
Decomposition of Modules over finite-
dimensional Algebras

Tormod Haugland

Master of Science in Physics and Mathematics

Supervisor: Øyvind Solberg, IMF

Department of Mathematical Sciences

Submission date: August 2018

Norwegian University of Science and Technology

i

Abstract

We investigate algorithms for decomposing a module M over a finite-dimensional
path algebra Λ. The algorithms first have to construct the endomorphism ring

End(M) = Hom(M,M).

Consequently, we look at three different algorithms for constructing the set of ho-
momorphisms HomΛ(M,N) between two modules M and N . By extension we
get EndΛ(M) = HomΛ(M,M). After calculating EndΛ(M) we investigate in de-
tail a method for decomposing the module M , using a probabilistic approach by
iteratively applying Fitting's Lemma.

Finally, we provide asymptotic bounds for the runtime of all the algorithms. We
then categorise them into complexity classes. Constructing the set of homomor-
phisms HomΛ(M,N) is shown to be in the complexity class P of polynomial-time
functions.

ii

Sammendrag

Vi undersøker algoritmer for å dekomponere en modulM over en endelig-dimensonal
veialgebra Λ. Alle algoritmene konstruerer først endomorfiringen

End(M) = Hom(M,M).

Vi ser dermed videre p̊a tre forskjellige metoder for å konstruere mengden homo-
morfier mellom to moduler M og N . Dette gir oss EndΛ(M) = HomΛ(M,M).
Etter å ha regnet ut EndΛ(M) ser vi i detalj p̊a en probabilistisk metode for å
dekomponere en modul M , ved å anvende Fitting's Lemma flere ganger.

Til slutt analyserer vi alle algoritmene ved å gi asymptotiske grenser for deres
kjøretid. Vi kategoriserer dem deretter inn i kompleksitetsklasser. Konstruksjo-
nen av mengden homomorfier mellom to moduler M og N blir vist til å være i
kompleksitetsklassen P, alle funksjoner med polynomiell kjøretid.

iii

Preface

This thesis represents my final work as a master's student at Norges Teknisk-
Naturvitenskapelige Universitet (NTNU). The thesis is part of the course TMA4900.

I would like to thank my supervisor Øyvind Solberg for providing invaluable
feedback and guidance, and for suggesting the topic of the thesis.

I would also like to thank Sondre, Simen and Therese for providing the necessary
laughter, food, and motivation. Finally I would like to thank Erlend for providing
criticism and feedback on more of the thesis than can be expected of a civilian.

iv

Contents

Introduction 1

1 Quivers & Path Algebras 3
1.1 Quivers . 3
1.2 Path Algebras . 4
1.3 Modules and representations . 6
1.4 Relations . 8

2 Categories 11
2.1 Definition . 11
2.2 Functors . 12
2.3 Equivalencies and Dualities . 13
2.4 Exact functors . 13
2.5 Adjoint functors . 14

3 Homomorphisms and Tensor Products 15
3.1 Endomorphism rings . 15
3.2 Decomposition by using the endomorphism ring 16
3.3 Projective presentations . 17
3.4 Tensor Product . 18
3.5 Of homomorphisms . 20
3.6 Associativity . 21
3.7 Adjoint associativity . 22
3.8 Exactness . 23

4 Computational Complexity 25
4.1 Functions and their runtime . 25
4.2 Asymptotic notation . 26
4.3 Best, average and worst cases . 27
4.4 Probabilistic algorithms . 28
4.5 Complexity classes . 29

4.5.1 The complexity class P . 29
4.5.2 The complexity class NP . 29
4.5.3 The complexity class NP-complete 29

v

vi CONTENTS

4.5.4 The complexity class PP . 30
4.5.5 The complexity class ZPP 30
4.5.6 The complexity classes PSPACE and EXPSPACE(-complete) 30

5 Linear Algebra Algorithm 33
5.1 Overview . 33
5.2 Theory . 34

5.2.1 Motivation . 34
5.2.2 Creating the matrices Mα . 36
5.2.3 Creating the matrix X . 40
5.2.4 Creating HomΛ(M,N) . 44

5.3 Analysis . 45

6 Green-Heath-Struble Algorithm 47
6.1 Overview . 47
6.2 Detailed algorithm . 49

6.2.1 Calculating a basis of N∗ . 49
6.2.2 Calculating the actions of Λ 51
6.2.3 Calculating M ⊗Λ N

∗ . 52
6.2.4 Tying it all together . 53

6.3 Example . 55
6.4 Analysis . 57

7 Hom functor algorithm 59
7.1 Overview . 59
7.2 Detailed algorithm . 60

7.2.1 Applying Hom . 60
7.2.2 Finding the actions of Λ . 61
7.2.3 Going from the kernel to HomΛ(M,N) 64

7.3 Example . 64
7.4 Analysis . 65

8 Probabilistic Decomposition 67
8.1 Overview . 67
8.2 Theory and detailed algorithm . 68

8.2.1 Fitting's Lemma . 68
8.2.2 Performing the decomposition 70
8.2.3 Number of runs . 71

8.3 Analysis . 71
8.3.1 Preliminary results . 72
8.3.2 Finding a bound for p . 74

9 Results 77
9.1 Comparing the algorithms for creating HomΛ(M,N) 77
9.2 On probabilistic decomposition . 80
9.3 Complexity classes . 81

Introduction

In representation theory, one of the primary tasks is describing modules over finite-
dimensional algebras. The ultimate description of a module M would be a decom-
position

M = M1 ⊕M2 ⊕ · · · ⊕Mn.

In this thesis we look at methods for decomposing such a module M . In this
context, our bread and butter will be calculating the endomorphism ring End(M) =
Hom(M,M): Given the endomorphism ring End(M), we can find a decomposition
of the identity IdM into pairwise orthogonal idempotents

IdM = π1 + π2 + · · ·+ πm.

We will show how this can be translated into a decomposition of M . Hence a
majority of the thesis will be devoted to investigating different algorithms for cal-
culating HomΛ(M,N), the set of homomorphisms between two modules M and N .
By extension we can find End(M) by setting N = M . We look at three different
algorithms for constructing HomΛ(M,N).

The first algorithm uses plain linear algebra to specify all the constraints re-
quired of any homomorphism f : M → N , as a large system of linear equations.

The second is the algorithm introduced in [16], which uses the tensor-product
as a functor on a projective presentation. This yields an exact sequence for which
an isomorphism can be constructed to HomΛ(M,N), using adjoint associativity.

The third algorithm is a variation of the second, which uses the Hom-functor
instead of the tensor-product. Again, we get an exact sequence for which an iso-
morphism can be constructed to HomΛ(M,N).

We will also investigate a method of decomposing a module M without de-
composing the identity IdM . Applying Fitting's Lemma, we can decompose M
into two parts if we can find an endomorphism φ which is both non-invertible
and non-nilpotent. Finding such an endomorphism deterministically can be chal-
lenging. Thus we take the probabilistic approach, and select random elements
from End(M). The analysis provides a bound for the probability of finding a
non-invertible non-nilpotent element φ.

Chapter 1 introduces basic theory of Quivers and Path Algebras, which provide
the foundations upon which the remaining theory is based.

1

2 CONTENTS

Chapter 2 introduces category theory. This gives us functors, and specifically
adjoint functors. Chapter 3 recalls basic theory of endomorphisms and tensor
products. The theory in Chapter 2 and 3 are both heavily employed in the second
and third algorithm.

Chapter 4 introduces some key concepts in computational complexity theory.
We use this theory to analyse all the algorithms introduced in the thesis, and
categorise algorithms —and hence underlying problems —into complexity classes.

Chapter 5 introduces the algorithm using linear algebra, which we name the
Linear Algebra algorithm.

Chapter 6 introduces the algorithm introduced in [16], which we name the
Green-Heath-Struble algorithm.

Chapter 7 introduces the algorithm using the Hom-functor, which we name the
Hom-functor algorithm.

Chapter 8 introduces the probabilistic decomposition of M .
Finally, Chapter 9 summarises the analysis of all the algorithms. It then at-

tempts to compare the three first algorithms. Some experimental results of the
probabilistic algorithm is also presented. Finally, a categorisation of the algorithms
into complexity classes is performed.

Chapter 1

Quivers & Path Algebras

In this chapter we introduce the concepts of quivers and path algebras. We then
introduce representations of a quiver, which we show are equivalent to modules
over the path algebra over the quiver.

1.1 Quivers

Definition 1.1. A quiver Γ is a directed (multi)graph. We label the vertices of
a quiver by Γ0 = {v1, v2, v3, . . . , n}; and its edges, or arrows, by some arbitrary
identifiers Γ1 = {α0, α1, . . . , αn}. We will exclusively work with quivers with a
finite set of vertices and arrows. The vertex an arrow α starts in, is denoted s(α);
and the vertex the arrow ends in, is denoted e(α).

Recall that a multigraph can have multiple arrows between each pair of vertices
(or from a vertex to itself). Before proceeding, we look at some examples of quivers.

Example 1.2. Γ: v1 αgg , Γ0 = {1} and Γ1 = {α}.

Example 1.3. Γ: v1

α))

β

55 v2 ,Γ0 = {v1, v2}, and Γ1 = {α, β}

Example 1.4. Γ: v1
α // v2

β // v3 ,Γ0 = {v1, v2, v3}, and Γ1 = {α, β}

Starting in some vertex in a quiver, we can walk or traverse the quiver by
following a sequence of arrows. A path p of a quiver Γ, is such an ordered sequence
of arrows p = a0a1a2 . . . an−1an, with the requirement that e(ak−1) = s(ak), for
all k. In other words, we write paths from left to right. In addition to the paths
naturally arising from the arrows of a quiver, we have the trivial paths, ei for each
vertex i. In later chapters we will sometimes abuse notation, and write vi in place
of ei. The start of a path p = a0a1a2 . . . an−1an is s(a0), and the end is e(an). If
s(p) = e(p), and the path is not trivial, then we say that the path is an oriented
cycle.

3

4 CHAPTER 1. QUIVERS & PATH ALGEBRAS

We see that the quivers in example 1.3 and 1.4 does not contain any oriented
cycles, while all paths in example 1.2 are oriented cycles. To further illuminate
oriented cycles, we construct another example.

Example 1.5. Consider the quiver Γ: v1

α))
v2

β

ii γgg .

Then the set of all non-trivial paths are

{α, αγ, αγ2, . . . , β, βα, βαγ, . . . }
We see that both γ and αβ are oriented cycles. This causes the set of paths

to be infinite, as we can indefinitely traverse γ or αβ. In general; any quiver with
oriented cycles have infinitely many paths. This will be investigated further in
Proposition 1.8.

1.2 Path Algebras

In this section we continue by introducing some additional structure over a quiver,
namely that of an algebra. This construction yields what we call a path algebra.

Definition 1.6. Let k be a field, and Γ a quiver. Then kΓ is a path algebra,
defined by the vector space over Γ with all paths in Γ as basis. An arbitrary element
in kΓ is then a linear combination of the paths of Γ, with elements of k as scalars,

x = a0p0 + a1p1 + · · ·+ anpn, ai ∈ k, pi ∈ Γ.

Addition in the algebra is performed in the obvious way,

x = a0p0 + a1p1 + · · ·+ anpn

y = b0p0 + b1p1 + · · ·+ bnpn

x+ y = (a0 + b0)p0 + (a1 + b1)p1 + · · ·+ (an + bn)pn.

Multiplication of elements of the algebra distributes in the normal way. Let p, q be
non-trivial paths and ek be the trivial path in vertex k, then pointwise multiplica-
tion is defined by

p · q =

{
pq if p ends where q starts
0 otherwise

p · ej =

{
p if p ends in vertex j
0 otherwise

ei · q =

{
q if q starts in vertex i
0 otherwise

ei · ej =

{
ei if i = j
0 otherwise

1.2. PATH ALGEBRAS 5

The identity of the path algebra can easily be shown to be the linear combination
of all trivial paths,

IdkΓ = e1 + e2 + · · ·+ en.

To get our head around what a path algebra looks like, we continue with an
example.

Example 1.7. Γ: v1
α // v2

The paths of Γ are {e1, e2, α}. Thus an arbitrary element of kΓ will look like

x = a1e1 + a2e2 + a3α.

Addition of two elements in kΓ gives

(x+ y) = (a1e1 + a2e2 + a3α) + (b1e1 + b2e2 + b3α)

= (a1 + b1)e1 + (a2 + b2)e2 + (a3 + b3)α

and multiplication of two elements gives

x · y =(a1e1 + a2e2 + a3α) · (b1e1 + b2e2 + b3α)

=a1e1 · b1e1 + a1e1 · b2e2 + a1e1 · b3α
+ a2e2 · b1e1 + a2e2 · b2e2 + a2e2 · b3α
+ a3α · b1e1 + a3α · b2e2 + a3α · b3α

=a1b1e1 + a2b2e2 + a1b3αe2 + a3b2e1α

=a1b1e1 + a2b2e2 + (a3b2 + a1b3)α

Finally, we convince ourselves that e1 + e2 is in fact the identity,

x(e1 + e2) = (a1e1 + a2e2 + a3α)(e1 + e2)

= (a1e1e1 + a2e2e1 + a3αe1) + (a1e1e2 + a2e2e2 + a3αe2)

= (a1e1 + 0 + 0) + (0 + a2e2 + a3α)

= (a1e1 + a2e2 + a3α).

A similar computation from the left shows that indeed e1 + e2 is the identity.
Noticeably, kΓ is isomorphic to the lower triangular 2x2 matrices M2x2 =[
k 0
k k

]
. This can be shown by considering multiplication of two elements in

M2x2, and comparing. The example gives a first indication that many familiar
algebraic structures can be described using path algebras.

6 CHAPTER 1. QUIVERS & PATH ALGEBRAS

We continue by stating a very important proposition regarding the dimensional-
ity of path algebras. The proposition gives us a very easy method to check whether
or not a path algebra is finite-dimensional; namely that it has no oriented cycles.

Proposition 1.8. Let kΓ be a path algebra, with n vertices. Then dimk kΓ < ∞
if and only if Γ contains no oriented cycles.

Proof. ⇒: Given dimk kΓ = m <∞, kΓ has some finite basis B = {p0, p1, . . . , pm}.
Suppose then that Γ has an oriented cycle, given by x = pk1pk2 . . . pkn . But then
either xm+1 is not in B, or some xk, k ≤ m is not in B, since B contains m elements.
This is a contradiction, as the basis B contains all paths of kΓ.

⇐: Suppose Γ has no oriented cycles. We wish to show that Γ has a finite
number of paths. But since there are no oriented cycles, any path can at most
have length n − 1. Given a finite number of arrows, there can only be a finite
amount of paths of maximum length n− 1. Thus Γ contains only a finite amount
of paths, and dimk kΓ <∞.

To wrap up the section, we introduce the ideal of all non-trivial paths. We use
this construction later in Section 1.4.

Definition 1.9. Let Γ be some quiver. We denote J to be the ideal of kΓ generated
by all the arrows, i.e. the non-trivial paths of length 1.

1.3 Modules and representations

In this section we naturally extend the notion of a module over an algebra, to a
module over a path algebra. We then introduce the concept of a representation
over a quiver. We then show that these two notions are in fact equal, which gives
us a handy way to construct modules over a path algebra.

Recall that a right module M over a ring R is an abelian group with an asso-
ciated map M ×R→M such that

(i) (m1 +m2)r = m1r +m2r

(ii)m(r1 + r2) = mr1 +mr2

(iii) (mr1)r2 = m(r1r2)

(iv)m1 = m, 1 ∈ R

Replacing R with kΓ, we get the path algebra specific definition of a module. We
would like to find out what a module over kΓ looks like. The following proposition
gives some very concrete ideas.

Proposition 1.10. Let M be a right module over kΓ. Then M decomposes as
vector spaces M = Me1 ⊕Me2 ⊕ · · · ⊕Men.

1.3. MODULES AND REPRESENTATIONS 7

Proof. Let m ∈M . Then m = m1kΓ = m(e1 + · · ·+en) ∈Me1⊕Me2⊕· · ·⊕Men.
Define Mk = Mek. Then let m ∈ Mi ∩

∑
j 6=iMj . So m = miei =

∑
j 6=imjej ,

for some mi and mj . But we also have the following relation: mei = (mei)ei =
mi(eiei) = miei = m. Combining the two expressions for m, we get

m = mei = (
∑
j 6=i

mjej)ei =
∑
j 6=i

mj(ejei).

But this is 0, as eiej = 0, i 6= j. Thus m = 0, Mi ∩
∑
j 6=iMj = 0, and M

decomposes as indicated.

In other words, we know that any module M over a path algebra kΓ with m
vertices, decomposes into n vector spaces (due to the underlying structure of kΓ).
This hints at the construction of what is called a representation.

Consider taking, for every vertex in a quiver Γ, a vector space V (i), and putting
it in the place of the vertex. Then for every arrow α from vertex i to vertex j, put
a homomorphism fα : V (i)→ V (j). We call such a construction a representation
of Γ.

Before stating the main theorem of this section, namely that the representations
and modules over a path algebra are the same, we give an example.

Example 1.11. Let

Γ: 1
α // 2

β // 3

and let kΓ be the path algebra over Γ. Then the following are representations
of kΓ,

Γ: k
1 // k

1 // k

Γ: k
1 // k

0 // 0

Γ: k2

1 0
1 −1
0 1

// k3

(
1 1 0
0 −1 1

)
// k2

Theorem 1.12. The set of representations over a quiver kΓ are precisely the set
of right kΓ modules.

Proof. We first show how to go from a kΓ-module M to a representation: Suppose
we are given a module M . For every vertex vi define V (i) to be Mei. Then for
every arrow α, define fα : V (i)→ V (j) by

fα(mei) = meiα

This yields a representation (V, f) of kΓ.

8 CHAPTER 1. QUIVERS & PATH ALGEBRAS

Suppose now that we are given a representation (V, f). We reverse the procedure
above: Let M = ⊕ni=1V (i), i.e. m = (v1, . . . , vn). Define

mei = (0, . . . , 0, vi, 0, . . . , 0),

Where vi is placed in the ith coordinate. For every fα, let

mα = (0, . . . , 0, fα(vi), 0, . . . , 0).

Where fα(vi) is also placed in the ith coordinate. This yields a kΓ-module M .

1.4 Relations

In this section we introduce a class of ideals called the relations over kΓ. We take
special notice to these as they occur prominently.

Definition 1.13. Let σ = a1p1 + · · ·+ akpk be a linear combination of paths over
a path algebra kΓ, with e(pi) = e(p1), s(pi) = s(p1) for all i, i.e. all paths start
and end in the same vertex; and the length of each pi greater than or equal to 2.
Then σ is a relation over kΓ.

As hinted to, our primary use of a set of relations is to produce a quotient of
kΓ. We illustrate with an example.

Example 1.14.

Γ: v1
α // v2

β // v3

Let σ = αβ. Then Λ = kΓ
〈σ〉 is the algebra over the quiver Γ with rela-

tions σ. So what does an element in Λ look like? We know that kΓ has basis
{e1, e2, e3, α, β, αβ}. But under our relation, the path αβ is factored out, so our
new basis becomes {e1, e2, e3, α, β}. As before, we can construct modules over Λ,
albeit now with the restriction that fβ ◦ fα must compose to 0. E.g.

Γ: k
1 // k

0 // k

Γ: k2

(
0 0
1 0

)
// k2

(
0 0
1 0

)
// k2

We finish the chapter with three definitions introducing notation and terminol-
ogy which will come in handy.

Definition 1.15. Let ρ = {σt}t be a set of relations and kΓ be a path algebra.
Then kΓ/ 〈ρ〉 is said to be a quiver with relations.

