2

Cables are the components that contribute most to the cost of the projects20 in addition they 

have the longest repair time and are as such important contributors to the unavailability of 

                                                      
20

 The cables contribute most of the components that are included in this thesis, their contribution compared 
to the wind turbines is not investigated. 
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the transmission system from the collection points to shore. This chapter aims at describing 

different aspects of the cables. 

Chapter 13.2.1 Cable system 

For both AC and DC cables the insulation type used in Dogger Bank is likely to be cross-linked 

polyethylene, XLPE. This is the dominating insulation material for cables up to 300 kV [23] 

and [24] refers to lead sheath XLPE cables as commonly used cables for high voltage subsea 

use. XLPE is a relatively cheap isolation type but also a simple one which means there are 

fewer components in the cables that may fail and also that the repair of the cable in case of 

a fault is relatively simple. Another benefit of XLPE over Mass Impregnated, MI, insulation 

(the most likely alternative) is that it can be operated at higher temperatures. While the 

maximum continuous temperature of MI cables is 70°C XLPE cables can be operated at 90°C. 

The downside to using XLPE cables is that there is little experience with using it at voltage 

levels such as those relevant in this thesis, because cables of this sort were only realized in 

the last decade. 

In the case of the AC connections these will be installed as three core cables. The DC cables 

will be installed in a balanced monopole setup, also known as symmetric monopole or 

midpoint grounded monopole.  

 

Figure 26: Balanced monopole setup [25] 

This setup uses two cables, one of which is a return cable. By grounding the midpoint the 

return cable is set to be operated under negative voltage. This method is cheaper than 

bipolar setup, in which there are two converters at both ends which allows increased 

flexibility and control, but more expensive than the simple monopole setup which uses a 

ground return. One of the main downsides to simple monopolar setup is the impact on the 

nearby magnetic field. A single DC cable produces a constant magnetic field around it. 

Should this field not lie along the earth’s magnetic field then a compass would be disturbed 

into recognizing north as whichever direction is the vector sum of the two fields. This effect 

is not only affecting humans (in the age of the GPS the impact to humans would be limited) 
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but, as stated by [26] “Species with magneto- or electro sensory capabilities may detect 

and/or react to the fields generated by AC and DC cables.“  

Chapter 13.2.2 Cable type 

 

Figure 27: Single Core and Three Core XLPE cables from ABB, cable illustration from [27] 

As the figure shows the components in single core and three core cables are the same, this 

also holds for HVDC cables. The cables in the figure are XLPE cables with copper conductors, 

lead sheaths and wired armour.  

There are two materials that are commonly used for the conductor; aluminium and copper. 

Copper is superior to aluminium in terms of conductivity, but is also considerably more 

expensive. The figure shows stranded conductors which means that the conductor is made 

up of many conducting strands placed together in a circle shape and twisted along the cable 

length. There are many possible ways of making the conductor, including compact 

conductor, in which the conductor is one single rod of conductor material, and sector, in 

which the conductor consists of several pie shaped sectors. One of the main arguments for 

not using compact conductors is that compact conductors give stiffer cables and hence 

larger bend radiuses. 

The conductor screen is used to even out the surface of the conductor as this needs to be 

completely smooth to avoid air gaps between the conductor and the insulation. Similarly the 

insulation screen is used to even out the surface of the insulation. An additional purpose of 
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the conductor screen is the separation of the conductor and the insulation as copper act as a 

catalyst for the ageing mechanisms of the insulation. The insulation is a massive body of 

XLPE. 

The main purpose of the lead sheath is protection against radial water ingress and against 

hydrocarbons, both of which speed up the aging process of the insulation. 

The armouring is as the name suggests used for protection of the cable against external 

forces, most notably the length-wise gravitational forces the cable is subjected to during 

laying and lifting (for repair or removal). 

Chapter 13.2.3 Cable laying 

The laying of cables is a demanding and time consuming process, with an estimated laying 

seed of 1-2 km per day. The cable is laid by a cable laying vessel which holds the cable on a 

drum and leads it over a large wheel in order to avoid sharp angles and to allow control of 

the forces the vessel is subjected to. From the wheel the cable is lain at an angle to the sea 

floor. This angle is carefully monitored as deviations from the optimal angle could lead to 

damages. If the angle was to become too large, tending towards direct vertical laying then 

the vertical forces in the cable would be too strong and the cable could become compressed. 

In the case of attempting direct vertical laying there is also a possibility of the vessel being 

moved backwards rather than forwards due to weather conditions and this could lead to the 

angle being subjected to angular forced for which it is not designed. Should on the other 

hand the angle be too small then the length of the suspended cable would be longer than 

intended, leading to increased stress at the bearing point of the cable on the wheel and 

potentially damaging the cable by stretching it. Cable armour is designed for a certain laying 

angle to make sure it can withstand the longitudinal forces it will be subjected to. The cable 

is of course designed with some margin of error to allow some variation is angle. The angle 

also ensures a relatively long length of suspended cable, which reduces the impact of a level 

of movement caused by weather conditions.  

When more than one cable is to lie in the same trench then bundling is used. The cables are 

then connected by steel straps or similar as they meter by meter leave the vessel. Bundling 

of cables allows two or more cables to be laid in one action. 

The sea floor conditions are of huge importance to the cable laying process. Because the 

cable does not do well with sharp objects and because there is often a wish to bury the cable 

for further protection there are attempts to lay the cable in sand or gravel. The cost of cable 

makes it economical to attempt at straight line laying, which is also the simplest procedure 

for the cable laying crew. When areas with much rocks are encountered the cable must be 

attempted to be lain around these and in order to achieve this a submarine remote operated 

vessel, ROV, is utilized. The ROV can guide the cable into more optimal positioning than is 

possible for the cable laying vessel. After making a turn with a cable it should be attempted 

to allow a certain distance of straight cable to avoid turns pulling on each other. Laying the 
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cable in free spans, meaning the cable is suspended in the sea, without support from the sea 

floor, must be avoided as this will cause significant wear on the cable. Ocean currents can at 

times be strong enough to cause significant wear of suspended cables and also the cables 

are more exposed to damage from for example anchors or fishing gear. 

Chapter 13.2.4 Cable Damage 

Most faults in subsea cables are caused by external impacts, mainly due to fishing. Trawling 

is a fishing technique in which a fishing net is pulled through the sea, connected to the boat 

at the top and to a steel “door” at the sea floor, which is dragged after the boat. According 

to [28] trawls are not, during normal conditions, expected to disturb the sea floor to depths 

beyond 0.5 m. As it is rather common to bury cables at a 1 m depth this means that cables 

should not be damaged by this. However, though the cable is buried at 1 m depth the sea 

floor is not stable and so the cable may not remain buried at this depth and impacts may 

occur. The weight of the steel door is sufficient to seriously damage the cable upon impact at 

the speed of the trawl, but the largest hazard for the cable is the attempted retrieval of 

stuck fishing gear by the crew. [28] Anchoring is the second most important source of 

externally caused faults. Heavy anchors connected to large boats, with a huge momentum 

are lowered onto the cables and cause damage by impact or they are dragged along the sea 

floor and catches the cable, dragging it out of position and damaging it.  

The cable laying process also contributes with many faults. These faults include errors made 

by the installation crew on the boat as well as the cable being placed in unbeneficial 

locations like for example in areas where there are stones that can damage the cable, or 

even the cable being laid in suspense between rocks, cliffs etc. These faults do not 

necessarily lead to damage right away, but can cause deterioration over a period. 

Faulty equipment is another source of faults. If the cable, the cable joints or any other 

equipment connected to it is not correctly manufactured then faults are likely to arise. If 

oxygen is present in the cable the insulation and the conductor can be damaged by its 

presence through oxidation. As mentioned the copper in the conductor can work as a 

catalyst for the deterioration of the insulation which makes the conductor screen very 

important. Any voids in the insulation are likely to be subject to partial discharges which 

leads to further damage in the insulation. Impurities in the cable can lead to “routes” of less 

dielectric strength through which so-called electric trees can grow. Electric tree growth leads 

to weakening of the insulation in the specific area and will eventually lead to total break-

through. If humidity is present in AC cables water trees will start to grow. Water trees are 

paths of humidity through the insulation and when they reach all the way through a current 

path through the insulation has been made. [23] 

Faults may of course also be caused by harmful operation of the system. If for example the 

cable is subjected to too much current over too long a time the insulation will overheat and 

start to deteriorate.  
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Chapter 13.2.5 Cable repair  

Cable repair is a very demanding part of subsea cable engineering and consists of varying 

tasks. The first problem encountered when a cable experiences a fault is that the exact 

location of the fault must be located. There are a number of different proposed methods for 

doing this which are based on the sending of electric impulses into the cable and analysing 

the reflected impulse. This thesis will not go into detail in these methods. These methods of 

locating the fault are only so accurate, and there will normally be a need of divers or 

submarine vehicles to determine the exact position of the fault. Because, as stated in the 

previous sub chapter, most faults in subsea cables are caused by external impacts the faulty 

area can often be located by looking at the cable. In cases where the fault is caused by 

insulation deterioration or other non-visible causes the fine-localizing will prove more 

challenging and particularly if the cable is buried and therefore not as easily available.  

