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Problem Formulation

The aim of this thesis is to generate production plans that allocate a set of alu-
minum orders (call-offs) to the casting tables at Norsk Hydros’ plants. The call-offs
are based on long term contracts which specify a tonnage of aluminum products
to be delivered every month. However, the alloy, dimensions and specific delivery
time are not specified until the customer declares this, typically three weeks be-
fore delivery. Meanwhile, a feasible production plan has to be made taking batch
production, production capacities and transportation routes into account. This
production plan should be cost effective despite call-offs arriving unpredictably
and often having to be allocated within short time before the entire realization of
orders is known.

The production plan to be developed must account for costs. Most prominently,
transportation costs must be considered, but also production costs and storage
costs. The production plan should be produced in a rolling horizon manner and
one wishes to lock call-offs allocated early in the planning period. This provides
some degree of predictability for the casthouses responsible of producing the orders.
Efficient computation is also an ambition in the thesis, as the model is supposed
to serve as an operational decision support tool. In addition, it should be capable
of handling realistically sized demand data from Norsk Hydro.
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Abstract

Significant market shares in the global aluminum industry belong to producers lo-
cated in low cost countries. Norsk Hydro ASA is a Norwegian firm in this industry,
and operate as a Make-to-Order company. They deliver cast products from mul-
tiple plants to a wide range of customers. However, the quantities, products and
delivery dates of demand is only partly known at any given day.

An operational production planning model is developed, aimed at minimizing costs.
The model allocates production to a series of plants, and accounts for demand being
a mixture of confirmed orders as well as forecasts. All this is done while taking com-
plications such as batch production and updated demand information into account.
The model is a mixed integer linear program, and it is applied with a rolling hori-
zon approach, where demand information is updated daily. The model successfully
allocates demand in a way that is consistent with Norsk Hydro’s business practices,
although a trade-off between optimality gaps and nervousness is observed. The po-
tential of Lagrangian relaxations is tested on certain model constraints, with the
subgradient method being used to update Lagrangian multipliers. The approach
is successful in providing reduced optimality gaps.

The model is developed with the aluminum industry in mind, but can be applied
to any metal industry utilizing casting processes.
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Sammendrag

I den globale aluminiumsbransjen tilhører betraktelige markedsandeler produsenter
som befinner seg i lavkostland. Norsk Hydro ASA er en aktør i denne bransjen,
og driftes etter Make-to-Order-prinsipper. De leverer støpte produkter fra flere
aluminiumsverk til et bredt utvalg kunder. Detaljer vedrørende etterspørsel vites
bare delvis p̊a en gitt dag, ettersom mengder, produkter og leveringsdatoer sjelden
er spesifisert lenge i forveien av en bestilling.

En modell til operasjonell produksjonsplanlegging blir utviklet, den ønsker å min-
imere kostnader. Modellen allokerer produksjon til en rekke aluminiumsverk, og tar
høyde for etterspørsel som er en blanding av bekreftede bestillinger eller prognoser.
Dette gjøres samtidig som at hensyn tas til batch-produksjon, stadig oppdatert et-
terspørsel og andre kompliserende forhold. Modellen er et blandet heltallsproblem,
og er anvendt med en rullende horisont, hvor informasjon om etterspørsel opp-
dateres daglig. Den lykkes i å allokere ordre etter Norsk Hydro’s forretningspraksis,
men en avveiing mellom optimalitetsgap og ”nervousness” blir observert. Poten-
sialet i å Lagrange-relaksere enkelte restriksjoner blir testet, mens subgradient-
metoden anvendes for å oppdatere Lagrange-multiplikatorer. Denne tilnærmingen
lykkes i å redusere optimalitetsgap.

Modellen er utviklet for bruk i aluminiumsbransjen, men kan med modifikasjoner
blir anvendt i andre metallbransjer som benytter støpning.
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Chapter 1

Introduction

Aluminum is a material with increasing demand in the global market. It is increas-
ingly preferred in uses ranging from vehicle components to construction to product
packaging. It has favorable properties for a wide selection of applications, owing to
its low weight and high specific strength when compared to metals such as steel.
In addition, the material is resistant to corrosion and has a high degree of quality
retention when recycled. The recycling process consumes only 5% of the energy
that was originally used to produce the aluminum. These factors cause aluminum
to be regarded as a renewable resource.

During the last four decades, the majority of the world’s aluminum manufacture
has been shifted from western Europe and Northern America, to low cost countries
(Nappi, 2013). A clear example of this is that about 60% of current aluminum
production is in China according to the International Aluminium Institute (2017).
Meanwhile, products from aluminum manufacturing are widely regarded as com-
modities and traded on global exchanges such as the London Metal Exchange. This
encourages manufacturers to constantly be conscious of costs in order to remain
competitive.

Norsk Hydro ASA, hereby referred to as Norsk Hydro, is a Norwegian aluminum
manufacturer. They had an estimated market share of about 4% in 2013, and
practice a corporate strategy implementing a vertically integrated supply chain.
They have a global presence, being involved in plants on several continents. These
factors, combined with the aforementioned challenge of competing with manufac-
turers in low cost countries, provide the company with strong incentives to optimize
production in order to increase efficiency while lowering overhead costs.

The company currently utilizes decision support tools for production planning, but
these are primarily applied on decisions on strategic and tactical levels. Opera-
tional planning is often done manually and decentralized at the individual plants.
Furthermore, operational decisions are often based on tactical planning which de-
pends on forecasted data, while actual demand often differs from these forecasts.
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Chapter 1. Introduction

The sum of these imperfections imply that the operational planning has room for
improvement.

In this thesis, an operational production planning model is developed. The model
is a mixed integer linear program (MILP), and intends to allocate demand for alu-
minum products to different plants while minimizing the sum of costs. It provides
planning on a daily time resolution that is not currently available to Norsk Hydro
from any other planning tools. It also considers demand that is present both as
confirmed requests from customers and as predicted requests.

The model is implemented using a rolling horizon approach. The results are dis-
cussed with regard to computational efficiency and the patterns observed in solution
variables. The concept of nervousness is also discussed, presenting a trade-off be-
tween predictability and objective function value in the implemented production
plans. In addition, Lagrangian relaxation of different constraints is attempted in
order to decrease optimality gaps and improve runtimes. The Lagrangian relax-
ation is combined with a greedy heuristic to provide feasible results.

A computational study reveals that solving the model in a rolling horizon approach
results in sizable and varying optimality gaps. A trade-off between optimality gap
and nervousness is also observed. One variant of the Lagrangian relaxation shows
promise, obtaining lower optimality gaps in shorter runtimes.

The thesis has the following structure: Relevant background information is pro-
vided in Chapter 2 before a literature review is presented in Chapter 3. This is
followed by a formal problem description in Chapter 4, and a model formulation in
Chapter 5. Suggested solution approaches are described in Chapter 6, along with
details on how they are implemented. Input data values, assumptions forming
them and procedures for simulating data are all presented as part of the case study
description in Chapter 7. A computational study of model results is presented
in Chapter 8, before finishing with concluding remarks and suggestions for future
research in Chapter 9.
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Chapter 2

Background

This chapter provides the reader with relevant background information for the rest
of the thesis. Section 2.1 gives an introduction to global aluminum manufacturing
and a more detailed explanation of the levels in the aluminum value chain. In
Section 2.2 the aluminum manufacturer Norsk Hydro is presented. Section 2.3
revolves around production planning at Norsk Hydro, especially at the tactical and
operational level. Potential issues with current practice are identified, providing a
foundation for the general problem this thesis is concerned with.

2.1 The Global Aluminum Industry

This section provides a general overview of the aluminum industry. The contem-
porary market conditions are dicussed in subsection 2.1.1, while a breakdown of
the value chain is given in subsection 2.1.2.

2.1.1 Market Conditions

Aluminum is one of the most abundant elements in the earth’s crust, accounting
for 8.2% of its composition measured in weight. It has many favorable properties
such as high specific strength, durability and efficient recycling. This makes it
an increasingly preferred material for example in vehicles, one of many sectors
contributing to increased year-on-year growth of aluminum demand globally over
the last couple of years. Figure 2.1 shows a more detailed breakdown of the business
sectors consuming aluminum.

Aluminum products are produced on all of the world’s continents, and the ma-
jority of global aluminum supply is provided by low cost countries such as China
(International Aluminium Institute, 2017). This creates significant incentives for

3



Chapter 2. Background

Figure 2.1: A distribution of sectors using aluminum (Fog, 2016).

producers in developed countries with higher cost structures to maintain competi-
tive advantage.

2.1.2 Value Chain

Figure 2.2: Value chain for aluminum.

Figure 2.2 shows the main levels in the aluminum value chain. The value chain
for aluminum starts by extracting the raw material bauxite, which is a type of
soil commonly found along the equator. Bauxite is then separated into several
components, one of them called alumina.

Alumina, in powder form, is transported to the aluminum plants where aluminum
is extracted from it. This is achieved through the process of electrolysis which
separates oxygen and aluminum in the alumina. The process results in pure, liquid
aluminum, more commonly known as primary aluminum. The alloy is determined
by adding other metals to the liquid. Aluminum manufacturers may also choose
to mix the liquid with recycled aluminum. Primary aluminum is further trans-
ported to a casthouse located at the aluminum plant to create cast products. Each
casthouse can utilize a number of casting tables, which determine the geometric
dimensions of the cast product. The most common categories of cast products are
extrusion ingots, foundry alloys and sheet ingots and are illustrated in Figure 2.3.

4



Chapter 2. Background

Figure 2.3: Main cast products. From left: extrusion ingots, sheet ingots and foundry
alloys.

Cast products go on to become a wide variety of end products in a shaping process.
Extrusion ingots are extruded through a die to become profiles, such as window
frames, in extrusion plants. Sheet ingots are rectangular and are usually rolled
into foil or plates at a rolling plant. Foundry alloys are reheated into the molten
state before being recast into shapes such as engine cylinders. The transformation
from cast products to end products is often done at the location of the customer
purchasing the cast products.

Aluminum has the property of retaining its quality when it is recycled. It is there-
fore common to recycle aluminum products that are no longer in use. It is also
a less energy intensive process than creating primary aluminum from electroly-
sis. Electrolysis of alumina requires 13 kWh per tonne of energy to manufacture
one kilo of primary aluminum, while recycled aluminum consumes only 5% of this
energy.

2.2 Norsk Hydro

Norsk Hydro is a Norwegian manufacturer of aluminum products. They have ap-
proximately 35 000 employees in over 40 countries, and serve about 30 000 cus-
tomers world wide. They are one of the world’s largest producers of aluminum,
with an annual output of about two million tonnes of aluminum. The company
operates with an integrated supply chain, as they own bauxite mines, electrolysis
cells, casthouses and recycling facilities. Furthermore, one of its daughter compa-
nies operates several extrusion plants. This strategy entails that Norsk Hydro sells
finished aluminum products as well as the cast products mentioned in 2.1.

2.2.1 Plants and Locations

There are four main categories of plants in Norsk Hydro’s portfolio:

• Bauxite and alumina plants

• Aluminum plants

• Remelt and recycle plants

5



Chapter 2. Background

• Extrusion plants

This thesis focuses primarily on aluminum plants, more specifically the casthouses
associated with these.

Norsk Hydro’s demand for bauxite and alumina is primarily satisfied by self owned
mines and refinement plants in Brazil. The aluminum plants receiving the alumina
are either completely owned by Norsk Hydro or operate as joint ventures. They
are mostly located in Europe, although a major plant is located in Qatar, along
with there being some involvement in aluminum plants in the US and Australia.
The largest of the plants are Sunndal (Norway) and Quatalum (Qatar), each with
an output of about 200 000 tonnes of cast products annually. In this thesis the
aluminum plants in Figure 2.4 are considered.

Figure 2.4: Norsk Hydro’s locations of aluminum plants in Europe.

All aluminum plants rely on one or more electrolysis cells that create primary
aluminum. The liquid aluminum is further transported to the casthouse located
in another part of the plant. It can be supplemented with liquid aluminum from
recycled aluminum products. At each casthouse, cast products are created at
casting tables. One casting table is related to one product dimension.

6



Chapter 2. Background

2.2.2 Products

Norsk Hydro produces and ships both cast and end products to customers, where
cast products have not yet gone through the shaping process while end products
have. This thesis considers cast products, more precisely extrusion ingots.

A distinct extrusion ingot product is determined by its alloy and dimension. Given
the dimension of the product, a specific casting table must be utilized in the casting
process. Each casthouse has at most one casting table qualified to cast a given
dimension. A casthouse can only produce a selection of the different extrusion
ingot dimensions, something that is determined by the casting tables available at
the casthouse.

Norsk Hydro has a huge extrusion ingot portfolio, consisting of different alloy and
dimension combinations. With 2 650 possible alloys and 14 dimensions, there
theoretically exists 37 100 product combinations. However, some combinations are
never produced, and Norsk Hydro estimates that they have among 10 000 different
extrusion ingot products. Furthermore, Norsk Hydro’s customers can request new
customized products. Thus, the extrusion ingot portfolio is not a finite set and
continues to grow over time.

Production at all of Norsk Hydro’s aluminum plants is batch based. This means
that when production of a specific product is initiated at least one batch of the
product is produced.

2.2.3 Demand and Long Term Contracts

Norsk Hydro operates as a make-to-order (MTO) company. This implies that they
do not produce anything unless specifically requested by a customer, and storage of
products is avoided. MTO companies often customize products for each customer
order.

All customers of Norsk Hydro have a long term contract with the company. These
contracts specify a required amount of tonnes of products to be delivered in regular
intervals for a time into the future. For instance, a customer can agree to have 500
tonnes of products delivered every month for the next 6 months. The type of
cast product (extrusion ingot, sheet ingot or foundry alloy) is specified in the long
term contract, but the quantity requested along with a certain alloy, dimension
and delivery time are specified when the customer makes a call-off. The quantity
requested in a call-off is required by Norsk Hydro to be a multiple of a certain
order batch quantity. A call-off on average arrives at Norsk Hydro two weeks
before delivery, and three days before at the latest. Norsk Hydro strive to achieve
every requested delivery time, but may insist on postponing it due to practical
constraints. In addition, Norsk Hydro always produce the entire call-off at the
same casthouse.

Long term contracts bring some degree of certainty in future demand; total demand

7



Chapter 2. Background

tonnage from each customer every month is known. Still, Norsk Hydro does not
know when call-offs arrive during the month and do not know the specific products
to be requested.

2.3 Production Planning

Production planning decisions in Norsk Hydro are divided into different stages
where higher stage decisions set the foundation for the lower stages.

Strategic, long term decisions consider for instance plant size and location, as well as
investments in machinery. Tactical decisions are made at Norsk Hydro’s main office
in Oslo, and include sales and operation plans based on forecasts and production
plans for each aluminum plant. These decisions are normally taken every two to
three months. Operational decisions, with typically day-to-day levels of detail,
are made autonomously by representatives at each plant and is mainly based on
experience. Norsk Hydro’s application of decision support tools in production
planning is thus mainly focused on strategic and tactical decisions in the current
state.

Further in this section, the tactical and operational decision levels in production
planning is presented in further detail in Section 2.3.1, while Section 2.3.2 considers
the challenges related to these to levels.

2.3.1 Tactical and Operational Planning

At the tactical level, Norsk Hydro currently utilize CASPAH, an operations research
based tool for tactical production planning, used centralized at Norsk Hydro. The
model takes demand, costs, capacities and other relevant limitations into account,
creating a production plan that allocates demand to the different plants for specific
time periods. Customer demand over the planning horizon is estimated using a
combination of forecasts provided by Norsk Hydro’s marketing department as well
as actual call-offs made by customers. The plan generated by CASPAH is capable
of providing decision support detailing what casting tables are set to produce which
specified products in a given week.

At the operational level, the Production Planner at the individual plants sets up
weekly production plans based the tactical production plans generated by CAS-
PAH. If solutions from CASPAH are inadequate for the operational production
plan, the Production Planner mainly takes its decisions based on previous experi-
ence.

