@NTNU

Norwegian University of
Science and Technology

Data-oriented Design approach for
processor intensive games

Walid Faryabi

Master of Science in Cybernetics and Robotics
Submission date: September 2018
Supervisor: Geir Mathisen, ITK

Norwegian University of Science and Technology
Department of Engineering Cybernetics

NTNU - Trondheim
Norwegian University of
Science and Technology

MASTER THESIS

Data-oriented design for processor
intensive games

Author: Supervisor:
Walid FARYABI Geir MATHISEN

September 2, 2018

Norwegian University of Science and Technology

Department of Engineering Cybernetics

Abstract

The gap between processor and memory speeds have motivated for an alternative method
for software development with focus on data and efficient use of memory, data-oriented
design. The primary objective of this design is to utilize the slower memory units in a
more efficient way through less cache-misses. The focus is solely on the data in an
application and the way they are stored in memory. This design will be compared
against the popular programming paradigm, object-oriented programming, to analyze
whether a memory-focused application will perform better. This thesis will primarily
focus on processor intensive applications where the processor must continuously write
and read data from the memory units. This type of application is most commonly found
with real-time applications such as video-games, which will be the main focus area for
this thesis.

This thesis will present three different applications that will be used to compare the
two different programming paradigms, with the goal of comparing which implemen-
tation performs better. The first application will involve the implementation of an ar-
chitectural pattern, the entity-component-system, which can be combined with data-
oriented principles to create more processor efficient applications. The second appli-
cation will involve a simulation implemented in Unity with data-oriented design. The
final part will involve conversion of an existing video-game that is object-oriented, into
a more data-oriented solution. A pure data-oriented solution was not achieved for the
conversion due to limitations imposed by the data-oriented features in the game en-
gine, as a result of the engine being in experimental stage.

The results indicate that the data-oriented design performs better in cases where the
processor must perform work on a large set of data. The design is more optimized for
applications that require same type of work on large data sets as this allows for better
spatial locality. Furthermore, the use of data-oriented principles allows for well estab-
lished separation between data and logic, making it easier to introduce new type oflogic
and data into an application. However, the results gathered can not be completely at-
tributed to the underlying design, as there are external factors impacting performance

due to the development environments used.

ii
Problem Statement

Object-oriented design is a widely used programming paradigm in the video game in-
dustry. The concept of objects allows for a higher degree of modularity and readability.
However, this approach is not efficient when it comes to memory access, especially for
large memory intensive applications such as video games. A proposition is to use data-
oriented design, where the application is designed with focus on data instead of objects.
This design approach has some several advantages, such as easier parallelization and
better locality of reference. Performance can be improved by reducing the number of
cache misses through data-oriented design, which will as a result save number of clock
cycles spent for fetching data. This could in theory give better performance in different
variety of applications such as video-games.

Based on the statement above, this thesis will go through the following points:
¢ Relevant technology around data-oriented design will be researched.

* Performance of object-oriented design versus data-oriented design will be inves-

tigated.

¢ Based on the previous points, a new design for an existing video-game currently

in development will be suggested.

* As far as time permits, the suggested design will be implemented.

iii
Preface

This thesis is written for the department of engineering cybernethics at the Norwegian
University of Science and Technology. All students of the department are required to
hand in a master-thesis in their last semester in order to complete their master degree.
Part of the work described in this thesis is in cooperation with Pineleaf Studio, a video-

game development company.

The idea behind this thesis was given by their technical leader, Fredrik Chrislock, who
wanted to analyze alternative methods of optimization for their server due to costs. The
company provided me with their codebase for a video-game currently in development.
The existing codebase was modified by me to experiment with data-oriented principles.
As a part of the cooperation, I was allowed to stay in their offices in Trondheim from
April to end of June. Throughout this period I received guidance from Fredrik when it
came to general game design, the architecture of their game, use of Unity and potential
improvements in efficiency. The work related to data-oriented design principles were
solely done by me, as I worked indepedently with the codebase. Unfortunately, the re-
sults from this thesis were not discussed with the company due to me staying in Oslo
for the last months of this thesis. Furthermore, all other work not related to the video-

game were solely done by me with no input from the company.

Few number of tools were required for this thesis. For hardware, only a computer with
a graphics processing unit was needed. For software, Unity was used as a game engine
and Microsoft Visual Studio as IDE. This thesis was officially started on the 9th of April

and concluded on 3rd of September.

Walid Faryabi July 2018

iv
Acknowledgment

I would like to thank Geir Mathisen for accepting this thesis and being my supervisor.
His monthly meetings and guidance on writing this thesis made it easier for me to get
through.

I would also like to give thanks to the whole Dwarfheim team for assisting me with this
thesis and giving me the chance to have a very fun thesis. A special thanks is also given
to Fredrik Chrislock for guiding me through the thesis and coming with the problem
description.

Finally, I would like to give thanks to my parents, Hassan and Zohrah, for making my life
easier by providing with all the basic necessities required, allowing me to focus solely
on writing this thesis. It would be a lot more difficult without their support.

WEF

Contents

Summary and Conclusions
Preface

Acknowledgment

Introduction

1.1 Problem Formulation
1.2 Goal Of ThisMaster Thesis
1.3 Required work for thisthesis

1.4 Cooperation with Pineleaf Studio

Literature Study and Theory

2.1 Memoryin modern COmMputers« oo v v v v v v v o

2.2 Data-OrientedDesign
2.2.1 Data-oriented design principles

2.2.2 Entity ComponentSystem,

Functional Specification and Evaluation Criteria

3.1 Evaluationcriteria e
3.1.1 FrameRate.
3.1.2 Cpuusagetimet

3.2 Entity-component-systemin C#
3.2.1 Specifications L e
3.2.2 Evaluating against object-oriented programming

3.3 Entity-component-system in Unity - Pure data-oriented solution
3.3.1 Evaluation of the application

3.4 Converting DwarfHeim into a data-oriented solution
3.4.1 Specifications for conversion 0oL

3.4.2 Evaluationoftheconversion

iii

iv

13
13
18

vi CONTENTS
4 Materials and Methods 31
4.1 Development Environment, 31
4.1.1 GameEngine-Unity 31
4.1.2 Different terminologies and conceptsinUnity 32
4.1.3 Scripting in Unity - Adding behaviour to game objects 34
4.1.4 Analyzing performance - Unity Profiler 35
4.1.5 ProgrammingLanguage-C# 36
4.1.6 Programming Language-Python 36
4.2 Measuringthe framerate 38
4.2.1 Measurement of framerateforUnity 38
4.2.2 Frame rate counter outside Unity 38
423 Refreshrate 39
4.3 Entity Component System - Custom Implementation. 39
4.3.1 [Initial entity-component-system architecture details 39
432 Improveddesign 43
4.3.3 Functional testing of the ECS implementation 46
4.3.4 Performance tests for the ECS implementation 47
4.3.5 Integrating OpenGL with the ECS implementation 49
4.3.6 Test Application using the entity-component-system implementa-
Hon 52
4.3.7 Simulatingthesinewave 53
4.3.8 Simulating a sine wave using opengl and object-oriented principles 54
4.3.9 Simulating a sine wave using opengl and the custom entity-component-
system implementation 54
4.3.10 The sine wave simulationtests 55
4.4 Entity-Component-SysteminUnity 57
4.5 Pure data-oriented applicationinUnity 59
4.5.1 Objected-orientedsinewave 59
452 Data-orientedSinewave L oL .. 60
4.5.3 Testing of the sine-wave simulations 62
4.6 Data-oriented design for Dwarftheim 63
4.6.1 Computer architecture of Hybrid/Pinecone 63
4.6.2 Methodology for converting to data-oriented design 72
4.6.3 Making it more applicableonaserver. 88

4.6.4 Testing 89

CONTENTS

5 Results

5.1 Entity-component-system implementation

5.1.1 Functional Test .

5.1.2 Performance tests for the different versions of ECS

5.1.3 OpenGL sine wave simulationtests

5.2 Sine wave simulation . .

5.2.1 Sine wave simulationresults

5.3 DwarfHeim Conversion
5.3.1 Functional results

5.3.2 Performance test

6 Discussion

6.1 Discussion of Results . .

6.1.1 Custom C# implementation of Entity-Component-System

6.1.2 Limitations of the custom ECS implementation

6.1.3 Meeting the specifications

6.1.4 Potential issues with the currentdesign

6.1.5 Sine-wave simulationresultsinUnity

6.2 DwarfHeim conversion to a more data-oriented design

6.2.1 Functional features of the data-oriented design

6.2.2 Performanceresults, .

6.2.3 Inspecting time values for the converted parts

6.2.4 A hybrid solution vs pure data-oriented

6.2.5 Theimplications oftheresearch

6.3 Generalresults

6.4 Developing with the entity-component-system

7 Conclusion

8 Further Work

8.1 Recommendations for the custom entity-component-system

8.2 Recommendations for the DwarfHeim conversion

Bibliography
A Acronyms

B Additional Information

B.1 Concepts in Unity - Some additional concepts

B.1.1 Graphics in Unity

93
93
93
93
94
94
96
97
98
99

105
105
105
108
108
108
109
112
112
112
114
115
115
116
117

119

121
121
122

123

127

CONTENTS 1

B.2 Simple example of scriptingin Unity. 135
B.3 ECScustomimplementation 137
B.3.1 Example of system structure 137
B.3.2 Example of inject-attribute with componentDataArray. 139
B.3.3 Optimizationsteps it 139
B.3.4 Reducing number of boxing and unboxing 140
B.3.5 Reducing number of function calls through anotherclass 140
B.4 OpenGlprogramcode 141
B.4.1 Shadercode 141
B.4.2 Code for drawing a simple triangle. 142
B.5 Prototype-based programming 142
B.6 Programming language C# and its features 143
B.7 Sine-wave simulationinUnity 147

B.7.1 Accessing mesh and material data with entity-component-system . 147
B.7.2 Sine-wave simulation, profiler stats with profiler data exporter . . . 148

B.8 Unity profiler data exporter results for DwarfHeim 148

Bibliography 169

CONTENTS

Chapter 1

Introduction

Performance of computers are rapidly growing. Processors are getting more complex
with multiple cores, faster clock speeds and larger internal caches. Memory units such
as random-access-memory is getting better access times, larger bandwidth and larger
capacity. The improvements in performance allows for more complex applications
with better performance. However, the gap between processor performance and mem-
ory performance is growing, with processor performance outperforming memory at a
faster rate(1). As this gap increases, the more powerful processors can be stalled by the

memory units and its access times.

oo cpu

100 fom=m=rmr == mmm e et o h e

DRAM

1980
981
982
983
984
985
986
987
988
989
990 -
991
1992
1993
994
995
996
997
998
1999
2000

Figure 1.1: Performance gap between processor and memory (1)

Alarge amount of applications are developed in an object-oriented manner. Data fields
and the logic around these are encapsulated into "objects". This type of design paradigm
have several benefits such as re-usability, less maintenance and design benefits that al-

4 CHAPTER 1. INTRODUCTION

lows large teams to work together efficiently. One could also argue in favor of object-
oriented design by the claim that working with objects are more intuitive as they can
represent real world attributes in a more intuitive way for humans. However, this de-
sign paradigm do not care about the performance of the memory. In this kind of de-
sign, the objects are normally stored on a data structure called heap, which allocates
objects on random addresses on the main memory unit(2). The lack of coherence be-
tween placement of objects on the main memory increases cache misses. This can have
detrimental effect on the performance for applications with a significant number of dy-

namic allocations. This is especially the case for video-games.

The performance of complex applications will be more affected by the memory unit
as the performance gap increases. This holds true if applications are designed in an
object-oriented way. For this reason, another design paradigm will be researched and
analyzed in this thesis, data-oriented design. Data-oriented-design is a programming
paradigm where the applications are designed around data instead of objects. Data lay-
out and how data flows becomes the fundamental criteria of the design. The focus of
this approach is to reduce cache misses by inspecting how data related to each other
is used and laid out on the memory. This design focuses more on the limitation of the
memory unit and how the processor fetches data.

1.1 Problem Formulation

Given the introduction above, the problem formulation can be stated as the following:

«How does data-oriented design compare to object-oriented design in com-

puter games, when it comes to performance?»

In this thesis, the performance criteria will mostly be based on frame rate. Furthermore,
the usability of data-oriented design will also be discussed. The scope of this thesis is
only limited to few cases. These cases involves scenarios where large number of objects
are rendered. Due to this limitation, this thesis not applicable for all types of video

game, such as games with simpler structure consisting of less objects rendered.

1.2 Goal Of This Master Thesis

The two design paradigms will be compared and analyzed in this thesis. Comparing the
two solutions will give insight in how memory-access impacts performance. In reality,
what this thesis really tests for, is how much of a better performance an application

gains by having linear memory-layout for its data. A structure like this allows for less

1.3. REQUIRED WORK FOR THIS THESIS 5

cache-misses, and thus gives a better understanding of memory-bottleneck. In order
to assess the differences, several test applications will be constructed for this thesis.
First, a custom entity-component-system implementation following data-oriented de-
sign principles will be constructed in order to directly test the effect of linear memory-
layout. Opengl will be integrated into this architecture and used to simulate graphs con-
sisting of large number of objects. The data-oriented entity-component-system will be
compared to the object-oriented counter-part. The second part of this thesis will use
the game engine Unity to analyze the two programming paradigms. A simulation of
sine-wave will be performed in Unity utilizing the two different paradigms. For the final
part, the design principles of data-oriented design will be incorporated into the server
of a video-game currently in development by Pineleaf Studio, named DwarfHeim. The
goal behind the transformation of the server is to reduce the number of clock cycles

used by the server.

The data-oriented design approach for DwarfHeim will not be a complete rewrite of
the existing codebase, but rather a conversion. Unity will be used as the game engine
for this part as it is already used to develop DwarfHeim. To implement data-oriented
principles with Unity, their newly released entity-component-system will be used. For

this reason, the goal of this thesis will have two objectives
¢ Compare data-oriented design against object-oriented design in video-games.

* Devise a strategy for converting from object-oriented implementation to data-

oriented implementation with Unity’s entity-component-system.

In this thesis, video-games does not strictly mean playable systems. Parts of this thesis
will create non-playable simulations that use the same development environment and

methods as one would find in video-games.

1.3 Required work for this thesis

Based on the goals from previous section, the work required for this thesis can be sum-

marized with the following tasks:
¢ Research data-oriented-design principles.

¢ Research how data-oriented principles can be implemented with the architec-

tural pattern entity-component-system.

¢ Create a custom entity-component-system application in C# where data is stored

linearly in memory.

6 CHAPTER 1. INTRODUCTION

¢ Create a simple example in Unity to evaluate the performance boost gained by

using data-oriented principles.

* Use the data-oriented design principles for a video-game currently in develop-

ment.

1.4 Cooperation with Pineleaf Studio

Some of the work done in this thesis will be in cooperation with Pineleaf Studio. Pine-
leaf studio(3) is a video-game development studio working on their first, yet unreleased,
video-game titled DwarfHeim. Access to their source code, which is written in a typi-
cal object-oriented pattern, has been given to me in order to test data-oriented design
principles. Their technical leader, Fredrik Chrislock, has acted as my supervisor for this

part of the thesis.

As a part of our cooperation, I was assigned a desk at their offices in Trondheim. I at-
tended the weekly meetings and were treated as a member of the team. Their large
codebase allowed me to test data-oriented design principles in a more realistic setting.
By providing me with their code base and helping me with the thesis, I was allowed to
conduct research for them and figure out if they should move to data-oriented design.
The code assets given were valuable to this thesis. The studio is currently developing

their first game, DwarfHeim.

DwarfHeim is an online multiplayer real-time strategy game for pc. The game has a fan-
tasy setting where Dwarves are the main race. Each match in the game is divided into
two teams of four players each, where each player controls a subset of dwarves fulfill-
ing a specific role in the game. The roles are divided into four classes, warrior, diplomat,
builder and miner. Each role plays differently and the players on a team must collabo-

rate in order to win. The goal of the match is to destroy the other teams base.

The main goal behind our cooperation is to research if data-oriented design is more
optimized for their servers. A company like PineLeaf Studio will have to rent servers
for their game, the cost of servers are based on number of clock cycles executed on the
machine running the server. This means that reducing clock cycles will reduce cost.
Furthermore, using data-oriented principles means that the server will potentially re-
spond faster due to less cycles spent on memory access, giving better latency as a result.
Since this is a multi-player game, a server is required in order to synchronize the differ-

ent players on different computers. Each player is a client and communicates with a

1.4. COOPERATION WITH PINELEAF STUDIO 7

Figure 1.2: Warrior unit in Dwarfheim, property of Dwarfheim

server that synchronizes the game state for each player. The server has several func-
tions such as responding to player commands, updating game state for all players and
making sure each client is synchronized properly. The game is currently still in its early
stages, meaning there’s no real server used yet. For testing purposes, a client behaves
like a server.

CHAPTER 1. INTRODUCTION

Chapter 2

Literature Study and Theory

Several research topics relevant to this thesis will be covered in this chapter. The differ-
ent topics will cover the theory behind the foundation for the thesis and the background
necessary to understand the methodologies applied. First topic of discussion will be
about the memory architecture in modern computers. The second topic will discuss
the fundamentals behind data-oriented design. The final topic will cover an architec-

tural pattern that is suitable for data-oriented design, the entity-component-system.

2.1 Memory in modern computers

This section will cover the memory architecture in modern computers. The research
conducted here is mainly from two different sources, the "What every programmer
should know about memory" article written by LWN and the Unite Austin 2017 keynote

by Unity. Additional sources will be cited when necessary.

A typical memory hierarchy found on a computer is shown in figure 2.1. The relation
between memory speed and memory capacity is inverse, as the speed increases, the
memory capacity decreases. The non-volatile mediums are orders of magnitude slower
in exchange for significant larger capacity. For this thesis, the non-volatile mediums
are not of interest. The volatile storage mediums are storage entities that need constant
power in order to store data. For a modern computer, they can be divided into three
types of storage mediums, registers, caches and main memory.

Registers are the memory unit closest to the processor, and as a result, the fastest mem-
ory unit in a computer. It is a part of the processor itself and is used to store instruc-
tions, operands and results of the operations performed by the processor. A processor
do not usually use the registers to store application data during run-time. The registers

10 CHAPTER 2. LITERATURE STUDY AND THEORY

are mostly used to perform operation on data fetched from other parts of the memory

architecture. Cache and main-memory are two different storage mediums that uses

B volatile I non-volatile

Cloud storage

Figure 2.1: Computer Memory Hierarchy (4)

random-access-memory pattern. This means that the access of the data itself can be
done in any random order, without the need to be sequential. Essentially, this means
that accessing any data is not dependent on the previous memory access. The two
mediums differ in the type of ram technology used. Cache’s usually uses static random-
access-memory(SRAM), while the main-memory uses dynamic random-access mem-
ory(DRAM). The DRAM cells have simple structures, only consisting of one capacitor
and transistor. The state of each cell is stored in the capacitor, with the transistor guard-
ing access to the state. Whenever a cell is read, the capacitor will discharge, with it even-
tually being completely discharged. For this reason, each cell must go through a refresh
cycle where the capacitor is charged up so it does not loses its state. During the re-
fresh cycle, the access to the state is not available, thus making it slow. The SRAM cells
do not suffer this problem as they use six different transistors to store the state. This
makes SRAM faster than DRAM, but also more expensive. For this reason, main mem-
ory, which is used to store application data and instruction during run-time, is made of
DRAM. Some speed is sacrificed for larger capacity and cheaper price. Cache’s on the
other hand, are smaller in size and made of SRAM-technology in order to have faster

access

If a modern computer only used DRAM-technology with the main-memory, the mem-
ory access time would be very slow. The processor would spend significant more clock
cycles fetching data. On the other hand, if a computer only used SRAM-technology
for main-memory, the memory access time would be very fast but significantly more

2.1. MEMORY IN MODERN COMPUTERS 11

WL
Vad
My b —l[My
— M
L Mz ¢
L BL = BL

Figure 2.2: DRAM cell to the left, SRAM cell to the right

expensive. For that reason, most modern computers uses a combination of the two
technologies to achieve a faster access time without having to increase the total cost
too significantly. This is achieved by having caches placed nearer the central process-
ing unit, while the main-memory unit is farther away with larger capacity and slower

speed.

Caches are placed near, or is a part of, the central processing unit. More than one cache
unit is usually located on the computer. The different caches can be labelled with dif-
ferent levels, depending on how close to the processor they are. A cache of type level
1(L1), is the closest one to the processor. The closer the cache is, the faster access time
it has. The higher level caches have slower speed but more capacity. When the proces-
sor needs to fetch data through an application, it will first look at the cache units. If
the desired data is not available on the first level of cache, it will move onward to the
next cache unit on the hierarchy. If none of the cache’s have the desired data, it will
have a cache miss and move onward to fetch the data from the main-memory unit. As
figure 2.1 shows, fetching data from the cache is significant faster. When the processor
experiences a cache miss, it will use more clock cycles fetching the data from the main-

memory unit.

Whenever the processor needs to fetch data from the main-memory unit, it will fetch
a chunk of data including the desired data. The chunk of data, typically 64-bytes on a
modern computer, will be stored on the cache units. Data fetched from main-memory
will always be done in chunks through the cache-lines. Since the processor fetches a
chunk of data from the main-memory that will be stored on the cache, it is desirable
that the chunk of data is gonna be referenced soon, as it will already be in cache. Op-
timizing around the memory access pattern can save clock cycles due to this reason.
This brings us to the point of principle of locality, also known as locality of reference. It

is a term used to describe the phenomenon in which the same values or related storage

12 CHAPTER 2. LITERATURE STUDY AND THEORY

Main Memory

Bus

L1i Cache

;

L1d Cache =— CPU Core

Figure 2.3: The memory hierarchy on the central processing unit

locations, are frequently accessed, depending on a specific memory access pattern (5).
There are two types of locality of reference that are of interest to this thesis, temporal
and spatial locality. Temporal locality is based on the assumption that if a particular
memory location is referenced, then it is likely that it will be referenced again in the
near future. For example, if a function uses some specific variable, then it is likely that
it will be used again in the near future. This is especially the case for for-loops. In that
case, the variable should be saved to reduce cache misses. Spatial locality is based on
the assumption that if a particular storage location is referenced at a particular time,
then it is likely that the nearby memory locations will be referenced in the near future.

To summarize the research provided above, the following important statements rele-

vant to the thesis can be made:

* The processor will always look at data from the cache first before moving onward
to the main-memory.

¢ Fetching data from main-memory is more expensive.

¢ The processor will always fetch a chunk of data whenever it reads from the main-
memory to the cache.

¢ Spatial locality can be in our favor if the chunk of data fetched is related to each-

other.

In conclusion, the most important aspect of this topic is that the processor is affected by
the slower memory units. Performance can be affected depending on how data is stored
on the ram. Following the logic learned here, one can conclude that performance can

2.2. DATA-ORIENTED DESIGN 13

be potentially improved if the memory-layout is strategically optimized for the way the

processor fetches data.

2.2 Data-Oriented Design

In this section, data-oriented principles will be covered. Two topics will be researched
for this part, the key elements of data-oriented design and the architectural pattern
entity-component-system which utilizes data-oriented principles. In addition, there
will be some examples of data-oriented design used for video-games today. Some basic
principles behind object-oriented programming will also be covered to give the reader
a clear distinction between object-oriented and data-oriented programming. The fol-
lowing resources were used as the basis for this section: Data Locality article by Bob
Nystrom (6), Unite Austin 2017 keynote by Unity (7) and "What is Data-Oriented Game
Engine Design?" by Davidovi¢(8).

2.2.1 Data-oriented design principles

Data-oriented design is a programming paradigm motivated by the performance gap
between the processor and memory. As described in the previous section, memory ac-
cess time is increasing slowly compared to the processing times in processors. This
motivated a programming paradigm that focused around data and cache coherency,
with the goal of reducing cache misses. The design paradigm itself became widely used
during the PlayStation 3 and Xbox 360 era, where the delays caused by cache misses
became to detrimental toward performance. The optimization in this paradigm does
not come from advanced algorithms or faster processors, but simply by trying to reduce
the number of times the processor must access the slower memory units in a computer.
This paradigm is especially efficient for applications where large amount of data must
be processed in real-time, as usually found in many types of games. The basic premise
behind data-oriented design is simple, program around the data structures. A brief un-
derstanding of objected-oriented programming is required in order to further illustrate

the motivation behind this paradigm.

2.2.1.1 The pitfalls of object-oriented programming

Objected-oriented design is a programming language model organized around objects.
Data in the form of fields and logic in the form of procedures are encapsulated into
objects. The programs are designed around these objects. In most programming lan-

guages, objects instances are instantiated through classes, which defines the data fields

14 CHAPTER 2. LITERATURE STUDY AND THEORY

and procedures. The paradigm has several advantages that have made it popular to use

today:

¢ Inheritance: The concept of data classes, which represents objects, makes it pos-
sible to define sub-classes. These are objects that share some or all of the par-
ent class characteristics. This property of oop forces a better analysis of the data
models used for the application, reduces development time and ensures more
accurate coding by already using well established working models.

¢ Polymorphism: Objects of different types can be accessed through the same in-
terface, invoking different procedures based on their type.

¢ Data hiding: A class defines only the data it needs to be concerned with, so when
an instance of a class(object) is run, the code will not be able to accidentally ac-
cess other program data. This characteristic provides greater system security and
avoids unintended data corruption.

 Easily distributed: A class definition is reusable not only by the original appli-
cation, but also by other object-oriented programs as long as they use the same
design principles. This makes it easier to distribute among different platforms or

use in networks.

¢ User-defined data types: The concept of data classes allows the programmer to

define own data-types that are not already defined by the language itself.

* Higher level of abstraction: Classes can represent real-life components at a higher
level, making it easier to model real-life applications. One can solve the problem
by modelling around the problem space instead of thinking about low level prop-

erties of the hardware.

¢ Software maintenance: Oop is easier to understand as the objects are modelled
around logical entities that are easy to work with. It is therefore easier in theory

to test, debug and maintain.

These features makes the paradigm popular and beneficial to use for many applica-
tions, especially when working in large teams. It can be used to create different abstrac-
tion layers, allowing multiple developer groups to work with their own specific layer.
The data encapsulation philosophy allow developers to work with each others mod-
ules without having knowledge about the implementation details. All that is required
to know is how the data itself is altered, not the method used to achieve it. This is great
for maintainability, however not knowing exactly how the data is manipulated can be
detrimental for performance.

2.2. DATA-ORIENTED DESIGN 15

Unfortunately, there are several issues with objected-oriented programming, that is rel-
evant to this thesis, that affects performance. It is the way dynamic objects are allo-
cated. Whenever the application needs to create new object instances dynamically, it
needs to allocate new space for the data. The memory space of an application is mainly
divided into two segments, the stack and the heap. The stack will implement data in a
last in, first out order. This means that the last item stored on the stack, will be the first
item out when data is retrieved from the stack. The ordering of data is done in a lin-
ear fashion, where items are added or removed sequentially on the address space. The
stack is used to store temporary variables, function arguments and other similar pur-
poses. The heap is a specialized tree-based data structure that is often used for dynamic
allocations in applications during run-time. When an application needs to instantiate a
new object, it will look for free space in the heap and then allocate it there. The memory
allocation in that segment is not sequential. This means that objects instantiated after
each other can be placed in complete different addresses on the main-memory. This is

against the desire for spatial locality.

Heap memory segment in
ram

Person Object 1 Person Object 3 Person Object 4 Person Object 2

Address OxFFAO OxFFA1 OxFFCA OxFFCB

Figure 2.4: Example of 4 objects of arbitrary type person being allocated dynamically
on the heap

The second issue arising with the use of objected-oriented programming, is the way
object data is stored and the way they are processed in applications. When an object is
allocated on the heap, the complete object with all its data will be stored. All the data
associated with the object will be fetched from the memory every time the application
needs to work with the object data. This will happen regardless if the processor only
needs one data field from the object. This will affect performance if a large number of
objects with several data fields are needed, with only work being done on some of the
fields. This will make the processor fetch the complete object data, meaning that the
object will take more space on the cache line and as a result have less space for other
data. In addition, if the processor only needs to work on a small subset of the data fields

on the object, all the other fetched data will waste space on the cache. This can greatly

16 CHAPTER 2. LITERATURE STUDY AND THEORY

affect performance for operations on large number of objects.

The third issue is about parallelization. Synchronization primitives are required for
multi-threaded processes for objects, because the state of the data is within the object.
Two threads can not operate logic on the same object at the same time without addi-
tional overhead, as that could cause race conditions or unsynchronized alteration of
data. Each thread must know if some other thread is working on the same object, what
type of data it modifies, the side-effects and so on. This makes parallel-programming
more difficult for developers, more prone to errors and less efficient use of the proces-

sor, all because data is explicitly linked to an "object".

2.2.1.2 How data-oriented programming solves these problems

Given the issues caused by pure object-oriented programming, how does data-oriented
programming solve them? As previously stated, the basic premise of data-oriented ap-

proach is simple:

Construct your code around the data structures, and describe functions
and methods in terms of what you want to achieve in terms of manipu-

lation of these structures.

Emphasis is put on data, not objects. One does not care about objects that explicitly
define a set of data. Instead one cares about the set of data one needs, and allows the
"objects" to implicitly be defined by the set of data. Figure 2.5 demonstrates this with an
example consisting of data for two persons. In the typical object-oriented manner, the
data for two persons would be stored as objects as shown on the figure. The set of data
for the person object would be encapsulated into one data type represented through the
object. The collection of different data types would be stored together in the memory.
For data-oriented design, the set of data associated with a person is not encapsulated
together in the same manner. The set of data types could be placed in different sections
of the memory and not be referenced through an object reference that collects them
into one unit. Some kind of manager would be necessary in that case to link the set of
data types that belongs together in the case for the data-oriented design. The benefit
from the data-oriented layout is the fact that the collection of data of the different types
are separated. This structure allows the same type of data to be efficiently placed lin-
early in memory. This allows for different processes to work on different type of data
sets belonging to the same person, as the data for that particular person is not tightly

tied together.

The goal behind this approach is to achieve performance gain by simply making sure

2.2. DATA-ORIENTED DESIGN 17

Representing persons with
objects

Person object 1 Person object 2

Birth Date Name Birth Date

Gender Occupation

Occupation

Address National ID Address National ID
ational

Representing persons
implicitly by the set of data
associated with them

Name Name Birth Date Birth Date
Gender Gender Occupation Occupation
Address Address National ID National ID

Figure 2.5: Representing data for two persons with objects(top) and implicitly without
use of objects(bottom)

the order of data is efficiently used by the processor. It is desirable that the data chunk
fetched from main-memory is used sequentially by the processor. For example, imag-
ine a process that prints out the national id of all persons available in a procedure. If
the memory layout was object-oriented, then the processor would have to potentially
fetch data from non sequential addresses on the memory address. The fetched data
through the cache line might not be related to each other, some could be person data
and some could be something else. As a result of this ordering, the number of cache
misses would increase. In addition, the processor would have to fetch not only the na-
tional id of each person object, but also all the additional data associated with it. This
would waste space on the cache line and as a result increase cache misses. On the other
hand, if the memory followed the pattern as shown in figure 2.5, with the application
making sure that data of the same type is tightly packed on ram, the number of cache
misses would decrease. All the data on the cache line would be national id’s, and after
processing the first national id from the cache, the next one could be efficiently fetched
from the cache. Not retrieving all type of data would also allow the processor to fetch
larger amount of national id’s in the chunk each time it fetches through the cache line.
This example is visually demonstrated in figure 2.6. Eight national id’s are processed for

each cache hit.

18 CHAPTER 2. LITERATURE STUDY AND THEORY

Initial starting address for
national id data

'

Oxff

Main-memory

National [National | National | National | National | National | National
ID ID 1D 1D 1D 1D 1D

32-byte cacheline A

Request national id data at

address Oxff Cache AJ

National | National | National | National
CPU - 1D ID 1D 1D

National | National | National | National
D ID ID ID

Figure 2.6: The processor requesting national id data

When relevant data is stored contiguously on the memory, the grade of spatial local-
ity is good. The number of cache misses are reduced whenever the processor needs to
operate on a set of data of the same type. The processor will fetch a chunk of data con-
taining multiple instances of that specific data type due to its sequential layout. This
solution is more efficient for the processor than the heap structure.

Since "objects" do not exist in this scheme, it is easier to separate logic and data. Data
is no longer explicitly linked to an object. As a result of this, the application can work
on any type of data and make the processor only retrieve the data types required. This
gives better principle of locality as the data fetched from main-memory is relevant to
each other. This will allow the processor to work on more set of data from the same
cache-line. Finally, this structure also makes parallelization easier. Each thread can
work on its own specific data type without caring about the others, given that they do

not alter each other. This allows for larger scale of parallelization.

2.2.2 Entity Component System

Data-oriented design is all about the ordering of data for efficient memory access. As al-
ready stated, by placing related data in a linear fashion, performance can be improved
due to less cache misses. There is an architectural pattern that suits well with data-

oriented principles, the entity-component-system. Entity-component-systems are mainly

2.2. DATA-ORIENTED DESIGN 19

used for games today. The use of it is increasing as it is more efficient for processor in-
tensive games, with Unity recently releasing a new version of their game engine with

support of this design pattern (9).

Entity-component-system(ECS) follows the "Composition-over-inheritance" principle,
which means that an objects functionality or definition is not given by inheriting the
templates of other objects. An object can be defined as having certain methods and
functionality by consisting of elements that represent different dataset or functionality.
With inheritance, you define your objects with respect to what they are, while with com-
position, you define your objects with respect to what they can do(10). In practice, this
means that you define new types of objects through inclusion of different data types
instead of inheriting from a base class. Figure 2.7 tries to illustrate the differences be-
tween those two for the same type of object representing a villainous orc in a hypotheti-
cal game. With inheritance, the orc class is defined by inheriting from a base class called
for "Monster" which represents all kind of objects that can attack and have health. The
orc class is extended with the ability to heal and also do more damage through a criti-
cal damage attribute. This is what you will usually find in an object-oriented structure.
With composition, the orc class is simply defined by including several data types and
functions. There is no base class to inherit from, the class itself is defined by its set of

attributes and functions.

Inheritance Composition

Health Attack multiplier

Attack() Creature 17 Orc

<Inherits> "Creature” dataset

T
|
|
Attack Critical Attack
L Heath) (muliplier) Meitoler Attack() Heal()
Critical Attack
A | —
o Healo

Figure 2.7: Inheritance over Composition vs Composition over Inheritance

There are several benefits of using composition-over-inheritance(c-o-h) such as more
flexibility as the objects can implement new features by simply including it in the com-

position set. The family hierarchy becomes more flat and less complex. This means

20 CHAPTER 2. LITERATURE STUDY AND THEORY

that developers don't need to revise the parent classes, child classes and the interoper-
ability between them as much since the objects are no longer dependent on inheriting
functionality or data type through each other. The different types in this system will
no longer include redundant data or functionality because they only include what they

need of features, instead of deriving the whole package from a class(11).

The drawback of using this design pattern is that the types/classes must often imple-
ment the methods derived by the functions in the composition set. When using inheritance-
over-composition, a child class can inherit several methods from a parent class without
the need of implementing their own version of this. For a typical c-o-h architecture, this
is not a given behaviour. This means that one must possibly write more code for same
functionality as one would do with pure object-oriented way. One could also argue that
it is less intuitive to work with composition instead of inheritance, however this is up

for discussion.

Entity-component-system uses composition-over-inheritance by separating the appli-
cation into three different regions, entities, components and systems. Entities are sim-
ply an unique identifier that implicitly defines an object. Components are structures
that only contains data, they are thus the data-part of this architecture. Systems are
the logic-running structure that operates on data from the components. An "object" is
implicitly defined in this architecture by having an unique entity id and a collection of
different components. These components define the behaviour of an entity by being
operated by the systems. The previous orc example in figure 2.7 is again represented in
figure 2.8, with the entity-component-system pattern. As the figure demonstrates, the
orc object has an unique entity id and a collection of components attached to it. The
systems will perform transformation on the data sets it needs, as shown with the dotted

lines.

Entity-component-system allows more design flexibility since it follows the composition-
over-inheritance principle described earlier. An in-game "object" can easily be ex-
tended by adding a new component to its unique entity identifier. New functions and
data logic can be implemented by creating a new system that only operates on certain
types of components. The data and logic part of this scheme is separated, meaning it is
simple in theory to extend each domain without touching the other. ECS can be quite
efficient for data-oriented design if the related data is laid out linearly in memory. Some
conditions should apply for the ECS design pattern in order to achieve the benefits from
data-oriented design.

¢ All instances of a component type should be laid out sequentially in memory.

2.2. DATA-ORIENTED DESIGN 21

Ore entity

Y

y Y Y
Critical Attack -
(Muttipler) Qttack multlplle) (Health) (Defense)

| |
| |
| I
— - Attack System L—d Heal System

Figure 2.8: An orc "object" represented in the entity-component-system

e Same type of component data used in a system should be laid out linearly in
memory so that the system can efficiently iterate through each component in-
stance.

¢ Accessing component data through entity id should be done through array index-

ing and not by the use of associative containers .

¢ Reduced use of branching due to potential branch misprediction.

22

CHAPTER 2. LITERATURE STUDY AND THEORY

Chapter 3

Functional Specification and

Evaluation Criteria

A foundation for how the two programming paradigms are to be compared will be es-
tablished in this chapter, based on the research done until now. This chapter will set the
basis for the work needed in this thesis. The different topics will cover the type of work
required and the specifications along with details on how the solutions can be verified
and tested. In total, three different applications will be implemented in this thesis. A
custom entity-component-system in C#, a pure data-oriented application in Unity and

a conversion of the existing DwarfHeim codebase into a data-oriented solution.

3.1 Evaluation criteria

Each of the solutions proposed will be compared against an object-oriented counter-
part. A common evaluation criteria is required for both programming paradigms in
order to evaluate the difference in performance. The evaluation will come down to the
cpu as this thesis is about cpu efficiency. Some method is required to measure how
well the cpu performs in each solution. Given that data-oriented principles are focused
around structure of data for better locality of reference, it is important to evaluate the
time cpu spends on same type of operation. If data-oriented implementation is indeed
better, then it should be able to perform same type of operations with lower amount of
cpu clock cycles. For this reason, the frame rate will be chosen as the main evaluation
criteria for this thesis. The frame rate is based on time elapsed, which will as a result
give an indication of time elapsed for the cpu. Furthermore, frame-rate is an important

factor for video-games, as it is also an indicator of visual fidelity.

23

24 CHAPTER 3. FUNCTIONAL SPECIFICATION AND EVALUATION CRITERIA

3.1.1 Frame Rate

Frame rate is used to describe the number of consecutive images appearing in one sec-
ond. The frame rate is expressed in frames per second(fps), where a frame is an image.
Frame rate is an important performance value for video-games. Animations are visual-
ized by having consecutive frames illustrating the same object, but with small modifi-
cation each frame. This will give the impression of a moving object. A higher frame-rate
means a higher number of frames can be outputted to the display each second, giving
smoother animation and thus smoother gameplay. The frame rate is also an indication

of how fast the processor is. The frame rate can be calculated as:
fps=1/frame_dt

Where frame_dt is the time elapsed between two frames. If the processor is fast at pro-
cessing one single frame, then it will be able to output larger number of frames each
second. This formula does not always give an accurate representation of the real frame
rate. Sporadic processing events can increase the time elapsed between two frames in
different situations, giving different values to the frame rate. For this reason, average
frame rate should be used. This can be done by storing several frame rate values and

then calculate the average based on the values stored.

