
&INTNU
Kunnskap for en bedre verden

Banefølging for selvgående
terrengkjøretøy med Model Predicitive
Control

Stian Dyrnes

Master i kybernetikk og robotikk

Hovedveileder: Kristin Ytterstad Pettersen, ITK

Institutt for teknisk kybernetikk

Innlevert: september 2018

Norges teknisk-naturvitenskapelige universitet

Abstract

This thesis is about path following for an Unmanned Ground Vehicle (UGV) for the use
in an off-road environment. This thesis focuses on the Model Predicitve Control (MPC)
approach to path following, the benefits this may have for the control system and the
challenges one might face with this approach.

A literature review was conducted for the basic theory of MPC, as well as existing
methods for path following problems. Existing methods for the use of MPC in path fol-
lowing problems was also reviewed.

The vehicle model is based on earlier work where the vehicle was modelled for 6-
Degrees of Freedom (DOF). Measurements of the vehicle dimensions was made, in order
to make a more accurate estimation of the moment of inertia. A step response experiment
was performed on the UGV in order to determine the model parameters for this dynamic
vehicle model.

A path definition was introduced to serve the path following objective, and a new
optimization formulation was derived as a basis for MPC control laws for path following
problems. This optimization formulation was used to derive a variety of control laws with
varying degree of accuracy and computational complexity. Further, algorithms realizing
the MPC control laws was derived, and the solvers used to solve the optimization was
presented.

The functionality of the optimization formulation was tested, and simulation results
of the UGV using the MPC control laws, both with and without disturbances, were pre-
sented. The computation time of the control laws with different solvers was recorded, and
compared with each other.

The performance and run time of the controllers was compared, and the challenges of
implementing these control laws on the UGV was discussed. These challenges were also
compared to the existing path following controllers.

It was concluded that the optimization formulation derived in this thesis, worked as
intended for path following MPCs. Further it was concluded that the both the 3-DOF and
the simplified 6-DOF MPC control laws showed performed well in simulations both with
and without disturbances, however the run time with the current solvers was too large to
be implemented on the UGV.

i

Preface

This thesis is written as a final master thesis in the two year master’s program within
Cybernetics and Robotics at Norwegian University of Science and Technology. The task
for this thesis was given by the Norwegian Defence Research Establishment in cooperation
with Norwegian University of Science and Technology.

The goal of this thesis was to derive model predictive control laws for path following
of off-road unmanned ground vehicles. Further the goal was to look in to whether these
control laws could be implemented on the Norwegian Defence Research Establishment’s
unmanned ground vehicle OLAV.

I would like to thank my supervisors Kristin Y. Pettersen from Norwegian University
of Science and Technology and Kim Mathiassen from Norwegian Defence Research Es-
tablishment for their guidance and all their contribution to my thesis. I would also like to
give a special thanks to Giorgio D. Kwame Minde Kufoalor for taking the time to discuss
my control control law with me, and helping me by recommending optimization solvers.
I would also like to thank everyone else at Norwegian Defence Research Establishment
who have contributed to this thesis. At last I would like to thank my parents for supporting
me through my studies, and especially to my father for always taking the time to discuss
topics I have struggled with.

ii

Table of Contents

Abstract i

Preface ii

Table of Contents iv

List of Tables v

List of Figures ix

Abbreviations xi

1 Introduction 1
1.1 Motivation . 1
1.2 Assumptions . 1
1.3 Background and contribution . 2
1.4 Notation . 3

2 Literature Review 5
2.1 Model Predictive Control . 5

2.1.1 Linear Model Predictive Control 5
2.1.2 Nonlinear Model Predictive Control 8
2.1.3 Non-conventional approaches to Model Predictive Control 9

2.2 Path following control . 10
2.2.1 Kinematic path following controller 10
2.2.2 Kinetic path following control 10
2.2.3 MPC for path following problems 10

3 Basic Theory 13
3.1 Vehicle Model . 13
3.2 Testing the vehicle model . 15
3.3 Model Parameters . 16

iii

3.3.1 Moment of inertia . 16
3.3.2 Damping and friction coefficients 18

4 MPC 23
4.1 Reference path . 23
4.2 Optimization formulation . 24
4.3 Linearized MPC . 33

4.3.1 Controllability . 33
4.3.2 Control law . 36

4.4 Nonlinear MPC for 3-DOF . 39
4.5 Simplified Nonlinear MPC for 6-DOF 40
4.6 Multiplexed Nonlinear MPC for 3-DOF 42

5 Implementation 45
5.1 Algorithms . 45

5.1.1 Linearizing MPC . 45
5.1.2 Nonlinear MPC for 3-DOF . 45
5.1.3 Nonlinear MPC for 6-DOF . 46
5.1.4 Nonlinear MMPC for 3-DOF . 46

5.2 Solvers and hardware . 47

6 Results 49
6.1 Basic optimization . 49
6.2 Linearized MPC for 3-DOF . 50
6.3 Nonlinear MPC for 3-DOF . 55

6.3.1 APMonitor solvers . 55
6.3.2 SciPy solver . 63

6.4 Simplified 6-DOF controller . 68
6.5 Multiplexed Model Predictive Control 73

6.5.1 APMonitor solver . 73
6.5.2 SciPy solver . 74

6.6 Run time . 79

7 Discussion 83
7.1 Control law performance . 83
7.2 Computation time . 86

8 Conclusion and future work 89
8.1 Conclusion . 89
8.2 Future work . 90

Bibliography 91

Appendix 93

iv

List of Tables

1.1 Description of commonly used symbols 4

3.1 Numerical values for partitions . 17

6.1 Computation times for APM solvers for 3-DOF NMPC 80
6.2 Computation times for APM solvers for 3-DOF NMPC 80
6.3 Computation times for SciPy SQP solver for 3-DOF NMPC 80
6.4 Run times for SciPy’s SQP solver for 3-DOF MMPC 81

v

vi

List of Figures

1.1 Current control hierarchy for OLAV from Mathiassen et al. (2016) 2

3.1 Comparison of measured position and simulated position with linear damp-
ing model from Dyrnes (2018) . 15

3.2 Comparison of measured position and simulated position with nonlinear
damping model from Dyrnes (2018) . 15

3.3 Vehicle partition in xz-plane from Dyrnes (2018) (not to scale) 16
3.4 Step response of the yaw rate . 19
3.5 Measured step response compared to an approximated step response . . . 20
3.6 Time constant for the transfer function 21

4.1 Error from the initial position to the first position on the reference path . . 26
4.2 Error from the initial position to the optimal position on the reference path 27
4.3 Illustration of vehicle overturning from Dyrnes (2018) 42

6.1 Simulation of a simple path following example 50
6.2 Simulation of linearized MPC without disturbances and qs = 1 51
6.3 Simulation of linearized MPC without disturbances and qs = 10 51
6.4 Simulation of linearized MPC without disturbances and qs = 100 52
6.5 Simulation of linearized MPC without disturbances and qs = 1000 52
6.6 MPC velocity input with qs = 1000 . 53
6.7 Simulation of linearized MPC without disturbances and qs = 100 54
6.8 MPC velocity input with qs = 100 . 54
6.9 Simulation of the NMPC for 3-DOF with ideal model 55
6.10 Simulation of the NMPC for 3-DOF with ideal model and initial heading

away from the path direction . 56
6.11 Simulation of the NMPC for 3-DOF with model disturbances and initial

heading towards the path direction . 57
6.12 Simulation of the NMPC for 3-DOF with model disturbances and initial

heading away from the path direction . 57
6.13 Comparison of APOPT and IPOPT solver for 3-DOF Nonlinear MPC . . 58

vii

6.14 Simulation of the NMPC for 3-DOF with linear path and ideal model with
N = 10 . 59

6.15 Simulation of the NMPC for 3-DOF with linear path and ideal model with
N = 30 and without disturbances . 60

6.16 Simulation of the NMPC for 3-DOF with linear path and ideal model with
N = 30 and without disturbances . 60

6.17 Simulation of the NMPC for 3-DOF with linear path and ideal model with
N = 30 and without disturbances . 61

6.18 Simulation of the NMPC for 3-DOF with linear path and ideal model with
N = 30 and with disturbances . 61

6.19 Simulation of the NMPC for 3-DOF with linear path and ideal model with
N = 30 and with disturbances . 62

6.20 Simulation of the NMPC for 3-DOF with linear path and ideal model with
N = 30 . 62

6.21 Simulation of the NMPC for 3-DOF with SciPy SQP solver with N = 10
without disturbances . 63

6.22 Simulation of the NMPC for 3-DOF with SciPy SQP solver with N = 20
without disturbances . 64

6.23 Simulation of the NMPC for 3-DOF with SciPy SQP solver with N = 30
without disturbances . 64

6.24 Simulation of the NMPC for 3-DOF with SciPy SQP solver with N = 40
without disturbances . 65

6.25 Simulation of the NMPC for 3-DOF with SciPy SQP solver with N = 10
with linear path and no disturbances . 66

6.26 Simulation of the NMPC for 3-DOF with SciPy SQP solver with N = 20
with linear path and no disturbances . 66

6.27 Simulation of the NMPC for 3-DOF with SciPy SQP solver with N = 30
with linear path and no disturbances . 67

6.28 Simulation of the NMPC for 3-DOF with SciPy SQP solver with N = 40
with linear path and no disturbances . 67

6.29 Comparison of 3-DOF controller and simplified 6-DOF controller with
θ = 30◦ and no disturbances . 68

6.30 Comparison of 3-DOF controller and enhanced 3-DOF controller with θ =
30◦, starting in (60, 10) . 69

6.31 Comparison of 3-DOF controller and simplified 6-DOF controller with
θ = 30◦, with a side slip effect on the vehicle 70

6.32 Comparison of 3-DOF controller and simplified 6-DOF controller with
θ = 30◦, with a side slip effect and coefficient errors δ ∈ [1, 1.2] 71

6.33 Comparison of 3-DOF controller and simplified 6-DOF controller with
θ = 30◦, with a side slip effect and coefficient errors δ ∈ [1, 1.2] 72

6.34 Simplified 6-DOF MPC with large side slip 73
6.35 Comparison of algorithm 1 and 2 for Multiplexed Model Predictive Control 74
6.36 Multiplexed Model Predictive Control without disturbances with N = 10 75
6.37 Multiplexed Model Predictive Control without disturbances with N = 20 76
6.38 Multiplexed Model Predictive Control without disturbances with N = 30 77

viii

6.39 Multiplexed Model Predictive Control without disturbances with N = 40 78
6.40 Multiplexed Model Predictive Control without disturbances 79

ix

x

Abbreviations

3D three dimensional. 13, 40

CG Centre of Gravity. 15, 16, 41

DOF Degrees of Freedom. i, 3, 13, 15, 24, 32, 33, 39–42, 45, 46, 68, 72, 79–81, 83, 84,
86, 87, 89

ENU East North Up. 4, 13, 14, 28

FFI Norwegian Defence Research Establishment. 1, 2, 13, 23, 38, 85, 88

GNSS Global Navigation Satellite System. 2

IMU Inertial Measurement Unit. 2

IP Interior Point. 47, 63, 79, 83, 89

ISR Intelligence, Surveillance and Reconnaissance. 1, 85

LOS Line of Sight. 11

LQR Linear Quadratic Regulator. 11

LTI Linear Time Invariant. 6

LTV Linear Time Variant. 5, 11

MHE Moving Horizon Estimator. 9

MMPC Multiplexed Model Predictive Control. 9, 42, 44, 46, 73, 74, 78, 80, 81, 84, 86,
90

xi

MPC Model Predicitve Control. i, 1, 3–11, 13, 23, 25, 28, 33, 37, 38, 40, 42–46, 49, 50,
53, 54, 56, 58, 59, 72, 79, 81, 83–90

NLP Nonlinear Programming. 7, 8, 46, 47

NMPC Nonlinear Model Predictive Control. 8, 10, 11, 39, 40, 45, 46, 55, 79, 80, 83, 86,
89

OLAV Off-road Light Autonomous Vehicle. 1, 2, 13–16, 18, 23, 81, 85–87

PID Proportional Integral Derivative. 83

QP Quadratic Programming. 7, 50, 89

RAM Random Access Memory. 48

ROS Robotic Operating System. 81

SQP Sequential Quadratic Programming. 8, 48, 63, 65, 80, 84, 89, 90

UGV Unmanned Ground Vehicle. i, 1–3, 13, 14, 16, 17, 23, 33, 38–42, 49, 50, 53–55,
69, 84–87, 89, 90

VM Virtual Machine. 48, 81, 87

WCP Wheel Contact Point. 13, 14

xii

Chapter 1
Introduction

1.1 Motivation

Norwegian Defence Research Establishment (FFI) has developed an UGV for the use in In-
telligence, Surveillance and Reconnaissance (ISR)-missions. The vehicle has been named
Off-road Light Autonomous Vehicle (OLAV). OLAV’s missions will mostly be performed
in off-road terrain, and the goal is for the vehicle to operate autonomously to reduce per-
sonnel risk. In order to achieve this, a path must first be planned, and controllers on the
UGV should aim to follow this path.

Because of the harsh conditions in the off-road terrain the UGV is required to traverse
in some paths, it is necessary that the vehicle tracks this path as accurately as possible.
Even small deviations from the desired path could result in the UGV getting stuck, and
could in worst case scenario break the UGV. It should therefore be implemented con-
trollers to accurately track the pre-planned path, and generate the reference velocities and
steering angles required to follow the desired path.

OLAV have some functional path following controllers, however there are room for
improvement. FFI has desired that more accurate control strategies should be developed
and tested in hopes of increasing the accuracy for rough terrain. As a foundation for the
new controllers. One idea is to test whether the MPC could help improve the accuracy of
the controllers. The goal of this thesis is therefore to derive MPC control laws for the path
following objective, and test whether these control laws can be implemented on OLAV.

1.2 Assumptions

The key assumptions for this thesis is that the wheels are in contact with the ground at all
times. In reality, small deviations from this may occur, however as these deviations only
occur for short time intervals, this assumption holds for most operating conditions of the
vehicle.

Another assumption we made in this thesis is that the UGV’s low level controllers

1

Chapter 1. Introduction

are sufficient to achieve the desired velocity and steering angle in one time step, and that
no low level dynamics needs to be taken into account for the controller. Tests conducted
by FFI shows that the low level controllers are able to achieve the desired velocity and
steering angle, however for large changes they are not necessarily reached in one time
step. However, as the low level controllers has fast dynamics, this assumption will be
used for this thesis, and any deviation from this may be considered as disturbances for the
system.

1.3 Background and contribution
This thesis is based on the work and research previously done by FFI on OLAV. The
control hierarchy is designed in Mathiassen et al. (2016) and is illustrated in Fig. 1.1. This
shows the different layers and the information float in the control system.

Figure 1.1: Current control hierarchy for OLAV from Mathiassen et al. (2016)

The Trajectory tracker receives the desired path from the motion planning layer, and
aims to generate reference inputs which will keep the vehicle on the desired path. These
reference signals will be applied to the vehicle by the low level controllers. The low level
controllers are working very well, and does not need to be improved. We will therefore
not go in dept for these controllers in this thesis.

OLAV is also equipped with sensors such as Global Navigation Satellite System (GNSS)
for measurement of position, and Inertial Measurement Unit (IMU) for measuring orien-
tation. These measurements are used in the path following controllers.

The UGV’s dynamics was previously modelled for movement in the xz-plane in Auby
(2016). Further, the UGV model was expanded in work done by the author in Dyrnes

2

1.4 Notation

(2018). The UGV is modelled as a non holonomic control system for 3- and 6-DOF. This
means that the movement is constrained by some states, i.e the UGV can not drive directly
sideways, and thus, the movement in x and y direction on the ground are constrained by the
heading ψ. Further, the vehicle is not controlled for the altitude z, as this will be uniquely
given by altitude of the terrain. The data used for model testing was collected with the
help of Kim Mathiassen and a script for converting the simulated positions from meters to
latitude and longitude coordinates were provided by Magnus Baksaas. Magnus Baksaas
also provided a script for converting the measured angles from quaternions to euler angles.

This thesis focuses on the Trajectory tracker layer of Fig. 1.1, however some work
work will be done for the Motion planning layer. The main contribution of this thesis
has been an optimization formulation for path following, as well as several MPC control
laws based on this optimization formulation. Further, simulations of the UGV using these
control laws have been made in MATLAB and Python, and some solvers have been tested
for these simulations. Comparisons of computation time of the control laws with varying
solvers have also been compared, and commented upon.

Another contribution of this thesis was more accurate estimations of the model param-
eters in the UGV model from Dyrnes (2018). This thesis has not made any work in the
area of motion planning, however a new path definition was introduced which serves the
optimization formulation of the path following.

1.4 Notation
The notation used in this thesis will be similar to that used in Fossen (2011). Bold lower
case symbols will be used to describe n-dimensional vectors, as opposed to regular sym-
bols used for variables. E.g. p will be a n-dimensional vector whilst p will be a single
variable. Bold upper case symbols will be used to symbolize matrices e.g the rotation ma-
trix R. Some upper case symbols will be used to symbolize constants e.g I for moment
of inertia and D for damping coefficient. For some cases where the dimension of matrices
needs to be specified, this will be done by the use of subscripts, e.g I2×2 will denote a two
by two identity matrix.

Table 1.1 shows the most commonly used variables for this thesis. Many of these are
based on the SNAME notation for marine vessels from 1950 as stated in Fossen (2011),
however some are related to the MPC formulation.

3

Chapter 1. Introduction

Symbol Description
u Linear velocity along x-axis in BODY-frame
v Linear velocity along y-axis in BODY-frame
w Linear velocity along z-axis in BODY-frame
U Linear speed

√
u2 + v2 + w2

φ Rotation about x-axis (roll-angle)
θ Rotation about y-axis (pitch-angle)
ψ Rotation about z-axis (yaw-angle)
p Angular velocity about x-axis
q Angular velocity about y-axis
r Angular velocity about z-axis
p Position vector (x y z)T

Θeb Attitude (Euler angles) (φ θ ψ)T

νbb/e Linear velocity vector (u v w)T

ωbb/e Angular velocity of BODY-frame in relation to ENU-frame (p q r)T

Re
b Rotation matrix from ENU to BODY.

Tz Torque for rotational motion about the z-axis
N Prediction horizon for the MPC
h Sampling time

Table 1.1: Description of commonly used symbols

Further, the subscripts of a variable will be used to symbolize for which reference
frame it is defined, e.g. xe will be x given in the East North Up (ENU)-frame. The ENU-
frame will for this thesis be a local ENU-frame, i.e the positions are given in meters from
a local origo rather than latitude and longitude coordinates. The most common subscripts
used in this thesis will be bwhich represents the reference frame fixed to the vehicle’s body
(BODY-frame), e which represents ENU-frame and w which represents the WCP-frame.
There will also be use of the subscript g which will represent the angle of the ground
compared to a flat surface. This is relevant for cases where the ground is not parallel to
the ENU-frame, in other words where there is an inclination of the terrain. Another use of
subscript will be to symbolize the movement of one coordinate frame in relation to another,
e.g. νbb/e will be the velocity of the BODY-frame in relation to the ENU-frame, given in
BODY-frame. By default, the orientations (φ θ ψ)T will represent the orientation of the
BODY compared to ENU, however the subscript w will be used for the orientation of the
WCP-frame compared to ENU. E.g φw is the roll of the WPC-frame.

For cases with large trigonometric functions such as kinematic matrices, the trigono-
metric functions sin, cos and tan will be shortened s, c and t respectively, e.g sinψ will be
shortened s(ψ).

4

Chapter 2
Literature Review

2.1 Model Predictive Control

2.1.1 Linear Model Predictive Control

The theory of MPC is described in Foss and Heirung (2016), as an open loop controller.
This is different from traditional controllers in that the control input is not based on feed-
back from the system states, but rather is found by solving an optimization problem based
on measurements of the initial condition x(0). For Linear Time Variant (LTV) systems,
the system dynamics is described in discrete time as

x(k + 1) = A(k)x(k) +B(k)u(k) (2.1)

where k is the time step. Further, Foss and Heirung (2016) describes that for time t, the
MPC calculates the optimal input sequence for the discrete time steps from k = 0 → N ,
where 0 is the current time step and N is the prediction horizon. The prediction horizon is
a defined number of time steps the MPC will optimize for, e.g with N = 10, the optimiza-
tion will consider the next ten iterations of the states and inputs. After the optimal input
sequence is calculated, the first input of the sequence, i.e u(0) is applied to the system,
the system is iterated to time t + h, where the states are measured and updated and the
optimization is solved for the new time step.

As the linear discrete state space model describes the change of x for any LTV system,
Foss and Heirung (2016) use these dynamics to describe the evolution of the system from
k = 0→ N as

x(1) = A(0)x(0) +B(0)u(0)

x(2) = A(1)x(1) +B(1)u(1)

...
x(N) = A(N − 1)x(N − 1) +B(N − 1)u(N − 1)

(2.2)

5

Chapter 2. Literature Review

Foss and Heirung (2016) considers MPC for a Linear Time Invariant (LTI) system, which
gives

A(k) = A, ∀ k

Further, as x(0) is a known constant for the optimization, whilst the remaining states and
inputs are optimization variables, Foss and Heirung (2016) rearranges (2.2) as

x(1)−Bu(0) = Ax(0)

x(2)−Ax(1)−Bu(1) = 0

...
x(N)−Ax(N − 1)−Bu(N − 1) = 0

(2.3)

By defining

X =


x(1)
x(2)

...
x(N)


and

U =


u(0)
u(1)

...
u(N − 1)


Foss and Heirung (2016) rewrites (2.3) on matrix form as

I 0 0 −B 0 0

−A
.

... 0
.

...

0
.

...
...

.
...

...
. 0

...
. 0

0 . . . 0 −A I 0 0 −B


︸ ︷︷ ︸

Aeq

[
X
U

]
︸︷︷ ︸

Z

=


Ax(0)

0
...
...
0


︸ ︷︷ ︸

Beq

(2.4)

which gives the equality constraints

AeqZ = Beq (2.5)

where Z is the optimization variable. Foss and Heirung (2016) describes that as the goal
of the controller is to achieve x → 0 with the minimal use of u, the MPC for time a
single time step k can be formulated as an optimization problem with a quadratic objective
function for LTI systems as follows

min

N∑
k=1

x(k)TQx(k) + u(k − 1)TRu(k − 1) (2.6)

6

2.1 Model Predictive Control

subject to
x(k)−Bu(k − 1) = Ax(k − 1) (2.7)

The weight and cost matrices Q and R are positive semi-definite and positive definite
respectively. These matrices consists of decision variables, which can be tuned to achieve
the desired behaviour of the MPC. Further, for the entire prediction horizon, Foss and
Heirung (2016) proposes the following objective function

min ZTGZ =

min



x(1)
x(2)

...
x(N)
u(0)
u(1)

...
u(N − 1)



T



Q 0 0

0
.

...
...

.
...

...
. . . Q

. . .
...

...
. . . R

. . .
...

...
.

...
...

. 0
0 0 R





x(1)
x(2)

...
x(N)
u(0)
u(1)

...
u(N − 1)


(2.8)

Foss and Heirung (2016) thus presents the MPC as the following optimization problem

min ZTGZ (2.9)

subject to the equality constraints

AeqZ = Beq (2.10)

and the inequality constraints

umin ≤ u(k) ≤ umax, ∀ k

xmin ≤ x(k) ≤ xmax, ∀ k
(2.11)

The MPC derived in Foss and Heirung (2016) have a quadratic objective function and lin-
ear equality and inequality constraints. This implies that the MPC is formulated as a con-
vex Quadratic Programming (QP)-problem, and can thus be solved using QP-solvers. This
is an advantage over Nonlinear Programming (NLP)-problems as QP-solvers are proven
to be efficient, which might give a reduced calculation time compared to a more complex
NLP-solvers.

Further, Foss and Heirung (2016) discuss the weaknesses of the MPC, and describes
that there are two main weaknesses. These are described as infeasiblity and lack of sta-
bility for the MPC algorithm. Infeasibility occurs when there does not exist any feasible
solutions to the optimization problem, e.g

x(k + 1) > xmax, ∀ umin ≤ u(k) ≤ umax

7

Chapter 2. Literature Review

as the solver will not be able to find a solution to this problem without violating any
input constraints. Foss and Heirung (2016) proposes a solution to ensure feasibility by
introducing slack variables ε, such that

xmin − ε ≤ x ≤ xmax + ε

as this will soften the state constraints. By allowing ε to be large enough, a feasible
solution may always exist to the MPC.

The other problem with the use of MPC is that stability may not be guaranteed for a
system even if feasible solutions exists for every time step. Foss and Heirung (2016) does
not go in depth on stability for MPC, however one solution is proposed. By enforcing
the constraint x(N) = 0, convergence to zero, and thus stability is achieved provided a
feasible solution exists. This may however affect the feasibility of the MPC, as one may
not ensure feasibility for every time step by including slack variables whilst simultaneously
enforcing x(N) = 0.

2.1.2 Nonlinear Model Predictive Control
The theory of Nonlinear Model Predictive Control (NMPC) is described in Grune and
Pannek (2017), to be an open loop optimal control law. The NMPC is similar to MPC,
but the main difference is that the NMPC handles nonlinear constraints, and can thus be
implemented on systems with nonlinear dynamics. As the NMPC uses NLP solvers to
solve the algorithm, one might also implement nonlinear objective functions in the control
law. However, as stated in Grune and Pannek (2017) the quadratic objective function, as
stated in (2.8) is still a popular choice for NMPC, as this aims to converge the states and
inputs towards zero.

Further, Grune and Pannek (2017) describes the computational complexity of the NMPC
control law, as well as the NLP solvers commonly used to solve these problems. One of the
solvers described in Grune and Pannek (2017) is the Sequential Quadratic Programming
(SQP) solver, which is also described in Nocedal and Wright (2006).

The SQP solver is an Active Set method, which searches for the optimal solution by
considering a set of the active constraints, calculating the lagrange multipliers for these
constraints, eliminating a subset of the constraints with negative lagrange multipliers, and
searching for infeasible solutions. This approach is repeated until the solution is within a
tolerance. Both Grune and Pannek (2017) and Nocedal and Wright (2006) describes that a
good initial value in the search of an optimal solution, i.e the value the algorithm starts the
search from, may significantly reduce the computation time of the SQP algorithm. Thus,
Grune and Pannek (2017) and Nocedal and Wright (2006) argues that the optimal solution
found in the previous iteration may be used as the initial point for the next iteration, i.e
the optimal solution in iteration k will serve as the initial point in the search for a new
solution in iteration k + 1. As the change of the optimal solution may be relatively small
between iterations, this choice of initial position might be close to the optimal solution,
which might significantly reduce the computation time the algorithm uses to find a new
optimal solution. This approach is referred to as a ”warm start” for the algorithm, were the
optimal solution found for the prediction horizon in time step k is used as the initial value
for the search in time step k + 1, as this provides initial values close to the optimal value
and may thus reduce the computation time.

