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Problem Description
In this thesis, we modify a valuation model for reservoir hydropower plants. Fur-
ther, by deriving Greeks from the valuation result, we demonstrate how the model
can be applied to hedge the hydropower production against price risk. We apply
the model in a case study using data from a Norwegian reservoir hydropower
plant.
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Executive Summary
With an increasing share of intermittent renewable energy production in the Nordic
power market, it is a common belief that the volatility of the electricity price will
increase. Therefore, there is a demand for energy resources that can balance the
supply. Reservoir hydropower serves as the most appropriate renewable energy
resource for balancing purposes. The hydropower companies must be able to
manage price risk if their aim is to avoid profit losses in the volatile market. In
order to increase the competence in the industry in relation to these challenges,
we propose a model for valuation and risk management of reservoir hydropower
production.

Existing valuation and risk management models often require significant compu-
tational time. With severe and unexpected changes in the market, companies may
take on big losses while waiting for output from these models. In contrast, our
model involves a tractable analytical framework, which leads to low computa-
tional time and still good results.

The thesis contributes to the literature by providing theoretical insight to risk
management from an analytical standpoint. Further, the tractable and presentable
model contributes to the industry by increasing competence of risk managers. To
the best of our knowledge, we are the first to provide an analytically tractable
framework for risk management of hydropower production.

We solve the valuation problem as a continuous time stochastic control problem.
The operational boundaries are handled by introducing penalty functions in the
objective function, and a linear discharge strategy is introduced to retain the an-
alytical framework. In order to provide insights for risk management, we relate
price parameter sensitivities of the valuation result to hedging using forward con-
tracts.

We demonstrate the model performance using a case study of a Norwegian hy-
dropower plant. We find that the valuation model yields a reasonable result for
valuation of a reservoir hydropower plant. Further, our results show that the hy-
dropower producer may avoid severe profit losses if applying the hedging model
before a downward shock to the electricity price.
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Sammendrag
Med en økende andel av ukontrollerbar, fornybar kraft på det nordiske kraft-
markedet, forventer forskere og kraftbransjen at volatiliteten i elektrisitetsprisen
vil øke. Derfor er det etterspørsel etter energikilder som kan balansere tilbudet.
Vannkraft er den beste fornybare, regulerbare energikilden. Likevel må vannkraft-
selskap håndtere prisrisikoen for å unngå inntektstap i det volatile markedet. For
å øke kompetansen i industrien knyttet til disse utfordringene, presenterer vi en
modell for verdsettelse og risikostyring av magasinkraftverk.

Eksisterende verdsettelses- og risikostyringsmodeller krever ofte lang kjøretid.
Ved store og uventede endringer i markedet, kan selskapene påta seg store tap
mens de venter på at modellene skal kjøre. Modellen vår innebærer derimot et an-
alytisk håndterbart rammeverk som fører til at modellen har kort kjøretid.

Oppgaven bidrar til litteraturen ved å gi teoretisk innsikt i risikostyring fra et
analytisk ståsted. Videre bidrar modellen til industrien ved å øke kompetansen
til risikostyrere. Så vidt vi vet, er vi de første som gir et analytisk rammeverk for
risikostyring av vannkraftproduksjon.

Vi løser verdsettelsesproblemet som et kontinuerlig stokastisk kontrollproblem.
De operasjonelle grensene håndteres ved å innføre straffefunksjoner i objektiv-
funksjonen, og en lineær utslippsstrategi fra magasinet blir introdusert for å be-
holde det analytiske rammeverket. For å minimere risiko, finner vi deriverte av
verdifunksjonen med hensyn på prisparametere og relaterer disse til forwardkon-
trakter.

Videre utfører vi en casestudie for å vise hvordan modellen fungerer for det norske
markedet. Vi finner at modellen gir et realistisk resultat for verdsettelse av et mag-
asinkraftkraftverk. Til slutt finner vi at vannkraftprodusenten kan unngå alvorlig
tap av fortjeneste ved å hedge med vår modell i forkant av et negativt sjokk for
elektrisitetsprisen.
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1 Introduction

The European power market is under transition. Ambitious climate goals have
put green electricity generation on the agenda for several of the European coun-
tries, and we can already observe an increasing share of renewables in the energy
mix. For instance, 71 percent of all new power capacity under construction in
Norway comes from wind power1. Wind power and other renewable resources
often have an intermittent nature, i.e. they come with limited storage possibilities
and the production is difficult to predict. It is therefore a common belief that an
increasing share of renewable and intermittent electricity generation may cause a
more volatile electricity price (Möbius and Müsgens, 2015; Wozabal et al., 2016;
Masoumzadeh and Alpcan, 2018). Also, the increasing share of intermittent elec-
tricity generation leads to a higher demand for flexible renewable resources. One
of such resources is reservoir hydropower, that offers the possibility to store wa-
ter. The hydropower plants have low start-up and shut-down costs, hence they are
well suited for balancing purposes (Hirth, 2016). The hydropower producers can
plan production with respect to expectations of future electricity price and inflow,
which are their two most important risk factors (Fleten et al., 2010). However, a
more volatile electricity price may increase the cash flow risk for the hydropower
producer. This implies that risk management will play a crucial role for the hy-
dropower plants. In order to meet the challenges related to price uncertainty,
we propose a model for valuation and risk management of reservoir hydropower
plants.

Nowadays, hydropower companies use models based on stochastic or linear pro-
gramming in order to optimize production and planning decisions, as well as
risk management strategies. Such models provide detailed results, but do often

1These are the projects registered and approved by The Norwegian Water Resources and Energy
Directorate (NVE) by the end of 2017 (NVE, 2018).
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require significant computational time. Companies report running times of ap-
proximately two hours per system2. If there are severe and, most importantly,
unexpected changes in the market, the companies may take on substantial losses
while waiting for the output from such models. To accommodate rapid market
changes, we therefore see a need for faster models, especially when it comes to
hedging. The model we provide is computationally efficient due to an analytical
framework and thus provides a contribution in this manner.

The contribution of this thesis is threefold. First we present an analytically tractable
approach for valuation of a reservoir hydropower plant. Second, we demonstrate
how the model can be applied to risk management in hydropower production.
Lastly, we apply the model to a case study. The valuation part of the model
is a continuous-time stochastic control model, based on Ernstsen and Boomsma
(2018), where we assume that the logarithm of the electricity price follows a one-
factor mean-reverting Ornstein-Uhlenbeck (OU) process. We provide detailed
steps of the derivations which are not included in the previous contribution, we
also correct typos and pitfalls done by the authors. Further, we extend the model
by computing derivatives, referred to as Greeks, from the valuation result, and
demonstrate how the valuation model is applicable for hedging the hydropower
production against price risk. The case study is performed using data from a Nor-
wegian hydropower plant.

Hydropower plants operating in Norway participate in the Nordic electricity mar-
ket. Nord Pool serves as the leading market for physical delivery in northern Eu-
rope. Here, power producers participating in the spot market bid in their supply
curve for each hour the following day. Electricity suppliers, on the other hand,
bid in their expected demand for the same hours. The hourly day-ahead spot
price is then set at the price that balances the supply and demand. The electricity
supply is uncertain because it depends on unpredictable weather factors such as
very cold weather, fluctuations in precipitation and melt water. The demand is
also uncertain since it is largely based on consumer behavior. Thus, modeling the
evolution of the electricity spot price is not a straight-forward task as it contains
seasonality over the year, as well as within a week and within days. Furthermore,
differences between production and consumption might cause price shocks since
electricity cannot be easily stored.

It has been shown that simple stochastic processes as for example the Geomet-

2Running time of long-term models. Based on interviews with Norsk Hydro.
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ric Brownian Motion (GBM), will perform poorly for valuation in commodity
markets (Dixit and Pindyck, 1994). A common approach is therefore to model
commodity prices as mean-reverting processes, with the argumentation that in
the long run, the law of supply and demand will push prices back to the long-
term mean (Lucia and Schwartz, 2002; Benth et al., 2010). The literature provides
many different approaches to simulate electricity prices. Deng (1999) suggests dif-
ferent specifications of mean-reverting processes, which include jump-diffusion,
stochastic volatility and regime switching. Thompson et al. (2004) present a model
with periodic variation of the electricity price over the day, including shocks,
while Davison et al. (2002) use a model with periodic variation over the year
when considering only peak days. It is important to note that these contribu-
tions have different goals and tailor their price processes accordingly. Ernstsen
and Boomsma (2018), who use the model primarily for valuation, finds that the
difference in the valuation result between a one factor OU process and an OU
process with jumps is one percent. Therefore, we find a one factor mean-reverting
process sufficient for our valuation model.

When it comes to valuation methods, a well-known approach is to compute dis-
counted cash flows (DCF), where the expected cash flow is discounted to todays
value by an appropriate discount rate. On the simplest form, the expected cash
flow is only an estimate based on planned operations and expected prices. An im-
provement of the simple DCF-approach is to explicitly account for uncertainty by
including one or more stochastic processes, and solve an associated optimization
problem subject to operational constraints. Such an approach is applied by Ernst-
sen and Boomsma (2018) and adopted in this thesis. Our model optimizes the dis-
charge in every time step based on the expectation of future electricity prices and
a seasonal inflow function. In this way, the valuation model is also an optimal-
operation model (Tseng and Barz, 2002). This can be seen as a contribution to
the real option literature in the broad sense, since the model considers optimal
operation decisions taking into account expectations for the future. Real options
have been widely studied over the recent years, and some of the contributions
to hydropower operations and valuation are Tseng and Barz (2002) and Thomp-
son et al. (2004). These valuation models involve analytically non-tractable algo-
rithms, and some of them computationally heavy methods. In contrast, since we
apply a linear discharge strategy, we are able to keep analytically tractable results
and low computational time. Kjærland (2007) also uses a real option approach to
evaluate investment opportunities in Norwegian hydropower. However, in con-
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trast to our model, this model does not include production decisions.

For reservoir hydropower producers, production planning is a part of the risk
management since they are able to adjust production according to expectations
of price and inflow (Hongling et al., 2008). The field of production planning has
received a lot of attention in the literature over the recent decades. The major-
ity of the contributions use solution approaches based on linear programming,
stochastic dynamic programming or stochastic dynamic dual programming. For
example, the Norwegian research organization SINTEF, has developed the power
market software EFI’s Multi-area Power-market Simulator (EMPS)3, which is a
tool for long-term forecasting and planning in electricity markets (see Wolfgang
et al. (2009)). Other such models are One Area Power Market Simulator (EOPS)
(SINTEF, 2018a), ProdRisk (SINTEF, 2018b) and European Model for Power sys-
tem Investment with Renewable Energy (EMPIRE) (Brovold et al., 2014), which
all are long-term models for analyzing the power sector, mainly based on linear
and stochastic dynamic optimization.

The models above heavily rely on sophisticated numerical algorithms and are
therefore inferior to our model when it comes to computational time. This implies
that the power producers relying on these models may lack flexibility in quickly
reacting to market changes. In volatile markets, the value of the flexibility to adapt
to changes may be large (Thompson et al., 2004). During the time it takes to run
a conventional risk management model, the hydropower company may already
incur substantial losses due to the unexpected market movements. The model we
present has a running time of a few seconds, which is considerably shorter than
the stochastic dynamic programming models, and may therefore reduce losses.
Also, fast models are especially suitable for stress-tests, back-testing of trading
strategies and scenario analysis (Berger et al., 2016).

To keep the model analytically tractable, we introduce a number of assumptions.
The operational boundaries for the reservoir hydropower plant in our model are
handled by introducing penalty functions in the objective function. Accordingly,
we use a linear discharge strategy from the reservoir. We assume that the inflow is
determined by a function with seasonal behavior. The inflow function we propose
is a further extension from the case of Ernstsen and Boomsma (2018), who assume
constant inflow.

3EFI is the abbreviation for Elektrisitetsforsyningens Forskningsinstitutt, which is the previous
name of SINTEF.
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We provide detailed derivations of the model to make it transparent and easy for
risk managers to replicate. The model has a solid theoretical foundation, and may
therefore be used to get general insights on valuation and risk management in
electricity markets. The analytical framework implies that mathematical opera-
tions can be performed easily, e.g. the derivation of sensitivities with respect to
various factors. To the best of our knowledge, we are the first to provide an ana-
lytically tractable model for risk management of hydropower portfolios.

The rest of this thesis proceeds along the following lines. The remainder of this
section gives an overview of the related literature concerning risk management
of hydroelectric power plants. The full model and solution method is presented
in Section 2. In Section 3 we perform a case study with data from a Norwegian
reservoir hydropower plant. Section 4 contains discussion, Section 5 concludes
and provides suggestions for further research.

1.1 Risk management in hydropower production

This section is dedicated to relevant aspects of risk management for hydropower
producers and related literature. Many of the hydropower and hedging related
contributions after the 1990’s have been motivated by deregulation of the electric-
ity market. After the deregulation, power producers got a reason to hedge since
the electricity price was determined by supply and demand in a liberal market,
rather than being decided by the government.

Hydropower companies are able to manage their exposure to price risk by trading
financial instruments available on Nasdaq OMX Commodities, such as forwards,
futures and options, or by entering over-the-counter (OTC) contracts for physical
delivery. The instruments are designed to reduce price risk over time horizons
ranging from days up to three years. The forward contracts are sold to a stan-
dardized size of 1 Megawatt hour (MWh) and guarantee the delivery of power
for a specified future time period4. Forward contracts prescribe physical delivery,
while futures are financially settled (Benth et al., 2008). The contracts are settled
with the system price as a reference. We will not distinguish any further between
the contract types, and refer to both types as forwards.

The contributions on hedging of hydropower operations agree that correct trad-

4This is equivalent to financial swaps.
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ing of forward contracts reduces price risk for the company. For example, Fleten
et al. (2010) show that hedging with forward contracts reduce risk in terms of
risk measures such as value-at-risk (VaR), conditional value-at-risk (CVaR) and
standard deviation of revenue. Byström (2003) finds that short-term hedging of
electricity spot prices with electricity futures reduces variability of the portfolio
returns. Giacometti et al. (2011) propose a stochastic multi-stage portfolio model
for a hydropower producer, where the goal is to maximize profit for the producer,
and reduce the economic risks connected to the fact that electricity spot and for-
ward prices are highly volatile. The authors show that forward contracts can be
used for hedging purposes when considering only one source of uncertainty, i.e
price risk.

According to Fleten et al. (2010), a hydropower producer is naturally hedged if
there exists a negative correlation between inflow and electricity price. That is,
when there is low inflow to the reservoirs, the prices will be higher, and vice
versa. However, other factors than inflow also affect the electricity price and it
is not possible to be completely naturally hedged. Hence, many of the Norwe-
gian hydropower companies have departments for risk management. Sanda et al.
(2013) have analyzed hedging trends in electricity commodity markets based on
data and hedging policies from twelve Norwegian hydropower companies. They
found evidence of widespread risk management practice in Norwegian electricity
companies, where the most common hedging products were electricity contracts
such as forwards or futures. For most of the companies studied, hedging consti-
tuted substantial profits, which makes hedging an interesting topic not only for
risk management purposes, but also for speculation.

