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ABSTRACT
This paper proposes several schemes for optimal online con-

figuration and load sharing for a shipboard power system of
a typical offshore vessel, having a number of varying capac-
ity gensets. Different methods are presented for optimal on-
line scheduling and minimization of specific fuel oil consumption
using mixed integer linear programming. The simulations for
optimization of specific fuel oil consumption for three different
scheduling methods demonstrate their properties.

INTRODUCTION
Electric propulsion of marine vessels has been popular for

more than three decades due to high flexibility, availability, and
reliability of the systems. Diesel engines have been the main
prime movers for propulsion of marine vessels for the last cen-
tury, where medium-speed and high-speed diesel engines are
most common to drive a generator to meet the electrical power
demand. Typically, 2 - 10 diesel gensets of equal or varying ca-
pacity are installed to ensure the necessary power capacity and
sufficient redundancy. Due to strict redundancy regulations for
dynamic positioning (DP) vessels, typically DP2 or DP3 vessels
[1], the diesel gensets often run at low loading for long periods
of time due to a discrepancy between environmental load condi-
tion (power demand) and requirements for spinning reserve. The
low loading of the gensets lead to low efficiency and increased
hazardous emissions from the gensets [2]. Even though the emis-
sions from the marine industry are much smaller compared to the
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other industries, there are strict requirements set by the Interna-
tional Maritime Organisation to reduce these emissions [3]. With
new developments in technology, the complexity of electrical in-
stallations on marine vessels is also increasing to meet today’s
and future requirements in fuel economy and reduced environ-
mental footprint.

For a power system having many power generating units, the
optimal generator scheduling becomes very important. The ship-
board power system has many similarities and some differences
with the land-based islanded smart microgrids. For a land-based
smart grid, the load profile is more predictable, and it is eas-
ier to do optimal generator scheduling [4]. The load profile of
a marine vessel, on the other hand, may change rapidly due to
variable load demands from propulsion (and potentially drilling
system or other onboard large consumers) due to wave motions,
wind gusts, or variable operation of heavy consumers, including
low-load operation in calm conditions. This makes it difficult to
achieve optimal scheduling for a power system with few gensets.
In [5], the authors have formulated a problem of optimal power
generator scheduling for a shipboard power system as a discrete
time Markov decision process, whereas the authors of [6] have
used a mixed integer linear programming (MILP) approach for
the specific fuel oil consumption (SFOC) minimization by con-
sidering various operating scenarios. The authors of [7] propose
a method for real-time optimal scheduling of shipboard power
generation with diesel gensets and ESS.

The optimal scheduling of gensets for power generation on
marine vessels is a relatively new topic with limited research at-
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FIGURE 1. Block diagram of the rotation control system connected
in droop control.

tempts [7]. Generator scheduling by using an integer program-
ming approach was proposed in the 1960’s, where the author
of [8] used this approach for solving a scheduling problem by
considering operational characteristics and costs associated with
starting and shutting down electric generators. The MILP has
been proposed as a solution to perform integer optimization by
connecting/disconnecting gensets [9].

The objective of this paper is to propose several methods
for optimal genset scheduling and SFOC minimization, and to
demonstrate the properties of these methods in simulation studies
for an offshore vessel with many gensets of varying capacity.
Our toolbox will be optimization by the MILP method due to
its availability of efficient and robust linear programming based
solvers, easier problem formulations, modelling flexibility, and
general acceptance by the industry.

PROBLEM FORMULATION
Speed control

The governor is the diesel engine speed controller. It has
the objective to keep engine speed, and thus electric frequency,
within an acceptable range. According to the regulations [10],
the allowed frequency variation, according to main class, is±5%
under steady load conditions, e.g. 57− 63 [Hz], and ±10% un-
der transient load conditions. Typically, the governor is a PID
controller, and thus the inner control loop as shown in Figure 1
is typically applied to control the engine speed. A governor can
typically operate in a so-called droop mode or in an isochronous
mode [2, 11].

Droop speed control
To include droop, the value of active power P of the genset

should be normalized such that the droop-percent value can be
used directly. Then the corrected setpoint frequency ωsp, j to the
governor of a Genset j is

ωsp, j = ωre f , j− k j p j (1)

where ωre f , j is the per-unit no-load reference frequency typically
set by the Power Management System (PMS), k j is the droop
constant, p j := Pj

Pb, j
is the per-unit supplied active power, Pj is the

supplied active power, and Pb, j is the rated 100% active (base)
power value (typically Pb, j = Sb, j cosϕb, j, where cosϕb, j is the
rated power factor). Figure 1 shows a typical block diagram.