Definition 1.16. Recall that J is the ideal generated by all arrows of Γ. Let ρ be
a set of relations over a path algebra kΓ. Then J̄ is the ideal generated by all the
arrows of Γ under the set of relations ρ, i.e. J̄ = J/ 〈ρ〉.

1.4. RELATIONS 9

Definition 1.17. Let ρ be a set of relations over a quiver Γ. Then ρ is an admis-
sible set of relations if

J̄ t ⊆ 〈ρ〉 ⊆ J̄2.

In other words: ρ is an admissible set of relations if the ideal generated by ρ is a
subset of all paths of length at least 2, and a superset of all paths of some minimum
length t.

10 CHAPTER 1. QUIVERS & PATH ALGEBRAS

Chapter 2

Categories

In this chapter we introduce categories, functors, and a number of pertinent prop-
erties of these. Our goal is to lay the foundation required to prove Theorem 3.9,
and consequently Corollary 3.10.

2.1 Definition

The notion of a category is created in an attempt to unify the different structures
and objects worked on in mathematics, under one umbrella. Anyone having been
exposed to different branchces of mathematics have undoubtedly been introduced
to a variety of categories, e.g. rings, groups, fields, topological spaces, sets, measure
spaces, and so on. Introducing something which generalises these concepts, brings
us up one level of abstraction.

Definition 2.1. A category C is a collection of objects, denoted Obj(C), with an
associated collection of morphisms for each pair of objects A,B ∈ C : HomC (A,B);
such that the following holds:

(i) For every triplet of objects A,B,C, and for all maps f ∈ HomC (A,B), g ∈
HomC (B,C), there exists a composition g ◦ f ∈ HomC (A,C).

(ii) Associativity for composition of morphisms hold.

(iii) For each object X ∈ Obj(C), there exists an identity morphism, 1X : X → X,
such that for f ∈ HomC (X,B), g ∈ HomC (A,X), we have f ◦ 1X = f ,
1X ◦ g = g.

When no confusion can arise, we will omit the subscript of HomC (A,B), in-
stead writing Hom(A,B). And, in the absence of such confusion, for an object C
belonging to Obj(C), we will abuse notation further and write C ∈ C .

11

12 CHAPTER 2. CATEGORIES

2.2 Functors

One of the motivations for introducing the concept of a category, is to facilitate
comparisons between these, and in particular obtain a construction known as a
duality. For this, the notion of a mapping between categories is needed. In this
section we introduce functors, which are such mappings.

Definition 2.2. A covariant functor F is a mapping between two categories
F : C → D , such that:

(i) Each object C ∈ C gets sent to some D = F (C) ∈ D .

(ii) Each morphism HomC (A,B) gets sent to some morphism HomD(F (A), F (B)).

(iii) Compositions of morphisms are preserved through the functor: F (g ◦ f) =
F (g) ◦ F (f).

(iv) The identity is preserved uniquely through the functor: F (1X) = 1F (X).

The perhaps canonical example of a functor is the one in algebraic topology,
where one associates a topological space X with some group. Thus it is a functor
from the category of topological spaces to the category of groups, allowing us to
use the machinery of group theory, indirectly, on the category of topological spaces.
Another important functor is the identity functor, acting in the obvious way.

There exist also another species of functor, namely a contravariant functor.
The difference between these and their covariant siblings, lie in that a contravariant
functor flips the direction of the morphisms:

(i) Each morphism HomC (A,B) gets sent to some morphism HomD(F (B), F (A)).

(ii) Compositions of morphisms are flipped and preserved under the functor: F (g◦
f) = F (f) ◦ F (g).

Finally, one might consider ways of transforming one functor into another. This
brings forth the idea of morphisms of functors, also called natural transfor-
mations.

Definition 2.3. Let F and H be two functors from C to D . Then F is said
to be a natural transformation, if for every object C ∈ C , there exists a map
FC : F (C)→ G(C) in D , such that for every map f ∈ HomC (A,B), the following
diagram commutes:

F (A)
F (f)−−−−→ F (B)

FA

y FB

y
G(A)

G(f)−−−−→ G(B)

If each FC is an isomorphism, we say that F is a natural isomorphism. If
the functors involved are contravariant, the direction of the arrows are flipped
accordingly.

2.3. EQUIVALENCIES AND DUALITIES 13

2.3 Equivalencies and Dualities

In this section we introduce equivalencies and dualities, which extend the idea of
two mathematical objects being equal to categories. First however, we extend the
notion of an isomorphism to a general category.

The question of whether two objects in a category are the same, or alike, is
typically phrased as whether or not there exists an isomorphism between them. The
way in which isomorphisms are (historically) defined vary from category to category
— in the category of topological spaces it is not even called an isomorphism, but
rather a homeomorphism. We now unify these definitions for a general category.

Definition 2.4. Let C be a category, and let A,B ∈ C . Then f : A → B is an
isomorphism, if there exists g : B → A in C , such that

g ◦ f =1A

f ◦ g =1B

Inevitably, one might ask oneself when two categories, for all intents and pur-
poses are the same; extending the idea of isomorphisms to categories. The definition
mirror the above definition of an isomorphism.

Definition 2.5. A functor F : C → D is said to be an equivalence, if there exists
another functor H : D → C , such that for C ∈ C , D ∈ D :

H ◦ F ∼= 1C

F ◦H ∼= 1D

In other words, an equivalence of categories is a functor for which there exists an
inverse functor, and the composition of these is isomorphic to the identity functor.
If the functor(s) in question are contravariant, the equivalence is called a duality.

2.4 Exact functors

We now introduce exact functors, which are functors preserving exact sequences.

Definition 2.6. Let F : C → D be a functor. Then let the following sequence be
exact in C :

0→ A→ B → C → 0

Then F is said to be

• Left-exact if 0→ F (A)→ F (B)→ F (C) is exact.

• Right-exact if F (A)→ F (B)→ F (C)→ 0 is exact.

• Exact if 0→ F (A)→ F (B)→ F (C)→ 0 is exact.

14 CHAPTER 2. CATEGORIES

2.5 Adjoint functors

In this section we introduce adjoint functors, which facilitates the definition of
Theorem 3.9.

Definition 2.7. Let C and D be two categories, and let F : C → D and G : D →
C be two functors. (F,G) is said to be adjoint functors, or an adjoint pair, if
for every X ∈ Obj(C) and Y ∈ Obj(D),

HomD(FX, Y) ∼= HomC (X,GY),

and these bijections are natural in both variables.

Adjoint functors possess interesting properties. Suppose we have two adjoint
functors F and G over categories C and D . Select then two objects X and Y from
C and D respectively, and transform them via F and G respectively. We now have
two new objects, call them Y0 = FX and X0 = GY . The fact that F and G are
adjoint now means that the class of morphisms between Y0 and Y ; and X0 and
X admits a natural isomorphism between them, i.e. there is a family of bijections
between any f : Y0 → Y to some g : X0 → X.

Chapter 3

Homomorphisms and Tensor
Products

In this chapter we recall and develop some basic theory for modules. We start by
developing some elementary theory for endomorphism rings. We will then intro-
duce projective presentations. Then we will briefly introduce and discuss tensor
products, which allows us to introduce an important result for the Green-Heath-
Struble algorithm; namely that of Adjoint Associativity.

In this chapter, Λ will unless otherwise specified be a ring, and M,N will unless
otherwise specified be right Λ-modules.

3.1 Endomorphism rings

The endomorphism ring for a Λ-module M , denoted EndΛ(M), is the set of all
morphisms from M to itself. If we endow this set with the operations of addition
in the obvious way, and composition as multiplication, EndΛ(M) becomes a ring.

Proposition 3.1. EndΛ(M) is a ring.

Proof. Recall that M as a module is an additive abelian group. To show that
EndΛ(M) is a ring, we go about showing the standard axioms. The reader is
referred to [3, p. 150] for a list of these.

Let f, g ∈ EndΛ(M) and x, y ∈ M . We define addition and multiplication in
EndΛ(M) in the following way:

(f + g)(m) = f(m) + g(m)

(fg)(m) = f(g(m))

This gives us the following:

15

16 CHAPTER 3. HOMOMORPHISMS AND TENSOR PRODUCTS

(f + g)(x+ y) = f(x+ y) + g(x+ y)

= f(x) + g(x) + f(y) + g(y)

= (f + g)(x) + (f + g)(y)

(fg)(x+ y) = f(g(x) + g(y))

= f(g(x)) + f(g(y))

= (fg)(x) + (fg)(y)

Thus f + g, fg ∈ EndΛ(M). Scalar multiplication is defined by

f(xλ) = f(x)λ,

where λ ∈ Λ. In similar fashion, associativity of addition and multiplication in
EndΛ is easily shown, as well as the distributive laws.

The identity of EndΛ(M) is given by IdM : m 7→ m, and the zero element is
given by 0M : m 7→ 0. For any element f ∈ EndΛ(M), the additive inverse −f is
given by −f : m 7→ −f(m). Clearly, (f − f)(m) = f(m)− f(m) = 0.

Hence EndΛ(M) is a ring.

The fact that EndΛ(M) is a ring will become useful after Theorem 3.2. We will
then be able to create a decomposition of M using EndΛ(M).

3.2 Decomposition by using the endomorphism ring

We now introduce a theorem which motivates the calculation of the endomorphism
ring.

Theorem 3.2. Let IdM be the identity-endomorphism on M . If IdM decomposes
as IdM = π1 + · · · + πm, where πi are pairwise orthogonal idempotents, then M
decomposes as M = N1 ⊕ · · · ⊕Nm, where Ni = Im(πi).

Proof. We have IdM = π1 + · · · + πm. Since each πi are pairwise orthogonal
idempotents, we have that πi ◦ πj = 0. We claim that

kerπi =
∑
j 6=i

Imπj .

The inclusion from right to left is obvious from the orthogonality of the πi. So
let x ∈ kerπi, i.e. πi(x) = 0. If x = 0, then clearly x ∈

∑
j 6=i Imπj , as πj(0) = 0

for any j. So let x 6= 0, then IdM (x) = x = (π1 + · · · + πm)(x), which is not
0 by hypothesis. Thus at least one πj(x) 6= 0, j 6= i; since πi(x) = 0. Thus
x ∈

∑
j 6=i Imπj . But since kerπi =

∑
j 6=i Imπj , and the image and kernel of a map

3.3. PROJECTIVE PRESENTATIONS 17

is disjoint, Imπj ∩
∑
j 6=i Imπj = 0. Thus M decomposes as M = N1 ⊕ · · · ⊕Nm,

where Ni = Im(πi).

The utility of the previous theorem cannot be overstated. If we are able to
construct the endomorphism ring of a module, which of course would give us the
identity, then if we could find a decomposition of the identity into orthogonal piece-
wise idempotents, we would have the sought after decomposition for the module.
A procedure for finding such a decomposition of the identity is shown in [6] . Con-
sequently, we need now only describe a procedure or methodology for constructing
the endomorphism ring of an arbitrary module over an arbitrary ring.

3.3 Projective presentations

In this section, we introduce the concept of projective presentations of a module
over an artin algebra. We also quickly note one way a projective presentation can
be constructed. Finally we look at a specific application of projective presentations
to modules over a path algebra.

Recall that an artin algebra Λ is an R-algebra over a commutative artinian ring
R, that is a finitely generated R-module.

Definition 3.3. Let Λ be an artin algebra, and let X be a Λ-module. Then a
projective presentation of X is an exact sequence of projective modules

P1
f1−→ P0

f2−→ X → 0.

As this is an exact sequence, we get the following isomorphism

X ∼= coker(f1).

Given some right Λ-module X, there are ways to compute a projective presen-
tation of the module. We present without detail or proof a method taken from
QPA[20]. Recall that the Jacobsen radical r of Λ is the ideal consisting of all el-
ements of Λ that annihilates all simple (right-)Λ-modules. The radical of a right
Λ-module X is then Mr. Recall also that the top of M is M/Mr. To find a
projective presentation, we construct the following diagram:

P1

f1{{
P0

f0{{ ��
M

π //

��

M/Mr //

��

0

0 0

18 CHAPTER 3. HOMOMORPHISMS AND TENSOR PRODUCTS

We first compute the top M/Mr, and note that we have an essential epimorphism
from M to M/Mr. We then calculate the projective cover (P0, f0), implying that
P0 is projective. We can repeat this process by setting M = ker f0, which further
yields P1, and so on. This gives us a projective presentation of M .

One thing that will be of interest is the dimension of P0 and P1. We state some
upper bounds here. Given the above algorithm, they can be found by considering
what the worst cases are when iteratively creating the projective covers. They are

max
v∈Γ0

{dimk vΛ} def= M

dimk P0 ≤M · dimkM

dimk ker f0 ≤ (M · dimkM)− dimkM

dimk(P1) ≤M · dimk ker f0

=M · ((M · dimkM)− dimkM)

= dimkM
(
M2 −M

)
Note that M is a constant for a given path algebra Λ.

3.4 Tensor Product

In this section we introduce the construction of the tensor product. The tensor
product is an integral part of the Green-Heath-Struble algorithm. Specifically, the
result of adjoint associativity shown in Theorem 3.9 is used in one of the core
isomorphisms of the algorithm.

Definition 3.4. Let M and N be left and right R-modules, respectively. Then
the tensor product of M and N is an abelian group M ⊗R N and a balanced
map h; such that for every abelian group G and balanced map f : M × N → G,
there exists a unique homomorphism f̄ : M ⊗R N → G of groups, such that the
following diagram commutes:

M ×N h //

f

##

M ⊗R N

f̄zz
G

We say that the tensor product solves the universal mapping problem of the
diagram above.

Let’s take a step back and reason about what we are doing here. We are
constructing an abelian group M⊗RN , which for any balanced map f : M×N → G
yields a map f̄ : M ⊗R N → G. In a sense, we can view elements M ⊗R N as
corresponding to ’flattened’ versions of the tuples in A×B.

Another effect this has, is that it allows us to reason about balanced maps in the
following way: Suppose we have a balanced map A×B → G. Does this map encode

3.4. TENSOR PRODUCT 19

any structure that a linear map could not? If we construct the tensor product
(A⊗R B, h) (the existence of which will be proven shortly), we immediately get a
homomorphism f̄ , which is additive by definition, corresponding to the balanced
map f .

Theorem 3.5. Let M and N be left and right R-modules, respectively. Then the
tensor product of M and N exists.

Proof. Let Z be the free abelian group with M×N as basis, i.e. the basis elements
of Z are the ordered pairs (a, b). Then let F be the subgroup generated by the
elements on the form:

(a, b+ b′)− (a, b)− (a, b′)

(a+ a′, b)− (a, b)− (a′, b)

(ar, b)− (a, rb).

Note that these describe the relations of a balanced map. Define M ⊗RN = Z/F .
We proceed to show that this group indeed is the tensor product of M and N .

We seek a balanced map h : M × N → M ⊗R N . But clearly this is just the
canonical homomorphism:

h : (a, b) 7→ (a, b) + F

We label (a, b) + F by a⊗ b. We have that h is balanced, as,

h((a+ a′, b)) = (a+ a′, b) + F = (a, b) + (a′, b) + F = h((a, b) + (a′, b))

h((a, b+ b′)) = (a, b+ b′) + F = (a, b) + (a, b′) + F = h((a, b) + (a, b′))

h((ar, b)) = (ar, b) + F = (a, rb) + F = h((a, rb)).

The last part in all equalities come from the definition of F . What remains now is
finding f̄ . Define first f ′ : Z → G by f ′((a, b)) = f(a, b). As Z is free over M ×N
f ′ is clearly a homomorphism. Furthermore, as f is balanced, F ⊂ ker f ′, and f ′

induces a homomorphism f̄ : Z/F → G, which is the desired map.
We note that this map is unique.

We continue by proving an important theorem, stating that any two tensor
products over the same modules are isomorphic. While important in its own right,
the technique involved in proving the theorem is also itself noteworthy, and is
employed in the proof of Theorem 3.8.

Theorem 3.6. Let M and N be left and right R-modules, respectively. Then any
two tensor products of M and N are isomorphic.

20 CHAPTER 3. HOMOMORPHISMS AND TENSOR PRODUCTS

Proof. We echo the proof given in [17], with slightly different notation.
If one is familiar with the fact that any two solutions to an universal mapping

problem are equal, then we are done. However, we solve this case specifically:
Let M ⊗R N be the tensor product of M and N . Then suppose there exists

another tensor product X which also solves the universal mapping problem. I.e.
for every abelian group G we have the following two diagrams:

M ×N h //

f

##

M ⊗R N

f̄zz
G

M ×N h′ //

f ′

##

X

f̄ ′��
G

We wish to show that the abelian groups M ⊗RN and X are equal. To do this,
we construct two homomorphisms between M ⊗R N and X:

M ×N h //

h′

##

M ⊗R N

k
zz

X

k′
::

We have constructed k and k′ such that k′h′ = h and h′ = kh. These exist given
the fact that both X and M ⊗R N solve the universal mapping problem, and are
themselves abelian groups. Given the following diagram:

M ×N h //

h

&&

M ⊗R N

x
xx

M ⊗R N

we can set x equal to the identity to solve the diagram. However, we can also set
x = k′k, since k′kh = k′h′ = h. Hence k′k = 1, since the homomorphism x is
unique. Similarly, we can construct a diagram with X in place of M ⊗R N , and
get that 1X = kk′. Hence M ⊗R N and X are isomorphic.

3.5 Of homomorphisms

Before continuing, we quickly introduce tensor products of homomorphisms. We
will later use these when tensoring all parts of an exact sequence in Chapter 6.

3.6. ASSOCIATIVITY 21

Let f : M → M ′ be a homomorphism of left R-modules, and g : N → N ′ be a
homomorphism of right R-modules. Then look at the map M × N → M ′ ⊗R N ′
defined by

(m,n)→ f(m)⊗ g(n)

We denote this mapping by f ⊗ g, and call it the tensor product of the
homomorphisms f and g. Define as before Z(M,N) and F (M,N). Then the
induced map of f ⊗ g on Z(M,N) induces a homomorphism from M ⊗R N →
M ′ ⊗R N ′.

3.6 Associativity

One might wonder if the tensor product possesses desirable properties. We now
proceed to show that tensor products are associative. First we need to introduce
the concept of a tri-additive function.

Definition 3.7. Let R and S be rings (with unity). Then f : AR×RBS×SC → G,
G an abelian group, is a tri-additive function if f is linear in each variable, and

f(as, b, c) = f(a, sb, c)

f(a, bs, c) = f(a, b, sc)

Theorem 3.8. Let M be a right R-module, N be a R− S-bimodule, and O a left
S-module. Then both M ⊗R (N ⊗S O) and (M ⊗R N) ⊗S O are tensor products,
and they are isomorphic.

Proof. We give a sketch of the full proof. We wish to solve the following universal
mapping problem for tri-additive functions:

M ×N ×O h //

f

%%

T

f̄��
G

We claim that there are in fact two solutions to this problem: T = M⊗R (N⊗S
O) and T = (M ⊗R N) ⊗S O. To see this, proceed as in the bi-additive case, but
from M × (N ⊗S O) and (M ⊗R N) × O, respectively. As indicated in the proof
of Theorem 3.6, any two solutions to a universal mapping problem are isomorphic.
To show it in this scenario, proceed as in the proof of Theorem 3.6, by constructing
the diagram:

M ×N ×O h //

h′

((

(M ⊗R N)⊗S O

kuu
M ⊗R (N ⊗S O)

k′
55

22 CHAPTER 3. HOMOMORPHISMS AND TENSOR PRODUCTS

Then show (as before) that k′ and k are isomorphisms, taking the form a⊗(b⊗c)→
(a⊗ b)⊗ c.

3.7 Adjoint associativity

In this section we explore a satisfying relationship between the Hom functor and
the tensor product ⊗: namely that they are adjoint. The theorem gives way to
a specific application, introduced in Corollary 3.10, showing that the dual of a
tensor product of a module M with a dual N∗ of a module N , is isomorphic to
HomΛ(M,N). This relationship will be the crux of the algorithm described in
Chapter 6.