The hedging approach where the risk manager chooses the portfolio that min-
imizes risk measures such as VaR and CVaR, is discussed in many hedging re-
lated contributions. See Boroumand et al. (2015) for an introduction of these risk
measures. For example, Bjerksund et al. (2000) discuss risk management in the
electricity market within the VaR-concept. Arguing that the constant volatility as-
sumption often is violated for commodities, they adopt a three-factor model for
market risk. They show that a model taking more factors than just electricity price
into account performs better as a tool for risk management. Following this ar-
gumentation, one-factor price processes have not traditionally been used in risk
management. Nevertheless, by differentiating the hydropower value with respect
to the price process parameters, we can relate the risk in the price process to hedg-
ing.
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The approach of making a portfolio close to neutral to market changes by com-
puting derivatives from the valuation and hedge based on these, is well known
from financial theory. The derivatives are often referred to as Greeks. Fleten and
Wallace (2009) demonstrate how stochastic programming can be used to solve a
hydro-scheduling case, and how such a model can be employed in delta-hedging5

of the electricity portfolio. They define delta as the change in the value of a hy-
dropower plant when there is a one unit shift in the forward curve. The delta is
approximated from the average unit shift in the value of the power plant resulting
from a unit shift in the forward curve.

A prerequisite for applying our model for delta-hedging is that the forward curve
is incorporated in the price process such that differentiating with respect to the
forward price is possible. For storable commodities, it is common to model the
forward price as a function of the spot price, as in McDonald (2002). This re-
lationship is often referred to as a cost-of-carry relationship since it accounts for
the benefit of physically holding the commodity (convenience yield) and storage
costs. Contributors have argued that the cost-of-carry relationship is weaker for
electricity than for other commodities since it is not possible to buy electricity for
storage (Koekebakker and Ollmar, 2005; Benth et al., 2008). Nevertheless, Nord
Pool is a market characterized by a high share of hydropower with large stor-
age reservoirs. Botterud et al. (2010) therefore argue that the theory of storage
costs and convenience yield is still relevant in the Nordic electricity market. The
approach is criticized by Weron and Zator (2014), who find that behavior of con-
venience yield only has limited support in data. It would have been possible to
substitute the spot price in our valuation model with the cost-of-carry relation-
ship. However, we find this step too controversial. Another, more novel approach
to incorporate the forward curve, and thereby obtain a delta-hedging strategy, is
to introduce a time dependent mean in the price process as in Clewlow and Strick-
land (2000). This extension, however, may come at the expense of the analytical
tractability of this model. Therefore, we have left incorporation of the forward
curve and subsequent calculation of delta for further research. We choose to focus
on hedging the sensitivities to the price process parameters. In this way, we stay
consistent with the one-factor price process in the valuation model of Ernstsen
and Boomsma (2018).

Several contributors have performed case studies on risk management based on

5Delta is a common Greek. In the stock market, delta is defined as the change in the option price
resulting from a change in the price of the underlying stock.
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data from Norwegian hydropower plants. Mo et al. (2001) present a tool where
risk management and production scheduling is integrated into one model. We
have adopted the idea of a combined approach in this thesis. In the model of Mo
et al. (2001), the risk level is controlled by setting revenue targets, where the ob-
jective function is penalized if the target is not reached. The producer faces price
and inflow uncertainty, which result in a large stochastic optimization problem.
The authors test the model for a Norwegian hydropower company. Based on the
same optimization model, but with improved models of spot price extremes and
uncertainty of future prices, Kristiansen (2006) solves the same risk management
problem on a more realistic case for the same company. He finds that the ex-
pected income decrease with increasing penalty of the objective function, but the
optimum is relatively flat. In both cases, the model is solved by a combination
of stochastic dynamic programming and stochastic dual dynamic programming.
According to Mo et al. (2001), the running time is 3 to 4 hours for the test case,
while Kristiansen (2006) reports a running time of 15 to 20 hours for the updated
case6. In contrast, the model we present outputs a hedging strategy within a few
seconds, and may contribute to reduce substantial losses during the running time
of stochastic optimization models.

6The running time of the stochastic optimization models can be improved by access to better com-
puters over time.
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2 Model

We start by introducing the optimization problem faced by a hydropower pro-
ducer. The stochastic control problem is solved using the approach of Ernstsen
and Boomsma (2018) that involves penalty functions and a linear control strategy.
We let the logarithm of the electricity price follow an OU-process, which captures
seasonal behavior of the electricity price. Further, we extend the work of Ernst-
sen and Boomsma (2018) by allowing the inflow to follow a function accounting
for the seasonal behavior related to rainfall and snowmelt. We provide detailed
steps of the derivations making the model transparent and easy to replicate. We
also state mistakes found in the previous contribution. At last, we show how the
analytical tractability of the model can be exploited to build a risk management
framework for a hydroelectric power plant based on Greeks.

2.1 The optimization problem

In this section, we present the optimization problem faced by a profit maximizing
hydropower producer operating a one-reservoir hydropower plant. Electricity
is produced by exploiting potential energy in water led through pipes from the
reservoir to the turbine. We assume that the hydropower producer is a price taker
in a complete market, with no possibilities to influence the electricity price. The
value of the hydroelectric plant, V , is equal its future expected profit discounted
by the rate r. The producer faces the following stochastic control maximization
problem where H(Lt, vt) is the instantaneous production, Pt is the current elec-
tricity price and Lt is the current water level in the reservoir. Subscript t indi-
cates the time from the starting point. The overall optimization problem is given
as

9



V (P, I, L) = max
v

(
E
[ ∫ ∞

0

e−rtPtH(Lt, vt)dt|P0 = P, I0 = I, L0 = L

])
(2.1)

dPt = µP (Pt)dt+ σP (Pt)dZ
P
t (2.2)

dIt = µI(It)dt+ σI(It)dZ
U
t (2.3)

dLt = (It − vt)dt (2.4)

Lmin ≤ Lt ≤ Lmax (2.5)

vmin ≤ vt ≤ vmax. (2.6)

Equation (2.2) is the price process, where µP is the drift term and σP is the volatil-
ity term. The price process will be further discussed in the next section. Equation
(2.3) is the process for the stochastic inflow, It, with drift and volatility terms, µI
and σI . dZPt and dZUt are increments of Wiener processes. Constraint (2.5) pro-
vides limits for minimum and maximum allowed water levels, Lmin and Lmax.
Constraint (2.6) gives limits for minimum and maximum allowed discharge rates,
vmin and vmax, i.e. how much water that can be led through the pipes to the tur-
bines1. Equation (2.4) is the storage constraint, implying that the change in water
level equals the difference of inflow and discharge rate.

We assume that the production from the hydropower plant is given by the follow-
ing linear relationship

H(L, v) = η1vt + η0 (2.7)

η1 = ηρgh. (2.8)

Where η1 is the energy equivalent and η0 is a constant to account for water led
outside of the turbine. We assume the overall efficiency of the system, η, is con-
stant, ρ is the density of water, g is the acceleration due to gravity and h is the net
drop in meters from Lmax to the turbine.

1We refer to constraints (2.5) and (2.6) as the operational constraints.
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2.2 The price process

In this section, we present the stochastic electricity price process. A common
way of modeling commodity prices is to define the logarithm of the price as
Xt = log(Pt), such that the price is given as Pt = eXt (Schwartz and Smith, 2000;
Lucia and Schwartz, 2002). Similar to Ernstsen and Boomsma (2018), we define
the logarithm of the electricity price as Xt = log(Pt +M), such that

Pt = eXt −M, (2.9)

where M is the lower bound for the electricity price. The lower bound was in-
troduced to account for periods with possible negative electricity prices. Nega-
tive prices may occur in periods with great amounts of unpredictable electricity
generation from renewable resources such as wind, especially combined with not
having the flexibility to quickly reduce conventional production. For some hours,
negative prices have been the case in Denmark (Ernstsen and Boomsma, 2018).
The probability of having negative electricity prices increases with increased share
of intermittent renewable production (Götz et al., 2014). Negative prices are not
observed in the price areas of Norway. Therefore, we will assume M = 0 in the
case study in this thesis. However, we keep M in the derivations such that the
model is able to handle any future occurrences of negative prices.

Ernstsen and Boomsma (2018) solve the valuation problem for three spot price
processes; a GBM, a mean-reverting OU-process, and an OU-process with jumps.
As expected, they found that the GBM process was inappropriate to evaluate the
flexibility within the hydropower plant (value of storage possibility), while the
mean-reverting OU and OU with jumps processes were better suited for captur-
ing this flexibility. For the valuation purpose, the OU-process with jumps only
showed a marginally different result from the regular OU-process compared to the
GBM. Therefore, to simplify computations, we have assumed a one-factor mean-
reverting OU-process2.

2We are aware that this process is not able to represent discrete changes due to new information
that has more than marginal effect on the electricity price (price spikes). However, the use of such
model enables us to capture some of the important properties of the electricity price, in particular the
tendency to revert to a long-run level (Fleten et al., 2010). The inclusion of jump process is left for
further research.
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The stochastic differential equation (SDE) of the mean-reverting process is given
as

dXt = κ(θ −Xt)dt+ σdZPt . (2.10)

The first term of the SDE is the drift term, which is dependent on the current
electricity price, where Xt = log(Pt + M). κ > 0 is a constant determining the
speed of mean reversion of the process. The mean reversion level of the process,
θ, is defined as

θ = α− σ2

4κ
, (2.11)

where α > 0 is a constant and κ is the speed of mean reversion. The second term
of (2.10) is the volatility term, where σ ≥ 0 is a constant, representing continu-
ous changes in the electricity price caused by development in the market, hereby
changes in supply and demand, changes in economic environment and other new
information causing marginal changes in the price.

The SDE in (2.10) has the solution

Xt = e−κ(t−s)Xs + θ(1− e−κ(t−s)) + σ

∫ t

s

e−κ(t−v)dZPv , (2.12)

for t > s, and from (2.12) it follows that the electricity price at time t is given
as

Pt = (Ps +M)e
−κ(t−s)

eθ(1−e
−κ(t−s))eσ

∫ t
s
e−κ(t−v)dZPv −M. (2.13)

As can be seen, the mean reversion level for the price process is given by

eθ −M. (2.14)

The stochastic price process presented will be used when solving the valuation
and risk management problem for the hydroelectric plant.

2.3 Penalty functions

In this section, we present a solution approach to the optimization problem which
enables us to solve the problem analytically. As Ernstsen and Boomsma (2018),
we relax the upper and lower constraints in (2.5) and (2.6) by introducing penalty
functions for the discharge rate and water level. The penalty functions, N1 and
N2, are given as the following quadratic functions
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N1(L) = Θ1L+ Θ2L
2 (2.15)

N2(v) = θ1v + θ2v
2. (2.16)

The coefficients, Θ1, Θ2, θ1 and θ2, in the penalty functions are chosen based on
the parameters P̃v and P̃L, such that the marginal profit required to exceed the
limits for the water level is ∂

∂v P̃LH(L, v) = η1P̃L, and the marginal profit required
to exceed the limits for the discharge rate is ∂

∂v P̃vH(L, v) = η1P̃v . I.e., we solve
the following set of equations

P̃Lη1 =
∂N1(Lmin)

∂Lmin
, −P̃Lη1 =

∂N1(Lmax)

∂Lmax

P̃vη1 =
∂N2(vmin)

∂vmin
, −P̃vη1 =

∂N2(vmax)

∂vmax
,

(2.17)

and obtain the coefficients

Θ2 = − P̃Lη1

Lmax − Lmin
, (2.18)

Θ1 =
P̃Lη1(Lmax + Lmin)

Lmax − Lmin
, (2.19)

θ2 = − P̃vη1

vmax − vmin
, (2.20)

θ1 =
P̃vη1(vmax + vmin)

vmax − vmin
. (2.21)

This means that the penalty functions reach maximum for L = (Lmin + Lmax)/2

and v = (vmin + vmax)/2. We choose P̃L = 4S and P̃v = P0 + 4S, where S is an
estimate of the standard deviation of the electricity spot price. See Appendix E.2
for calibration of S.

The penalty functions are added to the objective function and the discounted ex-
pected profit of the relaxed problem is then expressed as

E
[ ∫ ∞

0

(
e−rtPtH(Lt, vt) +N1(Lt) +N2(vt)

)
dt|P0 = P, I0 = I, L0 = L

]
. (2.22)

By replacing the original boundaries with penalty functions, we theoretically al-
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low the water level and the discharge rate to exceed the boundaries, and the value
of the hydropower plant may therefore be higher than in the original problem.
Ernstsen and Boomsma (2018) emphasize that this issue can be managed by tun-
ing the parameters θ1, θ2,Θ1 and Θ2. Also, they argue that the overestimation
is counterbalanced by restriction to the linear control strategy, which reduces the
value of the hydroelectric plant.

2.4 A linear discharge strategy

In this section, we derive the optimal discharge rate from the hydropower model
and present the linear discharge strategy applied to solve the valuation prob-
lem.

The problem we have presented involves uncertainty and a dynamic decision
structure. We consider continuous time and infinite time horizon, i.e. a contin-
uous time stochastic control problem. Øksendal (2000) gives an extensive expla-
nation of the solution strategy to stochastic control problems. Following the pro-
cedures, the associated partial differential equation, which is often referred to as
the Hamilton Jacobi Bellman (HJB)-equation, of the original stochastic problem
is

µP (P )
∂

∂P
Ṽ (P, I, L) +

1

2
σP (P )2 ∂2

∂P 2
Ṽ (P, I, L)

+ µI(I)
∂

∂I
Ṽ (P, I, L) +

1

2
σI(I)2 ∂

2

∂I2
Ṽ (P, I, L)

+ ρσI(I)σP
∂2

∂I∂P
Ṽ (P, I, L) + Θ1L+ Θ2L

2

+ max
v

(
(I − v)

∂

∂L
Ṽ (P, I, L) + θ1v + θ2v

2 + PH(L, v)
)
− rṼ (P, I, L) = 0,

(2.23)
where Ṽ (P, I, L) is the value function for the relaxed problem and ρ is the corre-
lation between the price and inflow processes.

To simplify the computations, Ernstsen and Boomsma (2018) use a constant in-
flow rate when solving the optimization problem. In reality, the future inflow to
a reservoir is stochastic, and hydropower planners take this stochasticity into ac-
count for both short-term and long-term production planning. For the valuation
purpose, the use of an average inflow rate does not necessarily have considerable
effects on the results, as the valuation of future operation is done over an infi-
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nite horizon. Nevertheless, the seasonal behavior of inflow is of great importance
in Norway, where we have considerable amounts of snow melting every spring.
Since we want the model to be relevant for Norwegian hydropower producers,
we introduce a time dependent inflow function, ft. The storage constraint from
(2.4) is now given by

dLt = (ft − vt)dt. (2.24)

With the arbitrary inflow function, the HJB-equation reduces to

µP (P )
∂

∂P
Ṽ (P,L) +

1

2
σP (P )2 ∂2

∂P 2
Ṽ (P,L) + Θ1L+ Θ2L

2

+ max
v

(
(f − v)

∂

∂L
Ṽ (P,L) + θ1v + θ2v

2 + PH(L, v)
)
− rṼ (P,L) = 0.