8

2.1 Model Predictive Control

2.1.3 Non-conventional approaches to Model Predictive Control

Multiplexed Model Predictive Control

One study which proposes a solution to the problem with the MPC’s large computational
time for control systems with many control variables is the use of Multiplexed Model Pre-
dictive Control (MMPC). As described in Ling et al. (2011), the principle behind MMPC is
to divide the system into smaller subsystems which the controller will handle in order. The
idea behind this is that the algorithm will calculate and apply the input for one subsystem
before moving on to the next. The motivation behind this is that the controller will apply
the control input faster for each subsystem as each control input is calculated separately,
and thus reduce the computation time. According to Ling et al. (2011), a standard MPC
has a computation time of O((m × N)3), where m is the number of states and N is the
prediction horizon length. When using the MMPC approach, each of the states are handled
separately and by reducing the number of states for each subsystem, the computation time
will be reduced drastically.

An example made by Ling et al. (2011) describes a finite horizon control problem with
four mass-spring dampers coupled together, where the control objective was to minimize
the control energy of the system. This problem was solved using both a standard MPC and
a MMPC, and simulation results showed that for shorter horizon lengths the standard MPC
had shorter computation time, however as the horizon length was increased the MMMPC
showed a significant improvement in terms of computation time. The performance of
the MMPC and the regular MPC is however not shown for comparison in the article,
and we can therefore not comment on the performance of the controller. One problem
with the MMPC approach is that dividing the system into subsystems offers sub-optimal
control inputs for each time step as dependencies between some states and inputs are
removed. However Ling et al. (2011) argues that the reduced calculation time for each
control input compensates for the sub-optimal input as it is often more important to achieve
a good control input with a faster response than a better control input with a much slower
response. The implementation of MMPC therefore seems to be a good approach for large
system with great computational cost where the states are heavily affected by time varying
disturbances, as the reduced computation time gives a faster response to the change of
disturbance. The weakness of the MMPC however seems to be for systems with lower
time horizon, whilst many of the states are correlated and where the effect of external
disturbances are negligible.

Simultaneous Model Predictive Control and state estimation

There are some studies which uses a MPC for an output feedback law for a control system.
One study done on this topic is described in Copp and Hespanha (2016), which proposes
a control law which simultaneously estimates the states as well as computing the optimal
input sequence for each time step. This approach is proposed for systems with unmeasured
states where the measurement is affected by noise. The idea behind this control law is to
calculate an optimal control input which minimizes the cost function, as for a normal
MPC, however the cost function now also includes compensation for the noise affecting
the states and measurements. The algorithm also includes a Moving Horizon Estimator

9

Chapter 2. Literature Review

(MHE), which use a similar optimization algorithm as the MPC to predict future states
based on the past states.

2.2 Path following control

2.2.1 Kinematic path following controller
Siciliano and Khatib (2008) describes a path following algorithm for a car-like vehicle
in 3-DOF. The vehicle have the three following states (xb yb ψ)T . Further the robot is
assumed to be nonholonomic, meaning it is constrained such that it can not move directly
sideways, i.e ẏb = 0. The vehicle is controlled by the input vector u = [u1 u2]T , where
u1 is the forward velocity in BODY-frame and u2 is the steering angle.

The proposed control law uses a feedback linearizing controller to drive the vehicle
to the desired path. Further global asymptotical stability i shown for this path following
controller by the use of Lyapunov functions. This path following controller is solely based
on the vehicle’s kinematics, and does not consider any kinetics. Siciliano and Khatib
(2008) justifies this choice as the low-level controllers are assumed good enough to keep
the error in desired velocity and heading angle low, even if the vehicle dynamics are not
considered. Further, kinematic models are less complex than kinetic models, and that the
simplicity of the kinematic controller outweighs the precision of the kinetic controller.

2.2.2 Kinetic path following control
A control law for a kinetic nonlinear vehicle model is considered in Mashadi et al. (2014).
Mashadi et al. (2014) defines that the vehicle has a constant velocity, and that the control
objective is to converge ye and ψe towards zero, where ye and ψe are the BODY-fixed
lateral error and heading errors respectively. By converging ye towards zero, Mashadi
et al. (2014) ensures that the vehicle converges to the path, and further, by converging ψe
towards zero, the vehicle will achieve the desired heading to reach the next path position.
By linearization of the nonlinear vehicle dynamics, ye and ψe and their derivatives are
presented on state space form. Further, uncertainty terms are introduced in the model to
compensate for modelling errors, and the state space model is used to derive a control law.
Simulation of the control law shows that it is able to follow the desired path.

2.2.3 MPC for path following problems
Another way of solving path following problems is by the use of MPC. One approach to
this is described in Yu et al. (2011), which proposes a NMPC formulation to solve a path
following problem for a car-like mobile robot, similar to the one described in 2.2.1. The
control objective is that the robot should follow a reference path that is twice continuously
differentiable, which is also an requirement for the proposed control law to be valid. The
approach in Yu et al. (2011) proposes a problem formulation for the path following ob-
jective, where the vehicle kinematics are described as a NMPC problem, and by the use
of Lyapunov stability as the cost function, derives a controller that ensures asymptotic
convergence to the desired path. Lastly the proposed NMPC was simulated compared to

10

2.2 Path following control

a Line of Sight (LOS) controller for a car following an eight-shaped path. The results
presented in Yu et al. (2011) shows better performance for the NMPC than for the LOS
control law, as the NMPC has faster convergence towards the path for all starting points.
Both controllers are able to follow the desired path after convergence.

Mata et al. (2017) describes a different approach to solving path following problems
using MPC. Mata et al. (2017) describes an approach where a MPC formulation is derived
for a LTV model of a bicycle robot. The control objective for the bicycle robot is to reduce
the body fixed lateral error ybe and the orientation error ψe according to a predefined path.
The vehicle dynamics are described on state space form, i.e ẋ = A(t)x(t) + B(t)u(t),
with x = [y ẏ ψ ψ̇]T and u(t) is the steering angle δ. The control law is based on a
quadratic cost function for every time step, with an introduced separate penalty function
for the final time step. This penalty function on the final time step is to ensure that the final
time step will have reached the desired waypoint. As the vehicle model is time variant, the
model is updated for every time step of the MPC algorithm.

In order to guarantee stability for the MPC, Mata et al. (2017) proposes the use of a
second controller in addition to the MPC. The motivation behind this is that the MPC is
no longer required to ensure convergence to zero, but rather it should ensure convergence
to an invariant set Ω containing the equilibrium. When the system has converged to Ω, a
local controller can be used to further ensure convergence to the equilibrium. The system
described in Mata et al. (2017) uses a Linear Quadratic Regulator (LQR) to ensure stability
once the system has converged to the invariant set.

Yu et al. (2011) and Mata et al. (2017) describe different approaches to the choice of
the reference path. The reference path r used in Yu et al. (2011) is parameterizied by a
scalar value s, such that

r = p(s) (2.12)

where the function p is twice continuously differentiable. The time evoulution of s(t) is
not necessary to be known prior to the application, but rather is affected by a virtual control
input v(t), such that

ṡ(t) = v(t) (2.13)

where the virtual control input v(t) is calculated for future time steps by the NMPC al-
gorithm, and thus ensuring a smooth evolution of the reference path. The reference path
in Mata et al. (2017) however, is described as a series of waypoint coordinates defined
in the inertial frame. As the longitudinal velocity is constant for the entire prediction
horizon, the reference path is described as straight line segments between the predefined
waypoints, i.e between the waypoints r1 and r2 we have a vector of reference points
r12 = [r1 + hu, r1 + 2hu, ..., r2], where h is the step time and u is the body-fixed
longitudinal velocity.

Yu et al. (2011) also argues that as the system is nonlinear and non-convex, one can not
guarantee to obtain the global optimal solution to the control problem, and that a locally
optimal solution should be applied instead. This is further discussed in Zhang et al. (2015),
which considers the issue if no solution is found within the required time interval. Zhang
et al. (2015) proposes three different approaches to solve this problem. The first approach
is to force a time constraint for the calculation, where the search for an optimal solution is
canceled after the desired time interval, and the best solution so far is applied whether it is

11

Chapter 2. Literature Review

the optimal input or not. This approach however faces the risk that no feasible solution is
found within the time limit.

Another way to enforce the time constraint is by the use of several optimization en-
gines, where the first to return a feasible solution is selected. The second approach is to
operate in degraded mode if no solution is found. This can be done in several ways, for
example by applying the optimal solution calculated in the previous time step if no solu-
tion is found for this time step. The weakness of this approach however is that it does not
account for any disturbances that might have affected the system between the time steps.
The effect of these disturbances might increase significantly if the system takes several
time steps before a new solution is found.

The third approach is to select a less complex model for the implementation of the
MPC, as the reduced complexity might significantly reduce the calculation time for the
algorithm. The problem with this approach however is that some dynamics might get lost
by applying less complex models, e.g a linearized model might only be valid around the
point of linearization, which will affect the performance of the controller. In addition to
these approaches, Mata et al. (2017) proposes an approach where the control horizon and
prediction horizon is chosen separately, such that the control input is calculated for N time
steps, whilst the future states are calculated for N+K time steps. Using this approach the
control input at time step N will be held constant for the prediction of the next K time
steps.

12

Chapter 3
Basic Theory

3.1 Vehicle Model

In order to derive a MPC control law for the UGV, a model has to be derived. For this
thesis, two types of models will be considered, i.e kinematic and kinetic models. Kine-
matics is defined as the study of motion without regarding the cause of said motion, whilst
kinetics is defined as the study of motion and its cause. The minimum requirement of
our controller is to be able to follow a path in 3-DOF, and we would thus at least require
a kinematic model of the vehicle for [xb yb ψ]T . However, as the actual UGV will be
moving in a three dimensional (3D) space, a model in 6-DOF is required to accurately
describe the UGV’s motion. Siciliano and Khatib (2008) argues that kinematic models are
sufficient for most path following controllers, however by introducing kinetic models, one
might predict the change of motion, and thus increase the accuracy.

In the field of kinematics, one studies the motion of objects with regards to different
reference frames. For FFI’s UGV, OLAV, the position i measured in the ENU-frame.
In Dyrnes (2018), a new coordinate frame, the Wheel Contact Point (WCP)-frame, was
defined as a plane where all the wheels touch the ground. This is different from the com-
monly used BODY-frame, because of the suspension from the wheels to the vehicle, which
might cause the vehicle’s body to be oriented be differently than that of the contact points
with the ground. The WCP-frame was thus introduced as the vehicle’s propulsion is ap-
plied through the contact points between the wheels and ground, and thus the orientation
of the wheels might relevant to describe the motion.

A kinematic model for the UGV was derived in Dyrnes (2018), where OLAV’s motion,

13

Chapter 3. Basic Theory

or rather the motion of OLAV’s WCP-frame, was expressed in ENU-frame as

[
ṗew/e
Θ̇ew

]
=



u c(ψ)c(θw) + v (c(ψ)s(θw)s(φw)− c(φw)s(ψ)) + w (s(ψ)s(φ) + c(ψ)c(φ)s(θ))
u c(θw)s(ψ) + v (c(ψ)c(φw) + s(ψ)s(θw)s(φw) + w (c(φ)s(ψ)s(θ)− c(ψ)s(φ))

−us(θw) + v c(θw)s(φw) + w c(θ)c(φ)
pw + qw s(φw)t(θw) + rw c(φw)t(θw)

qw c(φw)− rw s(φw)
qw

s(φw)
c(θw)

+ rw
c(φw)
c(θw)


(3.1)

Further, Dyrnes (2018) argues that v ≈ 0 and w ≈ 0, and that the kinematic model thus
simplifies to

[
ṗew/e
Θ̇ew

]
=



ẋe

ẏe

że

φ̇w
θ̇w
ψ̇

 =



uc(ψ)c(θw)
uc(θw)s(ψ)
−us(θw)

pw + qw s(φw)t(θw) + rw c(φw)t(θw)
qw c(φw)− rw s(φw)

qw
s(φw)
c(θw) + rw

c(φw)
c(θw)

 (3.2)

In the field of kinetics, one studies the cause of a objects motion. As OLAV is not
actuated in the yb and zb directions, Dyrnes (2018) models the forces affecting the motion
in these directions as disturbances. The pitch and roll angle, θ and φ is not actuated either,
however Dyrnes (2018) derives that the forces affecting these motions are caused by the
orientation of the terrain as OLAV is moving in xb direction, and a kinetic model for the
motion of the WCP-frame is thus derived as

[
ν̇ww/e
ω̇ww/e

]
=


u̇
v̇
ẇ
ṗw
q̇w
ṙw

 =



1
mv

[rcg(Ffw,x cos(γ) + Frw,x) + Fg,x + Fd]
Fy
mv
Fz
mv

u̇
W (sin(θg,l)−sin(θg,r))+ u

W (cos(θg,l)θ̇g,l−cos(θg,ri)θ̇g,ri)√
1−(uW (sin(θg,l)−sin(θg,ri)))2

u̇
As

(θg,f − θg,r) + u
As

(θ̇g,f − θ̇g,r)
1
Iz

(u|u|µf sin(γ)R−Dr)


(3.3)

where θg,r and θg,f denotes the inclination of the ground at the rear and front wheels
respectively. θg,l and θg,ri denotes the inclination of the left and right wheels respectively.
For the yaw dynamics, a nonlinear damping model was also proposed. We therefore have
two models that are considered for the yaw dynamics, the linear and nonlinear damping
model, which are given in (3.4) and (3.5)

ṙw =
1

Iz
(u|u|µf sin(γ)R−Dr) (3.4)

ṙw =
1

Iz
(u|u|µf sin(γ)R−Dr|r|) (3.5)

It is important to note here that these models describe the motion of the WCP-frame,
however this frame can not be directly measured as this is a theoretical plane and not a
physical part of the vehicle. The implementation of the WCP-frame is thus not trivial,
however with a good kinetic model describing the suspension of the UGV, an estimation
can be made and a control law for the WCP-frame can be implemented.

14

3.2 Testing the vehicle model

3.2 Testing the vehicle model

The vehicle model was tested in 3-DOF in Dyrnes (2018), and the results are shown in
Fig. 3.1 and Fig. 3.2. As we can see, the models have different performances. Dyrnes
(2018) summarizes that the linear model seems to be more accurate for higher velocities,
whilst the nonlinear model seems to be more accurate for lower velocities. It is at this point
worth mentioning a mistake made in Dyrnes (2018). The measurements was made with
several heavy sensors mounted on the roof of OLAV, however the model was derived for
OLAV without these mounted sensors. This may thus have had an impact on the accuracy
of the simulations, as the heavy sensors would have both affected the moment of inertia of
the vehicle, as well as off-setting the Centre of Gravity (CG). Some new measurements,
without the mounted sensors, are thus in order to test the model with more accuracy.

Figure 3.1: Comparison of measured position and simulated position with linear damping model
from Dyrnes (2018)

Figure 3.2: Comparison of measured position and simulated position with nonlinear damping model
from Dyrnes (2018)

15

Chapter 3. Basic Theory

3.3 Model Parameters

3.3.1 Moment of inertia

OLAV’s moment of inertia was estimated in Dyrnes (2018) as Iz = 1050kgm2. However,
these were not made using measurements of the actual vehicle, but rather by measuring a
scaled model in the UGV’s specification sheet. Therefore, in order to improve the accuracy
of the moment of inertia, we will make new estimations using measurements from the
actual vehicle. The calculation will still be made using the formula derived in Dyrnes
(2018), which is shown in (3.6) and (3.7). Dyrnes (2018) defined that the vehicle could
be partitioned as shown in Fig. 3.3 where the x, y and z values will be the distances from
the UGV’s CG. Further, the total inertia can be found by summing the inertia for all the
partitions.

Figure 3.3: Vehicle partition in xz-plane from Dyrnes (2018) (not to scale)

Dyrnes (2018) derived that the inertia for the cubic partitions can be calculated as
follows

Iz,n = ρm
1

3
(zmax−zmin)((x3max−x3min)(ymax−ymin)+(y3max−y3min)(xmax−xmin))

(3.6)

16

3.3 Model Parameters

where ρm is the density, whilst the inertia for the prismatic partitions can be calculated by
using the following formulae

Iz,n = ρm(a(
1

4
(x4min − x4max) +

xmin
3

(x3max − x3min))

+
zmax − zmin

3
(x3max − x3min))(ymax − ymin)

+
1

3
(y3max − y3min)((zmax − zmin)(xmax − xmin)

+ a(xmin(xmax − xmin)− 1

2
(x2max − x2min)))

(3.7)

where

a =
zmin − zmax
xmax − xmin

(3.8)

The measurements of the vehicle is shown in Tab. 3.1. The density of the UGV is found
by dividing the mass of the vehicle on the total volume. In reality, ρm will not be equal
for the different pieces, however this simplified approximation is used as it is impossible
to measure the weight and calculate density for the different partitions.

Symbol Value
x0 = -1.43m
x1 = -1.09m
x2 = -0.41m
x3 = -0.22m
x4 = 0.92m
x5 = 1.29m
x6 = 1.72m
z0 = -0.30m
z1 = 0.275m
z2 = 0.595m
z3 = 0.875m
z4 = 1.31m
y0 = -0.78m
y1 = 0.78m

Table 3.1: Numerical values for partitions

The volume is calculated for each partition using the values from Tab. 3.1, and the
total volume is the sum of the partitions. We thus have

ρm =
m

V
=

1200kg

5.8143m3
= 206kg/m3 (3.9)

17

Chapter 3. Basic Theory

which gives

Iz = ρm

6∑
i=1

= ρm(2.4198+1.0845+0.2651+0.1768+0.5486+0.7120)kgm2 = 1075kgm2

(3.10)

3.3.2 Damping and friction coefficients
As the damping and friction coefficients D and µf found in Dyrnes (2018) were based on
trial and error, they might be inaccurate for any other path than the one tested in Fig. 3.1
and Fig. 3.2. In order to get a more accurate model for the the controller, we will therefore
determine this coefficients with more accuracy.

Before determining the coefficients, we will find the transfer function describing the
yaw dynamics. The linear yaw dynamics are given in (3.3) and can be rearranged as
follows

Iz ṙ = u|u|µfR sin γ −Dr
=⇒ Iz ṙ +Dr = u|u|µfR sin γ

(3.11)

As u|u| sin γ is the applied torque to the system whilst µf and R are system coefficients,
we can substitue the input with an input variable τ = u|u| sin γ. Further, by performing a
Laplace transformation, we get the transfer function as

r(s)

τ(s)
=

µfR

Izs+D
=

µfR
D

Iz
D s+ 1

=
K

Ts+ 1
(3.12)

TheK and T can be identified by performing a step response on the system. This was done
by driving OLAV on a flat area without obstacles with approximately constant velocity,
before turning the wheel whilst maintaining constant velocity. As turning the wheel causes
a change of the steering angle γ, and assuming u maintains approximately constant during
the turning, this will cause a step in τ . In reality, γ can not change momentarily, however
assuming the dynamic of γ is fast enough, this dynamic can be disregarded. The recorded
step response for r is shown in Fig. 3.4.

18

3.3 Model Parameters

0 10 20 30 40 50 60 70

Time [s]

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y
a

w
 r

a
te

 [
ra

d
/s

]

Step response of the yaw rate

Figure 3.4: Step response of the yaw rate

As we can see, this step response is affected by disturbances. These disturbances
are caused by measurement noise, as well as small changes in u and γ due to human
error. By using the ”mean” function in MATLAB, we find the mean stationary value to be
r = 0.472rad/s. Further, an attempt at curve fitting gives the approximated step response
as in Fig. 3.5.

19

Chapter 3. Basic Theory

0 10 20 30 40 50 60 70

Time [s]

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y
a

w
 r

a
te

 [
ra

d
/s

]

Comparison of measured and approximated step response

Measured step response

Approximated step response

Figure 3.5: Measured step response compared to an approximated step response

We can thus use this approximation find the parameters of the transfer function. We
will first find the time constant T , which is defined as the time it takes the system to reach
63.2% of its stationary value, i.e t → ∞. As stated earliear, the stationary value is 0.472,
and thus the time constant is the time it takes to reach r = 0.472 · 0.632 = 0.316. This is
illustrated in Fig. 3.6

And thus we can calculate

T = 14.99− 13.50 = 1.49 (3.13)

and further, by using (3.12), we can estimate the damping coefficient as

D =
Iz
T

=
1075kgm2

1.49s
= 721kgm2/s (3.14)

The friction coefficient can be found by considering the stationary value as we have

s→ 0 =⇒ r =
µfR

D
τ =

µfR

D
u|u| sin γ (3.15)

Thus, by rearranging we have

µf =
Dr

Ru|u| sin γ
=

721 · 0.472

1.26 · 4.76 · |4.76| · sin 0.32
= 37.9 (3.16)

20

3.3 Model Parameters

5 10 15 20 25

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

Y
a

w
 r

a
te

 [
ra

d
/s

]

Time constant of step response

T

Figure 3.6: Time constant for the transfer function

An approximation of the nonlinear damping coefficient is found by assuming that the
turning rate has reached the stationary value at r = 0.472, i.e ṙ = 0. By using the friction
coefficient found for (3.16), we have

Iz ṙ = Rµfu|u| sin γ −Dr|r| = 0

=⇒ Dr|r| = Rµfu|u| sin γ

=⇒ D =
Rµfu|u| sin γ

r|r|

=
1.26 · 37.9 · 4.76 · |4.76| · sin 0.32

0.472 · |0.472|
= 1528

(3.17)

21

Chapter 3. Basic Theory

22

Chapter 4
MPC

4.1 Reference path

The goal of the control laws of this thesis is to drive the UGV towards a desired path Λ,
before following this path towards the end point. For the controllers of this thesis, the po-
sitions will be defined in a local reference frame pl, which is aligned with the ENU-frame,
however the positions will be given in meters from origo rather than degrees. The origo
of this local frame will be defined as the final waypoint, as this simplifies the generation
of paths. FFI is currently using UGV paths that are defined by recorded waypoints as well
as a desired steering angle between said waypoints and a nominal velocity. Given that the
number of waypoints in the reference path is equal to the number of time steps required to
follow this path, e.g by recording a path when driving OLAV manually, and that the UGV
starts at the desired path, we could use the recorded waypoints as reference positions ped
for the MPC. Thus we could aim to follow the path by minimizing pld(k)−pl(k) for every
time step. However, this might cause a problem if the system is prone to modelling errors
or disturbances, or if OLAV does not start close to a desired waypoint, as the errors might
amplify for later time steps. An example of this is if pl(0) 6= pld(0), with a sufficiently
large error, no control input within the physical constraints of the UGV is able to ensure
pl(1) = pld(1). This would cause problems for the MPC, as there is no feasible solution
to the control problem. Further, as it is not a requirement for this system to follow the
path in a given time, the desired waypoint at time t can thus be chosen freely as long as
the controller follows the desired path. It is therefore desirable to derive a reference posi-
tions that will follow the desired path, without requiring that a waypoint is achieved at a
certain time step. We will therefore define the paths differently for this thesis, than FFI’s
current definition. This is done as a new definition of the path will serve the optimization
formulation of the MPC control laws derived in this thesis.

As the UGV may not follow the path with the same velocity as the path was recorded,
the distance covered in each time step might vary from the recorded path. In order to ensure
that the UGV always has a reference position along this path, we will generate continuous
smooth path Λ which contains all the recorded waypoints. This path will consist of the

23

Chapter 4. MPC

recorded positions xe and ye converted to the local frame, i.e xl and yl, and we thus have
Λ = [λx λy]T , where λx and λy are the reference paths in x and y direction respectively.
As this path is continuous, it can defined as a continuous function of some parameter s, i.e

Λ(s) =

[
λx(s)
λy(s)

]
=

[
f1(s)
f2(s)

]
, s ∈ [0, n] (4.1)

where n and 0 are the first and last waypoints in the desired path respectively, as s = 0
being the final waypoint will simplify the optimization of the control law. It is beyond the
scope of this thesis to go in depth on path generation, but for the purpose of testing the
control law, a couple of paths will be generated. These will be smooth paths in the local
xy-plane parameterized by s which satisfies (4.1). The first path we will use for testing,
henceforth called Λ1 will be a straight line in the xy-plane, which can be given as

Λ(s) =

[
λx(s)
λy(s)

]
=

[
a1s
a2s

]
(4.2)

The second path, Λ2, will be a half period of a sine wave, which can be given as

Λ(s) =

[
λx(s)
λy(s)

]
=

[
a1s

a2 sinωs

]
(4.3)

Even though we have four states for the 3-DOF system, i.e [xe ye ψ ψ̇]T , we will
only follow a reference path for xe and ye. The reason for this is that ψ and ψ̇ should be
controlled such that ψ will be the required heading to achieve the desired ẋe and ẏe, rather
than achieving a predefined desired heading ψd. Further r will be the yaw rate required to
achieve the necessary heading, and will not be controlled towards a predefined yaw rate
rd. For the 6-DOF controllers, we will not aim to control z, θ or φ as these will be bound
by the terrain, and we will thus not define a path for these states.

4.2 Optimization formulation
In general, the control objective for a path following problem is to follow a reference
path at all times, i.e ped(t) − pe(t) = 0 as t → ∞. For the MPC, however, the control
objective will be to drive the discrete states towards the reference for every time step, i.e,
ped(k) − pe(k) = 0, k = 1 → N , where N is the prediction horizon of the MPC.
Further we will simplify the notation by defining P e = [pe(1) pe(2) . . . pe(N)]T ,
P e
d = [ped(1) ped(2) . . . ped(N)]T and T = [τ (0) τ (2) . . . τ (N − 1)]T where τ is

the control vector for each time step.
The purpose of the MPC control law is to solve an optimization problem which will

yield the input vector for the prediction horizon, T , required to achieve the predicted P e

such that P e
d − P

e = 0. The optimization will be solved with regards to the system dy-
namics as constraints, e.g pN = f(pe(N − 1), τ (N − 1)), as well as physical constraints
affecting the inputs, e.g τ ≤ τmax. For this thesis a variety of MPC approaches will be
derived in order to achieve this. The different approaches are expected to have varying
effect on accuracy as well as computational cost, however the control objective will re-
main the same for all approaches, and all approaches will be based on the aforementioned
principles.

24

4.2 Optimization formulation

The basic theory of MPC is based on Foss and Heirung (2016), however we will expand
upon this further. First we will introduce a change of notation. The general form of the
MPC is given with the system states x and the inputs u, whilst for our path following
MPC, we will have the states pe and the inputs τ . We will now derive a new variation of
the MPC control law, which will ensure convergence to the path from any starting position,
as well as following the path towards the end.