The frame rate will be used to compare the different programming paradigms. To get an
accurate representation based on frame rate, it is important that the implementations
done in each programming paradigm is as similar as possible when it comes to features
and the task they are to perform. The only difference in implementation should only
be the fact that one is object-oriented and the other data-oriented. Other factors must

remain equal to get an accurate representation.

3.1.2 Cpuusage time

The frame rate gives an overall representation for performance. It is not necessary an
accurate representation on how the data-oriented design performs versus the object-
oriented solution. There might be other factors in the tests that are not related to the
programming paradigm that might affect performance negatively. These could be for
instance operations related to calculation of physics. For this reason, an extensive in-
spection into the cpu usage times will be done for a better evaluation of the different
solutions. This is only applicable for the solutions done in Unity as it has support for
a diagnostic tool, the Unity profiler. This profiler gives a comprehensive look into cpu
usage time for the different operations each frame within a process.

3.2. ENTITY-COMPONENT-SYSTEM IN C# 25

3.2 Entity-component-system in C#

To test the usability and efficiency of using the architectural pattern entity-component-
system with data-oriented principles, a custom implementation will be written in C#.
Using Unity’s entity-component-system will not require any knowledge about the in-
ternal structure. For this reason, creating a custom implementation in C# will allow
for better understanding of the pattern and its advantages and disadvantages. Another
purpose behind this is to have full autonomy behind the pattern, allowing the use of
data-oriented principles to test the efficiency of data-oriented solution against a tra-
ditional object-oriented implementation. This will allow for more control on how the

memory layout is for the different data types.

3.2.1 Specifications

The design will have a list of specifications that sets the basis. The requirements must
be fulfilled in order to correctly verify intended behavior and have a reference point
for comparison against a traditional object-oriented solution. Table 3.1 outlines the
specifications for the design along with description of acceptable criteria for each re-

quirement.

The specifications will set the foundation for the implementation described on later

sections.

3.2.2 Evaluating against object-oriented programming

The design will have to be compared against a traditional object-oriented application.
To evaluate the efficiency of an entity-component-system which follows several of the
data-oriented principles, a test application will be devised. The application must be
implemented twice, once with the entity-component-system, and once in a traditional
object-oriented way. A set of requirements are needed for the test application in order
to accurately analyze the differences in the programming paradigms when it comes to
memory efficiency. The specifications are listed in table 3.2 and will be the basis for the
implementation. The main objective behind the test application is to compare iteration
times for the two programming paradigms. The test application should thus perform

cpu work that requires iteration through component data.

26 CHAPTER 3. FUNCTIONAL SPECIFICATION AND EVALUATION CRITERIA

Specification

Acceptable criteria

The design must follow the architectural pattern

of the entity-component-system.

The software follows the entity, component

and system definition.

There should be a strict separation between the
representation of data(through components)

and the behaviour on these data sets(system).

Systems define the intended logic for an
application while components store data.

Component data of same type should be
addressed linearly in contiguous memory.

Component data of one type is stored in
arrays.

The three different domains should be
decoupled and only accessed through a

manager.

The manager is the only class that directly
interacts with all the different domains.

Entities should be unique

Each entity can have an unique id assigned
by the manager.

Entities should have a weak reference to
its components and not direct.

The manager will access component data
through an entity id.

It should be easy to define new behaviour

and functionality by creating a new system.

New systems can be created by inheriting
a base system class that defines the system

interaction in the design.

The solution must be able to render graphics.

The design is able to send draw calls

to the graphics processing unit.

The solution must be able to be comparable

against an object-oriented solution

An application that could be made
object-oriented, must be able to be
implemented with the entity-component-

system.

Table 3.1: Specification for the custom ECS implementation

3.3 Entity-component-system in Unity - Pure data-oriented

solution

The second part of this thesis will consist of an application completely implemented in

Unity with their entity-component-system. This solution will have a set of requirements

given in table 3.3 that it must fulfill in order to properly assess the efficiency of data-

oriented principles.

3.3.1 Evaluation of the application

This application will be written twice with data-oriented and object-oriented principles

respectively. The two solutions will be compared against each other using diagnostic

3.3. ENTITY-COMPONENT-SYSTEM IN UNITY - PURE DATA-ORIENTED SOLUTION27

Specification

Acceptable criteria

The test application must perform significant
cpu work.

The application will continuously do work

on a large number of objects.

The test application must have visual output

Draw calls can be sent to the graphics

processing unit for visuals.

The test application must consist of a large
number of objects.

Instantiate and create a significant number
of objects/entities for the application during
the initialization phase.

The test application must continuously

retrieve data from the memory units.

References to variables and types storing
data must be continuously referenced.

The test application must iterate through
large number of entities/objects.

The application must perform same type of
work on each individual object.

The test application must perform the

same type of work for both implementations.

The function of the application must remain
the same for both implementations. The only
difference is the underlying architecture.

Table 3.2: Specifications for the test application written for the ECS design and the

object-oriented counter-part

Specification

Acceptable criteria

The application must use Unity’s data-oriented
entity-component-system.

This is given as long as the
entity-component-system feature in Unity
is used.

The application must perform significant cpu
work.

The application will continuously do work
on a large number of objects.

The application must be able to measure frame
rate.

Time elapsed between each frame must
be measured in order to calculate the

frame rate.

The application must continuously and often

access data from the memory units

References to variables and types storing
data must be continuously referenced.

Table 3.3: Specifications for the pure data-oriented solution in Unity

tools provided by Unity, along with the frame rate. The two implementations of the ap-

plication must be very similar in design with exception to the underlying programming

paradigm used. The specifications set for this part will allow for comparison between

the two paradigms through significant cpu work for the application.

Frame rate will be an indicator on performance for both solutions. If a higher frame

rate is acquired with one of the designs, then it will imply that it is better at using the

28 CHAPTER 3. FUNCTIONAL SPECIFICATION AND EVALUATION CRITERIA

cpu than the counter-part. The profiler in Unity will be further used to assess the dif-
ferences in performance in order to get a more accurate representation of the values

collected.

3.4 Converting DwarfHeim into a data-oriented solution

Converting the existing object-oriented DwarfHeim codebase into a data-oriented ap-
plication will be the final part for this thesis. This part is mainly aimed at the client-
server interaction part of the code, and not the complete codebase itself. Data-oriented
principles will be achieved for this design by the use of the entity-component-system
feature in Unity, which itself follows data-oriented principles. There are two possible

alternatives for moving forward with the DwarfHeim game:

¢ Re-write the complete codebase from start using the entity-component-system
in Unity.

* Convert the current codebase into the entity-component-system.

The first option would not be limited by the current object-oriented codebase. A com-
plete refactoring from the beginning would mean that the game could be made into
a pure data-oriented game. However, the amount of work required for this is too sig-
nificant at its current state, especially for this thesis. Not only is the code related to
the game itself object-oriented, but also most of the 3rd party assets that it uses. The
amount of work required is substantial and not feasible for this thesis. The second
option would involve a conversion of the current design, by slowly transitioning the
object-oriented parts into the entity-component-system. By converting small parts of
the game at a time, one could strategically convert the complete game. However, this
alternative is still affected by the fact that parts of the codebase is very object-oriented,
and as a result difficult to truly convert into a data-oriented game without investing
substantial time. A strategy for this conversion will be devised in section 4.6.2.3.

3.4.1 Specifications for conversion

It is important that the conversion strategy for DwarfHeim does not alter the game too
significantly when it comes to features of the game. The conversion aims to make the
game more data-oriented and as a result more efficient. The design is going to be re-
stricted due to the objected-oriented structure, which means that the specifications set
can not be to restrictive. The basis for this conversion will follow the specifications
given in table 3.4.

3.4. CONVERTING DWARFHEIM INTO A DATA-ORIENTED SOLUTION 29

Specification

Acceptable criteria

The converted parts must conform under
data-oriented principles.

This is given as long as the
entity-component-system feature in Unity
is used for the converted parts.

There should be clear separation between
data and logic.

This is achieved by using components
and systems in the entity-component-system

The application must be able to measure frame
rate.

Time elapsed between each frame must
be measured in order to calculate the
frame rate.

The conversion must remain true to the
games features

The converted areas of the codebase must keep
the same type of features as the one found in
the original.

Table 3.4: Specifications for the DwarfHeim conversion

3.4.2 Evaluation of the conversion

The conversion will be applied to the existing codebase if time permits. After the im-

plementation is done, the new design must be compared to the old one. The changes

must be analyzed and compared to the previous version in order to verify whether the

design is more efficient or not. The standard evaluation criteria will be used for this

part, the frame rate and cpu usage time. Furthermore, since the main objective behind

the conversion is the server-client interaction, it will be the main area of interest for the

evaluation.

If the new design has a higher frame rate and better cpu usage times, then it will im-

ply that the design is indeed better when it comes to cpu efficiency. The cpu usage

time will give further information about whether the improvements are due to data-

oriented principles or other unrelated changes not directly applicable to data-oriented

principles. This will have to be analyzed in order to get an accurate representation of

the results.

30 CHAPTER 3. FUNCTIONAL SPECIFICATION AND EVALUATION CRITERIA

Chapter 4

Materials and Methods

Materials and methods used for this thesis will be described in this chapter.

4.1 Development Environment

A brief description of the development environment will be presented here. This sec-
tion covers the programming language used for this thesis and the integrated develop-
ment environments used.

4.1.1 Game Engine - Unity

Several functions are required in order to develop a complex game with graphics. Some

of the more important features are the following:

* Implementation of physics in order to handle physical alterations such as trans-

formation and rotation of objects in the game.
¢ Input from the user who plays the game.
¢ Graphical rendering of objects in the game.

¢ Scripting functionality allowing developers to implement new features and game

logic in an efficient manner.
¢ Collision detection.

It would be possible to implement all these features on your own, however that would
require substantial amount of work. Fortunately, there are several game engines avail-
able on the market which provides with all these features. Some of the more popular

31

32 CHAPTER 4. MATERIALS AND METHODS

game engines available today are Unreal Engine, Unity and GameMaker. They all pro-
vide important features such as a physics system, giving you an easier entry into video-
game development. Since Dwarfheim is already written in Unity, I decided to use Unity
from the start for this thesis.

Unity is a multi-platform game engine developed by Unity Technologies(12). Rich with
features, it makes it easier to jump into video-game development. The engine is cus-
tomized for both 2d and 3d-game development, allowing a large collection of possible
game genres. There are several important features provided by Unity that comes in

handy for this thesis such as:
¢ An extensive physics engine that provides convincing physical behaviour.
e Game-behaviour scripts that can be written in C# or javascript.
* Developer friendly interface for connecting game objects to scripts.
¢ Mesh renderer for rendering of meshes and other visual entities.

In addition, Unity recently released their newest version, Unity2018.1 with support
for data-oriented design. The new update introduces entity-component-system to the
engine along with easier parallelization through their new job system. These features

will allow for easier transition into data-oriented design.

4.1.2 Different terminologies and concepts in Unity

Some of the more basic concepts of Unity will be briefly described, as they are related
to the work done for this thesis. Only the concepts relevant in a significant way will be
described here. These concepts are necessary to know in order to understand future ref-
erences in this thesis. Additional information are supplemented in the appendix B.1 for
other concepts that are of less importance. The concepts described here are all related

to the Unity game engine and its interface.

4.1.2.1 Game objects

Game objects in Unity are all objects with some property within the game engine. All
entities that affect the environment, gameplay or physics of the engine are considered
game objects. In practice, this means that all objects in Unity are game objects. Entities
such as the camera, light sources, visual effects and game characters are all considered
game objects, even though they do vastly different things. Understanding the concept
behind game objects is important since almost everything done in the engine is done

4.1. DEVELOPMENT ENVIRONMENT 33

through game objects. The entities created with the entity-component-system is the
exception. All references to game objects in this thesis means any object that affect the

game in some way, in an object-oriented way.

4.1.2.2 Components

Components are scripted objects attached to game objects. Components define be-
haviour that game objects will adhere to as long as they own that component. Compo-
nents must not necessarily contain behaviour logic, and can instead only contain data.
Unity allows you to define your own components by writing the scripts in either C# or
javascript. When the behaviour or data type is defined in the component script, it can
be attached to all the game objects that it is relevant to. Components will be further

described in section 4.1.3.

4.1.2.3 Transforms

Transform is a component that every game object must include as part of their compo-
nent set. The transform component is used to store a gameobjects position, rotation
and scale. It is not possible to create a game object without a transform component
attached to it. The position and rotation part of the transform component defines its
position and orientation in the game world, while the scale part defines the scale of
the size relative to some default values. The transform component is a vital part of the
Unity engine as this is the component that is used to update a game objects position
or orientation. In addition, the physics engine within Unity uses these values to calcu-
late physical alterations and other behaviour such as physical collision. Unity provides
with a scripting api that allows for changes to the transform component, the transform
api. For example, the position of a game object can be changed by simply retrieving the
current position and updating it with new value through the transform api. The code

snippet below shows an example of this.

Listing 4.1: Example of code updating the position of a game object with dx in x direction, dy in y

direction and dz in z direction

1 public void UpdatePosition(float dx, float dy, float dz)
2 {

3 // Access the current position of the relevant gameobject
4 Vector3 newPosition = this.transform.position;

5 newPosition.x += dx;

6 newPosition.y += dy;

7 newPosition.z += dz;

8 // Update the current position with the new position

9 this.transform.position = oldPosition;

34 CHAPTER 4. MATERIALS AND METHODS

4.1.3 Scripting in Unity - Adding behaviour to game objects

In order to create a game, one needs objects that perform some sort of behaviour through
scripts. The type of behaviour can vary in a game, for example, objects can respond to
input from the player or an event that triggers physical collision. An essential part of a
video-game is to have objects that are scriptable. Fortunately, Unity offers an easy inter-
face for adding scriptable behaviour through their component system. Components in
Unity are scripts that are written in either C# or javascript, deriving from the monobe-
haviour class. The monobehaviour class is the base class from which every Unity script
derives from, giving access to several event functions (13). Once a C# class derives from
the monobehaviour class, it becomes available as a component. The component class
can then be added to a gameobject in order to give it the behaviour defined in the script.
A gameobiject can consist of several components, where each component can perform
different type of behaviour.

The monobehaviour class gives access to event functions such as Update(), FixedUp-
date(), Start() and OnEnable(). The Update() method on a Unity script will be called
every frame, executing the logic defined inside. The time between each frame can vary
and thus give different times elapsed between each Update() call. If it is desirable to
update at fixed intervals, one can use the FixedUpdate() call which will be called at a
fixed frame rate. Furthermore, the Start() method will be triggered once the compo-
nent is enabled and ready to run, before any Update() calls. The OnEnable() method is
another event function that is activated once the the script is enabled. All these func-
tions are available in a script through the monobehaviour class, allowing developers to
easily add behaviour based on different events. Moving an object every frame can easily
be done by adding the logic to a script on the Update() function, which will then update
movement each frame. All these event methods have different order of execution and
different condition for triggering it. The Update() method will run each frame, while
OnEnable() method will only be triggered once a gameobject has the component en-
abled.

A simple example demonstrating how the scripting system works in Unity is included
in the appendix B.2.

4.1. DEVELOPMENT ENVIRONMENT 35

4.1.4 Analyzing performance - Unity Profiler

Unity has its own profiling tool for analyzing performance. The tool records perfor-
mance data for different point of interests. Performance criteria such as frames per
second, time spent on rendering and time spent each frame is available through this
tool. The profiler will be used to compare performance between the two different pro-
gramming paradigms. The most important type of data from this tool will be frames
per second and cpu usage.

The cpu usage in the profiler displays time information about the different operations
during a single frame. It can be used to inspect the time elapsed for one single opera-
tion, such as a script update function. The data here can be used to inspect spikes and
bottlenecks. For this thesis, the data provided here will be used to find anomalies in
the results and to verify that the improvement in performance is actually due to data-
oriented principles and not other unrelated changes. The profiler also provides with the
frame rate in the cpu usage profiler, however the value is not an actual representation
of the overall frame rate for one single frame. The values are given for the different op-
eration groups in the engine, such as the frame rate for rendering, physics and scripts.
A script calculating the actual frame rate is required to get an accurate representation.

e

| 5 Record | Daep Profie | Profils Edmor | Edror - Allocation Gallstacks <| | Clearan Play | Clear | Losd | Save | Fromes Coment | 4 | | Currens |

W Total GC Allacated
® GC Allocated

overview Calls Gealoc |Timems [sefms |4

T S S S T T EEERRRR———————_-...
Figure 4.1: Unity Profiler

A third-party script, profiler data exporter(14), will be used to gather useful stats on
the data provided in the profiler for cpu usage. The script will be used to calculate min-

36 CHAPTER 4. MATERIALS AND METHODS

imum, average and maximum values for the data recorded on the last 300 frames, as

300 frames are the limit of the profiler data stream.

4.1.5 Programming Language - C#

The C# programming language developed by Microsoft will be used as the main lan-
guage for this thesis. C# is a part of the software framework developed by Microsoft, the
.NET framework, for the windows operating system. The language itself supports sev-
eral programming paradigms, with emphasis on object-oriented structure. It follows
many of the same features as C++, and follows same philosophy as Java with its own

just-in-time compiler(15).

There are several reasons for choosing this language instead of a more optimized lan-
guage such as C++ First, C# is an integrated part of Unity and thus required for this
thesis anyway. Second, there are several important features of C# not found in C++
which makes it easier to develop the entity-component-system with. The most impor-
tant features are reflection and custom attributes, which used in conjunction allows for
dynamic creation and processing of data with the simple use of attribute fields. Using
these allows for creation of an entity-component-system that can fill data linearly in ar-
rays before a system executes with the use of attribute fields. These things could still be
achieved with C++, however it would require more work as the users must spend more
time on managing the memory layout correctly. A detailed description of these features
and some more are described in the appendix B.6. Finally, even though C++ might be a
more optimized language due to it being a compiled language, it is not necessarily more
efficient for this thesis as there’s little use of direct memory management. Unity takes
care of most of the memory management, the user just needs to tell the engine that it
will require it. For the custom entity-component-system, the ordering of memory will
be done indirectly through the use of arrays and value types. These do not require the
autonomy that the C++ language provides anyway, and might thus not really affect the

efficiency of the solution.

4.1.6 Programming Language - Python

Python will be used to plot the results from the tests on graphs. Several python scripts
will be written for this thesis. The scripts will read in output files in text format, and
parse the data points available. Depending on the type of test and format, the scripts
will plot graphs of different kind visualizing the results. The python libraries matplotlib

and numpy will be used to plot the graphs and figures of interest.

4.1. DEVELOPMENT ENVIRONMENT 37

Before the script can plot the graphs, it must read in the data set for x- and y-values
on the graph. The results outputted in the text files from the tests must be written in
a specific format. For this thesis, all data points and other variables required for the
python script is gonna be written with the following format:

TypeOfData:Data

TypeOfData specifies the kind of data the given data is. This value can be used for spec-
ifying type of data on the graph, and the parameters for the graph itself, such as the title
of the graph. Figure 4.2 demonstrates an example utilizing this format with the graph
plotted. The parsing part and type of data read in will not be the same for the different
tests, however they will all follow this format.

| testplot - Notepad - [m] x
File Edit Format View Help

Test plot for testing correct behaviour with matplotlib.

title:Drawing curves with matplotlib

x:[0.0, 6.1, 0.2, 8.3, 6.4, ©.5, 0.6, 8.7, 0.8, 0.9]

y:[e.e, 1.0, 4.0, 9.0, 16., 25., 36., 49., 64., 81.]

xlabel:Time spent on matplotlib

ylabel:Learning matplotlibn|

Drawing curves with matplotlib

Learning matplotlib
[T T B
s 8 © 5 & & o &

©

0.0 02 04 0.6 o8
Time spent on matplotlib

Figure 4.2: Example of output file and the resulting graph plotted

38 CHAPTER 4. MATERIALS AND METHODS

4.2 Measuring the frame rate

The frame rate for the different applications will be measured by recording the time
elapsed between the latest frame and the previous one. The implementation for this

differs based on whether the solution is written with Unity or Microsoft visual studio.

4.2.1 Measurement of frame rate for Unity

A frame rate measuring script was written in Unity following the tutorial by Catlikecoding(16).
Minor modifications were done to the scripts in the tutorial in order to make it more ap-
plicable for this thesis, such as writing results to a text file. In total three script files are
created, one to display the frame rate on the screen, one for calculating the frame rate
and one for setting color and labels to the value shown on the screen. The frame rate
data shown on the screen will be based on three different values, the lowest frame rate,
the highest frame rate and the average frame rate. These values are based on the 60 last
frames measured. The frame rate is calculated by following the formula shown in 3.1.1,

where 1 is divided by the time elapsed between the last and current frame.

Figure 4.3: FPS counter for Unity showing max, average and lowest fps based on the 60
last measurements

4.2.2 Frame rate counter outside Unity

There are several tests written in this thesis with Microsoft visual studio. In these cases,
the frame rate will be calculated by using the standard stopwatch library in C#, which
can be used to measure time between frames. This value can be used to calculate the
frame rate. The frame rate values will be written to a text file in scenarios where the

frame rate is needed for analysis.

4.3. ENTITY COMPONENT SYSTEM - CUSTOM IMPLEMENTATION 39

4.2.3 Refreshrate

The frame rate of a display is bounded by its refresh rate. The refresh rate of a monitor
is the maximum number of frames it can render in one second. The standard refresh
rate for monitors are around 60 hz. The monitor used for this thesis has a refresh rate
of 60 hz. For this reason, the max fps will be 60 for some of the tests. It is possible to
output a higher fps than what the monitor is capable of displaying. Video cards usually
have vertical synchronization, which prevents the video card from changing the dis-
play memory until the monitor is finished with its current refresh cycle. In practice, this
caps the frame rate to the refresh rate. It is possible to turn this setting off, allowing a
fps value higher than the monitor. This will still not increase the actual frame rate dis-
played by the monitor, but it will allow the processor and gpu to output larger number
of frames each second. The vertical synchronization option will be turned off if deemed

necessary during testing.

4.3 Entity Component System - Custom Implementation

The design of the custom entity-component-system in C# went through several itera-
tions before being finalized. The initial and final design will be described in this section.

The entity-component-system will hereby be abbreviated as ECS.

4.3.1 Initial entity-component-system architecture details

An initial design was constructed with no regards to optimization or speed in order to
get a good overview of the overall architecture. This implementation was inspired by
a library written in C++ by Sébastien Rombauts(17). The application can be divided
into eight different parts, as shown in figure 4.4. A description of each module will be
given before proceeding with further optimization into the final design. A more detailed
description is given in the appendix B.3

4.3.1.1 Entity Data Type

Entity is an unsigned integer that represents an unique entity. The identifier itself is
implemented as a struct with implicit conversion from unsigned integer type. This was
necessary as C# does not support the typedef specifier found in C/C++. It is merely
a data type representing an aggregation of components through weak reference. This
means that every "object" in the game is addressable through an unique entity id, and
its components can be found indirectly through this entity. In order for this to work as
a weak reference, there must be some kind of data structure that keeps track of which

40 CHAPTER 4. MATERIALS AND METHODS

— Systems Dictionay

Entity - Manager »| ComponentStore

 E— J—l

ComponentType |-« Components > IComponent

Figure 4.4: The overal architecture of the first implementation for custom ECS

entity belongs to which component instance. This is achieved through the component

store module.

4.3.1.2 Component Type

Down at implementation level, the Component type data type is similar to the entity
data type. It represents the different component types available in the application.
Each component must have an unique component type id assigned to it. This data

type uniquely represents the different component structs in the system.

4.3.1.3 Components

Components are user-defined structs that also implements the IComponent interface.
These structs are defined by the developer. Component structs are used to represent
data for the different entities. They are separate from the entity module and is only
weakly referenced through the component store module. Structs were used instead of
classes because they are of value type in C#, meaning that the whole struct data-set is
stored in the stack and not the heap.

4.3.1.4 IComponent

Every new component created by the developer must be assigned a component type id.
IComponent is a C# interface that forces new component structs to include the compo-
nent type property. It is important for every component to have a component type id
in order for the application to work, as reflection is used to access the component data
through this interface.

4.3. ENTITY COMPONENT SYSTEM - CUSTOM IMPLEMENTATION 41

IComponent

> ComponentType ID; -

[

Component: Position Component: Orientation Component: Health
ComponentType ID = 1; ComponentType ID = 2; ComponentType ID = 3;
float pos_x; float int healthPercent;
float pos_y; float rot_x;
- float rot_y;
float pos_z float_rot_z;

Figure 4.5: Example of components

4.3.1.5 Systems

Systems represent the system part of ECS. All systems in the application derive from an
abstract system class LSystem. This base class contains some fields that are necessary
for all derived systems. It also includes a virtual function that every derived class must
implement, the update function that runs once every loop on the main thread. Be-
haviour of a system can be defined through this virtual update function. LSystem was
chosen as the base class name in order to avoid confusion with the system namespace
in .NET. Every derived system class has two containers that are necessary, a list of all
entities that are legal and a set of all components that the system operates on. An entity
is defined as legal if it has the required components. The system classes access compo-
nent data of an entity through a manager which invokes calls through reflection. The
data is not retrieved in a linear fashion at this state, breaking one of the data-oriented
design principles. An example demonstrating the use of this class is shown in the ap-
pendix B.3.1.

4.3.1.6 Component Store Class

It is desirable to have multiple entities with different type of components attached to
it. Since entities have their own component instance of a component type, a method
for mapping a component instance to the correct entity is required. This functionality
is achieved through the component store class. This class is defined as a generic class,
which means it can operate with different type of components. A new component store
object is created for each component available on in the application. Internally, this
class has an associative container which maps entities to their respective components.

Figure 4.6 shows an example of two different component stores. Entity 1 and entity 2

42 CHAPTER 4. MATERIALS AND METHODS

has only one type of component each, while entity 3 has both components. The man-
ager class will contain a list of these component stores which it then uses for accessing
the correct component for an entity.

ComponentStore<Position> ComponentStore<Velocity>

Dictionary<Entity, Position> Dictionary<Entity, Velocity>
= /

Entity 2
Component instance: Component instance: ‘Component instance: ‘Component instance:
Position Position Velocity Velocity
Entity 3 ComponentType ID = 1; ComponentType ID = 1; ComponentType ID = 4; ComponentType ID = 4;
float pos_x = 20; float pos_x = 0; float velocity_x = 2; float velocity_x = 0;
float pos_y = 10; float velocity_y = 0; float velocity_y = 0;
float pos_z = 5; float pos_z = 0; float velocity_z = 5; float velocity_z = 0;

Figure 4.6: Component store for two different components

4.3.1.7 Manager Class

An entity-component-system architecture divides the application into three different
separated modules. For an application to run with this decoupled design, a manager is
required to connect entities to their components and the systems to the correct com-
ponents. This is the purpose of the manager class. The manager class has a list of all
entities, component types and systems of the application stored internally. The man-
ager creates new entities and assigns them a new id, it couples entities with their re-
spective component instance and runs the virtual system function every frame. A list of
component stores are also a part of this manager, and it is the managers sole responsi-
bility to handle these structures. The manager will run a loop that continuously iterates
through each system and activates its update function. A complete iteration of the loop
is defined as one frame.

4.3. ENTITY COMPONENT SYSTEM - CUSTOM IMPLEMENTATION 43

4.3.1.8 Component Store Dictionary Class

The manager class needs a way to map component types to their respective component
stores. This is achieved through the component store dictionary class which uses C#
dictionary. This is an associative container that uses the component type value as the

key value. A reference to the component store object is then given by the key value.

4.3.2 Improved design

As mentioned in the previous section, the way a system retrieves data is not efficient,
nor does it follow the specifications given in 3.2.1. It doesn’t really follow the princi-
ple behind data-oriented design, where data layout is important. It is desirable to have
component data linearly stored in memory for a system once it iterates through it. For
this reason, the top level architecture was modified in order to achieve this functional-
ity. The application structure needs some minor modifications. The improved design
is shown in figure 4.7. The goal of this revision was to have memory stored linearly
when accessed by the different systems in order to improve performance through spa-
tial locality. The improved design involves extensive use of C# reflections and custom

attributes, partly inspired by Unity’s entity-component-system.

~| Systems }—5 ComponentDataArray
A

A

Entity -+ ‘ Manager ComponentStore

|
J
 _

ComponentType ~—| Components }_ IComponent

Figure 4.7: Improved ECS top level architecture

Component data array is a new generic class that is very similar to the standard
container List in C#. The purpose of this class is to store component data linearly in

memory. An internal array is used as a container for the component data. The systems

44 CHAPTER 4. MATERIALS AND METHODS

must declare component data array objects for each type of component type it wants
to operate on.

Once the different component data array objects are declared in a system, they will be
filled with component data. The component data array object can be modified through
reflection in conjunction with custom attributes, allowing the application to fill it with

component data for a system before update function is called.

A custom attribute was created for the application, named Inject. The name was in-
spired by the same type of custom attribute found in Unity. The inject attribute is only
associated with component data array objects. Once a component data array of com-
ponent type T is associated with the Inject attribute, it will fill its arrays with data of
type T during run time before the system executes its update function. An example
demonstrating the inject attribute in conjunction with the component data array type

is shown in the appendix B.3.2.

The improved design will bring some new challenges to the implementation. One of the
issues is the fact that the new design has two storage containers for component data, the
component store and the component data arrays. The component store contains data
for the different types as a part of the manager class. In addition, the system class now
holds its own component data array fields for storage of component data relevant to it.
This means that the application needs to synchronize between the two containers for
each component type. The component stores must update the component values ev-
ery time a system performs data manipulation. The component data array fields must

include new component data every time a new entity has been registered.

These changes makes memory layout more linear, however it also brings more over-
head which might reduce performance. Giving each system its own set of component
data array fields will also mean that more memory is required by the application. An
example of how the manager transfers memory between different storage containers
are shown in figure 4.8. The two systems operate on the same component data, with
system 1 being the first to execute. After the steps are finished, system 2 will perform

the same steps.

By using component data arrays objects with internal array storing data linearly, the
system is able to retrieve data from contiguous memory space during its update func-
tion. This will in theory give better performance in exchange for larger files. Even
though the improved design might improve performance, it is still not close to an object-

oriented application when it comes to speed. The naive implementation was written

4.3. ENTITY COMPONENT SYSTEM - CUSTOM IMPLEMENTATION 45

Component
Stores

1. Retrieve component data from component store

3.Activate
update

System 1 function System 2 - Waits for

g Manager system 1 to finish

4. Use data from component data array

Component Data,

—
Array

2. Store data on component
data arrays

‘Component
Stores

The steps are repeated for

7. Update the component data on the component stores

System 1 System 2 - Waits for
i Manager system 1 to finish

5. Update component data and store it on the data arrays

Component Data,

Component Dat:
6. Retreve updated rray
component data from arrays

once system is finished

Figure 4.8: Order of operations performed by the manager for a system

first to create a functional ECS design, without putting emphasis on speed. For this rea-
son, the improved version was further optimized in order to make it usable for realistic
applications. The changes for this part aren’t directly related to the architecture, but
rather optimization steps relevant to the C# language. A brief list of the optimization
done is given her, with more detailed description in the appendix B.3.3.

¢ Reduced number of boxing and unboxing
¢ Reduced number of function calls through another class during reflection

¢ Component stores will only be updated if changes have been made to the com-

46 CHAPTER 4. MATERIALS AND METHODS

ponent data array in a system

The final design fulfills all the requirements set in section 3.2.1

4.3.3 Functional testing of the ECS implementation

Several functional tests were performed for the implementation in order to verify cor-

rect behaviour. The different tests tested the following functions:
1. Creation and deletion of entities
2. Each entity is created with an unique id
3. Entities are assigned component data
4. System registering a component type as part of its list of required components
5. Entity and all of its component data is deleted
6. Systems performing logic on the list of components it has been given
7. Modified component data is updated to the component stores
8. Retrieving component data using the entity manager
9. Systems run in a specific order
10. Allow multiple systems to run

11. Verify synchronization between different systems operating on the same subset
of data.

These functions define many of the properties found with the entity-component-system
pattern. A verification of the intended behaviour verifies that the design follows the
pattern, fulfilling one of the functional specifications given in 3.1. The tests were al-
ways performed with the same input values and same expected output values. Assert
functions were used in the tests to verify that the functions had correct output when

changes were made to the design.

Three tests were created in order to verify all the behaviour listed. The first test verified
the behavior for 1-5 in the list above. Twenty entities were created with a dummy com-
ponent attached to it. Then a system registered that dummy component as a required
component for that system. This means that all the entities should be legal for the sys-
tem in the test. The test will proceed to print all legal entities for the system, delete

some entities then re-print with the updated set of legal entities. An assert method is

4.3. ENTITY COMPONENT SYSTEM - CUSTOM IMPLEMENTATION 47

invoked after the creation and deletion of entities in order to verify that the design have
correct behaviour. If the values differ from the expected values, an error exception will
be thrown. The output of the results are written to a text file.

The second test confirms the behaviour for 6-8 in the list above. The test has a test
component which consists of an integer and float variable, registered to a system. Sev-
eral entities will then be created with an instance of the test component attached to it.
The system will increment the int value of each component with one, while increasing
the float value with 20. The values of the test component will be updated afterwards to
the component stores. Once again, the assert method is used to verify that the values
after system update is equal to the expected values. The output of the results are written

to a text file.

The final functional test tested the points 9-11 listed on the list above. The test consists
of two systems operating on a set of component types each. The first system will oper-
ate on two components with some data fields, while the second one will only operate
on one of these components. This test was created to confirm that the systems correctly
update values so that the next system can use the updated values. It also tested the pos-
sibility of having multiple systems working together. The results were outputted to a
text file.

The results of these functional tests are shown in section 5.1.1

4.3.4 Performance tests for the ECS implementation

The ECS design went through several revisions before being finalized. Improving per-
formance and conforming to the specifications given was the aim behind the changes
applied. The main performance parameter of interest was the iteration time for com-
ponent data. A test was written to verify that the iteration time were improved upon
the design modifications. The test will be performed on two versions of the implemen-
tation, the initial implementation and the final revision. The test is not intended for
the object-oriented solution, as it only measures the performance improvements for
the entity-component-system design. The reason for choosing these two points are be-
cause they differ fundamentally in how they access data. All the other revisions are just
intermediate steps in reaching the final version. The first version of the design retrieved
component data through calls to the component stores which contained the data. The
data was not laid out linearly for fast access. The final version injects the system with
component data stored in a linear fashion before update function is called. Allowing

the manager to fill the component data arrays before a system update introduces more

48 CHAPTER 4. MATERIALS AND METHODS

overhead, which could have given worse performance. This test will essentially con-
firm whether the cpu is able to perform better when data is linearly stored in memory

through arrays.

The test itself is simple. A large amount of entities are created, with each entity hav-
ing the same type of component attached to it. The component consists of a three-
dimensional vector variable that holds a hypothetical "position". The test will run through
all the entities and its component data on a system that registers this position compo-
nent. The position component of each entity will be updated, by simply being incre-
mented. This operation will happen 100 times for each entity in this test. Figure 4.9
illustrates the structure of the performance test. The time elapsed will be measured af-
ter all the entities are created with their initialized component, right after the manager
activates the systems. The test was performed for different number of entities created,
and each single test was run 10 times in order to reduce discrepancy in hardware during
boot-up of application. The test will simply measure time elapsed before the system is
done. The exact same type of test is performed for each revision in order to compare re-

sults. The results of these tests are written to a text file with the format defined in 4.1.6.

Manager

Attach Register
Create 100 position position Activate
entities component to component to, system
entities system

<Requires entities with

C Position cc

» <Increments values>
— — — — — — - Position Update System

+ Vector3 Position

Component data
Entitess ——— — >

Position
component data

Figure 4.9: The structure of the performance test

The results will be shown in section 5.1.2 and discussed further in section 6.1.1.2

4.3. ENTITY COMPONENT SYSTEM - CUSTOM IMPLEMENTATION 49

4.3.5 Integrating OpenGL with the ECS implementation

Now that a functional entity-component-system is created in C#, it is time to add graph-
ical supportin order to run some visual tests. OpenGL will be used for this task. OpenGL
is an industry-standard protocol for high-performance graphics (18). OpenGL itself is
not a language, but a standard for common graphics library, written by Khronos. The
implementation detail is up to each language. The opengl standard describes api’s for
accessing the graphics processing unit found in computers. Opengl provides standards

for how one should use the graphic processor to render 2d and 3d vector graphics(19).

A C# language binding of OpenGL is required for the ECS implementation. There are
currently seven different language bindings for C# listed in the language binding page
from Khronos(20). Opengl4csharp(21) was chosen as the language binding after look-
ing through the available options. It was chosen based on availability of tutorials and
ease of use. Several tutorials were available for this language, with an easy setup. Tutori-
als provided by giawa(22) was used in order to get started with opengl using the chosen

language binding.

An opengl context needs to be created in order to send commands to the graphics
processing unit(gpu). This context represents the internal opengl instance and all its
states associated with it. It is not possible to draw meshes or send other commands
to the gpu without having a context to reference from. All opengl graphic commands
require a context to work from, which should always be provided during initialization
from the application. Fortunately, there are several frameworks that makes it easy to
create a context without going in depth with the details. One of the more popular ones
are FreeGlut (23), which is open-source and free under the MIT license. FreeGlut pro-
vides api for creating context and defining parameters such as window size of appli-
cation. The library itself uses opengl calls to construct the context for the user, how-
ever this is abstracted away from the users. Another framework, the Tao framework, is
used to access the Freeglut library. This framework provides access to C# libraries most
commonly used for game development, such as opengl. Now that the types of libraries
required have been established, it is time to import them into the ECS project. The dif-
ferent libraries were downloaded and imported into the custom ECS project.

A simple method for drawing graphics are required for the ECS integration. Opengl
render graphics in a similar way as described for Unity in the appendix B.1.1. A buffer
of data containing vertices and indices are transfered to the gpu, which will then use the

data provided to render the visuals once a draw command has been received. Opengl

50 CHAPTER 4. MATERIALS AND METHODS

Creates application Sends graphic
context for the opengl commands for
framework rendering

Implements
entity-component-system
framework

? Tao.FreeGlut Opengl

| 5 !

The ECS J_«Iibrary links>> |
implementation [~ T T T T T T T T T T T T T T T ™

Figure 4.10: The libraries imported to the project and their function

performs a sequence of steps whenever it renders an object, called the rendering pipeline(24).
There are several steps in this pipeline, however only some steps are relevant for this
part. The application needs to prepare the vertex data for the gpu before it proceeds
with the rendering pipeline. The data are loaded into vertex buffer objects stored on
the gpu side. Furthermore, a vertex shader must be defined for the vertex stage, which
is the step where each individual vertex is processed. The processed vertex data is then
moved forward to the primitive assembly. The primitive assembly will take the stream
of vertex data and convert it into a sequence of primitives. The primitives determines
what the stream of vertices really represents. These primitives can be shapes such as
a triangle or a quadrilateral. The type of primitive is decided by the input given to the
draw command. The primitives are then constructed based on the values given on the
vertex index array, containing the indices for the primitives. After this step, each prim-
itive will go through the rasterization process. At this stage each primitive is broken
down into discrete elements called fragments. These fragments have a window space
position, values for depth, color and other parameters. Each individual fragment will
be processed by the fragment shader, which must be supplied to the gpu. The shader
can control parameters such as the color of each fragment. The shaders are the pro-
grammable stages of the pipeline, which the users can control. The program in these
shaders are written in "OpenGL Shading Language"(GLSL), which is similar to C/C++

in many ways.

