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Problem description:

Hadoop is the most popular open-source software framework used for distributed
storage and processing of big data sets [Whil2]. It is a collection of many related
sub-projects. These projects are hosted by the Apache Software Foundation, which
provides support for a community of open source software projects. One of the most
important sub-projects in Hadoop is the Hadoop Distributed File System (HDFS).
It relies on the concepts of splits and blocks. A split is a logical representation of
the data while a block describes the physical alignment of data. Splits and blocks
in Hadoop are user-defined: a logical split can be composed of multiple blocks and
one block can have multiple splits. All these choices determine in a more complex
way the access time for input/output (I/O) operations. A typical mechanism for
achieving reliability of data in HDFS is the triple-replication of data. However, the
overhead cost in triple-replication is 200%. Erasure codes offer similar reliability
with much less overhead. From release 3.0.0 Hadoop offers several erasure codes such
as (9, 6) and (14, 10) Reed-Solomon (RS) codes.

This master thesis will present principles of Hadoop and how an experimental Hadoop
environment is set up. Further, mechanisms for achieving reliable data storage (triple-
replication vs. erasure codes) will be tested and compared. The comparison will
include measurements on the time of recovery, measurements on the network traffic
during recovery and the influence of different block and file sizes on those measure-
ments.
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Abstract

Nowadays the global amount of digital data increases rapidly. Internet-
connected devices generate massive amounts of data through various
interactions such as digital communication and file sharing. In a world
surrounded by such interactions every day, this results in Big Data sets.
The datasets can be analyzed and further be used for various purposes
such as personalized marketing and health research. In order to analyze
and utilize the data, it has to be transferred and stored reliably. Failures in
storage systems happen frequently, so mechanisms for reliable data storage
are needed. The Hadoop software provides a distributed file system that
achieves reliable data storage through different coding techniques.

This thesis presents different mechanisms for reliable data storage in
Hadoop and gives a practical implementation of an experimental Hadoop
environment. The mechanisms include erasure coding (Reed-Solomon
codes) and triple-replication. Further, the performance of the mechanisms
is tested and compared. The performance parameters considered are the
time of file recovery and the amount of network traffic during file recovery.
Factors affecting the performance, such as file size and block size, are
also considered. The test setup includes wired Ethernet connection, a
configured multi-node Hadoop cluster, a managed network switch and a
network analysis tool.

The obtained results show the impact of different factors on the Hadoop
cluster performance during node failure. In general, the results confirm
theory. Both the time of recovery and the network traffic during recovery
increase with the file size. For erasure coding, the time of recovery
increases with the code length, and block size of 128 MB gives the best
overall performance. Moreover, optimized erasure coding variants for
improving the cluster performance are presented in related work and then
suggested as future work.






Sammendrag

I dag gker den globale mengden av digital data fortere enn noen gang. Ulike
enheter som er koblet til internett (smarttelefoner, PC-er osv.) genererer
enorme mengder data gjennom forskjellige interaksjoner slik som digital
kommunikasjon og fildeling. Nar dette skjer overalt i verden hver eneste
dag resulterer det i Big Data datasett. Disse datasettene kan analyseres og
senere bli brukt til ulike formal, eksempelvis personalisert markedsfaring
og forskning innen helse. For & kunne analysere og nyttiggjore dataene ma
de overfgres og lagres palitelig. Det er stort behov for mekanismer som
sikrer palitelig datalagring fordi hyppige maskinvare- eller programvarefeil
er vanlig i store lagringssystemer. Hadoop er et rammeverk som tilbyr
palitelig datalagring gjennom ulike kodeteknikker.

Denne masteroppgaven presenterer ulike mekanismer for palitelig data-
lagring i Hadoop og gir en praktisk implementasjon av et eksperimentelt
Hadoop-oppsett. Reed-Solomon-koder og trippel-replikasjon er de meka-
nismene det fokuseres pa. Videre er mengden nettverkstrafikk og forlgpt
tid innenfor en filgjenopprettingsprosess testet og sammenlignet for de
ulike mekanismene. I tillegg er faktorer som pavirker ytelsen tatt i be-
traktning, slik som filstgrrelse og blokkstgrrelse. Testoppsettet krever
kablet Ethernet, et konfigurert Hadoop-cluster, en styrt nettverkssvitsj
og et verktgy for nettverksanalyse.

Resultatene fra testene viser hvordan ulike faktorer pavirker cluster-
ytelsen i Hadoop nér en node feiler. Generelt sa bekrefter resultatene
teorien som er presentert. Bade filgjenopprettingstid og nettverkstrafikk
gker i takt med filstgrrelsen. For Reed-Solomon-koder sa gker filgjen-
opprettingstiden i takt med kodelengden og blokker av stgrrelse 128 MB
gir totalt sett best ytelse. I tillegg er optimaliserte kodevarianter som
forbedrer cluster-ytelsen presentert og foreslatt som videre arbeid.
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Introduction

1.1 Motivation

Apache Hadoop is one of the most popular frameworks for big data analysis. It is
open-source and used for distributed storage and processing of big data sets [Whil2].
Big data is a term for extremely large datasets that traditional data processing
tools are inadequate to deal with them [IBM]. Smartphones, desktop computers,
laptops, Internet of Things (IoT) devices etc. generate tremendous amounts of data.
People go through their days communicating digitally, surfing the internet, shopping
online, taking photos, sharing files, and by doing that they leave behind huge trails
of data. Imagine billions of people doing this every day. The grand total is massive
so finding ways to utilize this information is crucial, otherwise it is worthless. Based
on reports from the International Data Corporation (IDC) the amount of digital
data is predicted to reach 180 zettabytes (ZB) by 2025 [Cor]. This massive growth
of digital data over just a short period of time is illustrated in Figure 1.1. A portion
of this data has to be transferred and stored reliably.

Software and/or hardware failures in distributed storage systems can happen. For
instance, more than 50 machine failure events were registered each day during a
six-month experiment of monitoring Facebook’s data-warehouse cluster that consists
of thousands of nodes [RSGT15]. 98.08% of the failures were classified as single
failures. Additionally, failures in Hadoop are not considered exceptions, they are
rather treated as the norm because clusters can consist of thousands of nodes where
all have a probability of failure [Foub]. That is why there is a need for mechanisms
for reliable storage of big data. Hadoop is a framework which introduces such
mechanisms.

Reliable storage of data is very important since users want to have seamless access to
data even when failures in the system occur. That is challenging especially when we
talk about big amounts of data. As the amount of digital data rapidly increases there
is also a question about storage cost. How can corporations store data reliably and
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decrease the storage costs of data replication? Hadoop introduces methods through
different coding techniques for achieving this.

180 ZB |

4478

4.47B

f f 1
2013 2020 2025 Year

Figure 1.1: Growth of digital data.

1.2 Objective and Methodology

The overall objective of this master thesis work is to set up and configure an
experimental Hadoop environment, conduct experiments for examining different
techniques for data reliability in that environment and analyze the obtained results.
The experiments will be a study of file recovery time and network traffic during file
recovery for different erasure codes and triple-replication with varying block and
file sizes. Additionally, understanding the principles of Hadoop for reliable data
storage is an important objective. In particular, the primary focus is erasure coding
in HDFS.

To achieve these objectives, a methodology based on a literature study and a compar-
ative study is used. The literature study applies mainly to the presented background
material. Research papers, selected chapters of books, articles and various web pages
are selected and read thoroughly to acquire the relevant knowledge. The comparative
study is conducted in order to evaluate the results of the experiments and to make an
analysis. In addition, a practical methodology is used for the Hadoop implementation
and to run experiments. In order to support the accomplishment of the experiments,
various tools and methods are required. Hadoop 3.0.0, Ubuntu 16.04 LTS operating
system, Wireshark network analysis tool and a port mirroring method are used to
carry out the experiments.
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1.3 Thesis Structure

Chapter 2 presents the relevant theoretical background of the thesis. Concepts of
Hadoop, HDF'S, replication and erasure coding are explained, along with a brief
theoretical introduction to erasure coding. Related work is also presented in this
chapter.

Chapter 3 gives a detailed guide on how the experimental Hadoop environment is
set up. It is formed as a step-by-step installation guide including exact terminal
commands and configuration parameters in order to set up a multi-node Hadoop
cluster. Commands for utilizing HDFS and erasure coding in practice are also given.

Chapter 4 includes a test plan and details about how the experiments are conducted
and what methods that are used. Then the results of the experiments are presented.
Further, a comparison of measurements against different erasure codes and triple-
replication is given. Finally, the test results are analyzed and discussed.

Chapter 5 concludes the thesis and proposes further work that can be done in
continuation of this work or further work that explores the limitations set by the
scope of this thesis.






Theoretical Background

This chapter presents the theoretical background of the thesis. It explains the
principles of Hadoop Distributed File System (HDFS), replication and erasure coding.
The HDF'S architecture is presented, as well as examples of the mathematics used to
support erasure coding. Finally, related work is presented.