8
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2.3.2 Challenges with the Current Production Planning
Process

Production plans made by CASPAH are prone to certain challenges when tran-
sitions are made to more detailed production planning at the operational level.
Firstly, the tool does not take batch production into account. Secondly, the tool
also allows for call-offs to be split among casthouses, something that is never done
in practice as individual call-offs are always produced entirely in a single casthouse.

A third challenge arises when centralized planners in Norsk Hydro attempt to
emulate production plans made by CASPAH based on received call-offs. CASPAH
production plans are heavily based on forecasts, and these forecasts are subject
to errors. These production plans may no longer be feasible or optimal when the
actual call-offs are realized differently from what was forecasted. If this is the
case, the centralized planners work manually and attempt to use their experience
to decide what allocations are best. This approach makes it challenging to ensure
a level of global optimality in allocations. Furthermore, allocations tend to cause
uneven capacity utilization at the different casthouses, sometimes resulting in that
the casthouse that is obviously best for producing a certain call-off has its capacity
filled for the period in question and cannot be used.

A more operationally oriented planning tool is required, able to account for the
MTO production philosophy, demand that is a combination of confirmed call-offs
and forecasts, as well as exploiting new information about the arrival of new call-off
demand, all while taking factors such as batch production into consideration. Such
a tool should also have reasonable computing times, making it possible to deal with
received call-offs on a daily bases. Pushing optimality gaps as low as possible is
also an advantage, given the tight margins one faces when operating in a global
commodity market.
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Chapter 3

Literature Review

In this chapter literature from three different aspects of this thesis is reviewed.
Firstly hierarchical production planning is discussed in Section 3.1, followed by
production planning in Section 3.2. Section 3.3 considers literature on Lagrangian
relaxation.

3.1 Hierarchical Production Planning

The concept of hierarchical planning is applied extensively in the literature of pro-
duction planning. Here, a commonly applied framework is explained, before a
review of different implementations is presented. Lastly, a description of compre-
hensive hierarchical production planning systems is given, called advanced planning
systems.

3.1.1 Framework

In hierarchical production planning studied by Bitran and Tirupati (1993), pro-
duction planning is divided into three levels of decision making: strategic, tactical
and operational. This division is based on the framework by Anthony (1965), and
following is a description of the different levels. It should be clarified that the de-
cisions taken on the different levels is dependent on the industry considered, and
what follows is a generalization based on Bitran and Tirupati (1993).

Strategic decisions concern long term investments and acquisition of equipment.
Because of the long term investments, the frequency of such decisions is low and
usually taken by the top management. Such decisions consider production on a
highly aggregated level and with a high degree of uncertainty.
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Tactical decisions consider the utilization and allocation of the acquired resources.
These decisions have a medium planning horizon and also an intermediate level
of production aggregation. Tactical decisions are constrained by the investments
done at the strategic level, often in form of a budget.

Operational decisions are concerned with the daily operation of each plant or facil-
ity. Decisions at this level are highly detailed and have a short planning horizon.
This implies a low degree of uncertainty and the decisions are taken at low levels in
the organization with little or no influence from the top management. The outcome
of the operational decisions provides feedback necessary to evaluate the decisions
at the higher levels as illustrated in Figure 3.1.

Figure 3.1: Relationship between the hierarchical decision stages.

3.1.2 Implementations of Hierarchical Planning

Even though the hierarchical framework is widely applied, the interaction of the
different levels can vary a lot. Schütz et al. (2011) discusses a facility location
problem for the meat industry. The location of facilities are considered strategic
decisions imposing hard constraints on lower levels. In contrast, in Torabi et al.
(2010) a make-to-stock TV manufacturer is studied where the aggregated produc-
tion plans impose soft constraints on lower levels of the planning process. Thus, the
optimal solutions from a certain planning stage can be completely or only partly
decisive for the next stage.

Omar and Teo (2007) studies all stages in a three-stage hierarchical planning pro-
cess from the chemical and pharmaceutical industry. These levels include aggregate
production plans with setups, disaggregation by optimizing the number of batches
to be produced and finally a job sequencing optimization model. This results in
a comprehensive study including all three levels, which can be advantageous from
an overall perspective. The interaction between stages may be as important as the
optimization of a planning stage itself, and this will be discussed further in relation
to advanced planning systems.

3.1.3 Advanced Planning Systems

Hierarchical production planning simplifies a planning problem by breaking it down
into smaller subproblems. However, this approach has been criticized for creating
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challenges concerning optimization of each subproblem, instead of optimization of
the system as a whole (Dempster et al., 1981). Enterprise resource planning (ERP)
systems were introduced in the early 1990s and intend to be an overall planning
tool supposed to ensure better integration of all the different planning operations
within an enterprise (Umble et al., 2003).

During the 1990s the concept of supply chains were introduced to producing firms
(Stadtler et al., 2015). The firm should focus on what they are best at, the core
activities, and outsource everything else. The production process thus involves
many cooperating independent units, and an optimization of each of these units
may be a suboptimal solution for the supply chain as a whole. This enforces
planning tools to take this aspect into account and different software companies
offer Advanced Planning Systems (APS) which aim at optimizing the production
for the entire supply chain.

Figure 3.2: Supply chain management matrix (Stadtler et al., 2015).

Figure 3.2 gives an overview of different modules that often are included in APS.
The different stages in the hierarchical framework are seen vertically in the matrix,
while the supply chain units are found horizontally. Production planning and
scheduling is considered short term planning. As mentioned in Section 3.1.2, Omar
and Teo (2007) considered these two modules in one single study.

3.2 Production Planning

In this section different approaches to modeling certain features are presented and
compared. Section 3.2.1 discusses different feature related to the case of MTO
firms. Further, Section 3.2.2 presents the concept of rolling horizon in produc-
tion planning, while Section 3.2.3 discusses different aspects of dynamic lot sizing
problems.
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3.2.1 Production Planning in Make-to-Order Firms

MTO firms are characterized by only manufacturing confirmed orders. Conse-
quently, safety stocks are generally avoided, with the aim of not tying up capital in
excessive inventories. Meanwhile, there has been a growing trend of utilizing this
manufacturing philosophy, especially among companies that deliver customized or
diverse product portfolios (Stevenson et al., 2005). The reviewed literature presents
several approaches to production planning for firms practicing the MTO philoso-
phy.

Guo et al. (2013) use a three step method to approach MTO production planning.
Firstly, orders are allocated based on a memetic optimization process. Uncertainty
is accounted for by exposing the solution to Monte Carlo simulation before the third
step involves a pruning heuristic. Barut and Sridharan (2004) also apply simulation
to account for demand uncertainty, and the solution approach revolves around the
use of dynamic programming. Spengler et al. (2007) and Neureuther et al. (2004)
both use rolling horizon planning in their approaches as a way of compensating for
uncertainty in demand. While Spengler et al. (2007) uses dynamic programming to
find solutions and values orders from customers based on giving scores in previous
model iterations, Neureuther et al. (2004) is more focused on finding right levels of
employment rather than allocating orders, using a MILP to find solutions. Both
these sources are especially relevant to this thesis as they are case studies from
metal manufacturing, albeit not for casting processes. Finally, Mestry et al. (2011)
use a branch and price approach to evaluate orders for a gear manufacturer with
a customized product portfolio. Uncertainty in demand is not considered in this
source.

Norsk Hydro’s problem described in this thesis involves a single value chain level,
the casting process, but multiple facilities performing this task. This is contrary
to any of the sources reviewed. Guo et al. (2013) is the only source describing
a multi-facility problem, while Neureuther et al. (2004), Mestry et al. (2011) and
Barut and Sridharan (2004) are those describing single value chain levels.

3.2.2 Rolling Horizon Planning

In production planning, one has to decide upon a planning horizon which can be
finite or rolling. Production planning methods with finite horizons create a plan for
1,...,T periods. This plan is then implemented and a new plan for the time periods
1+T,...,2T is created and implemented, and so on. The plans are independent of
each other, with the exception of that the finite state in one plan is the initial state
in the next plan. In reality, plans with a finite horizon are often implemented only
for the first immediate periods as new information causes the plan to be updated.
Changes in forecast or actual demands is typical events that enforce replanning.

Rolling horizon planning is a approach that exploits this practice. A plan for
1,...,T periods is generated, but only the decisions for the first ∆T periods are
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implemented. Further, the horizon is rolled forward with ∆T time periods creating
a plan for 1 + ∆T ,..., T + ∆T . This means that the period 1 + ∆T ,..., T is
replanned. As a result, rolling horizon planning allows decisions in the future
to be postponed until new information arrives. In addition, implemented plans
can be based on actual demand rather than forecasted demand, creating more
realistic production plans. Figure 3.3 illustrates the difference between finite and
rolling horizon planning. It is worth noting that with a finite horizon in part a, 3
production plans are generated for 15 time periods, while for the rolling horizon in
part b, 15 plans are generated for 15 time periods.

Figure 3.3: Difference between a finite horizon and a rolling horizon.

Baker (1977)’s early studies of rolling lot sizing schedules indicate that the rolling
horizon is rather efficient and better in most cases compared to a finite horizon.
Moreover, he concludes that the planning horizon, T, most likely is a crucial pa-
rameter when using a rolling horizon approach. The same was found in Baker and
Peterson (1979). In addition, they found that the cost structure is a significant
factor in the performance of the model.

Since Baker (1977) and Baker and Peterson (1979), production planning models
using rolling horizon procedures have received considerable attention in research.
To name a few, Chung and Krajewski (1987), Sridharan et al. (1987), Sridharan
and Berry (1990), Campbell (1992) and Neureuther et al. (2004) have all studied
this feature in master production schedules (MPS). On a more operational level
Stadtler (2000), Tiacci and Saetta (2012) have studied lot size models with a rolling
horizon, while Blackburn and Millen (1982), Simpson (1999) focused on models
within material requirement planning (MRP).

As a consequence of rolling horizon planning, decisions from one plan may differ
sufficiently from the previous plan. For companies, frequent changes to decisions are
usually not desired as they want some degree of consistency and predictability over
time. Dependencies between decisions are also an issue as changes from one decision
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tool might impact other decision tools. In a rolling horizon setting, inconveniences
related to frequent changes to decisions is referred to as nervousness.

Freezing parts of the plan, meaning that a decision taken can not be altered when
the model is rolled forward, is a common approach to reduce nervousness. While
freezing part of the plan reduces changes, it might increase other factors such as
inventory and production costs. Sridharan and Berry (1990) study nervousness and
freezing decisions in MPS. Frequent changes to the MPS induce changes to lower
hierarchy decisions like the MRP. It is therefore necessary to generate schedules
with a low degree of nervousness. They also study the freezing length, concluding
that the freezing length should be at least 50 % of the planning horizon in order
to reduce nervousness.

The rolling horizon planning approach can have modifications in order to better
fit the problem domain. Interesting features are found in Campbell (1992), Tiacci
and Saetta (2012), As’ad and Demirli (2010).

By freezing parts of the decisions, the model can be divided into different phases
where changes are either allowed or not allowed for a period when rolled forward.
Campbell (1992) has taken this approach a step further, dividing the planning
period into three phases; a frozen phase, a phase allowing changes to the lot size
and a phase allowing changes to both lot size and location. This way bigger changes
are allowed in the most distant time periods.

Tiacci and Saetta (2012)’s generalized lot size model generates production plans for
the whole planning period. As only the first period is actually implemented, they
only decide the production plan sequence problem (SP) for the immediate period.
They argue that it is a waste of time to calculate sequences for other periods as
they will be subject to change when the model is rolled forward. By only solving
the SP for a small part of the problem, computational time per iteration is reduced.

As’ad and Demirli (2010) consider a rolling horizon MPS for the steel industry.
Here, variables for later periods are relaxed while periods in the near future are
not. This reduces computational time.

3.2.3 Lot Sizing Problems

Lot sizing problems (LSP) aim at determining the optimal time and level of pro-
duction where demand is given or has a certain distribution (Jans and Degraeve,
2008). The basic concept of an LSP is illustrated in Figure 3.4. The nodes illus-
trate time periods i while xi, si and Di denotes production, storage and demand
in time period i respectively.

In dynamic lot sizing problems (DLSP) the demand over a given period is known,
but varies within this period (Lee et al., 2001). This is often the case for producers
who write contracts with their customers. The contracts may specify an amount
to be delivered to the customer during a given time period, but the exact time the
goods may be requested is unknown to the producer.
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Figure 3.4: Illustration of the single-item uncapacitated LSP (Jans and Degraeve, 2008).

The planning horizon of the LSPs can be either finite or infinite. A finite horizon is
usually applied when demand is being dynamic, while an infinite planning horizon
applies when demand is being static (Karimi et al., 2003). When data is uncertain
a rolling horizon approach should be applied (Karimi et al., 2003). An overview
of additional characteristics of the LSPs discussed by Karimi et al. (2003) can
be found in Table 3.1. The table indicates how a given characteristic affects the
complexity of the problem and which characteristics appear in the problem of this
thesis. It is emphasized by Karimi et al. (2003) that resource constraints are an
important aspect of modeling LSPs and have a great impact on the complexity of
the problem .

Table 3.1: Characteristics of the LSP based on Karimi et al. (2003).

Feature Options Complexity Our problem

Production Levels
Single-level X

Multi-level ↑

Products
Single-item

Multi-item ↑ X

Capacity
Uncapacitated

Capacitated ↑ X

Demand
Static

Dynamic ↑ X

Probabilistic ↑ ↑

Apart from the features listed in Table 3.1, LSPs with various extensions have
been investigated. Jans and Degraeve (2008) review LSP that include characteris-
tics of specific production processes and a rolling horizon approach. Further, where
uncapacitated problems in general are easier to solve than capacitated LSPs, ca-
pacitated LSPs arise a question of backlogging. Lee et al. (2001) formulate a DLSP
including backlogging and time windows. They observe that including the possibil-

17



Chapter 3. Literature Review

ity of backlogging show crucial increase in complexity. Moreover, Van Vyve (2006)
applies extended formulations to tighten the capacitated LSP with backlogging.

Extensions of the LSP problem provide a more realistic model but at the expense
of increased complexity. Bitran and Yanasse (1982) show that a single-item capaci-
tated LSP (CLSP), is NP-hard, and Chen and Thizy (1990) show that a multi-item
CLSP is strongly NP-hard. Efficient solution methods for LSP problems are thus
of great importance. Previous research has often focused on finding appropriate
heuristics to solve these problems.

3.3 Lagrangian Relaxation

Lagrangian relaxation is a solution method used to solve large optimization prob-
lems, including integer problems, by exploiting the problem structure. In the
method, a set of constraints from the original problem are relaxed and added to
the objective function. Infeasible solutions, with respect to the relaxed constraints,
are penalized in the objective function using Lagrangian multipliers. The solution
of the Lagrangian relaxation will give optimistic bounds (Lundgren et al., 2010).

3.3.1 Theory

The Lagrangian relaxation is explained in detail for a minimization problem with
≥-constraints based on Lundgren et al. (2010).

A minimization problem is given as

min f(x)

subject to gi(x) ≥ bi, i = 1, ...,m

By relaxing the constraints and adding them to the objective function, the La-
grangian function is given as

L(x,π) = f(x) +

m∑
i=1

πi(bi − gi(x))

Usually, only a set of constraints are relaxed and it is common to relax constraints
that in some way complicate the structure of the problem. bi − gi(x) is the slack
for constraint i. Given ≥-constraints, positive slack implies an infeasible solution,
while a negative slack implies a feasible solution. The opposite is correct for ≤-
constraints. In Lagrangian relaxation, infeasible solutions are penalized in the
objective function through the Lagrangian multiplier. For minimization problems,
this is achieved by adding a positive value to the objective function. Therefore, the
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Lagrangian multiplier must be positive (πi ≥ 0) if the sign for the relaxed term is
positive.