To summarize it up, in order to render an object on the gpu, vertex data must be loaded
into the vertex buffer and shader programs must defined. The other stages in the pipeline
are done automatically without our involvement. Figure 4.11 illustrates the relevant
steps involved in the pipeline and the required data.

Following the tutorials available, a simple basic shader program was created. In prac-

tice, this is done by writing the whole shader program in a C# string. The string will then

4.3. ENTITY COMPONENT SYSTEM - CUSTOM IMPLEMENTATION 51

Vertex buffer objects

Processed
Vertex data
Vertex Primitive | | Primitves |
Shader Assembly

Vertex positions

Rasterization

Vertex color
values

D I Fragments
+ ol

|

|

|

|

|

|

|

|

|

|

|

| I

| Fragment i processed data |ransfgled to frame buffer
Vertexindices |- —| — — | shader

|

|

'

Figure 4.11: The relevant parts of the rendering pipeline in opengl

be compiled into a program which the gpu can execute, with the use of opengl api. The
vertex shader will take the position of each vertex and then calculate the position of it

on a global axis, based on three transformation matrices.

gl_position=projection_matrix+*view_matrix*model_matrix*vec4(vertexPosition,1)

The vertex position is defined in its own local coordinate-system, so a model matrix is
required in order to transform it into the global world coordinate-system. The view ma-
trix transforms the vertex relative to our view, which would be the camera view. Finally,
the projection matrix is responsible for transforming the 3d vertices into our 2d view,

making corrections for how close and far an object is to the camera (25).

These matrices can be set by the application before each draw call, allowing the user to
change the level of transformation done by each matrix. In addition, the vertex shader
will take a buffer of vectors representing color values for each vertex. These values will
be passed on to the fragment shader. The fragment shader simply takes in a three-
dimensional vector parameter which decides the color of each fragment. The vector
specifies the color intensity for the three color types used in the additive red-green-blue
color model (26). The complete code for the shader program is shown in the appendix
B4.1

A foundation for graphical rendering is now established after following the steps
described. The following steps are required in order to use opengl with the ECS imple-

mentation:

¢ Create a context for the opengl application

52 CHAPTER 4. MATERIALS AND METHODS

View matrix transformation

Model matrix
transformation

Our mesh

View axis

World space axis

Figure 4.12: How the vertex shader transformation matrices transforms the object - im-
age taken from opengl tutorial website(25)

Initialize the window and its size

Choose the display mode for the application

Create the window itself

Choose the idle function that should run each time the processor is ready to

render a new frame
¢ For each frame update, set the viewport and clear the buffer masks
* Fill vertex buffer objects with vertices, the indexes and their color intensity

¢ Set the transformation matrices found in the vertex shader

Bind buffer to the gpu
¢ Send draw command to the gpu to initialize rendering
Figure 4.13 shows an example of a render after following the steps. Complete code fol-

lowing the steps above for drawing a triangle is available in the appendix B.4.2.

4.3.6 TestApplication using the entity-component-system implemen-

tation

A complete game could have been created with the entity-component-system and opengl
integration, however due to limited time, something easier was created. To evaluate

4.3. ENTITY COMPONENT SYSTEM - CUSTOM IMPLEMENTATION 53

7 Triangle wiith C# binding for openg! - o X

Figure 4.13: Rendering of a triangle done with the opengl binding for C#

the entity-component-system, a test application is required following the requirements
given in section 3.2.2. It is important for the tests to analyze both the weak and strong
parts of the implementation in order to get a fair analysis. The following key points are

in theory improvements for the entity-component-system implementation:
¢ The use of systems make it easier to divide different tasks in an application

e The use of linear memory layout for the data makes iteration faster due to less
cache misses

¢ No direct references are made to "objects" containing set of data, instead the de-

sign works solely on data types.

To test these claims and follow the requirements given, a simple test will be made which
simulates a sine-wave. The simulation will consist of several thousand points that to-
gether, based on their current position on the x-axis, will simulate a sine wave. The
simulation will be created twice using the ECS implementation and traditional object-
oriented programming respectively. For the graphical rendering part, opengl will be
used. There will be several tests simulating a sine wave, with each test doing it in a dif-
ferent way. The frame rate will be measured multiple times in order to get an average
value. Furthermore, the values can fluctuate depending on other external factors, so
the same test will run multiple times, reducing the number of potential random dis-

crepancies. Further description of the tests will be given.

4.3.7 Simulating the sine wave

The simulation of the sine wave will be rendered by rendering a large number of quadri-
laterals, each representing a single point on the sine curve. Each quad will be evenly

54 CHAPTER 4. MATERIALS AND METHODS

spread across the x-axis, while each individual quad will only move along the y-axis. The
y-positions for each quad is calculated using the sinus function with their x-position
and elapsed time as the input parameters. These quads will then be placed close to
each other, giving the illusion of a connected sine curve even though the quads are de-
coupled. Four vertices are required in order to render a single instance of a quad. By
defining a vertex array consisting of the vertices, along with another array representing

the indices, a quadrilateral object to render can be created.

4.3.8 Simulating a sine wave using opengl and object-oriented prin-

ciples

A class defining each cube point on the graph was created for the object-oriented im-
plementation. The class QuadPoint represents a single quad point object on the graph.
This class contains several fields required to define the quad point, as shown in table
4.1. The class has a draw method that will retrieve the data stored on the fields and use
them to send draw calls to the gpu in order to draw the quad point. The test will be
initialized by creating a large number of objects and adding them to a list. The update
function that runs each frame will then iterate through this list, set new position for
each quad object and then execute the draw function. Additional classes for color and
mesh data was created in order to have more than one layer of classes in the test. This

will increase the number of references required and give a more realistic application.

Position Vector3 Position of the point

Square Mesh Mesh Contains vertices data for the shape

Color Color Contains color data for a single quad

ColorValues Vector3[] | Contains color data for each vertex of a single quad
Vertices VBO Vertex buffer object for the vertex points
VerticeIndexes | VBO Vertex buffer object for the vertex indices

ColorsVBO VBO Vertex buffer object for the color values for each vertex
ShaderProgram The shader program that will be executed

Table 4.1: The fields in the QuadPoint class

4.3.9 Simulatingasine wave using opengl and the custom entity-component-
system implementation

In the ECS implementation, each quad point is represented as an entity consisting of

two components. One component representing position value of the point, and one

4.3. ENTITY COMPONENT SYSTEM - CUSTOM IMPLEMENTATION 55

component representing color value of the point. In addition, a component for de-
scribing the mesh is used in some of the tests. Two systems are used, one that updates
the position component and another system that reads in the position component and
draws the objects. The system that updates position are always executed first. Figure
4.14 shows the structure of the quad point in this scheme. While only one system could
have been used for this example, two were used in order to create a more realistic sit-
uation for the application. Since the application now uses opengl and its own update
function, the manager can no longer be used to activate the systems. This has to be
done through the frame function within opengl, which will now instead activate the

system update function.

QuadPoint Entity

l l

Position Component RenderColor Component
L= Vector3 Color;
floaty;

1 <<Reads>>
Updates position l—\ <<Reads>> a opengl
PositionUpdateSystem RenderSystem
. . System responsible for rendering through Draw call
Responsible for updating position data opengl api calls

Figure 4.14: Sine-wave simulation structure for ECS

4.3.10 The sine wave simulation tests

The sine-wave will be simulated through a number of different tests, where each test
is performed for both programming paradigms. The different tests are listed in table
?2. The tests can be divided into two main groups. One group of tests where the draw
command is only called once for the whole graph each frame, this is achieved by hav-
ing the graph strictly described by the vertices and their local axis relative to the world
axis. In essence, the complete graph is drawn by defining each vertex possible on the
graph. The other group consists of tests where the draw command is called for each
quad point. This only requires the application to define one quadrilateral object and
then copy the array for each further draw. We simply modify the transformation matrix
before each draw call in order to move the quad to its correct position on the graph.

56 CHAPTER 4. MATERIALS AND METHODS

1 All VBO bulffers allocated once, no changes to color values.

) VBO buffer for vertices and indices are allocated once,
with inclusion of VBO buffer for colors

3 Similar to previous test, however color values are now
updated each frame.
Similar to previous test, but component data for color

4 and position is merged into the same component for the
ECS implementation.

5 VBO bulffers are allocated each frame for each quad point.

5 The complete graph is drawn by calling the draw api once
each frame.

. Similar to previous test, with only one system used instead

of multiple for ECS.

The reason for doing the tests in two different ways are to check how the opengl api
affects the performance. We want to verify our results by making sure that the opengl
api calls are not too detrimental in regards to performance when it comes to the frame
rate compared to the object-oriented and data-oriented design. The goal is to compare
the two paradigms, and thus inspecting other external factors will be beneficial in con-
cluding whether the difference in performance is based on the programming paradigm
used.

Furthermore, the tests will also have a variation in how vertices are stored for one of
the tests. The vertex buffer objects will vary in how they are allocated dynamically. In
one variation of the test, the vertex buffer objects will be allocated only once, saving
time spent on allocating and deallocating memory for gpu. In the second variation, a
new vertex buffer object will be called for each quad. Again, this is done in order to
make sure that the results of the two implementations are not significantly affected by
opengl api calls.

These tests aim to compare their efficiency against the traditional object-oriented ap-
proach. However, the custom implementation is not fully complete and has its advan-
tages and disadvantages. These tests will analyze the different scenarios and verify hy-
pothetical situations. The first four tests investigates how efficient the iteration scheme
is with the entity-component-system. The other tests will do the same, but apply to
a more realistic setting, such as having points with different meshes to represent ob-

4.4. ENTITY-COMPONENT-SYSTEM IN UNITY 57

jects of different types. The final two tests will only call the draw command once each
frame, instead of calling it for every point. This is one of the most expensive calls in the
tests, and thus having only one call will allow us to have a significant larger amount of
points on the simulation. This will allow us to test the efficiency of storing and loading
component data arrays each frame, which is linearly dependent on number of entities

presented.

Each test will run for a different number of objects created in order to include the im-
pact the sizes have. The results from the tests will be written to a text file which will then
be parsed by a python script. The results of these tests are shown in section 5.1.3 and
further discussed in section 6.1.1.3 All the tests will simulate the same type of graph.

Figure 4.15 shows the simulation for one of the tests.

Figure 4.15: Sine wave test with opengl

4.4 Entity-Component-System in Unity

Unity has recently provided support for data-oriented design through their own im-
plementation of the entity-component-system. The structure behind it is quite similar
to the custom design implemented in this thesis, however it is significantly more opti-
mized. The memory management of the component data is more complex and linear.
It stores data on an entity-to-entity basis instead of just component data of the same

type. A brief description of the feature will be given here.

Unity implements the typical entity-component-system architecture. Entities repre-
sent an unique object on the game world, with a set of component data that it associates

58 CHAPTER 4. MATERIALS AND METHODS

with. Furthermore, each system performs data transformation on a set of component
data that the user defines. The users can define their own component data types and
create their own systems. When a system is defined with a set of component data types,
it will fill component data arrays with the data that it can operate on. All component
data of the same type is stored in what Unity refer to as chunks. The component data is
laid out based on their type, where components of the same type are tightly packed lin-
early in arrays. This structure allows for fast access and iteration through component
data. The engine also provides with a new type of components, shared components.
Shared components are component data that are shared between many entities, and
thus should not be changed often. All entities that use the same instance of a shared
component, is grouped together for efficient extraction of data. The inject attribute

found in my design is also found in the implementation provided by Unity.

Entity archetypes are arrays of component types that define one type of an entity. It
can be seen as a template for an entity and the associated set of components. Entity
archetypes can be used to define and instantiate the same type of entities more effi-
cient. The chunks in Unity are all linked to a specific entity archetype, which means
that all entities in a chunk follow the exact same memory layout.

Entity manager is a manager that has control over entity data. A collection of api calls
related to entities are available in the manager class. The manager can be used to create
new entities, check if an entity exists, set or get component data for an entity and other
similar entity related methods. Furthermore, a Entity commands buffer object, named
PostUpdateCommands, are available in the system classes. The PostUpdateCommand
will store entity manager commands to a buffer and then execute it after the system is
finished with iterating through the component data arrays. This is necessary in order to
avoid corrupting the arrays by inserting or deleting entities that would be legal to that

system while the system is not completely done with one whole iteration.

A system can be set with its list of required component types by simply creating a data
struct consisting of component data arrays for the different component types. Once
the struct has the inject attribute, it will fill the arrays with data and only operate on
the entities that have all the required components given in the struct. The PostUpdate-
Command should be used here to avoid corruption of the data arrays.

4.5. PURE DATA-ORIENTED APPLICATION IN UNITY 59
4.5 Pure data-oriented application in Unity

For the pure data-oriented application, a sine-wave simulation will be created using the
entity-component-system in Unity. The same application will be created in an object-
oriented manner for comparison. The simulation will do the same type of work as the
test application written for the custom entity-component-system. A sine-wave will be
simulated using a large number of cubes connected together. Each cube will then be
given a position along the x-axis and update its y-position by using the sine function
with time and x-position as parameters. Iterating through the cubes and updating each
movement based on the sine function will then give us a large connected graph that
moves like a sine wave. The pseudo code for this behaviour is shown in the code snippet
below. To make sure that both solutions execute work in the same type of environment,
same type of materials and calculations will be used for the cube points. In addition,

both solutions will have gpu instancing activated.

Listing 4.2: Sine wave simulation

1 // Get number of ms elapsed since initialization of game.

2 float dt = Time.time;

3 for(int 1 = 0; i < points; i++){

4 // Get the next cube point

5 Point cubePoint = points[il;

6 // Retrieve the position

7 Position cubePosition = cubePoint.position;
8 // Calculate new position along z-axis

9 Position newPosition = Sin(m * (cubePosition + dt));
10 cubePoint.position = newPosition;

1 }

12 \label{code:2}

4.5.1 Objected-oriented sine wave

The object-oriented implementation was inspired by a tutorial written by Jasper Flick
(27). Only two scripts are needed for simulating the sine wave. One monobehaviour
script is needed to represent a point object on the graph. This class will have variables
for x and y position on the xy-graph. Another monobehaviour script is needed for in-
stantiating and updating these points along the x-axis. The points will have the form of
a cube and be placed close enough to each other such that they illustrate a connected
graph. A couple of game objects were created on the scene with the scripts added as

components. The results will be discussed in chapter 5.

60 CHAPTER 4. MATERIALS AND METHODS

Defaule

¥~ Transform EE
asion o ——
Rotation Xo vl Tz
seale pra—— pArw—
¥« ¥ Graph (script) e
Seript arap) °
point o

Prefab. Cube (Point)
Humber Ofpains
E—

Length Of X Axis 20

‘Add Component

Figure 4.16: Scene view of sine wave in Unity

4.5.2 Data-oriented Sine wave

The newly released entity-component-system framework in unity is used for the data-
oriented implementation. The data-oriented implementation performs the same in-
structions as the one shown in the sine-wave simulation code snippet. A system will
be used for updating each point, while another system will render the cubes. When the
entity-component-system is used, game objects do not exist on the scene. This means
that much of the work and debugging has to be done purely through code, making it
more of a challenge. It is possible to attach game objects to the entities through the

game object entity interface, however this will not be done for this implementation.

An entity archetype is created for the points. Each point must have a position on the
scene and be represented visually as a cube. Unity has several native components
available that supports the type of components required. A three-dimensional position
component is available in Unity for entities to have. This component has three float val-
ues that represent a point on the scene along the cartesian coordinate system. For the
rendering part, the mesh instance renderer component can be used. This component
contains data for the mesh and type of material used. This is a shared component that
multiple entities can use together, since the cube mesh will be the same for each point.
Finally, one more component is needed for the entities, the transform matrix compo-
nent. Each cube entity must update its position along the y-axis, and for this reason,
there must be some mathematical definition for the translation. Unity provides with

a transform matrix component that can be added to the components. The transform

4.5. PURE DATA-ORIENTED APPLICATION IN UNITY 61

matrix is used in order to calculate transformations such as translation and rotation.
The default values are sufficient to use for the application and further changes are be-
yond the scope of this thesis. Based on the given information, the cube entities only
need three type of components, position, transform matrix and a mesh instance ren-

derer component.

Point entity

Position component Meshl:sunceRenderer

TransformMatrix component

+ Mesh mesh;

+ Material material;
+float3 Value; + ShadowCastingMode + floatdx4 Value;
castShadows;

+ bool receiveShadows;

Figure 4.17: The entity that represents a single point

Only one user-defined system is required for this application. A system that iterates
through each point on the graph and updates the y-position value. The system only
requires the position component, which means that a component data array must be
defined within the system. The system will as a result only be legal for entities that have
the position component, which all the cube entities have. Unity provides with another
native system that will render the points as cubes on the scene. The system is provided
by Unity and will automatically render all entities that have a position, mesh instance

renderer and transform matrix component attached to it.

There is no simple method for accessing the cube mesh or material type in Unity through
scripts with the entity-component-system. A workaround is to create a cube game ob-

ject on the scene, and use data from this object to define the mesh and material. The

game object data was extracted by the use of a Unity api, GameObject.Find(), which

finds game objects on the scene and returns object data. The cube object was first cre-

ated on the scene with the desired size and material before the data was extracted in

the script. The extracted data was added to the mesh instance renderer component in

order to define the graphical part of the cube entity. The same method was applied

to define parameter values for the graph, through a setting game object. Code snippet

demonstrating this is shown in the appendix B.7.1

To bootstrap everything and activate the simulation, an initialize function was created
with a game object. This game object will simply run once and initialize all the data

62 CHAPTER 4. MATERIALS AND METHODS

required for the systems.

Figure 4.18: Sine-wave simulation in Unity

4.5.3 Testing of the sine-wave simulations

The main performance criteria for the two simulations will be the average frame rate.
The test will be performed multiple times with different number of objects spawned in
each test case. All the tests will be performed with a window resolution of 1600 x 900.
Both solutions will be built in order to remove all kind of overhead related to the unity
editor.

Buid Setings g
Scenes In Build
(¥ Scenes/SampleScene. 0

Add Open Scenes

Architecture

i99ing
Seripts Only Build

00”&0 g
g
H

~ra pst Compression Method

S Universal Windows Platiorm '

e Learn about Uity Cloud Build

Figure 4.19: Build settings for the tests

The values will be written to a text file that is parsed by a python script as described
in section 4.1.6. To make sure that the real effct of data-oriented design is inspected,

the Unity profiler with the profiler data exporter script will be used to inspect cpu usage

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 63

times. This part of the analysis will only be done for 50000 objects spawned.

4.6 Data-oriented design for Dwarfheim

The architecture behind DwarfHeim, the conversion strategy and implementation will

be described in this section.

4.6.1 Computer architecture of Hybrid/Pinecone

DwarfHeim is being developed with their own custom engine on top of the Unity en-
gine. The custom engine, hybrid/Pinecone, is an engine specialized for real-time strat-
egy games. Converting the game will require changes to the specialized engine as well
since the game is deeply integrated into the engine. For this reason, it is important
to understand how the engine works, as changes to the game will involve changes to
the engine. The different sections described here will be relevant for the data-oriented

transformation, as these parts will be affected by changes done to the engine and game.

The following sections will go more in-depth for the parts of the hybrid engine prone to

changes in order to get a data-oriented solution.

4.6.1.1 Networking model

The game is mainly going to be played as a multiplayer game, meaning it requires net-
working. The network development of the engine is currently not finished.

It is desirable to have a client-server model for these type of games. Each player in a
match acts a client, while the server is responsible for synchronization between the dif-
ferent clients. It is important for the clients to have their game states synchronized, oth-
erwise each player would play their own version of the match. The server is responsible
for multiple things, such as making sure each unit in the game has the same position
across all clients and calculating non-deterministic actions. In addition, the server is
responsible for giving commands to each client. The commands can be of different na-

ture, such as moving towards a position or attacking another unit.

The engine uses Photon Unity Networking framework, which is a 3rd party asset in
Unity. The framework takes care of all the back-end work necessary for networking,
as well as providing an user-friendly interface. Games that utilize their framework are

hosted on their globally distributed cloud service.

64 CHAPTER 4. MATERIALS AND METHODS

The engine is currently not using a client-server model in the sense explained previ-
ously. Instead, each client can be seen as a peer, with one of them being the host. The
host peer will act like a server, but is actually just a client that does additional work in
order to allow communications between the different clients. This is possible through
the master client api available with the photon framework. Basically, all the clients in a
game will act as a peer, with one of them being defined as the master client. The client
that is responsible for starting the match is usually the master client. The other clients
will then join the game match provided by the master client. Once a peer is a master
client, by enabling a boolean, it will act as the host. It is then possible to execute "server"
specific code by checking if the peer is a master client or not. In practice, each client
uses the same code, with one of them having the master client boolean set. Each client
will then check if it is the master client, and as a result execute server-specific code if
it is. The game is still in its early developmental phase, so using such a model makes it

easy to quickly test networking part.

For testing purposes, whenever game code is tested, the client will act as a master client
and create a new client that will be loaded with the same scene. The testing environ-
ment will then have two clients, with one of the clients being the master client. The
scenes that are used to play with will act as a normal client, with the master client in the
background. This scheme allows for testing of the networking, client code and server

code at the same time.

4.6.1.2 World Objects

All objects in the game that can be directly interacted with by a player is derived from
the World Object class in the hybrid/Pinecone engine. The class defines some general
parameters that all derived objects must have in order to be manipulated by a player.
Having a base class for all objects in the engine allows for extensive use of polymor-
phism. The class provides several virtual methods that are to be invoked after fulfilling
certain conditions, such as first time being initialized or when the object is dead. The
world object type can be used as a generic type to access data of underlying types with-
out knowing the exact type of that object. All references to derived classes of world ob-
ject can then be done through the world object base class itself, allowing the program to
execute the virtual methods that the derived classes overrides. The derived classes can
then invoke their own specific methods within the virtual method. This scheme allows
for all references through the world object, making the code more modular and adapt-
able to changes. All references to the world object derived classes in hybrid/Pinecone is
accessed through the base class. Furthermore, the class contain fields for the prototype

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 65

id, unique name and the prototype it is created from.

WorldObject

Virtual methods

+ void OnSpawn();

+ void Onlnit();

+ void Exeute();

+void OnDie();

+ OnHandleRequestFlag(int)

Figure 4.20: WorldObject class and its virtual methods

) Referencing through worldObject class
WorldObject | — — — — — — — —

T
nherits from WorldObject>>

Overrides Onlnit()
Unit

Figure 4.21: Example of a derived class Unit that has its OnInit() function invoked vir-
tually through the base class

- — — —

4.6.1.3 Basic Commands, Basic Actions and Basic Command Chain

Basic commands are commands that a world object can perform. These commands
are sent from the server-side to the client. Each command has a basic action associated
with it. Basic actions are the actions that a world object can execute, such as moving to-
wards a position. These actions are deterministic, meaning that the outcome of the ac-
tion is always the same for the same input, regardless of the type of hardware the client
has. Basic command chains are queues of basic commands that are to be executed in
order. Each world object has its own basic command chain, which it will iterate through
each time a basic command is completed.

The type of action a basic action perform is limited due to it being deterministic. The
reason for the deterministic requirement is because every client can have different hard-
ware. Different hardware in the clients can cause calculation error and thus give small
variances in the results carried out by the actions. An example of this, is the floating-
point unit found in computers, which performs mathematical calculations with floats.
The results of these calculations can vary from computer to computer, giving differ-
ent results(28). The server will then as a result not be correctly synchronized with the
clients. In addition, the clients won't be synchronized with each-other. This problem

66 CHAPTER 4. MATERIALS AND METHODS
forces the design to limit basic actions to be deterministic, reducing such errors.

To further illustrate the problem of non-determinism, imagine that an unit is to walk
from point A to point B, with an obstacle between the two points, as shown in figure
4.22. Let’s assume that the two paths outlined in the figure, has almost the same exact
distance with only a small variance in value. Now if we were to calculate a path with two
computers that have different hardware, the resulting path distance calculated might
have a small variance. This means that both path A or path B is valid, depending on the
hardware. The action is thus not deterministic in this case, giving different results for

movement. The hybrid engine solves problem like these by having non-deterministic

Path A

Path B

Figure 4.22: Two different possibilities for movement

calculations performed on a server, where the hardware is equal. The resulting path
calculated in the server will then be broken down into a chain of small deterministic
movements, such as movement in a straight line, and sent to the basic command chains

for relevant world objects. The deterministic path is shown in figure 4.23.

Figure 4.23: A chain of deterministic basic commands where each command is a move
action in a straight line

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 67

4.6.1.4 Abilities, Utilities and Sentries

Abilities are actions that a world object can execute. They range from movement ac-
tions such as following another world object to combat-specific actions such as attack-
ing another unit. Abilities will in essence create new basic commands for the world
object to perform. The logic behind abilities are calculated on the server-side only. An
ability request will be sent to the server once a world object activates an ability. Abilities
will then be executed on the server-side, calculating new set of basic commands for the
world object to execute. Abilities can be divided into two subcategories, instant abilities
and active abilities. Instant abilities are performed instantly in a single frame. A typical

example of such abilities are those who add stat boosts to units immediately.

Active abilities are abilities that executes over several frames. The structure behind
these abilities are more complicated than those found in instant abilities. Active abil-
ities consists of a set of utilities. Utilities are a type of class that are responsible for
creating new chains of basic commands. Each utility is responsible for its own type
of commands to send. Once an utility is finished with creating a new basic command
chain consisting of new commands, the chain will be transferred to the relevant world
object. The structure of utilities can be depicted as a graph tree, where each node is
an utility. An active ability will only have one active utility in all instances. In order to
traverse to the next utility on the graph, an utility must meet its exit condition. Exit
conditions are conditions that moves the utility out of a valid state to the next one. An
utility can have more than one exit condition. Once an exit condition is met, the ac-
tive ability will look at the next utility to perform in its node list. Utilities can be seen
as block functions, they take in input values, calculate new basic commands based on
these and transfer it onward to the clients. If an utility’s exit condition is met, it will end
execution. An utility will perform one specific function, such as calculating a path for

movement.

To demonstrate how an utility works, the pathfinding utility in the game will be de-
scribed. The pathfinder utility calculates a new path for a world object to move towards.
It takes the destination as input, calculates a new path and outputs a basic command
chain consisting of move actions. The pathfinder utility has two exit conditions, one
for when the destination is reached and one for when the destination is suddenly in-
valid. This can happen if the destination is some target, and that target happens to be
removed during calculation. When one of the exit conditions are met, the active ability
will either traverse to the next utility or finish the ability given that there are no other

utilities to traverse to. Figure4.24 demonstrates the pathfinder utility with its inputs,

68 CHAPTER 4. MATERIALS AND METHODS

exit conditions and internal logic. An ability for movement can then be created by only

1
inputs | Transfer basic command chain to buffer
|

- | Exit condition 1: Destination reached
‘Current position o |
world object |
Pathfinder utity
—_

| Exit condition 2: Destination unavailable

Destination

| calculates new path

Figure 4.24: The pathfinder utility in Dwarfheim

using the pathfinding utility. Another example is a close-range attack ability, which uses
two utilities. One utility for pathfinding and one for doing the attack. The pathfinding
utility must be executed first in order to ensure that the unit is close enough to the tar-

get. The graph nodes for the abilities are shown in figure 4.25.

Active Ability: Move

Utility:Pathfinder

Active Ability: Meele Attack

Utility: Pathfinder

arget close enough

Figure 4.25: Two examples of abilities created by using a set of utilities

There is a reason for why this structure is used. Once a game has defined a varied set
of utilities, they can be connected together in multiple ways, creating different abilities.
Two abilities with the same set of utilities can be different by simply having different
traversal order for the utilities. This allows developers to create new abilities in a fast
way, as long as the utilities are defined. In addition, the hybrid engine provides with
a graphical user-interface for creation of new abilities. This allows non-developers to
create new abilities without having to write code. Only the code for utilities needs to be

written.

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 69

Figure 4.26: Ability editor view, showing the active ability for meele attacks

4.6.1.5 Agents of hybrid engine

Agents of the hybrid engine plays an important role in making the world objects inter-
actable. They are all monobehaviour scripts that give access to certain types of data
for manipulation. Each game object using this engine will have to include some of
these agents as part of their component list in order to access certain functionality. The
agents are one of the first areas that will need to be transformed into a data-oriented
structure as they play a vital role in most of the code logic seen in the engine. For in-
stance, each game object in the game can have their own view agent, which is responsi-
ble for playing the correct animation during execution. Another agent is the command
agent, which is responsible for updating the next command for a world object to exe-
cute. To summarize it, these agents are attached to game objects so that they can be
responsible for the data manipulation in a specific domain. Currently the engine have
6 different agents and they will be briefly described here. Note that the assisting figures
do not show the complete class, only some of the more important attributes.

v| | by | |

World Object Agent Game Agent Network Agent Ability Agent Command Agent View Agent

Responsible for keeping
The basic game-interactable Responsible for the Responsible for network Agent '9290'“5":9 track of the progress of the Agent responsible for
execution of basic abilities ‘communication Z?g/ﬂe;z:he for the execution current BasicCommand to be animations

o4 executed

Figure 4.27: Agents of the hybrid engine, the lines show dependencies

World Object Agents Each world object must include a world object agent component.
The world object agents act as an interface to the world object data in a game object.

The agent is a monobehaviour type which means that a game object can include it as a

70 CHAPTER 4. MATERIALS AND METHODS

component, thus getting access to the data it employs. It is responsible for initializing
the world object class by calling the initializing function. Furthermore, it is responsi-
ble for synchronizing the transform of the world object on the network, the server, with
the transform found in the client version. This synchronization happens through the
update function in the world object agent component. The tasks of world object agent

can be listed as following:
¢ Provide an interface to the world object data by having a reference to it.

— All other scripts can access the world object data by having a reference to
the world object agent component linked to a game object.

e Initialize world object data

¢ Synchronize client transform with server transform

* Keep track of abilities that the world object can perform
¢ Keep track of effects related to world object stats

Command Agents Command agents are responsible for keeping track of the basic com-
mand chains attached to world objects. It tracks the progress of the current basic com-
mand that is to be executed. Every game object that has the command agent com-
ponent will have a basic command chain, as the agent component contains a basic
command chain object. The command agent can be seen as the interface to the basic
command chain in a world object. Inserting new chains of commands, deleting current
chain and iterating to the next basic command in the chain, are all methods available

through the command agent.

Game agents Game agents are responsible for execution of basic actions contained in
basic commands. Each basic command comes with a basic action, which is a type of
action a world object can perform. This agent will check the current action available
through the current basic command by referencing through the command agent. This
happens every frame through the update function found in a monobehaviour script.
Every game object that includes a game agent component will then be able to execute
basic actions. The same game object must also have a command agent in order to ac-
cess the basic command chain.

Ability Agents Ability agents are only found on the servers-side of the engine. These
agents are responsible for executing the ability requests that a client sends. The agent

keeps track of the current ability and makes sure it correctly iterates to the next utility

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 71

found within an ability. The agents have their own reference to a basic command chain,
which it will fill with new commands given by the utilities. Furthermore, the agent will
transfer the newly constructed chains over the network to the respective clients that it
belongs to. One key difference between this agent and the others, are that the ability
agents do not belong to a world object. A single instance of an ability agent is indepen-

dent and can perform work for different world objects.

View Agents View agents have access to animators found in a world object. The agent

is responsible for setting and playing the correct type of animation.

4.6.1.6 Prototype-based model in DwarfHeim

Prototype-based programming is briefly described in the appendix B.5. DwarfHeim
and the hybrid engine has a well-defined support for prototype-based instancing of
new types through their own customized editors in Unity. It is used for creating new
type of abilities, units and basic actions. The motivation behind this feature is sim-
ple, it allows non-programmers of the team to develop new types without having any
software-development knowledge. In DwarfHeim/hybrid, this model is implemented
by having base classes with a set of modifiable fields for each base type representing
prototypes. In the case of a base class for units, the fields can represent values such as
attributes, type of equipment it can equip and list of ability ids for the abilities it can
execute. Units with different stats, abilities and equipment can then be created by cre-
ating an instance of this base type with the required values to the fields. This makes it
easy to create units that are quite different, without needing to write software code for
each different unit. The only thing one needs to write code for, is the base class and the
associated abilities it can use.

When a prototype is created by a base prototype class, it will be stored in the prototype
library as a json file containing data for the prototype. In this library, each prototype
will be linked to the base class it is created from, and the set of values it has been given
to the base class fields. An instance of the prototype can then be created by retrieving
the data stored on this library. The structure behind this model is similar to just cre-
ating instances of a class and then assign it the values one desire, however this has to
be done with code. The major advantage of the prototype-based modeling is that you
do not need to write the instances in code, you can simply do it through an editor and
allow it to deal with the rest back-end, given that some developers have already created
the interface for it.

CHAPTER 4. MATERIALS AND METHODS

Unit Editar =X
| Mew Unit

Name [Warior | | Warrior

Description Berserker
Ranger
Miner

Tlviking-icon

Abilities

[}

[Spaun Warrior

Equip B

| Run

IdleAggressive

(Hew Ttam

(Remove Tram

=
5
~
J
J

Warrior

unit_warrior_bass_gas_tatos :

(unit_warrior_hair 01 4]
[unit_berserker_pants 01 ¢
[unit_berserker_shoes 01 ¢
Lunit_warrior_beard_01 3]

X X X K X

[Add visual

3

Main hand equipment
—]
Off hand equipment
—)
Armor
—]

| caleulate buff

New Prototype

Figure 4.28: Unit editor in Dwarfheim

Prototype base class

Unit

+ Health;

+ Strength;

+ AttackPower;
+ Abilities;

Prototype for warrior unit

Warrior

+ Health: 200
+ Strength: 20

Figure 4.29: Two unit type prototypes created from the unit base class

4.6.2 Methodology for converting to data-oriented design

Now that a general understanding of the architecture behind the engine and game have

been established, it is time to consider the methodology for transforming it into a data-

+ At 15
+ Abilities: 2, 5

Prototype for Ranger unit

Ranger

+ Health: 150
+ Strength :10

110
+Abilities: 1, 3

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 73

oriented solution. To avoid confusion with the naming scheme behind game objects
components and components in entity-component-system, the ECS abbreviation will
be used as a prefix to indicate parts that are in the entity-component-system domain.

4.6.2.1 Scope of conversion

Since conversion of the complete game would be infeasible due to time and complexity
at its current state, only small sections of the game will be converted. The transformed
parts will create the foundation for a potential data-oriented DwarfHeim. Collecting re-
sults for the modified parts will indicate whether the conversion has brought improve-

ments.

Since the main task behind the conversion is to improve performance server-side by
reducing cpu usage time, the server will be the main part being changed in this con-
version. The server is responsible for receiving commands from the player and return a
new chain of commands for the game objects to perform. This part will require changes
to the current agent system in the engine and the basic command chain structure. To
implement changes to the server and client, with the ability to verify correct behaviour
for the changes done, the unit model in DwarfHeim will be changed. Units are in-
teractable types in the game representing dwarf characters, which are able to execute
different type of abilities depending on type of unit, such as being a warrior unit or a
ranger. For this task, the warrior unit will specifically be changed. Figure 4.30 shows an
overview of the unit model with the important types of objects it contains in the origi-

nal object-oriented DwarfHeim version.

Transform Component

Holds Position, otation and scale data

Hybrid engine agents - Logic and data is combined
together in these monobehaviour components

Handles Controller

World Ob

DwarfHeim unit movement
WorldObjecyGameObject

AbilityAgent

Agen

Figure 4.30: Overview of the unit model and the attached monobehaviour components
- Not all details are shown

Converting the warrior model will require changes to the current implementation of

74 CHAPTER 4. MATERIALS AND METHODS

abilities and utilities as well, as they are executed server-side and responsible for gen-
erating new basic actions. This part of the code needs to become more hard-coded and
less polymorphic, meaning that virtual functions are no longer possible. Only a few
number of abilities will be converted for this thesis. The current plan is to convert the
abilities associated with movement and melee attacks. Changes to some of the utilities
must also be done since abilities use them. Finally, basic commands and basic actions
will also be converted as a result of this.

To summarize, the parts that will be converted will be listed here. Not all changes are
listed up, only the major ones.

¢ The unit type.

* The agents - command agent, ability agent, game agent, view agent.

¢ Basic command for standing idle, movement and melee attack.

¢ Utilities for pathfinder, idle and melee attack.

¢ Abilities for standing idle, movement and melee attack.

Much of the changes will be done through the agents. Figure 4.31 gives an overview of

the important data parts and structure of the agents in the engine.

] World Object Agent Command Agent AbilityAgent View Agent Game Agent
Monobehaviour
components Agent holding world Responsible for i Agent responsible for Responsible for the
object data and keeping track of the AT S communicaing vith execution of
responsible for progress of the server-side for the animator and setting BasicAbilities in
synchronizing with current execution of an ability animations response to
network BasicCommand to be BasicCommands
executed 1
Unit WorldObject Client Basic Command Chain Server Basic Command Chain Current Ability Animation data Current Basic Action
. Controls animation
Contain unit sats Contains chain of basic Contains chain of basic Contais chain of baslc The current basic action to
commands commands G execute
‘ Health ‘ Attack stats Unique Id Chainstatus ’ Chain ‘ Chain status ‘ Chain ‘ Ability Data Current Ability Current Basic
action data

Movement |«

Figure 4.31: Agent data structure prone to changes during the conversion

4.6.2.2 Limitations with the conversion from object-oriented to data-oriented

The ideal conversion would be complete separation between data and logic, as shown
in figure 4.32. All data would be contained in ECS-components while systems would

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 75

perform logic based on the data found within these components. Furthermore, all sets
of data are of value types and thus traversal are faster for the systems, making the pro-

cessor more efficient.

ECS components

ECS systems

Gomponent 1 Component 2

DuwarfHeim unit enity

System 1 System 2

Companent 3 Component 1 <Operates on data found in components>
LR e = = — — — System 3 ao00 System n

Figure 4.32: Ideal implementation for a data-oriented approach

The entity-component-system in Unity has the goal of providing with linear memory-
layout for component data. Achieving this functionality imposes some limitations to
the engine. At the time of writing, the development behind the entity-component-
system in Unity is still in its early stages. The limitations written here might not be
any limitation in the future. Here is a list of some the limitations found with the entity-

component-system in Unity that affects the conversion:
¢ All data types in a component struct must be blittable.

¢ Arrays, lists and other containers with non-fixed sizes are not allowed in a com-

ponent struct.
¢ Arrays of fixed size can only contain basic data types such as integers and doubles.
¢ Polymorphic behaviour is not possible with the current design.

* The Post update commands api lacks features found in the normal Entity man-
ager.

Blittable types in C# are data types that have the same representation in managed and
unmanaged code. These types includes only the basic types such as integers, bytes and
integer pointer. No reference types are blittable, neither is a boolean. This means that
the engine is quite limited in what it can use in the ECS-component data fields. This
makes it challenging to transform the hybrid code as it is very object-oriented and con-
tains several fields with non-blittable types.