Once the fault has been located the cable can be cut in two near the damaged area and the 

first of the cable ends is brought to the surface. In cases of shallow waters this can be done 

relatively easily, while for deep waters submarine remote operated vehicles, ROV, are used 

for this task. After the one end of the cut cable has been brought to the surface any 

additional damaged length of cable is removed and a new length of cable is jointed to the 

cable end. The cable is them lowered back into the sea, such that the joint rests on the sea 

floor and the second end of the cut cable is brought to the surface. The same procedure of 

cutting away any damaged cable and then jointing the new piece of cable to the old one is 

performed. The cable is lowered onto the sea floor and the amount of extra cable that 

results from the repair cable being much longer than the cut away part must be placed in a 

suitable way.  [28] 

Attempts have been made at subsea repair. Two such attempts are mentioned in [28], 

however it is stated that neither has been followed up and that in most cases it is necessary 

to bring the cable ends to the surface for repair. 

As can be told by the method for repairing cables it is necessary that a spare cable is jointed 

in at the location of the fault and it is evident by the procedure that the length of this cable 

is significantly longer than the cut away bit. According to [28] the length of such repair cables 

must be twice the water depth plus the amount needed to run through the aboard 

equipment plus the cut away length. It is also stated the in  the case of a fault occurring 

during the repair, such as damage by the anchor of the cable laying vessel or faults occurring 

when jointing, it is generally a good idea to bring extra cable along, rather than finding one 

self in need of it when at the location. Because submarine cables are not off the shelf 

orderings, extra lengths of cable are included in the original order. These extra lengths are 

stored for the times they are needed as repair cables. By having repair cables ready the 

repair time is significantly reduced.  
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Chapter 13.2.6 Unavailability 

Chapter 13.2.6.1 HVDC Cables  

In 2009 Cigré published a review of the availability of cable projects [29]. The report 

describes the results of a survey that was sent to owners of high voltage cable projects both 

onshore and offshore worldwide. The survey asked for information on the numbers of 

failures that occurred in the period between 1990 and 200521 and their origin.  

In the period between 1990 and 2005 there were HVDC projects using the cable types XLPE 

(cross-linked poly ethylene), SCOF (self-contained oil filled) and MI (mass impregnated). As 

explained above XLPE is the natural choice of cable technology for the Dogger Bank projects, 

however there is little experience with its use in HVDC projects. The world’s first submarine 

XLPE cable was delivered by Nexans [30] to be used in ABB’s HVDC light system [31] for the 

connection of Horns Rev wind farm to Denmark mainland. This project was installed in 2002 

and used a voltage level of 170 kV. The next record was set in 2005 when Nexans [30] 

delivered a 420 kV XLPE cable to the connection of the platform Ormen Lange to mainland 

Norway, which also used ABB’s HVDC light [32]. These facts clearly show that the Cigré 

survey could not receive any information on XLPE projects of voltage levels relevant for 

Dogger Bank. For this reason the data for MI cables, which are closer to XLPE in reliability, 

are used as a basis for the cable reliability data in this thesis. XLPE cables are likely to be 

somewhat more reliable when it comes to internal faults, but because almost all cable 

failures happen due to external forces, they are likely to be almost identical in overall 

reliability. 

From the Cigré report it is possible to draw some conclusions as to the reliability of MI 

cables. HVDC MI cables are particularly well represented in the survey with 2687 km of 

installed cable out of the total 7000 km of subsea cables, both HVDC and HVAC. Out of these 

2687 km, 532 km are installed in a relevant voltage level. For the HVDC MI cables there are 

reported 18 faults, 11 of which are external and a total of 7 being caused by trawling. The 

seven faults that are not caused by external forces are caused mainly by thermal exposure or 

protection wear. 

The survey also takes into account the age of the cables, to determine if there is significant 

changes in frequencies of faults over the life span. For MI cables if is found that there are 

some more failures during the first five years of operation, apart from this the failure 

frequency appears to be relatively constant. 

For MI cables in the voltage range of 220 kV – 500 kV the failure frequency is found to be 

0.0998 faults per 100 km per year. 

The MTTR is also evaluated for the cables. There is no information on what faults lead to 

what outage times, nor on at what times of year the failures occur and hence to which 

                                                      
21

 These dates were used for the subsea cables, not for the onshore cables. 
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extent weather conditions is a major factor. An estimate of MTTR based on this information 

is therefore very uncertain. 11 out of the total of 18 faults are reported with a known repair 

time, the remaining seven have unknown repair times, further devaluing the MTTR that can 

be estimated. By using the provided repair times, it can be calculated an average value of 2.3 

months, which equals 3367.2 hours. Because there are an entirety of seven (almost 40 %) 

faults with unknown repair time this average time does not have much credit. In order to 

increase the credibility an average value is calculated based on all faults of known duration, 

for this case ten out of 49 (approximately 20 %) of the faults have unknown durations and 

the credibility of this estimate is much higher. The overall fault duration is found to be 

approximately 1.9 months or 1368 hours. As this is a lower estimate than for MI cables 

alone, and the XLPE cables can be expected to have lower than average repair times due to 

less complex structure than the oil filled cables, this estimate will be used in the reliability 

analyses. 

Using balanced monopolar HVDC layout leads to the cables being lain in pairs and buried 

together. When two cables are buried together it is reasonable to assume that any external 

source of failure will damage both cables, and because a failure does not become twice as 

likely when there are two cables in a trench this means that the failure rate per length is 

lowered in this case. This leads to the conclusion that the failure rate of external failures will 

not be proportional to the length of cable, but rather to the length of the cable trench, or 

half the cable length. The Internal failures will naturally be proportional to the length of 

cable, as the system is not allowed to operate in unbalanced HVDC mode. In taking into 

account the HVDC layout leads to the failure rate being given by: 
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The data that will be used in the analysis are therefore: 

Table 14: Reliability analysis input for HVDC cables 

Failure rate 
[1/(100km*yr)] 

0.094 

MTTR [h] 1368 

 

Chapter 13.2.6.2 HVAC Cables 

Assuming that XLPE cables are also used in the AC parts of the system the availability is given 

by the Cigré report [29]. The report does not include any studies of AC XLPE cables in the 

voltage range 220 kV to 500 kV which would be the relevant range. However there is 
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included surveys of AC XLPE cables in the voltage range 110 kV – 219 kV, this voltage level is 

not however studied as an individual level for determining failure rates. The report shows 

that none of the AC cable systems suffered from “internal faults” and all faults were 

consequently results of external forces, insufficient protection or related to the landfall 

troughs.  Because of this it seems reasonable to expect that the failure rate of the AC cables 

should be relatively equal for the 200 kV – 500 kV case, as for the 60-219 kV case, at least if 

there are other numbers to support this. For the XLPE systems in the 60 kV – 219 kV the 

failure rate is reported to be 0.0705 failures per 100 km per year. Comparing this to the 220 

kV – 500 kV which has a failure rate of 0.0738 faults per 100 km per year a good concurrence 

is found and hence the estimate of 0.0705 faults per 100 km per year is used also for the 

higher voltage level. 

When it comes to the MTTR is likely that the repair time of oil filled cables will be 

significantly higher than for extruded cables. For this reason it is assumed that the average 

MTTR of lower voltage HVAC XLPE cables is valid also for somewhat higher voltage levels. As 

such the MTTR is calculated to be one month on average, which equals 720 hours. This 

repair time appears to be unreasonably much shorter than what is the case for the MI cables 

considered for the DC cables. It would be reasonable to expect that the repair time of the AC 

and the DC cables were approximately equal, particularly if water depth is not taken into 

account. As the Cigré report only reports four failures for the AC XLPE cables it is therefore 

assumed that the data basis is insufficient and that the repair time is equal to that of the DC 

cables. 

The data that will be used in the analysis are therefore: 

Table 15: Reliability analysis input for HVAC cables 

Failure rate 
[1/(100km*yr)] 

0.0705 

MTTR [h] 1368 

Chapter 13.2.7 Price 

Chapter 13.2.7.1 HVDC Cables 

HVDC cable prices used in this thesis are based on estimates by Statkraft. Prices for 1000 

MW cables and 1320 MW cables have been offered by Statkraft and by interpolation the 

price for 1200 MW cables was found to be £ 1 456 220 per km of two cables, including laying 

costs. By extrapolation a price of some £ 980 000 was found for the cables of 600 MW rating. 

Statkraft estimates say £ 1 000 000 per km is a reasonable estimate and the rounded of 

value is used as extrapolation will have certain weaknesses. Both prices include laying costs 

and two cables per km. 

Chapter 13.2.7.2 HVAC Cables 

HVAC cable prices were based on Statkraft estimates and set to £ 1 600 000 per km three 

phase cable. 
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 Nodes Chapter 13.3

The busbars of the nodes in the system have been included only in the reliability analyses. 

Little information has been found on the reliability of busbars and the failure rate used in the 

analyses of this thesis is based on [20]. However the repair time given in [20] was found to 

be unrealistically high compared to other components. The repair time of circuit breakers 

given in [22] was therefore used as a basis for the busbar repair time. 

Failure rate [1/yr)] 0.02 

MTTR [h] 100 

 

 Transformers Chapter 13.4

There are two types of transformers that are present in the system; power transformers and 

converter transformers. The power transformers are used by the collection points to 

transform the voltage to the collection grid voltage level. The converter transformers are in 

reality power transformers with tap changers that contribute to the control of the HVDC 

power flow.  

Chapter 13.4.1 Price 

Chapter 13.4.1.1 Power transformer  

Because the part of the layout where the power transformers are located is equal for all the 

studied layouts it is not necessary to include the price of these transformers in the 

investment cost used in the economic analysis. 