The Lagrangian function should be minimized with respect to x and maximized
with respect to π written as:

max
π≥0

min
x
L (x,π)

Further, the Lagrangian dual function is defined as:

h(π) = min
x
L (x,π)

For a given π′, the Lagrangian dual function becomes

h(π′) = min
x
L (x,π′) ,

and is solved by minimizing with respect to x. This problem is referred to as the
Lagrangian subproblem. The Lagrangian relaxation can be solved by iteratively
searching for feasible solutions while evaluating the multipliers, π.

When the original problem is convex the Lagrangian relaxation guarantees to find
the optimal x* and π* when h(π∗) = f(x∗). For non-convex problems, like integer
problems, a duality gap may occur as it is only known that h(π∗) < f(x∗). Meaning
it is not necessarily possible to verify that the optimal solution is found.

3.3.2 General Solution Strategy

Following is the general solution strategy for Lagrangian relaxation presented in
steps. k denotes the iteration number while the lower bound and upper bound are
denoted LBD, and UBD respectively.

Step 1: Initialization. Set k = 0, LBD = −∞, UBD = +∞. Choose initial values
of π(0).

Step 2: Solve the Lagrangian subproblem for a given π(k). This gives a solution
x(k) and an optimistic bound h(π(k)).

• Update optimistic bound, LBD = max
{

LBD, h(π(k))
}

• If solution x(k) is feasible, update pessimistic bound,
UBD = min

{
UBD, f(x(k))

}
, else try to find a feasible solution using

some heuristic and then update UBD.

Step 3: Check stop criterion.
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Step 4: With a search direction d(k) and steplength t(k), update the Lagrangian
multipliers π(k+1) = π(k) + t(k)d(k).

Step 5: Set k = k + 1. Go to Step 2.

The initial Lagrangian multiplier is often set π(0) = 0. This can be considered as
ignoring the relaxed constraints in the first iteration.

As pointed out by Lundgren et al. (2010), the difficulty in the solution strategy
above lays in updating the Lagrangian multiplier in Step 4. The goal is to find
multipliers that converge against the optimal multiplier quickly.
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Problem Description

The problem presented below revolves around how to create an operational pro-
duction plan. One seeks to produce total demand over the planning horizon while
minimizing total costs. Two demand types, actual demand and forecasted demand,
should be considered when creating the plan. Both production for actual and fore-
casted demand should be produced in batches and both demand types should be
accounted for in capacity limits. Further, the production plan should be updated
every day based on the arrival of new demand information. Section 4.1 explains
the problem of creating a production plan for one planning horizon, while Section
4.2 explains the problem where new, updated production plans are generated based
on the arrival of new demand information.

4.1 Production Planning Problem

A production plan should be created for a set of distinct days, creating a planning
horizon. A week is regarded as the period between a Monday and the following
Sunday, and not strictly as seven days.

Norsk Hydro has a set of products that are described by an alloy and a dimension.
Furthermore, Norsk Hydro have a set of plants where each plant has one casthouse.
Each casthouse has a set of different casting tables that are either compatible or
non-compatible to produce a certain product dimension. A each casthouse, there
is at most one casting table able to produce a specific product dimension. Each
casthouse has an upper capacity limit which is limited by available metal flow at
the plant each day. Each casting table also has an upper capacity limit, but this is
limited by the daily rate at which they can cast products. The sum of all products
produced for all customers at a given day at a casting table can not exceed the
related capacity limit. In addition, the sum of production at all casting tables
located at a given casthouse can not exceed its casthouse capacity limit.
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The production plan should account for both actual and forecasted demand in the
given planning horizon. Actual demand is demand requested by customers through
a call-off. A customer will place at most one call-off of a specific product with a
specific delivery day. A call-off can therefore be described as a demand quantity
with a unique combination of customer, product and delivery day. Forecasted
demand is a prediction of call-offs that are assumed to be delivered each week,
but have not been confirmed by the customers through a call-off at the time the
production plan is to be generated. Forecasted demand can therefore be described
as a demand quantity with a unique combination of customer, product and assumed
delivery week.

All call-offs must be allocated to at most one casting table, and the entire call-off
demand must be produced at the assigned casting table. It is however possible to
produce call-off demand over several days. Forecasted demand must be produced
the same week as it is assumed to be delivered to the given customer. It is not
necessary to produce the whole forecasted demand for a unique combination of
customer, product and week at the same casting table. Production of call-off
and forecasted demand both use casting table and casthouse capacity. If total
demand is higher than total capacity, some demand can not be produced. In such
a case, forecasted demand should be discarded before call-off demand is rejected. To
simplify the problem, it is assumed that production can be delivered to customers
the same day it is produced.

Products are produced in production batches and sold in order batches. Production
must be a multiple of a production batch while the quantity requested in an call-off
must be a multiple of an order batch. Production batches and order batches are
not equal in volume. Due to this, it must be possible to store products made at a
casting table from one day to another. Storage is also necessary in order to satisfy
call-off demand when production capacity is full at delivery day. The storage level
should be measured at the end of each day.

The objective is to minimize the total costs related to implementing production
plans. There is a transportation cost associated with delivery from a casting table
to a customer. There is also a production cost associated with production of a
product at a casting table. Further, there is a holding cost associated with storing
products from one day to another. Call-offs that are not allocated to any casting
tables, and are rejected, cause a penalty cost. The same is true for forecasted
demand that is discarded in the production plan.

4.2 Production Planning Problem with Updated
Demand Information

Section 4.1 explains the problem revolving around how to create a production plan
for one planning horizon. In reality, only the production plan for the first day
in a planning horizon is implemented as daily changes in demand may leave the
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remaining production plan sub-optimal. Dynamic demand can be handled better
by updating the production plan each day.

Each day a number of new call-offs arrive and should be accounted for in the
production plan. From previous production plans, this call-off demand has been
represented as forecasted demand with an estimated delivery day. Thus, the associ-
ated forecasted demand must be reduced with the quantity of the call-off demand.
Forecasted demand does not need to be accurately estimated. As a result, if there
exists forecasted demand at the end of the week, the remaining demand is added
to the next weeks forecasted demand. The production plan is further updated
with the new demand information. In addition, initial storage must be updated to
reflect the correct state.
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Mathematical Model

In this chapter the mathematical model for the production planning problem de-
scribed in section 4.1 is presented. This model corresponds to a production plan
created for one iteration in the rolling horizon planning approach. The model con-
siders which call-offs to accept and which to reject. Accepted call-offs are allocated
to a specific casting table. In addition, the model utilizes available capacity by
considering forecasted demand. As a result, a complete production plan is created.
Forecasted demand can be discarded if it is higher than the total capacity. If a
call-off is rejected or forecasted demand is discarded, this is penalized in the ob-
jective function. Section 5.1 introduces the indices, sets, parameters and variables
used in the model. In Section 5.2, the model’s objective function and constraints
are presented and explained in detail. The complete model is given in Section 5.3.
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5.1 Notation

Table 5.1: Indices.

Indices

c - Customer

m - Casting table

k - Casthouse

p - Product

t - Day

w - Week

Table 5.2: Sets.

Sets

C - Set of customers

K - Set of casthouses

M - Set of casting tables

Mk - Subset of casting tables associated with casthouse k

Mp - Subset of casting tables associated with product p

P - Set of products

Pm - Subset of products associated with casting table m

T - Set of days in planning horizon

T w - Subset of remaining days in week w

W - Set of weeks in planning horizon

Space
S
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Table 5.3: Parameters

Parameters.

B - Production batch in tonnes

CPmp - Production cost per tonne when producing product p at casting table
m

CTcm - Transportation cost per tonne when delivering from casting table m
to customer c

CH - Holding cost per tonne per day

CD - Decline cost per tonne when rejecting call-off demand

CF - Penalty cost per tonne when discarding forecasted demand

Dcpt - Call-off demand in tonnes from customer c, of product p with delivery
at day t

Km - Daily capacity in tonnes at casting table m

Kk - Daily capacity in tonnes at casthouse k

Pcpw - Forecasted demand in tonnes for customer c of product p assumed
to arrive in week w

smp0 - Initial storage level in tonnes at casting table m of product p

Table 5.4: Variables.

Variables

xmpt - Number of batches to be produced at casting table m of product p
at day t

ympt - Number of batches forecasted to be produced at casting table m of
product p at day t

smpt - Quantity in tonnes stored at casting table m of product p at the end
of day t

zpt - Quantity in tonnes of discarded forecasted demand of product p at
day t

δcmpt - Binary variable being 1 if customer c receives its call-off of product
p with delivery at day t from casting table m, 0 otherwise

Space
Space
Space
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5.2 Production Planning Model

Objective Function

min
∑
c∈C

∑
m∈M

∑
p∈P

∑
t∈T

CTcmDcptδcmpt

+
∑
m∈M

∑
p∈P

∑
t∈T

CPmpB (xmpt + ympt)

+
∑
c∈C

∑
p∈P

∑
t∈T

CDDcpt

(
1−

∑
m∈M

δcmpt

)
+
∑
m∈M

∑
p∈P

∑
t∈T

CHsmpt

+
∑
p∈P

∑
t∈T

CF zpt

(5.2.1)

The objective function presented in Equation (5.2.1) is divided into five terms. The
first term calculates the transportation cost for delivering a call-off to a customer.
The next term calculates the production cost for producing products. The third
term is a penalty cost that incurs if a call-off is rejected. The holding cost is
calculated in the fourth term and in the fifth term a penalty cost is added if
forecasted demand is discarded.

Constraints

smpt−1 +Bxmpt −
∑
c∈C

(Dcptδcmpt)− smpt = 0 m ∈M, p ∈ Pm, t ∈ T (5.2.2)

The inventory balance for each day is presented in Constraint (5.2.2). This con-
straint also ensures that accepted call-off demand is satisfied either from new pro-
duction, Bxmpt, or by inventory, smpt−1. Further, δcmpt ensures that the demand
is only included at the casting table that is assigned to produce the given call-
off. Inventory and production are not assigned to a specific customer, and thus
accepted demand is aggregated for all customers.

∑
m∈M

δcmpt ≤ 1 c ∈ C, p ∈ P, t ∈ T (5.2.3)

A call-off can either be rejected (δcmpt = 0) or accepted (δcmpt = 1) at a casting
table. In Constraints (5.2.3), call-offs are assigned to at most one casting table.
As a result, the whole demand related to a given call-off must be produced at

28



Chapter 5. Mathematical Model

the same casting table. It is possible to reject call-offs as Constraints (5.2.3) are
≤ -constraints. This is not a desired outcome and incurs a penalty cost in the
objective function.

∑
m∈Mp

∑
t∈T w

Bympt +
∑
t∈T w

zpt ≥
∑
c∈C

Pcpw p ∈ P, w ∈ W (5.2.4)

The forecasted demand should be accounted for in the production plan in order
to pre-allocate, or save, capacity for call-offs assumed to arrive in later in time.
Constraints (5.2.4) allocates the weekly forecasted demand to casting tables at
a given day. The production day must be in the same week as the forecasted
demand is assumed to be delivered to customer, i.e. T w. Furthermore, zpt enables
forecasted demand to be discarded. This decision incurs a penalty cost in the
objective function.

∑
p∈P

B (xmpt + ympt) ≤ Km m ∈M, t ∈ T (5.2.5)

∑
m∈Mk

∑
p∈P

B (xmpt + ympt) ≤ Kk k ∈ K, t ∈ T (5.2.6)

Constraints (5.2.5) and (5.2.6) handle upper capacity limits. Constraints (5.2.5)
ensure that call-off production, xmpt, and forecasted production, ympt, for each day
does not exceed the daily capacity of the casting table. Further, Constraints (5.2.6)
ensure that the sum of call-off and forecast related production at all casting tables
related to a casthouse does not exceed the daily capacity of the casthouse.

xmpt, ympt ∈ Z+ m ∈M, p ∈ P, t ∈ T (5.2.7)

smpt ≥ 0 m ∈M, p ∈ P, t ∈ T (5.2.8)

zpt ≥ 0 p ∈ P, t ∈ T (5.2.9)

δcmpt ∈ {0, 1} c ∈ C,m ∈M, p ∈ P, t ∈ T (5.2.10)

Finally, Constraints (5.2.7)-(5.2.10) are non-negativity constraints. In addition,
Constraints (5.2.7) state that xmpt and ympt are integer variables. Constraints
(5.2.10) state that δcmpt are binary variables.
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5.3 Complete Model

min
∑
c∈C

∑
m∈M

∑
p∈P

∑
t∈T

CTcmDcptδcmpt

+
∑
m∈M

∑
p∈P

∑
t∈T

CPmpB (xmpt + ympt)

+
∑
c∈C

∑
p∈P

∑
t∈T

CDDcpt

(
1−

∑
m∈M

δcmpt

)
+
∑
m∈M

∑
p∈P

∑
t∈T

CHsmpt

+
∑
p∈P

∑
t∈T

CF zpt

subject to

smpt−1 +Bxmpt −
∑
c∈C

(Dcptδcmpt)− smpt = 0 m ∈M, p ∈ Pm, t ∈ T

∑
m∈M

δcmpt ≤ 1 c ∈ C, p ∈ P, t ∈ T

∑
m∈Mp

∑
t∈T w

Bympt +
∑
t∈T w

zpt ≥
∑
c∈C

Pcpw p ∈ P, w ∈ W

∑
p∈P

B (xmpt + ympt) ≤ Km m ∈M, t ∈ T

∑
m∈Mk

∑
p∈P

B (xmpt + ympt) ≤ Kk k ∈ K, t ∈ T

xmpt, ympt ∈ Z+ m ∈M, p ∈ P, t ∈ T

smpt ≥ 0 m ∈M, p ∈ P, t ∈ T

zpt ≥ 0 p ∈ P, t ∈ T

δcmpt ∈ {0, 1} c ∈ C,m ∈M, p ∈ P, t ∈ T
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Solution Approach

This chapter explains how a rolling horizon approach and a Lagrangian relaxation
is applied for the mathematical model presented in Chapter 5. Section 6.1 explains
how new demand information is dealt with in the rolling horizon approach fol-
lowed by a discussion on which variables to lock in order to deal with the concept
of nervousness. A flow diagram illustrating the rolling horizon approach is also
presented.

A similar model to the one presented in this thesis was studied in Reine et al.
(2017). In this work, the assumption of long computational time was confirmed.
There is a need of a method that can reduce the computational time and reduce the
optimality gap. Therefore the solution method, Lagrangian relaxation, is applied
and described in Section 6.2.

6.1 Rolling Horizon Approach

The daily arrival of new call-offs and updated forecasts motivates the use of a
rolling horizon approach when the model is implemented. This way, the model
can apply the most accurate and recent information for demand. Another benefit
from the rolling horizon approach is the ability to alter decisions in the future
when more information is available. In this model, a rolling horizon approach with
T = 35 and ∆T = 1 is implemented. This indicates that each day a production
plan for the next 35 days is created, and the production plan for the first day
is implemented. The concept of implementing the results from the first day and
shifting the planning horizon one day forward is referred to as a roll.
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6.1.1 New Demand Information

For each day, the first day in the production plan from the previous roll should be
implemented. Further, the model should be rolled forward and create an updated
production plan with new demand information.

For each roll R, new call-offs, DR∗
cpt, arrive. This demand should be added to the

call-off demand, DR
cpt, that arrived in previous rolls. This is calculated as shown

in Equation (6.1.1). For every combination of customer, product and day (cpt) at
most one of the parameters DR−1

cpt and DR∗
cpt is positive.

DR−1
cpt +DR∗

cpt = DR
cpt c ∈ C, p ∈ P, t ∈ T (6.1.1)

Forecasted demand is an estimate of when call-offs will arrive along with its assumed
demand quantity. The forecasted demand must be reduced to reflect the updated
demand information. As long as the first day is not Monday, the forecasted demand
is updated as shown in Equation (6.1.2).

max

{
0, PR−1cpw −

∑
t∈T w

DR∗
cpt

}
= PRcpw c ∈ C, p ∈ P, w ∈ W (6.1.2)

In the case when the first day is Monday, the forecasted demand that has not been
estimated correctly from the previous week must be added to the next week. The
calculations for this case is given in Equation (6.1.3).

max

{
0, PR−1cpw−1 + PR−1cpw −

∑
t∈T w

DR∗
cpt

}
= PRcpw c ∈ C, p ∈ P, w ∈ W (6.1.3)

Call-offs that are rejected, DR′

cpt, when running the model, should not be considered
in future rolls. It therefore needs to be removed from the call-off demand for the
next roll. This is shown in Equation (6.1.4). While rejected call-off demand is not
considered in future rolls, discarded forecasted demand is not removed.