(2.25)

Note that the value function is now only dependent on the electricity price and
the water level.

Further, we assume that the discharge rate is linear with respect to the electricity
price and water level, which is similar to Ernstsen and Boomsma (2018)

vt = d1 + d2Pt + d3Lt. (2.26)

In contrast to other approaches relying on numerical algorithms and Monte-Carlo
approaches, e.g. Carmona and Ludkovski (2010), the explicit linear discharge
strategy enables us to keep analytical tractability and short computational time.

Applying the first order condition of the maximization problem stated in (2.25),
and using the production function given, the optimal discharge rate is

v∗ =
−θ1 − η1P + ∂

∂LV (P,L)

2θ2
. (2.27)

In Equation (2.27), there is a typo in the paper of Ernstsen and Boomsma (2018),
as they do not include multiplication by P in the η1-term. The error only seems to
appear in this equation, but is important to acknowledge, in order to not confuse
the reader.

The linearized value of water is inserted into the optimal discharge of (2.27), which
is set equal to (2.26). By collecting the terms and rearranging, we get

d1 =
−θ1 + ( ∂

∂L − P
∂2

∂L∂P − L
∂2

∂L2 )V (P,L)|P=P,L=L

2θ2
, (2.28)
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d2 =
−η1 + ∂2

∂L∂P V (P,L)|P=P,L=L

2θ2
(2.29)

and

d3 =
∂2

∂L2V (P,L)|P=P,L=L

2θ2
. (2.30)

Using the linearized discharge rate, it follows that the value of the hydropower
plant can be written as

V (P,L) = E
[ ∫ ∞

0

e−rt
(

[d2
3θ2 + Θ2]L2

t + [d2
2θ2 + d2η1]P 2

t

+ [2d2θ2 + η1]d3PtLt + [2d1d2θ2 + d1η1 + d2θ1 + η0]Pt

+ [2d1d3θ2 + d3θ1 + Θ1]Lt + d2
1θ2 + d1θ1

)
dt

]
.

(2.31)

We now substitute the discharge strategy from (2.26) into the storage constraint in
(2.24), and get

dLt = d3(
ft − d1 − d2Pt

d3
− Lt)dt. (2.32)

Ernstsen and Boomsma (2018) demonstrate that the water level can be written
as

Lt = L0e
−d3t +

∫ t

0

e−d3(t−s)(fs − d1 − d2Ps)ds. (2.33)

A lemma proving this is replicated in Appendix B.2 for the sake of convenience.

At last, the new expression for the water level is substituted into the expression
for discharge rate in (2.26) to obtain

vt = d1 + d2Pt + d3

(
L0e

−d3t +

∫ t

0

e−d3(t−s)(fs − d1 − d2Ps)ds
)
. (2.34)

Now, the only unknowns are the constants d1, d2 and d3 in the linear discharge
function. These are derived by inserting the first, second and mixed order partial
derivatives of V into Equations (2.28)-(2.30), and thereby solve the equations with
respect to the constants. The partial derivatives are summarized in Corollary 1,
and the constants are summarized in Corollary 2. Detailed derivations are found
in Appendix C.1.
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Corollary 1
The first partial derivative of the value of the hydropower plant with respect to water level
is given as

∂

∂L
V (P,L)|P=P,L=L = (2d1d3θ2 + d3θ1 + Θ1)

∫ ∞
0

e−(r+d3)tdt

+ (2d2θ2 + η1)d3

∫ ∞
0

e−(r+d3)tE(Pt|P )dt

+ 2(d2
3θ2 + Θ2)

∫ ∞
0

Le−(r+2d3)tdt

+ 2(d2
3θ2 + Θ2)

∫ ∞
0

e−(r+d3)t

∫ t

0

e−d3(t−s)(fs − d1)dsdt

− 2d2(d2
3θ2 + Θ2)

∫ ∞
0

e−(r+d3)t

∫ t

0

e−d3(t−s)E(Ps|P )dsdt.

(2.35)

The second order partial derivative is given as

∂2

∂L2
V (P,L)|P=P,L=L = 2(d2

3θ2 + Θ2)

∫ ∞
0

e−(2d3+r)tdt =
2(d2

3θ2 + Θ2)

r + 2d3
(2.36)

and the mixed partial derivative with respect to water level and electricity price is given
as

∂2V (P,L)

∂L∂P
|P=P,L=L = d3(2d2θ2 + η1)

∫ ∞
0

e−(d3+r)t ∂

∂P
E(Pt|P )dt

− 2d2(d2
3θ2 + Θ2)

∫ ∞
0

e−(r+d3)t

∫ t

0

e−d3(t−s) ∂

∂P
E(Ps|P )dsdt.

(2.37)

Corollary 2
The constant d3 is found from

d3 =
1

2
(−r +

√
r2 + 4

Θ2

θ2
), (2.38)

where r, θ2,Θ2 ∈ R.

Further, d2 is found from

d2 =
−η1 + kd2

2θ2 − ad2

, (2.39)

where η1, kd2 , θ2, ad2 ∈ R.
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Finally, d1 is found from

d1 =
−θ1 + kd1

− P ∂2V
∂L∂P − L

∂2V
∂2L

2θ2 − ad1

, (2.40)

where θ1, kd1
, θ2, ad1

∈ R. P is the average electricity price over the calibration period,
and L is the average water level.

See Appendix C.1 for computation of the constants kd2
, ad2

, kd1
and ad1

.

We reveal another typo of Ernstsen and Boomsma (2018). In the first term of (2.37)
there is missing a constant d3, which is corrected in Corollary 1 above. Since (2.37)
is a part of the expression for d1, which again is used in Equation (2.31), we clearly
see that inclusion of d3 would change the valuation result. However, we do not
know if the authors have corrected the typo when computing the final value of
their hydropower plant.

2.5 Solving the linearized control problem

In this section, we solve the final valuation problem. We have shown how to ob-
tain the constants in the discharge function. With the discharge rate from Equation
(2.34), we can now write the value of the hydroelectric plant as

V (P,L) = E
[ ∫ ∞

0

e−rtPt(η1vt + η0)dt|P0 = P,L0 = L

]
= η1d2

∫ ∞
0

e−rtE[P 2
t |P0 = P ]dt

+ (η1d1 + η0)

∫ ∞
0

e−rtE[Pt|P0 = P ]dt

+ η1d3L0

∫ ∞
0

e−(r+d3)tE[Pt|P0 = P ]dt

+ η1d3

∫ ∞
0

e−rt
∫ t

0

e−d3(t−s)E[Pt(fs − d1)− d2PtPs|P0 = P ]dsdt.

(2.41)

To compute V , we need to derive the expectation, E(Pt|Ps), the second moment,
E(P 2

t |Ps), and the autocovariance, E(PtPs), of the electricity spot price process.
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The marginal distribution of the OU-process is the Normal distribution,

Xt ∼ N
(
E(Xt|Xs), V ar(Xt|Xs)

)
= N

(
Xse

−κ(t−s) + θ(1− e−κ(t−s)),
σ2

2κ
(1− e−2κt)

)
.

(2.42)

Since Pt = eXt −M , we apply a lemma presented in Ernstsen (2016) to derive the
expectation, the second moment and the autocovariance of the price process in
Corollary 3. We replicate the lemma in Appendix B.1 for the sake of convenience.
The proof of Corollary 3 is presented in Appendix C.2.

Corollary 3
Let Pt = log(Xt + M), where Xt follows an OU-process. Then the expectation of the
price process is given as

E(Pt|Ps) = (Ps +M)e
−κ(t−s)

eθ(1−e
−κ(t−s))+σ2

4κ (1−e−2κ(t−s)) −M, (2.43)

where the long-term expected spot price is

E(Pt|Ps)t→∞ = eα −M. (2.44)

The second moment of the price process is

E(P 2
t |Ps) = (Ps +M)2e−κ(t−s)

e2θt(1−e−κ(t−s))+σ2

κ (1−e−2κ(t−s))

− 2M(Ps +M)e
−κ(t−s)

e(α−σ2

4κ )(1−e−κ(t−s))+σ2

4κ (1−e−2κ(t−s)) +M2,
(2.45)

and the autocovariance is

E(PsPt|P0) = E(eXt+Xs)−ME(eXt)−ME(eXs) +M2.

= P e
−(κt+κs)

0 e(θ+σ2

4κ )(2−e−κt−e−κs)+σ2

4κ

(
2e−κ(t+s)(e2κs−1)

)
−MP0e

−κteθ(1−e
−κt)+σ2

4κ (1−e−2κt)

−MP0e
−κse−κseθ(1−e

−κs)+σ2

4κ (1−e−2κs) +M2.

(2.46)
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We assume M = 0,3 and insert the obtained expressions into (2.41) to get

V (P,L) = E
[ ∫ ∞

0

e−rtPt(η1vt + η0)dt|P0 = P,L0 = L

]
= η1d2

∫ ∞
0

e−rt
(
P 2e−κt

0 e2θ(1−e−κt)+σ2

κ (1−e−2κt)

)
dt

+ (η1d1 + η0)

∫ ∞
0

e−rt
(
P e

−κt

0 eθ(1−e
−κt)+σ2

4κ (1−e−2κt)

)
dt

+ η1d3L0

∫ ∞
0

e−(r+d3)t

(
P e

−κt

0 eθ(1−e
−κt)+σ2

4κ (1−e−2κt)

)
dt

+ η1d3

∫ ∞
0

e−rt
∫ t

0

e−d3(t−s)(fs − d1)

(
P e

−κt

0 eθ(1−e
−κt)+σ2

4κ (1−e−2κt)

)
dsdt

− d2η1d3

∫ ∞
0

e−rt
∫ t

0

e−d3(t−s)P e
−(κt+κs)

0 e(θ+σ2

4κ )(2−e−κt−e−κs)·

e
σ2

4κ

(
2e−κ(t+s)(e2κs−1)

)
dsdt.

(2.47)

Now, the value of the hydropower plant can be found by applying numerical
integration methods to solve the integrals in Equation (2.47).

2.5.1 Interpretation of water values

Scientific contributions often refer to water values when explaining production
strategies. The water value is defined as the expected future marginal value of
stored water. In other words, the value of getting one extra unit of water in the
reservoir (Wangensteen, 2012). In our case, ∂V∂L can be referred to as the marginal
value of water. The linear production strategy described in Section 2.4 corre-
sponds to assuming that the marginal value of water is linear in price and wa-
ter level. If we consider the constants, d1, d2 and d3, we see that d1 enters the
valuation result in (2.47) two times. The first corresponds to the constant term
of the discharge rate, while the second represents the decrease in value caused
by the negative effect of the decrease in water level on the future discharge rate.
The same holds for d2, which also enters two terms. The first represents that
the increase in price has a positive effect on the discharge rate, while the second
term represents the negative effect on the value as a result of decrease in future
discharge rate (Ernstsen and Boomsma, 2018). Summarized, one can say that if

3In the case study, we assume no negative prices, hence we set M = 0. The complete expression
of the valuation result including M is found in Appendix D.1.
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the production planner decides to produce, the profit increases at that time point,
while the producer looses the opportunity to produce with the same water in a fu-
ture point in time. According to Ernstsen and Boomsma (2018), d3 is the speed of
mean reversion of the water level and represents how the discharge rate changes
when the water level deviates from the mean4.

2.6 A framework for risk management

One of the goals of this paper is to demonstrate how the analytically tractable
model presented in the previous section can be applied in risk management. In
this section, we demonstrate how we can compute derivatives from the valuation
result given in (2.47) and emphasize how risk managers can apply these to hedge
the production portfolio against price risk.

According to Eydland and Wolyniec (2003), hedging achieves two things. First,
it removes risk. Second, it limits exposure to modeling assumptions. The value
of the hydropower plant is the present value of all future expected cash flows,
where the future electricity price is uncertain. Hence, there is need for a risk man-
ager to trade contracts to reduce risk of low operational profit for the company5.
Furthermore, we have assumed a one-factor mean-reverting price process in our
valuation model, where the parameters must be estimated. Therefore, the valu-
ation result also is uncertain because of uncertainty in the parameters. Thus, to
provide a hedging strategy, we relate the risk in the parameters of the price pro-
cess to forward contracts.

Since the model we have presented is analytically tractable, it is possible to di-
rectly differentiate the value of the hydropower plant, V , with respect to the pa-
rameters of the price process presented in Section 2.2. The hedging strategy we
present is a way of mapping risk in the parameters to forward contracts using the
derivatives, which we refer to as Greeks. According to Fleten and Wallace (2009),
the portfolio value depends in principle on all futures that together constitute the
forward curve. That means, if the forward curve goes to zero, then V goes to
zero, and the other way around. If V is simply the sum of long positions in all
forward contracts, positive derivatives must be offset by selling (short position)

4The mean reversion level of the water level is given by the relationship f−d1−d2Pt
d3

.
5We disregard uncertainty in inflow.
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contracts, while negative derivatives must be hedged by buying contracts (long
position).

2.6.1 Deriving Greeks

In the following, we present the relevant Greeks that can be used for risk manage-
ment of the hydropower production. We start with the derivative with respect to
the starting price of the price process, P0,

∂V

∂P0
. (2.48)

Since the forward curve starts at the current spot price, a change inP0 is equivalent
to a parallel shift of the short end of the forward curve. An upward shift of the
forward curve will increase the value of the hydropower plant, and this risk may
be hedged by shorting forward contracts.

The second component we consider is the derivative with respect to the speed of
mean reversion, κ,

∂V

∂κ
. (2.49)

The derivative implies a change in the value of the plant when the speed of mean
reversion changes. Considering the extreme scenario, where κ goes to infinity,
there will be no need for hedging since deviations from the long-term mean would
immediately be counterbalanced. In the opposite case, if κ approaches zero, we
would get a pure Wiener process with no mean reverting behavior. It follows
that the speed of mean reversion affects the expected deviations from the mean.
Hence, for low speed of mean reversion, hedging will be more essential since
shocks will have a more long-lasting effect.

The effect of a change in the starting price, P0, also depends on the speed of mean
reversion, κ. Due to the features of the price process, in the long run the price will
revert to the long-term mean with the speed of mean reversion. The risk in P0 will
be related to the nearest future if the speed of mean reversion is high. To keep a
neutral position with respect to this risk, the risk manager should therefore buy
or sell a portfolio of near-term products. That is, put most weight in the contracts
with the nearest time to maturity and less in the less near contracts.
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It may also be beneficial to hedge the risk in the volatility parameter6, σ,

∂V

∂σ
. (2.50)

The derivative shows how the value of the plant changes as a result of a unit
change of the volatility parameter. To hedge the risk in the volatility parameter
itself, one should invest in contracts corresponding to the derivative with respect
to the parameter. Turning to the extreme scenarios, a volatility parameter ap-
proaching infinity implies that the price process have infinitely many spikes, and
it would be impossible to estimate the price in the next time step. On the other
hand, volatility reaching zero implies a deterministic price function, with no need
for hedging at all. Hence, the magnitude of the volatility says something about
the importance of hedging.

Lastly, we consider the risk in the parameters θ and α. To get an impression of
what the parameters represent, we repeat the long-term properties of the price
process. The mean reversion level of the process is eθ −M , while the expected
future price converges to E(Pt|Ps)t→∞ = eα − M , due to the skewness of the
volatility term (Ernstsen and Boomsma, 2018). That is, θ is the parameter deter-
mining the mean reversion level, while α is the parameter which determines the
long-term expected mean.