Chapter 13.4.1.2 Converter transformer 

The price of the converter transformer is included in the converter price. 

Chapter 13.4.2 Unavailability 

The two transformer types are in this thesis assumed to have equal failure rate. [33] has 

included an overview of failure rates and repair times for transformers used in wind power 

projects divided into categories of severity and availability of a spare transformer. These 

values are based on Cigré studies and are considered reliable. 

The total failure rate, including both severe and less severe faults is found to be 0.0308 

failures per year. The repair time of the transformers is given by the following table: 
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Table 16: Transformer MTTR by position of spare unit [33] 

Position of spare unit transformer Station Manning MTTR [h] 

Onsite 24 h/day 16 

Onsite 24 h/day (on call) 17 

Onsite 8 h/weekdays 48 

Offsite - spare is available at the opposite HVDC station  24 h/day 103 

Offsite - spare at factory facilities, same country 24 h/day 121 

Offsite - spare at factory facilities, overseas 24 h/day 817 

Worst case scenario -  2160 

 

For the transformers it is clearly a good idea to evaluate the impact of having spare 

transformers available. As there is planned a storage offshore and one onshore it would be 

possible to have transformers available at these storages, hence it is worth considering the 

second row. However one would wish to limit the storage capacity offshore, as space is very 

costly offshore. This means that the third row might be more relevant for all of the offshore 

transformers, by storing the transformers onshore. The third likely situation is that there is a 

spare available from an overseas factory, this is considered the most likely scenario and is 

used as the Expected Situation. The worst case scenario may of course occur, but is not likely 

to be the general rule and for this reason this case is not considered. 

The reliability data that will be used for the analysis of the transformers are: 

Table 17: Reliability analysis input for power transformers and converter transformers 

Failure rate [1/yr] 0.0308 

MTTR1 [h] 17 

MTTR2 [h] 103 

MTTR3 [h] 817 

 

 Converters Chapter 13.5

For HVDC systems there are two main technologies that can be utilized for the AC/DC 

conversion. LCC and VSC converters. Of these only VSC converters are possible to use in wind 

farm systems and therefore these have been selected for use in the Dogger Bank project. 

Chapter 13.5.1 Choice of converter technology 

There are two main technologies for HVDC transmission, LCC HVDC and VSC HVDC, 

distinguished by the converter technology. LCC HVDC is often referred to as HVDC Classic 

and is the older and the more mature of the two.  It is based on line commutated or current 

source converters, which uses thyristors as switching components. VSC HVDC has relatively 

recently surfaced as a competing transmission technology. Voltage source converter HVDC 

uses transistors as switching devices. There are presently two manufacturers of VSC HVDC 

with installed systems, ABB and Siemens with their HVDC Light and HVDC Plus technologies 
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respectively. There are quite a few differences between HVDC classic and VSC HVDC, and 

only some of these will be covered here. 

Being the more mature technology LCC has both lower cost and lower losses than VSC 

technology. It also supports higher ratings and is therefore better suited for extra-long 

distance extra high power transmission than VSC. Having been used longer and more 

extensively, the operation experience is well documented and so is the reliability of HVDC 

classic links and its components. 

What is considered the main benefit of using VSC technology varies depending on who you 

ask, although most commonly it is stated to be one of the following: 

 The ability to independently control the active and reactive power on the converter AC 

side.  

 The ability to change the direction of the power flow by changing the direction of the 

current through the converter.  

The individual control of active and reactive power is a great advantage over LCC technology 

which consumes reactive power and therefore needs a reactive compensator on the AC side. 

As VSCs can be set to produce reactive power they can be used as a reactive compensator 

device, improving the power flow in the AC system. 

The current through an LCC converter is constant and the power flow is changed by 

adjusting the voltage at the converter terminal. In order to change the direction of power 

flow through an LCC converter the voltage polarity needs to be changed and hence the 

system needs to be shut down for this to happen. In VSC converters the voltage at the 

converter terminal is constant and in order to change the power flow the current is adjusted. 

This results in a more flexible power flow control. This power control method also allows for 

some further advantages. Extruded XLPE cables can only be used in VSC HVDC systems. As 

these are cheaper than the mass impregnated cables and the oil-filled cables that are used 

for LCC systems and also much simpler and more environmentally friendly than the oil filled 

cables this offers a real advantage. 

Some other advantages of using VSC compared to LCC HVDC is that VSC converters are 

capable of black start, which means that they can be connected to a weak AC system. LCC, 

which does not have this possibility, would not be suited for this kind of use. LCC HVDC 

produces much harmonics and therefore needs large filters to be fitted. Particularly for 

offshore use these filters become expensive because of the added cost of the platforms on 

which they are placed. Multi-layer VSC HVDC produces much less harmonics and can be 

tuned to remove problematic harmonics. This makes the filters obsolete and helps reduce 

the system cost. 

By examining the pros and cons of the two competing technologies it appears that LCC 

technology provides cheaper transmission in many cases, while the strength of VSC is that it 
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is technically superior, allowing for more control and larger degrees of freedom of choice 

after installation. 

Chapter 13.5.2 Introduction to VSC converters 

Voltage Source Converters, VSC, is a relatively new technology for use in high voltage 

systems. Line Commutated Converters, LCC, are often referred to as HVDC classic as this has 

been the only available option for high voltage AC/DC conversion over several decades.  

VSC converter technology has been successfully implemented by ABB and Siemens, who 

name their technologic solutions HVDC light and HVDC PLUS, respectively. ABB was first to 

create a VSC based HVDC system and their first commercial project was the connection of 

Gotland to the Swedish mainland in 1997. After about a decade of improvement of the 

technology while ABB was the sole provider of VSC technology, Siemens installed their first 

VSC link in 2010 in the Trans bay cable project between Pittsburg in the East Bay and Potrero 

Hill in the centre of San Francisco. 

The main difference between VSC and LCC converters is the different switching devices used. 

LCC employs thyristors, which are semi-controllable switches, while VSC employs transistors, 

which are fully controllable switches. 

The decades of use of LCC technology has made it a mature technology, a conclusion that is 

drawn based on the very limited improvements that are made in reducing losses and cost of 

the converters. The same is not true of VSC technology in which there are made much more 

significant improvements, and which saw the new concept of HVDC PLUS emerge recently 

from Siemens. The constant improvements in price and electric losses are predicted to make 

VSC and LCC relatively equal in these two aspects within some years or decades and in the 

event of this then VSC would likely replace LCC technology all together for new installations. 

The prices of the converters are dependent both on the component cost itself and the space 

the converter takes up. Particularly offshore space is an important cost factor as the 

components must be placed on expensive platforms. 

Among the main benefits of using VSC technology is that it allows for increased control of 

the power flow, and subsequently is better suited for use in multi-terminal systems than its 

counterpart. Another important benefit is that VSC converters, unlike LCC converters, can be 

used for black-start operation. This allows the link to connect both strong and weak grid 

systems and is particularly interesting for wind farm projects which require the black start 

capability for the cases where a fault in the system forces it to shut down.  

Chapter 13.5.3 VSC converter technology 

This sub-chapter is an excerpt from the pre-master project of the author [9] to provide an 

overview of the converter technology. 

A voltage source converter is shown in Figure 28. The figure displays a three phase full 

bridge converter. Voltage source converters can also be single phase, but as they are most 
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commonly used for three phases the term VSC is commonly accepted to refer to three phase 

VSCs. VSCs are bidirectional AC/DC converters and can thus be used both as inverters and 

rectifiers.  

Insulated gate bipolar transistors (IGBT) are used as switching devices in VSCs. Transistors 

are fully controllable semi conductive devices and hence allow controlled switching on and 

off of each conductive path on the bridge.  

The operation of VSCs is based on switching on and off of the transistors at different times in 

order to produce a certain output. In rectifier mode the current is led from the AC side and 

through the transistor bridge. Depending on the instantaneous direction of the voltage in 

each phase the current will pass through either transistor px or nx (see Figure 28), where x 

refers to the name of the phase (a, b or c). The current will then return via the other phases’ 

opposing transistors. For example when phase a has positive voltage the current will flow 

through Tpa and return via Tnb and Tnc.  A thorough description of the switching will not be 

provided here, interested readers are referred to [34]. 

The switching scheme most commonly used is pulse width modulation (PWM). In PWM 

switching, see Figure 29, the output signal for each phase is a function of a two signals, one 

triangular, Vtri, and one sinusoidal control signal, Vcontrol. Whenever the control signal has a 

higher instantaneous value than the triangular signal the output voltage will be 1 pu, at all 

Figure 28: Voltage Source Converter [1] 

Figure 29: Output voltage from VSC in inverter mode [1] 
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other times the output voltage will be zero. The output voltage signal will therefore be a 

series of square waves of different period as indicated by the green signal in Figure 29.  

It is clear that the output signal in Figure 29 needs filtering before it can be transmitted into 

an AC system. In Figure 7 such a filter is included in the DC system. By using a more complex 

version of the VSC a signal without the need for filtering can be obtained. The layout needed 

for this result is a multilevel converter (MVSC). In MVSCs stacks of transistors replace each 

transistor in Figure 28, this idea is portrayed in Figure 31. 

