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Problem Description

Passing is the most frequent event happening during a football match, and by suc-
cessfully passing the ball forward on the pitch, the chance of creating goal-scoring
opportunities increases. The purpose of this thesis is to find ways to evaluate play-
ers’ passing behaviour. The results can provide coaches and players with valuable
information, with the aim of increasing performance.







Preface

This master’s thesis was written for the Department of Industrial Economics and
Technology Management at the Norwegian University of Science and Technology
during the spring of 2018. The thesis finalises the authors’ Master of Science and
is a continuation of the work done for a project thesis in the autumn of 2017. Both
authors have technical background in Energy and Environmental Engineering and
are specialising in Empirical and Quantitative Methods in Finance.

The work done in the thesis concerns the use of analytical methods in the con-
text of association football, and it was initiated by Rosenborg Ballklub, a profes-
sional Norwegian association football team. Rosenborg Ballklub wanted to explore
new approaches to assess their players in order to improve performance. Hence,
the thesis is the result of a cooperative initiative between Rosenborg Ballklub and
the Department of Industrial Economics and Technology Management.
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Summary

Association football is the world’s most popular sport, and there is a growing
interest in the use of statistical methods to support decision-making within the
sport to gain competitive advantages. In this thesis, the passing behaviour of
football players is evaluated. The passing abilities of players, key players on teams
and effectiveness of passing motifs in the Norwegian top division Eliteserien have
been analysed through regression models and network analyses. The results from
the different analyses build upon each other and are based around three aspects of a
pass’s success: accuracy, game overview and effectiveness. For the analyses, event-
data from four consecutive seasons of Eliteserien (2014-2017) has been utilised.

Three generalised additive mixed models have been developed to assess players’
passing abilities. Each model considers one of the three aspects of success, and the
models were built on 565,720 observations in the data from the 2014-2016 seasons
and tested on data from the 2017 season. The AIC criterion is used to determine
whether a variable should be treated as a smooth term or a fixed effect, and Wald
tests are performed for variable elimination. In general, the signs of the coefficients
and the shapes of the smooth functions in the resulting models make sense. The
models are used to identify the top ten pass makers in the 2017 season of Eliteserien,
and the passing abilities of players over a period of time are determined by the ratio
of the number of observed successful passes for a player over the models’ expected
number of successful passes for that player in the given time period.

The predicted probabilities obtained for passes in the passing ability models,
together with the number of passes between players, were used as weights in net-
work analyses. For each team and season in the data set, a network analysis was
performed for each aspect of success to determine the key players in a team based
on different network metrics. The closeness, betweenness and PageRank centrality
measures and the Barrat clustering coefficient have been considered. Results show
that the player positions of the key players vary among the measures. Offensive
players tend to be ranked higher on the closeness centrality and the PageRank
measure for recipients, while defenders, with many easy passes in between each
other, tend to be ranked higher on the PageRank measure for passers.

Rosenborg Ballklub players show some tendencies that differ from the general
results across the teams in Eliteserien as defenders seem to be more involved in the
offensive play. Case studies give an indication that the team depends more upon
players on the right-hand side in matches where they had a low ball possession.

To analyse what influences the effectiveness of four-sized passing motifs in
Eliteserien, a generalised additive model was built using data from all four seasons.
A total of 203,208 motifs were included in the analysis. Most of the explanatory
variables in the model are based on the results from both the passing ability mod-
els and the network analyses. The findings indicate that the more compact motif
types, i.e. where less unique players are involved, are less likely to lead to shots.
However, there is no apparent relation between teams’ internal usage of effective
motif types and their end-of-season table position.
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Sammendrag

Fotball er den mest populeere sporten i verden, og det er en gkende interesse for
bruken av statistiske metoder innenfor sporten med formal om & skape et bedre
beslutningsgrunnlag som kan gi lag konkurransefortrinn. I denne masteroppgaven
blir fotballspilleres pasningsevner vurdert, de mest sentrale spillerne for lag funnet
og effektiviteten til pasningsmotiv studert gjennom logistiske regresjonsmodeller
og nettverksanalyser. Resultatene fra de ulike analysene bygger pa hverandre og
de er sentrert rundt tre aspekt av en pasnings suksess: ngyaktighet, overblikk
og effektivitet. Event-data fra fire etterfglgende sesonger av den gverste norske
divisjonen Eliteserien (2014-2017) blir brukt i analysene.

For & evaluere spilleres pasningsevner, er det blitt utviklet tre generaliserte ad-
ditive miksede modeller. Hver av disse tar for seg et av de definerte aspektene av
suksess, og modellene er bygget pa 565,720 observasjoner i dataen fra 2014-2016 ses-
ongene og testet pa data fra 2017 sesongen. AIC kriteriet er brukt for & bestemme
om variabler skal behandles som kategoriske eller som glatte funksjoner, og Wald
tester er utfgrt for a eliminere variabler fra modellene. Generelt sett er fortegnet pa
koeffisientene og formen pa de glatte funksjonene i de resulterende modellene intu-
itive. Modellene blir brukt til & identifisere de ti beste pasningstakerne i Eliteserien
2017, og pasningsevnene til spillerne for en gitt periode blir bestemt ut fra raten
mellom antall vellykkede pasninger spilleren har gjort i perioden og det antallet
pasninger som modellene forventer at spilleren skal ha klart.

De predikerte sannsynlighetene for suksess fra modellene for pasningsevnene
blir, ssammen med antallet pasninger mellom to spillere, brukt videre som vekter
i nettverksanalyser. For hvert lag og hver sesong er det satt opp tre nettverk, ett
for hvert aspekt av suksess. Malet med disse er a finne de mest sentrale spillerne
for lagene basert pa ulike nettverksmal. Closeness, betweenness, PageRank og clus-
tering er de nettverksmalene som er tatt i betraktning. Resultatene indikerer at
spillerposisjonene til de gverst rangerte spillerne varierer blant mélene. Offensive
spillere har en tendens til & bli rangert hgyere pa closeness og PageRank for mot-
takere, mens forsvarsspillere, som ofte sentrer lette pasninger til hverandre, har en
tendens til & bli rangert hgyere pa PageRank for pasningstakere.

Spillerne i Rosenborg Ballklub viser tendenser som avviker noe fra de generelle
resultatene funnet for Eliteserien ettersom forsvarsspillere virker & veere mer in-
volvert i det offensive spillet. To case-studier gir indikasjoner pa at laget later til a
vaere mer avhengig av spillerne pa hgyre side i kamper hvor de har lav ballbesittelse.

Effektiviteten til pasningsmotiv av stgrrelse fire i Eliteserien har blitt analysert
ved & utvikle en generalisert additiv modell. Data fra alle fire sesongene ble brukt,
noe som utgjorde 203,208 observasjoner. Flesteparten av de uavhengige variablene
i modellen er basert pa resultatene fra modellene for de analyserte pasningsevnene
og nettverksanalysene. Resultatene indikerer at mer kompakte motivtyper, hvor
feerre unike spillere er involvert, har lavere sannsynlighet for & fgre til et skudd.
Det er ingen klar sammenheng mellom et lags interne bruk av effektive motivtyper
og lagets tabellposisjon.
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Chapter

Introduction

Association football, referred to as football in this thesis, attracts more than 4
billion followers worldwide and is the most popular sport measured by participa-
tion, media coverage and key economic figures (Total Sportek, 2007). Enormous
amounts of money are circulating in the world of football and the three teams
generating the highest revenue in the 2016/2017 season earned a combined sum of
€2 billion (Boor et al., 2018). Moreover, €1.72 billion of the total gross commer-
cial revenue from the 2017/2018 UEFA Champions League, the 2017/2018 UEFA
Europa League and the 2017 UEFA Super Cup are estimated to be distributed
to the participating teams (UEFA, 2017). Considering these numbers, there is no
doubt that success is valuable in football. Teams are therefore constantly seeking
new ways to improve their performance, with the aim of winning titles to receive
prize money and increased attention.

Recently, the use of statistics in sports has gained popularity. By utilising ana-
lytical methods to evaluate player and team performance, competitive advantages
may be obtained. This emerging field of research is known as sport analytics. The
aim of sport analytics is to support decision-making by helping players and coaches
to make better-informed choices. Applications include tactical analyses, player re-
cruitment, injury prevention and business decisions. Today, extensive amounts of
data are available, and the opportunities to make more sophisticated and targeted
analyses are increasing along with technological advances. Sport analytics is widely
recognised in sports such as basketball, baseball and football.

The use of analytical methods in football will be further explored in this thesis.
Three models are developed to evaluate players’ passing abilities in the Norwegian
top division for men, Eliteserien, and each model looks into a different aspect of
a pass’s success defined as accuracy, game overview and effectiveness. A pass is
accurate if it successfully reaches its target, while a player being able to make tac-
tically good passes that the pass recipient is able to follow up has a good game
overview. Effective passes are more likely to lead to shots. The results from the
passing ability models are further used in network analyses to identify the key




Chapter 1. Introduction

Chapter 7
Motif Analysis

Chapter 5
Passing Ability

Chapter 6
Key Players

Figure 1.1: An overview of the analyses done in the thesis. The arrows show how the
results in an analysis are connected to other analyses.

players in teams. At last, a motif analysis is performed by building a model to
investigate the effectiveness of different types of passing motifs. Both the results
from the passing ability models and the network analyses are included as variables
in the model. Figure 1.1 shows how the results from the different analyses done in
this thesis are connected.

1.1 Motivation and Research Questions

Rosenborg Ballklub (Rosenborg) has won 36 national titles and is historically Nor-
way’s most successful football team (rbk.no, 2018). With impressive winner statist-
ics achieved in Norway, Rosenborg is looking to further develop in order to succeed
both nationally and internationally. To achieve this, they want to make use of
analytical methods to make better-informed decisions, both at the player level and
the manager level.

The importance of passing in football is great. When successfully passing the
ball between teammates, both in the attacking and defensive phases of a play,
ball possession is kept with the purpose of creating goal-scoring opportunities and
avoiding goals against. The analyses performed in this thesis aim to handle Rosen-
borg’s request of utilising analytical tools for decision support as well as to be an
addition to the academic field of sport analytics. By making use of past match
data, Rosenborg will be provided with valuable information about their players’
abilities to make accurate, tactically good and effective passes. Further, network
analyses will reveal information about their players’ role in the team and analyses
of passing motifs will give an indication about which motif types that tend to
be effective in terms of leading to shots. The approaches used build on and add
to existing literature by examining similar problems and exploring both new and
previously applied methods to deal with them.

For this thesis, three main research questions are defined and sub-questions are
added for applications to Eliteserien. The questions are answered in three separate
chapters, and they are as follows:




1.2 Report Structure

RQ 1: Which factors influence the success of a pass in Eliteserien?
— Who were the best passers in the 2017 season of Eliteserien?
RQ 2: How can the key players in a football team be identified?

— Who were the key Rosenborg players in the 2017 season of Eliteserien?

— How does Rosenborg depend upon certain key players when having dif-
fering ball possessions?

RQ 3: What determines the success of a passing motif in Eliteserien?

— Are the top performing teams in Eliteserien inclined to use the more
effective motif types?

1.2 Report Structure

The remainder of the thesis is structured as follows. In Chapter 2, the basic
theory on the statistical methods and the networks used are presented. Then,
an introduction to sport analytics is given, followed by a review of research on
passing both in football and in other sports in Chapter 3. The data used in the
thesis is described in detail in Chapter 4 and the model set-up and the results of
the passing ability models are presented in Chapter 5. Further, the set-up used
for the network analyses performed to identify key players in teams is introduced
in Chapter 6, including the outcome of the analyses. In Chapter 7, the set-up
and the results of the regression model for the motif analysis are presented. At
last, the concluding remarks and recommendations for further research are given
in Chapter 8 and Chapter 9 respectively.
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Chapter

Basic Theory

The basic theory relevant for the analyses performed in this thesis is presented in
the following sections. The theory concerns the basics of logistic regression models,
including their estimation, selection and validation methods, and network analysis.

2.1 Binary Logistic Regression

Binary logistic regression is a statistical technique used to model the relationship
between dependent and independent variables when the dependent variable is bin-
ary, i.e. it takes the value of zero or one (Hosmer Jr et al., 2013). Consequently, the
modelling approach is appropriate when dealing with problems where the outcome
of observations can be classified as either a success or a failure. If ¢ denotes the ith
out of N observations, the dependent variable, y;, is defined as:

(1)

_ )1, if observation i is successful (i = 1,...,N)
vi= 0, if observation ¢ is unsuccessful (i =1,...,N).

In general, the independent variables in a logistic regression model are related
to the dependent variable via the logit link function given by:

P,
loitP:ln( : ): ) 2
git(F;) 1-P, i (2)
where P; is the conditional mean and 7); is a function of the independent variables
and their corresponding coefficient estimates. The conditional distribution is a
Bernoulli distribution where an observation’s probability of success is represented
by the inverse logit function given by:

exp” 1
1+exp? 1+exp

P, = Pr(yi = 1|n;) = (3)
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2.2 Generalised Linear Mixed Models

In a generalised linear mixed model (GLMM), both fixed and random effects are
allowed to be included in a linear predictor. By incorporating random effects, one
can build a model that accommodates correlation and one has a greater flexibility
when making inferences about the data distribution (McCulloch et al., 2011). As
of now, there is no consensus about the definitions of fixed and random effects, and
several definitions are thus used by researchers. In Gelman et al. (2005), the terms
fized and random are referred to as constant and varying. Effects are constant if
they are identical for all groups in a population, while they are varying if they are
allowed to differ across the groups.
For a GLMM, 7, is a function of fixed and random effects given by:

ni = XiB+ Z;a, (4)

a~N(0,%,), (5)

where Xj; is a vector of fixed effects, 8 is a vector of fixed-effect coefficients, Z; is
a vector of random effects and « is a vector of random-effect coefficients (Wood,
2006). The random effects are assumed to be normally distributed with ¥ denoting
the covariance matrix, parameterised by the coeflicient vector o.

2.3 Generalised Additive Mixed Models

A generalised additive mixed model (GAMM) is an extension to the previously
mentioned GLMM for which the linear predictors are replaced by additive predict-
ors, also known as smooth functions (Lin and Zhang, 1999). If some of the smooth
functions are linear, they effectively become fixed effects. In the case of a GAMM,
7; can be written as:

i :Xi,@—i—Zia—i-fl(.%‘li)+"'+fj<33ji)a (6)

where X; is a vector of fixed effects, 8 is a vector of fixed-effect coefficients, Z;
is a vector of random effects, « is a vector of random-effect coefficients and fi-
f; are smooth functions of variables x1;-xj; (Wood, 2006). The random effects
are assumed to be normally distributed in accordance with equation (5). If the
random-effect term in equation (6) is excluded, the model becomes a generalised
additive model (GAM) (Hastie and Tibshirani, 1986).

Smooth functions are used to nonparametrically describe the dependency between
the dependent variable and the independent variables (Hastie and Tibshirani,
1986); they allow the contribution of the independent variables to vary with a
function. The function is unknown and is to be estimated during the regression
through a scatterplot smoother such as a spline.




2.3 Generalised Additive Mixed Models

2.3.1 Smoothing Splines

A spline joins two or more polynomial curves, with knots representing the locations
of the joins. Smoothing splines are useful for fitting smooth curves to a set of
noisy observations through spline functions. The splines reduce a model’s risk of
becoming overfitted by penalising the coefficients of the estimated basis function.
Overfitting refers to the problem that more terms than necessary are included in
a model or that too sophisticated approaches are utilised in the model building
approach, which can result in unreliable predictions and bad decisions (Hawkins,
2004). The trade-off between the degree of smoothness and the model’s fit is given
by a smoothing parameter, A. The degree of penalisation of the coefficients and the
degree of smoothness increase with A (Wood, 2006). Illustrations of two smooth
curves with different smoothing parameters are shown in Figure 2.1.

In the case of a full spline, a knot is placed at each data point. This is computa-
tional expensive, and penalised regression splines are often preferred for efficiency
reasons due to fewer basis functions being used, with knots evenly distributed across
the data. Thin plate regression splines, cubic regression splines and P-splines are
examples of smoothing splines that estimate smooth functions of one variable. Cu-
bic regression splines are often the preferred option when dealing with large data
sets. For smooth functions of several variables, isotropic smooths or tensor product
smooths are commonly used. In the case of isotropic smooths, the same degree of
smoothness is assumed in all dimensions, while differences in smoothness across
the variables are allowed for tensor product smooths. Overall, the choice of basis
function is a question of acceptable mean squared error, desired computation time
and the properties displayed by the particular data distribution (Wood, 2017).

Lambda = 0.1

Figure 2.1: Illustrations of smooth curves with different smoothing parameters.
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2.4 Estimation Methods for GLMMs and GAMMs

As random effects can be represented as penalised regression terms, which are
similar to the representation of smooth functions, the same estimation methods
can be applied to GLMMs and GAMMs as they effectively become GAMs (Wood,
2018). During estimation, such models are considered to be over-parameterised
generalised linear models, which are estimated using penalised likelihood maxim-
isation solved by penalised iteratively reweighted least squares (P-IRLS). When
using the method of P-IRLS, weighted penalised least squares problems are solved
and smoothing parameters are selected. Two basic algorithms exist for the selection
of the appropriate smoothing parameter. The first method is single iteration, and
it estimates the smoothing parameter in each iteration of the P-IRLS procedure,
with no guarantee of convergence. In the second method, a selection criterion for
the smoothing parameter based on the model deviance is defined and optimised.
This algorithm is referred to as nested iteration, and convergence is guaranteed.
For large data sets, the single iteration algorithm is considered to be more efficient
(Wood et al., 2015).

To estimate the smoothing parameter, restricted maximum likelihood (REML),
an idea first proposed by Patterson and Thompson (1971), can be used. The logic
behind this approach is that maximum likelihood estimation is performed using
a modified likelihood function calculated from a transformed set of data, allowing
variance components to be estimated independently of the fixed-effect estimates.
This is achieved by partitioning the likelihood function proposed by Patterson and
Thompson (1971) into two parts where one of the parts excludes the fixed effects
(Corbeil and Searle, 1976). REML tends to be the preferred option among re-
searchers due to the method being less prone to local minima and undersmoothing
compared to other available estimation methods such as generalised cross valida-
tion or an un-biased risk estimator (Wood, 2011).

2.5 Model Selection

In order to obtain the best fitted model, the set of independent variables needs to
be carefully selected within the constraints of the available data. The aim of the
selection process is to build a statistically stable model that accurately reflects the
true outcome of the data by minimising the model’s dependency on the observed
data and by reducing its estimated standard errors. Also, by removing variables not
favourable for the model fit, the problem of overfitting can be dealt with (Hosmer
Jr et al., 2013). The Akaike Information Criterion (AIC) and the Wald statistic
are examples of statistical measures that can be used for model selection purposes.
Moreover, the AIC score is useful when comparing models with differing numbers
of explanatory variables.




2.5 Model Selection

2.5.1 AIC

Following Hosmer Jr et al. (2013), the AIC value of a model is given by:

AIC=-2xL+2x(p+1), (7

where L is the log-likelihood of the fitted model and p represents the number of non-
constant explanatory variables to be estimated. The model achieving the lowest
AIC score has the best fit.

2.5.2 Wald Statistic

The Wald statistic of a fixed-effect variable is defined as:

B
W= ——, 8
SE(p) ®

where ,6’ is the estimated variable coefficient and @(3) represents the estimate
of the standard error (Hosmer Jr et al., 2013). The best fitted model consists of
those variables with Wald statistics that prove to be statistically significant at a
predetermined significance level.

2.5.3 Stepwise Regression

The AIC and the Wald statistic can be used as model fit criteria in a stepwise
regression to iteratively eliminate or add variables from or to an initially developed
model. Stepwise regression can for instance be performed through forward selec-
tion, backward elimination or stepwise selection (Statistics Solutions, 2018). Back-
ward elimination is used on a fully developed model. In each step, the variable
that, when removed from the model, improves the model fit the most is excluded.
The procedure is continued until no more variables can be removed in order to
give a better model fit. When using the AIC as criterion, the variable that lowers
the AIC the most when removed from the model is excluded, while in the case
of the Wald statistic, the variable with the highest Wald statistic above a chosen
significance level is removed.

Although being very effective in terms of choosing variables, stepwise regression
is faced with some challenges. When adding or removing a single variable at a time,
a suboptimal model may be the outcome as not all combinations of variables in a
model are considered. Also, removing combinations of variables could be a better
solution compared to considering only one variable in each step. As there always is
a predetermined set of variables to choose from, some variables must be chosen even
if they are insignificant, meaning that insignificant variables could be present in the
final model (Goodenough et al., 2012). In addition to the mentioned challenges,
Judd et al. (2011) state that stepwise regression can result in a suboptimal model
when highly correlated explanatory variables are incorporated in the model.
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2.6 Validation Methods for Binary Classifier Sys-
tems

To test how well a model describes the data, it is crucial to evaluate the model’s
goodness of fit, which is defined as the accuracy of the true outcome in the data
based on the probabilities produced by the model (Hosmer Jr et al., 2013). Valida-
tion methods used to test the performance of a binary classifier, such as in the case
of a binary logistic regression model, include the area under a receiver operating
characteristic (ROC) curve, the area under a precision-recall (PR) curve and the
Hosmer-Lemeshow (HL) test.

2.6.1 Area Under an ROC Curve

To understand the theory of ROC curves, the terms sensitivity and specificity are
introduced. A model’s sensitivity is given by the number of true positives over
the total number of positive outcomes in the data, and the measure is commonly
referred to as a model’s true positive rate. On the other hand, specificity is a
model’s true negative rate. The formal definitions of sensitivity and specificity are:

. TP
SenS’LtZ'UZty = m, (9)
TN
TP 1
Speci ficity TN L FP’ (10)

where TP, FN, TN and FP are the numbers of true positives, false negatives,
true negatives and false positives respectively. True or false depicts whether an
observation is truly or wrongly predicted to be successful or unsuccessful (Fawcett,
2006).

A threshold must be set in order to classify the predicted outcome of a model.
Predictions above this threshold are positive, while those below are classified as
negative. In an ROC curve, the entire range of thresholds, limited between zero
and one, is considered. For each threshold value, the sensitivity of a model is plotted
against one minus the specificity. The latter is often referred to as a model’s false
positive rate. In Figure 2.2, illustrations of two ROC curves with different areas

Table 2.1: Guidelines for assessing a model’s discrimination ability using the area under
an ROC curve.

Value Description

0.5 No discrimination
0.5 < AUC < 0.7 Poor discrimination
0.7 < AUC < 0.8 Acceptable discrimination
0.8 < AUC < 0.9 Excellent discrimination
AUC > 0.9 Outstanding discrimination
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Figure 2.2: Illustrations of ROC and PR curves with their respective AUCs.

under the curves (AUCs) are shown. At the leftmost point on the graph, where the
specificity is one and the sensitivity is zero, all predictions are negative, while all
observations are predicted as positives at the rightmost point on the graph where
the threshold is zero.

The AUC for an ROC curve is a measure of a model’s ability to discriminate
between positives and negatives. If being on the diagonal, the model functions as
a random classifier and has an AUC of 0.5. The aim is to obtain a model with a
perfect classification ability, which corresponds to an AUC of 1.0. When evaluating
a model’s discrimination ability based on the AUCs of ROC curves, Hosmer Jr et
al. (2013) suggested to use the guidelines presented in Table 2.1. As seen from
the given AUCs in Figure 2.2, the associated models have an excellent and a poor
discrimination ability respectively.

2.6.2 Area Under a PR Curve

Another validation method used to assess the fit of a model is the area under a PR,
curve. For this curve, the precision, which is a model’s positive predictive value,
is plotted against the recall, which is identical to the sensitivity of an ROC curve,
for the same range of thresholds as for the ROC curve. With the same notation as
in equations (9) and (10), the recall and precision are defined as (Fawcett, 2006):

TP
= - 11
Recall TP LN’ (11)
TP
P L S10N = ——————. 12
recision TPLFP (12)

The fit of a model increases with the size of the area under the PR curve. A
perfect model consists of only true positives and true negatives, and it is obtained
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when the AUC is 1.0. Two PR curves are illustrated in Figure 2.2, and as seen
from the figure, a higher AUC is associated with a concave-shaped curve, which is
achieved when the recall increases faster than what the precision decreases.