The risk in θ can be related through the derivative

∂V

∂θ
. (2.51)

Since the value of the hydropower plant is the value of all production over an
infinite horizon, it will be strongly dependent on the mean reversion parameter.
A change in θ will be equivalent to a shift of the whole forward curve. Further,
because the value of the hydropower plant depends on all contracts that together
constitute the forward curve, hedging the risk in the long-run mean on its own
will simply mean buying or selling all non-overlapping contracts, i.e. the whole
forward curve. When the risk in the long-term mean is seen in relation to the
risk in the other parameters, and the hedge of these, it may be sufficient to trade
contracts in the long-end of the forward curve in order to hedge the risk in θ. If,
for example, the short-term risk is hedged by neutralizing the sensitivities of P0

6The derivative with respect to the volatility parameter must not be confused with Vega, which is
a common Greek corresponding to a change in the implied volatility of the forward curve.
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and κ, then the rest of the risk in θ could be managed through buying or selling
long-term contracts with maturities of 1-3 years.

Finally, the risk in the long-term expected mean is related to the derivative with
respect to α,

∂V

∂α
. (2.52)

As for θ, the total risk in α may be hedged by trading non-overlapping contracts
over the whole forward curve. We notice that if the risk manager has invested in
contracts such that the payoff is neutral to the risk connected to κ and σ, then the
risk in the mean reversion level, θ, will only be related to the risk in α . It follows
that if we hedge α7, the risk in the mean reversion level will be totally hedged.
Thus, in this case additionally hedging of θ will be redundant8.

The complete expressions of the Greeks are comprehensive and found using a
mathematical software. The final derivatives are found in Appendix D.2.

2.6.2 Payoff from forward contracts

At last, we consider the payoff from trading forward or futures contracts. The
payoff is dependent on the traders position and the spot price. If the power com-
pany sells a forward contract, it will profit from the hedge if the agreed forward
price is higher than the spot price at the time of delivery9. The payoff from a short
position is given by

payoffSP = F − Pt. (2.53)

The buyer of a forward or futures contract is long in the contract. The profit from
a long position increases with the spot price, and the payoff is given by

payoffLP = Pt − F, (2.54)

where Pt is the current spot price, and F is the price of the forward contract.

7Recall that θ is defined as θ = α− σ2

4κ
.

8We would like to thank Professor Stein-Erik Fleten at NTNU for valuable comments on the inter-
pretation of the derivatives.

9For futures contracts, the difference in the forward price and the spot price is settled daily through
a mark-to-market settlement, which covers profit or loss from day-to-day changes in the daily closing
price. In addition to a final settlement, which starts on the expiry date. Throughout the final settlement
period, the member is credited/debited an amount equal to the difference between the spot market
price and the futures contracts final closing price (NASDAQ, 2018).
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3 Case Study

In this section, we perform a case study of the model presented in Section 2 con-
sidering a Norwegian reservoir hydropower plant. We start by presenting the
system studied, and data related to it. We measure the performance of the valua-
tion model by comparing simulations to realized time series for the power plant
considered. Further, we compute the value of the hydropower plant and compare
it with two benchmarks for the value of the same plant. At last, we demonstrate a
numerical example of the hedging model.

3.1 The power system

The power plant studied is located in the western part of Norway. It is one of
the largest hydropower plants in Norway, with an installed capacity of approxi-
mately 400 MW. The total system consists of several reservoirs and creek intakes.
However, to be able to apply the one-reservoir model, we simplify the system by
accumulating the main reservoir and the intake reservoir, and treat them as one
large reservoir. We assume that the reservoir has the shape of a cylinder with ran-
dom end surfaces. That is, it may have any random surface, but the surface area
a is constant between the regulating limits. The parameters for the power system
are given in Table 3.1, while Figure 3.1 presents an illustration of the system.
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Figure 3.1: Illustration of system

a Lmin
a

Lmax
a

vmin
Nsecs

vmax
Nsecs

η0

Nhours

η1Nsecs
Nhours·106

1 η

m2 m m m3/s m3/s MW MW/m3 -

31 · 106 1030 1040 0 40.605 0 9.2107 0.9028

Table 3.1: System parameters

With the assumption regarding the shape of the reservoir, we calculate the surface
area, a, from the known height and volume. The minimum and maximum stor-
age levels allowed in the reservoir, given as Lmin and Lmax are defined as the net
height from lowest regulation height (LRV), and highest regulation height (HRV),
to the turbine. These limits are usually set by the government2 due to environ-
mental concerns, e.g. in order to avoid flood and to protect fish and other living
organisms in the reservoir. Recall that vmin and vmax represent the minimum and
maximum boundaries for discharge rate, respectively. The minimum discharge
rate is set by the government due to environmental concerns. The maximum dis-
charge rate stems from the maximum generation capacity, and is derived from
(2.7), where η1 = ηρgLmax, is the energy equivalent from (2.8) and η is the total
efficiency of the production facility3. In this case study, η is set to 0.90284, meaning

1Nhours = 8760 is the number of hours in a year, and Nsecs = 3600 · Nhours is the number of
seconds in a year.

2In particular, The Norwegian Water Resources and Energy Directorate (NVE).
3We define the production facility as the turbine in series with the generator. The total efficiency

is the multiplied efficiency of the turbine and the generator. We disregard friction losses in the pipe.
4The total efficiency varies from 0.8936 to 0.9124, we assume constant average efficiency.
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that we have a total energy loss of almost 10 % through the system. Further, the
constant η0 from the production curve (2.7) is a scale parameter to adjust for water
flow, which must be led outside the pipe to ensure minimum flow in the river for
environmental reasons. If the reservoir has a high altitude, a significant river flow
outside of the pipe is equivalent to a substantial loss of potential energy, hence
it will result in high costs for the company. The power plant considered has in
fact one of the reservoirs in Norway at the highest altitude. Therefore, they have
been granted no restriction on minimum water flow outside of the pipe, thus, η0

is zero.

3.1.1 Estimating the inflow function

We estimate an inflow function based on hourly inflow to the reservoir over the
period from February 20th 2008 to February 20th 2018. It can be seen from the
historical data of Figure 3.2 that the inflow vary substantially over the year, but
with a clear seasonal behavior. The large fluctuations can be explained by snow
melting during the spring together with fluctuating precipitation throughout the
year.

Figure 3.2: Historical inflow to the reservoir from Feb. 2008 to Feb. 2018

From the data given, a periodical function seems to be the best fit. We simulate
inflow for 30 years, by repeating the ten year historical data three times. This is
done because we assume that the value of the hydropower plant is close to zero
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after 30 years.

It is worth mentioning that some of the historical measurements are negative. This
may be explained by wind that causes swells in the water which disturb the mea-
surements. In reality, negative inflow only occurs through evaporation, which
might be significant in some countries, but not in Norway5. We set the negative
measurements to zero to avoid a biased inflow function. Further, we fit a sinu-
soidal deterministic function to the data, on the form given by (3.1).

ft = a1sin(b1t+c1)+a2sin(b2t+c2)+a3sin(b3t+c3)+a4sin(b4t+c4)+a5sin(b5t+c5) (3.1)

The choice of having a five-term sinusoidal function is based on a trade-off be-
tween goodness of fit and simplicity. Further details are given in Appendix E.3.
The resulting fitted curve is shown in Figure 3.3, with the explicit function given
as

ft = 131.1sin(0.0697t+ 1.295) + 18.79sin(6.2744t− 0.9245)

+ 9.645sin(12.5488t− 2.903) + 115sin(0.0750t− 1.867) + 5.919sin(18.8232t+ 1.748).

(3.2)

Figure 3.3: Historical inflow data with fitted sinusoidal curve for the period Feb. 2008 to
Feb. 2018

The fitted function does capture the seasonal variations, but does not vary signif-
icantly from year to year. This follows from the repetitive nature of the historical
inflow, as well as the chosen sinusoidal behavior. Note that the spikes in the his-

5Evaporation from reservoirs located in Norway is minimal due to the cold climate.
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torical inflow are not captured by the deterministic function. This means that we
are unable to simulate the highest spikes in the water level and discharge rate.
However, it is clear that a seasonal inflow function fits better to the historical data
than a constant function, which is used by Ernstsen and Boomsma (2018).

3.2 Valuation

In this section, we focus on valuation of the hydroelectric plant. We start with a
simulation of the OU electricity spot price process. Further, we simulate the water
level, which is used as input for the final simulation of the discharge rate. We
discuss the simulation results and compare them to historical data. Finally, we
compute the value of the hydroelectric plant and compare it with benchmarks for
the value of the same plant.

3.2.1 Simulation of the electricity price

For simulation of the price process, we collect hourly day-a-head system spot
prices from Nord Pool for the period January 1st 2013 to February 15th 2018. The
price process considered is a mean reverting OU-process, where the parameters of
the process are summarized in Table 3.2. The starting price for the OU-process, P0,
is set to the average electricity price over the calibration period. The asymptotic
mean of the price process is denoted by α, κ is the speed of mean reversion, i.e.
how strong the system reacts to perturbations from the mean, whereas σ repre-
sents the volatility of the process. The parameters are calibrated by linear regres-
sion of the log-returns of the electricity price, see Appendix E.1 for further details.
The exogenously given discount rate, r, in the valuation problem is defined such
that the first 30 years cover 99 % of the discounted value,∫ 30

0

e−rtdt = 0.99

∫ ∞
0

e−rtdt. (3.3)

Solving (3.3) yields a discount rate of r = 0.1535. Ernstsen and Boomsma (2018)
claim to use the same equation. However, they end up with r = 0.2062, which
seems like a careless mistake. The valuation result is strongly dependent on the
discount rate. Using a too high discount rate, Ernstsen and Boomsma (2018) un-
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derestimates the value of their hydropower plant by approximately 15 %6.

P0 κ σ θ α r

NOK - - - - -

252.99 174.38 6.1761 5.4863 5.5413 0.1535

Table 3.2: Parameters of price process

Figure 3.4: Simulated hourly electricity price and historical electricity price for the period
Jan. 2013 to Feb. 2018

Figure 3.4 shows the OU-process together with the observed hourly electricity
prices for the calibration period. The OU-process captures the long-term fluctu-
ations of the price and is concentrated around the same mean as the historical
prices. Hence, we conclude that the price process is suited for valuation of the
power plant, which is one of the main goals of this thesis.

6The result is found running the model with the parameters from Ernstsen and Boomsma (2018).
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3.2.2 Simulation of the water level

With the inflow function and price process defined, we can now use Equation
(2.33) to simulate the water level of the reservoir. Figure 3.5 shows simulations
of the water level for both variable and constant inflow, together with the his-
torical observed water level. The statistics from the simulations are summarized
in Table 3.3. The range is defined as the difference between the highest and the
lowest observations. The RMSE is the average root mean squared error, which
is a measure for goodness of fit between the simulations and the historical data.
From the statistics, we can see that the simulation of water level using variable
inflow captures considerably larger range in water level than the one using a con-
stant inflow function. Additionally, calculating the RMSE, we see that the simu-
lation with variable inflow performs substantially better than the simulation with
constant inflow. When measuring the error as a percentage of the range of the
historical inflow, we find that the simulations have errors of 19.2 % and 31.9 %
respectively. It comes clear that the inclusion of the seasonal inflow function is
an improvement from the case of Ernstsen and Boomsma (2018), who assumed
constant inflow. Thus, we will use the seasonal inflow function in the remainder
of this thesis.

Range (m) RMSE (m) RMSE as %

of total range

Historical inflow 10.08 - -

Simulation variable inflow 8.503 1.94 19.2

Simulation constant inflow 1.500 3.22 31.9

Table 3.3: Statistics for water level
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Figure 3.5: Comparison of simulations and historical water levels

We note that in the simulation with seasonal inflow, the boundary Lmin is violated
for some years. This can be explained by the features of the model, where penalty
functions were introduced to relax the upper and lower bounds of the operational
constraints. Water level below the lower bound indicates that the model overes-
timates the value of the hydropower plant. A solution to this problem may be to
tune the parameters Θ1 and Θ2 in the penalty function. Also, recall that in reality,
the inflow is stochastic. The fitted inflow function is not able to capture all the
spikes of the historical inflow. Including stochastic inflow in the model may yield
a larger range of the water level in the simulations. However, adding stochas-
tic inflow would increase the complexity of the overall problem, which implies
increased computational time.
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3.2.3 Simulation of the discharge rate

The discharge rate is dependent on water level, inflow and electricity price through
the linear relationship in (2.34). Figure 3.6 shows the simulated discharge rate for
five years.

Figure 3.6: Simulated discharge rates for five years

From Figure 3.6 we can clearly see a seasonal behavior of the discharge rate that
coincides with the water level. We also notice that the simulated discharge rate
always is kept within the boundaries for minimum and maximum discharge. In
fact, the discharge rate never reaches the maximum or the minimum production
limits. This can, as for the water level, be explained by the choice of the seasonal
inflow function, which does not capture all the peaks in the historical inflow. An-
other reason may be that the parameters θ1 and θ2 in the penalty function are
chosen such that a discharge strategy close to the boundaries is suboptimal. De-
creasing the marginal penalty, P̃v , for violating vmin and vmax would yield a dis-
charge strategy closer to the boundaries. However, this will also imply that the
probability of violating the operational constraints increases.

We compare the simulation to the historical discharge rate by taking the average
discharge rate for every week, in a five year period. Figure 3.7 displays the com-
parison. The statistics are summarized in Table 3.4.
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Figure 3.7: Historical weekly average discharge rates from Feb. 2013 to Feb. 2018, com-
pared with simulation of the discharge rate.

Range Mean Median RMSE RMSE as %

(m3/s) (m3/s) (m3/s) (m3/s) of total range

Historical
discharge rate 38.20 18.64 17.78 - -

Simulation
variable inflow 21.93 16.57 16.53 10.57 27.7

Table 3.4: Statistics for weekly average discharge rates

The historical average discharge rate has significantly larger range than the sim-
ulated one. This is not surprising since the inflow in reality is stochastic, and the
producer may consider other factors when making its production decisions. We
find that the RMSE of the discharge rate simulation is 10.57m3/s. As a percentage
of the range of the historical inflow, the error is 27.7%.

The intuitive strategy of a power producer will be to optimize its whole portfolio
of operations in order to maximize profits. Our model optimizes the value of
the power plant alone, not considering that the owners might have other power
plants in its portfolio or that the company may operate in other markets than the
spot market7. The valuation model does not take these factors into account, and it

7Other markets could be intraday or balancing markets in addition to long-term contracts traded
OTC.
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is, therefore, not surprising that the simulated discharge strategy does not match
the historical observations. However, the mean and median from the simulated
discharge are sufficiently close to the observed ones, as seen in Table 3.4. This
indicates that the model may still be suitable for valuation of the particular plant,
which is the purpose of this model.

3.2.4 Summary of simulations

The simulations cannot solely be discussed separately. Figure 3.8 shows the elec-
tricity price, inflow, water level and discharge rate simulations for the same five
year period.