 

By using this configuration the output voltage is no longer a 1 bit (on or off) signal but an n 

bit signal, where 2n is the number of stacked transistor elements. By increasing the number 

of bits in the signal the signal can be approximated better to a sine wave. Figure 30 displays 

a three bit sinusoidal approximation (orange line) which would be the output of an MVSC 

with eight stacked elements as in Figure 31. 

The improved output voltage of the converter means removing many low frequency 

harmonics. This means that the size of the filters can be reduced and in some cases filters 

can be made obsolete by using multilevel converters. 

In addition to improving the output voltage the MVSC also provides redundancy of transistor 

elements. If an element should be damaged it can be easily bypassed and the converter will 

still be operational. This significantly reduces the down-time of the converters as the 

converter will only be turned off for the period of time it takes to repair or replace the 

element. The main drawback of multilevel converters is the price. By increasing the number 

of IGBTs the price will be much higher.  

Power control in VSCs is more flexible than power control in LCCs. The direction of the 

power flow through the VSC is dependent on the direction of the current through the 

converter rather than the voltage across it, as is the case for LCCs. This is necessary in a 

meshed grid in order to avoid switching In and point-to-point connections a change in power 

direction at one node necessarily means the other node should also change and such a way 

of changing power direction is less problematic. For simple grids it is possible to run the 

system in such a way that power direction through the nodes will never change, the impact 

Figure 31: Concept for multilevel converter 
[1] 

Figure 30: Single phase output voltage from an MVSC  

[1] 
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of switching in the system will not be very large due to the size of the system. In large 

meshed systems however the impact of switching the system will be significant as many 

systems are connected to it.  

In rectifier mode the VSC allows voltage control, meaning the voltage can be set to a value. 

In inverter mode the controllable parameters are voltage level and voltage angle. By 

allowing control of these two parameters the active and reactive power on the AC side of 

the converter can be controlled independently.  

The size of VSCs is reduced compared to LCCs. This is mainly due to the reduction in circuit 

elements. Reduction in size is particularly important in offshore locations where space is 

expensive due to the need for platforms. 

Chapter 13.5.4 Price 

The converter price used in the analysis is based on a report Siemens has written for 

Forewind, investigating some potential layouts for the Dogger Bank projects. The prices 

Siemens use are: 

Table 18: Price estimate for converter stations 

Converter station rating 900 MW 1100 MW 1400 MW 1700 MW 

Converter station price [£M] 334 365 439 541 

 

These prices also include the cost of the converter transformer. 

Chapter 13.5.5 Unavailability 

There are large uncertainties connected to the unavailability of VSC converters. These 

uncertainties result both from there being so little operational experience with the 

converters and from their rapid development, which might leave whatever operational 

experience there is, inapplicable. An unfortunate fact is that there is no publicly available 

recording of faults and repair times, nor does there appear to be any significant ongoing 

survey of this.  

Many propose that the unavailability of VSC converters would not be very different from 

that of HVDC classic converters. In addition there are some more specific suggestions as to 

the reliability of VSC converters, most notably by Cigré and DNV. DNV splits the failure of 

converters into five potential sources of error, whose proposed impact on reliability is given 

in the table below.  
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Table 19: DNV internal reliability indices for VSC converters [35] 

 MTTF 
[yr] 

MTBF 
[yr] 

λ 
[1/yr] 

MTTR 
[h] 

U 
[h] 

DC filter 6 6.00 0.17 24 4.00 

IGBT system 2 2.00 0.50 24 11.98 

Converter reactor 7 7.00 0.14 24 3.43 

AC filter 24 24.00 0.04 24 1.00 

Control system 1 1.00 1.00 9 8.99 

      

Overall   1.85 15.90 29.40 

Overall, excluding filters   1.64 14.87 24.40 

Percentage deviation   11 % 6 % 17 % 

 

The table shows that the control system is the component that is likely to fail most often, 

but that the largest impact on availability is made by the IGBT valves. By using multi-level 

converters the filters can be made obsolete and for this reason the overall impact of the 

converter when excluding the filters is calculated. As the table shows there is a large impact 

of not including the filters. [35] does not provide any basis on which these numbers have 

been selected or calculated and as such they represent a large uncertainty. 

In [36] Cigré base their suggested values on fault studies of two individual projects. A total of 

four converters hardly makes for a strong statistic, and as the study only covers a few years, 

during which there is a dramatic reduction of faults the values have little credibility. The 

reported outages in the two projects are: 

Table 20: Outage rates for two specific VSC HVDC schemes [36] 

 Halvarsson Converter Tomson Converter Total 

Period IGBT Failures IGBT Failures IGBT Failures 

July 2003 – June 2004 16 18 34 

July 2004 – June 2005 11 10 21 

July 2005 – June 2006 14 8 22 

July 2006 – June 2007 2 4 6 

July 2007 – June 2008 2 4 6 

July 2008 – June 2009 5 4 9 

July 2009 – Nov 2009 2 5 7 

 

Unfortunately there is no reporting of the outage times connected to these outages. 

In a different report by Cigré [37] reliability is studied based on operation of projects in two 

specific years. The survey includes 34 monopolar and bipolar HVDC schemes. 
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Table 21: Outage rates and outage durations for VSC converters during two specific years [37] 

Category Average outage rate 
[1/yr] 

Average outage duration 
[h] 

2005 2006 2005 2006 

Valves 1.4 1.5 3.7* 2.3 

Control and protection 1.7 2.1 2.0 3.9 

DC equipment 1.1 0.7 5.9 6.9 

Average total 4.3 
4.1 Average total per 

converter 
1.4 

*Excluding one exceptionally long outage duration of 1743 h. 

Comparing the results in the three above tables show large variations in both outage 

frequencies and outage durations. Because of the very limited input into the analysis in 

Table 20 and the large variations within the data this survey is disregarded in this thesis. 

Table 19 Table 21 show some variation in failure rates, but the most notable difference is the 

repair time. In both cases the repair time is given for onshore converters, offshore 

converters will normally have a much higher repair time due to the time it takes to acquire a 

vessel and to travel to the site. In the case of Dogger Bank there will be crew placed offshore 

and as converters tend to experience easily mended faults more often than other 

components it is natural to assume that spare parts will be kept in storage offshore in order 

to keep the repair time low. Using this assumption is can further be assumed that the repair 

time will be equal to that of an onshore converter. 

Because the DNV data uses the same repair time for all components this appears to be a 

pure assumption, albeit probably a skilled assumption. However the Cigré data, which is 

experience based offers significantly lower repair times. From this basis it is reasonable to 

conclude that experience will give the more accurate estimate and therefore the Cigré repair 

time will be used in this thesis. With the same logic the Cigré failure frequency is also used. 

Table 22: Reliability analysis input for VSC converters 

Failure rate [1/yr] 1.4 

MTTR [h] 4.1 
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Chapter 14. Simulations 

 Assumptions and Simplifications Chapter 14.1

This sub chapter is dedicated to provide an overview of the main assumptions that have 

been made and to briefly discuss the impact of making these assumptions. 

The aim of the thesis is to study three possible layouts for the connections to shore of four 

projects in the Dogger Bank zone and present which of these layouts appears to be the most 

economically beneficial. 

One of the main simplifications that is made in the analyses is that electric losses are 

neglected. By neglecting electric losses the amount of energy delivered to shore is increased 

compared to the real life value and hence the revenue of sale of the electricity is enlarged. 

This simplification thereby serves to increase the benefit of layouts that deliver more energy 

than others. This is particularly true as the electric length of alternative connections will 

reasonably always be greater than the electric length of the primary path to shore of a 

project. The result of this simplification is therefore that more complex layouts are favoured 

unjustly.  

The onshore national grid is modelled as a stiff grid in this thesis. This implies that the 

national grid will be able to receive all energy delivered from Dogger Bank. The EU directive 

on promotion of the use of renewables states that energy from renewable sources should 

always have priority in the grid. This means that the assumption is not far from the truth, 

though outages in the national grid will likely restrict the power flow at times.  

Another important simplification that is made is that maintenance periods for the system 

components are left out. When maintenance work is done, components generally have to be 

de-energized, which for many components means that the entire system is left de-energized 

(particularly in the Base Case where so many components are connected radially without 

alternative current paths). During periods when the system is left de-energized there will 

naturally be no production and the energy that would otherwise be produced is "lost". In 

order to reduce the impact of the maintenance work this is therefore often attempted 

scheduled to periods with low wind speeds and therefore low production as the amount of 

"lost" energy can then be kept at a low level. In order to keep the time necessary for the 

maintenance as short as possible and thereby reducing the amount of "lost" energy, the 

maintenance work is attempted scheduled for time periods with agreeable weather. Rough 

weather may increase the difficulty of the job or may even prohibit the maintenance crew 

from entering the component platforms or from using the maintenance vessels. In such 

cases the system remains de-energized over longer time periods than are theoretically 

necessary. Over a year the summer is the time period with the lowest wind speeds and the 

most agreeable weather. Maintenance work will therefore to as large an extent as possible 

be performed during the summer months. In order to take into account the energy that is 

"lost" due to maintenance work some knowledge of the wind speed distribution over the 

year is necessary. In the work with this thesis such knowledge has not been available and 
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extending the model to take into account maintenance work was therefore not considered. 

One observation is however made. Because the more complex layouts provide alternative 

current paths during the time when a connection to shore is undergoing maintenance, the 

impact of including maintenance work in the analysis will increase the resulting benefit of 

using the complex cases.  

