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Summary

Fantasy Premier League is an online game where participants assemble imaginary teams
consisting of real-life football players competing in the top tier of English football, the Pre-
mier League. Participants gain points week-by-week based on the real-life performances
of the players they have selected. In this thesis, a mathematical model describing Fantasy
Premier League is developed. Moreover, a forecast-based optimization model is developed
to make decisions in Fantasy Premier League.

The mathematical model has been solved by using a rolling horizon heuristic with forecasts
of player points as input. Three forecasting methods are developed in order to generate
forecasts. The first approach is centered around the most recent average points obtained by
each individual player. The second approach is based on regression on multiple explana-
tory variables. The third and last approach utilizes bookmakers’ odds to predict points,
combining team odds and individual player odds. In order to obtain data for the last ap-
proach, we have cooperated with Sportradar, a Norwegian company providing odds for
international bookmakers. The mathematical model developed is also solved with realized
points to obtain the optimal solution.

An additional feature of Fantasy Premier League is a concept called gamechips. Gamechips
can be used to improve the performances in particular gameweeks. These gamechips are
modeled in the mathematical model. Strategies for the implementation of gamechips are
developed and their impact is tested. Furthermore, the effect of adding risk handling con-
straints has been analyzed. It is tested whether there exists a trade-off between risk and
reward, similar to that found in portfolio optimization.

The model has been run for the first 35 gameweeks of the 2017/2018 Fantasy Premier
League season, and the results are compared to the performance of Fantasy Premier League
participants. The last part of the thesis is dedicated to a discussion of further research pos-
sibilities.
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Sammendrag

Fantasy Premier League er et online spill hvor deltakere samler imaginære lag bestående
av ekte spillere i engelsk fotballs toppdivisjon, Premier League. Deltakerne blir hver uke
tildelt poeng basert på spillernes prestasjoner i ekte Premier League-kamper. I denne opp-
gaven utvikles en matematisk modell som beskriver Fantasy Premier League. Videre er
en prognosebasert optimeringsmodell utviklet for å gjøre beslutninger i Fantasy Premier
League.

Den matematiske modellen har blitt løst ved hjelp av en rullende horisont heuristikk med
prognoser for spillerpoeng som input. Tre metoder er utviklet for å generere prognoser.
Den første tilnærmingen er sentrert rundt gjennomsnittet av poeng oppnådd tidligere for
hver enkelt spiller. Den andre tilnærmingen er basert på regresjon på flere forklarende
variabler. Den tredje og siste tilnærmingen utnytter odds satt av spillselskaper for å forutsi
poeng. Både odds relatert til lag og individuelle spillere er benyttet. For å få tilgang til
data for den siste metoden har vi samarbeidet med Sportradar, et norsk selskap som tilbyr
odds til internasjonale bookmakere. Den matematiske modellen som er utviklet løses også
med realiserte poeng for å finne den optimale løsningen.

Fantasy Premier League inneholder et konsept kalt gamechips. Gamechips kan brukes for
å forbedre prestasjonen i spesielle uker. Disse gamechipsene er modellert i den matema-
tiske modellen. Strategier for implementering av gamechiper er utviklet og gamechipenes
innflytelse har blitt testet. Videre er effekten av å legge til begrensninger relatert til
risikohåndtering analysert. Det er testet om det eksisterer en avveining mellom risiko
og belønning tilsvarende det som finnes i porteføljeoptimering.

Modellen har blitt kjørt for de første 35 ukene av 2017/2018 Fantasy Premier League
sesongen, og resultatene har blitt sammenlignet med prestasjonene til Fantasy Premier
League-deltakere. Den siste delen av oppgaven er dedikert til en diskusjon av fremtidige
forskningsmuligheter.
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Chapter 1
Introduction

For the past decade, a phenomenon called Fantasy Sports has experienced enormous
growth, both in terms of active participants and media attention. According to Fantasy
Sports Trade Association (2017), it is estimated that 59.3 million people in the U.S. and
Canada are competing in some kind of Fantasy Sports. Furthermore, the Fantasy Sports
industry is expected to grow annually by 41% and generate $14.4 billion by the year 2020
(Heitner, 2017). Fantasy Sports is an online game where participants assemble imaginary
teams consisting of real players within a professional sport. The teams compete in both
private- and public leagues, where they gain points based on players’ week-by-week per-
formances in real-life matches. Fantasy Premier League (FPL) is the Fantasy Sports of
England’s top division football league, Premier League. It is the largest Fantasy Sports in
Europe, with more than 5.9 million active participants.1

Typically, Fantasy Sports participants select a squad consisting of a given amount of play-
ers in each position on the field. Each real-life player is given a buying price based on
their skill level and ability to perform well in the Fantasy Sports. The performance of each
player in the actual games is measured in terms of points, where an action like scoring a
goal will provide the player with a specified amount of points. To keep participants from
only selecting top-rated real-life players, a restricted budget is usually given.

Fantasy Sports has its origin from the 1950s when a limited partner of the Oakland Raiders,
Wilfred Winkenbach, invented a Fantasy Sports for golf. Each participant selected a team
of professional golfers, and the one who suggested the team with the best score would
win the tournament. In 1962, Winkenbach suggested the first fantasy league for American
Football, initiating the birth of what has become a billion-dollar business (McCracken,
2012). Nowadays, Fantasy Sports are available for several sports, including American
football, basketball, ice hockey, baseball, football and cricket.

1The figure is taken from FPL’s homepage: https://fantasy.premierleague.com/
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Chapter 1. Introduction

Over the last years, the interest for Fantasy Sports has proliferated among commercial
actors. For instance, a phenomenon called Daily Fantasy Sports (DFS) has arisen. It is
a version of Fantasy Sports, allowing participants to compete for money over short time-
periods, typically for one day or a weekend. In the U.S., FanDuel and DraftKings are the
leading providers of DFS, with FanDuel being valued to more than $1 billion (Bertoni,
2015). Both FanDuel and DraftKings were granted licenses from the United Kingdom
Gambling Commission in 2015 (Purdum, 2017). Furthermore, in 2017, the Scandina-
vian bookmaker Unibet launched Fantasy Sports Beta. Fantasy Sports Beta allows cus-
tomers to compete for money within Fantasy Premier League. In addition, the Norwegian
bookmaker GUTS included bets on Fantasy Premier League in 2016. They offer bets on
whether one player will perform better than another for the upcoming week.

In the U.S., an estimated 30% of Fantasy Sports participants use additional websites to
research athletes and other factors when they construct their fantasy teams. In total, these
participants spend $656 million annually to purchase additional information and decision-
making tools (Burke et al., 2016). There exist several optimization models for Fantasy
Sports, for instance for ice hockey (Summers et al., 2005) and American football (Fry
et al., 2007). However, compared to the models suggested for the mentioned Fantasy
Sports, there is a difference when modeling Fantasy Premier League. For instance, clas-
sical American fantasy leagues consist of selecting a team for an entire season and do
not allow for transfers. On the contrary, Fantasy Premier League allows for making player
transfers during the season. Thus, FPL participants have to consider making new decisions
each gameweek in a season. To the author’s knowledge, an optimization model making
optimal decisions in Fantasy Premier League has not been developed before. Given the
number of participants and commercial actors, and their willingness to invest both money
and time in Fantasy Sports, a potential for developing a model optimizing decisions in
the Fantasy Premier League is seen. Sportradar, a Norwegian company providing data for
international bookmakers, has assisted in writing this thesis by providing relevant data.

An optimization model for the FPL could serve two purposes. First, many actors may
be interested in detailed analysis of the FPL run ex-post, i.e., after points are realized.
Such a model could provide answers to questions like, ”What is the optimal team so far?”
and, ”What are the optimal transfers for each particular gameweek?”. Furthermore, the
model can be used to determine what would have been the optimal transfers in a particular
gameweek for a given participant’s team. Moreover, the optimal solution can be compared
to the score of the participant who finished on top in the overall rankings, and the gap
can be assessed. Secondly, the model can be run ex-ante, i.e., before points are realized.
Thereby, it can be used to determine how well the model performs when competing by
the same rules as FPL participants and subsequently for decision support. However, in this
case, forecasts of points are required. Therefore, in this thesis, three methods of generating
such forecasts are suggested. Thus, the scope of this thesis is two-folded. First, the aim is
to formulate a mathematical model for the Fantasy Premier League. Secondly, the aim is
to develop a model that can compete with human participants in terms of overall ranking.

2



The thesis is structured as follows. Chapter 2 provides the problem description. Here, the
rules and point system of Fantasy Premier League are presented. Chapter 3 provides a
literature review. First, studies of real-life football that can be related to Fantasy Sports
are presented. Then, a presentation of Fantasy Sports optimization models, player per-
formance forecast and a comparison to other well-known problems are given. Chapter
4 describes the mathematical formulation of the problem. Chapter 5 presents a solution
framework, including a description of the solution method used for solving the mathe-
matical model. In addition, three methods for generating forecasts are described. By
combining all elements of the solution framework, a forecast-based optimization model is
developed. Chapter 6 presents a computational study undertaken to set up the model pre-
sented in Chapter 5 before it is run on the 2017/2018 season of the FPL. In Chapter 7, the
performance of the model in 2017/2018 season of the FPL are presented. In Chapter 8, the
concluding remarks highlight the most important results and implications of the research.
Finally, Chapter 9 addresses the potential for further research.
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Chapter 2
Problem Description

This chapter presents the problem description of the thesis. First, the rules and point sys-
tem of Fantasy Premier League are described in Section 2.1 and Section 2.2, respectively.
The rules and point system are given in correspondence with the information found on
FPL’s homepage, www.fantasy.premierleague.com. Finally, in Section 2.3, the Fantasy
Premier League Decision Problem is defined.

Before the rules of the FPL and the point system are presented, some terms are defined.
First, it is important to make the distinction between a manager and a player clear. Hence-
forth, the term manager refers to a participant in the FPL, while player refers to a real-life
football player competing in the English Premier League. Furthermore, by football, it is
always referred to European Football, also known as soccer.

2.1 Rules of Fantasy Premier League
In order to understand the dynamics of Fantasy Premier League, a review of the game rules
is necessary. The Premier League consists of 20 teams, and every team faces each other
two times during a season. Thus, each season consists of 380 fixtures split into a set of 38
chronological gameweeks. In general, every gameweek consists of 10 fixtures featuring
each team once. All the matches within a gameweek are usually played over a period of
3-4 days. However, due to matches in national and international cups, some of the Premier
League matches are postponed or played ahead of its original dates. This implies that some
of the gameweeks do not consist of exactly 10 fixtures. Gameweeks consisting of more
than 10 fixtures are hereby referred to as double gameweeks, while gameweeks consisting
of less than 10 fixtures are referred to as blank gameweeks.

Initially, a manager must select a team of 15 players consisting of exactly 2 goalkeepers,
5 defenders, 5 midfielders and 3 forwards. This is regarded as the selected squad. As
each team has a registered squad of 25 players, the whole FPL database consists of ap-

5
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proximately 500 players. This creates numerous ways of selecting the team. The total
purchase price of the team may not exceed the initial budget limit of £100m. Notice that
the budget limit may vary over time, as player prices increase and decrease during the
season. Further, more than 3 players cannot be selected from the same club. After the FPL
manager has picked the selected squad, a starting line-up, consisting of 11 players from
the selected squad has to be chosen. A manager can compose the starting line-up in any
formation as long as there is exactly 1 goalkeeper, at least 3 defenders, at least 3 midfield-
ers and at least 1 forward. This is regarded as the team formation criterion. The players
in the starting line-up are the only players that are awarded points. However, if any player
from the starting line-up is not playing, he will be replaced by one of the four substitutes
on the bench. As only 1 goalkeeper can feature in the starting line-up, the goalkeeper will
only be substituted in if the goalkeeper in the starting line-up is not playing. For the re-
maining 3 substitutes, each manager must set a substitution priority, deciding the order of
substitution. It is important to note that the formation criterion overrules the substitution
priority. Consider a case with 3 defenders in the starting line-up and a midfielder with
substitution priority 1. If a defender in the starting line-up does not play, the formation
criterion ensures that the midfielder cannot replace the defender.

Each player in the FPL database is assigned with a price, depending on how well the player
is expected to perform. Player prices change during the season depending on the popularity
of the player. A player’s price will increase when more managers select him and decrease
when fewer managers select him. If the price of a player increases while a manager has the
player in the selected squad, the manager can benefit from the price increase. However,
if the player is sold, a sell-on fee of 50% is inferred. Hence, the manager only receives
50% of the profit (rounded down to the nearest £0.1m). For example, if a manager buys
a player for £9.5m and the player’s value increases to £10.0m in a later gameweek, the
manager receives £9.7m if the player is sold, earning a profit of £0.2m. Thus, there is a
distinction between a player’s value and sell price. A player’s value is the price a player
is listed with in the FPL database. If a player is not in a manager’s selected squad, this is
the price the manager must pay for the player. A player’s sell price is the price a manager
can sell a player in the selected squad for. If the price of a player decreases, his sell-price
simply equals his value.

For each gameweek, managers may use one free transfer if they want to replace one of
their players in the selected squad with another player. It is possible to make more than
one transfer for a gameweek, but each additional transfer will deduct 4 points from the
total score. Hereby, transfers deducting points are referred to as penalized transfers. If
a manager chooses not to make any transfers for a gameweek, the free transfer is saved
for the next gameweek, and the manager can make two free transfers in the upcoming
gameweek. However, a manager cannot save up more than two free transfers. That is,
not making any transfers for two consecutive gameweeks does not give the opportunity to
make three free transfers in the upcoming gameweek.
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Figure 2.1: Illustration of the team selection page of Fantasy Premier League.
Source: https://fantasy.premierleague.com/a/squad/transfers (10.01.2018)

Figure 2.1 illustrates how a selected squad is picked in FPL. The grey shirts indicate that
the manager is considering to remove Kane, Ramsey and Carroll from the selected squad.
As one can see, this deducts 4 points. Hence, the manager had two free transfers for this
gameweek. Further, the manager has £25.2m in the bank for new players if these transfers
are carried out. Also, it can be observed that Ramsey and Moreno have a red triangle
attached to them. This implies that they are either injured or suspended for the upcoming
gameweek. Notice how the selected squad consists of exactly 2 goalkeepers, 5 defenders,
5 midfielders and 3 forwards as stated in the rules.

2.2 The Point System

The Fantasy Premier League managers are rewarded with points depending on their per-
formance during a gameweek. The main point factors are related to goals scored, assists
given and clean sheets. In the following, the point system is presented.

7

https://fantasy.premierleague.com/a/squad/transfers


Chapter 2. Problem Description

Goalkeepers Defenders Midfielders Forwards
For playing up to 60 minutes 1 1 1 1
For playing 60 minutes or more 2 2 2 2
For each goal scored 6 6 5 4
For each assist 3 3 3 3
For keeping a clean sheet 4 4 1 -
For every 3 saves made 1 - - -
For each penalty saved 5 - - -
For each penalty missed -2 -2 -2 -2
For every two goals conceded -1 -1 - -
For each yellow card -1 -1 -1 -1
For each red card -3 -3 -3 -3
For each own goal -2 -2 -2 -2

Table 2.1: Point system of FPL.

• In a match, the three best players are decided according to the FPL Bonus Points
System and awarded a bonus of 1, 2 and 3 points. Bonus Points are calculated
according to 32 match statistics, where goals scored, assists and clean sheets are the
factors that are heaviest weighted. A complete overview of the Bonus Points System
is given in Appendix A.

• For a goalkeeper or defender to receive points for a clean sheet, he has to play at
least 60 minutes, excluding stoppage time.

• If a goal is scored on a direct free kick or a penalty, the player who got the free
kick/penalty is awarded an assist.

• For each round, a manager chooses a captain and a vice-captain. If the captain is
playing, he will be awarded double points for the entire round. However, if the
captain is not playing, the vice-captain will be awarded double points. If neither the
captain nor the vise-captain played, no players are given double points.

Notice that the point system does not consider the outcome of a match. Hence, players are
not rewarded with points for playing on a team that wins or loses. In addition to the regular
scoring system, each manager is awarded four different gamechips. Only one gamechip
can be used in a gameweek. The gamechips are:

(i) Wildcard. The Wildcard allows the manager to replace his entire selected squad
for free. As for the Wildcard squad selection, the same rules apply as in the regular
fantasy team composition. Hence, one can only select a maximum of three players
from each team, and the formation criterion must be upheld. When playing a Wild-
card, a manager’s budget is set to the sell price of his selected squad in that particular
gameweek. Further, when playing a Wildcard, any saved transfers will be lost. The
gamechip can be used twice a season, once in the first and once in the second half
of the season.

(ii) Bench Boost. The Bench Boost allows a manager to receive points for all the 15
players in the selected squad. The gamechip can only be used once a season.
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(iii) Free Hit. The The Free Hit allows a manager to replace the entire selected squad
for one gameweek. However, for the next gameweek, the selected squad is reversed
back to the squad from the previous gameweek. The Free Hit can only be used once
a season. As for the Wildcard, the same transfer- and budget rules apply for the Free
Hit. The gamechip can only be used once a season.

(iv) Triple Captain. The Triple Captain triples the points of the captain for a gameweek.
If the captain does not play, the points of the vice-captain are tripled. If neither the
captain nor the vise-captain play, no players are awarded triple points. The gamechip
can only be used once a season.

2.3 The Fantasy Premier League Decision Problem
In Fantasy Premier League each manager attempts to maximize his or her total number of
points over an entire season. As seen in this chapter, a number of decisions must be made
each gameweek. The decisions include which players to add to the selected squad and
which players to pick for the starting line-up. In addition, a captain- and vice-captain must
be chosen. Further, one has to set a substitution priority for the players that are not selected
for the starting line-up. As pointed out, a manager is allowed to perform transfers during
the season. Therefore, a manager must also decide whether to make a transfer or not,
and consequently which players to be transferred in and out for each gameweek. Hence,
decisions are made in a multi-period manner. Hereby, the aforementioned decisions are
referred to as the Fantasy Premier League Decision Problem (FPLDP).
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Chapter 3
Literature Review

The literature review focuses on academic work related to the FPLDP. First, Section 3.1
compares Fantasy Football to real-life football. By Fantasy Football, all Fantasy Sports
with basis in football are meant. Further, Section 3.2 focuses on the use of operations
research in sports, Fantasy Sports and Fantasy Football. Next, Section 3.3 focuses on fore-
casting of player performance. This includes forecasting of individual player performance,
rating the quality of football teams and works related to the existence of a home-field ad-
vantage. Section 3.4 draws parallels to other well-studied problems. Finally, the chapter
is completed by emphasizing our contribution.

3.1 Football Team Composition
Multiple studies are devoted to the topic of team selection in football. For instance, Boon
and Sierksma (2003) provided an optimization model for selecting the line-up of sports
teams, accounting for questions like, ”How to select an optimal line-up from the set of all
candidates in different positions?”. Further, Trninić et al. (2008) discussed the importance
of individual player’s roles and tasks when selecting the starting line-up, as they focused
on finding the position and role most suitable for each player. They argued that consis-
tency is an important consideration when selecting a line-up. Moreover, Ozceylan (2016)
identified key performance criteria for each position and suggested an approach for select-
ing the players with the greatest contribution to the team. Similarly, Tavana et al. (2013)
proposed a framework for player selection and team formation with regards to determining
the collection of individual players that form an effective team. Pantuso (2017) proposed
a stochastic programming approach for the composition of football teams. The approach
takes the requirement of a mix of skills, competition regulations and budget limits into
consideration.

When selecting a real-life football line-up, other considerations are faced than when se-
lecting a Fantasy Football line-up. For instance, in real-life football it is important that
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the players hold a necessary set of skills that are compatible to the team’s organization
of play (Pantuso, 2017). Furthermore, a quality like leadership ability is considered es-
sential when selecting the captain. In addition, different skills are required for different
positions on the field (Boon and Sierksma, 2003). Moreover, it is vital that the selected
players have a good chemistry and play each other better. Hence, in real-life football sev-
eral factors are considered when selecting the team composition that are not important for
the FPL. In FPL, it is only relevant to select players that perform well in terms of Fan-
tasy Premier League points. Thus, the chemistry between players has limited impact, as
the team mainly consists of players who do not play in the same club. In addition, while
leadership ability is essential when selecting the captain of a real-life football line-up, it
is an irrelevant consideration with regards to FPL line-ups. Moreover, player skills like
stamina, interceptions and passing have a low impact for the points obtained by a FPL
player. For instance, N’golo Kanté, the winner of the Professional Footballers’ Associa-
tion (PFA) Players’ Player of the year award in 2017 (Skysports, 2017), is considered a
hard-working midfield anchor. During the 2016-2017 season, Kanté earned a total of 83
points in FPL, scoring 1 goal, having 1 assist and receiving 9 yellow cards. By compari-
son, the best FPL midfielder in terms of FPL points, Alexis Sánchez, earned 264 points.
However, Kanté’s contribution was crucial for Chelsea who won the Premier League that
season. Thus, although Fantasy Premier League is based upon the performances of real-
life football, there are significant differences in terms of selecting the team. While FPL
managers should mainly focus on players that score goals, have assists and keep clean
sheets, actual football managers have to ensure that the team is composed with the mix
of required and compatible skills (Pantuso, 2017). Furthermore, other distinctions such
as transfer rules and the gamechips make the problem of picking a selected squad in FPL
and a real-life football team different. Hence, uncritically applying models from real-life
football to the FPL can be inappropriate.

3.2 Operations Research in Sports
In recent years, the development of literature in sport analytics related to decision making
has been rapid. Well known journals in statistics, applied mathematics, operations research
and economics have published a great number of articles on this field (Coleman, 2012).
An area with great progress within operations research is called ”Sports Scheduling”. This
field of research contains problems which involve deciding optimal league seasons’ sched-
ules for different sports. The arena of sports scheduling has existed for over 40 years, but
only until recently the number of papers has increased significantly (Kendall et al., 2010).
The use of operations research can be explained by the growing complexity of playoff
structures, league divisions and opposing demands from constituent teams and other stake-
holders. Its use has been investigated in sports including volleyball (Bonomo et al. (2012)),
table-tennis (Schönberger et al. (2004); Knust (2010)), cricket (Wright (2005)), basketball
(Wright (2006); van Voorhis (2002); Henz (2001)), baseball (Trick et al. (2012)), Cana-
dian football (Kostuk and Willoughby (2012)) and softball (Saur et al. (2012)). In football,
sports scheduling is also prominent. Bartsch et al. (2006) scheduled the professional soc-
cer leagues of Austria and Germany. Besides constraints for inner-league requirements and
preferences, the European top soccer leagues also have to take into account constraints re-
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lated to European cup matches (Champions League, UEFA Cup). They developed models
and applied greedy algorithms and a branch and bound method which yielded reasonable
schedules quickly. The schedules were applied by the professional soccer league in both
Austria and Germany. Further, Della and Oliveri (2006) scheduled the Italian football
league where the schedules also were balanced with respect to additional cable television
requirements. Further, Chile is perhaps one of the countries where sports scheduling in
football has been most present. Since 2005, the Chilean professional soccer has adopted
a scheduling system that is based on an integer linear programming model. Durán et al.
(2007) generated schedules that gave teams benefits such as higher incomes, lower cost,
higher fan attendance and fairer seasons. Their work was further expanded (Durán et al.,
2012), when they considered challenges for Chile’s Second Division soccer league. Sim-
ilar scheduling problems are also studied in Belgium by Goossens and Spieksma (2009)
and in Denmark by Rasmussen (2008). Finally, Kendall (2008) addressed the special case
of English football fixtures over holiday periods. In England, during the Christmas and
New Years period teams can play up to four matches in less than ten days. Kendall et al.
(2010) considered the minimization of the travel distances by English football clubs dur-
ing this period, and generated schedules which had 25% lower total travel distances than
the fixtures actually used.