DR
cpt −DR′

cpt = DR+1
cpt c ∈ C, p ∈ P, t ∈ T (6.1.4)

6.1.2 Locking Decisions

Section 3.2.2 discusses nervousness, a concept that arises in rolling horizon ap-
proach models when decisions are altered or re-optimized over time. An issue re-
lated to high nervousness in planning systems is the dependency between planning
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systems. Changes in one planning system will propagate to other systems if they
are tightly coupled. The model in this thesis creates operational production plans,
a low-level hierarchical planning system exploiting few decisions from higher-level
systems. Consequently, altering decisions in this model will have minimal effect on
other planning systems used by Norsk Hydro. Nervousness created from this model
and its impact on other planning systems is thus considered of low importance.

A more important issue related to nervousness in this model is the low degree of
predictability both Norsk Hydro and its customers get if production plans change
from day to day. By freezing, hereby referred to as locking, decisions, it is possible
to reduce changes and increase the predictability.

Frequent changes to the production plan are not regarded as a positive feature.
This is especially true for the first few days in the production plan as these are
soon to be implemented. Nevertheless, there exists a trade-off between stable,
meaning non-changing, production plans and more accurate demand information.
This implies that it would be beneficial to lock production variables if demand is
certain.

The first couple of days in the production plan mostly consists of call-off demand,
which is certain demand. This suggests that production variables related to call-off
demand (xmpt) for these days should be locked. In contrast, the last days in the
production plan is mostly based on forecasted demand and are less likely to reflect
the true demand and may even give incorrect information. In addition, the decisions
are further into the future. Production related to forecasted demand (ympt) should
thus not be locked as this demand is estimated and may contain forecast errors.
This implies that discarding variables related to forecasted demand (zpt) should
not be locked either.

It is important for Norsk Hydro to give a quick response to whether a customer’s
incoming call-off is accepted or rejected, a decision related to the δcmpt-variables.
When a call-off is accepted (

∑
m∈M δcmpt = 1), all updated production plans

generated in the future should also accept this call-off as anything else is considered
bad customer service. Norsk Hydro may however change the location of the call-off
as customers usually are indifferent to where their demand is produced.

From the discussion above it becomes clear that both the call-off production vari-
ables, xmpt, and call-off allocation variables, δcmpt, should be locked.

In order to account for production locked in the previous rolls, lower bounds are
created for xmpt-variables. The calculation is shown in Equation (6.1.5), where
XR−1
mpt is the locked production from the previous roll. The upper bounds are only

calculated for a subset of T , here represented as T L, containing the first n days
of the planning horizon. This is to add flexibility by enable re-allocation of call-off
demand which possibly will give better solutions.

XR−1
mpt ≤ xRmpt m ∈M, p ∈ P, t ∈ T L (6.1.5)
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Further, if a call-off is accepted in one roll, the call-off related to δcmpt must for all
future rolls also be accepted. It should however be possible to change the casting
table producing the call-off. By locking δcmpt variables to either 1 or 0, this will not
be possible. Thus, a new constraint must be added to the mathematical model to
enable the change of production location. This feature is presented in Constraint
(6.1.6). Here, the parameter ∆cpt is one if a call-off is accepted in previous rolls,
and zero otherwise.

∑
m∈M

δcmpt ≥ ∆cpt c ∈ C, p ∈ P, t ∈ T , (6.1.6)

where ∆cpt is calculated as shown in Equation (6.1.7).

max

{
∆R−1
cpt ,

∑
m∈M

δR−1cmpt

}
= ∆R

cpt c ∈ C, p ∈ P, t ∈ T (6.1.7)

6.1.3 Procedure

For each roll, R, five parameters must be updated to reflect the new demand as
well as the state of the system. These are DR

cpt, P
R
cpw, XR

mpt, ∆R
cpt and sRmp0. Initial

storage, sRmp0, is calculated as shown in Equation (6.1.8).

sR−1mp1 = sRmp0 m ∈M, p ∈ P (6.1.8)

The rolling horizon approach for the specific problem in this thesis is illustrated
with a flow diagram in Figure 6.1.

Figure 6.1: Flow diagram of the rolling horizon approach.
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6.2 Lagrangian Relaxation

In the preliminary study of Reine et al. (2017) the model ran for 2 hours without
reaching optimality. Lagrangian relaxation has been proposed as a solution method
with the potential to reach optimality, or at least reduce the optimality gap, for
integer problems. Problems may have an underlying block angular structure that
is destroyed by one or more sets of constraints. By relaxing these constraints the
problem can be divided into distinct subproblems that can be solved separately.
These subproblems may be easier to solve, or their structure can make it possible
to solve them near optimality by a simple heuristic.

Identifying the complicating constraints to be relaxed is not always obvious before
testing. Thus, in this section the implementation of two different Lagrangian re-
laxations is presented. In Section 6.2.1 a relaxation of the capacity constraints is
presented, and Section 6.2.2 presents a relaxation of the constraints which ensure
that a call-off is produced only once at one, single casting table. These are further
referred to as capacity relaxation and casting table relaxation respectively.

6.2.1 Capacity Relaxation

As mentioned in Section 3.2.3, Karimi et al. (2003) claim that the capacity con-
straints have great impact on the complexity of an LSP. As our problem is similar
to a LSP, it is expected that a relaxation of these constraints will make the problem
easier to solve. The problem of this thesis have two sets of capacity constraints:

∑
p∈P

B(xmpt + ympt) ≤ Km m ∈M, t ∈ T (5.2.5)

∑
m∈Mk

∑
p∈P

B(xmpt + ympt) ≤ Kk k ∈ K, t ∈ T (5.2.6)

The Lagrangian function is denoted L, and each of the relaxed constraints have
an associated Lagrangian multiplier, πi ≥ 0. This multiplier is considered con-
stant when solving the Lagrangian subproblem. The Lagrangian relaxation of the
capacity constraints is given in (6.2.1) - (6.2.8).
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L((x,y, s, z, δ),π) =
∑
c∈C

∑
m∈M

∑
p∈P

∑
t∈T

CTcmDcptδcmpt

+
∑
m∈M

∑
p∈P

∑
t∈T

CPmpB (xmpt + ympt)

+
∑
c∈C

∑
p∈P

∑
t∈T

CDDcpt

(
1−

∑
m∈M

δcmpt

)
+
∑
m∈M

∑
p∈P

∑
t∈T

CHsmpt

+
∑
p∈P

∑
t∈T

CF zpt

+
∑
m∈M

∑
t∈T

π1
mt

∑
p∈P

B(xmpt + ympt)−Km


+
∑
k∈K

∑
t∈T

π2
kt

 ∑
m∈Mk

∑
p∈P

B(xmpt + ympt)−Kk



(6.2.1)

subject to

smpt−1 +Bxmpt −
∑
c∈C

(Dcptδcmpt) = smpt m ∈M, p ∈ Pm, t ∈ T (6.2.2)∑
m∈M

δcmpt ≤ 1 c ∈ C, p ∈ P, t ∈ T (6.2.3)∑
m∈Mp

∑
t∈T w

Bympt +
∑
t∈T w

zpt ≥
∑
c∈C

Pcpw p ∈ P, w ∈ W (6.2.4)

xmpt, ympt ∈ Z+ m ∈M, p ∈ P, t ∈ T (6.2.5)

smpt ≥ 0 m ∈M, p ∈ P, t ∈ T (6.2.6)

zpt ≥ 0 p ∈ P, t ∈ T (6.2.7)

δcmpt ∈ {0, 1} c ∈ C,m ∈M, p ∈ P, t ∈ T (6.2.8)

For a chosen multiplier, π′, some terms in the Lagrangian function are constant
and can be removed in further analyses. The problem can then be separated into a
subproblem for every product. Following is the Lagrangian function, Lp, for each

36



Chapter 6. Solution Approach

of these subproblems:

Lp((x,y, s, z, δ),π) =
∑
c∈C

∑
m∈M

∑
t∈T

CTcmDcptδcmpt

+
∑
m∈M

∑
t∈T

CPmpB (xmpt + ympt)

−
∑
c∈C

∑
m∈M

∑
t∈T

CDDcptδcmpt

+
∑
m∈M

∑
t∈T

CHsmpt

+
∑
t∈T

CF zpt

+
∑
m∈M

∑
t∈T

π1
mtB(xmpt + ympt)

+
∑
k∈K

∑
m∈Mk

∑
t∈T

π2
ktB(xmpt + ympt)

(6.2.9)

The sum of the objective functions of all the subproblems and the constant terms
will be the value of the Lagrangian function of the complete problem. This function
is given in Equation (6.2.10).

L =
∑
p∈P

Lp +
∑
c∈C

∑
p∈P

∑
t∈T

CDDcpt −
∑
m∈M

∑
t∈T

π1
mtKm −

∑
k∈K

∑
t∈T

π2
ktKk (6.2.10)

From this formulation, it is possible to derive the Lagrangian dual problem written
as in Section 3.3:

max
π≥0

h(π),

Let V be a vector containing all the variables in the problem i.e. V = (x,y, s, z, δ).
Then the Lagrangian dual function h(π) is given as in Equation (6.2.1).

h(π) = min
V≥0

L(V,π)

6.2.2 Casting Table Relaxation

For the capacity relaxation it was shown that the problem could be separated into
a subproblem per product. In the preliminary study of this thesis, Reine et al.
(2017), a relaxation of Constraint (5.2.3) was proposed.

∑
m∈M

δcmpt ≤ 1 c ∈ C, p ∈ P, t ∈ T (5.2.3)
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The model formulation of Reine et al. (2017) is attached in Appendix A. In that
model, the constraint corresponding to Constraint (5.2.3) is a sum over casthouses
instead of casting tables, and a relaxation would separate the problem into one
subproblem per casthouse. However, with the model modifications of this thesis,
a relaxation of Constraint (5.2.3) is no longer sufficient for separation into smaller
subproblems. Both Constraint (5.2.4) and (5.2.6) are complicating for separation
into one subproblem per casting table.

Despite this property it may still be of interest to examine the effect of relaxing
Constraint (5.2.3). The extent of this constraint can make its relaxation efficient
because of the reduction of constraints. For comparison, the capacity relaxation
will imply a reduction of |M| · |T | + |K| · |T | = 2 030 constraints, while relaxing
Constraint (5.2.3) will give a reduction of |C| · |P| · |T | = 2 720 340 constraints.

The Lagrangian relaxation of Constraint (5.2.3) is given in (6.2.11) - (6.2.19).

L((x,y, s, z, δ),π) =
∑
c∈C

∑
m∈M

∑
p∈P

∑
t∈T

CTcmDcptδcmpt

+
∑
m∈M

∑
p∈P

∑
t∈T

CPmpB (xmpt + ympt)

+
∑
c∈C

∑
p∈P

∑
t∈T

CDDcpt

(
1−

∑
m∈M

δcmpt

)
+
∑
m∈M

∑
p∈P

∑
t∈T

CHsmpt

+
∑
p∈P

∑
t∈T

CF zpt

+
∑
c∈C

∑
p∈P

∑
t∈T

πcpt

( ∑
m∈M

δcmpt − 1

)

(6.2.11)

subject to

smpt−1 +Bxmpt −
∑
c∈C

(Dcptδcmpt) = smpt m ∈M, p ∈ Pm, t ∈ T (6.2.12)∑
m∈Mp

∑
t∈T w

Bympt +
∑
t∈T w

zpt ≥
∑
c∈C

Pcpw p ∈ P, w ∈ W (6.2.13)∑
p∈P

B(xmpt + ympt) ≤ Km m ∈M, p ∈ P, t ∈ T (6.2.14)

∑
m∈Mk

∑
p∈P

B(xmpt + ympt) ≤ Kk k ∈ K, p ∈ P, t ∈ T (6.2.15)
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xmpt, ympt ∈ Z+ m ∈M, p ∈ P, t ∈ T (6.2.16)

smpt ≥ 0 m ∈M, p ∈ P, t ∈ T (6.2.17)

zpt ≥ 0 p ∈ P, t ∈ T (6.2.18)

δcmpt ∈ {0, 1} c ∈ C,m ∈M, p ∈ P, t ∈ T (6.2.19)

The dual problem for this relaxation will be noted in the same way as for the
capacity relaxation.

6.2.3 Subgradient Method

In this section the implementation of the subgradient method for updating the
Lagrangian multipliers is described. The explanation of the method is based on
Lundgren et al. (2010).

When studying the Lagrangian function it can be argued that the values of the
Lagrangian multipliers will determine whether the solution will be feasible in the
original problem. Further, the gradient of the Lagrangian dual function will give
the ascent search direction for the next iteration. Lundgren et al. (2010) argues
that the dual function is piecewise linear and hence not differentiable. Thus, the
generalization of the gradient, the subgradient, is applied as the new search direc-
tion. The subgradient does not guarantee that the search direction is in ascent
direction, and thus the step length must be set carefully to ensure convergence.

In the iterative process of the subgradient method each new optimal solution of
the dual function, h(π), provides a subgradient. This is calculated by inserting
the optimal solution into the relaxed constraints. If the multipliers are defined as
being positive, the subgradient for the general minimization problem described in
Section 3.3.1 is then in iteration k, given as bi − gi(x(k)).

The selection of step length, t(k), has to guarantee convergence and should be
chosen such that t(k) −→ 0 and

∑k
i=1 t

(k) −→ ∞, when k −→ ∞. The formula in
Equation (6.2.20) is commonly used to calculate the step length in subgradient
optimization.

t(k) =
λ(z∗ − h(π(k)))

||g(x̄)||2
(6.2.20)

||g(x̄)||2 is the squared length of the subgradient of h(π). z∗ is the optimal value of
the objective function. Since this value is unknown it is replaced by the best known
feasible solution, the UBD, as an approximation. λ is a constant in the interval
(0, 2] and is often initially set to 2 and decreased after a number of iterations,
p, where the solution of the the dual function has not improved. Following are
the additional steps to include subgradient optimization into the general solution
strategy given in Section 3.3.1.
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Extension of the General Solution Strategy

Step 1: Choose initial values of λ(0) ∈ (0, 2], ε, kmax and p.

Step 2: Follow the strategy given in Section 3.3.1 until step 3.

Step 3: Check convergence criteria. If (UBD − LBD)/LBD ≤ ε or k = kmax −→
STOP and let x̄ be the optimal solution.

Step 4: Compute the subgradient g(x̄).

Step 5: Determine the step length as in Equation (6.2.20). Update λ := λ/2 if
LBD has not improved in the last p iterations.

Step 6: Continue the algorithm in Section 3.3.1.

6.2.4 Heuristic Procedure for Finding UBD

Solving the Lagrangian subproblem may not provide solutions that are feasible in
the original problem in Chapter 5. Feasible solutions are needed to calculate the
UBD. Consequently, a heuristic has to be applied to the solutions of the Lagrangian
subproblems to make them feasible and obtain UBD from these solutions.

As will be shown in the computational study in Chapter 8, the casting table relax-
ation suggested in Section 6.2.2 is superior with regards to computational efficiency
when compared to the capacity relaxation suggested in Section 6.2.1. The following
section presents the heuristic used to obtain feasible solutions from the Lagrangian
subproblem output of the casting table relaxation. The heuristic is combined with
a variant of the model in Chapter 5 called the resolve problem. The heuristic and
the resolve problem together form what is referred to as the heuristic procedure.
The algorithm for the heuristic procedure is presented in Algorithm 1, where lines
3 to 12 describe the heuristic and line 13 describes how the resolve problem is
applied.