The reference path will be defined as Λ, and is derived in 4.1, whilst the vehicle’s
position for time step k is defined as pe. Similar to Yu et al. (2011), we want the vehicle
to converge to the path, before following the path towards the end point. However, Yu
et al. (2011) defines the path as twice continuously differentiable, but this will not be a
requirement for our control law. We will instead choose the parameter s as a free variable,
which can be chosen during the control algorithm. Our main motivation for this choice is
that this will give the advantage of choosing the optimal reference position, ped as well as
the optimal input to reach this position.

Lets consider a simple generalized example where a path is defined as

λx(s) = 0.5s (4.4a)

λy(s) = 0.2s (4.4b)

s ∈ [0, 20] (4.4c)

and the initial position is pe(0) = [2 3]T . For this simple example we will only consider
a point in a two dimensional space, and the orientation i.e ψ will not be considered. If s
is chosen as 0, the reference position is ped = [0 0]T and the initial error is 3.61. This is
illustrated in Fig. 4.1

25

Chapter 4. MPC

Figure 4.1: Error from the initial position to the first position on the reference path

However as the goal is to reach the end position ped(10, 4)T for this example, this is
not the optimal way to follow this path. This is because we would have to travel backwards
along the path before following the path, and thus the distance traveled whilst not on the
path would increase. We will instead argue that it is better to converge to the path as
quickly as possible, before following the path to the end point. The motivation behind
this is that the main goal is to follow the path to the end point, and therefore any past
path positions, i.e path positions further away from the end point than the vehicle, can be
disregarded. By instead using the parameter s as an optimization variable, one would be
able to not only choose the optimal input to reach the path, but also the optimal position on
the path to reach. As it is desirable to reach the path as soon as possible regardless of initial
position, the reference position should thus be chosen such that it minimizes the error from
the initial position towards the path. By using Pythagoras’ theorem, the distance e from
the initial position pe(0) to a reference position ped can be written as

e2 = (xed − xe(0))2 + (yed − ye(0))2 (4.5)

Our goal is to minimize |e|, as this will yield the reference position that is closest to the
initial position. As min |e| ⇐⇒ mine2 for the scalar value e, we can introduce a
minimization problem

min (ped − pe(0))TQ(ped − p(0)) (4.6)

By choosing Q as a two by two identity matrix, the objective function in (4.6) will be
equal to the right hand side of (4.5). Thus the minimum total error from the reference, and
by extension optimal ped is found by solving this minimization problem. The weighting
matrix Q is set as the identity matrix for this problem, as there is no additional cost for
neither xed nor yed, however this could be modified if we wished to penalize one error
more than the other. Further, all solutions to this problem must be constrained such that

26

4.2 Optimization formulation

ped = Λ(s), as this will ensure that any reference positions is on the path Λ. The optimal
reference position is thus found by solving

min
[
xe − xe(0) yed − ye(0)

] [xed − xe(0)
yed − ye(0)

]
(4.7)

subject to
xed = λx(s) (4.8a)

yed = λy(s) (4.8b)

0 ≤ s ≤ n (4.8c)

By inserting the values from the example in (4.4), we get

min
[
xe − 2 yed − 3

] [xed − 2
yed − 3

]
(4.9)

subject to
xed = 0.5s (4.10a)

yed = 0.2s (4.10b)

0 ≤ s ≤ 20 (4.10c)

and the optimal solution to this is found as

ped =

[
xed
yed

]
=

[
2.7586
1.1034

]
(4.11)

This is illustrated in Fig. 4.2, and for comparison the total error from the path is e = 2.04
in Fig. 4.2 whilst it is e = 3.61 in Fig. 4.1.

Figure 4.2: Error from the initial position to the optimal position on the reference path

27

Chapter 4. MPC

As we have now derived a method of choosing the optimal path position to reach, the
next goal should be to derive a control law that ensures convergence to the path before
following the path to the end point. One method for reaching a reference with an MPC,
is by changing the MPC formulation from Foss and Heirung (2016). As the objective
function given in (2.9) aims to drive the system states to zero, this must be modified in
order to converge the states towards a reference value r. This is achieved by ensuring that
r− x = 0. The objective function can thus be modified to minimize |r− x| instead of |x|,
as the minimal value of |r − x| = 0. We can thus reformulate the objective function as
follows

min

k=N∑
k=1

(r(k)− x(k))TQ(r(k)− x(k)) + u(k)TRu(k) (4.12)

We also note that (2.6) and (4.12) are equal for r = 0. By introducing the ENU-position
and the desired ENU-position as states and references the optimization function can be
written as

min (P e
d − P

e)TQ(P e
d − P

e) + T TRT (4.13)

subject to

Aeq

[
P e

T

]
= Beq (4.14)

where Aeq and Beq represents the system dynamics as in (2.5). We note here that for our
system (2.9) and (4.12) are equal if the reference value r(k) = 0. We can notice that the
objective function similar to the objective function for finding the optimal path position as
described in (4.9), however we now also include the full prediction horizon for the MPC as
well as a cost for the inputs. Thus, by expanding the equality constraints in (4.14) to also
include the constraints given in (4.8), a controller can be derived that will find the optimal
path position as well as the optimal input to reach this path position.

For this algorithm, we will have four optimization variables, ped, s, pe and τ , which
will be optimized for the entire prediction horizon. This optimization function will be
constrained by the system dynamics, as well as ped = Λ(s). We thus get the objective
function

min
[
ST (P e

d)T (P e)T
]
Q

 SP e
d

P e

+ T TRT (4.15)

whereQmust be chosen such that we for every time step k have (ped(k)−pe(k))TQ(ped(k)−
pe(k)). Further, there will be no cost for S as s can be chosen freely to minimize the dis-
tance from the path at every time step. We will first examine the cost function where
the prediction horizon is one. Without regarding the input, the cost function can for this

28

4.2 Optimization formulation

system be written as

[
s xed(1) yed(1) xe(1) ye(1)

]

q11 q12 q13 q14 q15
q21 q22 q23 q24 q25
q31 q32 q33 q34 q35
q41 q42 q43 q44 q45
q51 q52 q53 q54 q55




s
xed(1)
yed(1)
xe(1)
ye(1)


= q2(xed(1)− xe(1))2 + q3(yed(1)− ye(1))2

(4.16)

which can be realized with
q22 = q42 = q2 (4.17a)

q24 = q44 = −q2 (4.17b)

q33 = q53 = q3 (4.17c)

q35 = q55 = −q3 (4.17d)

and where the remaining elements are zero. As we wish to penalize error in x and y
direction equally, we choose q2 = q3 = q. Expanding (4.16) to include the complete
prediction horizon from k = 1→ N , i.e with states

S =


s(1)
s(2)

...
s(N)

 (4.18a)

P e
d


ped(1)
ped(2)

...
ped(N)

 (4.18b)

P e


pe(1)
pe(2)

...
pe(N)

 (4.18c)

we get the following cost functions for each state

Qs =


0 0
...

. . .
...

...
. . .

...
0 0

 (4.19a)

29

Chapter 4. MPC

Qd =


qI 0 . . . 0

0
.

...
...

. 0
0 . . . 0 qI

 (4.19b)

Qp =


−qI 0 . . . 0

0
.

...
...

. 0
0 . . . 0 −qI

 (4.19c)

where I is a 2× 2 identity matrix and 0 is a 2× 2 matrix of zeros. The complete cost
matrixQ for this control law can thus be written as

Q =

 Qs 0N×2N 0N×2N
02N×2N Qd Qp

02N×2N Qd Qp

 (4.20)

and we thus have the objective function

min
[
ST (P e

d)
T (P e)T (T)T

] [Q 0
0 R

]
S
P e
d

P e

T

 (4.21)

subject to

Aeq


S
P e
d

P e

T

 = Beq (4.22)

By implementing this control law, we will get a controller that drives the system towards
the optimal path position i.e the closest position on the path to the initial position, re-
gardless of initial position. We have thus achieved convergence to the path, however this
control law will not move any further along the path once it has reached the path. As we
wish to follow the path towards the end point after convergence, this control law will have
to be expanded.

We will now derive a new control law that will ensure that we follow the path to the
end point when the path is reached, as well as convergence to the optimal point on the
path. There are several different ways this can be done, however we will now propose a
new method to achieve this. In the control law from (4.21) we are minimizing the error
(xed(k)− xe(k))2 + (yed(k)− ye(k))2, which is the goal to reach any reference. However,
we will now instead impose this as an additional equality constraint, i.e P e = P e

d. This
constraint however will for most cases give infeasible solutions to the optimization, as
there might not exist control inputs that are able to solve this for large initial errors. We
will therefore introduce a vector of slack variables, ε = [εx εy]T , such that pe(k)+ε(k) =
ped(k). As ε can be chosen arbitrarily large, this constraint will always be satisfied, and we

30

4.2 Optimization formulation

can thus guarantee that there always will be a feasible solution to the optimization. Further,
as our goal is to achieve pe(k) = ped(k) for any k, this is equivalent with ε → [0 0]T ,
which can be realized by including

min εTQεε (4.23)

where the cost matrix Qε will be chosen such that it ensures rapid convergence to zero.
Further, as ped = Λ(s), P e

d can be removed from the optimization. By introducing

E =


ε(1)
ε(2)

...
ε(N)

 (4.24)

the optimization function from (4.21) and (4.22) can be rewritten as

min
[
ST ET (P e)T T T

]


0 0
0 Qε 0 0

0
. . . 0 0

0 . . . 0 R



ST

E
P e

T

 (4.25)

subject to
pe(k) + ε(k) = Λ(s) (4.26a)

pe(k) = Ape(k − 1) +Bτ (k − 1) (4.26b)

We note here that there is no cost matrix for P e, or rather, all the elements are zero, which
implies that the value of P e does not directly affect the function value of the objective
function. The reason for this is that any additional cost onP e would attempt to drive pe(k)
towards zero, which is not necessarily a position on the path. Further, by minimizing E ,
we ensure that pe(k) converges to the path.

As this is just a reformulation of (4.21) and (4.22), we have still not ensured that we
follow the path towards the endpoint. In order to reach the end point pef = (xef , yef)T ,
we wish to minimize the error

e = (xe − xef)2 + (ye − yef)2 (4.27)

However, as the position is already constrained to be on the path by (4.26a), we need
only converge s towards the end point to achieve this objective. As s = 0 is defined as
the end point for our path definition, the end point can be reached by implementing the
minimization

min sTQss (4.28)

This can further be expanded to include the entire prediction horizon

min STQsS (4.29)

31

Chapter 4. MPC

where

Qe =


qs 0 . . . 0

0
.

...
...

. 0
0 . . . 0 qs

 (4.30)

Next we will discuss the choice of the weighting matrices Qε and Qs. Both have an
important function in the control law as Qε ensures that we converge the desired path
whilstQs ensures that we converge towards the desired end point. As we wish to converge
at an equal rate in both x and y direction, the Qε matrix will be given

Qε =

[
qε 0
0 qε

]
(4.31)

and as s is a scalar parameter, Qs will be

Qe = qs (4.32)

Further, as we wish to converge to the end point along the path, we wish to impose a
larger weight on ε than s. This is will ensure more rapid convergence towards the path
than towards the end point, which is equivalent of prioritizing to reach the path before
following the path towards the end point. This can be realized by choosing

qs � qε (4.33)

which will in theory ensure that we only converge towards the end point once we have
reached the path. We can thus formulate the optimization problem as

min
[
ST ET (P e)T T T

] 
Qs 0N×2N 0N×2N 0N×2N

02N×N Qε 02N×2N 02N×2N
02N×N 02N×2N 02N×2N 02N×2N
02N×N 02N×2N 02N×2N R



S
E
P e

T


(4.34)

subject to

P e + E = Λ(S) (4.35a)

pe(1)−Bτ (0) = Ape(0) (4.35b)

pe(k)−Ape(k − 1)−Bτ (k − 1) = 0, k ∈ [2, N] (4.35c)

This optimization function will serve as the basis for all control laws of this thesis. As this
optimization function is derived for 2-DOF, i.e only the position pe is optimized without
regarding orientation, the states in (4.34) and (4.35) will need to be expanded to account
for vehicle orientation.

32

4.3 Linearized MPC

4.3 Linearized MPC
The first control law we will derive based on the optimization from Section 6.1 will be a
linearizing MPC. For this approach we will attempt to implement a linear MPC for 3-DOF,
by linearizing the UGV dynamics for each time step. The required states for this control
law are the states given in the 3-DOF model in Dyrnes (2018), i.e [xe ye ψ]T . Further the
linear damping dynamics will be used for the yaw rate, i.e[

ψ̇
ṙ

]
=

[
0 1
0 −D

Iz

] [
ψ
r

]
+

[
0
1
Iz

]
Tz (4.36)

with Tz being the total torque applied to the vehicle. Further the torque has been derived
as

Tz = u|u|µfR sin γ (4.37)

with u and γ being the body-fixed velocity and steering angle respectively. The nonlinear
UGV model in 3-DOF is thus given

ẋ =


ẋe

ẏe

ψ̇
ṙ

 =


f1(x, τ)
f2(x, τ)
f3(x, τ)
f4(x, τ)




u cosψ
u sinψ
r

1
Iz

(u|u|µfR sin γ −Dr)

 (4.38)

where x = [xe ye ψ r]T and τ = [u γ]T . By linearization, the system is given in state
space form as follows
ẋe

ẏe

ψ̇
ṙ

 = J


xe

ye

ψ
r

+B

[
u
γ

]
=


δf1
δxe

δf1
δye

δf1
δψ

δf1
δr

δf2
δxe

δf2
δye

δf2
δψ

δf2
δr

δf3
δxe

δf3
δye

δf3
δψ

δf3
δr

δf4
δxe

δf4
δye

δf4
δψ

δf4
δr



xe

ye

ψ
r

+


δf1
δu

δf1
δγ

δf2
δu

δf2
δγ

δf3
δu

δf3
δγ

δf4
δu

δf4
δγ


[
u
γ

]

=


0 0 −u∗ sinψ∗ 0
0 0 u∗ cosψ∗ 0
0 0 0 1
0 0 0 −D

Iz



xe

ye

ψ
r

+


cosψ∗ 0
sinψ∗ 0

0 0
2u∗µfR sin γ∗

Iz

u∗|u∗|µfR cos γ∗

Iz

[uγ
]

(4.39)

where ∗ indicates that the value for the point of linearization should be inserted, e.g if we
linearize about u = 0.5 we have u∗ = 0.5.

4.3.1 Controllability
Before moving further with the control law, controllability for the linearized system should
be checked. Controllability of this linearized system can be shown by calculating the
controllability matrix. For J ∈ Rn×n, we have the controllability matrix

C =
[
B JB J2B . . . Jn−1B

]
(4.40)

33

Chapter 4. MPC

which for the linearized sytem in 3-DOF yields the following controllability matrix

C =


cosψ 0 0 0
sinψ 0 0 0

0 0
2uµfR sin γ

Iz

u|u|µfR cos γ
Iz

2uµfR sin γ
Iz

u|u|µfR cos γ
Iz

−2DuµfR sin γ
I2z

−2Du|u|µfR cos γ
I2z

−2u2µfR sinψ sin γ
Iz

−u2|u|µfR sinψ cos γ
Iz

2Du2µfR sinψ sin γ
I2z

2Du2|u|µfR sinψ cos γ
I2z

2u2µfR cosψ sin γ
Iz

u2|u|µfR cosψ cos γ
Iz

−2Du2µfR cosψ sin γ
I2z

−2Du2|u|µfR cosψ cos γ
I2z

−2DuµfR sin γ
I2z

−2Du|u|µfR cos γ
I2z

2D2uµfR sin γ
I3z

2D2u|u|µfR cos γ
I3z

2D2uµfR sin γ
I3z

2D2u|u|µfR cos γ
I3z

−2D3uµfR sin γ
I4z

−2D3u|u|µfR cos γ
I4z


(4.41)

The ∗ symbol is dropped to simplify the notation, however the values for the point of
linearization should still be inserted. Controllability for the system can thus be checked by
examining the rank of the controllability matrix. A system is controllable if the rank of the
controllability matrix is equal to the number of states. This system will thus be controllable
if we have rank(C) = 4. We therefore check controllability by inserting values in the
controllabillity matrix. The first thing we notice is that for the initial condition, i.e u = 0,
we have

C =


cosψ 0 0 0 0 0 0 0
sinψ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 (4.42)

The rows and columns containing only zeros can be cut from the matrix as they do not add
to the rank, which gives

C =

[
cosψ
sinψ

]
(4.43)

and rank(C) = 1, as we only have one column. This implies that the system is not
controllable for the initial velocity input u = 0. Further by choosing any u 6= 0 and
inserting a value of γ = 0, we get

C =


cosψ 0 0 0 0

−u2|u|µfR sinψ
Iz

0
2Du2|u|µfR sinψ

I2z

sinψ 0 0 0 0
u2|u|µfR cosψ

Iz
0

−2Du2|u|µfR cosψ
I2z

0 0 0
u|u|µfR

Iz
0

−2Du|u|µfR
I2z

0
2D2u|u|µfR

I3z

0
u|u|µfR

Iz
0

−2Du|u|µfR
I2z

0
2D2u|u|µfR

I3z
0

−2D3u|u|µfR
I4z



=


cosψ 0 0

−u2|u|µfR sinψ
Iz

2Du2|u|µfR sinψ
I2z

sinψ 0 0
u2|u|µfR cosψ

Iz

−2Du2|u|µfR cosψ
I2z

0 0
u|u|µfR

Iz

−2Du|u|µfR
I2z

2D2u|u|µfR
I3z

0
u|u|µfR

Iz

−2Du|u|µfR
I2z

2D2u|u|µfR
I3z

−2D3u|u|µfR
I4z


(4.44)

34

4.3 Linearized MPC

For this case, we will have rank(C) = 4 if we have four linearly independent rows and
columns. According to Miller (2011), two rows or columns are said to be linearly depen-
dent if there exist two scalars x1 6= 0 and x2 6= 0 such that

Cix1 + Cjx2 = 0 (4.45)

or equivalently if there exists one scalar a 6= 0 such that Ci − aCj = 0, where i and
j are the row or column numbers and 0 is a vector of zeros. The parameters D, Iz and
µf will be strictly positive scalars by definition, as any other values would imply zero or
negative mass or friction. First of all we can easily verify that we have at least four linearly
independent columns, as the first three columns have values and zeros in different rows, e.g
the first column has values in row one and two whilst column two only have a value in row
four. As both column four and five have non zero elements in all four rows, they are both
linearly independent from the first three columns as the first three columns all contain zero
elements. This implies that we have at least four linearly independent columns. By using
the same method, we can also see that both two bottom rows are linearly independent of
each other as row four has a non zero element in the second column whilst the third row
has a zero element in the third column. Similarly we can verify that both bottom rows are
linearly independent of the top two rows, as both bottom rows has a non zero element in
the fourth column. Further, when comparing the top two rows, we can see that[

cosψ
−u2|u|µfR sinψ

Iz

2Du2|u|µfR sinψ
I2z

]
6= a

[
sinψ

u2|u|µfR cosψ
Iz

−2Du2|u|µfR cosψ
I2z

]
,

∀ ψ, a (4.46)

which implies that the top two rows are linearly independent, and that we have four linearly
independent rows. As we have both four linearly independent rows and columns, we have
rank(C) = 4, which shows controllabillity for γ = 0. Controllability should now be
checked for other values of γ, however we first note some properties of γ. As the vehicle
has a physical constraint on the steering angle, i.e −35◦ ≤ γ ≤ 35◦, we therefore have
cos γ > 0 and cos γ > sin γ. These properties may simplify the controllabillity proof,
as no rows or columns will be made zero caused by γ = 90◦. Nor will any rows or
columns be linearly dependant as cos γ 6= sin γ. Further, controllability could be shown
by using the full matrix in (4.41), however because of the aforementioned properties, it
might be sufficient to use the simplified matrix from (4.44). As mentioned earlier, we need
at least four linearly independent rows and columns, and might therefore not be necessary
to calculate for the entire controllability matrix from (4.41). By inserting γ in (4.44), we
get

C =


cosψ 0 0

−u2|u|µfR sinψ cos γ

Iz

2Du2|u|µfR sinψ cos γ

I2z

sinψ 0 0
u2|u|µfR cosψ cos γ

Iz

−2Du2|u|µfR cosψ cos γ

I2z

0 0
u|u|µfR cos γ

Iz

−2Du|u|µfR cos γ

I2z

2D2u|u|µfR cos γ

I3z
2uµfR sin γ

Iz

u|u|µfR cos γ

Iz

−2Du|u|µfR cos γ

I2z

2D2u|u|µfR cos γ

I3z

−2D3u|u|µfR cos γ

I4z


(4.47)

As cos γ 6= 0, we have at least four linearly independent columns as for (4.44). Further,
the argument for linear independence for the bottom rows still holds, as none of the el-
ements are made zero for any valid value of γ. We also know that as the two top rows

35

Chapter 4. MPC

where linearly independent for cos γ = 1, inserting any new value of γ would be equal to
multiplying by a factor of cos γ. As the definition of linear independence states that there
is no value of a that will make the two rows equal, there can not exist a value of cos γ that
will make the two rows equal as this would be equivalent of multiplying with a constant.
Therefore the top two rows must still be linearly independent for any valid value of γ, and
we therefore have

rank(C) = 4, ∀ u 6= 0 q.e.d (4.48)

Thus the linearized system is controllable for all values except for u = 0. This does
however pose one problem, as u = 0 is a valid input for the control problem, and in fact
will be the initial condition for most applications. There is however a solution to this
problem. If we choose to never linearize about u = 0, i.e selecting another value of u
for the point of linearization, this problem should be avoided. Even though this will bring
more inaccuracy to the controller, as a linearized model only is accurate around the point
of linearization, one might argue that for a sufficiently small u this linearization error will
be negligible. We will therefore proceed with this control algorithm by linearizing about
a small value of u when we in reality have u = 0, and this value will be tuned by testing
later.

4.3.2 Control law
Before implementing the system dynamics as equality constraints, the state space model
can further be discretized by the use of the first order explicit Euler discretization method,
i.e

X(k + 1) = Ad(k)X(k) +Bd(k)τ (k) (4.49)

with

Ad = I + hJ =


1 0 −hu∗ sinψ∗ 0
0 1 hu∗ cosψ∗ 0
0 0 1 1
0 0 0 1− hD

Iz

 (4.50)

Bd = hB =


h cosψ∗ 0
h sinψ∗ 0

0 0
2u∗hµfR sin γ∗

Iz

u∗|u∗|hµfR cos γ∗

Iz

 (4.51)

where h is the sampling time. As the linear discrete state space model describes the change
ofx, it will serve as the linear equality constraints for the system for every time step similar
to what is done in Foss and Heirung (2016), and by using (2.3), we can express the system
on the form

x(1) = Ad(0)x(0) +Bd(0)τ (0)

x(2) = Ad(1)x(1) +Bd(1)τ (1)

...
x(N) = Ad(N − 1)x(N − 1) +Bd(N − 1)τ (N − 1)

(4.52)

36

4.3 Linearized MPC

Further, by introducing the variable

X =


x(1)
x(2)

...
x(N)

 (4.53)

(4.52) can thus be rearranged to matrix form similar to (2.4) as

I4×4 04×4 04×4 −Bd 04×2 04×2

−Ad
.

... 04×2
.

...

04×4
.

...
...

.
...

...
. 04×4

...
. 04×2

04×4 . . . 04×4 −Ad I 04×2 04×2 −Bd


︸ ︷︷ ︸

Aeqd

[
X
T

]
=


Adx(0)
04×1

...

...
04×1


︸ ︷︷ ︸

Beqd

(4.54)
which gives the equality constraints for the system dynamics

Aeqd

[
X
T

]
= Beqd (4.55)

where X and T are the states and inputs for the entire prediction horizon respectively.
Further, we wish to implement the path constraints as described in (4.35a), which can be
sorted to

E + P e − Λ(S) = 02N×1 (4.56)

At this point it is important to note that in order to implement these constraints for the
linear MPC, we require linear equality constraints, and by extension a linear path Λ, such
that

Λ =

[
λx
λy

]
s, s ∈ [0, n] (4.57)

where λx and λy are constants. However, for this part we will assume that this holds and
that we have a linear path when using this controller. Thus we will choose the path Λ1

given in (4.2), such that the path can be implemented in the linear equality constraints for
the path, and (4.56) can be written on matrix for as

Aeqp

SE
X

 = Beqp (4.58)

with

Aeqp =


Λ 02×1 . . . 02×1 I 02×2 . . . 02×2 IO 02×4 . . . 02×4

02×1
.

... 02×2
.

... 02×4
.

...
...

. 02×1
...

. 02×2
...

. 02×4
02×1 . . . 02×1 Λ 02×2 . . . 02×2 I 02×4 . . . 02×4 IO


(4.59)

37

Chapter 4. MPC

and

Beqp =


02×1

...

...
02×1

 (4.60)

where I is a 2× 2 identity matrix and

IO =

[
1 0 0 0
0 1 0 0

]
(4.61)

The full set of constraints for this system can thus be written as

[
Aeqp 02N×2N

04N×3N Aeqd

]
︸ ︷︷ ︸

Aeq


S
E
X
T


︸ ︷︷ ︸

Z

=

[
Beqp

Beqd

]
︸ ︷︷ ︸

Beq

(4.62)

We will now find the inequality constraints for the controller. As the system is bound
by physical constraints on the input, these constraints should be enforced in the MPC
to avoid inputs that can not be implemented. These physical constraints are the UGV’s
minimum and maximum velocity, as well as the minimum and maximum steering angle.
These are 0m/s and 5m/s, and −35◦ and 35◦ respectively. In reality, the UGV can have
a negative velocity as well, i.e driving in reverse, however FFI does not desire this for the
path following controllers.

Further, as a failsafe, FFI have imposed a maximum error for the vehicle. This is done
by stopping the vehicle if the error, i.e deviation from the path, is greater than a predefined
threshold. This can be implemented in the MPC by including a minimum and maximum
value for the slack variables ε.

For the linearized MPC, we thus have the following inequality constraints

τmin ≤ τ ≤ τmax (4.63a)

εmin ≤ ε ≤ εmax (4.63b)

Thus, by inserting the states in the basic optimization from (4.34), we get the objective
function

min ZTGZ

min
[
ST ET (X)T T T

] 
Qs 0N×2N 0N×4N 0N×2N

02N×N Qε 02N×4N 02N×2N
04N×N 04N×2N 04N×4N 04N×2N
02N×2N 02N×2N 02N×4N R



S
E
X
T


(4.64)

As we for this controller for the linearized system have derived a quadratic objective func-
tion, as well as linear equality and inequality constraints, this problem can be solved as a

38

4.4 Nonlinear MPC for 3-DOF

quadratic problem (QP). This gives the advantage that QP-solvers, which are proven to be
efficient, can be implemented, which might give a reduced calculation time compared to a
more complex nonlinear problem (NLP).