In the world of Fantasy Sports, the use of operations research is rather limited. Most of the
research focuses on American football and the National Football League (NFL) Fantasy
Draft. This could partly be explained by more attractive monetary prizes compared to
for instance Fantasy Football leagues. For the NFL Fantasy Draft, optimization models
and solution methods have been proposed by Fry et al. (2007), Gibson et al. (2007) and
Becker and Sun (2016). Though Fantasy Premier League and NFL Fantasy Draft are both
Fantasy Sports, they are essentially different problems. For instance, in NFL Fantasy Draft
leagues only one manager within a league can own a given player - while in FPL this is
not a restriction. Furthermore, for every gameweek, pairs of managers are matched head
to head where the one with highest points wins - a feature that is not present in FPL. The
most profound similarity that exists is that in each gameweek a fixed number of players in
different roles have to be picked. In addition, decisions on starting line-ups are made.

Goossens et al. (2017) discussed the common characteristics in Fantasy Sports games,
where game-rule characteristics are most relevant. They presented a mixed integer pro-
gramming model for finding an optimal set of ex-post decisions in Fantasy Sports games
under the assumption that all data are known in advance. The model was tested on a
fantasy cycling game with all data known beforehand. Disregarding gamechips, captain
and vice-captain, part of the model can with modification be used for the FPLDP. How-
ever, including the gamechips increases the complexity and calls for a more sophisticated
mathematical model.

To the author’s knowledge, there is no operations research literature which explicitly dis-
cusses the FPLDP. However, articles related to Fantasy Football exist. Matthews et al.
(2012) were the first to develop a sequential team formation algorithm on Fantasy Pre-
mier League. They modeled decisions in FPL as a belief-state Markov Decision Problem
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and solved it using Bayesian Q-learning. Their model produced promising results as it
outperformed most FPL managers. They only modeled the Wildcard gamechip, with the
qualitative assessment of the opportunity to play it in gameweek 8 and 23. Their results
motivate the development of analytic tools for the FPLDP.

Bonomo et al. (2014) presented two optimization models for the Argentinian Fantasy Foot-
ball. The first model, called a priori, determines line-ups and transfers based on predic-
tions of player points, while the second model, called a posteriori, determines the optimal
line-ups with data known beforehand. The results obtained by the a priori model posi-
tioned within the top 0.2 % of all managers. They are the first to develop and solve an
optimization model for Fantasy Football, and their results encourage the use of operations
research in this field. The points in the Argentinian Fantasy Football are to a high degree
allocated in the same manner as in the English Fantasy Premier League. They are set by
objective statistics (goals, assists, yellow cards etc.) and subjective statistics determined
by a newspaper that are somewhat analogous to the Bonus Points System in FPL (see Sec-
tion 2.2 and Appendix A). Comparison of the optimization model proposed by Bonomo
et al. (2014) with the one developed by Goossens et al. (2017), shows that many of the
constraints can be related. Further, as with the points allocation, the rules in Argentinian
Fantasy Football resemble the rules of FPL. Nevertheless, there are some significant ex-
ceptions:

• Gamechips are a feature which is only present in the FPL.

• Only in FPL, player values can increase or decrease based on how many managers
select them.

• The Argentinian Fantasy League allows 4 free transfers in each gameweek, while
FPL allocates 1 each gameweek. Further, penalized transfers are only featured in
FPL.

• The decisions regarding captain and vice-captain choices are only featured in FPL.

As seen by the differences, a manager in FPL faces a more complex set of decisions than
a manager in the Argentinian Fantasy League and thus an increased level of uncertainty.

3.3 Forecasting of Player Performance
The ability to predict future player performances is perhaps the most important skill re-
quired in Fantasy Premier League. As stated by Smith et al. (2006), fantasy managers tend
to ignore historical statistics when selecting their line-up. Since one aim of this thesis is to
compete against managers in FPL, forecasting of player performance is essential.

3.3.1 Individual Player Performance
Yang (2015) predicted the results of the 2016 NBA season by running a least-square linear
regression model on player’s individual statistics and the win-ratio of their team, thus
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predicting the results of the NBA matches based on player performances. The explanatory
variables primarily used are well-known statistics such as points scored, assists, rebounds,
steals and blocks. These variables were analyzed for the past 20 seasons in order to predict
the outcome of the upcoming season. To evaluate the impact of the players, he assigned
each player with a player efficiency rating, a number representing a player’s effectiveness
by a single number. A limitation of Yang’s approach is that the data used mainly focused
on offensive contributions. Hence, good defending players are not appropriately valued.
Although this paper focuses on predicting a team’s performance and not solely player
performance, a similar approach may be used to predict the performance of individual
Premier League players.

Sæbø and Hvattum (2015) proposed a top-down rating model for football players, using a
regression model to capture how players perform relative to their teammates and the oppo-
sition. They provided a regression-based player rating using a plus-minus player statistics,
measuring the number of goals scored minus the number of goals conceded when a player
is used by the team. Further, they discounted earlier observations and placed greater em-
phasis on recent performances. As their model did not sufficiently differentiate between
players from different divisions or different league systems, their model was further im-
proved (Sæbø and Hvattum, 2017). The model was extended by adding a factor depending
on a player’s current league and division.

An approach used for rating the players in the Norwegian Tippeligaen, the top tier of
Norwegian football, was suggested by Bjertnes et al. (2016). They applied a binary logistic
regression in order to assign values to shots attempted in football, hence calculating the
probability of a shot resulting in a goal scored. In addition, they developed two Markov
game models in order to evaluate all player’s actions, not only the shots. Their analyzes
are made post-game. Thus, there is no forecasting of player performance. However, the
regression variables used and the idea of valuing players using regression are of great
interest.

As mentioned in Section 3.2, Bonomo et al. (2014) proposed a mathematical model for
an Argentinian Fantasy League. In addition to the optimization model, they also forecast
future player points for the individual players. The forecasts were calculated by averaging
the points obtained in the three last gameweeks for each particular player. Further, a
player’s predicted points were multiplied by four deciding factors related to the upcoming
match:

• 1.05 if the team was playing at home and 0.95 was the team is playing away.

• A value between 0.95 and 1.05, linearly dependent on the position in the league
table. The players on the team leading the league were weighted by 1.05, while the
players on the team in the bottom of the league were weighted by 0.95.

• 0.95 to 1.05, depending on a point streak factor.
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• A starting line-up factor. This factor was set to 1 for players assumed to be starting
in the next gameweek. The factor was based on coaches’ announcements, press
reports, or information posted on the game website.

As the problem of modeling the Argentinian Fantasy League resembles the FPLDP, a sim-
ilar approach can be used for the English Fantasy Premier League. Therefore, in Section
5.2, the approach suggested by Bonomo et al. (2014) is modified for the FPL.

3.3.2 Rating Football Teams

The individual performance of a player can be assumed to be impacted by the performance
of the player’s team. In terms of FPL points, it is reasonable to assume that a player will
perform better if he plays for a top-rated team than for a weaker team, as these teams score
more goals and keep more clean sheets. Team strengths have been a hot topic in scoreline
prediction, i.e., the prediction of final scorelines, for several years. Gamblers try to develop
scoreline predictions in order to create realistic odds for upcoming matches, hence trying
to beat the bookmakers. In addition to the development of profitable gambling, an appro-
priate scoreline prediction could be of great use when predicting the future performance
of Premier League players.

Maher (1982) introduced attacking- and defensive strength parameters for each team in
order to develop a model calculating the expected goals scored by both the home- and away
team, where the number of goals was modeled as a Poisson distribution. This was further
extended by Dixon and Coles (1997) who were able to calculate probabilities of different
scorelines in a given match, by which they created a strategy for profitable gambling. Rue
and Salvesen (2000) suggested that the attacking- and defensive strengths of a team were
time-dependent, and updated the strength estimates using Bayesian methods. In order
to do so, they used Markov Chain Monte Carlo iterative simulation techniques. Further,
Crowder et al. (2002) developed a procedure for updating parameter estimates which was
computationally less demanding.

Although the approach suggested by Maher (1982) has been improved over the years,
there are other ways of determining the strength of a team. In 1978, the Elo rating was
introduced by Elo (1978). The rating was initially developed for rating the strength of
chess players but has been widely adopted to different sports, including golf, tennis and
football. Hvattum and Arntzen (2009) used the Elo rating in order to rank teams when
predicting match results in football. The ratings appeared to be useful in encoding the
information of past results for measuring the strength of a team. However, when used in
terms of match predictions, the predictions appeared to be considerably less accurate com-
pared to market odds. Bjertnes et al. (2016) adopted the approach suggested by Hvattum
and Arntzen (2009) for consideration of team strengths as they valued the individual player
performance in Norwegian football. In addition, Leitner et al. (2010) assessed the Elo rat-
ing alongside with FIFA/Coca-Cola World Rankings (FIFA, 2012) in order to predict the
outcome of tournament winners. However, both rating systems were found to be inferior
to bookmakers’ odds. Hence, it confirms the findings of Hvattum and Arntzen (2009).
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Other rating systems investigated in the forecasting literature include team strengths es-
timated by adopting an ordered probit model with one parameter for each team (Graham
and Stott, 2008), predictions based on power scores (ratings inspired by the Elo system)
and an associated ranking for matches in the National Football League ((Boulier and Stek-
ler, 2003); (Boulier et al., 2006)). In addition, Clarke and Dyte (2000) fitted differences
in Association of Tennis Professionals (ATP) rating points to a logistic model and used
resultant probabilities in a simulation to estimate each player’s chance of victory.

3.3.3 Home-Field Advantage in Football
It is often presumed that football teams perform better when playing at home than when
playing away. If this is the case, home-field advantage may play a role when forecasting
the performance of a player for an upcoming match. In the following, academic works
related to home-field advantage in football is presented.

Nevill and Holder (1999) identified likely causes of home-field advantage. They discussed
four factors thought to be responsible for the home-field advantage. These factors were
categorized under the general headings of crowd, learning, travel and rule factors. When
considering the learning factor, they claimed that the players for the home team were used
to play at that particular stadium. There was evidence to suggest that travel factors could
be responsible for part of the home-field advantage, provided that the journey involved
crossing a number of time zones. However, as most of the matches did not require long
travels, these factors were not thought to be a primary cause of home-field advantage.
Crowd factors appeared to be the most dominant cause of home-field advantage. Rule
factors were found to play a minor role in contributing to home-field advantage.

Clarke and Norman (1995) used least squares to fit a model to the individual match results
in English football and found home-field advantage effects on club level. Home-field
advantages were calculated for all teams in the English Football League from 1981-82 to
1990-91. It was evident that teams with special facilities had significantly higher home-
field advantage, and that London clubs generally had a lower home-field advantage. In
addition, they found that the home-field advantage had more impact on the outcome than
on goals margin.

Pollard and Pollard (2005) analyzed over 400,000 sports matches since the start of the
main professional sports, including English top division football. They found that the
home-field advantage in English football decreased from the 1980s to the 2000s. Further,
in contrary to Nevill and Holder (1999), they claimed that travel and familiarity contributed
to home-field advantage, and found limited support for the contribution of crowd effects.

3.4 Connections to Existing Literature
Although this thesis focuses exclusively on optimizing decisions related to Fantasy Pre-
mier League, parallels can be drawn to other scientific areas. The Fantasy Premier League
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Decision Problem shares features with many well-studied problems.

Knapsack problems share several similarities with the FPLDP. A capacity (budget) has
to be allocated to items characterized by a weight (price) and a reward (expected perfor-
mance). Kirshner (2011) modeled the problem of selecting free agent players for an NBA
squad by using a multiple-choice knapsack model. Here, the rewards were measured in
terms of the ability of the players, weights as the salaries and the capacity as the NBA
teams’ salary cap. Furthermore, Gibson et al. (2007) used a stochastic knapsack prob-
lem in order to make team composition decisions regarding player drafts. Ahead of the
American sports seasons, teams sign players according to a pick order. Therefore, play-
ers become stochastically unavailable over time, depending on the pick decisions of the
teams. Thus, they modeled the drafting problem as a stochastic knapsack problem, where
the future availability of the items was considered stochastic. There exist significant dif-
ferences between the knapsack problem and the FPLDP. First, the FPLDP includes not
only adding items to a knapsack, it also involves removing items from the knapsack. This
is done by buying and selling players in a selected squad. In addition, since the price of a
player changes over time, removal decisions do not only free space to the knapsack, it can
also yield a reward in terms of increased budget.

Similarities can be found between the FPLDP and staffing problems, where one seeks to
compose a set of personnel that satisfies the supply and demand of personnel from different
categories (Komarudin et al., 2013; Bruecker et al., 2015). In general, the FPLDP makes
decisions regarding buying and selling players, while staffing problems consider hiring
and dismissal of personnel. Although the two problems resemble each other in terms of
composing a team, there exist significant differences. First, the FPLDP considers players
as assets that can increase the value (budget) of the team, and not only as items used to
satisfy demand. Furthermore, in the FPLDP, players in the same role are heterogeneous,
whereas in most staffing problems individuals in the same category are assumed homoge-
neous. For instance, Davis et al. (2007) aimed to determine the optimal composition of the
pre-hospital medical response team and evaluate the importance of including a doctor to
the team. No distinctions between workers in the same category for the staffing problems
were made. In the FPLDP, on the other hand, although players in the same position are
evaluated according to the same point system, individual factors such as ability of scoring
a goal influence the expected performance.

In capacity renewal problems (Chand et al., 2000; Rajagopalan and Soteriou, 1994), ma-
chinery is replaced due to damages over time, improved equipment and changes of pro-
duction (Hopp and Nair, 1994; Adkins and Paxson, 2013). Similarly, players are replaced
in the FPLDP, but due to change in expected performance. This can be the result of in-
juries, suspensions or poor recent performance. However, a significant difference between
the problems is that while players are considered assets for maximizing expected points,
machinery is considered a necessary item in order to satisfy demand efficiently. Further-
more, in the machinery problems, individual machines are often indistinguishable from
one another. Hence, different machines can satisfy the same requirements. For the FPLDP
however, players are considered unique as their expected performances are dependent on
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factors such as team, opponent and recent individual performance.

In transportation and logistics, problems with similar features as the FPLDP can be found.
For the long-term vehicle fleet composition (Jabali et al., 2012), different types of vehicles
are needed to perform distribution activities, in which size and the mix of the fleet are
important decision variables. As for the FPLDP, a mix of players are necessary in order to
fulfill the formation criterion. Various vehicles may have the same characteristics and can
hence be used for the same purposes. For the FPLDP however, although two players can
be listed with the same purchase price, their performance in terms of expected points can
be significantly different.

Finally, there is a large correspondence between the FPLDP and portfolio optimization
problems (Markowitz (1952); Zenios (2005); Mansini et al. (2015)). The FPLDP can
be interpreted as the problem of investing in a number of assets (football players) with
stochastic returns in order to maximize total return (the total number of points). Fur-
thermore, the budget limit in the FPLDP can be seen as a budget constraint in portfolio
optimization. However, in the FPLDP the decisions are binary (a player is either bought
or not) while in portfolio optimization fractions of wealth are allocated to different as-
sets. Moreover, the fixed number of assets (players) in the FPLDP resembles cardinality-
constrained portfolio optimization problems (Chang et al., 2000). Additionally, similar to
how the formation criterion in the FPLDP gives a fixed number of players in each role,
cardinality-constrained portfolio optimization problems may impose a minimum or max-
imum proportion of wealth to be allocated to a certain class of assets. Finally, variance
in returns is a well-known measure of risk in portfolio optimization problems. For the
FPLDP, variance can be regarded in a similar manner in order to model the uncertainty in
future player performances. Newell and Easton (2017) suggested a stochastic integer pro-
gram which maximizes the expected payout of a tiered Daily NFL Fantasy Sports by using
a stochastic integer program. Here, variance in points obtained was used as a measure of
risk.

3.5 Our Contribution
As discussed in this literature review, the FPLDP shares similarities with many well-
studied optimization problems. Moreover, several optimization models have been sug-
gested for football team composition as well as for Fantasy Sports (Fry et al. (2007); Gib-
son et al. (2007); Becker and Sun (2016)). However, to the best of the authors’ knowledge,
we have developed the first mathematical model for the Fantasy Premier League. Further,
we have developed the first optimization driven framework that can compete on the same
terms as human FPL managers.
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Chapter 4
Model Formulation

In this chapter, the mathematical optimization model for the Fantasy Premier League De-
cision Problem (FPLDP) is presented. In Section 4.1, the sets, indices, parameters and
variables used in the model are defined. In Section 4.2, the mathematical formulation is
presented alongside explanations of the objective function and constraints.

The FPLDP is modeled as a stochastic mixed integer linear program. The points a player
receives in each gameweek is stochastic and modeled as dependent on future random
events during actual matches. Such random events include goals, assists, penalties, passes,
saves etc. This is denoted in the model as ⇢pt(!t), where !t is the realization of these
future random events in gameweek t. The objective is to maximize expected points over
a number of gameweeks. From the output, the most interesting decisions are the selected
squad, starting line-up, substitutes, captain, vice-captain as well as whether to use any
gamechips in a gameweek.

The only simplification made from the original problem is the feature of a sell-on fee.
Remember, as explained in Section 2.1, that if more managers select a player, the price the
player is listed with in the FPL database will increase. Furthermore, a manager can benefit
from a price increase if the player is in the selected squad. Thus, a distinction between
a player’s value and sell price is made. Hence, the prices are stochastic variables. In the
model, however, this feature is simplified by assuming that a player’s sell price and value
are deterministic.
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Chapter 4. Model Formulation

4.1 Definition of Sets, Indices, Parameters and Variables

Set

T - Set of gameweeks.
P - Set of players.
C - Set of teams.
L - Substitution priorities, where 1 is first priority.

Table 4.1: Sets.

Subset

PD - Subset of defenders, PD ⇢ P
PM - Subset of midfielders, PM ⇢ P
PF - Subset of forwards, PF ⇢ P
PK - Subset of goalkeepers, PK ⇢ P
Pc - Subset of football players in a team c, Pc ⇢ P , c 2 C
TFH - Subset of the gameweeks in the first half of the season, TFH ⇢ T
TSH - Subset of the gameweeks in the second half of the season. TSH ⇢ T

Table 4.2: Subsets.

Index

p - Players
t - Gameweeks
l - Priority

Table 4.3: Indices.
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Parameters

⇢pt(!t) - Points for a player p dependent on the realization of a random event, !t, in gameweek t.
✏ - Constant such that ✏ << 1.
l - Constants such that l << ✏ for all l 2 L, and 1 > 2 > . . . > L.
CS

pt
- Sell price of player p in a gameweek t.

CB

pt
- Value of player p in a gameweek t.

R - Number of points deducted for each penalized transfer.
MK - Number of goalkeepers required in the selected squad.
MD - Number of defenders required in the selected squad.
MM - Number of midfielders required in the selected squad.
MF - Number of forwards required in the selected squad.
MC - Maximum number of players allowed in the selected squad from the same team.
E - Number of players required in the starting line-up.
EK - Number of goalkeepers required in the starting line-up.
ED - Minimum number of defenders required in the starting line-up.
EM - Minimum number of midfielders required in the starting line-up.
EF - Minimum number of forwards required in the starting line-up.
BS - Starting budget.
� - Sufficiently high constant.
↵̄ - Sufficiently high constant.
� - Number of players which are substitutes.
�K - Number of goalkeepers which are substitutes.
Q - Maximum number of free transfers possible to accumulate over gameweeks.
Q - Number of free transfers given every gameweek.

Table 4.4: Parameters.

Variables

xpt - 1 if a player p is picked for the selected squad in a gameweek t, 0 otherwise.
xfreehit

pt
- 1 if a player p is picked for the selected squad in a gameweek t where the Free Hit is used,

0 otherwise.
ypt - 1 if a player p is picked for starting line-up in a gameweek t, 0 otherwise.
fpt - 1 if a player p is picked as captain in a gameweek t, 0 otherwise.
hpt - 1 if a player p is picked as vice-captain in a gameweek t, 0 otherwise.
gptl - 1 if a player p is picked as substitution priority l in a gameweek t, 0 otherwise.
upt - 1 if a player p is transferred out of the selected squad in a gameweek t, 0 otherwise.
ept - 1 if a player p is transferred in to the selected squad in a gameweek t, 0 otherwise.
wt - 1 if a Wildcard is used in a gameweek t , 0 otherwise.
cpt - 1 if the Triple Captain is used on a player p in a gameweek t, 0 otherwise.
bt - 1 if the Bench Boost is used in a gameweek t, 0 otherwise.
rt - 1 if the Free Hit is used in a gameweek t, 0 otherwise.
�pt - Binary auxiliary variable.
vt - Remaining budget in a gameweek t.
qt - Number of free transfers available in a gameweek t.
↵t - Number of penalized transfers in a gameweek t.

Table 4.5: Variables.
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4.2 Mathematical Model
4.2.1 Objective Function

max z = E
hX

p2P

X

t2T

⇣
⇢pt(!t)ypt + ⇢pt(!t)fpt + ✏⇢pt(!t)hpt +

X

l2L
l⇢pt(!t)gptl

+ 2⇢pt(!t)cpt
⌘i

�R
X

t2T
↵t

(4.1)
The objective function maximizes expected points over a set of gameweeks T for the start-
ing line-up. The term ⇢pt(!t)fpt describes who is picked as captain, while ✏⇢pt(!t)hpt

describes who is picked as vice-captain. Further,
P

l2L l⇢pt(!t)gptl describes the sub-
stitution priority. Naturally, among the substitutions the player with the highest expected
points is given the first priority, the player with the second highest expected points is given
the second priority and so on. Hence, l is defined as 1 > 2 > . . . > l. The Triple
Captain awards triple points for one player in a gameweek and is described by the term
2⇢pt(!t)cpt.