2.1 Hadoop and HDFS

Hadoop consists of a storage part (HDFS) and a processing part known as MapRe-
duce [Whil2]. The focus in this thesis is the HDFS part. The main idea of HDF'S is
that it splits files into blocks which are then distributed across different nodes in a
cluster. That is called distributed storage. All data blocks of a file have the same
size except the last block which can be smaller. The number of blocks of a file is the
exact multiple of the configured block size, plus an additional final block with the
number of bytes that is left. HDFS is used to store big data sets and the default
block size is 128 MB. If the block size is small like for instance in the Linux file system
(4KB), HDFS will generate huge amounts of overhead and traffic in order to manage
the large number of blocks and metadata (data about the data) files [Fla]. That
is not beneficial, so the block size is therefore set to 128 MB. Figure 2.1 illustrates
how a 650 MB file is split into 5 data blocks of size 128 MB (128 x 5 = 640), plus an
additional data block of size 10 MB.

2.1.1 HDFS Architecture

HDFS runs a master-slave architecture. The master’s job is to manage the file system
namespace and to control clients’ access to files (read/write access). It also decides
the mapping of split files to different blocks and handles all the metadata. These jobs
are done by the NameNode, which is a piece of software running on the master node.
No user data is transferred through the NameNode [Foub]. Figure 2.2 illustrates how
the HDF'S software is connected to the master node and the slave nodes, respectively.

5
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650 MB file
128 MB 128 MB 128 MB 128 MB 128 MB 10 MB
Block 0 Block 1 Block 2 Block 3 Block 4 Block 5

Figure 2.1: Data blocks in HDFS.

Master node Slave node

NameNode DataMNode

Figure 2.2: Master node and slave node in HDFS.

The slaves in HDFS have DataNodes installed, and they are responsible for the
actual storage of data on the particular nodes. Usually, there is one DataNode per
slave node in the cluster (DataNodes can contain multiple data blocks), but this
is a matter of an architectural design choice. System engineers are free to take
own design choices regarding the node cluster setup. DataNodes serve the clients’
read/write requests and get instructions from the NameNode to perform replication,
deletion and creation of data blocks [Foub]. Figure 2.3 gives an overview of the
HDFS architecture.

Hadoop provides a possibility to place DataNodes on different racks. A rack is
a collection of servers (with DataNodes installed) connected to the same network
switch. Having several racks improves the performance of the cluster, but the default
in Hadoop is to place all nodes on the same rack if not configured otherwise. This
thesis operates with a one-rack cluster, which means that if the network goes down
all the servers on the rack will be out of service.
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Metadata
Q Metadata operations N File name, file location,
')\ NameNode ————— replicas, block size, file

permissions etc...
HDFS Client
Read ‘Write

Block operations

DataNodes DataMNodes

{:I ﬁ D D D: Replication ={:| E D |:|
l:I Blocks I:‘ D"“ }D

Figure 2.3: HDFS Architecture (adapted from [Foub]).

2.2 Data Storage with Replication

A conventional way to store data in distributed storage systems is replication. The
default replication factor in Hadoop is 3. This means that the same data is stored
across 3 different nodes. The availability of the data is therefore increased. The
system can tolerate up to two failures, and still the data is available. However, this
mechanism is not efficient for big data because the storage overhead is 200%. The
storage overhead is defined as the ratio of the added redundancy and original data.
Figure 2.4 illustrates providing data availability which is triple-replication over three
nodes.

3-replication: Original data 1st copy of data 2nd copy of data

Figure 2.4: Triple-replication gives 200% storage overhead.

2.3 Data Storage with Erasure Coding

New techniques for reliable storage, such as erasure codes, are becoming more
applicable than replication because they provide the same level of fault tolerance
(number of tolerated node failures) for less storage overhead [Fouc]. In erasure coding,
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a file is split into k blocks and encoded with an (n, k) erasure code into n blocks
where n-k=r are redundant blocks. The redundant data is a linear combination
of the original data and it is added to the original data, i.e. systematic coding.
Conventional Maximum Distance Separable (MDS) erasure codes guarantee that a
file can be obtained by accessing any k out of the n nodes. This also guarantees that
a block can be recovered by accessing and transferring any k out of the n blocks of
the file. Thus, the system can tolerate up to r failures. Figure 2.5 illustrates the
differences in storage overhead for triple-replication, i.e. a (3, 1) code, vs. a typical
erasure coding that is used in Windows Azure [HSX"12], i.e. an (9, 6) code. The
storage overhead is calculated by o=r/k.

3-replication: Qriginal data 1st copy of data 2nd copy of data

Erasure coding: Original data Redundancy

Figure 2.5: Data replication (3, 1) vs. erasure coding (9, 6). The storage overhead
of triple-replication is 200%, while the storage overhead of erasure coding is 50%.
Both offer a similar level of availability.

Even though erasure codes give less overhead, they require more CPU power, more
network bandwidth and more time to recreate lost data compared to triple-replication.

2.3.1 Erasure Coding Example

The Hadoop framework takes care of calculations of erasure codes and other function-
ality in the background, so in practice knowing its internal workings is not needed.
Despite that, it is important to understand what is going on "behind the scenes" in
order to fully understand Hadoop and to use it correctly. The following presents a
toy example just to illustrate the principle of erasure coding and to emphasize its
possible advantages and disadvantages over replication. Further, in Section 2.3.2, a
more detailed example with actual calculations is presented.

Figure 2.6 shows a data object which is split into two data blocks and stored in two
different ways, both utilizing 4 servers. The first storage method is double-replication
and the second storage method is a (4, 2) code where servers 3 and 4 store linear
combinations of the original data. Note that the linear functions have to be calculated
over a finite field. Read more about this in Section 2.3.2.
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Data object split

into 2 data blocks
X Y
1GB 1GB
L 4

X X
Y Y
X X+Y
Y X+4y

Double-replication (4, 2)-code

Figure 2.6: Two distributed storage methods of a data object which is split into
two data blocks where original data is presented in green and redundancy data in
blue.

Figure 2.7 illustrates what happens in both scenarios when two servers fail, respec-
tively servers 1 and 3. In the first scenario data "X" is lost. In the second scenario
the data held by servers 2 and 4 can be used to recalculate the temporarily lost data
held by servers 1 and 3. This example shows that coding is a better choice in terms
of availability of the data, even when the storage overhead is the same. Also for the
same amount of added redundancy, erasure coding offers greater reliability.

[ |

* * X | = | X+4Y -4 ¥
b
Y Y
. . v
* W X+Y | = | X+4Y |-3* ¥
Y X+4Y — b
Loss of data "X" after No data loss after
two node failures two node failures

Figure 2.7: Data loss with replication and no data loss with erasure coding after
two node failures.
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Another thing to keep in mind is the repair cost when server(s) fail. Repair cost
refers to the time and resources spent while regenerating lost data when a system
node fails. Now, imagine that server 1 fails in both scenarios. In the first scenario,
only server 3 has to be accessed in order to copy its contents back to server 1. In
the second scenario, the data from two servers have to be accessed and decoding
computations have to be performed in order to bring back the contents of server 1.
Servers 2 and 4 can be used for the regeneration (see Figure 2.7), or if desired, servers
2 and 3. In the latter, the regeneration looks like this: X = (X +Y) — Y. This
example shows a possible disadvantage of erasure coding compared to replication in
terms of repair cost.

2.3.2 Encoding and Decoding of RS(4, 2)

Reed-Solomon (RS) codes are well known and widely used erasure codes. A simple
example of RS(4, 2) encoding and decoding of an 8-bit file is presented below. The
system has two nodes which hold the original data (d_1 and d_ 2) and two nodes
which hold the parity data (r_1 and r_2). The parities (rl and r2) can be used
to recalculate the original data if it is lost due to hardware or software failures.
Figure 2.8 shows the system’s starting point.

Original file: 1010 1101

! !

d_1 d 2 r 1 r2

d1=1010 d2 = 1101 r r2

Figure 2.8: A file split into two data blocks (d1 and d2) and stored in d_ 1 and
d 2. r 1andr_ 2 will hold the parity blocks (rl and r2) which will be calculated
during the RS encoding.

Knowledge about Galois fields is essential in order to understand erasure coding.
A Galois field (GF) is a finite field which contains a finite number of elements.
Addition, subtraction, multiplication and division are possible operations within the
field [Mat]. In our case, we have GF(2%), a field with 16 elements. In Hadoop and
other commercial implementations of erasure codes, the calculations are normally
performed in GF(2®) or in higher fields. The order of our field is 2* = 16 since we
operate with 4-bit elements in this example. The GF’s irreducible polynomial is
p(X) = X*+ X +1 [LC82]. An irreducible polynomial is a polynomial which is only
divisible by itself and 1. In Figure 2.9 all elements of GF(2%) are given. We use the
rule in Equation 2.1 to derive the binary multiplication and the rule in Equation 2.2
to derive the binary division.