Figure 3.8: All simulations together

First, we see that the seasonality in water level is strongly dependent on the sea-
sonality in inflow. This is obvious as the water level increases with higher inflow.
The discharge rate also seems to follow the same seasonality, i.e. the model pro-
poses a strategy where the hydropower plant should discharge when the water
level is high. We can also recognize some of the peaks from the electricity price in
the discharge rate simulation, though the trend of the discharge rate is determined
by the water level.
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3.2.5 Numerical result to the valuation problem

In this section, we will discuss the result from the valuation model. Based on
the price process and the system parameters, we find that the value of the hy-
dropower plant is 2321 million Norwegian kroner (MNOK)8. To get a grasp on
the validness of the result, we have compared it with two different benchmarks.
The first benchmark, VEP , is based on the company’s reported yearly expected
production and the second, VAR, is based on the company’s annual reports.

Vmodel VEP VAR

MNOK MNOK MNOK

2321 2562 1551

Table 3.5: Comparison of valuation results

The value of the expected production is an estimate of the discounted cash flow
of the plant’s operations. The hydropower company reports a yearly production
from the plant of 1570 Gigawatt-hours (GWh). If we assume that all production
is sold on the spot market to the average electricity spot price from the calibra-
tion (P0 from Table 3.2), we get a yearly revenue, PQ, of 397 MNOK. In (3.4), we
discount the same yearly revenue by the discount rate r from Section 3.2.1 over a
period of 30 years, to get VEP .

VEP =

∫ 30

0

PQe−rtdt (3.4)

VAR =

∫ 30

0

πe−rtdt (3.5)

According to annual reports, the company has a total production of approximately
10 Terawatt-hours (TWh) per year, which of this power plant makes up 15.7%.
We assume the plant contributes to the total Earnings Before Interests and Taxes
(EBIT) with the same share. Further, we assume the same EBIT, π, every year and
then discount it over 30 years to get VAR. This benchmark is naturally lower than
the first one as it includes operation costs. Conclusively, we find that the output
from the model is placed between the two benchmarks. As we do not account for
costs, the most natural is to compare with the first benchmark. The model result
is closest to the benchmark VEP , hence it seems to be a realistic result.

8Note that we disregard taxes and operational costs in the valuation.
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3.3 Hedging

This section is dedicated to a case study of the hedging model. First, we incor-
porate taxes and present an upper limit for the hedge ratio. Further, we present
the case with the related price parameters. Thereafter, we present the resulting
Greeks and related hedging approaches. Finally, we present a numerical example
to evaluate the performance of hedging the risk in one of the parameters.

3.3.1 Incorporating taxes

In order to perform a case analysis in the Norwegian market, we need some infor-
mation regarding taxes. The Norwegian hydropower companies must pay taxes
to the government from their operating revenue. The revenue from physical pro-
duction enforces both corporate tax and a resource rent tax. The latter is a tax
imposed due to the fact that the resources used for the electricity production, i.e.
water resources, is of common value for the country rather than for the industry
alone. Per 2018, the corporate tax in Norway is 23% and the tax on resource rent
is 35.7% (KPMG, 2018). Revenues from financial contracts are only subject to cor-
porate taxes, and we can therefore derive an upper limit for the hedge ratio, x,
from the calculation of the change in after-tax-profit from a unit increase in the
spot price (Sanda et al., 2013).

Increase after-tax profit of production = Decrease after-tax profit financial contracts

1− 0.357− 0.23 = −(x− 0.23x)

⇒ x = −0.536
(3.6)

The derivations above imply an upper hedge ratio (short position) of 53.6%. Ra-
tios above this will be disadvantageous for the hydropower company because an
increase in the spot price will lead to a higher decrease in the after-tax profit from
the financial contract than the increase in the after-tax profit from the physical
production.

3.3.2 Results

To account for new information, the hedging strategy should be dynamically up-
dated to minimize risk. The closest upcoming period of time is most likely to be
more dependent on the last days than on the mean over a long period. Thus, the
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input parameters for the hedging case must be calibrated over a shorter period of
time than if the model is used only for valuation purposes.

We calibrate price parameters based on hourly spot prices for twelve weeks rang-
ing from February 19th to May 13th 2018. The parameters and their standard
deviations are presented in Table 3.6. Note that the parameters cannot be ob-
served directly, they are results of the chosen model and are estimated based on
observed historical prices. In this case, the parameters are updated weekly to see
their evolution over time.

P0 κ σ θ α

Week NOK - - - -

1 351.66 1209.53 8.7288 6.0586 6.0743
2 367.14 1663.46 14.969 6.1126 6.1463
3 341.85 714.862 7.1417 6.0094 6.0272
4 352.72 817.619 5.1859 5.9678 5.9760
5 377.96 1299.98 5.8388 5.9964 6.0030
6 380.59 844.610 4.2372 6.0063 6.0116
7 371.59 1179.79 3.6308 5.9725 5.9753
8 376.07 1293.53 3.2357 5.9557 5.9577
9 327.01 611.110 5.3508 5.9160 5.9277

10 326.57 1166.72 4.2039 5.8596 5.8634
11 262.02 966.983 9.9537 5.7308 5.7564
12 192.17 779.834 27.898 5.3198 5.5693

Standard deviation 55.985 306.72 6.9932 0.20935 0.15294

Table 3.6: Parameters of price process calibrated for twelve weeks

The standard deviation is a measure of parameter volatility. The estimated pa-
rameters and their standard deviations confirm the importance of updating the
parameters and Greeks to retain hedged positions. In particular, the standard de-
viation of κ confirms the findings of Barlow et al. (2004). Their results showed that
there is a large uncertainty related to the estimation of the speed of mean reversion
since it may vary considerably over time.

Figure 3.9 visualizes the evolution of the parameters over the weeks. We observe
that there are severe market changes towards the end of the twelve-week period.
We find the last two weeks interesting to analyze further, hence we focus on these
weeks in a numerical example in Section 3.3.4.
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Figure 3.9: Time series for parameters of the price process

We now relate the parameters in the model to hedging instruments through the
derivatives. The computed value of the hydropower plant and the associated
derivatives for the twelve weeks are given in Table 3.7. Note that the derivatives
have different units. The derivatives with respect to κ, σ, θ and α are measured in
NOK, whereas the derivative with respect to the starting price, P0, is measured in
MWh.
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Week V ∂V
∂P0

∂V
∂κ

∂V
∂σ

∂V
∂θ

∂V
∂α

- NOK MWh NOK NOK NOK NOK

1 3.901 · 109 2293 −8.213 · 104 2.260 · 107 4.279 · 109 4.279 · 109

2 4.259 · 109 1603 −1.172 · 105 2.600 · 107 4.673 · 109 4.672 · 109

3 3.727 · 109 3816 −1.451 · 105 2.876 · 107 4.082 · 109 4.082 · 109

4 3.511 · 109 3416 −6.208 · 104 1.916 · 107 3.875 · 109 3.875 · 109

5 3.602 · 109 2146 −3.217 · 104 1.448 · 107 3.988 · 109 3.988 · 109

6 3.633 · 109 3353 −4.243 · 104 1.637 · 107 4.042 · 109 4.042 · 109

7 3.509 · 109 2491 −1.676 · 104 1.044 · 107 3.969 · 109 3.969 · 109

8 3.458 · 109 2287 −1.116 · 104 8.436 · 106 3.945 · 109 3.945 · 109

9 3.354 · 109 4502 −1.073 · 105 2.678 · 107 3.684 · 109 3.684 · 109

10 3.095 · 109 2489 −1.922 · 104 1.066 · 107 3.519 · 109 3.519 · 109

11 2.861 · 109 2958 −1.328 · 105 4.158 · 107 3.298 · 109 3.257 · 109

12 2.724 · 109 3467 −7.430 · 105 4.158 · 107 3.228 · 109 3.228 · 109

Table 3.7: Value of the plant and its derivatives for twelve weeks

We see that the computed value of the hydropower plant is higher than the valua-
tion result in Section 3.2.5 for all weeks. The reason for this is that the parameters
presented above are estimated based on weeks when the average electricity price
or the volatility is higher in the weeks considered than over a whole year.

The value of the hydropower plant is sensitive to changes in the parameters. For
example, a unit shift in P0 is equivalent to an increased expected value of the hy-
dropower plant corresponding to increased production of 2293 MWh for the first
week. Then, hedging the risk related to the starting price corresponds to selling
(shorting) 2293 standardized contracts. As emphasized in Section 2.6, the effect of
a change in the starting price is closely related to the speed of mean reversion. A
change in the starting price only has a short-term effect on the price process. Most
risk is, therefore, in the nearest term. To keep a neutral position with respect to
this risk, the risk manager should short a portfolio of near-term products.

Turning to the sensitivity in the speed of mean reversion, κ, we see from Table
3.7 that the value of the hydropower plant decreases when κ increases. We recall
that a high speed of mean reversion implies that the price process moves faster
towards the mean after spikes. Thus, with a lower speed of mean reversion, the
valuation model exploits high prices over a longer time. The price process allows
for larger deviations from the mean in the upward direction than in the downward
direction9. Due to this skewness, an increasing κ would be most to the expense

9Since we have set M = 0, negative prices will not occur.
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of the positive shocks. Thus, it is reasonable that the value of the power plant is
decreasing with increasing κ.

Further, we see that a unit change in the volatility, σ, will increase the value of
the hydroelectric plant substantially. We recall that the valuation model takes into
account the flexibility within the reservoir plant. The reservoir hydropower pro-
ducers can benefit from producing in periods with high prices, and withhold the
production when the price is low, hence, they are able to exploit higher volatil-
ity. However, higher volatility means higher risk for the producer. In some cases,
there is a need for production even when the price is low. One example could be
that in a period of considerably high inflow, the alternative to discharging water
is a flood over the dam. This implies that even if the expected value of the power
plant increases with increasing volatility, a higher volatility also implies higher
risk, which matches the traditional view on risk and return in finance.

From Table 3.7, we see that the value of the power plant is highly sensitive to
changes in the mean reversion parameter, θ, for all weeks. This is reasonable
since the mean reversion level reflects the long-term price. Hedging the total risk
related to θ will mean to sell all non-overlapping contracts, i.e. the whole forward
curve. We also note that the derivatives with respect to θ and α are equal in some
of the weeks. The result confirms the interpretations from Section 2.6.1, where
we argued that in most cases it will be sufficient to either hedge the risk in θ or
α.

3.3.3 Relating Greeks and standard deviations

We conclude the interpretation of the Greeks by relating them to the standard de-
viations of the parameters. Table 3.8 is a summary of the Greeks with the standard
deviation of the corresponding parameters for the first week in the twelve week
period. The hedging amount in the last row is the product of the Greek and the
standard deviation of the respective parameter10.

10The product is equivalent to the derivative of V with respect to one standard deviation of the
corresponding parameter.
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P0 κ σ θ α

Derivative of V w.r.t. parameter 2293 −8.213 · 104 2.260 · 107 4.279 · 109 4.279 · 109

St. dev. of parameter 55.985 306.72 6.9932 0.15294 0.20935

Hedging amount one st. dev. 1.284 · 105 −2.519 · 107 1.581 · 108 6.544 · 108 8.958 · 108

Table 3.8: Derivatives for week 1, standard deviation of parameters and hedging amount
of one standard deviation change in the parameter11

The risk manager should be aware of the differences between the standard devi-
ations when deciding a hedging strategy, in order to hedge the right exposure of
the parameter volatility. Because of the property of our valuation model, where
the cash flows are discounted to infinity, the Greeks are the required amount of
hedging in order to offset the risk from today until infinity, given a unit change in
the respective parameters. The hedging amount defined above, on the other hand,
is the total amount which needs to be hedged from now until infinity to offset the
risk of a standard deviation change. The parameters vary substantially in absolute
values. For example, a unit change in α will have considerably larger effect on the
value than a unit change in κ. Therefore, the product could be a better measure
of exposure, since it takes the standard deviation into account. For instance, to
hedge the risk of one standard deviation change in the mean reversion parameter,
θ, is equivalent to hedging 16.8% of the estimated value of the plant in the same
week. In comparison, hedging a unit change of the same parameter would mean
hedging 109.7% of the value of the plant.

3.3.4 Hedging performance

This section provides a specific example of the hedging performance using the
model. From the price parameters in Table 3.6, we see that week 12 has a consid-
erably higher volatility parameter than the other weeks. Southern parts of Nor-
way experienced a flood that week, which might explain the downward shock in
the electricity price. We therefore find it interesting to investigate how a hedging
strategy following the lines described in Section 3.3.2 would perform compared
to a non-hedged cash flow during the mentioned week12.

To the best of our knowledge, we are the first to approach the risk management
problem in hydropower production from the analytical angle. Therefore, we present

11All units for the derivatives are in NOK, expect of the derivative of P0 which is denoted in MWh.
The same holds for the hedging amount.

12A non-hedged position is defined as selling all the power to spot price.
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a numerical example where we evaluate the strategy of hedging the risk in the
starting price, P0. We leave investigation of the other Greeks for further research.

Figure 3.10 illustrates the development in the price of a monthly forward contract
with delivery in May13. We clearly see a downward movement through the first
weeks of May, with a drop at the 11th14.

Figure 3.10: Price of a monthly forward contract with delivery in May15

Consider the decision of a risk manager on Monday 7th of May. Based on our
model, she calibrates parameters of the price process using hourly spot prices
from week 11. Further, she runs the valuation and obtain the subsequent deriva-
tives with respect to the parameters. Figure 3.11 shows simulations for the elec-
tricity price, water level and discharge rate for the first upcoming days based on
the same parameters. In addition, we note that the predetermined inflow function
is at its top level in the beginning of the week, which is reasonable when consid-
ering the first weeks of May in the Norwegian climate.

13Delivery in May means exercise from May 1st to May 31st.
14Recall that week 11 and 12 in our case study correspond to the weeks starting at Monday 30th of

April and Monday 7th of May respectively.
15We note that in addition to Saturdays and Sundays, both 10th and 17th (and 21st) of May are

non-trading days in Norway.
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Figure 3.11: Simulations for week 12

The risk manager would like to hedge the risk in P0, the starting price of the
price process. From Table 3.7, we have ∂V

∂P0
= 2958 MWh for week 11. We know

that because of the speed of mean reversion, prices will be pushed back to the
mean reversion level relatively fast, thus the risk in P0 should be hedged by selling
contracts with short time to maturity. We suggest placing 70% in contracts with
maturity in one day, 20% with maturity in two days and 10% with maturity in
three days16.

In Section 3.3.1 we found that the upper hedge ratio should be 53.6% due to taxes.
The risk manager must take previous hedged positions into account such that the
upper hedge ratio is not violated. In this example, we assume that the hedge ratio
is 0% before 7th of May. The model output suggests a total production of 4774.5
MWh the next day, and with an upper hedge ratio of 53.6%, the maximum hedged
production the next day is 2559 MWh.

At the 7th of May, the daily fix price of forward contracts with delivery the next
day is 282.46 NOK/MWh, the daily fix price of contracts with delivery 9th of May
is 247.73 NOK/MWh17, while contracts with delivery 10th of May trades at 206.85
NOK/MWh. Table 3.9 summarizes the prices and the cash flow results of hedging

16This is a suggested strategy, the choice of contracts is up to the risk manager.
17On Monday 7th of May there where no traded contracts with delivery the 9th of May. The daily

fix price is set as the average of bid and ask prices.
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the risk in P0 compared to the cash flow without hedging.