While repair times are accounted for in the analysis, the cost of the repair is not. If 

components need replacement as a result of a fault this cost is absolutely worth noting. As 

the difference between the cases is only cables and switchgear the cost of repair or 

replacement of these are the only repair costs that would influence the final result. Clearly 

the cost of repair of these components will only influence the cases in which the 

components are present, and therefore the more complex layouts are favoured by leaving 

out these costs. The cost of removing the components after the end of Dogger Banks 

concession time is also neglected. 

In the analysis of Case Two and Case Three the added cost of extra HVDC CBs has been 

added as to the investment cost of each project, which means that the investment in the 

switchgear is made at least a year or more before the switchgear is actually used. One thing 

that is not taken into account is the need to de-energize parts of the system during work on 

the interconnections. This added down time would however likely be scheduled during 

periods with low wind speeds and loss of revenue that results from this would probably be 

small. As the number of interconnections increases the impact will naturally grow and hence 

the simplification of leaving out this loss of revenue favours the complex layouts over the 

simpler ones.  

An assumption is also made as to the building of the four projects. It is assumed that the 

projects are built in the order indicated by their name, and that one project is built each 

year. Project 1 is assumed built in 2014 and it is assumed that the investments are made in 

the same year as the project starts producing power. These last assumptions are clear and 

simply wrong, however the impact of the assumptions should be limited. The assumption of 

the four projects being fulfilled in four consecutive years is unlikely to be true. Because there 

will likely be more time between the building of the projects, the amount of time during 

which for example all four projects are in operation is reduced and the benefit of choosing 

the more complex layouts will be reduced. If the connections to shore are not removed at 

the end of a concession period (this is not studied in this thesis) then these will still serve as 

alternative current paths to shore for the remainder of the life time of Dogger Bank. 

Depending on how much energy is delivered through this/these remaining connection(s) to 

shore, during the remainder of Dogger Bank's life time, the impact of extending the time 

between the building of the projects could potentially be a strengthening of the Dogger Bank 

economy. 

Overlapping faults have been included in the reliability analyses of this thesis to the extent 

that all components may experience faults at the same time. In reality this is improbable as 
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when a fault occurs in one component, other components will need to be de-energized and 

these (with the exception of cables) will not be likely to develop a fault. The error that is 

imposed by considering these overlapping faults is however very small. For the components 

that may experience overlapping faults, for example components in the upstream 

connection and in the connection to shore (not in Base Case) the probability of the overlaps 

is higher as there are more possible combinations of possible than of impossible overlaps, 

hence the overall impact of including overlapping faults is of a corrective nature.  

Very significant assumptions have been made for the input data to the analyses which are 

presented in Chapter 13 and Chapter 14.2. The reliability data have been found in a number 

of different articles and reports and have been selected based on the credibility of the 

sources and based on which can be confirmed by other sources. The economic data have for 

the most part been offered by Statkraft, but are only estimates and can therefore hold large 

uncertainties. Because of the uncertainty of these data sensitivity analyses are performed 

for the most important of them in order to see the impact of potential variations in the 

values. For the cable price there is added uncertainty as the cable laying price will likely not 

be equal for all areas. 

A simplification of which components are included in both the reliability analyses and the 

economic analyses has also been made, with the assumption that all other costs are equal 

between the cases and that failures in the remaining components will have insignificant 

impacts on the reliability of the system. In the economic analyses the included components 

are: Cables to shore, inter-project cables, HVDC CBs, converter stations, and additional HVAC 

CBs needed in the case of AC interconnections. The most significant components that have 

been left out from the analyses are additional protection system devices, communication 

devices and regulating system components. 

It has been assumed that control system of Dogger Bank works perfectly and that no start-

up time is required after a change in the power flow or a fault. Individual remote control of 

the WTGs is assumed in order to be able to lower the production when the transmission 

system is only able to transmit some of the produced power. The relay system of Dogger 

Bank is assumed to be almost perfect in the sense that if a CB fails to operate on demand 

then the next line of CBs will always operate without fault. It is also assumed that the CBs 

are 100 % secure and therefore will never operate out of turn. All DSs are considered ideal 

(though manually operated) components. The DSs are also assumed to be free of charge, 

which is definitely wrong, though the price is considered to be comparatively small. 

No analyses have been made for the case where only three projects are operating and all of 

these are connected together. In Case Three such a layout would be relevant in the year 

before the fourth project is built and in the first year after Project 1 is decommissioned 

(assuming the connections to shore are removed once the project is decommissioned). 

Because having three projects interconnected would lead to more energy being delivered to 

shore than if only two projects are interconnected, this simplification leads to less delivered 
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energy in two of the operating years and hence makes Case Three appear less beneficial 

than in reality. 

 Input Chapter 14.2

This chapter is included to collect all the input data in one chapter. 

Chapter 14.2.1 System parameters 

Some of the characteristics of the system are important in order to evaluate the reliability 

and cost of the system. The input values that represent the Expected Situation are included 

in the table below. 

Table 23: Overview of system parameters for the analyses 

Cable lengths 

Cable Length [km] 

Connection 1 to shore 213 

Connection 2 to shore 261 

Connection 3 to shore 223 

Connection 4 to shore 215 

Project 1 intra project cables 9.5 

Project 2 intra project cables 8 

Project 3 intra project cables 6 

Project 4 intra project cables 5 

Inter project cable 1-2 72.9 

Inter project cable 1-3 28.2 

Inter project cable 1-4 30.6 

Inter project cable 2-3 41.2 

Inter project cable 2-4 95.3 

Inter project cable 3-4 35.3 

Power and energy 

Rated power per project 1 153.7856 MW 

Lossless energy potential per project 5 909 150.559 MWh 

Total lossless energy potential 23 636 602.236 MWh 

Discrete power curve Confidential 
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Chapter 14.2.2 Reliability analysis 

The reliability indices that are used in the reliability analyses are repeated in the table below. 

Table 24: Overview of all input values for the reliability analysis 

Component Reliability indice Value 

HVAC CB Probability of failure to operate on demand 0.72 % 

DS Switching time [h] 1 

HVDC CB Probability of failure to operate on demand 0.72 % 

HVDC Cable Failure rate [1/(100km*yr)] 0.094 

 MTTR [h] 1368 

HVAC Cable Failure rate [1/(100km*yr)] 0.0705 

 MTTR [h] 1368 

Transformer Failure rate [1/yr] 0.0308 

 MTTR [h] 817 

Converter Failure rate [1/yr] 1.4 

 MTTR [h] 4.1 

Node Failure rate [1/yr] 0.02 

 MTTR [h] 100 
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Chapter 14.2.3 Economic analysis 

Table 25: Overview of all input values for the economic analysis 

Investment cost 

Component Rating Price 

HVDC Cable Appx 1000 MW £                         1/km 

HVDC Cable 600 MW £       1 000 000 

HVAC Cable 600 MW £       1 600 000 

Converter  2x 900 MW £   334 000 000 

Converter  2x 1 100 MW £   365 000 000 

Converter  2x 1 400 MW £   439 000 000 

Converter  2x 1 700 MW £   541 000 000 

HVDC Circuit 
Breaker  

900 MW £   8 350 000 -   £   16 700 000 

HVDC Circuit 
Breaker  

1 100 MW £   9 125 000 -   £   18 250 000 

HVDC Circuit 
Breaker  

1 400 MW £   10 975 000 -  £  21 950 000 

HVDC Circuit 
Breaker  

1 700 MW £   13 525 000 -  £   27 050 000 

O&M cost 

Component Rating Price 

HVDC Cable  £           2 700 [1/(km*yr)] 

Converter 2x 1 000 MW £   1 480 000 [1/yr] 

Converter 2x 1 320 MW £   1 628 000 [1/yr] 

Economic parameters 

Interest rate  4 % 

Inflation rate  2 % 

Discounting rate  0 % 

CfD strike price See Table 10  
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Chapter 15. Results 
This chapter conveys the results obtained in the analyses. As the analyses are sensitivity 

analyses with regards to individual parameters the results are presented to show the impact 

of each variation individually.  

The results are presented graphically along with a table of the results of each case in each 

state. The axes of the graphical representations only stretch over the span relevant to view 

the differences between the cases and states. This is done because the differences are 

relatively small, order of magnitude a few percent of the total value. For this reason the axes 

are not the same in each figure, and the different simulations cannot be compared at a 

glance. 

In the result graphs that display the economic results of the simulations the term profit is 

used on the Y-axis. This is not the profit of the project, but rather, as previously described, 

the surplus found when subtracting the investment cost and O&M cost that are included in 

this thesis from the revenue. The profit of the Dogger Bank projects will hence be 

considerably lower than what is presented here as very large costs have been left out. The 

values on the Y-axis hence serve to show the difference between the cases only. 

All of the analyses spring out from the case in which the input values are as given in Chapter 

14.2. Because the word Base Case is in this thesis used to describe the different layouts the 

term Expected Situation will be used to refer to the mentioned input values. In the Expected 

Situation all connections to shore have 100 % rating (equal to project rating) and all 

interconnections are made with HVDC cables connected in an MTHVDC system with HVDC 

CBs available at all points of interconnection.  

Many of the graphs include the Produced Energy as a series. This is done to illustrate the 

amount of losses that result from the grid. The Produced Energy is the total amount of 

energy that is delivered from the wind turbines to the collection points.  

As described in Part I.Chapter 1.2.3 there are three different ways of interconnecting the 

Projects in Case Two, these are illustrated in Feil! Fant ikke referansekilden.. 