Davis and Goadrich (2006) studied the relationship between ROC and PR
curves, and they proved that PR curves better reflect the true performance of
a model when the data distribution is highly skewed. For instance, if there is an
excess of true negatives in the data set, the precision parameter is able to capture
the skewness by comparing the false positives to the true positives rather than to
the true negatives.

2.6.3 Hosmer-Lemeshow Test

The HL test is a validation tool which appropriately tests a model’s calibration
ability, i.e. its ability to generate true predictions. In this test, the data is sorted in
ascending order by the predicted probabilities and then divided into g equally sized
groups. Within each group, the observed and expected frequencies of positives and
negatives are obtained and compared to test whether poor predictions are included
in the estimated model. The test statistic, C, is given by:

g N 2 2 2
-~ 01 — € Oor — €
0= Z ( 1k _ lk) + ( 0k _ Ok) , (13)
—~ é1 Eok

where 01k, oox, €1x and égx are the observed true positives, the observed true
negatives, the predicted true positives and the predicted true negatives for group
k respectively. The test statistic is chi-squared distributed with g — 2 degrees of
freedom. The null hypothesis of a good model fit is tested against the alternative
hypothesis of a poor model fit. Hence, low values of the test statistic and high
p-values indicate a good calibration ability (Hosmer Jr et al., 2013).

When the sample size gets big, the results of HL tests are proven to be sensitive
to the chosen number of groups (Allison, 2014). This is due to the fact that
the power of the HL test increases with the sample size, which can make even
small differences between the observed and expected frequencies statistically large.
Moreover, there is a lack of consensus of how to choose the optimal g, although the
standard choice has commonly been ten.

Paul et al. (2013) do not recommend to use the HL test for sample sizes larger
than 25,000, but have proposed a strategy for such cases. The idea is to choose
random samples of equal sizes from the full data set, and for each sample, perform
the HL test with ¢ = 10. A similar idea was also suggested by Kramer and
Zimmerman (2007). While Paul et al. (2013) and Kramer and Zimmerman (2007)
proposed the use of 1000 and 5000 observations in each sample respectively, they
did not suggest how to choose the number of samples to test. Bartley (2014)
elaborated on the previous work, and proposed the use of 100 random samples
with 5000 observations in each sample. Further, it is suggested that if more than
ten of the HL tests result in rejections of the null hypothesis at a significance level
of 5%, the validity of a model should be carefully examined.

12
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2.7 k-fold Cross-Validation

Cross-validation is a statistical technique used to assess the predictive power of
a model. The key idea is to divide the data into two subsets where one subset
consists of known data used to train the model whereas the other subset includes
unknown data used to validate the model. By testing how a model generalises to
an independent data set, the problem of overfitting might be reduced.

k-fold cross-validation represents one type of cross-validation where the data
initially is divided into k£ randomly chosen and equally sized subsets, referred to as
folds. Further, k iterations of the training and validation folds are performed. For
each iteration, one of the k folds is used as the validation set, while the remaining
k — 1 folds constitute the training set. Although the number of folds is not a fixed
parameter, ten folds are commonly used in statistical analyses (Refaeilzadeh et al.,
2009).

2.8 Brier Score

The Brier score is a measure used to evaluate probability forecasts. Originally intro-
duced by Brier (1950), the score for binary events in its most common formulation
is given by:

N
1 2
BS = N g:l(yk - Ok) , (14)

where N is the number of observations in the forecast data, yj is the probability
that event k occurs and oy equals one if event 7 occurs and zero otherwise. Thus,
the Brier score is basically the mean squared error of the probability forecasts,
and the score takes a value within the range of zero and one. A Brier score of
zero means perfect forecasting, while high scores indicate poor forecasting (Wilks,
2011).

2.9 Network Theory

Network theory is a part of graph theory, and it has several applications, including
social networks, computer science, biology and medicine. Social network analysis is
a useful method for examining the relationships and patterns among social entities;
it allows researchers to investigate both social structures and individual attributes
simultaneously. Different measures of centrality can be computed to identify the
importance of an entity, while clustering coefficients can be calculated to study the
extent to which the entities in a network cluster together (Boccaletti et al., 2006).
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2.9.1 Network Structure

A network consists of nodes and edges. Following the notation in Boccaletti et al.
(2006), an undirected (directed) and unweighted graph G = (N, £) consists of two
sets, N" and £, such that N # () and £ is a set of unordered (ordered) pairs of
elements in A. The nodes of G are the elements of N' = {ny,na,...,ny}, while
its edges are the elements of £ = {l1,ls, ...,k }, where the number of elements in
N and L are given by N and K respectively. Two nodes are adjacent if they are
connected together by an edge. An edge is defined by two nodes, ¢ and j, and
is denoted as I;;. For a directed graph, direction matters, and the two directed
edges [;; and [;; are not necessarily equal as opposed to for an undirected graph.
Tllustrations of a directed and an undirected graph are given in Figure 2.3.

An adjacency matrix, A, can be used to represent a graph. For a directed
network, it is an N x N matrix with elements a;; (¢,j = 1,...,N). If there is
a directed edge from node ¢ to node j, a;; equals one, otherwise the value is
zero. Further, the directed edges can be weighted according to the strength of
connection between the nodes. A weighted graph G adds to an unweighted
graph by including an additional set W = {w;,ws, ..., wx }, where W is a set of
edge weights. Sets £ and W have an equal size of K. A weighted graph can be
described by a weights matrix, W. The elements of an N x N weights matrix are
given by w;;, where w;; represents the strength of the connection between nodes
¢ and j. If two nodes are not directly connected, w;; equals zero. The adjacency
matrix for a weighted graph consists of entries such that a;; = 1 if w;; # 0 and
Qi = 0 if Wiy = 0.

A sequence of distinct adjacent nodes is defined as a path, and the shortest
path refers to the path of minimal distance between two nodes. The length of
the shortest path differs in the case of an unweighted and a weighted network. In
an unweighted network, the shortest distance is equivalent to the lowest number
of directed edges needed to be traversed. For a weighted network however, the
distance between two nodes is the summed weights on the chosen path. Hence, the
shortest path in this case is the path that has the lowest sum of edge weights, and
it might turn out to not be the one with the fewest directed edges to traverse.

To interpret the edge weight between two nodes in a weighted graph as a
strength of a connection instead of a cost, it is proposed by Opsahl et al. (2010)

LS

Panel A: Directed graph Panel B: Undirected graph

Figure 2.3: An illustration of a directed graph in Panel A and an undirected graph in
Panel B.
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to inverse the weights before applying the shortest path algorithm. Then, when
following Opsahl et al. (2010), the length of the shortest path between nodes ¢ and
Jj can be found by solving:

wa 1 1
d;5* = min <(wih)a + 4t (whj)a>, (15)
where « is a positive tuning factor, giving the equivalent to an unweighted network
if it has the value of zero and giving the outcome as from the use of Dijkstra’s
algorithm if the value is one. The Dijkstra’s algorithm, which is thoroughly ex-
plained in Dijkstra (1959), is commonly used to compute the shortest path between
nodes in a directed and weighted network.

A directed graph is said to be strongly connected if there is a directed path
from node ¢ to node j for every pair of distinct nodes in the network. If there is
only an undirected path between the nodes however, the graph is weakly connected
(Weisstein, 2018). Otherwise it is unconnected.

2.9.2 Closeness Centrality

The closeness centrality of a node depends on the length of the paths from the node
to all other nodes in the network. It provides a measure of a node’s independence
from other nodes, with higher scores being associated with greater independence
(Freeman, 1978). For a weighted network where the weights are considered to be
strengths, and both the directed edges going in and out of a node are considered,
the closeness centrality of node 4 is given by (Pena and Touchette, 2012):

. 2N,
CC (Z) = o (16)
2o A5+ D
Ny =N-1, (17)

where di* represents the shortest path between nodes i and j given by equation
(15) and N is the total number of nodes in the graph. N; is a normalisation factor
letting the closeness measure being comparable across networks of different sizes
(Freeman, 1978). Additionally, it lets the measure being interpreted as the inverse
of a node’s average distance of the shortest paths to the other nodes in the graph.

2.9.3 Betweenness Centrality

The betweenness centrality of a node is based on the number of shortest paths
between two other nodes passing through the node. The idea behind the measure
is that a node in a network is central if it is placed on the shortest path between two
connecting nodes. Also, it can viewed as a measure of a node’s potential to control
the flow of information in a graph (Freeman, 1977). The betweenness centrality of
node 7 can be defined as:
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Coli) = No x 3 40 (18)
jren 9ik
£k
2
M= Nty (19)
where g;; is the number of shortest paths from node j to node k, while g;x(¢) is
the number of shortest paths between nodes j and k passing through node i (Boc-
caletti et al., 2006). N, is a normalisation factor that enables comparisons between
networks with differing number of nodes, N (Freeman, 1977). The shortest paths
can be calculated by a method proposed by Brandes (2001), which is modification
of Dijkstra’s algorithm. Brandes (2001) proves that his method is more efficient
and less computational burdensome.

2.9.4 PageRank Centrality

The PageRank algorithm was introduced by Brin and Page (1998) to provide a
method of measuring the importance of web pages. The intuition behind the al-
gorithm is that a web page achieves a high PageRank either if many web pages are
pointing to it or if some of the web pages pointing to it have a high PageRank them-
selves. Hence, all web pages’ PageRank scores must be calculated simultaneously
as the scores depend on each other.

For a network, the PageRank of node i is given by:

1-d

PR(i) tdx Y PRG), (20)
s CU)
JEM(3)
where d is a damping factor representing the probability that a node will join
together with other nodes, N is the total number of nodes in the network, PR(j) is
the PageRank of node j, C(j) is the number of directed edges departing from node
j and M(%) is a set of nodes that are connected to node i (Fu et al., 2006; Page
et al., 1999). This definition deviates from the original definition proposed by Brin
and Page (1998) as the first term on the right-hand side in the original equation
is divided by the total number of nodes. By doing so, the PageRank scores in a
network sum to one.
For a weighted network, the PageRank centrality can be estimated as:

1-d ji .
PRV(i) = ——=+dx Y %%PR”U) (21)
jema) 7

where wj; are elements of the weights matrix, L; = >, wj; is the sum of the
weights on the edges with direction out from node j and the other parameters
are as given in equation (20) (Pena and Touchette, 2012). Higher weights on the
incoming edges to a node correspond to a higher PageRank for that node.
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2.9.5 Clustering

Clustering coefficients are computed to get a quantification of nodes’ tendency to
cluster together, and they account for the transitivity of a graph, that is, the prob-
ability that adjacent nodes of a node are connected. A high clustering coefficient
of node 7 means that if node 7 is connected to node j, and node j is connected
to node h, then the probability of node i also being connected to node h is high
(Barrat et al., 2007). Following the method of Barrat et al. (2007), the weighted
local clustering coefficient of node ¢ in an undirected graph is given by:

w 1 (wij + wip)
G = si(k; — 1) ]zh: . 2 - %igGihih; 22)

where s; is the strength of node ¢, that is, the sum of the node’s edge weights of
adjacent nodes, k; is the node degree, which is the number of undirected edges
incident to the node, w;; and w;, are weights and a;;, a;n, and a;p, are elements
of the adjacency matrix. s;(k; — 1) is a normalisation factor and ensures that
0 < ¢’ <1. The equation is undefined for nodes with only one connecting node.

2.9.6 Network Motifs

The concept of network motifs was introduced by Milo et al. (2002), and it provides
a method for discovering patterns of interconnections. The idea is to study the
functional properties of subgraphs consisting of k£ nodes in a network. A subgraph
G' = (N, L") of G = (N, L) is a graph where N/ C N and £ C L (Boccaletti
et al., 2006). In Figure 2.4, all possible combinations of motifs with k& = 4 are
shown. Hence, with four nodes, there are five different types of motifs: ABAB,
ABCA, ABAC, ABCB and ABCD. Duplicate nodes within a subgraph imply that
a single node is involved several times in the motif.

OaOROROROROROR0
O OMORORORORORO
ORORORN0)

Figure 2.4: Motifs of size four.
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Chapter

Literature Review

In this chapter, an introduction to sport analytics, with emphasis on its usage
in football, is given. Further, a review of existing literature related to passing,
both in the context of football and other sports, is presented. A separate section
is devoted to explain how this thesis compares to other studies in terms of the
modelling approaches used.

3.1 Introduction to Sport Analytics

Decisions in sport have traditionally been made qualitatively by humans, being
based on gut feelings or adherence to previous choices (Steinberg, 2015). Sport
analytics offers new ways of assessing the skill of players and teams. By making
use of data material to assist in decision-making, players’ and teams’ strengths and
weaknesses can be evaluated, and accordingly, changes can be made to training
sessions with the aim of increasing performance. Additionally, sport analytics has
become a valuable tool used by scouts to identify transfer targets (The Guardian,
2017).

The idea of sport analytics was introduced by Mottley (1954), while Machol and
Ladany (1976), Maher (1978) and Coleman (2012) boosted the attention with their
thorough reviews of studies applying analytical methods in sport. Today, every
major professional sports team has people dedicated to apply statistical methods to
help players and managers making better pre-game and match decisions (Steinberg,
2015). From the introduction of sport analytics, the complexity of the data material
used has increased and the latest technologies, including big data, machine learning
and artificial intelligence, have opened up for more sophisticated analyses (STATS
LLC, 2017).

In football, the use of analytical methods has evolved since it was first used
by Charles Reep in the 1950s (Sammonds, 2017). Several aspects of the sport are
of researchers’ interest, including the choice of playing style, prediction of goal-
scoring chances and determination of players’ market value. The popularity of the
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latter field of study has grown recently in line with the growing economic impact
in football (Frick, 2007). Players’ market value can act as an estimate of transfer
fees, and Sazbe and Hvattum (2015), He et al. (2015) and Miiller et al. (2017),
among others, have developed valuation models for football players. Considering
the style of play, several studies have been looking into whether direct play or
possession play is more effective in terms of creating goal-scoring opportunities
(Reep and Benjamin, 1968; Bate, 1988; Hughes and Franks, 2005). The expected
goals theory, which measures a player’s probability of scoring a goal given some
input parameters, is a popular metric among researchers today. Different methods
are used to describe this metric, including those introduced by Séez Castillo et al.
(2013), McHale and Szczepariski (2014) and Deb and Dey (2017).

3.2 Performance Related to Passing in Football

Evaluation of performance is crucial to improve decision-making across all levels in
a sports organisation. For instance, in-depth analyses of players’ technical, tactical
and physical capabilities provide coaches and players with additional information
that can be used to make adjustments to training sessions by identifying areas
of improvements. Typically, performance assessment of players is done by giving
players a score depending upon their performance through a rating system.

Several metrics and methods used to evaluate performance in football, both
skill-specific and overall, have been proposed by researchers. These include the
EA Sports Players Performance Index (McHale et al., 2012), the QPass metric
(Gyarmati and Stanojevic, 2016), the plus-minus rating (Seebg and Hvattum, 2015;
Kharrat et al., 2017), Markov modelling (Szczepanski, 2015; Haave and Hgiland,
2017), regression analysis (Szczepanski and McHale, 2016; Rein et al., 2017; McHale
and Relton, 2018), machine learning techniques (Brooks et al., 2016; Bransen, 2017)
and network analysis (Pena and Touchette, 2012; Pina et al., 2017; Bekkers and
Dabadghao, 2017).

Passing is the most frequent event happening during a football match, and its
importance for achieving success is great. Success in football is obtained by scoring
more goals than the opponent team, and by making effective passes, more goal-
scoring opportunities arise. Lately, studies related to passing have become more
popular, both at the player and team level. In the following, existing literature on
passing behaviour is presented, followed by a review of studies performing network
and motif analyses.

3.2.1 Evaluating Passing Behaviour

At the player level, Szczepanski and McHale (2016) evaluated football players’
passing ability by building a GAMM to estimate the probability of a pass’s suc-
cess. A set of independent variables reflecting the environment in which a pass is
made is included to account for the overall difficulty of the pass. Random effects
of players, the players’ team and the opponent teams are included in the model to
investigate individual passing skills and teams’ abilities to facilitate and hamper
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passes. The model was developed using event-data from one season of the English
Premier League, and predictions were made for the consecutive season. When eval-
uating players’ passing ability, predictions for the average difficult pass were used
to ensure fair comparisons between the players by filtering out the pass difficulty.
The resulting model recognises both the difficulty and frequency of passes made by
a player. Hence, players having a higher completion rate, but fewer passes attemp-
ted, may be ranked below players with a slightly lower completion rate and more
completed passes. Tovar et al. (2017) developed a similar GAMM and demon-
strated the model’s ability to predict the performance of any player transferring
from the Colombian to the Spanish league.

Whereas Szczepariski and McHale (2016) considered only the difficulty of a
pass, Power et al. (2017) introduced two measures to cover both the difficulty and
effectiveness of passes. An effective pass has a greater chance of resulting in a
goal-scoring opportunity. By using a supervised learning approach, Power et al.
(2017) estimated the risk and reward of passes through the use of event-data and
player tracking data from two seasons of the English Premier League. The risk
of a pass is defined as the probability that a player executes the pass taking its
difficulty into account, while the reward of a pass is defined as the probability that
the pass made ends with a shot within the next ten seconds, i.e. its effectiveness.
Different metrics were proposed by the authors to identify the players who make
riskier passes than the average player, the best players to make and receive difficult
passes and the best players to make and receive dangerous passes. Difficult and
dangerous passes are passes that fall into the 75th percentile of the riskiest and
highest rewarded passes respectively. Results indicate that players get rewarded
for making critical passes in a ball possession, that is, passes that unlock a defence.

Pass effectiveness was also explored by Brooks et al. (2016) who used machine
learning techniques to measure the importance of passes by examining the rela-
tionship between pass location in a possession and shot opportunities. The field
was divided into 18 zones, and the distances from the origin and destination of a
pass to the centre of all zones were measured. These distances and pairs of origin-
destination distances represent the pass location. Each pass in the data set was
given a value according to its probability of leading to a shot, and players were
ranked based on the value of their passes.

Other studies related to pass effectiveness include Rein et al. (2017) and Gyarm-
ati and Stanojevic (2016). Rein et al. (2017) used a quite different notion of pass
effectiveness, and they introduced two metrics for it represented by the change in
a team’s space control and the change in the number of defenders between the ball
carrier and the opponent’s goal from the initiation to the completion of a pass.
Voronoi-diagrams were used to assess the space controlled by each team. The two
metrics were used as fixed effects in three mixed models to test their influence on
the number of shots, the number of goals and the outcome of a match. Results show
that both metrics positively affect the number of goals scored and the probability
of winning a match.

Gyarmati and Stanojevic (2016) used event-data from the 2015/2016 season of
the Spanish La Liga to evaluate football players’ contributions to creating goal-
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scoring opportunities by ranking them according to the intrinsic values of their
passes using @Pass, a metric introduced by the authors. The idea behind the
metric is to derive the value of having or not having the ball at a specific point on
the field, where the field is partitioned according to a team’s style of play. Further,
the merit of a pass, which is defined as the change in its field values, is evaluated
by the QPass metric. Surprisingly, the results indicate that unsuccessful passes
sometimes can benefit the team through increased field values.

Mackay (2017) did not precisely consider pass effectiveness in terms of creating
goal-scoring chances, but rather looked at the probability of different actions on
the field resulting in a goal. This was done by developing a model using ridge
logistic regression. Sliding windows and recurrent sliding windows were used to
test whether the inclusion of variables concerning previous actions in a team’s ball
possession would increase the performance of the model. The dependent variable
takes the value of one if an event is part of a ball possession ending with a goal,
and five explanatory variables entered the model: a categorical variable telling the
nature of the event, an indicator variable telling whether the current action ended
on the head of a teammate, the speed of action, the speed of the direct distance
covered and the predicted goal probability by location. The latter variable was
obtained by fitting a GAM.

The model developed by Mackay (2017) was built using event-data from five
seasons of the English Premier League, and the predicted goal probability by loca-
tion in the current event turned out to be the most influential variable. In general,
more recent actions tend to have a greater influence than their previous events. In-
dividual player performance was determined by looking at the differences between
the model’s generated probability of success at the moment a player received the
ball and the moment after the player no longer had possession of the ball. The
differences for each of the player’s ball involvements were summed, meaning that
players being able to move the ball into situations where goals are more likely to
be the outcome achieve higher scores. The top 15 players in the 2016/2017 season
were identified, all of whom played in offensive positions.

3.2.2 Network Analysis

Several studies have analysed sequences of passes, playing styles and individual
contributions to teams in football. For such purposes, teams are commonly viewed
as networks where nodes represent players with edges connecting them. The edges
can be weighted according to a chosen criterion, and the number of successful passes
between two players has commonly been used. This modelling approach can be
categorised as a type of social network analysis.

Duch et al. (2010) used social network analysis to determine individual player
contributions to teams, while Pena and Touchette (2012) used it to examine team
strategies. In the latter paper, the playing style of a team was observed by fixing
each node according to the team’s tactical strategy. Further, the team’s game-play
robustness, characterised by the lowest number of intercepted passes required to
disturb its natural flow and to isolate a subgroup of its players, was evaluated. Ad-
ditionally, different centrality measures were calculated to study players’ individual
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contribution to their team in terms of importance and connectedness.

Centrality measures were also explored by Arriaza-Ardiles et al. (2018). In this
paper, players’ closeness and betweenness centrality scores were computed in order
to study players’ capability to connect with teammates and their ability to make
contributions in the play between other players. Further, clustering coefficients
were calculated to measure relations between players and to identify the importance
of the players who most frequently interacted with each other when ball possession
was kept. Another centrality measure, the PageRank centrality, was investigated by
Rojas-Mora et al. (2017) to find the most important players of a team in matches
from the group stage of the Copa America 2015. A combined network for both
teams in a match was used, meaning that players on different teams were connected
by edges representing miskicks and interceptions.

Gama et al. (2014) used a network-based approach to identify the key players
in the attacking phases of play, while Pina et al. (2017) investigated the relation-
ship between specific network metrics and teams’ outcome of offensive plays, after
controlling for the effect of total passes. In the latter paper, a hierarchical logistic
regression model was developed using data from the group stage of the UEFA
Champions League 2015/2016, and the extent to which network density, cluster-
ing coeflicients and centralisation could predict a team’s performance on offensive
plays were examined. Results suggest a negative relationship between the success
of offensive plays and network density, which is the only significant predictor vari-
able in the model. This result was supported by Peixoto et al. (2017) who applied
social network analysis to study differences across centrality measures in successful
and unsuccessful offensive plays.

McHale and Relton (2018) elaborated on the work done by Szczepanski and
McHale (2016) on assessing players’ passing ability and developed a GAMM to
estimate the likelihood of a pass’s success with the purpose of using the results
from the model to identify the key passers in a team through a network analysis.
A major difference from the model developed by Szczepaniski and McHale (2016)
is that player tracking data was utilised, enabling better proxies for the fixed-
effect variables. The edges in the network were weighted according to the difficulty
of the passes between players, given by the estimated likelihoods from the fitted
GAMM. By taking pass difficulty into account when weighting the passes, the
players’ involvements in the passing of the ball can more fairly be compared as it
is not only the number of completed passes that is considered. The key players
in a team were determined by calculating the exponential centrality measure of
each player. Of the five teams for which the three most important players were
presented, only one player was a defender.