4.4 Nonlinear MPC for 3-DOF
The next controller we will attempt to implement is a NMPC for 3-DOF. The motivation
behind this controller, is that the nonlinear dynamics will offer more accuracy compared to
the linearized dynamics from Section 4.3, whilst less complex than a model for 6-DOF. As
opposed to Section 4.3, this controller will be based on the the nonlinear damping model
for the yaw dynamics. Further, instead of linearizing the dynamics for the operating point,
the optimization will be solved using nonlinear solvers. We thus have the nonlinear model

ẋe

ẏe

ψ̇
ṙ

 =


u cosψ
u sinψ
r

u|u|µfR sin γ
Iz

− D
Iz
r|r|

 (4.65)

where [xe ye ψ ψ̇]T for the entire prediction horizon are the states X , and [u γ]T are
the control inputs τ . The linear damping model for the yaw rate dynamics is used for this
control law, as testing of the model does not seem to offer any significant advantages to
the nonlinear damping model in terms of accuracy. Therefore the linear damping model
will be chosen, as this will give less computational complexity.

As we are still using the quadratic optimization function from Section 4.2, we can
implement a similar control law as for Section 4.3, i.e

min


S
E
X
T


T 

0 0 0 0
0 Qε 0 0
0 0 Qe 0
0 0 0 R



S
E
X
T

 (4.66)

This time however, as we will use the nonlinear vehicle model, the equality constraints
from (4.62) must be changed. By using Euler discretization, the UGV model from (4.65)
can be written as

x(k) = x(k − 1) + hu(k − 1) cosψ(k − 1) (4.67a)

y(k) = y(k − 1) + hu(k − 1) sinψ(k − 1) (4.67b)

ψ(k) = ψ(k − 1) + hr (4.67c)

r(k) = r(k − 1) + h (
u(k − 1)|u(k − 1)|µfR sin γ(k − 1)

Iz
− D

Iz
r(k − 1)|r(k − 1)|)

(4.67d)
Next, we will express the path constraints. As opposed to Section 4.3, we no longer

require the path Λ to be a linear function s as we are no longer limited to linear constraints.

39

Chapter 4. MPC

Therefore, this NMPC control law should be able to follow any path described by a non-
linear function Λ(s). The functions will vary for the different paths, however the general
constraints will still be

εx(k) + ex(k)− λx(s(k)) = 0 (4.68a)

εy(k) + ey(k)− λy(s(k)) = 0 (4.68b)

As for the inequality constraints for this control law, we will still have the same constraints
on the input as for Section 4.3, however we will now also impose a constraint on the
heading angleψ. The reason this is imposed is that asψ is periodic, i.eψ = ψ+n2π ∀n ∈
N, any solution to the control law will have an equivalent solution with ψ ∈ [0, 2π〉, and
by constraining ψ, we will limit the search for an optimal solution to within the bounds
and thus we might reduce the computation time. Further, the measured angle will always
be between 0 and 2π. However, as there is no physical constraint on the rotation of the
vehicle, it is desirable for the controller to choose the shortest rotation to reach the desired
ψd, e.g if we have ψ = π

4 and ψd = 7π
4 , the shortest rotation would be to rotate clockwise

towards ψ = −π4 . Thus, to ensure that we consider the optimal rotation direction to reach
ψd, the bound on ψ must be increased. By increasing the bound to ψ ∈ [0, 4π〉, we
will consider counter clockwise rotation for ψd < ψ − π. Likewise, by expanding the
lower bound to −2π, we will consider clockwise rotation for ψd > ψ + π. We thus have
ψ ∈ 〈−2π, 4π〉

τmin ≤ τ ≤ τmax (4.69)

4.5 Simplified Nonlinear MPC for 6-DOF
We will now derive a control law for the UGV in 6-DOF. The basics for this control law
will be the same as for Section 4.3 and Section 4.4, however this will be expanded for the
entire 3D space. The motivation behind this is that by meassuring the UGV’s orientation
in the terrain and accounting for this in the control law, one might improve the accuracy as
by accounting for how the UGV will move in the terrain.

We will however make one simplification for this control law. As the movement is
bounded such that the UGV can not move independent from the ground, the pitch and
roll angles θ and φ can not be controlled directly. These angles will solely depend on the
inclination of the ground, and are thus not included in the objective function. However,
as these angles affect the dynamics of the system, they will need to be included in the
constraints. We will therefore derive a control law which uses linearizations of pitch and
roll angles to describe the dynamics, whilst the nonlinear model is used for the remaining
states. The motivation behind this is that this will reduce the complexity of the control law
as we reduce the number of variables and nonlinear constraints.

As the MPC is robust with regards to modelling errors, and as only the first input in
the input sequence is applied before the model is updated, we will attempt to simplify
the model. By examining the kinematics given in (3.2) we notice that ẋe and ẏe are
proportional to cos θ. If we consider θ to be constant for the entire prediction horizon at
each sampling time, cos θ will reduce to a constant cθ in the range cθ ∈ [0, 1]. We note
here that cos θ = 0 would give an uncontrollable system as this would give ẋe = ẏe = 0,
however this would require the vehicle to be oriented vertically, which is outside of any

40

4.5 Simplified Nonlinear MPC for 6-DOF

application of the UGV. The same can be done by examining the kinematics for ψ̇, which
is given

ψ̇ = q
sinφ

cos θ
+ r

cosφ

cos θ
(4.70)

If we for this control law consider any the roll and pitch angles as constant for each sam-
pling time, and by extension the roll and pitch motion p and q as disturbances, the yaw
velocity will be given

ψ̇ = r
cφ
cθ

(4.71)

We note here that the singularity caused by cθ = 0 will not affect this system, as the pitch
angle will never reach 90◦ as stated earlier.

By reducing the angles that can not be controlled directly, i.e θ and φ, to constants
updated at each sampling time, we have reduced the complexity of the kinematics for 6-
DOF. However as the effect these angles have on the UGV’s motion at the current sampling
time is still included, we have improved the accuracy from the 3-DOF model from Section
4.4. We thus have increased the accuracy of the model, without significantly increasing
the computational complexity, which might improve the performance of this control law
compared to the control law from Section 4.4.

One important thing to note for this controller is that there will be physical constraints
on the pitch and roll angles, which will affect the validity of the dynamic model. These
physical constraints are caused by the maximum inclination the vehicle will be able to
handle. As a large pitch angle would cause the UGV’s CG to shift past the contact point
with the ground, i.e the CG is behind the rear wheels, this would cause the front wheels
to lose contact with the ground and thus the vehicle would overturn. This is illustrated in
Fig. 4.3, and as the model requires that all wheels are in contact with the ground, these
constraints should not be violated.

41

Chapter 4. MPC

Figure 4.3: Illustration of vehicle overturning from Dyrnes (2018)

Dyrnes (2018) calculated the maximum pitch angle to be θmax = 52.8◦ and the
minimum pitch angle, i.e the steepest decline the UGV can handle was calculated to
θmin = −64.5◦. The same applies for large roll angles, and the maximum roll an-
gle was calculated φmax = 51.0◦, and as the vehicle is symmetric about the xb-axis,
φmin = −φmax. By using this, we can further limit the range of cθ ∈ [0.43, 1].

The simplified 6-DOF MPC control law will thus have the optimization function (4.66),
subject to the path constraints (4.68) and the dynamic constraints

x(k) = x(k − 1) + hcθu(k − 1) cosψ(k − 1) (4.72a)

y(k) = y(k − 1) + hcθu(k − 1) sinψ(k − 1) (4.72b)

ψ(k) = ψ(k − 1) + h
cφ
cθ
r (4.72c)

r(k) = r(k − 1) + h (
u(k − 1)|u(k − 1)|µfR sin γ(k − 1)

Iz
− D

Iz
r(k − 1)|r(k − 1)|)

(4.72d)

4.6 Multiplexed Nonlinear MPC for 3-DOF
We will now derive a MMPC control law for the vehicle in 3-DOF based on the principle’s
explained in Ling et al. (2011). The idea behind this is to reduce the run time of the
controller, which Ling et al. (2011) states that is given by O((m × N)3) where m is the
number of states, and N is the prediction horizon. Thus, splitting the control law in two
optimization formulations might significantly reduce the computation time.

42

4.6 Multiplexed Nonlinear MPC for 3-DOF

If we consider the control law from Section 4.4 as a basis, we have m = 9 states. By
splitting this control law into two optimization formulations where n states are optimized
separately, we will have a run time of O(((m − n) ×N)3) for the first optimization, and
O((n×N)3) for the second optimization.

One choice we can make here is to optimize the kinematics separately from the yaw
kinetics, such that we have one MPC that finds the optimal heading ψ and velocity u to
follow the path, whilst the other finds the optimal steering angle γ to reach this heading.
By doing this, we will have two controllers, where the input from the outer loop serves as
the reference for the inner loop.

We thus have the input τ = [u, ψd]
T , and the outer loop MPC that aims to minimize

min


S
E
P
T


T 
Qs 0 0 0
0 Qε 0 0
0 0 0 0
0 0 0 R


︸ ︷︷ ︸

G


S
E
P
T

 (4.73)

subject to
x(k) = x(k − 1) + hu(k − 1) cosψd (4.74a)

y(k) = y(k − 1) + hu(k − 1) sinψd (4.74b)

x(k) + εx(k)− λx(k) = 0 (4.74c)

y(k) + εy(k)− λy(k) = 0 (4.74d)

By introducing the states ψ = [ψ − ψd, r]T and the input γ. We thus have an an inner
loop MPC that aims to minimize

min
[
ΨT ΓT

] [Qψ 0
0 Qγ

]
︸ ︷︷ ︸

Gψ

[
Ψ
Γ

]
(4.75)

where

Ψ =


ψ(1)
ψ(2)

...
ψ(N)

 (4.76a)

Γ =


γ(1)
γ(2)

...
γ(N)

 (4.76b)

The weighting matrixQψ will be a 2N × 2N diagonal matrix of Qψ where

Qψ =

[
qψ 0
0 qr

]
(4.77)

43

Chapter 4. MPC

As the weight qψ aims to converge ψ − ψd → 0, whilst qr converges r → 0, the weights
will be chosen such that qψ � qr. This is done because we only wish to achieve r = 0
once the heading has reached the desired heading, which can be enforced by imposing a
larger weight on ψ − ψd in the optimization. Further, the inner loop optimization will be
subject to the constraints

ψ(k) = ψ(k − 1) + hr (4.78a)

r(k) = r(k − 1) + h (
u|u|µfR sin γ(k − 1)

Iz
− D

Iz
r(k − 1)|r(k − 1) (4.78b)

We thus have two optimization functions with seven and three states respectively, in-
stead of one optimization function with nine states. The total run time of this MMPC
should thus be given

t = (7×N)3T + (3×N)3T = (343N3 + 27N3)T = 380N3T (4.79)

where T is a time unit, i.e the time a computer uses to perform one operation. For com-
parison, the MPC formulation from Section 4.4 will have the run time

t = (9×N)3 = 729N3T (4.80)

44

Chapter 5
Implementation

5.1 Algorithms

5.1.1 Linearizing MPC

We will now derive an algorithm that will realize the linearized MPC. The first step will
be the initialization sequence. In the initialization sequence, physical constraints such as
τmax, and the weighting matrix G for the objective functions will be defined. These ma-
trices are tuning parameters for the controller, and numerical values for these will be set
later. Next measurements of the system states and inputs will be made, and the system
will be linearized for these states, as the system dynamics will serve as constraints for the
optimization. Lastly, the optimization is solved using a QP-algorithm. The algorithm will
thus be as follows

Define: τmax, Λ,Qs,Qε andR
while(pe 6= pef):

measure x(0) and τ (−1)
if(u < 0.1):

u = 0.1
calculate Ad and Bd
solve minZTGZ subject to:
AeqZ = Beq

Zmin ≤ Z ≤ Zmax
apply τ (0)

5.1.2 Nonlinear MPC for 3-DOF

The next algorithm we will derive will realize the 3-DOF NMPC. As for the linearizing
MPC, the first step of this algorithm will be the initialization sequence, which is identical
to that of the linearized MPC. Next, measurements of the system states and inputs will

45

Chapter 5. Implementation

be made, but rather than linearizing the system with respect to these measurements, the
states will be used directly in the nonlinear dynamic equations. Further, these dynamic
equations will serve as the MPC’s equality constraints together with the path function. As
we for the NMPC require to solve a nonlinear optimization problem, a NLP solver needs
to be implemented. The solvers used in this thesis will be explained in Section 5.2

Define: τmax, Λ,Qs,Qε andR
while(pe 6= pef):

measure x(0)
solve minZTGZ subject to:

for(k = 1→ N):
x(k) = f(x(k − 1), τ (k − 1))
pe(k) + ε(k)− Λ(s(k)) = 0

Zmin ≤ Z ≤ Zmax
apply τ (0)

5.1.3 Nonlinear MPC for 6-DOF
Next we will derive an algorithm that will realize the 6-DOF NMPC. This is almost iden-
tical to the algortighm for 3-DOF NMPC, with the only difference being that the pitch
and roll angles are measured and included in the dynamic equations. We thus have the
algorithm

Define: τmax, Λ,Qs,Qε andR
while(pe 6= pef):

measure x(0), θ(0) and φ(0)
solve minZTGZ subject to:

for(k = 1→ N):
x(k) = f(x(k − 1), τ (k − 1), θ(0), φ(0))
pe(k) + ε(k)− Λ(s(k)) = 0

Zmin ≤ Z ≤ Zmax
apply τ (0)

5.1.4 Nonlinear MMPC for 3-DOF
The last algortihms we will derive will realize the 3-DOF MMPC. This control law can be
realized in several ways, and we will give two algorithms that might realize this controller.
For both algorithms, the initialization sequence and the measurements will be identical to
the NMPC for 3-DOF, however two optimization functions will be solved in order. The
dynamic equations for position and heading will serve as equality constraints in their re-
spective optimization functions. The first algorithm will solve the outer loop and inner
loop for subsequently for each time step, and we thus have the algorithm

Algorithm 1
Define: τmax, Λ,Qs,Qε,R,QψandQγ

while(pe 6= pef):

46

5.2 Solvers and hardware

measure X(0)
solve minZTGZ subject to:

for(k = 1→ N):
pe(k) = f(pe(k − 1), τ (k − 1))
pe(k) + ε(k)− Λ(s(k)) = 0

Zmin ≤ Z ≤ Zmax
u(0) = τ1(0) and ψd = τ2(0)
solve min [ΨT , ΓT]Gψ[Ψ, Γ]T subject to:

for(k = 1→ N):
ψ(k) = f(ψ(k − 1), γ(k − 1), u(0))

Γmin ≤ Γ ≤ Γmax
apply u(0) and γ(0)

The second algorithm will solve the inner and outer loop at different sampling steps. This
is done by choosing a larger sampling time for the outer loop than the inner loop, e.g
ho = 1s whilst hi = 0.1s as the outer and inner loop sampling time respectively. This will
give a piece wise linear desired path for the kinematics, whilst the inner loop aims to reach
the desired heading within one outer loop time step. We thus have the algorithm

Algorithm 2
Define: τmax, Λ,Qs,Qε,R,QψandQγ

while(pe 6= pef):
measure x(0)
solve minZTGZ subject to:

for(k = 1→ N):
pe(k) = f(pe(k − 1), τ (k − 1))
pe(k) + ε(k)− Λ(s(k)) = 0

Zmin ≤ Z ≤ Zmax
u(0) = τ1(0) and ψd = τ2(0)
t = 0
while(t < h0):

solve min [ΨT , ΓT]Gψ[Ψ, Γ]T subject to:
for(k = 1→ N):
ψ(k) = f(ψ(k − 1), γ(k − 1), u(0))

Γmin ≤ Γ ≤ Γmax
apply u(0) and γ(0)
t = t+ hi

5.2 Solvers and hardware
For this thesis, we will use two solver modules for the NLP optimization. The first module
is APMonitor which, is a free dynamic optimization toolbox for MATLAB. The APMon-
itor toolbox was donwloaded from http://apmonitor.com/wiki/index.php/Main/MATLAB,
and optimization problems are solved online on APMonitor’s servers. APMonitor offers
three solvers, and for this thesis we will use the Active Set solver APOPT, and the Interior

47

Chapter 5. Implementation

Point (IP) solver IPOPT.
The second solver module we will use is SciPy, which is a free toolbox for Python.

The SciPy toolbox contains solvers for dynamic optimization, and for this thesis we will
use the Active Set solver SQP.

The simulations will be tested on two different computers. Mainly, the simulations
will be done on a computer with Intel Core i7-6700HQ processor. This processor has
eight cores, and a clock speed of 2.60GHz. Further this machine has 16GB available
Random Access Memory (RAM).

The second computer will be a Virtual Machine (VM) run on the aforementioned com-
puter. The VM will therefore have the same processor, however it will be limited to four
out of eight cores. Further, the computer will only have 4GB available RAM

48

Chapter 6
Results

6.1 Basic optimization
Before testing the different MPC control laws, we will first test the basic optimization
formulation derived in Section 4.2, as all the control laws are based on this optimization
formulation. In order to test the functionality of this optimization, a simple simulation is
made in MATLAB. For this simulation, we will only use the simple dynamics

ẋe = τ1 (6.1a)

ẏe = τ2 (6.1b)

It is important to note here that these dynamics does not represent the actual dynamics
of the UGV, but is just introduced to test the theory of the new optimization formulation.
The results should therefore not be taken as a guarantee for the performance of the ac-
tual controller, however the results will give an indication on whether this optimization
formulation could work as a basis for the control laws, i.e converging to the path before
converging towards the end point. The desired path will be the same as for (4.4), whilst the
initial position will still be pe(0) = (9, 2.5)T . The prediction horizon is chosen N = 10
and the system is simulated for 50 time steps, with the sample time h = 0.1s. For this sim-
ulations we chose the weighting and cost matrices with qε = 1000, qe = 1 and r = 0.1,
with both inputs bounded, i.e −4 ≤ τ ≤ 4. Fig. 6.1 shows the results of the simulation.

49

Chapter 6. Results

0 1 2 3 4 5 6 7 8 9 10

East position

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N
o
rt

h
 p

o
s
it
io

n

Convergence to end point along path

Desired path

Traveled path

Initial position

Figure 6.1: Simulation of a simple path following example

As we can see, this control law is able to make the object converge to the path, before
following the path towards the end point. We note here that the control law drives the
object towards the path point ped = [8.20 3.28]T instead of the optimal path point ped =
[8.62 3.45]T . However when comparing the initial errors for these path points, we have
an error of e = 1.25, whilst the error from the optimal path position is e = 1.05. The
algorithm thus converges towards ped = [8.20 3.28]T , as this will also minimize the error
from the end point. I.e, the optimization control law converges towards a point that is
slightly further away from the initial position, in order to minimize the overall objective
function. As the control law achieved the desired goal, we will move further with the
control laws for the UGV.

6.2 Linearized MPC for 3-DOF
For simplicity, the linearized MPC was first tested with the linear path, i.e Λ1. The simula-
tions where done in MATLAB using MATLAB’s QP solver ”quadprog”, and the first tests
were done with a prediction horizon N = 30 and a simulation time of 30 seconds. The
controller was simulated with the linear damping model and no disturbances, simulating a
perfect model. The weighting matrices where chosen as

qε = 1000, R =

[
0.1 0
0 1

]
50

6.2 Linearized MPC for 3-DOF

and with qs = 1, qs = 10, qs = 100 and qs = 1000, with results shown in respective order
in Fig. 6.2 to Fig. 6.5

0 10 20 30 40 50 60

East [m]

0

10

20

30

40

50

60

N
o

rt
h

 [
m

]

Linearized MPC without disturbances

Desired path

Traveled path

Figure 6.2: Simulation of linearized MPC without disturbances and qs = 1

0 10 20 30 40 50 60

East [m]

0

10

20

30

40

50

60

N
o

rt
h

 [
m

]

Linearized MPC without disturbances

Desired path

Traveled path

Figure 6.3: Simulation of linearized MPC without disturbances and qs = 10

51

Chapter 6. Results

0 10 20 30 40 50 60

East [m]

0

10

20

30

40

50

60

N
o

rt
h

 [
m

]

Linearized MPC without disturbances

Desired path

Traveled path

Figure 6.4: Simulation of linearized MPC without disturbances and qs = 100

0 10 20 30 40 50 60

East [m]

0

10

20

30

40

50

60

N
o

rt
h

 [
m

]

Linearized MPC without disturbances

Desired path

Travel path

Figure 6.5: Simulation of linearized MPC without disturbances and qs = 1000

52

6.2 Linearized MPC for 3-DOF

As we can see, none of these simulations were able to converge to the final waypoint
with the linearized MPC. The final velocity was zero for all controllers, meaning the vehi-
cle had come to a rest at the end of the simulation. Fig. 6.6 shows that the velocity input
from the MPC is zero from eleven seconds of the simulation, which implies that the MPC
control law is unable to converge the vehicle any further towards the end.

0 5 10 15 20 25 30

Time [s]

0

1

2

3

4

5

6

V
e

lo
c
it
y
 [

m
/s

]

Velocity input from MPC

Figure 6.6: MPC velocity input with qs = 1000

In an attempt to make the simulated UGV converge to the end point, two modifications
were made to the MPC. First, the weighting matrix was changed such that

R =

[
0 0
0 0

]
(6.2)

which removes the penalty on the use of input in the control law. The motivation behind
this is that if T TRT > STQsS, this would imply that the cost of using a input exceeds
that penalty imposed on deviations from the final waypoint. Thus, by removing the cost
of using an input, the MPC can use an input freely as long as it does not violate any
constraints or as long as the simulated UGV has not reached the final waypoint.

The second modification that was made was an increase of prediction horizon such
that N = 100. By increasing the prediction horizon, the MPC might find some solutions
that are impossible for smaller prediction horizons. Consider an UGV facing away from
the desired path direction. In order to turn the vehicle, we require that the vehicle has a
velocity, however this would move the vehicle further away from the end point, and thus
increasing the total cost of the objective function. For prediction horizons shorter than the
number of time steps required to turn the vehicle, this would imply that the total function
value of the objective function increases, and is thus disregarded as a solution. However
for longer prediction horizons, the total function value will decrease as the control law is
able to calculate function values after the vehicle has turned. Thus the prediction horizon

53

Chapter 6. Results

was increased in an attempt to converge towards the final waypoint. The results of the
simulation with the weight matrix from (6.2) and prediction horizon N = 100 is shown in
Fig. 6.7 whilst the velocity input is shown in Fig. 6.8

0 10 20 30 40 50 60

East [m]

0

10

20

30

40

50

60
N

o
rt

h
 [

m
]

Linearized MPC without disturbances

Desired path

Traveled path

Figure 6.7: Simulation of linearized MPC without disturbances and qs = 100

0 5 10 15 20 25 30

Time [s]

0

1

2

3

4

5

6

V
e

lo
c
it
y
 [

m
/s

]

Velocity input from MPC

Figure 6.8: MPC velocity input with qs = 100

As we can see, the linearized MPC was still unable to converge the UGV along the path
to the end point, and the simulated UGV stops after about five seconds of the simulation.

54

6.3 Nonlinear MPC for 3-DOF

6.3 Nonlinear MPC for 3-DOF

6.3.1 APMonitor solvers

We will now test the NMPC control law from Section 4.4. The first simulation was done
for 35 seconds in MATLAB using the APMonitor solver with a prediction horizon ofN =
40. The desired path was Λ2 and the states are initialized at [xe(0), ye(0), ψ(0), r(0)]T =
[50, 10, π

2 , 0]T . The system was simulated without disturbances. This will represent a
system where the UGV is modelled perfectly, and is unaffected by external forces. The
purpose of this simulation is to give an indication on whether the control law works un-
der ideal circumstances, as we will not move further with this controller if this does not
perform satisfactory. The results are shown in Fig. 6.9.

Figure 6.9: Simulation of the NMPC for 3-DOF with ideal model

Further the same simulation was done with the initial states [xe(0), ye(0), ψ(0), r(0)]T =
[50, 10, 3π

2 , 0]T , which implies that the vehicles start at the same position as the previ-
ous simulation, but with the heading turned 180◦. The results are shown in Fig. 6.10

55

Chapter 6. Results

0 10 20 30 40 50 60

East [m]

0

5

10

15

20

25

30

35

40
N

o
rt

h
 [

m
]

Nonlinear MPC for 3-DOF without disturbances

Desired path

Traveled path

Figure 6.10: Simulation of the NMPC for 3-DOF with ideal model and initial heading away from
the path direction

As we can see, the MPC is able to converge the simulated vehicle to the desired path
for both simulations, before following the path towards the end point. Further, the velocity
at the final iteration of the simulation is u = 0, which implies that the vehicle has come to
rest at the final waypoint.

Next, the same controller was simulated with disturbances affecting the system. This
was done by implementing a time variant random number, i.e varying for each iteration,
to simulate the pitch and roll where θ ∈ [0◦, 20◦] and φ ∈ [0◦, 20◦]. This was used
to implement the kinematic equations from (3.2). Negative angles are ignored, as the
kinematics are given by cos θ and cosφ, as cos−x = cosx. Further, two random num-
bers which was varying for every iteration, δD ∈ [0.8, 1.2] and δµ ∈ [0.8, 1.2] was
introduced in the yaw dynamics to simulate model uncertainties in the damping and fric-
tion coefficients respectively. These parameters will simulate a 20% uncertainty in the
coefficients, which will vary depending on the surface, i.e D = D0 · δD = 1528 · δD
and µf = µf0 · δµ = 37.9 · δmu. The simulation was again run for the path Λ2

and the states are initialized at [xe(0), ye(0), ψ(0), r(0)]T = [50, 10, π
2 , 0]T and

[xe(0), ye(0), ψ(0), r(0)]T = [50, 10, 3π
2 , 0]T . The results are shown in Fig. 6.11

and Fig. 6.12

56

6.3 Nonlinear MPC for 3-DOF

Figure 6.11: Simulation of the NMPC for 3-DOF with model disturbances and initial heading to-
wards the path direction

Figure 6.12: Simulation of the NMPC for 3-DOF with model disturbances and initial heading away
from the path direction

57

Chapter 6. Results

The simulations were also run with the APMonitors Active Set solver APOPT, and a
comparison of the results for the APOPT and IPOPT solver for initial condition [xe(0), ye(0), ψ(0), r(0)]T =
[50, 10, π

2 , 0]T are shown in Fig. 6.13. As we can see, there is no noticeable difference
in performance for the two solvers.