2.3. DATA STORAGE WITH ERASURE CODING

Power Polynomial 4-Tuple
representation representation representation
0 0 © 00 0O
1 1 (1 0 0 0
o o © 100
o2 a? 0 01 0
ol LK © 0 0 I)
ot 1+a (1100
oS « + a? 011 0
b al + ol @ 01 1
o’ 14+« + a? 1101
a8 1 + a? 1 01 0
o? o + al © 10 1
ol0 1+ a+ a2 {111 0
all o+ a? 4ol @111
ol2 14-a+ a2+ al? 1111
all 1 + a? + ol (1 011
al4 1 + 3 (1 0 0 1)

11

Figure 2.9: Three representations for the elements of GF(2%) generated by p(X) =
X%+ X +1 (taken from [LC82]).

al x af = a(z—i—]) mod 15

041/04] —a' x O[lf)*j _ a2+(157])

(2.1)

(2.2)

Now the calculation of the RS encoding is ready to begin. In order to encode the
file, the parity data (rl and r2) are calculated, see Equations 2.3 and 2.4. C1 and C2
in Equation 2.4 are two constants which have to fulfill the requirements of Equation

2.5.

rl=dl & d2

r2=(C1xdl)® (C2 x d2)

1 1
cl1 C2

M= , where det(M) # 0

(2.5)
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C1 and C2 are set to 2 and 3 respectively. In binary numbers they are C1 = 0010,
and C2 = 0011. Equations 2.6 and 2.7 show the encoding in binary numbers.

rl =1010 & 1101 = 0111 (2.6)

2 = (0010 x 1010) @ (0011 x 1101) = 0101 (2.7)

The original file should now be reliably stored and available. The system in Figure 2.8
can tolerate up to two failures. Now the scenario has changed as seen in Figure 2.10.
Two nodes are down, so how can the RS code be used to recover the lost part of the
original data (d2)? Equation 2.8 shows the recovery of d2.

Original file: 1010 1101

- 3¢ €

Figure 2.10: Two nodes are down in the system.

r2

d1=1010 r2=0101

r2® (C1 x dl)

d2 = 2

(2.8)

The data from d_ 1 and r 2 have to be accessed and transferred in order to recover
d2, and then rl can be recalculated. Equations 2.9 and 2.10 show the recovery in
binary numbers. Finally, the file should be just as reliably stored and available as it
was after the initial encoding.

0101 @ (0010 x 1010)
n 0011

d2

= 1101 Success! (2.9)

rl =dl & d2 =1010® 1101 = 0111 Swuccess! (2.10)
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2.4 Related Work

There is a lot of theoretical work that has been done in the area of reliability
in distributed storage. In particular, the area of constructing erasure codes for
distributed storage systems has been well studied. Erasure coding theory was first
introduced in the 1960s [PH13] and since then there has been a significant amount of
research work concerning erasure codes and distributed storage. This section presents
briefly some relevant work that has been done in the area.

Big data is closely connected to both distributed storage and erasure codes because
it is necessary to store big data reliably. In recent years big data has become a
complete subject which includes various frameworks, tools and techniques [ZET11].
In particular, the area of big data analysis has become exceedingly popular. For
instance, [PBN12], [NBP*13] and [Shil2] talk about the advantages of big data
processing and analysis in Hadoop by utilizing the MapReduce programming model.
MapReduce consists of a mapper and a reducer. Simply put, the mapper maps input
data into a set of key/value pairs. The reducer reduces this set into a smaller set of
values which is the useful data output.

Many cloud systems utilize Reed-Solomon (RS) codes because they are able to
tolerate a large number of failures and provide high generality. [KBP'12] defines
a new class of RS codes that reduce the repair traffic and perform disk reads more
effectively compared to standardized RS codes. A new erasure-coded storage system
called "Hitchhiker" is introduced in [RSG*15]. It is implemented in HDFS and
runs "on top of' RS codes. Compared to RS-based systems they reduce both the
disk input/output (I/O) and network traffic during reconstruction on node failure.
Individual component failures in storage systems are the most studied type of failure.
In contrast, [FLPT10] provides a study of the overall availability behavior in large
cloud-based storage systems. The impact of design choices, such as strategies for
replication and data placement, are presented through statistical models.

[Papl4] states that erasure codes in large-scale data storage are associated with high
repair cost. It displays the construction of new erasure coding variants to achieve
the best possible reliability under different repair cost metrics. For instance some
variants of MDS codes are presented to perform optimal repair of the data and/or
parity nodes. [VRPT18] introduces Clay codes, which are simplified constructions
of Minimum Storage Regenerating (MSR) codes. MSR codes are designed to meet
the current practical needs of data centers, and some of them have been practically
implemented. For instance, they show reduced repair network traffic and repair time
in comparison with RS codes.

Locally Repairable Codes (LRCs) address two important metrics in distributed
storage systems, the number of contacted nodes during repair (locality) and the
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update complexity. For instance, the locality and the update complexity are balanced
(equal) for all nodes in a system with Balanced LRCs [PJHO13, KG@16a]. A variant
of LRCs is Pyramid codes, an erasure coding policy which utilizes a pyramid-based
scheme. [Vell8] compares the performance of Pyramid codes vs. RS codes for both
encoding and reconstruction of files. Compared to RS codes, it shows that Pyramid
codes reduce the network traffic during reconstruction. Windows Azure Storage
(WAS) is a cloud storage system that uses erasure coding to keep the storage costs
down [HSX"12]. WAS utilizes LRCs and the paper describes that these codes can
reduce I/Os and bandwidth for repair reads. LRCs are also presented in [SAP13].
They introduce a new novel erasure coding family that incorporates LRCs. The
new codes are implemented in Facebook and provide higher reliability compared
to RS codes because of faster repair of failures. [GHSY12] presents a thorough
study of relations between different parameters which are required in data storage
applications. The parameters include low locality for parity and data coordinates,
small redundancy and large distance.

[DGW™10] discusses ways to transfer as little data as possible when nodes fail. They
point out that common erasure-coded systems reconstruct all the encoded data to
regenerate just one encoded data block. Regenerating Codes (RGCs) are introduced
as an alternative to reduce the repair bandwidth. Functions of the stored data from
the non-failed nodes will now be communicated through a new node. [OD11] state
that RGCs, which utilize (n, k) erasure codes, need to contact at least k nodes to
recreate a lost fragment. Further, data needs to be downloaded from n-1 nodes to
fulfill the recreation. Moreover, they introduce self-repairing codes (SRCs), a new
type of erasure codes which improves the maintenance process in storage systems.

New efficient erasure coding constructions, HashTag Erasure Codes (HTECs) and
Balanced LRCs, are provided in [Kral6]. It investigates how these coding construc-
tions are applied to different applications, emphasizing distributed storage systems,
network coding and Optical Packet Switching (OPS) networks. HTECs reduce the
repair bandwidth for single failures [KGJ@17]. In particular, compared to RS codes
the repair bandwidth savings can go up to 70%. Erasure codes in OPS networks
are also discussed in [BCK@16] and [KOG15]. In particular, [BCK@16] presents a
case study of utilizing forward error correction (FEC) for OPS. They show that it
can reduce packet loss and decoding errors when used correctly. [KOG15] presents a
transport mechanism scheme for OPS networks. It exploits erasure coding benefits
for efficient packet loss recovery.

In this thesis, the focus is not on LRCs or RGCs. Even though there are many
practical and theoretical works related to erasure coding in distributed storage, still
some aspects of RS codes implemented in HDFS have not been investigated. More
precisely, how various block and file sizes affect the performance of the Hadoop
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cluster to support reliable data storage, which is what this thesis is motivated by.






Experimental Hadoop Environment

One of the main objectives for the thesis is to set up an experimental Hadoop
environment. This chapter is therefore formed as an installation guide on how to
successfully set up a working multi-node Hadoop cluster. It starts with a single-node
Hadoop setup, and expands to a multi-node setup. For simplicity, the guide covers a
5-node cluster setup (consisting of five physical Ubuntu machines), but one is free
to add as many nodes as preferred following the same procedure. Note that some
experiments conducted later in the thesis rely on more than five nodes. A total
of 15 nodes are set up during this master thesis work. This chapter also presents
some important commands and configurations in order to enable erasure coding
and to correctly store files within HDFS. Everything presented in this chapter is a
prerequisite to being able to run experiments presented in Chapter 4. The content
of this chapter is inspired by the Hadoop documentation on The Apache Software
Foundation’s official website [Foual, but it is customized specifically to fit the thesis’
objective and to fit architectural design choices.

3.1 Hadoop Cluster Setup

If you follow the whole upcoming guide, Figure 3.1 shows the architecture of the final
Hadoop cluster setup. The Hadoop environment distinguishes between the HDFS
layer (distributed storage layer) and the MapReduce layer (data processing layer).
HDFS can operate without MapReduce, but not the other way around because the
files which are processed and analyzed by the MapReduce programming model are
stored in HDFS. The NameNode, SecondaryNameNode and DataNodes are in the
HDEFS layer and the ResourceManager and NodeManagers are in the MapReduce
layer. Following this guide also gives you the opportunity to utilize MapReduce, but
as mentioned before, only the HDF'S layer components are part of the experiments
later.