Day Forward price Cash flow Cash flow Profit from
without hedging with hedging hedging

NOK NOK NOK NOK

8th of May 282.46 1 236 563 1 224 285 -12 279
9th of May 247.73 728 023 1 392 155 664 132
10th of May 206.85 713 335 1 053 168 339 833

Total - 2 677 922 3 669 608 991 686

Table 3.9: Comparison of cash flow with and without hedging for the period May 8th to
May 10th 2018

The numerical results show that the power producers would be able to earn al-
most a million NOK more the next three days if hedging the risk in P0, compared
to a non-hedged cash flow.

When the risk manager takes a short position during a period when the spot price
drops more than expected, as in this case, it is natural that the company gains
profit. Correspondingly, a short position would lead to losses in a period with
a positive shock. We note that for the closest day (8th of May), where 70% of
the sensitivity in P0 is off-set, the hedged portfolio performs worse than the non-
hedged strategy. This reminds us of the original concept of hedging, as hedging is
not meant for gaining profit per se, but to reduce risk. Hence, as the risk manager
decides its position before the spot price is observed, there is a possibility of losing
potential gains from upward price movements.
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4 Discussion

The increasing share of renewable and intermittent capacity in the Nordic electric-
ity market implies that Norwegian reservoir hydropower will be of great impor-
tance for balancing purposes the upcoming years. If the prediction about more
uncertain electricity prices is correct, risk management will play a crucial role for
hydropower companies in order to avoid downside risk.

This thesis focuses on valuation and hedging of price risk for reservoir hydropower
plants. The model presented is analytically tractable. The analytical property
makes the model suitable for deriving Greeks for risk management within short
computational time. Hence, the model is convenient for hedging in volatile mar-
kets when companies can benefit from reacting quickly to market changes. An-
other advantage of the model is the transparency due to the analytical property.
In contrast to other complex black box-type of models often used by hydropower
companies, all steps of the calculations are visible for the risk managers. Also,
with fast models, we can easy perform back-testing and scenario analysis.

We are aware that analytical tractability comes with restrictive assumptions. A
more advanced optimization model would be able to take e.g. stochastic inflow
into account, but not without compromising the running time. In the following,
we will present a critical review of the assumptions, focusing on three main areas.
First, we discuss relevant aspects regarding the spot price and hedging, before
we move on to discussing the modeling assumptions. At last, we comment on
expectations for the future power market.
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4.1 Hedging uncertainties in the spot price

It is a challenging task to model the electricity price dynamics. The electricity
market is incomplete, and illiquid, even though an increased efficiency of the
market is observed over the last years (Smith-Meyer and Gjolberg, 2016). The
estimates of the price process are uncertain, and the hedge ratios we propose are
meant for guidance. The accurate hedging strategy is up to the risk manager to
decide.

The parameters of the price process are calibrated for a specific period, thus, the
hedging results are parameter dependent and the parameters must be updated to
hedge dynamically. To obtain the best results, we urge frequent hedging based
on the model with updated parameters. In order to calibrate the most suitable
parameters for the hedging period, we recommend using data from a time pe-
riod as short as possible, while still giving stable parameters. On the other hand,
if only the valuation part of the model is of interest, the parameters should be
estimated using data from a longer period such that the seasonal properties are
captured.

The risk manager must consider transaction costs when trading forward contracts.
However, we do not include these in our model. When neglecting transaction
costs, the optimal hedging strategy will be to hedge dynamically. The transaction
costs will in practice imply that the hedging frequency decreases.

Finally, it is important to note that forward prices are set with the system price as
reference, while the power company sells power on the spot market to the area
price. Thus, the price risk is not completely hedged by trading forward contracts,
as there still is a risk regarding the difference between area price and spot price.
This risk is not considered in the model we provide, but it is possible to hedge it
by trading Electricity Price Area Differentials (EPAD) available at NASDAQ OMX
Commodities.

4.2 Modeling assumptions

This thesis focuses on risk management concerning price risk. Risk management
is a challenging task because, in reality, there are more risk factors than the elec-
tricity price. Inflow and future weather conditions are stochastic properties, and
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besides price risk, the volume risk is an important risk factor for a hydropower
producer. Production planners take stochastic inflow into account, resulting in
stochastic optimization problems for power scheduling. The production planning
is a way of limiting exposure to inflow risk. However, it is difficult to hedge in-
flow risk in the same way as price risk, since there are no tradable products for
hedging it.

As seen in Section 3.2.2, introducing variable inflow yields more realistic simu-
lations compared to simulations with constant inflow, which was the case in the
paper of Ernstsen and Boomsma (2018). We fitted a five-term sinusoidal function
to the historical inflow data of the specific reservoir. The choice of number of sine-
terms will depend on the model runners desired accuracy. It is also possible to
keep the stochastic inflow process from the original valuation problem in Section
2.1, but this will increase the complexity and be at the expense of the tractability
of the model. Also, while forecasting inflow is of great importance to scheduling
models, a fitted function which captures seasonal effects will be sufficient for the
valuation purpose.

Contributors have shown that in markets dominated by hydropower, such as in
Norway, there is a negative relationship between electricity price and inflow (Bye
and Bruvoll, 2006). We have neglected correlation between price and inflow in
our study. This is in accordance to results of Fleten and Wallace (2009), who found
that including correlation did not seem to have a significant effect on the valuation
results. However, they could not rule out that it may have an effect on hedging.
Further research is needed to investigate this relationship.

To solve the optimization problem in Section 2.1 analytically, we relaxed the op-
erational constraints by introducing penalty functions. In theory, this allows the
plant to operate outside of the given restrictions, although with a cost. In our case
study, the lower boundary for water level is violated for some periods. A rea-
son to this could be low inflow, and that the objective function was not penalized
enough. A too low water level must be avoided because of the environmental im-
pacts it might cause. One solution to the problem is to tune the parameters in the
penalty function. On the other hand, the discharge rate is within its boundaries
the whole simulation period.

We apply a linear production function, and thereby assume constant efficiency.
This is a simplification, since in reality the efficiency of the turbine changes with
the discharge rate. However, for the case we consider, the range in efficiency only

48



deviates one percent from the average in each direction, and we therefore find the
production function accurate enough. Also, Ernstsen and Boomsma (2018) em-
phasize that an overestimation of the value due to the penalty functions discussed
above may be counterbalanced by the restriction to a linear discharge rate.

We assume a cylindrical reservoir with random end surfaces. This is a simplifica-
tion in comparison to real shapes of reservoirs, but it is necessary in order to keep
the model analytically tractable. Further, for systems with more than one reser-
voir, the reservoirs must be accumulated in order to apply the valuation model.
This simplification may lead to a loss in accuracy of results. We, therefore, point
out that the model is best suited for valuation of relatively simple systems.

At last, like Thompson et al. (2004) and Ernstsen and Boomsma (2018), we assume
no start-up and shut-down costs. In reality, they exist, but are small relative to the
other variables affecting the profit. Start-up and shut-down costs for hydropower
plants are scarcely studied in literature. Some of the contributors are Bakken and
Bjørkvold (2002), who state that the costs increase with older equipment. Tseng
and Barz (2002) find that some studies overestimate the value of power plants
when neglecting start-up and shut-down costs, but that the estimation error is
lowest for hydropower plants.

4.3 The future power market

The future power market is uncertain. We experience development and planning
of new power plant facilities based on intermittent resources such as wind power.
Also, new interconnecting transmission cables are under construction, which may
influence the Nordic market structure.

Förssund and Hjalmarsson (2010) argue that a rapid increase of wind power gen-
eration in the market will lead to more volatile prices, but also to reduction in the
spot market electricity price. The reason is that the increased wind power capacity
may easily lead to more production than matched by the increase in demand over
time. Therefore, if the target is to keep the average electricity price at the current
level, they claim that export possibilities out of Nord Pool should be expanded.
Additionally, new technologies might improve storage possibilities of intermittent
power, hence keep prices more stable. However, it is uncertain when these will be
available for conventional use.
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Intermittent power generation, transmission cables and storage possibilities are
some of the factors which will influence the Nordic market structure in the fu-
ture. Risk management has been a major concern for power producers since the
deregulation of the electricity market. When the market is under transition and
subject to various future uncertainties, the power producers have to face new chal-
lenges. Therefore, risk management will not be less important for the upcoming
years.
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5 Conclusion

In this thesis we present an analytically tractable model for valuation and risk
management in hydropower production. We improve an existing valuation model
by correcting pitfalls and by including seasonal inflow. Further, we extend the
model by incorporating a framework for risk management. This is done by relat-
ing derivatives of the valuation result to hedging with forward contracts.

The model is computationally efficient due to its analytical property, which makes
the hydropower producer able to react quickly to market changes in the transient
European market. Also, we provide detailed steps of the derivations which makes
the model tractable and easy to replicate.

Comparing to benchmarks for the value of the hydropower plant, we find that our
model yields a realistic valuation result. Simulations show that the water level and
the discharge rate operate within its given boundaries most of the time, where the
water level simulation follows the historical data to a great extent. Considering
risk management, we find that hedging the risk in the starting price of the price
process before a downward shock in the electricity price prevents profit losses for
the company.

Our thesis extends the literature by providing theoretical insight to risk manage-
ment from an analytical standpoint. Further, the tractable and presentable model
contributes to the industry by increasing competence for risk managers. To the
best of our knowledge, we are the first to provide an analytically tractable frame-
work for risk management of hydropower production.

Since this is a first attempt to apply an analytical valuation model for risk man-
agement, much has been left for further research. For further work, we suggest a
more comprehensive analysis of the hedging performance of all the derivatives.
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The model may be extended in several directions. For instance, one may investi-
gate cross effects of parameters by deriving mixed partial derivatives. Stochastic
inflow and correlation between price and inflow may be be included, and finally,
one could include a spot-forward relationship to investigate if the model is appro-
priate for delta-hedging.
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A Nomenclature

r Exogenous discount rate
η0, η1 Coefficients in production function
η Total efficiency of system
κ Speed of mean reversion parameter in price process
θ Mean reversion level parameter of price process
α Asymptotic mean parameter of price process
σ Volatility factor in price process
M Lower boundary for electricity price
S Standard deviation of price process
Xs Starting value for logarithm of electricity price
Ps Starting value for electricity price (NOK/MWh)
vmin, vmax Minimum and maximum discharge rate from the reservoir (m3/s)
Lmin, Lmax Minimum and maximum water levels (m3)
Θ1,Θ2 Coefficients in penalty function for water level
θ1, θ2 Coefficients in penalty function for discharge rate
P̃v Marginal penalty for exceeding discharge rate limits (NOK/MWh)
P̃L Marginal penalty for exceeding water level limits (NOK/MWh)
P Average electricity price (NOK/MWh)
L, L0 Average water level (m3)
d1, d2, d3 Constants in discharge function
kd1 , ad1 Constants in d1

kd2 , ad2 Constants in d2

a Surface area of reservoir (m2)
V , Vmodel Valuation result from model (NOK)
VEP Valuation benchmark based on expected production (NOK)
VAR Valuation benchmark based on annual reports (NOK)
F Forward price (NOK/MWh)
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B Lemmas

These lemmas are replications of lemmas presented in Ernstsen (2016).

B.1 Moment generating functions

Let X ∼ N(µ, σ2), then E(euX) = euµ+ 1
2u

2σ2

.

Proof. As we have E(euX) = E(eu(µ+σZ)), it is enough to show that E(euZ) = e
u2

2

for Z ∼ N(0, 1). Now as ux− x2

2 = − (x−u)2

2 + u2

2 , we have∫ ∞
−∞
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1√
2π
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−x2

2 dx =
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2π
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2 dx = e
u2

2

∫ ∞
−∞

1√
2π
e

−(x−u)2

2 dx = e
u2

2 .

(B.1)
as we recognize the density of the normal distribution with mean u and variance
1.

B.2 Storage level

Let (Zt)t≥0 be a Brownian motion, (Yn)n≥0 be independent and identically dis-
tributed (i.i.d.) random variables and (Nt)t≥0 a Poisson process with intensity λ
and jump times (Tn)n≥1. Define the compound Poisson process Jt = ΣNtn=1Yn.
Assume Ut has the dynamics

dUt = κ(α̂t − Ut)dt+ σdZt + dJt, (B.2)
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then

Ut = Use
−κ(t−s) +κ

∫ t

s

e−κ(t−v)α̂vdv+σ

∫ t

s

e−κ(t−v)dZUv .+ ΣNtn=Ns+1e
−κ(t−Tn)Yn.

(B.3)

Proof. Define Lt = eκtUt, then

dLt = eκtdUt + Utd(eκt)

= κ(α̂t − Ut)eκtdt+ σeκtdZUt + eκtdJt.
(B.4)

Thus, for t ≥ s

Lt = Ls + κ

∫ t

s

α̂ve
κvdv + σ

∫ t

s

eκvdZv + ΣNtn=Ns+1e
κTnYn. (B.5)

Now as Ut = e−κtLt it follows that

Ut = Use
−κ(t−s) + κ

∫ t

s

α̂ve
−κ(t−v)dv

+ σ

∫ t

s

e−κ(t−v)dZv + ΣNtn=Ns+1e
−κ(t−Tn)Yn.

(B.6)
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C Proofs of corollaries

C.1 Proofs of Corollary 1 and 2: Defining constants in

linear discharge function

In this section, we provide detailed steps of deriving the constants d1, d2 and d3

from Section 2.4. This includes finding the partial derivatives of the value func-
tion, V , w.r.t. price and water level, which all are based on (2.31). For transparency
of the model and to facilitate further replication, we introduce constants to sim-
plify the expressions.

Proof.
Finding d3 in linearized discharge rate
We start out by evaluating d3 using equation (2.30). First, (2.33) is substituted into
(2.31). Further, we apply the chain rule to find the partial derivative of (2.31) w.r.t.
water level

∂

∂L
V (P,L)|P=P,L=L = (2d1d3θ2 + d3θ1 + Θ1)

∫ ∞
0

e−(r+d3)tdt

+ (2d2θ2 + η1)d3

∫ ∞
0

e−(r+d3)tE(Pt|P )dt

+ 2(d2
3θ2 + Θ2)

∫ ∞
0

Le−(r+2d3)tdt

+ 2(d2
3θ2 + Θ2)

∫ ∞
0

e−(r+d3)t

∫ t

0

e−d3(t−s)(fs − d1)dsdt

− 2d2(d2
3θ2 + Θ2)

∫ ∞
0

e−(r+d3)t

∫ t

0

e−d3(t−s)E(Ps|P )dsdt.