0 10 20 30 40 50 60

East [m]

0

5

10

15

20

25

30

35

40

45

N
o

rt
h

 [
m

]

Nonlinear MPC for 3-DOF without disturbances

Desired path

APOPT solver

IPOPT solver

Figure 6.13: Comparison of APOPT and IPOPT solver for 3-DOF Nonlinear MPC

Next, the same MPC was tested for the linear path Λ1. The first simulation for this path
was run with a prediction horizonN = 10, and initial states [xe(0), ye(0), ψ(0), r(0)]T =
[60, 50, π, 0]T . The system was simulated without disturbances, and with a perfect
model, and the result are shown in Fig. 6.14

58

6.3 Nonlinear MPC for 3-DOF

0 10 20 30 40 50 60 70

East [m]

0

5

10

15

20

25

30

35

40

45

50

55
N

o
rt

h
 [

m
]

Nonlinear MPC for 3-DOF without disturbancs

Desired path

Traveled path

Figure 6.14: Simulation of the NMPC for 3-DOF with linear path and ideal model with N = 10

As we can see, this MPC has neither reached the path nor the final waypoint at the end
of the simulation. The prediction was thus increased to N = 30, which was the shortest
prediction horizon able to follow the path Λ2 for all initial positions. The system was thus
simulated for the initial positions [xe(0), ye(0), ψ(0), r(0)]T = [50, 30, π

2 , 0]T ,
[xe(0), ye(0), ψ(0), r(0)]T = [50, 30, 3π

2 , 0]T and [xe(0), ye(0), ψ(0), r(0)]T =
[65, 50, π, 0]T , both with and without disturbances, and the results are shown in respec-
tive order in Fig. 6.15 to Fig. 6.20 in respective order. The disturbances was implemented
as for Fig. 6.11 and Fig. 6.12

59

Chapter 6. Results

0 10 20 30 40 50 60

East [m]

0

5

10

15

20

25

30

35

40

45

N
o

rt
h

 [
m

]

Nonlinear MPC for 3-DOF without disturbances

Desired path

Traveled path

Figure 6.15: Simulation of the NMPC for 3-DOF with linear path and ideal model with N = 30
and without disturbances

0 10 20 30 40 50 60

East [m]

0

5

10

15

20

25

30

35

40

45

50

N
o

rt
h

 [
m

]

Nonlinear MPC for 3-DOF without disturbances

Desired path

Traveled path

Figure 6.16: Simulation of the NMPC for 3-DOF with linear path and ideal model with N = 30
and without disturbances

60

6.3 Nonlinear MPC for 3-DOF

0 10 20 30 40 50 60 70

East [m]

0

5

10

15

20

25

30

35

40

45

50

55

N
o

rt
h

 [
m

]

Nonlinear MPC for 3-DOF without disturbances

Desired path

Traveled path

Figure 6.17: Simulation of the NMPC for 3-DOF with linear path and ideal model with N = 30
and without disturbances

0 10 20 30 40 50 60

East [m]

0

5

10

15

20

25

30

35

40

45

50

N
o

rt
h

 [
m

]

Nonlinear MPC for 3-DOF with disturbancs

Desired path

Traveled path

Figure 6.18: Simulation of the NMPC for 3-DOF with linear path and ideal model with N = 30
and with disturbances

61

Chapter 6. Results

0 10 20 30 40 50 60

East [m]

0

5

10

15

20

25

30

35

40

45

50

N
o
rt

h
 [
m

]

Nonlinear MPC for 3-DOF with disturbances

Desired path

Traveled path

Figure 6.19: Simulation of the NMPC for 3-DOF with linear path and ideal model with N = 30
and with disturbances

0 10 20 30 40 50 60 70

East [m]

0

5

10

15

20

25

30

35

40

45

50

55

N
o

rt
h

 [
m

]

Nonlinear MPC for 3-DOF with disturbances

Desired path

Traveled path

Figure 6.20: Simulation of the NMPC for 3-DOF with linear path and ideal model with N = 30

62

6.3 Nonlinear MPC for 3-DOF

6.3.2 SciPy solver
As the control law was able to follow the path using both APMonitors IP and Active Set
solver, an implementation was made in Python using the SciPy SQP solver. The system
was simulated with the same desired path and initial state as Fig. 6.9. The simulations
were run with prediction horizon N = 10, N = 20, N = 30 and N = 40, and the results
are shown in Fig. 6.21 to Fig. 6.24 in respective order.

0 10 20 30 40 50 60

East [m]

0

5

10

15

20

25

30

35

40

N
o

rt
h

 [
m

]

Nonlinear MPC for 3-DOF without disturbances

Desired path

Traveled path

Figure 6.21: Simulation of the NMPC for 3-DOF with SciPy SQP solver with N = 10 without
disturbances

63

Chapter 6. Results

0 10 20 30 40 50 60

East [m]

0

5

10

15

20

25

30

35

40

N
o
rt

h
 [
m

]

Nonlinear MPC for 3-DOF without disturbances

Desired path

Traveled path

Figure 6.22: Simulation of the NMPC for 3-DOF with SciPy SQP solver with N = 20 without
disturbances

0 10 20 30 40 50 60

East [m]

0

5

10

15

20

25

30

35

40

N
o
rt

h
 [
m

]

Nonlinear MPC for 3-DOF without disturbances

Desired path

Traveled path

Figure 6.23: Simulation of the NMPC for 3-DOF with SciPy SQP solver with N = 30 without
disturbances

64

6.3 Nonlinear MPC for 3-DOF

0 10 20 30 40 50 60

East [m]

0

5

10

15

20

25

30

35

40
N

o
rt

h
 [

m
]

Nonlinear MPC for 3-DOF without disturbances

Desired path

Traveled path

Figure 6.24: Simulation of the NMPC for 3-DOF with SciPy SQP solver with N = 40 without
disturbances

As we can see, the implementation of the control law with SciPy’s SQP solver was
unable to both converge to the path and follow the path Λ2 for all prediction horizons.
Further, the control law with the SciPy controller was tested for Λ1, with initial condition
[xe(0), ye(0), ψ(0), r(0)]T = [65, 50, π, 0]T . The results for N = 10, N = 20,
N = 30, N = 40 are shown in Fig. 6.25 to Fig. 6.28 in respective order.

65

Chapter 6. Results

0 10 20 30 40 50 60 70

East [m]

0

10

20

30

40

50

60

N
o
rt

h
 [
m

]

Nonlinear MPC for 3-DOF without disturbances

Desired path

Traveled path

Figure 6.25: Simulation of the NMPC for 3-DOF with SciPy SQP solver with N = 10 with linear
path and no disturbances

0 10 20 30 40 50 60 70

East [m]

0

10

20

30

40

50

60

N
o
rt

h
 [
m

]

Nonlinear MPC for 3-DOF without disturbances

Desired path

Traveled path

Figure 6.26: Simulation of the NMPC for 3-DOF with SciPy SQP solver with N = 20 with linear
path and no disturbances

66

6.3 Nonlinear MPC for 3-DOF

0 10 20 30 40 50 60 70

East [m]

0

10

20

30

40

50

60

N
o
rt

h
 [
m

]

Nonlinear MPC for 3-DOF without disturbances

Desired path

Traveled path

Figure 6.27: Simulation of the NMPC for 3-DOF with SciPy SQP solver with N = 30 with linear
path and no disturbances

0 10 20 30 40 50 60 70

East [m]

0

10

20

30

40

50

60

N
o
rt

h
 [
m

]

Nonlinear MPC for 3-DOF without disturbances

Desired path

Traveled path

Figure 6.28: Simulation of the NMPC for 3-DOF with SciPy SQP solver with N = 40 with linear
path and no disturbances

67

Chapter 6. Results

6.4 Simplified 6-DOF controller
The simplified 6-DOF controller was simulated and compared to the 3-DOF controller.
This was done with APMonitor’s APOPT solver in a MATLAB. The first simulation was
made with a constant orientation with θ = 30◦, φ = 0◦ and zero uncertainty for the
damping and friction coefficients. The system was simulated for 35 seconds with a pre-
diction horizon of N = 40 time steps, and initial states [xe(0), ye(0), ψ(0), r(0)]T =
[50, 10, π

2 , 0]T . Fig. 6.29 shows a comparison of the two control laws.

0 10 20 30 40 50 60

East [m]

0

5

10

15

20

25

30

35

40

N
o

rt
h

 [
m

]

Comparison of 3-DOF controller with simplified 6-DOF controller with ideal model

Desired path

Simplified 6-DOF

3-DOF controller

Figure 6.29: Comparison of 3-DOF controller and simplified 6-DOF controller with θ = 30◦ and
no disturbances

Further, the two controllers was simulated again using the same model, from the initial
point [xe(0), ye(0), ψ(0), r(0)]T = [60, 10, π

2 , 0]T , and the results are shown in
Fig. 6.30

68

6.4 Simplified 6-DOF controller

0 10 20 30 40 50 60

East [m]

0

5

10

15

20

25

30

35

40
N

o
rt

h
 [

m
]

Comparison of 3-DOF controller and simplified 6-DOF controller without disturbance

Desired path

Simplified 6-DOF controller

3-DOF controller

Figure 6.30: Comparison of 3-DOF controller and enhanced 3-DOF controller with θ = 30◦,
starting in (60, 10)

In order to test the functionality of the control laws under imperfect conditions, both
controllers were simulated again with a side slip. The side slip was introduced in the sim-
ulations such that the UGV slides sideways whilst turning, and is caused by the centripetal
forces acting on the vehicle. Thus the system is simulated using the model

ẋe = hu cosψ + hc1 r sinψ (6.3a)

ẏe = hu sinψ + hc1 r cosψ (6.3b)

where the parameter c1 can be changed to reduce or increase the effect of the side slip. For
the first simulations, c1 = 1 was chosen. The system was thus simulated with initial states
[xe(0), ye(0), ψ(0), r(0)]T = [50, 10, π

2 , 0]T , and δD = δµ = 1, and the results are
shown in Fig. 6.31

69

Chapter 6. Results

0 10 20 30 40 50 60

East [m]

0

5

10

15

20

25

30

35

40

45
N

o
rt

h
 [

m
]

Nonlinear MPC with side slip and no coefficient errors

Desired path

Simplified 6-DOF

3-DOF

Figure 6.31: Comparison of 3-DOF controller and simplified 6-DOF controller with θ = 30◦, with
a side slip effect on the vehicle

Next, the simulations was run again with errors in the damping and friction coeffi-
cients. Fig. 6.32 and Fig. 6.33 shows the simulation results with δD ∈ [0.8, 1.2] and
δµ ∈ [0.8, 1.2], and δD ∈ [1, 1.2] and δµ ∈ [1, 1.2] respectively.

70

6.4 Simplified 6-DOF controller

0 10 20 30 40 50 60

East [m]

0

5

10

15

20

25

30

35

40

45
N

o
rt

h
 [

m
]

Nonlinear MPC with disturbances and side slip

Desired path

Simplified 6-DOF

3-DOF

Figure 6.32: Comparison of 3-DOF controller and simplified 6-DOF controller with θ = 30◦, with
a side slip effect and coefficient errors δ ∈ [1, 1.2]

71

Chapter 6. Results

0 10 20 30 40 50 60

East [m]

0

5

10

15

20

25

30

35

40
N

o
rt

h
 [

m
]

Nonlinear MPC for 6-dof with side slip and coefficient errors

Desired path

Simplified 6-DOF

3-DOF

Figure 6.33: Comparison of 3-DOF controller and simplified 6-DOF controller with θ = 30◦, with
a side slip effect and coefficient errors δ ∈ [1, 1.2]

The simplified 6-DOF MPC was also simulated with a larger side slip, i.e c1 = 10,
with the coefficient errors δD ∈ [0.8, 1.2] and δµ ∈ [0.8, 1.2]. The prediction horizon
was chosen as N = 40, and the results are shown in Fig. 6.34.

72

6.5 Multiplexed Model Predictive Control

0 10 20 30 40 50 60

East [m]

0

5

10

15

20

25

30

35

40

45
N

o
rt

h
 [

m
]

Nonlinear MPC for 6-dof with side slip and coefficient errors

Desired path

Traveled path

Figure 6.34: Simplified 6-DOF MPC with large side slip

6.5 Multiplexed Model Predictive Control

6.5.1 APMonitor solver
The MMPC control law was first simulated with the APMonitor APOPT solver. The
prediction horizon was chosen as N = 40 and the path Λ2 was chosen. Both the MMPC
algorithms was run for initial position [xe(0), ye(0), ψ(0), r(0)]T = [50, 10, π

2 , 0]T

for 35 seconds, and the results are shown in Fig. 6.35

73

Chapter 6. Results

0 10 20 30 40 50 60

East [m]

0

5

10

15

20

25

30

35

40

45
N

o
rt

h
 [

m
]

MMPC without disturbances

Desired path

Traveled path algorithm 1

Traveled path algorithm 2

Figure 6.35: Comparison of algorithm 1 and 2 for Multiplexed Model Predictive Control

6.5.2 SciPy solver
Next the MMPC was simulated for Λ2 with the SciPy solver, for initial states chosen as
[xe(0), ye(0), ψ(0), r(0)]T = [50, 10, π

2 , 0]T without disturbances. The MMPC
was simulated with both algorithm 1 and algortihm 2 with prediction horizon N = 10,
N = 20, N = 30 and N = 40, and the same results. The results are shown in 6.36 to 6.39
in respective order.

74

6.5 Multiplexed Model Predictive Control

0 10 20 30 40 50 60

East [m]

0

5

10

15

20

25

30

35

40

45
N

o
rt

h
 [

m
]

MMPC without disturbances

Desired path

Traveled path algorithm 1

Traveled path algorithm 2

Figure 6.36: Multiplexed Model Predictive Control without disturbances with N = 10

75

Chapter 6. Results

0 10 20 30 40 50 60

East [m]

0

5

10

15

20

25

30

35

40

45
N

o
rt

h
 [

m
]

MMPC without disturbances

Desired path

Traveled path algorithm 1

Traveled path algorithm 2

Figure 6.37: Multiplexed Model Predictive Control without disturbances with N = 20

76

6.5 Multiplexed Model Predictive Control

0 10 20 30 40 50 60

East [m]

0

5

10

15

20

25

30

35

40

45
N

o
rt

h
 [

m
]

MMPC without disturbances

Desired path

Traveled path algorithm 1

Traveled path algorithm 2

Figure 6.38: Multiplexed Model Predictive Control without disturbances with N = 30

77

Chapter 6. Results

0 10 20 30 40 50 60

East [m]

0

5

10

15

20

25

30

35

40

45
N

o
rt

h
 [

m
]

MMPC without disturbances

Desired path

Traveled path algorithm 1

Traveled path algorithm 2

Figure 6.39: Multiplexed Model Predictive Control without disturbances with N = 40

The MMPC was further tested for Λ1 for initial sates [xe(0), ye(0), ψ(0), r(0)]T =
[55, 35, π

2 , 0]T with both algorithms without disturbances. The MMPC was simulated
with prediction horizons N = 10, N = 20, N = 30 andN = 40, and all simulations gave
the results shown in Fig. 6.40

78

6.6 Run time

0 10 20 30 40 50 60

East [m]

0

5

10

15

20

25

30

35

40

45

50
N

o
rt

h
 [

m
]

MMPC without disturbances

Desired path

Traveled path

Figure 6.40: Multiplexed Model Predictive Control without disturbances

6.6 Run time
As an important aspect of the MPC is the run time of the algorithm, we will now compare
the run time for the different methods. The computation times for the 3-DOF NMPC with
APMonitor’s Active Set method APOPT and IP method IPOPT are shown in Table 6.1.

79

Chapter 6. Results

N Run time APOPT [s] Run time IPOPT [s]
10 0.062 0.2
20 0.22 0.42
25 0.37 0.62
30 0.65 0.87
40 1.2 2.59

Table 6.1: Computation times for APM solvers for 3-DOF NMPC

In addition to these computation times, the simulations took an additional 1.72s on
average to connect to the online server, which must be added to the total run time for the
algorithm.

The run time for the MMPC control law with the APMonitor’s APOPT solver is shown
in Table 6.2

N Run time outer loop [s] Run time inner loop [s]
10 0.079 0.017
20 0.36 0.023
30 0.59 0.032
40 0.88 0.044

Table 6.2: Computation times for APM solvers for 3-DOF NMPC

For the Python simulations using the open source SciPy’s SQP solver, the run time of
the 3-DOF NMPC with different prediction horizons are shown in Table 6.3.

N Run time SciPy’s SQP solver [s]
10 1.36
20 6.87
30 36.81
40 116.32

Table 6.3: Computation times for SciPy SQP solver for 3-DOF NMPC

For the Python simulations of the MMPC, using SciPy’s SQP solver, the outer and
inner loop run times with different prediction horizons are shown in Table 6.4.

80

6.6 Run time

N Run time outer loop MPC [s] Run time inner loop MPC [s]
10 1.42 0.059
20 8.73 0.18
30 12.51 0.33
40 48.9 0.61

Table 6.4: Run times for SciPy’s SQP solver for 3-DOF MMPC

A comparison of the run times of the simplified 6-DOF and the 3-DOF MPC showed
that for N = 40 the simplified 6-DOF controller had a 0.2 seconds larger run time on
average. This comparison was done by saving the run time for each iteration for the entire
simulation for both controllers, before averaging the results. It is worth noting here that
these average run times also include connection times to the server.

An attempt was also made to implement the MMPC control law on OLAV. This was
done by making two python scripts, one for the inner and one for the outer loop, using al-
gorithm 2. OLAV is controlled using Robotic Operating System (ROS) running on Ubuntu
16.04. Therefore, in order to implement the MMPC, a VM was set up with Ubuntu 16.04
and ROS, and the necessary software for OLAV’s low level controllers was installed. Fur-
ther the python scripts realizing the MMPC was implemented in OLAV’s control system,
and an attempt was made to test the control law for Λ1 with N = 10.

This implementation had a run time for the outer loop of 1.92 seconds, and a run time
of 0.38 seconds for the inner loop. As OLAV requires inputs at a sampling rate of 0.1
seconds, OLAV was forced into an emergency stop. There are therefore no results to show
for the implementation other than these run times.

81

Chapter 6. Results

82

Chapter 7
Discussion

7.1 Control law performance

When looking at the performance of the linearized MPC, we can see that this control law
is unable to follow the path as desired. This is despite the fact that the linearized system
was shown to be controllable in Section 4.3. The reason for this might be that stability can
not be guaranteed when using a MPC as stated in Foss and Heirung (2016) and Grune and
Pannek (2017). Further, one problem with this controller might be the uncertainties caused
by linearization, e.g that the system is always linearized for u > 0.1. When examining the
control inputs for the linearized controllers, we can see that for the end of the simulation,
the steering angle γ = 35◦ whilst the velocity is u = 0. As this implies that the system is
linearized about u = 0.1, the linear system has the control matrix

B =


cosψ∗ 0
sinψ∗ 0

0 0
2u∗Rµf sin γ∗

Iz

u∗|u∗|Rµf cos γ
Iz

 =


cosψ∗ 0
sinψ∗ 0

0 0
1.26·37.9·2·0.1·sin 35◦

1074
1.26·37.9·0.01 cos 35◦

1074


(7.1)

As we can see, the element at B4,2 is non zero, which implies that the control input γ
will affect the system. However in reality, this is not the case as the vehicle can not turn
without a velocity, regardless of the steering angle γ. Due to the linearization, the MPC
is modelled such that it should be able to control the yaw rate without any velocity, which
is not the case in reality. The linearized control law as it is formulated in Section 4.3,
is unable to compensate for this. This is one of the weakness’ of the MPC approach as
opposed to e.g a Proportional Integral Derivative (PID)-controller, which would gradually
increase u while the error persists and γ is saturated, and thus achieve convergence.

When comparing the results from Section 6.3, we can see that the NMPC for 3-DOF
with both the IP and the Active Set solver, is able to follow both the linear and curved path,
i.e Λ1 and Λ2, as long as the prediction horizon is chosen sufficiently large. The length of
the prediction horizon has an important function as it enables the vehicle to move further

83

Chapter 7. Discussion

away from the path, as long as this will bring the vehicle closer to the final waypoint for
future time steps. E.g by allowing the UGV to drive further away from the path direction
in order to turn the vehicle. If we consider this example with k1 equal to the number of
time steps required to turn the vehicle, the objective function will increase for every time
step k < k1, however it will decrease for k1 < k. Thus, if the number of time steps after
the vehicle has turned, i.eN−k1 is large enough, the total objective function value will be
decrease by turning the vehicle, as the penalty for deviations are multiplied for every time
step of the prediction horizon in the objective function. As long as the reduced objective
function value for k = k1 → N outweighs the increased objective function value for
k = 1 → k1, the optimal solution of the objective function will be to turn the UGV. such
that it is able to converge towards the path.

One important thing to note from the simulations, is that for some initial conditions,
the MPC seems to perform better with disturbances than without. One possible cause for
this is that for some situations, the disturbances might serve as a damping, i.e damping
the turning more than what is modelled. E.g if D = 1.2D0 whilst µf = 0.8µf0, this will
decrease the UGV’s turning rate faster than the ideal model with the same inputs, and thus
reduce the distance the UGV overshoots while turning.

The simulations also show that for some initial states with disturbances, the 3-DOF
controller performed better than the simplified 6-DOF controller. This is caused by the co-
efficients δD and δµ giving a lower damping change of turning rate, which will counteract
the effect of the inclination. Therefore, as the simplified 6-DOF controller compensates
for the kinematics, it will cause the simulated UGV to overshoot. However, as the 3-DOF
controller does not compensate for the kinematics, it will converge to the path faster. This
can be seen in Fig. 6.29, where the 6-DOF controller converges faster to the path than the
3-DOF controller, compared to Fig. 6.32, where the 6-DOF controller overshoots whilst
the 3-DOF controller does not. The figures shows simulation with and without coefficient
errors. For comparison, Fig. 6.33 shows the same simulation where the coefficient errors
are δD ∈ [1, 1.2] and δµ ∈ [1, 1.2], and we can see that the 6-DOF controller has faster
convergence than the 3-DOF controller, as this effect does not occur for these coefficient
errors. For simulations without other disturbances than the kinematics, as seen in Fig.
6.29, we can see that the simplified 6-DOF control law has better performance, which is
as expected as this control law compensates for the orientation in the terrain.

By comparing Fig. 6.13 and Fig. 6.24 we can see that the APMonitor’s Active Set
solver is able to follow the path Λ2. However, an implementation of the same control law
using SciPy’s SQP solver is unable to follow both paths with the same initial states. The
same applies for the linear path, as shown in Fig. 6.28. This may imply that the SciPy SQP
solver only finds suboptimal solutions to the optimization problem, which further implies
that the inputs are not the optimal inputs to follow the path.

From Fig. 6.35, we can see that algorithm 1 performs better than algorithm 2 for the
MMPC control law. For algorithm 1, the UGV oscillates around the desired path, whilst
for algorithm 2, the UGV does not oscillate, however it takes a shortcut from the path.
One possible explanation for this might be that for algorithm 1, the the outer loop does not
account for the inner loop dynamics for each optimization, which will cause the vehicle to
overshoot before the desired heading is reached. As algorithm 1 attempts to compensate
for this for the next iteration, it will cause the vehicle to oscillate around the path due to

84

7.1 Control law performance

these overshoots. However for algorithm 2, the inner loop is able to reach the desired
heading within each outer loop sampling time. The UGV thus follows the piece wise
linear path from the outer loop MPC, however due to the inner loop dynamics, the UGV
will not reach the predicted position for each outer loop iteration. As the outer loop inputs
calculates an input for a much larger sampling time than for algorithm 1, the control law
will attempt to converge to a point further along the path, in order to avoid overshoots.

FFI are currently using a feedback based control law on the UGV, which is based on
the control law described in Siciliano and Khatib (2008). This control law aims to maintain
a nominal velocity and steering to follow a prerecorded trajectory. Compensations in the
control inputs are added to these nominal inputs to compensate for deviations from the
trajectory. Both the existing control law, and the MPC control law derived in this thesis,
have different advantages compared to each other. As the existing controller is feedback
based, it has the advantage that stability can be guaranteed at all times. The MPC control
law can not guarantee stability at at all times, as there does not exist a stability proof for
MPCs. The MPC however offers an advantage as it does not require a prerecorded path
nor nominal inputs. This is advantageous for implementations on ISR-missions, as the
paths can be defined as a continuous function of s, and does not require the path to be
prerecorded by driving it once. Further, the MPC does not require known velocity and
steering angle inputs in order to follow the path, as these will be found by solving the
optimization function.

As well as calculating the optimal input to reach the desired velocity, the MPC also
calculates the optimal desired position on the path at each time step. This is advantageous
for some implementations, as we do not require the UGV to follow the path from the
beginning, but rather converging to the closest position on the path before following the
path towards the end. This is preferred when it is desirable to reach the path and the
end point as soon as possible e.g when traveling between two points. However, there are
some implementations where this is not desired, e.g when OLAV is used for mapping
purposes. If one considers a case where OLAV is used to map an area, it might be desired
to follow the entire path from beginning to end, such that the entire area is mapped. For
implementations where this is desired, the objective formulation from Ling et al. (2011)
might be desired. As Ling et al. (2011) defines s such that ṡ = v, the controller can be
initialized at s = 0, before v > 0 ensures that the UGV will progress along the path once
the beginning of the path is reached. It is important to note here that Ling et al. (2011)
defines s → n as progress in the path direction, whilst we for this thesis have defined
s→ 0 as progress in the path direction.

One possible modification to the control law might be to enforce s = n for the initial
position, which will cause the UGV to converge towards the beginning of the path. This
could be enforced until the UGV is within an accepted distance from the initial path po-
sition, before allowing s to be chosen freely. This might ensure that the UGV follows the
path from the beginning to the end, for implementations were this is desired.

Another path implementation where the control law derived in this thesis fails, is when
the desired path forms a closed cycle, e.g the eight-shaped path from Yu et al. (2011). As
the objective function aims to minimize s to reach the end point, the MPC will stop when
Λ(0) is reached rather than repeating the path for another cycle. This is the main differ-
ence between the MPC formulation derived in this thesis and the one derived in Ling et al.

85

Chapter 7. Discussion

(2011). As Ling et al. (2011) defines s such that ṡ = v, v > 0 will continually increase s
such that the vehicle advances along the closed path cycle. The choice of s as a parameter
that can be chosen freely for each iteration as defined in this thesis however, offers an ad-
vantage when attempting to reach a desired end point on the path, as described earlier. By
choosing s freely for each iteration, we also reduce the number of optimization variables
as we remove v from the optimization formulation. This is an advantage when it comes to
the computation time, as the reduced number of variables improves the computation time
of the optimization.