3.2.3 Network Motif Analysis

Recently, the study of network motifs, which was introduced by Milo et al. (2002),
has aroused interest among researchers who apply network analysis to football.
Gyarmati et al. (2014) analysed flow motifs consisting of three consecutive passes
in order to study teams’ style of play. Using publicly available data from the top
European leagues, teams’ motif characteristics were investigated by comparing the
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prevalence of the flow motifs in the passing networks to the expected occurrence in
randomly generated networks with identical properties. Further, cluster analyses
were performed to examine similarities and differences in teams’ passing patterns.
Elaborating on this previous work, Pefia and Navarro (2015) investigated whether
flow motifs could be extended to the player level. By calculating the average
number of a player’s occurrences in each possible flow motif, the player’s style of
play was identified. Cluster analyses and similarity measures were used to identify
which players have the most similar playing styles.

Bekkers and Dabadghao (2017) used network motifs to study teams’ playing
styles in both regular play and attacking phases of the game by distinguishing
between possession flow motifs and flow motifs leading to goal-scoring opportunit-
ies. Machine learning techniques were used to identify unique players, while radar
graphs made comparisons between players’ and teams’ performance in the motifs
available. The authors concluded that the Fuclidean distance between a specific
player and all other players’ motif intensities can be used for scouting purposes in
order to find players with similar characteristics.

3.3 Passing in Other Sports

Sport analytics has been and is still in widespread use in several team sports other
than football. However, the focus is rarely on passing or other specific skills of a
player as opposed to modelling the game outcome or determining the total rating
or contribution of players. Related to passing, teams’ possession of the ball, or in
general the object to be played with, is mostly considered in the past.

3.3.1 Regression Models

Vicente-Vila and Lago-Penas (2016) performed a performance analysis looking into
the effectiveness of goalkeepers and other predictors on ball possessions in futsal.
In futsal, the goalkeeper can play as an outfield player while attacking, which was
incorporated in a binary logistic regression model as a dummy variable. The main
findings from the study are that possessions that result in a goal are more likely
to occur when the goalkeeper plays as an outfield player, when the sequence lasts
less than ten seconds and when the pressure on players is lower. Goémez et al.
(2015) explored a similar model within futsal to determine which characteristics of
a possession that are more or less effective, while Gémez et al. (2013) and Conte
et al. (2017) used similar approaches in basketball on possessions and fast break
actions respectively.

The inside pass used in basketball is investigated by Courel et al. (2013). De-
scriptive statistics were provided to induce whether inside passes have an impact
on teams’ offensive success, and a multinomial regression model was developed to
test the significance of chosen predictors on the success of an inside pass. Offens-
ive possessions involving the inside pass were found to be more effective, and the
positioning of the passer and the action immediately chosen by the recipient were
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found to significantly affect the likelihood of a successfully made inside pass. Fur-
ther exploration of the inside pass has been conducted by Courel Ibdnez (2017)
with the aims of deciding how inside passes affect possession effectiveness and find-
ing predictors for the success of the inside pass. Additionally, the influences of
individually made actions and combined interactions from passers and receivers on
performance in the case of inside passes in both offensive and defensive plays were
tested. Conforming with the former research, the inside pass is found to increase
possession effectiveness. Other sports in which player or team performance has
been investigated through regression models include baseball (Piette et al., 2010),
ice hockey (Macdonald et al., 2013) and rugby (Higham et al., 2014).

3.3.2 Network Analysis

Although network analysis within sport seems to be more commonly used in the
context of football, it has been applied to other sports as well. In basketball, Fewell
et al. (2012) examined the degree centrality, clustering, entropy and flow centrality
for teams playing in the first NBA play-off round through both the teams’ individual
and combined weighted transition graphs. In the graphs, nodes represent fixed
player positions, start-of-play actions and possession outcomes, while directed edges
represent ball movements between positions or indicate which positioned player who
is responsible for the start or outcome of a possession. Only offensive plays that
involved at least three of the players in the starting lineup were considered. The
aim was to identify differences in offensive strategies. The findings from the overall
network suggested, as expected, that the point guard is essential in a leadership
role, with the teams having a centralised ball distribution, while for some individual
teams, this tend to vary when comparing the clustering and the degree centrality.

Piette et al. (2011) started out with a bipartite graph with the two sets of
nodes consisting of basketball players and units of five players. The units represent
the players playing together on the ground for a team when a certain event takes
place. Edges were only allowed between a player and a player unit, and they were
weighted based on the efficiency of the unit. A transformation to a unimodal graph
was made such that the weights would only be between players, now indicating the
efficiency of the units for which the players had played in together. To find the
most central players, the eigenvector centrality with random restart was calculated.
Additionally, the p-value of the centrality was found by bootstrapping the initial
centrality measure in order to avoid that the centrality score of a player became
inflated due to many adjacent nodes, i.e. making it possible to tell whether a
player’s performance was subject to chance. Using three different data sets to create
three graphs looking at defensive efficiency, offensive efficiency and total efficiency,
the players who are under- or over-performing were identified, and the players’
importance in relation to their team units was established. Network analyses have
also been performed in other sports including volleyball (Clemente et al., 2015;
Kang et al., 2015) and cricket (Dey et al., 2017).
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3.4 The Thesis’s Supplementation to Existing Lit-
erature

In this thesis, three chapters are devoted to separately answer the three main re-
search questions defined in Chapter 1. Firstly, the passing abilities of football play-
ers in the Norwegian top division Eliteserien are evaluated in Chapter 5 through the
development of three GAMMs. The first model considers the traditional approach
taken to passing, which is pass accuracy, and it is similar to the model suggested
by Szczepaniski and McHale (2016). However, two more sources of data are used,
several new binary variables are proposed and some new smooth terms are added.
The second model is seemingly unique in the way the dependent variable is defined,
and it handles the tactical aspect of a pass by examining the probability that a pass
can be followed up, i.e. whether the play easily can be continued. The third model
investigates pass effectiveness, which has been considered in many different ways
by researchers in the past. Many of the definitions used for pass effectiveness are
however restricted such that offensive players tend to be favoured. By considering
all passes in a sequence that leads to a shot as effective in this thesis, the thought
is that a more fair assessment of players can be made.

Secondly, the results from the passing ability models are used in network ana-
lyses similar to the approach used by McHale and Relton (2018). What is differing
is that three networks are considered, one for each of the aspects considered for
passing ability, which makes the work done in this thesis unique. Some chosen net-
work metrics, which are based on the ones used in Pena and Touchette (2012), are
calculated to get a quantification of players’ influence and importance in a team.
The complete network set-up is presented in Chapter 6.

Finally, a motif analysis is performed in Chapter 7 by building a GAM to
investigate the effectiveness of different types of passing motifs. Both the results
from the passing ability models and the network analyses are utilised as explanatory
variables. The idea is to investigate the effects of accurate, tactically good and
effective passes on motif effectiveness, and to test whether key players are important
in passing motifs that lead to shots. Similar approaches for investigating passing
motifs as done in this thesis have not been encountered elsewhere in the literature,
although the idea of using network metrics in a regression model is taken from Pina
et al. (2017).
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The data used to analyse football players’ passing behaviour is introduced in this
chapter. Past match data, team ratings and information about the type of ground
surface were obtained for the teams playing in Eliteserien during the 2014-2017
seasons.

4.1 Opta Data

Past match data, in the form of event-data, and personal player information were
obtained from Opta Sports’s (Opta) Opta24Feed. Opta is a credible provider of
sports data; they have three analysts collecting data in each match (Greig, 2017).
However, the collection process may induce human errors or inaccuracies. Wiig
and Haland (2017) discovered a series of errors in an identical data set and took
action to deal with some of them. The same measures are taken to handle the
errors during data processing here. These measures involve calculating the angle
of the ball movement and length of a pass when they are wrongly set to zero,
switching the order of shot events and out-of-play events when they occur in the
wrong order, manually inserting player positions in cases where they are wrong or
incomplete and limiting the ball possession of a player to be less than 30 seconds.
For the latter modification, this implies that the time between events is limited to
this amount as anything else would be unnatural mid-play.

For each match played in Eliteserien, Opta delivers a separate XML-file con-
taining the corresponding event-data, with every event occurring in the game being
represented by a node. Events cover all on-ball involvements in the match, with
inclusions of some off-ball situations such as bookings and substitutions. With the
data following the movement of the ball, the positioning of players not in posses-
sion of the ball is left unknown. Consequently, proxies for opponent pressure are
considered in the model set-up when building models to determine players’ passing
abilities in Section 5.1.2.
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- <Games timestamp=" "

- <Game season_name=" " season_id=" * period_2_start=" " period_1_start=" " matchday=" " home_team_name=" " home_team_id="
game_date=" " competition_name=" " competition_id=" " away_team_name=" " away_team_id=" " id=" ">
- <Event timestamp=" "id=" " version=" " last_modified=" "y="_ "x=" " outcome=" "team_id=" " sec=" "min=" "
period_id=" " type_id=" " event_id=" ">
<Qid=" " value=" " qualifier_id=" />
<Q id=" " value=" " qualitier_id=" />
<Qid=" " value=" " qualifier_id=" />
<Qid="
<Qid="
<Qid="
<Qid="
<Qid="
</Event>
- <Event timestamp=" "id=" " version=" " last_modified=" "y="  "x=" "outcome=" "team_id=" " sec=" " min=" "
period_id=" " type_id=" " event_id=" ">

* qualifier_id=" />

" qualifier_id="  "/>
qualifier_id=" />
" qualifier_id=" />
" qualifier_id=" "/>

<Qid="
<Qid="
<Qid="
<Qid="
<Qid="
<qQid="
<q id=" ; = " qualifier_id=" />
<qQ id="
</Events>

">
" qualifier_id=" />
" qualifier_id=" " "/>
">
" qualifier_id=" />
"qualifier_id=" />

" qualifier_id=""/>

Figure 4.1: Opta F24 data structure.

As illustrated in the example structure of an event from an Opta data file in
Figure 4.1, different identifiers are used to describe the events happening during a
game. For each event, the identifiers provide information about the characteristics,
the whereabouts and the outcomes of the events. The coordinates used by Opta
to locate the happenings on the pitch are given relative to the team in possession
of the ball and range from 0 to 100 on both the x-axis (touchlines) and y-axis
(goal lines) as seen in Figure 5.1. The playing direction is thus always left to right.
Although the pitches in Eliteserien are differing in size, Opta uses the same size for
all pitches. The size is identified as being the standard dimensions, 105 x 68 meters,
set by the International Football Association Board, for which Haave and Hgiland
(2016) provide evidence of coinciding well to the average pitch size in Eliteserien.
These dimensions are also utilised when doing calculations to correct errors.

Data processing was conducted in Java, and the XML-files were read using the
Java Document Model Interface. Further, the data was restructured and stored in a
database with tables containing information about all events, passes and four-sized
motifs identified in the data set. In total, 960 matches, 749,859 passes performed
by 831 different players and 203,313 motifs are included in the data set. Note that
this is the total number, and not necessarily also the number used in the analyses.
Passes include passes from open play, headed passes, long passes and crosses.

4.2 Elo Rating

To provide a measure of the strength of the teams playing in Eliteserien, the Elo
ratings of the teams, obtained from ClubElo (2018), are included in the analyses.
For each team, a text file containing the history of the team’s ratings can be
downloaded. The ratings are processed in Java, where the team’s average score for
each month in each season is calculated before it is stored together with the Opta
data in a database.
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4.3 Ground Surface Type

Information about the type of ground surfaces on football pitches in Eliteserien is
obtained from Eliteserien (2018). The ground surface type for each team, either
natural or artificial grass, is given in Appendix A. Note that Valerenga is ticked off
on both types of surfaces. The team inaugurated their new stadium with artificial
grass in September 2017 after previously having played on natural grass. This is
accounted for in the analyses.
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Chapter

Evaluating Passing Ability

In this chapter, the model set-up to determine the passing abilities of players is
introduced and explained, including all variables, the model selection method, the
method used to do predictions and the data tools utilised in the analyses. In the
end, the results are presented and compared to other relevant studies and the first
research question is addressed.

5.1 Model Set-Up

In this thesis, three binary logistic regression models are developed to analyse
football players’ passing abilities. The models are built on data from the 2014-2016
seasons of Eliteserien. Expanding upon the generalised linear models investigated in
Wiig and Haland (2017), which initially were inspired by Szczepanski and McHale
(2016), the final models will include smooth functions and random effects. Hence,
they become GAMMSs. Starting from either a plain GLMM or from a GAMM with
all continuous variables modelled as smooth terms, the number of smooth terms is
determined by comparing the model fit when fixed-effect variables are used to when
smooth functions are used instead. The three models look into different aspects
of a pass’s success defined as pass accuracy, game overview and pass effectiveness,
and they are referred to as Model 1, Model 2 and Model 3. A summary of the
models can be found in Table 5.1.

Table 5.1: Summary of the passing ability models.

Model  Dependent variable  Description

1 Y, Pass accuracy
2 Y, Game overview
3 Ys Pass effectiveness
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5.1.1 Dependent Variables

The most traditional way of determining the success of a pass is to look at its
accuracy, i.e. whether the pass reached its intended target. Model 1 is used to
analyse this aspect of a pass, with the dependent variable Y; indicating whether
the pass successfully reached a player on the same team. To model a more complex
aspect of a good pass, namely a player’s ability to spot opportunities and take
advantage of them in the match, Model 2 considers a player’s ability to read the
game by having a good game overview. This is incorporated into the model through
the dependent variable Yz, which tells whether the event after a pass was successful
or not. Success may only be indicated if the pass itself was successful. Model 3
measures the offensive contribution of a pass in terms of its effectiveness. If the
pass was part of a sequence of passes that eventually led to a shot, the dependent
variable Y3 indicates success. If a passing sequence is interrupted by events that
do not initiate a new sequence, success is also indicated if a shot was made by the
same team within 15 seconds of the last pass in the sequence. Own goals conceded
by a team are considered as shots by the team awarded with the goal.

5.1.2 Explanatory Variables

In this section, the explanatory variables are presented in detail. These variables
are initially the same for all three models and are chosen based on their presumed
influence on the dependent variable of Model 1. As the positioning of the play-
ers not in possession of the ball is unknown, several of the variables are proxies
for opponent pressure. To determine whether an explanatory variable should be
modelled as a smooth function, Model 1 is tested with the applicable variables
considered as both smooth terms and fixed effects to find out which type of vari-
able that gives the best fit for each case. Thus, different notations are needed for
the variables in question for the case of them being modelled as fixed effects or
smooths. Interaction terms will also differ. Table 5.2 presents a summary of the
explanatory variables used in the case of a GLMM or a GAMM.

Proxies for Implications of a Player’s Position on the Pitch

The positions of the player passing the ball and the player receiving the ball should
have an impact on the success of a pass as the players’” whereabouts could imply
something about the pressure from opponents on both players. To account for this,
two categorical variables, X , and X ,, are included in the models. The variables
indicate where the pass is initiated from and received on the pitch respectively,
with z being a specified zone on the field. The pitch is divided into 21 zones
as illustrated in Figure 5.1. An interaction between the two zone variables is also
tested as Wiig and Haland (2017) found this to be a possible solution to an observed
underestimation of offensive passes. By combining zones in such a way, it is natural
to assume that the relationship between the zones and the direction of a pass is
also somewhat incorporated in the models.
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Figure 5.1: The Opta pitch coordinate system divided into 21 zones. Direction of play
is left to right, always relative to the team in possession of the ball.

135° 45°

225° 315°

Figure 5.2: Direction of a pass with the player facing forward in the direction of play
at 90°.
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With a consistent overestimation of the passing abilities of attacking players,
Wiig and Haland (2017) proposed adding a variable to deal with the player posi-
tions of all players. Rather than adding a categorical variable with categories for
each defined player position, an approach similar to the ones taken by Szczepanski
and McHale (2016) and Bransen (2017) is considered. For each match, the average
position occupied by a player is calculated by averaging the x- and y-coordinates
of all the events the player is involved in. As players change their player positions
both within and between matches, and due to the same player position being oc-
cupied differently depending upon a team’s playing strategy, the approach seems
to be appropriate. From the average values, the corresponding zone is determined
and incorporated by a zone average variable, Xo6 .. Thus, each pass observed has
a predictor telling the average position of the player in a specific match. This is
different from Szczepanski and McHale (2016), where the anticipated player posi-
tion based on previously played matches with exponential weighting is considered
to avoid endogeneity, whilst Bransen (2017) also based the average position on the
current match.

A categorical variable, X3 4, handles the direction of a pass with the direction
being one of four possibles: forward, backward, inward or outward. The direction
is taken to be relative to the passer’s position on the field when facing forward.
Hence, inward passes made from either side of the pitch belong to the same category.
Figure 5.2 describes how the direction of a pass is categorised. The length of an
attempted pass (X4) serves as a proxy for pass difficulty, while the difference in
increased distance from the opponent’s goal (X5) serves as a proxy for both pass
difficulty and opponent pressure. Positive values of the latter variable indicate that
the ball moves further away from the opponent’s goal, and the values are calculated
using an x-coordinate of 100 and a y-coordinate of 50 at the goal. Crosses are added
to the model with a slightly loose definition that is very much dependent on the
location of the players involved in the pass. All passes made where the ball changes
side of the pitch are considered as crosses. A dummy variable, Xg, is used for this
purpose.

When modelling with smooth functions, the variables X; , - Xg and the zone
interactions are replaced with a 4-D smooth function consisting of the real starting
and ending coordinates of a pass, f1(Zstart; Ystarts Tends Yend)- A 2-D smooth func-
tion, fs(z,y), is used for the coordinates for the average position of a player in a
match rather than using the average zone. The average coordinates are calculated
similar to the when finding the average zone. However, as zones are no longer
considered, the y-coordinates are calculated as absolute distances from the centre
of the axis to avoid cancellation of terms for players playing on both sides of the
pitch.

Proxies for Opponent Pressure on the Initiating Pass

There are several ways of recovering the ball in open play. Tackles, aerial duels and
interceptions are examples of ball recoveries in which an opponent player is likely to
be nearby when a pass is made afterwards. As open-play ball recoveries can be used
to construct proxies for opponent pressure, binary variables are created for each
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of the three mentioned recovery methods to indicate whether one of these events
happened in the event prior to a pass. The variables are denoted X1, X12 and
X3 for a tackle, an aerial duel and an interception respectively. An extra dummy
variable, X144, is added for each of the three situations to tell whether the player
attempting the pass also was involved in the prior event. This is an adjustment
to the models developed by Wiig and Haland (2017) and Szczepanski and McHale
(2016), where only one variable was used for two or more of the situations combined.
It is perceived that there might be a difference in the signs of the coefficients for the
different cases however. If the same player is involved, it is reasonable to assume for
certain that an opponent is close, especially for the cases involving tackles or aerial
duels. Opta defines an interception to be happening when a player prevents the
ball from reaching its target by intercepting any pass between opponent players.
Hence, for interceptions, opponent pressure might not be high.

Ball recoveries are defined by Opta as events in which a team wins possession
of the ball and successfully keeps possession for at least two passes or an attacking
play. Opta logs ball recoveries both separately and together with tackles, aerial
duels and interceptions. All separately logged ball recoveries are assumed to be
loose balls, and X5 is an indicator of whether this occurred in the previous event.
There is no indication of opponent pressure in the case of loose balls. Thus, a
separate variable indicating whether the same player is involved is not considered
for this case.

Proxies for Opponent Pressure in case of Set Play

Set pieces induce a pause in the match and the players usually cluster before the
set play is performed and the play is continued. Thus, players are surrounded by
their opponents and are under pressure, which a set of proxy variables handles in
the models. A free kick or throw-in in the previous event is indicated by variables
X158 and X19 respectively. In the event of a corner, the effect of the set piece is
often lasting longer as both teams move most of their players in front of the goal on
the half where the corner is to be taken. Hence, the binary variable Xoq indicates
whether a corner was taken within the past five events. This count is no longer
valid if the ball goes out of play, if there is a foul or if the goalkeeper is in control of
the ball. Another variable, X5 ;, is added to tell whether the team that made the
set play action also attempted the pass. The effect of this variable is assumed to
be more pronounced in the event of a corner as there are huge differences between
defence and attack for this case. If the defending team wins the ball, huge areas
are open, seemingly making passing easier as opposed to for the attacking team.

Other Proxies for Opponent Pressure

After a ball recovery, the first pass in a sequence is often challenging due to oppon-
ent players being close by. The categorical variable X7 s is included to investigate
whether the initiating pass is more difficult to attempt than the other passes in a
sequence, and the variable can take on four possible values, which are outlined in
Table 5.3. Both open-play ball recoveries and set play actions are allowed to be
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Table 5.3: The categories into which the sequence number variable X7, and the goal
difference variable X¢.4¢ are divided. The categories in the first column correspond to
the index of s and gd for the respective cases.

Cat. ,)(7_S XlO.gd
1 First pass in a sequence Behind with more than two goals
2 Second pass in a sequence Behind with one or two goals
3 Third, fourth or fifth pass in a sequence Draw score
4 Sequence number higher than five Leading by one or two goals
5 Leading by more than two goals

starting points of sequences. It should be noted however that the first pass after
the event of a set play has sequence number two. To investigate the impact of the
first pass after a set play, two interaction terms are added to separate this pass from
other passes with a sequence number of two: the interaction between X7 and the
binary variable telling whether the previous event was a free kick (X15) and the
interaction between X7 o and the indicator telling whether the previous event was
a throw-in (X19). An interaction term including the corner variable is not added as
this variable considers the past five events. When modelled as a smooth function,
the sequence numbers are used directly as opposed to the categories defined.

Sequences of passes are handled in the following way. If possession of the ball
is kept after an attempted tackle by the opponent team, sequences are terminated
and restarted. Moreover, sequences are terminated if the ball goes out of play, the
opponent team takes control of the ball, a shot is attempted or a foul is committed.
However, if a ball carry is successfully performed by players during the passing
sequence, the sequence is continued.

Pass Difficulty

It is perceived that the difficulty of executing a successful pass increases with fewer
seconds passed since the last occurred event. To investigate this belief, Xg is added
to represent the time passed in seconds since the last occurred event in the match.
Headed passes are seen as more difficult to make accurate than kicked passes, and
headed passes in the prior event presumably make it more difficult for the pass
recipient to successfully perform the next pass. Indicator variables X1 and X5
are incorporated in the models to test whether the perceived effects are true for the
respective cases. Another aspect which has an impact on the difficulty of making
a pass is the overall strength of the opponent team given by the team’s Elo rating.
The rating, represented by X1, is provided for the month and season a match is
played in. In the case of smooth function modelling, Xg and X5; are represented
by smooth functions to better capture an assumed non-linear relationship with the
dependent variable.
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Situational Variables

As players spend more time on the pitch in a match, it is expected that they
become more exhausted, which in turn will affect the success of their passes. A
continuous variable, Xo7, represents the time in minutes a player has spent on the
pitch when a particular pass is attempted. Game time is also an influencing factor
for the outcome of a pass by being a stressing factor for the players; when the
time is running out, the chance of getting the desired game outcome is decreasing.
Thus, depending on the current score and the time left of the match, teams will
play differently to chase victory. Each match in the data set is divided into four
equal time periods, represented by the categorical variable Xy ,. The score at the
time a pass is being made is included in the models with a five-level categorical
variable, X9 44, With categories that are explained in Table 5.3. This variable is
relative to the team in possession of the ball. An interaction between the game
time and goal difference variables is added to test the effect of their combination
relative to the variables’ own contributions.

Other variables describing the external circumstances of a football match which
may influence the outcome of a pass include seasonal effects, ground surface type
and home team advantage. There should be a fatigue effect when a season is close
to an end, while the performance of players is expected to increase in the beginning
of the season as their match shape is improved. Further, the climate is changing
throughout the year, which also affects the condition of a field.

The month a match is played in is represented by a categorical variable, Xo4 p,
only containing months March to November as the matches in Eliteserien are played
during these months. It is perceived that maintenance of natural grass is most
challenging in the near-winter months, which might influence players’ passing abil-
ities. The month of play variable is thus tested in an interaction with an indicator
variable for the type of grass on the pitch to investigate the effect of playing on
artificial grass compared to natural grass throughout the season. Dummy variable
X3 indicates whether a match is played on artificial grass or natural grass. To
test whether players benefit from playing on their home ground, variable X7 is
included to indicate if a pass is attempted by the home team.