Consider a plant of M parallel gensets operated in droop
mode, let I = {1,2, . . . ,M} be their index set, and let u j =ωre f , j
be considered a control input by the PMS. Also, let c j ∈ I :=
{0,1} be a discrete state dictating if the genset is connected
(c j = 1) or disconnected (c j = 0) from the bus. Assume that in
steady state, the frequency of Genset j equals the setpoint into the
speed governor, that is, ω j = ωsp, j. In addition, the parallel con-
nected gensets must all have synchronized frequencies equal to
the bus frequency ωbus, while those not connected should equal
their reference u j. From the droop curves, we get

ω1 = u1− c1k1 p1 (2)
...

ωM = uM− cMkM pM

where the droop gains k j are typically set to 3−5%.
In addition, the sum of the supplied active powers must bal-

ance the demanded power by the bus, i.e., Σc jPj = Pload . By nor-
malizing the bus active load Pload by dividing it by the system
base Pb,bus, equal to the total installed (not connected) capac-
ity [kVA] on the bus [12], this gives the equations we will use
for calculation of active power sharing between M parallel con-
nected gensets,

∑
j∈I

c jPb, j

Pb,bus
p j =

Pload

Pb,bus
. (3)

Problem Statement
This paper considers a marine power plant with a large num-

ber of small capacity gensets sharing load based on droop control
for an offshore vessel. The online optimal power load sharing
is investigated by studying three scheduling methods; schedul-
ing by minimizing online capacity, scheduling with redundancy
margin for largest connected genset, and scheduling with penal-
ties on running time and connection/disconnection. The math-
ematical formulations for optimization of SFOC are thereafter
developed using the MILP approach. The simulations are car-
ried out in MATLAB, and the results are compared for a specific
case study.

SCHEDULING PROBLEM USING MILP
The scheduling problem is an optimal allocation of re-

sources (online gensets in the marine vessel) to activities (load
demand) over an interval of time. In this paper, we go stepwise
through some of the scheduling methods for electric power gen-
eration on marine vessels, gradually increasing the complexity
and comparing the results. We assume that we have a plant of M
gensets of individual capacity Sb, j.

For simplicity in simulations, we consider a marine power
plant having five gensets of individual capacity varying from
300kW to 700kW. The random load profile similar to a typical
load profile of an offshore vessel is used for demonstrating the
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algorithms by simulations in MATLAB.

Scheduling minimizing online capacity
The simplest scheduling problem considers only one objec-

tive with constraints. As a first approach, our objective is to min-
imize the number of connected gensets under the constraint that
sufficient capacity is maintained on the bus, given the present
load demand.

Given the genset connection vector c ∈ IM , then the num-
ber of gensets is N = 1>Mc, where 1M ∈ RM is a vector of ones.
Typically, the gensets have an optimal loading around 80% of
their maximum continuous rating (MCR). Considering the opti-
mal loading factor as γ , we can write Popt, j = γPb, j, where e.g.
γ = 0.8. We want to minimize the number of online gensets N.
The constraint is to have enough capacity, according to

P>b Γc≥ Pload , (4)

where Pb = col(Pb,1, ....,Pb,M) and Γ = diag(γ1,γ2, ...,γM). Each
γ j can here be chosen as the optimal loading value for each indi-
vidual genset. In addition, we want a minimum of Nmin gensets
to be connected, e.g., Nmin = 1 for all time to meet the load de-
mand of the essential loads. This motivates the following simple
MILP problem:

min
c

1>Mc (5)

s.t. −P>b Γc≤−Pload

−1>Mc≤−Nmin

It should be noted that minimizing the number of gensets will
favorize using the largest gensets. This may not always be ben-
eficial. An alternative is therefore to introduce a weighted cost
function that takes value according to the genset capacity. This
will ensure to find an optimal configuration of online gensets
with the tightest capacity to the prevailing load, thus to some de-
gree favorizing using the smaller gensets within the constraints.
We then reformulate the MILP problem to minimize the online
capacity according to

min
c

P>b
|Pb|ρ

c (6)

s.t. −P>b Γc≤−Pload

−1>Mc≤−Nmin

where ρ ≥ 1 is some norm (e.g., ρ ∈ {1,2,∞}). We want to in-
vestigate if different norms give different results and advantages
of using it. In this paper, we are only considering ρ = 1. The
other cases will be investigated in future work.

