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Abstract

This thesis investigates convergence in the framework of Voronoi-based deployment of a
multi-agent system to a convex polytopic multi-dimensional environment. The deploy-
ment objective is to drive the system into a stable static configuration which exhibits
optimal coverage of the target environment. To this end, the system is subjected to a
collection of decentralized control laws steering each agent towards a Chebyshev center of
its associated time-varying polytopic Voronoi-neighborhood. In non-degenerate cases, so-
called Chebyshev configurations of the multi-agent system achieves the above objective. In
these configurations, all agents are at a Chebyshev center of their Voronoi-neighborhood.
Proving convergence to the set of Chebyshev configurations is an open research ques-
tion. This is the most pertinent issue with regards to the framework viability. While
such a property is supported by simulations, neither complete formal convergence proofs
nor formal characterizations of the equilibria to be achieved exist. This thesis is ori-
ented towards strengthening the theoretical convergence results. For the special case of
deployment to one-dimensional environments, we prove convergence to an unique static
Chebyshev configuration. Moreover, we highlight connections to discrete time averaging
systems and show how the system converges to consensus on the Chebyshev radii. The
remaining results apply in the general case of multi-dimensional environments. We intro-
duce a novel undirected interaction graph as a theoretical tool for a deeper understanding
of the multi-agent system’s functioning. Exploiting this graph, we prove that the set of
static configurations are Chebyshev configurations in which all subsets of agents within
the same connected component of the interaction graph are in consensus on their Cheby-
shev radii. Finally we prove convergence to a Chebyshev configuration, with consensus
on the Chebyshev radii, provided the interaction graph is connected along the trajecto-
ries of the multi-agent system. Throughout the presentation, the theoretical results are
motivated and supported by simulations.

Keywords: Deployment Problem, Coverage Problem, Dynamic Voronoi partition,
Chebyshev Center, Decentralized control.
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Sammendrag
Norwegian abstract

Denne avhandlingen omhandler konvergens innenfor et Voronoi-basert rammeverk for å
utplassere et multi-agent system i et konvekst polytopisk mange-dimensjonalt område.
Målet for utplasseringen er å styre systemet til en stabil og statisk konfigurasjon hvor
agentene dekker området i en viss optimal forstand. For å oppnå dette, benyttes en sam-
ling av desentraliserte styringslover som styrer hver enkelt agent mot et Chebyshev-senter
av dens tilhørende tidsvarierende polytopiske Voronoi-nabolag. I ikke-degenererte tilfeller
blir nevnte mål oppnådd av såkalte Chebyshev-konfigurasjoner av systemet. I disse kon-
figurasjonene er alle agentene i et Chebyshev-senter av deres Voronoi-nabolag. Å bevise
konvergens til slike konfigurasjoner er et åpent problem. En slik konvergens-egenskap er
støttet av simuleringer, men det finnes ingen fullstendige formelle bevis. Denne avhan-
dlingen er rettet mot å styrke de teoretiske konvergens-resultatene for rammeverket. For
spesialtilfellet der multi-agent systemet utplasseres i et en-dimensjonalt område, beviser vi
konvergens til en unik statisk Chebyshev-konfigurasjon. Videre trekker vi frem koblinger
til konsensus-teori fra lineær distribuert reguleringsteori, og viser at systemet konverg-
erer til konsensus på agentenes Chebyshev-radius. De gjenværende resultatene gjelder
i de mer generelle tilfellene der området agentene utplasseres i er mange-dimensjonalt.
Vi introduserer en ny urettet interaksjons-graf. Ved å benytte denne grafen, viser vi at
settet av statiske konfigurasjoner er Chebyshev-konfigurasjoner der alle subset av agen-
ter innenfor samme sammenhengende sub-graf av den originale grafen har konsensus på
deres tilhørende Chebyshev-radiuser. Til slutt beviser vi konvergens til en Chebyshev-
konfigurasjon med konsensus på Chebyshev-radiuser i tilfeller hvor interaksjons-grafen er
sammenhengende langs banen multi-agent systemet beveger seg i. De teoretiske resul-
tatene er motivert av og underbygget av simuleringer.
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Preface

This preface provides background information on the thesis. In compliance with guidelines
from the NTNU Department of Engineering Cybernetics, the preface content has been
attested by the supervisors upon submission of the thesis.

Problem description: A common principle in a wide range of multi-agent system
(MAS) applications is to let a group of mobile agents deploy in a predetermined target
region with the objective of attaining a static configuration such that the coverage of the
region is maximized. This problem is known as the deployment problem.

Most works in the deployment problem literature are so-called Voronoi partition based.
At each time instant, a bounded convex polyhedral working region is partitioned using
a Voronoi algorithm providing the agents with non-overlapping functioning zones. The
deployment objective is achieved by using local stabilizing feedback control ensuring the
convergence of each agent towards a geometric center of its associated time-varying func-
tioning zone.

Many recent research works focus on driving the MAS into a centroidal Voronoi con-
figuration in which the position of each agent coincides with the center of mass of its
associated Voronoi cell. However, computing the center of mass of a polytope can be
prohibitively expensive in terms of computational resources. To overcome this difficulty,
other geometric centers have to be considered.

A pertinent candidate in this respect, is the Chebyshev center. This can be computed
easily by a convex optimization. Consequently, the use of the Chebyshev center as an
alternative target point has been investigated in recent works. Disregarding certain de-
generate cases, simulations support the conjectured property of MAS convergence to
particular optimal static configurations.

However, the pursuit after formal convergence proofs represent an open research prob-
lem. Due to the non-linear nature of the resulting MAS dynamics, with an optimization
in the loop, convergence proofs are non-trivial to obtain. Few analytic expressions are
available. Moreover, the involved quantities do not exhibit the monotonicity required for
applying standard Lyapunov-like approaches. Complete proofs of convergence to opti-
mal static configurations only exists for the trivial case of single-agent systems. As such,
strengthening the convergence results is imperative for this research topic.
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The purpose of this thesis is to move towards stronger convergence results. The first
objective is to examine the closed loop functioning of the MAS under Chebyshev control
schemes. The goal is to uncover additional mathematical structure to better understand
the convergence properties of the MAS. The second objective is to widen the scope of
assumptions under which convergence to Chebyshev configurations can be proven.

Academic background and context: This thesis is submitted in satisfaction of the
requirements for the 30 ECTS credits course TTK4900 Engineering Cybernetics Master’s
thesis at NTNU. It is submitted in partial satisfaction of the requirements for NTNU’s
five years integrated Master of Science degree in Engineering Cybernetics.

The thesis work has been carried out during visiting studies at the Centre National de la
Recherche Scientifique (CNRS) Laboratoire des Signaux et Systèmes at CentraleSupélec,
Gif-sur-Yvette, France. It succeeds a student project by the thesis author, also conducted
at CentraleSupélec, on the same deployment framework. Both this thesis as well as the
student project can be regarded as a continuation of a line of research pursued in the
PhD [Nguyen, 2016] under the supervision of Professor Sorin Olaru (CentraleSupélec).

The student project addressed the problem of finding particular unique geometric centers
of polytopes within the subset of Chebyshev centers. It was also helpful in becoming famil-
iar with the deployment problem. The direction of this thesis is motivated by simulation
results from the project illustrating that former convergence results rely on assumptions
which do not hold in the general case.

Results on convergence in the present manuscript were all obtained during the work on
the Master’s thesis. All novel results in this thesis have been obtained by the author
during the course of the thesis work. The supervisors have served as discussion partners
and have pointed the author to relevant literature on the area. No outside assistance has
been received.

The work has been of a research oriented nature. Numerous theoretical approaches have
been tried to tackle the objectives and simulation based benchmarks have been estab-
lished. The presentation in this thesis builds on those which proved fruitful and relevant
to the main results. A summary of the main thesis contributions is provided in section 1.1,
and is also attested by the supervisors.

Prerequisites: The reader is assumed to be familiar with standard results and concepts
from linear algebra, linear systems theory, real analysis, convex optimization and non-
linear systems and control.

Typesetting and figures: This document was typeset using the LATEX typesetting
system. The template is derived from the ETH IDSC LATEX template [Ritter et al., 2017].
Several figures have been exported from Matlab using matlab2tikz [Schlömer, 2008].
Finally, many figures contain elements generated with the Multi-Parametric Toolbox 3
[Herceg et al., 2013].
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Nomenclature

N Set of positive integers t1, 2, . . . u.

Nq Positive integers up to q P N, i.e. N � t1, 2, . . . , qu.

Rd Space of reals of dimension d P N.

R� Positive orthant of R.

intpSq Interior of the set S.

BS Boundary of the set S.

A � B A is a proper subset of B.

A � B A is an improper subset of B.

A`B Minkowski sum of the sets A and B.

AaB Pontryagin difference between the sets A and B.

AzB Set difference between the sets A and B.

dimpSq Dimension of the set S.

1 Vector of all ones.

0 Vector of all zeros.

ei Standard basis vector. The i’th entry is 1 while all other entries are zero.

AT Transpose of the matrix or vector A.

specpAq Spectrum of the matrix A.