In the analyses it was found that which one of these is the best option is dependent on the 

input data. However, none of the analyses proved Option three as the better option 

reliability wise, hence this layout will never (in the analyses performed here) deliver more 

power than the alternatives. Also the cables needed here are longer than in the other 

Options which means that this Option will always be the more expensive. The conclusion can 

therefore be drawn that Option three will never be the best one and hence it has been left 

out of the following results.  

Options one and two vary as to which is the better layout and hence both are included 

below. They are referred to as Case Two (1) and Case Two (2) respectively. 
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Figure 32: Three possible layouts of Case Two 
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 Expected Situation Chapter 15.1

The Base Case Delivered Energy 

clearly varies a great deal between 

the Projects. This is a natural 

consequence of the differences in the 

lengths of the connections to shore. 

Also the differences in cable length 

within the Project, namely the cables 

from the collection points to the 

converter, contribute to the 

differences. The magnitudes of 

difference in cable length within 

Projects are very much lower than the 

magnitude of difference in cable 

length in the connections to shore. 

This leads to the variations in 

delivered power being very close to 

proportional to the length of the 

connection to shore. 

The column chart showing total 

delivered energy shows that the 

amount of energy delivered does 

increase as the complexity of the 

system is increased, however the 

increase is non-linear and the 

increase in delivered power from the 

Base Case to Case Two is larger than 

the corresponding increase between 

Case Two and Case Three. Case Two is 

here illustrated by Option 2. 

 The profit chart shows that the profit 

also increases with increased 

complexity of the system. The 

increase in profit follows to a large 

extent the tendency of the produced 

energy in that the increase in profit is 

larger from Base Case to Case Two 

than from Case Two to Case Three.  

  

 
Chart 1: Base Case Delivered Energy to Shore for Each Project in 
the Expected Situation 

 
Chart 2: Total Delivered Energy to Shore for the Different 
Layouts in the Expected Situation 

 
Chart 3: Profit of the Different Layouts in the Expected 
Situation 
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 Cable Repair Time Chapter 15.2

 
Chart 4: Total Delivered Energy as a Function of Cable Repair Time 

 
Chart 5: Profit as a Function of Cable Repair Time 

The above two graphs show a few trends that are of interest. First and foremost the graphs 
show that as the cable repair time increases the delivered power, and hence the profit is 
reduced. Secondly the graph shows that the benefit of using a more complex system 
increases with increased repair time. Thirdly the trend of the difference between Base Case 
and Case Two is larger than the difference between Case Two and Case Three, as was 
observed for the expeced case. The repair times that are used are one, two and three 
months, and the repair time applies to all cables in the sytem. As the cables are an important 
contributor to the system unavailability in any case because such long distances are used, it 
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is reasonable to expect a large impact of varying the repair time. 

 Cable Failure Rate Chapter 15.3

 
Chart 6: Total Delivered Energy as a Function of Cable Failure Rate 

 
Chart 7: Profit as a Function of Cable Failure Rate 

The impact of variations in cable failures rate are found to be similar to the impact of varying 
repair times. Because the failure rates and repair times were not presented along with a 
probability of these occuring it is hard to say that the three sets of values that are evaluated 
correspond. Assuming that they do however it is found that the impact of a high failure rate 
is lower than the impact of a high repair time. 
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 Transformer Repair Time Chapter 15.4

 
Chart 8: Total Delivered Energy as a Function of Transformer Repair Time 

 
Chart 9: Profit as a Function of Transformer Repair Time 

The above graphs show the impact of the location of spare transformers. As previously 
explained the repair time of the transformer is mainly dependent on the time it takes to 
bring the transformer to the site. If the transformer is available on site the repair time is as 
low as 17 h, whereas if the transformer is locaed on shore or overseas, the aquiring time and 
hence the repair time increases rapidly. Again it is evident that the benefit of Case Two 
compared to Base Case is higher than for Case Three compared to Case Two. 
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 Switching Time Chapter 15.5

 
Chart 10: Total Delivered Energy as a Function of Disconnector Switch Switching Time 

 
Chart 11: Profit as a Function of Disconnector Switch Switching Time 

The impact of varying the switching time is very low. Of course the variations in switching 
time presented in the graphs are very small and a large impact was not to be expected, but 
these values are plausible ones as there are crew offshore, and the travel time to manually 
switch is low. 
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 AC vs. DC Interconnections Chapter 15.6

 
Chart 12: Comparison of Total Delivered energy for AC and DC Interconnections 

 
Chart 13: Comparison of Profit from AC and DC Interconnections 

The comparison on AC and DC inerconnections is not very thouroughly done. The main 
source of error in the AC case is that, due to the limits of Excel, it was not possible to 
evaluate the AC cable as connected on the AC side. Hence the converter unavailability 
influences the AC interconnection to appear worse than it really is. In addition only the case 
in which HVDC CBs are used in the MTHVDC system is studied, whereas a system without 
this would give a very different answer. The results here show that there are only very small 
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difference in the availability of the AC and DC connection schemes, but due to the cost of 
HVDC CBs the investment cost is higher in the DC case and HVAC therefore turns out to be 
the best option. 

 Inter-Project Cable Rating Chapter 15.7

 
Chart 14: Comparison of Total Delivered Energy as a Function of Inter Project Cable Rating 

 
Chart 15: Profit as a Function of Inter Project Cable Rating 

When comparing the delivered energy and profit of the different cases for varying ratings of 
the inter project connections it is found that the amount of delivered energy grows 
continously as the cable rating increases, but the profit falls slightly for ratings above 50 %. 
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 Project 2 Reduced Rating to Shore Chapter 15.8

  
Chart 16: Comparison of the case where Project 2 has a connection to shore of 50 % rating and the inter-
project links are 50 % or 100 % rated and the expected situation in terms of delivered energy to shore and 
profit 

 
For Case Three a possible version of the layout is to reduce the rating of one of the 
connections to shore. Because Project 2 has the longest connection to shore, this is the most 
expensive connection and is also the connection most prone to faults. This makes Project 2's 
connection to shore the best suited connection for lowered rating. The chart above shows 
the impact of using such a layout. The two leftmost bars show the outcome for the described 
layout with a rating of the inter-project links of 50 % and 100 % respectively. Calculations 
show that the decrease in Investment cost is £ 171 573 420 and £ 89 453 820 respectively for 
the two cases. It is however evident from the chart that this saving is nowhere near enough 
to make up for the decrease in delivered energy. 
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 Interest Rate Chapter 15.9

 
Chart 17: Profit as a Function of Interest Rate 

 Cable Price Chapter 15.10

 
Chart 18: Profit as a Function of Cable Price 

The above two chart shows the cases as very nearly parallel as the interest rate and the cable 
price changes. This implies that the impact of these parameters on the benefit of using Case 
Three over Base Case is limited. 
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Chapter 16. Discussion and Conclusion 
The previous chapter presented the results of the main analyses performed in the work on 

this thesis. The results show with great consistency that the most optimal layout is the Case 

Three layout in which all four projects are connected in a ring system. The Expected Situation 

results show an increase of approximately £ 2.1 billion in the profit if the ring layout is 

selected instead of the Base Case layout. The increased profit from implementing the Case 

Two layout, in which the projects are connected in pairs is calculated to approximately £ 1.5 

billion.  

Though the results of the analyses consistently show Case Three as the optimal layout the 

chapter on assumptions and simplifications indicates that the results may not be as clear as 

they appear here because almost all of the simplifications made serve to favour the use of 

interconnections. Because of this favouring of Case Two and Case Three, the results 

obtained in the analyses will show these two cases as better than they actually are. 

Depending on the magnitude of the impact of these simplifications the gap in profit between 

the three cases will likely decrease. If the magnitude of the impact from the simplifications is 

large, then the gap in profit may even be reversed and Case Three may not be the more 

optimal of the three layouts after all.  

The results presented in Chart 3 shows that the marginal increase in profit is less between 

Case Two and Case Three than Between Base Case and Case Two. The inverse of this 

relationship will in all likelihood be found in the impact of the simplifications that have been 

made for this thesis, meaning the marginal benefit (or favouring) resulting from the 

simplifications is larger for Case Three than for Case Two.  

It is evident that the different layouts will give different developments of the economy over 

the operating years of the wind farms as a result of variations in investment cost and 

delivered energy. Chart 19 shows how the economy of the different layouts develop relative 

to the Base Case economy. 
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Chart 19: Relative development in profit of the different layouts 

The chart shows that as time goes, the more complex grid structures, which deliver more 

energy to shore, start to benefit from the added investment that was made in the first four 

years. The development of the chart in the first four years shows the impact of the added 

investments being made as more projects are built. Because the chart shows relative 

development of the economy the Base Case economy is always zero in the above chart, 

though naturally it increases a great deal over the years of operation.  

By looking more closely at the profit in each year it is found that the break even operating 

time, meaning the year in which the profit of Base Case is equal to Case Two and Case Three 

respectively, is some time in year 9 for Case Two and some time in year 10 for Case Three. 