The categorical variables Xg ,, X10.4q and Xo4,, are treated as continuous
variables when they are represented by smooth functions. Minutes played in the
match is used as opposed to dividing the match into periods, and for the goal
difference variable, a positive score indicates that the team is in the lead. The
interaction between minutes played and goal difference is considered as a tensor
product, while the interaction between type of grass and month of play is modelled
as a 1-D smooth function as only one of the variables is continuous. Time played
by the player passing the ball is used directly in a smooth function as it already is
a continuous variable.

Random Effects

Inspired by Szczepanski and McHale (2016), players’ passing abilities and teams’
abilities to facilitate and hamper passes are included as random effects by variables
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Z1.k, Zot and Zs3 , respectively. It is expected that players with high coefficient
estimates are among those with the best passing skills in the league. Similarly,
teams that achieve high facilitation and hampering scores are perceived to be good
at these specific abilities. By assuming normally distributed random effects, noise
in the models resulting from players or teams exhibiting exceptionally good or bad
skills can be reduced as the coefficients will shrink towards the mean.

5.1.3 Model Selection

To start with, a GLMM with only fixed-effect variables and a GAMM with all
the smooth terms presented in Table 5.2, both including a full set of variables,
are estimated for Model 1. As the REML scores, which are the outputs from the
chosen estimation method, are not comparable across models with differing fixed-
effect structures, the AIC scores are computed and used for comparison (Miller,
2017). The model with the lowest AIC score functions as the basis in a stepwise
selection to determine which smooth terms should be incorporated in the model.
With the GLMM as basis, the smooth term yielding the lowest AIC score after
replacing it with its corresponding fixed-effect variable is added to the model in
favour of the fixed effect. This is repeated in several steps until no more switches
improve the model fit. Similarly, with the GAMM as the basis, smooth terms are
removed in favour of their fixed-effect counterparts if appropriate. The procedure
of determining smooth terms is assumed to generate similar results for all models.
Hence, it is not performed separately for Model 2 and Model 3. After deciding upon
which smooth terms to include in the models, the remaining fixed-effect variables
are, for each model, selected through the use of a Wald test.

Although stepwise regression might cause some problems in identifying the best
fitted model, it is used due to its effectiveness and low computational burden. Ad-
ditionally, with a data set consisting of a considerably high number of observations,
the problem of having highly correlated variables is believed to be minimal.

When having the start and end zone variables for a pass in the models, the
interactions between them are also considered. The number of zone interactions to
be included in Model 1 is determined by comparing the Brier scores obtained from
10-fold cross validations of the plain GLMM with differing numbers of interactions.
The resulting number of interactions is taken to be the same for the two other
models, and the number will be used regardless of the combination of fixed effects
and smooth terms. As long as the interactions are included in a model, they are
not subject to removal when performing the Wald test for variable elimination.
The same applies for the stand-alone start and end zone variables.

5.1.4 Predictions and Player Ratings

The three models are estimated based on data covering the 2014-2016 seasons of
Eliteserien, and their predictive capability is tested for the 2017 season. Following
Szczepanski and McHale (2016), predictions must be made differently depending
on the usage. Full predictions are used to find the models’ expectation of the
outcome of a pass. This is a probability that, when averaged out over an entire
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season for each player, could be compared to the actual observed success rate the
player exhibits. Then it can be determined how a player performs compared to the
models’ expectation. The prediction is based on all predictors in the models. In
cases where passes for new players or teams are predicted, they are assumed to be
average. This is done by giving them a corresponding random-effect coefficient of
zero. However, the prediction method is not suitable to rank players’ performance
relative to each other. This is better done by looking only at the coefficients of the
random-effect variables corresponding to each player.

As the random-effect coefficients for the models in this thesis cover three seasons
in one, they will indicate who have been the best and worst passers over three
seasons, making it difficult to establish the best players per season. Thus, the
likelihood of a successful pass, given that it is performed by the average player,
is used instead to rate players. This is equivalent to setting all random effects
in the full predictions to zero and is thus the same approach for rating players
as the one used by Wiig and Haland (2017). The predicted average likelihood of
success can then be compared to the actual outcome for a player, and the ratio
between them, over a period of time, determines the rating of the player. To test
whether the models are able to predict the same top-ranked players as the training
data identifies when being run in a separate model, the player ratings based on
predictions are compared to the random-effect coefficients for the 2017 season.

5.1.5 Data Tools and Choice of Reference

All models were run in RStudio, an open-source integrated development environ-
ment for the statistical programming language R (R Core Team, 2017). From the
previously constructed database, data on all passes was retrieved and stored in
RStudio. As the built-in procedure for handling categorical variables only allows
the full set of categories, or none of them, to be included in a model, dummy vari-
ables were created for each category of the categorical variables used. This will
allow for changes in the reference of the categorical variables as omissions of single
categories may happen. An initially chosen reference for the categorical variables
is needed to avoid singularities, and the references used are presented in Table 5.4.
Those only apply when the fixed-effect variable is used in the model rather than
its corresponding smooth term. No reference is needed for the random effects as
all levels will receive their own coefficient.

The logistic regressions were run using the bam function from the mgcv package
(Wood, 2011). This function is constructed to deal with large data sets and fits a
GAM consisting of fixed effects and smooth functions. The parameters are estim-
ated in a single P-IRLS iteration, and the smoothing parameters are estimated by
fast REML. To further increase efficiency, discretisation of variables was chosen.
Random effects may be added to build a GAMM, and they are then treated as
smooth terms. Using this approach, the random effects are seen as penalised re-
gression terms being penalised by a ridge penalty. In the case of running a GLMM,
no smooths are added, leaving only the fixed and random effects.

For all 1-D smooth functions, the cubic regression spline was chosen as basis
function. This is due to the computational gain implied by this choice rather

40



5.2 Results

than using the default thin plate regression splines. Tensor product smooths were
chosen for all the multidimensional smooth functions. Although some of the mul-
tidimensional smooths include variables that all are representing coordinates, it
is assumed that these can not be considered as isotropic due to the difference in
what the x- and y-axis are representing on a football pitch. The axes represent
a different length per unit move in coordinates and quite different perceptions of
the level of pressure on players. For interactions between two continuous variables,
tensor smooths were used, while for interactions between a continuous variable and
a binary or multi-level categorical variable, a 1-D smooth with a by inclusion to
the categorical variable was used. With a by inclusion, smooth functions for all
levels in the categorical variable are constructed. Thus, with a binary variable, two
smooths are included in the models.

5.2 Results

In this section, the results of the model selection procedure are presented. Then, a
validation of the models is performed and the regression results are discussed. At
last, the results are compared to similar studies and the first research question is
evaluated.

5.2.1 Model Selection

The number of zone interactions to be included in the models if the f; smooth
function turned out to be unfavourable was decided by performing several 10-fold
cross validations with the Brier score as a performance measure. This concluded the
use of 300 interactions. The Brier scores for the different numbers of combinations
of interactions tried are tabulated in Table B.1.

Further, a smooth term selection was performed in a stepwise manner starting
from a full GAMM and moving backwards replacing single smooth terms with their
fixed-effect counterparts. This procedure, presented in Table B.2, was chosen due
to the lower AIC from the full GAMM compared to a GLMM. After the first step, it

Table 5.4: The initially chosen references for the possible categorical variables in the
passing ability models.

Variable  Reference

X1, Zone 2 (z = 2)

X, Zone 2 (z = 2)

X3.d Direction forward (d = 1)
X7.s First pass of sequence (s = 1)
Xo.p First period (p = 1)

X10.gd Draw score (gd = 3)
Xoam Month of March (m = 3)
X26.Z Zone 2 (Z = 2)
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was apparent that the sequence number variable should be treated as a categorical
variable. Continuing replacements beyond this variable did not improve the model
fit. The smooth function for game time, f;(Xg), was insignificant for Model 1,
but it was decided to keep it in the model. This decision is based on the fact
that the model was not improved by instead using the fixed-effect equivalent, and
because the variable is significant in an interaction with the goal difference variable.
Whether or not this or other smooth terms are insignificant in the two other models
are not further discussed as it was presumed that the same smooth functions would
be applicable for all models. From the AIC scores, it is evident that the inclusion
of the 4-D smooth function most substantially improved the model fit.

Moving on with the above resulting combinations of smooth terms, insignific-
ant fixed-effect variables were removed subject to Wald tests. As opposed to the
smooth term selection, a Wald test was performed on the three models separately,
giving different final models for the pass aspects considered. The fixed-effect vari-
ables remaining in the final models are summarised in Table 5.5, and the complete
regression results are presented and discussed in Section 5.2.3.

Table 5.5: Summary of the Wald tests performed on the models after smooth term
selection. The remaining fixed-effect variables in each model are marked with a tick.

Variable Short description Model 1 Model 2 Model 3
X741 Pass no. 1 ref ref ref
X7 Pass no. 2 v’ v’ v’
X73 Passno. 3,4 0or 5 N v’ v’
X7 Pass no. 6+ v’ v’ v’
X1 Tackle v’ v’ v’
X9 Aerial duel v’ v’ v’
X13 Interception v’ v’ v’
X141 Same player: tackle v’ v’

X140 Same player: aerial duel v’

X143 Same player: interception v’ v’ v’
X5 Previous pass was header v’ v’ v’
X6 Headed pass v’ v’ v’
X7 Home team advantage N v’ v’
Xi1s Free kick v’

X9 Throw-in v’ v’
Xoo Corner v’ v’
Xoo Loose ball v’ v’ v’
Xo3 Ground surface type N v’ v’
Xos51 Same team: corner v’ v’ v’
Xo5.0 Same team: free kick

Xos5.3 Same team: throw-in v’ v’

X70*X1s Interaction v’ v’ v’
X7_2*X19 Interaction v’ v’
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5.2.2 Model Validation

The techniques described in Section 2.6 are used to validate the resulting models.
Additionally, the fit of the models is tested by evaluating a sequence of passes from
a match in the data set.

ROC and PR Curves

In Figure 5.3, the ROC and PR curves for each model are shown with their res-
ulting AUCs. Considering the guidelines presented in Table 2.1, Model 1 exhibits
an excellent discrimination ability. The high AUC from the model’s PR curve sup-
ports this finding. Both Model 2 and Model 3 fall into the category of acceptable
discrimination ability, and their fits are thus good according to the ROC curves.
The two models however, have quite different PR curves. Model 2 has an AUC
that is reasonable, indicating a good fit. Moreover, the curve is concave with a con-
sistently negative slope when disregarding the strange behaviour at recall values
of zero. The shape is similar to the one for Model 1 and is beneficial as concavity
implies a better model fit due the precision decreasing more slowly than the recall.

For Model 3, one has to take a closer look at the PR curve to better understand
its shape. In a PR curve, the first plotted point after the zero recall region has a
precision value equal to the highest estimated probability of success given by the
model, and the last plotted point has a precision value equal to the percentage
of observed successes in the data. As Model 3 has a skewed distribution for both
the observed outcomes and the estimated probabilities for the model’s dependent
variable, the points at which the curve has to start and stop have quite low precision
values. Hence, the curve itself must be concave and extremely curved to produce
a high AUC, which is very unlikely given the data set. The PR curve is in fact
convex, but the curvature is not very extreme. A low AUC could thus plausibly
be considered as acceptable, actually indicating a good model fit considering the
skewness in the data.

The strange behaviour around the zero recall value seen in all PR plots is due
to the threshold values used. When covering the range between zero and one in
small intervals, the precision for the first positive values of the recall varies a lot
with respect to the truly predicted outcomes in the range above the threshold as
few observations are considered in the first intervals. Thus, it is unstable at first,
but stabilises when more observations are added with less strict thresholds.

Hosmer-Lemeshow Test Results

The results of the HL tests are given in Table 5.6. The tests were performed
on 100 samples from the data, each containing 1000 and 5000 observations, and
each sample was divided into ten groups. The number of samples and the signific-
ance level used are as proposed by Bartley (2014), who also recommended using a
threshold level of ten samples being significant for a model to determine whether
the model had a lack of good fit. Following this, it is apparent that Model 2 and
Model 3 can be categorised as having good fits when considering only the sample
size of 1000 observations, while Model 1 is just outside the range. With the higher
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Figure 5.3: ROC and PR curves for the passing ability models.
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Table 5.6: HL test results for each model with different sample sizes, n. The given
results are the number of samples (out of 100) that has a p-value of less than 0.05.

Model n = 1000 n = 5000

1 11 87
2 10 47
3 4 8

sample size of 5000, only Model 3 can be seen as having a good fit. However,
as previously mentioned, the results from HL tests must be interpreted with care
when dealing with large data sets, which is quite obvious from the differing results
given in the table, proving that the HL test is very sensitive to the size of the data
set. The results from the lower-sized samples seem to be reasonable in light of the
results from the AUCs.

Sequence of Passes for Validation

A sequence of ten passes obtained from a match between Rosenborg and Stabak is
analysed to test the validity of the developed models. The course of the sequence,
which is performed by Rosenborg players, is tabulated in Table 5.7 and a graphical
representation is shown in Figure 5.4. Note that the variables for which the values
are constant between the events are not presented. The match is played in October
2017 on Rosenborg’s home ground where natural grass is the surface type. The
sequence takes place during the second half of the game and the score at the time
of the happening is draw. A failed tackle attempted by an opponent player initiates
the sequence, and the sequence ends with a shot. Thus, all the observed values of
the dependent variables are one.

For Model 1, all but the last pass in the sequence are predicted to be accurate
with a probability above 80%, with the probabilities being highest for passes dir-
ected backwards. As most of the passes are made on the sides or on Rosenborg’s
own half, these values are reasonable. Surprisingly, pass number nine has a quite
high predicted probability of success although this pass is made relatively close to
Stabaek’s goal. This is probably due to the fact that there was a time gap of eight
seconds between the pass and the previous event. The last pass in the sequence
is directed forward and the ball moves into the penalty area of Staback, which
intuitively makes this pass more difficult to attempt. This perceived difficulty is
captured by the model as seen from the lower predicted probability of success.

In the case of Model 2, all passes made backwards have a considerably higher
predicted probability of being followed up compared to the passes made forward.
Similar to Model 1, the last pass in the sequence is the most difficult to follow
up. For Model 3, the probabilities of success increase for passes made forward or
towards the centre of the field. Moreover, the probabilities are higher closer to
the opponent’s goal. The probabilities for all passes in terms of both Model 2 and
Model 3 are reasonable as the pressure from the opponents usually is lower on a
team’s own half and as shots usually are attempted close to the opponent’s goal.
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Table 5.7: Values of the variables in a sequence of passes made by Rosenborg players that
is used for validation. Rosenborg played against Stabasek in October 2017 on their own
home ground covered with natural grass. The score was draw, and Stabak’s Elo rating
at the time of play was 1284.13. Refer to Figure 5.4 for a graphical representation of the
starting and ending coordinates. All other variables do not change between events and
are thus not tabulated below. There are no headed passes, and the sequence is initiated
right after a tackle in which the first passer is not partaking.

Failed tackle by Staback player Ronald Herndndez

No. Player Pos Yl Y2 Yg X7 Xg Xg T :lj X27
1 Samuel Adegbenro WI  0.871 0.658 0.086 1 3 67 63 36 67
2 Morten Konradsen CM 0.989 0.895 0.094 2 2 67 48 39 6

3 Tore Reginiussen CD 0.998 0.894 0.084 3 3 67 33 19 67
4 Vegar Hedenstad FB 0.854 0.558 0.091 3 4 68 43 39 68
5 Nicklas Bendtner ST 0.851 0.625 0.104 3 4 68 64 26 68
6 Vegar Hedenstad FB 0.899 0.549 0.115 4 3 68 43 39 68
7 Pal André Helland WI  0.984 0.818 0.094 4 4 68 77 35 68
8 Nicklas Bendtner ST 0980 0.839 0.132 4 2 68 64 26 68
9 Tore Reginiussen CD 0833 0635 0.192 4 8 68 33 19 68
10  Mike Jensen CM 0576 0.315 0.260 4 1 68 59 26 68

Missed shot by Pal André Helland

N ©)

LS/

X-axis 00
Figure 5.4: A graphical representation of the sequence of passes used for validation.
The start and end of the sequence are represented by red dots, and a green dot illustrates

where the preceding tackle occurred. Dotted lines are either ball touches or ball carries.
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5.2.2.1 Overall Assessment of Validity

According to the AUC values for the ROC and PR curves, all models can be clas-
sified to have good model fits. Variations in the validity across the models are
reasonable as each model considers a different aspect of a pass’s success. Model 1
seems to have the best fit, which is also within reasoning as the explanatory vari-
ables initially were developed based on their presumed impact on pass accuracy.
Access to more detailed data, e.g. player tracking data, would probably have con-
tributed to better model fits. The evaluation of the models’ predicted probabilities
in a chosen passing sequence reveals intuitive results for all models. Considering
the HL test, the results need to be interpreted with care. Under some circum-
stances however, the results of the HL tests coincide with the results from the
other validation methods used. Overall, there exists evidence to conclude that all
three models have reasonably good fits.

5.2.3 Regression Results

The results of the final GAMMS are presented and discussed in this section. Tables
of the complete regression results, including both the fixed effects and the smooth
terms, can be found in Appendix C. A significance level of 10% is used and positive
signs of the coefficients correspond to an increased probability of success. It should
be noted that the sensitivity of an explanatory variable in a logistic regression
model depends on all variables in the model. Consequently, one can not directly
extract from the results the extent to which each respective coefficient influences the
overall change in likelihood due to a unit change in the corresponding explanatory
variable.

Model 1 is built on a total of 565,720 observations of passes. In Model 2, three
passes are omitted due to these having no defined next event in the game, while
one observation is missing for Model 3. This single pass is the last event of the
last match processed in the data set, which seems to be the reason why it is not
recorded properly. However, it is unlikely that the omission has had any impact
on the regression results.

Fixed Effects

The coefficients of all fixed-effect variables included in the final models are presented
in Table 5.8. Other than the intercepts, no coefficients appear to be very high or
low in terms of magnitude. It is apparent that the first pass in a sequence of passes
(the reference) is the most difficult pass to successfully execute. If the first pass
is initiated after a tackle, the probability of success increases, while it is opposite
in the case of an aerial duel. This is true also when the same player is involved.
Surprisingly, the expectation of high opponent pressure on the initiating pass due
to a tackle preceding it is not supported by the results. However, different types of
tackles are not considered here, and many of them, such as sliding tackles, might
leave the opponent on the ground, meaning that the opponent pressure is not very
high. For interceptions, the effect is differing between the models, although it is
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Table 5.8: Fixed-effect coefficients of the estimated GAMMs. All tabulated entries are
significant at a level of 10%.

Variable Short description Model 1 Model 2 Model 3
X7 Pass no. 2 0.351 0.311 0.240
X733 Pass no. 3,4 0r 5 0.498 0.471 0.223
X74 Pass no. 6+ 0.580 0.515 0.223
X11 Tackle 0.343 0.189 0.325
X192 Aerial duel —0.100 —0.596 —0.134
X3 Interception —0.327 —0.148 0.091
X141 Same player: tackle 0.154 0.097

X149 Same player: aerial duel 0.532

X143 Same player: interception 0.757 0.387 0.338
X5 Previous pass was header —0.311 —0.294 —0.110
X6 Headed pass —1.227 —0.968 —0.785
X17 Home team advantage 0.138 0.117 0.092
Xig Free kick —0.181

X9 Throw-in 0.184 —0.106
X9 Corner —0.172 0.363
Xoo Loose ball 0.515 0.277 0.289
Xo3 Ground surface type 0.123 0.187 0.127
Xos1 Same team: corner 0.226 0.120 —0.156
Xos3 Same team: throw-in —0.215 —0.367

X75%X15 Interaction 0.306 0.543 —0.093
X79%X 19 Interaction 0.225 0.447

Intercept 1.299 —0.517 —3.248

throughout positive when the same player who is involved in the interception also
makes the pass. The perception that the pressure on the passer could be lower in
such circumstances is thus supported.

As expected, aerial duels in the previous event complicate the task of executing
a successful pass. This negative effect is further increased with the inclusion of
the contribution from headed passes. A headed pass will always be the outcome
of an aerial duel, and it will always be made by one of the players involved in the
duel. Thus, it makes sense that the variable indicating whether the same player
being involved is insignificant for some of the models. Additionally, the positive
effect in Model 2 is offset by the more negative effect of the header variable for the
same model. In general, headed passes, both in current and previous events, have
a negative influence on the success rate of passes. Loose balls in the previous event
contribute to a higher probability for the player to make a successful pass according
to all models, which is reasonable as opponents are assumed to not necessarily be
nearby during these actions.

For Model 1 and Model 2, the degree of difficulty decreases with the pass num-
ber in the sequence, while for Model 3, all passes with a pass number higher than
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one are almost equally difficult to make compared to the first pass in the sequence.
When including contributions from the interaction terms between pass number and
free kick, the likelihood of success for the second pass in a sequence is increased
for Model 1 and Model 2, while it is decreased for Model 3. Whether a pass is
attempted by the same team performing a free kick in the prior event is insigni-
ficant for all models. This implies that a team does not have an advantage over
the other team when attempting the first pass after a free kick. For throw-ins, the
probabilities of making accurate and tactically good passes increase when adding
the interaction term, as opposed to an unchanged negative effect on pass effective-
ness. The positive effects in the first two models are reduced when the same team
takes the throw-in and attempts the subsequent pass. Apparently, the team seems
to be under high pressure from opponents during such set pieces.

Corners within the five previous events have differing impact on the models.
While the accuracy of a pass is not affected by the corner variable itself, it is pos-
itively affected when a corner is made by the attacking team, which intuitively is
opposite of what is expected. The attacking team is subject to a more confined
space with opponents surrounding them, which should have made the attempted
pass more difficult to make. Tactically good passes are more difficult for the de-
fending team, while the influence on the success rate for the attacking team is
minimal. This is counter-intuitive in the same way as for the pass accuracy. The
corner effect on pass effectiveness should intuitively be more pronounced for the
attacking team as they are closer to the opponent’s goal. However, the results
suggest otherwise. The defending team has a higher likelihood of success, possibly
due to counter-attack possibilities in the open areas ahead after the corner is taken.

All models indicate that a team tend to benefit from playing on their home
ground when passing the ball as seen from the positive coefficients. Also, players
seem to have an advantage from playing on artificial grass.

Random Effects

The random-effect coefficients of the teams playing in Eliteserien during the 2014-
2016 seasons are shown in Figure 5.5 for all models. In the figure, the teams’ skills
of facilitation and hampering, with respect to the aspects of success, are plotted
on the vertical and horizontal axis respectively. The higher the coefficient value,
the better a team is on the specific skill.

For all models, Sogndal, Mjgndalen and Tromsg are placed in the third quad-
rant, indicating both low facilitation and hampering skills. Interestingly, these
three teams have been in the lower half of the table and some of them have also
been relegated from Eliteserien during the seasons considered. Surprisingly, teams
such as Rosenborg, Molde and Strgmsgodset, all of which have been seen as fa-
vourites at the start of the seasons, and have performed well during the seasons
considered, have negative hampering scores in all models. Lillestrgm and Aalesund
stand out to be the teams with the best hampering skills for each pass aspect.

Considering the facilitation scores, Odd and Rosenborg are the teams achieving
highest scores in terms of pass accuracy and game overview, while Rosenborg, fol-
lowed by Sarpsborg 08, have the highest pass effectiveness scores. Statistics from
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Figure 5.5: Random-effect coefficients of teams in Eliteserien for all models. The coeffi-
cients are based on data from the 2014-2016 seasons. The overall team skill of hampering
passes is given on the x-axis while the overall team skill of facilitation is given on the
y-axis, both skills with respect to the pass aspects considered. Team abbreviations are
explained in Appendix D.