Theorem 3.9. Let AR, RBS and SC be (bi-)modules of rings R and S. Then

HomS(A⊗R B,C) ∼= HomR(A,HomS(B,C))

Or put in the terminology of the previous section, A⊗R is adjoint to HomS(B,−).

Proof. We outline a proof. We wish to map some element f : A⊗B → C to some
element g : A→ Hom(B,C). We define the map by gf (a)(b) = f(a⊗b). Conversely,
we define the map the opposite way by fg(a⊗ b) = g(a)(b).

To show that this is in fact an isomorphism, one follows the typical steps in-
volved in proving that two groups are isomorphic.

As hinted to in the introduction, the above theorem gives rise immediately to
the following important corollary.

Corollary 3.10. Let k be a field, Λ a k-algebra, and M and N be finite-dimensional
right Λ-modules. Then

Homk(M ⊗Λ N
∗, k) ∼= HomΛ(M,N)

and by extension

Homk(M ⊗Λ M
∗, k) ∼= EndΛ(M).

Proof. From Theorem 3.9 we know that

Homk(M ⊗R N∗, k) ∼= HomΛ(M,Homk(N∗, k).

Using that N = N∗∗, and since Homk(N∗, k) = N∗∗, we get

Homk(M ⊗R N∗, k) ∼= HomΛ(M,N).

The second claim follows immediately setting N = M .

3.8. EXACTNESS 23

3.8 Exactness

In this final section of the chapter, we show that the tensor product is right exact.

Theorem 3.11. Regarded as a functor, the tensor product is right exact.

Proof. We outline a proof after [13]. We first need to prove the following claim: The
Hom(X,−) functor is left exact. That is, if the following sequence of Λ-modules is
exact

0 // A
f // B

g // C // 0,

then the sequence

0 // Hom(X,A)
(f,−) // Hom(X,B)

(g,−) // Hom(X,C)

is exact. Here (x,−) means composition of the target function with x on the
left. Suppose xb ∈ Hom(X,B) such that (g, xb) = 0. Then for every y ∈ X and
xb(y) ∈ B, since f is mono, there exists an ay such that f(ay) = xb(y). Define then
xa ∈ HomΛ(X,A) by y 7→ ay. We need to show that xa is a homomorphism: Let
y, z ∈ X. Then xb(y+z) = xb(y)+xb(z), since xb is a homomorphism. As f is mono,
there is ay and az such that f(ay+az) = f(ay)+f(az) = xb(y)+xb(z) = xb(y+z).
Thus xa(y+ z) = x(ay) + x(az). This implies that xb = fxa, and since (g, xb) = 0,
then (g, (f, xa)) = 0. Thus ker(g,−) ⊆ Im(f,−). Or in other words: for any
member xb of ker(g,−), we can produce a unique element xa in Hom(X,A) mapping
to xb. Importantly, this also shows that (f,−) is a monomorphism. The diagram
below illustrates the steps above:

X

xa~~
xb

��
A

f // B
g // C

We easily get the other direction, Im(f,−) ⊆ ker(g,−), since (g,−)(f,−)(xa) =
(g,−)(f, xa) = g(f(xa) = (gf)(xa) = 0.

Getting back to our original question, we can now apply [13, Theorem 4.0.1]
which states that two adjoint functors preserve (but reverse) exactness. Since
the tensor product is the adjoint of the left-exact Hom-functor, as we know from
Theorem 3.9, it is itself right-exact.

24 CHAPTER 3. HOMOMORPHISMS AND TENSOR PRODUCTS

Chapter 4

Computational Complexity

In this chapter we will introduce the basic principles of analysing the runtime of
algorithms. We will start with analysing what we define as the growth of functions.
We will then introduce the concepts of best-case, average-case and worst-case. Then
we will introduce asymptotic notation, which provides a toolset which greatly sim-
plifies the analysis and reporting of an algorithm's complexity. As we will be
working with a probabilistic algorithm in a later chapter, we will also briefly dis-
cuss the theory behind such algorithms. Finally we will look at complexity classes,
in particular those that are pertinent to the algorithms discussed later.

We will generally avoid diving to deep into concepts in theoretical computer
science, such as Turing machines. This will simplify our discussion significantly, at
the cost of some rigor. For a more thorough introduction to the topics, the reader
is referred to [7], [1] and [19].

Much of the theory presented here follows [7, Chapters 3 and 36].

4.1 Functions and their runtime

In the broadest of terms, our goal in this entire chapter is to be able to answer the
following question:

Given a function f , and input I of size n to the function, how long time
do we expect the function f to run before returning an answer?

Note that we will continue using the words function and algorithm interchangeably
throughout this chapter. To answer the question above, we need to define what we
mean by input of size n, and what we mean by time. We will denote the time by
T (n). We illustrate with two examples.

Example 4.1. Let f(n) =
∏n2

i=1 i. In this scenario, the size of the input is n.
The number of calculations of the function is the number of multiplications in the
product, which is n2. Hence we say that the running time of the algorithm is
proportional to n2. In mathematical terms, we can say that T (n) = c · n2. Here c

25

26 CHAPTER 4. COMPUTATIONAL COMPLEXITY

is some constant, which in this particular case is proportional to the time it takes
to carry out one multiplication.

Example 4.2. Let BubbleSort be the algorithm which sorts a list of numbers
using the sorting algorithm bubble sort. A simple pseudocode implementation of
the algorithm is

function BubbleSort(I: List)
n← I.Length
for i = 0→ n do

for j = 0→ n do
if I(i+ 1) < I(i) then Swap(I, i, i+ 1)

The size of the input here is the length of the list I. The algorithm consists of two
nested loops, both of which run n iterations. Thus the total iteration count will be
n2. The function Swap simply swaps two elements in the list in-place, and runs in
constant time (i.e. it is not dependent on n). Hence we again expected the running
time of the algorithm to be T (n) = c · n2. The constant c depends here on both
the Swap function, and the if-statement which compares the entries.

In the light of the above examples, we define the size n as any variable(s) in
the input of I which directly affects the running time of the function f . We define
T (n) as the expected time it would take to run all the computations in f —under
the assumption that f can be run on some computer which can perform basic
mathematical operations, and store results, in constant time.

Going back to the example of BubbleSort, we see that the running time
T (n) depends on two factors: c and n2. c is a constant, and does not change
depending on the input. However it does depend on the implementation. For any
given problem, and algorithm for that problem, there can be varying quality in the
actual implementation encountered in practice. This will affect the constant c, but
not the variable n. Hence, when we talk about the running time of an algorithm,
what we are really interested in, is the growth of the function f depending on the
input n. When inputs get large, which they tend to do, the variable n will at some
point dominate the constant c.

4.2 Asymptotic notation

We now introduce three different asymptotic notations, which will simplify our
expressions when finding T (n).

Let f(n) be a function of a variable n. We denote by Θ(f(n)) all functions
which grow at the same rate as f(n). In other words, all functions which up to a
constant grow no faster, and up to a constant no slower than f(n). Formally, we
write

Θ(f(n)) = {g(n) | ∃c1, c2, n0 such that c1f(n) ≤ g(n) ≤ c2f(n) when n ≥ n0}.

Example 4.3. Let f(n) = 3n2 + 2n + 1. Then f(n) = Θ(n2), since we can
find constants c1, c2 and n0 such that the above condition holds. For instance, let

4.3. BEST, AVERAGE AND WORST CASES 27

c1 = 2 and c2 = 4. For n0 ≈ 2.4, we will find that 2n2 ≤ f(n) ≤ 4n2. However,
f(n) 6= Θ(n3), as it would be impossible to find a c1 and n0 such that f(n) is larger
than c1n

3 for all n ≥ n0. Any term with n3 simply grows too fast for n2.

We denote by O(f(n)) all functions which grow no faster than f(n), up to a
constant. Formally, we write

O(f(n)) = {g(n) | ∃c, n0 such that 0 ≤ g(n) ≤ cf(n) when n ≥ n0}.

Example 4.4. Let f(n) = 3n2 + 2n + 1. Then f(n) = O(n2). Selecting the
constant c = 4, as in the example above we see that for n ≈ 2.4, 4n2 will be
an upper bound for f(n). Here however, we also have that f(n) = O(n3), as
indeed any constant c will make cn3 outgrow f(n) and become an upper bound.
Conversely, f(n) 6= O(n), as the term 3n2 in f(n) always will outgrow c · n.

We denote by Ω(f(n)) all functions which grow at least as fast as f(n), up to
a constant. Formally, we write

Ω(f(n)) = {g(n) | ∃c, n0 such that 0 ≤ cf(n) ≤ g(n) when n ≥ n0}.

Example 4.5. Let f(n) = 3n2 + 2n + 1. Then f(n) = Ω(n2). Selecting the
constant c = 2, as in the first example above, we see that f(n) ≥ 2n2 for all n.
Analogous to the second example, we have that f(n) = Ω(n) and f(n) 6= Ω(n3).

We say that Ω provides an asymptotically lower bound, O provides an
asymptotically upper bound and that Θ provides an asymptotically tight
bound. Ideally, we would like a tight bound when we analyse algorithms. However,
it is sometimes easier to provide just an upper bound, which will prove useful for
us.

Example 4.6. Let f(n) = g(n) + h(n), where g(n) = O(n3) and h(n) = O(n2).
Then f(n) = O(n3). This is clear, as an upper bound for f(n) must simultaneously
be an upper bound for both g(n) and h(n). But the greatest of the upper bounds
for g(n) and h(n) is naturally an upper bound (up to a constant) for both, and
hence (up to a constant) the sum of both.

The utility of the example above is that we can merge all terms in the runtime
analysis of an algorithm into one upper bound, greatly simplifying our analysis. For
complex algorithms consisting of multiple steps, this makes our life tremendously
easier.

4.3 Best, average and worst cases

When analysing algorithms, it is sometimes worthwhile to look at the best pos-
sible runtime, worst possible runtime and the average runtime. For some
algorithms, there may be a large discrepancy between the best possible input to

28 CHAPTER 4. COMPUTATIONAL COMPLEXITY

the algorithm, and the worst possible input. We will primarily look at average and
worst cases for the algorithms we introduce later. While best cases are interesting
in their own right, we want to know whether or not the algorithm is expected to
or potentially can complete within some bound time.

The perhaps canonical example of an algorithm with different average and best
runtime is QuickSort, which has average time complexity O(n log n), but worst
time complexity O(n2)[17, p. 170-190].

One interesting example is LibrarySort, which has best time complexity
O(n), average time complexity O(n log n), and worst time complexity O(n2)[11].

4.4 Probabilistic algorithms

In this section we provide the building blocks for analysing probabilistic, or ran-
domised, algorithms. This will be the basis for our analysis of the probabilistic
decomposition algorithm in Chapter 8. The reader is expected to be familiar with
basic probability theory.

Randomised algorithms are algorithms which not only depend on it's input,
but also on some randomised procedure. Typically this randomised procedure is a
random-number generator. We illustrate with an example.

Example 4.7. Let IsComposite be a randomised algorithm for checking whether
or not an integer is a compound:

function IsComposite(n: Integer, k: Integer)
for i = 0→ k do

x← RandomNumberBetween(2, n)
if Mod(n, x) = 0 then return True

return Null

Note that if the algorithm does not find a divisor of n, it returns inconclusively.
This is not atypical of randomised algorithms. The algorithm also asks for an input
k which determines the number of iterations to run.

The worst case of this algorithm is Θ(n), and the best case is Θ(1). The
probability of picking a divisor of any number x is proportional to the number
of divisors the number has. Let σ0(n) be the number of divisors of the integer
n. Then the probability of picking a random number between 0 and n which
is a divisor of n is σ0(n)/n. The probability of picking k wrong elements in a

row is
(

1− σ0(n)
n

)k
. Hence the probability of successfully returning true is 1 −(

1− σ0(n)
n

)k
. The expected number of runs, were the loop to run indefinitely, is

precisely the reciprocal of this value. The average case is consequently a bit tricky
to analyse, and we will omit the full analysis. It is however clearly dependent on
σ0(n).

In the light of the above analysis, we define a new property. We let the chance
of success of a randomised algorithm to be the probability that it returns conclu-
sively. This quantity can be 1 in certain scenarios, as some randomised algorithms

4.5. COMPLEXITY CLASSES 29

are not intrinsically probabilistic. They instead use random-number generation for
tasks like avoiding input-bias in scenarios where certain inputs can be significantly
slower than the average. One example is the RandomizedQuicksort algorithm,
which runs like a normal QuickSort after it has randomly permuted the input
list. This is done to avoid scenarios where worst-case inputs occur frequently in
the input data.

As with regular algorithms, we define T (n) to be the expected time it takes the
algorithm to complete. Sometimes, we may not be satisfied with the the chance
of success p of a given algorithm. However, we can simply increase the chance of
success to a desired threshold (often 1

2) by running the algorithm multiple times.
This will be explored in Chapter 8.

4.5 Complexity classes

In this final section we briefly visit complexity classes. This allows us to categorise
the algorithms introduced. We will only introduce the relevant classes.

4.5.1 The complexity class P

We define the complexity class P as all problems which admit a polynomial-time
algorithm. In other words, any algorithm f in P has an algorithm which grows
with some polynomial: f = Θ(nk) for some constant k. Informally, we say that
P is the class of all tractable problems. Problems in P include sorting, deciding
whether or not a number is prime and the decision version of linear programming.

4.5.2 The complexity class NP

We define the complexity class NP as all problems for which solutions can be
verified in polynomial time. Suppose we are given an algorithm f , some input I
to f , and some alleged output O. If f is in NP, there is a procedure which allows
us to verify, in polynomial-time, whether or not O is the correct, or valid, output
of f given the input I.

Take for instance the problem to factor an integer n into it's divisors: n =
p1 · . . . · pn. Solving this problem is hard. The best current algorithms are not
polynomial-time[4]. However, verifying a solution is very simple: Given an alleged
factorisation {n1, n2, . . . , nk} of n, we simply multiply the numbers together. If the
result equals n, the factorisation is indeed valid.

4.5.3 The complexity class NP-complete

To introduce the class of NP-complete problems, we quickly have to discuss
reducibility.

We say that a problem P is reducible to another problem Q, if there exists
a procedure to translate any instance of the problem P into an instance of the
problem Q, and any solution of the problem Q back to a solution of the problem

30 CHAPTER 4. COMPUTATIONAL COMPLEXITY

P . If the reduction procedure is polynomial-time, we say that P is polynomial-
time reducible to Q.

We define the complexity class NP-complete, informally, as all problems which
are at least as hard as all other problems in NP. By this we mean that for any NP-
complete problem P , there exists a polynomial-time reduction from any problem
in NP to P .

We note that we have the following relationship

P ⊆ NP ⊆ NP-complete.

4.5.4 The complexity class PP

We define the complexity class PP as all decision problems which run in polynomial
time with a probabilistic algorithm with an error probability of less than 1/2. In
other words, all problems which admit some probabilistic algorithm which produces
a definitive answer with at least 1/2 probability.

4.5.5 The complexity class ZPP

We define the complexity class ZPP as all problems which admits a probabilistic
algorithm which:

(i) Always runs in polynomial time.

(ii) Always outputs YES, NO or UNSURE.

(iii) Always returns UNSURE or the correct answer.

(iv) Always returns UNSURE with probability at most 1/2.

Informally, we say that ZPP contains all algorithms for which there exists a
tractable algorithm which with reasonable probability returns the correct, and
never the wrong answer.

We finally note that we have the relationship

ZPP ⊆ PP.

4.5.6 The complexity classes PSPACE and EXPSPACE(-
complete)

We define the complexity class PSPACE as all problems which can be solved
using only a polynomial amount of space. Note that the runtime might still be
exponentially slow, we are just not allowed to use more than polynomial space.

Similarly, we define the complexity class EXPSPACE as all problems which
can be solved using an exponential amount of space. The EXPSPACE-complete
problems are those which are in EXPSPACE, and to which there exists a polynomial-
time reduction algorithm for every problem in EXPSPACE.

4.5. COMPLEXITY CLASSES 31

We have the relationships

P ⊆ NP ⊆ NP-complete ⊂ PSPACE ⊂ EXPSPACE ⊆ EXPSPACE-complete.

and

ZPP ⊆ PP ⊂ PSPACE.

32 CHAPTER 4. COMPUTATIONAL COMPLEXITY

Chapter 5

Linear Algebra Algorithm

In this chapter we will be introducing the first algorithm for calculating the set of
homomorphisms between two modulesM , N over a finite-dimensional path algebra.
We will be referring to this algorithm as the Linear Algebra Algorithm.

The algorithm has an implementation in QPA[20].

5.1 Overview

In this section we will provide an overview of how the algorithm works, arriving at
a piece of pseudocode.

This algorithm is the most direct algorithm of the four discussed in this thesis.
The input of the algorithm is two representations RM , RN (playing the role of M
and N). We wish to find the set of homomorphisms HomΛ(M,N). For every pair
of connected pair of vertices vi, vj , connected by an arrow α, we construct the
following diagram:

V (i)
fα−−−−→ V (j)

gi

y gj

y
V ′(i)

hα−−−−→ V ′(j)

The maps fα : V (i)→ V (j) and hα : V ′(i)→ V ′(j) are given in the representations
RM , RN as matrices. Any homomorphism between RM and RN must provide
matrices gi and gj for every connected vi and vj such that the above diagram
commutes. That is

hαgi = gjfα.

This equation gives us a number of constraints that needs to be satisfied for any
vi, vj , α, which can be written as a matrix equation

gαXα = 0,

33

34 CHAPTER 5. LINEAR ALGEBRA ALGORITHM

where gα is a row vector containing the unknown elements of gi and gj , and Xα

is a matrix containing known elements from fα and hα. The exact shape of this
matrix will be shown in 5.2.

For every arrow α and pair of vertices vi, vj we can create a matrix Xα. This
gives us a set of constraints all homomorphisms between RM and RN have to
adhere to. Combining all Xα into one large matrix in a specific manner (also to be
detailed in 5.2) gives us a matrix X whose linear equations encode the behaviour
of all homomorphisms between RM and RN . Finally, these linear equations are
used to create a basis for HomΛ(M,N).

Before we state the pseudocode of the algorithm, we note that we can reduce
the number of calculations slightly, by only working with the support of RM and
RN . Algorithm 1 contains the pseudocode of the algorithm.

Algorithm 1 Homomorphism Ring by Linear Algebra

1: procedure HomomorphismRingOfRepresentations(RM , RN)
2: arrows← Arrows(RM)
3: AlgM ← AlgebraOfRepresentation(RM)
4: AlgN ← AlgebraOfRepresentation(RN)
5: if AlgM 6= AlgN then return fail

6: SupportM ← FindSupport(RM)
7: SupportN ← FindSupport(RN)
8: numRows, numCols← FindXDimensions(SupportM , SupportN)
9: X ← NullMat(numRows, numCols) . Creates an empty matrix

10: X ← CreateLinearEquationsFromMats(X,MatsM ,MatsN)
11: return CreateMapsFromLinearEquations(RM , RN , X)

Some of the intermediate functions will be described in the following chapters.

5.2 Theory

In this section we dive deeper into the algorithm details. Throughout the section,
we are working with representations over a finite-dimensional path algebra Λ =
kΓ/ 〈ρ〉.