The simulations are carried out for this scheduling problem
of minimizing online capacity using MILP over the interval of
1700s, where we used Γ = 0.8I. The optimization algorithm
runs every 10s, and the results are shown in Figure 2. Due to the

choice for Γ, this gives an inherent margin of at least 20%. The
running time of each genset, and the number of online gensets
at any instant are shown in the figure. The optimization tries to
keep the online capacity of the power plant such that the load
demand is approximately at 80% of the genset capacities. The
more small gensets that are available in the power plant, the
tighter this envelope can be maintained. The frequency of con-
nection/disconnection of the gensets is very high, which can eas-
ily be seen from the plot of running time for each genset.

Scheduling with redundancy margin

For the simple genset scheduling problem above, if any of
the online genset fails then the load is shared among the remain-
ing online gensets until the next genset is connected. During this
time, the online gensets might be overloaded. To overcome this
issue, we consider the redundancy margin for the largest con-
nected genset and reformulate the problem. Accordingly, we in-
clude the constraint that if the largest genset fails, there shall still
be enough capacity to supply the demand without overloading
the other online gensets. The largest connected genset is given
by

Pb,max = max
j

(Pb ◦ c) = |diag(Pb)c|∞ , (7)

where ‘◦’ means the Hadamard elementwise vector product. It
should be noted that a diesel-genset typically has some additional
margin with a maximum overload value of 110% of rated capac-
ity Pb, j. In our case, we disregard this additional 10% overload
margin. Then, introducing this redundancy constraint is the same
as adding a margin of Pb,max to the bus load, that is, the updated
constraint becomes

P>b Γc≥ Pload +Pb,max, (8)

where we in this case will typically set Γ = I since the redun-
dancy margin will ensure to reduce the power on each genset
well below their rated values. However, since we do not know
beforehand which gensets that will be selected by the optimiza-
tion, and from that, what is the largest sized connected genset,
this constraint is not realizable as a linear inequality constraint.

Let ε j ∈ RM be the j’th unit axis vector, so that ε>j x se-
lects the j’th element of vector x ∈ RM . A workaround is then
to add several redundant constraints to ensure that the capacity
margin is larger than whatever connected genset that fails. This
is achieved by increasing the number of constraints from the sin-
gle constraint above to the M constraints

P>b Γc≥ Pload + ε
>
1 diag(ΓPb)c

...

P>b Γc≥ Pload + ε
>
M diag(ΓPb)c

3
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FIGURE 2. Scheduling minimizing online capacity, using Γ = 0.8I.

This can be rewritten according to(
ε
>
1 diag(ΓPb)−P>b Γ

)
c≤−Pload

...(
ε
>
M diag(ΓPb)−P>b Γ

)
c≤−Pload

Here, the term
(

ε>j diag(ΓPb)−P>b Γ

)
removes the j’th element

of the vector −P>b Γ. In matrix form, we can write this as

Aineqc≤ bineq,

where

Aineq =


ε>1 diag(ΓPb)−P>b Γ

ε>2 diag(ΓPb)−P>b Γ

...
ε>M diag(ΓPb)−P>b Γ

= diag(ΓPb)−1M⊗P>b Γ (9)

bineq =−1MPload , (10)

and ⊗ is the Kronecker product. This gives the following MILP

problem:

min
c

P>b
|Pb|ρ

c (11)

s.t. Aineqc≤ bineq (12)

−1>Mc≤−Nmin (13)

The simulation results for the scheduling with redundancy
margin for the largest connected gensets are shown in the Fig-
ure 3, where we used Γ = I. Comparing figures 2 and 3, we
can see that by including redundancy margin, the reserve power
available in the power plant increases, and the load is shared
by more gensets as compared with the simple scheduling case.
The frequency of connection/disconnection during the simula-
tion interval is less as compared with the simplest scheduling
case, which can easily be seen from the plot of the running time
of each genset as well as from the plot of available power.

Scheduling with a penalties on running time and con-
nection/disconnection

The load on an offshore vessel varies continuously, which
might cause frequent connect/disconnect of a genset. In addition,
by using scheduling for minimizing online capacity or schedul-
ing with redundancy margin for largest connected genset, some
gensets might be connected all the time, increasing the wear and
tear of these gensets, and some might not be connected at all leav-
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FIGURE 3. Scheduling with redundancy margin for largest connected genset, using Γ = I.

ing them unused. To overcome this problem, we introduce addi-
tional constraints. To balance the running time for the gensets,
we introduce the penalty on running time of a genset. Addi-
tionally, to avoid too frequent connection/disconnection of the
gensets, a penalty on connection/disconnection is introduced.