WhoScored.com (2018) state that the top five teams in terms of pass accuracy in
Eliteserien 2016 were, listed in descending order, Rosenborg, Odd, Stremsgodset,
Valerenga and Molde. Moreover, the teams with the highest number of shots
per game in the season were Rosenborg, Molde, Sarpsborg 08, Lillestrgm and
Strgmsgodset. Although being valid only for the 2016 season, the statistics support
the observations in the figures in terms of the facilitation scores.

In general, most teams stay within, or close to, the same quadrant in all models,
and the scores are realistic when considering the skill represented on the y-axis.
The hampering scores however, are not as intuitive. Especially the occurrences of
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5.2 Results

Table 5.9: The random-effect coefficients of the top ten passers during the 2014-2016
seasons of Eliteserien for all models. Player position and team abbreviations are explained
in Appendix D. If a player has played for more than one team in the seasons considered,
the team for which the player has played more matches during these seasons is given.

Panel A: Model 1

#  Player Team Pos  Coef
1 Johan Ladre Bjgrdal RBK CD 0473
2 Martin @degaard SIF  AM 0.422
3 Christian Grindheim VIF CM 0.419
4 Daniel Berg Hestad MOL CM 0412
5  Markus Berger STA CD 0.401
6  Joona Toivio MOL CD 0.397
7  Tomasz Sokolowski STB CM 0.394
8  Johan Andersson LSK CM 0.391
9  Even Hovland MOL CD 0.341
10 Enoch Kofi Adu STB CM 0.337
Panel B: Model 2
#  Player Team  Pos  Coef
1 Magnar @degaard TIL CD 0.278
2 Anthony Annan STB CM 0.275
3 Karol Mets VIK CM 0.264
4 Giorgi Gorozia STB CM 0.263
5  Johan Laedre Bjgrdal RBK CD 0.260
6  Indridi Sigurdsson VIK CD 0.252
7  Anthony Soares VIK CD 0.251
8  Jukka Raitala SOG FB 0.247
9 Fredrik Michalsen TIL CM 0.238
10 Hélmar Orn Eyjélfsson  RBK CD  0.237
Panel C: Model 3
#  Player Team  Pos  Coef
1 Joona Toivio MOL CD 0.148
2 Magnar Odegaard TIL CD 0.140
3 Kristian Brix B/G WB 0.137
4 Mohamed Ofkir LSK WI 0.124
5 Giorgi Gorozia STB CM 0.110
6 Jone Samuelsen ODD CM 0.104
7 Maic Sema FKH AM 0.099
8 Ernest Asante STB  WI 0.099
9  Eirik Meland FKH CM 0.098
10 Erlend Hanstveit BRA FB 0.098
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Lillestrgm on the far right in all models are surprising due to the team being known
for a direct playing style.

The random-effect coefficients of the top ten passers during the 2014-2016 sea-
sons in Eliteserien are shown in Table 5.9 for each model. Central defenders top
the lists for all models, and central defenders and central midfielders dominate the
top lists for both Model 1 and Model 2. As opposed to the two other models, more
variation in player positions is present in the top list for Model 3. The fact that
more offensive players are included in the top ten list for Model 3 compared to
the other models is reasonable as this model considers whether a pass is part of a
passing sequence resulting in a shot. Shots are usually attempted by offensive play-
ers on the opponent’s half, and since many passing sequences are terminated fairly
quickly, the patterns seen for Model 3 are supported. The inclusion of defensive
players in the top list for the model could be due to longer passing sequences or it
could be explained as an effect from counter-attacks where the team is moving the
ball forward from defence to attack rather fast.

In terms of the magnitude of the coefficients, the range of the Model 1 coefficient
values is greater than of the other models, especially compared to Model 3. This
could possibly be due to the higher number of observed successful events for Model
1 compared to the other models. In fact, the success rates are 74.9%, 53.7% and
8.7% for Model 1, Model 2 and Model 3 respectively.

To test whether the magnitude of a player’s coefficient is influenced by the
magnitude of the coefficient of the player’s team, the models were run with the
team coefficients excluded. The resulting models had higher AICs and were thus
not investigated further. However, one should bear in mind a potential correlation
between team and player random effects. On the other hand, players playing for
teams with differing scores are present in the top lists for all models.

Smooth Terms

The resulting 1-D smooth functions are illustrated in Figure 5.6, and most of them
are similar across the models. Panel A illustrates the effect of time passed since the
last occurred event measured in seconds. For Model 1 and Model 2, the probability
of making an accurate or a tactically good pass is increasing with increased time
passed, which is intuitive as opponents are not likely to be nearby the passer in
such circumstances. In Model 3, the trend is that effective passes are more difficult
to make when the time between events increases. This is not intuitive, but could
be explained as an effect from counter-attacks. With the ball moving fast between
players in the forward direction, the likelihood for a counter-attack to be successful,
and thus also the likelihood for success according to Model 3, could be increased.
The negative slopes present for Model 1 and Model 3 after about 18 seconds are
probably due to few observations having long time gaps between events.

The effect of game time in minutes is shown in Panel B. It was expected that
players would become stressed when the time runs out, which in turn could affect
their pass success rates. For Model 2 and Model 3, the pattern is quite similar.
Players have an increasing probability of making tactically good or effective passes
in the first period of each half of the match, while it is more difficult to make these
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Figure 5.6: The resulting 1-D smooth functions with 95% confidence intervals.
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Figure 5.6 (Continued): The resulting 1-D smooth functions with 95% confidence intervals.
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5.2 Results

passes at the end of the halves, including overtime. In the second period of the
first half in Model 3 however, the increase is levelled out. Seemingly, the stressing
effect of time is captured by these models. For Model 1 however, a straight line for
the function is estimated, giving a linear predictor with a counter-intuitive positive
slope. This linear shape is probably due to the newly added variable of player-
specific game time, which is highly correlated to game time (r = 0.83) as most
players play the entire match.

In Panel C, the influence of the goal difference variable is illustrated. Effects
from goal differences higher than four in absolute value should be interpreted with
care due to few occurrences in the data set. For Model 1, the chance of success is
high when a team is falling behind with two goals or leading by at least four goals,
while in Model 2, the likelihood of succeeding is highest when a team is falling
behind with or leading by four goals. Making accurate or tactically good passes
are most challenging when a team is leading by one goal, which makes sense as the
opponent team tends to play a pressing game during such circumstances. Thus, it
seems like players have a higher likelihood of success according to these models when
the goal difference is big, that is, when the match outcome seems to be definite. In
terms of effectiveness, a draw score corresponds to a near zero contribution, with
teams falling behind having reduced probability of success and teams being in the
lead having increased probability of success. Seemingly, teams chasing a goal to
even the score are less likely to succeed with their passing sequences, possibly due
to a stressing factor of being in need of a goal.

For Model 1 and Model 2, a higher Elo rating of the opponent team makes
it harder for a player to achieve success, as seen in Panel D. The same pattern
is partly true for Model 3, but when playing against teams with a very high Elo
rating, the chance of success is increased. Although this is counter-intuitive, it
could be due to counter-attacks. Playing against very good teams with high ball
possessions could more often create opportunities for counter-attacks. This might
increase the number of observations of successful sequences when playing against
such teams, and thus potentially increase the probability of success for Model 3.

It was perceived that players’ performance would increase in the beginning of a
season and then decrease in the end of the season due to a fatigue effect. Further,
changes in weather conditions throughout the year were anticipated to affect play-
ers’ passing abilities. Panel E and Panel F display the interactions between month
of play and natural grass and month of play and artificial grass respectively. As
the shapes of the functions for the two surface types are dissimilar, it is reasonable
to assume that it is the effects of the ground conditions, and not the fatigue effects,
that are captured. With an upward slope in the beginning of the season for the
natural grass graphs, and a downward slope in the end, it seems like the difficulties
regarding maintenance of natural grass during the near-winter months are captured
by the models. For the artificial grass functions however, varying curves, with small
oscillations, indicate little change in the conditions of a field. Comparing the two
smooth functions for month of play in Panel G, it is not apparent that playing on
artificial grass is more beneficial throughout the year. However, when also con-
sidering the positive fixed-effect coefficients for artificial grass, the blue line would
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be shifted upwards, revealing a clear advantage of playing on artificial grass in all
models, especially in the months of March and April.

Panel H illustrates the effect of playing time, measured in minutes, for the
player passing the ball. For all models, the likelihood of success is highest when a
player has been on the pitch between 15 and 85 minutes when attempting the pass,
while players having played the entire match seem to have their performance drop
in the last minutes of the game. Thus, the anticipated exhaustion effect seems to
be captured by the models, with the effect being more prominent for Model 2 and
Model 3.

For the multidimensional smooth functions in Figure 5.7, the resulting con-
tributions are varying between the models. The differing contribution given by
the average position of a player is shown in Panel A. When using absolute values
for the y-coordinates, the y-axis only ranges from zero to 50, meaning that low
y-coordinates correspond to players both on the left-hand and right-hand side of
the pitch. All models indicate that the average position of being in the bottom left
corner in the figures, where the full backs usually are situated, is the easiest. The
corners on the opponent’s half, the flanks and the area in front of the opponent’s
goal are most difficult to succeed in for Model 1, Model 2 and Model 3 respectively.
The layout of the variable is very intuitive when seen in light of the results found
by Wiig and Haland (2017). With them observing that offensive players seemingly
have an overestimated passing ability, and the opposite for defenders, the problem
is slightly dealt with as defensive players are given high, positive contributions and
offensive players are given negative contributions. Thus, passes attempted by de-
fenders and attackers would be expected to be easier and harder to succeed with
by the models respectively.

It was perceived that the combined game time and goal difference would have
an impact on the performance of players, especially when a match is approaching
the end. For all models, the probability of success in the end minutes is higher for
the teams falling behind than the teams being in the lead as seen in Panel B. Thus,
the team leading actually has a harder task even if they have a comfortable lead.
However, with fewer observations of leads, or defeats, of four or more goals, some
of the most extreme contributions must be interpreted more carefully.

Panel C and Panel D both show results from the 4-D smooth function that
covers the starting and ending coordinates of a pass. Given a pair of starting
coordinates, the contour lines give the contribution for all end-coordinate possibil-
ities. When passing from the defensive half (Panel C) the likelihood of success is
higher when passing backwards compared to passing forward according to Model
1 and Model 2. This is intuitive as the opposition is situated in front of the passer
at most times. For Model 3, there is little variation in the magnitude of the con-
tribution, but passing the ball forward gives a higher probability of success. This
is also intuitive as the ball is moving closer to the opponent’s goal where shots are
more likely to happen. The same intuitive results are present in the case of a pass
made from the offensive half in Panel D as well.
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5.2.4 Predictions and Player Ratings

In the following, the predictions and player ratings obtained for the developed
models are presented. The full predictions used to test the models’ predictive
powers and the average predictions used to rate players are calculated as explained
in Section 5.1.4.

Predictions

In Figure 5.8, the predicted success rate is plotted against the observed success
rate for each model and each player in the 2017 season of Eliteserien. Only players
attempting a minimum of 100 passes are plotted. The colours represent groups of
player positions, and different symbols are used to tell whether a player is new to
the 2017 season compared to the 2014-2016 seasons.

For Model 1 and Model 2, more strikers seem to be on the left side of the
diagonal compared to the right side, indicating that the models predict a higher
likelihood of success for them than what is actually observed. The same pattern,
although not as clear, can be seen for wingers and attacking midfielders. Con-
sidering the magnitude of the success rates, defenders, defensive midfielders and
central midfielders tend to achieve higher success rates than goalkeepers and more
offensive players. It is also interesting that the discrepancy between the predicted
and observed success rates tend to be smallest for the case of high rates. Overall,
the largest discrepancy between the rates seems to be present for strikers.

For Model 3, it is clear that the different groups of player positions cluster
together. Moreover, the magnitude of the success rates are increasing in the playing
direction, that is, goalkeepers have the lowest success rates while more offensive
players obtain the highest rates. This is intuitive as the model measures pass
effectiveness and because most of the passing sequences in the data set are short.
As opposed to Model 1 and Model 2, the distribution of offensive players in Model
3 seems to be more even.

Player Ratings

The ten best passers in the 2017 season of Eliteserien for each model are presented
in Table 5.10. Note that only outfield players attempting more than 209 passes are
considered for the analysis. This is the equivalent of having attempted an average
number of passes in 20% of the matches, i.e. six matches, that season.

Defensive players dominate the top list for Model 1, while the proportion of
offensive players in the lists for the two other models is higher. However, there
are still five defensive players in the list for Model 3. As there are many passes
made by defenders on their team’s own half that are not effective, the model might
not be able to give realistic expected values for the defenders who tend to be more
active in the offensive play. Hence, compared to other defenders, the more offensive
defenders are recognised by the model, but their ratings might not be comparable
to those for other player positions.

For comparisons of player ratings in the 2017 season, the developed models were
rerun with data from the 2017 season and the resulting random-effect coefficients
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Figure 5.8: The predicted versus observed success rates for each model and each player
in the 2017 season of Eliteserien. The colours represent groups of player positions, and
different symbols are used to tell whether the player is new to the 2017 season compared
to the 2014-2016 seasons (A) or not (e). A new player is treated as an average player
with a random-effect player coefficient of zero. Colours: e - goalkeepers, o - defenders, o
- central and defensive midfielders, e - wingers and attacking midfielders and e - strikers.
Only players with more than 100 passes are considered.
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Table 5.10: The top ten passers in the 2017 season of Eliteserien. Explanation of the
abbreviations used for the teams and the player positions can be found in Appendix D.
Only outfield players with more than 209 passes, the equivalent of playing six matches,
are considered, and if a player has played for more than one team in the season considered,
the team for which the player has played more matches is given.

Panel A: Model 1

#  Player Team  Pos FExpected Actual Obs  Ratio
1 Daniel Braaten BRA ST 0.673 0.741 282  1.102
2 Vegar Hedenstad RBK FB 0.744 0.812 1348 1.090
3 Bonke Innocent LSK DM 0.757 0.823 294  1.087
4 Espen Ruud ODD FB 0.706 0.763 1504 1.081
5 Reiss Greenidge SOG CD 0.707 0.764 229  1.081
6  Thomas Grogaard ODD FB 0.762 0.812 1219 1.067
7  Taijo Teniste SOG FB 0.681 0.727 673  1.067
8  Michael Haukas VIK WI 0.659 0.702 242  1.065
9  Martin Ellingsen MOL CM 0.761 0.810 406  1.065
10 Birger Meling RBK FB 0.778 0.829 981  1.065
Panel B: Model 2
#  Player Team  Pos Expected Actual Obs  Ratio
1 Daniel Braaten BRA ST 0.425 0.496 282 1.167
2 Anders Trondsen S08 CM 0.532 0.608 1152 1.142
3 Herman Stengel VIF CM 0.593 0.677 1007 1.142
4 Jacob Rasmussen RBK CD 0.673 0.767 675  1.140
5  Vegar Hedenstad RBK FB 0.532 0.605 1348 1.137
6  Kasper Skaanes BRA WI 0.482 0.545 297  1.133
7  Enar Jasdger VIF FB 0.646 0.731 1281 1.132
8  Jonatan Nation VIF  CD 0.605 0.685 1771 1.132
9  Birger Meling RBK FB 0.572 0.646 981 1.131
10 Mathias Normann MOL CM 0.531 0.600 255  1.130
Panel C: Model 3
#  Player Team  Pos FExpected Actual Obs Ratio
1 Jostein Gundersen TIL CD 0.052 0.087 492 1.699
2 Lasse Nilsen TIL FB 0.097 0.149 444 1.535
3 Daniel Braaten BRA ST 0.120 0.152 282 1.388
4  Kim André Madsen SIF  CD 0.055 0.076 476 1.373
5 Deyver Vega BRA WI 0.111 0.149 302 1.340
6  Gjermund Asen TIL AM 0.117 0.156 867 1.333
7  Martin Broberg ODD WI 0.092 0.122 483 1.316
8  Vegard Bergan ODD CD 0.058 0.075 771 1.307
9  Vegard Forren MOL CD 0.064 0.084 392 1.307
10 Anthony Ikedi FKH CM 0.076 0.100 261 1.303
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Table 5.11: The random-effect coefficients of the top ten passers during the 2017 season
of Eliteserien according to the reran models. Abbreviations for teams and positions are
explained in Appendix D. The team for which a player has played most matches in the
season considered is given.

Panel A: Model 1

#  Player Team  Pos  Coef
1 Espen Ruud ODD FB 0.383
2 Vegar Hedenstad RBK FB 0.367
3  Thomas Grggaard ODD FB 0.362
4 Henning Hauger SIF DM 0.347
5  André Danielsen VIK CM 0.328
6  Taijo Teniste SOG FB 0.325
7 Vito Wormgoor BRA CD 0.288
8  Bonke Innocent LSK DM 0.288
9  Jonatan Nation VIF CD 0.288
10 Nikita Baranov KBK CD 0.283
Panel B: Model 2
#  Player Team  Pos  Coef
1 Henning Hauger SIF DM 0.230
2 Jacob Rasmussen RBK CD 0.218
3 André Danielsen VIK CM 0.203
4 Mikkel Kirkeskov AaFK FB 0.195
5  Ulrik Yttergard Jensen TIL CD 0.186
6  Thomas Grggaard ODD FB 0.185
7  Christoffer Aasbak KBK WB 0.184
8  Kristoffer Haraldseid FKH WB 0.184
9  Jonatan Tollas Nation VIF CD 0.184
10  Enar Jéager VIF FB 0.180
Panel C: Model 3
#  Player Team  Pos  Coef
1 Gjermund Asen TIL AM 0.090
2 Jostein Gundersen TIL CD 0.085
3  Kaj Ramsteijn AaFK CD 0.083
4  Liridon Kalludra KBK WI 0.083
5  Lasse Nilsen TIL FB 0.077
6  Christian Grindheim VIF CM 0.076
7 Fredrik Midtsjo RBK CM 0.067
8  Eirik Hestad MOL CM 0.067
9  Vegar Hedenstad RBK FB 0.058
10  Vegard Bergan ODD CD 0.058
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of the top ten passers are shown in Table 5.11. The idea was to see whether the
model predictions could be used to rate players out of sample instead of having to
run the models over again for each new season to get new coefficient estimates.

When comparing the player ratings across the two approaches used, five, three
and four of the same players on the top ten lists are present on both lists according
to Model 1, Model 2 and Model 3 respectively. Two of these players are new to the
2017 data set, but still manages to be spotted by the models through predictions.
Five more new players are present in Table 5.11, three of which also plays for
Kristiansund, the newly promoted team. In general, the player position patterns
are the same across the models for the two approaches.

5.2.5 Comparison with Existing Literature

The models developed in this thesis are modifications of the models considered in
Wiig and Haland (2017), with the main difference being the inclusion of smooth
functions and the addition of some new variables and interaction terms. Not sur-
prisingly, the results are similar, but the models’ fits are improved according to the
AUC:s for both the ROC and PR curves. When looking at the fixed-effect variables
that are exactly the same in the two studies, almost all of them have the same
signs of the coefficients and a value in the same range. The tendency is that where
deviations are apparent, new interaction terms or new variables that most likely
have changed the effect of the variable have been introduced, so that the total
contribution might actually be more similar than what is evident.

When comparing to other existing studies, Model 1 is inspired by the model
considered in Szczepanski and McHale (2016), which was further investigated by
Tovar et al. (2017) and McHale and Relton (2018). Model 3 has a nature similar to
what is examined in Power et al. (2017), Brooks et al. (2016) and Mackay (2017),
and in general papers on other sports, whereas Model 2 is seemingly unique in the
way the dependent variable is defined.

The coefficients of Model 1 correspond well with the findings in Szczepanski and
McHale (2016) in terms of both sign and magnitude. For the two other studies,
the fixed-effect variables used are quite different, and the home team advantage
variable, which is the only comparable variable, has the same positive effect. Both
McHale and Relton (2018) and Tovar et al. (2017) have chosen to force linearity
upon continuous variables instead of using smooth functions. Additionally, McHale
and Relton (2018) have the advantage of having a much more detailed data set with
player tracking data, making it possible to create more accurate variables to handle
opponent pressure than the proxies used in this thesis. They suggest that the more
accurate variables are the reason why many of their initially proposed variables
turn out to be insignificant.

Although Szczepanski and McHale (2016) have the most alike smooth functions
to the ones considered here, these have somewhat different appearances. Time
between events, defined as time between passes in Szczepariski and McHale (2016),
has the same shape in the start of the graph, but then turn out to be very different.
Most likely, this is due to the fact that the x-axes have differing ranges, with the
range in this thesis going far beyond the eight seconds in Szczepanski and McHale

62



5.2 Results

(2016). Further, the effect of game time has a similar pattern across the two studies.
The average player position is defined rather differently, but still shows similar
results in the offensive part of the field, while the curvature is more extreme in this
thesis for the defensive part. Finally, for the 4-D smooth function, the result is only
similar in the defensive region. All other smooth functions are newly proposed, and
the random effects are not comparable as different leagues are considered in the
two studies.

The predictions made for pass accuracy in the consecutive season seem to be
more accurate in Szczepanski and McHale (2016). However, as new players are
considered in this thesis as opposed to what is seemingly done by Szczepanski and
McHale (2016), inaccuracies will be present as these players are seen as average.

The measures introduced by Power et al. (2017) are related to the models
developed in this thesis. The risk of a pass, defined as the probability of a player
executing the pass taking its difficulty into account, relates to Model 1, while the
reward of a pass, defined as the probability that the pass made ends with a shot
within the next ten seconds, relates to Model 3. To a higher extent than what
is seen in this thesis, offensive players tend to achieve higher ratings in terms of
making effective passes in Power et al. (2017), which is probably due to the time
limit used. In both studies however, the probability of making an effective pass
increases closer to the opponent’s goal even though these passes are more difficult
to successfully execute.

Brooks et al. (2016) also studied a case similar to Model 3, providing insights
into which combinations of origin and destination zones that tend to lead to shot
opportunities. Although the results are not directly comparable as zones are not
utilised in this thesis, some comparisons can be made. Brooks et al. (2016) found
that having the ball in the critical zone, that is, the zone just in front of the
opponent’s penalty box, more often leads to shots. This is however not true for the
case of making long passes to the critical zone from specific zones on a team’s own
half. Both observations are supported by the results in this thesis as seen from the
corresponding coordinates on both 4-D smooth plots for Model 3 in Figure 5.7.

Although looking at goal effectiveness instead of shot effectiveness, the results
obtained by Mackay (2017) are related to Model 3. Mackay (2017) investigated the
probability that different types of actions and their previous events result in a goal.
Hence, not only passes are considered. Only the variable for headed passes in the
current action, while several of the variables concerning actions occurring in the
previous event are comparable. In fact, all but one of these comparable variables
have the same signs across the two models. The only variable differing in sign is
the event of tackles in the previous event, which is found to negatively contribute
to goal-scoring opportunities in Mackay (2017).

Just as previously mentioned about the results in Power et al. (2017), offensive
players are also favoured in Brooks et al. (2016) and Mackay (2017). This is
different from the findings in this thesis, where more variation in player positions
is present for Model 3. This might indicate that Model 3 more properly deals with
differences in player positions, although it is uncertain how fair the given scores
across players positions are.
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For the models developed in this thesis, some variables that have not, to the
authors’ knowledge, been used elsewhere in research related to passing are included
to investigate their effects on passes’ success. Most interestingly are the results
from the surface type variable combined with the course of a season. They show
that artificial grass has a considerably big positive effect on the outcome of a pass
compared to natural grass for all aspects of success that are considered. Also,
the effect of the contribution from natural grass seems to be consistent with the
changing conditions of such a surface type throughout the year. Although making
a decision about which surface type to use on a field based on these observations
is way too drastic, the findings could be seen as proof that teams’ should consider
different playing styles or passing patters depending upon the quality of the surface.