ρpAq Spectral radius of the matrix A.

I Identity matrix.

‖x‖ Euclidean norm of the vector x (unless otherwise stated).

Brpx0q Closed ball centered at x0 with radius r

distpx, Aq Euclidean distance between a point x and a set A.
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depthpx, Aq Depth of x in the set A. I.e. distpx, BAq provided x P A.

G Directed or undirected graph.

V Nodes of some graph G.

E Edges of some graph G.

x̄i Some Chebyshev center associated with agent i.

Vi Voronoi cell associated with agent i.

ri Agent depth, defined as depthpxi,Viq where xi is the agent state.

r̃ipkq Depth of agent state xipk� 1q relative to the Voronoi cell at time k, Vipkq.

r̄i Chebyshev radius associated with agent i, defined as depthpx̄i,Viq .

rm Lower bound on ri, rm � mini ri.

r̃m Lower bound on r̃i, r̃m � mini r̃i.

r̄m Lower bound on r̄i, r̄m � mini r̄i.

r̄M Upper bound on r̄i, r̄M � maxi r̄i.

W Environment to which the multi-agent system is deployed.

XD Set of configurations with distinct agent states in W.

XSC Set of static configurations.

XCC Set of Chebyshev Configurations.
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Chapter 1

Introduction

Many tasks within mobile robotics are concerned with deploying a set of cooperating
agents to a predetermined bounded environment of interest. Subject to constraints like
collision avoidance [Tanner, 2004], minimum energy consumption [Schwager et al., 2011;
Song et al., 2014] and robustness to disturbances [Bakolas and Tsiotras, 2013], the overar-
ching goal is to attain a static configuration of the robots which maximizes the coverage of
the target region. This principle is applicable in settings such as environmental monitor-
ing, surveillance and rescue operations [Cortes et al., 2006; Murray, 2007; Tanner et al.,
2007; Bullo et al., 2009].

In the control literature, this task is known under the names the deployment problem [Bullo
et al., 2009] and the coverage problem [Mesbahi and Egerstedt, 2010]. In particular, several
works within distributed control of multi-agent systems tackle this problem. These works
limit admissible solutions to those amenable to a so-called distributed or decentralized
implementation.

Standard control theory generally grants controllers for each subsystem access to the
global system state, known as centralized control. This follows from assuming an informa-
tion structure where either i) each controller may communicate with a central coordinator,
or ii) all subsystems may communicate with each other over a fully connected network
[Ren and Beard, 2008]. Contrary to centralized control, distributed controllers have weaker
couplings. They do not communicate with a central coordinator, and the intra-subsystem
communications structure is of a sparse nature.

In the context of multi-agent systems, the agents represent the subsystems. These can
for instance be autonomous underwater vehicles, unmanned surface vehicles or unmanned
aerial vehicles. In distributed control of multi-agent systems, each agent may only commu-
nicate with some, possibly time-varying, subset of its fellow agents. For the deployment
problem, this typically translates to a communication structure where each agent may
only communicate with the subset of agents defined to be its neighbors.
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2 1.0. Introduction

In decentralized control, the constraints on communications are stricter than for dis-
tributed control. Typically distributed control schemes involve some extent of intra-sample
communication between agents. Distributed controllers may exploit this kind of commu-
nication to coordinate with controllers of neighboring agents. Decentralized controllers
are not given this privilege [Nguyen, 2016].

In terms of optimal control, distributed and decentralized controllers will perform no bet-
ter than those utilizing a centralized structure. This is a simple consequence of optimizing
over a subset rather than the whole space of available control structures. As such, it is
reasonable to ask what is gained by applying this restriction. For multi-agent systems, it
is typically motivated by concerns related to scalability, fault tolerance, limited commu-
nication capabilities, range-limited sensing capabilities and scarceness of computational
resources [Mesbahi and Egerstedt, 2010; Ren and Beard, 2008]. In many applications, in-
cluding those categorized as deployment problems, knowledge of the entire system state is
neither feasible nor desirable. Real world communication topologies are usually not fully
connected, and utilizing a central coordinator involves risk of catastrophic system failure
due to having a single point of failure [Ren and Beard, 2008]. Rather, the synthesized
controllers should make the system converge to global optimality despite only relying on
spatially local information and interactions.

To this end, most works within the deployment problem literature are variations about
so-called Voronoi partition [Voronoï, 1908] based deployment. In these schemes, the poly-
hedral target region is partitioned into equally many cells as there are agents. For each
agent, the interior of their corresponding cell contains all points to which the current
agent is the closest. In this manner, the target region is partitioned into disjoint subsets
where each subset has a corresponding agent responsible for its coverage. As the partition
is with respect to the agents time-varying positions, it is itself time-varying. Thus it is a
dynamic Voronoi partition. Decentralized control schemes tackling the deployment prob-
lem exploit the fact that any agent may compute its own Voronoi cell using exclusively
local information. Specifically, knowledge of the borders of the target region and positions
of agents in adjacent cells is sufficient for any agent to compute its own Voronoi cell. Next,
most Voronoi based schemes pick some target geometric center within the agent’s cell such
that the convergence of each agent to its geometric center ensures the convergence of the
global system to a static configuration. Again, the geometric centers will be time-varying
due to the time-varying nature of its underlying structure. Thus the geometric center
must itself converge while the agent converges towards it.

Much attention has been devoted to continuous and discrete time schemes utilizing the
centroid as the geometric center [Cortes et al., 2004; Kwok and Martinez, 2010; Yan and
Mostofi, 2012; Song et al., 2014; Moarref and Rodrigues, 2014]. The goal is to make the
system converge to a Centroidal Voronoi Configuration, where the position of each agent
corresponds to the centroid of its corresponding cell. Additionally, works such as [Cortes
et al., 2002, 2005; Martinez et al., 2007] consider the extension where one endows the
target region with a mass density function and steer the agents towards the center of
mass of their cells.
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However, computing the centroid and center of mass of a polytope is in general not easy.
The complexity of computing the involved integrals increase with the dimension of the
state space [Nguyen, 2016]. Closed form solutions for polytope centroids only exist for
the one-dimensional and two-dimensional cases1. Numerical approximation schemes are
necessary in high dimensional spaces. To overcome this difficulty, other geometric centers
have been considered.

Nguyen and Maniu [2016] and Nguyen [2016] consider the use of a so-called Vertex-
interpolated center in discrete time. At each time instant, all agents compute their re-
spective target points by solving a quadratic program.

Cortes and Bullo [2005] use the circumcenter as the target point in the context of con-
tinuous time multi-agent systems deployed to the plane. The circumcenter is the minimal
radius enclosing Euclidean ball of a polytope. In a discrete time implementation, the
circumcenter can be found by solving an appropriate quadratically constrained linear
program.

In this manuscript we consider the discrete time Voronoi-based framework in [Nguyen
et al., 2017], this case being closer to a practical application where the control actions are
computed in at a regularly spaced interval. The authors use the Chebyshev center of a
cell, the center of an inscribed Euclidean ball of maximal radius, as the target. The radius
of this ball is known as the Chebyshev radius. Finding a Chebyshev center and the corre-
sponding Chebyshev radius amounts to solving a linear program with the representation
of the agent’s Voronoi cell as input. While linear programs have no explicit solutions, they
are well known to be easy to solve [Boyd and Vandenberghe, 2004]. Thus this framework
is an attractive alternative to centroid-based methods in terms of computational strain.
Additionally, the controllers based on the Chebyshev center are indeed amenable to a
decentralized implementation.

The use of Chebyshev centers in a deployment setting was first investigated by Cortes and
Bullo [2005]. The authors consider a continuous time multi-agent system (MAS) in the
plane where all agents adhere to single integrator dynamics. Moreover, a so-called sphere
packing multicenter function is introduced. Evaluated at a particular MAS configuration,
this multicenter function provides the largest radius guaranteeing that the equal-radius
open spheres centered at the agent positions are contained in the target environment and
are pairwise disjoint. By means of non-smooth analysis, the authors show that this mul-
ticenter function is monotonically optimized when utilizing specific control laws steering
each agent towards some Voronoi cell Chebyshev center. This establishes the optimality
of the MAS limit configurations.

However, proving convergence to a local optimum of the sphere packing multi-center
function is not sufficient to establish stationarity. A necessary step in ensuring convergence
to a static configuration is showing convergence to a so-called Chebyshev configuration
[Nguyen et al., 2017]. The MAS is in a Chebyshev configuration when all agents are at a
Chebyshev center of their respective Voronoi cells. In [Bullo et al., 2009] this is referred
to as an open research question. This conjectured property is supported by simulations
in [Nguyen et al., 2017; Bullo et al., 2009; Cortes and Bullo, 2005].

1See for instance Cortes et al. [2004] for explicit formulas in the R2 case.