76 CHAPTER 4. MATERIALS AND METHODS

The ECS-component data fields can not contain fields that vary in size. The arrays
must have a fixed length, and can only consist of basic blittable types such as integers
or floats. This makes it a challenge in converting the current object-oriented basic com-
mand structure into a data-oriented one. It is possible to declare ECS-components as
shared, which can contain all types of fields. However, shared components are shared
by multiple entities and is not meant to be changed often, meaning that it can't really

be used as a basis for data found within a single entity.

The lack of polymorphic support means that the code will have to become more func-
tional and more "hard-coded". It becomes a challenge to operate with object references
as they do not really exist anymore. Furthermore, the prototype structure which is heav-
ily object-oriented and relies on dynamic allocation of parent classes, will potentially no

longer be a beneficial solution with the entity-component-system.

Finally, the PostUpdateCommands api lacks some methods that are available in the
normal entity manager. The api lacks many of the features that the normal entity man-
ager have. Especially to functions related to dynamic creation and deletion of entity
component data based on component type, which is not available in the api. This
makes it more difficult to dynamically work with entities and its component data as
the application must always know the type beforehand. The current lack of it makes it
more difficult to transition into a data-oriented implementation that is more dynamic

in nature and less reliant on static information.

The fact that DwarfHeim and the hybrid engine is object-oriented brings another set
of challenges. The basic command chain structure is very object-oriented in its nature.
The size of the chain is not fixed, making it difficult to convert due to the limitations
associated with the entity-component-system. Furthermore, the chain references ba-
sic command objects with basic actions in a polymorphic way. Another problem is the
calculation of paths for the game objects, as shown in figure 22. The module uses a 3rd
party asset that requires monobehaviour components in order to calculate the path.
Making this part data-oriented would mean that the internal structure behind the path
finding module must also be changed, which is not a feasible option for this thesis due

to complexity.

The limitations by the entity-component-system and the current implementation of
the game will limit the conversion. Converting the complete game would be infeasible

due to complexity and lack of time. The conversion can be a combination of object-

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 77

and data-oriented principles, at the cost of potential performance gained by not going
pure data-oriented. Figure 4.33 shows an overview of the model for the unit in this hy-
brid conversion. As the figure shows, the solution will consist of both entity-component
data and object-based data through monobehaviour scripts. In addition, logic is both

found in systems and monobehaviour scripts.

ECS'Data ECS-IOgiC Operates on data found in

ECS and monobehaviour
components

ECS Component 1 ECS Component 2

System 1 System 2

ECS Component 3 ECS Componentn
L] —_——————t ——————— System 3 e System n

Object-based data Monobehaviour logic

Monobehaviour

0 Monobehaviour
‘component 1

0
component 2

Monobehaviour
Monobehaviour Monobehaviour Component 3

Figure 4.33: Overview of the model for the hybrid solution

4.6.2.3 Methods for conversion

The different methods used for conversion will be covered here, with examples for some
of them. Due to the nature of the changes done and the size of the overall architecture,
the methods will be described in parts. Figures will illustrate the different methodolo-
gies as they are explained. Not all details will be provided in this thesis as there were
large changes done to the code. Only a general understanding of the strategy will be
given. Both the hybrid engine and the game itself will be referenced as DwarfHeim from
this point on. Figure 4.34 gives a brief overview of the final implementation without cov-
ering every detail related to the implementation. As the figure shows, the unit model
is now defined through a set of monobehaviour components, ECS-components and
shared components. The movement module is a 3rd-party asset that handles move-
ment in an object-oriented manner, and was not changed for this thesis.

4.6.2.4 Working with the existing DwarfHeim code

It is desirable to work with the current existing code available.. Use of 3d-models, ani-
mations, game-logic and general code architecture are all available to base the work on.
In-game objects are accessible through game objects in the traditional object-oriented

78 CHAPTER 4. MATERIALS AND METHODS

Handles movement - data and logic
both within these components

Seeker RVO Funnel
Controll; modifier
Monobehaviour components Handles path Handles Implements
calls movement funnel Entity components
Transform calculations algorithm

Holds position, Position Rotation Unit specifier

rotation and scale

data

Object based data
AbilityAgent teeakiy Suackl Movement stat

Basic Command
Chain server side ©

server-side chain

object DwarfHeim unit entity Current Request Current basic B

command data
Command Agent
Ability data Client-side chain Server-side chain
status status

Basic Command
Chain client side Reference to client

ide chain object Shared components

View Animation
Current Ability el

Unit Meele stats Unit Movement

Figure 4.34: Overview of the data structure in the converted version

way. A good starting point is to give the objects entities, making it possible to access
them with the new entity-component-system, while at the same type keep much of
the same logic available in the regular class. It is fortunately possible to do this with
the new entity-component-system. Unity has added a method for slowly transitioning
from object-oriented style to the new entity-component-system, by using the game ob-
ject entity component. This is a normal C# script that gives an unique entity id to an
object class. An interface to the entity-component-system is made possible for a class
once it has this component. There are some benefits in using the game object entity
in the beginning. There are a lot of classes in the codebase that access data through
prototype libraries, gets initialized by manager classes and other similar primitives that
setups the state of the game. It would be difficult to take the current classes and re-write
them from scratch with the new entity-component-system class, as that would require
additional changes to the already existing overhead that takes care of the initialization
for the game. Using the game object entity interface provided by Unity will remove the
need to change the networking instancing and prototype library structure. Instead, en-
tities can be based on existing classes by copying the data found in the newly instanced

objects once they are initialized.

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 79

An example where this method is used, is the unit class in DwarfHeim. The class con-
tains stats for attributes such as move-speed, health and attack damage. The stats for
these attributes vary based on the different type of units available. The units differ in
how those values differ, along with the type of abilities that they can execute. The data
for these fields are stored in prototype files, and a new unit of a type is instanced by ex-
tracting the data found in the prototype file. Instead of changing the current structure
of the system, a game object entity component is used. The game object entity com-
ponent is added for the class during the initialization phase. Once the game object is
associated with an entity, ECS-component data is added to the entity through the en-
tity manager. The component data is simply the data found in the unit object. After the
data has been copied to a new entity associated with the unit object, the data in the unit
object can be ignored. All further processing is now done with the entity-component-
system. The original object-oriented object was only used as a template for type of data
to copy for a new entity, which represents the old object.

<
Unit
prototype
library

Attack Stats component Health component

1. Object is instanced with data from prototype file
AttackPower:20

-
AttackRate: 5 Health: 150

Warrior unit object

Health: 150
AttackPower: 20

AttackRate:5

3. Entity is created
with components
representing the data

Warrior
entity

Entity Manager

2. Data is copied and available to the entity manager

Figure 4.35: Example of an unit object being initialized then used to create the equiva-
lent entity in entity-component-system

4.6.2.5 Animations and dwarf 3d-models

Using the animations and 3d-models available in DwarfHeim is not easily done with the
entity-component-system. Currently, at the time of writing, a good animation system is
not supported. Nor is it easy to represent 3d-models unless they are simple meshes. The
DwarfHeim 3d-models representing units consist of several visual components bun-
dled together. This makes it difficult to render with the entity-component-system. It
is still desirable to test the entity-component-system with animations and proper 3d-
models, to confirm that those assets would still be usable for the conversion. For this

reason, both objects and entities were used for the parts that have 3d-models and ani-

80 CHAPTER 4. MATERIALS AND METHODS

mations.

Figure 4.36: Warrior unit 3d-model

Game objects that have graphics and animations are divided into two parts, one part
that contains the animations and 3d-model components, and another part that han-
dles logic and other data related to the object. The 3d-models are displayed based
on the current transform position, given by the transform component. The transform
component is handled as an object, which means that accessing the data found in the
transforms are not done in a memory-efficient way. It would be better if the game
objects also had a ECS-position component in the entity-component-system, which
handled all logic related to position. The problem with only having this position ECS-
component is that the 3d-model attached to a game object, is rendered based on the
transform component, and not the position ECS-component. The latter would be pos-
sible by attaching a mesh to the entity-component-system, however the 3d-models are
not simple meshes that can be represented in that way. Both positions are needed in
order to make this work. The transform position component in the traditional game ob-
ject based system will be used to render the position of the actual 3d-model. Another
position component in the entity-component-system will also be included as a ECS-
component for the game object. All logic requiring position will be done through this
position ECS-component. After one frame is finished, a system will be used to synchro-
nize the position component data in the entity-component-system, with the transform
position data in the old object-based system. This system will update last and read in
all position data found in the ECS-components, and synchronize them with the trans-
form component. This change leads to more overhead as the application now requires

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 81
an additional system for synchronization between the position components.

Gameobject components ECS-components

Entity / gameobject hybrid

1
|
|
| Rotation
|
|
|

1 1 !
| | |
I I |
I ViewAgent object I Unit |
| component | component |
| T I
SetAnimation()	Vector3 Rotation	
	Gameobiject]	
_	[_	
Transform object		Position
component	I component	
	Vector3 position -+	"
Vector3 rotation I	Vector3 position	
Vector3 scale	I	
A

T 2. Update Transform position X L 1. Read in data
ViewSynchronizationSystem

Figure 4.37: Unit consisting of both a traditional game object and entity with compo-
nents - A system is used to synchronize the data between the two domains

The new change allows for faster memory access for position data, while at the same
time making it possible for the engine to render the graphical models with the old trans-
form system. The same will be done for rotation. The current approach should only be
temporary, a pure solution should get completely rid of the transform component and
instead render graphics and animation with the entity-component-system. Using a mix
of both solutions provide with easier implementation, but at the cost of performance.
Support for disabling them should also be made possible so that the data-oriented prin-

ciples can be tested appropriately.

Animations are set through the view agent component. To render different type of ani-
mations for the units, a system referencing view agents will be created. Only one system

will have access to this view-agent, to reduce the usage of reference types.

4.6.2.6 Representing object data with entity-component-system

Data is defined and accessed as fields within a class in traditional object-oriented pro-
gramming. With the entity-component-system, data is instead stored in components
and accessed through entities. To convert an object containing data fields, one must
create components that contain the same type of data as the one found in the template
class. Several components can be used to represent data found within a single class, de-

pendent on how the data is accessed by systems. If a class has set of data fields that are

82 CHAPTER 4. MATERIALS AND METHODS

accessed in different ways, then it would be wise to split the fields into multiple com-
ponents, making it easier to distribute work to several systems. For example, the unit
class in DwarfHeim has several data fields related to object state within the class object.
The attributes represent values such as the current health of an unit, the move-speed
and attack turn. All these stats are related to the unit, but are not used together when
engaged with. Whenever an unit is attacked, the health it will lose is not relevant to its
move speed or attack turn. The data attributes are used independently of each other
based on different circumstances. For this reason, it is wise to split the data fields in
that class into different components. Different systems will be responsible for different
type of components. A system which updates health status, will only care about the
health data, while another system that updates movement will care about move-speed
and not the health. For this reason, multiple components should be created for the data

fields in the class. Figure 4.38 demonstrates an example of this.

Following the situation given above, the following strategy was devised:

<Uses data> o
Damage inflicting system

v

Attack Stat Component

Warrior Unit Class int AttackPower
int AttackRate

float Health

int AttackPower
int MoveSpeed
int TurnRate

int AttackRate
int Defense

Defensive Stat Component

float Health
int Defense
int healthRegen

<Uses data>

Damage receiving system

float HealthRegen

Stat Ci

Int MoveSpeed <Uses data>
int TurnRate Movement system

Figure 4.38: Splitting data fields of Warrior object into multiple ECS-components based
on their usage

1. Identify how the different data sets in an object is used.
2. Split the data fields of objects into ECS-components.
3. Group data sets that are used together in the same ECS-component

Data sets are grouped together if they are likely to be used together in a system. This
scheme allows for clear separation of data. A system can be created for the different

ECS-components and perform logic on them easily through this separation. Not all

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 83

data-fields can be directly converted due to the limitations of components described in
4.6.2.2. Different tactics must be employed for data-fields that have arrays of non-fixed
size or non-blittable types. Changes done to these kind of fields did not follow a general
strategy, but were rather changed based on their usage. They will be covered in further

sections.

4.6.2.7 Converting the behaviour of monobehaviour scripts

The current codebase of DwarfHeim consists of several C# scripts defining behaviour
through components. The monobehaviour scripts usually have an update function that
runs every frame for every component on every game object the script has been at-
tached too. The most important scripts for this task are the agent scripts, described in
4.6.1.5. Using the tips from Unity provided in their github repository(29) for converting
from object-oriented to data-oriented, the following strategy was devised for this part:

1. Identify the relevant scripts with an update function.

2. Create an ECS-system that implements the same behaviour as the one found in

the update function of the original script.
3. Include the required script data through ECS-components

This scheme will provide with some advantages that are beneficial to the task in hand.
The logic and data is separated, as the data is now in defined within ECS-components
and the logic in systems, resulting in cleaner code. By having the required data given
through components and not class objects, the engine is allowed to optimize their place-
ment in memory. All ECS-components made with the iComponent interface in Unity
will be tightly packed in chunks of data for effective iteration. However, the last step
is not always possible in some cases for the DwarfHeim codebase. Parts of the en-
gine such as the pathfinder utility uses a 3rd party asset for calculation of pathfinding,
which is strictly done through objects. It is not possible to convert the required data in
components without also creating a system for the calculation part, which is complex
and requires more time than available for this thesis. For this reason, some monobe-
haviour scripts were only partially converted into a proper entity-component-system
structure. The engine allows for iteration of normal objects in systems by referencing
them through a component array. These objects will keep their data and methods in-
stead of being split into entities and set of components. The data given in those arrays
are reference types and thus not guaranteed to be linear in memory. This goes against
data-oriented principles, but are a necessary trade-off at the current state. The objec-

tive is to reduce the number of such calls in the conversion stage.

84 CHAPTER 4. MATERIALS AND METHODS

With the old structure, the engine would go through each game object and activate
their script update functions. Data would be updated as a part of the game object, and
large data sets in an object would require more calls to the ram. With the new structure
provided through the entity-component-system architecture, the systems will iterate
through each set of data for an entity and update the values. The data sets of each sys-
tem are tightly packed in memory as long as they are of the ECS-component type. This
will in theory reduce iteration time as the processor will have higher grade of spatial
locality. Small improvement in performance will still be possible for cases where only
partial conversion is achieved with references to actual objects. The data and logic part
will still be separated and the system will operate on many objects in batches through
the component object arrays, allowing for batch-related optimization, such as setting

common variables used by all objects before the iteration.

4.6.2.8 Converting the basic command chain

The basic command chain is a data type containing chain of basic commands for a
unit to execute in the game. It is defined as a class containing an internal list, some
fields related to the chain status along with methods related to the chain. The methods
in the class are used for iteration of the chain, either backward or forward depending
on the condition. The command agent within the engine is the only script that have
direct access to the command chain in an unit. Converting the existing basic command
chain into the new entity-component-system is not easily done due to the chain being
represented as a list of basic commands. The list is non-blittable, non-fixed and is a
list of basic commands objects. The limitations imposed on the ECS system makes it
difficult to split the data into components. The internal list can not be represented by a

component, which gives the conversion two possible alternatives:
1. Represent chain of commands in a different way that are not through objects.
2. Keep the internal list structure, and instead refer to it through objects in a system.

One possible way of doing the first alternative is creating a new entity for every new
basic command sent to an unit. A chain consisting of basic commands can be split into
multiple entities, where each entity represents one of the basic commands. Once a ba-
sic command has been executed, the entity can be deleted. The entity will consist of
components representing the basic command data, the execution order and the unit it
belongs to. This will require synchronization between the different commands in the
new structure. To have a working chain, the basic command entities must have some
way of knowing the previous and next basic command in the chain. The amount of

overhead will be significant and possible require to large changes to the code base as

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 85

they all refer to a basic command chain. This alternative would truly be data-oriented,
however lack of time and complexity makes it too difficult to start with. For this reason,
the second alternative will be the first approach, and if given enough time, the first al-

ternative will also be attempted.

Referencing the basic command chains through objects will go against the desire for
spatial locality. Having too many systems referencing objects will affect performance
negatively, so the number of systems using them should be kept at the minimum. There
are in total three systems that have component data arrays consisting of objects that
have access to the basic command chain. One system in the client-side will get access
to the basic command chain through a command agent object reference, and a second
system on the server-side that will get access through the ability agent. The third sys-
tem is used to add basic commands sent from the server to the basic chains found in
the clients. These two agents no longer function the same way, as most data and meth-
ods are stripped away in the new data-oriented approach. Instead, they are used as a
way to access the basic command chains associated with an entity. This is done as a
hybrid solution, where both a game object and entity exists. Other data related to the
chain is no longer accessed through the agents, but instead through component data in

the entity-component-system. Figure4.39 illustrates the conversion.

Other <references> Basic
monobehaviour |- — — — — — | command
scripts chain object
Y 1
Command c e int
i onverted into
Agent object E—
Agent object
Chain |
related X
functions <references>
\ '
\] _
Chain Basic Chain status Chain status
related command data Systems | — —» con’?act;em
functions chain object component p

Figure 4.39: The change done to the basic command chain

4.6.2.9 Converting objects with execution logic - Basic actions and utilities

DwarfHeim uses traditional object-oriented design for execution of logic that can vary
during run-time. The different type of basic actions and utilities are represented through
parent classes with a number of virtual methods. When a game object is ready to exe-

cute a basic action or an utility, it will simply call the virtual execution method found in

86 CHAPTER 4. MATERIALS AND METHODS

the parent class. The type of logic found in the execution can vary based on the type of
class it holds. The current way is polymorphic and modular as it is easy to just create a
new class defining new behaviour for a new action or utility. A game object will retrieve
the correct virtual method based on the current basic action or utility that it currently
holds. Once something such as an unit requires new basic action, it will use the type
id found within the basic command to extract the appropriate object instance from
the prototype library. The object-oriented model with the prototype-based instanc-
ing gives a modular setting for creation of new functionality in an easy way. With the
entity-component-system, it is not possible to use the same prototype based scheme
with virtual functions without breaking some of the data-oriented design principles. A
new approach is required where polymorphism isn't used extensively. The following

strategy was devised for this part:

1. Take the execution logic found in these types of objects and move them into ECS-

systems.

2. Create group of component types that are only used within these type of systems.

3. Create systems that manages the actions or utilities an entity should execute next.

The group of component types in step two are component types that are exclusively
used by one system. When an entity is assigned one of these component types, it will
be able to execute its current basic action or utility. Figure 4.40 shows the systems im-
plemented for the basic actions and utilities. As the figure shows, each basic action
and utility have a special type of parameter ECS-component that the system requires
before executing its logic on the entity data. The parameter components are dynami-
cally added and removed to an entity when it needs to perform one of the basic actions
or utility. Step three is required for managing the type of basic action or utility system
an entity should be updated by. It is important that one entity does not have multiple
parameter ECS-components at the same time, otherwise several systems will execute
their basic action or utility logic on the same entity at the same time, which should not
be possible. In the old design, the game agent used to be responsible for switching to
the next basic action. The agent has been changed into a system in the new design, with
the task of creating and deleting the proper basic action for entities. The ability agent
has also been changed into a system which handles the same with utilities. The util-
ity execution will still be done in the server-side, so the desire for determinism is kept.

Figure 4.41 shows the two new systems.

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM

Basic Action Systems

Shared ECS component

Wieele e
Damage Rbilty
Data

Meele Damage System

System responsible for
the meele attack basic
action

f—

]

Object component

RvOContraliel

Idle System

System responsible for
executing the idle basic

agtion

Shared ECS component

Movement System

3 System responsible for
the move basic action

87

ECS components ECS components ECS components
View Meele Basic n View Movement
Animation Position Rotation Damage Position o :a‘fa'::;‘; " Animation G Rotation
Clip parameter Cip
Attack View N
Basic Movement etwork) Move Action
i i
Abilty Data Damage @ i Animation e Abilty Data | | chain Siatus Position e et
Stats cip
Uity Systems
Object component
Object component AutoAttack System Object component Idie utility System P —

System responsible for

Abilty Agent

executing the auto attack
utiity

(-

ECS components

noiy s | [Moraoric
P
Chainsiaus

System responsible for
executing the pathfinder
utilty

Seeker
[System responsible for
Ability Agent execing the idle uiity
‘ Ability Agent
ECS components

2

DCmImHei

| [wora obiect] de
Positor D parameters

ECS components

s | —
cren e

Figure 4.40: Overview of systems for basic actions and utilities

Object component

Game Agent System

System for

Command
agent

updating current basic
action to execute

'

ECS-components

Basic

Position
Command

Chain Status

Shared ECS

Current
Ability

Ability Update System

System for

updating ability and
utilities to execute

!

ECS-components

Current

Chain Status Request

AbilityData

Figure 4.41: Game agent system and ability update system which handles proper exe-
cution of basic actions and utilities

4.6.2.10 Converting abilities

Abilities are just a set of utilities with a specific iteration order. Converting abilities re-

quires some sacrifices to the current prototype based scheme. In the old design, ability

data is dynamically extracted from prototype files. These files are created when the

ability editor is used to create a new ability. The dynamic instancing is no longer done

in the new design. Instead, abilities are defined in shared components, and as a result

more hard-coded than the previous approach.

88 CHAPTER 4. MATERIALS AND METHODS

Shared components in the entity-component-system do not suffer the same limitations
as regular components. They are allowed to have non-fixed arrays of any type and dele-
gates. A specific ability can be defined through an instance of these shared components.
A general ability shared component struct is created with two fields, one specifying the
id of the ability and another for a delegate. The delegate represents pointer to a switch
function that is unique for each instance of an ability. By defining different types of
switch functions for the abilities, the shared components can be used to iterate through
the correct ability. In addition to the shared ability component, each entity will have a
ability data ECS-component that holds information about the current ability that they
execute. The shared ability component holds information about the actual ability itself,
while the ability ECS-component holds state information about the ability, which is dif-

ferent for each entity.

Using the shared ability component that is shared among many entities, in conjunc-
tion with the ability data ECS-component, allows for a functional ability system. Sys-
tems can correctly iterate the ability of entities by reading the current ability data and
execute the switch function. The switch function takes in the current utility that an en-
tity executes, and outputs the new utility that it should execute once the exit condition
has been met. The ability update system is responsible for managing correct ability be-

haviour shown in figure 4.41.

This scheme moves away from the prototype-based ability structure, making it per-
hapsless modular in exchange for better iteration times overall for the complete design.
However, changing the shared component values for an entity means that it has to be

moved in memory, potentially affecting performance negatively if switched too often.

4.6.3 Making it more applicable on a server

The goal of the DwarfHeim conversion was to improve server efficiency. Up until this
point, no consideration has been done for the game as a server. A server needs to run an
instance of the matches being played client-side in order to synchronize between the
players in a game. Additional tasks are required such as performing many of the same
calculations needed in the clients in order to keep the same game state. Clients send-
ing ability requests must also be processed. The server does not need to compute any
graphic-related operation. This means that the visuals and animations can be removed
and in theory improve performance. This is especially useful for the data-oriented so-

lution, as all overhead associated with visuals and animations are object-oriented.

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 89

As previously described, the networking model currently uses a master client model,
where one of the clients act as a server by being defined as a master client. The client
declared as a master client will act as a host and perform server related operations.
Whenever new functionality or other behaviour needs to be tested in DwarfHeim, two
clients will be loaded with one acting as a master client. One challenge with this de-
sign is that there is no easy way to test the efficiency of the server without also having
to modify the clients. For this reason, the clients will also have to be modified to act
like the server. This means that when visuals and animations are removed, the clients
will also need to remove them in order to test the server efficiency. However, the results
collected from this scheme will still give an indication in the performance boost gained
by the data-oriented solution, as long as both solutions implement the same changes

to the server.

Two major changes are done to the clients in order to make them behave more like a
server. The first change involves removal of the 3d-models and animations. The graph-
ics could be completely removed for this part, however some sort of visual output are
required during testing to verify correct behaviour. For this reason, a cube mesh is used
to represent an unit. By removing the visuals and animations, the dependency for trans-
form position component is also removed for the data-oriented solution. The second
change involves removal of several game object components, such as the transform
position. Removing this dependency means that there will no longer be need for the
system that synchronizes between the two position components in an object, and as a

result improve performance.

The removal of transform component requires some changes to the RVO controller,
which is one of the scripts used for calculation of movement. The RVO controller is de-
pendent on transform position component when calculating collision between units.
The RVO controller will be changed to use position ECS-component through the entity

manager instead of the transform position.

4.6.4 Testing

The new data-oriented design will be compared to the old object-oriented design writ-
ten by Pineleaf studio. The same type of test will run multiple times for the two solu-
tions, with minor variations in order to test how different parts affect the performance.
The frame rate will be collected and used as a basis for how the two different solutions
perform. Furthermore, the profiler will be used to analyze the time spent on the differ-

ent operations for the solutions, to verify whether the new introduced systems are in

90 CHAPTER 4. MATERIALS AND METHODS

fact faster or not.

Since most of the changes done to the DwarfHeim game is related to the processing
of basic commands through utilities and abilities, a test testing performance in these
cases are needed. To compare the results between the two different solutions in regards
to the efficiency of the client-server model, a test will be made which creates a large
number of units moving in random directions. This test will give each unit a new move
direction every specific time interval. Once a move command has been given from one
unit on the client side, the server must create basic commands as response through the
utility systems. The basic commands will then be transferred to the client units, allow-

ing them to move in the direction and position given.

There will be small variations in the test to inspect different parts that can affect perfor-
mance. The first test will use the 3d-models with animations available in DwarfHeim.
The second test will not use the 3d-models or animations. This change will remove
the need to have system for animation control in the new design. The game object
components associated with an unit, such as position will still be kept so the physics
calculations are the same for both solutions. A cube figure will be used to represent
each individual unit when the dwarf models are removed. The final variation in the test
will only apply to the dod-solution. In this test, several game object components as-
sociated with an unit will be removed. Not only will the animations and 3d-models be
removed, but also all game object data associated with an unit that is not needed. Game
object data for command and ability agents will still be kept in order to reference the
basic command chain in an object-oriented manner. Everything else not related to the

entity-component-system will be stripped away in the final test for the dod-solution.

The test for the oop-solution requires only one monobehaviour script. The script will
instantiate a specific number of dwarf units on the scene. The script will take input pa-
rameters to decide whether the 3d-models and animations should be removed, along
with other parameters deciding other test factors such as enabling collisions. The script
will also consist of an update function that will activate every specific time interval given
by one of the input parameters. The update function will iterate through each unit on
the scene and give it a new move command. The dod-solution implemenents the same
script for instantiating the units. However, the move commands are given through a
system and not a monobehaviour script as the case with the oop-solution. The system
will iterate through each entity representing an unit and give it a new move command.
Figure 4.42 shows the input parameters for the instantiation of units. Figure 4.45 and
4.44 shows the test performed with different number of units and 3d-models.

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 91

The 3rd-party script profiler data exporter will be used to calculate cpu usage statis-
tics, such as minimum, maximum and average time values for the different functions.
The profiler does not output stream of more than 300 frames at a time, so only data
for the last 300 frames will be gathered. Data of interest are those involved with the
agents, basic action and utility executions. The results will only be gathered for 400

units spawned.

© Inspector 2

& [Warrior Instantiator 1] Static =
Tag [Untagged +] Layer [Defaule [
¥ .~ Transform
Position x[-72 vlo |z[29
Rotation X0 o lz[o
Scale X[1 J¥[x lz[x

¥ & [Mwarrior Creator (Script)
Seript WarriorCreator

Prefab 5 WarriorInstance_ecs
Alternative Visual Prefab UnitGraphicL essPrefab
Number Of Warriors 100

Warriors Each Line 15

Time Interval Ms 5000

Override Start Position (]

Remove Visuals And Animations -

Remove Game Object Components o

Visual Placsholder [(GPU_TNSTANCED_CUBE
Enable Collision

Start Position X0 v o z[o

Figure 4.43: The moving units and their planned path

92

CHAPTER 4. MATERIALS AND METHODS

Test fields

B F1-GUI Panels
F2 - Health Bars
B F3-Camera

Figure 4.44: Test running with animations and dwarf 3d-models - 100 units

Test fields

B F1-GUI Panels
F2 - Health Bars
B F3-Camera

Figure 4.45: Test running without animations and dwarf 3d-models - 100 units

Chapter 5

Results

5.1 Entity-component-system implementation

Several tests were performed for the custom entity-component-system. All the tests
were performed on the same computer with the same hardware specifications. Some
of the tests compared the different versions of the implementation, verifying if the opti-
mization steps actually worked. The other tests compared the implementation against
traditional object-oriented design in order to compare the efficiency of using ECS.

The results of these tests will be presented in this section. Discussion of results will take

place in next chapter.

5.1.1 Functional Test

Several tests for the ECS implementation were described in section 4.3.3. In total three
tests were created which verified the points listed. The results of each test was written
to a text file. If an error occurred, the console command would notify. Figure 5.1, 5.2

and 5.3 shows the results for test 1, 2 and 3 respectively for the final design.

5.1.2 Performance tests for the different versions of ECS

The results of the performance tests, described in section 4.3.4, will be presented here.
The tests were completed with different number of entities created, ranging from 10 to
10,000,000. Figure 5.4 and figure 5.5 shows the results of the test for the two different
versions. The graphs to the left shows the time elapsed based on the number of entities
used. The second graph shows the ratio between the two different implementations,
with regards to time elapsed. For the second graphs to the right, logarithmic scale is

used.

93

94 CHAPTER 5. RESULTS

3 Functonsl test - Notiblok - o x
Fi Rediger Fomat Vis Hidp
Ereation And Deletion Test

This test Tests that entities are created properly and that they are destroyed properly
The test confirms the following requirements:

* Entities are created with an unique ID

* Entity are assigned component data

* A system registers a component as part of its list of required components

* Entity and its component data is deleted

System will now register a component type as part of its requirements

The name of the test system is: ECS.FunctionallestSystem
The registered component is: ECS.TestComponent

20 entites are created with TestComponent component attached to it.
Legal entities of the system:
1,2,3,4,5 67,8 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, -----

Following output shows all entities that are part of this componentStore of type ECS.TestComponent
1,2,3,4,56,7,8, 9,10, 11, 12, 13, 18, 15, 15, 17, 18, 19, 20, -
Entity with 1D 1, 5 and 10 will now be destroyed

Legal entities of the system:

2,3,8,6,7,8, 09,11, 12, 13, 18, 15, 16, 17, 18, 19, 20, -----
Following output shows all entities that are part of this componentStore of type ECS.TestComponent
2,3,8,6,7,8, 9, 11, 12, 13, 18, 15, 16, 17, 18, 19, 20, -~

No errors were found in expected values. The test was a success.

Figure 5.1: Functional test 1 output results

) Functionsl

2 - Notizblokk - o x

FI Redger Format Vi Hie
Mepory transfer test

The purpose of this test is to verify that a system successfully transfers updated data to the componentStores.
The following conditions are tested:

* A systen class will successfully run its logic on component data

* Component data will be updated to the componentStores

* Retrieving componentdata through entityID with manager

The component type used is ECS.TestConponent which consists of one int and one float variable

Each Entity has the following initial component data:
Entity ID: 1, int_data: @, float_data: 10
Entity ID: 2, int_data: 1, float_data: 11
Entity I0: 3, int_data: 2, float_data: 12
Entity ID: 4, int_data: 3, float_data: 13
Entity ID: 5, int data: 4, float data: 14
Y 5, float_data: 15

data: 6, float_data: 16
Entity I0: 8, int_data: 7, Float_data: 17
Entity ID: 9, int_data: 8, float_data: 18
Entity ID: 10, int_data: 9, float_data: 19

System will now execute one update function on the component data
Each Entity has following component data after system execution
Entity ID: 1, int_data: 1, float_data: 30

Entity 10: 2, int data: 2, float_data: 31

Entity I0: 3, it data: 3, float data: 32
Entity ID: 4, int_data: 4, float_data: 33
Entity I0: 5, int_data: 5, float_data: 34
Entity ID: 6, int_data: 6, float_data: 35
Entity ID: 7, int_data: 7, float data: 36
Entity 10: 8, int data: 8, float data: 37
Entity ID: 9, it data: 9, float data: 38
Entity ID: 10, int_data: 10, Float_data: 39
The test was a successfull with no errors

Figure 5.2: Functional test 2 output results

5.1.3 OpenGL sine wave simulation tests

The results of the test described in 22 will be presented here. The different tests were ran
with different number of objects. Not all tests were performed with the same number of
objects, due to the refresh rate. Each bar graph figure shows test result for one specific
number of objects created. The blue and red bars represent the dod and oop solution

respectively. The ratio between the two solutions are also shown for each graph.

5.2 Sine wave simulation

The results for the sine-wave simulation tests from section 4.5 will be presented here.
Both implementations ran the simulation with different number of objects spawned.

5.2. SINE WAVE SIMULATION 95

) Functions et - Notspad
Fle Eat fomat View Hep
Nultiple System Test

The purpose of this test is to verify that multiple systems can run together in the desired order
The following conditions are teste

* A system class will successfully run its logic on component

* System logic will only be operated on data that is legal to that system

* Multiple systems will run together

Tio systens uill be used for this est. A system of type ECS. ComponentincranentarsSysten with component ECS TestintEloatCompanent and a systen of type ECS.ConponentoecramentersSysten with
companents ECS. TestTntFloatComponent and £CS. TestIntComponent will be used. The First system uill increment the integer and float velue of the component, while the second system will read
e value. and dacronent on Sncagen varisile on she cecond conponent 13 entitiss will be crented, vhers 10 of the entitier have both componenie hile tub of the comenerie only heve. the
komponent legal for system 1

The entities have the following data for each component before system

Entity ID: 1, Component 1: int_data: ©, float_data: 10 - Component 2:

Entity ID: 2, Component 1: int_data: 2, float_data

Entity ID: 3, Component 1: int_data: 4, float_data

Entity ID: 4, Component 1: int_data: 6, float_data

Entity ID: 5, Component - int_data: 8, float_data
6. in

Entity ID: 6, Component , float_data: 15 - Component 2: int_data: 20

Entity 1D . 12, float_dsta: 16 - Component 2: int_data: 24
Entity ID: 8, Component 1: int_data: 14, float_dsta: 1
9,

update

int_data: 0
11 - Component 2: int_data: 4
12 - Component 2: int_dsta: &
13 - Component 2: int_dsta: 12
14 - Component 2: int_dsta: 16

7, Component H

7 - Component 2: int_data: 28
Entity ID: 9, Component 1: int_data: 16, float_dsta: 18 - Component 2: int_data: 32
Entity ID: 10, Component 1: int_data: 18, float_data: 1

9 - Component 2: int_data: 36
20 - Component has no second component
21 - Component has no second component

Entity I0: 11, Component 1: int_data: 20, float_data:
Entity ID: 12, Component 1: int_data: 22, Float_data:

The systems will now run twice each
The entities have the folloving dsta for sach component after tuo systen updates
: nt_

Entity Component 1 data: 2, float_data
Entity ID

- Component 2:
2, Component 11 int_data: 4, float_data: 51 - Compon

Entity ID: 3, Component 1: int_data: 6, float data: 52 - (ompnr\ent 2:
Entity ID: 4, Component 1: int_data: 8, float_data: 53 - Component
Entity ID: 5, Component 1: int_data: 10, float_data: 54 - Component 2
Entity ID: 6, Component 1: int_data: 12, float_data: 55 - Component 2:

Entity ID: 7, Component 1: int_data: 14, float_dat:
Entity ID: 8, Component 1: int_data: 16, float_data:
Entity ID: 9, Component 1: int_data: 18, float_data:
Entity ID: 10, Component 1: int_data:

56 - Component 2:
57 - Component 2:
58 - Component 2:
: 59 - Component 2

Entity ID: 11, Component 1: int_data:

Tdata: 60 - Component has no second component
: 61 - Component has no second component
"The values were as expected

Entity ID: 12, Component 1: int_data:
The test was successfull with no errors

Figure 5.3: Functional test 3 output results

Figure | o x
& Figure 1 o x
Performance Test for ECS implementation
500 | [Naive Implementation Ratio between the two implementations)
== Optimized Implementation 8
400 7
. 6
£
5 300 5
8
a 2
s 54
bt
E 200
B 3
2
100
1
o
o
10.0 100.0 1000.0 10000.0 10 15
Number of entities created

Logarithmic scale of number of entities

a/ €[> #al= B #€[d #Q|=

X123 y=438132

Figure 5.4: Performance test results: 10-10,000 entities

® Figure 1 —
® Figure 1 - =} x
Performance Test for ECS implementation
Ratio between the two implementations)
500000 | mEm Naive Implementation
mmm Optimized Implementation 875
400000 850
s 825
E
300000
F 8.00
g 2
2 & 775
£ 200000
= 7.50
100000 725
7.00
675
50000.0 100000.0 500000.0 10000000 10000000.0 50 55 60 6.5 7.0
Number of entities created

Logarithmic scale of number of entities

/€9 #Q|= #l€)d] pa= @

Figure 5.5: Performance test results: 500,000 - 10,000,000 entities

96

& Fgure 1 - o

Results for the difference tests with 4000 objects

= 0OP-Approach
. DOD-Approach

Average frames per second
8

1 2 H 6 7

4
Test Type

aleld #al=

CHAPTER 5. RESULTS

® Figue - o x

Ratio between DOD/OOP for 4000 objects

1 2

€9 +Q=

4 H 6 7
Test types

= y=0820048

Figure 5.6: Opengl test results with 4000 objects

& Figure1 - o

Results for the difference tests with 15000 objects

= 0OP-Approach
= DOD-Approach

Average frames per second
8

1 2 3 4 5 6 7
Test Type

#aled) #lal= ——

Ratio between DOD/OOP for 15000 objects

1 2 3 4 5 6 7

aled o=

Figure 5.7: Opengl test results with 15,000 objects

& Figure 1 - o

Results for the difference tests with 100000 objects

== 0OP-Approach
mm DOD-Approach

Average frames per second

1

#l €[> Q=

6
Test Type

Ratio between DOD/OOP for 100000 objects

14
12
10
g o8
2
06
04
02
oo NI
1 6 7

Test types

al €3 Q= B

x= y=0.986029

Figure 5.8: Opengl test results with 100,000 objects

5.2.1 Sine wave simulation results

Figure 5.9 shows the average frames per second achieved for both implementations

with different number of points spawned. The green bargraph represents the objected-

oriented solution, while the blue bar graph represents the data-oriented solution. The

ratio between the two solutions are also presented in the figure. Furthermore, some

5.3. DWARFHEIM CONVERSION 97

statistics from the profiler for CPU usage will be presented in the tables, collected with
the profiler data exporter asset. The values show minimum, average and maximum val-
ues for some functions of interest, based on the last 300 frames. The percentage of total
average time for a frame that the functions take will also be shown. Only data which is
directly relevant to the design and important for the discussion is shown in the table.
The original source for the values are available in the appendix along with other time
values for other less important functions in the appendix B.7.2.

In addition, the data-oriented approach was tested with a higher number of objects
in order too see how many object it could simulate with before breaking down to the
same performance level as the object-oriented solution. The results are shown in figure
5.11.

Results for the Unity sine wave simulation with different number of objects
60

= 0OP-Approach
= DOD-Approach

g

8

Average frames per second
8 8

1000 10000 20000 40000 50000 80000 100000
Number of objects

al €[> +Ql= B/

Figure 5.9: Simulation results in Unity

® Figuret - o x

Ratio between DOD/OOP

1000 10000 20000 40000 50000 80000 100000
Number of objects

a3 A= -

Figure 5.10: Simulation results in Unity - Ratio between DOD and OOP

5.3 DwarfHeim Conversion

This section will cover the results related to the DwarfHeim conversion.