Relaxing Constraint (5.2.3) allows a call-off to be produced several times along
different casting tables. This is irrational in a practical sense as a call-off only
should be satisfied once. In order to make this output feasible for the original
problem formulation, one has to ensure that only one casting table produces an
accepted call-off.

The heuristic is based on a greedy algorithm which assigns δcmpt-variables to the
casting table that has the lowest transportation costs to a given customer. The
heuristic begins by identifying instances where more than one casting table has
been assigned to produce the same call-off as shown in the equation below.

∑
m∈M

δcmpt > 1 c ∈ C, p ∈ P, t ∈ T
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When such an instance has been identified, it checks a list containing the cheapest
casting table for the given customer. The casting table is found by choosing the
lowest transportation cost, CTcm. This list is denoted CBEST

c in the algorithm. The
δcmpt-variable associated with this casting table remains 1, while the others are set
to zero.

When this has been done for all instances where more than one casting table has
been assigned to produce a call-off, the δcmpt-variables set to 1 are included as input
in the resolve problem. The resolve problem is similar to the problem in Chapter 5,
the only distinction being that δcmpt-variables set to 1 from the heuristic, are locked
to this value. When a large amount of the δcmpt-variables have predetermined
values, the resolve problem is often able to achieve a low optimality gap more
quickly. The solution from this model is feasible in the problem in Chapter 5 and
thus provides a UBD.

Algorithm 1 Heuristic procedure that creates feasible solutions from La-
grangian subproblem output.

1: Input
Variables from relaxed problem δcmpt
List with the cheapest casting table for each customer: CBEST

c

2: Output
Feasible solution
LBD and UBD to resolve problem

3: for c,p,t∈ C,P, T do
4: if

∑
m∈M δcmpt > 1 then

5: for m ∈M do
6: δcmpt = 0
7: if m = CBEST

c then
8: δcmpt = 1
9: end if

10: end for
11: end if
12: end for
13: Run resolve problem with updated δcmpt-variables, locking δcmpt-variables that

are equal to 1
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Chapter 7

Case Study

The mathematical model and solution approach described in Chapter 5 and 6,
needs to be tested with realistic data to reflect Norsk Hydro’s case. A data set,
hereby referred to as source data set is provided by Norsk Hydro. This data set
contains data regarding a range of different casthouses and their properties as well
as historical call-offs for a year.

Section 7.1 describes data that is directly extracted from the source data set. This
data is time independent and is the same for all rolls performed with a rolling
horizon approach. Demand has been simulated as the demand from the source data
set was incomplete in terms of the attributes required for this model. Section 7.2
outlines how demand is generated through queuing theory and simulation. Finally,
Section 7.3 summarizes the data to the reader to provide an overall sense of its
scope.

7.1 Input Data

Section 7.1.1 explains how most of the sets and parameters for the model are found
using the source data set, while 7.1.2 discusses the relation between the different
cost parameters used in the model as most have not been readily available in the
source data set. The sets and parameters considered in this section are not time
dependent and do not change from roll to roll.

7.1.1 General Data

From the historical call-offs in the source data set it is possible to retrieve 153
distinct customers and 508 distinct products. The products are all in the extrusion
ingot category, and are a combination of an alloy and one of 14 different geometric
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dimensions. Both alloy type and dimension for a product is given in the source
data set.

The source data set considers all casthouses located in Europe producing extrusion
ingots. This adds up to nine different casthouses. The daily production capacities
for each plant is dependent on the available flow of liquid metal at the plant. These
have values ranging between 50 and 650 tonnes per day.

Each casthouse has a number of casting tables available, and there are 49 casting
tables in total over all casthouses. Each casting table is capable of producing one
of the 14 geometric dimensions. It is assumed that the products a casting table can
produce is entirely based on the products’ dimension, and that all casting tables
can produce every alloy. The casting tables are also subject to a daily production
capacity. This capacity ranges between 50 to 450 tonnes per day and is based on
the rate at which casting can be done over the course of a day. From the data
it becomes clear that casthouse capacity is usually more restricting than casting
table capacity.

One production batch at Norsk Hydro is 50 tonnes. In addition, one order batch
is 25 tonnes. The initial storage level is set to zero for all products at all casting
tables.

The planning horizon is set to 35 days, meaning that the model will generate a
production plan for 35 days (5 weeks). The model always considers a week to be
from Monday to Sunday. It is however possible to create a production plan from
e.g. Tuesday in week 1 to Tuesday in week 6. In this case the number of weeks
in consideration is 6 weeks. The weeks that forecasted demand belong to may for
this reason be any amount of days between one and seven for the weeks at the
beginning and at the end of the planning horizon. This depends on the first day
in the planning horizon.

7.1.2 Cost Structure

The mathematical model presented in Chapter 5 uses five types of cost parameters.
Of these, values on transport costs are the only ones available in the source data set.
The remaining costs are for this reason determined using reasonable assumptions,
putting emphasis on the appropriate relationship between different costs in order
to obtain desirable model output.

The transportation costs given in the source data set are between each casthouse
and customer. This is extended to become a transport cost between each casting
table and customer based on the casthouse associated to each casting table. The
values range between 10-100 EUR per tonne. Some casthouses are also unable to
offer transport to certain customers. In this case a route between the customer and
given casting tables is not created in the implementation of the model.

In practice, Norsk Hydro use transport costs as a tie breaker when deciding upon
the manual allocation of a call-off to a plant. Decisions are not influenced by
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production costs, and production costs should therefore be set uniform and are
chosen to be lower than transportation costs.

CPmp ≤ min
{
CTcm

}
As mentioned in Chapter 2, Norsk Hydro operate as an MTO firm. A sizable
holding cost should be set to ensure that the model does not suggests production
for storage unless it is to satisfy call-offs in the reasonably near future. If capacity
is fully utilized on delivery day, it should be possible to store production related to
call-off demand that is produced before the delivery day. This is consistent with
Norsk Hydro’s objective to accept as many call-offs as possible. Meanwhile, the
assumption is made that it is preferable to allocate a call-off to a casthouse with
spare capacity rather than create storage. Reine et al. (2017) suggested that to
achieve these goals for a model that was similar to the one of this thesis, the storage
must be higher than the highest sum of production and transportation costs.

max {CTcm + CPmp} < CH

If call-off demand exceeds a capacity, either on casthouse level or casting table level,
the model should first consider producing call-offs in advance to satisfy demand
rather than decline the order altogether. This entails that the decline cost should be
higher than holding cost multiplied with the maximum number of days in advance
of delivery a call-off can be produced (n).

n · CH < CD

It is reasonable to assume that call-off demand, which is certain demand, is more
beneficial to allocate in the production plan than forecasted demand. This is
because call-off demand is regarded as certain income, while forecasts cannot be
regarded similarly in a practical setting. It is desirable for the model to first discard
forecasted demand before declining call-offs when capacity is being fully utilized.
This implies that the cost of declining call-offs should be higher than the cost of
discarding forecasted demand.

CF < CD

In the model objective function, transportation costs and holding costs only incur
for production related to call-offs, xmpt, and not for production related to forecasts,
ympt. If the model results are to prioritize call-off related demand, these costs have
to be compensated for in the relationship between CD and CF . The difference
between CD and CF has to be greater than the potential transportation and holding
costs suffered from rejecting forecast related demand for call-off related demand.
Otherwise, the model will find it “cheaper” to reject call-off related demand as
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the additional costs associated with xmpt are avoided. The resulting relationship
between CF , CTcm, CH and CD is formalized in the following equation.

CF + max {CTcm}+ n · CH < CD

By regarding the reasoning above, a relationship between all cost parameters is
derived:

CPmp ≤ CTcm < CH < CF < CD

Based on the relationship above, the cost parameter values are chosen and presented
in Table 7.1.

Table 7.1: Values of the cost parameters per tonnes.

Cost Value

Production cost CPmp 10 EUR/tonne
Transportation cost CTcm 10-100 EUR/tonne
Holding cost CH 200 EUR/tonne
Discarded forecast cost CF 400 EUR/tonne
Decline call-off cost CD 1000 EUR/tonne

7.2 Demand

The source data set contains historical call-offs for a year. Here, a call-off has
the attributes customer, product, delivery day and demand quantity. The time
resolution of delivery day is week. In this thesis the call-off demand (Dcpt) should
have day as time resolution. In addition, there is no data on call-off arrival day, an
important attribute when the rolling horizon approach is used on the model. The
need to simulate demand data has thus arisen as the data available does not match
the format the model in this thesis is dependent on.

In this section it is necessary to separate three terms from each other. These
are order demand list (O), call-off demand (Dcpt) and forecasted demand (Pcpw).
Order demand is the full set of all demand simulated. To create order demand it
is necessary to determine five attributes; customer(c), product(p), arrival day (t),
delivery day (t̄) and demand quantity(q).

Which customer-product combinations to consider when simulating demand is out-
lined in Section 7.2.1. Section 7.2.2 explains how to determine both arrival and
delivery days. Further, Section 7.2.3 considers which quantities to draw in the simu-
lation of demand. The process of simulating demand is presented in Section 7.2.4,
while Section 7.2.5 explains how order demand is distinguished as either call-off
demand or forecasted demand in a given roll in the rolling horizon approach.
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7.2.1 Sampling of Customer-Product Combinations

From Section 7.1.1, the number of distinct customers and products are 153 and 508
respectively. However, data on historical call-offs shows patterns of each customer
ordering only a selection of the available products. Furthermore, some customer-
product combinations are hardly ever observed and are deemed to have too small
sample sizes for simulations. The process of sampling relevant customer-product
combinations is summarized in Algorithm 2. Here, the historical call-off data, DH ,
is taken as input as well as the threshold sample size, SMIN. The latter is set to
twelve occurrences over the course of a year; in other words if a customer requests
a certain product rarer than once a month. Thus, combinations of customer and
product occurring less than twelve times are discarded for later simulations of or-
ders. After these have been discarded, 542 different customer-product combinations
are used to simulate demand.

Algorithm 2 Finding customer-product combinations.

1: Input
Historical call-off data: DH

Min sample size: SMIN

2: Output
Customer-product combinations: S

3: Count all (cp)-combination in DH

4: if Number of (cp)-combination ≥ SMIN then
5: S += (cp)
6: end if

7.2.2 Determining Arrival and Delivery Days

When customer-product combinations have been found, the simulation of order
arrival days and delivery days can be done for each combination. When determining
arrival days and delivery days for orders, basic queuing theory assumptions are
made.

1. The frequency between delivery days requested by a customer for a product
is exponentially distributed.

2. The days before a delivery day that the call-off arrived at Norsk Hydro is
also exponentially distributed.

3. Delivery days are independent of each other and arrival days are independent
of each other.

Arrival and delivery days have different exponential distributions with different
rate parameters which need to be estimated.

The rate parameter for delivery days are estimated for each customer-product
combination as the source data set shows significant differences here. For a given
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customer-product combination, the rate parameter of its exponential distribution,
λDcp, is determined using the estimator in Equation (7.2.1)

λDcp =
1

x̄cp
, (7.2.1)

where x̄cp is the average number of days between delivery days for a specific
customer-product combination. Since the source data set separates distance be-
twen delivery time by weeks, and the model in this thesis uses a time resolution
of days, the number of days between delivery times in the source data set are
approximated as seven times the number of weeks separating them.

Order arrival days must also be determined and are especially important to know
when using the rolling horizon approach. Data regarding arrival days is not avail-
able in the source data set, but Norsk Hydro have expressed that call-offs on av-
erage are declared 14 days before delivery, and no later than three days before.
Consequently, the number of days prior to delivery is assumed to be exponentially
distributed with an average arrival of 14 days before delivery, giving λA a value of
1
14 as expressed in Equation 7.2.2. Notice that the arrival rate is the same for all
customer-product combinations.

λA =
1

14
(7.2.2)

7.2.3 Determining Quantities

The order quantity requested in the simulation of demand is randomly drawn based
on the discrete probability distribution of order quantities from all of the call-offs
in the the source data set. These range between one order batch, i.e. 25 tonnes,
to twelve order batches, i.e. 300 tonnes. The number of instances where a certain
quantity occurs in the source data set is counted and divided by the total amount
of instances for all quantities. This provides the probability of this quantity being
drawn from a discrete probability distribution with all the possible quantities. This
probability distribution is shown in Table 7.2.

Table 7.2: Probability distribution of different order quantities.

Order quantity Probability

25 74.09 %
50 16.24 %
75 5.88 %
100 2.37 %
125 0.84 %
150 0.22 %
≥175 0.32 %
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7.2.4 Simulating Order Demand

The process of simulating orders is outlined in Algorithm 3. The simulation of
orders is done over the scope of 15 weeks, or 105 days. 105 days is chosen as it
equals the length of three planning horizons. This provides one whole planning
horizon to subject the simulated data to an initialization phase, along with two
planning horizons needed to apply a rolling horizon approach. The mentioned
initialization phase is described in more detail in Section 8.1.

The simulation process takes these inputs: the simulation horizon (H), customer-
product combinations (S), the rate parameters for arrival and delivery days (λA

and λDcp), the minimum days before delivery allowed to place an order (TMIN) and
the probability distribution for order quantities (Q).

Algorithm 3 Simulating order demand O.

1: Input
Set of customer-product combination: S
Simulation horizon: H
Delivery day rate: λDcp
Arrival day rate: λA

Min days before delivery allowed to place orders: TMIN

Probability distribution for order quantities: Q
2: Output

Order demand list: O
3: t = 0
4: for c,p ∈ S do
5: while t < H do
6: Draw t′ from exp(λDcp)
7: t̄ = t+ t′

8: Draw t∗ from exp(λA)
9: while t∗ < TMIN do

10: Redraw t∗ with exp(λA)
11: end while
12: t = t̄− t∗
13: Draw quantity q from Q
14: Add order with attributes c, p, t, t̄ and q to O
15: t = t+ t̄
16: end while
17: end for
18: for O do
19: if t̄− t < 1 then
20: Remove order from O
21: end if
22: end for
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Orders are simulated for each customer-product combination over the simulation
horizon. First the days from the current delivery day to the next is drawn and from
this the delivery day is calculated. Further, a draw detailing how many days before
delivery the order arrives is performed. If this value is less than or equal to TMIN ,
a redraw is made. The arrival day is calculated by subtracting the draw from
the delivery day previously calculated. In addition, a quantity is drawn from the
discrete distribution explained in Section 7.2.3. The order now has all its attributes
and is added to the order list. Orders are generated for the same customer-product
combination until the sum of days between deliveries exceeds the horizon of the
simulations.

As arrival day is drawn in the same way as number of days before delivery, it is
possible to simulate orders with negative arrival day, which is outside the simulation
horizon. In this case, the order should be discarded as it is desirable to start with
an empty system.

The number of orders created by the simulation over the scope of 105 days varies for
each trial. From ten different simulations, the average number of orders generated
was 7 825, with a standard deviation of 61. When considering the total quantity
in all orders generated, the average was 275 305 tonnes with a standard deviation
of 2 311 tonnes.

7.2.5 Distinguishing Between Call-offs and Forecasts

Algorithm 3 simulates the complete set of orders spanning over 105 days. The
planning horizon is however 35 days. Hence, only orders with delivery day during
the planning horizon in question should be considered. These orders are either
classified as call-off demand or forecasted demand. It is further assumed that every
call-off that is to occur is accurately forecasted.

The process of distinguishing between call-off demand and forecasted demand is
explained in Algorithm 4. As input, the first and last day of the planning horizon
in consideration is given as TS and TE respectively, as well as the simulated order
demand list, O. All orders are first checked to see if they have delivery day in the
given planning horizon. If an order has delivery day in the planning horizon, it is
classified as a call-off if arrival day is before the first day in the planning horizon.
Otherwise it is classified as a forecast. Since forecasted demand has week as time
resolution, modulo calculations is used in order to get the correct week. SPACE
SPACE
SPACE
SPACE
SPACE
SPACE
SPACE
SPACE
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Algorithm 4 Simulating call-offs and forecasted demand for the planning
horizon of a given roll in the rolling horizon approach.