One modification that could be made to allow the UGV to follow closed cycle paths,
might be to attempt to keep the vehicle on the path whilst the velocity is kept constant.
This could be achieved by minimizing (u − ud)

2 where ud is some nominal velocity,
rather than minimizing s. The MPC might thus attempt to maintain a constant velocity,
whilst simultaneously attempting to keep the UGV on the path. As this modification of the
control law aims to maintain a constant velocity instead of reaching the final waypoint, it
might be able to follow the cycle paths.

7.2 Computation time
When comparing the computation times from Table 6.1 to Table 6.4 we can see that the
run time increases when the prediction horizon is increased. This is as expected, as Ling
et al. (2011) describes that the run time is given as O((m × N)3). Further, we can see
that for both solvers, the run time is generally lower for the MMPC approach than for the
NMPC approach, which is also as expected due to the reduced number of states.

One important thing to note is that by comparing Table 6.3 and Table 6.4, we can see
that the computation time for N = 20 is lower for the NMPC than the MMPC. The same
can be seen for N = 10 for the 3-DOF NMPC and the MMPC with the APOPT solver.
This is the opposite of what is expected as the MMPC has a reduced number of states for
each optimization, and as the MMPC shows reduced computation time compared to the
NMPC for all other values of N . The results from Ling et al. (2011) also showed faster
computation time for the regular MPC approach for smaller prediction horizons. For the
tests done in this thesis however, these were the only cases that showed faster computation
time for the regular NMPC approach than for the MMPC approach. The simulations were
run several times, and the computation times were consistent, which implies that this is not
an error of measurement. One possible explanation might be that the Active Set solver is
able to eliminate some infeasible solutions that violate the constraints of the yaw dynamic
for the NMPC approach. However, as the outer loop MMPC does not consider the yaw
dynamics, the Active Set solver is not able to eliminate these infeasible solutions, and will
therefore converge slower towards the optimal solution.

The MMPC approach was chosen for the implementation on OLAV, as this approach
gave a reduced computation time for the simulations. Further, algorithm 2 was chosen, as
this allows for a longer outer loop run time than algorithm 1. However, as the computation
times were still too large, the implementation was unable to control OLAV. As we can see
from the results, the optimization had a run time of 1.92 seconds for the outer loop during
the testing, whilst the sampling time of this controller was set to 1 seconds. This would
have implied that any input from the outer loop MPC, i.e desired heading and velocity,

86

7.2 Computation time

would have been applied to the system 0.92 seconds longer than intended. If we consider
a vehicle driving at the maximum velocity of 5m/s, this might cause the UGV to overshoot
by 4.5m before a new control input is applied.

Further, the implementation was also affected by the large computation times of the
inner loop MPC, as the optimization for the inner loop MPC took 0.38 seconds during
the testing of the control law. This is four times larger than the specified sampling time
for this controller. For the inner loop MPC, the delayed update of the input would have
caused the UGV to turn past the desired heading angle, which would have further created
oscillations around the desired heading angle, and thus an unstable system. However, as
the implementation was unable to update the inputs within the sampling time, OLAV was
forced into an emergency stop.

It is important to note here that for the implementation on OLAV, OLAV was controlled
using a VM, which has a limited processing power compared to the machine used for the
simulations. The simulations was ran on a fourth generation i7 processor with eight cores,
whilst the VM was limited to four cores of this processor. This might significantly affect
the computation time of the algorithm, and thus had an effect on the performance of the
controller.

One solution to the large computation time, might be to reduce the maximum velocity,
as this reduces the distance the UGV is able to travel in one time step. Thus, by extension,
this will reduce the distance the UGV overshoots before a new control input is applied.
Further, the sampling time of the controller can be increased, e.g by letting the outer loop
MPC calculate an input for 2s instead of 1s, as this would allow the controller to be able
to find a new optimal input within the specified sampling time.

Another solution to the problem might be to apply the next input in the control se-
quence if no solution is found within the time interval, as proposed by Zhang et al. (2015).
As the kinematic model only considers an objects motion in a space without the cause of
said motion, the kinematic model will not be affected by any disturbances as long as the
UGV is able to maintain the desired velocity and heading angle. For a kinematic model,
the only disturbances are the unmodelled kinematics, e.g by using a kinematic model for
3-DOF instead of 6-DOF, which is inaccurate if there are large inclinations of the terrain.
Further, this approach might be more accurate for a UGV application, as there are less
external disturbances affecting the system, than for many other control systems, e.g ocean
vessels, which is affected by currents and waves, as this would imply that v 6= 0 in (3.1).
The limitation with this approach however, is that the UGV can not change the heading
angle momentarily, and thus we have ψd 6= ψ for much of the sampling time. As the outer
loop MPC does not consider the vehicle’s motion before the desired heading is reached
and how this affects the position, this would cause an inaccuracy in the position that is not
compensated for by the next input in the input sequence.

The solution of applying the second input of the input sequence might however be less
effective for the inner loop than for the outer loop, as the model is based on the dynamics
and are more prone to disturbances. These disturbances will mostly consist of modelling
errors, as parameters such as the damping and friction coefficients will vary depending on
the surface. Any deviations from the modelled parameters might cause inaccuracies in the
optimal input, which might increase for later time steps of the input sequence.

A simplification of the heading dynamics might be included in the outer loop MPC

87

Chapter 7. Discussion

in order to compensate for some of the inaccuracies. This could be done by including a
maximum change of heading angle for each iteration, or by also minimizing the change of
heading. This will however increase the number of states in the optimization, which might
further increase the computation time.

It is also worth noting here that as the measurements of the current states are taken
at the beginning of the algorithm, these will vary from the actual states when the input is
applied. This effect will be greater for greater run times, as more time has passed were
the states have been affected by the previous inputs. Ideally the optimization should be
able to run within the minimal sampling time of the states, as this would reduce this effect
to a minimum. For the simulations however, the optimization is run after the states are
measured, and the system is not simulated for the next time step before the new input is
applied. This might cause unrealistically good results in the simulations compared to the
actual implementation, as this implies that there is no time between the measurements and
the inputs are applied.

When comparing the run time of the MPC control laws derived in this thesis and FFI’s
existing control law, FFI’s control law has a significant advantage. This is because FFI’s
feedback based control law only requires mathematical operations such as multiplication
and trigonometric functions, and does not require an optimization problem to be solved
at each iteration. Thus, the existing control law has an insignificant run time, and is able
to generate new inputs within the sampling time, which was not possible for the solvers
tested for the MPC control law.

88

Chapter 8
Conclusion and future work

8.1 Conclusion
When looking at the results from Section 6.1, we can see that the simulated object con-
verges to the path and follows this to the end point. We can thus conclude that the basic
optimization formulation that was derived for path following problems in this thesis works
as desired for ideal systems.

The simulations of the UGV with the linearized MPC shows that the linearized model
was too inaccurate to be able to follow the path in simulations. The linearized MPC had
the shortest run time of of controllers, which is expected as QP solvers can be used. How-
ever, as the linearized MPC does not follow the path as desired, it is not a candidate for
implementation regardless of the low run time of the algorithm.

Further, the simulations with the modelled vehicle dynamics from Section 6.3 show
that the simulated UGV is able to follow the path with the 3-DOF NMPC. This control law
was able to follow the path, both with and without disturbances for all initial conditions,
given that the prediction horizon was chosen long enough. By comparing the different
solvers for this controller, we can see that there is no difference in performance between the
APMonitor’s IP solver IPOPT and Active Set solver APOPT. However, when comparing
the run times, we see that the Active Set methods have a faster run time, which makes it
more desirable for implementation as the run time is an issue.

We can also see from Section 6.4 that the simplified 6-DOF control law performs better
than the 3-DOF control law as the kinematics are compensated for. Both controllers are
able to follow the path with large pitch angles and disturbances, however the simplified 6-
DOF control law converges to the path faster than the 3-DOF control law. When comparing
the average run time for the two control laws, there is no significant increase in run time for
the simplified 6-DOF controller, and we can conclude that the simplified 6-DOF NMPC is
a better choice of control law.

From Section 6.3.2, we can see that SciPy’s SQP solver was unable to follow the path
for any choice of prediction horizon for the 3-DOF NMPC. We can thus conclude that the
SciPy SQP solver finds suboptimal solutions to the optimization problem compared to the

89

Chapter 8. Conclusion and future work

APMonitor solvers, and is thus not suited for implementation of this control law.
Neither the APMonitor solvers nor the SciPy SQP solver was able to follow the path

with the MMPC control law, which is likely caused by the fact that this formulation is
too inaccurate, as the outer loop MPC does not account for the change of ψ. The MMPC
approach did however have lower run times, and we can conclude that the MMPC approach
is faster, but is too inaccurate to control the UGV.

The MPC control law perform well in simulations as the UGV converges to the path
and follows the path to the end point for all initial states despite disturbances. and show
potential for implementation. We can thus conclude that the MPC path following control
law shows potential for implementation provided one can find a solver that is able to solve
the optimization within the sampling time of the UGV.

8.2 Future work
As the main set back of the control laws of this thesis has been the run time and imple-
mentation, our recommendation for future work would be to find efficient solvers for the
optimization problem. This thesis has been limited to open source solvers for MATLAB
and Python, however there exists a variety of solvers for C++ implementation, as well as
commercial solvers that have not been considered. Some of these solvers might be more
efficient than the solvers considered by this thesis, and would therefore be relevant to look
into.

90

Bibliography

Auby, P. M., 2016. Modeling and parameter estimation of an unmanned ground vehicle
with a continuously variable transmission. Master thesis 1 (1), 1–100.

Copp, D. A., Hespanha, J. P., 2016. Simulteneous nonlinear model predictive control and
state estimation. Automatica 77 (1), 1–12.

Dyrnes, S. B., 2018. Modelling of unmanned ground vehicle in 6 degrees of freedom for
implementation of model predictive control. Pre project 1 (1), 1–40.

Foss, B., Heirung, T. A., 2016. Merging optimization and control. Technical report 1 (1),
1–80.

Fossen, T., 2011. Handbook of Marine Craft Hydrodynamics and Motion Control. John
Wiley & Sons.

Grune, L., Pannek, J., 2017. Nonlinear Model Predicitive Control. Springer.

Ling, K. V., Maciejowski, J., Richards, A., Wu, B. F., 2011. Multiplexed model predicitve
control. Automatica 48 (2), 396–401.

Mashadi, B., Ahmadizadeh, P., Majidi, M., Mahmoodi-Kaleybar, M., 2014. Integrated
robust controller for vehicle path following. Multibody System Dynamics 33 (2), 207–
228.

Mata, S., Zubizaretta, A., Cabanes, I., Nieva, I., Pinto, C., 2017. Linear time varying model
predictive control for lateral path tracking. Int. J. Vehicle Design 75 (1), 1–22.

Mathiassen, K., Baksaas, M., Olsen, L. E., Thoresen, M., Tveit, B., 2016. Development of
an autonomous off-road vehicle for surveillance missions. NATO Journal 1 (1), 1–8.

Miller, R. E., 2011. Optimization: Foundations and applications. John Wiley & Sons.

Nocedal, J., Wright, S. J., 2006. Numerical Optimization. Springer New York.

Siciliano, B., Khatib, O., 2008. Handbook of robotics. Springer.

91

Yu, S., Li, X., Chen, H., Allgower, F., 2011. Nonlinear model predictive control for path
following problems. Automatica 25 (8), 1169–1189.

Zhang, K., Sprinkle, J., Sanfelice, R. G., 2015. A hybrid model predictive controller for
path planning and path following. In: Proceedings of the ACM/IEEE Sixth International
Conference on Cyber-Physical Systems. Seattle, Washington.

92

Appendix

Matlab code for NMPC 3-DOF control law

%% System p a r a m e t e r s
h = 0 . 1 ; % Sampl ing t ime
I z = 1074 ; %Moment o f i n e r t i a
D = 1528 ; %Damping c o e f f i c i e n t
mu f = 3 7 . 9 ; %F r i c t i o n c o e f f i c i e n t
R = 1 . 2 6 ; %D i s t a n c e from c e n t r e o f v e h i c l e t o f r o n t whee l s

%% De f in e p a t h
s = 0 : 0 . 0 1 : 3 0 ;
lambda x = 2∗ s ;
lambda y = 40∗ s i n (s ∗ p i / 3 0) ;

%% D e f i n e s empty v e c t o r s f o r t h e s t a t e s , i n p u t and s l a c k v a r i a b l e s
x = NaN (3 5 1 , 4) ;
u = NaN (3 5 0 , 2) ;
e = NaN (3 5 0 , 2) ;
x (1 , :) = [5 0 , 10 , p i / 2 , 0] ; %I n i t i a l p o s i t i o n
%% W r i t e s t h e i n i t i a l p o s i t i o n t o a csv f i l a t h a t i s u p l o a d e d t o t h e o p t i m i z a t i o n
d l m w r i t e (’ i n i t i a l . csv ’ , ’NEPR ’) ;
d l m w r i t e (’ i n i t i a l . csv ’ , x (1 , :) , ’ − append ’) ;

s = NaN (1 , 2 5 0) ;
f o r t = 1 :350

t i c ; %S t a r t t ime
a d d p a t h (’ . . / apm ’) ;

% S e l e c t s e r v e r
s e r v e r = ’ h t t p : / / byu . a p m o n i t o r . com ’ ;

% A p p l i c a t i o n name
app = ’ t r i a l ’ ;

% C l e a r p r e v i o u s a p p l i c a t i o n
apm (s e r v e r , app , ’ c l e a r a l l ’) ;

% Load model f i l e
apm load (s e r v e r , app , ’ nmpc . apm ’) ;

93

% l o a d d a t a
c s v l o a d (s e r v e r , app , ’ i n i t i a l . csv ’) ;

% Opt ion t o s e l e c t s o l v e r (1=APOPT , 2=BPOPT , 3=IPOPT)
apm op t ion (s e r v e r , app , ’ n l c . s o l v e r ’ , 3) ;

% Solve on APM s e r v e r
apm (s e r v e r , app , ’ s o l v e ’)
r e s u l t s = apm so l (s e r v e r , app)
v a l u e s = c e l l 2 m a t (r e s u l t s (2 : end , :)) ;

u (t , 1) = r e s u l t s . v a l u e s (1 6 9) ; %Get v e l o c i t y i n p u t
u (t , 2) = r e s u l t s . v a l u e s (2 0 9) ; %Get s t e e r i n g a n g l e i n p u t
T (t) = t o c ; %End t ime , T (t) w i l l be t h e c o m p u t a t i o n t ime of t h e s o l v e r a t t ime s t e p t
%% S i m u l a t e sys tem f o r one t ime s t e p
c t = cos (0 . 3 4∗ r and ()) ; %Random number s i m u l a t i n g change of p i t c h ang le , 0 t o 20 d e g r e e s
x (t +1 ,1) = x (t , 1) + h∗ c t (t , 1) ∗ u (t , 1) ∗ cos (x (t , 3)) ;
x (t +1 ,2) = x (t , 2) + h∗ c t (t , 1) ∗ u (t , 1) ∗ s i n (x (t , 3)) ;
x (t +1 ,3) = x (t , 3) + h∗ c t (t , 1) ∗ x (t , 4) ;
x (t +1 ,4) = x (t ,4)−h∗D∗x (t , 4) ∗ abs (x (t , 4)) ∗ d e l t a D (t , 1) / I z + h∗R∗mu f∗u (t , 1) ∗ abs (u (t , 1)) ∗ s i n (u (t , 2)) ∗ d e l t a m u (t , 1) / I z ;%−0.2+0.4∗ r and ;
%% Upload new p o s i t i t o n s t o csv f i l e a s i n i t i a l p o s i t i o n s
d l m w r i t e (’ i n i t i a l . csv ’ , ’NEPR ’) ;
d l m w r i t e (’ i n i t i a l . csv ’ , x (t +1 , :) , ’− append ’) ;

end

%% P l o t t h e d e s i r e d and t r a v e l e d p a t h i n f i g u r e 1

f i g u r e (1)
p l o t (lambda x , lambda y , ’ r ’)
ho ld on
p l o t (x (: , 1) , x (: , 2) , ’ b ’)
ho ld o f f

Code for APmonitor solver NMPC 3-DOF

Model
P a r a m e t e r s

N ! i n i t i a l x ˆ e
E ! i n i t i a l y ˆ e
P ! i n i t i a l p s i
R ! i n i t i a l r

End P a r a m e t e r s
C o n s t a n t s

nx = 2
nu = 2
k = 40 ! p r e d i c t i o n h o r i z o n
h = 0 . 1 ! s a m p l i n g t ime

94

End C o n s t a n t s
V a r i a b l e s

x [1 : nx∗k] = 1 , >=−1000, <=1000
x [k∗nx +1: k ∗ (nx + 1)] = 3 . 1 4 , >=−2∗3.14 , <= 4∗3 .14
x [k ∗ (nx +1)+1 : k∗2∗nx] = 0 , >=−1.77 , <= 1 . 7 7

u [1 : k] = 1 , >=0, <=5
u [k +1: k∗nu] = 0 , >=−35∗3.14/180 , <= 3 5∗3 . 1 4 / 1 8 0
s [1 : k] = 0 , >=0, <= 30
e p s i l o n [1 : k∗nx] = 1 , >=−1000, <= 1000

End V a r i a b l e s

E q u a t i o n s
! C o n s t r a i n t s f o r x ˆ e

x [1 : k] + e p s i l o n [1 : k] = 2∗ s [1 : k] ! Pa th c o n s t r a i n t
x [1] − h∗u [1]∗ cos (P) = N ! Dynamic c o n s t r a i n t f o r f i r s t t ime s t e p
x [2 : k] − x [1 : k−1] − h∗u [2 : k]∗ cos (x [k∗nx +1: k ∗ (nx +1)−1]) = 0 ! Dynamic c o n s t r a i n t f o r r e m a i n i n g t ime s t e p s

! C o n s t r a i n t s f o r y ˆ e
x [k +1: k∗nx] + e p s i l o n [k +1: k∗nx] = 40∗ s i n ((s [1 : k]) ∗ 3 . 1 4 / 3 0) ! Pa th c o n s t r a i n t
x [k +1] − h∗u [1]∗ s i n (P) = E ! Dynamic c o n s t r a i n t f o r f i r s t t ime s t e p
x [k +2: k∗nx] − x [k +1: k∗nx−1] − h∗u [2 : k]∗ s i n (x [k∗nx +1: k ∗ (nx +1)−1]) = 0 ! Dynamic c o n s t r a i n t f o r r e m a i n i n g t ime s t e p s

! C o n s t r a i n t s f o r p s i
x [k∗nx +1] = P+h∗R ! Dynamic c o n s t r a i n t f o r f i r s t t ime s t e p
x [k∗nx +2: k ∗ (nx + 1)] − x [k∗nx +1: k ∗ (nx +1)−1] − h∗x [k ∗ (nx +1)+1 : k∗2∗nx−1] = 0 ! Dynamic c o n s t r a i n t f o r r e m a i n i n g t ime s t e p s

! C o n s t r a i n t s f o r r
x [k ∗ (nx +1)+1] − h ∗3 7 . 9∗1 . 2 6∗ u [1]∗ abs (u [1]) ∗ s i n (u [k + 1]) / 1 0 7 4 = R−h∗1528∗R∗ abs (R) / 1 0 7 4
x [k ∗ (nx +1)+2 : k∗2∗nx] − x [k ∗ (nx +1)+1 : k∗2∗nx−1]+1528∗h∗x [k ∗ (nx +1)+1 : k∗2∗nx−1]∗ abs (x [k ∗ (nx +1)+1 : k∗2∗nx−1]) /1074 −h ∗1 . 2 6∗3 7 . 9∗ u [2 : k]∗ abs (u [2 : k]) ∗ s i n (u [k +2: k∗nu]) / 1 0 7 4 = 0

! M i n i m i z a t i o n f u n c t i o n
min imize (s [1 : k]) ˆ 2 + 1 0 0 0∗ (e p s i l o n [1 : k]) ˆ 2 + 1 0 0 0∗ (e p s i l o n [k +1: k∗nx]) ˆ 2

End E q u a t i o n s
End Model

Matlab code for simplified 6-DOF NMPC control law

%% System p a r a m e t e r s
h = 0 . 1 ; % Sampl ing t ime
I z = 1074 ; %Moment o f i n e r t i a
D = 1528 ; %Damping c o e f f i c i e n t
mu f = 3 7 . 9 ; %F r i c t i o n c o e f f i c i e n t
R = 1 . 2 6 ; %D i s t a n c e from c e n t r e o f v e h i c l e t o f r o n t whee l s

%% De f in e p a t h
s = 0 : 0 . 0 1 : 3 0 ;
lambda x = 2∗ s ;

95

l ambda y = 40∗ s i n (s ∗ p i / 3 0) ;

%% D e f i n e s empty v e c t o r s f o r t h e s t a t e s , i n p u t and s l a c k v a r i a b l e s
x = NaN (3 5 1 , 4) ;
u = NaN (3 5 0 , 2) ;
e = NaN (3 5 0 , 2) ;
x (1 , :) = [5 0 , 10 , p i / 2 , 0] ; %I n i t i a l p o s i t i o n
%% Uses random v a r i a b l e s t o d e t e r m i n e d i s t u r b a n c e s , and s e t a c o n s t a n t p i t c h a n g l e o f 30 d e g r e e s
c t = cos (30∗ p i /180∗ ones (3 5 0 , 1)) ;
c f = cos (30∗ p i /180∗ r and (3 5 0 , 1)) ;
d e l t a D = (1 .2 −0 .4∗ r and (3 5 0 , 1)) ;
d e l t a m u = (1 .2 −0 .4∗ r and (3 5 0 , 1)) ;
f o r t = 1 :350

%% W r i t e s t h e i n i t i a l p o s i t i o n and o r i e n t a t i o n t o a csv f i l a t h a t i s u p l o a d e d t o t h e o p t i m i z a t i o n
d l m w r i t e (’ i n i t i a l . csv ’ , ’ NEPRcf ’) ;
d l m w r i t e (’ i n i t i a l . csv ’ , [x (t , :) , c t (t , 1) , c f (t , 1)] , ’ − append ’) ;
t i c ; %S t a r t t ime
a d d p a t h (’ . . / apm ’) ;

% S e l e c t s e r v e r
s e r v e r = ’ h t t p : / / byu . a p m o n i t o r . com ’ ;

% A p p l i c a t i o n name
app = ’ t r i a l ’ ;

% C l e a r p r e v i o u s a p p l i c a t i o n
apm (s e r v e r , app , ’ c l e a r a l l ’) ;

% Load model f i l e
apm load (s e r v e r , app , ’ en nmpc . apm ’) ;

% l o a d d a t a
c s v l o a d (s e r v e r , app , ’ i n i t i a l . csv ’) ;

% Opt ion t o s e l e c t s o l v e r (1=APOPT , 2=BPOPT , 3=IPOPT)
apm op t ion (s e r v e r , app , ’ n l c . s o l v e r ’ , 3) ;

% Solve on APM s e r v e r
apm (s e r v e r , app , ’ s o l v e ’) ;
r e s u l t s = apm so l (s e r v e r , app)
v a l u e s = c e l l 2 m a t (r e s u l t s (2 : end , :)) ;
u (t , 1) = r e s u l t s . v a l u e s (1 7 1) ; %Get v e l o c i t y i n p u t
u (t , 2) = r e s u l t s . v a l u e s (2 1 1) ; %Get s t e e r i n g a n g l e i n p u t
T2 (t) = t o c ; %End t ime , T (t) w i l l be t h e c o m p u t a t i o n t ime of t h e s o l v e r a t t ime s t e p t
%% S i m u l a t e sys tem f o r one t ime s t e p

96

x (t +1 ,1) = x (t , 1) + h∗ c t (t , 1) ∗ u (t , 1) ∗ cos (x (t , 3)) ;
x (t +1 ,2) = x (t , 2) + h∗ c t (t , 1) ∗ u (t , 1) ∗ s i n (x (t , 3)) ;
x (t +1 ,3) = x (t , 3) + h∗x (t , 4) ∗ c f (t , 1) / c t (t , 1) ;
x (t +1 ,4) = x (t ,4)−h∗D∗x (t , 4) ∗ abs (x (t , 4)) ∗ d e l t a D (t , 1) / I z + h∗R∗mu f∗u (t , 1) ∗ abs (u (t , 1)) ∗ s i n (u (t , 2)) ∗ d e l t a m u (t , 1) / I z ;%−0.2+0.4∗ r and ;
e (t , 1) = r e s u l t s . v a l u e s (2 9 1) ;
e (t , 2) = r e s u l t s . v a l u e s (3 3 1) ;

end

%% P l o t t h e d e s i r e d and t r a v e l e d p a t h i n f i g u r e 1

f i g u r e (1)
p l o t (lambda x , lambda y , ’ r ’)
ho ld on
p l o t (x (: , 1) , x (: , 2) , ’ b ’)
ho ld o f f

Matlab code for MMPC control law algorithm 1

%% System p a r a m e t e r s
h = 0 . 1 ; % Sampl ing t ime
I z = 1074 ; %Moment o f i n e r t i a
D = 1528 ; %Damping c o e f f i c i e n t
mu f = 3 7 . 9 ; %F r i c t i o n c o e f f i c i e n t
R = 1 . 2 6 ; %D i s t a n c e from c e n t r e o f v e h i c l e t o f r o n t whee l s

%% De f in e p a t h
s = 0 : 0 . 0 1 : 3 0 ;
lambda x = 2∗ s ;
lambda y = 40∗ s i n (s ∗ p i / 3 0) ;

%% D e f i n e s empty v e c t o r s f o r t h e s t a t e s , i n p u t and s l a c k v a r i a b l e s
x = NaN (3 5 1 , 4) ;
u = NaN (3 5 0 , 2) ;
e = NaN (3 5 0 , 2) ;
x (1 , :) = [5 0 , 10 , p i / 2 , 0] ; %I n i t i a l p o s i t i o n
%% W r i t e s t h e i n i t i a l p o s i t i o n t o a csv f i l a t h a t i s u p l o a d e d t o t h e o p t i m i z a t i o n
d l m w r i t e (’ i n i t i a l o . csv ’ , ’NE ’) ;
d l m w r i t e (’ i n i t i a l o . csv ’ , x (1 , 1 : 2) , ’ − append ’) ;
f o r t = 1 :250

%% Oute r loop
t i c ;
a d d p a t h (’ . . / apm ’) ;

% S e l e c t s e r v e r
s e r v e r = ’ h t t p : / / byu . a p m o n i t o r . com ’ ;

% A p p l i c a t i o n name

97

app = ’ t r i a l ’ ;