5.2.1 Motivation

The motivation for this algorithm comes directly from the constraints put on any
homomorphism between two representations RM and RN . As noted, a homomor-
phism between two such representations must for every pair of vertices vi, vj ∈ Γ0

connected by an arrow α ∈ Γ1 make sure the following diagram commutes:

5.2. THEORY 35

V (i)
fα−−−−→ V (j)

gi

y gj

y
V ′(i)

hα−−−−→ V ′(j)

Example 5.1. Let Γ be the quiver:

Γ: v1
α // v2

β // v3

and let Λ = kΓ. A basis for Λ is thus {v1, v2, v3, α, β, αβ}. Suppose then we get
the two representations

RM : k

(
1 1

)
// k2

1 0
1 1

// k2

RN : k
1 // k

(
1 1

)
// k2

We can find a homomorphism between the two representations by constructing the
following diagram:

k

g1

��

(
1 1

)
// k2

g2

��

1 0
1 1

// k2

g3

��
k

1 // k

(
1 1

)
// k2

The homomorphism (g1, g2, g3) is constrained by the commutative diagram con-
taining the equations

g1 · 1 =
(
1 1

)
· g2

g2 ·
(
1 1

)
=

(
1 0
1 1

)
· g3

We can easily give an example of a homomorphism satisfying the equations by
inspection here: Let g1 = 1 and let g2 =

(
1 0

)
. Then

(
1
1

)
·
(
1 0

)
=

(
1 0
1 1

)
· g3 (5.1)(

1 0
1 0

)
=

(
1 0
1 1

)
· g3 (5.2)

36 CHAPTER 5. LINEAR ALGEBRA ALGORITHM

For this equation to be commutative, we need g3 to equal

(
1 0
0 0

)
such that

(
1 0
1 1

)
· g3 =

(
1 0
1 1

)
·
(

1 0
0 0

)
=

(
1 0
1 0

)
.

The above example illustrates the procedure of directly finding the equations
determining any homomorphism between two representations of Λ. To find the set
of all such homomorphisms, we need to solve (generally) the equations 5.1 and 5.2.
This is what the proposed algorithm does, which we will now detail.

5.2.2 Creating the matrices Mα

We are given representations RM and RN of a path algebra Λ. We know that we
for each pair of vertices vi, vj connected by an arrow α, have the equation

gihα = fαgj (5.3)

Since we are given the maps fα and hα as matrices, we can also deduce the necessary
shape of the maps gi and gj : Suppose V (i), V (j), V ′(i), V ′(j) are vector spaces of
dimensions ni, nj ,mi,mj . Then fα is a ni×nj-matrix, and hα is a mi×mj-matrix.
For Equation 5.3 to commute, this means that gi needs to be a ni × mi-matrix,
and that gj needs to be a nj ×mj-matrix. Writing out the matrices in full form,
we get

fα =

 f1,1 . . . f1,nj
...

. . .
...

fni,1 . . . fni,nj

hα =

 h1,1 . . . h1,mj
...

. . .
...

hmi,1 . . . hmi,mj

gi =

 x1,1 . . . x1,mi)

...
. . .

...
xni,1 . . . xni,mi

gj =

 y1,1 . . . y1,mj
...

. . .
...

ynj ,1 . . . ynj ,mj

 ,

which yields the equation

5.2. THEORY 37

 x1,1 . . . x1,mi)

...
. . .

...
xni,1 . . . xni,mi

 h1,1 . . . h1,mj

...
. . .

...
hmi,1 . . . hmi,mj

 =

 f1,1 . . . f1,nj
...

. . .
...

fni,1 . . . fni,nj

 y1,1 . . . y1,mj

...
. . .

...
ynj ,1 . . . ynj ,mj

 .

Writing out the equations, we end up with

x1,1h1,1 + x1,2h2,1 + · · ·+ x1,mihmi,1 = f1,1y1,1 + f1,2y2,1 + · · ·+ f1,njynj ,1

x1,1h1,2 + x1,2h2,2 + · · ·+ x1,mihmi,2 = f1,1y1,2 + f1,2y2,2 + · · ·+ f1,njynj ,2

...

x1,1h1,mj + x1,2h2,mj + · · ·+ x1,mihmi,mj = f1,1y1,mj + f1,2y2,mj + · · ·+ f1,njymj ,mj

x2,1h1,1 + x2,2h2,1 + · · ·+ x2,mjhmj ,1 = f2,1y1,1 + f2,2y2,1 + · · ·+ f1,mjymj ,1

...

x2,1h1,mj + x2,2h2,mj + · · ·+ x2,mihmi,mj = f2,1y1,mj + f2,2y2,mj + · · ·+ f2,njymj ,mj
...
...
...

xni,1h1,mj + xni,2h2,mj + · · ·+ xni,mihmi,mj = fni,1y1,mj + fni,2y2,mj + · · ·+ fni,njynj ,mj .

We can write the entire system in matrix form, by letting

gα =
(
x1,1, x1,2, . . . , xni,mi , y1,1, y2,1, . . . , ynj ,mj

)
be our vector of unknowns. Then our matrix Mα can be written

Mα =

hα 0 . . . 0
0 hα . . . 0
...

...
. . .

...
0 0 0 hα
f∗1,1 f∗1,2 . . . f∗1,nj
f∗2,1 f∗2,2 . . . f∗2,nj

...
...

. . .
...

f∗ni,1 f∗ni,2 . . . f∗ni,nj

.

Here f∗i,j are matrices comprised of elements of f making up the right hand side of
the above equations. They can be written

38 CHAPTER 5. LINEAR ALGEBRA ALGORITHM

f∗i,j =

−ai,j 0 . . . 0

0 −ai,j . . . 0
...

...
. . .

...
0 0 . . . −ai,j

 .

For simplicity, we will sometimes write Mα using the notation

Mα =

(
Hα

Fα

)
,

with Hα being the block-upper-triangular matrix with hα as entries, and Fα being
the lower portion containing the f∗i,j elements.

Example 5.2. Suppose we have two representations wherein two vertices vi, vj
have the commutative diagram between them:

k2 fα−−−−→ k3

gi

y gj

y
k2 hα−−−−→ k2

where the maps are given by

fα =

(
1 0 1
1 1 0

)
hα =

(
1 1
0 1

)
gi =

(
x1,1 x1,2

x2,1 x2,2

)

gj =

y1,1 y1,2

y2,1 y2,2

y3,1 y3,2

Given the above inference about the shape of Mα we expect it to equal

Mα =

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1
−1 0 −1 0
0 −1 0 −1
0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

5.2. THEORY 39

Writing out Equation 5.3 we get

x1,1 = y1,1 + y3,1

x2,1 = y1,1 + y2,1

x1,1 + x1,2 = y1,2 + y3,2

x2,1 + x2,2 = y1,2 + y2,2

which corresponds to

(
x1,1 x1,2 x2,1 x2,2 y1,1 y1,2 y2,1 y2,2 y3,1 y3,2

)

1 0 1 0
0 0 1 0
0 1 0 1
0 0 0 1
−1 −1 0 0
0 0 −1 −1
0 −1 0 0
0 0 0 −1
−1 0 0 0
0 0 −1 0

= 0.

That this matrix corresponds to the equations is readily checked by performing
the matrix calculation. We see that the matrix Mα is as expected (up to permu-
tation of the columns).

Finally we quickly address what happens when we have a vertex with an arrow
to itself. In this case our earlier commutative diagram can be written

V (i)
fα−−−−→ V (i)

gi

y gi

y
V ′(i)

hα−−−−→ V ′(i)

and the relations become

gihα = fαgi.

Writing out the equations as before we get

40 CHAPTER 5. LINEAR ALGEBRA ALGORITHM

x1,1h1,1 + x1,2h2,1 + · · ·+ x1,mihmi,1 = f1,1x1,1 + f1,2x2,1 + · · ·+ f1,nixni,1

x1,1h1,2 + x1,2h2,2 + · · ·+ x1,mihmi,2 = f1,1x1,2 + f1,2x2,2 + · · ·+ f1,nixni,2

...

x1,1h1,mi + x1,2h2,mi + · · ·+ x1,mihmi,mi = f1,1x1,mi + f1,2x2,mi + · · ·+ f1,nixmi,mi

x2,1h1,1 + x2,2h2,1 + · · ·+ x2,mihmi,1 = f2,1x1,1 + f2,2x2,1 + · · ·+ f1,mixmi,1

...

x2,1h1,mi + x2,2h2,mi + · · ·+ x2,mihmi,mi = f2,1x1,mi + f2,2x2,mi + · · ·+ f2,nixmi,mi
...
...
...

xni,1h1,mi + xni,2h2,mi + · · ·+ xni,mihmi,mi = fni,1x1,mi + fni,2x2,mi + · · ·+ fni,nixni,mi .

Note that we know only have the xi,j variables. Using the dense notation from
before, the resulting matrix Mα can now be written

Mα = Hα + Fα.

5.2.3 Creating the matrix X

Suppose now that we for every arrow in α have calculated Mα. We now wish
to combine these matrices into a large matrix X which simultaneously encodes
all the constraints imposed on any homomorphism between RM and RN . This
procedure is named CreateLinearEquationsFromMats (which also finds the
Mα) in Algorithm 1. Before we continue in the general case, we look at a simple
example to get an idea of how to combine the individual matrices.

Example 5.3. Let Γ be the quiver

Γ: v1α
$$ β // v2

and let RM and RN be the representations

RM : kd1

%%
(
f1 f2

)
// k2

RN : k2

e1 e2

e3 e4

 ''

h1 h2

h3 h4

// k2

Writing g1 =
(
x1,1 x1,2

)
and g2 =

(
y1,1 y1,2

y2,1 y2,2

)
, we get the following equations

5.2. THEORY 41

(
x1,1 x1,2

)(e1 e2

e3 e4

)
= (d1)

(
x1,1 x1,2

)
(
x1,1 x1,2

)(h1 h2

h3 h4

)
=
(
f1 f2

)(y1,1 y1,2

y2,1 y2,2

)
resulting in the linear equations

x1,1e1 + x1,2e3 = d1x1,1

x1,1e2 + x1,2e4 = d1x1,2

x1,1h1 + x1,2h3 = f1y1,1 + f2y2,1

x1,1h2 + x1,2h4 = f1y1,2 + f2y2,2

We can write this on matrix form as before, resulting in

xM = (x1,1, x1,2, y1,1, y1,2, y2,1, y2,2)

e1 − d1 e2 h1 h2

e3 e4 − d1 h3 h4

0 0 −f1 0
0 0 0 −f1

0 0 −f2 0
0 0 0 −f2

 = 0

We note two things in particular about the above matrix. The first is that
the matrix Mα adheres to the formula for arrows which start and end in the same
vertex: Mα = Hα + Fα. The second is that the shape of the last two columns are
identical to Mβ , as can be expected, and is located with it’s top entry at the top
row of X. Indeed the matrices Mγ for all arrows γ starting in the same vertex
vi will have the top entry located in the same row of X. If we employ the dense
notation used earlier, we can write the above matrix in the following way:

xX =

(
Hα + Fα Fβ

0 Hβ

)
We can deduce two more facts about the shape of X. First, if an arrow γ were

to start in vertex 2 in the example above, the ”top” (herein meaning the part of the
matrix containing Fγ) of Mγ would start at the third row. This is clear as the four
bottom rows represent linear combinations of y1,1, y1,2, y2,1 and y2,2. Secondly, the
matrix Mγ would be flipped when inserted into X. Suppose for instance that we
append an arrow γ to the quiver Γ in the above example, going from 2 to 1. This
would result in an additional matrix-equation being added:

(
f∗1
f∗2

)(
x1,1 x1,2

)
=

(
y1,1 y1,2

y2,1 y2,2

)(
h∗1 h∗2
h∗3 h∗4

)

42 CHAPTER 5. LINEAR ALGEBRA ALGORITHM

resulting in the four new linear equations

f∗1x1,1 = y1,1h
∗
1 + y1,2h

∗
3

f∗2x1,1 = y2,1h
∗
1 + y2,2h

∗
3

f∗1x1,2 = y1,1h
∗
2 + y1,2h

∗
4

f∗2x1,2 = y2,1h
∗
2 + y2,2h

∗
4

which gives us additional four columns in X:

M =

e1 − d1 e2 h1 h2 −f∗1 −f∗2 0 0
e3 e4 − d1 h3 h4 0 0 −f∗1 −f∗2
0 0 −f1 0 h∗1 0 h∗2 0
0 0 0 −f1 h∗3 0 h∗4 0
0 0 −f2 0 0 h∗1 0 h∗2
0 0 0 −f2 0 h∗3 0 h∗4

 = 0

Swapping column 6 and 7, we achieve the expected pattern. Using our convenient
notation we can write (

Hα + Fα Fβ Hγ

0 Hβ Fγ

)
.

Temporarily using the notation vi for vertices, and letting αvij be the jth arrow
going out of vi. Fix a total order ≺ on {v1, v2, . . . , ek} the vertices of Γ. We then
end up with the general form for X:(

Me1 Me2 . . . Mek

)
where

Mvi =
(
M∗
α
vi
1

M∗
α
vi
2

. . . M∗
α
vi
l

)
with

M∗
α
vi
j

=

...

Fαj
...

Hαj

 If s(αj) ≺ e(αj)

...

Hαj
...

Fαj

 If e(αj) ≺ s(αj)

...

Fαj +Hαj
...

 If s(αj) = e(αj)

5.2. THEORY 43

The row locations of Hαj and Fαj above depend on the start and end vertex of αj
and their position in the order ≺.

Example 5.4. Suppose we have the quiver

Γ: 1α
$$ β //

γ

��

2

ε

��
3

ζ

WW

and that we are given two representations RM and RN . Let ≺ be the order 1 ≺
2 ≺ 3. Then independent of the representations, we can tell that X will have the
following shape, Fα +Hα Fβ Fγ Hζ 0

0 Hβ 0 0 Fε
0 0 Hγ Fζ Hε

 .

We are now ready to state the procedure CreateLinearEquationsFrom-
Mats.

Algorithm 2 Insert into X all Fα and Hα for all arrows α

1: function CreateLinearEquationsFromMats(X,Γ, SupportM , SupportN)
2: MatsM ←MatricesOfPathAlgebra(RM) . Get all fα
3: MatsN ←MatricesOfPathAlgebra(RN) . Get all hα
4: for vertex i in Γ0 do
5: for outgoing arrow αj of i do
6: if ArrowHasSupport(αj , SupportM , SupportN) then
7: continue
8: InsertMatsFromArrow(X,Γ, αj ,MatsM ,MatsN)

9: return X
10: function ArrowHasSupport(alpha, SupportM , SupportN)
11: start← s(α)
12: end← e(α)
13: return end ∈ SupportN and (start ∈ SupportM or end ∈ SupportN)

The function InsertMatsFromArrow simply extracts Fα and Hα from MatsM
and MatsN and inserts them into X at the right position as described above.

We wish to determine the total size of X. We know that we have as many rows
as we have variables that needs to be determined. For every vertex v ∈ Γ0, with
dimk V (i) = mi and dimk V

′(i) = ni, we will acquire mi · ni variables. Hence, the
total number of rows is

numRows =

dV∑
i=1

mini

44 CHAPTER 5. LINEAR ALGEBRA ALGORITHM

where dV is the number of vertices.

For every arrow α : V (i) → V (j), we get a new set of linear equations. The
number of columns in the linear equation are mi · nj = mj · nj . Hence the number
of columns is

numCols =

dE∑
k=1

ms(αk) · ne(αk)

where dE is the number of arrows.

5.2.4 Creating HomΛ(M,N)

The final step in the algorithm is determining a basis for the Homomorphism set
HomΛ(M,N). This is what the function named CreateMapsFromLinearE-
quations does in Algorithm 1. We now proceed to outline how this function
works.

We are given the matrix X above fully calculated. This matrix describes all
the relations any homomorphism between RM and RN must obey. Consequently,
finding the kernel of the matrix will give us the basis of the homomorphism set
HomΛ(M,N) that we desire. Finally we convert the kernel into a set of (bases of)
homomorphisms. First we take the row vectors of the kernel, and for each translate
the row vector into a list of maps, one for each vertex i ∈ G0. Then we pass this list
of maps into a function named QuiverRepresentationHomomorphism. This
function converts the list of maps into a homomorphism between RM and RN . It
also performs some extra validation regarding the correctness of the maps. The
function CreateMapsFromLinearEquations ends up being rather simple:

Algorithm 3 Creates a basis of HomΛ(M,N) from X

1: function CreateMapsFromLinearEquations(X,Γ0, RM , RN)
2: bases← Nullspace(X)
3: homBases← EmptyList()
4: for Each basis in bases do
5: maps← EmptyList()
6: for Each vertexi ∈ Γ0 do
7: maps[i]← ExtractVertexMatFromBasis(basis, i, RM , RN)

8: homomorphism← QuiverRepresentationHomomorphism(RM , RN ,maps)
9: Append(homBases, homomorphism)

10: return homBases

The functions NullSpace and EmptyList do exactly what you expect. The
function ExtractVertexMatFromBasis performs the task of extracting ma-
trices from the row vectors of the kernel. This concludes the algorithm.

5.3. ANALYSIS 45

5.3 Analysis

In this section we perform an analysis of the complexity of the above algorithm.
We show that the majority of the runtime is due to the calculation of the null space
of X. We define as before ni to equal the dimension of the vector space V (i) and
mi to equal the dimension of the vector space V ′(i). Let dV equal the number of
vertices in Γ and let dE equal the number of arrows in Γ. We will also occasionally
refer to numRows and numCols as the size of the matrix X.

The pseudo code of the algorithm is contained in Algorithm 1. To analyse the
complexity of the algorithm, we need to analyse look at the individual functions
called during the 10 lines of code.

The function Arrows is O(1), as it simply returns the set of arrows in Γ. So
is the function AlgebraOfRepresentation for the same reason.

The function FindSupport isO(dV), as it has to iterate through all the vertices
to find the support of a representation.

The function FindXDimensions is O(dV + dE), as we have to iterate through
all arrows of each vertex to calculate the dimension of X.

The function NullMat is a tad harder to analyse in terms of complexity, as it
depends on the underlying operating systems ability to allocate memory. We can
however assume that the worst case is at most O(numRows · numCols).

The function CreateLinerEquationsFromMats is the function that cre-
ates the matrix X. There are multiple ways to go about analysing this function.
The most obvious way would be to look at the pseudo code in Algorithm 2, and
analyse line by line. However, we can reason about the algorithm in a different
way: Essentially, the algorithm is really just a procedure for copying a number
of smaller matrices —the matrices for every arrow α in RM and RN —into the
larger matrix X in a specific order. Each entry of X receives at most two values,
when Mα = Fα +Hα. Thus the complexity is O(numRows ·numCols), the size of
X. Note that this presupposes that we can implement the lookups of the function
ArrowHasSupport in Algorithm 2, line 10, in O(1) —easily done with a hash
map.

Finally we have the function CreateMapsFromLinearEquations. The
pseudo code for this function can be found in Algorithm 3. The major cost of this
function can be found at the very start, with the function NullSpace. Calculating
the null space of a matrix of size m×n can be done in many different ways. Using
QR-decomposition, we can perform the calculation in at most O(n3 + mn2)[5],
which is the complexity we will use going forward. The remainder of the algorithm
takes the returned bases (at most numCols row vectors), and iterates over them,
creating a homomorphism for every basis. The inner loop requires numRows op-
erations, as it has to put every entry of the basis into it's corresponding map. The
function QuiverRepresentationHomomorphism incurs a cost of O(dV), as it
has to iterate over each vertex in the quiver. Hence the cost of line 3-10 in the
function is O(dV numRows+ numCols · numRows).

Theorem 5.5. The time complexity of Algorithm 1 is O(numCols3 +numRows ·
numCols2+dV numRows). Inserting the expressions for numRows and numCols,

46 CHAPTER 5. LINEAR ALGEBRA ALGORITHM

we get the complexity

O

(dE∑
k=1

ms(αk) · ne(αk)

)3

+

(
dV∑
i=1

mini

)
·

(
dE∑
k=1

ms(αk) · ne(αk)

)2

+ dV

(
dV∑
i=1

mini

)
Proof. Follows directly from the above argument: The most dominant term in the
above analysis is the NullSpace function.