This implies that only after this amount of time can the added investment be justified. Some 

wind farm projects experience problems with the wind turbines and have trouble operating 

the wind farm through the entire licence period. There are also discussions online in wind 

power fora as to what is the real life time of a wind turbine, some claim it is significantly 

lower than 20 years. Should this be the case for Dogger Bank and the operation is stopped 

due to wind turbine problems the benefit of choosing a more complex grid structure would 

be much reduced. It is however unlikely that such a stop in operation should happen as early 

as in year nine, which means that there should be some benefit to choosing Case Two or 

Case Three over Base Case. If Forewind should want to continue operation of Dogger Bank 

after the first concession runs out, and they are granted a new licence much of the grid 

system can be kept as is and the new turbines can be connected to it. In this case the benefit 

of choosing a more complex grid structure will become very beneficial as the increase in 

delivered power will persist longer, without much added investments.  

Neither the differences in delivered energy nor the differences in profit are very large when 

comparing the differences cases, this is evident when looking at the Y-axes used in the result 
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graphs above. To demonstrate the relative insignificance of these differences the column 

diagrams for the expected situation are repeated below along with the same diagram with Y-

axes that start at zero. 

 

Chart 20: Relative Significance of Changing Layout 

The charts show that though the differences in delivered energy are significant, most of the 

energy is delivered through the project’s own connection to shore. This point can also be 

deducted when looking at the results of the sensitivity analyses of interconnection power 

rating in the expected situation and in the case where Project 2 has a reduced capacity to 

shore. The first of these analyses (Chart 14 and Chart 15) shows that the amount of power 

delivered to shore is hardly changing when the inter-project links’ rating increase. This 

implies that it is not the inter-project links that is the limiting factor, but rather the 

connections to shore themselves. This further implies that the concurrency of the wind 

farms has a negative effect for the wind farm owner as well as, for the power system22. The 

second analysis (whose economic part was performed only for Case Three) confirms this by 

showing (Chart 16) that some more energy is transmitted via the inter-project links, but the 

total amount of energy delivered to shore is significantly reduced. The fact that much less 

energy is delivered to shore in this case is a confirmation of the congestion of the links to 

shore, while the increase in energy transmitted via the inter-project links is a confirmation of 
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these links not being congested. These results originate from the fact that for large parts of 

the time Project 2 will deliver energy to the ring system as its own connection to shore is 

congested. When for example the production at Project 2 is say 90 % then 40 % will be 

delivered to the ring system, if all four wind farms deliver the same amount of power from 

the upstream connection and all connections to shore are available then each of the other 

projects can transmit 10 % extra and only 10 % of the energy is lost. 

Analyses were also performed to investigate the benefit of the HVDC circuit breakers. A 

sensitivity analyses of the switching time was performed for this situation. In the expected 

situation with HVDC CBs a 1 hour switching time was assumed and this was also used as a 

starting point for this analysis. It was found that with a switching time of 1 hour the increase 

in profit compared to having HVDC CBs installed was £ 450 594 483.00. Operating the 

system without HVDC CBs therefore appears to be a god solution because the revenue is 

increased and the risk is reduced by decreasing the investment. When 6 hour switching time 

was used it was found however that the impact on the economy of Dogger Bank was 

negative. A loss of £ 1 316 262 573.88 was calculated. The break even switching time, 

meaning the switching time that leaves the situations with and without HVDC CBs equal, was 

found to be approximately 2.24 hours. 2.24 hours or roughly 2 hours and 15 minutes is a 

fairly wide opening in time, so long as there are no overlapping faults, overlapping faults 

could lead to the need for switching DSs that are far between and the travel time may 

become a significant factor. Even though two hours should be sufficient to switch the DSs 

there is always a possibility of some delays particularly due to weather. Should the weather 

be such that the switching must be delayed regularly the benefit of not using HVDC CBs is 

lost. Remote operated DSs are also available, and at a lower price than CBs. By using remote 

operated DSs the switching time can fall to almost zero. A down side to remote operated 

switchgear is of course that the dependability of the switchgear is reduced. 

Because the economic risk is reduced by lowering the investment it seems that not using 

HVDC CBs leaves the system more economically sound, particularly if the switches can be 

remotely operated at a low cost. The gain of having zero switching time, which is 

approximately what remote switching would give, is calculated to £ 814 486 819.64 

(neglecting the price of the switches) compared to the case which uses HVDC CB.  

An analysis was done to evaluate the benefit of interconnecting the Projects through HVAC 

connections. This analysis shows that HVAC connections would be beneficial compared to 

HVDC connections. The impact of choosing AC over DC for the interconnections is found to 

be approximately equal to the impact of choosing Case Three over Case Two, to the end that 

Case Two with AC interconnections yields a loss of only £ 37 million compared to Case Three 

with DC interconnections. When comparing the HVAC case with the HVDC case without 

HVDC CBs the difference in profit is found to be limited and further studies should be made 

to evaluate which of these offers the best solution. 
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In the analysis of AC interconnections an error was deliberately made as the Excel sheet 

could not handle the added complexity of correcting the error. The error that was imposed is 

that in the reliability analysis the AC interconnection is connected on the DC side of the 

offshore converter. The implication of this error is that while in reality the link would be 

dependent on the availability of the converter station at the receiving end of the 

interconnection, it is in this case dependent on the availability of the converter station at the 

sending end. Because this is the case for both (Case Two) or all four (Case Three) 

interconnections, the total impact of this should be zero.  

Even though AC interconnections appears to be more beneficial than HVDC interconnections 

with HVDC CBs there are some large uncertainties that have not been taken into account for 

this thesis and that may change the result. First and foremost reactive compensation has not 

been considered. As the cables are relatively long, the interconnection of Project 1 and 

Project 2 is 73 km long, there may well be need for compensation which will increase the 

investment cost and reduce the benefit that is obtained by using HVAC CBs rather than 

HVDC CBs. A second, potentially significant uncertainty is the electric losses of the system. 

For short distances HVDC connections usually has higher losses than HVAC connections, 

because of the added losses in the converters. Because the interconnections in this case are 

used to feed power into HVDC links the converter electric losses are already taken into 

account and HVDC inter-project links would be left with much lower electric losses than their 

AC counterpart. The difference in electric losses leads to the total delivered energy being 

reduced in the AC case compared to the DC case. Taking into account these two main 

uncertainties leaves the HVAC solution with higher investment and lower increase in total 

delivered power compared to what is reflected in the above results, this of course may lead 

to the HVDC solution yielding the greater profit, or it may serve only to close the gap 

between the solutions somewhat. 

The reliability analyses performed in this thesis do not attempt at evaluating the availability 

of the system, but rather the delivered energy. As the source of the energy is wind turbines 

the produced power in each project is normally below rated power. Because the connections 

to shore are dimensioned for the projects’ rated power the system will normally have 

available transmission capacity to shore, meaning more energy can be transported through 

the connections to shore without causing overheating in any component. This available 

transmission capacity could be utilized by other actors in the market, most notably if Dogger 

Bank is made a node in the envisioned European Supergrid. It has not been considered 

within the scope of this thesis to evaluate the potential value of such a connection, nor to 

evaluate the economic impact such a connection would have on the investment cost of the 

projects in the building phase or in any other phase of the development. However the 

amount of available transmission capacity has been calculated with the intention of being 

used as an input to later analyses of such connection schemes. 
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By subtracting the actual amounts of energy delivered to shore, from the total amount of 

energy that can be carried through the connections to shore (taking unavailability into 

account) it is found that approximately 15.77 TWh can be delivered through the connections 

to shore in the Base Case, 15.38 TWh in Case Two and 15.19 TWh in Case Three. This energy 

can only be transmitted in periods of sub rated WTG production and is therefore not very 

flexible. The unutilized transmission capacity over the year is found to be just below 40 % in 

all three cases which is an interesting point to recognize as the congestion of the 

connections to shore has previously been discussed. It is clear that most of this available 

transmission capacity stems from periods with little or no wind, or even with winds above 

cut–off speed. Because this available transmission capacity is limited in time to mainly 

periods where Dogger Bank has little or no production it can be assumed that there are price 

incentives to transmit energy to the UK national grid in these periods and hence a 

connection via Dogger Bank could have a positive impact. The availability of "available 

transmission capacity" that can be utilized by a third part will not be sufficiently high to 

suffice as the only current path for an inter-country cable like for example the proposed 

cable between Norway and UK. 

Analyses were also made to study the impact of the main economic influences, namely the 

cable price and the interest rate. A ± 10 % change in cable price and a ± 1 % (the interest rate 

is given in percent) interest rate were studied. The results of these analyses appears at first 

glance to show no impact of these changes. However there are some differences, though the 

impact of these changes are insignificant compared to that found in some of the other 

sensitivity analyses. The impact on the total economy is naturally non-negligible, but the 

impact on the marginal differences between the layouts is negligible. 

For the cable repair time, the cable failure rate and the transformer repair time the same 

trend is found in the results. All of these show that as the parameter is increased the 

unavailability of the system increases and the amount of energy that is delivered to shore is 

reduced. A more interesting observation for this thesis is that as the parameter is increased 

the difference between the three cases is increased, though the ratio between them remain 

roughly the same. The implication of this is that Case Three becomes increasingly more 

beneficial as the reliability of the components is reduced. If the connections to shore were 

100 % reliable then all of the produced energy would be transported this way and the inter 

project links would be obsolete. In this case the total delivered energy would be equal in all 

three cases. The relative profit of the three cases would however be inversed as unnecessary 

investments would be made in Case Two and Case Three. 

Based on the analyses performed in this thesis it is fair to conclude that interconnection of 

the projects should not be disregarded in the development of the Dogger Bank zone. 
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Further work 
In the work on this thesis many simplifications have been made, most importantly in terms 

of electric losses, energy prices and neglecting planned outages. The impact of the 

simplifications need to be examined in order to evaluate the real value of added 

interconnections.  