4 1.1. Contributions

The frameworks presented in Nguyen et al. [2017] and Cortes and Bullo [2005] are related
by virtue of exploiting the same target point. Meanwhile they differ in the sense that
the former paper i) considers discrete time dynamics, ii) accommodates a larger class of
heterogeneous agent dynamics and iii) allows for deployment to both the plane as well
as Rd for any finite d P t1, 2, . . . u. Proving convergence to a Chebyshev configuration for
discrete time MAS was thought to be solved by a result in [Nguyen et al., 2017]. In the
prequel to the present thesis, the report [Hatleskog, 2017], said result came under scrutiny.
There it is shown that the convergence result in [Nguyen et al., 2017] relies on an assump-
tion which fails in several common cases. As a consequence, the most pertinent question
related to the framework is currently the convergence to a Chebyshev configuration.

This thesis is oriented towards providing formal convergence results for the discrete time
Voronoi-based MAS deployment framework. Thus we aim to cover some of the open
research questions in Nguyen et al. [2017]. To this end, we thoroughly investigate the closed
loop functioning of the MAS subject to such a decentralized Voronoi-based control scheme.
Motivated by numerical illustrations, we uncover mathematical mechanisms and structure
which steers the MAS towards some Chebyshev configuration. We show that the closed
loop functioning of deployment in 1D can be analyzed with standard tools from discrete
time averaging systems. By introducing novel graph theoretic notions, we characterize the
topology of static MAS configurations and highlight connections to consensus algorithms.
By exploiting the same graph theoretic notions, we illustrate how MAS behavior under
deployment in multi-dimensional environments can be understood and analyzed with
generalizations of the concepts exploited in the 1D case.

1.1 Contributions

This section summarizes the main contributions of the thesis. The first results apply
when agents complying with discrete time single integrator dynamics are deployed to a 1-
dimensional environment. The agents are subjected to linear time-invariant agent control
laws steering each agent towards the current Chebyshev center of their Voronoi cells.

(i) It is shown that the MAS dynamics adhere to discrete time affine time-invariant
dynamics. Analyzing the resulting systems of equations with tools and results from
algebraic graph theory and discrete time averaging systems, we prove convergence
of the MAS to an unique static Chebyshev configuration. Upon closer inspection
we reveal that one cannot expect finite time convergence, rather the convergence is
asymptotic.

(ii) The explicit discrete time linear time-invariant dynamic equation for the Chebyshev
radii of the agents is derived. Upon analyzing the dynamics, we prove convergence
to consensus on the Chebyshev radii. I.e. we prove that convergence to the unique
static Chebyshev configuration implies convergence to equal Chebyshev radii for all
agents.

To the best of the authors’ and thesis supervisors knowledge, this is the first time such
explicit connections between the present deployment framework and discrete time averag-
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ing systems have been shown. Additionally, these are the first results proving convergence
to a static Chebyshev Configuration in R.

The remaining results apply in a more general context. We assume deployment to Rd.
All agents adhere to discrete time linear time-invariant dynamics and respect the same
regularity conditions as imposed in [Nguyen et al., 2017]. The agents are subjected to
control laws steering each agent to the subsets of their current Voronoi cells where the
distances to the boundary is longer than, or otherwise at least as long as, the current
distance from the agent to the boundary. Under these assumptions we first prove:

(iii) The non-decrease and convergence of the minimum distance any agent has to its
cell boundary. This extends a result we derived for single integrator dynamics and
linear controllers in [Hatleskog, 2017].

(iv) The convergence of the minimal Chebyshev radius.

Further to analyzing functioning of the framework, we introduce and exploit graph theo-
retic notions. In particular:

(v) We introduce the notion of an interaction graph to the framework, encoding the
ability of agents to affect each others Chebyshev radii.

(vi) Exploiting the interaction graph, we examine the topology of static MAS configura-
tions. We prove that these correspond to Chebyshev configurations where all agents
within the same connected component of the interaction graph have consensus on
their Chebyshev radii.

(vii) The main result in this thesis is a convergence proof exploiting the interaction
graph. We prove convergence to a Chebyshev configuration whenever the time-
varying interaction graph is connected along the trajectories of the MAS. Moreover,
the connectedness of the interaction graph ensures convergence to consensus on
agent Chebyshev radii.

These novel theoretical notions and the corresponding results are the most important
thesis contributions.

The convergence results in Rd will also appear in the accepted paper:

• Johan Hatleskog, Sorin Olaru and Morten Hovd. Voronoi-based deployment of
multi-agent systems. 57th IEEE Conference on Decision and Control (CDC), Florida,
USA, 2018.

to be presented in December 2018.

1.2 Organization of the thesis

The outline of the thesis is as follows: In chapter 2 we provide an introduction to the
Chebyshev center based deployment framework. Section 2.1 presents useful theoretical



6 1.3. Notation and conventions

background before the following framework introduction in sections 2.2-2.5. Next we mo-
tivate the theoretical developments with several numerical illustrations in section 2.7. A
problem statement follows in section 2.8. Chapter 3 is devoted to convergence results.
Additional theoretical background is presented in 3.1. Section 3.2 discussed preliminary
convergence notions. Convergence results on for deployment in R are presented in 3.3
whereas Rd-results are presented in section 3.4. Finally we conclude in chapter 4.

We end this introductory chapter with a brief section on mathematical notation and
conventions.

1.3 Notation and conventions

Let N � t1, 2, . . . u be the set of natural numbers. We define Nl � t1, 2, . . . , lu � N as the
subset of natural number less or equal to l P N. The set of strictly positive real numbers
is denoted by R�. The Minkowski sum and Pontryagin difference of two appropriate sets
P, Q is P ` Q and P a Q respectively. λP for λ P R� is a λ-scaling of the set P . The
Minkowski sum, the Pontryagin difference and λ-scaling is introduced in section 2.1.4.
Finally BP and intpP q denotes respectively the boundary and the interior of the set P .

Unless otherwise specified, ‖�‖ is the standard Euclidean metric. Brpx0q � Rd is a closed
d-dimensional Euclidean ball centered at x0 P Rd with radius r P r0,8q. We use the
shorthand Br � Brp0q. The distance between a point p P Rd and a set Q � Rd is defined
as distpp, Qq � inft‖p� q‖ | q P Qu.

1 and 0 are appropriately sized column vectors of ones and zeros respectively. The i’th
standard basis vector is ei. I.e. eT

i ei � 1 and eT
i ej � 0 when i � j. Vector inequalities are

to be understood element wise. E.g. for u, v P Rd, then u ¤ v ðñ eT
i u ¤ eT

i v@i P Nd.
I is an identity matrix of appropriate dimension. In general, dimensions will rarely be
stated and should be understood from context.

Let fpx1, . . . , xN q be some function. If one or more arguments are discrete time-varying,
e.g. xi � xipkq, then we often use fpkq � fpx1pkq, . . . , xN pkqq as a shorthand for evaluating
fp�q along the trajectories of its arguments. E.g. an energy function V pxq � xT x is time
invariant, and has the shorthand V pkq � V pxpkqq when evaluating it along the trajectory
xpkq.



Chapter 2

Framework description

In this chapter we introduce the Voronoi-based discrete time deployment framework fol-
lowing the setup proposed in [Nguyen et al., 2017; Nguyen, 2016]. Framework-related
notions such as target environment and agent neighborhood will be formally defined.
Additionally we introduce the depth of a point in polytope, Chebyshev centers, the poly-
topic set of Chebyshev centers and other important mathematical notions. Convergence
proofs are deferred to chapter 3. We do however prove certain important framework prop-
erties, e.g. collision avoidance. Moreover, the forthcoming theoretical developments are
motivated by numerical illustrations in section 2.7.

2.1 Theoretical background

In this section we provide a non-exhaustive treatment of topics and notions central to the
framework. Sections 2.1.1 and 2.1.2 provides general theory on affine sets and polytopes.
These can be skipped by readers familiar with the theory. Section 2.1.3 highlights a few
useful connections between linear programming and the theory on polytopes. Section 2.1.4
introduces set theoretic notions such as the Minkowski sum, Pontryagin difference and
contraction of a set. The most specialized section is 2.1.5. There we introduce the definition
of a Chebyshev center as well as the of depth of a point in a polytope. Both notions will be
used frequently in the sequel. For implementations of the framework, the linear program
formulation for finding a Chebyshev center the Chebyshev radius of a polytope is also
provided.

2.1.1 Affine sets

This section is devoted to recalling necessary set theoretic notions related to affine and
convex sets. The section follows [Boyd and Vandenberghe, 2004].

7
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An affine combination of points x1, . . . , xk is a linear combination of the points such that
the coefficients sum to one. I.e.¸

i

θixi such that
¸

i

θ � 1 with θi P R. (2.1)

The definition is similar to that of a convex combination of points. However for convex
combinations we require θi ¥ 0 while for affine combinations θi P R. I.e. convex combina-
tions are a subset of affine combinations.