1: Input
Order demand list: O
First day in planning horizon: TS

Last day in planning horizon: TD

2: Output
Call-off demand: Dcpt

Forecasted demand: Pcpw
3: for O do
4: if TS ≤ t̄ ≤ TE then
5: if t < TS then
6: t = t̄
7: Add call-off to Dcpt

8: else
9: w = dt̄ mod 7e

10: Add forecast to Pcpw
11: end if
12: end if
13: end for
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7.3 Overview of Data

Ranges of values discussed in this chapter are summarized in Table 7.3.

Table 7.3: Overview of input parameters and sets, and the range of their values.

Input Parameter or Set Value Range

Customers C 153 customers
Casthouses K 9 casthouses
Casting tables M 49 casting tables
Casting tables related to casthouse MK 1-7 casting tables
Products P 508 types
Days T 35 days
Weeks W 5-6 weeks
Remaining days in week TW 1-7 days
Production batch B 50 tonnes
Order batch - 25 tonnes
Transportation costs CTcm 0 - 100 EUR/tonne
Production costs CPmp 10 EUR/tonne
Holding cost CH 200 EUR/tonne
Decline cost CD 1000 EUR/tonne
Discard cost CF 400 EUR/tonne
Call-off demand Dcpt 0-300 tonnes/call-off
Production capacities casthouse Kk 100-650 tonnes/day
Production capacities casting table Km 50-450 tonnes/day
Forecasted demand Pcpw 0-500 tonnes/forecast
Initial storage smp0 0 tonnes
Customer-product combinations S 542 combinations
Total order demand simulated - Avg of 275 305 tonnes
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Computational Study

The mathematical model along with various solution approaches has been written
in Mosel and implemented in FICO Xpress. Matlab R2015a was used to call the
mathematical model in Xpress when run in the case of a rolling horizon approach or
Lagrangian relaxation. All programs are run on a computer with 64-bit Windows
7 Enterprise, Intel(R)CoreTMi7-4790S, 3.20 GHz CPU and 16 GB RAM. Depth
first has been used as branching strategy in all the computations.

This computational study primarily focuses on model output from the rolling hori-
zon approach and Lagrangian relaxations described in Chapter 6. Section 8.1 dis-
cusses the use of an initialization period used to obtain adequate initial states for
model runs. It also discusses the selection of the data set used in tests throughout
this chapter. Section 8.2 presents computational efficiency and model output from
the rolling horizon approach. Concepts such as capacity utilization and nervous-
ness are discussed in relation to this. The impact of the Lagrangian relaxations is
discussed in Section 8.3. The effects on computational efficiency is the main focus
in the section, but impact on model output is also considered.

Some terminology will be defined that is used in the analyses of this chapter. For
any problem instance, the best integer solution objective value found is usually re-
ferred to as the objective value, although sometimes UBD is used instead. Likewise,
the best lower bound found for a problem instance is referred to as LBD.

An alternative to the regular objective value must also be defined. The model
presented in Chapter 5 includes soft constraints enforced by costs in the objective
function. These costs, such as CD and CF , have no practical implications, but
are included to encourage the model to not discard demand. Consequently, it is
of interest to distinguish between the objective value when these artificial costs
are considered compared to when they are not considered. The latter is a more
accurate reflection of the costs that would occur in a practical setting, and this
value is defined as the adjusted objective value.
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Note that one expects a trade-off between the amount of demand tonnage accepted
and the adjusted objective value. Accepting more demand may necessarily lead to a
higher adjusted objective value as more production and transport costs accrue. The
primary goal should be to accept as much demand as possible, making accepted
demand tonnage an important indicator of a good problem solution. Viewing
objective value and adjusted objective value in isolation is thus not recommended.

8.1 Initialization Phase and Selection of Simulated
Data Set

Given that the model is run using simulated demand data, one expects different
results for every simulated data set used. Meanwhile, we wish a certain sense of
consistency in the different analyses of this chapter. Consequently, one simulated
data set will be chosen as the main subject of analysis in Section 8.2 and Section
8.3.

The selected demand simulation is chosen based on features observed from ten
different demand simulations that have been subject to a 35 day initialization
phase. This section wishes to illuminate certain features of the initialization phase
as well as the conditions for selecting the data set used in the remainder of this
chapter.

Section 7.2 explained that demand is simulated to have delivery days spanning a
105 day simulation horizon. The need for an initialization phase arises as demand
is categorized as either call-off or forecasted demand based on the first day in a
planning horizon and the arrival days of call-offs. No call-offs have arrived before
the simulation horizon, leaving the system free of call-off demand at the first day in
the simulation horizon. An initialization period thus becomes necessary to achieve
a stable rate of call-off arrivals and available call-off demand to the models in this
thesis.

The 105 days in the simulation horizon are shown in Figure 8.1 as day −34 to day
70. The initialization phase spans from day −34 up to and including day 0. The
model runs that follow in Sections 8.2 and 8.3 start at day 1. The information from
the end of the initialization phase is saved to provide initial states for these runs.
Figure 8.1 also illustrates how plans for practical implementation are generated
with a rolling horizon approach, by implementing the first day of every roll in
practice. As seen, the chosen simulation horizon makes it possible to generate an
implemented plan for 35 days after the end of the initialization phase, which equals
the length of one planning horizon.

SPACE
SPACE
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Figure 8.1: Details regarding the rolling horizon approach used in this thesis, including
both the initialization phase and implemented phase.

The initialization phase is run using the rolling horizon approach described in
Section 6.1. It spans over 35 rolls for each demand simulation. Production and
accepted call-offs are locked along the way, with production being locked for the
seven first days. This is similar to what is done in most of Section 8.2, which
provides analyses on the rolling horizon approach in more detail. The last roll in
the initialization phase provides initial states for tests beginning in day 1. This
includes initial storage values, smp0, but also locked variables where applicable.

Figure 8.2: The optimality gap for each roll in the initialization phase for ten different
simulated data sets.

Each roll has been given a 900 second runtime. The resulting optimality gaps from
each roll for ten demand simulations is shown in Figure 8.2. It is observed that
optimality gaps are close to zero in the first rolls for each simulated data set. This
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is a consequence of there being few call-offs to allocate, making the problem easy
to solve. The optimality gaps then rise before reaching a plateau of values in the
last rolls.

In order to select one demand simulation for further use in this chapter, the average
optimality gap for the 35 rolls in the initialization phase has been calculated for the
ten simulations. The simulations have then been sorted according to the average
optimality gap for these rolls, and one of the data sets closest to the median value for
average optimality gap has been chosen as the data set used for testing throughout
this chapter. This data set is hereby referred to as the primary demand simulation.
Another set close to the median value is sometimes used when results from the
primary demand simulation are inconclusive. This data set is hereby referred to as
the secondary demand simulation.

8.2 Rolling Horizon Planning

In this section, the model in Chapter 5 is applied using the rolling horizon approach.
We begin by providing information about the parameter and set values used when
implementing the rolling horizon approach described in Section 6.1. Subsection
8.2.1 goes on to analyze the features observed from a single roll in the rolling horizon
approach. Subsection 8.2.2 provides an analysis of results when the rolling horizon
approach is applied to 35 consecutive rolls. Finally, model output is discussed in
relation to the concept of nervousness in Subsection 8.2.3.

In addition to the constraints in Chapter 5, Constraints (6.1.6) presented in Chapter
6 is added to the model. For each roll performed, lower bounds on the xmpt-
variables are added for those that have locked production from the previous roll.
Production is locked for the seven first days in each roll. This entails giving the
set T L values from one to seven in for every roll, or T L : {1, ..., 7}.

The model is run 35 times, each time creating a production plan with a 35 day
planning horizon. Only the first day in every roll is what would be implemented
into practical operations from Norsk Hydro’s point of view. The reason for choosing
to roll 35 times is thus to get implemented production plans for the first 35 days,
which equals one planning horizon if a rolling horizon approach wasn’t used.

8.2.1 Single Roll Analysis

One roll in the rolling horizon approach is analyzed in this subsection. The purpose
is to illustrate its features in isolation, before results from running multiple, con-
secutive rolls are assessed. The single roll has been run for 7 200 seconds, before
output is analyzed in order to verify that the model functions as intended. We
wish to examine how the optimality gap develops over time for a single roll. We
also wish to examine solution values for the production variables xmpt and ympt,
and how they develop along the horizon of the single roll.
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Figure 8.3: Development of the optimality gap with time for the single roll problem.

Figure 8.3 shows the development of optimality gap with time for the single roll.
Each data point is registered when the optimality gap is updated. It is worth noting
that the rate of improvement of the optimality gap stagnates somewhat from about
1 200 seconds onward. This indicates that a runtime close to this mark is adequate
for each roll when multiple, consecutive rolls are applied.

Figure 8.4: Daily sum of production variables along 35 day planning horizon.

The model acts as expected in terms of the two types of production variable. The
sum of output values each day is shown in Figure 8.4 for both xmpt and ympt. The
first days of the horizon contains mostly production related to call-offs before the
weight shifts towards production related to forecasts late in the horizon.

This tendency can be explained by the composition of the demand on the different
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days in the horizon, either as related to call-offs or forecasts. The closer the first
day in the horizon is to a given day, the more likely it is that call-offs have arrived
with that day specified as delivery day. As a result, a higher proportion of the
available demand is call-off related early in the horizon compared to late in the
horizon. Meanwhile, given that rejecting call-off demand is penalized more in the
objective function than rejecting forecasted demand, one expects ympt to only be
allocated if there is spare capacity after xmpt variables have been allocated.

Also worth noting are the effects of forecasts being indexed by week. This explains
the spike in ympt from day 7 to day 8. Because this particular roll started at
the beginning of a Monday, it perceives that these two days belong to different
weeks given that day 7 is a Sunday and day 8 is the following Monday. In the roll
succeeding this one, beginning on a Tuesday, one would expect a spike between day
6 and 7 instead.

8.2.2 Multiple Roll Analysis

In this section, the aim is to observe how the model preforms using a rolling horizon
approach with multiple, consecutive rolls. 35 rolls have been run and each roll has
a runtime of 2 000 seconds, approximately 30 minutes. Among the output that is
given consideration are the values and development of optimality gap and objective
value. Solution output such as the degree of accepted and rejected demand is
also considered, along with the degree of capacity utilization resulting from the
production variables.

Optimality Gap and Objective Value

The optimality gap lies in the interval [5.08%, 16.10%] along all 35 rolls, with an
average optimality gap of 9.63% and an estimated standard deviation of 2.60%.
The optimality gap for all the rolls, as well as a linear trend-line for the optimality
gaps, is presented in Figure 8.5a.

(a) Primary demand simulation. (b) Secondary demand simulation.

Figure 8.5: The optimality gap for each roll using the a) primary demand simulation
and b) secondary demand simulation.
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From the figure it is clear that optimality gap for the primary demand simulation
varies considerably from roll to roll. The linear trend-line shows that even with high
variations from roll to roll, the optimality gap tends to increase with the amount of
rolls performed. As an initialization phase has already been performed, one would
expect the optimality gap increase to remain fairly stable from roll to roll. Upon
inspecting the demand data, the increase may instead be attributed to the primary
demand simulation having a large portion of call-offs arriving towards later rolls. To
confirm that it actually is a high amount of call-offs causing an increasing optimality
gap, new computations using the secondary demand simulation are performed. The
optimality gaps from these computations are shown in Figure 8.5b. Clearly the
optimality gap does not increase with the amount of rolls performed when using
this demand simulation. It might therefore be the case that the optimality gap is
quite dependent on the number of call-offs in the specific roll.

Figure 8.6: The LBD, objective value and adjusted objective value for each roll.

Figure 8.6 shows the best objective value and LBD found in each roll. In addition,
the adjusted objective value is included to give a notion of the real costs. As
seen from the figure, the LBD lies between 12 million and 15 million EUR, while
the objective value lies between 13 million and 17 million EUR. The adjusted
objective value is about 70% of the actual objective value, which means that the
artificial costs make up the remaining part. Both the LBD and the objective value
increases with the number of rolls performed. This observation is expected given
that the optimality gap also increases, indicating that the solutions found may be
less optimal.

SPACE
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Accepted and Rejected Demand

Figure 8.7 shows both available demand, along with accepted and rejected call-off
and forecasted demand in tonnes for each roll. The average and standard deviations
for the same data is given in Table 8.1.

Figure 8.7: Incoming, accepted and rejected call-offs and forecasts for each roll.

Table 8.1: The average and standard deviations for available demand, accepted call-
off and forecasted demand, and rejected call-off and forecasted demand for the rolls in
question. Measured in tonnes.

Demand type Average in tonnes Standard Deviation in tonnes

Available call-offs 49 701 2 028
Available forecasts 56 497 660
Accepted call-offs 46 976 1 932
Accepted forecasts 55 116 1 698
Rejected call-offs 2 725 295
Rejected forecasts 4 224 643

From the data it is possible to see that there’s always more forecasted demand than
call-off demand, although this difference becomes small towards the final rolls. As
pointed out in the optimality gap discussion above, the increase in incoming call-off
demand may be a factor to the positive trend-line in optimality gaps. Further, it
is clear that amount of accepted call-off demand increases when incoming call-off
demand increases. Meanwhile, more forecasted demand is rejected when incoming
call-off demand increases, even though incoming forecasted demand does not change
much. This indicates that the model prioritizes call-off demand over forecasted
demand, as desired.
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Figure 8.8: Number of accepted and rejected call-offs in percentage of the total number
of incoming call-offs for the first seven rolls.

The ratio of the number of accepted and rejected call-offs for the first seven rolls is
presented in Figure 8.8. The ratio is very similar for all the other rolls performed.
As seen from the figure, about 95% of the incoming call-offs in a roll is accepted,
whereas about 5% are rejected.

When considering only the call-offs that are rejected, there are two patterns that
seem to appear:

1. Call-offs with quantities of half production batches

2. Call-offs with late arrival day

Table 8.2: Quantities measured in batches, how often they occur in call-offs, and fraction
of rejected call-offs belonging to each quantity.

Number of order batches Fraction of call-offs Fraction of rejected call-offs

1 74.427 % 88.871 %
2 15.858 % 4.419 %
3 5.912% 4.516 %
4 2.337 % 0.935 %
5 0.825 % 0.839 %
6 0.244 % 0.000 %
≥ 7 0.397 % 0.419 %

Table 8.2 shows the fraction of call-offs with a given quantity in the available call-
off demand. It also shows the fraction of rejected call-offs belonging to different
quantities. The table makes it clear that call-offs having a quantity equal to one
order batch are most frequently rejected. This is as anticipated as this is the most
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common quantity requested. The rate at which they are rejected is however more
frequent than the rate at which they occur in the set of call-offs entering the model.
This indicates that the model is more likely to reject call-offs with quantity equal to
one order batch compared to call-offs having quantity equaling a different multiple
of order batches.

Recall that order batches and production batches are not equal in volume, one
order batch is half of one production batch. One explanation for the trend seen
in Table 8.2 may be that call-offs with quantity of half a production batch are in
need of storage unless they can be matched with a call-off of the same quantity
requesting the same product. Two call-offs requesting one order batch of the same
product each can be combined to form one production batch. However, if a call-off
cannot be matched with another call-off in this way, a high holding cost incurs
until a match appears. This makes the call-off less profitable to accept.

This notion seems more viable when considering call-offs with quantities equal to
two order batches, which is the same as one production batch. The percentage of
rejected call-offs with this quantity is very low compared to the frequency of this
quantity in the data set, which is a trend for any call-off having quantity that is an
even number of order batches. It is not necessarily a disadvantage that the model
more often rejects call-off quantities of half a production batch compared to whole
production batches, as long as capacity is adequately utilized. In addition it is
probably more common for the model to reject big call-off quantities, but this is
cannot be confirmed, as the data set includes few call-off with these quantities.

Table 8.3: Fraction of rejected call-offs when regarding days prior to delivery they
arrived.