Chapter 6

Green-Heath-Struble
Algorithm

In this chapter we introduce the Green-Heath-Struble algorithm for calculating
HomΛ(M,N). The algorithm works by abusing the adjoint associativity relation
introduced in Theorem 3.9: We can find HomΛ(M,N) by constructing an isomor-
phism to (M⊗N∗)∗. Given a projective presentation of M , we can find M⊗N∗ by
tensoring the projective presentation with −⊗N∗. Calculating (Gröbner) bases for
M and N we can find M ⊗N∗as the cokernel of the map in the resulting tensored
projective presentation, as it is an exact sequence. Hence we can find (M ⊗N∗)∗
by dualising.

Note that most of the examples will revolve around finding Hom(M,M) =
End(M). This is to make the examples slightly more tractable. Also our main use
of the algorithm is to use End(M) to decompose a module.

Throughout the chapter, kΓ will be a path algebra, I will be an admissible
ideal, and Λ will be the factor Λ = kΓ/I.

6.1 Overview

The algorithm takes as input two modules M and N of a path algebra Λ = kΓ/I,
given as (vertex) projective presentations

P1
(λji)−−−→ P0 →M → 0

Q1
(γji)−−−→ Q0 → N → 0.

We start out by applying Theorem 3.9 to M , which gives

HomΛ(M,N) ∼= Homk(M ⊗Λ N
∗, k).

So if we can find Homk(M ⊗Λ N
∗, k), which is the dual of M ⊗Λ N

∗, then we can
find HomΛ(M,N). Thus we have reduced our task to finding M ⊗Λ N

∗. Finding

47

48 CHAPTER 6. GREEN-HEATH-STRUBLE ALGORITHM

Homk(M ⊗ΛN
∗, k) from M ⊗ΛN

∗ will be shown in Section 6.2.4 to be a straight-
forward task.

Given a vertex projective-presentation for M :

⊕rj=1w(j)Λ
(λji)−−−→ ⊕gi=1v(i)Λ→M → 0,

we tensor on the right with N∗, which gives us the new sequence

⊕rj=1w(j)Λ⊗Λ N
∗ (λji)⊗IdN∗−−−−−−−→ ⊕gi=1v(i)Λ⊗Λ N

∗ →M ⊗Λ N
∗ → 0.

From Theorem 3.11 we know that the tensor product is right-exact, implying that
the new sequence is exact. We now show that this sequence is in fact identical to
the sequence

⊕rj=1w(j)N∗
(λji)−−−→ ⊕gi=1v(i)N∗ →M ⊗Λ N

∗ → 0.

Proposition 6.1. Let ΛA be a right Λ-module, and let v be some idempotent of
Λ. Then

vΛ⊗Λ A ∼= vA

Proof. Specifically, let v = 1Λ. We wish to show Λ ⊗Λ A ∼= A. Let λ ∈ Λ, a ∈ A.
We wish to map λ⊗ a to some element of A. But λ⊗ a = 1 ·λ⊗ a = 1⊗λa. Thus,
the map sending λ⊗ a 7→ λa is our desired isomorphism. By extension, this yields
vΛ⊗Λ A ∼= vA.

While we definitely have complicated our matters a lot, what we now have
achieved is to find a way to compute M ⊗Λ N∗: The exact sequence is (right-
)exact, so the cokernel of (λji) is M ⊗ N∗. And so we have further transformed
our initial problem into describing (λji). The map (λji) is a matrix, where each
row represents an element in ⊕gi=1v(i)Λ. So the entries of λji has the form of some
path in v(i)Λ.

The action of the map λji(n
∗) can be described by (λi1n

∗, λi2n
∗, . . . , λinn

∗).
Here n∗ is an element of some (dual) basis of N∗. The construction of such a basis
will be described in Section 6.2.1. To find the cokernel of this map, we construct a
matrix D representing the map. We can then use basic linear algebra to compute
the cokernel.

To construct D, we take the elements of (λji) and calculate a matrix repre-
sentation of the actions of each λji. This involves finding the actions every arrow
p ∈ Γ1 exerts on the basis-elements of Λ. The construction of these matrices will
be described below in Section 6.2.3. The solution space D of x ·DT = 0 is by basic
linear algebra isomorphic to the cokernel.

Having found the cokernel of (λji), we now have a clear path to describing
EndΛ(M), going throughM⊗ΛN

∗ and then Homk(M⊗ΛN
∗, k). This will complete

the construction of the endomorphism ring. The details of this procedure will be
described in Section 6.2.4.

6.2. DETAILED ALGORITHM 49

Algorithm 4 Homomorphism set by Green-Heath-Struble

1: procedure HomomorphismSetOfModules(Mproj , Nproj)
2: (λji)←Mproj .maps[0]
3: D ← FindDualLambda(λji, Nproj)
4: nullSpace← NullSpace(DT)
5: return DualizeAndConvertToHomBasis(nullSpace)

6: function FindDualLambda(λji, N)
7: Λ← Algebra(N)
8: I ← GröbnerBasis(Λ)
9: F ← CreateFMatrix(N, I)

10: G ← GröbnerBasis(F)
11: L← CreateLMatrices(G, N)
12: return CreateDMatrix(L, λji)

Algorithm 4 contains the pseudocode of the algorithm. The function Alge-
bra(N) returns the underlying algebra Λ ofN (andM). The function GröbnerBasis
calculates a Gröbner basis. The function NullSpace(D) calculates, as before, the
null space of the matrix D.

The remaining intermediate functions will be described below.

6.2 Detailed algorithm

6.2.1 Calculating a basis of N∗

In this section we wish to show a procedure that calculates a basis for N∗. We start
by introducing a theorem showing us how to lift a vertex projective presentation
from Λ up to kΓ:

Theorem 6.2. Let kΓ be a path algebra, I an admissible ideal over kΓ and Λ =
kΓ/I. Then let X be a right Λ-module given by a vertex projective presentation.
Then X is a right kΓ-module given by a vertex projective presentation.

Proof. We mirror the proof given in [16]. We have the following projective presen-
tation,

⊕j∈Jw(j)Λ
(λji)−−−−→ ⊕i∈Iv(i)Λ −−−−→ X −−−−→ 0

for some index sets J and I. We wish to lift the projective presentation up to a
projective presentation given by the following diagram

50 CHAPTER 6. GREEN-HEATH-STRUBLE ALGORITHM

0 0 0x x x
0 −−−−→ ⊕j∈Jw(j)Λ

(λji)−−−−→ ⊕i∈Iv(i)Λ −−−−→ X −−−−→ 0x x x
0 −−−−→ ⊕j′∈J ′w(j′)kΓ

(fji)−−−−→ ⊕i∈Iv(i)kΓ −−−−→ X −−−−→ 0x x ∥∥∥
0 −−−−→ ⊕i∈Iv(i)I ⊕i∈Iv(i)I −−−−→ 0x x

0 0

In other words, our task is to find the index set J ′, a map w′ : J ′ → Γ0, and
the map (fji). Informally, we can say that we need to find out how to map the
additional structure of the ⊕i∈Iv(i)I, which is factored out of the initial projective
presentation.

We wish to write ⊕i∈Iv(i)I as ⊕l∈LhlkΓ. Where L is another index set over
the vertices Γ0. The hl are themselves elements of ⊕i∈Iv(i)I. To do this, we can
create a right Gröbner basis H for I[15][16], such that

I = ⊕h∈HhkΓ.

To find the hl, we do the following: For each component v(i)I, find the cor-
responding hl by running over each entry hi of v(i)H, and create a new element
with hi in position i, and setting the rest to 0. Take then the matrix (λji) and let
the rows be a set of elements of ⊕i∈Iv(i)kΓ. Append to this set the elements hl,
yielding a new set F . Take this set and calculate a tip-reduced right Gröbner basis
F . Interpret the elements of the set F as the rows (fji). The w′ and j′ are found
by the terminating vertices of the rows of (fji).

Suppose now we are given a Λ-module M . We proceed to calculate a vertex
projective presentation of M :

⊕j∈Jw(j)Λ
(λji)−−−→ ⊕i∈Iv(i)Λ→M → 0,

e.g. by the method outlined in Section 3.3. Using Theorem 6.2 we lift the projective
presentation up to a projective presentation over kΓ:

⊕j∈J ′w(j)kΓ
(fji)−−−→ ⊕i∈Iv(i)kΓ→M → 0.

This procedure gives us the matrix (fji). From this matrix we get a (tip-reduced
uniform) right Gröbner basis F of ⊕j∈J ′w(j)kΓ, by taking the rows of (fji) as

6.2. DETAILED ALGORITHM 51

the elements of F . The elements in M can be viewed as the nontips of F : Set
V = ⊕i∈Iv(i)kΓ and W = ⊕j∈J ′w(j)kΓ. Then given the exactness of the above
sequence; M = V/W . But since F is a right Gröbner basis of W , we can write
V = Nontips(W) ⊕W . Factoring out W , we get that Nontips(W) ∼= V/W ∼= M .
Hence we can find a basis for M by finding a basis for the nontips of W through
F .

Viewing the elements in M as nontips, we get a basis B from F . Dualising this
basis, we end up with a basis B∗ for M∗.

The above procedure corresponds to the function CreateFMatrix in Algo-
rithm 4.

6.2.2 Calculating the actions of Λ

In this section we calculate the matrix D, describing the actions of (λji).
As before, we are given a path algebra kΓ over some quiver Γ = (Γ0,Γ1), an

(admissible) ideal I such that Λ = kΓ/I is finite dimensional, and finally a (right)
Λ-module M .

We first observe the following fact: Let vi be a vertex of Γ0, then Mvi is
a vector space. Furthermore, M can be written as a direct sum of these Mvi:
M = ⊕iMvi. To observe this, note that under the path algebra kΓ, the vi are
orthogonal idempotents for all i, and 1Λ =

∑
i vi. By extension we can write

M∗ = ⊕iviM∗ where M∗ is the dual of M .
Our goal now is to describe the actions of each path of Γ as matrices. This

gives us a way to find a matrix description of (λji). Let Mi = Mvi for some vertex

vi, with dimension di. Fix a k-basis {mi
j}
di
j=1, and let σ from vi to vj be an arrow

of Γ1. Then define a k-linear map LM (σ) : M → M defined by LM (σ)(m) = mσ.
Clearly the image of LM (σ) is contained in Mj . So LM (σ) : Mi → Mj . We can
describe the actions of LM (σ) by where it sends a basis element mi

s:

LM (σ)(mi
s) =

dj∑
t=1

βstm
j
t

Hence we can completely describe the actions of σ by the di × dj-matrix (βst). By
extension, for a path x = σ1σ2 . . . σn we can describe the actions of x by the matrix

LM (σ1)LM (σ2) . . . LM (σn).

We have now found a way to represent the actions of (λji) by a matrix: For
every entry λji, replace path-elements x of λji by the matrix LM (x). This gives
the desired matrix.

Finally, we show the relationship between the action of an arrow σ over M and
the action of the same arrow over M∗.

Theorem 6.3. Let p = σ0σ1 . . . σq be a path in Γ. Given the action of p over M ,
defined by

LM (σ1)LM (σ2) . . . LM (σq).

52 CHAPTER 6. GREEN-HEATH-STRUBLE ALGORITHM

Then the action of p over M∗ is given by the transpositions of the matrices:

LM (σq)
T . . . LM (σ2)TLM (σ1)T

Proof. We are given as starting point a basis {mi
j}
di
j=1 for every Mi = Mvi. We

dualise this basis, to obtain {(mi
j)
∗}dij=1 as a basis for M∗i = viM

∗. Recall that

(mi
j)
∗ is the map acting on the basis elements of Mi by

(mi
j)
∗

(
di∑
k=0

βkim
i
k

)
= βji.

We now wish to describe the left-action of an arrow σ : vi → vj on a basis element

(mj
t)
∗. In other words, we wish to find the matrix LM∗(σ) : M∗j → M∗i . But the

action of σ · (mj
t)
∗ can be described by how it acts on a basis element mi

s:

(σ · (mj
t)
∗)(mi

s) = (mj
t)
∗(mi

sσ)

From before, we have that

mi
sσ =

dj∑
k=1

βskm
j
k

Which yields

σ · (mj
t)
∗ =

di∑
s=1

βts(m
i
s)
∗

We see that the βts indexes act as the transposed of the βst, thus LM∗(σ) =
(LM (σ))T .

6.2.3 Calculating M ⊗Λ N∗

In this section we are going to perform the calculation of the tensor product M ⊗Λ

N∗. We do this by first finding the matrix D representing the actions of (λji), and
then finding it’s cokernel which is isomorphic to M ⊗Λ N

∗.
Suppose that we have been given the exact sequence

⊕rj=1w(j)N∗
(λji)−−−→ ⊕gi=1v(i)N∗ →M ⊗Λ N

∗ → 0.

We wish to find M ⊗Λ N
∗, which we have previously shown is equivalent to find-

ing the cokernel of (λji ⊗ IdN∗). We can find the cokernel by finding a matrix-
representation of the actions of (λji)⊗ IdN∗ . Fix a basis B∗ = {n∗1, n∗2, . . . , n∗d∗} of
N∗. We know we can find such a basis from the results of Section 6.2.3. For any
given basis element n∗s, our task is now to find a description of the actions of the
map

6.2. DETAILED ALGORITHM 53

(λji)(n
∗
s)

Recall that an entry of (λji) can be written

λji =
∑
k

αjikpjik0pjik1 . . . pjikn.

We can expand the map (λji)(n
∗
s) as

(λi1n
∗
s, λi2n

∗
s, λi3n

∗
s, . . . , λimn

∗
s)

We proceed by describing the action of each entry as we did in the previous section.
Note that we have the dual LN∗ as our basis elements are n∗s:

LN∗

(∑
k

αjikpjik0pjik1 . . . pjikn

)
=
∑
k

αjikLN∗(pjik0)LM∗(pjik1) . . . LN∗(pjikn)

=
∑
k

αjikLN (pjikn)T . . . LN (pjik2)TLM (pjik1)T ,

Where we in the final step have used the equivalence of the action of LN∗(x) on
N∗ with LN (x)T on N .

The result is a matrix D which represent the actions of the map (λji)(n
∗
s). We

can now use linear algebra to find M ⊗Λ N
∗: Take the linear system x ·DT = 0.

The solution space of this is the cokernel of D. But the cokernel of D is isomorphic
to the cokernel of (λji), which is isomorphic to M ⊗Λ N

∗.
The above procedure corresponds to the function CreateLMatrices in Algo-

rithm 4. Combined with the previous chapter, we have now completed the function
FindDualLambda.

6.2.4 Tying it all together

We started out by noting that if we can find M ⊗ΛN
∗ then we can find an isomor-

phism to HomΛ(M,N). We have now found M ⊗Λ N
∗, by constructing a set of

isomorphisms from the exact sequence we got by tensoring the projective presenta-
tion of M by N∗. What then remains, is to explicitly write out the isomorphisms,
taking us to HomΛ(M,N).

We start with the matrix D we constructed in the previous section. We first
wish to map rows of the matrix onto elements

∑
i v(i)N∗. This is a fairly straight

forward procedure: Every row of D has an associated ns, and thus every column
an associated pair (n∗s, v(i)). Thus we can map every row in D to

∑
i v(i)N∗ by

taking each non-zero entry, and sending it to its associated v(i)n∗s.
We will now make a map from

∑
i v(i)N∗ to M ⊗Λ N

∗. This allows us to take
a basis for the cokernel of D, and send it via

∑
i v(i)N∗ to M ⊗Λ N

∗. The map is

54 CHAPTER 6. GREEN-HEATH-STRUBLE ALGORITHM

constructed in the following way: We are given a basis element v(i)n∗s ∈ v(i)N∗,
for some i. We wish to map it to some element m ⊗ n∗. Clearly we can send
n∗s → n∗s. We send v(i) to bi, the vector with v(i) in the ith coordinate. Suppose
that we have a basis {d1, d2, . . . , dp} of D. We can now interpret this basis directly
as a basis C, by sending element di via the map defined above.

Finally, we construct an explicit map from M ⊗ΛN
∗ to HomΛ(M,N). By now,

we have a basis for M ⊗Λ N
∗: ∑

s,t

βs,tbs ⊗ n∗t

By Theorem 3.9, we know that (M ⊗ΛN
∗)∗ is isomorphic to HomΛ(M,N), by the

map Φ(c∗)(m) =
∑d
i c
∗(m⊗n∗i)mi. We wish to send an element

(∑
s,t βs,tbs ⊗ n∗t

)∗
through this map:

Φ

((∑
s,t

βs,tbs ⊗ n∗t

)∗)
(m) =

d∑
i

((∑
s,t

βs,tbs ⊗ n∗t

)∗)
(m⊗ n∗i)mi.

We proceed to invoke a few tricks, to simplify this expression a bit. We know
that the bi generate M , since they are representations of the basis elements of v(i)Λ,
and since the map from ⊕gi=1v(i)Λ → M is onto. So we can get a full description
by substituting m with bj :

Φ

((∑
s,t

βs,tbs ⊗ n∗t

)∗)
(bj) =

d∑
i

((∑
s,t

βs,tbs ⊗ n∗t

)∗)
(bj ⊗ n∗i)mi

The final expression can be greatly simplified. Recall that for any basis element

mi, it’s dual n∗i is the map which preserves the ith coefficient: n∗j

(∑
j ajmj

)
= aj .

Hence for the nested sum above, this means that the inner duals
(∑

s,t βs,tbs ⊗ n∗t
)∗

only preserve the specific basis elements given by:

(βs,tbs ⊗ n∗t)∗(bj ⊗ n∗i) =

{
βs,t, if s = j, i = t

0 else

This means that for a fixed basis element bj , s = j remains fixed, and we need only
sum over t:

d∑
i

((∑
s,t

βs,tbs ⊗ n∗t

)∗)
(bj ⊗ n∗i)mi =

∑
t

βj,tmt.

This tells us that for a basis element c∗ of (M ⊗Λ N
∗)∗, we can describe the map

Φ(c∗) of HomΛ(M,N) by the structure of c∗ itself, i.e. where it sends the generators
of M . This completes the construction of the endomorphism ring.

The above procedure corresponds to the function DualizeAndConvertTo-
HomBasis in Algorithm 4.

6.3. EXAMPLE 55

6.3 Example

In this final section, we show a complete example for the calculation of an endo-
morphism ring EndΛ(M).

Example 6.4. We start with the following quiver Γ:

v1

b))

c
55a 77 v2

Let then Λ = kΓ/I, where I is the ideal generated by the relations {a2, ac}. This
is in fact also a Gröbner basis G for I, using length lexicographic ordering. The set
of nontips of Λ are

Nontips(I) = {v1, v2, a, b, c, ab}

Thus dimk Λ = 6. Suppose now that we are given a Λ-module M , given by the
projective presentation

v1Λ⊕ v2Λ
(λji)−−−→ v1Λ⊕ v1Λ→M → 0,

with (λji) =

(
a 0
−b ab

)
. A (tip-reduced uniform) right Gröbner basis for I can

be found by calculating the nontips of I on the right by G, yielding the set
{a2, a3, ac, a2c}, which we can reduce back to G. Thus we see that G is a (tip-
reduced uniform) right Gröbner basis for I.

We now proceed to lift (λji) up to (fji) as described in Theorem 6.2. We get
the set

F =

a 0
−b ab
a2 0
ac 0
0 a2

0 ac

We order the vertices v1 � v2. We then tip-reduce this set by performing the
following calculations:

(a2, 0)− a(a, 0) = (0, 0)

(ac, 0)− c(a, 0) = (0, 0)

All other elements stay put, and we get the right Gröbner basis F for M

56 CHAPTER 6. GREEN-HEATH-STRUBLE ALGORITHM

F =

−b ab
a 0
0 a2

0 ac

 .