98

) Figure1

CHAPTER 5. RESULTS

Sine wave simulation average fps for data-oriented method

18 4

16 4

14 4

12 4

10 4

Average fps

T
100000

T T T
150000 200000 250000

T T
300000 350000

Number of objects

€2 #al= B

Figure 5.11: Simulation results for higher number of objects for data-oriented solution

T
400000

Function type Min time(ms) | Avgtime (ms) | Max time(ms) | Total time %
PointMovementSystem 3.59 8.14 11.70 37.87
Gfx.WaitForPresent 0.89 13.14 23.73 47.61
MeshInstanceRenderer

1.14 1.39 3.05 6.41
System
Render.OpaqueGeometry | 0.12 0.17 0.34 0.76
TransformSystem 3.63 4.90 8.14 22.68

Table 5.1: Minimum, average and maximum time elapsed for several functions based
on the last 300 frames for the dod sine-wave - Total time is based on average values

Function type Min time(ms) | Avgtime (ms) | Max time(ms) | Total time %
graph.Update() 15.63 16.22 22.68 12.15
Render.OpaqueGeometry | 57.16 60.99 77.86 45.79
Gfx.WaitForPresent 0 0 0 0

Table 5.2: Minimum, average and maximum time elapsed for several functions based
on the last 300 frames for the oop sine-wave - Total time is based on average values

5.3.1 Functional results

In total three basic actions were converted for DwarfHeim, the idle, move and meele at-

tack actions. The 3d-models and animations were used for this part to correctly retain

the same features in the original conversion. Figure 5.12 shows the successful imple-

mentation of movement, where a dwarf unit moves toward another unit. Figure 5.13

5.3. DWARFHEIM CONVERSION 99

shows two units attacking another unit until its health reaches 0, unfortunately there
is no animation for death implemented, nor is the health status shown. When the
unit dies, the game object representing it will be destroyed and vanish immediately
without death animation. The results are from the converted version where the entity-

component-system was used in Unity.

12:30
DWARFHEIM

12:30
20 ol 150 DWARFHEIM

Figure 5.12: Unit walking towards another unit

5.3.2 Performance test

The results from the performance tests, described in section 4.6.4, are shown in figure
5.14, 5.15 and 5.16. The results are shown for both the original DwarfHeim codebase
and the converted version. 5.14 shows the results for test where both animation and
3d-models were activated while 5.15 shows results for animation and dwarfheim 3d-
models deactivated. Furthermore, 5.16 shows the results for the converted DwarfHeim
version once additional object-oriented components were deactivated alongside the
original version without 3d-models or animations. The ratio between the results are

100 CHAPTER 5. RESULTS

" 12:30
: DWARFHEIM

Test fields

@ F3- Camera Move/Zoom

Figure 5.13: Two units attacking enemy unit

also shown for each figure.

& Figure 1 - o x

o
x

@® Figure 1 -

Results for the DwarfHeim test with Animations and DwarfHeim unit models on
140 Ratio between DOD/OOP

= 00P-Approach
== DOD-Approach

08

Average frames per second

100 200 800 1000

40 0
100 400 600 Number of objects

Number of objects A€l #al=

| ol Al alAlell mnl

Figure 5.14: Results for DwarfHeim tests with animations and 3d-models on

Results for the DwarfHeim test with No animations or DwarfHeim unit models on © Figwe o x
mm OOP-Approach
N DOD-Approach
P Ratio between DOD/OOP
600

14
o 500
2 12
g
g 40 1o
g
E o
g Zos
r 300 <
§ 0.6
< 200

0.4

100 0.2
0.0
° 100 200 400 600 800 1000
Number of objects

100 200 400 600 800 1000

Number of objects 4l € dlal= xe y=0723727

Figure 5.15: Results for DwarfHeim tests with animations and 3d-models off

Cpu usage times were inspected for all the variations in the tests, with 400 objects

5.3. DWARFHEIM CONVERSION

® Figure1

Results for the DwarfHeim test with With several game object components deactivated for DOD

- o

Average frames per second

100 200 400 600

Number of objects

&€ o=

== DOD-Approach
== 0OP-Approach

800 1000

1= y=T34403

x
) Figure 1

Ratio between DOD/OOP

100 200

&€ o= B

0 800 1000
Number of objects

101

e y=521308

Figure 5.16: Results for the converted DwarfHeim with additional object-oriented com-
ponents deactivated versus the original version without animations or 3d-models

spawned in each. The tables below shows the data gathered for the three tests with the

profiler data exporter script. The only values of interest are the time elapsed for the

different functions. The script is only able to extract data for the latest 300 frames. The

original data representation with the data exporter is available in the appendix B.8

Function type

Min time (ms)

Avg time (ms)

Max time (ms)

ViewSynchronizationSystem

1.39

1.72

2.99

MoveSystem 0.4 0.51 0.88
GameAgentSystem 0.12 0.41 9.67
AbilityAgentSystem 0.09 0.29 1.05
BasicChainUpdateSystem <=0.01 0.44 9.13
MovingTestSystem <=0.01 0.25 12.21
PathfinderSystem 0.02 1.02 1.02
AnimationViewSystem 0.03 0.06 0.6
AbilityUpdateSystem 0.03 0.07 0.75
Sum 4.77

Table 5.3: Results for type 1 DOD

102 CHAPTER 5. RESULTS
Function type Min time (ms) | Avgtime (ms) | Max time (ms)
ViewSynchronizationSystem | 1.37 1.56 2.52
MoveSystem 0.39 0.48 0.85
GameAgentSystem 0.14 0.22 241
AbilityAgentSystem 0.09 0.14 0.77
BasicChainUpdateSystem 0 0.08 1.67
MovingTestSystem 0 0.06 10.51
PathfinderSystem 0.01 0.02 0.23
AnimationViewSystem 0 0 0
AbilityUpdateSystem 0.03 0.04 0.51
Sum 2.6

Table 5.4: Results for type 2 DOD
Function type Min time (ms) | Avgtime (ms) | Max time (ms)
ViewSynchronizationSystem | 0 0 0
MoveSystem 0.35 0.47 0.9
GameAgentSystem 0.09 0.17 1.72
AbilityAgentSystem 0.05 0.11 0.87
BasicChainUpdateSystem <=0.01 0.02 1.73
MovingTestSystem <=0.01 0.04 11.33
PathfinderSystem <=0.01 0.01 0.07
AnimationViewSystem 0 0 0
AbilityUpdateSystem 0.03 0.03 0.47
Sum 0.85

Table 5.5: Results for type 3 DOD

Function type Min time (ms) | Avgtime (ms) | Max time (ms)
CommandAgent.Update() | 0.04 0.07 0.12
GameAgent.Update() 2.03 2.63 7.50
AbilityAgent.Update 0.20 1.19 10.83
WarriorCreator.Update <=0.01 0.33 13.44

Sum 4.22

Table 5.6: Results for type 1 oop

5.3. DWARFHEIM CONVERSION

Function type Min time (ms) | Avgtime (ms) | Max time (ms)
CommandAgent.Update() | 0.03 0.07 0.23
GameAgent.Update() 2.02 2.42 441
AbilityAgent.Update 0.18 0.50 3.27
WarriorCreator.Update <=0.01 0.10 10.37

Sum 3.09

Table 5.7: Results for type 2 oop

103

104 CHAPTER 5. RESULTS

Chapter 6

Discussion

The results will be discussed in this chapter.

6.1 Discussion of Results

Several tests and tools for analyzation was used for this thesis. The results will be dis-

cussed in this section.

6.1.1 Custom C# implementation of Entity-Component-System

Several tests were performed for the custom entity-component-system implementa-
tion in C#. The tests can be categorized into three objectives, testing for optimization in
regards to implementation, testing for confirming correct functionality and behaviour,

and testing for performance compared to object-oriented design.

6.1.1.1 Functional tests

The functional tests were created for one reason that happened to be beneficial during
production, to verify that the intended behaviour of the design was correct. There were
large changes in the code every time improvements were made. This caused all kind
of changes in the different modules of the implementation, making it sometimes diffi-
cult to verify that the behaviour was correct. Due to this, functional tests were created.
These tests were always performed with the same data input with some expected out-
put values. This made it easy to make changes to the module and then verify that the
intended behaviour was not corrupted during changes by running the test. In addition,
these tests were helpful in verifying the specifications given in 3.2.1. The results shown

105

106 CHAPTER 6. DISCUSSION

in section 5.1.1 showed the results for the final changes, showing that the intended be-

haviour was correct for the implementation.

6.1.1.2 Performance Tests

The performance test results showed promising gain with the improvements done to
the ECS implementation. The final implementation was around 8,5 times faster than
the original solution. When a system operates on a significant number of entities, re-
trieving data through the GetComponent api is expensive as the function will use re-
flection to retrieve correct id before using that value to retrieve the component store
reference. Even though having all the component data stored in arrays for each system,
the extra overhead was not significant enough to reduce overall performance, as the re-
sults showed. However, the results showed that the original implementation was more
efficient for small number of entities. Thus, it would probably be beneficial to use the
regular Get Entity data api for systems with small data set. Furthermore, the decrease
in the ratio between the two solutions seen for 10,000,000 entities can be due to the
memory transfer between the component data arrays in the two different systems. Ev-
ery time a system is finished with its update function, the updated data will be stored to
the component stores. With a large number of entities in the system, this overhead will

be more costly, thus not having the same performance gap ratio.

One could also argue in favor of the inject attribute for making it easier for users to
prepare data. Even though the results were positive, one must keep in mind that these
tests were performed for only a single system. Having multiple systems would mean
that more time would be spent on storing and loading values to the component arrays
for each system. However, the results showed significant gap between time elapsed,
meaning that it would in theory require a huge number of additional systems before

the final design experiences worse performance.

Overall, the results of these tests strengthens one of the claims about data-oriented-
design principles. Iteration is significant faster when the processed data is stored lin-
early in memory. Having the data linear in ram will cause less cache-misses and thus

less memory fetches from the ram, increasing performance as the results showed.

6.1.1.3 OpenGL integration - Sine wave simulation

Several tests were performed for the ECS implementation once it was integrated with
openGL. The test simulated a sine-wave graph consisting of large number of quadrilat-

eral points in order to benchmark the application. Each of these tests were performed

6.1. DISCUSSION OF RESULTS 107

twice, one with the ecs system and one with pure object-oriented method. The goal
was to compare the results between the different approaches and see if having data-
oriented principles were indeed more efficient or not. The results of the seven different

tests were presented in section 6.1.1.3, and they will be discussed here.

For most of the tests, the data-oriented system was more efficient with a higher average
fps than the objected-oriented counter-part. This strengthens the assumption that a
linear data-layout is more efficient for the processor as the system will experience less
cache misses. The data-oriented design performs better than the object-oriented de-
sign when the vertex buffer objects are only allocated once during startup, as oppose
to allocating it every frame. Measuring the time between the different order of calls
showed that allocation of vertex buffer objects were expensive, and thus had a larger im-
pact on performance. This caused smaller performance gap between the data-oriented
and object-oriented design for cases where the vertex buffer objects were allocated each
frame. Furthermore, test 1 had no internal reference to other objects, which made it
very fast for the object-oriented design. This gave similar performance between the
two solutions for low number of objects. The other tests had a class structure for the
object-oriented design, where the quad point class had references to a color object and
mesh object. The increased number of references in the object-oriented design created

alarger gap in performance between the two solutions, as test 2-5 shows.

One interesting result from the tests are the one given from test 1 and 6, which shows
that the two solutions are approximately equal in performance for low number of ob-
jects, however with the object-oriented design slowly performing better as we increase
the number of objects and entities. I assumed this was because of the manager al-
ways updating the component stores each frame for each system, which becomes quite
costly as the number of entities increases. The object-oriented approach does not need
to transfer memory between component data arrays in component stores, and as a re-
sult would perform better when the number of points increase. To further test this
hypothesis, test 7 was created. In this test, the data-oriented approach only had one
system for updating the positions, colors and renders of the points. This would remove
the need to transfer memory between the different component data arrays in different
systems. As the results showed, the data-oriented design was now faster and more effi-
cient than the object-oriented solution. The results from this test shows that the linear
memory layout is more efficient in the case where we only have one system with large
number of entities. However, there comes a point where a large number of entities will
have large enough overhead where the performance boost gained by the linear data-

layout is not good enough to give an overall performance boost.

108 CHAPTER 6. DISCUSSION

6.1.2 Limitations of the custom ECS implementation

The results from the different tests for the custom implementation strengthened the
hypothesis that linear memory-layout is more efficient for a processor. However, this
was only tested for a specific case. The ECS implementation is incomplete and not
really tested to its fully extent when it comes to the types of applications one could
make with it. It is still uncertain whether the custom implementation could create more
efficient games, especially for small number of entities required. There is two things we
can assume the tests performed for the custom design. First, using entity-component-
system makes it easier to divide our application into clear domains. This is mostly based
on personal preference and experience, however it is clearly easier to work when you
separate data and logic into different domains. Second, the linear memory-layout is
better for the processor, given that we do not have too much overhead on making it

linear.

6.1.3 Meeting the specifications

The final design of the custom C# implementation satisfies all the specifications de-
termined for the design. The design follows the entity-component-system pattern de-
scribed in section 2.2.2. The functional tests proved the intended behaviour for the
entity-component-system. Data and logic is separated in components and systems re-
spectively, with entities being weak references to the data available. Furthermore, the
use of component data arrays forces component data of same types to be stored lin-
early. The three different domains are decoupled and only accessed through a man-
ager. The base class LSystem gives access to easy interface for defining new logic in
an application. The opengl integration provided the possibility of rendering graphics,
making it possible to make games. At its current state, the design is advanced enough
to be able to create games. An example of such a game demonstrating the capabilities

were unfortunately not implemented due to time constraints.

6.1.4 Potential issues with the current design

The current implementation of the entity-component-system in C#is incomplete. Com-
ponent data of same types are stored linearly together in memory, without any regards
to the entities that own them. The memory allocation is not optimal for scenarios where
multiple entities have the same set of data. In these cases, it would be more efficient for
a system to iterate through the data based on entities instead of strictly component
types, as identical data sets would imply that the entities represent the same type of

"object".

6.1. DISCUSSION OF RESULTS 109

Furthermore, the tests ran for this part were simple in its design and construction. An
actual game was not constructed for the test implementation, but rather a simulation
that only required large number of objects. The design might not necessarily be bet-
ter for cases where the number of objects are low nor for games that requires many
systems. These cases are yet to be tested for, but should be in the future if work is to
continue for this design.

6.1.5 Sine-wave simulation results in Unity

The results from the sine-wave simulation done in Unity were shown in section 5.2.
As the results demonstrate, the data-oriented solution performed better in every way. It
managed to outperform the objected-oriented solution with a factor of over 15 once the
number of objects spawned became significant. This shows that the entity-component-
system in Unity is very optimized and able to waste less time on the same type of
work, given that the data is laid out in a different way. Another interesting observa-
tion from the result shown in figure 5.11, is how much better the data-oriented design
is in spawning larger number of objects. The object-oriented solution struggled with
outputting more than a couple of frames per second at 40,000-60,000 objects, while the
data-oriented solution did not go down to the same level of frame rate until it reached
400,000 objects.

6.1.5.1 Deviation in gpu rendering

The results shows that the entity-component-system in Unity is efficient, however it is
uncertain whether it can all be attributed to memory layout. For this reason, the unity
profiler was used for further inspection of cpu usage as explained in section 5.2. As the
table for the dod-solution shows in 5.1, one of the most time consuming operations was
the Gfx.WaitForPresent operation. This operation consumed as much as 47.61% of the
total cpu time in an average frame. According to Unity, this operation is simply a stall
in the processor as it waits for the gpu to finish rendering (30). This implies that the
decrease in performance is related to the graphical processing unit and not the central
processing unit. Based on this, it can be assumed that the processor would be able to

perform even better if the performance wasn't bounded by the rendering time on the
gpu.

On the other hand, the objected-oriented solution is not affected by a slower gpu. In-
spection showed that the Render.OpaqueGeometry operation is the most time consum-

ing operation of the post late update function, consuming a total of 45.79% cpu time as

110 CHAPTER 6. DISCUSSION

shown in table 5.2. Interestingly enough, the same operation only requires 0.17 ms for
the dod solution. The huge difference in the operations between the two solutions were
surprising and further research were conducted in order to figure out the cause, as this

operation is responsible for rendering the geometry of opaque elements.

After checking the unity frame debugger available in the profiler, which shows every
draw call command sent to the gpu, it was discovered that the oo-solution sent 99 draw
calls for this specific operation each frame, as oppose to the dod-solution which only
sent 1 call. The profiler also stated that the draw calls were not batched since they used
different meshes, which is not true in this case. All the cube objects have the same
mesh and materials, as they are clones of each other. Unfortunately, there was no con-
crete answer to this question, other than the fact that the automatic gpu instancing in
Unity is not completely reliable. The results from these numbers implies that the huge
performance boost gained is not completely thanks to the data-oriented approach, but
also the way unity handles the graphical rendering of objects. It might still be possi-
ble that the entity-component-system in Unity processes graphics in a more efficient
method through the mesh instance renderer system which is responsible for drawing
the meshes. The conclusion around these operations are not clear.

One possible theory for the discrepancy might be due to the way the two solutions rep-
resent a cube point. Every cube point is a game object in the oo-solution. This means
that they all have transform position components that are updated and further used by
the physics engine for calculation. There is no game object representing a cube point in
the dod-solution as they are instead directly drawn by sending exact draw commands
to the gpu. There is no associated game object with transform position for the physics
engine to perform calculations with, as they are now represented in another way. This
hypothesis was tested by disabling the physics simulation in Unity, however the results
hardly changed.

6.1.5.2 Iteration time for the two solutions

Another interesting outcome of the tests are the time elapsed for the update functions
that runs each frame for the two solutions. As the values in table 5.1 shows, the point
movement system, responsible for updating position of each cube point, used 8.14 ms
to complete its update function. On the other hand, the oo-solution used 16.22 ms to
execute its update function as table 5.2 shows. This function performed the same task
as the point movement system, with the exception of being object-oriented. The results

here shows that the dod-solution were twice as fast at iterating through each cube point

6.1. DISCUSSION OF RESULTS 111

and updating its position compared to the oo-solution. The results here indicates that
the linear memory-layout is indeed more efficient for the processor. If the graphical
rendering part and other overhead associated with the solutions were the exact same
for both, then the implication would be that the dod-solution would be only twice as
good at its best in average. This is certainly not the case in this scenario due to other

operations playing a larger part than the update functions.

The efficiency of data-oriented design is even more highlighted when the minimum
and maximum values are discussed. For the dod-solution, the minimum and maximum
update time for the iteration was 3.59 and 11.70 ms respectively for the point movement
system. On the other hand, the oo-solution had a minimum and maximum update
time of 15.61 and 22.68 ms respectively. At the cases where minimum loop times were

achieved, the dod-solution performed 4 times faster than the oo-solution.

6.1.5.3 Implications of the research

The data-oriented solution performed better with the ability to spawn a significant
larger number of objects than the object-oriented solution. The results clearly showed
that the dod-solution is better. Whether the performance boost gained by the data-
oriented solution is only attributed to the data-oriented design, is unclear. The re-
search conducted for the gpu rendering deviation was inconclusive. However, the dod-
solution were still twice as fast at iterating through each point than the counter-part
for an average frame. It is possible that the use of systems and clear separation be-
tween data and logic allows for a more efficient rendering system, handled by the en-
gine. Two assumptions can be made from the research done here. First, the entity-
component-system is more efficient than the typical object-oriented solution. Second,
linear memory-layout made the cpu more efficient as updating the points on the graph
were faster on the dod-solution. Both solutions were able to perform the same task, re-
gardless of how the two solutions differed in how they executed different functions, the
dod-solution were able to spawn more objects with better frame rate. In the end, that’s
the most important thing for playing games. At least for this specific case, it is safe to

claim that the dod-solution performed better.

112 CHAPTER 6. DISCUSSION

6.2 DwarfHeim conversion to a more data-oriented de-

sign
6.2.1 Functional features of the data-oriented design

The mix of data-oriented and object-oriented conversion proved that it would be pos-
sible to turn parts of DwarfHeim into a more data-oriented solution while still keep-
ing the same features. This was shown by the results illustrating dwarf units with the
ability to move and attack. The prototype-based library structure was not directly con-
verted into a data-oriented solution, however it was used as an intermediate step for the
entity-component-system to gather data from objects through that library. This shows
the possibility of still using those types of features while still making the game data-
oriented.

The main issue with going full data-oriented is the basic command chain,current ani-
mation and 3d-model system. The animation is controlled through an animator object
which is tied to Unity’s engine back-end. Time was not spent on improving this part,
however it was later discovered that Unity had a data-oriented example application that
showed the use of animations in a data-oriented system. The example was too compli-
cated and involved exhaustive knowledge about animation and was thus ignored for
this thesis. The 3d-models of dwarfs consists of a set of visual components that to-
gether define the complete model, which made it hard to represent through meshes in
the game. The basic command chain could be converted into a pure data-oriented so-
lution if enough time was given. Solving these problems would make it significant more
easier to convert it into a data-oriented solution, as the game logic itself can easier be

divided into systems and components.

While the results are promising when it comes to features, it must be noted that it was
done only for a small part of the game. Large parts of the codebase were not touched
nor inspected, making it uncertain whether the game is truly completely convertible. At
minimum, the small scope showed promising outlook for the server-part of the game,

which is one of the parts where the desire for cpu optimization is biggest due to costs.

6.2.2 Performance results

Three type of performance tests were performed for the data-oriented solution and two
type of tests for the original object-oriented version.

6.2. DWARFHEIM CONVERSION TO A MORE DATA-ORIENTED DESIGN 113

6.2.2.1 Test with animation and 3d-models activated

Figure 5.14 showed the results for performance test for the case where both animation
and 3d-models were activated. For lower number of objects, the data-oriented solution
was performing slightly better until the number of objects spawned increased above
400, at which point the object-oriented solution started to perform better. A potential
reason for this might be the increased overhead in the dod-solution where a system
is used to synchronize position data between the entity-component position and the
transform position. Table 5.3 shows time statistics for several systems, including the
ViewSynchronizationSystem which has the task of synchronizing the positions. This
system uses an average time, based on the last 300 frames before completion of test,
1.72 ms to complete. At its minimum and maximum it spends 1.39 2.99 ms respectively.
This number increases as the number of objects increase. Furthermore, the system uses
reference type references to the transform position component, which violates the the

spatial locality property, explaining its inefficiency.

The results here shows that the dod-solution is either equal or slightly worse when

many of the object-oriented dependencies are injected into the systems.

6.2.2.2 Test with animation and 3d-models deactivated

The dod-solution outperformed the oop-solution once the ViewSynchronizationSys-
tem was deactivated and 3d-models were replaced with simple meshes. The additional
overhead brought from the ViewSynchronizationSystem and animation system made
the dod-solution perform better than the oop-solution with same features turned off.
Both solutions saw a huge jump in frame rate once these parts were removed. This
gives promising outlook for the server-side where these parts are not needed. At 1000
objects, the ratio between the dod and oop solution were slightly above 1.4, indicating

amoderate boost in performance.

6.2.2.3 Test with dod-solution having additional object-oriented components deac-

tivated

When transform position, animations and 3d-models were completely removed with
all path movement calculation done through the 3rd-party path handler, performance
improved significantly. The dod-solution had a frame rate seven times better versus the
oop-solution for 1000 objects. Much of the gain in performance can be attributed to the
reduction in physics due to the non existing transform position, which now stays static.
The static transform position values causes less calculation for physics. Collisions and

path movement are still taken care by the RVOController, so the extra physics applied

114 CHAPTER 6. DISCUSSION

to the game is not really needed.

This version of the test is most applicable to a server, as unnecessary components are
removed.

6.2.3 Inspecting time values for the converted parts

Evaluating how the converted parts of the game performs versus the original version is
important to establish the efficiency of the solution. The tables in 5.3.2 presented the
different time values for the functions associated with the agent, basic action and utility
actions. These values will be further examined. In general, lower maximum values were
found for the tests that performed with a higher frame rate. This can be attributed to
the fact that the statistics calculated were based on the last 300 frames. The range of
possible values will be smaller in the case of high frame rates since the 300 frames will
cover in total a smaller time span.

6.2.3.1 Game agent conversion

The old game agent structure was split into the Game Agent System, which manages
the type of basic action an entity should execute, and the group of systems represent-
ing basic actions. The basic action move system is the only relevant part here as the test
only dealt with movement. In addition the animation view system overtook responsi-
bility for setting animation through the view agent, which the game agent previously
did. The total average time for the new systems representing the old game agent is 0.98,
0.7 and 0.64 ms for the first, second and third type of tests respectively. On the other
hand, the total average time for the old game agent is 2.63 and 2.42 ms for first and
second type of tests respectively. In average, the new converted version performs bet-
ter. However, the game agent system has larger spikes in values than the other solution,
going as high as 9.67. This spike does not happen often and is in rare cases where the
system must change basic action parameter component for every entity in the system.
In general, the new game agent system was able to perform better.

6.2.3.2 Command Agent conversion

The command agent did not perform a lot of work in the original version. It was used as
a reference to the basic command chain, and thus most of the work was done through
other scripts that accessed it. Due to this it is not easy to compare this agent against
its respective system. Parts of the command agent was converted into the basic chain
update system, which is responsible for updating the chain with new basic commands
received from the server. This work is more time consuming in cases where significant

6.2. DWARFHEIM CONVERSION TO A MORE DATA-ORIENTED DESIGN 115

requests are received. This can be seen from the values given in the tables, with the

system having spikes as high as 9.13 ms.

6.2.3.3 Ability Agent Conversion

The ability agent was split into the ability agent system, group of utility systems and
the ability update system. For the tests performed, the pathfinder utility system were
the only one used in addition to the idle utility system, which had negligible values.
The total average time for these systems were 1.38 and 0.2 for the first two tests. On the
other hand, the total average time for the original version was 1.19 and 0.5 ms. The oop-
solution experienced larger spikes due to it having larger workload. The time results
gathered are not sufficient to conclude whether the new ability agent system is better

or not. There are still too many dependencies on object-oriented objects.

6.2.4 A hybrid solution vs pure data-oriented

As previously stated, the conversion was a combination of data-oriented and object-
oriented principles due to complexity and time constraint. Too many systems were
dependent on objects as the figures in section 4.6.2.3 illustrated. This dependency goes
against spatial locality and increases cache misses. An ideal solution would have none
of these object-oriented dependencies. Due to this, the current solution prevents the

application from being truly tested in a real data-oriented setting.

The current solution does not truly compare a data-oriented application versus an object-
oriented solution. Instead, a combination is tested. It is still possible to see improve-
ments with the hybrid version as the changes can indicate better performance, as the
results showed. However, these changes are difficult to interpret when the solution still
have many object-oriented dependencies. The current solution prevents the applica-
tion from being truly tested in a real data-oriented setting. The next step in the design
would be to remove all object-oriented dependencies and convert the game into a pure

data-oriented solution.

6.2.5 The implications of the research

The hybrid solution proved to be better in cases where it is made more applicable for
a server, such as no animations or graphics. The results are promising and indicative
of better cpu efficiency when the entity-component-system in Unity is utilized. At best
case, the dod-solution managed to outperform the oop-solution with a factor of seven.

The server costs could be significantly reduced if same grade of conversion were ap-

116 CHAPTER 6. DISCUSSION

plied to the complete server-part of the game. The conversion can potentially be even

better if the conversion were pure data-oriented.

The dod-solution didn't perform as well when animations and 3d-models representing
dwarfs were used. A pure data-oriented solution with data-oriented animation system
and graphic renders are necessary to conclude the efficiency of data-oriented solution
for a complete game. The results from the other tests are indicative of better perfor-
mance when the entity-component-system is properly used. While the results from
the first tests were not positive for the dod-solution, it still showed remarkable promise

when it comes to efficiency. This remains to be seen with a complete conversion.

Lack of time made it difficult to test other parts of the converted version, such as the
meele attack ability. Nor was any other test implemented for the design than the move-
ment one. This limited the scope of the test to the single instance of movement, which
can cause results that are not strong enough to imply superiority with one design against
the other.

Itwould also be advisable to test the new job system in Unity with the entity-component-
system. Much of the work done in the conversion can be split into multiple threads. It
would be beneficial to research the improvements gained by using this feature as data-

oriented design is in theory better for parallelization.

6.3 General results

In general, most of the data-oriented tests achieved higher frame rate. The frame-rate
was an indirect indication of processor efficiency, as higher frame rate meant the pro-
cessor was able to perform more work in same time span. The frame-rate gave an
overall look at performance without providing in-depth details about how the differ-
ent processes in the applications performed. Rendering, scripting and physics calcu-
lation were performed better in most cases due to linear memory-layout. This was
especially the case for the applications written in the Unity engine, as the engine op-
timized the rendering once the entity-component-system was used. A higher frame-
rate meant that the graphics had smoother animation, better response times and able
to output more work. The data-oriented solution performed better than the object-

oriented counter-part based on the frame rate.

6.4. DEVELOPING WITH THE ENTITY-COMPONENT-SYSTEM 117

6.4 Developing with the entity-component-system

Most of the software developed in this thesis involved the entity-component-system.
The architectural pattern proved to be effective when it came to writing software as
the separation between data and logic allowed me to easily implement new functions.
Throughout this thesis I experienced many positive things with the usability of the pat-
tern that will be listed here.

* Focusing on data allows for better planning on structure.

¢ The separation between data and logic allows you to focus on each part sepa-

rately.
¢ The pattern allows for easy implementation of systems that do specialized work.
¢ Adding new behaviour to a set of entities only involves creating a new system.

¢ Adding additional data to an entity and thus potential new behaviour, is easily

done by attaching components.
¢ Data dependency is negligible as each component data is its own instance.

* Component data is reusable as it does not belong to any specific entity or in-

stance, any "object" can use the type of data if required.

The positives from this pattern is especially beneficial for a video-game in development.
With a pattern like this, a developer can easily define new set of component data and
systems operating on them without touching other parts. Component data is just data,
it is not related to any object or entity that it must adhere to, any new entity can choose
to have it as part of its component set. This allows for good re-use of code.

There are however certain issues with the entity-component-system that can be chal-

lenging for developers.
e Ttis less intuitive to work without objects that encapsulate logic and data.
¢ Itis not easy to implement polymorphic behaviour.

¢ It can sometimes be difficult keeping track of the type of data en entity has and

how the data is used.

Overall, using entity-component-system with data-oriented principles can potentially
create games that are more optimized. One important factor for video-games is visual
fidelity, which is also impacted by the frame-rate. If the goal is to have better frame-

rate, then data-oriented principles with entity-component-system is the method future

118 CHAPTER 6. DISCUSSION

video-game developers should choose. It performs better than object-oriented design

in exchange for less readability and polymorphism.

Chapter 7

Conclusion

Throughout this thesis, three applications have been implemented proving the effi-
ciency of data-oriented design. The results indicate that developing applications with
focus on memory-layout of data can improve the efficiency of processors. The use of
entity-component-system allows for clear separation between data and logic, making
it easier to develop applications that are data-oriented. The usability of the architec-
tural pattern along with the results given from the tests indicates that this is a benefi-
cial alternative for video-game development. The results also strengthened the use of
data-oriented principles with the entity-component-system in Unity as the results il-
lustrated performance boost by using a data-oriented approach. Even the incomplete
DwarfHeim conversion performed better in certain cases, showing that the processor

is indeed better when data layout is optimized for cache efficiency.

Although the results points toward data-oriented design, it is still not absolutely clear
whether all performance gains are due to data-oriented principles. The applications
that were used to verify the efficiency are dependent on external factors that affect per-
formance as well, making it difficult to clearly assess that data-oriented design is better
in every way. Nonetheless, further inspection of results showed that some of the im-

provements can be attributed to data-oriented principles.

In the end, many of the improvements due to data-oriented design increased the over-
all frame rate. For video-games, this is one of the most important factors. The im-
provements in frame rate gained through data-oriented design should motivate future

developers to use this paradigm when developing games.

119

120 CHAPTER 7. CONCLUSION

Chapter 8

Further Work

Alist of propositions for further work will be presented in this chapter. the propositions

are possible improvements based on my experience with the work done in this thesis.

8.1 Recommendations for the custom entity-component-

system

The current custom entity-component-system is functional but not optimal when it
comes to performance. This is especially the case for the memory-management done
in the architecture, which is fairly simple. No game was developed using the custom
entity-component-system due to time constraints, which could prove useful in analyz-
ing a real-world scenario. The list of further work is inspired by the discussion given in

section 6.1.1. The list of recommendations for further work are as follows:

* Better memory allocation based on entities and its component data instead of

arranging strictly through component types.
¢ Making the API more user-friendly.

¢ Creating systems that handles graphical renders automatically through compo-

nents.

¢ Developing a game using the architecture versus an object-oriented implemen-

tation to compare results.

121

122 CHAPTER 8. FURTHER WORK

8.2 Recommendations for the DwarfHeim conversion

The current conversion of DwarfHeim is not pure data-oriented, nor is the scope of the
conversion significant. The next step in converting the game would involve steps in
removing object-oriented dependencies. Additional changes can involve more com-
plex changes such as converting the 3rd-party path movement controller. A full list of

recommendations for further work are as follows:
¢ Convert the basic command chain structure into a pure data-oriented solution.
— Each basic command in the chain could be turned into entities representing

a basic command, as partly described in 4.6.2.8

— This will involve overhead for synchronizing the correct order of basic com-

mands for an entity.

— Alternatively create a component with fixed size variables representing the

chain.

Convert the movement calculation part into a pure data-oriented solution.

- This would involve taking all the monobehaviour components and turning

them into systems as described in 4.6.2.7.

— All data should be moved to components.

Research methods for representing the 3d-models and animations strictly through

systems.

— Unity has provided source code for achieving this, however the codebase

was to complex for this thesis.
* Turn the whole client-server model data-oriented.
— Allow systems to handle all communication between clients and servers.

¢ Improve performance by using Unity’s job system for multi-threaded program-

ming

— The job system has support for data-oriented principles

Bibliography

(1]

(10]

(11]

(12]

(13]

C. Carvalho, “The gap between processor and memory speeds,” 2002.

“Finalizing objects, and memory concepts (stack versus heap),” http://archive.

oreilly.com/oreillyschool/courses/csharp2/csharp214.html.
“Pineleaf studio,” http://pineleafstudio.com.

L. T. Bojan Jovanovi¢, Raphael M. Brum, “Mtj-based hybrid storage cells for

normally-off and instant-on computing,” 2015.
“Locality of reference,” https://en.wikipedia.org/wiki/Locality_of reference.

B. Nystrom, “Data locality,” http://gameprogrammingpatterns.com/data-locality.
html.

J. Ante, “Unite austin 2017 - writing high performance c scripts,” https://www.
youtube.com/watch?v=tGmnZdY5Y-E.

D. Davidovi¢. (2014) What is data-oriented game engine design? Access date:
20-04-2018. [Online]. Available: https://gamedevelopment.tutsplus.com/articles/
what-is-data-oriented-game-engine- design--cms-21052

“New 2018 features for wunity,” https://unity3d.com/unity/features/
job-system-ECS.

M. P Johansson, “Medium - composition over inheritance,” https://medium.com/
humans- create-software/composition-over-inheritance-cb6f88070205.

“Composition over inheritance,” https://en.wikipedia.org/wiki/Composition_

over_inheritance.
“Unity technologies,” https://unity3d.com/company.

U. Technologies, “Unity - scripting api:monobehaviour,” https://docs.unity3d.
com/ScriptReference/MonoBehaviour.html.

123

http://archive.oreilly.com/oreillyschool/courses/csharp2/csharp214.html
http://archive.oreilly.com/oreillyschool/courses/csharp2/csharp214.html
http://pineleafstudio.com
https://en.wikipedia.org/wiki/Locality_of_reference
http://gameprogrammingpatterns.com/data-locality.html
http://gameprogrammingpatterns.com/data-locality.html
https://www.youtube.com/watch?v=tGmnZdY5Y-E
https://www.youtube.com/watch?v=tGmnZdY5Y-E
https://gamedevelopment.tutsplus.com/articles/what-is-data-oriented-game-engine-design--cms-21052
https://gamedevelopment.tutsplus.com/articles/what-is-data-oriented-game-engine-design--cms-21052
https://unity3d.com/unity/features/job-system-ECS
https://unity3d.com/unity/features/job-system-ECS
https://medium.com/humans-create-software/composition-over-inheritance-cb6f88070205
https://medium.com/humans-create-software/composition-over-inheritance-cb6f88070205
https://en.wikipedia.org/wiki/Composition_over_inheritance
https://en.wikipedia.org/wiki/Composition_over_inheritance
https://unity3d.com/company
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html

124

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

BIBLIOGRAPHY

“Unity profiler data exporter,” https://github.com/steve3003/

unity-profiler-data-exporter.

“Introduction to the ¢ language and the .net framework,”
https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/
introduction-to-the-csharp-language-and- the-net-framework.

J. Flick, “Frames per second - measuring performance,” https://catlikecoding.
com/unity/tutorials/frames-per-second/.

S. Rombauts, “A small and easy c++ entity-component-system (ecs) library,” https:
//github.com/SRombauts/ecs.

“Opengl overview,” https://www.opengl.org/about//.
“Opengl,” https://en.wikipedia.org/wiki/OpenGL.

“Opengl language bindings,” https://www.khronos.org/opengl/wiki/Language_
bindings#C.23.

“Opengl 4 for c/.net,” https://github.com/giawa/opengl4csharp.
“Opengl 4 for c/.net tutorials,” https://github.com/giawa/opengl4tutorials.
“The freglut project,” http://freeglut.sourceforge.net/.

“Rendering pipeline overview,” https://www.khronos.org/opengl/wiki/

Rendering Pipeline_Overview.

“The model, view and projection matrices,” http://www.
opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/

#the-model-view-and-projection-matrices.
“Rgb color model,” https://en.wikipedia.org/wiki/RGB_color_model.

J. Flick, “Building a graph,” https://catlikecoding.com/unity/tutorials/basics/
building-a-graph/.

G. Fiedler, “Floating point determinism,” https://gafferongames.com/post/

floating point_determinism/.