Let a signal counting running time for each genset be

d j(k) = d j(k−1)+ c j(k−1)Ts, d j(0) = 0,

where k is the present time index and Ts is the periodic execution
time of the optimization. On vector form, we then get

d(k) = d(k−1)+Tsc(k−1), d(0) = 0, (14)

for k = 1,2,3, .... At any instant k of optimization, d(k)>c sums
up the running time for the connected gensets. Minimizing this
term ensures to balance which gensets are being used over time.

Similarly, to minimize the connection/disconnection, let son
j

be a signal adding up the cost of connecting Genset j and so f f
j

adding up the cost of disconnecting Genset j. We can write it as

son := col(son
1 , . . . ,son

M ), so f f := col(so f f
1 , . . . ,so f f

M ).

Let ∆ck = c(k)− c(k−1) be the change in connection from one
instant to the next, and decompose ∆ck = ∆c+k −∆c−k where the
first term is 1 at the +1 elements and the second term is 1 at the
−1 terms. Then we get the accumulated cost of connecting and

disconnecting gensets by

son =Wconnect

k

∑
i=1

∆c+i , so f f =Wdisconnect

k

∑
i=1

∆c−i .

With relative weights between the different terms, we include
these signals in the minimization. This motivates the updated
MILP optimization problem

min
c

(
w1

P>b
|Pb|ρ

+w2
d

|d|
ρ
+ ε

+w3
son

|son|
ρ
+ ε

+w4
so f f

|so f f |
ρ
+ ε

)>
c

(15)

s.t. Aineqc≤ bineq

−1>Mc≤−Nmin,

where ε > 0 is a small constant included to avoid division by
zero, and the constraints include the redundancy requirement in
equations (9) and (10).

The simulation results for the simple case of scheduling
with penalty on running time (Γ = 0.8I,w1 = 10,w2 = 100,w3 =
w4 = 1) are shown in Figure 4 and with penalty on connec-
tion/disconnection (Γ = 0.8I,w1 = 10,w2 = 1,w3 = w4 = 100)
are shown in Figure 5. If the penalty on running time is more
than the penalty for connection/disconnection then the frequency
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FIGURE 4. Scheduling with penalties on running time than connection/disconnection, using Γ = 0.8I,w1 = 10,w2 = 100,w3 = w4 = 1.

of connection/disconnection increases (can be seen from subplot
for available power) and vice-a-versa. Comparing the simulation
results for the three scheduling methods, we can say that the run-
ning time and/or the number of connection/disconnections in the
system can easily be tuned according to requirements by intro-
ducing suitable penalties and selecting appropriate weights.

LOAD-SHARING WITH MINIMIZATION OF SFOC
Since optimizing both the scheduling (c vector) and the load-

sharing (p vector) generally leads to a nonlinear program, we aim
to look for some simpler formulations where we still can use the
MILP method. One such simplification is to perform the opti-
mization as a two-stage optimization. In Stage 1 we perform the
scheduling above to assure enough online capacity, given load
and redundancy constraints. Then, given the determined con-
nect/disconnect policy c resulting from Stage 1, we perform a
Stage 2 optimal load sharing to determine p.

SFOC curves and FOC
Suppose that the SFOC curves for each genset is given by

fSFOC, j = h j(p j) (16)

where h j(·) is a convex curve, typically with a minimum of ap-
proximately 190g/kWh around 75− 80% genset load. This
curve is given by distinct (p j, fSFOC, j) pairs measured as steady-

state values in laboratory testing of the engine. This results in
a piecewise linear (PWL) curve. Accordingly, assume the curve
fSFOC, j(p j) for Genset j is populated by the m j +1 points,

p j =
{

p j,0, p j,1, . . . , p j,m j

}
, p j,k−1 < p j,k

fSFOC, j =
{

z j,0,z j,1, . . . ,z j,m j

}
where we assume that the interval [p j,0, p j,m j ] is the allowable
power region for Genset j for which the SFOC curve is defined.
We also assume that z j,0 = maxk

(
z j,k
)
.