Arrival before delivery day Fraction of rejected call-offs

1 - 7 days 49.359%
8 - 14 days 24.514 %
15 - 21 days 14.731%
22 - 28 days 8.245%

29 days or more 3.151 %

Arrival day of call-offs also has an effect on their likelihood of being accepted. Table
8.3 shows how long in advance of delivery the rejected call-offs arrive. It is clear
from the figure that almost 50 % of the rejected call-offs arrived less than one week
before delivery. It is therefore safe to assume that call-offs arriving near delivery
day are more likely to be rejected. The finding is foreseen, as capacity is locked
for the first seven days and accepted call-offs that have arrived early also must be
accepted in later rolls, despite more preferable call-offs arriving later.
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Capacity utilization

For each roll, the first day in the generated production plan is implemented. It
is therefore important that these production plans utilize capacity as much as
possible. The casthouse capacity limit is restricted before the sum of casting table
capacities at the given casthouse. Thus, it is casthouse capacity which is considered
in this context. As all call-offs have arrived a minimum of three days before delivery,
and forecasts are accurate, the capacity for the first day in the production plan
should be filled by mostly call-off production, xmpt.

Figure 8.9: Capacity utilization at each casthouse for the first day for rolls 1-35.

Figure 8.10: Call-off demand with delivery on the first day for each roll. Expressed as
an excess percentage of total daily casthouse capacity.

Figure 8.9 shows capacity utilization, as a fraction of available capacity at each
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casthouse, for the first day in each roll. Here, we see that casthouse 2, 4, 7, 8 and
9 at at all times are fully utilized, while casthouse 1, 3, 5 and 6 are less utilized
having an average capacity utilization of 92%, 56%, 57% and 82% respectively.
Especially casthouse 3 and 5 are poorly utilized.

One obvious reason for low capacity utilization is low incoming demand. Figure
8.10 shows how much call-off demand that is to be delivered on the first day of
rolls 1 to 35. It expresses this as an excess percentage of the total daily casthouse
capacity, where the average excess is 1.82%.

Regarding the rolls with the highest and lowest values in Figure 8.10 reveals the
extent available demand quantity influences capacity utilization. Roll 33 has call-
off demand the first day equaling 20.3% above total capacity, and as seen from
Figure 8.9, the roll also has very high capacity utilization. The high utilization
of this roll even applies to the casthouses that have lower utilization in general.
In contrast, roll 7 has a negative excess demand of −14.4% i.e. demand is lower
than capacity. In addition, demand stays low for the next couple of rolls which
means that it is less likely that production from the first day in this roll is stored
for upcoming delivery days. Based on this, one would assume that roll 7 has one
of the lowest capacity utilization the first day, but there are in fact eight rolls with
lower utilization. It is also odd that, e.g. roll 25 has the lowest capacity utilization,
while its call-off demand is in excess of capacity. Thus, it seems like insufficient
capacity utilization is influenced by additional factors to low demand quantity.

To find other possible reasons for low capacity utilization at certain casthouses, the
input data is inspected further. Here, two factors seem to contribute to the results:

1. Few routes to customers from the casthouses

2. Low demand of products which are possible to produce at the different cast-
houses

When considering how many customers each casthouse can deliver to, both cast-
house 3 and 5 have a significantly lower number of routes to different customers
compared to other casthouses. When inspecting the demand simulated, it is ob-
served that four product dimensions rarely are in demand. At least one of the
casting tables available at casthouse 1, 3, 5 and 6 are related to these product
dimensions. Hence, it seems that the input data limits the possible degree of ca-
pacity utilization in model solutions in several ways. The effect may be enhanced
by many customer-product combinations being discarded from simulations due to
low sample sizes. This removes diversity from the products that are simulated, iso-
lating high capacity utilization to casthouses that can produce the products that
remain.

SPACE
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8.2.3 Nervousness

Until now, production related to call-off demand has been locked for the first seven
days in each roll. In addition, all call-offs that are accepted must be accepted in
future rolls. This has been done in order to give Norsk Hydro and their customers
some degree of predictability, reducing nervousness. Sridharan and Berry (1990)
recommends locking variables for at least 50 % of the planning horizon in order to
have a positive effect on the nervousness phenomenon. In the following section, the
effect of locking bigger fractions of the planning horizon are considered, as only 20
% of the planning horizon has been locked in previous analyses. As before, only the
production variables related to call-off demand are locked. As before, runtimes are
limited to 2 000 seconds per roll. Three different locking fractions are considered:

1. 20 % of planning horizon. T 7 = T L : {1, ..., 7}

2. 50 % of planning horizon. T 18 = T L : {1, ..., 18}

3. 100 % of planning horizon. T 35 = T L : {1, ..., 35}

Figure 8.11: The optimality gap for the different lock settings.

Figure 8.11 shows the optimality gap from each roll for the different lock settings.
It is obvious from the graph that when L increases, the optimality gap is reduced.
This pattern is expected since more of the variables are predetermined when L
increases, reducing the complexity of the problem. For T 35 the optimality gaps
are approximately zero. It is worth noting that even though solutions for T 35 are
close to or even reach optimality, they still suggest more costly production plans
with less accepted demand than the solutions for T 7 and T 18.

Sridharan and Berry (1990) points out that a trade-off exists between costs and
nervousness in rolling horizon planning. It would therefore be expected that costs
are higher when L is high. This notion is confirmed when regarding Figure 8.12.
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The lower bound for T 7 is by far the lowest, indicating that this lock setting has
the potential to find solutions with the lowest costs. However, the best objective
value for T 7 is similar to that for T 18. This is probably due to the lower optimality
gaps found with T 18. As the optimality gap for T 35 is approximately zero, its best
lower bound and best objective value are very similar, but also much higher than
the two other lock settings.

Figure 8.12: The optimality gap for the different lock settings.

(a) Accepted call-off demand. (b) Rejected call-off demand.

Figure 8.13: Amount in tonnes of a) accepted call-off demand and b) rejected call-off
demand for the different locking-settings.

Figure 8.13 shows how much call-off demand in tonnes that was accepted and
rejected in every roll of each production lock setting. As seen from the figure, less
call-off demand is accepted and more call-off demand is rejected when T L is high.
Thus, there exists a trade-off where Norsk Hydro can choose to create production
plans with high predictability or production plans that accept more call-off demand.
An interesting feature in Figure 8.13 is that the change from T 7 to T 18 is larger
than that from T 18 to T 35. In fact, some of the rolls in T 18 and T 35 have nearly
the same values on accepted and rejected call-offs, e.g. at rolls 20 and 21.
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To summarize, T 7 accepts more tonnes of call-off demand than the two other
lock settings, while having the highest optimality gap. This indicates that if the
optimality gap for T 7 is reduced, accepted call-off demand could possibly be even
higher. To obtain the full benefits of locking lower fractions of the production in
each planning horizon, the trends discussed in this section motivate that methods
providing higher computational efficiency should be used.

8.3 Lagrangian Relaxation

The analyses in Section 8.2 made it clear that optimality is difficult to achieve
when locking production for few days in the planning horizon of each roll. Given
that Norsk Hydro operate in a commodity market, one expects small profit margins
for every order. This provides an increased incentive to reduce the optimality gap
for each production plan, providing solutions which are cheaper to implement in
practice. This section shows the effects of Lagrangian relaxations on the optimality
gap.

Lagrangian relaxation has been performed for a single roll on the two models de-
scribed in Section 6.2.1 and 6.2.2. The implementation of these relaxations exclude
some of the features in the rolling horizon approach as neither the production nor
the demand variables are locked in any way from the previous roll. Introducing
locking of variables, as in the rolling horizon approach, brings more constraints into
the problem as shown in Section 6.1. Thus, the simplification of no locked vari-
ables is done for testing the potential of Lagrangian relaxation on the underlying
problem given in Chapter 5.

The Lagrangian relaxation cannot be compared with the single roll problem from
Section 8.2.1 since this problem includes locking of variables. Therefore, an analy-
sis of a single roll problem with no variables locked is performed in Section 8.3.1.
This problem is referred to as the non-relaxed problem. In Section 8.3.2 prelimi-
nary testing for the Lagrangian relaxations is presented. Furthermore, in Section
8.3.3 the computational efficiency of the Lagrangian relaxation is evaluated, and
in Section 8.3.4 model output is discussed.

8.3.1 Non-Relaxed Problem

The non-relaxed problem is run for 7 200 seconds. The development of the optimal-
ity gap with time is shown in Figure 8.14, where data points have been registered
every time the model was able to improve optimality gap. Certain values related
to the best solution are also shown in Table 8.4. Among the most obvious and no-
table features is that the optimality gap is fairly poor after an extensive runtime.
Furthermore, the rate of improvement of the optimality gap stagnates significantly
from about 3 000 seconds onward.
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Figure 8.14: Development of optimality gap with time for non-relaxed problem.

Table 8.4: Solution values of non-relaxed problem.

Solution Parameter Value

Best objective value 12 857 014 EUR
LBDnon-relaxed 10 942 481 EUR
Optimality Gap 14.93%

In terms of model output, the best integer solution to the problem accepts 1 208
out of the 1 343 available call-offs with delivery in the 35 day planning horizon.
This results in an objective value of 12 857 014.30 EUR.

8.3.2 Preliminary Testing

This section presents the results of preliminary testing for finding appropriate val-
ues for the parameters in the subgradient method. By performing such an analysis,
a starting point closer to the optimal solution can be obtained, and the subgradi-
ent method will require fewer iterations before convergence. Thus, the consequence
should be improved computational efficiency. The parameters to be set based on
testing, are the initial values for the multipliers used in different relaxations, πcpt,
π1
mt, π

2
kt, and also the constant λ.

The values of the Lagrangian multipliers can initially be set to 0, but when exam-
ining the Lagrangian function in the two relaxations it may be possible to derive
an initial value closer to the optimal one. In the casting table relaxation, the third
term in Equation 6.2.11 resembles the sixth term. They can be combined and
written as:
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∑
c∈C

∑
p∈P

∑
t∈T

(CBDcpt − πcpt)

(
1−

∑
m∈M

δcmpt

)

This relation can give some information on the optimal value of the multipliers, and
help choose appropriate initial values. If CBDcpt ≤ πcpt it would not be optimal
to produce anything as declining a call-off only would incur negative costs. As a
result the multiplier should be smaller than CBDcpt.

When CBDcpt > πcpt, the term will be negative for
∑
m∈M δcmpt > 1, and would

act as an incentive to accept a call-off on several casting tables. The consequence
would be producing duplicates of some highly profitable call-offs, while less prof-
itable call-offs are rejected. This will happen if the Lagrangian multiplier of the
more expensive call-offs outweighs the cost of rejecting a call-off. The optimal val-
ues of the multipliers are those that can ensure that call-offs should be accepted at
maximum one casting table. Initial values in the interval [0, CP ] have been tested,

and the most promising initial values are given in Table 8.5 as π
(0)
cpt.

For the capacity relaxation this reasoning is not applicable since the last term in
Equation 6.2.9 sums over casthouses and thus does not resemble the second term
in the equation. Nevertheless, initial values in the interval [0, CP ] have been tested

and are set to the values shown in Table 8.5 as π
1(0)
mt and π

2(0)
kt .

The value of the constant λ should be in the interval (0, 2] to ensure convergence.
However, the testing has shown that after the first iteration, the solution of the
subproblem is far from the LBD to the non-relaxed problem, LBDnon-relaxed. Thus,
the initial value of λ is set very high in order approach LBDnon-relaxed more quickly.
When approaching the optimal solution, the convergence of the step length is still
ensured. After a number of iterations, p, if no better solutions are found, the value
of λ is halved. When this happens sufficiently many times, it eventually reaches
the interval (0, 2].

The maximum number of iterations, kmax, is set in order to deal with a reasonable
computing time, and p is set to an appropriate value based on kmax. An overview
of all the parameter values are found in Table 8.5.

Table 8.5: Values of parameters of the implemented subgradient method.

Parameter Value

π
(0)
cpt 0.7 · CB ·Dcpt

π
1(0)
mt , π

2(0)
kt 0.2 · CP

λ 2000
kmax 300
p 10
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8.3.3 Computational Efficiency

The Lagrangian relaxation is composed of distinct computational elements where
the runtime of each element is independent of the others. The sum of these runtimes
will determine the computational performance of the Lagrangian relaxation as a
whole. These elements are:

• Solving the Lagrangian subproblem.

• Heuristic procedure for finding UBDs from infeasible solutions of the sub-
problem.

• Time until convergence of the solution of the subproblem, which is determined
by the step length when updating the multipliers.

In this subsection, the computational efficiency of the elements is examined.

Solving the Lagrangian Subproblem

Solving the subproblem to optimality or near optimality is crucial for the rest of
the procedure, as this solution provides a new subgradient for calculating the step
length for the next iteration. It is also important for providing the heuristic with an
initial solution that is as close to optimality as possible in order to find a tight UBD.
This element is thus considered essential for the rest of the iterative procedure.

Figure 8.15: Optimality gap for solving the Lagrangian subproblems.

In Figure 8.15 the optimality gap when solving the Lagrangian subproblem for the
two relaxations is shown. The casting table relaxation is solved to optimality in 6
seconds, while the capacity relaxation does not reach optimality within a maximum
runtime of 120s. The reason for the short runtime of the casting table relaxation
can be attributed to the number of constraints relaxed as discussed in Section 6.2.2.
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After 120s the solution of the capacity relaxation has reached an optimality gap of
6.89%. Thus, the time for solving the subproblem for the capacity relaxation is at
least 20 times larger than the time for solving the subproblem of the casting table
relaxation. Because of this, the capacity relaxation is regarded as less efficient
in runtime. Given that the goal of the Lagrangian relaxation is to decrease the
optimality gap and runtime, the capacity relaxation is not considered in further
analyses. The rest of this section studies the computational efficiency of the casting
table relaxation.

Heuristic Procedure

The heuristic, as explained in Section 6.2.4, finds feasible solutions for the δcmpt-
variables. From this, the δcmpt-variables which are equal to one after the heuristic,
are locked before the textitresolve problem is run to find a feasible solution for
the rest of the variables. Thus, the computational efficiency of finding a feasible
solution includes both the time for the heuristic to find which δcmpt-variables to
lock, and the runtime for the resolve problem.

The resolve problem does not solve to optimality. Since the goal of the Lagrangian
relaxation is to reduce the computational time and since several iterations are
needed to obtain convergence, an appropriate max time for solving the resolve
problem has to be set. Upon running the resolve problem, no better solutions are
observed after 300 seconds, and this has been set as the max time. In addition, the
heuristic procedure, which includes the heuristic and the resolve problem, is only
run the first iteration and then every 20th iteration in order to decrease the total
runtime of the method. As a result, in 300 iterations the heuristic procedure is
run 16 times. The average runtime for the heuristic for these 16 times is 6 seconds
and the total runtime for the resolve problem is 430 seconds. This total runtime
includes the max time of 300 seconds for solving the problem and 130 seconds for
data processing.

Initially, the UBD has been given a high value in accordance with the solution
strategy given in Subsection 3.3.2. After the first iteration, the heuristic procedure
is run in order to update the UBD. This UBD comes from the solution of the resolve
problem and provides a UBD for the entire Lagrangian relaxation. In the definition
of the Lagrangian relaxation from Section 3.3.1, the solution of the Lagrangian
subproblem provides an LBD, LBDLagrange. Meanwhile, the heuristic procedure
includes running the non-relaxed problem with some variables locked when the
resolve problem is run. The result is a feasible solution to the non-relaxed problem,
but also an LBD, LBDresolve, possibly different from LBDLagrange. By definition,
LBDresolve is not used to update LBDLagrange.

It is still of interest to examine the bounds from the resolve problem more thor-
oughly as this run may have improved computational efficiency given that some
variables are locked. In Figure 8.16 the optimality gap as a function of time for the
resolve problem in the first iteration is shown. After 12 seconds the optimality gap

71



Chapter 8. Computational Study

is 9.55% and after 143 seconds the optimality gap is 7.15%. This means that after
only one iteration the resolve problem itself is able to decrease the optimality gap
of the non-relaxed problem from 14.93% after 2 hours to 7.15% after 564 seconds
(9 minutes and 24 seconds). These 564 seconds is the total runtime of the first
iteration of the Lagrangian relaxation including solving and data processing.