The inclusion of set pieces as binary variables has also been tested in the ana-
lyses, and they reveal some surprising results about passes in Eliteserien. After a
corner for instance, the defending team seems to be more likely to have a shot at-
tempt, while the attacking team has a greater chance of succeeding with the passes
they make. Having this information in mind, an attacking team may consider to
choose a more safer option in the event of a corner, perhaps by reconsidering the
number of defenders to be moved forward, as this might minimise the chance of
counter-attacks.

5.2.6 Evaluation of Research Question 1

In this chapter, the primary objective was to answer the first main research question
outlined in Chapter 1:

RQ 1: Which factors influence the success of a pass in Eliteserien?

To answer this, three GAMMs were developed to assess the probability of success
in terms of making accurate, tactically good and effective passes. From the re-
gression results, it is apparent that many factors influence a pass’s success, and
their contributions are differing across the three aspects considered. The proxies
for the implications of a player’s position on the pitch reveal quite intuitively that
passing the ball backwards, or keeping it on the team’s own half, is considerably
easier, while the opposite direction however, is more beneficial when looking for
shot opportunities. Considering the average player positions, full backs tend to be
more likely to succeed.

The proxies for opponent pressure are affecting the outcome of a pass in different
ways. For the first pass in a sequence, the variables for types of ball recoveries in the
prior event considered have changing, but reasonable signs. Tackles were, at first
glance, surprisingly affecting the outcome positively. However, it was established
that this variable is not specific enough to handle the opponent pressure related
to all types of tackles. In the case of set plays in the previous event, free kicks do
not affect the outcome of a pass that much, while for throw-ins, it turned out that
the team not taking them has a higher probability of success. For corners within
the five previous events, there were rather strange results, which are identified as
might being due to counter-attacks.
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Interestingly, the effect of varying ground conditions is captured by the models
and the perception that playing on artificial grass has an advantage over natural
grass is supported. The functions for game time in minutes have intuitive shapes
for Model 2 and Model 3, while for Model 1, the function is linear, possibly due to a
strong correlation between game time and the time played by a player. Considering
the scores, the team in need of a goal seems to be less likely to successfully make
effective passes, while, in general, accurate and tactical passes are more likely to be
the outcome when the goal difference is big. Headed passes in current and previous
event, the Elo rating of the opponent team and the time passed since previous event
all give intuitive results in terms of how they affect the difficulty of a pass. Also,
there seems to be an home team advantage.

A second question to answer, the sub-question of RQ 1, is: Who were the best
passers in the 2017 season of Eliteserien? When setting a reasonable limit of passes
to be attempted in order to remove players with few observations, the top lists
make sense. Both players playing for different teams and in different positions
are recognised among the best passers in the season. Using the notion of average
players in the ratings seems to give intuitive results when comparing to the random-
effect coefficients in the rerun models for the 2017 data. Similar player positions
and many of the same players are represented in the lists for both approaches.
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Chapter

Identifying Key Players

To identify the key players in teams, network analyses are performed using the
results from the passing ability models in Chapter 5. Basic network theory is
presented in Section 2.9. Here, the network set-up is introduced, followed by a
validation of the network metrics considered and the results. The key Rosenborg
players are identified and two case studies from Rosenborg matches are presented.
At last, the results are compared to similar existing studies and the second research
question is evaluated.

6.1 Networks in the Context of Football

By constructing a social network of team players, it is possible to identify the influ-
ence and importance of football players in a team-passing dynamic game through
different network metrics. In a passing network, players are represented by nodes
and edges represent interactions between the players, where the interactions usually
have been passes made.

In the context of football, closeness can be interpreted as a measure of the
easiness of reaching a particular player within a team. Players achieving higher
closeness scores tend to reach more players in fewer passes (Clemente et al., 2016).
The betweenness score gives an indication of how the ball-flow between teammates
depends on a specific player. Players with high scores play a key role as connecting
bridges between teammates, and they contribute to keep ball possession within
the team (Gongalves et al., 2017). With the usual approach of using the number
of passes between players as weights in a network, a low betweenness score is
associated with less involvement in the game, and the effect of removing that player
from the game is minimal. From the standpoint of a team, betweenness scores that
are evenly distributed among players may indicate a well-balanced passing strategy
and less dependence on particular players (Pena and Touchette, 2012).

For team sport analysis, the PageRank centrality is a recursive notion of pop-
ularity or importance. From a recipient’s perspective, a player is important when
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receiving passes from other important players, while from a passer’s perspective,
a player is important when passing the ball to other important players. Basically,
the PageRank centrality assigns to each player the probability that the player will
receive or pass the ball after some passes have been made (Pena and Touchette,
2012).

Clustering coefficients are computed to get a quantification of players’ tendency
to cluster together. Such coefficients can be used to assess how close a particular
player and his teammates are to become a complete subgraph (Clemente et al.,
2016). A high individual clustering score may indicate that a player acts as a
middleman for his teammates, and by averaging the players’ individual coefficients,
a team’s clustering coefficient may provide insight into how well-balanced the team
is (Pena and Touchette, 2012).

6.2 Network Set-Up

To identify the key players on teams in Eliteserien, both directed and undirected
weighted passing networks are created to obtain the chosen network metrics. The
passing networks consist of all players in a team for a given season who have made
or received at least one pass, and the metrics are calculated in three separate cases:
one for each of the aspects of a pass’s success considered in Model 1, Model 2 and
Model 3 (see Section 5.1.1). The passes that are relevant to analyse for each of
the aspects need different weighting, which is further explained in the following
section. Furthermore, the network metrics calculated might differ between the as-
pects. The networks were constructed in RStudio using the igraph package (Csardi
and Nepusz, 2006).

6.2.1 Defining Weights Matrices

For the case of pass accuracy, the difficulties of the completed passes are used as
weights, an approach introduced by McHale and Relton (2018). Both the passer
and the recipient are thus seen as better if they pass or receive passes that are
more difficult to make respectively. The regression results from Model 1 are used
to decide the difficulty of a pass by utilising its average predicted likelihood of
success, p1. The average prediction of a pass can be thought of as its easiness due
to it being separated from the skill of the player and the teams. Then, the pass
difficulty is given as 1 — p;.

When considering game overview, the average predicted probabilities from Model
2, po, are used to define the weights in the networks. These predictions give the
probability that the pass recipients are able to successfully perform the action in
the event succeeding a pass. As passers do a better job if they deliver a pass that
is easier to follow up, and as recipients do a better job if they are able to follow
up a pass that is expected to be hard to do so with, the weights are separated for
the two cases. Thus, two graphs are considered for each team: one handling the
receiving view of a pass and one handling the passing view. The former has weights
1 — po and the latter has weights given by ps.
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The dependent variable for effectiveness of a pass in Model 3 is defined in such
a way that similar approaches for edge weights as the ones utilised for the accuracy
and game overview networks are not deemed appropriate. This is due to the fact
that the pass recipient can not be identified as the player attempting the shot in
the end of a passing sequence. Hence, the recipient can not be seen as a good
contributor of effectiveness just because he or she was able to receive a pass with
a low probability of being effective. Therefore, the sum of effective passes between
players is used as weights to favour players that more often are involved in the
offensive play. These weights are used for both passers and recipients.

For each of the three network types, the weights associated with all passes
going from one player to another in a season are summed up in a weights matrix,
W. As a recipient is needed for all passes, only successful passes are considered.
Moreover, for the game overview and pass effectiveness networks, only those passes
that are successful according to their defined dependent variables in Model 2 and
Model 3 respectively are analysed. The weights matrices are normalised by dividing
each entry w;; by the total number of matches in which player i has made a pass
to player j during the season considered. Also, the edge weights are defined as
strengths. Consequently, higher weights between players are favourable, and the
shortest paths between nodes in a network are decided as defined in equation (15).
This way, the highest scores given by the network metrics are assigned to the key
players in a team. The three networks with different specifications of weighting are
referred to as Network 1, Network 2 and Network 3. A summary of the networks
is given in Table 6.1.

Table 6.1: Summary of the networks.

Network — Description

1 Pass accuracy
2 Game overview
3 Pass effectiveness

6.2.2 Network Metric Specifications

For this thesis, three centrality measures for a weighted network are considered:
closeness, betweenness and PageRank. Additionally, the Barrat clustering coef-
ficient is calculated. The metrics are defined in Section 2.9, and are computed
for each player and each season in the data set. For Network 1, all measures are
considered, while only the PageRank centrality is considered for Network 2 and
Network 3. If a player has played for different teams in one season, the player is
given several scores that season.

As the weights in the networks are considered as strengths, the closeness and
betweenness measures are calculated by using inverse weights as distances in equa-
tions (16) and (18). Dijkstra’s algorithm is utilised in the estimation of closeness,
while Brandes’s algorithm is used for betweenness. In the igraph package, it is spe-
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cified that if there is no applicable directed path between two nodes, the shortest
path between the nodes in the calculation of closeness is set to the total number of
nodes in the network. If this is also true for weighted networks, situations in which
this default distance is actually shorter than some of the shortest paths between
other nodes in the network might occur. However, whether this would appear
to be a problem in this thesis is questionable as the majority of the players are
bidirectionally connected and have been involved in many passes throughout the
seasons. When the inverse weights are used as distances such that the weights can
be treated as strengths, most of the distances will have a length between zero and
one. Thus, the majority of the shortest paths should be less than the number of
nodes in the networks.

The PageRank centrality is considered for both the pass recipient and the
passer, with the two cases being referred to as PR (i) and PR} (i) respectively.
The passer’s perspective is obtained by switching the direction of the edges in Net-
work 1 and Network 3. When considering Network 2, the two separate graphs
are each used to calculate one of the PageRanks: PRﬁQ(i) in the recipient graph
and PRY?(4) in the passer graph. Equation (21) is used in the calculations, and
the damping factor is set to 0.85 in all cases, a number that is commonly used by
researchers.

All centrality measures are normalised by the maximum score of the measure
in the corresponding network. Hence, based on a given centrality measure, the key
player in a team gets a score of one. To calculate the Barrat clustering coefficient
in equation (22), an undirected graph is needed. This is accomplished by collapsing
the corresponding edge weights in the directed graph by averaging them.

6.3 Results

In this section, a validation of the network metrics computed for the players in
Eliteserien is performed. Then, the key players on Rosenborg in the 2017 season
are presented together with case studies from two Rosenborg matches. Further,
the network approach used in this thesis is compared with the ones used in other
studies and the second research question is evaluated.

6.3.1 Validation

Two approaches are considered to validate the computed network metrics for the
players in Eliteserien. First, the correlation for each metric across two consecutive
seasons is presented in Table 6.2. Here, only players playing on the same team in
both seasons are part of the analysis. Second, the correlation between all metrics,
based on the data from all seasons, is shown in Figure 6.1. The idea is that the
different metrics all have the same purpose of finding the key players in a team.
Consequently, the player rankings should be similar across the measures. Moreover,
when playing for the same team in two consecutive seasons, the importance of a
player has, most likely, not changed very much.
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Table 6.2: Network metric correlation across seasons in Eliteserien for validation. For
two consecutive seasons, only players having played on the same team in both seasons are
considered.

2014/2015 2015/2016 2016/2017

Ca(i) 0.778 0.739 0.842
Ci(i) 0.494 0.434 0.326
PRY(i)  0.798 0.799 0.748
PRYY (i) 0.550 0.578 0.608
v 0.152 0.077 0.186
PR¥2(i)  0.612 0.554 0.603
PR%2(i)  0.670 0.696 0.625
PR¥3(i)  0.626 0.546 0.525
PRY3(i)  0.423 0.429 0.398
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Figure 6.1: Correlation between the different network metrics. Players from the 2014-
2017 seasons of Eliteserien are considered.
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From Table 6.2, it is evident that there is a tendency for the same players to be
ranked similarly in two consecutive seasons. This is especially true for the cases of
the closeness measure and the PageRank recipient score of Network 1 as seen from
the high correlation across seasons for these measures. As players do develop their
abilities across seasons, and their scores depend upon the team’s key player for a
given season, the correlation for the centrality measures seems to be reasonable
as a near-perfect correlation would be impossible. The clustering coefficient has a
rather low correlation between seasons, indicating that this metric does not provide
consistent scores for players across seasons. This could be explained by looking into
how players receive their clustering scores. If a player is connected to exactly two
other players in the graph, the strength of the player (node strength) is equal to
the sum of the weights in equation (22), giving a coefficient value of one. However,
when the number of connections is increasing, but still covering a low percentage
of the total number of players on the team, the score is much lower, but increasing
with the number of added connections. Hence, players with a slight increase in
involvements from one season to another might have very differing scores for these
seasons, which would lower the correlation.

The correlation between different network metrics in Figure 6.1 reveals which
measures that tend to rate players in the same order. The highest positive correl-
ation can be found for the three PageRank scores, for both recipients and passers.
Although the closeness measure has been defined such that both the passes received
and the passes made are considered, the measure has a higher correlation with the
PageRank passer scores compared to the PageRank recipient scores. The Barrat
clustering coefficient has a slightly negative correlation to all other metrics. This
could be due to the same reason as explained for the correlation across seasons;
some players with little involvement are rated to be the best on this measure, but
are not in the top ratings for the other measures due to few connections.

6.3.2 Key Players

Although the network set-ups described are used for all teams and seasons in the
data, only the resulting key players on Rosenborg in the 2017 season are presented
here due to the thesis focusing on this team and due to spacing issues. However, the
general results found across teams are also discussed. Overall, intuitive results were
found for all teams, with the teams’ perceived most important players achieving
higher scores on the calculated network metrics.

Network 1

The key Rosenborg players in the 2017 season in accordance with the network
metrics for Network 1 are shown in Table 6.3. Only players having been involved
in, i.e. passed or received, a number of passes corresponding to six fully played
matches are listed to avoid noise. The cut-off is set to 462 pass involvements, a
number based on Rosenborg players’ average number of passes made and received
per match in 2017. Six matches correspond to having played 20% of the games in
a season.
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Table 6.3: The key players on Rosenborg in the 2017 season of Eliteserien according to
Network 1 are shown. Only players involved in more passes than the equivalent of six
matches are considered. The three best players according to each measure are highlighted
in bold text. The number of pass involvements, n, is the sum of passes made and received
by a player, where passes made also include those that were unsuccessful and thus not
part of the network analysis. The abbreviations for player positions are explained in
Appendix D.

Name Pos Cg(i) Cg(i) PREY(i) PREY(3i) v n

André Hansen GK 0.319 0.000 0.088 0.693 0.800 1083
Johan Leedre Bjgrdal CD 0.766  0.496 0.205 0.980 0.842 1555
Jacob Rasmussen CD 0.738 0.044 0.255 0.836 0.851 1174
Tore Reginiussen CD 0.697 0 0.203 0.718 0.915 2259
Jorgen Skjelvik CD 0.797 0.062 0.275 0.901 0.886 1968
Alex Gersbach FB 0.907  0.035 0.521 0.670 0.903 854
Vegar Hedenstad FB 0.999 1.000 0.672 1.000 0.849 2420
Birger Meling FB 0.992 0.646 0.909 0.916 0.821 1747
Anders Konradsen DM 0.878 0.115 0.604 0.625 0.932 1479
Mike Jensen CM 0947 0.487 0.788 0.738 0.836 1927
Marius Lundemo CM 0.735 0.000 0.400 0.596 0.944 1257
Fredrik Midtsjo CM 0977 0.425 0.751 0.664 0.910 1119
Anders Trondsen CM 0910 0.257 0.566 0.771 0.914 633
Pal André Helland WI 0943 0.177 0.665 0.562 0.919 920
Milan Jevtovic WI 1.000 0.681 0.952 0.628 0.925 767
Nicklas Bendtner ST 0.950 0.133 1.000 0.584 0.910 1465

Matthias Vilhjalmsson ST  0.881  0.310 0.977 0.469 0.857 596

As explained earlier, closeness is a measure of the easiness of reaching a player.
Hence, when using pass difficulties to find the shortest paths between players,
players who tend to receive and pass more difficult passes will get higher scores.
In general, midfielders and attacking players tend to receive high scores, which
makes sense as these players are situated in positions on the pitch where passes are
given higher weights. For Rosenborg however, their full backs have also received
high scores, with two of them, Hedenstad and Meling, being ranked among the
top three most important players on the team. This suggests that Hedenstad and
Meling are important players in the attacking phase of the team’s play, perhaps by
making good passes to their teammates on the offensive half.

For the betweenness scores, the same three players as for the closeness measure
are among the top three ranked players in Rosenborg. However, there are no clear
patterns of which player positions or groups of players that are ranked higher. It
seems like players are awarded both for having numerous pass involvements and
for performing influential passes as seen from the differing scores. This is true for
all teams in Eliteserien.

Even though he is one of the most involved players in Rosenborg, the between-
ness score for Reginiussen is zero, which at first glance seems to be counter-intuitive.
A possible explanation for this could be that he tends to attempt easier passes than
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other players and for this reason is not achieving weights in the graph that are large
enough to be part of someone’s shortest paths. By examining the average difficulty
of Reginiussen’s pass involvements, the explanation is supported. His average pass
difficulty, when considering only passes that are included in the network, was 0.053,
while for Hedenstad, for instance, this value was 0.135. When including all n pass
involvements as given in the tables, the average difficulty of passes increases for
both players. This is a natural development as the extra included passes were
unsuccessful and thus potentially more difficult to make. However, Reginiussen’s
pass involvements still had a considerably lower average difficulty.

The top three most important Rosenborg players by the PageRank recipient
score are all offensive players, which is also the trend observed across all teams in
Eliteserien. This is not unexpected as these players tend to receive more difficult
passes due to their location on the field, which will give higher weights on the edges
directed towards them. These players are also popular targets as they usually create
more goal-scoring opportunities. For the PageRank passer score, the tendency both
overall and for Rosenborg players is that defenders have higher scores. Although
they on average do not attempt the most difficult passes, the defenders might be
seen as popular passers due to them completing more passes, many of which are in
between the defenders themselves so that they might boost each others popularity.

The clustering coefficients are in general high for all players in Eliteserien, with
players having few pass involvements being awarded with a coefficient of one. As
seen from Table 6.3, none of the Rosenborg players who received a score of one
made the cut-off, which would be true for all teams. With almost all players being
connected on a team, the observation of consistently high scores is reasonable.

Network 2 and Network 3

Moving on to Network 2 and Network 3, the cut-offs used for pass involvements
are 308 and 42 respectively, and the computed centrality measures for Rosenborg
players in 2017 are presented in Table 6.4. Interestingly, although not being among
the most important players and by far not making the cut-off for Network 1 or
Network 2, Samuel Adegbenro seems to be an important offensive contributor to
the team as he makes the cut-off for Network 3. Adegbenro joined Rosenborg mid-
season and has thus fewer connections with his teammates, which is probably the
reason why he is not recognised by the other networks.

The PageRank recipient scores for Network 2 identify the full backs Meling
and Hedenstad and the strikers Vilhjdlmsson and Bendtner as the most important
players. Strikers are not surprisingly scoring well here due to their position on
the pitch. In general, passes they receive are more difficult to make, and thus
also more challenging to follow up. For the more defensive players, high scores
on this measure might indicate that they are tactically good contributors to their
teams. Across the teams in Eliteserien, the player positions among the highest
rated players are differing.

As mentioned before, defenders tend to make easy passes between each other.
Thus, it is not surprising that they also obtain the highest scores for PageRank in
terms of delivering passes that are easy to follow up due to the way the weights are
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Table 6.4: The key Rosenborg players in terms of Network 2 and Network 3 in the 2017
season of Eliteserien. Only players involved in more passes than the equivalent of six
matches according to each of the pass perspectives are considered. The three best players
according to each measure are highlighted in bold text. The number of pass involvements,
n, is the sum of tactical or effective passes made and received by a player. This count also
includes passes that were unsuccessful and thus not part of the network analysis. The
abbreviations for player positions are explained in Appendix D.

Overview Effectiveness

Name Pos PR¥%(i) PRY2(i) n  PRY3(i) PRY(i) n

André Hansen GK 0.398 0.402 659 0.179 0.465 50
Johan Léadre Bjgrdal CD 0.499 0.909 1260 0.520 0.723 106
Jacob Rasmussen CD 0.624 1.000 982 0.479 0.795 70
Tore Reginiussen CD 0.500 0.844 1801 0.710 0.849 154
Jorgen Skjelvik CD 0.542 0.809 1536 0.551 0.696 125
Alex Gersbach FB 0.527 0.542 550 0.483 0.504 54
Vegar Hedenstad FB 0.770 0.641 1699 0.745 0.994 234
Birger Meling FB 1.000 0.677 1259 0.938 1.000 149
Anders Konradsen DM 0.660 0.559 1039 0.883 0.718 151
Mike Jensen CM 0.715 0.486 1138 0.617 0.871 211
Marius Lundemo CM 0.557 0.615 918 0.578 0.570 94
Fredrik Midtsjg CM 0.659 0.361 694 0.944 0.822 171
Anders Trondsen CM 0.666 0.497 466 0.751 0.586 55
Samuel Adegbenro WI 0.585 0.486 46
Pal André Helland WI 0.471 0.273 449 0.786 0.623 144
Milan Jevtovic WI 0.520 0.297 432 0.662 0.551 104
Nicklas Bendtner ST 0.738 0.365 886 1.000 0.708 198

Matthias Vilhjalmsson ST 0.744 0.319 380 0.779 0.599 95

defined in Network 2. Passes that are easier to make are often also easier to follow
up, such that defenders will have high weights on the outgoing edges due to both
higher values of ps and many pass attempts. In a way, this PageRank measure is
thus not a good indicator of whom are the best players to spot opportunities and
make tactically good passes. Consequently, the measure is not considered further
beyond this chapter.

Although offensive players might be thought of as being more effective, and
thus should be captured by the PageRank score for effectiveness in Network 3, this
is not always the case for all teams. This is probably due to the way the weights
are defined. By counting involvements and not accounting for difficulty in any
way, players with more pass involvements will be considered as more important.
Attacking players have fewer pass involvements, but are important in the offensive
play through other involvements than those that are considered in the network.
Shots are mostly attempted by the attackers, meaning that they might not have
been part of the sequence leading up to the attempt itself other than having received
the final pass. Hence, they could receive high PageRank recipient scores, but could
in principal get low rankings for the passer’s score. The PageRank scores for
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effectiveness are thus a way of identifying the most important players in terms
of frequency of offensive pass involvements, and not a way of finding the overall
offensive contributor in a team. In Eliteserien, offensive players tend to dominate
the top lists in terms of being recipients, while for the PageRank passer score, the
player positions vary.

For Rosenborg’s case, the top three most important recipients according to
Network 3 represent the main outfield player positions: defender, midfielder and
attacker. Bendtner, the 2017 league top scorer, is found to be the most important
player. When looking at the PageRank passer scores instead, offensive players,
wingers included, are ranked lower. The high scores for Meling and Hedenstad
support the rationale behind their closeness score; they seem to be important
players in Rosenborg’s offensive play.

6.3.3 Case Studies

Two case studies involving Rosenborg matches from the 2017 season are presented
below. In Case I, Sandefjord played against Rosenborg, with Rosenborg having
their season highest ball possession of 70%. Case II is a match between Viking
and Rosenborg in which Rosenborg had their season lowest ball possession of 40%
(Verdens Gang AS, 2018). Rosenborg’s average ball possession in 2017 was 54.4%
(WhoScored.com, 2018).

For both case studies, the teams’ calculated network metrics are given together
with a graphical representation of their passing networks for Network 1. In the net-
works, nodes represent the players on each team by their shirt number, and they
are ordered by the starting formation of the team. The directed edges between
nodes are weighted using the weights as described in Section 6.2.1. Hence, thicker
lines indicate a stronger relationship between two players, with a stronger relation-
ship being more passes between the players or, in general, higher difficulty on the
passes observed between them.

Case I: Sandefjord versus Rosenborg

The match between Sandefjord and Rosenborg was played on the 5th of April 2017,
with Rosenborg winning with three goals against zero. Graphical representations of
the teams’ passing networks are depicted in Figure 6.2, while the computed network
metrics for players on both teams are tabulated in Table 6.5 and Table 6.6.