The results presented in this thesis show a trend of increasing profit when more projects are 

connected together although the marginal increase in profit declines. As more projects are 

planned in the Dogger Bank zone further studies should be made which take into 

consideration these other projects. Possible layouts that should be considered are for 

example a ring or meshed system of all Dogger Bank projects. Another possible layout is for 

example two ring systems.



Siri Veila Master Thesis Page I 
December 8th 2013 TET 4900 NTNU  

Reference List 
 

1. Lu, W., Control and application of multi-terminal HVDC based on voltage-source 
converters, in Department of Electrical and Computer Engineering2003, McGill 
University: Canada. 

2. Forewind. Forewind. [Web Page] 2013  [cited 2013 September 9th]; Available from: 
www.forewind.com. 

3. Forewind, Dogger Bank Project One - Environmental Impact Assessment Scoping 
Report, 2010, National Infrastructire Planning: 
http://infrastructure.planningportal.gov.uk/. 

4. Erik Koldby, M.H., Challenges on the Road to an Offshore HVDC Grid, in The Nordic 
Wind Power Conference2009: Bornholm, Denmark. 

5. Høidalen, H.K., Power System Protection, lecture 1, in TET4115 Power System 
Analysis2010, NTNU. 

6. England, B.o. Overview of the Inflation Report August 2013. 2013  [cited 2013 
November 12th]; Available from: 
http://bankofengland.co.uk/publications/pages/inflationreport/infrep.aspx. 

7. RWE. Dogger Bank Offshore Zone. [Web Page] 2013  [cited 2013 November]; 
Available from: www.rwe.com/web/cms/en/453690/rwe-innogy/sites/wind-
offshore/developing-sites/dogger-bank. 

8. Stanley H. Horowitz, A.G.P., Power System Relaying. 1st ed. 1992: Research Studies 
Press Ltd. 

9. Veila, S., Challenges of Control and Operation of Multi-Terminal HVDC Systems, in 
Department of Electic Engineering2012, NTNU. 

10. Magnus Callavik, A.B., Jürgen Häfner, Björn Jacobson, The Hybrid HVDC Breaker, An 
innovation breakthrough enabling reliable HVDC grids, 2012, ABB Grid Systems: 
www.ABB.com. 

11. Martin Hinow, M.W., Dr. Lorenz Müller, Heinz Aeschbach, Karsten Pohlink, 
Substation Life Cycle Cost Management Supported By Stochastic Optimization 
Algorithm. Cigré, 2008. 

12. Discovery, B., Discovery: Solar Max, in Discovery2013: www.BBC.co.uk. p. 29 min. 
13. Engineering, R.A.o., Extreme space weather: impacts on engineered systems and 

infrastructure, 2013: www.raeng.org.uk. 
14. Vadlamudi, V.V., Power System Reliability, ppt. presentation for lecture in subject ELK-

10 at NTNU, 2012, NTNU. 
15. Kjolle, G. and K. Sand, RELRAD--An analytical approach for distribution system 

reliability assessment. IEEE Transactions on Power Delivery, 1992. 7(2): p. 809-814. 
16. Tutvedt, K.A., Nytteverdi og Potensialer for Smart Grid teknologi, in Energibruk og 

Energiplanlegging2011, NTNU: www.daim.no. 
17. Lexicon, F.T. Contract for Difference. [Online Financial Lexicon]  [cited 2013 July 11th]; 

Available from: http://lexicon.ft.com/Term?term=contracts-for-difference. 
18. Change, D.o.E.a.C., Levy Control Framework and Draft CfD Strike Prices, D.o.E.a.C. 

Change, Editor 2013: Department of Energy and Climate Change webpage. 
19. Dixon, S., Offshore Wind Generation Cost Variations Review 2013, tnei: www.gov.uk. 
20. Elforsk, Reliability Study: Analysis of Electrical Systems within Offshore Wind Parks, 

2007, Elforsk. 

http://www.forewind.com/
http://infrastructure.planningportal.gov.uk/
http://bankofengland.co.uk/publications/pages/inflationreport/infrep.aspx
http://www.rwe.com/web/cms/en/453690/rwe-innogy/sites/wind-offshore/developing-sites/dogger-bank
http://www.rwe.com/web/cms/en/453690/rwe-innogy/sites/wind-offshore/developing-sites/dogger-bank
http://www.abb.com/
http://www.bbc.co.uk/
http://www.raeng.org.uk/
http://www.daim.no/
http://lexicon.ft.com/Term?term=contracts-for-difference
http://www.gov.uk/


Siri Veila Master Thesis Page II 
December 8th 2013 TET 4900 NTNU  

21. Lindquist, T.M., L. Bertling, and R. Eriksson, Circuit breaker failure data and reliability 
modelling. IET Generation, Transmission and Distribution, 2008. 2(6): p. 813-820. 

22. Choonhapran, P. and G. Balzer. Availability of HV circuit-breakers: The application of 
Markov model. 2007. Tampa, FL. 

23. Ilstad, E., Cable Technology. TET 4195 High Voltage Equipment. 2009, NTNU: Faculty 
of Information Technologym Mathematics and Electrical Engineering. 

24. Nysveen, A., Subsea Power Systems. TET 4200 Maritime and Offshore Power Systems. 
2013, NTNU: Faculty of Information Technologym Mathematics and Electrical 
Engineering. 

25. Michael P. Bahrman, B.K.J., The ABC of HVDC Transmission Technologies. IEEE power 
& energy magazine, 2007. 5(2): p. 32-44. 

26. Notkevich, L., Yorkshire Offshore Export Cable Routes – Analysis of EMF, 2012, 
Forewind. 

27. ABB. XLPE Submarine Cable Systems: Attachment to XLPE Land Cable Systems - User´s 
Guide. [Brochure]  [cited 2013 November 11th]; Available from: 
http://www05.abb.com/global/scot/scot245.nsf/veritydisplay/2fb0094306e48975c1
25777c00334767/$file/XLPE%20Submarine%20Cable%20Systems%202GM5007%20r
ev%205.pdf. 

28. Worzyk, T., Submarine Power Cables: Design, Installation, Repair, Environmental 
Aspects. 1st ed. 2009: Springer. 

29. B1.10, C.W.G., Update of Service Experience of HV Underground and Submarine Cable 
Systems, 2009, Cigré: www.cigre.org. 

30. Nexans. Nexans to install the world's first 420kV XLPE submarine power cable for the 
Ormen Lange development. [Press release] 2005  [cited 2013 November 2nd]; 
Available from: http://www.nexans.no/eservice/Norway-en/navigatepub_142648_-
3707/Nexans_to_install_the_world_s_first_420kV_XLPE_sub.html. 

31. ABB. XLPE Cables up to 420 kV.  [cited 2013 November 2nd]; Available from: 
http://www.abb.com/product/db0003db002618/c12573e7003302adc1256bdc00235
1d3.aspx. 

32. ABB. ABB is key partner in major North Sea oil and gas projects. [Press release] 2006  
[cited 2013 November 2nd]; Available from: 
http://www.abb.com/cawp/seitp202/377ab536170f2744c12571d30042e58e.aspx. 

33. Leelaruji, R., et al. Availability assessment of the hvdc converter transformer system. 
2008. Rincon. 

34. Mohan, U., Robbins, Power Electronics - Converters, Applications, and Design. 2003, 
United States of America: John Wiley & Sons, Inc. 

35. Ø. Rui, C.Ö., J. Solvik, J. Thon, K. Karijord, T. Gjengedal, Design, Operation and 
Availability Analysis of a Multi-terminal HVDC Grid – a Case Study of a possible 
Offshore Grid in the Norwegian Sea. 2011. 

36. S. DODDS, B.R., K. AKMAN, B. JACOBSON, T. WORZYK, B. NILSSON, HVDC VSC (HVDC 
light) transmission – operating experiences 2010. 

37. Lindén, K., et al., Reliability study methodology for HVDC grids 2010, Cigré: www.e-
cigre.org. 

 

 

http://www05.abb.com/global/scot/scot245.nsf/veritydisplay/2fb0094306e48975c125777c00334767/$file/XLPE%20Submarine%20Cable%20Systems%202GM5007%20rev%205.pdf
http://www05.abb.com/global/scot/scot245.nsf/veritydisplay/2fb0094306e48975c125777c00334767/$file/XLPE%20Submarine%20Cable%20Systems%202GM5007%20rev%205.pdf
http://www05.abb.com/global/scot/scot245.nsf/veritydisplay/2fb0094306e48975c125777c00334767/$file/XLPE%20Submarine%20Cable%20Systems%202GM5007%20rev%205.pdf
http://www.cigre.org/
http://www.nexans.no/eservice/Norway-en/navigatepub_142648_-3707/Nexans_to_install_the_world_s_first_420kV_XLPE_sub.html
http://www.nexans.no/eservice/Norway-en/navigatepub_142648_-3707/Nexans_to_install_the_world_s_first_420kV_XLPE_sub.html
http://www.abb.com/product/db0003db002618/c12573e7003302adc1256bdc002351d3.aspx
http://www.abb.com/product/db0003db002618/c12573e7003302adc1256bdc002351d3.aspx
http://www.abb.com/cawp/seitp202/377ab536170f2744c12571d30042e58e.aspx
http://www.e-cigre.org/
http://www.e-cigre.org/