17
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hadoopmaster
NameNode DataNode
ResourceManager NodeManager
SecondaryMameMNode

DataNode DataNode DataNode DataNode
NodeManager MNodeManager MNodeManager MNodeManager
hadoopslavel hadoopslave2 hadoopslave3 hadoopslaved

Figure 3.1: The final Hadoop architectural outcome of this guide.

3.1.1 Single-node Hadoop Cluster Setup

The following instructions cover a single-node Hadoop cluster setup for one node
(serverl). The exact same instructions are followed for the remaining four nodes.

1. Start by running an update and upgrade in the Ubuntu terminal. It updates
the list of available packages and their versions and then installs newer versions
of the packages you already have. See Figure 3.2.

ingvild@serverl:~$ sudo apt-get update
ingvild@serverl:~$ sudo apt-get upgrade

Figure 3.2: Ubuntu terminal commands: Update and upgrade.

2. Next, Oracle Java 8 has to be installed, see Figure 3.3. It is a required software
when using Hadoop.
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ingvild@serverl:~$ sudo add-apt-repository ppa:webupd8team/java
ingvild@serverl:~$ sudo apt-get update
ingvild@serverl:~$ sudo apt-get install oracle-java8-installer

# Check the java version
ingvild@serverl:~$ java -version
java version "1.8.0_161"

Figure 3.3: Ubuntu terminal commands: Install Oracle Java 8.

3. A Hadoop user (hduser) should be created for accessing HDFS and MapReduce,
see Figure 3.4. It is recommended to set up a new user group (hadoop) in order
to avoid security issues. Also, give correct and secure root privileges to hduser
by adding the content in Figure 3.5 to the /etc/sudoers file.

# Add a new user group named Hadoop

ingvild@serverl:~$ sudo addgroup hadoop

# Add a new user and set password and other optional info when prompted
ingvild@serverl:~$ sudo adduser ——ingroup hadoop hduser

# Log in to root

ingvild@serverl:~$ sudo su root

# Open the /etc/sudoers file

root@serverl:~$ sudo gedit /etc/sudoers

Figure 3.4: Ubuntu terminal commands: Create Hadoop user.

/ete/sudoers

# User privilege specification
hduser ALL=(ALL:ALL) ALL

Figure 3.5: Configurations in /etc/sudoers.

4. Secure Shell (SSH) needs to be installed and configured. Hadoop uses SSH
to access its nodes. For our single-node Hadoop setup, we therefore need to
configure SSH access to the node’s localhost, see Figure 3.6.
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# Install an OpenSSH server

ingvild@serverl:~$ sudo apt-get install openssh-server

# Log in to hduser

ingvild@serverl:~$ sudo su hduser

# Generate SSH key for the hduser account

hduser@serverl:~$ ssh-keygen -t rsa -P ""

# Add the key to the list of authorized keys

hduser@serverl:~$ cat ~/.ssh/id_rsa.pub » ~/.ssh/authorized keys

Figure 3.6: Ubuntu terminal commands: SSH configuration.

5. Hadoop does not work over IPv6, it only works over IPv4. Therefore, IPv6
needs to be disabled. Update the /etc/sysctl.conf file with the content in
Figure 3.8 and run a command to reboot the machine (see Figure 3.7).

# Open the /etc/sysctl.conf file
hduser@serverl:~$ sudo gedit /etc/sysctl.conf
# Reboot machine

hduser@serverl:~$ sudo reboot

Figure 3.7: Ubuntu terminal commands: Open file for disabling IPv6 and reboot
command.

/etc/sysctl.conf

# disable ipv6
net.ipv6.conf.all.disable_ipv6 = 1
net.ipv6.conf.default.disable_ipv6 = 1
net.ipv6.conf.lo.disable_ipv6 = 1

Figure 3.8: Configurations in /etc/sysctl.conf.

6. You have to decide on which Hadoop version you want to use. The thesis utilizes
Hadoop version 3.0.0 because it supports erasure coding and it is now considered
Generally Available (GA). It means that it is a more stable and safe version
to use than the previous -alpha and -beta versions. Its release date was 13
December 2017 and it supports six built-in storage policies. Replication, RS(5,
3), RS(9, 6) and RS(14, 10) will be the primary focus, and they will be tested
through experiments. If you have to update an already installed Hadoop cluster
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to a more recently developed version, you can follow a simple guide attached in
Appendix A. Now, go to the Apache Hadoop mirror site (http://apache.uib.no/
hadoop/common/) and download the preferable hadoop-X.Y.Z-src.tar.gz

file. Then follow the commands shown in Figure 3.9.

# Move the downloaded folder to the Hadoop directory

hduser@serverl:~$ sudo mv ’/home/ingvild/Downloads/hadoop-3.0.0’ /us-

r/local/hadoop

# Assign ownership of the Hadoop directory to hduser
hduser@serverl:~$ sudo chown hduser:hadoop -R /usr/local/hadoop
# Make directory for NameNode

hduser@server1:~$ sudo mkdir -p /usr/local/hadoop/hadoopData/hdfs/na-
menode

# Make directory for DataNode

hduser@serverl:~$ sudo mkdir -p /usr/local/hadoop/hadoopData/hdfs/-

datanode

Figure 3.9: Ubuntu terminal commands: Hadoop components setup.

7. Next you have to add the contents of Figure 3.10 at the end of the
file. Open it with the command: sudo gedit .bashrc.

.bashrc

.bashrc

# —— HADOOP VARIABLES -- #

export
export
export
export
export
export
export
export
export
export
export

JAVA_HOME=/usr/lib/jvm/java-8-oracle
HADOOP_HOME=/usr/local/hadoop

PATH=$PATH: $HADOOP_HOME/bin

PATH=$PATH: $HADOOP_HOME/sbin
HADOOP_MAPRED_HOME=$HADOOP_HOME
HADOOP_COMMON_HOME=$HADOOP_HOME
HADOOP_HDFS_HOME=$HADOOP_HOME
YARN_HOME=$HADOOP_HOME
HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
HADOOP_QPTS="-Djava.library.path=$HADOOP_HOME/lib"
PATH=$PATH: /usr/local/hadoop/bin/

# —- HADOOP VARIABLES -- #

Figure 3.10: Configurations in .bashrc.
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8. The next step is to configure some Hadoop configuration files. Add the con-
tents in Figures 3.11-3.15 to the respective files. Logged in as hduser, you
open the files by using this command in the Ubuntu terminal: sudo gedit
/usr/local/hadoop/etc/hadoop/*filenamex.

a) hadoop-env.sh: This file contains environmental variable settings in
Hadoop, such as where log files are stored. See configurations in Fig-
ure 3.11.

hadoop-env.sh

#The Java implementation to use
export JAVA_HOME=’/usr/lib/jvm/java-8-oracle’

Figure 3.11: Configurations in hadoop-env.sh.

b) core-site.xml: This file contains configurations that override the default
values for core properties in Hadoop. See configurations in Figure 3.12.
NameNode runs on the localhost on port 9000.

core-site.xml

<property>
<name>fs.default.name</name>
<value>hdfs://localhost:9000</value>
</property>

Figure 3.12: Configurations in core-site.xml.

¢) hdfs-site.xml: This file enables you to override several default values
that control HDF'S. See configurations in Figure 3.13. The dfs.replication
property sets the default replication factor that is used for each data block
of a file. dfs.namenode.name.dir sets the path to the directory where Na-
meNode stores the metadata of the file system. dfs.datanode.data.dir
sets the path to the directory where DataNode stores the actual blocks of
file data.
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hdfs-site.xml

<property>
<name>dfs.replication</name>
<value>1</value>

</property>

<property>
<name>dfs.namenode.name.dir</name>
<value>file:/usr/local/hadoop/hadoopData/hdfs/namenode</value>
</property>

<property>
<name>dfs.datanode.data.dir</name>
<value>file:/usr/local/hadoop/hadoopData/hdfs/datanode</value>
</property>

Figure 3.13: Configurations in hdfs-site.xml.

d) yarn-site.xml: This file enables you to override several default val-
ues that control the components used by YARN. YARN is one of the
components in MapReduce 2.0. See configurations in Figure 3.14.

yarn-site.xml

<property>

<name>yarn.nodemanager .aux-services</name>
<value>mapreduce_shuffle</value>
</property>

<property>

<name>yarn.nodemanager .aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>

</property>

Figure 3.14: Configurations in yarn-site.xml.

e) mapred-site.xml: This file enables you to override several default values
that control the job execution components in MapReduce. See configura-
tions in Figure 3.15.
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mapred-site.xml

<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>

</property>

Figure 3.15: Configurations in mapred-site.xml.

9. Now we are ready to format (done only once) and start Hadoop (see Figure 3.16).
To see whether Hadoop has started correctly the jps command should output
six services that are important to successfully run Hadoop as a single-node
cluster.