We can interpret the set directly as the matrix (fji). The tips of this set are
{(−b, 0), (a, 0), (0, a2), (0, ac)}. Viewing the elements of M as nontips, we get a
basis for M by reducing via F . In the first coordinate we have the tips (−b, 0) and
(a, 0). Thus we are left with the nontips (v1, 0) and (c, 0). In the second we have
the tips (0, a2) and (0, ac), and we are left with the nontips (0, v1), (0, a), (0, b) and
(0, ab). Thus a vector space basis B for M is

B = {((v1, 0), (c, 0), (0, v1), (0, a), (0, b), (0, ab)}.
This tells us that dimkM = 6.

We proceed by finding the actions of the arrows of G1 in M . Or in other words,
we wish to calculate the matrices LM (σ). To do this, we first need to split up B
into bases for M1 and M2:

M1 = {(v1, 0), (0, v1), (0, a))}
M2 = {(c, 0), (0, b), (0, ab)}

We then see how each of the elements a and b (the only ones present in (λji)) act
on the basis-elements. We find LM (a) by calculating the following products:

(v1, 0) · a = (a, 0)
F
= (0, 0)

(0, v1) · a = (0, a)

(0, a) · a = (0, a2)
F
= (0, 0)

Hene LM (a) =

0 0 0
0 0 1
0 0 0

. Similarly, we find that LM (b) =

0 0 1
0 1 0
0 0 1

.

We are now ready to describe the actions of λji, by finding the matrix D:

D =

(
LM (a)T 0
−LM (b)T LM (b)TLM (a)T

)

=

0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 0
−1 0 −1 0 1 0

6.4. ANALYSIS 57

A basis for the cokernel of D is the set

C = {(−1, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (1, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1)}

The elements can be mapped to basis elements of M ⊗Λ M∗, as described in
Section 6.2.4. The correspondence between the columns of D and basis elements of
M⊗ΛM

∗ can be found in Table 6.1. The basis elements of C are interpreted directly
as endomorphisms of EndΛ(M), describing where generators of M are being sent.
For instance, the element (−1, 0, 1, 0, 0, 0) corresponds to

−(v1, 0)⊗ (v1, 0)∗ + (v1, 0)⊗ (0, a)∗

which corresponds to the endomorphism mapping (v1, 0) 7→ (v1 − a, 0). In partic-
ular, the third basis-element corresponds to

(v1, 0)⊗ (v1, 0)∗ + (0, v1)⊗ (0, v1)∗

which corresponds to the identity map. This completes the construction of the
endomorphism ring EndΛ(M).

Column Element
1 (v1, 0)⊗ (v1, 0)∗

2 (v1, 0)⊗ (0, v1)∗

3 (v1, 0)⊗ (0, a)∗

4 (0, v1)⊗ (v1, 0)∗

5 (0, v1)⊗ (0, v1)∗

6 (0, v1)⊗ (0, a)∗

Table 6.1: Correspondence between matrix D columns and elements of M ⊗Λ M
∗

6.4 Analysis

In this section we perform an analysis of the complexity of the above algorithm. We
will give the complexity in terms of the size of the matrix (λji). In Chapter 9 we will
extend the complexity to be written in terms of when the input are representations
RM and RN . As before, we let dV denote the number of vertices, and dE the
number of arrows in the underlying quiver.

The input to the algorithm is two projective presentations M and N . The
function FindDualLambda calculates the matrix D. Denote the size of the matrix
(λji) over Λ by n′ ×m′, implying that the size of (λ∗ji) is also n′ ×m′. For every
entry of the matrix (which contains elements of Λ), we have to insert an appropriate
combination of LN∗ matrices as described above. The size of these matrices depend
on the size of the underlying bases Ni. Writing ni = |Ni|, the resulting size of the
matrix D can be written

58 CHAPTER 6. GREEN-HEATH-STRUBLE ALGORITHM

r∑
j=1

nj ×
g∑
i=1

ni.

The function also have to find a Gröbner bases for Λ and then for the inter-
mediate matrix F . The computational complexity for finding a Gröbner basis is
hard to analyse, and will vary a lot depending on the input. We will denote this
complexity by G(Λ), and leave it for further analysis in Chapter 9. The function
also lifts (λji) up to (fji) to calculate a basis for M . The primary cost of this
calculation is constructing and reducing the matrix F as shown in Example 6.4.
To create F , the matrix (λji) is appended the element I in all coordinates i, as
described in Section 6.2.1. The number of elements in I is at most ni. Hence the
size of this matrix is at most n′×m′+(

∑g
i=0 ni)×m, which we denote by n′′×m′′.

To reduce the matrix we have to calculate a Gröbner basis, and incur a cost of
G(F).

Writing n =
∑r
j=1 nj and m =

∑g
i=1 ni, we get that the complexity of Find-

DualLambda is O(n ·m+ G(Λ) + G(F)), as we have to insert n×m elements to
the matrix D.

The following function NullSpace has has complexity O(m3 + nm2), as we
know from Section 5.3. Note that m and n are swapped, as we transpose the matrix
to find the cokernel. Finally we have the function DualizeAndConvertToHom-
Basis which performs the procedure outlined in Section 6.2.4. We can analyse this
similar to the function CreateMapsFromLinearEquations in Section 5.3: The
maximum number of bases in the kernel is m. If the function DualizeAndCon-
vertToHomBasis checks the homomorphism for consistency, it has to iterate
over each vertex and will incur a cost of O(dV). Hence the complexity of Create-
HomBasisFromLambdaNullSpace is O(dVm). In the case where the function
CreateHomBasisFromLambdaNullSpace does not check for consistency, we
end up with complexity O(m).

Theorem 6.5. The time complexity of Algorithm 4 is O(m3+nm2+dVm+G(Λ)+
G(F)).

Proof. Follows directly from the above argument.

Chapter 7

Hom functor algorithm

In this chapter we will introduce the so-called Hom-functor algorithm. The algo-
rithm works similarly to Green-Heath-Struble. The input to the algorithm is two
modules M and N , given as projective presentations. The functor Hom(−, N) is
applied to the projective presentation of M . This creates a new sequence, for which
HomΛ(M,N) is isomorphic to the kernel of one of the maps of the sequence, which
can be found.

This chapter relies on much of the material in Chapter 6, given the similarity
of the algorithms.

7.1 Overview

In this section we will provide an overview of how the algorithm works, arriving at
a piece of pseudocode.

The algorithm takes as input two modules M and N of a path algebra Λ =
kΓ/ 〈ρ〉, given as projective presentations

P1
(λji)−−−→ P0 →M → 0

Q1
(γji)−−−→ Q0 → N → 0.

We apply the Hom(−, N) functor to the projective presentation of M , to get
the (left-)exact sequence

0→ Hom(M,N)→ Hom(P0, N)
(λ∗ji)−−−→ Hom(P1, N).

This sequence gives us the relation ker(λ∗ji)
∼= HomΛ(M,N). So if we can find

(λ∗ji) from (λji), which is known, we can find HomΛ(M,N). The next step of
the algorithm does exactly this, the details of which will be described below. Fi-
nally we calculate the kernel, and interpret the resulting null space in terms of
homomorphisms from M to N .

59

60 CHAPTER 7. HOM FUNCTOR ALGORITHM

Algorithm 5 Homomorphism set by Hom functor

1: procedure HomomorphismSetOfModules(Mproj , Nproj)
2: (λji)←Mproj .maps[0]
3: D ← FindDualLambda(λji, N)
4: nullSpace← NullSpace(D)
5: return CreateHomBasisFromLambdaNullSpace(nullSpace)

Algorithm 5 contains the pseudocode of the algorithm. Notably, we assume
that the maps of the projective presentation is stored in a variable named maps,
which is indexed from left to right. The intermediate functions will be detailed in
the following sections.

7.2 Detailed algorithm

In this section we dive deeper into how the Hom functor algorithm works, and
develop some necessary theory.

7.2.1 Applying Hom

We are given two modules M and N as (vertex) projective presentations:

P1
(λji)−−−→ P0 →M → 0.

Q1
(γji)−−−→ Q0 → N → 0.

We can write P1 and P0 on ”vertex”-form, as in Chapter 6:

⊕rj=1w(j)Λ
(λji)−−−→ ⊕gi=1v(i)Λ→M → 0.

Everything so far is equivalent to the Green-Heath-Struble algorithm. Next we
apply the functor Hom(−, N) to the projective presentation of M , to obtain the
following exact sequence:

0→ Hom(M,N)→ Hom(⊕gi=1v(i)Λ, N)
(λ∗ji)−−−→ Hom(⊕rj=1w(j)Λ, N).

We can slightly simplify the sequence, by applying a proposition similar to
Proposition 6.1.

Proposition 7.1. Let AΛ be a right Λ-module, and let v be some idempotent of
Λ. Then

Hom(vΛ, A) ∼= Av

7.2. DETAILED ALGORITHM 61

Proof. The proof is similar to Proposition 6.1. For an element f ∈ Hom(vΛ, A),
we have f(vλ) = f(v)λ. Clearly f(v) ∈ Av. Conversely, we can take any element
av ∈ Av and send it to the map fav : vΛ → A, defined by fav(vλ) = (av)vλ =
(nv)λ ∈ A. Noting finally that f(v) = f(v · v) = f(v) · v ∈ Av we get that our
map is an isomorphism. In particular, Hom(wΛ, vΛ) ' vΛw for two idempotents v
and w in Λ. Furthermore, a homomorphism f : wΛ→ vΛ is given as f(m) = λfm

for some λf in vΛw. Given wΛ
λ·−−−→ vΛ for some λ ∈ vΛw with v, w in Λ, then

HomΛ(vΛ, N)
HomΛ(λ·−,N)−−−−−−−−−→ HomΛ(wΛ, N) is isomorphic to Nv

−·λ−−→ Nw.

Applying the above proposition, we can simplify the sequence to

0→ Hom(M,N)→ ⊕gi=1Nv(i)
(λ∗ji)−−−→ ⊕rj=1Nw(j),

where each λji is in viΛwj . The sequence is left-exact by Theorem 3.11. Conse-
quently, from the basic attributes of exact sequences, we know that,

HomΛ(M,N) ∼= ker(λ∗ji). (7.1)

Note that the actions of the map (λ∗ji) in the above sequence solely relies on N
and v(i), w(j)∀i, j.

7.2.2 Finding the actions of Λ

In the next step of the algorithm, the map (λ∗ji) will be calculated. The way to do
this is very similar to how the matrix D is found in Section 6.2.2. We are looking
for a matrix, which we still will call D, describing the action of (λ∗ji) on N . The
first thing we note, is the shape of (λji).

Proposition 7.2. Suppose we are given the following exact sequences:

P1
(λji)−−−→ P0 →M → 0

0→ Hom(M,N)→ Hom(⊕gi=1v(i)Λ, N)
(λ∗ji)−−−→ Hom(⊕rj=1w(j)Λ, N)

0→ Hom(M,N)→ ⊕gi=1Nv(i)
(λ∗ji)−−−→ ⊕rj=1Nw(j)

where the latter two are equivalent by Proposition 7.1. Then (λ∗ji) is the transpose
of (λji). However, the actions of the paths pi,j differ in the application on elements
of N instead of M .

Proof. We have the diagram

0 −−−−→ ⊕rj=1w(j)Λ
(λji)−−−−→ ⊕gi=1v(i)Λ −−−−→ M −−−−→ 0

Hom(−,N)

y Hom(−,N)

y Hom(−,N)

y
⊕rj=1Nw(j)

(λ∗ji)←−−−− ⊕gi=1Nv(i) ←−−−− HomΛ(M,N) ←−−−− 0.

62 CHAPTER 7. HOM FUNCTOR ALGORITHM

The rows of (λji) can be interpreted as elements of ⊕gi=1v(i)Λ, the columns as
elements of ⊕rj=1w(j). It should be clear that the desired form of (λ∗ji) transposes
the matrix size of (λji): We would like the rows of (λ∗ji) to be interpreted as
elements of ⊕rj=1Nw(j) and the columns as elements of ⊕gi=1Nv(i). Defining (λ∗ji)
by

(λ∗ji)((nv1, . . . , nvg)) = n((v1, . . . , vg))(λji) ∈ ⊕rj=1Nw(j)

we get the desired map (λ∗ji).

As in Section 6.2.3, we now wish to describe the action of the matrix D over k,
i.e. as a k-linear map. The full details can be found in that section, so we simply
restate the result: Let M be a module over Λ. Fix bases {mi

j}
di
j=1, with each mi

j

being elements of Λ. For every arrrow σ ∈ G1, we define LM (σ) : M → M to be
the map defined by LM (σ)(m) = mσ. We can describe the actions of LM (σ) by
where it sends a basis element mi

s:

LM (σ)(mi
s) =

dj∑
t=1

βstm
j
t .

Hence, to create the action of the matrix D over k, we simply take the matrix (λji)
as defined above, and for each entry pi,j of (λji) we calculate LM (pi,j).

Example 7.3. We follow [16, Example 4.1]. The quiver given is

Γ : v1α
$$

β
++

ζ ((

v2

γvv
v3

with Λ = kΓ/I, where I is the ideal generated by the relations {α3, α2ζ − βγ}. A
Gröbner basis for I is {α3, α2ζ−βγ, αβγ}, using length left lexicographic ordering.
The set of nontips of I is

{v1, v2, v3, α, β, γ, ζ, α
2, αβ, αζ, βγ, α2β}.

Hence dimk(Λ) = 12. Let M be the module of Λ given by the projective presenta-
tion

v1Λ⊕ v2Λ⊕ v3Λ
(λji)−−−→ v1Λ⊕ v1Λ→M → 0,

with λji =

α2 + α α
β + αβ α2β
βγ αζ

. A tip-reduced uniform right Gröbner basis for I is

{α3, α2ζ − βγ, αβγ, α2βγ}. We proceed as in Section 6.2.1, by lifting up the map
to a projective presentation over kΓ. Doing this we end up with a basis for M :

7.2. DETAILED ALGORITHM 63

B = {(0, v1), (0, α), (0, β), (0, ζ), (0, α2), (0, αβ), (0, α2β), (v1, 0), (ζ, 0)}.

The details can be found in [16, Example 4]. The example sets M = N , and
hence we are looking for the endomorphism ring of M . As we now have a basis,
we can calculate the matrix D. The procedure for doing this is identical to the
calculation in Section 6.2.2. We note that bases for M1, M2 and M3 respectively,
where Mi = Mvi, are

B1 = {(0, v1), (0, α), (0, α2), (v1, 0)}
B2 = {(0, β), (0, αβ), (0, α2β)}
B3 = {(0, ζ), (ζ, 0)}

They are found simply by observing the end vertex of each basis element. The
resulting matrices are

LM (α) =

0 1 0 0
0 0 1 0
0 0 0 0
0 −1 1 0

LM (β) =

1 0 0
0 1 0
0 0 1
0 1 −2

LM (γ) =

0 0
0 0
0 0

LM (ζ) =

1 0
0 0
0 0
0 1

and hence we end up with the matrix D for (λ∗ji):

64 CHAPTER 7. HOM FUNCTOR ALGORITHM

D =

(
LM (α)2 + LM (α) LM (β) + LM (α)LM (β) LM (β)LM (γ)

LM (α) LM (α)2LM (β) LM (α)LM (ζ)

)

=

0 1 1 0 1 1 0 0 0
0 0 1 0 0 1 1 0 0
0 0 0 0 0 0 1 0 0
0 −1 0 0 0 0 −1 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 −1 0 0

Note that if we have the matrices defining the representation/module N (or

M), the desired map induced by (λji) can readily be obtained without calculating
LN .

7.2.3 Going from the kernel to HomΛ(M,N)

The final step after having calculated (λ∗ji), and having calculated the kernel of
(λ∗ji), is to associate the kernel back to HomΛ(M,N). In other words specify the
isomorphism HomΛ(M,N) ∼= ker(λ∗ji).

Given the matrix D, we can quite literally read off the rows as basis elements
of homomorphisms between M and N . This is the exact converse of what we do
for Green-Heath-Struble in Section 6.2.4, where we associate columns with basis
elements of M ⊗ M∗. The argument becomes somewhat less complex however,
given that we do not have to navigate through a number of dual transformations.

Every column of D has an associated basis element ns, and every row rep-
resents an element in ⊕gi=0Nv(i). We wish to make a map from ⊕gi=1Nv(i)
to HomΛ(M,N), similar to how we made a map from ⊕i=1v(i)N∗ to M ⊕ N∗

in Section 6.2.4. Define bi by the vector with v(i) in the ith component. For
i = {1, . . . , r}, bi is the basis element of Mi which is also a generator of Mi. We
send every element nsv(i) in a basis element of the kernel C of D to the homo-
morphism bi 7→ ns. In other words, if we are given nsv(i), we create the map
fs,i : M → N , defined by fs,i(bi) = ns. These maps determine where to send the
generators of M .

Hence a basis element D can be interpreted directly as a basis of HomΛ(M,N)
on the form

∑
s,t fs,i. Note that this is completely analogous to how we interpreted

basis elements of the cokernel of D in Section 6.2.4. Sending all elements of the
kernel C through this map, we get a basis for HomΛ(M,N).

7.3 Example

Continuing on Example 7.3, where we left off with the matrix

7.4. ANALYSIS 65

D =

(
LM (α)2 + LM (α) LM (β) + LM (α)LM (β) LM (β)LM (γ)

LM (α) LM (α)2LM (β) LM (α)LM (ζ)

)

=

0 1 1 0 1 1 0 0 0
0 0 1 0 0 1 1 0 0
0 0 0 0 0 0 1 0 0
0 −1 0 0 0 0 −1 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 −1 0 0

The correspondence between the rows of D and elements of HomΛ(M,N) is

Row Element
1 (v1, 0)→ (v1, 0)
2 (v1, 0)→ (0, a)
3 (v1, 0)→ (0, a2)
4 (v1, 0)→ (v1, 0)
5 (0, v1)→ (0, v1)
6 (0, v1)→ (0, a)
7 (0, v1)→ (0, a2)
8 (0, v1)→ (v1, 0)

and a basis for the kernel of D is

C = {(0, 0, 0, 1, 1, 0, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0,−1, 0,−1, 0, 1)}.

We read off the entries of each basis element as constituent parts of a homomor-
phism basis in HomΛ(M,N). Take for instance the basis element (0, 0, 0, 1, 1, 0, 0, 0).
It corresponds to the homomorphism which sends (v1, 0) → (v1, 0) and (0, v1) →
(0, v1). In other words the identity map.

7.4 Analysis

In this section we perform an analysis of the complexity of the above algorithm. We
will give the complexity in terms of the size of the matrix (λji). In Chapter 9 we will
extend the complexity to be written in terms of when the input are representations
RM and RN . As before, we let dV denote the number of vertices, and dE the
number of arrows in the underlying quiver. The analysis here is almost identical
to the analysis in Section 6.4, up to some permutations of variables.

The input to the algorithm is two projective presentations M and N . The
function FindDualLambda calculates the matrix D. Denote the size of the matrix
(λji) over Λ is by m′×n′, implying that the size of (λ∗ji) is n′×m′. For every entry

66 CHAPTER 7. HOM FUNCTOR ALGORITHM

of the matrix (which contains elements of Λ), we have to insert an appropriate
combination of LM matrices as described above. The size of these matrices depend
on the size of the underlying bases Ni. Writing ni = |Ni|, the resulting size of the
matrix D can be written

g∑
i=1

ni ×
r∑
j=1

nj .