A set C � Rd is affine if for any points x1, x2 P C all affine combinations of the same
points are contained in C. Let C be an affine set, then

V px0q � tx� x0 | x P Cu, x0 P C (2.2)

is a subspace of Rd. Conversely the affine set may be expressed as

C � tv � x0 | v P V u, x0 P C. (2.3)

Hence an affine set is simply a subspace plus an offset. The offset may be selected as any
arbitrary point in C. The dimension of an affine subset is, by definition, the dimension of
its corresponding subspace. I.e.

dimpCq � dimpV px0qq with x0 P C. (2.4)

In determining the dimension of an affine set C, one may equivalently consider the number
of affinely independent points in C. Let tp0, . . . , pku be a set of distinct points. Then they
are affinely independent if and only if

ķ

i�1
θippi � p0q � 0 (2.5)

has the unique solution θ1 � � � � � θk � 0. If these k � 1 points are affinely independent,
then the dimension of C is k. The link to linear independence of vectors in subspaces is
apparent here. Intuitively one may think of the dimension of an affine set as the number
of independent directions it is possible to move and still stay in the set when starting
at an arbitrary point in the set. For instance any plane embedded in R3 is an affine set.
Clearly the dimension of this affine set is two.

An ubiquitous example of an affine set is the solution set of linear equations, i.e.

C � tx P Rd | Ax � b P Rmu (2.6)

In this case the subspace associated with C is the nullspace NpAq of A. Every affine set
may be expressed as the solution set of a system of linear equations.

Let P be a subset of Rd. Then the affine hull of P , affpP q, is the set of all affine combi-
nations of points in P . That is

affpP q � tθ1x1 � θ2x2 � � � � � θkxk | x1, . . . , xk P P, θ1 � � � � � θk � 1u. (2.7)
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The affine dimension of a set P � Rd is defined as the dimension of its affine hull. I.e.
affdimpP q � dimpaffpP qq. If a set P � Rd has affdimpP q   d then P � affpP q � Rd.
I.e. all x P P are constrained to a subset of an affine subset of Rd. This concept is of
particular importance in constrained optimization, where equality constraints may force
feasible solutions xf P Rd to be in a set P of lower dimension than d. In these cases
projecting onto a lower dimensional space may lead to an easier optimization problem.

Remark 2.1.1. In some cases the affine dimension is inconsistent with our usual notions
of dimension. One particular example: The affine dimension of H is �1. This may make
more sense after considering the link between an affine subset C consisting of a single
point p and its corresponding subspace V � V px0q � tp1� p | p1 P Cu � t0u. V ppq clearly
has dimension 0 in this case. I.e. an affine set consisting of a single point essentially
corresponds to the zero vector.

2.1.2 Polyhedra and polytopes

We define a polyhedron P � Rd as the set of solutions to the system of m linear inequal-
ities12

P � tx P Rd | Ax ¤ bu (2.8)

with A �
�
aT

iPNm

�
P Rm�n, ai � 0 @ i P Nm and b P Rm [Fukuda, 2016]. This representa-

tion is called the H-representation, as it represents the polyhedron as the intersection of
a finite number of half spaces. It is inherently convex as P is defined as the intersection
of a finite number of convex sets. To simplify the presentation, it is often beneficial to
assume that all rows,

rowipAq � eT
i A � aT

i , (2.9)

are normalized to unit length in the euclidean norm. I.e. ‖ai‖2 � 1. Let P � tx P Rd |
Ax ¤ b P Rmu be a polyhedron. Define D � diagp‖a1‖2 , . . . ,‖am‖2q. Furthermore let

Â � D�1A (2.10)
b̂ � D�1b (2.11)

Inherently the half space representation

aT
i x ¤ b (2.12)

is invariant to scaling by a positive constant. Thus

P � tx | Ax ¤ bu � tx | Âx ¤ b̂u. (2.13)
1Some texts use the term convex polyhedron(s). However with our definition of polyhedra the convexity

is inherent and consequently we simply say polyhedron(s).
2Polyhedra is polyhedron in plural form.
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Hence one may assume that polytopes are normalized according to the above procedure
without loss of generality. Normalized or not, the H-representation is not unique. Eg. let
aT

r x ¤ br be some constraint which holds for all x P P . The set P is invariant to the
addition of any such redundant constraint to P in the sense that

P � pXm
i�1tx | aT

i x ¤ biuq X tx | aT
r x ¤ bru � pXm

i�1tx | aT
i x ¤ biuq � tx | Ax ¤ bu.

(2.14)

Conversely, let P 1 be a polyhedron where one or more of the inequalities in the H-
representaion of P are removed. If P 1 � P , the removed inequalities were redundant
constraints of P .

A rich set of bounded and unbounded objects may be represented as polyhedra. For
instance lines, planes, line-segments and all affine subspaces are polyhedra. Figure 2.1
shows three examples of polyhedra in R2.

(a) Half space. (b) Cone. (c) Polytope.

Figure 2.1: Sample polyhedra in R2. The black line segments represent the boundaries
whereas the colored region is the interior. Polyhedra may be both bounded and un-
bounded. In the former case, it is by definition a polytope.

An inequality cT x ¤ β P R is valid for P provided that the inequality holds for all x P P
[Fukuda, 2016]. Given a subset F of P , this is called a face of P if it is represented as

F � P X tx P Rd | cT x � βu (2.15)

for some valid inequality cT x ¤ β [Fukuda, 2016]. Faces of dimension zero, i.e. points, are
by definition the vertices of P . As intersections of polyhedra are polyhedra, F is itself a
polyhedron. Relating the definition to figure 2.1c, the four corners of the polyhedron are
its vertices. The vertices along with the four line segments on the boundary of the figure
are all the so-called non-trivial faces. The trivial faces are the polytope itself together
with the empty set.

We define dimpP q � affdimpP q. A point x P P is on the boundary of P denoted BP if
one or more of the inequalities in Ax ¤ b are tight. Conversely any face of P is on the
boundary of P . If none of the constraints are tight at x P P , i.e. Ax   b, then x is in the
interior of P namely intpP q.

Remark 2.1.2. A polyhedron P � Rd has a non-empty interior iff dimpP q � d. In this
case P is said to be full-dimensional.
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2.1.3 Linear programming

Consider the linear program (LP)

min
x

cT x subject to Ax ¤ b. (2.16)

We recognize that the constraint Ax ¤ b coincides with x P P for a polyhedron P � Rd

defined by the same system of inequalities. The LP is feasible if P � H. Provided that
the LP is feasible, we say that it is bounded if there exist some finite positive constant
M such that cT x ¡ �M @x P P . Otherwise it is unbounded. Intuitively all directions in
which it is beneficial to move with respect to the objective function cT x must be bounded
for the LP to be bounded.

Assume boundedness and consider an optimizer x� of (2.16) with corresponding optimal
value p� � cT x�.

Proposition 2.1.1. The optimizer of a feasible and bounded LP (2.16) will be on the
boundary of the polyhedron P � tx P Rd | Ax ¤ bu.

Proof. Recall that ‖�‖ denotes the euclidean norm. Assume for the sake of contradiction
that x� P intpP q. Then there exists some ε ¡ 0 such that x� � ∆x P P @∆x P t∆x | 0  
‖∆x‖   εu. Pick ∆x � � ε

2
∇cT x∥∥∇cT x

∥∥ � � ε
2

c
‖c‖ . Now p̄ � cT px� � ∆xq � p� � ε

2 ‖c‖   p�

which is a contradiction.

Clearly cT x ¤ p� is a valid inequality for P and x� P F � � P Xtx | cT x � p�u. Hence, by
definition x� is on the face F � of P . As such the optimizer is unique provided dimpF �q � 0.
Otherwise there are infinitely many optimizers, namely all x on the face F � of P . In any
case we have dimpF �q ¤ d� 1 due to the equality constraint cT x � p�.

As mentioned in [Boyd and Vandenberghe, 2004], solving linear programs is a mature
technology. Even with hundreds of variables and thousands of constraints, todays solvers
will produce a solution in a manner of seconds on ordinary desktop computers. Thus it
is very attractive from a computational point of view if an optimization can be cast as a
linear program.

2.1.4 Set theoretic prerequisites

The following standard set-theoretic definitions will be applied in the sequel.

Definition 2.1.1. The Minkowski sum of the sets A and B is defined as

A`B � ta� b | a P A, b P Bu. (2.17)

See figure 2.2 for an illustration with the Minkowski sum of two polytopes. Minkowski
sums can also be used to translate sets. Let A � Rd be a set and v P Rd be some vector,
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then

A` tvu (2.18)

is the translation of A by v. For our part this is particularly useful to center polyhedra
such that they contain the origin. Let v P P of a polyhedron P , observe that the translated
set

P ` t�vu (2.19)

contains the origin.

�1 0 1

�1

0

1

A

e1

e 2

�1 0 1

�1

0

1

B

e1

e 2

�1 0 1

�1

0

1

A`B

e1

e 2
Figure 2.2: Illustration of the Minkowski sum of two polytopes A and B. The shaded area
is the polyhedron. In the figure A`B the operands are superimposed. A is in its original
position while B is translated to illustrate the operation.

This operation is needed in the context of scaling sets.