The much higher percentage of ball possession of Rosenborg is evident from the
thicker directed edges between their players for Network 1 as shown in Figure 6.2.
In general, the connections between Rosenborg players are stronger than that of
Sandefjord players. For Rosenborg, there are no clear pattern in the passing net-
work, while for Sandefjord, strong connections exist between offensive players on
the left-hand side.

For Network 1, Rosenborg players’ closeness scores are on average higher than
the closeness scores of Sandefjord players, which is intuitive when taking the dif-
ferences in ball possession into account. With high closeness scores, players are
more easily reached and the ball is more readily kept within the team. Also, the
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Chapter 6. Identifying Key Players

Table 6.5: The overall key figures according to Network 1 for both teams in Case I. The first column for each team indicate the players’
jersey numbers.

Sandefjord Rosenborg
No. Name Cc(i) Cg(i) PRE(i) PRE@E) ¢  No. Name Cc(i) Cg(i) PR¥Y(i) PR¥1(i) c¥
1 I Jénsson 0.220  0.000  0.091 0.356  0.765 1  A. Hansen 0.219  0.000 0.084 0.557 0.836
3 A Seck 0.552  0.000  0.151 0.373 0.782 2 V. Hedenstad 0.961  0.769 0.688 0.679 0.667
4  C. Hansen 0.602 0.000  0.102 0.497  0.801 4 T. Reginiussen 0.618  0.308 0.123 0.760 0.665
6  P. Morer 0.799 0.177  0.701 0.349 0773 5 J. Rasmussen 0.875  0.872 0.260 1.000 0.636
9  H. Storbeek 0.987 0.710  0.833 0939 0.787 7 M. Jensen 0.955  0.436 0.901 0.393 0.742
11 F. Kastrati 0.991 0.774  1.000 0.380 0.812 8 A. Konradsen 1.000  0.923 0.713 0.648 0.803
13 M. Naglestad 0.712 0.000  0.222 0.089 1.000 9 N. Bendtner 0.774  0.051 0.688 0.191 0.712
14 E. Kebbie 0.857 0.032  0.466 0.426 0971 10 M. Vilhjadlmsson 0.795 0.154 1.000 0.161 0.795
15  E. Vallés 1.000 0.516  0.526 1.000 0.728 15 E. Rashani 0.666  0.026 0.148 0.115 1.000
16 E. Kane 0.868 0.210  0.560 0.525  0.942 20 A. Gersbach 0.934 1.000 0.666 0.642 0.664
18  W. Kurtovic  0.993 1.000  0.725 0.835 0475 21 F. Midtsjo 0.936  0.359 0.747 0.286 0.874
19 V. Bindia 0.785 0.000  0.521 0.303 0.763 23 P. Helland 0.732  0.051 0.227 0.113 0.936
22 A. Sgdlund 0.814 0.016  0.383 0.245 0.743 26 M. Jevtovic 0.944  0.692 0.841 0.323 0.894
23 M. Holt 0.394 0.000  0.068 0.109 NA 27 M. Bakenga 0.855  0.000 0.587 0.180 0.915

Table 6.6: The PageRank scores for Network 2 and Network 3 for players on both teams in Case I. The first column for each team
indicates the players’ jersey numbers. Players not participating in a passing sequence leading to a shot do not have PageRank scores for

Network 3.
Sandefjord Rosenborg
No. Name PR¥2(i) PR¥%(i) PRE3(i) PR¥3(i) No. Name PR¥%(i) PR¥2(i) PRE3(i) PR¥3(i)
1 I. Jénsson 0.303 0.327 1 A. Hansen 0.295 0.257
3 A. Seck 0.213 0.313 2 V. Hedenstad 1.000 0.541 1.000 1.000
4  C. Hansen 0.320 0.497 0.389 0.826 4 T. Reginiussen 0.459 0.685 0.395 0.653
6  P. Morer 0.562 0.340 1.000 0.684 5 J. Rasmussen 0.756 1.000 0.196 0.254
9  H. Storbak 0.861 0.768 0.144 0.536 7 M. Jensen 0.643 0.233 0.631 0.580
11  F. Kastrati 0.446 0.137 0.061 0.464 8  A. Konradsen 0.966 0.639 0.668 0.798
13 M. Naglestad 0.294 0.062 0.093 0.236 9  N. Bendtner 0.660 0.150 0.730 0.421
14  E. Kebbie 0.355 0.094 10 M. Vilhjalmsson 0.665 0.155 0.715 0.525
15 E. Vallés 0.852 1.000 0.061 1.000 15  E. Rashani 0.119 0.050 0.157 0.077
16 E. Kane 0.395 0.390 0.348 0.704 20 A. Gersbach 0.443 0.421
18  W. Kurtovic 1.000 0.521 0.112 0.899 21  F. Midtsjo 0.479 0.167 0.460 0.642
19 V. Bindia 0.549 0.412 0.911 0.527 23 P. Helland 0.278 0.088 0.302 0.166
22 A. Sgdlund 0.518 0.356 26 M. Jevtovic 0.513 0.138 0.577 0.386
23 M. Holt 0.090 0.086 27 M. Bakenga 0.345 0.124 0.452 0.627
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betweenness scores of Rosenborg players are more evenly distributed across the
team compared to the case of Sandefjord, which may indicate that Sandefjord is
more dependent on certain players on the team to keep possession of the ball. These
observations are somewhat supported by the teams’ passing networks.

Considering the PageRank recipient scores for Network 1, the tendency is that
offensive players achieve the highest scores, which is reasonable. Different patterns
are seen for the PageRank passer scores for the two teams. In the case of Rosenborg,
defensive players are achieving the highest scores, while central midfielders have
the highest scores for Sandefjord. These differences could be due to the fact that
both teams have a set playing style. In a 4-3-3 formation, Rosenborg wants to
play out from the back and put pressure on the opponent team on the offensive
half when the opponent team is established offensively and defensively respectively
(Groven, 2017). For Sandefjord, the central midfielders are crucial players both in
the attacking and defensive phases of the play in their 3-5-2 formation (Sandefjord
Fotball, 2017).

For both teams, the clustering coefficients are relatively high for all players.
Rosenborg’s average clustering coefficient for the match (0.780) is slightly higher
than the team coefficient of Sandefjord (0.779) when considering only players who
played at least 20% of the regular game time. These numbers are lower than the
corresponding seasonal average team coefficients given in Appendix E. This might
be due to the fact that the match was played at the very beginning of the season.
At the start of a season, it has been a long period of time since most teams have
played proper matches. Hence, the players might need some time to adjust to
match situations and are thus not playing their best together just yet.

Moving on to the PageRank recipient and passer scores for Network 2, de-
fensive players are recognised with the highest scores for Rosenborg, while central
midfielders are the highest rated players in the case of Sandefjord. The importance
of the players in these specific player positions seems to be related to the teams’
playing styles as for the case of the PageRank passer measure for Network 1. For
Network 3, the distribution of PageRank scores indicates well which players are
more involved when shots are attempted as players that have not been involved in
sequences leading to shots do not receive a score. The results are intuitive and the
passer scores also support the findings that defenders and midfielders seem to be
important players in the attacking play for Rosenborg and Sandefjord respectively.

Case II: Viking versus Rosenborg

The match between Viking and Rosenborg was played on April 17th 2017, and
Rosenborg won with the final score 0-1. In Figure 6.3, a graphical representation
of each team’s passing network for Network 1 is shown, and in Table 6.7 and
Table 6.8, the calculated network metrics are presented.

As expected, when taking the difference in ball possession into account, the
strength of the connections between Viking players is stronger than for the case of
Rosenborg players in the passing networks. Interestingly, the connections between
Rosenborg’s full back, central midfielder and winger on the right-hand side stand
out to be strong. Thus, it seems like Rosenborg is more dependent on the players
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Panel A: Viking (4-2-3-1)
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Panel B: Rosenborg (4-3-3)

Figure 6.3: Graphical representations of the passing networks for the teams in Case II. Nodes are placed with respect to the starting
eleven for each team, coloured based on the team’s jersey colour and given names based on the players’ jersey numbers. Substitutes are
depicted with a separate colour (light blue). The directed edges are weighted based on the difficulty of passes between players, where

the difficulty is decided by making use of the regression results from Model 1.
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on this side when their ball possession is low compared to the case when they are
dominating the play, as they did in Case I.

Considering the closeness scores of Rosenborg players in Network 1, many of the
same top rated players as for Case I are recognised. Thus, these players seem to be
central for Rosenborg independent of the game development and the distribution
of ball possession between the playing teams. Moreover, the players achieving the
highest closeness scores are also achieving high betweenness scores. Thus, these
players are easy to reach and have a high involvement in the game. Compared
to Case I, more Rosenborg players have a betweenness score of zero. It seems
like higher ball possession is related to having fewer betweenness scores of zero,
which intuitively makes sense as a low betweenness score is associated with less
involvement in the match.

Similar to Case I, Rosenborg’s offensive players dominate the highest ratings
according to the PageRank recipient scores for Network 1, while more defens-
ive players achieve the highest PageRank passer scores. For Viking however, the
PageRank recipient scores tend to be higher for players playing on the left-hand
side of the pitch, while the PageRank passer scores are higher for players playing in
positions central on the field. Viking’s clustering coefficient of 0.849 is higher than
their average coefficient for the entire season which is tabulated in Appendix E, but
it is slightly lower than Rosenborg’s coefficient from the match (0.852). Although
Viking performed poorly in 2017 and was relegated from Eliteserien, they appar-
ently played a good match against Rosenborg, which might explain the difference
in Viking’s clustering coefficients.

The importance of the players on Rosenborg’s right-hand side is seemingly cap-
tured by the PageRank recipient scores for Network 2. For Viking, two midfielders
are achieving the highest ratings for this measure. Considering the PageRank
passer scores for Network 2, the same patterns as seen for Network 1 are present.
In general, the highest PageRank scores for Rosenborg players in Network 3 are
dominated by offensive players, while more defensive players have high scores for
Viking. Compared to Case I, where more defensive players on Rosenborg received
higher PageRank passer scores, it seems like the defenders have had a lower of-
fensive contribution in this match. As these players appear to be important for
Rosenborg, this might explain the team’s lower ball possession in the game.

6.3.4 Comparison with Existing Literature

In this thesis, the key players on teams in Eliteserien are found through network
analyses with the majority of the edge weights being based on the results from
the predicted probabilities of passes’ success in Chapter 5. The idea of using pass
difficulties as weights instead of the number of successful passes between players
was introduced by McHale and Relton (2018). They only consider the accuracy
of passes however, whereas two more aspects explaining the success of passes are
investigated in separate networks here. Also, different types of network metrics are
considered, making comparisons of the results difficult. In general, fair comparisons
of results across leagues are not possible due to different teams, players and playing
styles. However, trends seen for player positions may give some insights into which
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similarities that might be comparable. It is observed that McHale and Relton
(2018) have identified mostly attacking players and midfielders in the top lists for
teams playing in the English Premier League when calculating the exponential
centrality, something which is also found for the closeness scores of Eliteserien
players in Network 1.

Using the number of passes between players as weights, Pena and Touchette
(2012) evaluated players’ individual contributions to teams by calculating the close-
ness, betweenness and PageRank centrality measures and the Onnela clustering
coefficient. In general, high clustering coefficients are observed across the teams,
an observation that is supported by the results for Network 1. Also, the between-
ness scores seem to vary a lot, with no clear patterns apparent for the different
player positions. Other than this, no clear similarities are observed, which could
be due to the fact that the scores given in Pena and Touchette (2012) are based
on players’ performance from one single match, giving a slightly poor basis of com-
parison between the two studies.

Rojas-Mora et al. (2017) investigated three matches from the group stage of
Copa America and calculated the PageRank scores for all players on the field.
Although the comparison is made on limited data, the PageRank recipient scores
for Network 1 and the PageRank scores for players in Copa America both indicate
that players playing in more offensive positions on the pitch are more important
to their teams.

By only considering offensive sequences that ended with shots in their network
analysis, Peixoto et al. (2017) had a similar approach to what was done for Network
3. The indegree and outdegree centrality measures, which are linked to passes
received and passes made respectively, were calculated and revealed that strikers
and midfielder scored highest on the respective measures. The PageRank scores
for Network 3 are likewise linked to either the passer or the recipient of a pass, and
the PageRank recipient scores support the finding that offensive players are more
important, whereas the PageRank passer scores did not have a consistent pattern
of player positions among the key players.

The network analyses done in this thesis indicate that the formation of a team
can reveal information about which of the team’s players the play is centred around.
By using such information in the pre-game analyses, a team can accommodate their
game plan according to the strengths and weaknesses of the opponent team. As
the key players found for the teams not only are based on the number of passes
between players, but also the difficulty of the passes, the opponent players that
make the smartest passing alternatives may be identified and actions to stop them
can be taken.

6.3.5 Evaluation of Research Question 2

As introduced in Chapter 1, the second main research question to be answered in
this section is:

RQ 2: How can the key players in a football team be identified?
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The key players in a football team can be identified through the use of a network
analysis. For such purposes, players are represented by nodes and the edges con-
necting them represent the interactions between the players. The edges can be
weighted in accordance with a predetermined criterion. For this thesis, both the
number of passes between players and the average predicted probabilities for the
passes obtained by running GAMMs are used as weights on the directed edges
between players in three different networks. Each network type handles a different
aspect of a pass’s success.

After the passing network is set up, different network metrics can be computed
in order to find the key players of a team in terms of their influence and importance.
Here, the closeness, betweenness and PageRank centrality measures and the Barrat
clustering coefficient are considered. These measures can, for instance, provide
information about which players are more involved in the play, which players who
tend to be most popular and how well-balanced a team is. Such information would
be beneficial for a team when deciding upon the game plan. Overall, the network
analyses performed reveal intuitive results across the teams in Eliteserien, with the
perceived most important players receiving higher scores. The PageRank passer
scores for Network 2 proved to be unreliable however.

Two sub-questions were added to the second research question, both of them
concerning Rosenborg. The first sub-question is: Who were the key Rosenborg
players in the 2017 season of Eliteserien? Different network metrics are computed
to answer this and they all reveal intuitive information, especially when taking the
characteristics of the team’s formation into account. For Network 1, three players
stand out by achieving consistently high scores across the network metrics. These
are the two full backs Vegar Hedenstad and Birger Meling and the winger Milan
Jevtovic. Seemingly, Rosenborg’s full backs play a key role in the team’s offensive
play. This observation is also supported by the results from Network 2 and Network
3. Further, the two strikers Nicklas Bendtner and Matthias Vilhjalmsson seem to
be key players for Rosenborg in terms of receiving passes that are tactically good
and effective.

The second sub-question is: How does Rosenborg depend upon certain key play-
ers when having differing ball possessions? To address this question, two matches
where Rosenborg had a high and a low ball possession were analysed. When com-
paring the passing networks from the matches, it is evident that Rosenborg seems
to be more dependent on the players playing on the right-hand side when the team
struggles with keeping possession of the ball.
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Motif Analysis

In this chapter, the set-up for an analysis of passing motifs is explained, and the
results are presented and discussed. Further, the distribution of the motif types
used by the teams in Eliteserien is discussed in the context of the regression results.
In the end, the results from the motif analysis are compared to similar existing
studies and the third research question is addressed.

7.1 Model Set-Up

Passing motifs are sub-sequences of passes and they provide a method for discov-
ering patterns in teams’ passing behaviour. In this thesis, a GAM is developed
to investigate the influence of different explanatory variables on the effectiveness
of motifs in terms of generating shots. The motifs considered have a size of four,
i.e. they consist of four players and three passes, which Meza (2017) concluded to
be optimal. The passes in a motif must be sequential and from the same passing
sequence. Moreover, the recipient of a pass must be the passer of the next pass, the
players have to be from the same team and each pass must be performed within
five seconds after the previous event (defined as Xg in Section 5.1.2).

The analysis was performed using the mgcv package in RStudio (Wood, 2011),
and the model was built on data from the 2014-2017 seasons in Eliteserien, with a
total of 203,313 four-sized motifs being included. Fixed-effect variables are selected
through the use of a Wald test, and the smooth terms are not tested as fixed effects.

7.1.1 Variables

To analyse the passing motifs in Eliteserien, a GAM is built with all continuous
variables treated as smooth terms. The dependent variable is binary and takes
the value of one if a motif leads to a shot and zero otherwise, which is similar to
the previously developed Model 3. Hence, the effectiveness of motifs is considered.
Most of the model’s explanatory variables are based on the results from the passing
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ability models in Chapter 5 and the network analyses of key players in Chapter 6.
Table 7.1 contains a summary of the explanatory variables.

The average predicted probabilities from Model 1, Model 2 and Model 3 in
Chapter 5 are separately added up for all passes in a motif to serve as smooth
functions in the passing motif model. Hence, the number of motifs for analysis
is slightly reduced as only passes with applicable outcome according to all three
models are considered. The aims of including these smooth terms are to test how
the difficulty of the passes, the game overview of the players involved and the
effectiveness of the passes influence the effectiveness of motifs.

The network metrics obtained for players in Chapter 6 are used to test whether
the involvement of key players in a motif has an effect on its outcome. All but one
of the previously considered metrics are included as explanatory variables in the
analysis. The PageRank passer centrality for Network 2 is excluded as this meas-
ure was identified as a bad measure of key players in Section 6.3.2. The closeness
and betweenness centrality measures and the clustering coefficients are summed
for all four players involved in a motif, while the PageRank measures are summed
for all passers or all recipients in the motif, depending upon which perspective the
PageRank measure has.

Table 7.1: Explanatory variables for the motif analysis. Some variables are replicated
for the three passing ability models and their respective networks. These variables have
an indicator of ¢ = (1,2,3). Players involved more than once in a motif are added
accordingly to the sums considered, and the player scores are considered for the season
the motif happens. Types of variables are continuous (C) and factor/categorical (F).

Variable Description Type
Y; The sum of the predicted probabil- C

ities of success for the three passes
in the motif

Closeness The sum of the closeness scores for C
all four players involved in the motif

Betweenness The sum of the betweenness scores C
for all four players involved in the
motif

PageRankRecipient; The sum of the three recipients’ C
PageRank Recipient scores

PageRankPasser; The sum of the three passers’ C
PageRank passer scores, i # 2

Clustering The sum of the Barrat clustering C
coefficients of all four players

MotifType Indication of the motif type F

Zones The number of unique zones in C

which the motif takes place
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A categorical variable is added to identify the motif type. With a motif size of
four, five different motif types are possible as seen in Figure 2.4. The reference is
chosen to be the ABCD motif, i.e. with four unique players being involved. To test
whether the area covered by the players involved in a motif has an impact on its
effectiveness, a variable counting the number of unique zones on the pitch in which
the players have been active during the motif is added. The zones are defined as in
Figure 5.1, and a total of six zones may be involved: the start and end zone of each
of the three passes. Both the start and end zones are included as players might
receive the pass in one zone, perform a ball touch or ball carry, and then pass the
ball further from another zone within the five-seconds time frame.

7.2 Results

In this section, the resulting passing motif model is discussed. First, the model is
validated and the regression results are presented. Then, the distribution of four-
sized motifs for teams in Eliteserien is analysed in the context of the results from
the regression model. Finally, the model and its characteristics are compared to
existing literature, and the third research question is addressed.

7.2.1 Model Validation

The validation of the model is performed using the tools introduced in Section 2.6.
From Figure 7.1, the AUC for the ROC curve indicates an acceptable fit according
to the guidelines in Table 2.1. However, the PR curve gives a low AUC due to a
highly skewed data distribution as also was the case for Model 3 (see Section 5.2.2).
Actually, both curves resemble the curves for Model 3. Similarly, the points at
which the PR curve has to start and end are not giving much room for a high
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Figure 7.1: ROC and PR curves for the passing motif model.
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AUC, which makes the value obtained seem appropriate. A HL test has also been
performed. For both sample sizes of 1000 and 5000 observations, the test indicates
a good fit of the model as less than ten of the 100 random samples resulted in
rejections of the null hypothesis at a significance level of 5%.

7.2.2 Regression Results

The resulting GAM is built on 203,208 observations, which is a slight reduction
from the initially observed number of motifs of size four in the data. The reduction
is due to some passes not having defined probabilities of success in accordance with
the models explored in Chapter 5. The regression results are shown in Table 7.2. A
significance level of 10% is used, and negative values of the fixed-effect coefficients
imply a reduced probability of success for the corresponding variables.

Fixed Terms

In the final model, two of the motif types have been removed in a Wald test.
Hence, three motif types form the reference for the variable. The initially chosen
reference (ABCD) is characterised by having four distinct players involved in the
motif. With such a pattern, it is more likely that the motif covers a larger area of
the pitch. Motif type ABCA, which is added to the reference, is similar to ABCD
as only the first and last involved player is the same. Consequently, this motif type
is also more likely to cover larger areas. For the second addition to the reference
(ABAC), it is more difficult to understand how this motif type is indistinguishable
from the two others in the reference as its pattern is more similar to the categories
that remain in the final model. Both the ABAB and ABCB motif types are left
in the model and have negative signs on their corresponding coefficients. Thus,
the more compact motif types seem to be less likely of being effective in terms of
resulting in shots.

Smooth Terms

The resulting smooth functions from the motif analysis are displayed in Figure 7.2.
Higher outcomes from the functions imply an increased probability for a motif to
lead to a shot. Considering the difficulty of passes in a motif, the shape of the
corresponding smooth function is intuitive. As higher sums indicate more easy
passes, the probability of success increases when more difficult passes are made.
Passes are in general easier to make further away from the opponent’s goal. Thus,
having several passes with high probabilities of success in order, might indicate
that the motif takes place far away from the opponent’s goal, and the shape of
the smooth function is thus intuitive as shots are more likely to be attempted
near the opponent’s goal. Similar reasonable results are also present for the game
overview predictions when looking at the region with acceptable confidence interval.
Motifs consisting of passes that are easier to follow up are less likely to lead to shot
opportunities. This is plausible due to the same reasoning as used for pass difficulty
as passes that are easier to make also tend to be easier to follow up. Intuitively,
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Table 7.2: The regression results from the motif analysis. Significance level is indicated
by *.

Fixed effects Smooth terms
Variable Coefficient(SE) Variable Sign.

Motif Type ABAB —0.111%(0.046) Y; o
MotifTypeABCB  —0.095***(0.022) Y, o
Intercept —0.503***(0.067) Y; o
Note: *p<0.05; **p<0.01; **p<0.001 Closeness
Betweenness
PageRank Recipienty
PageRankPasser;
PageRank Recipients
PageRank Recipients
PageRankPassers
Clustering
Zones

with many passes likely of being effective in a motif, their effectiveness should be
positively related to the motif’s effectiveness. This belief is captured by the model
as seen from the positive slope for the smooth function.

For the closeness centrality, the slope of the function is negative, indicating
that higher values of this measure for the players involved are associated with
lower probabilities of success. Although, the slope is gentle within the region
of narrower confidence interval. As it was revealed that players in more offensive
player positions received higher scores on this measure in Section 6.3.2, the negative
slope may indicate that defensive or central players more often are involved in
successful motifs. Also, the highest sum possibly obtained for the measure is four,
which is hard to obtain as mostly only one player on each team has received the
maximum score of one. Hence, all players involved in the motif must have received
similarly high closeness scores to reach a sum close to four or fewer distinct players
must have been involved in the motif. In fact, most of the highest sums for this
measure are found for the ABAB motif type, which is the motif type identified as
giving the lowest probability of success.

Considering the betweenness centrality, the corresponding smooth function has
a parabolic shape where the likelihood of success increases for lower values and
decreases for higher values. Hence, the chance of a motif to be effective is highest
when the sum of the betweenness scores for the players involved is moderate. From
the betweenness scores calculated for Eliteserien in Section 6.3.2, it was observed
that the scores varied among player positions and that players could receive a
score of zero even if they had a considerably high number of pass involvements
compared to other players on their team. Some of the players who received low
scores however, Rosenborg’s Reginiussen for instance, did receive high scores for
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the PageRank effectiveness measures. Hence, players that are effective do not
necessarily also have high betweenness scores, which could explain the shape of the
function.