“Unity ecs - getting started,” https://github.com/Unity-Technologies/
EntityComponentSystemSamples/blob/master/Documentation/content/
getting started.md#getting-started.

https://github.com/steve3003/unity-profiler-data-exporter
https://github.com/steve3003/unity-profiler-data-exporter
https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
https://catlikecoding.com/unity/tutorials/frames-per-second/
https://catlikecoding.com/unity/tutorials/frames-per-second/
https://github.com/SRombauts/ecs
https://github.com/SRombauts/ecs
https://www.opengl.org/about//
https://en.wikipedia.org/wiki/OpenGL
https://www.khronos.org/opengl/wiki/Language_bindings#C.23
https://www.khronos.org/opengl/wiki/Language_bindings#C.23
https://github.com/giawa/opengl4csharp
https://github.com/giawa/opengl4tutorials
http://freeglut.sourceforge.net/
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/#the-model-view-and-projection-matrices
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/#the-model-view-and-projection-matrices
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/#the-model-view-and-projection-matrices
https://en.wikipedia.org/wiki/RGB_color_model
https://catlikecoding.com/unity/tutorials/basics/building-a-graph/
https://catlikecoding.com/unity/tutorials/basics/building-a-graph/
https://gafferongames.com/post/floating_point_determinism/
https://gafferongames.com/post/floating_point_determinism/
https://github.com/Unity-Technologies/EntityComponentSystemSamples/blob/master/Documentation/content/getting_started.md#getting-started
https://github.com/Unity-Technologies/EntityComponentSystemSamples/blob/master/Documentation/content/getting_started.md#getting-started
https://github.com/Unity-Technologies/EntityComponentSystemSamples/blob/master/Documentation/content/getting_started.md#getting-started

BIBLIOGRAPHY 125

[30] U. Technologies, “Diagnosing performance problems using profiler win-

”

dow, https://unity3d.com/learn/tutorials/temas/performance-optimization/

diagnosing-performance-problems-using- profiler-window.

https://unity3d.com/learn/tutorials/temas/performance-optimization/diagnosing-performance-problems-using-profiler-window
https://unity3d.com/learn/tutorials/temas/performance-optimization/diagnosing-performance-problems-using-profiler-window

126 BIBLIOGRAPHY

Appendix A
Acronyms

FPS Frames per second

OOP Object-oriented programming
DOD Data-oriented design

RAM Random access memory

ECS Entity-component-system

API Application programming interface
00-solution Object-oriented solution

DOD-solution Data-oriented solution

127

128 APPENDIXA. ACRONYMS

Appendix B

Additional Information

Several topics that are relevant to the thesis will be presented here. These topics were
not written on the thesis as they were either too detailed, too long or only had a minor

role. However, they are supplemented here to give the reader a better understanding.

B.1 Concepts in Unity - Some additional concepts

Several concepts in Unity that were either considered too long or not as important to

the thesis will be covered here.

B.1.0.1 Scenes

Scenes in Unity are the domain that contains the environments, menus and objects of
a game. A single instance of a scene can be seen as an unique level. A game in unity can
consist of several scenes, where each scene can have its own environment and closed
domain of objects. Having multiple scenes allows us to design our games in multiple
separated pieces. The position of objects and design of the level can be done directly in

a scene through the scene window, allowing quick changes.

B.1.0.2 Camera and light sources

Camera and light sources are important parts for every scene found in Unity. The cam-
era is used to display the scene found in the game world to the user. All the visual in-
formation is controlled by the use of cameras found in Unity. Each scene must have a
minimum of one camera. By deciding how the camera is used, one can create menus,
games in first-person or third-person perspective. The user will only see the visuals di-

rected by the camera once a game starts, even though the scene contains a large amount

129

130 APPENDIX B. ADDITIONAL INFORMATION

Figure B.1: Example of scene view in Unity

of objects. Light sources are gameobjects that display light on the scene. The camera
captures the information from these sources to correctly represent the world. The col-

ors and mood of the environment can be influenced by how the light sources are used.

B.1.1 Graphics in Unity

Unity uses three different components in order to render an objects surface in the game
world, materials, textures and shaders. For rendering of the geometric shape of the ob-

ject itself, meshes are used.

Meshes are a collection of vertices, edges and faces that defines the shapes of polyhe-
dral objects in 3d. Polyhedral shapes are solids in three dimensions with flat polygonal
faces, straight edges and sharp vertices. Triangles are usually used as the face in com-
puter graphics. Geometric shapes can be created by combining a collection of polygons
together. An example of this is shown in figure B.5 from wikipedia. Meshes can be seen
as a collection of triangles that are linked together in 3d space, giving the impression of
3d shapes.

https://docs.unity3d.com/Manual/AnatomyofaMesh.html for mesh part In Unity, a mesh
is represented by the mesh class. All the vertices of the mesh is stored in a single array.

B.1. CONCEPTS IN UNITY - SOME ADDITIONAL CONCEPTS 131

Figure B.2: Direction of camera view on the scene(top) and the actual view the player
sees(bottom)

Temaed][# [Dlar] S AT)

Figure B.3: Example of camera and light source object on the scene.

A single triangle is then defined by three of the vertices found in the vertex array. All the
triangles in a mesh is defined in a single integer array. Three integers in a row define
one single triangle, and the integers represent the indices found in the vertex array. For
example, the three first elements in the triangle array defines the vertices for the first
triangle, while the three next one defines the second triangle. Additionally, there are
two more parameters for the mesh class that can decide the outcome of the final shape.
A normal vector must be applied to each vertex in order to calculate correct lightning
for the shape. The normal of the vertices are used to identify the direction of the light

132 APPENDIX B. ADDITIONAL INFORMATION

Figure B.4: Same camera view of gameobject with light source off(left) and on(right)

compared to the surface angle. Finally, an array of two-dimensional vectors are used
to determine the fractional offset into a texture. This array is called for uv in the mesh
class. Having a value of (0,0) means that the lower left corner of the texture is to be used
for that specific vertice. This allows us to use different part of the textures for the differ-
ent vertices. In order to render the meshes in Unity, you must first pass a reference to
the mesh asset in a mesh filter component. The mesh filter will only hold a reference to
the mesh asset and not render it graphically. The mesh filter must be passed further on
to a mesh renderer. The mesh filter will pass on the mesh to the mesh renderer, which
will then render the shape defined in the mesh class. An external modelling software

Figure B.5: Mesh of a dolphin, from wikipedia (1)

such as blender is usually used in order to create meshes. Unity does not offer a mod-
elling plugin as part of its engine, however it is possible to create simple meshes in Unity
with scripts.

Materials are the component part that defines how a surface should be be rendered in
the game world. There are several references in the material data to different proper-
ties, such as the textures it uses, tiling information and color tint. Furthermore, the
same material can have different options depending on the type of shader it uses.
Shaders are small scripts responsible for calculating the color of each pixel rendered.

B.1. CONCEPTS IN UNITY - SOME ADDITIONAL CONCEPTS 133

The shader script itself contains the mathematical calculation required, following some
shader algorithm such as the Lambertian reflectance B.6.0.6 that defines an ideal matte
surface. The output from these scripts are dependent on the material configuration at-
tached to it in addition to the lightning provided. Unity provides with a default shader
called for standard shader with a comprehensive set of features and customization. A
game developer does not necessarily need to know the mathematical intricacies behind
the shading algorithms in order to utilise them.

Textures are image files usually stored as bitmaps. Textures are applied on the surface
of graphical objects in order to give it finer detail. A shader algorithm can access ref-
erences to textures through the materials and use this data to calculate the color of

surfaces, giving different surfaces based on the textures used.

As described, the shaders are responsible for calculating the color of each pixel ren-
dered. How it is done is dependent on different factors such as the materials. The ma-
terials contain metadata about how the surface should be rendered. The material can
contain references to textures, which the shader can use to calculate the surface. These
together gives us a way to define the surfaces of objects. A material specifies one type
of shader to use in Unity. A material will have access to different options depending on
the shader chosen. Furthermore, the shader specifies one or more textures to use for its

calculations.

Given our knowledge above, we can create a simple 2d rectangular shape in Unity by
using four different vertices. The shape consists of two triangles connected together
to form a rectangular shape. Figure B.5 shows a schematic of the shape that I want to

render in Unity. The mesh class in Unity needs three type of data in order to render this

1,1 0,1) © 1)

(1,0
0,0

Figure B.6: Vertices of the quad mesh and the two triangles constructed

shape. It needs an array specifying all the vertices, an array that specifies the triangles
and an array that specifies the normals to the vertices. The vertex array simply con-

sists of the four points shown in figure B.5. The triangle array needs 6 elements in total,

134 APPENDIX B. ADDITIONAL INFORMATION

three for each triangle in the shape. Following the coloring scheme in figure B.5, we can
create our first triangle using the following vertices: (0, 0,0), (1, 0, 0) and (0, 1, 0). The
second triangle can then include the following vertices: (1, 0, 0), (1, 1, 0) and (0, 1, 0).
It is important that the indices in this triangle array correctly responds to the vertices
found in the vertex array. Finally, the normal vectors for each vertex is simply pointing
in the negative z-direction since we are creating a 2d shape. Using this information, we
can create the arrays and then pass it to a mesh component in Unity. The code for this

is shown below.

Listing B.1: Creating a new mesh representing a rectangular shape

1 // The vertex array containing vertices

2 private Vector3[] vertices =

3 {

4 new Vector3(0, 0, 0),

5 new Vector3(1, 0, 0),

6 new Vector3(0, 1, 0),

7 new Vector3 (1, 1, 0)

8 };

9

10 // The normal array containing vertex normals

11 private Vector3[] normals =

12 {

13 new Vector3(0, 0, -1),

14 new Vector3(0, 0, -1),

15 new Vector3(0, 0, -1),

16 new Vector3(0, 0, -1),

17 };

18 // Triangle array representing triangles
19 private int[] triangles =

20 {

21 // First triangle

2 0, 1, 2,

23 // second triangle

24 1, 3, 2

25 };

26

27 // Use this for initialization

28 void Start ()

29 {

30 // Create a new mesh component

31 Mesh mesh = new Mesh();

32 // Add the new mesh to the mesh filter
33 GetComponent <MeshFilter >() .mesh = mesh;
34 mesh.vertices = vertices;

35 mesh.triangles = triangles;

B.2. SIMPLE EXAMPLE OF SCRIPTING IN UNITY 135

36 mesh.normals = normals;

37 }

The result of this code is shown in figure B.7. A default material was used for this render.
The surface of this object was rather boring, so we can use another type of material. As
explained, the material contains data for how the surface should be calculated, along
with a algorithm found in a shader component attached to the material. We can add a
texture map to our material and let the shader calculate colors based on that. A picture
of hovedbygget was chosen as the texture. A new array was included in our script for the
uv part, which decides how the image should be mapped on to the surface. By having
the values (0, 0), (1, 0), (0, 1) and (1, 1) for the uv array, we simply tell the mesh that it
should contain the whole range of pixels found in the texture. The new object is shown
in figure B.8 after updating the materials.

Figure B.7: The rectangular shape created by the script

B.2 Simple example of scripting in Unity

A simple example will be created in order to test the concepts explained in previous
section. In this example, a cube will rotate around its axis by using scripts. First, a
gameobject representing a cube must be created. Unity already offers a template for a
cube. The cube is found by creating a 3d object of type cube already available in the
unity editor. Figure B.9 shows the newly created gameobject and its default compo-
nents. As one can see from the figure on the right, it is possible to add component to
this gameobject. These components are the C# scripts previously explained.

136 APPENDIX B. ADDITIONAL INFORMATION

Figure B.8: Same rectangular shape with new material that includes a texture image of
NTNU hovedbygget

For this example, the cube will rotate around its axis every frame. This can be achieved
by using the monobehaviour.Update() function in a script. A new C# script is created by
right-clicking on the project window and then selecting Create>C# script. Figure B.10
shows the newly created script in visual studio. The script is already derived from the
monobehaviour class, with two of the event functions already defined. The Update()
function will trigger each frame, so the rotation logic must be written there. The cube
will only rotate around the y-axis for this example.. Unity has native support for rotation
of gameobjects by using the transform api available. The transform of a gameobject is
its position, orientation and scale on the world. Several methods for transform manipu-
lation is available through this api. One specific function that is useful for this example
is the transform.Rotate(float x, float y, float z) function that will rotate a gameobject
along the x,y and z-axis based on the value given in euler degrees. This can be used to-
gether with the time api to rotate it with a given degree each frame. The Time api gives
access to information such as the time elapsed since last frame. By using this in combi-
nation with transform.Rotate, the cube object can be rotated easily. The code is shown
in figure B.11. Vector3.Up is simply a vector pointing up, which is the y-axis normalized.
In addition, the value is multiplied with 50 to rotate it faster. Finally, in order to make
the cube gameobject rotate, the newly created script component must be added to the
cube object. It will then perform the behaviour defined in Update() each frame, making

it rotate. This is also shown in figure B.11

B.3. ECS CUSTOM IMPLEMENTATION 137

——
nt 0 (UDefault-Material | ©

Dynamic Occluded ¥

v\ ¥ Box Collider EEY

Edit Callder

=]

Nane ate

Material (Phy!

Add Component

Figure B.9: Cube on the scene and its components

Figure B.10: A newly created Monobehaviour script

¥ Cube (Mesh Filter) B
Mesh T C—)

¥ @Mesh Renderer ERS
» Lighting
¥ Materials

size i
Element 0 ObefaultMaterial | ©
Dynamic Occluded ¥

¥ ¥Box Collider ERS
i colider
1s Trigger (u]
Material None (Physic Material) °
Center b I C—

size Pir— Ara—r
¥ = MRotating Cube (Script) B
Seript ctatingCube o

‘ Default
> Shader
e * 50);

Add Component.

Figure B.11: Script code along with the component attached to a gameobject

B.3 ECS custom implementation

B.3.1 Example of system structure

In the example, a positionMovement system is used. This system has the main task of
updating the position of objects. In order to transform the position of an object, the
current position is required along with the velocities in each direction. For this rea-
son, two components are required in our example. They are included as a part of the
required component set of our system in figure B.12. All entities that have these two
components are legal for the system and is to be included in the list of entities for the
specific system. The example demonstrates two different entities that do fullfil require-

138 APPENDIX B. ADDITIONAL INFORMATION

ment, however their attached components are not shown explicitly. Finally, the derived
system class must override the abstract virtual function and define the behaviour. The
following code snippet demonstrates how this could be achieved:

Listing B.2: System example

1 public override void OnUpdateEntity (Entity entity, float
elapsedTime)

2 {

3 Position position = manager.GetEntityComponent <Position>(
entity);

4 Velocity velocity = manager.GetEntityComponent<Velocity >(
entity);

5

6 position.x = position.x + velocity.x * elapstedTime;

7 position.y = position.y + velocity.y * elapstedTime;

8 position.z = position.z + velocity.z * elapstedTime;

9 manager . SetEntityComponent <Position>(entity, position);

10 }
Set of required components List of legal entities

 — — — | SortedSet<ComponentType> | List<Entity>

|
I
)	
I I	
: : Abstract Class	
Virtual fuction) l	
I I Lsystem	T ol onupdateEntity)
<<Required éomponent>>	
<<Required component>> l	
!	
!	
	<<inherits>>
!	
<<override>>	!
Component: Pasition Public system class I	
SRR =1 PasitionMovementSystem l	
float pos_x; - sitionMov ys i 2	
float pos_y: ty	
float pos_z	
I	
I	
; > Entity 1]	
Component: Velocity	
. ComponentType ID = 4;
=1 float velocity_x;
float velocity_y:
float velocity_z

Figure B.12: Example demonstrating the structure of derived system classes

An entity’s component value can be accessed and modified through the Manager.GetEntitycomponent<T
and Manager.SetEntityComponent<T>() functions.

B.3. ECS CUSTOM IMPLEMENTATION 139

B.3.2 Example of inject-attribute with componentDataArray

The following code snippet shows an example of a system class using the inject attribute

for componentDataArray.

Listing B.3: System example

1 class PositionMovementSystem : LSystem

2 {

3 public PositionMovementSystem(Manager manager)

4 {

5 this.manager = manager;

6 AddSystemComponent <Position>();

7 AddSystemComponent <ExistenceID>();

8 }

9

10 [Inject] public ComponentDataArray<Position> myPos;

11

12 public override void OnUpdateEntity (Entity entity, float
elapsedTime)

13 {

14 for (int i = 0; i < myPos.Count; i++)

15 {

16 Position positionius = myPos[i];

17 positionius.x++;

18 positionius.y++;

19 myPos[i] = positionius;

20 }

21 }

22 }

The [Inject] attribute found in line 10 will tell the application to fill it with data of type
Position before first execution of OnUpdateEntity. Theres no need to activate any other
function, this will be done internally as part of the manager class with the use of reflec-
tion. ComponentDataArray will only be filled with data from entities that are legal.

B.3.3 Optimization steps

Some optimization steps were performed for the custom entity-component-system im-
plementation. Those were briefly referenced in the thesis. A more detailed description

is given here for those interested.

140 APPENDIX B. ADDITIONAL INFORMATION

B.3.4 Reducing number of boxing and unboxing

In C#, boxing is the process of converting a value type to the ultimate base class for all
objects, Object, or any other interface type implemented by that value type. Unboxing is
the opposite process, where an object or interface type is converted back to its original
value type. When using reflection in C#, you only operate with objects. When a func-
tion that normally returns value type is used through reflection, it will be boxed and an
object will instead be returned. In the current design, data is moved from Component-
DataArray to the component stores and vica versa through reflection. The data that is
moved is of the type struct, meaning it is value type. Each component moved from one
location is thus boxed or unboxed. According to the documentation provided by mi-
crosoft boxing and unboxing can be computationally expensive(2). If the application is
to move large amount of component data, then it will require a large amount of box-
ing/unboxing, which will have a detrimental impact on performance. All data of value
type is stored in the stack, however they are copied to the heap when boxed. When our
application later needs to unbox the object, it needs to look after the data on the heap.
Doing this for large number of component data means we have large amount of data on
the heap, which then needs to be retrieved later to store on the other storage container.
The performance loss due to boxing and unboxing large amount of objects are not de-
sired and can easily be fixed. In the Manager::InitializeComponentArraysWithStruct()
and Manager::UpdateComponentArraysWithStruct() function, an object reference to
the internal data structures are obtained through reflection. Initially, each function
used to invoke a method on each individual component data for transfer of data. This
meant that every component was boxed and unboxed, impacting performance. Instead
of unboxing each individual data component for the component stores, a new function
was created that only unboxes the array of data, instead of each individual component.
Once the whole array is unboxed once, all of its data are available to be accessed directly
on the stack without having to unbox. A quick time test showed that this improved per-

formance with around 30% (maybe show results of this).

B.3.5 Reducing number of function calls through another class

ComponentDataArray must invoke its insert method several times when data is trans-
ferred to it. If this process is done outside the class in another class method, the appli-
cation must continously look up the object function once it is called. Instead of calling
ComponentDataArray:insert() multiple times for each component data that is to be in-
serted, we can call it in the end once all the data is ready. A temporary array is instead
used to fill all the data directly, before inserting the whole array into the componentdata

array.

B.4. OPENGL PROGRAM CODE

Component Position

static ComponentType id = 1

float x_pos =2.0
floaty_pos = 4.0

T~

stack

float x_pos = 2.0

Boxing

Position myPosition
object OP = myPosition

stack

float x_pos=2.0

floaty pos=2.0

oP

floaty pos=4.0

Managed heap

Position

float x_pos =2.0

floaty pos =4.0

141

Figure B.13: Example of boxing process of component data - OP is a reference to com-
ponent data on the heap

ComponentdataArray uses an internal array for storing data. The size of the array must

be doubled whenever it is completely filled with data. This is done by creating a new

array with double the size, with all the old data copied to it. If we are to move large

amount of data to an array of this type, then it must double its size and copy values

multiple times. In order to avoid this, we can initialize the component array with a

large size to begin with.

B.4 OpenGl program code

B.4.1 Shader code

The code for the two shader program used for the custom entity-component system is

presented here.

142 APPENDIX B. ADDITIONAL INFORMATION

VertexShader - @

in vec3

tion matrix * view matrix * model matrix * vecd(vertexPosition, 1);

FragmentShader = @"

in vec3 colo

void main(
L
gl_FragColor = vec4(color, 1);

Figure B.14: Vertex and fragment shader code

B.4.2 Code for drawing a simple triangle.

The code for drawing a triangle will be presented here.

Glut.glutInit();

Glut.glutInitDisplayMode(Glut.GLUT_DOUBLE | Glut.GLUT_DEPTH);
Glut.glutTnitwindowSize(width, height);
Glut.glutCreateindow(*Triangle with C# binding fo

Glut.glutIdleFunc(OnRenderFrame) ;
Glut.glutDisplayFunc(OnDisplay) ;|

program = 5| ogram(VertexShader, FragmentShader);

program.Use();

program["p x4. iveFi i F ywidth/height, 8.1f, 1660f));
program["v. £] Jector3(@ 8 Vector3.UnitY));
program["model ¢))

Figure B.15: Code for setting up the opengl context and shader program

B.5 Prototype-based programming

Prototype-based programming is a style of objected-oriented programming where newly
created objects are "cloned" from generic existing objects that act as templates, called
for prototypes.(3). The templates define behaviour and data that are common to all
inherited objects. These objects can be further modified to have their own specific be-
haviour. This style is more dynamic in nature, as much of the class and object defi-
nitions happens during runtime. One of the key advantages with this style is that the

B.6. PROGRAMMING LANGUAGE C#AND ITS FEATURES 143

3[] trianglevertices =

vector3(e, 1, 1)

[] triangleIndexes =

triangle - VBO<Vector3>(trianglevertices);
triangleElements = \ >(triangleIndexes, BufferTarget.ElementArrayBuffer);
triangleColor — VBO<V 3 A
€
, @, @), Vector3(1, 1, 8),

ok

Glut.glutMainLoop();

Figure B.16: Code for setting up the triangle data in vertex buffer objects that will be
sent to the gpu

OnRenderFrame()

Gl.Viewport(@, @, width, height);
GL.Clear (ClearBufferMask.ColorBufferBit | ClearBufferMask.DepthBufferBit);

vertexPasitionIndex = ()61 .GetAttribLocation(program.ProgramiD, "vertexPosition™);
GL.EnableVertexAttribArray(vertexPositionIndex);
GL.BindBuffer(triangle);
Gl.VertexaAttribPointer(vertexPositionIndex, triangle. triangle.PointerType, . 12, IntPtr.Zero);
G1.BindBufferTashaderattribute(triangleColor, program rt or")};
G1.BindBuffer(triangleElements);

Gl.DrawElements(BeginMode. Triangles, triangleElements.Count, DrawElementsType.UnsignedInt, IntPtr.Zero);

Glut. glutSwapBuffers();

Figure B.17: Code that runs each frame, where vertex buffer object data is sent to the
gpu along with a draw command

number of similar classes are reduced, as they can instead clone from a generic proto-

type.

B.6 Programming language C# and its features

B.6.0.1 Types and Assemblies in C#

C# is a strongly-typed language, meaning that each variable and constant must have
a type. The use of the word type in this context means the entity that contains data
about a specific type of variable or constant. The type contains information such as the
storage required for the type, the minimum and maximum values it can represent, the
base type it inherits from and the member that it contains. This means that a class is

also a type which stores these type of information. In essence, the type of something

144 APPENDIX B. ADDITIONAL INFORMATION

simply contains metadata about the type itself. The language provides with some basic
types such as int, double and float. User-defined types can be created by defining new
classes, structs, enums and interfaces.

Assemblies in C# is defined as a collection of types and resources that together forms
a logical unit of functionality. They form the building blocks of the .NET framework
applications. In essence, an assembly is a chunk of precompiled code that can be ex-
ecuted by the .NET environment. All types found in the .NET framework must exist
in assemblies, this is because the common language runtime does not support types
outside an assembly. Most applications built in visual studio is for instance stored as a

single assembly. Assemblies are either compiled as .exe file or dynamic-link library, dll.

B.6.0.2 Value Types and Reference Types

All variables in C# can be divided into two set of types, value type and reference type.
Variables that are of value types will directly contain values of the specified type(4).
With other words, the value found on the address represented by the variable is the
data of interest itself. Reference types do not directly contain the relevant values itself,
but rather a reference to another location on the heap memory space, where the values
are found(5). Reference types only store pointers to their respective types on the heap,
while value types can be found in the stack or static fields. Figure 2?2emonstrates how
the different types are stored in memory. Typical standard data types such as integers,
floats, booleans and structs are of value type. Examples of reference types are all class
objects defined in C#. There are certain aspects one must be aware of when working

Stack Heap
Value types inta=5; ~
float b = 2.4; > MyClass data

Reference

type MyClass object;

Figure B.18: Value types and reference types in memory

with these types, since they are stored different in memory. When passing value types as
function arguments, the values will be copied into new variables for the function to use,
the result of this is that the original variable will not be changed. For reference types, the
pointer to the object itself will be passed by. This means that every change done within
a function will affect the original reference type. Another interesting property is that

an array of value types will contain the values in a linear contiguous memory layout.

B.6. PROGRAMMING LANGUAGE C#AND ITS FEATURES 145

This is not the case for reference types, instead the array will contain pointers stored in
the same linear contiguous way. However the difference here is that the pointers will
point to different locations on the memory heap once accessed. This is an important
property to know for data-oriented principles, which will be further discussed.

Address i Address .
Array of integers o'n stack, Array of objects on sFack, MyClass data on heap
int[n] array; MyClass[n] array;
. Reference value at index

0x00 integer value atindex O 0x00 o > MyClass data
0x04 integer value at index 1 0x04 Reference Vla\ue atindex MyClass data
0x08 0x08 - MyClass data
MyClass data

integer value atindex n Reference v:lue atindax > MyClass data

Figure B.19: Array of value type vs array of reference type

B.6.0.3 Interfaces

Interfaces in C# represent a group of functions that classes or structs must implement if
they inherit it. Interfaces are important for including behaviour from different sources
for a class or struct since C# does not support inheritance from several parent classes. In
addition, structs can simulate inheritance-like behaviour by including interfaces since

they are not allowed to inherit from other classes or structs.

B.6.0.4 Delegates

Delegates are similar to function pointers found in C and C++. It is a type that holds
references to methods with a particular parameter list and return type. Delegates allows
different objects to customize their behaviour based on what kind of method a delegate

holds. They are also used for events in C#.

B.6.0.5 Events

Events implement the observer pattern, which is a software design pattern. Multiple
different objects can "subscribe" to an event with a given method. Once the event has
been activated, each subscribing object will call their registered event function. Events
can thus be used to signal to other dependent objects that an action has occured.

The type of a variable or constant contains information The type specifier in C#
stores information about the type which the

146 APPENDIX B. ADDITIONAL INFORMATION

B.6.0.6 Reflection

The last topic of interest four our chosen language is reflection. Reflection gives access
to objects of the base type Type, which describes assemblies, modules and types. Hav-
ing access to this information in runtime allows us to dynamically create instances of a
specific type, bind types to an existing object or get type from existing objects and in-
voke the methods available in that type. Attributes are accessible through reflection, al-
lowing you to read data associated with the attributes or invoke attribute related meth-
ods. Using reflection together with custom attributes allows us to modify data with ease
by simply adding the attribute to the data field or class. Furthermore, it is possible to
create complete new types at runtime by using reflection. Understanding reflection is
important for using Unity as the engine has an extensive use of custom attributes.

An example will demonstrate the power of reflection and attributes. Let’s say we want
to keep track of how often fields of a specific type are used in classes. Say that every
time we attach our custom attribute, FieldCounter, to a class field, it counts that type.
We can create a simple application that will iterate through the assembly and look at
every class that has this attribute. We can then count the number of times the attribute
occurs for a type. By using a dictionary, we can keep track of occurrences for a specific
type. The custom attribute will only be used as a marker, specifying that this field is of
interest. We can then have a function that prints out this information for us. The below
code snippet shows an example of this function. In this example, our customattribute

is named FieldCounterAttribute.

Listing B.4: Using reflection to access fields with our customattribute

1 static void PrintFieldsOfInterest ()

2 {

3 // Dictionary containing the type and number of
instances found in classes.

4 Dictionary<Type, int> FieldCounts = new Dictiomnary<
Type, int>();

5

6 // Get the current executing assembly

7 Assembly myAssembly = Assembly.GetExecutingAssembly();

8

9 foreach (Type type in myAssembly.GetTypes ())

10 {

1 // 0Only look for class types

12 if (type.IsClass)

13 {

14 // Check if a field has the Fieldcounter

attribute

15 var fieldInfos =

B.7. SINE-WAVE SIMULATION IN UNITY 147

16 type.GetFields () .Where(field => field.
IsDefined(typeof (FieldCounterAttribute)
));

18 foreach (var fieldInfo in fieldInfos)

19 {

20 var fieldType = fieldInfo.FieldType;

21 if (FieldCounts.ContainsKey(fieldType))

22 {

23 FieldCounts [fieldTypel++;

24 }

25 else

26 {

27 FieldCounts.Add(fieldType, 1);

28 }

29 }

30 }

31 }

32 Console.WriteLine ("The following types were attached
with the custom attribute: ");

33 foreach (var types in FieldCounts.Keys)

34 {

35 Console.WriteLine ($"Type: {types}, number of

occurrences: {FieldCounts[types]}");
36 }
37 }

The function will print out every type that has the FieldCounterAttribute applied to it,
along with the number of times the attribute is applied to the same type. A complete

example is demonstranted in appendix .

B.7 Sine-wave simulation in Unity

B.7.1 Accessing mesh and material data with entity-component-system

The folllowing code snippet demonstrates how data for settings and materials were re-

trieved. The way references are retrieved are shown in line 21-28.

Listing B.5: Getting mesh and setting data

1 public sealed class Graph{

2 /// <summary>

3 /// Archetype for the point, specifying kind of components
attached to it

4 /// </summary >

5 public static EntityArchetype pointArcheType;

148

21

22

23
24

25

26
27
28
29
30

31

APPENDIX B. ADDITIONAL INFORMATION

/// <summary >
/// Settings for the graph
/// </summary>

public static Settings graphSettings;
public int numberOfPoints;
public static MeshInstanceRenderer cubelLook;

// Run this function after scene has been loaded.

[RuntimeInitializeOnLoadMethod (RuntimeInitializeLoadType.
AfterSceneload)]

public static void InitializeWithScene ()

{

// Name of gameobject representing cube point on the

scene is PointRenderPrototype

var pointProtoType = GameObject.Find ("
PointRenderProtype");

cubelLook = pointProtoType.GetComponent<
MeshInstanceRendererComponent >() .Value;

Object .Destroy(pointProtoType);

// Retrieve setting data from settings gameobject
scene

var settings = GameObject.Find("Settings");

graphSettings = settings.GetComponent<Settings>();

Object .Destroy(settings);

NewGame () ;

The GameODbject.Find(string name) function will search for the game object on the cur-

rent active scene.

B.7.2 Sine-wave simulation, profiler stats with profiler data exporter

A number of figures showing the cpu usage stats from unity profiler for the sine-wave

simulation tests done for 50,000 objects.

B.8 Unity profiler data exporter results for DwarfHeim

Tables displaying cpu usage times were shown in the results section. These values were

gathered from the statistics shown with the profile data exporter. The original data rep-

resentation is shown here, as the result section only displayed values of interest.

B.8. UNITY PROFILER DATA EXPORTER RESULTS FOR DWARFHEIM 149

e Do
] o —|)
noncton rout sar coln G Atos i
T o T m 54
Ececuesabrunchondavokel 1o Pt 100 o 56
Eopee 2020 o0 oo o Son
omtatupéste PrihrrameRendering o3 000 100 o pr
i 330 o0 oo o oo
inaccauntad tm between: potateUpdateSroflerEnirama and EndPramedarrier 320 320 100 o Loe
chewatEorpraset 520 520 oo o Y
Bttt 000 o0 100 o b
ovenin oo o0 oo o oon
Render:OpasueGsomet 030 o0 100 o oan
ortswpéstesroflarendframs 030 o0 oo o oan
030 020 100 o 0w
enderrarwardopaque Render oz o0 oo o oo
Shadows RenderShadomhan 010 000 100 o oz
Cuting 010 000 oo o oo
(CullenisCrateSharednendererscene o0 o0 100 o oz
T o0 o0 oo o oon
Sradons epareso o0 o0 100 o oan
Seanacoling 000 000 oo o oan
Crdaeedeptiexure o0 o0 100 o]
Uieeers Canvasanagergenderoverlays 000 000 oo o oon
6Lt RenderigRenderovertays 000 000 100 o oan
KenderrormardOpadie.CollcShadons e o0 oo o oan
nitzatonlarerCpdateTine o0 o0 100 o pr
CulllisbleLons 000 o0 oo o oo
Graphic i o0 o0 100 o s
o 000 000 oo o oo
Shadows ExracCarten o0 o0 100 o s
rofir c,nmm.m,,,...,m.nm e o0 oo o oot
roflrCalec o0 o0 100 o oan
ipdats Sepmanaehovioutpists 050 om0 % ob o004
Fle path
\profiler_data.json
o
[Profiler Data | Current Frame Data I Selected Function Data |

Function Total Seif Calls GC Al Time me Selfme
[PostLateUpdate FmshframeRendering so e o0 5 FErTy oot «
lohx WatForpresen 471 a7t 100 ob 4 134
Fointtovementsystem 3787 000 00 ob o1 000
2268 000 o9 ob 430 000
lexecutedobruncton.Invoke() 2266 2266 o9 ob e a8
etueen: a and) 54 100 ob 164 164
IMeshinstanceRendererSystem s 000 00 ob 139 000
WaitFarJabGroupi0 s 014 100 ob 120 003
derincion nole) 244 68 00 ob 074 036
me 169 007 100 ob 041 003
ostae rofilerenderame o0 000 00 ob 022 000
e occmsatres 059 071 100 ob 0zt 01s
lorawing 057 000 00 ob 0zt oot
[Render.OpaqueGeometry 076 000 100 ob 017 000
[RenderForwardopaque Render 054 006 00 ob 012 002
Ireansformsystem 033 000 100 ob 007 000
IShadows.RenderShadantiap 026 015 00 ob 006 004
lCuling 027 o5 100 ob 006 002
EarlyUpdate Performance AnalyticsUpdate 019 015 00 ob 005 005
ntialzation PlayertpdateTime. 023 023 100 ob 005 005
Preupdate.SendMousegvents 019 000 00 ob 004 000
pensbenvir orhoue, 018 000 100 ob 004 000
SendMouseEvents DoSendouseEvents() 018 015 00 ob 004 004
e Colecermersaticatersias 012 012 100 ob 003 003
Sceneciling 011 000 00 ob 003 000
Update ScrptRunBehaviourupdate 010 000 100 ob 003 000
lUGUL Rendering RenderOverlays 011 000 00 ob 003 000
UpdateDepthTesture 009 008 100 ob 003 002
Evens Canvstanagrhenderoverirs 011 000 00 ob 003 000
fendrrameBarrie 009 000 100 ob 003 000
CulRatats Crestssharedaandererscens 014 006 100 ob 003 0025
ile path
\profiler_data json
Export
(Profier Data | Current Frame Data It Selected Funcion Data]
Trotal [ser Tcais [oc atoc [Fime ms [sefime
500 500 00 % 700
Rendarsormardopagis Collctshadons 013 0.0 100 ob 003 000
006 001 100 ob 002 001
009 0.0 100 ob 002 001
007 005 100 ob 002 002
IShadows prepareshadowmap 009 006 100 ob 002 002
(araphics ot 004 004 100 ob 001 001
Shadows.CullirectionalCascades 0.0 0.0 100 ob 001 001
WatermarkRender 004 0.0 100 ob 001 001
(U vents.MGUIRenderoverlays 001 0.0 100 ob 001 000
lGut.Repaint 001 o1 100 ob 001 000
proferconnection poll 004 004 100 ob 001 001
arlyupdate polFlayerConnection 004 0.0 100 ob 001 000
profer.Collectaudiastats 005 0.0 100 ob 001 000
004 0.0 100 ob 001 000
001 0.0 100 ob 001 000
0.0 0.0 100 ob 001 001
U vents.wilRenderCanvazes 004 0.0 100 ob 001 000
UGUL Rendering UpdateBatches 004 0.0 100 ob 001 000
(Canvas SendwilRenderCanvases() 003 0.0 100 ob 001 000
Lavaut 003 002 100 ob 001 001
(Canvas uideatch 001 001 100 ob 001 001
EarlyUpdate UpdateCanvas ectTransform 001 001 100 ob 001 001
004 004 100 ob 001 001
0.0 0.0 100 ob 001 001
0.0 0.0 100 ob 001 001
001 001 149 ob 001 000
pudoproferCapurerrame 003 0.0 100 ob 001 000
JudioManager Updat 0.0 0.0 100 ob 001 000
(GUL processtvents 0.0 0.0 100 ob 001 001
ctect 003 0.0 100 ob 001 000y
path
\profiler_data json
Export
(Profier Data | Current Frame Data It Selectad Function Data]

Figure B.21: Profiler data stats for dod - Average values

150 APPENDIX B. ADDITIONAL INFORMATION

Figure B.22: Profiler data stats for oop - Max values

B.8. UNITY PROFILER DATA EXPORTER RESULTS FOR DWARFHEIM

151

er Dot
e retat Tcals Toc Al i Tsettms]
PostateUpdate FARFrameRerdeTing o o w0 o1+
lCamerasiandar 020 10 ob 6357 030
orarig o0 100 ob ceo8 002
[Render OpagueGaometry os2 10 ob 6038 07
Renderrorwardopaque Rendsr o2t 100 ob 1610 033
Shadams RenderShadonMap sio1 10 ob 2030 407
PraUpdste SendMouseEvents 000 100 ob 2116 000
Manabahaviournouse. o0 10 ob z116 0.0
Sendausevents DasendMouseEverts() o0 100 ob 216 002
it 595 10 ob Fie 532
Update.SeipthuntehavisurUdate o0 100 ob 1623 000
Sehaviurpdate 000 10 ob 1623 000
araph Upcatel) 1218 100 ob 1622 1622
Physis SyncColiderTransform 1 10 ob i1 1520
Shadams Renderiob a0 o0 ob 1272 0.0
Shadams RenderisbDir 7o 400 ob 1272 529
PostateUpdate UpdateAlRenderers o0 10 ob 116 000
IRanderrormardogaque.prepare se2 10 ob Ta0 780
UpdateDeptiesture 23 100 ob 727 519
Renderforward RanderLoopiob e 10 ob i 350
Shadams repareshado o6 100 ob 627 017
Culleralts.CresteSharedRendererScene o0z 100 ob s 005
WaitoriobGrou 17 Y ob son 240
ExtracthenderNodeQueus s P ob sz asz
Rendererepara 306 100 ob ar 413
DestroyCulhenits 000 10 ob 5o 002
Derthrass 162 100 ob s08 222
Updatenenderersoundingvalumes ost oaz ob 207 122
Satch Dranitanced ias i ob 201 200
SatchRenderer luah o0 350 ob 15 o0ol |
Rendertoop.Cleanuphodequeue os o ob) 1277

File path

\profer_data json

Export

[rofler Data 0

Current Frame Data

IC Selected Function Data)