Definition 2.1.2. . Let A � Rd be a set. Then the λ-scaling of A is

λA � tx P Rd | x � λa, a P Au. (2.20)

When λ P p0, 1q � R then the scaled set λA is called a λ-contraction of the set. Commonly
we expect a contraction to be a subset of the original set, as illustrated in figure 2.3b.
However, figure 2.3a illustrates that this is not the case in general. In fact, for λA � A
when λ P p0, 1q � R to hold, A has to contain the origin. Therefore we assume that the
set being contracted contains the origin. This is without loss of generality due to the
previously mentioned centering operation. A set which does not contain the origin can be
contracted in the following manner,

λpP ` t�vuq ` tvu, v P P. (2.21)

While this may look a bit involved, it simply amounts to centering the coordinate system
at some v P P , contracting this centered set and finally adding v back in. As figure 2.3c
exemplifies, this yields the expected result. Namely a contracted set which is in the subset
of its original set. Note however that the shape of the resulting polytope depends on the
choice of v. E.g. if v � p2, 2q in the example in figure 2.3c, then the shape would not be
maintained.
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1 2 3

1

2

3

A

0.5A

e1

e 2

(a) λ-scaling with λ P Rp0,1q
of a set A not containing the
origin. In this case λA � A

�1 �0.5 0 0.5 1
�1

�0.5

0

0.5

1
A

0.5A

e1

e 2
(b) λ-scaling with λ P Rp0,1q
of a set A containing the ori-
gin. In this case λA � A.

1 1.5 2 2.5 31

1.5

2

2.5

3
A

B

e1

e 2

(c) Contracting a set A not
contaning the origin. B �
0.5pA ` t�21uq ` t21u � A.

Figure 2.3: λ-scaling samples.

Applying the definition, the λ-scaling of a polyhedron P � tx | Ax ¤ bu is easily found
to be

λP � tx | Ax ¤ λbu. (2.22)

Later on we will make use of the following contraction-related claim.

Proposition 2.1.2. Let P be a non-empty full-dimensional polytope and assume, without
loss of generality, 0 P intpP q. Consider some x0 P P . Then x0 P intpP q ðñ Dλ P p0, 1q :
x0 P λP .

Proof. First, assume that x0 is a non-zero point in the interior of P . Consider the ray
αx0, α ¥ 0. Since P is bounded and x0 is in the interior of P , there exists some αm ¡ 1
such that αmx0 is at the boundary of P . Thus

αmx0 P P ùñ x0 P
1

αm
P � λP. (2.23)

I.e. x0 is contained in a contraction of P as claimed. If x0 � 0 then trivially x0 P λP as
x0 P intpP q ðñ 0   b yields 0   λb for any admissible λ. For the converse direction, let
x0 P λP for some λ P p0, 1q and assume for the sake of contradiction that x0 P BP . Since
x0 P BP , at least one inequality in the H-representation of P is tight. I.e. aT

i x0 � bi ¡ λbi

for at least one i, contradicting x0 P λP . The result follows.

Finally we introduce the Pontryagin difference. This notion is complementary to the
Minkowski sum.

Definition 2.1.3. . The Pontryagin difference of the sets A and B is defined as

AaB � ta P A | a� b P A @ b P Bu. (2.24)

Intuitively the Pontryagin difference yields all the elements of A where one can add any
element from B and still stay in A. This is illustrated in figure 2.4.
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Figure 2.4: Illustration of the Pontryagin difference of two polytopes A and B. In AaB
the operands are superimposed. A in its original position. B translated to illustrate the
operation.

In the context of Chebyshev centers, the Pontryagin difference between a polytope and a
ball tuns out to be of particular importance.

Proposition 2.1.3. Let P � tx P Rd | Ax ¤ b P Rmu � Rd be a non-empty polytope
of dimension d and let Br � Rd be a d-dimensional ball centered at the origin with a
particular radius r P R�. Assume without loss of generality that all rows aT

i of A satisfy
‖ai‖2 � 1. Then

P a Br � tx P Rd | Ax ¤ b� r1u (2.25)

Proof.

P a Br � tx P P | x� u P P @u P Bru (2.26)
� tx P Rd | Apx� uq ¤ b @‖u‖ ¤ ru. (2.27)

For each row i,

eT
i pAx� uq � aT

i x� aT
i u ¤ bi @‖u‖ ¤ r ðñ aT

i x� r ¤ bi (2.28)

since r � maxtaT
i u |‖u‖ ¤ ru when ‖ai‖ � 1. Thus

P a Br � tx P Rd | Ax ¤ b� r1u, (2.29)

as claimed.

Therefore P a Br is simply a tightened version of P . Let r1 ¡ r2 ¡ 0. Then

Ax ¤ b� r11 ¤ b� r21 ¤ b, (2.30)

illustrating the inclusions

P a Br1 � P a Br2 � P. (2.31)

I.e. P a Br1 is a proper subset of P a Br2 provided r1 ¡ r2, and both are proper subsets
of P .



Chapter 2. Framework description 15

2.1.5 Depth, Chebyshev radius, and Chebyshev centers of a poly-
tope

Let P be some non-empty polytope. Following [Boyd and Vandenberghe, 2004], we define
the depth of a point x in P as

depthpx, P q � distpx, BP q � mint‖x� xBP ‖ | xBP P BP u provided x P P. (2.32)

That is, the depth of some x P P is the distance to its closest point on the boundary of
P . Equivalently, depthpx, P q is the maximal radius r such that

Brpxq � P. (2.33)

Exploiting the normalized H-representation of P ,

depthpx, P q � maxtr P R | Apx� uq ¤ b @‖u‖ ¤ ru (2.34)
� maxtr P R | Ax� r1 ¤ bu (2.35)
� maxtr P R | r1 ¤ b�Axu. (2.36)

Thus the depth is simply the greatest lower bound on the slack of the constraints aT
i x ¤ bi

at x P P ,

depthpx, P q � min
i

eT
i pb�Axq � mintb1 � aT

1 x, . . . , bm � aT
mxu. (2.37)

Moreover, observe the useful connection to the Pontryagin difference P a Br via

tx P P | depthpx, P q ¥ ru � tx | Ax� r1 ¤ bu � P a Br. (2.38)

The Chebyshev radius of P , denoted by rcpP q, is the maximal depth of any x P P .
Formally

rcpP q � max
xPP

depthpx, P q. (2.39)

Equivalently,

rcpP q � maxtr | Ax� r1 ¤ b @px, rq P Rd � Ru. (2.40)

Observe that this is simply the linear objective function r maximized over the polyhedron

P̃ � tpx, rq P Rd � R | Ax� r1 ¤ bu. (2.41)

Thus the computation of rcpP q can be cast as the linear program

rcpP q �max
x,r

r

such that Ax� r1 ¤ b.
(2.42)

Note that the linear program is bounded since the objective function value decreases in
the only unbounded direction �r. Uniqueness of rcpP q follows from the uniqueness of the
optimal value.



16 2.1. Theoretical background

Since the depth notion is defined in terms of a distance distpx, BP q, a negative rcpP q does
not make sense. However, the constraint r ¥ 0 is superfluous when P is non-empty. To
see this, note that the point px, 0q provides the lower bound rcpP q ¥ 0 for any x P P . If
the optimization returns a negative r, then P must be empty. A negative r amounts to a
relaxation of the constraints defining P .

Finally, the Chebyshev centers of P are the x P P with depth equal to the Chebyshev
radius. Formally,

xc is a Chebyshev center of P ðñ xc P P a BrcpP q. (2.43)

Most algorithms for solving linear programs such as (2.42) would return both the optimal
value rcpP q and a corresponding optimizer px�, rcpP qq, with x� P PaBrcpP q. However, the
optimizer may not be unique. In fact, this holds if and only if dimpP a BrcpP qq � 0. This
may not be the case. However, the following proposition lets us bound dimpP a BrcpP qq.

Proposition 2.1.4. Let P � tx P Rd | Ax ¤ bu � Rd be a full-dimensional polytope
with Chebyshev radius rcpP q. Then dimpP a BrcpP qq ¤ d� 1.

Proof. Assume, for the sake of contradiction, dimpP aBrcpP qq � d. In this case P aBrcpP q
has a non-empty interior, and Dx̄ P Rd such that Ax   b � r̄cpP q1. Pick any such x̄.
Then ∆r � depthpx̄, P a BrcpP qq ¡ 0. By the definition of depth, x̄ satisfies the system
of inequalities

Ax̄�∆r1 ¤ b� rcpP q1 ðñ Ax̄� p∆r � rcpP qq ¤ b (2.44)

Thus depthpx̄, P q � ∆r�rcpP q ¡ rcpP q, contradicting the definition of Chebyshev radius.
Thus dimpP a BrcpP qq   d, and the claim follows.

For the purposes of control, we would like dimpPaBrcpP qq � 0. This cannot hold in general
for d ¡ 1. As an example, consider the d-dimensional rectangle P aBr represented by the
inequalities

|eT
1 x� r| ¤ 2, (2.45)

|eT
i x� r| ¤ 1, i P t2, 3, . . . , du. (2.46)

Clearly rcpP q � 1 with corresponding Chebyshev centers x P trt, 0T
d�1s

T | t P r�1, 1su.
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2.2 System Dynamics

We consider a Multi-Agent System (MAS) consisting of a finite set of N P N agents. For
each agent i P NN � t1, 2, . . . , Nu, its discrete-time linear time-invariant dynamics are
governed by the equations

xipk � 1q � fipxipkq, uipkqq � Aixipkq �Biuipkq P Rd. (2.47)

We impose the following regularity conditions3:

Assumption 2.2.1 (Regularity conditions).