The slope of the smooth function for the clustering coefficient is more or less
positive, implying that higher values of this measure correspond to an increased
likelihood for a motif to be effective. This is a reasonable result as higher values
of the clustering coeflicients are associated with a well-balanced team where the
teammates have strong connections to each other.

For the PageRank passer and recipient measures for Network 1 and the PageR-
ank recipient centrality for Network 2, the probability of success decreases with
higher sums of the measures. Surprisingly, the involvement of key players in terms
of these PageRank measures has less effect on motif effectiveness. Also, as defend-
ers tend to receive higher scores on the PageRank passer measure, while offensive
players tend to obtain higher PageRank recipient scores for Network 1, the two
graphs for the pass accuracy network are a bit contradictory. The negative slopes
thus imply that the optimal strategy would be to have offensive players passing the
ball and defenders receiving the ball in the offensive play. Hence, only the function
for the PageRank passer measure can be seen as intuitive. Higher values of the
PageRank passer and recipient measures for Network 3 however, contribute to an
increased probability of success as seen from the positive slopes. This is intuit-
ive as the PageRank scores for Network 3 are based on the frequency of players’
involvements in effective passes.

The likelihood of success increases with the number of unique zones on the pitch
in which the players have been active during the motif. By utilising a bigger area,
a team might take advantage of open areas by making tactically better passes as
the players tend to be more mobile in between passes for such cases. The shape
of the function supports the findings from the fixed-effect variables as larger areas
covered seem to be beneficial for success. As there is a time limit of five seconds
between each pass in a motif, large movements could indicate that counter-attacks
have been performed. If so, the model suggests that counter-attacks are effective,
which is intuitive.

7.2.3 Distribution of Motif Types in Eliteserien

The distribution of four-sized motifs for each team playing in Eliteserien 2017 is
shown in Table 7.3. Additionally, the number of shots attempted per game is given
for the teams. The aim of utilising these statistics is to investigate whether the top
performing teams, seen in light of the regression results, tend to use some specific
motifs to a higher extent compared to the other teams in the league.

Clearly, for all teams the proportion of the ABCD motif is the highest. In
fact, more than half of the performed motifs by each team in the season involve
four distinct players. Among the top teams of the season, Rosenborg, Molde and
Stremsgodset have quite similar distributions of motif types used, whereas Sarps-
borg 08 stands out by having the highest internal percentage of the ABAB motif.
Interestingly, Stabaek has the second best rate of shots per game, but has some
of the highest internal proportions of motif types where less distinct players are
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Table 7.3: The distribution of motif types and the total number of four-sized motifs
for each team in the 2017 season. The three highest percentages of each motif type and
shot rates per game are highlighted in bold text, and the teams are ordered by their
end-of-season table positions. Shots per game (SpG) for all teams are obtained from
WhoScored.com (2018).

Team ABAB ABAC ABCA ABCB ABCD 0Obs SpG
1 Rosenborg 0.025 0.153 0.080  0.154 0.588 4930 13.3
2 Molde 0.024 0.158 0.088  0.156 0.574 3469 13.0
3 Sarpsborg 08 0.043  0.165 0.088 0.161  0.542 3539 13.1
4 Strgmsgodset  0.026 0.162 0.090 0.149 0.574 3489 13.0
5  Brann 0.036  0.174  0.089  0.159 0.543 2945 13.2
6 Odd 0.034  0.177  0.095 0.156 0.537 3791 109
7 Kristiansund ~ 0.035 0.161 0.092 0.160 0.552 1898 114
8  Valerenga 0.029 0.158 0.096  0.147 0.570 5156 13.0
9  Stabak 0.041 0.177 0.089 0.166 0.526 3845 14.5
10 Haugesund 0.042 0.161 0.111  0.158 0.528 2212 129
11 Tromsg 0.035 0.172 0.100 0.161 0.533 3255 13.8
12 Lillestrgm 0.039 0.158  0.098 0.152 0.552 1117 15.2
13 Sandefjord 0.022 0.151 0.090 0.143 0.594 2420 10.1
14 Sogndal 0.025 0.145 0.094 0.135 0.602 1723 11.9
15 Aalesund 0.031 0.162 0.069  0.147 0.592 2619 12.7
16  Viking 0.030 0.171 0.084  0.160 0.554 3185 11.2

involved, indicating that they have a more compact playing style. This observation
contradicts the results from the regression where these motif types are found to be
less likely to lead to shots.

The three teams with the highest internal proportion of using the A BCD motif
are situated in the bottom of the table, and they have relatively low rates of shots
per game. Moreover, some of the teams with the lowest internal percentages have
the highest number of shots per game. Considering that this motif type is one
of those that are most likely to be effective, these numbers are surprising. One
would expect that the teams being more effective in terms of generating shots
would be inclined to use the most effective motif types. However, which motif
types the teams actually succeed with in terms of scoring goals are not considered.
Nevertheless, two out of the three teams with the highest shot rates do use the
ABCA motif more frequently, while the third team has the highest internal ratio
of the ABAC motif. Both of these motif types are included in the reference of the
model developed and have thus the highest probabilities of leading to a shot.

7.2.4 Comparison with Existing Literature

In this thesis, the effectiveness of motifs consisting of four players is analysed by
including players’ predicted probabilities of succeeding with the passes involved
and players’ contribution to their team in terms of importance and influence. The
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approach of using regression models to investigate passing motifs is seemingly new
to the literature. Consequently, comparisons with existing literature is difficult.

Pina et al. (2017) used network metrics as fixed terms in a logistic regression
model to test how they affect the success of offensive plays in football. Such plays
cover entire passing sequences and not parts of them like motifs do. A limited
number of network metrics was utilised, and only the density score of the team
performing the sequence was found to be significant. With a negative coefficient, a
higher density for the team, or interconnectedness between the players, implies less
chance of succeeding with the offensive play. Although not being the same types of
centrality measures, the closeness and the PageRank measures for Network 1 and
Network 2 in this thesis turned out to have negative slopes too.

By using motifs of size four, Gyarmati et al. (2014) studied teams’ playing styles
in the Spanish La Liga. FC Barcelona, the league winners, stands out by using
the three compact motif types more often than the other teams in the league.
Interestingly, the team uses the motifs ABCA and ABCD, which were found to
be more likely to be effective in this thesis, less than the other teams. However,
even though being the league’s top scorers, the team is ranked in sixth place in
terms of the number of shots per game for the season considered (WhoScored.com,
2018). Thus, the team’s compact playing style does not seem to generate more
shot attempts, something which is supported by the results from the motif analysis
in this thesis.

Bekkers and Dabadghao (2017) investigated teams’ playing styles by studying
possession motifs and motifs resulting in a shot immediately after the last pass.
Although the results are not directly comparable, some of the same patterns as can
be seen for the passing motif model in this thesis are found with the more compact
motif types being less likely to end in a shot.

Other than the observation that the more compact motif types tend to be less
effective in terms of leading to a shot, the findings from the analysis in this thesis
are seemingly new to the literature on passing motifs. For instance, it is found
that the more space utilised on the pitch during a motif, the more likely it is of
being effective. Hence, counter-attacks seem to be proven to lead to shot attempts.
Also, difficult passes and passes that are more challenging to follow up appear to
be more effective in a motif. The results suggest that teams should look for smart
passing alternatives such that they can attempt combinations of passes that enable
them to advance fast on the pitch.

7.2.5 Evaluation of Research Question 3

The third main research question is answered in this chapter:
RQ 3: What determines the success of a passing motif in Eliteserien?

To find which factors affect the outcome of a passing motif, a GAM was built
on all passing motifs of size four in the data set. The results indicate that the
pattern of the motif does influence its outcome in terms of generating shots. More
compact motif types with fewer distinct players involved tend to be less likely of
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being effective. This is also supported by the smooth function for the number of
unique zones covered in the motif.

All smooth functions based on the predicted probabilities of success have reas-
onable shapes. Easier passes in terms of accuracy and game overview decrease
the probability of success whereas having more passes that are effective in a motif
increase the likelihood for the motif to be effective.

The participation of key players in a motif has differing results for the different
network metrics considered. However, the tendency is that for the metrics where
offensive contribution already is taken into account, more intuitive effects on the ef-
fectiveness of motifs are present. Some of the network metrics are highly correlated,
which might be the reason why some counter-intuitive results are present.

A sub-question handles the use of passing motifs in Eliteserien: Are the top
performing teams in Eliteserien inclined to use the more effective motif types? As
seen from the distribution of motif types used for each team in the 2017 season, all
teams use the ABCD motif the most. However, there are no observed connection
between teams’ end-of-season table positions and their distribution of motifs types.
The teams with the highest shot rates have lower internal proportions of the ABCD
motif compared to most of the other teams, but they do have higher proportions
of the two other reference types which are equally affecting the outcome of a motif.
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Conclusion

In this thesis, the passing behaviour of football players in the Norwegian top di-
vision Eliteserien has been evaluated by answering three main research questions
through regression and network analyses. The results obtained and their applica-
tions can provide coaches and players with valuable information that can be trans-
ferred to training sessions with the aim of increasing performance. A data set
consisting of 749,859 passes and 203,313 motifs from 960 matches in the 2014-2017
seasons of Eliteserien was used in the analyses. However, the analyses done can
easily be performed for any other league for which similar event-data is available,
including all the top leagues in Europe. Also, they can be done for other sports
where passing between players is essential.

Three generalised additive mixed models were developed to determine players’
passing abilities and each handles a different aspect of a pass’s success defined as
accuracy, game overview and effectiveness. Game overview is an indirect term that
is used to assess players’ abilities to make tactically good passes. The AIC criterion
was used to determine whether a variable should be treated as a smooth function or
a fixed effect, and Wald tests were performed for variable elimination. In general,
all models proved to have reasonably good fits and the signs of the coefficients of
their fixed-effect variables made sense. Also, the shapes of the smooth functions
were more or less intuitive.

A recurrent theme in many of the findings for the pass effectiveness model
was that they might be explained as effects from counter-attacks. This indicates
that teams can benefit from putting a low pressure on the opponents and awaiting
counter-attack opportunities. The effect of the Elo rating found for opponent teams
supports this thought when a match is played against one of the strongest teams
in the league.

The seasonal effects on ground conditions seem to be captured by the models as
the perceived difficulty of maintaining natural grass during the near-winter months
was supported. Additionally, passes appear to be more easily made on artificial
grass. From this, it is suggested that teams should choose a game plan depending
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upon the state of the surface the match is to be played on. Players should also
carefully decide which types of passes that are likely to be successful on the different
grass types. Passes along the ground might be easier to steer in the right direction
when playing on artificial grass as the ground conditions are more predictable, while
when playing on natural grass, it might be favourable to consider long passes in the
air to avoid that varying ground conditions change the direction of the attempted
pass.

The results from the passing ability models were further utilised in network
analyses to identify the key players in teams. Three networks were considered
and each handles one of the defined aspects of a pass’s success. Both the number
of passes between players and the predicted probabilities of the passes’ success
were used as weights in the networks. Close to all chosen network metrics revealed
intuitive results, with the perceived most important and influential players receiving
the highest scores. With such intuitive results, the networks may function as
excellent tools for a team to make discoveries about opponent teams. When finding
out which players that are more involved in the opponent’s team, and also getting
an indication about the quality of the passes they make, teams can alter their
game plan to target opponent players that have more important involvements in
the game.

For Rosenborg, the two full backs Vegar Hedenstad and Birger Meling were
found to be key players when analysing the passing networks from the 2017 season.
Seemingly, they play an important role in the team’s offensive play. Further, Rosen-
borg seemed to be more dependent on the players playing on the right-hand side in
matches where the team had a low ball possession. However, the left-back Meling
had not yet made his debut for Rosenborg for the cases studied in this thesis, and
considering his apparent importance for the team, he might be a valuable piece for
regaining balance on the left-hand side.

To investigate the effectiveness of four-sized passing motifs, a generalised addit-
ive model, with results from the passing ability models and the network analyses
included as variables, was considered. The main finding of the analysis was that
the more compact motif types, where fewer distinct players are involved, have a
lower likelihood of being effective in terms of leading to shots. However, there was
no clear connection between teams’ table rankings and their distribution of motif
types. Overall, the teams with higher shot rates had a higher internal proportion
of some of the more effective motif types, although these teams did not scored the
most goals. Hence, a team’s ability to convert a chance into a goal is important so
that the team actually is able to take advantage of effective motif types. Neverthe-
less, teams should consider looking into which motif types are the most effective
and use them. This may provide the top-scoring teams with more goal-scoring
opportunities that they can take advantage of.
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Recommendations for Further
Research

The major limitation of the analyses performed in this thesis is that ball event-data
is used, making it difficult to develop proxies that truly reflect opponent pressure.
To address this, player tracking data should be utilised in further research. This
will enable researchers to develop better proxies for the independent variables and
make more tailored variable choices for the models. As Model 3 is considerably
different from Model 1 and Model 2 in what the dependent variable handles, it
would be reasonable to search for more specific variables to separate the models
from each other.

With more detailed data than what is used in this thesis, it would be possible to
define variables more accurately. It was, for instance, observed a counter-intuitive
effect for tackles in the event prior to a pass, which most probably is due to the
loose specification of the variable. Another aspect to consider for future work is
to further investigate the degree to which the outcome of a pass is affected by the
quality of the passer’s team. As of now, the effect of a possible correlation between
the player and team random-effect coeflicients is unknown, and a better solution
could be considered to avoid the potential issue.

When finding the key players in teams through network analyses, one of the
measures proved to give unreasonable results. The PageRank passer scores for
the game overview network favoured defenders and would not recognise the true
tactical pass makers for the teams in Eliteserien. Hence, the weights used for this
network should be reconsidered in order to get reliable results for the passing aspect
that is explored.

For the structure of the networks, some changes can be made to investigate
other features of the teams. Separate nodes can be added to the graphs to represent
opponent players. With this approach, it is possible to extract information about
which players have the most interactions with the opponent team or which players
who most often regain ball possession. This would reveal useful information for
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coaches when deciding upon a team’s playing strategy for a match. Moreover,
by using the weights proposed in this thesis, it would be possible to identify the
importance of the passes that are intercepted. Ideally, all passes made by a player
can thus be utilised and not only those that successfully reach a teammate.

On an overall team level, it could be tested whether there is a connection
between teams’ clustering coefficients and their choice of passes. Does a team
with a higher clustering coefficient tend to make better decisions regarding passing
alternatives?

In general, adding more variables that potentially could influence the effective-
ness of passing motifs should be considered to improve the model fit. For instance,
it would be interesting to investigate whether passing motifs that are parts of
counter-attacks are more likely to be effective. By adding mixed effects to account
for the teams involved in a motif, the effectiveness of teams could be explored.
If combining this in an interaction with motif types, it would be revealed which
teams are more effective on the different motifs. However, as some of the motifs
are used far less than others, the amount of data needed for the analysis should be
considerable higher than only four seasons.

A different type of motifs that might be considered is zone motifs. Rather than
having patterns of players, the patterns could consist of zones on the pitch. This
was tried in this thesis, but the vast number of potential combinations when having
21 zones and a motif size of four made the analysis too extensive. If finding a good
way of dealing with the combinations however, for instance by selecting a range of
them or using fewer zones, such an analysis could provide insight into where on the
pitch the most effective motifs take place, regardless of which players are involved.

As the more compact motif types were found to less effective, it would be
interesting to perform a similar analysis using goals rather than shots as a criterion
for the dependent variable and compare the analyses. Perhaps the compact motif
types turn out to be more effective in terms of leading to a goal? If so, it could
be tested whether teams with high shot effectiveness, i.e. with many goals scored
compared to the number of attempted shots, are correct to not use the motif types
that are found to be more effective in this thesis.
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Appendix

Ground Surface Types in
Eliteserien

Table A.1: An overview of types of grass used on football pitches in Eliteserien during
the 2014-2017 seasons. Data was obtained from Eliteserien (2018).

Team

Natural Grass

Artificial Grass

Aalesund
Bodg/Glimt
Brann
Haugesund
Kristiansund
Lillestrgm
Mjgndalen
Molde

0Odd
Rosenborg
Sandefjord
Sandnes Ulf
Sarpsborg 08
Sogndal
Stabaek
Start
Stromsgodset
Tromsg
Viking
Valerenga

AN

AANAN

AN

v’
v’

NN

AN N N N
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Appendix

Model Selection Results

The results from the selection of zone interactions are presented in Table B.1, and
the results from the smooth term selection are presented in Table B.2.

Table B.1: Averaged Brier scores resulting from a 10-fold cross validation of the plain
GLMM with differing number of zone interactions included. The total number of possible
interactions was 352 after excluding the reference zone z = 2 and the interactions for
which none observations were made. Interactions are added to the model in descending
order of number of occurrences for the particular interaction. The second column, Obs,
indicate the lowest number of observations made for an interaction included in the model.
Only the numbers of interactions to be used, and not which ones, are tabulated.

No. of interactions  Obs  Brier score

10 9108  0.129250
30 4415  0.128802
50 3671 0.128412
75 2483  0.128321
100 1617  0.128112
150 685 0.127911
200 360 0.127654
250 132 0.127527
300 24 0.127489
352 1 0.127490
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Table B.2: A summary of the AIC scores resulting from the stepwise selection of smooth
terms. As the full GAMM obtained a lower AIC score than the plain GLMM, the stepwise
selection was performed backwards. The smooth switched indicates which smooth term
was replaced by a fixed effect in the given model estimation, where no switches imply a
full GAMM and all imply a plain GLMM. Interaction terms are altered accordingly when
the stand-alone variable is switched.

Step 1
Smooth switched AIC score
None 428453
fl (xstarta Ystart, Lend, yend) 442698
f2(X7) 428095
f3(Xs) 428655
fa(Xo) 428467
f5(X10) 428470
fo(X21) 428461
fr(Xaq) 428467
fs(Z,9) 428519
fo(Xa7) 428490
All 442860
Step 2 (f2(X7) switched)
Smooth switched AIC score
None 428095
fl (xstm‘t; Ystart, Tends yend) 442414
f3(Xs) 428265
fa(Xo) 428110
f5(X10) 428113
f6(Xa1) 428103
fr(Xa4) 428157
fs(Z,9) 428165
fo(Xa7) 428129
All 442860
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Appendix

Regression Results

Table C.1: Model 1 regression results. The random-effect coefficients are not given here,
they are presented in Section 5.2.3. Significance level is indicated by *.

Fixed effects Smooth terms

Variable Coefficient(SE) Variable Sign.
X7‘2 0.351*** (0068) fl (xstartu Ystart Lend, yend) o
X733 0.498***(0.014) f3(Xs) ok
X74 0.580***(0.013) fa(Xo)

X1 0.343***(0.015) f5(X10) ok
X1 —0.100***(0.024) fe(X21) ok
X13 —0.327*%(0.024) f7(Xa4) : Artificial ok
X14'1 0154**(0052) f7(X24) : Natural ok
X143 0.757**(0.043) fs(Z,9) o
X5 —0.311***(0.016) fo(Xar) o
X6 —1.227**%(0.014) f10(Xo, X10) ok
X7 0.138***(0.008)

X19 0.184***(0.045)

Xoo 0.515***(0.021)

Xo3 0.123***(0.011)

Xo5.1 0.226***(0.036)

Xos3 —0.215°(0.122)

X72%X1g 0.306***(0.036)

Intercept 1.299***(0.068)

Note: 'p<0.1; *p<0.05; **p<0.01; ***p<0.001
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Table C.2: Model 2 regression results. The random-effect coefficients are not given here,
they are presented in Section 5.2.3. Significance level is indicated by *.

Fixed effects Smooth terms
Variable Coefficient (SE) Variable Sign.
X7.2 0311***(0012) fl( startaystartamendayend) o
X73 0.471***(0.011) f3(Xs) o
X7.4 0.515***(0.012) fa(Xo) *
X1 0.189***(0.029) f5(X10)
X12 —0.596***(0.062) f6(X21)
X3 —0.148***(0.021) fr(Xa4) : Artificial o
X141 0.097*(0.042) f7(Xa24) : Natural o
X142 0.532***(0.066) fs(z,9) o
X143 0.387***(0.036) fo(Xar) o
Xis —0.294*(0.014) F10(Xe, X10)
X16 —0.968***(0.014)
X17 0.117***(0.006)
Xis —0.181**(0.057)
Xo0 —0.172***(0.050)
Xo9 0.277**(0.017)
Xo3 0.187***(0.009)
Xo5.1 0.120*(0.060)
Xos.3 —0.367***(0.109)
X79%X1g 0.543***(0.063)
X79%X19 0.447**(0.109)
Intercept  —0.517***(0.085)

Note: *p<0.05; **p<0.01; ***p<0.001
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Table C.3: Model 3 regression results. The random-effect coefficients are not given here,
they are presented in Section 5.2.3. Significance level is indicated by *.

Fixed effects

Smooth terms

Variable Coefficient Variable Sign.
X7‘2 0.240** (0019) fl (xstartu Ystart, Lend, yend) o
X3 0.223***(0.018) f3(Xs) ok
X4 0.223***(0.020) fa(Xo)

X11 0.325***(0.036) f5(X10) o
X1 —0.134**(0.050) fe(X21) o
X3 0.091*(0.036) J7(Xo24) : Artificial
X14,3 0338***(0059> f7(X24 : Natural) o
X5 —0.110***(0.025) fs(Z,9) o
Xi6 —0.785***(0.026) fo(Xar) e
X17 0.092***(0.010) f10(Xo, X10)

X19 —0.106***(0.028)

X0 0.363***(0.080)

Xog 0.289***(0.029)

Xog 0.127***(0.014)

Xos.1 —0.156-(0.088)

X72%X 18 —0.093*(0.040)

Intercept  —3.248***(0.118)

Note: 'p<0.1; *p<0.05; **p<0.01; ***p<0.001
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Appendix

Abbreviations

Table D.1: Team name abbreviations and the seasons of the 2014-2017 seasons of
Eliteserien in which the teams have played.

Abbreviation  Explanation Seasons
AaFK Aalesunds FK 14,°15,°16,’17
B/G FK Bodg/Glimt '14,°15,16
BRA SK Brann '14,°16,°17
FKH FK Haugesund "14,°15,°16,’17
KBK Kristiansund BK 17
LSK Lillestrgm SK 14,°15,°16,’17
MJ® Mjgndalen IF 15
MOL Molde FK '14,°15,’16,°17
ODD ODDs BK '14,°15,’16,°17
RBK Rosenborg BK ’14,°15,°16,’17
S08 Sarpsborg 08 FF '14,°15,°16,’17
SAN Sandefjord Fotball 15,17
SIF  Strgmsgodset TF '14,°15,°16,’17
SOG  Sogndal Fotball '14,°16,’17
STA IK Start '14,°15,'16
STB Stabak Fotball '14,°15,°16,’17
TIL Tromsg IL ’15,°16,’17
ULF Sandnes Ulf 14
VIF Valerenga Fotball ’14°1516,’17
VIK Viking FK '14,°15,’16,°17
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Table D.2: Player position abbreviations.

Abbreviation  Explanation

AM  Attacking midfielder
CD Central defender
CM Central midfielder
DM Defensive midfielder
FB  Full back

ST  Striker
WB Wing back
WI  Winger
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Appendix

Team Clustering

Table E.1: The average team clustering coefficient for each team in the 2017 season of
Eliteserien. Only players with pass involvements above the equivalent of six matches are
considered for each team. For the entire league, this number corresponds to 364 pass
involvements.

Team ¢
Aalesund  0.906
Brann 0.906
Odd 0.886

Rosenborg 0.883
Sarpsborg 08  0.864
Haugesund 0.860
Lillestrgm  0.854
Strgmsgodset  0.847
Vélerenga 0.844
Tromsg 0.842
Molde 0.833
Sandefjord 0.824
Viking 0.807
Stabaek 0.805
Kristiansund  0.797
Sogndal 0.761
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