(C.1)
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From this, the second order partial derivative w.r.t. water level is

∂2

∂L2
V (P,L)|P=P,L=L = 2(d2

3θ2 + Θ2)

∫ ∞
0

e−(2d3+r)tdt =
2(d2

3θ2 + Θ2)

r + 2d3
. (C.2)

(C.2) is inserted into (2.30) to get

d3 = (
Θ2

θ2
+ d2

3)

∫ ∞
0

e−(2d3+r)tdt. (C.3)

Integrating (C.3) yields the following quadratic equation

d2
3 + rd3 −

Θ2

θ2
= 0, (C.4)

with solution

d3 =
1

2
(−r +

√
r2 + 4

Θ2

θ2
). (C.5)

Finding d2 in linearized discharge rate
We move on to computing d2 using equation (2.29). The mixed partial derivative
of (2.31) w.r.t. water level and electricity price is

∂2V (P,L)

∂L∂P
|P=P,L=L = d3(2d2θ2 + η1)

∫ ∞
0

e−(r+d3)t ∂

∂P
E(Pt|P )|P=Pdt

− 2d2(d2
3θ2 + Θ2)

∫ ∞
0

e−(r+d3)t

∫ t

0

e−d3(t−s) ∂

∂P
E(Ps|P )P=Pdsdt,

(C.6)

where P = P0. Deriving the mixed parital derivative, we find a mistake in the
paper of Ernstsen and Boomsma (2018), where multiplication by d3 is missing in
the first term.

To integrate (C.6), we need the partial derivative of the expectation of the price,
which with the OU price process is

∂

∂P
E(Pt|Ps) = (Ps +M)(e−κP (t−s)−1)e

θ(1−e−κP (t−s))+ σ2

4κP
(1−e−2κP (t−s))−κp(t−s)

.

(C.7)

To simplify expressions, we define the constants q1 and q2 accounting for the first
and the second integral terms of (C.6) respectively

q1 =

∫ ∞
0

e−(r+d3)t(Ps +M)(e−κP t−1)e
θ(1−e−κP t)+ σ2

4κP
(1−e−2κP t)−κptdt (C.8)
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and

q2 =

∫ ∞
0

e−(r+d3)t

∫ t

0

e−d3(t−s)(Ps +M)e
−κP s−1e

θ(1−e−κP s)+ σ2

4κP
(1−e−2κP s)−κP sdsdt.

(C.9)

Using (C.8) and (C.9) we can write (C.6) as

∂2V (P,L)

∂L∂P
|P=P,L=L = d3(2d2θ2 + η1)q1 − 2d2(d2

3θ2 + Θ2)q2. (C.10)

To simplify further, we want to write (C.10) on the form

∂2V (P,L)

∂L∂P
|P=P,L=L = ad2

d2 + kd2
. (C.11)

Therefore, we define the constants

ad2 = 2θ2d3q1 − 2(d2
3θ2 + Θ2)q2 (C.12)

and
kd2

= d3η1q1. (C.13)

Finally, (C.11) is inserted into (2.29) and rearranged to obtain

d2 =
−η1 + kd2

2θ2 − ad2

. (C.14)

Finding d1 in linearized discharge rate
At last, we compute d1. As for d3, we start out from the partial derivative of V
w.r.t. storage level (C.1).

We define the constants q3 and q4 as

q3 =

∫ ∞
0

e−(r+d3)tE(Pt|P )dt

=

∫ ∞
0

e−(r+d3)t((Ps +M)e
−κP t

e
θ(1−e−κP t)+ σ2

4κP
(1−e−2κP t) −M)dt

(C.15)

63



and

q4 =

∫ ∞
0

e−(r+d3)t

∫ t

0

e−d3(t−s)E(Ps|P )dsdt

=

∫ ∞
0

e−(r+2d3)t

∫ t

0

ed3s((Ps +M)e
−κP s

e
θ(1−e−κP s)+ σ2

4κP
(1−e−2κP s) −M)dsdt,

(C.16)
such that (C.1) can be written as

∂

∂L
V (P,L)|P=P,L=L = (2d1d3θ2 + d3θ1 + Θ1)

∫ ∞
0

e−(r+d3)tdt

+ (2d2θ2 + η1)d3q3 + 2(d2
3θ2 + Θ2)

∫ ∞
0

Le−(r+2d3)tdt

+ 2(d2
3θ2 + Θ2)

∫ ∞
0

e−(r+d3)t

∫ t

0

e−d3(t−s)(fs − d1)dsdt

− 2d2(d2
3θ2 + Θ2)q4.

(C.17)

Similar as for the mixed partial derivative, we want to write equation (C.17) on
the form

∂

∂L
V (P,L)|P=P,L=L = ad1d1 + kd1 . (C.18)

After solving the integrals of (C.17), the constants in (C.18) are defined as

kd1
=
d3θ1 + Θ1

r + d3
+ (2d2θ2 + η1)d3q3 +

2(d2
3θ2 + Θ2)L

r + 2d3

+ 2(d2
3θ2 + Θ2)

Iavg
d3

(
1

r + d3
− 1

r + 2d3
)− d22(d2

3θ2 + Θ2)q4

(C.19)

and
ad1 =

2d3θ2

r + d3
− 2(d2

3θ2 + Θ2)

d3

( 1

r + d3
− 1

r + 2d3

)
. (C.20)

Finally, (C.18) is inserted into equation (2.28), and d1 is given as

d1 =
−θ1 + kd1

− P ∂2V
∂L∂P − L

∂2V
∂2L

2θ2 − ad1

, (C.21)

where we know ∂2V
∂L∂P from (C.11) and ∂2V

∂L2 from equation (C.2).

We compute q1, q2, q3 and q4 by numerical integration.
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C.2 Proof of Corollary 3: Deriving expectation, sec-

ond moment and auto covariance of price process

C.2.1 Expectation of the price process

Proof. The stochastic diffusion term of the price process is normally distributed

σ

∫ t

s

e−κ(t−v)dZPv ∼ N(0,
σ2

2κ
(1− e−2κ(t−s))). (C.22)

By applying Lemma 1 we can write

E(eσ
∫ t
s
e−κ(t−v)dZPv ) = e

σ2

4κ (1−e−2κ(t−s)), (C.23)

and obtain the following closed form expression for the expectation of the price
process

E(Pt|Ps) = (Ps +M)e
−κ(t−s)

eθ(1−e
κ(t−s))E(eσ

∫ t
s
e−κ(t−v)dZPv

)−M

= (Ps +M)e
−κ(t−s)

eθ(1−e
−κ(t−s))e

σ2

4κ (1−e−2κ(t−s)) −M

= (Ps +M)e
−κ(t−s)

eθ(1−e
−κ(t−s))+σ2

4κ (1−e−2κ(t−s)) −M.

(C.24)

C.2.2 Second moment of the price process

Proof. We start out from

P 2
t = (Ps +M)2e−κ(t−s)

e2θ(1−e−κ(t−s))e2σ
∫ t
s
e−κ(t−v)dZPv

− 2M(Ps +M)e
−κ(t−s)

eθ(1−e
−κ(t−s))eσ

∫ t
s
e−κ(t−v)dZPv

+M2.
(C.25)

Since we have that 2σ
∫ t
s
e−κ(t−v)dZPv ∼ N(0, 2σ2

κ (1 − e−2κ(t−s))), we can apply
Lemma 1 and write

E(e2σ
∫ t
s
e−κ(t−v)dZPv ) = e

σ2

κ (1−e−2κ(t−s)),. (C.26)
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Thus,

E(P 2
t |Ps) = (Ps +M)2e−κ(t−s)

e2θ(1−e−κ(t−s))E(e2σ
∫ t
s
e−κ(t−v)dZPv

)

− 2M(Ps +M)e
−κ(t−s)

eθ(1−e
−κ(t−s))E(eσ

∫ t
s
e−κ(t−v)dZPv

) +M2

= (Ps +M)2e−κ(t−s)
e2θ(1−e−κ(t−s))+σ2

κ (1−e−2κ(t−s))

− 2M(Ps +M)e
−κ(t−s)

eθ(1−e
−κ(t−s))+σ2

4κ (1−e−2κ(t−s)) +M2.

(C.27)

These steps of the derivations are not included in Ernstsen and Boomsma (2018).
Also note that the last two terms disappear when M = 0.

C.2.3 Autocovariance of the price process

We proceed to compute the autocovariance of the price process.

Proof. With the definitions of Pt and Ps, we can write

E(PsPt|P0) = E
(
(eXt −M)(eXs −M)

)
= E

(
eXt+Xs −MeXt −MeXs +M2

)
= E(eXt+Xs)−ME(eXt)−ME(eXs) +M2

(C.28)
Since Xt and Xs are normal variables, the sum of the two must be univariate
normal, i.e. Xt+Xs ∼ N(µt+µs, σ

2
t +σ2

s +2ρt,sσtσs), where ρs,t is the correlation
coefficient of the processes Xt and Xs. From (2.42) and the normal property of X ,
we already have the mean of the processes

E(Xt|X0) = µt = X0e
−κt + θ(1− e−κt) (C.29)

and
E(Xs|X0) = µs = X0e

−κs + θ(1− e−κs). (C.30)

Thus, the sum is

µt + µs = X0(e−κt + e−κs) + θ(2− e−κt − e−κs)). (C.31)
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Further, σtσsρt,s can be computed from the covariance, because

2ρs,tσtσs = 2Cov(Xt, Xs). (C.32)

Knowing that Xt and Xs are OU-processes, the covariance is given as

Cov(Xt, Xs) =
σ2e−κ(t+s)

2κ
(e2κmin(s,t) − 1), (C.33)

where the proof of the covariance is stated below. In the following, we will assume
s < t. Now, the variance of the normal Xt +Xs can be computed as

σ2
bi = σ2

t + σ2
s + 2ρs,tσtσs

= σ2
t + σ2

s + 2Cov(Xt, Xs)

=
σ2

2κ
(1− e−2κt) +

σ2

2κ
(1− e−2κs) +

σ2

κ
e−κ(t+s)(e2κs − 1)

=
σ2

2κ

(
2− e−2κt − e−2κs + 2e−κ(t+s)(e2κs − 1)

)
.

(C.34)

Further, we can compute the expectation of the log normal eXt+Xs by applying
Lemma 1.

E(PsPt|P0) = E(eXt+Xs)−ME(eXt)−ME(eXs) +M2

= eµt+µs+
1
2σ

2
bi −Meµt −Meµs +M2

= eX0e
−κt+X0e

−κs+θ(1−e−κt)+θ(1−e−κs)+σ2

4κ

(
2−e−2κt−e−2κs+2e−κ(t+s)(e2κs−1)

)
−MeX0e

−κt+θ(1−e−κt) −MeX0e
−κs+θ(1−e−κs) +M2

= P e
−κt

0 P e
−κs

0 eθ(2−e
−κt−e−κs)+σ2

4κ

(
2−e−2κt−e−2κs+2e−κ(t+s)(e2κs−1)

)
−MP0e

−κteθ(1−e
−κt)+σ2

4κ (1−e−2κt)

−MP0e
−κseθ(1−e

−κs)+σ2

4κ (1−e−2κs) +M2.

= P e
−(κt+κs)

0 e(θ+σ2

4κ )(2−e−κt−e−κs)+σ2

4κ

(
2e−κ(t+s)(e2κs−1)

)
−MP0e

−κteθ(1−e
−κt)+σ2

4κ (1−e−2κt)

−MP0e
−κse−κseθ(1−e

−κs)+σ2

4κ (1−e−2κs) +M2.

(C.35)
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With M=0, we get

E(PsPt|P0) = E(eXt+Xs) = eµt+µs+
1
2σ

2
bi

= eX0e
−κt+X0e

−κs+θ(1−e−κt)+θ(1−e−κs)+σ2

4κ

(
2−e−2κt−e−2κs+2e−κ(t+s)(e2κs−1)

)
= P e

−κt

0 P e
−κs

0 eθ(2−e
−κt−e−κs)+σ2

4κ

(
2−e−2κt−e−2κs+2e−κ(t+s)(e2κs−1)

)
= P e

−(κt+κs)

0 e(θ+σ2

4κ )(2−e−κt−e−κs)+σ2

4κ

(
2e−κ(t+s)(e2κs−1)

)
.

(C.36)

C.2.4 Proof of covariance

Proof. For the covariance, we have

Cov(Xt, Xs) = E(Xt − E(Xt))E(Xs − E(Xs))

= E
[ ∫ t

0

σeκ(u−t)dWu

∫ s

0

σeκ(u−s)dWu

]
.

(C.37)

If t > s

Cov(Xt, Xs) = σ2e−κp(t+s)E
[ ∫ s

0

eκudWu(

∫ s

0

eκvdWv +

∫ t

s

eκudWu

)]
= σ2e−κ(s+t)

(
E
( ∫ s

0

eκudWu

)2
+ E(

∫ s

0

eκudWu

∫ t

s

eκudWu)

)
.

(C.38)

The integrals, from 0 to s and s to t, are independent and so the last term equals
zero. Now, using Ito isometry, we are left with

Cov(Xt, Xs) = σ2e−κ(t+s)

∫ s

0

e2κudu =
σ2e−κ(t+s)

2κ
(e2κs − 1). (C.39)

For t < s we use the same solution approach to obtain

Cov(Xt, Xs) =
σ2e−κ(t+s)

2κ
(e2κs − 1). (C.40)
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Therefore, in general

Cov(Xt, Xs) =
σ2e−κ(t+s)

2κ
(e2κmin(s,t) − 1). (C.41)
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D Complete expressions

D.1 Complete expression for the value of the plant

The complete expression for the value of the plant is given as

V (P,L) = E
[ ∫ ∞

0

e−rtPt(η1vt + η0)dt|P0 = P,L0 = L

]
= η1d2

∫ ∞
0

e−rt
(
P 2e−κt
0 e2θ(1−e

−κt)+σ2

κ
(1−e−2κt)

− 2MP e
−κ(t−s)

0 eθ(1−e
−κ(t−s))+σ2

4κ
(1−e−2κ(t−s)) +M2

)
dt

+ (η1d1 + η0)

∫ ∞
0

e−rt
(
P e

−κt
0 eθ(1−e

−κt)+σ2

4κ
(1−e−2κt) −M

)
dt

+ η1d3L0

∫ ∞
0

e−(r+d3)t

(
P e

−κt
0 eθ(1−e

−κt)+σ2

4κ
(1−e−2κt) −M

)
dt

+ η1d3

∫ ∞
0

e−rt
∫ t

0

e−d3(t−s)(fs − d1)
(
P e

−κt
0 eθ(1−e

−κt)+σ2

4κ
(1−e−2κt) −M

)
dsdt

− d2η1d3
∫ ∞
0

e−rt
∫ t

0

e−d3(t−s)
(
P e

−(κt+κs)

0 e(θ+
σ2

4κ
)(2−e−κt−e−κs)e

σ2

4κ

(
2e−κ(t+s)(e2κs−1)

)
−MP0e

−κteθ(1−e
−κt)+σ2

4κ
(1−e−2κt) −MP0e

−κse−κseθ(1−e
−κs)+σ2

4κ
(1−e−2κs) +M2

)
dsdt.