% C l e a r p r e v i o u s a p p l i c a t i o n
apm (s e r v e r , app , ’ c l e a r a l l ’) ;

% Load model f i l e
apm load (s e r v e r , app , ’ mmpc o . apm ’) ;

% l o a d d a t a
c s v l o a d (s e r v e r , app , ’ i n i t i a l o . csv ’) ;

% Opt ion t o s e l e c t s o l v e r (1=APOPT , 2=BPOPT , 3=IPOPT)
apm op t ion (s e r v e r , app , ’ n l c . s o l v e r ’ , 3) ;

% Solve on APM s e r v e r
apm (s e r v e r , app , ’ s o l v e ’)
r e s u l t s = apm so l (s e r v e r , app)
v a l u e s = c e l l 2 m a t (r e s u l t s (2 : end , :)) ;
u (t , 1) = r e s u l t s . v a l u e s (8 7) ; %Get v e l o c i t y inpu
u (t , 2) = r e s u l t s . v a l u e s (1 2 7) ; %Get d e s i r e d h e a d i n g
e (t , 1) = r e s u l t s . v a l u e s (2 0 7) ;
e (t , 2) = r e s u l t s . v a l u e s (2 4 7) ;
T (t) = t o c ; %End t ime , T (t) w i l l be t h e c o m p u t a t i o n t ime of t h e o u t e r l oop s o l v e r a t t ime s t e p t

%% I n n e r loop
t i c ;

% W r i t e s t h e i n i t i a l o r i e n t a t i o n , v e l o c i t y and d e s i r e d h e a d i n g t o a csv f i l e t h a t i s u p l o a d e d t o t h e o p t i m i z a t i o n
d l m w r i t e (’ i n i t i a l i . csv ’ , ’ PRuD ’) ;
d l m w r i t e (’ i n i t i a l i . csv ’ , [x (t , 3 : 4) , u (t , :)] , ’ − append ’) ;
a d d p a t h (’ . . / apm ’) ;

% S e l e c t s e r v e r
s e r v e r = ’ h t t p : / / byu . a p m o n i t o r . com ’ ;

% A p p l i c a t i o n name
app = ’ t r i a l ’ ;

% C l e a r p r e v i o u s a p p l i c a t i o n
apm (s e r v e r , app , ’ c l e a r a l l ’) ;

% Load model f i l e
apm load (s e r v e r , app , ’ mmpc i . apm ’) ;

% l o a d d a t a
c s v l o a d (s e r v e r , app , ’ i n i t i a l i . csv ’) ;

98

% Opt ion t o s e l e c t s o l v e r (1=APOPT , 2=BPOPT , 3=IPOPT)
apm op t ion (s e r v e r , app , ’ n l c . s o l v e r ’ , 3) ;

% Solve on APM s e r v e r
apm (s e r v e r , app , ’ s o l v e ’) ;
r e s u l t s = apm so l (s e r v e r , app)
v a l u e s = c e l l 2 m a t (r e s u l t s (2 : end , :)) ;
T2 (t) = t o c ; %End t ime , T (t) w i l l be t h e c o m p u t a t i o n t ime of t h e i n n e r loop s o l v e r a t t ime s t e p t
gamma (t , 1) = r e s u l t s . v a l u e s (8 8) ; %Get t h e s t e e r i n g a n g l e i n p u t
%% S i m u l a t e sys tem f o r one t ime s t e p
x (t +1 ,1) = x (t , 1) + h∗u (t , 1) ∗ cos (x (t , 3)) ;
x (t +1 ,2) = x (t , 2) + h∗u (t , 1) ∗ s i n (x (t , 3)) ;
x (t +1 ,3) = x (t , 3) + h∗x (t , 4) ;
x (t +1 ,4) = x (t ,4)−h∗D∗x (t , 4) ∗ abs (x (t , 4)) / I z + h∗R∗mu f∗u (t , 1) ∗ abs (u (t , 1)) ∗ s i n (gamma (t , 1)) / I z ;
%% W r i t e s t h e i n i t i a l p o s i t i o n t o a csv f i l a t h a t i s u p l o a d e d t o t h e o p t i m i z a t i o n
d l m w r i t e (’ i n i t i a l o . csv ’ , ’NE ’) ;
d l m w r i t e (’ i n i t i a l o . csv ’ , x (t , 1 : 2) , ’ − append ’) ;

end

%% P l o t t h e d e s i r e d and t r a v e l e d p a t h i n f i g u r e 1

f i g u r e (1)
p l o t (lambda x , lambda y , ’ r ’)
ho ld on
p l o t (x (: , 1) , x (: , 2) , ’ b ’)
ho ld o f f

Matlab code for MMPC control law algorithm 2

%% System p a r a m e t e r s
h = 0 . 1 ; % Sampl ing t ime
I z = 1074 ; %Moment o f i n e r t i a
D = 1528 ; %Damping c o e f f i c i e n t
mu f = 3 7 . 9 ; %F r i c t i o n c o e f f i c i e n t
R = 1 . 2 6 ; %D i s t a n c e from c e n t r e o f v e h i c l e t o f r o n t whee l s

%% De f in e p a t h
s = 0 : 0 . 0 1 : 3 0 ;
lambda x = 2∗ s ;
lambda y = 40∗ s i n (s ∗ p i / 3 0) ;

%% D e f i n e s empty v e c t o r s f o r t h e s t a t e s , i n p u t and s l a c k v a r i a b l e s
x = NaN (3 5 1 , 4) ;
u = NaN (3 5 0 , 2) ;
e = NaN (3 5 0 , 2) ;
x (1 , :) = [5 0 , 10 , p i / 2 , 0] ; %I n i t i a l p o s i t i o n

99

%% W r i t e s t h e i n i t i a l p o s i t i o n t o a csv f i l a t h a t i s u p l o a d e d t o t h e o p t i m i z a t i o n
d l m w r i t e (’ i n i t i a l o . csv ’ , ’NE ’) ;
d l m w r i t e (’ i n i t i a l o . csv ’ , x (1 , 1 : 2) , ’ − append ’) ;
f o r t = 1 :250

%% Oute r loop
t i c ;
a d d p a t h (’ . . / apm ’) ;

% S e l e c t s e r v e r
s e r v e r = ’ h t t p : / / byu . a p m o n i t o r . com ’ ;

% A p p l i c a t i o n name
app = ’ t r i a l ’ ;

% C l e a r p r e v i o u s a p p l i c a t i o n
apm (s e r v e r , app , ’ c l e a r a l l ’) ;

% Load model f i l e
apm load (s e r v e r , app , ’ mmpc o . apm ’) ;

% l o a d d a t a
c s v l o a d (s e r v e r , app , ’ i n i t i a l o . csv ’) ;

% Opt ion t o s e l e c t s o l v e r (1=APOPT , 2=BPOPT , 3=IPOPT)
apm op t ion (s e r v e r , app , ’ n l c . s o l v e r ’ , 3) ;

% Solve on APM s e r v e r
apm (s e r v e r , app , ’ s o l v e ’)
r e s u l t s = apm so l (s e r v e r , app)
v a l u e s = c e l l 2 m a t (r e s u l t s (2 : end , :)) ;
u (t , 1) = r e s u l t s . v a l u e s (8 7) ; %Get v e l o c i t y inpu
u (t , 2) = r e s u l t s . v a l u e s (1 2 7) ; %Get d e s i r e d h e a d i n g
e (t , 1) = r e s u l t s . v a l u e s (2 0 7) ;
e (t , 2) = r e s u l t s . v a l u e s (2 4 7) ;
T (t) = t o c ; %End t ime , T (t) w i l l be t h e c o m p u t a t i o n t ime of t h e s o l v e r a t t ime s t e p t

%% I n n e r loop
f o r i =1:10

t i c ;
% W r i t e s t h e i n i t i a l o r i e n t a t i o n , v e l o c i t y and d e s i r e d h e a d i n g t o a csv f i l e t h a t i s u p l o a d e d t o t h e o p t i m i z a t i o n
d l m w r i t e (’ i n i t i a l i . csv ’ , ’ PRuD ’) ;
d l m w r i t e (’ i n i t i a l i . csv ’ , [x ((t −1)∗10+ i , 3 : 4) , u (t , :)] , ’ − append ’) ;
a d d p a t h (’ . . / apm ’) ;

% S e l e c t s e r v e r

100

s e r v e r = ’ h t t p : / / byu . a p m o n i t o r . com ’ ;

% A p p l i c a t i o n name
app = ’ t r i a l ’ ;

% C l e a r p r e v i o u s a p p l i c a t i o n
apm (s e r v e r , app , ’ c l e a r a l l ’) ;

% Load model f i l e
apm load (s e r v e r , app , ’ mmpc i . apm ’) ;

% l o a d d a t a
c s v l o a d (s e r v e r , app , ’ i n i t i a l i . csv ’) ;

% Opt ion t o s e l e c t s o l v e r (1=APOPT , 2=BPOPT , 3=IPOPT)
apm op t ion (s e r v e r , app , ’ n l c . s o l v e r ’ , 3) ;

% Solve on APM s e r v e r
apm (s e r v e r , app , ’ s o l v e ’) ;
r e s u l t s = apm so l (s e r v e r , app)
v a l u e s = c e l l 2 m a t (r e s u l t s (2 : end , :)) ;
T2 (t) = t o c ; %End t ime , T (t) w i l l be t h e c o m p u t a t i o n t ime of t h e i n n e r loop s o l v e r a t t ime s t e p t
gamma ((t −1)∗10+ i , 1) = r e s u l t s . v a l u e s (8 8) ; %Get t h e s t e e r i n g a n g l e i n p u t
%% S i m u l a t e sys tem f o r one t ime s t e p
x ((t −1)∗10+ i +1 ,1) = x ((t −1)∗10+ i , 1) + h∗u (t , 1) ∗ cos (x ((t −1)∗10+ i , 3)) ;
x ((t −1)∗10+ i +1 ,2) = x ((t −1)∗10+ i , 2) + h∗u (t , 1) ∗ s i n (x ((t −1)∗10+ i , 3)) ;
x ((t −1)∗10+ i +1 ,3) = x ((t −1)∗10+ i , 3) + h∗x ((t −1)∗10+ i , 4) ;
x ((t −1)∗10+ i +1 ,4) = x ((t −1)∗10+ i ,4)−h∗3300∗x ((t −1)∗10+ i , 4) ∗ abs (x ((t −1)∗10+ i , 4)) / 1 0 7 4 + h ∗1 .26∗110∗ u (t , 1) ∗ abs (u (t , 1)) ∗ s i n (gamma ((t −1)∗10+ i , 1)) / 1 0 7 4 ; % −0 . 2 + 0 . 4∗ r and ;

end
%% W r i t e s t h e i n i t i a l p o s i t i o n t o a csv f i l a t h a t i s u p l o a d e d t o t h e o p t i m i z a t i o n
d l m w r i t e (’ i n i t i a l o . csv ’ , ’NE ’) ;
d l m w r i t e (’ i n i t i a l o . csv ’ , x (t , 1 : 2) , ’ − append ’) ;

end

%% P l o t t h e d e s i r e d and t r a v e l e d p a t h i n f i g u r e 1

f i g u r e (1)
p l o t (lambda x , lambda y , ’ r ’)
ho ld on
p l o t (x (: , 1) , x (: , 2) , ’ b ’)
ho ld o f f

Code for APmonitor solver MMPC outer loop

Model
P a r a m e t e r s

N ! i n i t i a l x ˆ e

101

E ! i n i t i a l y ˆ e
End P a r a m e t e r s
C o n s t a n t s

nx = 2
nu = 2
k = 40 ! p r e d i c t i o n h o r i z o n
h = 0 . 1 ! s a m p l i n g t ime

End C o n s t a n t s
V a r i a b l e s

x [1 : nx∗k] = 1 , >=−1000, <=1000
u [1 : k] = 1 , >=0, <=5

u [k +1: k∗nu] = 0 , >=0, <= 2∗3 .14
s [1 : k] = 0 , >=0, <= 30
e p s i l o n [1 : k∗nx] = 1 , >=−1000, <= 1000

End V a r i a b l e s

E q u a t i o n s
! C o n s t r a i n t s f o r x ˆ e
x [1 : k] + e p s i l o n [1 : k] = 2∗ s [1 : k] ! Pa th c o n s t r a i n t

x [1] − h∗u [1]∗ cos (u [k + 1]) = N ! Dynamic c o n s t r a i n t f o r f i r s t t ime s t e p
x [2 : k] − x [1 : k−1] − h∗u [2 : k]∗ cos (u [k +2: k∗nx]) = 0 ! Dynamic c o n s t r a i n t f o r r e m a i n i n g t ime s t e p s

! C o n s t r a i n t s f o r y ˆ e
x [k +1: k∗nx] + e p s i l o n [k +1: k∗nx] = 40∗ s i n ((s [1 : k]) ∗ 3 . 1 4 / 3 0) ! Pa th c o n s t r a i n t
x [k +1] − h∗u [1]∗ s i n (u [k + 1]) = E ! Dynamic c o n s t r a i n t f o r f i r s t t ime s t e p
x [k +2: k∗nx] − x [k +1: k∗nx−1] − h∗u [2 : k]∗ s i n (u [k +2: k∗nx]) = 0 ! Dynamic c o n s t r a i n t f o r r e m a i n i n g t ime s t e p s

! M i n i m i z a t i o n f u n c t i o n
min imize (s [1 : k]) ˆ 2 + 1 0 0 0∗ (e p s i l o n [1 : k]) ˆ 2 + 1 0 0 0∗ (e p s i l o n [k +1: k∗nx]) ˆ 2

End E q u a t i o n s
End Model

Code for APmonitor solver MMPC inner loop

Model
P a r a m e t e r s

P ! I n i t i a l h e a d i n g
R ! I n i t i a l yaw r a t e
u ! V e l o c i t y
D ! D e s i r e d h e a d i n g

End P a r a m e t e r s
C o n s t a n t s

nx = 2
k = 40 ! p r e d i c t i o n h o r i z o n
h = 0 . 1 ! s a m p l i n g t ime

End C o n s t a n t s

102

V a r i a b l e s
x [1 : k] = 3 . 1 4 , >=−2∗3.14 , <= 4∗3 .14 ! Heading
x [k +1: k∗nx] = 0 , >=−1.77 , <= 1 . 7 7 ! Yaw r a t e
gamma [1 : k] = 0 , >=−35∗3.14/180 , <= 3 5∗3 . 1 4 / 1 8 0 ! S t e e r i n g a n g l e

End V a r i a b l e s

E q u a t i o n s
! C o n s t r a i n t s f o r p s i
x [1] = P+h∗R ! Dynamic c o n s t r a i n t f o r f i r s t t ime s t e p
x [2 : k] − x [1 : k−1] − h∗x [k +1: k∗nx−1] = 0 ! Dynamic c o n s t r a i n t f o r r e m a i n i n g t ime s t e p s

! C o n s t r a i n t s f o r r
x [k +1] − h ∗3 7 . 9∗1 . 2 6∗ u∗ abs (u)∗ s i n (gamma [1]) / 1 0 7 4 = R−h∗1528∗R∗ abs (R) / 1 0 7 4 ! Dynamic c o n s t r a i n t f o r f i r s t t ime s t e p
x [k +2: k∗nx] − x [k +1: k∗nx−1]+1528∗h∗x [k +1: k∗nx−1]∗ abs (x [k +1: k∗nx−1]) /1074 −h ∗1 . 2 6∗3 7 . 9∗ u∗ abs (u)∗ s i n (gamma [2 : k]) / 1 0 7 4 = 0 ! Dynamic c o n s t r a i n t f o r r e m a i n i n g t ime s t e p s

! M i n i m i z a t i o n f u n c t i o n
min imize 1000∗ (D−x [1 : k]) ˆ 2 + (gamma [1 : k]) ˆ 2 + 0 . 1 ∗ (x [k +1: k∗nx]) ˆ 2

End E q u a t i o n s
End Model

Python code for 3-DOF NMPC control law

i m p o r t numpy as np
from s c i p y . o p t i m i z e i m p o r t min imize
i m p o r t t ime

g l o b a l N, h , nx , i n i t
i n i t = [5 5 . 0 , 1 0 . 0 , np . p i , 0 . 0]

N = 40
h = 0 . 1
nx = 9

””” O b j e c t i v e f u n c t i o n ”””
d e f o b j (x) :

g l o b a l N, h , nx
s o b j = 0
e p s x o b j = 0
e p s y o b j = 0
u 1 o b j = 0
u 2 o b j = 0
f o r k i n r a n g e (N) :

s o b j = s o b j + x [4+ k∗nx]∗∗2
e p s x o b j = e p s x o b j + 1000∗x [5+ k∗nx]∗∗2
e p s y o b j = e p s y o b j + 1000∗x [6+ k∗nx]∗∗2
u 1 o b j = u 1 o b j + 0 . 1∗ x [7+ k∗nx]∗∗2
u 2 o b j = u 1 o b j + 0 . 1∗ x [8+ k∗nx]∗∗2

103

r e t u r n s o b j + e p s x o b j + e p s y o b j + u 1 o b j + u 2 o b j

””” C o n s t r a i n t f u n c t i o n s ”””
d e f dc1 (x) :

g l o b a l h , i n i t
px 0 = i n i t [0]
r e t u r n x [0]−h∗x [7]∗ np . cos (x [2])− px 0

d e f dc2 (x) :
g l o b a l h , i n i t
py 0 = i n i t [1]
r e t u r n x [1]−h∗x [7]∗ np . s i n (x [2])− py 0

d e f dc3 (x) :
g l o b a l h , i n i t
p s i 0 = i n i t [2]
r e t u r n x [2]−h∗x [3]− p s i 0

d e f dc4 (x) :
g l o b a l h , i n i t
r 0 = i n i t [3]
r e t u r n x [3]− r 0 +h∗1528∗ r 0 ∗ abs (r 0) / 1 0 7 4 + h ∗1 . 2 6∗3 7 . 9∗ x [7]∗ abs (x [7]) ∗ np . s i n (x [8]) / 1 0 7 4

d e f dc px (x) :
g l o b a l N, h , nx
p x c o n s = np . z e r o s (N−1)
f o r k i n r a n g e (1 , N) :

p x c o n s [k−1] = x [k∗nx] − x [(k−1)∗nx] − h∗x [7+ k∗nx]∗ np . cos (x [2 + (k−1)∗nx])
r e t u r n p x c o n s

d e f dc py (x) :
g l o b a l N, h , nx
p y c o n s = np . z e r o s (N−1)
f o r k i n r a n g e (1 , N) :

p y c o n s [k−1] = x [1+ k∗nx] − x [1 + (k−1)∗nx] − h∗x [7+ k∗nx]∗ np . s i n (x [2 + (k−1)∗nx])
r e t u r n p y c o n s

d e f d c p s i (x) :
g l o b a l N, h , nx
p s i c o n s = np . z e r o s (N−1)
f o r k i n r a n g e (1 , N) :

p s i c o n s [k−1] = x [2+ k∗nx] − x [2 + (k−1)∗nx] − h∗x [3 + (k−1)∗nx]
r e t u r n p s i c o n s

d e f d c r (x) :

104

g l o b a l N, h , nx
r c o n s = np . z e r o s (N−1)
f o r k i n r a n g e (1 , N) :

r c o n s [k−1] = x [3+ k∗nx] − x [3 + (k−1)∗nx] +h∗1528∗x [3 + (k−1)∗nx]∗ abs (x [3 + (k−1)∗nx]) / 1 0 7 4 − h ∗1 . 2 6∗3 7 . 9∗ x [7+ k∗nx]∗ abs (x [7+ k∗nx]) ∗ np . s i n (x [8+ k∗nx]) / 1 0 7 4
r e t u r n r c o n s

d e f pc px (x) :
g l o b a l N, nx
p x c o n s = np . z e r o s (N)
f o r k i n r a n g e (N) :

p x c o n s [k] = x [k∗nx] − 2∗x [4+ k∗nx] − x [5+ k∗nx]
r e t u r n p x c o n s

d e f pc py (x) :
g l o b a l N, nx
p y c o n s = np . z e r o s (N)
f o r k i n r a n g e (N) :

p y c o n s [k] = x [1+ k∗nx] − 40∗np . s i n (x [4+ k∗nx]∗ np . p i / 3 0) − x [6+ k∗nx]
r e t u r n p y c o n s

d e f s i m u l a t e (x , y , p s i , r , u , gamma) : # S i m u l a t e t h e sys tem (e u l e r method)
g l o b a l h
D = 1528
mu f = 3 7 . 9
R = 1 . 2 6
x = x+h∗u∗np . cos (p s i)
y = y+h∗u∗np . s i n (p s i)
p s i = p s i +h∗ r
r = r − h∗D∗ r ∗ abs (r) / 1 0 7 4 + h∗R∗mu f∗u∗ abs (u)∗ np . s i n (gamma) / 1 0 7 4
r e t u r n x , y , p s i , r

d e f i n i t i a l (x , y , p s i , r) : # S e t s an i n i t i a l s e a r c h v a l u e f o r t h e f i r s t i t e r a t i o n
g l o b a l N, nx
i n i t = np . z e r o s (N∗nx)
f o r k i n r a n g e (N) :

i n i t [k∗nx] = x
i n i t [1+ k∗nx] = y
i n i t [2+ k∗nx] = p s i
i n i t [3+ k∗nx] = r
i n i t [4+ k∗nx] = 1 5 . 0
i n i t [5+ k∗nx] = 0 . 0
i n i t [6+ k∗nx] = 0 . 0
i n i t [7+ k∗nx] = 5 . 0
i n i t [8+ k∗nx] = 0 . 0

105

r e t u r n i n i t

d e f bounds () : # D e f i n e s i n e q u a l i t y c o n s t r a i n t s
g l o b a l N
bound = []
f o r k i n r a n g e (N) :

bound . append ((−100 .0 , 1 0 0 . 0)) # bound f o r px a t t i m e s t e p k
bound . append ((−100 .0 , 1 0 0 . 0)) # bound f o r py a t t i m e s t e p k
bound . append ((−2∗np . pi , 4∗np . p i)) # bound f o r p s i a t t i m e s t e p k
bound . append ((−np . p i / 2 , np . p i / 2)) # bound f o r r a t t i m e s t e p k
bound . append ((0 , 3 0)) # bound f o r s a t t i m e s t e p k
bound . append ((−100 .0 , 1 0 0 . 0)) # bound f o r e p s x a t t i m e s t e p k
bound . append ((−100 .0 , 1 0 0 . 0)) # bound f o r e p s y a t t i m e s t e p k
bound . append ((0 . 0 , 5 . 0)) # bound f o r u a t t i m e s t e p k
bound . append ((−35∗np . p i / 1 8 0 , 35∗np . p i / 1 8 0)) # bound f o r s t e e r i n g a n g l e a t t i m e s t e p k

r e t u r n bound

bnds = t u p l e (bounds ())
””” D e f i n e s c o n s t r a i n t s i n o r d e r ”””
con1 = { ’ type ’ : ’ eq ’ , ’ fun ’ : dc1}
con2 = { ’ type ’ : ’ eq ’ , ’ fun ’ : dc2}
con3 = { ’ type ’ : ’ eq ’ , ’ fun ’ : dc3}
con4 = { ’ type ’ : ’ eq ’ , ’ fun ’ : dc4}
con5 = { ’ type ’ : ’ eq ’ , ’ fun ’ : dc px }
con6 = { ’ type ’ : ’ eq ’ , ’ fun ’ : dc py }
con7 = { ’ type ’ : ’ eq ’ , ’ fun ’ : d c p s i }
con8 = { ’ type ’ : ’ eq ’ , ’ fun ’ : d c r }
con9 = { ’ type ’ : ’ eq ’ , ’ fun ’ : pc px }
con10 = { ’ type ’ : ’ eq ’ , ’ fun ’ : pc py }
cons = [con1 , con2 , con3 , con4 , con5 , con6 , con7 , con8 , con9 , con10]

s t a r t = t ime . c l o c k ()
d e f main () :

g l o b a l i n i t
t f = 350 # S e t s i m u l a t i o n t ime
””” De f i n e empty a r r a y s f o r t h e s t a t e s , i n p u t s and run t ime ”””
x = []
y = []
p s i = []
r = []
r u n t i m e = []
u = []
gamma = []
””” Get i n i t i a l s t a t e s ”””

106

x0 = i n i t i a l (i n i t [0] , i n i t [1] , i n i t [2] , i n i t [3])
x . append (i n i t [0])
y . append (i n i t [1])
p s i . append (i n i t [2])
r . append (i n i t [3])
f o r i i n r a n g e (1 , t f) : # S i m u l a t e sys tem f o r t h e d e f i n e d s i m u l a t i o n t ime

s t a r t = t ime . c l o c k () # S t a r t t i m i n g of c o m p t a t i o n t ime
s o l = min imize (obj , x0 , method = ’SLSQP ’ , bounds=bnds , c o n s t r a i n t s = cons) # So lve o p t i m i z a t i o n
x0 [0 : (N−1)∗nx] = s o l . x [nx :N∗nx +1] # Update i n i t a l s e a r c h v a l u e s
x0 [(N−1)∗nx :N∗nx +1] = s o l . x [(N−1)∗nx :N∗nx +1] # Update i n i t a l s e a r c h v a l u e s
r u n t i m e . append (t ime . c l o c k ()− s t a r t)# End t i m i n g of c o m p u t a t i o n t ime
u . append (s o l . x [7]) # S e t v e l o c i t y i n p u t
gamma . append (s o l . x [8]) # S e t s t e e r i n g a n g l e i n p u t
x1 , y1 , ps i1 , r1 = s i m u l a t e (x [i −1] , y [i −1] , p s i [i −1] , r [i −1] , u [i −1] , gamma [i −1]) # S i m u l a t e f o r n e x t t i m e s t e p
i n i t = [x1 , y1 , ps i1 , r1] # S e t i n i t i a l s t a t e f o r n e x t i t e r a t i o n
x . append (x1) # Save x v a l u e s
y . append (y1) # Save y v a l u e s
p s i . append (p s i 1) # Save p s i v a l u e s
r . append (r1) # Save r v a l u e s

p r i n t (x)
p r i n t (y)
p r i n t (p s i)
p r i n t (r)
p r i n t (u)
p r i n t (r u n t i m e)

main ()

Python code for MMPC control law lgorithm 1

i m p o r t numpy as np
from s c i p y . o p t i m i z e i m p o r t min imize
i m p o r t t ime

g l o b a l N, h , h2 , nx , p s i d , i n i t , ny , i n i t p s i , v e l
N = 10
h = 0 . 1
nx = 7 #Number o f v a l u e s o u t e r l oop
ny = 3 #Number o f v a l u e s i n n e r loop
””” I n i t i a l s t a t e s ”””
i n i t = [5 0 . 0 , 1 0 . 0]
i n i t p s i = [np . p i / 2 , 0 . 0]
v e l = 0