Correspondingly, we define the linear curve coefficients by

a j,k =
z j,k−z j,k−1
p j,k−p j,k−1

b j,k = z j,k−1−a j,k p j,k−1

}
, k = 1,2, . . . ,m j (17)

Then we get the m j linear curves for the Genset j

h j,k(p j) = a j,k p j +b j,k, (18)

and the combined convex PWL curve is expressed by

fSFOC, j = h j(p j) = max
k=1,...,m j

h j,k(p j) = max
k=1,...,m j

(
a j,k p j +b j,k

)
.

(19)
This curve can further be fitted to a polynomial curve

h j(p j) =
m

∑
k=0

a j,k pk
j, (20)
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FIGURE 5. Scheduling with penalties on connection/disconnection than running time, using Γ = 0.8I,w1 = 10,w2 = 1,w3 = w4 = 100.

but in our case it will be easier to run the optimization directly on
the PWL curve. Collecting the M fuel curves in one vector gives

h(p) := col(h1(p1),h2(p2), . . . ,hM(pM)) . (21)

The instantaneous (steady state) fuel oil consumption (FOC) is
now approximated by

fFOC, j = fSFOC, jPj = h j(p j)Pj

fFOC := col( fFOC,1, fFOC,2, . . . , fFOC,M) = h(p)>P

For a disconnected but running genset, assume it consumes a
constant idle fuel f0, j, and collect these into

f0 := col( f0,1, f0,2, . . . , f0,M) .

Then, for a given connection status at given time instance k, and
assuming no gensets are physically stopped, the approximate in-
stantaneous fuel consumption becomes

FOC = |c◦ fFOC|1 + |(1M− c)◦ f0|1 = c> [ fFOC− f0]+1>M f0.
(22)

Online optimization of specific fuel consumption

In the optimization, we aim to minimize the fuel consump-
tion per power unit produced (i.e., the SFOC), given enough ca-
pacity online. For a maximum of M gensets being connected or
disconnected according to the vector c, this implies minimizing

the instantaneous cost

min
c,p

JSFOC(c, p) =
M

∑
j=1

c jh j(p j) = c>h(p) (23)

where the SFOC curves fSFOC, j = h j(p j) are assumed to be con-
vex continuous curves. Given the knowledge of c, then (23) is an
optimization problem of N = 1>Mc separable convex functions,
where we assume each SFOC function is a PWL function ac-
cording to (19). This can be solved as a new LP problem. Min-
imization of a single PWL SFOC curve for an online genset is,
according to [13], done by

min
p j ,µ j

µ j (24)

s.t. a j,k p j +b j,k ≤ µ j, k = 1,2, . . . ,m j

Pb, j p j = Pload

p j,0 ≤ p j ≤ p j,m j

where µ j is a scalar auxiliary variable. Including the connection
status c j ∈ {0,1} allows us an optimal solution where p j = 0 for
disconnected gensets. This is achieved by

min
p j ,µ j

c jµ j (25)

s.t. a j,k p j +b j,k ≤ µ j, k = 1,2, . . . ,m j

c j p j,0 ≤ p j ≤ c j p j,m j ,
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where we see that for a disconnected genset j, c j = 0, the feasible
solution is p j = 0 and µ j ≥ b j,k free. Let

a j :=

 a j,1
...

a j,m j

 ∈ Rm j , b j =

 b j,1
...

b j,m j

 ∈ Rm j (26)

be the coefficient vectors of the PWL curves corresponding to
each genset, and let

A :=


a1 0m1×1 · · · 0m1×1

0m2×1 a2 0m2×1
...

. . .
...

0m j×1 0m j×1 · · · aM

 , E :=


−1m1 0m1×1 · · · 0m1×1
0m2×1 −1m2 0m2×1

...
. . .

...
0m j×1 0m j×1 · · · −1mM


b :=

 b1
...

bM

 , pmin =

 p1,0
...

pM,0

 , pmax =

 p1,m1
...

pM,mM


Then the overall Stage 2 LP optimization problem becomes

min
p,µ

c>µ (27)

s.t. Ap+Eµ ≤−b (28)

(c◦Pb)
>p = Pload (29)

c◦
(

p−j −∆p
)
≤ p≤ c◦

(
p−j +∆p

)
(30)

c◦ pmin ≤ p≤ c◦ pmax (31)

where:

(28) together with the minimization of the µ vector in (27)
ensures the minimization of the PWL SFOC curves.
(29) ensures that the sum of supplied power balances the
load on the bus.
(30) ensures a maximum rate of change, where p−j is the
power value when the optimization is initiated and ∆p is set
according to a maximum rate of change over the optimiza-
tion period. This constraint can be combined with (31) by
setting pmin, j = p−j −∆p and pmax, j = p−j +∆p.
(31) ensures that a disconnected genset is set to zero power,
and a connected genset is constrained within its minimum
and maximum levels.