(i) The pair pAi, Biq are controllable for all i P NN .

(ii) For all x̂i P Rd and for all i, Dûi such that x̂i � Aix̂i �Biûi.

(iii) For all agents i, any full-dimensional convex set P � Rd is controlled λ-contractive
[Blanchini and Miani, 2008] with respect to the agent dynamics. I.e. Dx̂i P intpP q
such that Duipxiq ensuring fipxi, uipxiqq P x̂i ` λpP ` t�x̂iuq for some λ P r0, 1q
whenever xi P P .

The non-standard set-theoretic assumption on λ-contractiveness ensures that for any
convex subset of P � Rd, all agents have the control authority to move from the boundary
BP into the strict interior intpP q in one time step. This will be formally proven in the
sequel for the special case of polytopes.

All assumptions are trivially satisfied when

xipk � 1q � xipkq � uipkq P Rd. (2.48)

In some sections we will assume compliance with these single-integrator dynamics. This
allows us to focus on effects stemming from the particular framework at hand rather than
variations in agent dynamics.

All agent states xipkq evolve in a common space Rd. It is instructive to think of the xipkq’s
for i P NN as the d-dimensional positions of N robots at time k. While the framework
is applicable regardless of d P N, examples in this thesis are restricted to R and R2 for
obvious practical reasons.

We aggregate the states and inputs of the agents in the two vectors

xT pkq �
�
xT

1 pkq � � �x
T
N pkq

�
, (2.49)

uT pkq �
�
uT

1 pkq � � �u
T
N pkq

�
. (2.50)

In the single integrator case, the aggregated dynamics of the entire MAS are described
by

xpk � 1q � xpkq � upkq P Rd�N . (2.51)
3We refer to appendix A for generalization of the agent dynamics.
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2.3 Environment

The agents are deployed to the static, convex, polytopic, full-dimensional and bounded
set W. We utilize the half-space representation of W, i.e.

W � tx P Rd | Hx ¤ θu � Rd. (2.52)

for appropriate choices of H P Rm�d and θ P Rm. Since W is a bounded polyhedron, it is
by definition a polytope. Figure 2.5 illustrates a random polytopes in R2 � spanpe1, e2q
which could serve as W.

e1

e 2

Figure 2.5: Sample polytopic environment.

Due to its static nature, we assume W to be known to all agents prior to deployment.

2.4 Agent Neighborhood

Consider now some MAS state vector xpkq in which all xipkq’s are distinct elements in
W. To each agent we associate a neighborhood Vi, about its position in the state space,
defined as

Vipkq � Vipxpkq, Wq � tw P W |‖xipkq � w‖ ¤
∥∥xjpkq � w

∥∥@i � ju. (2.53)

Equivalently,

Vi � W X tw P Rd | 2pxj � xiqT w ¤
∥∥xj

∥∥2
�‖xi‖2 @j � iu. (2.54)

Inspecting (2.54), regarding all xi’s and xj ’s as fixed, the polytopic nature of the Vi’s
is apparent from the structure of inequalities. The neighborhoods are inherently time
varying by the dependence on xpkq.

The above definition of neighborhood is not well posed if two agents have the same
state. We therefore assume distinct initial states xip0q. Formally we constrain the set of
admissible initial states to xp0q P XD, where XD is defined as follows:
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Definition 2.4.1 (MAS configurations with non-coincident agents). Let XD be the set
of MAS configurations such that all agent states are distinct members of the target envi-
ronment W. Formally,

XD � txT � rxT
1 � � �x

T
N s

T | xi P W @i P NN , xi � xj @j � i P NNu. (2.55)

This constraint ensures well-posedness of agent neighborhoods at time k � 0. Distinctness
beyond time k � 0 will be addressed when discussing the agent control laws.

Intuitively, points in W such that the i’th agent is the closest in euclidean distance are
in the neighborhood of agent i. The exception to this is the set of points where several
agents are equally distant from the point. This subset represents the boundaries/frontiers
or borders between the agent neighborhoods.

x1

V1

x2
V2

x3
V3

x4

V4

x5

V5

e1

e 2

Figure 2.6: Sample agent neighborhoods. Agent positions and Voronoi cells are denoted
by xi and the Vi respectively. The union of all Voronoi cells Vi P V is the environment
W.

Since all points in W are closest to at least one agent, the Vi’s partition W. I.e.

W � YN
i�1Vi. (2.56)

As the reader might have noticed, this is the well-known Voronoi partition [Voronoï,
1908]. The Vi’s are known as the Voronoi cells. The collection tV1px, Wq, . . . ,VN px, Wqu
represent the Voronoi partition of W with respect to tx1, . . . , xNu.

The partitioning of W and the agent neighborhoods are illustrated in figure 2.6. Agreeing
with our intuition, the borders between agents are located mid-way between neighboring
agents. This can be seen in a more rigorous manner by rewriting the equation for Vi to
the equivalent form

Vi � W X tw P Rd | pxj � xiqT w ¤ pxj � xiqT p
xi � xj

2 q@j � iu. (2.57)
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Observe that the inequality corresponding to the j’th agent is tight whenever w � xi�xj

2 .

The interior of any cell Vi is the set of points such that all inequalities in (2.53) are strict.
Denote this interior by intpViq and note that

intpViq X intpVjq � tw P Rd |‖xi � w‖  
∥∥xj � w

∥∥ ,

‖xi � w‖ ¡
∥∥xj � w

∥∥ u � H, i � j.
(2.58)

I.e. the Voronoi cells have a mutually disjoint interior. We also note that the interior must
be non-empty. When the xi’s are distinct, continuity ensures the existence of some ε ¡ 0
such that the ball Bεpxiq does not touch any xj ’s.

If two distinct agent neighborhoods Vi,Vj have a non-empty intersection, i.e.

Vi X Vj � H, i � j, (2.59)

we say that the agents are (Voronoi) neighbors. With regards to the intuitive explanation
of agent neighborhoods above, informally agents are neighbors if they share a border. We
denote the set of neighbors of an agent i by Ni, i.e.

Nipkq � Nipxpkq, Wq � tj � i P NN | Vipxpkq, Wq X Vjpxpkq, Wq � Hu. (2.60)

Like the Voronoi neighborhoods, Ni is time-varying via xpkq. Revisiting (2.53) and (2.54)
we observe that if j R Ni, the corresponding constraint is redundant. Removing the con-
straints corresponding to non-neighbor-agents has no effect on the set of feasible elements
in Vi. Considering Vi as a function of agent states and W,

Vi � Vipx, Wq � Viptxj | j P Nipx, Wq Y tiuu, Wq. (2.61)

Thus for any agent i, knowledge of its own state xi states of neighbors xj , j P Ni, is
sufficient for computing Vi. I.e. Vi can be computed in a decentralized manner. We add
the following assumption to ensure that this is always possible:

Assumption 2.4.1. All agents i P NN are equipped with sensors allowing them to de-
termine their set of Voronoi neighbors Ni as well as xipkq and xjpkq @j P Ni.

2.5 Control laws

The objective of the agent control laws Kip�q for i P NN is to drive the MAS to an optimal
static configuration. To this end, we utilize decentralized agent control laws steering each
agent towards some Chebyshev center of its current neighborhood Vipkq.

We denote the Chebyshev radius and an associated Chebyshev center of Vipkq by r̄ipkq
and x̄ipkq respectively. That is

r̄ipkq � r̄ipVipkqq � rcpVipkqq, (2.62)
x̄ipkq P Vipkq a Br̄ipkq. (2.63)
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r̄
x̄

e1

e 2

(a) A randomly generated polytope in
the plane.

r̄
x̄

e1

e 2

(b) A rectangle in the plane.

Figure 2.7: Chebyshev center x̄, ball and radius r̄ of two polytopes.

Since Vipkq is time-varying, x̄ipkq and r̄ipkq will also be. Moreover, we refer to

Br̄ipkqpx̄ipkqq � tw P Rd |‖x̄ipkq � w‖2 ¤ r̄ipkqu, (2.64)

as a Chebyshev ball of Vipkq. See figure 2.7 for an illustration. As shown in section 2.1.5,
both the Chebyshev radius and an admissible Chebyshev center of a polytope can be
found by solving a linear program.

We also define the depth of xipkq and xipk � 1q with respect to Vipkq by

ripkq � ripxipkq,Vipkqq � depthpxipkq,Vipkqq, (2.65)
r̃ipkq � r̃ipxipkq, uipkq,Vipkqq � depthpxipk � 1q,Vipkqq, (2.66)

respectively. Remark that r̄ipkq, r̃ipkq and ripkq are amenable to computation in a decen-
tralized manner. The knowledge of Vipkq, uipkq and xipkq is sufficient. Thus the decen-
tralized property of the agent Voronoi cell computation carries over to agent control laws
utilizing these quantities.