Profler Data
Statistics [Aversge Values

Function [rotat [set [cals [oc Ao Time ms [selfms]
TempAlloc.Overflow 81 79 00 13 i1 109 &
Shadons Sort a7s 078 400 ab 106 108 |
Render TransparentGeometry o5t o0 o0 ab oss 0ss
Shadons CullngCallbacks o5z 032 100 ab 075 075
culing 0s2 000 100 ab 075 oo
Seeneculing as0 0oL 100 ab 07z ooz,
Cullsendevents 045 004 100 ab 07 013,
CullsceneDynamicobjects 019 010 158 ab 0ze oe
Transformehangedispatch 017 oot 100 ab 027 ooz
PrepareSceneNodesJob a0z o0z 114 ab 01z 01z
Shadons CullShadonCastersDirectionsl 003 o0 137 ab oa1 a0
CullobjectsWithoutumbra oo1 0oL 158 ab o0 010
FPostLateUpdate ProfferEndrrame a0 o0 100 ab 007 a0
Shadows CullShadonCasterswthoutumbra ao1 0oL 137 ab 007 007/
proier.CollctGlobalStts a0 o0 100 ab 007 os
RenderFarnardOpague CollectShadomns a0 o0 100 ab o0s oo
hac oo1 o0 100 ab 005 000
arlyUpdate Renderernotiyinvisible a0 o0 100 ab e os
Shadows CullShadonCastersDirectionalDetal oo1 oot 137 ab 004 004
sabAloc.overfion a0 o0 200 ab 008 o0
Shadows CallecShadons a0 o0 100 ab 008 ooz
(CullSceneDynamicobjectsCombinelob a0 o0 100 ab 008 000
UIEvents CanvasManagerRenderOverlays a0 o0 100 ab ooz 000
(Canvas Renderoverlays a0 o0 100 ab ooz a0
UIEvents IMGUIRenderOverlays oo1 o0 100 ab ooz 000
CullAVisblLights a0 o0 100 ab ooz 000
Ut Repai oo1 oot 100 ab ooz 001
PostLateUpdate Enlightenuntimepdate a0 o0 100 ab ooz 000
carlyUpdate PolplayerConnecton oot o0 100 ab ooz 000
profierConnecton Poll oot 0oL 100 ab ooz ooz
UGUL Rendering RenderOverlays a0 o0 100 ob ooz 000/
e path
\profiler_data json
Export
Profler Data)| Current Frame Data IC Selected Funcion Data]
Profler Data
T
Function [rotat st [cas [oc Ao e ms [seifms]
CullPerObjectLights 0.00 0.00 1.00 ob 0.02 0.02 4
RenderForwardAlpha.Render 0.00 0.00 1.00 ob 0.01 000
Camera ImageEffects o0 o000 100 ob 001 000
Graphics.Bit o0 o000 100 ob 001 o1
rafier Collecthemoryllocationstats o0 o000 100 ob 001 oot
o0 o000 100 ob 001 o1
o0 o000 100 ob 001 000
o0 o000 100 ob 001 o1,
Enlghtenfuntimettanager PostUpdate o0 o000 100 ob 001 000
PostLateUpdate UpdateAudio o0 o000 100 ob 001 0.0
Shadows CullirectonalShadonCasters o0 o000 100 ob 001 o1
(Camera Renderskybo o0 o000 100 ob 001 00
Canvas.Buldsatch o0 o000 100 ob 001 o1
LateBehaviourUpdate o0 o000 100 ob 000 00
PreLatelpdate ScrptRungehaviourLatelpdate o0 o000 100 ob 000 000
Physica nterpolaton o0 o000 100 ob 000 000
Prebpdate.indUpdate o0 o000 100 ob 000 000
EarlyUpdate ExecuteMainThreadobs o0 o000 100 ob 000 00
EarlyUpdate PhysicsResetinterpolatedTransformPosition o0 o000 100 ob 000 000
Intilizaton AsyncUploadTimeslicedUpdate o0 o000 100 ob 000 00
FisedBehaviourUpdate o0 o000 65 ob 000 000
Constrainttanager: Update: JobSetup o0 o000 100 ob 000 00
Iniilzaton XREarlyUpdate o0 o000 100 ob 000 000
PostLateUpdate.DirectorLateUpdate o0 o000 100 ob 000 00
PreLateUpdate AllpdatepostScrpt o0 o000 100 ob 000 000
NovHeshManager o0 o000 100 ob 000 00
PreLateUpdate EndGraphicslobsLate o0 o000 100 ob 000 000
PreLateUpdate UpdateMasterServerlntrface o0 o000 100 ob 000 00
PreUpdate IMGUISendQueus dEvents o0 o000 100 ob 000 000
Prevpdate UpdateVideo o0 o000 100 ob 000 000 |
Fiedupdate Ses o0 o000 ess ob 000 000 %
path
\profiler_data json
Export

i roieroate)

Current Frame Data

I Selected Function Data]

Figure B.23: Profiler data stats for oop - Average values

fig

AcTpes

e e fidioeef s feppgMepng . png

Figure B.24: Profiler data stats for oop - Max values

152 APPENDIX B. ADDITIONAL INFORMATION

Figure B.25: Profiler data stats for dod - Minimum values

B.8. UNITY PROFILER DATA EXPORTER RESULTS FOR DWARFHEIM 153

Figure B.26: Profiler data stats for dod - Average values

154 APPENDIX B. ADDITIONAL INFORMATION

Figure B.27: Profiler data stats for dod - Max values

B.8. UNITY PROFILER DATA EXPORTER RESULTS FOR DWARFHEIM 155

Figure B.28: DOD DwarfHeim profiler minimum elapsed time statistics for test with
animation and models activated

156 APPENDIX B. ADDITIONAL INFORMATION

Profier Data
statistics (Brmagevaues 3] Calcuate |
Function [rotal [seit [cals oc aloe Trime ms [setms]
PostLateUpdate FinshFrameRendering X X w0e [G0+
(Camera.Render 011 100 1363 ae
oraning a3 100 ob a0 00
Render.OpaqueGeametry 000 100 b 779 ooz
Renderrornardopaque Render oo1 100 ob s3s 003
PreLateUpdate DirectorupdateAnimationEnd a0 100 b sz a0
PostLateUpdate UpdateAlskinnedMashe: aoe 100 ob ass 008
Meshsiinning.Updat aso 100 b as1 024
Meshskinning Prep 208 100 ob ase 116
PreUpdate SendMouseEvents a0 100 b as0 a0
Manbehaviour.OnMoue._ ao0 100 ob as0 a0
SendHauseEvents DoSendouseEvents() 001 100 o5 as0 0oz
Undate ScriptRungehaviourupdte a0 100 sasske ass a0
Behaviourpdate 03z 100 PE ass 013
Animators.Update 08 100 ob az 01z
Meshskinning CalMatrices a5z 197365 b 247 247
Shadows RenderShadowMap 013 100 ob 220 007
RVOSimulator Update() 457 100 b 208 204
Animators.1K2ob 015 200 ob 134 007
Physics Raycast aso 100 b 11 00
PreLateUpdat DiectorUpdateAimationBegin a0 100 ob 179 a0
Shadows PrepareShadonmap a1s 100 b 177 121
CulResuls CreatesharedRendererScens az 100 ob 175 120
Views ynhonizatons a0 100 b 172 a0
Arimator.Evalu s an ob 186 166
Shadons Renderzob a0 200 b 157 a0
Shadows Renderaobir 136 200 ob 187 a7
UpdateDepthTexture ass 100 b 137 0z2
Arimators. Wrtelab 025 a0 ob 136 01z
culing T 100 b 135 ooz
Sceneculing 015 100 ob 131 008 ¥
File path
\profiler_data json
Export
[Profiler Data Il Current Frame Data I Selected Function Data]
Profier o
i TTTTTTTE—
Function Trotal seit [calls oc e Trime ms [sefms]
Renderfo d. 18 75 160 b 126 087 &
Cullsendevents 301 ose 100 b 116 003/
\AstarPath.Update() 2.80 153 1.00 43,58 KB 110 0.60.
Post ateUpdate UpdateAlRenderers 232 o0 100 b 110 oo
Animator WriteAnmatedValues 285 285 087 o 107 107
DepthPass.Job 274 130 100 b e 050
PathFinderSystem:pathfinderlob 200 o0 100 108ke pres os0
ExccutelobFunction Ivoke() 200 200 100 108Ke 102 101
Director ProcessFrame 251 o0 126 b 0se oo
Physics SyncCollderTransform 247 201 100 b 0se 076
Running Path Mofers 175 175 5721 3s6K8 089 085
PrepareSceneNodesCombinelob 173 o0 100 o ose oo
Shadons preparelob 178 o0 100 o 087 oo
hysics.SyncRigidbody Transform 175 113 100 o 087 044
RenderrornardOpaque freare 170 148 100 b 085 057
WaitForlobGrouplD 17 oso 128 2228 os0 020
|Animators.Retargeterlob 148 0s3 100 b 0s7 os3
Animators.processRootHotionJob 145 I 100 o 0ss 004
|Animators.processAnimationsJob 135 0se 100 b 0s3 004
Movesystem 132 o0 100 205k8 os1 oo
[Animator EvaluateRetargeter 130 134 asas b os1 os1.
Caling Path Callacks 120 025 100 35.59K8 0as 01z
[Animator processRaot¥otion 116 118 so72 b 046 0as
nimators Preparefistoass 117 117 100 o 04s 04s
|Animator.processAnimations 11e 110 so02 b 04s 04e
BasicChainupdateSystem 112 o0 100 s2s3k8 04s o0
(Gameagentystem 103 o0 100 sa ke 041 os0
Shadons ExtractCasters ose 0se 100 b 037 037
DestroyCullesutts oss o0 100 o 035 o0
Director repareframe. ose 038 soss o 034 016
Animators repareSecandpass 074 073 100 b 025 025y
File path
\profiler_data.json
Export
[Profiler Data Il Current Fframe Data I Selected Function Data)
statistics (Bvmrsgevases 4] Golauate |
Function Trotal seir Tcais oc e rime ms Tselfms
abiltyAgentsystem or o0 00 1573%8 025
Shadows CullirectionalCascades 075 075 100 b 025
MeshSkinning Render 07z 072 182654 b 028
UpdateRendereroundinguolumes 072 03¢ a0 b 027
Animators ApplyonAnimatorMove ose 018 100 b 027
ransformChangedDispatch 0s7 03z 163 b 026
BatchRenderer.Flush 0ss 045 148757 o5 0z6
MovingTestSystem 0s0 o0 100 s383K8 025
SkinnedeshupdateAlieeded 046 046 213 b o1e
nimatorCantrolerelayable repareframe 04e 04e s0ss b o1e
Animator ApplyonAnimatortove 04e 028 40000 b o1e
nimatars DirtySceneObiects 04s 0as 100 b 018
ExtractRenderNodeQueue 043 043 257 b 017
(UL Repaint 041 016 100 008 017
UlEvents IMGUIRenderOverlays 041 o0 100 008 017
PreLateUpdate.ScrptRunBehaviourateUpdate 038 o0 100 b 015
LateBehaviourUpdate 038 o0 100 b 015
NetarkManager Latepd 037 037 100 b 015
PostLateUpdate ProfferEndFrame 037 o0 100 b 015
Rendertoop.CleanuphiodeQuete 037 037 167 b 015
Shadows CulingCalbacks 038 038 100 b 015
rofier.CollectGlobalStats 037 o0 100 b 015
SkinnedeshFinazeUpdate 036 01z 100 b o1e
FinalizeUpdateRendererBoundingVolumes 030 o0 100 b 01z
MouseController.Update() 0.28 013 1.00 0b 012
Animators.SortWitelob 0z¢ 0ze 200 b 011
Render Prepare 026 026 100 b 011
PostLateUpdate.DirectorateUpdate 0z¢ 03 100 b 010
Depthpass Sort 03 03 100 b 010
Shadoms Sort 0z¢ 0z¢ 200 b 010
re0 ozs 02e 100 a2x8 010
File path
\profiler_data.json
Export
[Profiler Data | Current Frame Data] Selected Function Data]
Profler Data
S
Function Trotat Tseir Tcais Toc o [rime ms Tsefms
515 515 o o 55 5 &
PreparesceneNodesiob o1e o1e 135 o 007 007/ |
Bateh.ranDynamic 014 014 21 b 007 007
biityUpdateSystem 014 o0 100 esike 007 00
Renderforwardopaque.Collectshadons 013 00 100 b 0s6 oot
013 00 100 207k8 0s6 00
016 e 126 b 0s6 oo
011 011 a o 005 005
Animator ApplyBuitinRaothotion 012 012 40000 b 005 0ss,
ose ose oo o ocs o0
ose 0oL 100 b o 0sz,
irectarsampleTime. 007 00 100 o ocs 00
006 0s6 100 b o o
rofier Collacthemory AllocationStats 007 007 100 o ocs 004
|Animtors.eirsAnimatinEverts Andg shaviours 005 003 100 b 004 003
IrempAllc.overtiow 005 00 200 o 003 00
(Canvas Renderoveriays 0cz 00 200 b 003 oot
UGUL Rendering RenderOverlays ocs 00 100 o 003 00
UiEvants.CanvasManagerRenderoverlays 004 00 100 b 003 00
PathFindersystem 0cz 00 100 o 003 00
sabAloc.overfion 005 005 150 b 003 003
ocz ocz 40000 o 003 003
003 003 prens b 003 003
ocz 00 o o ocz oo
00 00 100 b s 00
ocz ocz se7 o ocz e
00 00 100 b s 00
003 00 100 o ocz 00
oot oot 300 008 s e
oot oot 100 o 0cz ocz
oot 00 100 b oo1 0007
path
\profiler_data json
Export
[Proier Data || Current Frame Data It Selected Function Data]

Figure B.29: DOD DwarfHeim profiler average elapsed time statistics for test with ani-
mations and models activated

B.8. UNITY PROFILER DATA EXPORTER RESULTS FOR DWARFHEIM 157

Profier Data
statisties (svales 3] Calcuate |
[rotal [seit [cals oc aloe Trime ms [setms
ahFrameRendering a0 o w0e = o5 &
aso 100 2958
040 100 ob 25
Render.OpaqueGeametry 00 100 b 2341
Renderrornardopaque Render 00 100 ob 2043
SendMauseEvents DoSendHauseEvents() 00 100 b 1630
Manobehaviour.OnMoue. a0 100 ob 1630
PreUpdate SendMouseEvants a0 100 b 1630
Physics Raycast 170 100 ob 1628
Rendertoop CleanupNodequeue 2580 a0 b 1415
Physics SyncRigidbodyTransform 2050 100 1380
UpdateFunction.Invoke() 2570 100 as13k8 1221
MovingTestsystem a0 100 ss13k8 1221
Behaviourupdat 070 100 1995 K8 1207
Update ScriptRungehaviourtpdte a0 100 1995 K8 1207
Astarpath.Update() 1950 100 199:2K8 1163
Caling Path Callacks 1080 100 1703 K8 as0
Gameagentsystem 00 100 an3ke a7
Waitrorobroup 2520 a0 w0ake aso
BasicChainupdtesystem o0 100 23k8 a3
RVOSimulator Update() 2200 100 ob a8
Animators.Update 100 b 703
Director.Processframe a0 a0 ob 703
PreLatelpdte DiectorUpdateAnimationEnd a0 100 b 703
PostLateUpdate.UpdateAlSkinnedHeshes 00 100 ob 6sz
Meshskinning Update 120 100 b 656
Meshskinning Prep 430 100 ob 6as
Physics SyneColderTransform 1250 100 b 631
Renderforward RenderLaoplob 1040 100 ob 611
20 100 b sae
Sceneculing 1060 100 ob sas as0%
File path
\profiler_data json
Export
[Profiler Data Il Current Frame Data I Selected Function Data]
Profier o
L CTT— |
Function Trotal [seir [calls oc e Trime ms [sefms
CullResults. 1320 1220 100 0b 40 CXIN
Cullsendevents 1370 a0 100 o s2e ass /|
Shadows Rendershadowtap 1260 040 100 o s07 01s
UpdateDepthTexture 1340 870 100 o s03 314
PreparescenNodesiob 1170 1170 200 o soz soz
DepthPass.Job 1La0 680 100 o 475 250
FinalizeUpdateRendsrerBoundingVolumes 1210 o0 100 o 65 oo
SkinnedeshFinaizeUpdate 1210 140 100 o Py 055
FPreparesScencodesCombinelob 1030 o0 100 o Py oo
PrepareSceneiiodes 1070 1070 100 o s s
MeshSinning Calcatrices 1000 1000 200000 o s 451
Shadows Rendersob 1030 o0 200 o 413 oo
Shadows RenderdobDir 1030 s10 200 o 413 230
Shadows PrepareShadowmap 010 450 100 o as3 136
BatchRenderer.Flush a0 020 225300 o 346 333
SkinnedMeshupdateAlNeeded 700 700 400 o a2z a2z
MeshSkinning Render 730 730 197900 o a1 317
ViewSynchrorizatinSystem 750 o0 100 o 239 o0
PreLateUpdate.DirectorUpdateAnimationBegin 740 o0 100 o 236 oo
Renderrornardopaque freare 010 420 100 o 270 150
y 60 650 100 o 255 255
CulAVisiblLights s70 010 100 o 242 004
Shadows CullirectionalShadonCasters ss0 sis0 100 o 23 235
Batch DranDynami ss0 ss0 2800 o 236 235
Animators.10o 730 so0 200 o 228 208
Animator Evaluatel 630 630 7100 o 206 206
PostLatepdate UpdateAlRenderers 450 o0 100 o 185 os0
UpdateRenderergoundinguolumes 470 aso 1100 o 182 131
Animators Wiitelob s20 320 300 b 179 1as
Running Path Mofers 430 430 14400 5.7KB 10 160
ExtracttenderhodeQueue 450 450 so0 b ise vsa'd
File path
\profiler_data.json
Export
[Profiler Data Il Current Fframe Data I Selected Function Data)
statistics Psxvaies]| Colauate |
Function Trotal seir Tcais oc e rime ms Tselfms
Animator WrteAnimatedValuss 410 410 0 o 152
nimatrs PrepareSecandpass 230 230 100 b 137
Shadows CulingCallbacks az0 az0 100 o5 106
AbiltyAgentsystem 240 o0 100 s7.2x8 105
PathFinderSystem:pathfindersob 200 o0 100 10sKe 10z
Exccutelobruncton.Invoke() 200 200 100 108Ke 102
sabAloc.overfion 250 250 200 b 0ss
‘nimatars Preparefistpass 220 220 100 b 0sz
Animators.SortWitelob 130 130 200 b 0s0
Movesystem 230 o0 100 oxe oss
Animators Retargeterlob 200 180 100 b 0ss
Animatos.ProcessRootHotinob 220 220 100 b os3
FPSCounter.Update() 2.00 2.00 1.00 2128 082
LateBehaviourUpdate 200 o0 100 b 079
PreLatelpdate.ScrptRunBshaviourateUpdate 200 o0 100 b 079
NetworkManager LateUpdate(). 2.00 2.00 1.00 0b 078
[Animators.rocessAnimationsJob 220 220 100 b 078
Shadows preparedo 200 o0 100 b 075
AbiltyUpdateSystem 170 o0 100 s1zxe 075
Animator EvaluateRetargeter 130 130 es00 b 071
DestroyCullesults 210 o0 100 b 087
Animator processRaot¥otion 130 130 7000 b ose
Director prepareframe 170 180 a0 b ose
[Animator processAnimations 130 130 700 b 0se
CombineJobResul 150 150 200 o5 os0
Animatonvie 150 o0 100 s8ke os0
ransformChangedDispatch 160 140 200 b os0
Animatrs DirtySceneObiects 180 180 100 b 0ss
AnimatorsApplyonAnimatorMove 150 aso 100 b ose
PhotonHandler.Update() 150 0.00 1.00 0b 056
140 140 1100 b 0se
File path
\profiler_data.json
Export
[Profiler Data | Current Frame Data] Selected Function Data]
Profler Data
ctatistics (Mavales
Function Trotat Tseir Tcais Toc o [rime ms Tselfms
irecor T4 55 535 o 3 [E
PostLateUpdate ProfierEndrrame 130 00 100 o 0as ooz |
rofier.CollctGlobaistats 130 010 100 b o4s 005
Shadows ExtractCasters 110 110 100 o 044 044
UiEvents IMGUIRenderOverlays 130 o0 100 008 044 00
Gur Repaint 130 050 100 008 044 021
|animtar-ApplyonAnimatortiovs 100 0s0 40000 b 043 03z
ot 0s0 050 100 o 04z 019
110 110 2400 b 039 035
os0 010 100 o 036 o
0s0 030 100 b 033 033
110 110 100 o 033 033
os0 030 100 b 032 012
0s0 os0 100 o 031 031
00 00 100 031 031
os0 0s0 1160000 ws13KB 027 027
0s0 030 300 026 011
00 030 1800 o 026 013
070 070 40000 b 025 025
0s0 0s0 a o 025 0z
UiEvents.CanvasManagerRenderoverlays 050 00 100 b 021 o0
Render Mesh 050 050 73600 o 020 020
EarlyUpdate PolPlayerConnection 050 e 100 b 020 o0
UGL Rendering RenderOverlays 050 010 100 o 020 004
PrafierConnecton Poll 050 050 100 b 020 020
Depthpass.Sort 050 050 100 o 020 020
Shadows Sort 050 050 200 b 019 019
Profier Collectemory AllocationStats 030 030 100 o 016 016
(Canvas Renderoveriays 040 030 200 b 016 011
UGUL Rendering UpdateBatches 030 o0 100 o 015 ooz
UiEvents Wil enderCanvases 030 00 100 b 015 0007
path
\profiler_data json
Export
[Proier Data || Current Frame Data It Selected Function Data]

Figure B.30: DOD DwarfHeim profiler maximum elapsed time statistics for test with
animations and models activated

158 APPENDIX B. ADDITIONAL INFORMATION

Profiler Data E:

statstcs
Function [Total [self [calls [Ge Alloc [Time ms. [self ms |
e FevEor e s o o0 o5 72 [
SendvauseEvents DaserMouseEverts() 1350 00 100 ob 220 001
PreUpdate SendMouseEvents 1350 a0 100 ob 220 000
ViewSyachromzationSystem a0 00 100 ob i3 0.0
WovesTaiam: 240 a0 100 ob o3 000
PastlateUpdate FiisherameRendering 25 o0 100 an0e o3 000
e iso 010 100 ob 02 001
Update SerptRunBehaviourldate hs o0 100 ses 02 000
sehaviurpdate 180 oso 100 s 02 009
(CameAgentSysiem 100 o0 100 ob 0t 000
oeaw o7 a0 100 oai 000
UlEvents IMGUIRenderoverays o0 00 100 an0e 008 000
Roilvagentsy: 050 a0 100 008 000
GULRepai 050 020 100 an0e 008 008
Render OpaqueGeometry 050 a0 100 ob 008 000
et e e et 040 o0 100 ob 007 0.0
MouseController.Update() 040 0.20 1.00 0b 0.04 0.01
EventSystem.Update() 0.20 0.20 1.00 0b 0.03 0.03,
iy UpdateSyatem 010 a0 100 ob 003 000
PestlateUidate PraflerndFrame 020 00 100 ob 003 000
rofier CallciGlobalstats 020 a0 100 ob 003 000
i 020 o0 100 ob 003 0.0
UpdstabepthTesture 020 010 100 ob 003 001
Renderformardopaque CalectShadans 010 o0 100 ob 002 000
SeencCulin o0 a0 100 ob 002 000
Runing Path Madiers 020 020 100 g5 002 002
e nstanceRendererSyster 010 a0 100 ob 002 000
rofier Calcaamoryallacatorstats 010 010 100 ob 002 002
Phyaie Rayeast 020 020 100 ob 002 002
Seballoc:overfon 010 o0 200 ob 001 001
File path
\profiler_data.json

Export

Profiler Data Current Frame Data Selected Function Data

Profiler Data E:

Statistics (M Values) [Calcuate]
Function [rotat Tcats [ocaloe [rmems [sefms |
Shadows 7o o o5 .
CullVisibleLights o0 100 ob 001 000
Shadows CollectShadons o0 100 ob 001 oo
PostLateUpdate EnlightenRuntimeUdate o0 100 ob 001 000
CulResuls CreateSharedRendererScene o0 100 ob 001 000
Shadons Rendershadont o0 100 ob 001 000
patheindersyse o0 100 ob 001 000
Depthpass.Job o0 100 ob 001 000
reansformsystem o0 100 ob 001 000
UiEvents CanvasManagerRenderoverlays o0 100 ob 001 000
UG Rendering Renderoverl o0 00 ob 001 000
Canvas RenderOverlays o0 200 ob 001 000
rempAlloc.overfiow o0 200 ob 001 000
o0 100 ob 001 000
Networkhgent Update() 010 40000 ob 001 oo
MouselnputS ystem o0 100 ob ao0 000
Mouseselecionsystem o0 100 ob 000 000
EarlyUpdate PerformanceAnalytcsUpdate o0 100 ob a0 000
MoveFormardzDsystem o0 100 ob 000 000
Undate ClearlmmediateRenderers o0 100 ob a0 000
o0 100 ob 000 000
o0 100 ob a0 000
o0 100 ob 000 000
o0 100 ob a0 000
o0 100 ob 000 000
o0 100 ob a0 000
o0 100 ob 000 000
o0 100 ob a0 000
o0 100 ob 000 000
o0 100 ob a0 000
o0 100 ob 000 0007
Profler Data 0L Current Frame Data It Selected Function Data]

Figure B.31: DOD DwarfHeim profiler minimum elapsed time statistics for test with
animation and models deactivated

B.8. UNITY PROFILER DATA EXPORTER RESULTS FOR DWARFHEIM 159

Profiler Data E:

statisties
Funcion Tretal Tser Tcs [ocaos [rmems [sofms |
Sendousetvents DasendMouseEvers) e o o0 o5 75 oo &
PraUpdate SendMouseEvents P o0 100 ob 280 000
eI e Py a0 100 ob 280 000
ViewSynchronzationSystam 2255 000 100 ob ise 0.0
Phyaie Rayeast 2022 510 100 ob i 02
Update.SepthunBehaviourtdate 100 a0 10 resks o5 0.0
sehaviourpdate a5 ies i resks o5 012
Physis SynecoliderTransform 1083 o 100 s 03 oe2
Funning Path Madifiers S0 sas 53 saike o oea
MoveSystem e o0 1o amsss ods 0.0
PastateUpdate FiisherameRendering e 008 100 a0s ods 000
Physis SynchiadbodyTransorm ey 29 100 ob ods 030
RVOSimulator.Update() 347 347 1.00 ob 045 045,
Cameraender s o2 100 . o2 002
entSystem 31 a0 1o 1k 022 000
AstarPath.Update(} 171 0.95 1.00 7.69 KB 019 0.10,
eansformChangedbispatch 23 i1 e ob 016 008
ity AgenéSystem 1o o0 10 soiks 01 0.0
o het 007 100 ob oas 000
UlEvents IMGUIRenderoverays o 00 100 an0e 012 0.0
GuLRepaint v 080 100 e oni 003
RenderOpaqueGeometry el oot 100 ob oo 000
MouseController.Update() 127 0.68 1.00 o0b 0.09 0.05.
Caling path Calbacks o7 024 i eske 008 002
BasicchanUpdateSystem ot a0 1o ssske 008 000
WattorisbGrou 11 024 100 ob 008 002
Renderforwardopaqus Render el olos 100 ob 008 000
Updterancin tnvake) oss o7 1o esis 007 007
WovngTestSystem oa 00 T eisks 00 000
rofier Calleiclobastats o 08 100 ob 005 oool |
Pestateld o2 o0 100 ok 008 000 %
File path
\profiler_data.json
Export
[Profiler Data 0 Curent Frame Data I Selected Function Data]
rtier Dota®
statistics mgsvaves 1]
Funcion Trowl Tcan Tocator [rmems [sofms]
Caling e T +5 o o
UpdaeesthTesture 026 10 ob 004 001
oisa s o 004 008
a0 i sk o4 0.0
000 100 ob oo 0.0
a0 100 ob o4 000
000 100 ob oo 0.0
007 100 ob 003 000
PreLatUpdate SerpiRunBahaviouriateUpdate 000 s ase 003 0.0
Erecelobtunciandinvakel) 037 Y ob 003 003
CotsehaviourUpdse 00 10 ase 003 0.0
Networktanager LoteUpdste() 036 100 ase 003 003
00 108 o 003 0.0
Canvar SendwilRenderComvoses(o00 100 ob 003 000
ot CollectamersAlocatanstats oss s o 003 003
SobAloc.overon oa 200 ob 003 003
TampAlscoveron 000 200 o 003 0.0
randformsyste 000 100 ob 003 0.0
Networkhgen Update() o 40000 o 003 0.3
Lapout 040 1.00 ob 003 003
PathinderSystem 00 100 o o0z 0.0
MeshinstancoRendererSyster o00 100 ob o0z 0.0
[o2 o ob o0z 002
Renderforwardopadue.Collectshadans oot 100 ob o0z 000
vt e e on 100 ob o0z 001
Shadams CollcShadons o1 100 ob o0z 001
UGU1 Rendaring Renderoverl 000 s o oor 0.0
UlEvents CanvaiManagerRenderoverlays a0 100 ob ool 0.0
Depthpass Job 008 100 ob 001 0.0
PastateUpdate EnlightenRuntimeUpdate a00 100 ob ool 000
o A 008 100 ob ool 000y
i
\profile_data json
Export
[Profler Data I T I Selected Function Data]

Figure B.32: DOD DwarfHeim profiler average elapsed time statistics for test with ani-
mations and models deactivated

160 APPENDIX B. ADDITIONAL INFORMATION

Profler Data &
Statistics (s aiies
Function [rotat [seit [ocatos [rmems [sefms |
pdate SaTpRuBehaviowUpdate 250 % @ 20 o0 &
sehavioundae 6250 1o 10ske 1208 03s
UpdateFunchon.Invoke() 6200 6100 1oo 4s13kB 1051 1038
MovingTestsystem 6200 000 10 4s13ke 1051 00
RVOSimulator.Update() 55.80 55.80. 1.00 ob 8.88 8.88.
s120 000 100 ob ey 00
s1z0 000 100 ob Y 000
Somiousstvans DogendouseEverta) si10 040 100 ob s 004
so80 1210 100 ob a1 105
atarpath Update 3050 1650 1o 106ke 355 133
Physics.SyneCollderTransform 2970 2610 100 ob 239 254
wSynchronizationsystem 3050 000 100 ob 252 00
GameAgentsystem 2360 000 100 ke 241 000
WaitForlobGroupID 2150 2150 100 ob 220 220
s Sinigasoayranson 2040 1380 100 ob 172 123
BasicChainUpdatesyst 1520 000 10 1s63KB 16 o0
Caling path Collvacks. 1450 270 100 141k8 e 030
Running Path Modfers 150 150 115,00 72k8 133 132
MaveSystem 150 000 o0 43xe oss o0
PostLateUpdate.FinishFrameRendering 1050 030 100 008 os3 002
AbiltyAgentsystem 650 000 1o 43ske 077 000
rtavianirUpdots) 050 020 100 ob os1 oo
vonogr lpits) 450 450 100 s3ke 055 055
e s 450 o000 100 63k8 035 00
PrLatebpdate SerpunBehaviouriateUpdate 450 000 100 3ke 055 000
SendoutgaingCommands i 860 1900 ob 039 055
630 120 100 ob 035 005
AbiityUpdateSystem ss0 o000 100 casxe os1 00
reansformChangedispatch 630 s70 400 ob 043 036
HauseCarrler pdasl) 350 160 100 ob 027 012
320 000 100 w008 025 00 %
path
\profiler_data json
Export
Profler Data)| Current Frame Data I Selected Function Data]
Statistics (osvaies][Calaiate |
Function [rotal [seit cats [ocaloe [tmems [sefms |
SOl Repare 2w o o wo0s vz (O
UGUL Rendering UpdateBatches as0 010 100 ob 02e oo
Prfiler.CollctGlobalStts 300 030 100 ob 02e ooz
PostLateUpdate ProfierEnderame a0 o000 00 ob 02e oo0
PostLateUpdate PlayerUpdateCanvases as0 o000 100 ob 02e oo0
NetworkAgent.Update() 3.00 3.00 400,00 ob 0.24 0.24.
UlEvents WilRenderCanvases as0 o000 100 ob 02e oo
PathFindersystem 250 o000 00 ob o0z oo
(Canvas SendwilkenderCanvases() 20 o000 100 ob 022 oo0
Layout 20 310 00 ob 022 0zt
rofier Collecthemory Albcatinsats 270 270 100 ob ozt 0z
Dravi a0 o ¥ ob 020 oo
C.alloc 10 im0 isooo0 4stake 017 017
Render.OpaqueGeometry 270 010 100 ob 016 oo
culing 210 030 100 ob 016 004
ProfierConnecton Poll 200 200 00 ob 015 015
arlyUpdate PolPlayerConnecton 200 o000 100 ob 015 o0
Renderrornardopaque Render 210 020 00 ob 014 oo
Transtormsystem 150 o000 100 ob 012 o0
ExecutelabFuncton Invoke() 160 60 soo ob 011 011
150 o000 soo ob 011 o0
FPSDisplay Update() 130 1.30 1.00 ob 0.10 0.10,
EventSystem.Update() 130 1.30 1.00 0b 0.10 0.10,
Sceneculin 120 030 00 ob 005 ooz
UpdateDepthTexture 100 030 100 ob oos 003
profier,Collctorawstats 140 140 00 ob oos oo
dleutity oso o000 100 eske oos oo0
Canvas Renderoverla 120 100 200 ob 007 oo
UGUL Rendering Renderoverlays 120 o0 100 ob 007 oo0
Events.CanvasManagerRenderOverlays 120 o000 100 ob 007 ao0
TempAllc.overfion 140 o000 200 ob 007 000y
File path
\profiler_data.json
Export
[Profiler Data) Cunent Frame Data 1l Selected Function Data]
Profter Data ©
i T T— T
Function [rotal [seit Tcats [ccAloe [rmems [setms
MeshinstanceRenderersystem 100 oo Too ab 007
sablloc.overfion 130 120 200 ob 007
CullaVisislLights oo 0z 100 ob 005
dlesystem 070 o000 100 ob 005
Material SetpassFast oso 010 1800 ob 005
Renderornardopaque. CallectShadons oso 010 100 ob 005
FPSCounter.Update() 0.70 0.70 1.00 2208 0.05
Shadons Rendershado 050 o020 100 004
R —— 0s0 o000 100 ob 008
Renderforward RenderLooplob 070 030 100 ob 008
o RmeNuraGe P oo 050 100 ob 008
Materia SetPasstncach 070 o070 1600 ob 008
B i e os0 030 100 ob 008
DepthPass.Job 0.50 0.20 1.00 ob 0.04
had 050 os0 100 ob 008
Shadons CollectShadons 070 030 100 ob 008
Camera Findstacks o0 020 200 ob 003
Pathgarier oo o000 100 asxe 003
Canvas Buideatch 0d0 040 100 ob 003
GuIutity BeginGUI) od0 040 00 06 003
Shadons prepareshadonma od0 020 o0 ob 003
PostLateUpdate.UpdsteCustomRendsrTextures o0 o000 100 ob a0z
CanvasScaler Update() 0.20 0.20 2.00 ob 0.02
EarlyUpdate Updatepreloading o0 o000 100 ob a0z
WatermarkRender o0 010 100 ob a0z
CulperObjectiohts o0 030 100 ob a0z
PostLateUpdate PlayersendFramePostPresent o0 o000 100 ob a0z
Updatepreloading o0 o000 100 ob a0z
CustomRenderTextures Updte o0 030 100 ob a0z
Application Integrate Assets n Background o0 o000 100 ob a0z o0
preload Single Step 00 o020 100 ob o0z 0027
File path
\profiler_data.json
Export
[Profiler Data s Current Frame Data I Selected Function Data)

Figure B.33: DOD DwarfHeim profiler maximum elapsed time statistics for test with
animations and models deactivated

B.8. UNITY PROFILER DATA EXPORTER RESULTS FOR DWARFHEIM 161

Profier Date £
statistics (Minvalues][Calculate]
Function Total st Call ac Alloc Time ms Selfms
Movesystem 330 000 .00 b 03 000 4.
PostLateUpdate FinshrameRendering 360 0.00 100 08 027 000
(Camera.Render 220 0.0 100 ob 017 001
Update ScriptRunBehaviourUpdate 200 0.00 100 958 016 0.00
ehaviourupdate 200 070 100 968 016 005
(GameAgentSystem 110 0.00 100 ob 0.09 0.00
orani 110 0.00 100 ob 0.8 000
Render.OpagueGeometry 080 0.00 100 ob 0.6 0.00
(GUL Repaint 070 030 100 008 0.6 003
UlEvents IMGUIRenderOverlays 070 0.00 100 008 0.6 0.00
biltyAgentsystem 050 0.00 100 ob 0.5 000
Preupdate. SendMouseEvents 060 0.00 100 ob 0.5 0.00
Monobehaviour.OnMouse_ 060 0.00 100 ob 0.5 000
SendMouseE vents DoSendMouseEvents() 060 0.00 100 ob 0.5 000
MouseController.Update() 0.60 0.30 1.00 ob 0.04 0.01,
enderFormardOpaque Render 060 0.00 100 ob 004 0.00
/biltyUpdateSystem 030 0.00 100 ob 003 000
Physics Raycast 030 030 100 ob 0.0z 0.0z
[EventSystem.Update() 0.20 0.20 0 ob 0.02 0.02.
INetworkAgent.Update() 0.10 0.10 400.00 0.02 0.02.
RRunning Path Madifiers 120 110 0 6148 002 002
UpdateDepthTexture 030 0.0 100 ob 0.0z 001
(Culing 030 0.00 100 ob 002 000
PostLateUpdate profilerEndrame 030 0.00 100 ob 0.0z 0.00
Pprofler.CollectGlobalStats 030 0.00 100 ob 002 000
MeshinstanceRenderersystem 020 0.00 100 ob 001 0.00
RenderForwardopaque Collectshadons 010 0.00 100 ob o001 000
010 0.00 100 ob o001 0.00
Sceneculling 010 0.00 100 ob o001 000
Profier. CollectiemoryAllocationstats 010 0.0 100 ob o001 o/ |
(CullResults. CreatesharedRendererscene 010 0.00 100 ob 001 0.00 3.
File path
\orofile_data json
Export
Profier Data)1 Current Frame Data I Selected funcion Data)

Figure B.34: DOD DwarfHeim profiler minimum elapsed time statistics for test with an-
imation and models deactivated + several object-oriented components removed such
as transform position