Simulations
The algorithms are illustrated by simulations in MATLAB.

For simulation purpose, it is assumed that the specific fuel
consumption of gensets varies from a minimum of around
205g/kWh to a maximum of around 245g/kWh [14]. Three sim-
ulations are carried out for the optimization of the SFOC with the
simple scheduling with online capacity minimization, schedul-
ing with redundancy on largest connected genset, and simple
scheduling with penalties on connection/disconnection and run-
ning time of the genset, respectively. The configuration is again

the power plant with five gensets of unequal capacities.
The simulation results for the optimal SFOC for the schedul-

ing minimizing online capacity case are shown in Figure 6. The
first subplot shows the load profile and online capacity of the
power plant. The second subplot shows the genset running time
for the given load profile and variation of the SFOC cost during
the simulation. In the third subplot, we are plotting the capacity
utilization of the online gensets at a given time instant and also
the total number of online gensets.

The simulation results for the optimal SFOC for the schedul-
ing with redundancy margin are shown in Figure 7, and for
the scheduling with penalties on running time and connec-
tion/disconnection of the genset are shown in Figure 8, where
we have chosen large value for w2 = 100 to illustrate the effect
on balancing the running time between the gensets.

Comparing the simulation results for these three scheduling
cases, we see that the optimal SFOC cost increases with the in-
crease in the number of constraints for the system.

CONCLUSION
The optimal scheduling of the power generation and load

sharing for a marine vessel, using MILP formulations, were stud-
ied in this paper. The scheduling algorithms for three online
scheduling methods, scheduling with online capacity minimiza-
tion, scheduling with redundancy margin for the largest con-
nected genset, and simple scheduling with penalties on running
time and connection/disconnection of gensets, as well as online
optimization of SFOC, were developed. The simulation cases
demonstrated the properties of each proposed method. For the
scheduling with minimization of online capacity, the tightest en-
velope of available power based on prevailing load condition was
achieved. This was extended to also account for redundancy to
loss of largest genset. Then we showed how one can include
penalties for running hours and connection/disconnection cost.
The minimization of running hours ensured that the utilization of
the different gensets was more balanced. Finally, we showed how
to ensure optimal load sharing in a second stage optimization af-
ter the scheduling had been determined in the first stage. The
load sharing was based on minimizing the instantaneous SFOC
among all connected gensets based on PWL parameterizations of
the SFOC datasets.

In future work, we will consider nonlinear formulations of
these problems, as well as how this can be done in an event-based
approach. We also aim to verify the methods on more realistic
case studies.

ACKNOWLEDGMENT
This work was supported by the Research Council of Nor-

way (RCN) through the project “Low Energy and Emission De-
sign of Ships” (LEEDS), RCN project no. 216432, and partly
through the Center of Excellence “Autonomous Marine Opera-
tions and Systems” (NTNU AMOS), RCN project no. 223254.

8



0 200 400 600 800 1000 1200 1400 1600 1800

index k

0

500

1000

1500

P
 (

k
W

)

P
bus

Online cap

0 200 400 600 800 1000 1200 1400 1600 1800

index k

0

100

200

300

400

500

600

700

800

900

G
e

n
s
e

t 
ru

n
n

in
g

 t
im

e

200

300

400

500

600

700

800

900

S
F

O
C

 c
o

s
t

G1

G2

G3

G4

G5

SFOC cost

0 200 400 600 800 1000 1200 1400 1600 1800

index k

0

500

1000

1500

2000

2500

G
e

n
s
e

t 
c
a

p
a

c
it
y
 u

ti
liz

a
ti
o

n
 (

k
W

)

0

1

2

3

4

5

N
u

m
b

e
r 

o
f 

o
n

lin
e

 g
e

n
s
e

ts
 (

N
)

G1

G2

G3

G4

G5

N gensets

FIGURE 6. The optimization of SFOC for scheduling minimizing online capacity, using Γ = 0.8I.

REFERENCES

[1] International Maritime Organization (IMO), 1994.
“MSC/Circular.645 - Guidelines for vessels with dynamic
positioning systems”. Available Online.
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