To drive each agent towards the set of Chebyshev center of its Voronoi cell, we therefore
pick decentralized control laws

uipkq � Kipxpkq, Wq � Kipxipkq,Vipkqq, (2.67)

satisfying the requirements

r̄ipkq � ripkq ùñ r̃ipkq ¡ ripkq, (2.68)
r̄ipkq � ripkq ùñ r̃ipkq � ripkq � r̄ipkq. (2.69)

Equivalently, we can impose the constraint

Dαipkq P p0, 1s : r̃ipkq � ripkq � αipkqrr̄ipkq � ripkqs. (2.70)

Unless the agent is at a Chebyshev center, an admissible control law steers the agent
towards some xipk�1q P Vipkq such that the depth with respect to Vipkq strictly increases.

An important consequence of imposing the above requirements is distinctness of agent
states beyond time k � 0 provided the their initial states xip0q are distinct elements in
W. I.e. collision avoidance is inherent. Recall XD from definition 2.4.1, the set of MAS
configurations such that all agent states are distinct members of the target environment
W.
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Proposition 2.5.1. xp0q P XD ùñ xpkq P XD for all k ¡ 0 provided the collection of
control laws tK1p�q, . . . , KN p�qu satisfies requirements (2.68) and (2.69).

Proof. Assume xpkq P XD for some k. Since all xipkq’s are distinct members of W, Vipkq
is well defined and intpVipkqq � H for all agents i. By the control law requirements,
r̃ipkq ¡ 0. Moreover, r̃ipkq ¡ 0 if and only if xipk � 1q P intpVipkqq by the definition of
depth. Thus xipk � 1q � xjpk � 1q for all i � j as intpVipkqq X intpVjpkqq � H would
be contradicted otherwise. I.e. xpkq P XD ùñ xpk � 1q P XD. Since xp0q P XD holds by
assumption at k � 0, xpkq P XD holds by induction for all k ¡ 0.

The feasibility of agent control laws satisfying (2.68)-(2.70) is ensured by assumption 2.2.1.

Proposition 2.5.2. For any full-dimensional convex polytope P , @xpkq P P Dxipk� 1q P
intpP q whenever the agent dynamics satisfies the regularity conditions in assumption 2.2.1.

Proof. Since P is full-dimensional, its interior is non-empty. First assume that xipkq P
intpP q. Then Dxipk � 1q P intpP q by (ii) in assumption 2.2.1 since Duipkq such that
xipk�1q � xipkq. Next assume xipkq P BP . By (iii) in assumption 2.2.1 there exists a point
x̂i P intpP q such that xipk�1q � fipxipkq, uipxipkqq P x̂i`λpP`t�x̂iuq for some λ P p0, 1s.
For clarity we assume, without loss of generality, x̂ � 0. Simply translate the involved
variables if this assumption does not hold. Then Dλ P p0, 1s such that xipk � 1q P λP .
By proposition 2.1.2, x P λP ùñ x P intpP q @x P λP , thus Dxipk � 1q P intpP q as
claimed.

Proposition 2.5.2 ensures that the requirement (2.68) can be satisfied, since any agent has
the control authority to move from Vipkq aBripkq to some xipk� 1q P intpVipkq aBripkqq.
Such a successor state xipk�1q necessarily satisfies r̃ipxipk�1q,Vipkqq ¡ ripkq by virtue of
being in the strict interior of VipkqaBripkq. The requirement in (2.69) is trivially satisfied
since any agent may pick xipk � 1q � xipkq by (ii) in assumption 2.2.1.

The agent control law requirements can be fulfilled by picking any control uipkq P Uipkq
where

Uipkq � tui | xipk � 1q P intpVipkq a Bripkqq Y Vipkq a Br̄ipkqu. (2.71)

The particular controller implementation can for instance be based on optimization over
the feasible set of control actions Uipkq. In this manner, constraints as well as costs on
states and penalty on the energy of the control actions can be accommodated. For the
single integrator dynamics (2.48) the linear controller

Kipxipkq,Vipkqq � αipx̄ipkq � xipkqq, αi P p0, 1s (2.72)

is admissible.

Proposition 2.5.3. Assume that xipk � 1q � xipkq � uipkq P Rd for some agent i P N.
Then the controller uipkq � Kipxipkq,Vipkqq � αipx̄ipkq � xipkqq with αi P p0, 1s satisfies
the controller requirements (2.68)-(2.70).
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Proof. The corresponding agent closed loop dynamics are

xipk � 1q � xipkq � αipx̄ipkq � xipkqq (2.73)
� p1� αiqxipkq � αix̄ipkq. (2.74)

Consider the normalized H-representation of the agent’s Voronoi cell, Vipkq � tw |
Hipkqw ¤ ξipkqu. Inserting w � xipk � 1q in the system of inequalities defining Vipkq
yields

Hipkqxipk � 1q � Hipkqrp1� αiqxipkq � αix̄ipkqs (2.75)
¤ ξipkq � rp1� αiqripkq � αir̄ipkqs1, (2.76)

by

Hipkqxipkq ¤ ξipkq � ripkq1, (2.77)
Hipkqx̄ipkq ¤ ξipkq � r̄ipkq1. (2.78)

Consequently r̃ipkq � ripkq �αirr̄ipkq � ripkqs with α P p0, 1s, ensuring the satisfaction of
all control law requirements.

Remark 2.5.1. The framework can be generalized with respect to agent dynamics pro-
vided the requirements in (2.68)-(2.70) are satisfied. See for instance the generalization
proposed in appendix A. Arguably (2.68) is the most restrictive. E.g. nonholonomic sys-
tems cannot satisfy (2.68), and would require a more comprehensive generalization of the
framework.

2.6 Formal MAS control law objectives

Having formalized the local agent control law requirements, we proceed by properly defin-
ing the global control law objectives at the MAS-level. We are interested in convergence
with respect to the following sets of MAS configurations.

Definition 2.6.1 (Static configuration [Nguyen et al., 2017]). Let XSC be the set of static
MAS configurations under the collection of control laws tK1, . . . , KNu. Formally,

XSC � tx | xi � fipxi, Kipxi,Viqq @i P NNu. (2.79)

If x P XSC then the MAS is in a static configuration.

Definition 2.6.2 (Chebyshev configuration [Nguyen et al., 2017]). Let XCC be the set of
Chebychev configurations. Formally,

XCC � tx | r̄ipVipx, Wqq � ripxi,Vipx, Wqq @i P NNu. (2.80)

If x P XCC then the MAS is in a Chebyshev configuration.
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Definition 2.6.3 (Static Chebyshev configuration). Let X � be the set of static Chebyshev
configurations. Formally,

X � � XCC X XSC. (2.81)

If x P X � then the MAS is in a static Chebyshev configuration.

Formally we seek a collection of decentralized controllers tK1, . . . , KNu such that

lim
kÑ8

xpkq P X � � XCC X XSC. (2.82)

Motivated by r̄ipVipx, Wqqq � ripxi,Vipx, Wqqq for all MAS configurations x P XCC, we
define the following energy-like function

V pxpkq, Wq �
¸

iPNN

r̄ipVipxpkq, Wqq � ripxipkq,Vipxpkq, Wqq. (2.83)

The use of such an energy function was first suggested in [Nguyen et al., 2017]. Observe
that V px, Wq ¥ 0 since r̄i ¥ ri for all i P NN . The properties of V px, Wq allow us to
characterize convergence to some xpkq P XCC via the convergence of V pxpkq, Wq to zero.

Proposition 2.6.1. V px, Wq �
°

iPNN
r̄ipVipx, Wqq � ripxi,Vipx, Wqq � 0 if and only if

x P XCC.

Proof. x P XCC ùñ r̄i � ri @i P NN ùñ V px, Wq � 0. For the converse direction,
assume Vpx, Wq � 0 and x R XCC. Then r̄i � ri for at least one i P NN contradicting
V px, Wq � 0. The result follows.

In turn

lim
kÑ8

xpkq P XCC ðñ lim
kÑ8

V pxpkq, Wq � 0. (2.84)

Therefore we can utilize V px, Wq to measure MAS performance with respect to the ob-
jective of attaining a Chebyshev configuration.

Consider now XSC, the set of static configurations under the particular collection of con-
trol laws. By (ii) in assumption 2.2.1, the MAS has sufficient control authority to make
any x P XCC a static configuration. In this respect the restriction to XSC may seem super-
fluous. As we will illustrate in the forthcoming section, convergence to x P XCC does not
imply convergence to a static configuration in degenerate cases where dimpVi aBr̄i

q ¡ 0.
Whenever this occurs, it is necessary to introduce some scheme ensuring convergence to
a static configuration within the set XCC.

As mentioned, we desire convergence to an optimal MAS configuration. As opposed to an
a priori performance requirement, the optimality of the limit configurations stems from
the imposed control law requirements. This optimality will be discussed in section 3.4.3.