Protier Dota £
e —
Fancion otal seit cats GoAlc [Tmems [sefms
Rurning Path Hodifers 76 E 73 SeeKs I o7t &
Update SeriptRungehaviourUpdate 170 a0 e Zoike o 000
Behaviourundate 1752 s 100 204 kB ads 010
Movesystem 202 a0 100 E 047 000
PastLateUpdate FinishFrameRendering 1951 024 100 e 038 0
s 1244 o0 100 ob 024 ost.
GamsageniSystem a6 o000 10 assaze 07 000
RVOSimultor Update() 147 a7 100 ob 013 013
orawin 66 03z 100 ob 01z 00
RbityAgentsystem ss o0 T 7z2ss 011 00
PreUpdate SendMouseEverts <0 o000 00 ab o 000
[e ses o0 100 ab 011 00
SendMouseEverts oSendHausevents() s 0sz 100 ob o 001
CiEventa MG enderoverlars <30 o0 100 008 o0 000
Ut Repaint sz 24 100 o0 010 oo
MouseControler.Update() s 234 100 ob o0 004
a5 016 00 ab 009 00
PhysicsRaycast 59 5o 100 ob ooe 008
RendsrFormardOpaqus Render 370 039 00 ab o007 00
atarath Update() 057 038 100 192k8 oos 00z
ling 211 o4 00 ob 004 00
MovingT: 047 050 100 1s4ke o4 000
Profier.ColltGlobaistas 216 038 00 ob o4 00
ot eflerendrame Zae o0 100 ob o4 000
eventSystem.Update() 208 205 100 ab o4 004
UpdateDepthTexture e o 100 ob 003 oot
RbityUpdateSystem 192 0s0 a sz7028 003 000
NetorkAgent Updte(170 170 40000 003 003
UsdateFunction.fnvoke() 2 sas 100 15628 a0z 00z
Caling Path Callacks 0 o0 100 1s5ke o0z oo |
BasicchainUpdateSystem 040 000 100 238 ke o0z 0007
File path
\profiler_data json
Export
[Profiler Data)| ————— I Selected Function Data |
Profier Dota®
statistis (Brmagevaoes 3] Calcuate |
F [rtal IEG Tcats [ccmloc [tmems [sefms]
EreaeTabFanan Trvekel T T To7 o5 oz w07 0
121 o0 107 ob 00z 000
Seenecuing 130 028 100 ob 00z 000
Fofier Collecthemory Albcatinstats a1 v 100 ob 00z 00z
i 143 000 100 ob 00z 000
MekinatenceR andarersysiem 127 o0 100 ob 00z 000
RenderFornardopaque Collctshadons 108 016 100 ob 00z 000
Shadows.RenderShadontap 101 o5z 100 ob 00z 001
NetworkManager LateUpdate(). 018 0.18 1.00 0b 0.01 0.01,
DepthPass.os on 051 100 ob 001 000
CullResut.CreateharedRendererScene o oaz 100 ob 001 000
UGUL Rendering RenderOverlays o7 o0z 100 ob 001 000
Uttty 8eginGUI0) 057 036 300 08 001 001
UlEverts,canvasManagerRenderoveriays 076 o0 100 o6 001 000
(Canvas fenderover o 033 200 ob 001 000
Canves guildsatd 04 ous 100 ob 001 001
PathFinderSystem 097 000 100 ob 001 000
LeteBehaviourl 020 o0 100 ob 001 000
PreLateUpdate.ScrptRunBshaviourateUpdate ozs 000 100 ob 001 000
WaitorlobGraupD oet o4z 100 ob 001 001
Shadows.CallecShadons 0s7 o5t 100 ob 001 001
Shadows prepareShadonmap 077 03z 100 ob 001 001
Material SetpassFast 00 04 200 ob 001 000
Culllvisiielghts 057 013 100 ob 001 000
Meteril SetPassUncached 07 05 se7 ob 001 001
RendarFormard Randarisopsab ost 03z 100 ob 001 000
PreLateUpdate ConsrainiManagerlpdate 0.0 000 100 ob 000 000
Audomanager Update 000 o0 100 ob 000 000
PostateUpdate UpdateAudio 0.0 030 100 ob 000 000
FrameEvsnia SREnaramel 000 o0 100 ob 000 000
/AddCustomActiveLocallights 000 0.00 100 ob 0.0 0003
Fie path
\profiler_data json
Export
([Profiler Data I ————— 0 Selected Function Data]

Figure B.35: DOD DwarfHeim profiler minimum elapsed time statistics for test with an-
imation and models deactivated + several object-oriented components removed such
as transform position

162 APPENDIX B. ADDITIONAL INFORMATION

Profiler Data E:

e — e
Function Trotal [seir Tcais [ocatos [Tmems [sefms]
Undateruncton Tnvoke() w240 512 o ey FEETI
MovingTestSystem s240 000 1w 4s13ks 113 000
BehaviourUpdate s340 720 1w 004Ks 951 017,
Update ScriptRunBehaviourtpdate s3.40 000 1w 004ks 951 o0
RUOSimulator.Updt w020 o020 100 915 a1s
Astarpath.Up siso 2570 1o z001ks b 132
aling Path Calloacks 2630 so0 1w 1isks 205 03
BasicChainupdateSystem 2840 o000 1o 0aks 173 o0
Gameagentsystem 1910 o000 100 s53K8 172 oso
Running Path Modiiers 2110 2110 14400 sske 185 165
WaitForlobGroupID 1780 1750 100 ob 160 160
Movesysterm 3L00 o000 100 438 o0 oo
bty AgentSystem 120 o000 100 sake o7 os0
PostLateUpdate.FinishFrameRendering 2840 030 100 00 o4 oot
LateBehaviourUpdate 00 o020 100 ob o5t os
PreLateUpdate.ScrptRunBehaviourLateUpdate 50 010 100 ob o5t o0
NetworkManager LateUpdate(). 8.30 8.30 1.00 ob 0.50 050,
AbltyUpdateSystem 340 o000 100 r2k8 047 oo
Cameraender 1960 350 100 ob 040 o
SendiouseEvents DoSendouseEvents() 1120 250 100 ob 025 06
Manobehaviour.OnMouse.. 1120 o000 100 ob 025 s
PreUpdate.SendMouseEvents 1120 o000 100 ob 029 00
MouseController.Update() 9.30 4.60 1.00 ob 0.22 0.09.
Physics Raycas 1040 1040 100 ob 022 022
UlEents IMGUIRenderOverlays a0 010 100 4008 oz o0
GuL Repaint a0 sso 100 Preny 021 010
Drawing 1250 B 100 020 ooz
c.al 120 120 meoeo 4613KB 016 016
EarlyUpdate PolPlayerConnecton 210 o000 100 ob 016 oo
Render OpaqueGeometry 1100 os0 100 ob 016 oo |
ProfierComnecion Poll 210 210 100 ob 016 0167
File path
\profiler_data.json
Export
Profiler Data 0 Current Frame Data |1 Jected Function Data]
e — e
Function [rota [seir [ocaos — [Tmems [sefms
@ 3T W 5 75 7o
Material SetpassFast sio0 ab 011 aos
PostLateUpdate proferEndrrame 620 ab 011 000
EventSystem.Update() 40 ab 010 010
Materil SetpassUncached as0 ab 010 010
Profier.CollctGlobaistas 620 ab 010 0o
Hammerttovement 410 ab 010 000
RendsrFormard Rendsrtooplob 670 ab oo o
UiEverts. Wil enderCanvases as0 ab 000 000
Transformsystem as0 ab a0o 000
MeshinstanceR ndererSystem 250 ab 000 000
PostLateUpdate PlayerUpdateCanvases 400 ab a0o 000
UGUL Rendering UpdateBtches a0 ab 00o 000
rafier.Collecthemory Allocationstats 400 ab o8 oo
Culing e ab oon 003
PathFinderSystem a0 ab oo7 000
Lavout a0 ab 007 0
Canvas SendwilkenderCanvases() 200 ab oo7 aos
a0 ab 007 000
Executelabfuncton Tnvoke() 270 ab oo7 007
Netnorkagent Update() as0 ob 006 008
UpdateDepthTesture 280 ab aos 003
Shadows.RenderShadonMap as0 ab o06 004
Sceneculing 210 ab aos 004
PrepareUpdatsRendsreroundingValumes 250 ab a0s aos
Shadons Rendersob 10 ab 004 000
Shadows.CallectShadons 10 ab 004 00z
Shadows prepareShadonmap 270 ab 004 004
Shadows Renderdob 200 ab 004 000
i 10 6sks 004 000
RenderFormardOpaque. CollectShadams 210 0 004 000,
File path
\brofiler_data.json
Export
[Profler Data 0t Gurrent Frame Data I Selecied Funcion Data]
Profler Data £
Statistics M Values +[Calculate]
Function Trotat [seit cats [ocatoc [tmems [sefms]
BatchRendorer Flush 250 250 o0 b oo 004 4
(CulResuls CreateSharedRendererScene 330 140 100 ob 004 003
(Camera Findstacks 040 040 200 ob oo 004
PreUpdate AtUpdate 180 150 100 ob 003 003
INavMesh.Internal_CallOnNavMeshPreUpdate() 170 1.70 1.00 ob 0.03 0.03,
CulperObiectiohts 260 260 100 ob 003 003
UiEvents.CanyasManagerRenderoverlays 140 o000 100 ob 003 000
PhotonHandler Update() 1.70 1.60 1.00 ob 0.03 0.03
desystem 130 o000 100 ob 003 000
lUGUL Rendering RenderOverlays a0 o020 100 ob 003 00
ICanvas Rendoroverlays 130 o070 200 ob 003 ocz
PathBarier 10 o000 100 asxe 003 00
GameManager Update() 1.80 1.80 1.00 9% B 0.03 0.03,
PostLateUpdate.UpdateCanvask ecTransform 160 160 100 ob 003 003
Uttty 8eainGUI) 130 150 300 008 003 003
[Astarpath.onGUL() 150 150 100 ob ooz ocz
FPSDisplay .Update() 140 1.40 1.00 ob 0.02 0.02.
EarlyUpdate UpdateCanvasRectTransform 110 110 100 ob ooz I
profier.Collctoramstats 110 110 100 ob ooz ocz
RenderFornardalpha Render os0 os0 100 ob ooz 0cz
CulAIVisibleights 140 os0 100 ob ooz oo
endFrameB arrier 150 o000 100 ob ooz i
PostLateUpdate MemoryFrameaintenance 120 120 100 ob ooz ocz
PostLateUpdate EnlightenguntimeLpdate os0 010 100 ob ooz 00
Render.TransparentGeometry 110 o0 100 ob ooz oo
(Canvas Buldbatch 100 100 100 ob ooz ocz
Depthpass.Job 140 o070 100 ob ooz oo
IrcansformzDSystem 120 o000 100 ob ooz i
MeshLODSyster 200 150 100 ob ooz ocz
PostLateUpdate UpdateAlskinnedHeshes 110 110 100 ob ooz 0cz
FPSCounter.Update() o0 o070 100 248 oo1 001 %
File path
_data json
[Profler Data)t Current Frame Data I Selecied Function Data]

Figure B.36: DOD DwarfHeim profiler minimum elapsed time statistics for test with an-
imation and models deactivated + several object-oriented components removed such
as transform position

B.8. UNITY PROFILER DATA EXPORTER RESULTS FOR DWARFHEIM

Figure B.37: OOP DwarfHeim profiler minimum elapsed time statistics for test with
animation and models activated

164 APPENDIX B. ADDITIONAL INFORMATION

Profiler Data

O o —)
e [fotal Tser Tcais Toc ate [Tsetms
PastateUpdate FVARFrameRerding e To o i
Camerasrend 5220 100 10
Update SeriptRunehaviourUpdate 20 100 16645 K8 7o
sehaviourpdate Zia0 100 16c.4s kb 798
orarng] 10z 100 ob cas
RendariOpaqueGeomatry 1772 100 ob e
PreLateUpdate DiretorUpdateAnimationénd 1356 100 ob a0
RendsiFomardOpaque R ender isz 100 ob 22
PastateUcate UpdateAlSkimnedesh 1044 100 ob s
MeshSkinming Update 1030 100 ob 367
PraUpdate. SendMouseEvents o4 100 26 34
MonabehaviourOnMouse. 074 100 26 34
Sendausevents DasendHouseEverts() o4 100 26 s
Physics Raycast o7 100 ob 347
ektSkinting Prepars ot 100 ob saa
nimaters Updnt o7 100 ob 312
GameAgent Update() 732 40000 1279k8 263
WeshSkinning.Coletrces cas 191529 ob 225
Shadons RenderShadamap s20 100 ob Y
nimtors 1Kiob si2 200 ob 102
RVOSmutor UpdateO s 200 ob e
PrelateUpdate DirsctorUpdateAnimatinsesin 503 100 ob 17
Physica SynccoliderTranstorm a0 100 ob 17
Image.Start() [Coroutine: MoveNext] 423 89.81 56.19 KB 163
Shadoms PrepareShadonmap s 100 ob 160
Animtor £valatelk das as 4905 ob 15
Culing a3 a0 100 ob h
SeeneCuling a6 008 100 ob he
Cullsendeverts s oo1 100 ob v
Culkesuls CreatesharedRendererScene 363 204 100 ob 1%
Physics.SyncRigidbody Transform 352 223 100 ob 12
File path

\Build\prafiler_data_typet.json

Export

[Profiler Data 11 Current Frame Data I Selected Fundion Data)

Profiler Data
Statistics (Aversge Value:. +) [Calculate

Bl [rotal IEG [cals [oc Alec i [setfms]
'Shadows RenderJob 45 .00 00 13 e 0.00 a
/Animators Writelob. 354 0.30 3.00 ob 125 012/
Shadows.Renderlbir 349 63 200 ob vas o0
UpdsteDepthTesture a1 o8 100 ob 123 o1
AbilityAgent.Update() 3.08 3.03 400.00 92.89KB. 119 117
PostLateUpdate UpdateAlRenderers 209 o0 100 ob 107 000
[Animator WrteAnimatedValies 277 27 siz2 ob 0ss o33,
Renderfomard RenderLoopiab 270 e 100 ob 097 o
DepthPass.on 264 54 100 ob 0s o4
Difector FrocsssFrame 252 o0 123 ob oss 000
\AstarPath.Update() 2.20 119 1.00 2343 KB 086 046
Renderforuardopague.Sort 210 210 100 0 o7 o7
Runing path Madiiers 193 12 6o asaks 076 o7
Shadows.Prepareio 1 o0 100 0 o3 o0
WaiFarlobGrapid 1se 049 128 ob 057 o1
PreparesceneiodesCambinedob 1ss o0 100 ob 087 o0
[Amimators ProcessRastlationtob 1ss 003 100 ob 0se 003
[Amimators Retargeterish 153 ooz 100 ob 0ss 00
Undate SerptRunDelayedDynamicrramegate 135 000 100 16k8 os1 000
|Arimator EvaluatsRetargstar 13 38 ozt ob 0s0 050
e e 133 o1 100 ob 048 ooz
[Aimator ProcessRostotion 120 128 014 ob 04 o4
RenderFornardopaque fresare 124 119 100 ob oas o4
nimators Preparefistpass i1e 110 100 ob 043 oas
o 113 11 sost ob od1 oat
Caling Path Calba ass o1z 100 16098 03s 005,
Shadows ExtractCasters 004 04 100 ob 034 034
rriorCreator.Update() 0.87 0.83 1.00 37.11KB 033 0.32
Director repareramea 0ss o1 57 0 033 o1
Animators repareSecandpass 079 079 100 ob 030 030
WorldobjectAgent Update() 078 078 400.00 0b 029 0294
Fie path
\Build\profiler_data_type1.json
Export
\ Profiler Data Il Frame Data I Selected Funcion Data]
Proer Data
PR e r— T
B [Total [set Tcals oc Alee [Tsetfms]
MeshSkinning Render 071 071 1799.35 ob 0.27 0274
Shadows.CullbrecionalCascatles 073 o073 100 ob 027 027
UpdateRendererBoundingVolumes 075 035 ase ob 027 o1
[A s o o020 100 ob 026 oo,
Ao mche e s os 051 153 ob 024 o1z
SkinnedNeshUpdateAliesded 052 o5z 235 ob 020 o0
BaichRenderer Flush 0s3 039 145443 ob 020 o1s|
o e 04 030 000 ob o1s o1z
nimatorCantrolerplayable repareframe 043 03 587 ob 016 o1,
LeteBehaviourUpdte 040 o000 100 ob 016 oo
PreLateUpdate.ScrpthunBshaviourateUpdate 040 o0 100 ob 016 oo
rofier.CollectGlobaisats od1 o000 100 ob 016 oo1
PostLteUpdat ProflerEndrame 041 o0 100 ob 016 o0
NetworkManager LateUpdate(). 039, 039 1.00 0b 0.16 0.16
GULepaint 038 ois 100 008 o1s o0,
UlEverts.MGUIRenderoverlays 038 o000 100 08 o1s o0
SkinnedeshFinaizeUpdte 038 o1e 100 ob 014 005,
DesiroyCullesults 033 o000 100 ob 013 000
FinaizeUpdatemendererSaundingVolumes 031 o0 100 ob 01z o0
Animators DityScenebjects 02e 028 100 ob on1 011
nimators SortWredab ozs oz 200 ob on1 o1
ExiracRenderNodeQueue 029 029 267 ob on1 o1
Corautnespelayedcall 027 oo1 116 s43ke 010 o0
Profier Collecioranstats 024 02e 100 0 010 010
Render 024 o2 100 ob o0 010
Shadows CullngCallbacks 02s 025 100 ob 010 oo
PastateUpdate OireciortateUpdste 023 0z 100 ob 008 005
Shadows 021 oz 200 ob 008 00
DepthPas: 0.20 0.20 1.00 o0b 0.08 0.08
Rendertoop CleanuplodeQueue 020 o020 167 ob 008 oo
e iy 014 oie 100 ob 007 o007/
File path
\Build\profiler_data_type1.json
Erm
[Profier Data I Curren Frame Data IC Selected Function Data)|
e
e [Fotal Tser [oc alee Time me Tsettms
Updata e w00 5 57
FeSCounter Update() 012 a 228 007
e ons 100 ob 006
Direcor prepareframe o1r 123 ob 006
e s ey ont 100 ob 005
o a0 ob o0s
o1z 40000 ob 008
oo 124 ob 004
008 1004 ob 004
007 100 ob 004
007 100 ob 004
007 100 ob 003
008 200 ob 003
o0 a0 ob 003
005 40000 ob 003
o0s o ob 003
004 167 ob 003
Render s 003 e ob 00z
Uty BeainGui0 oo1 a0 08 00z
Render.TransparentGeometry oo1 200 ob 00z
UGUL Rendering RenderOverlays oo 100 ob 00z
A AR oot 200 ob 00z
UlEvents.CanvasManagerRenderoveriays oo1 100 ob 00z
ICamara Renderskkex 000 100 ob oot
FPastLateUpdate PlayerupdateCanvases 003 100 ob oo
CombinedobResl 00z 128 ob oot
Cameraimagezfiecs 000 100 ob oo
S 000 17 ob oot
Materil Setpassuncached oot se7 ob oo
B oo1 200 ob oot
Graphics it 000 100 ob 001
File path
\Build\profiler_data_type.json
e

[Peofler Data I Current Frame Data It Selected Function Data)|

B.8. UNITY PROFILER DATA EXPORTER RESULTS FOR DWARFHEIM

165

Profiler Data

statistis (Musvales][Calcuate |
T [rota IEG Tcats [Alec i [setfms
Update SerpRurBeheviourUpdats 20 o o sizke e
BehaviourUpdate s250 230 200 sizke w061
FPSCounter Update() 3540 3540 100 z2n 2049
PreUpdate SendMouseEverts 210 000 200 248 1933
ManobehaviouronMoute. 220 o0 100 8 1933
SendMouseEverts DaSendHouseEvents() s210 010 200 28 1933
PhysicsRaycast 200 220 100 ob 1931
Physics.SymoRigidbodyTransform w740 a0 200 ob 20
PostLateUpdate Fiishf rameRendering 300 000 100 a0e 1652
Camera gend 330 140 200 ob 1675
WarrorGreator Updats() 3050 a0 100 506 kB 1344
Corautnesbelayedcall 2660 030 300 16118 st
Update SerptRunDelayedDynamicFrameRate 2660 o0 200 1ike s
tart() [Coroutine: MoveNext] 26.20 26,10 217.00 1611 KB 1135
RoityAgent UpdatsQ) 2300 2230 0000 38138 1083
Draming 2760 010 100 b 1003
RendariOpaausGeomesry 2710 260 100 ob 54
SkinmedeshFinaizeUpdte 2440 2040 200 ob 57
FinakasUpdataRndersraundinaVelumes 2440 o0 100 ob 57
RVoSmultor Update() z1s0 20 200 ob 03z
RendarFomar 2010 010 200 ob 7ies
(GameAgent Update 1630 140 40000 13538 750
PreLsteUpdate DirectorUpdateAnimationénd 1850 o0 100 b cas
Dirctar Procassérame 1850 o0 300 ob 64
nmatars Updita 1850 130 100 ob 644
Physics.SyncColiderTransform 1650 570 200 ob sis
UptateDeptiTerture s 260 100 ob st
PastLateUpdate UpdateAlSkinnedHeshes 1600 o030 200 ob sad
MeshSkinming Update 1550 o0 100 ob 37
Depthpass.ob 1110 770 200 ob s2s
Meshskinning Prepare 1450 so0 100 ob sos
File path
\Build\prafiler_data_typet.json
e
[Profiler Data 11 Current Frame Data I Selected Fundion Data)
Protier Dats
) DT —)
BT [rotal IEG [cals [oc Alec i [setfms]
a0 55 Tou w5 %50 w030
SeeneCuling 1430 1240 100 ob it a8
Cullsendevents 1280 170 100 ob a7 052
Waitorlob 1280 270 300 ob bt a7
CullAlvsileLights 1410 110 100 ob i e
BatchRenderer Flush a0 a0 226000 ob 19 o5
CulResus.CreatesharedRendererscene 150 940 100 ob P 538
RenderFormard Rendertooplab 520 50 100 ob o 27
Peeparescaniodss 1090 1050 100 ob 393 593
Shadows.RendershadonMap 1020 030 100 ob o1 o1z
\AstarPath.Update() 9.90 5.50 1.00 1148 KB 3.74 1.96
Meshskiming.Caliatrices 1000 1000 200000 ob 47 sar
PreparescenetodesCambinedod 250 000 100 ob 336 000
PreLateUpdate DirecorUpdateAnimationBegin a0 o0 100 ob 208 o0
Shadoms-Renderlobir a20 220 200 ob 21 152
Shedows.Renderiob a0 00 200 ob 21 o0
Shadows PrepareShadowmap a0 530 100 ob 253 1os
Findadtveliahts 650 50 100 ob 249 20
Meshskining Render 70 7.0 198400 ob 244 2as
[Animators.1KJob 710 o0 200 ob 228 Les
|Arimator Evaluate1k e30 0 900 ob 2n 2
Caling path Calbacks 470 o0 100 s37ke e 029
PastLatepdte UpdateAlRenderers 550 o0 100 ob 178 o0
PreparesceneNodesio sa0 sa0 200 ob 17 17
UpdateRendererBaundingVolumes sa0 50 1400 ob 17 A
[Arimators.Witelob 560 250 300 ob h s
FRuning path Madiers 400 200 15500 ke 61 s
[Animator WrteAnimatedvalus 450 250 500 ob 138 i
RenderFornardopaque prepare 340 340 100 ob 130 heY
SkinnedMeshUpdateAleeded 250 250 s00 ob 103 103
[Animators processRaatiationtob 250 1a0 100 ob 0s0 055/7
Fie path
\Build\profiler_data_type1.json
Export
\ Profiler Data Il Current Frame Data I Selected Funcion Data]
Proer Data
statistics
B [Total [set Tcals oc Alee [Tsetfms]
Shedows.Prepareioh 250 oo 100 ob ase o1~
Render.Prepare 2.30 2.30 1.00 0b 085 oss| |
[Animator processRosttion 230 250 7000 ob 0s3 o5
RendarFormardOpague sort 210 210 100 ob 078 o7
ransformChangedispatch 150 i s00 ob 076 o7
e 210 Y 100 ob 075 o)
Rendertoop CleanupNodeQueue 240 240 300 ob o7 o7
e 210 170 100 ob 074 os1
NetworkManager LateUpdate() 1.60 1.60 1.00 o0b 073 0.73)
LeteBehaviourUpda 150 o000 100 ob 073 oo1
PreLateUpdate ScrpunBehaviourLateUpdate 150 o0 100 ob 073 o0
mimators prepareristres 150 190 100 ob 070 o7
imators prepareSecondpass 150 o0 100 ob 070 o7
[e e 200 200 700 ob o7 05
Director prepareframe 150 17 300 ob o4 o5t
[A 150 050 100 ob o4 o020
e 180 o0 7100 ob 0s3 o5
Profier.ColleiGlobaisats 150 o020 100 ob osz oo,
PastteUpdat ProflerEndrame 150 o0 100 ob osz oo1
Batch DranDynamic 150 150 1900 ob 052 051
Shadows ExactCasters 150 150 100 ob os1 051
WorldObjectAgent.Update() 150 1.50 400.00 0b 050 0.50
Directr PrepareFramelob 140 o0 7300 ob 050 03
Profier Colleioranstats 140 140 100 ob 048 oas.
|arimatar Agplyorarimataave 120 o070 40000 ob 043 027
UlEverts.IMGUIRenderoverlars 100 o0 100 008 04z 00
UL Repaint 100 os0 100 08 041 o1
nimatorContralerplayable repareframe 130 130 7300 ob 040 o0
DesroyCulleults as0 o0 100 ob 036 oo
Shadows.CulbirecionalCascatles 100 100 100 ob 034 03 |
cCAloe 070 070 1241000 sos k8 032 0327
File path
\Build\profiler_data_type1.json
Erm
[Profier Data I Curren Frame Data IC Selected Function Data)|

e [Fotal Tser [oc alee Time me Tsettms
= D B o [
PastLateUpdate Orectortatelpdate o0 100 ob 02
Photaniandier Update() 050 100 ob 024
SendoutgoingCommands 0s0 500 ob 02
ExtrachenderhodeQueue 0s0 S0 ob 02z
ety Updte OirectorSampleTime 040 200 ob 02
Depthrass.Sot 050 100 ob o
Shadows.CulingCallbacks 0s0 100 ob o
Rendar-tesh 050 71300 ob o
[imators Sertwirit3ob 0s0 200 ob o
jcector.SampleTime 040 100 ob 020
Shadows.CulirectionalShadonCasters 050 100 ob 020
CombinedebResal 050 200 ob one
[ot e o ey 050 100 ob one
Materil SetassFas 040 1500 ob o1e
FPastLatpdate PlayertpdateCanvases 040 100 ob 017
EventSystem Updatel 040 100 ob 017
UiEverts Wik endercanvases 040 100 ob 017
aryUpdate.PolPlayerComnecton 040 100 ob oz
Proarcenniacton 040 100 ob oz
UGUI Rendering Updatesatches 040 100 ob oz
Animator ApplyBuiint oot 040 40000 ob oz
Renderforwardopaaue.Collectshadas 050 100 ob ons
etpasstncache 030 1400 ob oas
oms St 040 200 ob 013
Shadows,CallectShadons 030 100 ob 013
Canvas Sendwilkendercanvases() 030 100 ob oxz
Commandagent Update 030 40000 ob oxz
Prafier.CollecthemoryAlacationstats 030 100 ob oxz
Seballacovert 030 200 ob o
030 100 ob o

File path

\Buidprofiler_data_typed.json

Export

[Peofler Data I Current Frame Data

Selected Function Data

166 APPENDIX B. ADDITIONAL INFORMATION

Figure B.40: OOP DwarfHeim profiler minimum elapsed time statistics for test with
animation and models deactivated

B.8. UNITY PROFILER DATA EXPORTER RESULTS FOR DWARFHEIM

Figure B.41: OOP DwarfHeim profiler average elapsed time statistics for test with ani-
mations and models deactivated

168 APPENDIX B. ADDITIONAL INFORMATION

retier Dot
O e —)

e Toul sei s GC Alee T Sefms
Update SerpunBeheviourUpdats 7oz o e Soea ke o o0 4|
sehaviurpdate 7620 o0 100 s06.4 kB 1537 osz
CoroutnespelapedCall 250 os0 200 1247 k8 1117 a0s
Update SerptRunDelayedDynamicFrameRate izs0 000 100 1247 k8 17 000
Image.Start() [Coroutine: MoveNext] 4250 4240 168.00 1247 KB 11.08 11.04
Warnorcreator.Update() sas0 5760 100 soe ke 1037 1020
RVOSmuator UpdateQ 260 e 200 ob 751 St
SendMausetvents DasendiouseEverts() 4630 100 100 ob ss2 008
Wanabehaviour OnMause Py a00 100 ob ss2 a00
reUpdate.SendMouseEvents 460 000 100 ob ss2 000
Physios Raycas Py a0 100 ob sas D2
(GameAgentuUpdate() 3620 s3m0 40000 sesks sa s
atarpath Updae() 240 1300 100 1021 k8 sas o
bty Agent Updte() 2330 2230 40000 08 k8 327 sz
Physics SyncCalideTransform 2940 2620 100 ob s01 e
PostLateUpdate FinishFrameR endering 2010 050 100 4008 176 o0s
Caling Path Callacks 1030 L0 100 0K 15 021
Physics Synckigidbody Transform 1640 1200 100 ob hs 11
Camera mender 170 10 100 ob hes o
Funning ath adifers 550 a0 12800 sske 136 135
oraring] 1250 os0 100 ob i1 oos
enderopsuceomy 1220 010 100 ob e oo1

Rendarromardosq 1000 o0 100 ob oa o0z
b e 640 o0 100 ob oel 000
UpdatenenderarsoundinaValumes 650 a0 110 ob 080 o1
WorldobjectagentUpdatel) ss0 o0 40000 ob 087 o
WaitorabGraupId co0 250 200 ob o5 02
PraLateUpdate ScrptRunBehaviourLateUpdate 350 000 100 ob 053 a0
Latesehaviourlpdate 30 a00 100 ob 0ss a00

g 380 580 100 ob 052 o5z

FransformGhangedoispateh a0 430 a0 ob oan 039 3|
File path

\Build\prafiler_data_type2 json

Export
[Profiler Data 11 Current Frame Data I Selected Fundion Data)

Profiler Data
Statistics (Mo Valuez +) [Calculate

Bl [rotal IEG [cals [oc Alec i [setfms]
'Shadows 450 100 .00 13 0.4 0.08|a
Renderfornard RenderLooplob 420 240 1.00 ob 0.37 021"
UL epaint 200 220 100 008 034 o1
UlEvertsMGUIRenderoverlars 200 o0 100 08 034 000
Shadows Renderiob 310 o000 200 ob 027 000,
Shadows.RenderisbDir a0 110 200 ob 027 00|
150 o0 1241000 sos kB 024 02e

UndsteDepthTesture 250 o0 100 ob 023 o0
‘CommandAgent.Update() 2.30 2.30 400.00 0b 0.23 0.23
Shadows.PrepareShadowmap 220 110 100 ob 022 008
UGUIRendering Updsteaatches 150 o0 100 ob o1e oo,
EaryUpdate.PolPleyerconnecton 220 o0 100 ob o1e o0
Profiercemecton Pl 220 220 100 ob o1e o1
culing 150 030 100 ob o1e 003
ostLateUpdte playerupdateCanvases 150 o0 100 ob o1e 000
UlEverts.wilkendercanvases 150 o0 100 ob o1e o0
CullResits.CreatesharedRendererScene 170 120 100 ob o7 010
aryUpdate.UpdateCanvasRectTransform 130 130 100 ob 016 016
BaichRenderer Flush 150 a0 2700 ob 016 012
RenderforuardOpaque Prepare 160 160 100 ob 016 o1
ExtracRenderhiodequeue 150 150 200 ob 01s o1
Canves sendwilkendercanvases() 10 o0 100 ob o1 o0
Lovout 170 60 100 ob 01s o1
Profier.CollectGlobalsats 140 o070 100 ob o1s 005
PostteUpdate ProflerEndrame 140 o0 100 ob o1s 000
DepthPass.oh 150 o070 100 ob 014 oo,
Seeneculing 150 o0 100 ob 014 o1
Cullsendevents 130 o0 100 ob 01z o0
EventSystem.Update() 1.20 120 1.00 0b 012 012
Batch DranDya 120 120 1o ob 01z o1z
RendsrFormardOpaque Collectshadans 130 o070 100 ob on 0064
File path

\Build\profiler_data_type2.json

Export

\ Profiler Data Il Frame Data I Selected Funcion Data]
Proer Data

o s T — F)

B [Total [set Tcals oc Alee [Tsetfms]
Wateril SetpassFast 130 om0 1800 ob o ot
sabAllocoverion 110 110 200 ob o0 o0
PastateUpdate hysicsSkinnedClothBeginUpdate aso o0 100 ob o0 010
DesroyCulles 110 o000 100 ob 010 000
Fremphloc.overfon 110 o0 200 ob o0 o0
PreUpdate Newinputupdate 100 100 100 ob 010 010
MaterilSetpassUncached 120 120 1400 ob o0 010
PhotonHandler.Update() 1.00 0.10 1.00 0b 0.09 0.01

e A 110 110 300 ob 008 00|
CulAsibleLights os0 o020 100 ob 008 oo1
NetworkAgent.Update() 0.60 0.60 400.00 o0b 0.09 0.09
Sendoutgengcommands 0s0 os0 100 ob 008 o0,
Baich Drainstanced 100 o0 100 ob 008 oo,
Profier.Colleiemory Alocationstats 100 Y 100 ob 008 oo,
i 100 o0 100 ob 008 o0
FndAcivelights 0s0 os0 100 ob 008 oo,
Graphics it 100 os0 100 ob 008 oo,
Render 0s0 os0 100 ob 007 007
FPSDisplay Update() 0.70 0.70 1.00 o0b 0.06 0.06
UlEverts CanvasMangerRenderoveriays 070 o0 100 ob 005 o0
UGUI Rendering Renderovera 070 050 100 ob 00s oo
Shadows.CallectShadons o0 o0 100 ob 00s 004
Addoirectonalli 030 o030 100 ob 004 004
eriyUpdsa NewputBeginrrare 050 o020 100 ob 004 004
PastLteUpdate MemoryrameMaitenance 050 050 100 ob 004 oo
UIUtiy BeainGUI0) 040 o0 300 008 004 003
Postatelpdate nputEndrame 020 o020 100 ob 004 oo
UtUtiy Endourl) 050 050 300 ob 004 004
BasicCommandChainBuffer.Update() 0.60 0.60 1.00 o0b 0.04 0.04
Ievice.Presan 050 o000 100 ob 004 o0
Graphics PresertAndsyne 050 o0 100 ob 004 000 %,
File path

\Build\profiler_data_type2.json

Erm

[Profier Data I Curren Frame Data IC Selected Function Data)|

Function [rotal Tser Toc Aloc [zime ms [sefme]
50 o 0) 50 s
PostLateUpdate.Presentafterdran 00 100 ob 004 000
PostLateUpdate.UpdateCanvasRectTransform 030 00 ob 003 003
MouseContraller,OnGUI() 020 200 ob 003 oo
EarlyUpdate Updatelnputanager 040 100 ob 003 003
030 100 ob 003 003
040 00 208 003 003
030 100 ob 003 003
040 00 ob 003 000
030 00 ob 003 000
040 200 ob 003 002
030 100 ob ooz 002
020 00 ob 002 000
010 200 ob ooz 002
030 00 ob 002 002
Fixedpdate PhysicszoFinedUpdate 030 200 ob ooz 002
EnlightenRuntimeManager PostUpdat 020 100 ob 002 o1
arpUdats.performancaAnalyScaUpdata 030 100 ob ooz 002
PostLateUpdate.UpdateResolution 020 00 ob 002 002
Shadows.CullngCallbacks 020 100 ob ooz 002
PostLateUpdate PlayerEmitCanvasGeometry 010 00 ob oot 000
PostLateUpdate.PlayerSendFrameComplate 000 00 ob oo 000
(CanvasScaler.Updatel 000 200 ob oo o1
PreLatetpdate pariceSystemBeginUpdateAll 000 o ob oo 000
[Corautine: Nections 1Enumerator get_ Current] 010 168,00 ob oo 01
Ut Rand 010 a ob oo o1
KeyboardController.Update() 010 00 ob oo oot
Profer.CallectAudiostats 010 100 ob oo 000
AudioProfier.Capturefra 010 00 ob oo o1
PestiatoUdate laverSendFramestarted 010 100 ob oo 000
Profer CallectOranStats 010 100 ob oo o1y
File path
\Build\profiler_data_typez2.json
Export
[Peofler Data I Current Frame Data It Selected Function Data)|

Bibliography

[1] “Polygon mesh,” https://en.wikipedia.org/wiki/Polygon_mesh.

[2] “Boxing and unboxing (c programming guide),” https://docs.microsoft.com/

en-us/dotnet/csharp/programming-guide/types/boxing-and-unboxing.

[3] “Prototype-based programming,” https://en.wikipedia.org/wiki/Prototype-based_

programming.

[4] Microsoft, “Value types (c reference),” https://docs.microsoft.com/en-us/dotnet/

csharp/language-reference/keywords/value-types.

[5] ——, “Reference types (c reference),” https://docs.microsoft.com/en-us/dotnet/
csharp/language-reference/keywords/reference-types.

169

https://en.wikipedia.org/wiki/Polygon_mesh
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/boxing-and-unboxing
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/boxing-and-unboxing
https://en.wikipedia.org/wiki/Prototype-based_programming
https://en.wikipedia.org/wiki/Prototype-based_programming
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/value-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/value-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/reference-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/reference-types

	Summary and Conclusions
	Preface
	Acknowledgment
	Introduction
	Problem Formulation
	Goal Of This Master Thesis
	Required work for this thesis
	Cooperation with Pineleaf Studio

	Literature Study and Theory
	Memory in modern computers
	Data-Oriented Design
	Data-oriented design principles
	Entity Component System

	Functional Specification and Evaluation Criteria
	Evaluation criteria
	Frame Rate
	Cpu usage time

	Entity-component-system in C#
	Specifications
	Evaluating against object-oriented programming

	Entity-component-system in Unity - Pure data-oriented solution
	Evaluation of the application

	Converting DwarfHeim into a data-oriented solution
	Specifications for conversion
	Evaluation of the conversion

	Materials and Methods
	Development Environment
	Game Engine - Unity
	Different terminologies and concepts in Unity
	Scripting in Unity - Adding behaviour to game objects
	Analyzing performance - Unity Profiler
	Programming Language - C#
	Programming Language - Python

	Measuring the frame rate
	Measurement of frame rate for Unity
	Frame rate counter outside Unity
	Refresh rate

	Entity Component System - Custom Implementation
	Initial entity-component-system architecture details
	Improved design
	Functional testing of the ECS implementation
	Performance tests for the ECS implementation
	Integrating OpenGL with the ECS implementation
	Test Application using the entity-component-system implementation
	Simulating the sine wave
	Simulating a sine wave using opengl and object-oriented principles
	Simulating a sine wave using opengl and the custom entity-component-system implementation
	The sine wave simulation tests

	Entity-Component-System in Unity
	Pure data-oriented application in Unity
	Objected-oriented sine wave
	Data-oriented Sine wave
	Testing of the sine-wave simulations

	Data-oriented design for Dwarfheim
	Computer architecture of Hybrid/Pinecone
	Methodology for converting to data-oriented design
	Making it more applicable on a server
	Testing

	Results
	Entity-component-system implementation
	Functional Test
	Performance tests for the different versions of ECS
	OpenGL sine wave simulation tests

	Sine wave simulation
	Sine wave simulation results

	DwarfHeim Conversion
	Functional results
	Performance test

	Discussion
	Discussion of Results
	Custom C# implementation of Entity-Component-System
	Limitations of the custom ECS implementation
	Meeting the specifications
	Potential issues with the current design
	Sine-wave simulation results in Unity

	DwarfHeim conversion to a more data-oriented design
	Functional features of the data-oriented design
	Performance results
	Inspecting time values for the converted parts
	A hybrid solution vs pure data-oriented
	The implications of the research

	General results
	Developing with the entity-component-system

	Conclusion
	Further Work
	Recommendations for the custom entity-component-system
	Recommendations for the DwarfHeim conversion

	Bibliography
	Acronyms
	Additional Information
	Concepts in Unity - Some additional concepts
	Graphics in Unity

	Simple example of scripting in Unity
	ECS custom implementation
	Example of system structure
	Example of inject-attribute with componentDataArray
	Optimization steps
	Reducing number of boxing and unboxing
	Reducing number of function calls through another class

	OpenGl program code
	Shader code
	Code for drawing a simple triangle.

	Prototype-based programming
	Programming language C# and its features
	Sine-wave simulation in Unity
	Accessing mesh and material data with entity-component-system
	Sine-wave simulation, profiler stats with profiler data exporter

	Unity profiler data exporter results for DwarfHeim

	Bibliography