If more transfers are made than the number of free transfers imposed by the rules, R points
are deducted for each penalized transfer. This is described by the term R

P
t2T ↵t.

Note that in principle all decision variables for a gameweek t are dependent on the re-
alization of a random event !t�1, meaning that decisions are based only on information
available before gameweek t starts. This ensures that the model is non-anticipative, mean-
ing that decisions are based only on available information and do not anticipate the future.
However, for the sake of legibility, the dependency is suppressed in the notation.

4.2.2 Constraints
Gamechips

X

t2TFH

wt  1 (4.2)

X

t2TSH

wt  1 (4.3)

X

p2P

X

t2T
cpt  1 (4.4)

X

t2T
bt  1 (4.5)

X

t2T
rt  1 (4.6)
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wt +

X

p2P
cpt + bt + rt  1 t 2 T (4.7)

Constraints (4.2) - (4.7) impose the gamechips rules. The first two constraints specify that
the Wildcard can maximum be used one time in the first half of the season, and maximum
one time in the other half of the season. Constraints (4.4) - (4.6) state that the gamechips
Triple Captain, Bench Boost and Free Hit can each be used maximum one time during the
season. The last constraints ensure that only one gamechip can be used in a gameweek.

Selected Squad Constraints
X

p2PK

xpt = MK t 2 T (4.8)

X

p2PD

xpt = MD t 2 T (4.9)

X

p2PM

xpt = MM t 2 T (4.10)

X

p2PF

xpt = MF t 2 T (4.11)

X

p2Pc

xpt MC t 2 T , c 2 C (4.12)

Constraints (4.8) - (4.12) handle the number of players required in the selected squad.
Explicitly, it is necessary to have MK goalkeepers, MD defenders, MM midfielders and
MF forwards. Constraints (4.12) ensure that the maximum number of players allowed
from same club is MC .

X

p2PK

xfreehit

pt
= MKrt t 2 T (4.13)

X

p2PD

xfreehit

pt
= MDrt t 2 T (4.14)

X

p2PM

xfreehit

pt
= MMrt t 2 T (4.15)

X

p2PF

xfreehit

pt
= MF rt t 2 T (4.16)

X

p2Pc

xfreehit

pt
MCrt t 2 T , c 2 C (4.17)

Constraints (4.13) - (4.17) are the same as constraints (4.8) - (4.12), with the exception that
they are only active in the gameweek the Free Hit is used. That is, they enforce xfreehit

pt
to

only take value in that particular gameweek, while in the other gameweeks they are zero.
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Starting Line-up Constraints
X

p2P
ypt = E + �bt t 2 T (4.18)

X

p2PK

ypt = EK
+ �Kbt t 2 T (4.19)

X

p2PD

ypt � ED t 2 T (4.20)

X

p2PM

ypt � EM t 2 T (4.21)

X

p2PF

ypt � EF t 2 T (4.22)

Constraints (4.18) - (4.22) enforce that the formation criterion is upheld in each gameweek.
Constraints (4.18) handle the number of players in the starting line-up, while constraints
(4.19) - (4.22) ensure that the minimum number of players in each position is upheld.
When the Bench Boost is used, all the substitutes are treated as a part of the starting line-
up. This is ensured by the term �bt and �Kbt in constraints (4.18) and (4.19), respectively.

ypt  xfreehit

pt
+ xpt(1� rt) p 2 P, t 2 T (4.23)

Constraints (4.23) enforce that only players in the selected squad can be picked for the
starting line-up. Remember, when the Free Hit is used, the whole team can be changed for
one gameweek, but in the next gameweek it changes back. This means that the gameweek
the Free Hit is used rt = 1 and ypt only takes value from xfreehit

pt
, not xpt. When the Free

Hit is not used, i.e., rt = 0, the constraints (4.13) - (4.17) ensure that xfreehit

pt
does not

take value. Constraints (4.23) are non-linear. A linearization is given by constraints (4.24)
- (4.26) where �pt is an auxiliary binary variable.

ypt  xfreehit

pt
+ �pt p 2 P, t 2 T (4.24)

�pt  xpt p 2 P, t 2 T (4.25)

�pt  (1� rt) p 2 P, t 2 T (4.26)

When the Free Hit is used, xfreehit

pt
decides what players ypt can select. In all other

gameweeks, �pt enforces that xpt decides what players ypt can select. More specifically,
when the Free Hit is used, constraints (4.26) force �pt to be zero for all players. Further,
constraints (4.13) - (4.17) become active such that xfreehit

pt
equals 1 for the Free Hit players

selected. Finally, constraints (4.24) impose that xfreehit

pt
decides what players ypt can

select. In all the other gameweeks, xfreehit

pt
is zero. Constraints (4.26) ensure that �pt

can take non-zero values for all players in these gameweeks. Moreover, constraints (4.25)
make sure �pt is only 1 for players in the selected squad decided by xpt. Constraints (4.24)
ensure xpt decides what players ypt can select.
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Captain and Vice-captain Constraints
X

p2P
fpt +

X

p2P
cpt = 1 t 2 T (4.27)

X

p2P
hpt = 1 t 2 T (4.28)

fpt + cpt + hpt  ypt p 2 P, t 2 T (4.29)

Constraints (4.27) - (4.29) set restrictions for captain and vice-captain in the starting line-
up. Constraints (4.27) ensure that there can only be 1 captain in a gameweek. They also
make sure that in the gameweek the Triple Captain is used, no captain is picked. Further,
constraints (4.28) ensure that there can only be 1 vice-captain in a gameweek. The last
constraints (4.29) enforce that a player can only be a captain, triple captain or vice-captain
in a gameweek.

Substitution Constraints

ypt +
X

l2L
gptl  xpt + �rt p 2 P \ PK , t 2 T (4.30)

ypt +
X

l2L
gptl  xfreehit

pt
+ �(1� rt) p 2 P \ PK , t 2 T (4.31)

X

p2P\PK

gptl  1 t 2 T , l 2 L (4.32)

Constraints (4.30) - (4.32) explain how the substitutions are handled. Both constraints
(4.30) and (4.31) ensure that all the players who are not picked in the starting line-up are
regarded as substitutes. A parameter � is a sufficiently high value, such that when the
Free Hit is exercised, constraints (4.31) are restricting. In all other gameweeks, constraints
(4.30) are restricting. Constraints (4.32) ensure that no substitutes have more than one
priority.

Budget Constraints

BS �
X

p2P
CB

p1xp1 = v1 (4.33)

vt�1 +

X

p2P
CS

pt
upt �

X

p2P
CB

pt
ept = vt t 2 T \ {1} (4.34)

xp,(t�1) + ept � upt = xpt p 2 P, t 2 T \ {1} (4.35)

ept + upt  1 p 2 P, t 2 T (4.36)

Constraints (4.33) - (4.36) handle the budget flow and how transfers affect the budget. In
the first gameweek, constraints (4.33) assign the remaining budget of the starting budget
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BS to the variable v1. Next, constraints (4.34) handle the flow in the variable vt for the
remaining gameweeks. More specifically, the remaining budget for the next gameweek
is decided by the remaining budget from the previous gameweek plus the difference in
budget generated by transferring players in and out. Further, constraints (4.35) ensure
that a player in the selected squad in gameweek t was either in the selected squad in the
previous gameweek or transferred in. Constraints (4.36) make sure that a player cannot be
both transferred in and transferred out in the same gameweek.

X

p2P
CS

pt
xp,(t�1) + vt�1 �

X

p2P
CB

pt
xfreehit

pt
t 2 T \ {1} (4.37)

X

p2P
upt  E(1� rt) t 2 T \ {1} (4.38)

X

p2P
ept  E(1� rt) t 2 T \ {1} (4.39)

Constraints (4.37) ensure that the cost of the selected squad the gameweek the Free Hit is
played does not exceed the value of the initially selected squad and remaining budget from
the previous gameweek. Constraints (4.38) and (4.39) ensure that the selected squad in the
gameweek after the Free Hit is played is the same as in the gameweek before.

Transfer Constraints

q2 = Q (4.40)

Ewt + qt �
X

p2P
ept +Q+ ↵t � qt+1 t 2 T \ {1} (4.41)

↵̄(Q� qt+1) � ↵t t 2 T (4.42)

qt+1 � Q t 2 T (4.43)

qt+1  Q+ (Q�Q)wt + (Q�Q)rt t 2 T (4.44)

Constraints (4.40) - (4.44) handle the transfers. The first constraints (4.40) set the number
of free transfers in the second gameweek to Q. This is the first time the decision of trans-
ferring players is considered and consequently the first time the limitation of free transfers
is treated. Constraints (4.41) handle free transfers available in the next gameweek. Each
gameweek, Q free transfers are given. If they are not used, they are moved to the next
gameweek. Further, the maximum number of free transfers is denoted by Q. If the num-
ber of players transferred out exceeds the number of free transfers available, the variable
↵t takes a value and each penalized transfer gets punished by R points in the objective
function. The exception is when the Wildcard is played. In this case, the number of free
transfers is unlimited. This is ensured by the term Ewt, which makes sure that ↵t does
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not take a value in the gameweek the Wildcard is used. Constraints (4.42) handle a special
case in the modeling; it makes sure that ↵t only can take the value of zero when qt hits its
upper limit, Q. This will be further illustrated by an example where Q = 2.

t et ↵t qt qt+1

1 5 5 1 2
2 6 4 2 1

Solution 1.

t et ↵t qt qt+1

1 5 4 1 1
2 6 5 1 1

Solution 2.

In the tables above, two solutions are presented with variables related to constraints (4.41).
Without constraints (4.42), solution 1 and 2 are regarded as the same since the total num-
ber of penalized transfers over the gameweeks are equivalent. However, in practice only
solution 2 is right. In both solutions, there is 1 free transfer available and 5 players are
transferred out in the first gameweek. This means that ↵1 is 4 and that free transfers next
gameweek, q2, is 1. Without constraints (4.42), it is possible that ↵1 takes the value 5, q2
takes its upper limit Q = 2 and ↵2 takes the value 4. However, constraints (4.42) ensure
that ↵t only take the value 0 when qt+1 hits its upper limit, Q.

The last constraints (4.43) and (4.44) impose an upper and lower bound on the number of
free transfers available in a gameweek. The terms (Q�Q)wt and (Q�Q)rt ensure that
there are only Q free transfers the gameweek after the gamechips Wildcard and Free Hit
are used.

Binary, Integer and Non-negativity Constraints

xpt 2 {0, 1} p 2 P, t 2 T (4.45)

xfreehit

pt
2 {0, 1} p 2 P, t 2 T (4.46)

ypt 2 {0, 1} p 2 P, t 2 T (4.47)

fpt 2 {0, 1} p 2 P, t 2 T (4.48)

hpt 2 {0, 1} p 2 P, t 2 T (4.49)

gptl 2 {0, 1} p 2 P, t 2 T , l 2 L (4.50)

upt 2 {0, 1} p 2 P, t 2 T (4.51)

ept 2 {0, 1} p 2 P, t 2 T (4.52)
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wt 2 {0, 1} t 2 T (4.53)

cpt 2 {0, 1} p 2 P, t 2 T (4.54)

bt 2 {0, 1} t 2 T (4.55)

rt 2 {0, 1} t 2 T (4.56)

�pt 2 {0, 1} p 2 P, t 2 T (4.57)

vt � 0 t 2 T (4.58)

qt 2 Z+ t 2 T (4.59)

↵t 2 Z+ t 2 T (4.60)

Constraints (4.45) - (4.60) impose binary, integer and non-negativity constraints on the
decision variables.
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Solution Framework

The FPLDP is a complex problem with a high degree of uncertainty. In each gameweek,
a broad range of decisions must be optimized. Compared to other Fantasy Sports, the
gamechips make it even more complicated. If the model presented in Chapter 4.2 is run
ex-post, it yields the optimal solution as the realized points are known. However, in order
to compete in FPL, decisions must be made ex-ante. Thus, estimations of expected points
and strategies for when the gamechips should be played are required. The aim of this
chapter is to propose a solution framework designed to maximize performance over the
entire season. By a framework, a methodology for competing in the FPL on the same
terms as managers are meant. Thus, the framework includes a solution method for the
mathematical model, a method for generating forecasts of player points and strategies for
the use of gamechips. In addition, an approach to handle variance in, and correlation
between, player points is included in the framework. This procedure is hereby referred to
as risk handling.

As seen throughout this chapter, the framework is intended to be solely data-driven. That
is, a participant in the FPL applying the framework does not have to make any decision
based on his or her own judgment. Thus, the inherent skill and knowledge of the FPL
possessed by a participant applying the framework are essentially irrelevant for its perfor-
mance.

In Section 5.1, a solution method suggested for solving the mathematical model is pre-
sented. In Section 5.2, three different methods for forecasting player performance are
described. Further, in the Sections 5.3 and 5.4, respectively, methods for implementing
gamechips and handling risk are proposed. Finally, in Section 5.5, the elements discussed
throughout the chapter are combined to a solution framework called the forecast-based
optimization model.
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5.1 Solution Method
As stochastic programming models seek to leverage probability distribution of uncertain
parameters, they are regarded as more computationally demanding than deterministic pro-
gramming models (Shapiro and Philpott, 2007). A conventional method for solving a
stochastic model is by the use of scenario generation. For the FPLDP, the number of sce-
narios explodes even for a modest number of scenarios in each gameweek. With only two
scenarios in a gameweek, the number of scenarios already reaches over 1 million for 20
gameweeks (220 = 1048 576). Therefore, solving a stochastic model over a whole season
is computationally infeasible. Hence, the FPLDP is solved with a deterministic approach.
A rolling horizon framework is used where decisions are implemented for one gameweek
at a time. When decisions are optimized for a given gameweek, a certain number of game-
weeks ahead is considered and forecasts of player points are generated.

When forecasts are used, the objective function described in Section 4.2 is simplified from:

max z = E
hX

p2P

X

t2T

⇣
⇢pt(!t)ypt + ⇢pt(!t)fpt + ✏⇢pt(!t)hpt +

X

l2L
l⇢pt(!t)gptl

+ 2⇢pt(!t)cpt
⌘i

�R
X

t2T
↵t

to

max z =

X

p2P

X

t2T

⇣
⇢̂

pt
ypt + ⇢̂pt

fpt + ✏⇢̂
pt
hpt +

X

l2L
l⇢̂pt

gptl

+ 2⇢̂
pt
cpt

⌘

�R
X

t2T
↵t

where ⇢̂
pt

denotes an estimation of expected points for each player p in a gameweek t.

5.1.1 Rolling Horizon
The idea behind a rolling horizon heuristic is to split the problem into several sub-problems
along a time axis, and then solve them in a chronological order taking into account the
solution of the previous sub-problem. The heuristic suits problems with a long planning
horizon where there are limited dependencies between decisions made early and late in
the planning horizon. Industrial planning and scheduling problems are common areas
where the heuristic is used. The most important considerations are the number of sub-
problems versus the length of each sub-problem, and also which decisions to fix in each
sub-problem.
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Figure 5.1: Information flow in the FPLDP.

Rolling horizon is an appropriate solution method for FPLDP as managers are provided
new information and face new decisions every gameweek. That is, each gameweek is a
sub-problem. As shown in Figure 5.1, decisions are made based on the information avail-
able. When a gameweek is played, updated information such as realized points, injuries
and suspensions are made available. Hence, new decisions are made accordingly. Conse-
quently, the problem is divided into |T | number of sub-problems along a time axis. That
is, the decisions taken in a gameweek affect decisions in future gameweeks. However,
decisions made early in the season have a limited impact on decisions made late in the
season. It is fully possible to have a whole different selected squad in the last gameweeks
compared to that of the first gameweeks. This is especially evident when considering the
opportunity if playing the Wildcard.

In the rolling horizon heuristic, each sub-problem is solved over shorter sub-horizons.
This corresponds well to the FPLDP, as FPL managers often consider several gameweeks
when making decisions. Each sub-horizon is split in two time periods (TP ). The two
TPs are TPC

k
, which is the central period that will be implemented in sub-problem k,

and the forecasting period TPF

k
. Before solving sub-problem k + 1, variables x, v and

q are frozen prior to k + 1 and used as input. The gameweek in which decisions are
already implemented is regarded as the fixed period. The sub-horizon is shifted so that the
first part of TPF

k
becomes TPC

k+1. If the central period and the forecasting period have
equal length, the forecasting period becomes the new central period. To summarize, three
periods are considered:

(i) Fixed period (FP). A gameweek where decisions have been implemented and used
as input for the next sub-problem. These decisions are the players that are selected in
a gameweek, x, the remaining budget, v, and the number of free transfers available,
q.

(ii) Central period (CP). A gameweek where new decisions are implemented. The de-
cisions are which players to include in the selected squad, x, determining the starting
line-up, y, the choice of captain, f , vice-captain, h, whether to use a gamechip or
not and which substitution priority, g, to assign.

(iii) Forecasting period (PP). To avoid making too myopic decisions, a predefined num-
ber of gameweeks are selected and input data such as expected points are generated
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based on information available at that point in time. Decisions are made for these
gameweeks, but not implemented. The decisions are subject to change when new
and updated information becomes available.

The FP, CP and PP in a sub-problem are illustrated graphically in Figure 5.2. In the figure,
the predicted part overlaps the central part in order to illustrate that the input data in the
central part is also predicted. The sub-horizon is set to 4 gameweeks in the figure.

Figure 5.2: Fixed-, central- and forecasting period in a sub-problem.

An important decision is that of determining the length of the sub-horizon. Due to uncer-
tainty in the forecasts, it is not necessarily ideal for the sub-horizon to be the remaining
length of the season. Thus, several alternatives concerning the length of the sub-horizon
should be tested in order to see what gives the best result. In Chapter 6, setting an ap-
propriate length for the sub-horizon is further discussed. Note that in the framework, the
aspect of value, sell price and sell-on fee with regards to a player’s price is implemented.
However, no attempt is made to forecast future prices. The prices are simply assumed to
be what they are at the beginning in the entire sub-horizon. For example, if a player is
bought for £9.0m in a sub-problem, his sell price is set to this for the sub-problem’s entire
sub-horizon. When solving for the next sub-problem, if his value increases to £9.2m, his
sell price is updated to £9.1m and set to this for the entire sub-horizon.
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5.2 Forecast of Player Points
To generate input for the forecasting period in the rolling horizon heuristic, forecasts of
player points are required. In this thesis, three forecasting methods are considered. The
methods are:

• Modified Average. The forecasting approach suggested by Bonomo et al. (2014) is
adapted and modified for the FPL.

• Regression. From a pool of explanatory variables related to the FPL, variables are
selected and a linear regression model is fitted.

• Odds. Bookmakers’ odds are transformed into a probability and subsequently used
to forecast player points. Odds related to factors such as scorelines, goals and assists
are utilized in order to estimate expected points.

5.2.1 Modified Average
As discussed in the literature review, Bonomo et al. (2014) suggested a solution approach
for the Argentinian Fantasy League and achieved promising results. Therefore, the first
forecast method is based on their solution approach. However, the methodology is modi-
fied in order to make it applicable for the English Fantasy Premier League rather than the
Argentinian Fantasy League. Moreover, some alterations are made as an effort to improve
the method. Hence, the first forecasting method is called the Modified Average method.

In Section 3.3.1, it is explained that Bonomo et al. (2014) used the average points for the
three last gameweeks to forecast player points in the upcoming gameweek. The forecast
was further weighted by four factors: opponent strength factor, home-field advantage,
whether a player is on a good performance streak and whether a player is assumed to
be in the starting line-up. More specifically, Bonomo et al. (2014) estimated a player’s
expected points for the next gameweek according to Equation 5.1. In the following, it is
explained how each factor of the equation was decided by Bonomo et al. (2014) and which
modifications that are made.

⇢̂ = Tracking average⇥ Opponent strength factor ⇥ Field factor

⇥ Point streak factor ⇥ Starting line-up factor
(5.1)
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Tracking Average and Opponent Strength Factor

Bonomo et al. (2014) calculated a tracking average by averaging the points obtained in the
3 previous gameweeks. The first modification suggested is to consider averages over more
than 3 previous gameweeks. The number of previous gameweeks taken into considera-
tion when forecasting is hereby referred to as the track-length. In addition, Bonomo et al.
(2014) optimized for only 1 gameweek ahead when decisions were set in a current game-
week. Thus, Bonomo et al. (2014) used a sub-horizon of 1 gameweek and a track-length
of 3 gameweeks when solving for the Argentinian Fantasy League.

Considering different track-lengths is not the only modification made with respect to the
tracking average. Another adjustment is to weigh previous points based on the strength
of the opposition faced in the previous matches. Bonomo et al. (2014) did not account
for the strength of the opposition faced when averaging previous points. However, they
used league table position for measuring the relative strength between adversaries when
predicting future points. That is, when they determined opponent strength factor. Yet,
league position suffers from numerous drawbacks which makes it unreliable for prediction.
For example, the league table suffers from high variation in the early stage of the season
and low variation in the late stage of the season. Further, competing teams may not have
played an equivalent number of matches at each stage of the season due to postponements.
Additionally, at a given point in time, the league table does not capture who has played
against who during the season so far. Hence it is inherently biased until the final match
of the season has been played (Constantinou and Fenton, 2012). Therefore, instead of
weighting the teams based on their league position, measuring team strength with basis in
Elo ratings are suggested.

The Elo system, briefly introduced in Section 3.3.2, is a rating system used for measuring
the relative strength level of sports teams and individual athletes. The Elo ratings provide
a sophisticated measurement of the relative strength between teams. Further, as the ratings
are updated once a match has been played, the Elo system considers the aspect of form. In
addition, the Elo ratings can incorporate all fixtures, not only league matches. In Appendix
B, it is shown how Elo ratings are transformed into a factor of team strength.

Once Elo ratings are obtained, they can be used in order to weight the previous points of
each Fantasy Premier League player. In Table 5.1, some Elo ratings for the first gameweeks
of the English Premier League 2016/2017 season are listed. Note that the ratings are
calculated ahead of each gameweek so that the ratings in the GW1 (gameweek 1) column
are the Elo ratings of the teams before gameweek 1 had been played.
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Elo rating
Team GW1 GW2 GW3 GW4

1 Chelsea 1793 1800 1798 1804
2 Tottenham 1804 1804 1800 1798
3 Man City 1848 1856 1858 1863
4 Man Utd 1789 1797 1799 1804
-
-
-
17 Watford 1624 1631 1618 1612
18 Hull 1589 1603 1613 1608
19 Middlesbrough 1595 1597 1601 1604
20 Sunderland 1655 1654 1636 1641

Table 5.1: Elo ratings for Premier League 2016/2017.