Figure 8.16: Optimality gap of the non-relaxed problem.

An even better optimality gap can be determined by examining the bounds of the
non-relaxed problem and the resolve problem together. This is because the non-
relaxed problem is similar to the resolve problem, only distinguished by the resolve
problem having some δcmpt-variables locked.

The values for the objective function of the resolve problem after the first iteration
is given in Table 8.6. Compared to the values in Table 8.4, LBDresolveis slightly
lower than LBDnon-relaxed, which means that the LBDnon-relaxed is the highest of the
two. However, the best objective value of the resolve problem is significantly lower
than for the non-relaxed problem, and thus this solution provides a lower UBD. By
combining the lowest UBD, i.e. from the resolve problem, with the highest LBD,
i.e. LBDnon-relaxed, an optimality gap of 4.57% is obtained. This results in a 69%
reduction in optimality gap after only one iteration of the Lagrangian relaxation.
The improvement in best objective value is 12 857 014 EUR - 11 465 907 EUR =
1 391 107 EUR.

Table 8.6: Solution values of the resolve problem.

Solution parameter Value

Best objective value 11 465 907 EUR
LBDresolve 10 646 750 EUR
Optimality gap 6.84%
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It is important to note that the heuristic procedure is not able to find better
solutions in any consecutive iterations. Even though the solution of the Lagrangian
subproblem improves, no new UBD is found. This indicates that the heuristic may
be too simple and should have included more features. For example the heuristic
only considers call-offs that have been accepted at least once in the solution of
the subproblem. A more subtle heuristic should also evaluate whether to accept
call-offs that were not accepted in the subproblem. Such a change could make it
possible for the resolve problem to find better solutions, but would also lead to
higher computational time for the heuristic as it in theory would have to consider
all the 133 million δcmpt-variables.

Convergence of the Subproblem

Figure 8.17: Optimality gap for 300 iterations of the Lagrangian relaxation.

The method for Lagrangian relaxation of the casting table constraints has been run
for 300 iterations, with a total runtime of 45 979 seconds (12 hours and 46 min-
utes). The smallest optimality gap, 7.89%, is obtained after 260 iterations which
corresponds to 11 hours and 3 minutes. The optimality gap for every iteration is
shown in Figure 8.17. For comparison, the optimality gap of the non-relaxed prob-
lem after 46 000 seconds is 14.72%. This optimality gap is obtained already after 3
hours and 3 minutes. Thus, the Lagrangian relaxation reduces the optimality gap
for the non-relaxed problem, when run for 46 000 seconds, by 46.40%.
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Figure 8.18: Optimality gap for the non-relaxed problem and Lagrangian relaxation.

As can be seen in Figure 8.17 the optimality gap falls rapidly after only a few
iterations. It is of interest to analyze this part of the process more closely. In Figure
8.18 the optimality gap for two hours of the Lagrangian relaxation is compared to
the non-relaxed problem. After 7 200 seconds (two hours), 46 iterations of the
Lagrangian relaxation have been executed. Each point marks the result after an
iteration. The parts around 3 000 seconds and 6 000 seconds, where there is a
bigger time difference between two iterations, are iteration 20 and 40, when the
heuristic procedure has been run. The heuristic procedure is also the reason why
the solution for the first iteration occurs at a later time than for the non-relaxed
problem.

As can be seen from the figure, the Lagrangian relaxation starts with a higher
optimality gap than for the non-relaxed problem, but decreases more rapidly and
begins to converge at a smaller optimality gap. The smallest optimality gap for the
non-relaxed problem is 14.93% while for the Lagrangian relaxation it is 10.13%.
Thus, within two hours, the Lagrangian relaxation reduces the optimality gap for
the non-relaxed problem by 32.15%. This is a significant reduction in optimality
gap, but it is still larger than the optimality gap obtained from the resolve problem.

Overview

In Table 8.7 an overview of the different cases, with the resulting optimality gap,
is presented. The smallest optimality gap is achieved for the case where the
LBDnon-relaxed is combined with the UBD for the resolve problem. However, the
runtime for this case is much higher than for the resolve problem in the first itera-
tion of the Lagrangian relaxation. It is also noteworthy that all the results including
Lagrangian relaxation, and the resolve problem, have a smaller optimality gap than
the non-relaxed problem.
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It should be noted that the convergence of the Lagrangian relaxation could be
improved with a better heuristic as discussed in Section 8.3.3. When no new UBD
is found, the λ is decreased by 50 % every 10th iteration. When no new UBD is
found for many iterations, the step length becomes very small and it may look as
if the solution converges because the step length is so small. When the heuristic
procedure is able to find a new UBD, the step length is reset and it is possible to
converge faster and obtain a smaller optimality gap.

Table 8.7: Overview of optimality gap for different computational cases.

Problem case Runtime in seconds Optimality gap

Non-relaxed problem 7 200 14.93 %
Non-relaxed problem 46 000 14.03 %
Lagrangian relaxation 7 200 10.13 %
Lagrangian relaxation 45 979 7.89 %
Resolved problem, 1. iteration 564 7.15 %
Combined non-relaxed and resolved 7 764 4.57 %

8.3.4 Comparison of Model Output

It is clear from the results so far, that implementing a Lagrangian relaxation has
the potential to improve the computational efficiency. However, it is important to
acknowledge that the relaxed problem is different from the non-relaxed problem and
may not necessarily converge towards the same solution. Certain combinations of
the values of the multipliers can result in solutions that are valid mathematically,
but unrealistic from a practical point of view. Therefore, it should be verified
that solutions from the Lagrangian relaxation approaches feasible solutions of the
non-relaxed problem with increased iterations. In this section the model output
of the Lagrangian relaxation is analyzed and compared with the output from the
non-relaxed problem.

Figure 8.19 shows the number of accepted call-offs, including duplicates. It also
shows the number of unique call-offs accepted. Initially, relatively few unique call-
offs are accepted, and since the number of call-offs accepted is much higher, it is
clear that call-offs have been accepted on several casting tables simultaneously. Af-
ter more iterations the number of unique call-offs accepted approaches the number
of call-offs accepted. This indicates that the process is getting closer to finding a
feasible solution where there are no duplicates of accepted call-offs.
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Figure 8.19: Number of call-offs accepted per iteration.

Considering the graph of accepted call-offs, it stabilizes rapidly around 1 200 call-
offs, and this happens after only 15-20 iterations. This is close to the number of
accepted call-offs from the non-relaxed problem in Section 8.3.1, which accepts 1
208 unique call-offs. When considered together with the discussion on unique call-
offs accepted, this is a good indication of the relaxed model behaving as expected
in the iterative procedure.

Figure 8.20: Statistics of call-offs accepted per iteration.

In Figure 8.20 the maximum number of times any call-off is accepted is shown,
together with the average number of times accepted call-offs have been accepted
simultaneously. On the first iteration, an accepted call-off is being accepted simul-
taneously on 2.1 casting tables on average. This number falls towards one with
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increased iterations, and after about 200 iterations this number revolves around
one.

The maximum number of times a call-off has been accepted is initially six, and then
reaches two for the first time after 150 iterations. Together with the average num-
ber, this graph should ideally reach one after sufficiently many iterations. These
results correspond with the results in Figure 8.19, where the iterative procedure
behaves satisfactory but the best solution found is not yet feasible as there are
duplicates of accepted call-offs.

In order for the Lagrangian subproblem to find a feasible solution it needs suffi-
ciently many iterations. However in this study, the reason for the subproblem not
finding a feasible solution could be the weaknesses in the heuristic procedure dis-
cussed in Section 8.3.3. By implementing the suggested change in this procedure,
the necessary changes in step lengths could be obtained and a feasible solution of
the Lagrangian subproblem could be found.
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Chapter 9

Concluding Remarks and
Future Research

This thesis has derived a production planning model for the Norwegian aluminum
producer Norsk Hydro. Norsk Hydro’s problem revolves around allocating demand
to their many plants under conditions of daily updated information regarding de-
mand. The demand is either categorized as call-off demand or a forecasted demand,
and the model wishes to allocate as much as possible of it while minimizing costs.

Two types of solution approaches have been applied to the problem, a rolling
horizon approach and an approach involving Lagrangian relaxation of constraints.
The rolling horizon approach has been applied with the purpose of compensating for
the dynamic nature of demand information. Meanwhile, two types of Lagrangian
relaxations have been tested with the purpose of reducing problem complexity and
the following effects on optimality gaps and runtimes.

The scope of values for the input data used has been presented, along with as-
sumptions that were made related to this. The detail level of the data available
has made simulating demand data necessary. Simulations have been performed
using queuing theory assumptions in order to determine delivery days and arrival
days of orders. Orders are later distinguished as either call-off or forecast depend-
ing on the rolling horizon iteration, or roll, the model is running. The simulated
data has also been exposed to an initialization period to facilitate initial states for
various computational studies.

A computational study of the rolling horizon approach has been performed, and
both computational efficiency and features of the solution variable output has been
discussed. A variation on optimality gap is observed in the consecutive rolls of the
approach, and a connection to the amount of call-offs entering the model at each
roll is identified. Solution variable output suggests that the model functions as
intended; call-off demand is prioritized over forecasted demand, and full capacity
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utilization is observed on several of the castinghouses. When capacity utilization is
limited, the dimensions prevalent in the simulated demand along with unfavourable
call-off quantities are seen as contributing factors.

The rolling horizon approach has also been discussed in relation to the concept of
nervousness. Nervousness has been investigated by locking production for different
times when using the rolling horizon approach. A trade-off is apparent between
computational efficiency and performance of the objective function. Locking pro-
duction for many days in each roll results in higher costs, but solutions close to
optimality for this lock setting.

A computational study on the proposed Lagrangian relaxations has shown improve-
ments in the optimality gap and runtime of the model. The so called casting table
relaxation has been deemed the most efficient, and analyses have primarily been
dedicated to this relaxation. The impact of three different computational elements
in the Lagrangian solution process has been assessed as they all contribute to the
total runtime. Comparisons have been made to the computational efficiency of a
non-relaxed variant of the model, and one has shown that a combination of this
variant and Lagrangian relaxation gives the best optimality gap.

The analysis of the Lagrangian relaxations has suggested that the solution process
can be improved by using a more sophisticated heuristic procedure or by using a
different method for updating Lagrangian multipliers between iterations. These are
thus natural contenders for future research. More specifically, Lemarechal (1986)
suggests a bundling method for updating Lagrangian multipliers. Schütz et al.
(2009) use this method to great effect.

An obvious continuation of the solution approaches in this thesis is to combine
the Lagrangian relaxations with the rolling horizon approach. The rolling horizon
approach was applied by introducing additional constraints to the model in Chapter
5, and the Lagrangian relaxations analyzed did not account for these additions. The
computational study of the rolling horizon approach showed that runtimes suffered
when production was locked for few days in each roll. Integrating Lagrangian
relaxation and rolling horizon can thus contribute to reducing the aforementioned
trade-off between nervousness and optimality gaps.

Lastly, an additional subject for potential future research is to extend the model to
consider the sequence in which the products are produced. The literature review
in this thesis mentioned Tiacci and Saetta (2012), who combine sequencing with a
rolling horizon approach. Computational efficiency is preserved by only sequencing
the first days of the planning horizons. For Norsk Hydro, preferable sequences
for instance have similar alloys following each other. In other cases, certain alloys
cannot follow each other without the operators having to clean instruments at
the plants in between. The sequencing decisions could be included as part of an
operational planning tool, where the call-offs are allocated considering product
properties that are advantageous for production sequences, leading to minimal
global rescheduling times.
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Schütz, P., Tomasgard, A. and Uggen, K. T. (2011), Using hierarchical planning to
exploit supply chain flexibility – An example from the Norwegian meat industry,
in K. D. Lawrence, R. K. Klimberg and V. Miori, eds, ‘The Supply Chain in
Manufacturing, Distribution, and Transportation: Modeling, Optimization, and
Applications’, CRC Press, Boca Raton, FL, chapter 4, pp. 47–68.

Simpson, N. (1999), ‘Multiple level production planning in rolling horizon assembly
environments’, European Journal of Operational Research 114(1), 15–28.

Spengler, T., Rehkopf, S. and Volling, T. (2007), ‘Revenue management in make-
to-order manufacturing—an application to the iron and steel industry’, OR spec-
trum 29(1), 157–171.

Sridharan, V. and Berry, W. L. (1990), ‘Freezing the master production schedule
under demand uncertainty’, Decision Sciences 21(1), 97–120.

Sridharan, V., Berry, W. L. and Udayabhanu, V. (1987), ‘Freezing the mas-
ter production schedule under rolling planning horizons’, Management Science
33(9), 1137–1149.

Stadtler, H. (2000), ‘Improved rolling schedules for the dynamic single-level lot-
sizing problem’, Management Science 46(2), 318–326.

Stadtler, H., Kilger, C. and Meyr, H. (2015), ‘Supply chain management and ad-
vanced planning’.

Stevenson, M., Hendry, L. C. and Kingsman, B. G. (2005), ‘A review of production
planning and control: the applicability of key concepts to the make-to-order
industry’, International journal of production research 43(5), 869–898.

Tiacci, L. and Saetta, S. (2012), ‘Demand forecasting, lot sizing and schedul-
ing on a rolling horizon basis’, International Journal of Production Economics
140(2), 803–814.

Torabi, S. A., Ebadian, M. and Tanha, R. (2010), ‘Fuzzy hierarchical production
planning (with a case study)’, Fuzzy Sets and Systems 161(11), 1511–1529.

Umble, E. J., Haft, R. R. and Umble, M. M. (2003), ‘Enterprise resource plan-
ning: Implementation procedures and critical success factors’, European journal
of operational research 146(2), 241–257.

Van Vyve, M. (2006), ‘Linear-programming extended formulations for the single-
item lot-sizing problem with backlogging and constant capacity’, Mathematical
Programming 108(1), 53–77.

83



BIBLIOGRAPHY

84



Appendix A

Previous Model

The following is the model formulation developed in Reine et al. (2017).

max z =
∑
c∈C

∑
k∈K

∑
p∈P

∑
t∈T

(PpDcptδckpt)

−
∑
c∈C

∑
k∈K

∑
p∈P

∑
t∈T

(
CTckDcptδckpt + CF δckpt

)
−
∑
k∈K

∑
m∈MK

∑
p∈P

∑
t∈T

(
CPkpBxmpt

)
−
∑
k∈K

∑
p∈P

∑
t∈T

CHskpt

−
∑
k∈K

∑
p∈P

∑
t∈T

(
CAkpy

+
kpt + CBkpy

−
kpt

)

subject to

skpt−1 +
∑

m∈MK

Bxmpt −
∑
c∈C

(Dcptδckpt) = skpt k ∈ K, p ∈ P, t ∈ T

∑
m∈MK

Bxmpt + skpt−1 −
∑
c∈C

Dcptδckpt ≥ 0 k ∈ K, p ∈ P, t ∈ T

∑
k∈K

δckpt ≤ 1 c ∈ C, p ∈ P, t ∈ T∑
p∈P

Bxmpt ≤ Km k ∈ K,m ∈MK, t ∈ T
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Chapter A. Previous Model

∑
m∈MK

(Bxmpt) + y−kpt − y
+
kpt =

∑
c∈C

Zckpt k ∈ K, p ∈ P, t ∈ T

Bxmpt ≤ KmQmp k ∈ K,m ∈MK, p ∈ P, t ∈ T
xmpt ∈ Z+ k ∈ K,m ∈MK, p ∈ P, t ∈ T

y+kpt, y
−
kpt ≥ 0 k ∈ K, p ∈ P, t ∈ T
skpt ≥ 0 k ∈ K, p ∈ P, t ∈ T
δckpt ∈ {0, 1} c ∈ C, k ∈ K, p ∈ P, t ∈ T
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