# Formatting NameNode
hduser@serverl:~$ hdfs namenode -format

# Start HDFS daemons/services
hduser@serverl:~$ start-dfs.sh

# Start MapReduce daemons/services
hduser@serverl:~$ start-yarn.sh

# See if Hadoop started correctly
hduser@serverl:~$ jps

30148 DataNode

30023 NameNode

31191 Jps

30792 NodeManager

30651 ResourceManager

30348 SecondaryNameNode

Figure 3.16: Ubuntu terminal commands: Hadoop startup.

10. In the same way as the starting commands you are able to stop the cluster
by using the commands shown in Figure 3.17. You can also monitor the
NameNode and the ResourceManager through a web interface in your web
browser. Go to http://localhost:8088 for monitoring the ResourceManager and
go to http://localhost:9870 for monitoring the NameNode.


http://localhost:8088
http://localhost:9870
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31729 Jps

hduser@serverl:~$ stop-dfs.sh
hduser@serverl:~$ stop-yarn.sh

hduser@serverl:~$ jps

Figure 3.17: Ubuntu terminal commands: Hadoop shutdown.

3.1.2 Multi-node Hadoop Cluster Setup

Now there are five individual single-node Hadoop clusters where all serve as both
a master node and a slave node. Next, they are tangled together to become one
multi-node Hadoop cluster with only one master node, see Figure 3.18. The master
node serves as both a master and a slave (not required), so there are five slave nodes
in the cluster in total. Instructions for setting up the multi-node cluster are presented

below.

Master Master Master Master Master

Single-node Single-node Single-node Single-node Single-node
cluster cluster cluster cluster cluster
h 4
Master
Slave Slave Slave Slave
(and slave)

Multi-node cluster

Figure 3.18: Going from single-node Hadoop clusters to a multi-node Hadoop

cluster.

1. The following should be done on all 5 nodes:

a) Update the /etc/hosts file with the nodes’ hostnames and corresponding
inet addresses, see Figure 3.19. You find the addresses by typing ifconfig
in the terminals and you can freely choose the hostnames. You also have

to choose which server that should be the Hadoop master node.
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/ete/hosts

129.241.208.152 hadoopmaster
129.241.209.211 hadoopslavel
129.241.209.200 hadoopslave2
129.241.209.178 hadoopslave3
129.241.208.247 hadoopslave4

Figure 3.19: Configurations in /etc/hosts.

b) Update the /etc/hostname file with the node’s corresponding hostname.
For instance, just put hadoopslavel at the beginning of the file.

¢) core-site.xml: Replace localhost with hadoopmaster.

d) hdfs-site.xml: Replace the value 1 with 3. It sets the default replication
factor.

e) mapred-site.xml: Replace the name with mapred.job.tracker and
replace the value with hadoopmaster:54311.

f) yarn-site.xml: Add the contents of Figure 3.20 to the file.

yarn-site.xml

<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>hadoopmaster:8025</value>

</property>

<property>
<name>yarn.resourcemanager .scheduler.address</name>
<value>hadoopmaster:8030</value>

</property>

<property>
<name>yarn.resourcemanager .address</name>
<value>hadoopmaster:8050</value>
</property>

Figure 3.20: Configurations in yarn-site.xml for multi-node setup.

g) Reboot all nodes: sudo reboot.
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2. The commands in Figure 3.21 should be done on all hadoopslave nodes.
hadoopslave? is used as an example. In hdfs-site.xml, remove the property
dfs.namenode.name.dir because now the master node is the only node that
should have a running NameNode.

hduser@hadoopslave2:~$ sudo rm -rf /usr/local/hadoop/hadoopData
hduser@hadoopslave2:~$ sudo mkdir -p /usr/local/hadoop/hadoopData/hdf-
s/datanode

hduser@hadoopslave2:~$ sudo chown -R hduser:hadoop /usr/local/hadoop
hduser@hadoopslave2:~$ sudo gedit /usr/local/hadoop/etc/hadoop/hdfs-
site.xml

Figure 3.21: Ubuntu terminal commands: Hadoopslave specific commands.

3. The following should be done on the hadoopmaster node only:

a) Goto /usr/local/hadoop/etc/hadoop/masters and paste "hadoopmaster"
at the beginning of the file.

b) In the /usr/local/hadoop/etc/hadoop/slaves file, remove localhost
and add the contents of Figure 3.22. As mentioned, hadoopmaster is also
a slave (recall Figure 3.1 and Figure 3.18).

/usr/local /hadoop/etc/hadoop/slaves

129.241.208.152 hadoopmaster
129.241.209.211 hadoopslavel
129.241.209.200 hadoopslave2
129.241.209.178 hadoopslave3
129.241.208.247 hadoopslaved

Figure 3.22: Configurations in /slaves.

¢) Next you can configure passwordless SSH to control all the slaves from
the master node, see Figure 3.23. This will make it easy to navigate
between the slave nodes without typing the password every time. After
the configuration, use the command ssh *hostname* to get access to the
respective slave’s command line.
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hduser@hadoopmaster:~$  sudo  ssh-copy-id -i  ~/.ssh/id_rsa.pub
hduser@hadoopmaster
hduser@hadoopmaster:~$  sudo  ssh-copy-id -i ~/.ssh/id_rsa.pub
hduser@hadoopslavel
hduser@hadoopmaster:~$  sudo  ssh-copy-id -i ~/.ssh/id_rsa.pub
hduser@hadoopslave2
hduser@hadoopmaster:~$  sudo  ssh-copy-id -i ~/.ssh/id_rsa.pub
hduser@hadoopslave3
hduser@hadoopmaster:~$  sudo  ssh-copy-id -i ~/.ssh/id_rsa.pub
hduser@hadoopslave4

Figure 3.23: Ubuntu terminal commands: Hadoopmaster specific commands.

d) Finally, you have to format the NameNode (done only once) and then you
can start the cluster, see Figure 3.24. Similar to the starting command,
you can stop the whole cluster with stop-all.sh from the hadoopmaster,
but you can also stop (and start) all the slaves individually. The services
that should now run on the nodes are shown in Figure 3.25 and you can see
that they correspond to the architecture presented initially in Figure 3.1.

hduser@hadoopmaster:~$ hadoop namenode -format
hduser@hadoopmaster:~$ start-all.sh

Figure 3.24: Ubuntu terminal commands: Starting cluster.

You should now have a fully working 5-node Hadoop cluster. Figure 3.26 shows 5 live
nodes in the web interface of the NameNode (http://localhost:9870) with nothing
stored within HDF'S yet. Next, see Section 3.2 for HDFS and erasure coding specific
commands to start using the Hadoop installation in practice.
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hduser@hadoopmaster:~$ jps
32083 DataNode

32740 NodeManager

31956 NameNode

13189 Jps

32599 ResourceManager
32280 SecondaryNameNode
hduser@hadoopslavel:~$ jps
7858 NodeManager

29973 DataNode

15289 Jps
hduser@hadoopslave2:~$ jps
9825 NodeManager

26173 DataNode

9069 Jps
hduser@hadoopslave3:~$ jps
10209 NodeManager

19111 Jps

31656 DataNode
hduser@hadoopslave4:~$ jps

9475 Jps

21844 DataNode
4485 NodeManager

Figure 3.25: Ubuntu terminal commands: Running 5-node cluster.
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Five live nodes after successful multi-node Hadoop setup.
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3.2 HDFS Storage and Erasure Coding Configuration

HDFS does not directly map to the Unix file system because it is a logical file
system [Spa]. For instance, you can not change directory (cd), you must specify the
whole path. Another example is that it is not possible to display the contents of
a file in a text editor (e.g. sudo gedit). Figure 3.27 presents some HDF'S specific
commands in order to store files within HDFS, enable erasure coding and to set an
erasure coding policy on a specific HDFS directory. Read the comments carefully.
Note that if you do not set a specific storage policy on a directory, Hadoop will use
triple-replication which is the default storage policy.

Figures 3.28, 3.29 and 3.30 demonstrate that Hadoop automatically preserves file
data when the system discovers node failure(s) and when the number of failures
does not exceed the fault tolerance of the storage policy. A file (1_gb.txt) is
encoded with RS(5, 3) and the data is available at all the nodes in the cluster
with three data nodes (original data) and two parity nodes (redundant data), see
Figure 3.28. Then, hadoopslave3 and hadoopslave4 are manually shut down and
marked as "down" in the web interface (see Figure 3.29). NameNode discovers this
and is now able to coordinate the regeneration of the temporarily lost data that
resided on hadoopslave3 and hadoopslave4. Finally, all the file data is available
at hadoopslavel, hadoopslave2 and hadoopmaster (see Figure 3.30). No file data
was lost during the demonstration, but the system cannot tolerate any additional
node failures without losing some parts of the original data. Note that the RS(5, 3)
storage policy can tolerate up to two node failures as it is explained in Section 2.3.

By default, Hadoop uses 10.5 minutes to mark a node as "down" when it is shut
down or when it fails due to hardware or software failures. When testing node
failures, it is more sufficient to have a shorter "time-to-down". You can change this
by editing the value of the dfs.namenode.heartbeat.recheck-interval property
in the hdfs-site.xml file on the hadoopmaster node. Note that the unit of the
value is in milliseconds.