The function also have to find a Gröbner bases for Λ and then for the intermediate
matrix F . The computational complexity for finding a Gröbner basis is hard to
analyse, and will vary a lot depending on the input. As in Chapter 6 we will
denote this complexity by G(Λ), and leave it for further analysis in Chapter 9.
The function also lifts (λji) up to (fji) to calculate a basis for M . The primary
cost of this calculation is constructing and reducing the matrix F , as shown in
Example 6.4. To create F , the matrix (λji) is appended the element I in all
coordinates i, as described in Section 6.2.1. The number of elements in I is at
most ni. Hence the size of this matrix is at most m′ × n′ + (

∑g
i=0 ni)×m, which

we denote by n′′×m′′. To reduce the matrix we have to calculate a Gröbner basis,
and incur a cost of G(F).

Writing n =
∑g
i=1 ni and m =

∑r
j=1 nj , we get that the complexity of Find-

DualLambda is O(n ·m+ G(Λ) + G(F)), as we have to insert n×m elements to
the matrix D.

The following function NullSpace has has complexity O(n3 + mn2), as we
know from Section 5.3. Finally we have the function CreateHomBasisFrom-
LambdaNullSpace which performs the procedure outlined in Section 7.2.3. We
can analyse this similar to the function CreateMapsFromLinearEquations in
Section 5.3: The maximum number of bases in the kernel is n. If the function
CreateHomBasisFromLambdaNullSpace checks the homomorphism for con-
sistency, it has to iterate over each vertex and will incur a cost of O(dV). Hence
the complexity of CreateHomBasisFromLambdaNullSpace is O(dV n). In
the case where the function CreateHomBasisFromLambdaNullSpace does
not check for consistency, we end up with complexity O(n).

Theorem 7.4. The time complexity of Algorithm 5 is O(n3 +mn2 +dV n+G(Λ)+
G(F)).

Proof. Follows directly from the above argument.

Chapter 8

Probabilistic Decomposition

In this chapter we introduce an algorithm which attempts to randomly select ele-
ments of a finite-dimensional algebra R over a finite field k. The elements we are
trying to randomly select have to be both non-invertible and and non-nilpotent.
This yields a decomposition by Fitting's Lemma.

The reason we are trying to do this originates from Theorem 3.2. Given a
module M over R, the theorem states that finding a decomposition of the identity
endomorphism on M into pairwise orthogonal idempotents, naturally yields a de-
composition of M . The question then is how to find such a decomposition of the
identity endomorphism. One answer can be found in [6]. In practice however, find-
ing a set of pairwise orthogonal idempotents might be computationally expensive.
This algorithm presents a probabilistic alternative.

The algorithm has an implementation in QPA[20, moduledecomp.gi, lines 492-
556].

8.1 Overview

In this section we give an overview of how the algorithm works, arriving at a piece
of pseudocode.

The input of the algorithm is a module M over a finite-dimensional algebra
R. The first thing we have to do, is calculate the endomorphism ring End(M) of
M . We can do this with either of the algorithms presented earlier. For brevity
we will set E = End(M). We then wish to decompose M by successively applying
Fitting's Lemma, which will be introduced below. To apply the lemma, we need
to find members φ ∈ E which are non-invertible and non-nilpotent. We do this
by random selection. Whenever we find an appropriate element, we can split the
module M in two, and run the algorithm recursively on the two pieces. A condition
for how many iterations we have to run will also be presented.

Algorithm 6 shows pseudocode for the procedure described above. The function
IsInvertible and IsNilpotent can be implemented efficiently, see for instance
[20, modulecomp.ci, line 516-517]. The function FindMaximumChainLength

67

68 CHAPTER 8. PROBABILISTIC DECOMPOSITION

Algorithm 6 Probabilistic decomposition of IdM
function Decompose(M , E)

n← FindMaximumChainLength(E)
maxIterations← DecomposeNumberOfIterations(E)
i← 0
while i ≤ maxIterations do

i← i+ 1
φ← RandomElement(E)
if not IsInvertible(φ) and not IsNilpotent(φ) then

φn ← φn

. Ekern is the endomorphism ring restricted to the elements of kern
Ekern , kern ← CalculateKernel(φn, E)
. EImn is the endomorphism ring restricted to the elements of Imn

EImn
, Imn ← CalculateImage(φn, E)

return Decompose(Imn, EImn
)⊕Decompose(kern, Ekern)

return M

[20, modulecomp.ci, line 506-507] can also be implemented efficiently. The func-
tion RandomElement simply selects a random element from E. The functions
CalculateKernel and CalculateImage are the crux of the procedure, and
calculates our sought after Im(φn) and ker(φn). They also have the additional
task of restricting the endomorphisms in E to elements of Im(φn) and ker(φn) re-
spectively. Finally, the function DecomposeNumberOfIterations returns the
max number of iterations to return. Finally, we note that the algorithm returns
inconclusively if it is unable to find a decomposition. One might still exist, but the
algorithm has been unable to find it.

The intermediate functions will be described in detail in the following section.

8.2 Theory and detailed algorithm

In this section we describe in detail how the algorithm works. In particular, we will
expand on the theory behind Fitting's lemma, and how it can be used to decompose
a module M .

The reader is assumed to be familiar with basic concepts and results in ring
theory.

8.2.1 Fitting's Lemma

We start of by stating Fitting's lemma. The utility this has in providing a decom-
position of M should be immediately clear.

Lemma 8.1 (Fitting's Lemma). Let R be a ring, and M be a module over R of
finite length. Let then φ be any element of the endomorphism ring of M , End(M).
Then there exists an integer n such that

8.2. THEORY AND DETAILED ALGORITHM 69

M = Im(φn)⊕ ker(φn).

Proof. Let φ ∈ End(M). First note that Im(φ) ⊆ M and ker(φ) ⊆ M . It should
be clear that we have Im(φn) ⊇ Im(φn+1), and ker(φn) ⊆ ker(φn+1) for any n ≥ 0.
Thus we have the following chains

Im(φ) ⊇ Im(φ2) ⊇ · · · ⊇ Im(φn−1) ⊇ Im(φn) ⊆ . . .
ker(φ) ⊆ ker(φ2) ⊆ · · · ⊆ ker(φm−1) ⊆ ker(φm) ⊆ . . .

Since R is of finite length, it is both noetherian and artinian. Consequently we
know that both of these sequences at some point, say k and m respectively, will
stop:

Im(φk) = Im(φk+1) = . . .

ker(φm) = ker(φm+1) = . . .

Select n = max(k,m). At n, both chains have terminated. Now let u ∈ M ,
and note that φn(u) ∈ Im(φn) = Im(φ2n). This means that for some v ∈ M ,
φn(u) = φ2n(v) = φn(φn(v)). Now write u as

u = (u− φn(v)) + φn(v).

We wish to prove that of these two terms, one of them is in Im(φn) and one is
in ker(φn), so that M = Im(φn) + ker(φn). Applying φn to both the terms, we get

φn(u)− φ2n(v) = 0 =⇒ So (u− φn(v)) ∈ ker(φn)

φ2n(v) = φn(u) =⇒ So φn(v) ∈ Im(φn)

Hence M = Im(φn) + ker(φn) as stated.

We now wish to show that Im(φn) ∩ ker(φn) = 0. So let u ∈ Im(φn) ∩ ker(φn).
Then, as before, u = φn(v) for some v ∈ M . Applying φn on both sides, we get
that φn(u) = φ2n(v). However, since u ∈ ker(φn), then φ2n(v) = 0 =⇒ v ∈
ker(φ2n) = ker(φn). Thus u = φn(v) = 0. So any u ∈ Im(φn) ∩ ker(φn) must be 0,
giving that M = Im(φn)⊕ ker(φn).

We can use the above lemma to decompose M , by finding an appropriate φ.
However, to get a real decomposition of M we need to make sure that the φ we find
is both non-invertible and non-nilpotent: Suppose φ is nilpotent. Then φn = 0,
which means that the decomposition arising from Fitting's lemma will be trivial,
as ker(φn) = M . Suppose instead that φ is invertible. Then it is necessarily an
automorphism, implying that ker(φn) = 0. Consequently M = Im(φn).

70 CHAPTER 8. PROBABILISTIC DECOMPOSITION

8.2.2 Performing the decomposition

The procedure for decomposing M should now be obvious: Starting with M we
calculate End(M). We then chose a random element of End(M), and check if
it is non-invertible and non-nilpotent. If we have found such an element, we can
decompose M into Im(φn) and ker(φn), for some n. This might not be the complete
decomposition, as both Im(φn) and ker(φn) may be further decomposable. Thus
we have to recursively call our procedure with Im(φn) and ker(φn) in the place of
M . However, we need to make sure we alter End(M) by letting all φ ∈ End(M)
be restricted to Im(φn) and ker(φn) respectively. This is a fairly straight forward
calculation, relying on the following diagram:

Im(φn)

ν
##

g // Im(φn)
ν

{{
M

π
cc

f // M
π

;;

Observing that νπ = IdImφn
, we can bring f up to g by applying this iso-

morphism before and after f . This can be done similarly for kerφn with minor
adjustments.

We can now state the pseudocode for the functions CalculateImage and
CalculateKernel, which can be found in Algorithm 7.

Algorithm 7 Functions for calculating the image and kernel of a map φn

function CalculateImage(φn, E)
ν ← GetImageInclusion(φn)
π ← GetImageProjection(φn)
νπ ← ν · π
return Range(π),RestrictEndomorprhismToImage(φn, ν, π, E))

function CalculateKernel(φn, E)
ν ← GetKernelInclusion(φn)
π ← GetCoKernelProjection(φn)
νπ ← ν · π
return Range(π),RestrictEndomorphismToKernel(φn, ν, π, E))

The functions GetImageInclusion, GetImageProjection, GetKernelIn-
clusion, and GetCoKernelProjection does exactly what one would expect.
Reference implementations can be found in [20, modulehom.gi, line 723 and on-
ward]. The function RestrictEndomorphismRingToKernel and RestrictEn-
domorphismRingToImage performs the restriction of E to the kernel and image
of φn respectively. The relevant lines in QPA can be found in [20, moduledecomp.gi,
lines 541-547 and 532-538 respectively].

8.3. ANALYSIS 71

8.2.3 Number of runs

The only remaining unexplained portion of Algorithm 7 is the function Decom-
poseNumberOfIterations. The algorithm is of importance for two reasons: It
gives an indication of how long one should expect the algorithm to run before it
yields a likely definitive answer. Secondly, it will be of importance when deciding
which complexity class the algorithm belongs to.

Given that the probability for finding an appropriate element is p, we have
two cases: p is less than 1/2, and p is greater than or equal to 1/2. In the former
scenario, we wish to run the algorithm k times, i.e. select a maximum of k elements,
such that the overall probability of success is greater than or equal to 1/2. We can
find k directly:

1− (1− p)k = 0.5

(1− p)k = 0.5

k log(1− p) = log(0.5)

and so we end up with the formula for k

k =
log(0.5)

log(1− p)
. (8.1)

Example 8.2. Let p = 0.25. Then we have to run the algorithm log(0.5)
log(1−0.25) = 2.4

times.

Algorithm 8 shows pseudocode for the function DecomposeNumberOfIt-
erations. The intermediate function ProbabilityOfFindingValidElement
returns the probability p of finding a non-nilpotent non-invertible element φ. This
probability will be calculated in Section 8.3.

Algorithm 8 Calculate the number of iterations

function DecomposeNumberOfIterations(E)
p← ProbabilityOfFindingValidElement(E)
if p ≥ 0.5 then

return 1
else

return log(0.5)/ log(1− p)

8.3 Analysis

In this section we analyse the probabilistic algorithm described in the chapter so
far. Specifically, we wish to find the probability of by chance selecting a non-
nilpotent non-invertible element in the endomorphism ring End(M). However, in
this section we slack the conditions slightly, and work with a finite-dimensional
algebra R over a field k.

72 CHAPTER 8. PROBABILISTIC DECOMPOSITION

8.3.1 Preliminary results

We start by proving some preliminary results which will aid us in finding a bound
for p.

Lemma 8.3. Let R be a finite-dimensional algebra over a field k with Jacobsen
radical r. Let x be an element in R, and x̄ the projection of x into R/r. Then the
following assertions hold

(i) x is nilpotent in R if and only if x̄ is nilpotent in R/r.

(ii) x is invertible in R if and only if x̄ is invertible in R/r.

Proof. (i) Clearly x̄ is nilpotent in R/r if x is nilpotent.
Conversely suppose x̄ is nilpotent in R/r. Then there exists n ≥ 1 such that

x̄n ∈ r. Since r is a nilpotent ideal, there exists m ≥ 1 such that (x̄n)m = 0. Hence
x̄ is nilpotent in R.

(ii) Clearly x̄ is invertible in R/r if x is invertible.
Conversely suppose x̄ is invertible in R/r. Then x̄ȳ = ȳx̄ = 1 + r for some

y ∈ R. Then both (1− xy) and (1− yx) is in r. Hence there exists an m such that
(1 − xy)m = (1 − yx)m = 0. If m = 1 we are done, as y is the inverse of x. So
suppose m ≥ 2. Then

0 = (1− xy)m =

m∑
i=0

(
m

i

)
(−xy)m−i

=

m∑
i=0

(
m

i

)
(−1)m−i(xy)m−i

= 1 +

m−1∑
i=0

(
m

i

)
(−1)m−i(xy)m−i

= 1−
m−1∑
i=0

(
m

i

)
(−1)m−i+1(xy)m−i

= 1− x ·

(
y

m−1∑
i=0

(
m

i

)
(−1)m−i+1(xy)m−i−1

)

and hence x has a right inverse. Similarly we can show that x has a left inverse.

We use the above lemma to prove some results about the density of non-
invertible and non-nilpotent elements in R. We can now solely restrict our attention
to R/r, where it will be easier for us to determine how frequent such elements are.
First we introduce some short-hand notation for the count of non-invertible and
non-nilpotent elements in a ring R. We let |X| denote the number of elements in
a set X.

8.3. ANALYSIS 73

Definition 8.4. Let R be a finite ring. We define the following:

(i) Denote by N (R) the number of nilpotent elements in R.

(ii) Denote by I(R) the number of invertible elements in R.

(iii) Denote by nNnI(R) the number of non-invertible non-nilpotent elements in
R.

The quantity |nNnI(R)| is what we are interested in calculating. In particular
in relation to the quantity |R|. The following lemma again helps us to reduce the
problem to R/r.

Lemma 8.5. Let R be a finite-dimensional algebra over a finite field k with Ja-
cobsen radical r. Then

|nNnI(R)|
|R|

=
|nNnI(R/r)|
|R/r|

Proof. By direct counting, |R| = |R/r|·|r|. By Lemma 8.3 we know that |nNnI(R)| =
|nNnI(R/r)| · |r|. The result follows immediately by combining the equations.

Lemma 8.6. Let R = R1 × R2 × · · · × Rt be a finite direct product of rings Ri.
Then the likelihood of any random element x ∈ R to be non-invertible non-nilpotent
is

|nNnI(R)|
|R|

= 1−
∏t
i=1 |N (Ri)|+

∏t
i=1 |I(Ri)|

|R|

Proof. The set of elements in R which are nilpotent is completely disjoint from the
set of elements which are invertible. Thus the number of elements in R which are
non-nilpotent non-invertible is precisely

|nNnI(R)| = |R| − |N (R)| − |I(R)|.

So immediately we have that

|nNnI(R)|
|R|

= 1− |N (R)|+ |I(R)|
|R|

.

Any element in R can be written x = (r1, r2, . . . , rt). For this element to nilpotent
(invertible), all the elements ri need to be nilpotent (invertible). Hence

|N (R)| =
t∏
i=1

|N (Ri)|

and

|I(R)| =
t∏
i=1

|I(Ri)|

74 CHAPTER 8. PROBABILISTIC DECOMPOSITION

The claim follows.

Finally we state a lemma which helps us reduce R/r to a form akin to the ring
R in Lemma 8.6.

Lemma 8.7. Let R be a finite-dimensional algebra over a finite field k with Ja-
cobsen radical r. Then R/r is isomorphic to

Mn1
(F1)×Mn2

(F1)× · · · ×Mnt(Ft)

for some integers ni ≥ 1 and finite field extensions Fi of k.

Proof. The Artin-Wedderburn theorem states that R/r is isomorphic to a finite
direct product of full matrix rings over division rings Di which contains the finite
field k

Mn1
(D1)×Mn2

(D1)× · · · ×Mnt(Dt).

for some integers ni ≥ 1[3, Theorem 3.2, p. 382]. Since R is finite-dimensional over
k, so is each of the division rings Di. Hence each Di is a finite field extension of
k.

8.3.2 Finding a bound for p

Combining Lemma 8.6 and Lemma 8.7, we can now provide a bound for the prob-
ability

p =
|nNnI(R)|
|R|

.

Let R be a finite-dimensional algebra over a finite field k, with Jacobsen radical
r. Without loss of generality, let k = Fpd for a prime p and d ≥ 1. Then in the
decomposition of R/r each Fi = Fpd+di , with di ≥ 0. Hence we can write

R/r = Mn1(Fpd+d1)×Mn1(Fpd+d2)× · · · ×Mnt(Fpd+dt)

Let q = pd. For a general matrix rings Mn(Fq) we have the following results:

|N (Mn(Fq))| = qn
2−n

|I(Mn(Fq))| =
n−1∏
i=0

(qn − qi).

The first result can be found in [12][14]. The second can be found in [9, Example
1, p. 412].

We also have that

8.3. ANALYSIS 75

|R| =
t∏

n=1

qn
2
1(d+di)

Hence we can write the expression in Lemma 8.3 as

p =
|nNnI(R)|
|R|

= 1−
∏t
i=1 q

(d+di)(n
2
i−ni) +

∏t
i=1

∏ni−1
j=0

(
p(d+di)ni − p(d+di)j

)∏t
i=1 p

n2
1(d+di)

= 1−
∏t
i=1 p

(d+di)(n
2
i−ni)∏t

n=1 p
n2

1(d+di)
−
∏t
i=1

∏ni−1
j=0

(
p(d+di)ni − p(d+di)j

)∏t
i=1 p

n2
1(d+di)

= 1−
∏t
i=1 p

(d+di)(n
2
i−ni)∏t

n=1 p
n2
i (d+di)

−
∏t
i=1

∏ni−1
j=0

(
p(d+di)ni − p(d+di)j

)∏t
i=1 p

n2
1(d+di)

= 1−
t∏
i=1

(
p−(d+di)ni

)
−

t∏
i=1

ni−1∏
j=0

(
1− p(d+di)(j−ni)

)
.

We wish to find a lower bound for this expression, which by necessity has to be
greater than 0. We have that

d ≤ (d+ di) ≤ (d+ di)ni.

Hence we now have an upper (and lower) bound on all the variables in the final
expression for p above. Which in term implies that p is a bound constant. Further
simplifying, we end up with

p = 1−
t∏
i=1

(
p−(d+di)ni

)
−

t∏
i=1

ni−1∏
j=0

(
1− p(d+di)(j−ni)

)

= 1− p
∑t
i=1−(d+di)ni −

t∏
i=1

ni−1∏
j=0

(
1− p(d+di)(j−ni)

)

≥ 1− p−dt −
t∏
i=1

(
1− p−ni(d+di)

)ni
≥ 1− p−dt − (1− p−max(ni)(d+max(di)))tmin(ni)

Letting max(ni) = x,min(ni) = y,min(di) = z, we get the following expression:

p ≥ 1− p−dt − (1− p−x·(d+z))t·y

Inserting this into Equation 8.1, assuming the worst (lowest) value for p, we get

76 CHAPTER 8. PROBABILISTIC DECOMPOSITION

k =
log(0.5)

log(1− p)

=
log(0.5)

log(1−
(
1− p−dt − (1− p−x·(d+z))t·y

)
)

=
log(0.5)

log(p−dt − (1− p−x·(d+z))t·y)

=
log(0.5)

log(p−dt + (1− p−x·(d+z))t·y)

Chapter 9

Results

In this chapter we summarise the results of the analysis. We will compare the
different algorithms in terms of runtime, and categorise the problem of constructing
HomΛ(M,N) in terms of the complexity classes introduced in Chapter 4.