Ratings from Table 5.1 can be used in order to weight the previous points of a player. For
instance, receiving 9 points against Chelsea is more impressive than receiving 9 points
against Sunderland based in their respective Elo ratings. Hence, a suggestion is to weight
the points accordingly. Equation 5.2 shows how a player’s tracking average is computed
when the track-length is m and realized points in gameweek i is denoted ⇢i.

Tracking average =
1

m

mX

i=1

⇢i ·
(Opponent Elo rating)i

(Team Elo rating)i
(5.2)

Furthermore, Elo ratings, rather than values based on the league table, are used to deter-
mine opponent strength factor, as seen in Equation 5.3. Thus, both previous points and
future expected points account for faced and upcoming opposition. Notice that in Equa-
tion 5.2, Elo ratings for both opponent and team is denoted with i. This is done because
the Elo ratings are updated each gameweek.

Opponent strength factor =
Team Elo rating

Opponent Elo rating
(5.3)

Field Factor

As pointed out in Section 3.3.3, numerous studies have concluded that a home-field ad-
vantage exists in football. That is, football teams have a tendency of performing better
when playing at their home-field than when playing at an opponent’s ground. In order to
distinguish between home-field advantage and away-field (dis)advantage, the variable that
takes such an advantage into account is called the field factor. Bonomo et al. (2014) set
the home-field factor to 1.05 and away-field factor to 0.95 without further elaboration.

Studies of home-field advantages in a football, e.g., Pollard and Pollard (2005), usually
concentrate on the outcome of the game, i.e., win, draw or loss. In Fantasy Premier
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League, however, the outcome of a match has no direct impact on the point system. Fur-
ther, an important aspect influencing points in FPL is goals scored. Thus, the field factor
is calculated with basis in goals. Further, the field factor is calculated for all teams in the
Premier League combined, not for each team specifically. The idea is that the field factor
alongside the relative team strengths calculated by the Elo ratings will complement each
other. The home-field factor for a particular season is calculated as:

Home-field factor =
Total number of goals scored home

Total number of goals scored

Similarly, the away-field factor is calculated as:

Away-field factor =
Total number of goals scored away

Total number of goals scored

As seen later in Section 6.2.1, several previous seasons are considered in order to find an
appropriate empirical value for the field factor.

Point Streak Factor

Bonomo et al. (2014) adjusted their forecasts with a value between 0.95 and 1.05 to ac-
count for a player’s point streak. They did not further describe how the point streak factor
was determined. In this thesis, a player’s point streak factor is determined in the following
way: if a player receives more than X points for 2 gameweeks in a row, his point streak
factor will be set to 1.01. Further, if the streak continues, the factor will increase by 0.01
for each match that his points exceed X number of points. When a player has received
more than X points 6 gameweeks in a row his point streak factor is set to the maximum of
1.05. Hence, the value does not increase if his streak exceeds 6 matches. The same rule
applies to a player scoring less than Y points 2 gameweeks in a row. In this case, his point
streak factor will be set to 0.99. When obtaining less than Y points 6 matches in a row the
point streak factor is set to a minimum of 0.95. Once a streak is broken, the player’s point
streak factor is set to 1. In Section 6.2.1, a method for determining X and Y is proposed.

Starting Line-up Factor

Bonomo et al. (2014) decided the starting line-up factor by considering coaches’ an-
nouncements, press reports and information posted on the website of the Argentinian Fan-
tasy League. Such considerations are of qualitative nature. As the solution framework
is intended to be data-driven, an explicit attempt at implementing this factor for the FPL
is not undertaken. Instead, as seen later in Section 6.1, all forecasts are adjusted by data
concerning injuries and suspensions.

Summarizing Numerical Example

In order to summarize the Modified Average method, a numerical example for a track
length of 2 for Manchester United’s Paul Pogba is provided. In Tables 5.2 and 5.3, fictive
values for realized points and Elo ratings are given.
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Realized points
Opponent GW1 GW2 GW3
Chelsea 6

Sunderland 9
Watford ?

Table 5.2: Realized points for Paul Pogba.

Team GW1 GW2 GW3
Man Utd 1789 1797 1799
Chelsea 1793
Sunderland 1654
Watford 1618

Table 5.3: Elo ratings for three gameweeks.

Thus, Paul Pogba’s tracking average can be calculated as:

Tracking Average =
1

2
· (6 · 1793

1789
+ 9 · 1654

1797
) ⇡ 7.15

and the opponent strength factor can be found as:

1618

1799
⇡ 0.90

Factor Value
Tracking average 7.15
Opponent strength factor 0.90
Field factor 1.5
Points streak factor 1
Starting line-up factor 1

Table 5.4: Numerical values for Equation 5.1.

Finally, all factors required to calculate the expected points for Paul Pogba in the up-
coming gameweek are summarized in Table 5.4. Thus, in compliance with Equation 5.1,
Pogba’s expected points for the upcoming gameweek are according to the Modified Aver-
age method:

7.15 · 0.90 · 1.5 · 1 · 1 ⇡ 9.7

5.2.2 Regression
As seen in the literature review, regression is commonly in research related to sports
(Bjertnes et al. (2016); Yang (2015)). Therefore, as a second way of forecasting Fan-
tasy Premier League points, a regression-based method is proposed. In order to create a
regression model, the following steps are undertaken:

(i) separate players based on position,

(ii) perform a variable selection,

(iii) fit a linear regression model.
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Variables

In order to use regression to estimate expected points, numerous numerical and categor-
ical explanatory variables are considered. In the following, all variables considered are
presented:

Dependent Variable

• Realized points - The dependent variable. The realized points are the actual points
gained by players.

Explanatory Variables
Categorical Variables

• Team - Which teams the players play for. This variable can change during the
international transfer window in August and January.

• Position - Describes whether a player is a goalkeeper, defender, midfielder or for-
ward. The variable is constant throughout the season.

• Home/Away - Displays whether a match is played at home or away.

Numerical Variables

• Previous points - Points obtained in each of the previous gameweeks.

• Price - The purchase price (value) of a player.

• Transfers in - The amount of FPL managers that bought the player ahead of a given
gameweek.

• Transfers out - The amount of FPL managers that sold the player ahead of a given
gameweek.

• Minutes Played - Minutes played in the previous gameweek.

• Yellow Cards - Total amount of yellow cards received in the previous gameweeks.

• Red Cards - Total amount of red cards received in the previous gameweeks.

• Goals - Total amount of goals scored in the previous gameweeks.

• Assists - Total amount of assists in the previous gameweeks.

• Penalties Missed - Total amount of penalties missed in the previous gameweeks.

• Penalties Saved - Total number of penalties saved by a goalkeeper in the previous
gameweeks.

• Saves - Total amount of saves made by a goalkeeper in the previous gameweeks.
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• Clean sheets - Total number of matches a player was awarded a clean sheet in the
previous gameweeks. As explained in Chapter 2, clean sheets are only awarded
goalkeepers, defenders and midfielders who play a minimum of 60 minutes during
the match.

Categorization by Position

As described in Chapter 2, points are awarded based on different criteria to players in
different positions. For instance, goalkeepers, defenders and midfielders are rewarded
points for keeping a clean sheet, but forwards are not. Based on this knowledge, it is
decided to categorize the players based on their respective positions before continuing the
regression procedure. If all available variables were regressed, such a distinction would
perhaps not be necessary, as the coefficient related to the categorical variable position
could compensate the differences. However, the aim is to limit the number of explanatory
variables for each position by using variable selection. Therefore, the categorization is
done.

In order to provide further justification for the categorization based on position, a box-plot
and scatter-plots are assessed in Section 6.2.2. For example, in the box-plot, it is inves-
tigated whether the empirical distribution of points obtained differs between positions.
Moreover, the scatter plots are visually inspected to see the relation between, for example,
total points, goals and position.

Times Series Effect of Points

The presence of a scoring streak, or a ”hot hand”, has long been a topic of research (Bar-
Eli et al. (2006); Tversky and Gilovich (1989)). If it is present in FPL, points gained in
the most previous matches could be an interesting explanatory variable. If not, aggregated
variables such as the total number of goals scored can be just as predictive. In order to
assess if elements of a time series are correlated with each other, autocorrelation is a rea-
sonable metric to asses. Just as correlation measures the extent of a linear relationship
between two variables, autocorrelation measures the linear relationship between lagged
values of a time series (Hyndman and Athanasopoulos, 2018). For example, r1 measures
the relationship between yt and yt�1. In general, there exist many autocorrelation coeffi-
cients, and the value of rk can be written as in Equation 5.4.

rk =

P
T

t=k+1(yt � ȳ)(yt�k � ȳ)
P

T

t=1(yt � ȳ)2
(5.4)

To test for autocorrelation, the Ljung-Box test and the Durbin-Watson test are conducted.
The Ljung-Box test is a statistical test that often is conducted in order to test for auto-
correlation in a time series for different lags (Hyndman and Athanasopoulos, 2018). The
Durbin-Watson test is another test frequently conducted to test for the presence of auto-
correlation for the first lag (Alexander, 2008). A detailed description of the tests can be
found in Hyndman and Athanasopoulos (2018) and Alexander (2008), respectively.
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Variable Selection

In order to select variables, k-fold cross validation is performed in combination with a
lasso regression. Before these topics are treated, a brief discussion of training- and test
sets and forecast error measurement is presented.

Training- and Test Sets

In general, in order to determine the accuracy of a forecast, out-of-sample forecasts should
be evaluated (Hyndman and Athanasopoulos, 2018). To accomplish this, available data
should be separated into two portions: training- and test data. A model is first fitted using
the training data only. Then, the model’s forecast accuracy is determined by comparing
forecasts from the model with actual realizations contained in the test data. Furthermore,
in general, if a model is fit on all available data, rather than separated into a training- and
test set, the model would be subject to over-fitting (Hyndman and Athanasopoulos, 2018).
That is, the model performs well on the sample data but does not necessarily forecast well
out of sample.

Forecast Error Measurement

A forecast error is the difference between an observed value and its forecast (Hyndman and
Athanasopoulos, 2018), as defined as in Equation 5.5. Here, {y1, ..., yT } is the training set
data, {yT+1, , yT+2, ...} is the test set data and ŷt+h|T is the forecast at time T+h, given T.

eT+h = yT+h � ŷT+h|T (5.5)

A commonly used error measure is the Mean Squared Error (MSE, Equation 5.6) (Hynd-
man and Athanasopoulos, 2018).

MSE = mean(e2
t
) (5.6)

k-fold Cross Validation

k-fold cross validation involves randomly dividing a set of observations into k groups, or
folds, of equal size (Gareth et al., 2017). The first fold is treated as the test set, and the
remaining k � 1 folds are used to train a model. The procedure is repeated k times, and
for each repetition, a new fold makes up the test set. The process results in k estimates of
the test-error, MSE1, MSE2 ..., MSEk. Finally, a k-fold average MSE, denoted CV(k)

is computed by averaging the values, as shown in Equation 5.7 (Gareth et al., 2017).

CV(k) =
1

k

kX

i=1

MSEi (5.7)

Lasso Regression

As seen previously, a number of explanatory variables are available. If all were to be used
to build a regression model, the model could be subject to over-fitting (Gareth et al., 2017).
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Therefore, in order to limit the number of explanatory variables, a variable selection is
undertaken. That is, a subset of variables believed to be related to the dependent variable
realized points, is selected. To perform the variable selection, lasso regression is used. In
this thesis, only a brief introduction of the concept of lasso regression is given. For a more
comprehensive review, the reader is referred to ”An Introduction to Statistical Learning”
by Gareth et al. (2017).

According to Gareth et al. (2017), lasso regression is a shrinkage method used in order
to perform variable selection. By shrinkage method, the authors refer to methods were
coefficients are sunken towards zero relative to least squares estimates. This shrinkage
has the effect of reducing variance. Depending on what type of shrinkage is performed,
some of the coefficients may be estimated to be exactly zero. Lasso regression is such a
shrinkage method and can thus perform variable selection. The aim of lasso regression is
to find the lasso coefficients �̂L

�
by minimizing the expression found in Equation 5.8:

nX

i=1

⇣
yi � �0 �

pX

j=1

�jxij

⌘2
+ �

pX

j=1

|�j | = RSS + �
pX

j=1

|�j | (5.8)

Here, RSS is the Residual Sum of Squares, which is minimized in multiple linear regres-
sion. However, in contrast to linear regression, Lasso regression does not only minimize
RSS. It also penalizes the sum of the �-coefficients by absolute value. Or, more precisely,
it uses an l1 penalty. This has the desired effect of forcing some of the coefficient estimates
to be exactly equal to zero when the tuning parameter � is sufficiently large (Gareth et al.,
2017). Hence, lasso regression performs a variable selection.

In order to decide the value of �, and subsequently what variables to include in the model,
k-fold cross validation is used. In Section 6.2.2, the average k-fold cross validation MSE,
CV(k), associated with the coefficients �̂L

�
, is plotted against corresponding values of �.

As suggested by Gareth et al. (2017), two considerations are made when selecting a value
of �. First, the model with the smallest error is considered. However, if such a model in-
cludes a large number of explanatory variables, it can be subject to over-fitting. Therefore,
the model with an MSE one standard deviation higher than that of the minimum is also
considered. Afterwards, a variable selection is performed. That is, the variables associated
with a non-zero �̂L

�
are chosen.

Model Selection

It is important to note that lasso regression is only conducted in order to perform variable
selection. The �̂L

�
-values from the regression are not carried forward. Instead, points are

forecast by the use of linear regression on the variables selected by the lasso regression.
Linear regression has an advantage over a lasso regression as it has more easily interpreted
coefficients and well-defined variance (Gareth et al., 2017). This makes the calculation of
p-values possible. Moreover, the use of linear regression makes the results more accessible
to readers from different disciplines as it is a widely known procedure. Furthermore, a
linear regression model has an advantage compared to for instance logistic regressions as
points can be negative, which is a possibility in FPL.
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The variable previous points is the only variable explicitly related to points earned. Other
variables such as total points in the season so far and points from the Bonus Point System
are not included. These variables would be highly correlated with variables such as goals.
Thus, one rationale for excluding them is not to over-complicate the correlation between
explanatory variables in the regression model. Furthermore, since the bonus points are to a
substantial degree decided by the same factors as ”regular” points (e.g., goals, assists, clean
sheets etc.), their effects are assumed included in the coefficients for these explanatory
variables.

5.2.3 Odds

As seen in the literature review in Section 3.3.2, Hvattum and Arntzen (2009) found that
Elo ratings appeared to be considerably less accurate than market odds when used for
forecasts. Furthermore, in their project report, Kristiansen and Gupta (2017) created a
scoreline prediction for the fixtures of the Premier League and used it in order to forecast
future performance of the players in FPL. However, they found their scoreline predictions
far less accurate than those of bookmakers’ odds. Therefore, as a complementary method
to the Elo based Modified Average method, a forecast method based on odds is suggested.

In order to obtain predictions of player points, odds must be transferred into expected
points. Odds can be separated into team odds and individual player odds. Team odds
include all odds related to a team’s performance such as scoreline odds. Individual player
odds include odds related to an individual player’s performance such as goals scored,
assists provided and yellow cards received by the player.

The team odds used is related to scorelines and serve two purposes. First, it is used to
calculate the probability of a team keeping a clean sheet. By summing all the scoreline
odds and dividing each distinct odds by that sum, the probability of each exact result
can be obtained. In Table 5.5, an example is given for the odds and the corresponding
probabilities. By summing all the probabilities for the scorelines where Leicester has a
clean sheet, it can be found that the probability of Leicester keeping a clean sheet is 0.316.
Thus, in order to calculate expected points from clean sheets, the probability is multiplied
with points received for a clean sheet, i.e., 4 points for goalkeepers and defenders and 1
point for midfielders. Secondly, team odds is used to obtain a team’s expected goals. This
is done by multiplying goals scored in each scoreline with the probability of that scoreline
occurring. In the example from Table 5.5, Leicester’s expected goals is found to be 1.310.
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Odds
1-0 7.00 0-0 7.50 0-1 8.00
2-0 11.00 1-1 6.00 0-2 13.00
2-1 9.50 2-2 15.00 1-2 10.50
3-0 23.00 3-3 67.00 0-3 29.00
3-1 21.00 4-4 301.00 1-3 23.00
3-2 31.00 2-3 35.00
4-0 61.00 0-4 81.00
4-1 56.00 1-4 67.00
4-2 81.00 2-4 91.00
4-3 181.00 3-4 201.00
5-0 201.00 0-5 276.00
5-1 181.00 1-5 226.00
5-2 276.00

Probabilities
1-0 0.1043 0-0 0.0974 0-1 0.0913
2-0 0.0664 1-1 0.1218 0-2 0.0562
2-1 0.0769 2-2 0.0487 1-2 0.0696
3-0 0.0318 3-3 0.0109 0-3 0.0251
3-1 0.0348 4-4 0.0024 1-3 0.0318
3-2 0.0236 2-3 0.0209
4-0 0.0120 0-4 0.0090
4-1 0.0130 1-4 0.0109
4-2 0.0090 2-4 0.0080
4-3 0.0040 3-4 0.0036
5-0 0.0036 0-5 0.0026
5-1 0.0040 1-5 0.0032
5-2 0.0026

Table 5.5: Result odds for Leicester-Burnley 14.04.18 and the corresponding probabilities.

In an analogous manner as with team odds, individual odds can be transformed into prob-
abilities. However, now the probabilities are calculated as the inverse of the odds. Thus,
if Leicester’s Riyad Mahrez is assigned an odds of 4 for scoring one or more goals, his
probability of scoring is 1

4 = 25%. Note, however, that by using this method it is assumed
that the odds are set in a ”fair” way, i.e., the odds market is a perfect market. In reality,
bookmakers are profit-seekers. Thus, if bookmakers are to profit, the odds they set must
transfer into probabilities lower than the real ones, and the validity of assumption can be
weakened. After odds are transferred into probabilities, the probabilities are converted
to expected points. For points related to scoring a goal, for example, this is achieved by
multiplying expected goals and points obtained for a goal. Points for assists are allocated
in a similar manner. Note, that all goals are not assisted. However, it is assumed that
bookmakers consider this when setting the odds for assists.
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Odds Probability
Goal 4 0.25
Assist 2.5 0.40
Yellow Card 8 0.125

Table 5.6: Fictive individual odds for Riyad Mahrez.

Finally, the expected points of a player can be computed. In Table 5.6, a fictive set of
individual odds and probabilities are given for the Leicester midfield player, Riyad Mahrez.
The reader is reminded that a midfielder earns 5 points for a goal, 3 points for an assist, 1
point for a clean sheet and -1 point for a yellow card. In equation 5.9, it is shown that he
is expected to obtain 3.40 points for the Leicester-Burnley match.

5 · 1.310 · 0.25 + 3 · 1.310 · 0.4 + 1 · 0.316� 1 · 0.125 ⇡ 3.40 (5.9)

Note that the probability of starting is not explicitly handled. Nor is points awarded for
playing over 60 minutes. However, one can argue that the probability of starting is in-
corporated in individual odds, i.e., as the probability of scoring a goal or providing an
assist.

5.3 Gamechips
Gamechip strategies are actions developed to decide when it is optimal to use the gamechips.
There exists limited literature on this topic. Consequently, there is a leeway for new ideas.
Many interesting approaches could be adopted to decide the optimal use of gamechips.
The approach adopted in this thesis is mainly qualitative and aim to take advantage of fu-
ture gameweeks which are blank or double. The reader is reminded a gameweek is blank
when at least one team does not play, and a double if a team is featured more than once.

FPL managers must make decisions on when to use their gamechips, i.e., they have to
decide whether it is best to play them in a given gameweek or if it is optimal to wait.
As the model is solved using a rolling horizon heuristic, a strategy for when to use the
gamechips is required. Also, there is nothing that prevents the model from not using the
gamechips in the current sub-problem, unless the strategy addresses this issue. Many dif-
ferent approaches can be undertaken to develop such a strategy. One approach is to base
the strategy on intuition and well-known reasoning among FPL managers.1 As limited re-
search is conducted on the use of gamechips, such strategies are considered an appropriate
place to start.

5.3.1 First Wildcard
The first Wildcard, which has to be played within the first half of the season, is played at
the end of the first quarter of the season. There is high uncertainty at the start of the sea-

1See websites https://www.premierleague.com/news/624013 and https://www.premierleague.com/news/
404004
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son related to starting line-ups and the form of players. In addition, the summer transfer
window ends in gameweek 4, providing a possibility of players being sold, lend or bought.
Thus, using the Wildcard after a few gameweeks allows managers to wait and consider
such developments. However, if managers wait too long, they can miss the opportunity
of adding players that over-perform compared to their initial expectations. Hence, play-
ing the Wildcard in last part of the first quarter of the season takes both considerations
into account. This is implemented by giving the mathematical model the opportunity to
play a Wildcard in a specific gameweek in the first quarter of the season which is chosen
beforehand.

5.3.2 Triple Captain
It is assumed sensible to play the Triple Captain in a double gameweek as players are
expected to gain more points when they are featured twice. Thus, the model is given the
opportunity to play the Triple Captain in the first double gameweek of the season.

5.3.3 Second Wildcard and Bench Boost
The second Wildcard should be played with caution, as it is sensible also to consider the
Bench Boost when using it. As the Bench Boost allows each player in the selected squad
to collect points, and not only the starting line-up, it is wise to play the Bench Boost in
a double gameweek. Therefore, the model is allowed to play the second Wildcard in the
gameweek ahead of a double gameweek.

5.3.4 Free Hit
The Free Hit allows a manager to perform an unlimited amount of free transfers for one
gameweek. In the gameweek after, the selected squad is changed back. There are in
general two cases where playing the Free Hit is reasonable. First, the Free Hit could
be played in a blank gameweek to ensure that all the players in the starting line-up are
featured for that particular gameweek. Secondly, the Free Hit could be played in a double
gameweek to ensure that the majority of the starting line-up consists of players that are
featured twice. As two other gamechips already are related to double gameweeks, the first
method is implemented.

5.3.5 Gamechip Implementation in the Mathematical Model
The gamechips are implemented in the mathematical model by initially setting the right-
hand side of constraints (4.2) - (4.6) equal to 0. The right-hand side of the constraints
is only set to 1 in the respective constraints when a gameweek where a gamechip can
be played is considered in the sub-horizon. Up to those gameweeks, the constraints are
deactivated and have no effect on the objective function.

When a gameweek where a gamechip can be played appears in the sub-horizon, the related
constraints are split in two. For example, if the sub-horizon is set to 4, and the first Wild-
card is allowed to be played in gameweek 12, it is first considered when the mathematical
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model is run for sub-problem 9. In the model, the right-hand side of constraints (4.3) -
(4.6) are set to 0, while constraints (4.2) is split in two:

X

t2{9,10,11}

wt  0

w12  1

In the next sub-problem, the range is moved so the constraints is now modelled as:
X

t2{10,11,13}

wt  0

w12  1

The other gamechips are implemented in a similar way as the Wildcard.