””” Oute r l oop MPC”””
””” O b j e c t i v e f u n c t i o n ”””

107

d e f MPC O(x) :
g l o b a l N, h , nx
s o b j = 0
e p s x o b j = 0
e p s y o b j = 0
u 1 o b j = 0
u 2 o b j = 0
f o r k i n r a n g e (N) :

s o b j = s o b j + x [2+ k∗nx]∗∗2
e p s x o b j = e p s x o b j + 1000∗x [3+ k∗nx]∗∗2
e p s y o b j = e p s y o b j + 1000∗x [4+ k∗nx]∗∗2
u 1 o b j = u 1 o b j + 0 . 1∗ x [5+ k∗nx]∗∗2

r e t u r n s o b j + e p s x o b j + e p s y o b j + u 1 o b j

””” C o n s t r a i n t f u n c t i o n s ”””
d e f dc1 (x) :

g l o b a l h
px 0 = i n i t [0]
p s i 0 = np . p i / 2
r e t u r n x [0]−h∗x [5]∗ np . cos (p s i 0)−px 0

d e f dc2 (x) :
g l o b a l h
py 0 = i n i t [1]
p s i 0 = np . p i / 2
r e t u r n x [1]−h∗x [5]∗ np . s i n (p s i 0)−py 0

d e f dc px (x) :
g l o b a l N, h , nx
p x c o n s = np . z e r o s (N−1)
f o r k i n r a n g e (1 , N) :

p x c o n s [k−1] = x [k∗nx] − x [(k−1)∗nx] − h∗x [5+ k∗nx]∗ np . cos (x [6 + (k−1)∗nx])
r e t u r n p x c o n s

d e f dc py (x) :
g l o b a l N, h , nx
p y c o n s = np . z e r o s (N−1)
f o r k i n r a n g e (1 , N) :

p y c o n s [k−1] = x [1+ k∗nx] − x [1 + (k−1)∗nx] − h∗x [5+ k∗nx]∗ np . s i n (x [6 + (k−1)∗nx])
r e t u r n p y c o n s

d e f pc px (x) :
g l o b a l N, nx
p x c o n s = np . z e r o s (N)

108

f o r k i n r a n g e (N) :
p x c o n s [k] = x [k∗nx] − 2∗x [2+ k∗nx] − x [3+ k∗nx]

r e t u r n p x c o n s

d e f pc py (x) :
g l o b a l N, nx
p y c o n s = np . z e r o s (N)
f o r k i n r a n g e (N) :

p y c o n s [k] = x [1+ k∗nx] − 1 . 5∗ x [2+ k∗nx] − x [4+ k∗nx]
r e t u r n p y c o n s

d e f i n i t i a l (x , y) : # S e t s an i n i t i a l s e a r c h v a l u e f o r t h e f i r s t i t e r a t i o n o f t h e p u t e r l oop
g l o b a l N, nx
i n i t = np . z e r o s (N∗nx)
f o r k i n r a n g e (N) :

i n i t [k∗nx] = x
i n i t [1+ k∗nx] = y
i n i t [2+ k∗nx] = 1 5 . 0
i n i t [3+ k∗nx] = 0 . 0
i n i t [4+ k∗nx] = 0 . 0
i n i t [5+ k∗nx] = 5 . 0
i n i t [6+ k∗nx] = np . p i / 2

r e t u r n i n i t

d e f bounds () : # D e f i n e s i n e q u a l i t y c o n s t r a i n t s
g l o b a l N
bound = []
f o r k i n r a n g e (N) :

bound . append ((−100 .0 , 1 0 0 . 0)) # bound f o r px a t t i m e s t e p k
bound . append ((−100 .0 , 1 0 0 . 0)) # bound f o r py a t t i m e s t e p k
bound . append ((0 , 3 0)) # bound f o r s a t t i m e s t e p k
bound . append ((−100 .0 , 1 0 0 . 0)) # bound f o r e p s x a t t i m e s t e p k
bound . append ((−100 .0 , 1 0 0 . 0)) # bound f o r e p s y a t t i m e s t e p k
bound . append ((0 . 0 , 5 . 0)) # bound f o r u a t t i m e s t e p k
bound . append ((0 , 2∗np . p i)) # bound f o r p s i a t t i m e s t e p k

r e t u r n bound
bnds = t u p l e (bounds ())

””” D e f i n e s c o n s t r a i n t s i n o r d e r ”””
con1 = { ’ type ’ : ’ eq ’ , ’ fun ’ : dc1}
con2 = { ’ type ’ : ’ eq ’ , ’ fun ’ : dc2}
con3 = { ’ type ’ : ’ eq ’ , ’ fun ’ : dc px }
con4 = { ’ type ’ : ’ eq ’ , ’ fun ’ : dc py }
con5 = { ’ type ’ : ’ eq ’ , ’ fun ’ : pc px }

109

con6 = { ’ type ’ : ’ eq ’ , ’ fun ’ : pc py }
cons = [con1 , con2 , con3 , con4 , con5 , con6]

””” I n n e r loop MPC”””
””” O b j e c t i v e f u n c t i o n ”””
d e f MPC I (x) :

g l o b a l N, ny , p s i d
p s i o b j = 0
r o b j = 0
gamma obj = 0
f o r k i n r a n g e (N) :

p s i o b j = p s i o b j + (np . pi−x [k∗ny])∗∗2
r o b j = r o b j + 0 .01∗ x [1+ k∗ny]∗∗2
gamma obj = gamma obj + 0 . 1∗ x [2+ k∗ny]∗∗2

r e t u r n p s i o b j + r o b j +gamma obj

””” C o n s t r a i n t f u n c t i o n s ”””
d e f dc3 (x) :

g l o b a l h , i n i t p s i
p s i 0 = i n i t p s i [0]
r e t u r n x [0]−h∗x [1]− p s i 0

d e f dc4 (x) :
g l o b a l h , ve l , i n i t p s i
r 0 = i n i t p s i [1]
r e t u r n x [1]− r 0 +h ∗1528/1074∗ r 0 ∗ abs (r 0)− v e l ∗h ∗3 7 . 9∗1 . 2 6∗ abs (v e l)∗ np . s i n (x [2]) / 1 0 7 4

d e f d c p s i (x) :
g l o b a l N, h , ny
p s i c o n s = np . z e r o s (N−1)
f o r k i n r a n g e (1 , N) :

p s i c o n s [k−1] = x [k∗ny] − x [(k−1)∗ny] − h∗x [1 + (k−1)∗ny]
r e t u r n p s i c o n s

d e f d c r (x) :
g l o b a l N, h , ny , v e l
r c o n s = np . z e r o s (N−1)
f o r k i n r a n g e (1 , N) :

r c o n s [k−1] = x [1+ k∗ny] −x [1 + (k−1)∗ny]+ h ∗1528/1074∗ x [1 + (k−1)∗ny]∗ abs (x [1 + (k−1)∗ny]) − h ∗3 7 . 9∗1 . 2 6∗ v e l ∗ abs (v e l)∗ np . s i n (x [2+ k∗ny]) / 1 0 7 4
r e t u r n r c o n s

d e f i n i t i a l p s i (p s i , r) : # S e t s an i n i t i a l s e a r c h v a l u e f o r t h e f i r s t i t e r a t i o n o f t h e i n n e r loop
g l o b a l N, ny
i n i t = np . z e r o s (N∗ny)
f o r k i n r a n g e (N) :

110

i n i t [k∗ny] = p s i
i n i t [1+ k∗ny] = r
i n i t [2+ k∗ny] = 0 . 0

r e t u r n i n i t

d e f p s i b o u n d s () : # D e f i n e s i n e q u a l i t y c o n s t r a i n t s
g l o b a l N
bound = []
f o r k i n r a n g e (N) :

bound . append ((0 , 2∗np . p i)) # bound f o r p s i a t t i m e s t e p k
bound . append ((−np . p i / 2 , np . p i / 2)) # bound f o r r a t t i m e s t e p k
bound . append ((−35∗np . p i / 1 8 0 , 35∗np . p i / 1 8 0)) # bound f o r s t e e r i n g a n g l e a t t i m e s t e p k

r e t u r n bound
p s i b n d s = t u p l e (p s i b o u n d s ())

””” D e f i n e s c o n s t r a i n t s i n o r d e r ”””
con7 = { ’ type ’ : ’ eq ’ , ’ fun ’ : d c p s i }
con8 = { ’ type ’ : ’ eq ’ , ’ fun ’ : d c r }
con9 = { ’ type ’ : ’ eq ’ , ’ fun ’ : dc3}
con10 = { ’ type ’ : ’ eq ’ , ’ fun ’ : dc4}
p s i c o n s = [con9 , con10 , con7 , con8]

d e f s i m u l a t e (x , y , p s i , r , u , gamma) : # S i m u l a t e t h e sys tem (e u l e r method)
g l o b a l h2
D = 1528
mu f = 3 7 . 9
R = 1 . 2 6
I z = 1074
x = x+h∗u∗np . cos (p s i)
y = y+h∗u∗np . s i n (p s i)
p s i = p s i +h2∗ r
r = r − h∗D∗ r ∗ abs (r) / I z + h∗R∗mu f∗u∗ abs (u)∗ np . s i n (gamma) / I z
r e t u r n x , y , p s i , r

”””SOLVE”””
s t a r t = t ime . c l o c k ()
d e f main () :

g l o b a l i n i t , i n i t p s i , v e l
t f = 350 # S e t s i m u l a t i o n t ime
””” De f i n e empty a r r a y s f o r t h e s t a t e s , i n p u t s and run t ime ”””
x = []
y = []
p s i = []
r = []
u = []

111

gamma = []
r u n t i m e = []
r u n t i m e 2 = []
””” Get i n i t i a l s t a t e s ”””
x0 = i n i t i a l (i n i t [0] , i n i t [1])
p s i 0 = i n i t i a l p s i (i n i t p s i [0] , i n i t p s i [1])
x . append (i n i t [0])
y . append (i n i t [1])
p s i . append (i n i t p s i [0])
r . append (i n i t p s i [1])
f o r i i n r a n g e (1 , t f) : # S i m u l a t e sys tem f o r t h e d e f i n e d s i m u l a t i o n t ime

g l o b a l p s i d
s t a r t = t ime . c l o c k () # S t a r t r u n t i m e t i m e r o f o u t e r l oop
s o l = min imize (MPC O, x0 , method = ’SLSQP ’ , bounds=bnds , c o n s t r a i n t s = cons) # So lve o u t e r l oop o p t i m i z a t i o n
u . append (s o l . x [5]) # Get v e l o c i t y i n p u t
v e l = u [i −1]
p s i d = s o l . x [6] # Get d e s i r e d h e a d i n g
r u n t i m e . append (t ime . c l o c k ()− s t a r t) #End r u n t i m e t i m e r o f o u t e r l oop
s t a r t 2 = t ime . c l o c k () # S t a r t r u n t i m e t i m e r o f o u t e r l oop
s o l i n = minimize (MPC I , ps i0 , method = ’SLSQP ’ , bounds= p s i b n d s , c o n s t r a i n t s = p s i c o n s) # So lve i n n e r loop o p t i m i z a t i o n
gamma . append (s o l i n . x [2])
r u n t i m e 2 . append (t ime . c l o c k ()− s t a r t 2)
””” De f i ne new i n i t i a l s e a r c h v a l u e s ”””
x0 [0 : (N−1)∗nx] = s o l . x [nx :N∗nx +1]
x0 [(N−1)∗nx :N∗nx +1] = s o l . x [(N−1)∗nx :N∗nx +1]
p s i 0 [0 : (N−1)∗ny] = s o l i n . x [ny :N∗ny +1]
p s i 0 [(N−1)∗ny :N∗ny +1] = s o l i n . x [(N−1)∗ny :N∗ny +1]

x1 , y1 , ps i1 , r1 = s i m u l a t e (x [i −1] , y [i −1] , p s i [i −1] , r [i −1] , u [i −1] , gamma [i −1]) # S i m u l a t e sys tem f o r n e x t i t e r a t i o n
””” Update new i n i t i a l v a l u e s ”””
i n i t = [x1 , y1]
i n i t p s i = [ps i1 , r1]
x . append (x1)
y . append (y1)
p s i . append (p s i 1)
r . append (r1)
p r i n t (i)

p r i n t (x)
p r i n t (y)
p r i n t (p s i)
p r i n t (r)
p r i n t (u)
p r i n t (r u n t i m e)
p r i n t (r u n t i m e 2)

112

main ()

Python code for MMPC control law algorithm 2

i m p o r t numpy as np
from s c i p y . o p t i m i z e i m p o r t min imize
i m p o r t t ime

g l o b a l N, h , h2 , nx , p s i d , i n i t , ny , i n i t p s i , v e l
N = 10
h = 1
h2 = 0 . 1
nx = 7 #Number o f v a l u e s o u t e r l oop
ny = 3 #Number o f v a l u e s i n n e r loop
””” I n i t i a l s t a t e s ”””
i n i t = [5 0 . 0 , 1 0 . 0]
i n i t p s i = [np . p i / 2 , 0 . 0]
v e l = 0

””” Oute r l oop MPC”””
””” O b j e c t i v e f u n c t i o n ”””
d e f MPC O(x) :

g l o b a l N, h , nx
s o b j = 0
e p s x o b j = 0
e p s y o b j = 0
u 1 o b j = 0
u 2 o b j = 0
f o r k i n r a n g e (N) :

s o b j = s o b j + x [2+ k∗nx]∗∗2
e p s x o b j = e p s x o b j + 1000∗x [3+ k∗nx]∗∗2
e p s y o b j = e p s y o b j + 1000∗x [4+ k∗nx]∗∗2
u 1 o b j = u 1 o b j + 0 . 1∗ x [5+ k∗nx]∗∗2

r e t u r n s o b j + e p s x o b j + e p s y o b j + u 1 o b j

””” C o n s t r a i n t f u n c t i o n s ”””
d e f dc1 (x) :

g l o b a l h
px 0 = i n i t [0]
p s i 0 = np . p i / 2
r e t u r n x [0]−h∗x [5]∗ np . cos (p s i 0)−px 0

d e f dc2 (x) :
g l o b a l h
py 0 = i n i t [1]
p s i 0 = np . p i / 2

113

r e t u r n x [1]−h∗x [5]∗ np . s i n (p s i 0)−py 0

d e f dc px (x) :
g l o b a l N, h , nx
p x c o n s = np . z e r o s (N−1)
f o r k i n r a n g e (1 , N) :

p x c o n s [k−1] = x [k∗nx] − x [(k−1)∗nx] − h∗x [5+ k∗nx]∗ np . cos (x [6 + (k−1)∗nx])
r e t u r n p x c o n s

d e f dc py (x) :
g l o b a l N, h , nx
p y c o n s = np . z e r o s (N−1)
f o r k i n r a n g e (1 , N) :

p y c o n s [k−1] = x [1+ k∗nx] − x [1 + (k−1)∗nx] − h∗x [5+ k∗nx]∗ np . s i n (x [6 + (k−1)∗nx])
r e t u r n p y c o n s

d e f pc px (x) :
g l o b a l N, nx
p x c o n s = np . z e r o s (N)
f o r k i n r a n g e (N) :

p x c o n s [k] = x [k∗nx] − 2∗x [2+ k∗nx] − x [3+ k∗nx]
r e t u r n p x c o n s

d e f pc py (x) :
g l o b a l N, nx
p y c o n s = np . z e r o s (N)
f o r k i n r a n g e (N) :

p y c o n s [k] = x [1+ k∗nx] − 1 . 5∗ x [2+ k∗nx] − x [4+ k∗nx]
r e t u r n p y c o n s

d e f i n i t i a l (x , y) : # S e t s an i n i t i a l s e a r c h v a l u e f o r t h e f i r s t i t e r a t i o n o f t h e p u t e r l oop
g l o b a l N, nx
i n i t = np . z e r o s (N∗nx)
f o r k i n r a n g e (N) :

i n i t [k∗nx] = x
i n i t [1+ k∗nx] = y
i n i t [2+ k∗nx] = 1 5 . 0
i n i t [3+ k∗nx] = 0 . 0
i n i t [4+ k∗nx] = 0 . 0
i n i t [5+ k∗nx] = 5 . 0
i n i t [6+ k∗nx] = np . p i / 2

r e t u r n i n i t

d e f bounds () : # D e f i n e s i n e q u a l i t y c o n s t r a i n t s

114

g l o b a l N
bound = []
f o r k i n r a n g e (N) :

bound . append ((−100 .0 , 1 0 0 . 0)) # bound f o r px a t t i m e s t e p k
bound . append ((−100 .0 , 1 0 0 . 0)) # bound f o r py a t t i m e s t e p k
bound . append ((0 , 3 0)) # bound f o r s a t t i m e s t e p k
bound . append ((−100 .0 , 1 0 0 . 0)) # bound f o r e p s x a t t i m e s t e p k
bound . append ((−100 .0 , 1 0 0 . 0)) # bound f o r e p s y a t t i m e s t e p k
bound . append ((0 . 0 , 5 . 0)) # bound f o r u a t t i m e s t e p k
bound . append ((0 , 2∗np . p i)) # bound f o r p s i a t t i m e s t e p k

r e t u r n bound
bnds = t u p l e (bounds ())

””” D e f i n e s c o n s t r a i n t s i n o r d e r ”””
con1 = { ’ type ’ : ’ eq ’ , ’ fun ’ : dc1}
con2 = { ’ type ’ : ’ eq ’ , ’ fun ’ : dc2}
con3 = { ’ type ’ : ’ eq ’ , ’ fun ’ : dc px }
con4 = { ’ type ’ : ’ eq ’ , ’ fun ’ : dc py }
con5 = { ’ type ’ : ’ eq ’ , ’ fun ’ : pc px }
con6 = { ’ type ’ : ’ eq ’ , ’ fun ’ : pc py }
cons = [con1 , con2 , con3 , con4 , con5 , con6]

””” I n n e r loop MPC”””
””” O b j e c t i v e f u n c t i o n ”””
d e f MPC I (x) :

g l o b a l N, ny , p s i d
p s i o b j = 0
r o b j = 0
gamma obj = 0
f o r k i n r a n g e (N) :

p s i o b j = p s i o b j + (np . pi−x [k∗ny])∗∗2
r o b j = r o b j + 0 .01∗ x [1+ k∗ny]∗∗2
gamma obj = gamma obj + 0 . 1∗ x [2+ k∗ny]∗∗2

r e t u r n p s i o b j + r o b j +gamma obj

””” C o n s t r a i n t f u n c t i o n s ”””
d e f dc3 (x) :

g l o b a l h , i n i t p s i
p s i 0 = i n i t p s i [0]
r e t u r n x [0]−h2∗x [1]− p s i 0

d e f dc4 (x) :
g l o b a l h2 , ve l , i n i t p s i
r 0 = i n i t p s i [1]

115

r e t u r n x [1]− r 0 +h2 ∗1528/1074∗ r 0 ∗ abs (r 0)− v e l ∗h2 ∗3 7 . 9∗1 . 2 6∗ abs (v e l)∗ np . s i n (x [2]) / 1 0 7 4

d e f d c p s i (x) :
g l o b a l N, h , ny
p s i c o n s = np . z e r o s (N−1)
f o r k i n r a n g e (1 , N) :

p s i c o n s [k−1] = x [k∗ny] − x [(k−1)∗ny] − h2∗x [1 + (k−1)∗ny]
r e t u r n p s i c o n s

d e f d c r (x) :
g l o b a l N, h , ny , v e l
r c o n s = np . z e r o s (N−1)
f o r k i n r a n g e (1 , N) :

r c o n s [k−1] = x [1+ k∗ny] −x [1 + (k−1)∗ny]+ h2 ∗1528/1074∗ x [1 + (k−1)∗ny]∗ abs (x [1 + (k−1)∗ny]) − h2 ∗3 7 . 9∗1 . 2 6∗ v e l ∗ abs (v e l)∗ np . s i n (x [2+ k∗ny]) / 1 0 7 4
r e t u r n r c o n s

d e f i n i t i a l p s i (p s i , r) : # S e t s an i n i t i a l s e a r c h v a l u e f o r t h e f i r s t i t e r a t i o n o f t h e i n n e r loop
g l o b a l N, ny
i n i t = np . z e r o s (N∗ny)
f o r k i n r a n g e (N) :

i n i t [k∗ny] = p s i
i n i t [1+ k∗ny] = r
i n i t [2+ k∗ny] = 0 . 0

r e t u r n i n i t

d e f p s i b o u n d s () : # D e f i n e s i n e q u a l i t y c o n s t r a i n t s
g l o b a l N
bound = []
f o r k i n r a n g e (N) :

bound . append ((0 , 2∗np . p i)) # bound f o r p s i a t t i m e s t e p k
bound . append ((−np . p i / 2 , np . p i / 2)) # bound f o r r a t t i m e s t e p k
bound . append ((−35∗np . p i / 1 8 0 , 35∗np . p i / 1 8 0)) # bound f o r s t e e r i n g a n g l e a t t i m e s t e p k

r e t u r n bound
p s i b n d s = t u p l e (p s i b o u n d s ())

””” D e f i n e s c o n s t r a i n t s i n o r d e r ”””
con7 = { ’ type ’ : ’ eq ’ , ’ fun ’ : d c p s i }
con8 = { ’ type ’ : ’ eq ’ , ’ fun ’ : d c r }
con9 = { ’ type ’ : ’ eq ’ , ’ fun ’ : dc3}
con10 = { ’ type ’ : ’ eq ’ , ’ fun ’ : dc4}
p s i c o n s = [con9 , con10 , con7 , con8]

d e f s i m u l a t e (x , y , p s i , r , u , gamma) : # S i m u l a t e t h e sys tem (e u l e r method)
g l o b a l h2
D = 1528

116

mu f = 3 7 . 9
R = 1 . 2 6
I z = 1074
x = x+h2∗u∗np . cos (p s i)
y = y+h2∗u∗np . s i n (p s i)
p s i = p s i +h2∗ r
r = r − h2∗D∗ r ∗ abs (r) / I z + h2∗R∗mu f∗u∗ abs (u)∗ np . s i n (gamma) / I z
r e t u r n x , y , p s i , r

”””SOLVE”””
s t a r t = t ime . c l o c k ()
d e f main () :

g l o b a l i n i t , i n i t p s i , v e l
t f = 350 # S e t s i m u l a t i o n t ime
””” De f i n e empty a r r a y s f o r t h e s t a t e s , i n p u t s and run t ime ”””
x = []
y = []
p s i = []
r = []
u = []
gamma = []
r u n t i m e = []
r u n t i m e 2 = []
””” Get i n i t i a l s t a t e s ”””
x0 = i n i t i a l (i n i t [0] , i n i t [1])
p s i 0 = i n i t i a l p s i (i n i t p s i [0] , i n i t p s i [1])
x . append (i n i t [0])
y . append (i n i t [1])
p s i . append (i n i t p s i [0])
r . append (i n i t p s i [1])
f o r i i n r a n g e (1 , t f) : # S i m u l a t e sys tem f o r t h e d e f i n e d s i m u l a t i o n t ime

g l o b a l p s i d
s t a r t = t ime . c l o c k () # S t a r t r u n t i m e t i m e r o f o u t e r l oop
s o l = min imize (MPC O, x0 , method = ’SLSQP ’ , bounds=bnds , c o n s t r a i n t s = cons) # So lve o u t e r l oop o p t i m i z a t i o n
u . append (s o l . x [5]) # Get v e l o c i t y i n p u t
v e l = u [i −1]
p s i d = s o l . x [6] # Get d e s i r e d h e a d i n g
r u n t i m e . append (t ime . c l o c k ()− s t a r t) #End r u n t i m e t i m e r o f o u t e r l oop
x0 [0 : (N−1)∗nx] = s o l . x [nx :N∗nx +1]
x0 [(N−1)∗nx :N∗nx +1] = s o l . x [(N−1)∗nx :N∗nx +1]
f o r j i n r a n g e (1 0) :

s t a r t 2 = t ime . c l o c k () # S t a r t r u n t i m e t i m e r o f o u t e r l oop
s o l i n = minimize (MPC I , ps i0 , method = ’SLSQP ’ , bounds= p s i b n d s , c o n s t r a i n t s = p s i c o n s) # So lve i n n e r loop o p t i m i z a t i o n
gamma . append (s o l i n . x [2])
r u n t i m e 2 . append (t ime . c l o c k ()− s t a r t 2)

117

””” De f i ne new i n i t i a l s e a r c h v a l u e s ”””

p s i 0 [0 : (N−1)∗ny] = s o l i n . x [ny :N∗ny +1]
p s i 0 [(N−1)∗ny :N∗ny +1] = s o l i n . x [(N−1)∗ny :N∗ny +1]

x1 , y1 , ps i1 , r1 = s i m u l a t e (x [i −1] , y [i −1] , p s i [i −1] , r [i −1] , u [i −1] , gamma [i −1]) # S i m u l a t e sys tem f o r n e x t i t e r a t i o n
””” Update new i n i t i a l v a l u e s ”””

i n i t = [x1 , y1]
i n i t p s i = [ps i1 , r1]
x . append (x1)
y . append (y1)
p s i . append (p s i 1)
r . append (r1)

p r i n t (x)
p r i n t (y)
p r i n t (p s i)
p r i n t (r)
p r i n t (u)
p r i n t (r u n t i m e)
p r i n t (r u n t i m e 2)

main ()

118

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Assumptions
	Background and contribution
	Notation

	Literature Review
	Model Predictive Control
	Linear Model Predictive Control
	Nonlinear Model Predictive Control
	Non-conventional approaches to Model Predictive Control

	Path following control
	Kinematic path following controller
	Kinetic path following control
	MPC for path following problems

	Basic Theory
	Vehicle Model
	Testing the vehicle model
	Model Parameters
	Moment of inertia
	Damping and friction coefficients

	MPC
	Reference path
	Optimization formulation
	Linearized MPC
	Controllability
	Control law

	Nonlinear MPC for 3-DOF
	Simplified Nonlinear MPC for 6-DOF
	Multiplexed Nonlinear MPC for 3-DOF

	Implementation
	Algorithms
	Linearizing MPC
	Nonlinear MPC for 3-DOF
	Nonlinear MPC for 6-DOF
	Nonlinear MMPC for 3-DOF

	Solvers and hardware

	Results
	Basic optimization
	Linearized MPC for 3-DOF
	Nonlinear MPC for 3-DOF
	APMonitor solvers
	SciPy solver

	Simplified 6-DOF controller
	Multiplexed Model Predictive Control
	APMonitor solver
	SciPy solver

	Run time

	Discussion
	Control law performance
	Computation time

	Conclusion and future work
	Conclusion
	Future work

	Bibliography
	Appendix