9.1 Comparing the algorithms for creating HomΛ(M,N)

In this section we directly compare the three algorithms presented that constructs
the set HomΛ(M,N).

Proposition 9.1. The matrix D in Green-Heath-Struble, Algorithm 4, is the trans-
pose of the matrix D in the Hom-functor algorithm, Algorithm 5.

Proof. Clearly the input matrix (λji) is identical in both algorithms. Suppose the
matrix is written

(λji) =

p1,1 p1,2 . . . p1,g

p2,1 p2,2 . . . p2,g

...
...

. . .
...

pr,1 p2,r . . . pr,g

then the matrix (λ∗ji) in Green-Heath-Struble will have the same shape, while in
Hom-functor it will be transposed:

(λji) =

p1,1 p2,1 . . . pg,1
p1,2 p2,2 . . . pg,2

...
...

. . .
...

p1,r p2,r . . . pg,r

The matrix D is crafted in both scenarios by adding appropriate matrices

LN (pi,j). In Green-Heath-Struble each matrix LN is transposed, as specified in
Theorem 6.3. Hence the entire resulting matrix D in Green-Heath-Struble is the
transposed of the matrix D in Hom-functor.

77

78 CHAPTER 9. RESULTS

Theorem 9.2. The runtime complexity of the algorithm Green-Heath-Struble, Al-
gorithm 4, and the Hom-functor algorithm, Algorithm 5, are identical up to asymp-
totical growth.

Proof. The runtime complexity of Green-Heath-Struble, given the m × n matrix
D, is

O(n3 +mn2 + dVm+ G(Λ) + G(F)).

The runtime complexity of Hom-functor, given the m′ × n′ matrix D′, is

O(m′3 + n′m′2 + dV n
′ + G(Λ) + G(F)).

From Proposition 9.1 we know that the resulting matrices are in fact transpositions
of each other, so m′ = n and n′ = m. The claim follows immediately.

Before we are able to compare Green-Heath-Struble and Hom-functor with the
linear algebra algorithm, we need to enter two missing pieces. First we need to
provide bounds for the cost of calculating Gröbner bases, G(Λ) and G(F). Secondly,
the input to the linear algebra algorithm is different than to the others; it takes
two representations. Hence we need to analyse Green-Heath-Struble and Hom-
functor in the scenario where there they take two representations, and constructs
a projective presentation from those.

As mentioned in previous chapters, the analysis for calculating Gröbner basis
is complex. The classical Buchberger's algorithm generally does not perform well,
with runtimes and memory usage in the realm of EXPSPACE-complete[18][8].
A bound for the degrees of the elements input to the Buchberger's algorithm is[8]

2

(
d2

2
+ d

)2n−1

.

A better alternative can be found in the F4/F5 algorithms[10]. However, these
are still exponential in space usage[2], and consequently also in runtime. Our only
chance is that the inputs Λ and F to the calculation of the bases not necessarily
grow with the size of the modules. Unfortunately, while Λ does not grow with the
size of the modules M and N , F does.

Given the complexity of the analysis of the F4/F5 algorithm, we will not re-
iterate it here. There reader is referred to [10], [2] for both the algorithm details
and the analysis. We can now prove the following:

Proposition 9.3. The runtime complexity of the algorithm Green-Heath-Struble,
Algorithm 4, and the Hom-functor algorithm, Algorithm 5, are

O(G(Λ) + G(F))

Proof. Follows from the analysis of the algorithms F4/F5 for calculating Gröbner
bases[2]. The exponential terms for calculating such a basis dominates the other
terms.

9.1. COMPARING THE ALGORITHMS FOR CREATING HomΛ(M,N) 79

We now look at changing the input to the algorithms Green-Heath-Struble and
Hom-functor to representations RM and RN , instead of projective presentations.
In this scenario, a few things change with both algorithms. First, we have to
calculate a (vertex) projective presentation of M . We can do this by iteratively
calculating projective covers. A routine for doing this is in [20, modulehomalg.gi,
line 549]. This routine can be seen to run in O(dV · dE)

Recall that the variables n and m in the Hom-functor analysis was defined by

n×m =

g∑
i=1

ni ×
r∑
j=1

nj

To be able to compare with the Linear Algebra algorithm, we need to determine r
and g in terms of properties of the input representations RM and RN . From the
analysis and bounds given in Section 3.3, we know that in the projective presenta-
tion

P1 → P0 →M → 0

we have dimk P1 ≤ dimkM · (M2 −M), dimk P0 ≤ dimkM · M. Here M def
=

maxv∈Γ0
{dimk vΛ}. Expanding on this analysis, we have that g = dimk P0/ radP0

and r = dimk ker f0/ rad ker f0. Hence we get

g ≤ dimkM

r ≤ dimk ker f0 = dimk P0 − dimkM

≤MdimkM − dimkM

= dimkM(M− 1)

These represent the worst-case scenarios, where P1 and P0 are the greatest.
We can rewrite the complexity of Hom-functor (Green-Heath-Struble) in terms of
these new variables, setting r = dimkM · (M− 1), g = dimkM .

O

dimkM ·(M−1)∑

i=1

ni

3

+

dimkM∑
j=1

nj

 ·
dimkM ·(M−1)∑

i=1

ni

2

+dV

dimkM ·(M−1)∑
i=1

ni

+ G(Λ) + G(F)

Note that the ni and nj are not necessarily all unique. We also note that when given
representations as input to the Hom-functor (Green-Heath-Struble) algorithm, we
no longer have to calculate the Gröbner bases, nor the matrices LN . This is because
the representations intrinsically contain both the bases and the maps for RM and
RN . Hence the final complexity for the representation case of the algorithms is

80 CHAPTER 9. RESULTS

O

dimkM ·(M−1)∑

i=1

ni

3

+

dimkM∑
j=1

nj

 ·
dimkM ·(M−1)∑

i=1

ni

2

+ dV

dimkM ·(M−1)∑
i=1

ni

Recall that the complexity of the Linear Algebra algorithm is

O

(dE∑
k=1

ms(αk) · ne(αk)

)3

+

(
dV∑
i=1

mini

)
·

(
dE∑
k=1

ms(αk) · ne(αk)

)2

+ dV

(
dV∑
i=1

mini

)
The two complexities presented here are not directly comparable, as they depend
on distinct quantities. We do note that they in some respects scale similarly, as
dimkM =

∑dV
i mi. We also note that the complexity of Hom-functor (Green-

Heath-Struble) is more sensitive to the underlying path algebra than the Linear
Algebra algorithm. Finally we note that both algorithms are polynomial in their
runtime.

9.2 On probabilistic decomposition

In this section we summarise the analysis of the probabilistic algorithm in Chap-
ter 8.

Recall the the final analysis of the algorithm showed that the number of runs
required for the algorithm to possess a 1/2 chance of succeeding, is

k =
log(0.5)

log(p−dt + (1− p−x·(d+z))t·y)
.

By succeeding we mean to find an element which is both non-invertible and non-
nilpotent. The decomposition process itself runs in polynomial time. Hence the
question of whether the algorithm in its entirety runs in polynomial time depends
on k. The function k depends on 6 variables: x, y, z, d, t and p. All of these are
defined in Chapter 8. Note that x ≥ y.

Unfortunately, we see that the expression for k grows exponentially in the vari-
ables x, y, z, d, t. The bound is not tight enough to give us good predictions about
what happens for fixed x, y, z, d and t, with variable p. However, experimental
results, shown in Figure 9.1, seem to indicate that the function grows at most
polynomially. The results are found by tabulating values of k using the formula

p = 1−
t∏
i=1

(
p−(d+di)ni

)
−

t∏
i=1

ni−1∏
j=0

(
1− p(d+di)(j−ni)

)
for p. The value t is fixed at 4, di fixed at {1, 2, 1, 1}, ni at {1, 3, 4, 5} and d = 1.

9.3. COMPLEXITY CLASSES 81

Figure 9.1: Experimental results for the variable k, with only p variable.

9.3 Complexity classes

In this final section we categorise the different algorithms into the complexity classes
introduced in Chapter 4.

Theorem 9.4. The algorithms Green-Heath-Struble and Hom-functor for finding
HomΛ(M,N), are EXPSPACE, in the case of the input being projective presen-
tations.

Proof. Follows directly from the above arguments.

Theorem 9.5. The algorithms Green-Heath-Struble and Hom-functor are P, in
the case of the input being representations.

Proof. Follows directly from the above argument.

Theorem 9.6. The algorithm for finding HomΛ(M,N) with the Linear Algebra
algorithm is P.

Proof. Follows directly from the above argument.

Theorem 9.7. The problem of determining the set of homomorphisms between
two modules M and N over a finite-dimensional path algebra Λ, is in P.

Proof. Follows directly from both Theorem 9.5 and Theorem 9.6.

Conjecture 9.8. The problem of decomposing the module M probabilistically
using Algorithm 6 has exponential runtime in all variables but p.

82 CHAPTER 9. RESULTS

Proof. Proof of the exponential runtimes follows from the analysis in Section 9.2.
We note that while not proven, experimental results seem to suggest that the
algorithm is polynomial in the variable p.

Given the analysis in Section 9.2, we have reason to believe that decompos-
ing probabilistically using Algorithm 6 in general is PSPACE, and neither ZPP
nor PP. We note that experimentation seem to suggest that there exists certain
edge cases where the probability becomes sufficiently large to warrant usage of the
algorithm.

Bibliography

[1] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Ap-
proach. 1st. New York, NY, USA: Cambridge University Press, 2009. isbn:
0521424267, 9780521424264.

[2] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. “On the complexity
of the F5 Gröbner basis algorithm”. In: Journal of Symbolic Computation 70
(2015), pp. 49–70. issn: 0747-7171. doi: https://doi.org/10.1016/j.jsc.
2014.09.025. url: http://www.sciencedirect.com/science/article/
pii/S0747717114000935.

[3] P.B. Bhattacharya, S.K. Jain, and S.R. Nagpaul. Basic Abstract Algebra.
Cambridge University Press, 1994. isbn: 9780521466295. url: https : / /

books.google.no/books?id=hiQ8e0b48swC.

[4] J. Buchmann et al. “An Implementation of the General Number Field Sieve”.
In: In Proceedings of Crypto’93. Springer-Verlag, 1993, pp. 159–165.

[5] Tony F. Chan. “Rank revealing QR factorizations”. In: Linear Algebra and
its Applications 88-89 (1987), pp. 67–82. issn: 0024-3795. doi: https://doi.
org/10.1016/0024-3795(87)90103-0. url: http://www.sciencedirect.
com/science/article/pii/0024379587901030.

[6] Alexander Chistov, Gábor Ivanyos, and Marek Karpinski. “Polynomial Time
Algorithms for Modules over Finite Dimensional Algebras”. In: Proceedings of
the 1997 International Symposium on Symbolic and Algebraic Computation.
ISSAC ’97. Kihei, Maui, Hawaii, USA: ACM, 1997, pp. 68–74. isbn: 0-89791-
875-4. doi: 10.1145/258726.258751. url: http://doi.acm.org/10.1145/
258726.258751.

[7] Thomas H. Cormen et al. Introduction to Algorithms, Third Edition. 3rd.
The MIT Press, 2009. isbn: 0262033844, 9780262033848.

[8] T. Dubé. “The Structure of Polynomial Ideals and Gröbner Bases”. In: SIAM
Journal on Computing 19.4 (1990), pp. 750–773. doi: 10.1137/0219053.
eprint: https://doi.org/10.1137/0219053. url: https://doi.org/10.
1137/0219053.

[9] D.S. Dummit and R.M. Foote. Abstract Algebra. Wiley, 2004. isbn: 9780471433347.
url: https://books.google.no/books?id=KJDBQgAACAAJ.

83

https://doi.org/https://doi.org/10.1016/j.jsc.2014.09.025
https://doi.org/https://doi.org/10.1016/j.jsc.2014.09.025
http://www.sciencedirect.com/science/article/pii/S0747717114000935
http://www.sciencedirect.com/science/article/pii/S0747717114000935
https://books.google.no/books?id=hiQ8e0b48swC
https://books.google.no/books?id=hiQ8e0b48swC
https://doi.org/https://doi.org/10.1016/0024-3795(87)90103-0
https://doi.org/https://doi.org/10.1016/0024-3795(87)90103-0
http://www.sciencedirect.com/science/article/pii/0024379587901030
http://www.sciencedirect.com/science/article/pii/0024379587901030
https://doi.org/10.1145/258726.258751
http://doi.acm.org/10.1145/258726.258751
http://doi.acm.org/10.1145/258726.258751
https://doi.org/10.1137/0219053
https://doi.org/10.1137/0219053
https://doi.org/10.1137/0219053
https://doi.org/10.1137/0219053
https://books.google.no/books?id=KJDBQgAACAAJ

84 BIBLIOGRAPHY

[10] Jean-Charles Faugére. “A new efficient algorithm for computing Gröbner
bases (F4)”. In: Journal of Pure and Applied Algebra 139.1 (1999), pp. 61–
88. issn: 0022-4049. doi: https://doi.org/10.1016/S0022- 4049(99)
00005-5. url: http://www.sciencedirect.com/science/article/pii/
S0022404999000055.

[11] N. Faujdar and S. P. Ghrera. “A detailed experimental analysis of library
sort algorithm”. In: 2015 Annual IEEE India Conference (INDICON). Dec.
2015, pp. 1–6. doi: 10.1109/INDICON.2015.7443165.

[12] N. J. Fine and I. N. Herstein. “The probability that a matrix be nilpo-
tent”. In: Illinois J. Math. 2.4A (Nov. 1958), pp. 499–504. url: https :

//projecteuclid.org:443/euclid.ijm/1255454112.

[13] Paul Garrett. Half-exactness of adjoiunt functors, Yoneda Lemma. Dec. 11,
2017. url: http://www- users.math.umn.edu/~garrett/m/algebra/

yoneda_and_tensors.pdf.

[14] Murray Gerstenhaber. “On the number of nilpotent matrices with coefficients
in a finite field”. In: Illinois J. Math. 5.2 (June 1961), pp. 330–333. url:
https://projecteuclid.org:443/euclid.ijm/1255629831.

[15] Edward L. Green. “Multiplicative Bases, Gröbner Bases, and Right Gröbner
Bases”. In: Journal of Symbolic Computation 29.4 (2000), pp. 601–623. issn:
0747-7171. doi: https://doi.org/10.1006/jsco.1999.0324. url: http:
//www.sciencedirect.com/science/article/pii/S0747717199903243.

[16] Edward L. Green, Lenwood S. Heath, and Craig A. Struble. “Constructing
Homomorphism Spaces and Endomorphism Rings”. In: Journal of Symbolic
Computation 32.1 (2001), pp. 101–117. issn: 0747-7171. doi: http://dx.
doi.org/10.1006/jsco.2001.0454. url: http://www.sciencedirect.
com/science/article/pii/S0747717101904547.

[17] A. Hatcher. Algebraic Topology. Algebraic Topology. Cambridge University
Press, 2002. isbn: 9780521795401. url: https://books.google.com/books?
id=BjKs86kosqgC.

[18] Ernst W Mayr and Albert R Meyer. “The complexity of the word problems
for commutative semigroups and polynomial ideals”. In: Advances in Math-
ematics 46.3 (1982), pp. 305–329. issn: 0001-8708. doi: https://doi.org/
10.1016/0001-8708(82)90048-2. url: http://www.sciencedirect.com/
science/article/pii/0001870882900482.

[19] Michael Sipser. “Introduction to the Theory of Computation”. In: SIGACT
News 27.1 (Mar. 1996), pp. 27–29. issn: 0163-5700. doi: 10.1145/230514.
571645. url: http://doi.acm.org/10.1145/230514.571645.

[20] Øyvind Solberg. Quivers and path algebras. Dec. 7, 2017. url: https://

folk.ntnu.no/oyvinso/QPA/.

https://doi.org/https://doi.org/10.1016/S0022-4049(99)00005-5
https://doi.org/https://doi.org/10.1016/S0022-4049(99)00005-5
http://www.sciencedirect.com/science/article/pii/S0022404999000055
http://www.sciencedirect.com/science/article/pii/S0022404999000055
https://doi.org/10.1109/INDICON.2015.7443165
https://projecteuclid.org:443/euclid.ijm/1255454112
https://projecteuclid.org:443/euclid.ijm/1255454112
http://www-users.math.umn.edu/~garrett/m/algebra/yoneda_and_tensors.pdf
http://www-users.math.umn.edu/~garrett/m/algebra/yoneda_and_tensors.pdf
https://projecteuclid.org:443/euclid.ijm/1255629831
https://doi.org/https://doi.org/10.1006/jsco.1999.0324
http://www.sciencedirect.com/science/article/pii/S0747717199903243
http://www.sciencedirect.com/science/article/pii/S0747717199903243
https://doi.org/http://dx.doi.org/10.1006/jsco.2001.0454
https://doi.org/http://dx.doi.org/10.1006/jsco.2001.0454
http://www.sciencedirect.com/science/article/pii/S0747717101904547
http://www.sciencedirect.com/science/article/pii/S0747717101904547
https://books.google.com/books?id=BjKs86kosqgC
https://books.google.com/books?id=BjKs86kosqgC
https://doi.org/https://doi.org/10.1016/0001-8708(82)90048-2
https://doi.org/https://doi.org/10.1016/0001-8708(82)90048-2
http://www.sciencedirect.com/science/article/pii/0001870882900482
http://www.sciencedirect.com/science/article/pii/0001870882900482
https://doi.org/10.1145/230514.571645
https://doi.org/10.1145/230514.571645
http://doi.acm.org/10.1145/230514.571645
https://folk.ntnu.no/oyvinso/QPA/
https://folk.ntnu.no/oyvinso/QPA/

	Introduction
	Quivers & Path Algebras
	Quivers
	Path Algebras
	Modules and representations
	Relations

	Categories
	Definition
	Functors
	Equivalencies and Dualities
	Exact functors
	Adjoint functors

	Homomorphisms and Tensor Products
	Endomorphism rings
	Decomposition by using the endomorphism ring
	Projective presentations
	Tensor Product
	Of homomorphisms
	Associativity
	Adjoint associativity
	Exactness

	Computational Complexity
	Functions and their runtime
	Asymptotic notation
	Best, average and worst cases
	Probabilistic algorithms
	Complexity classes
	The complexity class P
	The complexity class NP
	The complexity class NP-complete
	The complexity class PP
	The complexity class ZPP
	The complexity classes PSPACE and EXPSPACE(-complete)

	Linear Algebra Algorithm
	Overview
	Theory
	Motivation
	Creating the matrices M
	Creating the matrix X
	Creating `39`42`"613A``45`47`"603AHom(M, N)

	Analysis

	Green-Heath-Struble Algorithm
	Overview
	Detailed algorithm
	Calculating a basis of N*
	Calculating the actions of
	Calculating M N*
	Tying it all together

	Example
	Analysis

	Hom functor algorithm
	Overview
	Detailed algorithm
	Applying `39`42`"613A``45`47`"603AHom
	Finding the actions of
	Going from the kernel to `39`42`"613A``45`47`"603AHom(M, N)

	Example
	Analysis

	Probabilistic Decomposition
	Overview
	Theory and detailed algorithm
	Fittings Lemma
	Performing the decomposition
	Number of runs

	Analysis
	Preliminary results
	Finding a bound for p

	Results
	Comparing the algorithms for creating `39`42`"613A``45`47`"603AHom(M, N)
	On probabilistic decomposition
	Complexity classes