5.4 Risk Handling
As both goalkeepers and defenders in the same team earn 4 points for keeping a clean
sheet, it is not hard to imagine that the points they obtain are positively correlated. Simi-
larly, it is not unreasonable to assume that the points a goalkeeper and forward of oppos-
ing teams earn are negatively correlated. In this section, a method for dealing with this
assumed correlation in points obtained, as well as the fluctuations of individual player’s
points, is presented. As described in Section 3.4, there is a large resemblance between the
FPLDP and the well-known portfolio selection problem in financial optimization. This is
taken advantage of by attempting to handle risk in an analogous manner in the FPLDP as is
done in portfolio optimization. Thus, one might say that the objective of adding risk han-
dling is diversification, a risk management technique with the purpose of yielding higher
returns (expected points) without increasing risk.

5.4.1 Player Variance
Variance refers to the variability in each player’s realized points. Some midfielders are
for instance known to be consistently starting but seldom contribute in terms of assists or
goals. It is reasonable to assume that such players have a low expected value of points, but
also a low variability in points obtained. Other players might contribute a lot in terms of
assists and goals when they are playing, but are perhaps often injured. Such players could
have a high number of expected points, but also a high variance in points obtained.

5.4.2 Correlation
The variance of each player only considers each player’s individual contribution to the
team’s total variance. As discussed, it is natural to assume that there exists a correlation
between the points obtained by players. However, even if the points obtained by a goal-
keeper and a defender from the same team are expected to be positively correlated, it is
perhaps not so obvious whether or not there exists correlation between defenders of oppos-
ing teams. In order to test for correlation, Pearson’s Product-Moment Correlation test is
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performed. By applying the test, a few assumptions are made. The variables are assumed
approximately normally distributed and display homoscedasticity (constant variance). For
a full description of Pearson’s Product-Moment Correlation test and its underlying as-
sumptions, the reader is referred to Lund and Lund (2017).

5.4.3 Team Variance
In financial optimization, it is common to examine the trade-off between expected return
and variance (Markowitz, 1952). According to Zenios (2005), the variance of a portfolio
containing n assets with weight w can be expressed as

�2
(w) =

nX

i=1

mX

i0=1

�ii0wiwi0 =

nX

i=1

�2
i
w2

i
+

nX

i=1

nX

i
0=1;
i
0 6=i

�ii0wiwi0 (5.10)

where, wi is the portfolio weight of asset i, �2
i

is the variance of asset i and �ii0 is the
covariance between assets i and i0.

In the case of the FPLDP, the mathematical model optimizes over the starting line-up vari-
able, y. In Equation 5.10, returns are expressed in percentage, as is common in finance.
For the FPLDP, however, it is the variance of the sum of total points obtained each game-
week, rather than the variance in percentage return, that is of interest. Hence, Equation
5.10 can be rewritten by utilizing the fact that each ”portfolio weight” is either 1 or 0. If
the expression for covariance is also substituted with correlation, the expression simplifies
to
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i
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i
�2
j
yiyj⌘i,j (5.11)

where �2
i

is the variance of expected points obtained by player i, �2
j

is the variance of
expected points obtained by player j and ⌘i,j is the correlation between expected points
obtained by player i and player j. In addition, yi and yj are binary variables indicating
whether player i and player j are included in the starting line-up (portfolio) of players.
Conventionally ⇢ is used to denote correlation. However, in this thesis, ⌘ denotes correla-
tion as ⇢ is already reserved for denoting points.

In the mathematical model, an upper threshold is determined for the variance of the starting
line-up at time t as described below. Note that in Equation 5.11, two binary variables are
multiplied. Hence, the constraints are non-linear. In order to linearize the expression, an
auxiliary variable, �pp0t, is introduced and the following set of constraints are inferred.

�2
t
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�2
t
 �2

0 t 2 T (5.13)

�pp0t  ypt p 2 P, p0 2 P, p0 6= p, t 2 T (5.14)

�pp0t  yp0t p 2 P, p0 2 P, p0 6= p, t 2 T (5.15)

�pp0t � ypt + yp0t � 1 p 2 P, p0 2 P, p0 6= p, t 2 T (5.16)

Note that constraints (5.12) and (5.13) could be combined into one constraints. However,
for the sake of legibility, they are both explicitly written. Observe also that term �2

0 in
constraints (5.13) is the risk threshold, i.e., a parameter set according to the risk prefer-
ence of an investor in the portfolio optimization setting. In Section 6.4, estimation of the
parameters related to risk handling is treated. Furthermore, in Section 7.4 the effect of
changing the risk threshold, �2

0 , is analyzed.

5.5 The Forecast-Based Optimization Model
As seen throughout the chapter, methods for generating input data related to forecasts and
risk handling, as well as strategies for the use of gamechips are developed. By taking all
the aforementioned elements into consideration, the forecast-based optimization model,
a solution framework for the Fantasy Premier League Decision Problem, is developed.
Algorithm 1 gives a pseudo code for the forecast-based optimization model. Here, GC
is the set of gameweeks where gamechips are implemented according to the gamechips
strategies.

Algorithm 1 Forecast-based optimization model
k = 1

Set risk handling threshold, �2
0

while k  |T | do
Generate input data: expected points, variance and correlation for TPC

k
and TPF

k

if a gameweek in TPF

k
is in GC then

Implement gamechip strategy

end if
Solve the mathematical model for the problem defined by TPC

k
and TPF

k

Fix variables x, v and q prior to solve TPC

k+1 and use as input

k  k + 1

end while
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Chapter 6
Computational Study

In this chapter, a computational study for the forecast-based optimization model presented
in Chapter 5 is conducted. The goal is to provide and justify numerical values for param-
eters used in the model before it is tested on the 2017/2018 season. For the purpose of
readability, the results of the testing are presented in the next chapter, namely Chapter 7.
From now on, the points obtained over a season is referred to as performance. Perfor-
mance can either be measured in total points obtained over a season or in terms of mean
points per gameweek.

First, in Section 6.1, the handling of the data used is discussed. Section 6.2 elaborates
on how parameters and input associated with the three different forecasting methods are
decided. Section 6.3 provides the decisions regarding which gameweeks to consider the
use of gamechips. Finally, in Section 6.4, the numerical values related to the risk handling
are presented.

6.1 Data
Data provided by the official website of Fantasy Premier League is used. A detailed record
of such data for both the 2016/2017- and the 2017/2018 season is kept by Fantasy Over-
lord (see www.fantasyoverlord.com). As only data for two seasons are available, data
for the first season is used for training and the latter for testing. Two seasons worth of
data is considered a limited amount since it is reasonable to assume that if more data
were available the model could be improved further and more robust statements could be
made. Furthermore, Elo ratings for each Premier League team are obtained from ClubElo
(see www.clubelo.com). In addition, Sportradar has provided odds for the fixtures of the
2017/2018 season.

A season in FPL consists of 38 gameweeks. However, because of restrictions on time, an
early decision was made to solve the model only for the first 35 gameweeks. The transfer
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window closed after gameweek 26. Until then, 625 players had appeared in at least one
game. Thus, the total number of players considered is 625.

6.1.1 Processing of Player’s Data

Injuries and Suspensions

Once a player is listed as injured and thus unavailable for the upcoming gameweek, his
expected points, ⇢̂, are automatically set equal to 0 in all the gameweeks in the sub-horizon.
As the injury list is updated for each gameweek, a player’s injury status can change when
solving for the next sub-problem. Injury data is collected from Fantasy Premier League
(see www.fantasypremierleague.com), ahead of each gameweek.

Suspensions are also accounted for by setting the expected points, ⇢̂, of suspended players
equal 0. A player may be suspended for up to three games when receiving a red card,
depending on whether it was a direct red card or not. Further, players are subject to a
match ban when receiving their 5th, 10th or 15th yellow card of the season. In addition,
a player can be suspended by the English Football Association if he is found guilty of
unsportsmanlike conduct.

Promoted Teams

There does not exist Fantasy Premier League data for English football’s second tier, the
English Championship. Therefore, gathering data for newly promoted teams is difficult. In
addition, comparing performances in the English Championship with performances in the
English Premier League is unreliable. Thus, some simplifications are made. In general,
a player is not taken into consideration until data on his previous performance in the FPL
becomes available. However, if a player was transferred to a promoted team ahead of the
season, and he played in the Premier League in the 2016/2017 season, the player would be
included from the start of the season. For the Odds method, data exists for newly promoted
teams as well. It is worth noticing that in the Modified Average method, newly promoted
teams are considered from the start of the 2017/2018 season with regards to the Elo ratings.

Players Transferred Ahead of 2017/2018 Season

A question that arises with the international transfer window is how newly transferred
players are going to perform in the English Premier League. Such players are handled
in the same way as newly promoted players, i.e., by not considering them until they have
featured in a sufficient amount of gameweeks. Other approaches include forecasting based
on their performance in the foreign league or comparing them to players of the same price
in FPL. In general, the decision of not including players when data is missing is supported
by the fact that an aim is to test how the different approaches perform, and including such
players induces more uncertainty.
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Irregular Gameweeks

For blank gameweeks, expected points, ⇢̂, are set to 0 for players that are not featured. For
double gameweeks, forecasts are made for both matches. It is assumed that information
on whether a gameweek is blank or double is known at least as many gameweeks ahead as
the length of the sub-horizon.

6.2 Forecast of Player Points

In this section, a computational study for the three different forecasting methods is pre-
sented. For all methods, numerical values for parameters such as the sub-horizon in the
rolling horizon heuristic are set, and the decisions are justified. Further, the possibility of
altering the penalty term, R, when optimizing is considered. For the Modified Average
method, a detailed parameter study is undertaken to find the best combination of numer-
ical values for parameters such as the sub-horizon and track-length. For the Regression
method, a detailed variable selection procedure is performed. For the Odds method, the
handling of data obtained by Sportradar is presented. Note that all computations conducted
in this section are carried without taking the aspect of risk handling into consideration.

6.2.1 Modified Average

The aim of this study is to set numerical values to the factors presented in Equation 5.1 for
the Modified Average method. As explained in Section 5.2.1, the relative team strength
factors are calculated according to the Elo ratings. These ratings are updated for every
gameweek, depending on the results in the previous games. An overview of the Elo ratings
is attached in the Appendix B. Further, the starting line-up factor is assumed handled by
data regarding suspensions and injuries. Thus, determining the field factor, streak factor
variables X and Y and track-length remain.

Determining Field Factor and Streak Factor Variables X and Y

Table 6.1 gives the values for field factors for the past six Premier League seasons. As
observed, the home-field factor range from 1.105 to 1.149 and the away-field factor range
from 0.851 to 0.895. Furthermore, the average of factors over the 5 last seasons before
the 2016/2017 and before the 2017/2018 season is presented in the table. The average
before the 2016/2017 season (Pre 16/17 Avg) is based on season 2011/2012 to 2015/2016.
Similarly, the average before the 2017/2018 season (Pre 17/18 Avg) is based on season
2012/2013 to 2016/2017. Thus, taking the average over the past 5 seasons yields almost
identical factors before the 2016/2017 and before 2017/2018 season. Hence, the home-
field factor is set to 1.13 and the away-field factor is set to 0.87.
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Season 11-12 12-13 13-14 14-15 15-16 16-17 Pre 16-17 Avg Pre 17-18 Avg
Home-field factor 1.133 1.114 1.137 1.149 1.105 1.141 1.128 1.129
Away-field factor 0.867 0.886 0.863 0.851 0.895 0.859 0.872 0.871

Table 6.1: Field factors for previous 6 seasons.

For the point streak factor, the variables X and Y regarding whether a player is on a point
streak, have to be decided. Goalkeepers and defenders receive 4 points for keeping a clean
sheet, all positions earn 3 points for an assist and midfielders and forwards earn 5 and 4
points for scoring a goal, respectively. Further, as a player earns 2 points for playing more
than 60 minutes, it is appropriate to let the X variable take a value of 5. This means that if
a player keeps a clean sheet, has an assist or scores a goal and additionally plays at least 60
minutes, he will receive enough points to be on a positive point streak given that he did not
receive a yellow or red card. As for the Y variable, a player that does not contribute with
either a goal, assist nor a clean sheet is awarded maximum 2 points. Thus, it is reasonable
to set the Y equal to 2 points.

Determining Optimal Track-Length and Sub-Horizon

In the following, the aim is to determine an optimal combination of sub-horizon and track
length based on data for the 2016/2017 season.

When testing combinations to determine the optimal pair of sub-horizon and track-length,
the sub-horizon does not exceed the track-length. The rationale is that the track-length
is not accurate when forecasting for more gameweeks than what it is composed of. As
only 1 season of training data is available, the model’s performance is expected to improve
as the track-length increases. For instance, consider the case when the track-length is 7
gameweeks. As the method is trained on the 2016/2017 season, only forecasts for matches
after gameweek 7 has been played can be made. Hence, the model gets an opportunity of
initially selecting the players that have performed best over the 7 first gameweeks. Thus,
the selection is somewhat unfair. Therefore, track-lengths greater than 6 gameweeks are
not considered. By similar reasoning, it is more appropriate to measure performance in
mean points rather than total points across different track-lengths. Notice that only the
training data is affected. When the model is run for the first gameweeks of 2017/2018
season, the last gameweeks of the 2016/2017 season are used when computing tracking
average.

Figure 6.1 displays the results when considering track-lengths from 3-6 gameweeks as
well as sub-horizons from 1-6 gameweeks. Moreover, Table 6.2 provides the numerical
values of the combinations in Figure 6.1 with the 10 highest means as well as average
weekly penalized transfers made for these combinations.
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Figure 6.1: Performance with changing sub-horizon and track-length and penalty, R, set to 4.

Sub-horizon Track-length Mean Mean
penalized transfers

1 5 49.82 1.48
1 4 49.53 1.88
1 6 48.25 1.34
2 6 47.28 2.09
2 4 45.94 2.74
4 5 45.73 2.88
3 5 45.58 2.70
2 5 45.18 2.55
5 5 44.88 3.00
1 3 44.43 2.63

Table 6.2: The 10 best combinations of track-lengths and sub-horizons.

As observed in Figure 6.1 and Table 6.2, the model reaches its best performances with a
sub-horizon of 1 gameweek combined with track-lengths of 4-6 gameweeks. However, as
seen in Table 6.2, the performances generally increase as the number of penalized transfers
decreases. Consequently, in the following, it is investigated how limiting the number of
penalized transfers by adjusting the penalty parameter, R, affects performance. Note, as
the penalty term is set by the game rules of FPL, altering the penalty term when optimizing
is in reality only compensating for inaccurate forecasts. However, it is done as the end goal
is to maximize the performance of the model.

Model Run by Adjusting Penalty Term, R

To set values for the parameters R, track-length and sub-horizon, different combinations
are tested on the 2016/2017 season. Table 6.3 provides the numerical values from the 10
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best combinations.

Figure 6.2: Performance with different penalty terms, sub-horizons and track-lengths.

R Sub-horizon Track-length Mean Mean
penalized transfers

20 4 6 57.84 0.0313
20 4 5 57.55 0.0606
19 3 5 56.82 0.0606
18 3 5 56.64 0.0606
14 3 5 56.61 0.273
18 4 6 56.50 0.0938
19 4 6 56.44 0.0625
20 3 5 56.36 0.0303
20 5 5 56.09 0.212
18 6 6 56.03 0.313

Table 6.3: The 10 best combinations of parameters.

Figure 6.2 provides an overview of how the mean points each gameweek for the entire
2016/2017 season changes with different track-lengths, sub-horizons and penalty terms.
In the figure, only the best run (maximum mean) for each different penalty value from
3-20 is plotted. According to Figure 6.2 and Table 6.3, sub-horizons of 3-4 gameweeks
appear to be ideal, as they provide the combinations with the highest mean. Furthermore,
penalties in the range of 14-20 yield the best results. As for the track-lengths, values
of 5 and 6 gameweeks are clearly optimal. However, the latter is not unexpected due to
the unfair player selection. From the table, it is clear that mean penalized transfers are
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significantly reduced for the best performing cases, compared to when R was 4.

Figure 6.3 and Table 6.4 display the best combinations when the track-length is held fixed
for 3-6 gameweeks. Clearly, track-lengths of 5 and 6 gameweeks outperform those of 3 and
4 gameweeks based on mean points. Moreover, Table 6.3 shows that a track-length of 6
gameweeks combined with a sub-horizon of 4 gameweeks and a penalty term of 20 yields
the highest mean for the 2016/2017 season. However, the next four highest means are
achieved with a track-length of 5 gameweeks. Due to the relatively similar performances
of a track-length of 5-6 gameweeks, but considerable differences in performance when the
track-length is 4-5 gameweeks, a track-length of 5 gameweeks is selected. Additionally,
according to Figure 6.3, a sub-horizon of 3 or 4 gameweeks is optimal. Combined with
a track-length of 5 gameweeks, a sub-horizon of 3 gameweeks generally performs better
than that of 4 gameweeks. Therefore, the sub-horizon is set to 3 gameweeks. Finally, Fig-
ure 6.3 illustrates that relatively high penalty terms yield the best means for the 2016/2017
season, with penalty terms ranging from 14-20. However, from Table 6.3, it is apparent
that in combination with a track-length of 5 gameweeks and sub-horizon of 3 gameweeks,
the best penalty term is in the range from 14-19. Also, from Table 6.4, it is clear that
the penalty term is considerably lower for the best combinations with a track-length of
3 and 4 gameweeks and that mean penalized transfers are considerably higher for these
track-lengths. By taking all this into consideration, a penalty term, R, of 16 is selected.

Figure 6.3: Performance with different penalty terms, sub-horizons, but fixed track-lengths.
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R Sub-horizon Track-length Mean Mean
penalized transfers

9 1 3 54.69 0.457
11 2 4 54.79 0.676
20 4 5 57.55 0.0606
20 4 6 57.84 0.0313

Table 6.4: The best combinations for each track-length.

In summary, the Modified Average approach on the 2017/2018 season is run using the
parameters shown in Table 6.5.

Parameters Value
Sub-horizon 3 gameweeks
Track-length 5 gameweeks

R 16

Table 6.5: Numerical values of parameters when Modified Average is run on 2017/2018 season.

6.2.2 Regression
In the following, a computational study for the Regression model based on the approaches
outlined in Section 5.2.2 is conducted. When making decisions, both analytic and more
rationally influenced arguments are considered. For instance, even if the points obtained
by a forward might be correlated with the number of clean sheets his teams have collected,
the variable could still be excluded. The intuition is that with training data limited for one
season only, one cannot blindly trust the models.

Variables

In the first gameweek, where it is considered reasonable, data are set equal to the last
gameweeks of the 2016/2017 season. This is for instance the case for goals and assists. For
transfers in and transfers out, however, this is not a sensible approach, as managers do not
base their transfer-decisions in the last gameweek of the season with the upcoming season
in mind. Therefore, these values are set equal to 0 in the first gameweek. The variables
saves and penalty saves are only defined for goalkeepers and are thus only considered for
goalkeepers.

Categorization Based on Position

As outlined in Section 5.2.2, the players are separated based on their positions. To sub-
stantiate this decision, a visual assessment is undertaken. The analysis is done for the
2016/2017 season. First, Figure 6.4 displays a box-plot of the total points for each differ-
ent position. The different positions appear to exhibit some differing characteristics. The
range is larger for midfielders and forwards than what it is for defenders and goalkeepers.
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Further, defenders and goalkeepers have the highest median scores and the most positive
outliers are found among midfielders and forwards.

Figure 6.4: Box plot substantiating the decision of separating the players based on position.

Figure 6.5: Scatter plots substantiating the decision of separating the players based on position.

Secondly, Figure 6.5 shows how total points are associated with the variables clean sheets,
and goals. It is clear that goals are not contributing a lot in terms of total points for
goalkeepers, but are important for midfielders and forwards. Figure 6.5 also manifest that
clean sheets are important for goalkeepers and defenders in order to earn a high point
score. Based on these observations, categorizing players by position seems reasonable.
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Time Series of Points

To determine if the previous points a player has obtained should be treated as a time series
(i.e., include the effect of form), the Durbin-Watson test and the Ljung-Box test with lags
from 1-5 for autocorrelation are performed. Table 6.6 presents the results of the tests.
Based on the results, 75-95% of the players exhibit insignificant autocorrelation in their
time-series of points at a significance level of 10 %, and 80-99% at significance level 5%.
The results indicate no autocorrelation effects. Therefore, the variable previous points is
disregarded.

Test Significance level, 10% Significance level, 5%
Durbin-Watson 94 % 99 %
Ljung-Box lag 1 76 % 84 %
Ljung-Box lag 2 76 % 81 %
Ljung-Box lag 3 78 % 84 %
Ljung-Box lag 4 80 % 84 %
Ljung-Box lag 5 81 % 85 %

Table 6.6: Percentage of players with insignificant autocorrelation for different tests and significance
levels.

Variable Selection

As described in Section 5.2.2, lasso regression with k-fold cross validation is performed
in order to conduct a variable selection. Data from the entire 2016/2017 season is used
and separated into k = 10 folds for the cross validation. In Figure 6.6, a plot of average
k-fold MSE, CV(k), against values of log(�) for each position is presented. The reader
is reminded that � is the tuning-parameter found in Equation 5.8. In each plot, there are
two dotted vertical lines. The leftmost line marks the log(�)-value with lowest MSE. The
rightmost marks the log(�)-value with one standard deviation higher MSE than the lowest
MSE. Furthermore, the numbers in the top of the plot indicate the number of variables
included for each value of log(�). The reason why the number of variables may exceed
the number of variables presented in Section 5.2.2 is that a dummy-variable is introduced
for each level of a categorical variable. Thus, the variables team and opponent will be
treated as 20 different variables each as there are 20 teams (levels) in the English Pre-
mier League. If only 1-3 of the dummy-variables are selected by the lasso-regression, the
variable associated with them is excluded from consideration. Similarly, if more than 3
dummy-variables are selected, all levels are included. That is, some levels are included
even if they are not selected by the lasso regression.
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Figure 6.6: k-fold cross validated MSE for different values of log(�) for the different positions.

Model Selection

For each position, a linear regression model is fitted based on the variables selected. In
the following, a presentation of the selected variables and a summary of each model is
presented. The �-coefficients presented are computed before the 2017/2018 season. Note
that even though the variables are the same throughout the season, the �-coefficients are
subject to change, as each model is refitted every gameweek when new data becomes
available. Even if team or opponent are selected, they are not presented in the summary,
as they would require 20 variables each.