If you want to create a random .txt file of a particular size for testing purposes
you can run a simple command in the terminal (base64 /dev/urandom | head -c
*number of bits* > *filename*.txt) and then put it in HDFS. Also, if you want
to set a particular block size on a file in HDFS (it is 128 MB by default) you can add
hadoop fs -D dfs.block.size=*number of bytes* at the beginning of the -put
command when you put files in HDFS. You can also override the default block size
value in the hdfs-site.xml configuration file.
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# Enable RS(5, 3). Note that Hadoop uses another notation for the RS codes
hduser@hadoopmaster:~$ hdfs ec -enablePolicy -policy RS-3-2-1024k

# Make HDFS directory "testDir"
hduser@hadoopmaster:~$ hadoop fs -mkdir /user/hduser/testDir

# Set erasure coding policy on testDir
hduser@hadoopmaster:~$ hdfs ec -setPolicy -path /user/hduser/testDir
-policy RS-3-2-1024k

# Put a locally stored 1 GB file (1_gb.txt) in testDir
hduser@hadoopmaster:~$  hadoop fs -put  /home/ingvild/Docu-
ments/1_gb.txt /user/hduser/testDir

# Check the contents of testDir
hduser@hadoopmaster:~$ hadoop fs -Is /user/hduser/testDir

# See the contents of 1__gb.txt in the terminal
hduser@hadoopmaster:~$ hadoop fs -cat /user/hduser/testDir/1_gb.txt

# Check the policy set on a file (or possibly a directory)
hduser@hadoopmaster:~$ hdfs ec -getPolicy -path /user/hduser/test-
Dir/1 gb.txt

Figure 3.27: Ubuntu terminal commands: HDFS storage and erasure coding setup.

File information - 1_gb.txt

Dovmload Head the file (first 32K) Tail the file (last 32K)

Block information - NS RS

Block ID: -9223372036854775488

Block Pool ID: BP-410861438-129.241.208.152-1519223053547
Generation Stamp: 1038

Size: 402653184

Availability:

» hadoopmaster
« hadoopslaved
« hadoopslave3
s hadoopslavel
» hadoopslave2

Figure 3.28: Node availability for 1_ gb.txt before node failures.



32 3. EXPERIMENTAL HADOOP ENVIRONMENT

Ik Last Block
Last Block pool
Node Http Address contact Report Capacity Blocks used Version
't 9866 hitp:/th 9864 2s 215m 450.64 GB 3 34479 300
(129.241.208.152:9866) | ME
(0.07%)
+ hadoopslavel:0866 http:!thadoopslavel:9864 Os 174m 221.23GB 3 34372 300
(129.241.209.211:9666) | MB
(0.15%)
+"hadoopslave?-9866 http://hadoopslave2:9864 25 17m 271.2GB 3 34373 3on
(129.241.209.200:3666) MB
(0.12%)
©hadoopsiave3:9866 Sun Apr 15
(129.241.209.178:9866) 14:02:59
+0200 2018
© hadoopsiaved:9866 Sun Apr 15
(129.241.208.247:9666) 14:02:56
+0200 2018
Showing 1 to & of & entries Previous Next

Figure 3.29: Two node failures in the 5-node Hadoop cluster.

File information - 1_gb.txt

Download Head the file (first 32K) Tail the file (last 32K)

Block informatiol

Block ID: -9223372036854775488

Block Pool ID: BP-410861438-129.241.208.152-1519223053547
Generation Stamp: 1038

Size: 402653184

Awvailability:

= hadoopmaster
+ hadoopslavel
« hadoopslave2

Figure 3.30: Node availability for 1_gb.txt after two node failures.



Experiment and Analysis of
Erasure Coding and Replication

This chapter presents how experiments are conducted and which tools and methods
are used to obtain the results. It gives a test plan and corresponding results. Finally,
the results are analyzed and discussed.

4.1 Experiment

The storage policies that are tested and compared are triple-replication (3-rep), RS(5,
3), RS(9, 6) and RS(14, 10). They are tested for three different file sizes (2.5 GB,
5GB and 10 GB) and for three different block sizes (64 MB, 128 MB and 256 MB).
Measurements include time of recovery of files (in seconds) and network traffic during
recovery of files (in GB). More details about performing the measurements are given
in Section 4.1.1. The measurements are managed and collected by an additional node
which is not part of the Hadoop cluster. Table 4.1 compares the storage policies in
terms of fault tolerance and storage overhead. Table 4.2 shows the HDFS nodes’
specifications and the network speed of the Hadoop rack. The specifications are the
same for all nodes in the cluster which consists of 15 physical nodes.

Table 4.1: Storage policies comparison.

Storage Policy | Fault Tolerance | Storage Overhead
3-rep 2 200%
RS(5, 3) 2 ~ 67%
RS(9, 6) 3 50%
RS(14, 10) 4 40%

33
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Table 4.2: Node specifications and network speed of the Hadoop rack.

Disk Type SSD

CPU Cores 2

Cache 3MB SmartCache
Disk Size 128 GB

Memory Size 4GB

Max Memory Bandwidth | 34.1 GB/s

Operating System Ubuntu 16.04 LTS (64-bit)

Network Speed 1000 Mb/s

Table 4.3 lists the experiments which are conducted in the thesis, in total 36 individual
experiments. They are tested with node failures where the nodes are manually shut
down. In all experiments, exactly one node is shut down because single failures are
the most common type of failures in distributed storage as it was pointed out in
Section 1.1 [RSG*15]. The node that is shut down is randomly chosen because in any
case the system has to access and transfer any k out of the n blocks of the file due
to the MDS property of the used erasure codes. The exception is the hadoopmaster
node. It is never shut down because NameNode resides on that node. In every
experiment, only one file is stored in HDF'S to avoid interference of the testing results
by a simultaneous recovery of other files. Also, for each storage policy, one additional
node will be participating in the experiments. This enables correct comparison of
the recovery time between 3-rep and RS codes. The number of participating nodes
for 3-rep is therefore 4 nodes. Likewise, for RS(5, 3), RS(9, 6) and RS(14, 10) the
number of participating nodes is 6, 10 and 15 nodes, respectively.

Next, a walk-through of the execution of experiment number 11 is presented. First,
5 nodes are turned on and marked as "in service" in HDFS. Then, a text file of size
2.5 GB filled with random text is stored in HDFS with RS(5, 3) storage policy and
with 128 MB block size. The file is encoded and stored in the 5 nodes. Then one
additional node is turned on and is a part of the experiment’s participating nodes.
As seen in Figure 4.1, it has no data stored and is "free" to be allocated to the file’s
available nodes when one of the other fails. Further, one of the available nodes is
shut down and after a few seconds marked as "down". From this point, the time of
recovery and network traffic are measured and noted. Then the file is deleted from
HDFS and a next experiment is performed.
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Table 4.3: Test plan for 36 experiments including different storage policies, file sizes
and block sizes.

Experiment # Policy File Size (GB) | Block Size (MB)
1-3 3-rep 2.5 64/128/256
4-6 3-rep 5 64/128 /256
7-9 3-rep 10 64/128/256
10-12 RS(5, 3) 2.5 64/128 /256
13-15 RS(5, 3) ) 64/128/256
16-18 RS(5, 3) 10 64/128/256
19-21 RS(9, 6) 2.5 64/128/256
22-24 RS(9, 6) 5 64/128,/256
25-27 RS(9, 6) 10 64/128/256
28-30 RS(14, 10) 2.5 64/128,/256
31-33 RS(14, 10) 5 64/128/256
34-36 RS(14, 10) 10 64/128 /256
Last Block
Last Block pool
Node Http Address contact Report Capacity Blocks used Version
+ hadoopmaster 9866 hadoopmaster: 9864  2s 34Tm 11292 GA 7 B60.91 3.00
{129.241.200.118:9866) - MB
10.74%)
+hadoopslavel: 9866 tt sdoopslavel: 9864  0s 311m 112.92 GB 7 8500 MB 300
(129.241.209.174:9866) l (0.74%)
¥ hadoopslave2: 9866 httpfhadoopslave? BG4 Qs 7am 112,92 GA T BR0.92 3.0.0
(129.241.200.183:9866) | MB
(0.74%)
# hadoopslavel: 9866 tt adoopslavel:OB64  Os 238m 112.92 GB 7 B6O.92 3.00
{129.241.200.230:9866) l MB
(0.74%)
¥ hadoopslaved 9866 tt adoopslaved: 9864 1s 313m 112.92 GB T 850.82 3.0.0
(129.241.209.137:9866) l MB
(0.74%)

+"hadoopslave5: 9866 ttpiifhadoopslave5: 9864 1s om 112.92 GB @ 164 KB 3.0.0
(129.241.208.82:9866) l (0%}

Figure 4.1: Experiment number 11 with RS(5, 3) has 5 available nodes and one
additional free node (hadoopslaveb).
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4.1.1 Obtaining Time of Recovery and Network Traffic During
Recovery

Time of recovery (recovery duration) refers to the time spent from the moment when
a node is marked as "down" and until the file data is recovered and placed in a
new node. The reallocation of a new node (when another fails) makes the storage
of a particular file as reliable as it can be with the implemented storage policy, it
optimizes the storage policy. In case of 3-rep, time of recovery means the time from
the moment when one node (out of three) is shut down and until the file data is
copied to a new node. In case of RS codes, the time of recovery means the time from
the moment when one node is shut down and until the file data is recovered and a
new node is allocated so that there are always enough available nodes to support the
RS codes. Network traffic during recovery refers to the amount of network traffic
transferred from the available nodes to the newly added node where the lost data is
recovered during the time interval measured as the time of recovery.