(D.1)
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D.2 Derivatives of the value of the plant

The complete expression for the derivative of V with respect to the starting price,
P0, is given by

∂V

∂P0
= η1 d2

∫ ∞
0

e−rt
(
2
(P0 +M)2 e−κ t e−κ t

P0 +M
e2 θ (1−e−κ t)+

σ2(1−e−2κ t)
κ

− 2
(P0 +M)e

−κ t
e−κ tM

P0 +M
eθ (1−e−κ t)+

σ2(1−e−2κ t)
4κ

)
dt

+ η1 (Ld3 + d1 )

∫ ∞
0

e−(r+d3 )t (P0 +M)e
−κ t

e−κ t

P0 +M
eθ (1−e−κ t)+

σ2(1−e−2κ t)
4κ dt

+ η0

∫ ∞
0

e−rt (P0 +M)e
−κ t

e−κ t

P0 +M
eθ (1−e−κ t)+

σ2(1−e−2κ t)
4κ dt

+ η1 d3

∫ ∞
0

∫ t

0

e−rtf (s) e−d3 (t−s) (P0 +M)e
−κ t

e−κ t

P0 +M
eθ (1−e−κ t)+

σ2(1−e−2κ t)
4κ dsdt

− η1 d2 d3

∫ ∞
0

∫ t

0

e−rte−d3 (t−s)

(
(P0 −M)e

−κ t+e−κ s (e−κ t + e−κ s
)

P0 −M

· eθ (2−e−κ t−e−κ s)+
σ2(2−e−2κ s−e−2κ t+2 eκ (−t+s)−2 e−κ (s+t))

4κ

−M

(
(P0 −M)e

−κ s
e−κ s

P0 −M
eθ (1−e−κ s)+

σ2(1−e−2κ s)
4κ

+
(P0 −M)e

−κ t
e−κ t

P0 −M
eθ (1−e−κ t)+

σ2(1−e−2κ t)
4κ

))
dsdt.

(D.2)
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The complete expression for the derivative of V with respect to the speed of mean
reversion, κ, is given by

∂V

∂κ
= η1 d2

∫ ∞
0

e−rt
(
− 2 (P0 +M)2 e−κ t te−κ t ln (P0 +M) e2 θ(1−e−κ t)+

σ2(1−e−2κ t)
κ

+ (P0 +M)2 e−κ t
(
σ2
(
1− e−κ t

)
2κ2

+ 2 θte−κ t −
σ2
(
1− e−2κ t

)
κ2

+ 2
σ2te−2κ t

κ

)
e2 θ(1−e−κ t)+

σ2(1−e−2κ t)
κ

+ 2 (P0 +M)e
−κ t

te−κ t ln (P0 +M)Meθ(1−e−κ t)+
σ2(1−e−2κ t)

4κ

− 2 (P0 +M)e
−κ t

M

(
σ2
(
1− e−κ t

)
4κ2 + θte−κ t −

σ2
(
1− e−2κ t

)
4κ2

+
σ2te−2κ t

2κ

)
eθ(1−e−κ t)+

σ2(1−e−2κ t)
4κ

)
dt

+ η1 (Ld3 + d1 )

∫ ∞
0

e−(r+d3 )t

(
− (P0 +M)e

−κ t
te−κ t ln (P0 +M)

· eθ(1−e−κ t)+
σ2(1−e−2κ t)

4κ + (P0 +M)e
−κ t

(
σ2
(
1− e−κ t

)
4κ2

+ θte−κ t −
σ2
(
1− e−2κ t

)
4κ2 + 1/2

σ2te−2κ t

κ

)
eθ(1−e−κ t)+1/4

σ2(1−e−2κ t)
κ

)
dt

+ η0

∫ ∞
0

e−rt
(
− (P0 +M)e

−κ t
te−κ t ln (P0 +M) eθ(1−e−κ t)+

σ2(1−e−2κ t)
4κ

+ (P0 +M)e
−κ t

(
σ2
(
1− e−κ t

)
4κ2 + θte−κ t −

σ2
(
1− e−2κ t

)
4κ2

+
σ2te−2κ t

2κ

)
eθ(1−e−κ t)+

σ2(1−e−2κ t)
4κ

)
dt

+ η1 d3

∫ ∞
0

∫ t

0

e−rtf (s) e−d3 (t−s)

(
− (P0 +M)e

−κ t
te−κ t ln (P0 +M)

· eθ(1−e−κ t)+1/4
σ2(1−e−2κ t)

κ + (P0 +M)e
−κ t

(
σ2
(
1− e−κ t

)
4κ2

+ θte−κ t −
σ2
(
1− e−2κ t

)
4κ2 +

σ2te−2κ t

2κ

)
eθ(1−e−κ t)+

σ2(1−e−2κ t)
4κ

)
dsdt

− η1 d2 d3

∫ ∞
0

∫ t

0

e−rte−d3 (t−s)

(
(P0 −M)e

−κ t+e−κ s (−te−κ t − se−κ s)
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· ln (P0 −M) eθ(2−e−κ t−e−κ s)+
σ2(2−e−2κ s−e−2κ t+2 eκ (−t+s)−2 e−κ (s+t))

4κ

+ (P0 −M)e
−κ t+e−κ s

(
σ2
(
2− e−κ t − e−κ s

)
4κ2 + θ

(
te−κ t + se−κ s

)

+
σ2
(
2 se−2κ s + 2 te−2κ t + 2 (−t+ s) eκ (−t+s) − 2 (−s− t) e−κ (s+t)

)
4κ

−
σ2
(
2− e−2κ s − e−2κ t + 2 eκ (−t+s) − 2 e−κ (s+t)

)
4κ2

)

· eθ(2−e−κ t−e−κ s)+
σ2(2−e−2κ s−e−2κ t+2 eκ (−t+s)−2 e−κ (s+t))

4κ

−M

(
− (P0 −M)e

−κ s
se−κ s ln (P0 −M) eθ(1−e−κ s)+

σ2(1−e−2κ s)
4κ

+ (P0 −M)e
−κ s

(
σ2
(
1− e−κ s

)
4κ2 + θse−κ s −

σ2
(
1− e−2κ s

)
4κ2

+
σ2se−2κ s

2κ

)
eθ(1−e−κ s)+

σ2(1−e−2κ s)
4κ

− (P0 −M)e
−κ t

te−κ t ln (P0 −M) eθ(1−e−κ t)+
σ2(1−e−2κ t)

4κ

+ (P0 −M)e
−κ t

(
σ2
(
1− e−κ t

)
4κ2 + θte−κ t −

σ2
(
1− e−2κ t

)
4κ2

+
σ2te−2κ t

2κ

)
eθ(1−e−κ t)+

σ2(1−e−2κ t)
4κ

))
dsdt.

(D.3)
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The complete expression for the derivative of V with respect to the volatility, σ, is
given by

∂V

∂σ
= η1 d2

∫ ∞
0

e−rt
(
(P0 +M)2 e−κ t

(
−
σ
(
1− e−κ t

)
κ

+ 2
σ
(
1− e−2κ t

)
κ

)

· e2 θ(1−e−κ t)+
σ2(1−e−2κ t)

κ

− 2 (P0 +M)e
−κ t

M

(
−
σ
(
1− e−κ t

)
2κ

+
σ
(
1− e−2κ t

)
2κ

)

eθ(1−e−κ t)+
σ2(1−e−2κ t)

4κ

)
dt

+ η1 (Ld3 + d1 )

∫ ∞
0

e−(r+d3 )t (P0 +M)e
−κ t

(
−
σ
(
1− e−κ t

)
2κ

+
σ
(
1− e−2κ t

)
2κ

)

· eθ(1−e−κ t)+
σ2(1−e−2κ t)

4κ dt

+ η0

∫ ∞
0

e−rt (P0 +M)e
−κ t

(
−
σ
(
1− e−κ t

)
2κ

+
σ
(
1− e−2κ t

)
2κ

)

· eθ(1−e−κ t)+
σ2(1−e−2κ t)

4κ dt+ η1 d3

∫ ∞
0

∫ t

0

e−rtf (s) e−d3 (t−s) (P0 +M)e
−κ t

·

(
−
σ
(
1− e−κ t

)
2κ

+
σ
(
1− e−2κ t

)
2κ

)
eθ(1−e−κ t)+

σ2(1−e−2κ t)
4κ dsdt

− η1 d2 d3

∫ ∞
0

∫ t

0

e−rte−d3 (t−s)

(
(P0 −M)e

−κ t+e−κ s
(
−
σ
(
2− e−κ t − e−κ s

)
2κ

+
σ
(
2− e−2κ s − e−2κ t + 2 eκ (−t+s) − 2 e−κ (s+t)

)
2κ

)

· eθ(2−e−κ t−e−κ s)+
σ2(2−e−2κ s−e−2κ t+2 eκ (−t+s)−2 e−κ (s+t))

4κ

−M

(
(P0 −M)e

−κ s
(
−
σ
(
1− e−κ s

)
2κ

+
σ
(
1− e−2κ s

)
2κ

)
eθ(1−e−κ s)+

σ2(1−e−2κ s)
4κ

+ (P0 −M)e
−κ t

(
−
σ
(
1− e−κ t

)
2κ

+
σ
(
1− e−2κ t

)
2κ

)

· eθ(1−e−κ t)+
σ2(1−e−2κ t)

4κ

))
dsdt.
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The complete expression for the derivative of V with respect to the mean reversion
parameter, θ, is given by

∂V

∂θ
= η1d2

∫ ∞
0

e−rt
(
(P0 +M)2 e−κ t (2− 2 e−κ t

)
e2 θ (1−e−κ t)+

σ2(1−e−2κ t)
κ

− 2 (P0 +M)e
−κ t

M
(
1− e−κ t

)
eθ (1−e−κ t)+

σ2(1−e−2κ t)
4κ

)
dt

+ η1 (Ld3 + d1 )

∫ ∞
0

e−(r+d3 )t (P0 +M)e
−κ t (

1− e−κ t
)
eθ (1−e−κ t)+

σ2(1−e−2κ t)
4κ dt

+ η0

∫ ∞
0

e−rt (P0 +M)e
−κ t (

1− e−κ t
)
eθ (1−e−κ t)+

σ2(1−e−2κ t)
4κ dt

+ η1 d3

∫ ∞
0

∫ t

0

e−rtf (s) e−d3 (t−s) (P0 +M)e
−κ t (

1− e−κ t
)
eθ (1−e−κ t)+

σ2(1−e−2κ t)
4κ dsdt

− η1 d2 d3

∫ ∞
0

∫ t

0

e−rte−d3 (t−s)
(
(P0 −M)e

−κ t+e−κ s (2− e−κ t − e−κ s
)

· eθ (2−e−κ t−e−κ s)+
σ2(2−e−2κ s−e−2κ t+2 eκ (−t+s)−2 e−κ (t+s))

4κ

−M
(
(P0 −M)e

−κ s (
1− e−κ s

)
eθ (1−e−κ s)+

σ2(1−e−2κ s)
4κ

+ (P0 −M)e
−κ t (

1− e−κ t
)
eθ (1−e−κ t)+

σ2(1−e−2κ t)
4κ

))
dsdt.

(D.5)
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The complete expression for the derivative of V with respect to the long term
mean parameter, α, is given by

∂V

∂α
= η1 d2

∫ ∞
0

e−rt
(
P 2 e−κ t (2− 2 e−κ t

)
e2θ(1−e−κ t)+

σ2(1−e−2κ t)
κ

− 2P e−κ tM
(
1− e−κ t

)
eθ(1−e−κ t)+1/4

σ2(1−e−2κ t)
κ

)
dt

+ η1 (d3 L+ d1 )

∫ ∞
0

e−(r+d3)tP e−κ t (1− e−κ t
)
eθ(1−e−κ t)+1/4

σ2(1−e−2κ t)
κ dt

+ η0

∫ ∞
0

e−rtP e−κ t (1− e−κ t
)
eθ(1−e−κ t)+1/4

σ2(1−e−2κ t)
κ dt

+ η1 d3

∫ ∞
0

∫ t

0

fe−rte−d3 (t−s)P e−κ t (1− e−κ t
)
eθ(1−e−κ t)+1/4

σ2(1−e−2κ t)
κ dsdt

− η1 d2 d3

∫ ∞
0

∫ t

0

e−rte−d3 (t−s)

(
P e−κ t+e−κ s (2− e−κ t − e−κ s

)
· eθ(2−e−κ t−e−κ s)+1/4

σ2(2−e−2κ s−e−2κ t+2 eκ (−t+s)−2 e−κ (s+t))
κ

−M

(
P e−κ s (1− e−κ s

)
eθ(1−e−κ s)+1/4

σ2(1−e−2κ s)
κ

+ P e−κ t (1− e−κ t
)
eθ(1−e−κ t)+1/4

σ2(1−e−2κ t)
κ

))
dsdt.

(D.6)
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E Calibration

E.1 Calibration of the price process

We calibrate the parameters of the price process similar to Ernstsen (2016). We let
(pi)i=1,...,N denote the hourly spot prices for the period and (xi)i=1,...,N denote
the logarithm of the price, such that xi = log(Pi+M). The corresponding random
variables, Xi, satisfy the linear relationship

Xi+1
d
= aXi +m+ bεi for i = 1, ..., N − 1, (E.1)

where a = e−κ∆, ∆ = 1/Nhour, Nhour = 24 · 365, m = (α − σ2

4κ )(1 − e−κ∆),
b2 = σ2 1−e−2κ∆

2κ and εi is the i.i.d. error term with ε1 ∼ N(0, 1). We use ordinary
least squares to get the estimators

â =

∑N−1
i=1 (xi+1 − x)(xi − x̃)∑N−1

i=1 (xi − x̃)2
(E.2)

and
m̂ = x− âx̃, (E.3)

where

x =
1

N − 1

N∑
i=2

xi (E.4)

and

x̃ =
1

N − 1

N−1∑
i=1

xi. (E.5)
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Now
κ̂ =

−ln(â)

∆
(E.6)

and

b̂2 =
1

N − 1

N−1∑
i=1

(xi+1 − m̂− âxi)2. (E.7)

Finally, we estimate σ and α as

σ̂ =

√
2κ̂

1− e−2κ̂∆
b̂2 (E.8)

and
α̂ =

m

(1− e−κ̂∆)
+
σ̂2

4κ̂
. (E.9)

E.2 Estimation of standard deviation

We estimate the standard deviation for the price process from

S = lim
t→∞

√
E(P 2

t )− E(Pt)2, (E.10)

with the expectation and the second moment of the price process from (2.43) and
(2.45) respectively, we have

E(Pt|Ps) = eθ+
σ2

4κ −M = eα −M, t→∞, (E.11)

and
E(P 2

t |Ps) = e(2θ+σ2

κ ) − 2Me(θ+σ2

4κ ) +M2, t→∞. (E.12)
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E.3 Fitting the inflow curve

The observed data are fitted to a sinusoidal function because of the periodic prop-
erty of the inflow. An increasing number of sinusoidal terms were tested, where
the result of the R2-test with different number of sinusoidal terms is shown in
Figure E.1.

Figure E.1: Result of R2-test for inflow function

As seen from the figure, all R2-values are below 0.7 even with eight terms, which
means that the fitted function explains less than 70 % of the observed data. Better
R2-values could be obtained using robust fitting, where measurements with ex-
treme deviations from the mean are neglected. However, we are not interested in
neglecting the extreme deviations from the inflow, hence normal fitting is a better
choice. Because of the complexity of the overall problem, a simple expression is
wanted. Here, a five term function is chosen.
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