Goalkeepers

No goalkeepers scored a goal in the 2016/2017 English Premier League season, and only
one assist was provided by a goalkeeper. Therefore, it is decided not to consider these
explanatory variables when performing the variable selection for goalkeepers. Figure 6.6
shows that for the lowest MSE, 6 variables are included in the model. With only 6 vari-
ables, the possibility of overfitting is considered limited. Therefore, all the variables as-
sociated with this log(�)-value are considered. However, one of them were related to a
team, and another to an opponent. As only 1 of 20 variables for team and opponent were
included, both team and opponent are excluded from consideration. In Table 6.7, a sum-
mary of a regression fitted on the selected variables is presented. All variables have a sign
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consistent with their intuitive interpretation. The p-values indicate that all variables are
significant.

Variable Coefficient (�) Std. Error t-value p-value
(Intercept) -3.35E+00 7.1E-01 -4.7 2.4E-06
Price 8.33E-07 1.6E-07 5.3 1.4E-07
Transfers in 4.50E-05 7.0E-06 6.4 2.3E-10
Minutes 1.12E-02 2.0E-03 5.5 4.0E-08
Saves 1.76E-02 2.8E-03 6.4 2.4E-10

Table 6.7: Summary of the linear regression for goalkeepers.

Variable Value
Price 5.5 · 106

Transfers in 13 884
Minutes 90
Saves 20

Table 6.8: Numerical values for Petr Cech in gameweek 9.

Table 6.8 shows the price, transfers in, minutes and saves of Petr Cech ahead of gameweek
9 in the 2017/2018 season. His expected points can be computed as:

�3.35+8.33 ·10�7 ·5.5 ·106+4.5 ·10�5 ·13884+1.12 ·10�2 ·90+1.76 ·10�2 ·20 ⇡ 3.2

Note that the example does not capture the fact that the �-values are subject to change due
to refitting of the model when new information becomes available.

Defenders

From Figure 6.6 it is apparent that the model with the lowest MSE value includes ap-
proximately 47 variables, while the model one standard deviation higher (indicated by the
rightmost dotted line), includes 10 variables for defenders. By taking overfitting into con-
sideration, the model corresponding to the log(�)-value with MSE one standard deviation
higher than the minimum MSE is chosen.

None of the variables associated with team were selected, but 4 variables associated with
opponent were included. Therefore, team is excluded from the linear regression, but op-
ponent is not. In Table 6.9, a summary of the selected variables can be found. Note that
the coefficient corresponding to the variable home/away is multiplied by 1 if a player plays
at home, and 0 otherwise. Thus, the signs in front of all coefficients except the variable
yellow cards make intuitive sense. A justification for the positive sign in front of yellow
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cards is perhaps that players receiving many yellow cards are also frequently involved in
matches, thus earning points from other activities. It is worth noting that yellow cards is
the variable in Table 6.9 with the lowest p-value, even if they are all significant.

Variable Coefficient (�) Std. Error t-value p-value
(Intercept) -3.5E+00 3.9E-01 -9.00 3.4E-19
Price 7.9E-07 7.4E-08 10.70 2.4E-26
Transfers in 2.7E-05 3.2E-06 8.54 1.9E-17
Transfers out -1.9E-05 3.1E-06 -6.10 1.1E-09
Home/Away 3.9E-01 8.5E-02 4.54 5.8E-06
Minutes 1.2E-02 1.1E-03 11.20 1.3E-28
Yellow Cards 7.9E-02 2.0E-02 3.88 1.1E-04

Table 6.9: Summary of the linear regression for defenders.

Midfielders

From Figure 6.6, it is apparent that the model with the lowest MSE value includes 28 vari-
ables for midfielders, while the model one standard deviation away includes 5. Intuitively,
it is assumed that the model with best predictive power includes more than 5 variables.
Thus, the model with 28 variables is chosen. A substantial amount of the levels corre-
sponding to both team and opponents are included, so both variables are carried forward.
The coefficients from the linear regression are presented in Table 6.10. All signs in front
of the coefficients are consistent with their intuitive interpretation. Furthermore, they are
all significant at a significance level of 5%.

Variable Coefficient (�) Std. Error t-value p-value
(Intercept) -2.05E+00 3.0E-01 -6.94 4.3E-12
Price 4.76E-07 3.6E-08 13.10 2.4E-38
Transfers In 9.85E-06 1.4E-06 7.18 8.0E-13
Transfers Out -8.03E-06 1.5E-06 -5.47 4.8E-08
Home/Away 2.82E-01 6.7E-02 4.19 2.9E-05
Minutes 1.01E-02 9.5E-04 10.70 2.9E-26
Goals 7.57E-02 2.2E-02 3.51 4.5E-04
Penalties Missed -3.98E-01 1.7E-01 -2.31 2.1E-02
Clean Sheets 6.78E-02 1.6E-02 4.21 2.6E-05
Assists 5.23E-02 2.0E-02 2.61 9.1E-03

Table 6.10: Summary of the linear regression for midfielders.

Forwards

From Figure 6.5, it might appear as if there is a correlation between total points and clean
sheets for forwards. However, forwards are not rewarded points for clean sheets. There-
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fore, the variable clean sheet is not taken into consideration for forwards. Figure 6.6 shows
that for forwards, the model with the lowest MSE value includes 25 variables, while the
model one standard deviation away includes 4. Again, it is assumed that the model with
best predictive power includes more than 4 variables. Hence, the model with minimum
MSE is selected. Enough levels of the variables team and opponent are included to make
it justifiable to select them. The coefficients from the linear regression are presented in
Table 6.11. All the signs in front of the coefficients appear consistent with their intuitive
interpretation, except for the variable penalties missed. This can perhaps stem from that
fact that if a player misses a penalty, he might also frequently take the penalties for his
team, thus earning points when he scores. Note, however, that both home/away and penal-
ties missed are insignificant in the linear regression model for a significance level of 5%.
As the lasso regression initially selected them, they are included. However, from a strictly
theoretical perspective, it would perhaps have been more appropriate to exclude them.

Variable Coefficient (�) Std. Error t-value p-value
(Intercept) -1.75E+00 6.7E-01 -2.62 9.0E-03
Price 3.89E-07 6.7E-08 5.79 8.4E-09
Transfers In 1.39E-05 1.9E-06 7.24 6.8E-13
Transfers Out -5.40E-06 1.8E-06 -3.03 2.5E-03
Home/Away 1.52E-01 1.4E-01 1.10 2.7E-01
Minutes 9.02E-03 2.3E-03 3.99 6.9E-05
Goals 6.54E-02 2.6E-02 2.55 1.1E-02
Penalties Missed 5.52E-01 3.0E-01 1.87 6.2E-02

Table 6.11: Summary of the linear regression for forwards.

Remarks

An interesting observation from the variable selection is that team and clean sheets are
not selected for goalkeepers or defenders. Forcing the variable into the model could be an
interesting approach in order to investigate what difference it makes, but is not considered
in this thesis. Further, it is interesting to note that the effect of form appears to be lim-
ited. By not considering the most previous events only, the Regression method works as
a complement to the Modified Average method, where only the points in the track-length
are considered. However, using totals, for instance for saves, goals and assists, constitute
a drawback in the sense that observations are quite similar for all players in the first game-
weeks. One way to account for this is to include values from last season in more than
the first gameweek. This approach would, on the other hand, complicate the process of
including players with a lack of data even more. Another approach would be to only fit
the model on data from the first gameweeks of previous seasons. However, that would be
more sensible if data for multiple seasons were used in the training set.

Since only data for one season is used to train the model, it is considered infeasible also
to perform a parameter study. Therefore, the penalty term, R, is set to 4, as stated by the
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game-rules. The sub-horizon is set to equal to the sub-horizon in the Modified Average
approach, namely to 3.

6.2.3 Odds

Necessary data related to odds have been obtained in cooperation with Sportradar. Sportradar
have provided team odds including result outcomes as well as individual odds for goals
and assists. Odds are provided for each Premier League match from gameweek 1 until
gameweek 31 in the 2017/2018 season. Sportradar exported CSV files containing all the
necessary data for each match marked with a match-id. In order to link the match-id to
actual matches, Sportradar’s application programming interface (API) was utilized. Then,
the data was processed and converted into forecasts in the statistical program, R.

A few noteworthy comments must be made about the data used. First, compared to the
other two solution approaches, the player list is a bit different for the Odds method, as it
is based on Sportradar’s database of English Premier League players when the data was
received. Thus, a minor drawback is that players that have been transferred or lent to
other clubs during the 2017/2018 season are not considered. The reduced player list is
not expected to affect the results of the model by much, as only a handful of players such
as Philippe Coutinho and Michy Batshuayi contributed with a sizable amount of fantasy
points before transferring away.

Secondly, goalkeepers are not assigned with an odds of scoring goals or providing assists.
Thus, the only manner in which points are forecast for goalkeepers is from expected points
earned by keeping clean sheets. Thus, there is no way to distinguish the expected points of
a team’s first, second and third choice as goalkeeper. It is decided to circumvent the issue
by only awarding points to goalkeepers who played in at in at least 3 previous gameweeks.
For the first 3 gameweeks of the 2017/2018 season, the last gameweeks of 2016/2017
season is used. For the other players, as described in Section 5.2.3, it is assumed that their
probability of starting is incorporated in their probabilities of scoring a goal and providing
an assist.

Thirdly, a detailed record of the odds for bookings was not kept by Sportradar. Thus, it is
decided to neglect the effect of bookings. As yellow cards only account for a deduction of
1 point in the FPL, it is not considered a severe drawback.

Finally, there exists a more problematic limitation related to the data in the Odds method.
Bookmakers usually only provide odds for the upcoming gameweek. Hence, the odds
can only be used in order to predict the fantasy points one gameweek ahead. That is, the
sub-horizon must be set to 1. Furthermore, odds-data for the 2016/2017 season was not
obtainable. Therefore, a parameter tuning concerning the penalty term, R, could not be
conducted. Hence, R is set to 4 as stated in the game rules.
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6.3 Gamechips

The gamechips are played according to the strategies suggested in Section 5.3. By examin-
ing the fixture list of this year’s Premier League season, the following decisions are made.
The model is given the opportunity of playing the first Wildcard in gameweek 9. It can ei-
ther choose to play it that particular gameweek or disregard it. Further, the Triple Captain
can be played in gameweek 22, as this is the first double gameweek of the season. Playing
the Bench Boost is allowed in the second double gameweek of the season, gameweek 34.
Thus, the model is given the opportunity of playing the second Wildcard in gameweek 33,
in order to prepare for the Bench Boost in the following gameweek. Finally, the model
can play the Free Hit in gameweek 31, which is a blank gameweek were only 8 teams are
featured.

Notice that the decisions for which gameweeks to play the gamechips are not fixed ahead
of the season. Instead, they are incorporated as the fixture list is updated with regards to
blank and double gameweeks. Hence, the gamechips are first considered when a double
or blank gameweek arise in the sub-horizon. As stated in Section 6.1, it is assumed that
whether a gameweek is blank or double is known as many gameweeks in advance as the
length of the sub-horizon, i.e., at most 3 gameweeks ahead. If this was not the case, the
assumption could give the model an unfair advantage over FPL managers. However, this
was never the case in the 2017/2018 season.

6.4 Risk Handling

To estimate the variance of each player and the correlation between players, their historical
performances are considered. To obtain reliable estimations, data for the entire 2016/2017
season is used. In addition, data from the 2017/2018 season is used when it becomes
available. Therefore, it is infeasible also to find a suitable variance threshold using data
on the 2016/2017 season. As a consequence, it is decided to do an ex-post analysis of
how the risk handling constraints affect a solution obtained in the 2017/2018 season, thus
providing a basis for future research.

6.4.1 Player Variance Estimation

Each player’s variance is calculated as the empirical variance in points obtained. All avail-
able data from the 2016/2017 and the 2017/2018 season are used. That is, for gameweek
10 of the 2017/2018, data from all rounds of the 2016/2017 as well as the first nine game-
weeks of the 2017/2018 season is utilized. This method of estimation is sensible for the
Modified Average method, as it does not aim to explain the variance. However, for the Re-
gression method, the explanatory variables are assumed to explain a part of the variance.
Therefore, for the Regression method, it would be more suitable to estimate the variance
only as the variance of the residuals. Thus, in the study presented in Chapter 7, only the
Modified Average method is considered.
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Special cases

Lack of historical data
As previously discussed, complete historical data will not be available for all players for
reasons such as promotion or transfers. If only one data point is available for a player (i.e.,
he has only played one match), it is impossible to calculate his variance. In these cases, the
variance is set equal to the average variance of all other players. It is worth noting that this
will only be an issue for one match, as more than one data point will exist afterwards. The
lack of data points is a limitation of the accuracy of the variance estimation and constitutes
a significant source of uncertainty. As risk handling is a method undertaken to reduce
overall risk, another approach might consider only picking players with a history of for
example 10 gameweeks.

Zero Variance
Some players have empirical variance equal to 0. For instance, players that have never
played can still be selected. Thus, they may have a low number of expected points and
a low price. These players might be favorable to select to fulfill the selected squad con-
straints. However, it is not desirable to set their variance to 0, as their future performance
is not deterministic. That is, they are not analogous to the risk-free asset in a portfolio
optimization setting. Therefore, their variance is set equal to the lowest non-zero variance
obtained by other players.

6.4.2 Correlation Estimation

To determine the correlation between two players on the same or opposing teams, histori-
cal data for the 2016/2017 season is considered. Note that data is aggregated such that only
the correlation coefficient between different positions overall is considered. The correla-
tion is not calculated at the level of individual players or teams. Therefore, the correlation
between players in the same position on the same team is set equal to 1. The correlation
between players that are not on the same team, nor facing each other in a gameweek, is
assumed to be 0.

Table 6.12 and 6.13 show the correlation coefficient between different positions. In the
tables, goalkeepers, defenders, midfielders and forwards are abbreviated GLK, DEF, MID
and FWD, respectively. The tables also include the p-value from a Pearson’s Product-
Moment Correlation test where the alternative hypothesis is a correlation not equal to 0, for
players of the same and opposing teams, respectively. In the cases where the correlation is
not significant at a significance level of 5% (GLK FWD and DEF FWD of the same teams
and GLK GLK of opposing teams), the correlation coefficient is set equal to 0. Otherwise,
the correlation coefficients, ⌘, presented in the tables are used.
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Position Position ⌘ p-value
GLK DEF 0.689 2.20 E-16
GLK MID 0.274 1.24 E-10
GLK FWD 0.0288 5.19 E-01
DEF MID 0.368 2.20 E-16
DEF FWD 0.0578 1.76 E-01
MID FWD 0.238 1.72 E-08

Table 6.12: Correlation coefficient ⌘ and p-value from significance test for the correlation between
players of the same team.

Position Position ⌘ p-value
GLK GLK 0.0162 7.59E-01
GLK DEF - 0.106 3.74E-02
GLK MID - 0.312 2.78E-10
GLK FWD - 0.336 3.85E-16
DEF DEF - 0.319 2.35E-11
DEF MID - 0.447 2.20E-16
DEF FWD - 0.292 3.35E-09
MID MID - 0.254 1.00E-07
MID FWD - 0.136 6.32E-03

FWD FWD - 0.119 2.18E-02

Table 6.13: Correlation coefficient ⌘ and p-value from significance test for the correlation between
players of opposing teams.
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Chapter 7
Results

In this chapter, the results of applying the forecast-based optimization model outlined in
Chapter 5 in the 2017/2018 season of the FPL, is presented. The model is implemented
with the numerical values for parameters computed in Chapter 6. Additionally, the re-
sults from solving the mathematical model outlined in Chapter 4 with realized points is
presented. First, in Section 7.1, the parameters in the mathematical model are initialized.
Then, in Section 7.2, the optimal ex-post decisions are presented. Furthermore, in Sec-
tion 7.3, the performance of the forecast-based optimization model for the FPLDP with
the three different forecasting methods is presented. Also, results from running the model
with forecasts generated by the method suggested by Bonomo et al. (2014) and the Modi-
fied Average method are compared. The model is first solved without the implementation
of gamechips. Subsequently, the model is solved when gamechips are included, and a dis-
cussion of the effect of the gamechips follows. Finally, in Section 7.4, the risk handling
constraints are included and the results are discussed.

The mathematical model is written in the modeling language Mosel and implemented in
FICO R� Xpress Optimization Suite 8.3, using a HP EliteDesk 800 G3 DM 65W computer
with Intel R� Core

TM
i7-7700 3.6 GHz processor and 32 GB RAM. The operating system

in use is Windows 10 Education 64-bit. The input data is structured and pre-processed in
the statistical programming language R. Further, the results obtained from the mathemat-
ical model include decisions on the selected squad, starting line-up, substitution priority,
number of penalized transfers, captain, vice-captain and whether a gamechip is used in
a gameweek. These are written to CSV files, which are exported back to R to calculate
how many points the team obtained. In the end, R is also used to make the data more
presentable in the form of tables and plots.

As mentioned in Section 6.1, the model is solved for the first 35 gameweeks of the
2017/2018 season. In general, it is important to note that for the forecast-based optimiza-
tion model, no overly categorical statements should be made due to the limited available
data. However, insightful observations can be derived.
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7.1 Initialization of Parameters

Table 7.1 and 7.2 display the initialization of parameters and sets used when the mathemat-
ical model is solved for both realized points and expected points. Notice that the realized
points, ⇢, is substituted with ⇢̂ when the model is run with expected points. Moreover, the
penalty term, R, is set according to the values decided in Section 6.2.

Set

T - 35 gameweeks.
P - 625 players.
C - 20 teams.
L - {1, 2, 3}, where 1 is first priority.
TFH - Gameweek 1 to 21 is in the first half of the season.
TSH - Gameweek 22 to 35 is in the second half of the season.

Table 7.1: Initialization of sets.

Parameters

⇢pt - Realized points for a player p in a gameweek t.
✏ - Set to 0.1.
1,2,3 - Set to 0.01, 0.001 and 0.0001, respectively.
CS

pt
, CB

pt
- Value collected from FPL’s homepage.

R - 4 points deducted for each penalized transfer.
MK - 2 goalkeepers required in the selected squad.
MD - 5 defenders required in the selected squad.
MM - 5 midfielders required in the selected squad.
MF - 3 forwards required in the selected squad.
MC - 3 players allowed to have from the same team.
E - 11 players required in the starting line-up.
EK - 1 goalkeepers required in the starting line-up.
ED - 3 defenders required in the starting line-up.
EM - 3 midfielders required in the starting line-up.
EF - 1 forward required in the starting line-up.
BS - £100m as starting budget.
� - Set to 1.
↵̄ - Set to 14.
� - 3 players are substitutes.
�K - 1 goalkeeper among the substitutes.
Q - 2 free transfers possible to accumulate over gameweeks.
Q - 1 free transfer given every gameweek.

Table 7.2: Initialization of parameters.
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All the parameters specifically stated in the rules of FPL are set accordingly. These include
the number of players in the different positions in both selected squad and starting line-
up, maximum players from the same team, the starting budget and restrictions on free
transfers. To tighten the formulation as much as possible, the parameters � and ↵ are set
so to the smallest, but sufficiently high, value. � is used in constraints (4.30) and (4.31) in
Chapter 4 which concern the substitution priority. Considering that the variable adopted
is binary, setting the value to 1 is reasonable. ↵ is used in constraints (4.42), and is set to
the highest possible value for the number of penalized transfers. As 1 free transfer is given
each gameweek and the selected squad consists of 15 players, it is not possible to have
more than 14 penalized transfers. Hence, the parameter ↵ is set accordingly.

7.2 Solution With Realized Points
Before the performance of the forecast-based optimization model for the FPLDP is exam-
ined, it is interesting to study the optimal solution when running the mathematical model
with ex-post data. For one, the solution serves as a benchmark of the performance of the
forecast-based optimization model for the FPLDP. Further, the optimal solution is com-
pared to that of the top-performing manager to see how close the best manager is to the
optimal solution. This section is divided into three parts. First, a brief discussion of the
problem size is given. Then, a discussion of the results obtained by the mathematical
model using realized points for the 2017/2018 season is presented. Finally, the solution
is more thoroughly examined and the sensibility of the decisions are briefly discussed.
Additionally, the solution is compared to the performance of the top manager.

As mentioned in Chapter 4.2, a simplification is made by assuming that a player’s sell price
equals his value. However, the assumption is not expected to have a substantial impact on
the optimal solution. For one, even if the model does not account for the concept of a
sell-on fee, variations in a player’s value are incorporated. Hence, when the model sells a
player from the selected squad, it only obtains a slightly higher price than what it would
do in reality. Furthermore, most players do not fluctuate with more than £0.2m during a
season. Actually, only 3 players had a price change exceeding £1m during the 2017/2018
season. Also, among the players with the 10 largest price increases, the average change
was £0.63m, earning a profit of £0.3m.

7.2.1 Problem Size
Table 7.3 displays the problem size of the FPLDP with input data from the 2017/2018
season. The problem size is given before and after the function Presolve is run. Presolve is
a function integrated in Xpress Optimizer and its objectives are to reduce redundant vari-
ables, eliminate redundant constraints and remove linearly dependent constraints, which
consequently reduces the complexity of the problem and improve the computing time.
From the table, it can be observed that the Presolve function is successful in eliminating
variables, but the reduction of constraints is not that severe. A reason for this could be
that most of the constraints are linearly independent, and that there is a limited presence
of empty rows in the FPLDP. In addition, a large part of the variables xpt, xfreehit

pt
and ypt
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are redundant, as many of them are defined even though only a few of them are used in the
starting line-up and selected squad constraints. Thus, to reduce the solution time, an effort
could have been put into reducing redundant variables in the procedure of implementation.
However, since the model only has to be solved once, this is disregarded.

Rows(Constraints) Columns(Variables)

Original Problem Statistics 172 034 254 425
Xpress Presolve Statistics 170 750 206 689

Table 7.3: Problem size of the model run with realized points.

7.2.2 Results of Running the Model With Realized Points

During testing, it was observable that nearly optimal solutions were found after 1000 sec-
onds. Hence, the maximum running time was set to 86 400 seconds, or 1 day. This is
illustrated in Figure 7.1.

Figure 7.1: Graph of when the solutions are found in Mosel Xpress-MP.

To test the model’s scalability, the model was run for different numbers of gameweeks.
The results are summarized in Table 7.4, and the computational time is illustrated in Figure
7.2. It is notable that the solution time increases significantly when solved for more than
20 gameweeks. In Table 7.4, it is observable that the optimal solution for 30 and 35
gameweeks was not found within maximum running time. However, the solution found
for 35 gameweeks only had a gap of 0.75 %, which was considered sufficient to serve as
a benchmark against the top manager. Note that in Table 7.4, the objective value is not
directly transferable to total points obtained in FPL. This is due to parameters in objective
function such as the ✏ used to select vice-captain.
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Number of gameweeks 5 10 15 20 25 30 35

Objective value 773.44 1380.95 2002.69 2660.42 3327.12 3956.76 4553.03
Gap - - - - - 0.27 % 0.75 %
Time to optimality 29 s 295 s 1 103 s 2 010 s 23 692 s N/A N/A

Table 7.4: Model run with different number of gameweeks.