Wireshark is used to measure the time of recovery and the network traffic during
recovery. It is a network analysis tool which displays network traffic in real-time with
detailed information about what is happening in the network at a low level [Wir].
Port mirroring is used to capture all the network traffic between the participating
nodes in the recovery process. It is a method used on a managed network switch to
copy all incoming and outgoing traffic on specified switch ports to a selected port
where a monitoring device is attached. On that device a network analysis tool is
installed, in this case Wireshark, which displays the copied traffic flowing through
the switch. Figure 4.2 illustrates the test environment set up for the experiments
and how the network switch, the HDFS nodes, Wireshark and the monitoring device
are connected.

A managed switch (in this case HP ProCurve 2824) is configured to support port
mirroring. Figure 4.3 shows a screenshot of the menu interface of the switch which
is accessed through the switch console. It is set to monitor port 1-5 and port 15
through port 17 (monitoring port). That specific setup is used to monitor the traffic
during the RS(5, 3) experiments. The allocation of ports to HDFS nodes can be
freely chosen, but always be aware of which nodes that are connected to which ports.
In particular, port 1-15 are set to be monitored when testing RS(14, 10).
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Router
== Wireshark Monitoring
Internet . device

Mirrored s
packets '
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Figure 4.2: Test setup including port mirroring and Wireshark.

Jdev/ttySO - PuTTY

Switc

19 Enabled [Mal :
Port 3

Honitor

Figure 4.3: Menu interface of HP ProCurve 2824 Switch for configuring port
mirroring. This example configuration enables port mirroring for RS(5, 3).
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Figures 4.4-4.6 illustrate how the time of recovery and the network traffic during
recovery are obtained in Wireshark. They show the execution of experiment number
29 (see Table 4.3). The same procedure is followed for all experiments. Figure 4.4
displays packets/sec during the experiment. It is easy to see when the recovery
process in HDF'S started and ended (when the traffic is much higher than the "normal"
traffic in a stable system). The network traffic of interest is captured during the time
interval between t0 and t1. The timestamps of the first and last packets of particular
sizes which stands out from the "normal" traffic are used to filter out the relevant
traffic.

Wireshark 10 Graphs: wireshark_enp0s25_20180512142758_bnwx8v
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Figure 4.4: Packet capture start time (t0) and end time (t1) for experiment number
29.

Figure 4.5 shows the packet capture display in Wireshark. A display filter (regular
expression) is set to only filter out HDF'S traffic (network traffic between participating
nodes). TCP packets within the time interval are filtered out, and duplicates are
excluded since a packet transfer for instance from hadoopslave7 to hadoopslave8
appears twice (as incoming and outgoing packets respectfully). Therefore, one of
them has to be canceled out.
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Figure 4.5: Snapshot of the packet capture display in Wireshark with a filter for
HDF'S traffic (experiment number 29).

When the filter is properly set, Wireshark provides a summary of the total capture
as it is shown in Figure 4.6. The "Displayed" column refers to the filtered traffic.
Along with other measurements, the time span in seconds and number of bytes are
displayed, which are the measurements of interest in this thesis. It also shows the
percentage of non-captured packets of the total capture. The issue of non-captured
packets related to port mirroring is explained more thoroughly in Section 4.2.3.
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Details

File

MName: Jimpiwireshark_enp0s25_20180512142758_brnwx8v.pcapng

Length: 2725 MB

Format; Wireshark!... - pcapng

Encapsulation: Ethernet

Time

First packet 2018-05-12 14:27:58

Last packst: 2018-05-12 14:29:57

Elapsed: 00:01:58

Capturea

Hardware: Intel{R} Core{TM) i5 CPU 670 @ 3.47GHz (with S5E4.2)

05: Linux 4.13.0-41-generic

application: Dumpcap (wireshark) 2.4.6 (Git v2 4.6 packaged as 2.4.6-1-16.04.0)
Interfaces

Interface Dropped packets Capture filtar Link type Packet size limit
enpls25 33626 (3 %) nonge Ethemet 262144 bytes
Statistics

Maasurement Captured Displayed Marked
Packets 1096042 359459 |87.5%)
118.891 76.893

eeTage 9218.9 144739

Average packet size, B 2452.5 25785 —

2688157930 [2274091678) 92 0%) 0

Average bytes/s 22 M 32 M —_
Average bits/s 180 M 257 M —_

Figure 4.6: Summary with details from Wireshark capture. It displays various
information, the most relevant in this case is the time span and number of bytes
which are highlighted in red (experiment number 29).

4.2 Result and Analysis

This section presents the results of the experiments given in Table 4.3. First, the file
recovery time for different scenarios is compared and then for the same scenarios,
the network traffic during recovery is compared. The results are mainly presented
through graphs because they illustrate possible differences well. Finally, an analysis
and discussion of the results are presented. If exact measurements are of interest,
full results in tabular form are attached in Appendix B.

4.2.1 Comparison of Time of Recovery

Figure 4.7 compares the time of recovery for 2.5 GB files. The block sizes do not
significantly affect the time in general, but RS(14, 10) with 256 MB block size stands
out. The time is around 1/3 higher than the time for 64 MB and 128 MB block
sizes, even when several runs of the experiment is performed. 3-rep had the best
performance, but it is relatively close to RS(5, 3). RS(9, 6) had the longest recovery
duration. Also, note that 128 MB block size (yellow line) gives a slightly better
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performance for all storage policies. Figures 4.8 and 4.9 compare the time of recovery
for 5 GB and 10 GB files respectively. They show higher recovery duration compared
to experiments with 2.5 GB files, but they show almost the same results as the 2.5 GB
file experiments in terms of performance from best to worst: 3-rep - RS(5, 3) - RS(14,
10) - RS(9, 6). They also show that 128 MB block size gives a slightly shorter recovery
duration.

Figure 4.10 presents the comparison of all the file sizes in one line diagram, where
the round bullets represent 2.5 GB files, the square bullets represent 5 GB files and
the triangle bullets represent 10 GB files. This diagram is included to show that the
time of recovery increases as the file size increases. For each storage policy, the time
increases almost linearly with the file size. That makes sense because the file size
is always the double (2.5, 5 and 10). For instance, in case of RS(5, 3) the time for
2.5 GB files is around 40 seconds, the time for 5 GB files is around 80 seconds and the
time for 10 GB files is around 160 seconds. Likewise, for the other storage policies,
this "linear" increase in recovery time is displayed.
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Figure 4.7: Comparing time of recovery for 2.5 GB files for different policies and
block sizes.
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Figure 4.9: Comparing time of recovery for 10 GB files for different policies and
block sizes.
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Figure 4.10: Comparison of time of recovery for all file and block sizes.

4.2.2 Comparison of Network Traffic During Recovery

This subsection presents a comparison of the network traffic during recovery for
all the experiments (see Figure 4.11). The traffic for different block sizes with the
same file size is not displayed separately because the differences are so minimal.
Figure 4.11 shows that the traffic in all experiments is almost equivalent to the size
of the file that participated in the experiments. The bullets in the diagram represent
the same metrics as explained for Figure 4.10. There is almost 2.5 GB network traffic
for experiments including 2.5 GB files, and correspondingly almost 5 GB and 10 GB
network traffic for experiments with 5 GB and 10 GB files, respectively. Generally,
there are not many differences in the traffic for the different storage policies and block
sizes. The most important thing to point out is that the network traffic increases with
the file size. This applies to all storage policies and for all block sizes. Another thing
to mention is that 3-rep and RS(5, 3) show slightly more varying traffic compared
to RS(9, 6) and RS(14, 10). That is because more packets are not captured in
Wireshark. There are more packets/second in the 3-rep and RS(5, 3) experiments
which caused more packets not to be captured. An important thing to notice is that
these packets are not dropped, instead they are not captured because the packet
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capturing method is not always able to capture all packets on the network.

Comparing Network Traffic During Recovery
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Figure 4.11: Comparison of network traffic during recovery for all file and block
sizes.

4.2.3 Discussion

This section provides a more complete discussion of the test results with explanations
that are related to the theory presented in Chapter 2. In addition, some limitations
of the used method (port mirroring), the software tool (Wireshark) and hardware
components are discussed.