Figure 7.2: Solution time when model is solved for different number of gameweeks.

7.2.3 Performance in Fantasy Premier League

In the following, the optimal solution for 35 gameweeks is examined and discussed. Figure
7.3 gives an overview of how many points the model obtained in each gameweek. The
colored dots represent gameweeks where the different gamechips were used.

As seen in Figure 7.3, the first and second Wildcards were used in gameweek 3 and 22,
respectively. Thus, the model played the second Wildcard at the earliest stage possible in
the second half of the season. Further, the Triple Captain was played in gameweek 31,
which is reasonable as Liverpool’s Mohammed Salah scored 4 goals and had 1 assist in
this particular gameweek, yielding a score of 29 points. This was the maximum number
of points obtained in a gameweek by any Premier League player. The Free Hit was played
in gameweek 26, a ”normal” gameweek, while the Bench Boost was played in gameweek
34, a double gameweek. Thus, the only gamechip that was used consistent with the imple-
mentation in the forecast-based optimization model was the Bench Boost.
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Figure 7.3: Points per gameweek with realized points.

In Figure 7.4, the optimal solution is compared gameweek for gameweek against the
weekly average points obtained among all managers and the points obtained by the top
manager. It is also indicated when the top manager played the gamechips. The top man-
ager never played a particular gamechip in the same gameweek as the optimal solution.
The first Wildcard was played in gameweek 15 and the second Wildcard was played in
gameweek 32. The Triple Captain was used in gameweek 22, a double gameweek. More-
over, the Free Hit was played in gameweek 35, a blank gameweek. Thus, the usage of the
Triple Captain and Free Hit is consistent with the reasoning made for the forecast-based
optimization model. Note that the use of the Bench Boost is not indicated, as the top
manager had not played it until gameweek 35.

From Figure 7.4, it is clear that the optimal solution substantially out-performs both the
weekly average among managers and the top manager each gameweek. In Table 7.5, the
performance of the top manager, as well as the performance required to reach different
rankings among all managers, are compared against the optimal solution. A complete
overview of the rankings after gameweek 35 was played can be found in Appendix C.
It is clear that even the top manager only managed to achieve approximately 50% of the
points obtained by the optimal solution. One implication is that it is immensely difficult to
compete optimally in FPL, given the nature of the uncertainty in the problem. Moreover,
the result can motivate the use of optimization-based tools, as a potential for improvement
indeed is found when comparing the top manager’s performance to the optimal solution.
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Figure 7.4: Weekly average, top performer and solution with realized points for every gameweek.

Mean Percentage of
optimal solution

Optimal solution 128.57 100.00 %
Top Manager 66.54 51.75 %
Top 5 % 55.83 43.42 %
Top 10 % 54.30 42.23 %
Top 20 % 52.20 40.60 %
Top 30 % 50.40 39.20 %
Top 40 % 48.50 37.72 %
Top 50 % 46.50 36.17 %

Table 7.5: Comparing managers to optimal solution.

A curious observation made from in Table 7.5 is that the difference in mean between the
top 50% and the winner is only slightly above 20 points per round, while the difference
between the optimal solution and the winner is above 60 points. Further, in mean, the
difference between the winner and top 5% is 10.71 points per gameweek. In comparison,
the difference between finishing among the top 10% and top 5% is only an increased mean
of 1.43 points per gameweek. A plausible explanation for the small difference is that
many managers select the same players. For instance, at some point, Mohammed Salah
was selected by more than 63% of the managers. Thus, for the forecast-based optimization
model, a slight increase in mean score can be enough to improve the performance in terms
of overall ranking significantly.
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7.3 Forecast-Based Solutions
In this section, the results of the forecast-based optimization model run with forecasts gen-
erated by the three different forecasting methods are presented. First, the performances
when the gamechips are disregarded are presented and discussed. Then, the performance
of each method when gamechips are included is presented. This serves two purposes.
First, it is done in order to compare the methods against each other without the compli-
cating inclusion of gamechips. Secondly, it allows a detailed examination of the effect of
gamechips. Finally, the results are summarized, and plausible explanations for the observa-
tions made are discussed. To evaluate the performance of the methods, their performances
are compared to that of the optimal solution with realized points, the top manager and the
weekly average among all managers. Concerning computational time, the model is solved
in a matter of seconds for all gameweeks.

7.3.1 Results Disregarding Gamechips
In Figure 7.5, the points obtained by the different forecasting methods are plotted for each
gameweek. Table 7.6, summarizes the results. Notice that for the Odds method, results are
presented for 31 gameweeks, as data only was available for these gameweeks.

Figure 7.5: Results of the different forecasting methods.

Comparisons of overall rankings are made in terms of mean points. This is done because
31 gameweeks are considered for the Odds method and 35 gameweeks for the two other
methods. From Table 7.6, it is clear that the Modified Average and the Odds method
outperform the Regression method. Moreover, it is clear the mean number of penalized
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transfers vary considerably between the methods. The difference between the Modified
Average and Regression is particularly apparent. Furthermore, the Regression method has
the highest volatility measured in standard deviation. The standard deviations presented is
empirical standard deviation calculated gameweek by gameweek.

Solution method Mean St.Dev. Overall ranking Mean
penalized transfers

Modified Average 54.74 15.85 Top 8% 0.23
Regression 50.43 20.73 Top 30% 1.80
Odds (31 gameweeks) 53.23 13.94 Top 13% 0.81

Table 7.6: Results disregarding gamechips.

Modified Average

From Figure 7.5, it is evident that the Modified Average performs poorly in the first two
gameweeks. A reasonable explanation is that the forecasts are based on the previous sea-
son. Also, several players are not taken into consideration in the first gameweeks, for
instance due to promotions and international transfers. In fact, the Modified Average se-
lects Gary Cahill and Cesc Fabregas, whom both received a red card, in the first gameweek.
With Cahill selected as captain, they deducted a total of -7 points.

It is observable that the weekly results tend to stabilize from gameweek 3 to gameweek
18. This can stem from the fact that track length now only includes realized points from
previous gameweeks in the 2017/2018 season. Additionally, players from outside the Pre-
mier League, including players from newly promoted teams, are now assigned expected
points.

From gameweek 19 to gameweek 35, the Modified Average improves its performance
compared to that in the first part of the season. Again, a plausible explanation is that
the forecasts are better, by for instance being able to capture players that are performing
consistently well.

Regression

The Regression method displays the highest fluctuations in terms of standard deviation and
reaches the highest weekly realization. However, the method is outperformed by the two
other methods in terms of mean. The weakest weekly performances are obtained at the
beginning of the season. This is probably explained by the fact that at the beginning of the
season, each player is listed with low values for variables such as total goals, total assists,
total saves etc., making it hard to distinguish the players from each other. Additionally,
some players are not considered for the first gameweek due to transfers and promotions.
The method achieves its highest weekly score in gameweek 20, earning 114 points. By
comparison, the maximum number of points obtained by a manager this gameweek was
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156 points. However, that manager played the Triple Captain. Adjusting for the gamechip
use, the best manager earned 137 points, leaving a difference of only 23 points.

Odds

With a mean of 64 points in the 5 first gameweeks, the Odds method greatly outperforms
the other methods in this interval. By comparison, the Modified Average earns a mean of
51 points and the Regression method a mean of 45 points. Furthermore, it has the overall
lowest standard deviation. One explanation is that the forecasts of points are solely based
on bookmakers predictions. Since bookmakers are professionals, it is not expected that
the accuracy of their odds will change much over the season. Of course, bookmakers will
adjust their calculations based on recent performance of players and teams. However, these
adjustments will not be as critical as the adjustments for the two other solution methods.

The Odds method is beaten by the Modified Average method. An explanation is that the
method has a limitation since forecasts only can be made one gameweek ahead. That is,
the sub-horizon must be equal to 1. Note that the performance of the Odds method is not
a direct indication of bookmakers’ abilities to set probabilities as they are profit-seekers.

Comparing Modified Average with the solution suggested by Bonomo et al. (2014)

The reader is reminded that the Modified Average method is inspired by the forecasting
approach suggested for the Argentinian Fantasy League by Bonomo et al. (2014). How-
ever, it was developed with the aim of improving the aforementioned approach. Therefore,
it is interesting to compare the performance of the two different methods. As mentioned in
Section 6.2, Bonomo et al. (2014) set the track-length to 3 gameweeks and the sub-horizon
to 1 gameweek. However, the Argentinian Fantasy League does not penalize transfers.
Thus, in order to make the comparison as fair as possible, both methods are run with a
penalty term, R, set equal to 4. Hence, the optimal combination of track-length and sub-
horizon with a penalty 4 is chosen for the Modified Average. These values correspond to a
track-length of 5 gameweeks and sub-horizon of 1 gameweek, as can be confirmed in Ta-
ble 6.2. From Figure 7.6 and Table 7.7, it is clear that the Modified Average outperforms
the approach suggested by Bonomo et al. (2014) and that for the 2017/2018 season the
Modified Average method is indeed an improvement of the method suggested by Bonomo
et al. (2014).

Solution method Mean St.Dev. Overall ranking Mean
penalized transfers

Modified Average 47.77 21.07 Top 43% 1.86
Bonomo et al. (2014) 42.31 17.43 Top 69% 2.23

Table 7.7: Performance of Modified Average and Bonomo et al. (2014).

78



7.3 Forecast-Based Solutions

Figure 7.6: Results of Modified Average and the solution approach suggested by Bonomo et al.
(2014).

7.3.2 Results Including Gamechips
In Table 7.8, a summary of the performance of each model when gamechips are included
is presented. For the sake of legibility, the abbreviation GC is occasionally used for
gamechips in tables and figures. In general, by comparing the mean obtained with and
without gamechips, it is apparent that the effect of gamechips is not consistent across
methods. The performance of the Regression method is improved, while both the Modi-
fied Average and Odds method perform worse.

Solution method Mean Std.Dev. Overall ranking Mean
penalized transfers

Modified Average 53.74 16.62 Top 12% 0.23
Regression 54.31 20.32 Top 10% 1.20
Odds (31 gameweeks) 50.23 15.17 Top 30% 0.48

Table 7.8: Results including gamechips.

In Figure 7.7, each method is plotted with and without gamechips. In the following, it
is discussed how each gamechip have affected the solutions. Note that for each method,
points obtained are similar for the first 6 gameweeks. As mentioned in Section 6.3, the
model was allowed to use a Wildcard in gameweek 9. Hence, this decision was first
considered in gameweek 7 due to the sub-horizon of 3 gameweeks. Therefore, different
decisions are made from that point on.
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Figure 7.7: Performance of forecasting methods with gamechips.

To evaluate the impact of the first Wildcard, comparison of performances are made from
gameweek 7, as this is the first gameweek were decisions regarding the Wildcard are in-
troduced. Moreover, only the performance until gameweek 19 is measured, as decisions
regarding the Triple Captain are first introduced in this gameweek. As expected, Table
7.9 shows that all methods perform a substantially higher number of transfers when the
Wildcard is played. However, the effect of these transfers appears to be rather limited for
the Modified Average and Odds method. The Regression, on the other hand, performs
considerably better when the Wildcard is used.

Method Mean GW 7-19 Transfers GW 9

Modified Average w/GC 51.08 11
Modified Average w/o GC 57.00 1
Regression w/GC 53.92 12
Regression w/o GC 48.15 5
Odds w/GC 46.62 11
Odds w/o GC 49.31 1

Table 7.9: Performance from gameweek 7 to 19.

As can be seen in Table 7.10, all methods select either Harry Kane or Son Heung-min as
Triple Captain in gameweek 22. First, it is worth noting that all players play for Tottenham,
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one of two teams that had a double gameweek. Furthermore, the Regression and Odds
method had both Son and Kane in their starting line-ups. Thus, both the Regression and
Odds had a higher forecast for Son than for Kane. A curious observation is that it was
speculated in whether Kane would play both matches or not.1 Such events can be caught by
the Regression method by the variables transfers in and transfers out, and by the odds set
by the decisions of bookmakers. For the Modified Average method, however, there is no
way to pick up such signals. By not being able to incorporate any qualitative information
such as line-up rumors, the Modified Average has a disadvantage when it comes to making
the critical decision as whom to select for Triple Captain.

Method Triple Captain Points

Modified Average w/GC Harry Kane 9
Modified Average w/o GC Harry Kane 6
Regression w/GC Son Heung-min 36
Regression w/o GC Son Heung-min 24
Odds w/GC Son Heung-min 36
Odds w/o GC Son Heung-min 24

Table 7.10: Performance of Triple Captain in gameweek 22.

From Table 7.11, it is apparent that all methods perform better in the blank gameweek 31,
the gameweek the Free Hit is used. Furthermore, by examining Table 7.11, it is clear that
difference is 17 points or more for all methods. Furthermore, it is notable that only the
Odds method makes a substantial amount of transfers ahead of the blank gameweek. This
can be explained by the sub-horizon of 1, as the other methods can plan 3 matches ahead.
It is worth noting that all methods obtain a relatively high score in gameweek 31. This
is mostly explained by the fact that Mohammed Salah earned 29 points for the particular
gameweek. As all methods had him as captain, they earned a score of 58 points on him
alone.

Method Points GW31 Transfers Players playing

Modified Average w/GC 92 14 11
Modified Average w/o GC 74 0 5
Regression w/GC 104 13 11
Regression w/o GC 87 2 9
Odds w/GC 97 15 11
Odds w/o GC 61 10 11

Table 7.11: Performance of Free Hit in gameweek 31.

1See article ”Priceless Harry Kane a doubt for Tottenham’s game with Swansea” at
https://www.independent.co.uk/sport/football/premier-league/tottenham-spurs-transfer-news-harry-kane-no-
price\-illness-swansea-doubt-team-news-a8133251.html

81



Chapter 7. Results

As the second Wildcard and Bench Boost are played in cooperation, they are discussed
together. The second Wildcard was played in gameweek 33, preparing for the double
gameweek 34. Data for these gameweeks are only available for the Modified Average and
Regression method, so the discussion is limited to these methods. Since the Bench Boost
is played in gameweek 34, it is considered by the model from gameweek 32. Gameweek
31 is the gameweek when the Free Hit is played. Therefore, only the gameweeks 32-34
are considered when evaluating the effect of the second Wildcard and Bench Boost. Table
7.12 shows that in terms of mean points obtained, the effect of the Wildcard and Bench
Boost for gameweek 32-34 is positive only for the Regression method. In particular, the
Modified Average performs worse in the gameweek the Wildcard is played, while the
Regression performs better. Furthermore, both methods improve in the gameweek the
Bench Boost is played. However, as 15 players are awarded points, this is expected.

Method GW 32 GW 33 (W) GW 34 (BB) Mean

Modified Average w/GC 37 31 88 52
Modified Average w/o GC 48 42 81 57
Regression w/GC 42 32 91 55
Regression w/o GC 48 23 61 44

Table 7.12: Performance of Wildcard and Bench Boost in GW32-34.

7.3.3 Summary

Solution method Mean Std.Dev. Overall ranking Mean
penalized transfers

Modified Average w/ GC 53.74 16.62 Top 12% 0.23

Modified Average w/o GC 54.74 15.85 Top 8% 0.23

Regression w/ GC 54.31 20.32 Top 10% 1.20

Regression w/o GC 50.43 20.73 Top 30% 1.80

Odds (31 gameweeks) w/ GC 50.23 15.17 Top 30% 0.48

Odds (31 gameweeks) w/o GC 53.23 13.94 Top 13% 0.81

Realized points 128.57 16.50 N/A 4.23

Weekly Average 48.53 7.99 Top 40% -

Top Manager 66.54 18.28 Top 1 0.11

Table 7.13: Summary of the results.

In Table 7.13, the results of all different methods with and without gamechips are summa-
rized. Furthermore, the solution with realized points is given as a benchmark. However,
the model with realized points significantly beats the forecast-based optimization model.
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Therefore, as a more realistic benchmark for top performance, the performance of the top
manager is included. As a benchmark of average performance, the weekly average is used.

As the season consists of 38 gameweeks, comparing overall performance is somewhat
problematic when only gameweek 1-35 is considered. For instance, the top manager still
has a gamechips left. A different number of gameweeks is also an issue when comparing
the Odds method with the two other methods. Nevertheless, the results should be indica-
tive as more than 5.9 million manager participates in FPL. Once again, it is stressed that
as testing is only performed on one season, overly categorical statements should not be
made. Nonetheless, with either the Modified Average method without gamechips, or the
Regression based approach with gamechips, the forecast-based optimization model ap-
pears to have the potential to reach the top 10% of managers in the FPL. Furthermore, a
position in the top 30% is achieved by all methods. Thus, beating the average weekly per-
formance indeed appears to be obtainable. On the other hand, all models are considerably
out-performed by the top manager. Without further improvement, winning the FPL with
the forecast-based optimization model appears to be unobtainable.

The Odds method performs best over the first five gameweeks. As the Odds method is
based on bookmakers odds, it is not as heavily influenced by past season’s performance as
the Modified Average and Regression method. In fact, from the previous season’s Dream
team, i.e., the 11 players that collected most points, only one player had a score above
two points in the first gameweek. In addition, the Odds method does not exclude players
due to promotion or transfers to Premier League ahead of the season. The observation is
substantiated by the fact that in gameweek 5, the gameweek when entire track-length is
first founded in the 2017/2018 season, the Modified Average method starts to outperform
the Odds method. Hence, the Odds method appears to be the method best suited for
forecasting in the earliest gameweeks of the season.

As evident from Table 7.13, the number penalized transfers are considerably different be-
tween the methods. In particular, it is high for the Regression method. It can be argued that
the higher penalty term incorporated for the Modified Average method is only a compensa-
tion for inaccurate forecasts. Thus, it appears as if the Regression method in particular also
could benefit from a parameter tuning approach concerning the penalty term R. However,
this was constrained by the availability of data.

In general, the methods exhibit different variability. Based on the standard deviations
presented in Table 7.13, the Regression method is most volatile, while the Odds method
is the least. One explanation is that the Regression method does not account for recent
performance in as a direct manner as the Modified Average method does by averaging
points in the last rounds. Moreover, odds are set by the standard procedures of professional
bookmakers, while the other methods are solely based on data and will to a higher degree
incorporate extreme and unexpected past events. Additionally, the performances for all
methods appear to fluctuate more in the second half of the season. One sensible reason is
the emergence of blank and double gameweeks.
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The effect of gamechips is not consistent for all methods. The Triple Captain and Free Hit
appear to boost performance for all methods. The Second Wildcard in combination with
Bench Boost appear to have a favorable effect on the Regression model, but not for the
Modified Average. The same goes for the first Wildcard. This can be due to several rea-
sons. First, for the Regression method in Section 6.2.2, it is found that time-series effect
of points is rather limited. Hence, for the Regression, only variables such as total amount
of goals, assists, saves etc. are considered. When playing the Wildcard, the entire selected
squad can be changed, and the new selected squad is carried forwards. If the Wildcard
is played and forecasts are based on the Regression method, the performances of players
over all the previous gameweeks are considered. For the Modified Average, on the other
hand, the forecasts are only based on the last 5 matches. When considering to change
the entire selected squad, i.e., playing the Wildcard, taking all previous gameweeks into
consideration seems to be the preferable approach. Secondly, the parameter tuning is done
without gamechips in mind. That is, neither track length nor sub-horizon are optimized
with respect to the Wildcard. As all gamechips are meant to provide opportunities that
benefit managers, it is counter-intuitive that the results are worse when they are included.
In the end, the varying results of the model run with gamechips is due to the implementa-
tion of the gamechips. In fact, if the gamechips are used after the model is run without first
taking them into consideration, they can be guaranteed not to have a negative influence on
performance. The Wildcards and Free Hit can be used only in order to ”pay” for penalized
transfers after decisions are made, while the Triple Captain and Bench Boost can be played
after the captain and the selected squad are decided. Thus, the gamechips will only have
a positive or zero effect. As seen, however, this is not guaranteed when implementing the
gamechips with the strategies suggested in this thesis. A further possible explanation of the
unsatisfactory performance when gamechips are included is that an implementation only
allowing gamechips to be played in particular gameweeks is not ideal for an optimization
model. Since the use of gamechips are fixed to certain gameweeks, the solution space is
decreased and the solutions found are sub-optimal. The implementation of gamechips is
regarded as one of the areas with most potential for improvement in the forecast-based
optimization model.

7.4 Risk Handling
In this section, the effect of risk handling in the forecast-based optimization model is exam-
ined. That is, constraints (5.12) - (5.16) are included, and the model is run with changing
thresholds. However, since the performance is measured in the unit points, the thresholds
are from now on denoted as standard deviations rather than variances. Further, it is em-
phasized that a threshold refers to a value chosen before a model is run. Realized standard
deviation, on the other hand, refers to an empirical value computed after the model is run
for all gameweeks. Forecasts from the Modified Average method are used and gamechips
are included. Including the risk handling constraints increase the computational time sig-
nificantly. For the lowest threshold considered, the model is solved in approximately 20
minutes for all gameweeks.

In Sections 3.4 and 5.4, it is pointed out that the FPLDP resembles a classic portfolio
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optimization problem. Therefore, it is interesting to investigate if there exists a similar ex-
pected return/risk trade-off in the FPLDP as it does in portfolio optimization. Accordingly,
it is studied how varying the thresholds affects expected points for the first sub-problem.
The mathematical model maximizes a team’s expected points. Hence, one would assume
that when the threshold is decreased, the expected points of the team also decreases. This
would coincide with the efficient frontier found in portfolio optimization. The efficient
frontier consists of the optimal set of portfolios that gives the highest expected points for
a certain level of risk. In Figure 7.8, the expected points, i.e., the objective value, obtained
by the optimization model for the first sub-problem is plotted against different thresholds.
The curve exhibits similar behavior as the efficient frontier but is not smooth. This can be
explained by the fact that in the FPLDP one can either include a player or not. That is, the
decision is binary. In other words, opposed to the classic portfolio optimization problem,
one cannot hold a fraction of an asset in the FPLDP.

Figure 7.8: Threshold plotted against objective value in the mathematical model for the first sub-
problem.