Utilizing HDF'S storage with 128 MB block size shows slightly better performance
in terms of recovery duration compared to 64 MB and 256 MB block sizes. This
corresponds to Apache Hadoop’s choice of having default block size in HDF'S set to
128 MB, which is a good finding. Further, one experiment stood out from the others.
A 2.5 GB file stored with RS(14, 10) and 256 MB block size results in a notably longer
recovery duration. Since the block size is rather big, there is only one block stored on
each of the 14 nodes. A possible reason for the long recovery duration is when such
a small file as 2.5 GB (in a big data context) is split into rather big chunks (256 MB),
HDFS has trouble keeping the time down when the participating nodes only hold
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one block each. Despite that, the block sizes show in general minimal impact on the
recovery duration in the specific test environment set up for the thesis.

The recovery duration increases with the code length. This is supported by the theory
that erasure coding takes more time to recreate lost data compared to replication
(see Section 2.3). One of the reasons is because more disk I/O’s are required in order
to recover a file when one of its storage nodes fails. Namely, data from % nodes is
accessed and transferred with an (n, k) code compared to replication. Moreover,
an interesting finding is that RS(9, 6) shows longer recovery duration than RS(14,
10). This somehow conflicts with the theory presented initially. There can be many
reasons related to the concrete setup such as specific network speeds, buffer speeds
of the network cards and speeds of the network devices. All these parameters can
affect the recovery duration (time of recovery). Engineers are normally required to
fine-tune all of these parameters to specifically fit scenarios of interest.

In case of network traffic during recovery, the results completely confirm theory.
That is a great match. The traffic is almost equivalent to the file sizes, independent
of storage policy and block size. Note that because of non-captured packets the
traffic is always a little less than the size of the files. Overall, the experiments had
an average of 3.9% non-captured packets. The network traffic results reflect theory
because in case of 3-rep the whole file of a particular size is recovered, e.g. 5GB
traffic is transferred to recover files in experiments including 5 GB files. In case of
an encoding of a file of size 5 GB with an RS(n, k) code, the file is first split into &
segments and stored in k& nodes where each node holds 5/k GB of the file. Also, r
(n-k=r) redundancy nodes are added. In order to recover one node (5/k GB data),
data from k nodes is accessed and transferred. Therefore, the total amount of repair
traffic is k*(5/k) GB = 5GB. This applies to all RS codes explored in the thesis.
Recall the theory presented in Section 2.3.

The chosen method for capturing network traffic is port mirroring. That has some
limitations. Not capturing all packets can happen when using this method, especially
when the traffic is really high, due to overload on the mirroring wire. Testing also
20 GB files was the original plan, but the method causes too many non-captured
packets during the recovery process, so Wireshark does not display precise enough
results. Also, robust managed network switches with the possibility to enable port
mirroring are quite expensive. Because of these limitations, other methods for
capturing network traffic can be more applicable especially when testing bigger
files. Methods like machine-in-the-middle, man-in-the-middle (software) or utilizing
a network TAP can be explored for this kind of usage. They can all be used in
correlation with Wireshark. Also, other network analysis tools like Nload, iftop or
iptraf can be used to replace Wireshark. They require all the HDFS nodes to run
the tool during recovery and a script to collect all the traffic logs and to filter out
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the relevant information.

Finally, some comments about the actual storage/encoding of files in HDFS follow.
There are not exact measurements collected for this, but after monitoring all 36
experiments individually there are remarkable differences in the time of encoding for
the different storage policies. The encoding duration for RS codes is much shorter
than the storage process for 3-rep. The RS(14, 10) encoding processes are the
quickest. This supports theory because the storage overhead is bigger for 3-rep, there
are more actual data to store (200% overhead). As the RS code lengths get bigger,
the storage overhead gets smaller (see Table 4.1) and so does the encoding duration.



Conclusion and Further Work

5.1 Conclusion

The process of setting up a multi-node Hadoop cluster is proven to be convenient
through this work. Once a single-node cluster is configured it is rather straightforward
to add as many DataNodes as preferred following the same procedure. HDF'S requires
specific terminal commands in order to manage and interact with the file system.
They differ from the Unix file system commands, but they are perceived as user-
friendly. Erasure coding is easy to enable and HDFS automatically encodes files
correctly and reliably when enough cluster nodes are provided.

We can conclude that both the network traffic and duration of a file recovery process
increase as the file size increases. Additionally, based on the results of the experiments
conducted in the testing environment set up for the thesis, the following conclusions
can be drawn. Triple-replication is the best choice when the objective is getting the
shortest possible time of recovery. If a little more time for file recovery is tolerated,
then RS(5, 3) is a good choice. Less storage overhead is needed, while still the
same level of reliability is offered (triple-replication and RS(5, 3) have both a fault
tolerance of 2). RS(14, 10) is probably the overall best storage policy of choice.
It has a shorter recovery duration than RS(9, 6) and offers a fault tolerance of 4
node failures. It provides the least storage overhead (40%) and offers a high level of
reliability. Also, choosing the default 128 MB block size in HDF'S is a clever choice
because it has been proven through this work that it always scored the highest on
performance in terms of time of recovery.

Conventional MDS erasure codes that are not optimized for recovery, such as Reed-
Solomon codes, transfer the same amount of traffic as the file size. This comes from
the k£ out of n property. The results demonstrate that the amount of traffic during
recovery is the same even for different RS parameters. The only difference is the
amount of data that is recovered. That depends on the code parameters, i.e. k.
HDF'S is normally used to store big data. Therefore, using pure RS codes in HDFS

47



48 5. CONCLUSION AND FURTHER WORK

may not be the optimal choice because it would take a really long time to recreate
lost data and require tremendous amounts of network traffic. In other works it is
proven that optimized erasure codes can provide better performance in terms of e.g.
network traffic and recovery time (see Section 2.4). So, optimized erasure coding
variants are probably the most optimal storage policies to select in terms of both
performance and reliability.

5.2 Further Work

It would be a natural extension of this work to test other RS codes, such as RS(16,
12), RS(20, 18), RS(20, 16), or even the popular RS(255, 223). That will give a
broader view of which codes are most suitable for various file and block sizes. For
some of those codes there will be a need for a lot of extra nodes, but all those
situations are addressable in practice.

Also, testing much bigger file sizes (such as hundreds of gigabytes or even tens of
terabytes) will give more realistic and practical test results because HDFS is normally
used to store big data sets in a production environment. Additionally, comparing
other measurements such as time of encoding and decoding can be interesting [Vel18].
Another direction is to study the performance when the maximum tolerated number
of nodes have failed for various RS codes.

Testing other types of erasure codes in Hadoop is also necessary, such as Regenerating
Codes (RGCs) and Locally Repairable Codes (LRCs) [RSGT15, GKJS17, KGO 16a,
KG@16b]. Their designs differ from RS codes, and they have been studied and used
in practical systems, but they are not given yet in any official version of Hadoop.
RGCs minimize the repair traffic, while LRCs minimize the number of contacted
nodes during a node repair.

This work utilizes a one-rack Hadoop cluster. Placing nodes on different racks will
support rack awareness which will give the opportunity to test for instance network
switch failures, and not only failures on node level [Fouc]. Also, in the present work
physical nodes are used to build the Hadoop cluster. Testing and comparing the
performance of erasure coding and replication on virtual servers vs. physical servers
can be an interesting point of view because virtualization and cloud computing are
more and more used.
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Upgrading Hadoop Single-node
Cluster

This appendix presents an easy guide on how to upgrade the Hadoop version on a
single-node Hadoop cluster.

1. Stop the Hadoop cluster (stop-all.sh).
2. Run the commands sudo apt-get update and sudo apt-get upgrade.
3. Check the java version (java -version). Should be Java 8.

4. Download the preferable hadoop-X.Y.Z-src.tar.gz file from the Apache
Hadoop mirror site (http://apache.uib.no/hadoop/common/) and extract the
Hadoop folder in a location of your choice.

5. Navigate to the /usr/local/hadoop/etc/hadoop directory and copy five files
(listed below) to the recently extracted Hadoop folder. Here you replace the
copied files with the existing ones.

— hadoop-env.sh
— core-site.xml
— hdfs-site.xml
— yarn-site.xml

— mapred-site.xml

6. Run the commands shown in Figure A.1.
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# Uninstall and remove old version
hduser@hadoopServer:~$ sudo rm -r -f /usr/local/hadoop

# Move the extracted Hadoop folder to the Hadoop directory
hduser@hadoopServer:~$ sudo mv /*path to the extracted Hadoop folder*
Jusr /local /hadoop

# Assign ownership of the Hadoop directory to hduser
hduser@hadoopServer:~$ sudo chown hduser:hadoop -R /usr/local/hadoop

# Upgrade DFS from the Hadoop directory
hduser@hadoopServer: /usr/local/hadoop$ start-dfs.sh -upgrade

# Upgrade YARN
hduser@hadoopServer: /usr/local/hadoop$ start-yarn.sh -upgrade

# If the components run properly, finalize the HDF'S upgrade
hduser@hadoopServer: /usr/local/hadoop/bin$  hdfs dfsadmin -
finalizeUpgrade

# Check the new Hadoop version
hduser@hadoopServer:~$ hadoop version

Figure A.1: Ubuntu terminal commands: Upgrading single-node Hadoop cluster.
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