In Figure 7.9, the mean points obtained in the 2017/2018 season when the model is run
with different thresholds are plotted. From Figure 7.9, it is observable that the plot devi-
ates from that of the efficient frontier. However, some similarities can be found. Higher
thresholds are for instance associated with higher mean scores, and lower thresholds are
associated with lower means. When the constraints are non-binding, the mean stabilizes
at 54.34 points. Intuitively, the mean should have been 53.74 points, the same as when
the model is run without the constraints. However, after examining the objective values,
it is clear that there are different solutions with the same expected value for the first sub-
problem. Thus, there is no guarantee that the solver selects the same solution. A possible
way around is a different implementation of variance constraints. A trade-off approach
(Mansini et al., 2015) could have been an interesting alternative, where instead of bound-
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ing the variance it is taken into consideration by moving it to the objective function.

Figure 7.9: Performance with varying thresholds.

As seen in Figure 7.9, the best mean score is not reached for an unlimited threshold, but for
a threshold of 55 points. Here, the model achieved a mean of 57.54 points, corresponding
to a spot among the top 1.5% of all managers. In general, the solutions outperform the
solution with an unlimited threshold in the area with a threshold between 55-70 points. In
Figure 7.10, the solutions with threshold 55 and 7.5 are plotted against the solution without
a threshold. It is noticeable that the variance appears to be higher than for the unlimited
case when the threshold is 55, but not 7.5. In Table 7.14, the mean and realized standard
deviation for thresholds from 7.5-12.5 and 55-65 are shown. Based on the table, it is clear
that the goal of achieving lower realized standard deviation in the solution is reached with
lower thresholds. Furthermore, in these cases, the mean is reduced, analogous to the case
of portfolio optimization. Observe, however, that when the thresholds are between 7.5-
12.5, they are unable to keep the realized standard deviations below the thresholds. The
realized standard deviation for the thresholds in the region 55-65 exceeds the realized stan-
dard deviation of the unlimited case. For threshold between 55-65, however, the realized
standard deviation is well below the threshold. Yet, as the threshold is approximately as
high as the mean points obtained, it is counter-intuitive that such a threshold should be
binding. Thus, the positive effect in mean is probably related to the nature of the problem,
not to the variance reduction per se. That is, having a factor decide how many players of
the same and opposing teams to include in the selected squad can be a beneficial strat-
egy in terms of improving performance, even if it does not necessarily reduce the realized
standard deviation of points obtained.
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Figure 7.10: Performance with threshold 7.5 and 55 compared against performance with no thresh-
old..

Threshold Mean Realized St.Dev.

7.5 51.77 15.7
10 50.77 14.6
12.5 51.49 15.9
Unlimited 53.74 16.8
55 57.54 20.8
60 55.71 18.1
65 55.51 18.8

Table 7.14: Results for the high and low thresholds.

To further examine the effect of the risk threshold, the starting line-up with a threshold of
7.5 and 55 are compared after the first Wildcard is played, i.e., in gameweek 9. The starting
line-up for threshold 7.5 and 55 are given in Table 7.15 and Table 7.16, respectively. By
comparing the teams, it is clear that players from 9 different teams were in the starting
line-up when the threshold was 7.5, while only 6 different teams were featured when the
threshold was 55. Furthermore, with a threshold of 55, three midfielders from the same
team, Manchester City, were selected. Additionally, no players in the starting line-up
faced each other. With a threshold of 7.5, on the other hand, four pairs of players faced
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each other. In two of these four pairs, a defender faced a midfielder. As seen in Table
6.13, defenders and midfielders of opposing teams are the relationship with the highest
negative correlation. Thus, the two cases illustrate the impact risk handling has on the
starting line-up.

Player Position Team Opponent

Hart GLK WHU BHA
Ward DEF BUR MCI
Azpilicueta DEF CHE WAT
Valencia DEF MUN HUD
Groß MID BHA WHU
Bakayoko MID CHE WAT
Sane MID MCI BUR
Choupo-Moting MID STK BOU
Richarlison MID WAT CHE
Diouf FWD STK BOU
Kane FWD TOT LIV

Table 7.15: Starting line-up in gameweek 9 when threshold is set to 7.5.

Player Position Team Opponent

Hart GLK WHU BHA
Monreal DEF ARS EVE
Lascelles DEF NEW CRY
Fonte DEF WHU BHA
Bruyne MID MCI BUR
Sane MID MCI BUR
Sterling MID MCI BUR
Choupo-Moting MID STK BOU
Eriksen MID TOT LIV
Diouf FWD STK BOU
Kane FWD TOT LIV

Table 7.16: Starting line-up in gameweek 9 when threshold is set to 55.

To summarize, a threshold between 55-70 points appears to have a positive effect on per-
formance in terms of mean, but not in terms of reducing realized standard deviation. Fur-
thermore, a threshold of 7.5-15 points appears to be able to lower realized standard devia-
tion at the cost of mean obtained. An interval where both the realized standard deviation
is decreased, and the performance is increased, is not found. Again, it is stressed that all
results are based on data from only two seasons and are indicative at best.
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Concluding Remarks

This thesis describes an optimization model for the Fantasy Premier League Decision
Problem by suggesting an approach for optimizing Fantasy Premier League decisions.
To the author’s knowledge, the mathematical model presented is the first of its kind for
the Fantasy Premier League. Also, to the best of the author’s knowledge, the concept of
modeling gamechips have never been considered in Fantasy Sports, and risk handling has
never been considered in the Fantasy Premier League.

The mathematical model has been solved with realized points in order to obtain the optimal
solution. Furthermore, the mathematical model has been solved by the use of a rolling
horizon heuristic with forecasts of player points as input. The forecasts are generated by
three different methods: the Modified Average method, the Regression method and the
Odds method. Moreover, the gamechips are implemented using qualitative strategies. The
strategies are mostly developed by considering whether a gameweek is blank or double.
In addition, risk handling constraints are added and their impact is studied.

Solving for realized points reveals a considerable potential for improvement in perfor-
mance in the Fantasy Premier League. Even the top manager among 5.9 million users
only manages to achieve approximately 50% of the optimal solution. This speaks in vol-
umes of the nature of uncertainty in the FPLDP. Furthermore, it motivates researching
the problem, as the top performing solutions are far from optimal. For the forecast-based
optimization model developed, achieving a position among the top 30% of all managers
appears obtainable by all marks. Moreover, forecasts based either on the Regression or
Modified Average method are deemed most promising. For these methods, a top 10%
finish appears to be within reach.

The effect of adding risk handling constraints related to variance has been analyzed. The
results are promising and indicate that a strategy that considers which players face each
other in a gameweek can either be used to limit variance or boost performance, depending
on a risk preference threshold. Obtaining both effects simultaneously, however, appears
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to be impossible. In the best cases, the model reaches approximately the top 1.5% of
managers when risk handling is introduced alongside forecasts from the Modified Average
method. Winning the Fantasy Premier League, i.e., finishing as the top manager, appears
to be unachievable with the methods suggested in this thesis.

Even though the results are encouraging, there exist some drawbacks worth addressing.
Most notably, the implementation of the gamechips is unsatisfactory in the sense that with
forecasts from the Modified Average and Odds method, the performances are aggravated
when gamechips are introduced. Another drawback is the sparsity of data. As data for
only two seasons are available, the results must be interpreted carefully.

As 5.9 million managers compete in the Fantasy Premier League, competition is fierce. In
fact, a mean of only 1.9 points per gameweek separates a top 10% finish from a top 20%
finish in 2017/2018 season. As of now, the mathematical model developed can already
be used as a decisions support tool. For one, it can be run ex-post to answer insightful
questions like, ”What would have been the optimal transfer last gameweek?” or, ”What is
the optimal team so far?”. Furthermore, the forecast-based optimization model can be used
as a complementary support tool for FPL managers. For instance, it can propose the k best
set of transfers for a manager’s team in each round. This can be done by running the model
k times, in each case constraining the optimal solutions previously generated. The growing
attention from commercial actors and the monetary figures seen in other Fantasy Sports,
such as in Daily NFL Fantasy Sports, indicate that improving average performance by only
a small amount may be of substantial worth in the future. Thus, further development of
the forecast-based optimization model, as well as more research on the FPLDP in general,
has great potential value.
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Recommendations for Further
Research

The FPLDP is not an in-depth researched area. In fact, only two articles on Fantasy Foot-
ball were found (Matthews et al. (2012); Bonomo et al. (2014)) and only one of them
specifically addressed the FPLDP (Matthews et al., 2012). To the author’s knowledge, the
mathematical model presented is the first of its kind for the Fantasy Premier League, and
the concept of modeling gamechips have never been considered in Fantasy Sports before.
Thus, the novelty of the FPLDP makes recommendations for future research topics a vital
issue to address.

When the model is run with realized points, the results demonstrate that there is a signif-
icant gap between the optimal solution and the top manager. Moreover, considering the
sample size of 5.9 million participating managers, it illustrates that there is much uncer-
tainty in the FPLDP. Thus, instead of taking the deterministic solution method adopted in
the thesis, using a stochastic solution method or a method based on machine learning are
ideas for further research. Modeling the FPLDP as a Markov Decision Problem is also
possible, as done by Matthews et al. (2012).

A potential for improvement of the forecast-based optimization model lies in the imple-
mentation of the gamechips. As seen in the thesis, the implementation does not guarantee
an increased performance when the gamechips are played. Thus, the qualitative strate-
gies suggested do not seem complementary to the forecast-based optimization model. The
Wildcard, in particular, could benefit from another form of implementation. Thus, exam-
ining the effect of different implementations is an exiting topic for further research. One
interesting approach is to let the model decide when to use the gamechips in the rolling
horizon heuristic, but punish the objective function for the use. This will keep the model
from using all gamechips in the first sub-problems. Another approach would be to im-
plement the gamechips analogous to the exercise of a financial option. Other approaches
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related to the Triple Captain include using a risk-adjusted measure analogous to the Sharpe
Ratio (Sharpe, 1994) or an approach based on the optimal solution of the Secretary Prob-
lem (Lindley (1961); Bruss (1984)).

Multiple approaches with a potential of improving forecasts of player points exist. Some
are solely related to the fact that in the future, more data will be available. For example,
a parameter tuning can be conducted for the Regression method. Furthermore, with more
data available, one can fit the regression model by only considering matches at a similar
stage of previous seasons. For instance, total goals can have a high predictive power of
realized points in the second part of the season, but perhaps not in the first couple of
gameweeks. Methods for handling players without data due to for instance transfers or
promotions are also of interest. These could, for instance, be based on the assumption that
players of the same price are expected to perform similarly.

Other topics for future research related to the forecasts are not founded in the scarcity of
data. Instead, they are connected to discoveries made in the thesis. For instance, it is
clear that the Odds method performs best at the beginning of the season. Thus, combining
forecasting methods is an interesting approach to improve performance. For example, the
Odds method could be used for the first 5 gameweeks before switching to the Modified
Average method for the rest of the season. In combination, the model could be allowed to
use the Wildcard in the gameweek forecasting methods are changed. Alternatively, odds
could be used as an explanatory variable in the regression. Finally, forecasting of future
price could be used as a measure to profit from trading players, thus obtaining a higher
budget.

An analysis of risk handling was presented in this thesis. The analysis indicated that the
risk handling could be used to improve the performance or alternatively to reduce risk.
However, further research is required before more conclusive statements can be made.
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Appendix A
Bonus Points System

The Bonus Points System (BPS) used to allocate bonus points in the Fantasy Premier
League is presented in this appendix. The BPS utilizes several statistics supplied by Opta,
a sport analytics company, to create a performance score for a player. The players with the
top three BPS scores in a given match receive bonus points - three points to the highest-
scoring player, two to the second best and one to the third. The information in Table A.1
is obtained from www.premierleague.com.
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Action BPS
Playing 1 to 60 minutes 3
Playing over 60 minutes 6
Goalkeepers and defenders scoring a goal 12
Midfielders scoring a goal 18
Forwards scoring a goal 24
Assists 9
Goalkeepers and defenders keeping a clean sheet 12
Saving a penalty 15
Save 2
Successful open play cross 1
Creating a big chance (a chance where the receiving player should score) 3
For every 2 clearances, blocks and interceptions (total) 1
For every 3 recoveries 1
Key pass 1
Successful tackle (net*) 2
Successful dribble 1
Scoring the goal that wins a match 3
70 to 79% pass completion (at least 30 passes attempted) 2
80 to 89% pass completion (at least 30 passes attempted) 4
90%+ pass completion (at least 30 passes attempted) 6
Conceding a penalty -3
Missing a penalty -6
Yellow card -3
Red card -9
Own goal -6
Missing a big chance -3
Making an error which leads to a goal -3
Making an error which leads to an attempt at goal -1
Being tackled -1
Conceding a foul -1
Being caught offside -1
Shot off target -1

Table A.1: Bonus Points System.
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Appendix B
The Elo System

The Elo system introduced in Section 3.3.2 is a rating system used for measuring the
relative strength level of sport teams and individual athletes. Within football, the Elo
system can be used in order to determine a club’s Elo rating. The great advantage of the
Elo system lies in its simplicity: there is only one value per club at each point in time, the
higher the better.

The performance of a team is not measured absolutely, but inferred from wins, losses and
draws against other teams. If team A has a Elo rating of RA and team B has a Elo rating
of RB , team A has an expected score of

EA =
1

1 + 10
RB�RA

400

(B.1)

when facing team B. Similarly, team B has an expected score of

EB =
1

1 + 10
RA�RB

400

(B.2)

When teams play each other and win or lose, they exchange points. Hence, the club’s Elo
rating is updated once a match has been played. Using the expected scores from Equation
B.1, team A’s updated Elo rating is calculated as

R
0

A
= RA + (SA � EA)⇥ k (B.3)

where SA is the result (1 for win, 0.5 for draw and 0 for loss). Further, k is a factor which
determines the adjustments of the Elo rating. A higher k-value will increase the changes in
the rating and the Elo ratings will suffer from more variation. For smaller k-values, more
stable Elo ratings are created. In chess, the World Chess Federation suggest that a value
of k = 20 should be used for players with an Elo rating below 2400.
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Similarly, team B’s updated Elo rating is given by

R
0

B
= RB + (SB � EB)⇥ k (B.4)

In the following, an illustrative example shows how Elo ratings of two teams are updated
once a match between them has been played:

Assume that team A has an Elo rating of 1881 and that team B has a rating of 1650. If
team A faces team B, team A has an expected score according to Equation B.1:

EA =
1

1 + 10
1650�1881

400

= 0.791

while team B has an expected score of

EB =
1

1 + 10
1881�1650

400

= 0.209

Further, if team A won the match, its Elo rating will increase to a rating according to
equation B.3:

R
0

A
= 1881 + (1� 0.791)⇥ 20 = 1885

As for team B, its Elo rating decreases to

R
0

B
= 1650 + (0� 0.209)⇥ 20 = 1646

In the following, the Elo ratings used for 2017/2018 season is presented in form of tables.

Team GW1 GW2 GW3 GW4 GW5 GW6 GW7 GW8 GW9
Man City 1864 1873 1870 1874 1900 1906 1922 1932 1947
Liverpool 1835 1842 1851 1862 1851 1842 1854 1850 1863
Tottenham 1885 1894 1886 1879 1903 1892 1912 1915 1929
Man Utd 1855 1864 1876 1880 1884 1888 1914 1917 1929
Chelsea 1907 1895 1906 1911 1923 1916 1944 1934 1921
Arsenal 1845 1853 1843 1832 1841 1845 1860 1863 1858
Leicester 1714 1715 1721 1717 1717 1711 1713 1713 1716
Burnley 1626 1646 1638 1645 1656 1659 1663 1674 1679
Everton 1749 1760 1768 1763 1756 1735 1740 1728 1733
Newcastle 1621 1619 1612 1625 1641 1645 1646 1650 1659
Bournemouth 1651 1649 1635 1631 1632 1635 1639 1640 1644
Crystal Palace 1640 1620 1620 1607 1607 1596 1601 1599 1619
Swansea 1647 1654 1646 1659 1653 1658 1656 1650 1661
West Ham 1670 1668 1664 1651 1661 1660 1665 1671 1679
Southampton 1689 1690 1697 1694 1683 1688 1691 1685 1688
Watford 1601 1609 1627 1623 1645 1633 1652 1654 1672
Brighton 1581 1580 1577 1581 1598 1589 1606 1603 1611
Stoke 1660 1659 1672 1674 1683 1673 1674 1680 1683
West Brom 1642 1653 1664 1662 1655 1651 1656 1654 1664
Huddersfield 1471 1499 1510 1513 1514 1514 1529 1525 1611

Table B.1: Elo ratings for 2017/2018 season.
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Team GW10 GW11 GW12 GW13 GW14 GW15 GW16 GW17 GW18
Man City 1947 1963 1968 1974 1964 1966 1959 1968 1972
Liverpool 1853 1857 1865 1869 1859 1866 1883 1877 1870
Tottenham 1933 1938 1939 1932 1914 1902 1903 1907 1909
Man Utd 1910 1920 1913 1903 1895 1900 1918 1909 1911
Chelsea 1921 1912 1919 1929 1919 1920 1923 1909 1912
Arsenal 1867 1860 1854 1866 1848 1851 1844 1841 1837
Leicester 1721 1729 1730 1724 1713 1724 1733 1740 1754
Burnley 1673 1679 1689 1696 1680 1689 1686 1682 1698
Everton 1708 1691 1697 1695 1653 1665 1684 1690 1698
Newcastle 1662 1655 1646 1642 1616 1618 1619 1612 1605
Bournemouth 1652 1649 1658 1666 1656 1647 1649 1650 1648
Crystal Palace 1611 1610 1609 1609 1607 1609 1614 1614 1621
Swansea 1650 1647 1637 1629 1618 1616 1614 1621 1616
West Ham 1656 1656 1649 1639 1629 1618 1620 1634 1638
Southampton 1691 1691 1681 1675 1676 1675 1679 1682 1667
Watford 1667 1657 1651 1660 1665 1659 1667 1661 1654
Brighton 1628 1628 1638 1637 1624 1622 1618 1605 1603
Stoke 1668 1678 1678 1678 1659 1651 1660 1656 1650
West Brom 1655 1651 1642 1635 1632 1630 1631 1624 1631
Huddersfield 1538 1536 1546 1537 1525 1523 1521 1534 1531

Table B.2: Elo ratings for 2017/2018 season.

Team GW19 GW20 GW21 GW22 GW23 GW24 GW25 GW26 GW27
Man City 1981 1983 1985 1978 1980 1971 1972 1974 1968
Liverpool 1878 1878 1882 1885 1890 1899 1885 1889 1888
Tottenham 1901 1909 1912 1912 1909 1914 1908 1918 1919
Man Utd 1914 1911 1904 1897 1904 1907 1911 1901 1903
Chelsea 1914 1910 1912 1916 1915 1909 1915 1889 1866
Arsenal 1839 1839 1844 1839 1840 1828 1834 1817 1824
Leicester 1732 1736 1727 1723 1729 1735 1741 1732 1729
Burnley 1697 1689 1696 1693 1689 1681 1677 1677 1683
Everton 1704 1708 1708 1699 1693 1688 1685 1693 1685
Newcastle 1603 1614 1612 1610 1620 1619 1617 1617 1620
Bournemouth 1640 1638 1636 1644 1645 1657 1659 1684 1690
Crystal Palace 1643 1644 1639 1646 1656 1663 1658 1660 1657
Swansea 1610 1609 1605 1615 1611 1613 1627 1644 1648
West Ham 1654 1643 1645 1645 1658 1670 1668 1666 1654
Southampton 1665 1661 1657 1664 1654 1655 1660 1657 1666
Watford 1632 1625 1634 1624 1622 1622 1616 1618 1641
Brighton 1604 1611 1609 1611 1610 1601 1595 1599 1611
Stoke 1634 1643 1642 1638 1628 1625 1632 1630 1624
West Brom 1628 1619 1620 1624 1618 1627 1631 1628 1620
Huddersfield 1553 1557 1558 1560 1555 1543 1536 1533 1531

Table B.3: Elo ratings for 2017/2018 season.

105



Team GW28 GW29 GW30 GW31 GW32 GW33 GW34 GW35
Man City 1983 1993 1993 1989 1989 1979 1958 1971
Liverpool 1913 1917 1916 1902 1906 1931 1935 1938
Tottenham 1935 1938 1923 1922 1922 1936 1939 1920
Man Utd 1896 1902 1904 1886 1886 1893 1905 1894
Chelsea 1876 1870 1864 1853 1853 1846 1840 1851
Arsenal 1828 1819 1816 1818 1818 1837 1841 1830
Leicester 1732 1727 1722 1727 1727 1740 1729 1718
Burnley 1682 1680 1685 1693 1693 1703 1712 1712
Everton 1700 1692 1683 1685 1693 1692 1697 1698
Newcastle 1641 1643 1639 1645 1645 1653 1665 1676
Bournemouth 1678 1676 1676 1664 1668 1673 1671 1662
Crystal Palace 1656 1653 1647 1638 1648 1648 1651 1657
Swansea 1662 1649 1659 1651 1651 1651 1651 1651
West Ham 1670 1667 1652 1631 1631 1646 1653 1650
Southampton 1667 1669 1665 1645 1645 1637 1635 1634
Watford 1639 1647 1651 1639 1635 1638 1630 1622
Brighton 1620 1633 1642 1627 1627 1621 1618 1618
Stoke 1629 1634 1634 1625 1617 1616 1614 1616
West Brom 1623 1612 1604 1586 1581 1577 1578 1594
Huddersfield 1557 1568 1565 1559 1548 1547 1551 1560

Table B.4: Elo ratings for 2017/2018 season.
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Appendix C
Fantasy Premier League 2017/2018
Season Rankings

In this appendix, Table C.1 provides information about the performance that was re-
quired to obtain different ranks in Fantasy Premier League after gameweek 35 of the
2017/2018 season had been. The information is retrieved from FPL’s homepage, https:
//fantasy.premierleague.com.
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Overall Total Points Ranking (%) Mean

1 2329 - 66.54
2 2311 - 66.03
3 2297 - 65.63
4 2296 - 65.60
5 2294 - 65.54
6 2293 - 65.51
7 2292 - 65.49
8 2288 - 65.37
9 2287 - 65.34

500 2197 0.01% 62.77
1 000 2181 0.02% 62.31

73 529 2034 1.25% 58.11
122 729 2007 2.08% 57.34
190 386 1982 3.23% 56.63
289 729 1955 4.92% 55.86
307 269 1951 5.21% 55.74
615 009 1897 10.44% 54.20
895 898 1860 15.20% 53.14

1 228 630 1822 20.85% 52.06
1 515 599 1790 25.72% 51.14
1 791 435 1761 30.40% 50.31
2 094 985 1728 35.55% 49.37
2 419 676 1691 41.06% 48.31
2 678 000 1660 45.45% 47.43
2 999 773 1621 50.91% 46.31
3 156 602 1602 53.57% 45.77
3 526 620 1556 59.85% 44.46
4 011 099 1492 68.07% 42.63

Table C.1: Fantasy Premier League 2017/2018 season rankings after gameweek 35 was played.
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