The convergence of the MAS to some x P XCC is an open research problem, and will be
the main topic of this thesis. To motivate the forthcoming theoretical developments, we
proceed to numerical illustrations.
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2.7 Motivating examples

The following numerical illustrations in 1D and 2D will be used as running examples
throughout the thesis. Initially we will use the simulation results to conjecture mathemat-
ical properties. The two forthcoming sections present 1D and 2D simulations respectfully.
Finally we summarize the most important observations from these motivating examples
in section 2.7.3.

2.7.1 1D numerical illustrations

First we simulate N agents in R. All agents adhere to the single integrator dynamics

xipk � 1q � xipkq � uipkq P R, (2.85)

and utilize decentralized controllers

uipkq � Kipxipkq,Vipkq, kq � αipkqpx̄ipkq � xipkqq. (2.86)

Let the target environment be W � rxl, xus � r0, 1s. We assume, without loss of generality,
that 0 ¤ x1p0q   x2p0q   � � �   xN p0q ¤ 1. Since xipk � 1q P intpVipkqq for all i and for
all k, the ordering will also be respected for all k ¥ 0. To avoid clutter we therefore omit
agent indices in most figures as these are apparent from the ordering of agents in r0, 1s.

Remark 2.7.1. By scale and translation invariance of the present framework, we can pick
W � r0, 1s as target environment in R without loss of generality. Assume W̃ � rx̃l, x̃us �
r0, 1s. Any xW̃ P W̃ has a bijective mapping to an unique xW P W via xWpxW̃q � xW̃�x̃l

x̃u�x̃l
.

Conversely xW̃pxWq � px̃u � x̃lqxW � x̃l.

Figure 2.9a shows the simulation results when simulating N � 10 agents from randomly
chosen initial positions in p0, 1q. Two different runs are superimposed. One run with
αipkq � α � 0.4 and a second run where αipkq � α � 1.0. These are shown in red and
black respectively. Regardless of the particular α, both runs exhibit convergence to the
configuration xss, illustrated in figure 2.8, where r̄ipkq � r̄ipkq � 1{2N . I.e. the agents
asymptotically reach consensus on r̄i and ri with a consensus value of 1{2N . Moreover,
evaluating the energy function V px, Wq at xss yields V pxss, Wq � 0 implying xss P XCC
as desired. The choice of α does however appear to affect the speed of convergence.
Figure 2.9a suggests asymptotic convergence with improvements in convergence factor
when increasing α. This agrees with intuition. If the x̄ipkq’s were fixed and uipkq �
αpx̄i � xipkqq, then increasing α from zero and towards 1 would clearly improve the
convergence rate.

Figure 2.9b shows simulation results when simulating N � 10 agents from a different
random choice of initial conditions. This time with gains α � 0.4 and α � 1.0, shown in
red and black respectively. Despite the change in initial conditions from the simulations in
figure 2.9a, the MAS still exhibit convergence to xss. Moreover, we see the same pattern
with respect to change increased gain α and speed of convergence. On the other hand,
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R

xl � 0 xu � 1
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

r̄4 � r4 � 1{2N

Figure 2.8: Steady state configuration xss for N � 10 agents in W � r0, 1s � R. Here
r̄i � ri � 1{2N for all agents i.

this simulation illustrates the limits of the analogy to systems with fixed target positions.
If the x̄ipkq’s were fixed, then the control action uip0q � px̄i � xipkqq would lead to finite
time convergence with xip1q � x̄i. However, the results in figure 2.9b suggest asymptotic
convergence regardless of α � 1. The time-varying nature of x̄ipkq’s seemingly induce
asymptotic rather than finite time convergence of the MAS.

Next we investigate invariance of the final configuration with respect to the choice of
controllers. In particular we utilize time-varying linear controllers in the sense that for each
agent i the gain αipkq is drawn from the uniform random distribution on p0, 1q at each time
step k. To guard against chance, we simulate 200 runs with N � 5 agents. For each run,
the initial condition xp0q is determined by picking five random numbers independently and
identically distributed from the uniform distribution on p0, 1q and sorting these numbers
such that x1p0q   x2p0q   � � �   x5p0q. Figure 2.9c shows the simulation results. The
simulations support asymptotic convergence to expected configuration, where r̄i � ri �
1{2N for all agents i, invariant to initial conditions and the time-varying nature of the
controllers.
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(a) N � 10. Two runs with equal initial conditions. α � 0.4 in red and α � 0.9 in black.
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(b) N � 10. Two runs with equal initial conditions. α � 0.4 in red and α � 1.0 in black.
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(c) N � 5. 200 runs with random initial conditions in p0, 1q and random αipkq in p0, 1q. Individual
runs shown in red. The average of all runs shown in black.

Figure 2.9: 1D simulations.
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The final 1D example is related to the concept of information propagation in the MAS.
Consider figure 2.10. In the illustrated configuration, ri � r̄i for agents i � 2, . . . , 5.
However, for agent 1 it is clearly possible to increase r1 by moving to the left. We are
interested in knowing how many time steps that are required before all agents are affected
by the fact that the MAS is not in a steady state configuration. Figure 2.11 shows the
first few time steps when simulating a five-agent MAS initialized with the configuration
from figure 2.10 and with αipkq � α � 1. Observe that, in this particular simulation,
x̄ipkq � xip0q only if k � i�1 for i � 1, . . . , 5. Since xipk�1q � xipkq only if x̄ipkq � xipkq,
xipkq � xip0q only if k � i. Thus it takes k � N � 5 time steps before agent 1’s deviation
from its Chebyshev center propagates through the entire MAS in the sense that all agents
move away from their initial positions. While we will not pursue any formal proofs in the
present section, it is not hard to imagine that the relation xipkq � xip0q only if k � i holds
for any finite number of agents N provided agent 1 is the sole agent where r̄ip0q � rip0q.
The simulation indicates that the convergence factor for the system worsens with increased
number of agents N . Moreover, it illustrates that a deviation r̄ip0q ¡ rip0q for some agent
i not necessarily leads to immediate change in x̄i, xi, r̄i or ri for other agents. Rather the
propagation is, at best, in finite time. A natural question is the generalization of such a
property to the multi-dimensional case.

R

xl � 0 xu � 1
x1 x2 x3 x4 x5

V1 V2 V3 V4 V5

Figure 2.10: N � 5 agents where all but agent i � 1 have r̄i � ri.
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Figure 2.11: N � 5 agents with an initial condition where all but agent i � 1 have
r̄ip0q � rip0q. xipkq’s marked by black dots. x̄ipkq’s are marked with red dots whenever
x̄ipkq � xipkq.
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2.7.2 2D numerical illustrations

We simulate N agents in a target environment W � R2. All agents adhere to the single
integrator dynamics

xipk � 1q � xipkq � uipkq P R2 (2.87)

and utilize decentralized controllers

uipkq � Kipxipkq,Vipkqq � αipx̄ipkq � xipkqq. (2.88)

Initially we pick W � tx P R2 | ‖x‖8 ¤ 1u, with ‖�‖8 being the infinity norm, as the
target environment.

Figures 2.12 and 2.13 illustrate two particular simulations. α � 0.5 in both cases, while
the initial conditions xp0q are different. Figures 2.12a and 2.13a show the initial positions
and trajectories in W. In both simulations, the MAS exhibits convergence to a static
configuration with r̄ipkq � ripkq @i P NN . Observe from figure 2.12b and figure 2.13b
respectively that these differ. Figure 2.14 shows the results from a third simulation with
equal initial conditions xp0q as in figure 2.13, but with α � 1 rather than 0.5. In this
case the MAS exhibits convergence to a third steady state configuration, shown in fig-
ure 2.14b, different from the two previous simulations. All three simulations suggest the
desired property of convergence to a static Chebyshev configuration. However, the final
configuration of the MAS is seemingly not invariant to neither initial positions xp0q nor
the choice of admissible controller.

Inspecting the trajectories of ri reveals other interesting patterns. First define the time
varying bounds

r̄M pkq � max
iPNN

r̄ipkq, rmpkq � min
iPNN

ripkq. (2.89)

By construction

r̄M pkq ¥ r̄ipkq ¥ ripkq ¥ rmpkq, @i P NN . (2.90)

Figure 2.15 shows the trajectories of both the bounds and individual ripkq’s for the simu-
lation in figure 2.12. In this case it appears like r̄M pkq Ñ rmpkq as k Ñ8 which by (2.90)
leads to ri � r̄M � rm for all agents i P NN . I.e. the agents achieve consensus on ri. This
is not the case in the simulation in figure 2.13. Revisiting 2.13b, we see that agents 1 and
5 have ri’s strictly larger than that of the remaining agents. This is reflected in figure
2.16, showing the trajectories of ri. Seemingly

max
iPt2,5u

r̄ipkq Ñ min
iPt2,5u

ripkq (2.91)

and

max
iPN10zt2,5u

r̄ipkq Ñ min
iPN10zt2,5u

ripkq. (2.92)

That is, the simulations suggest the existence of some mathematical structure steering
subsets of agents to consensus on r̄i and ri.
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(a) Agent trajectories xipkq are given by the
solid lines. Dots indicate initial agent positions.
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(b) The final MAS configuration. The circles are
agent Chebyshev balls. Colored regions indicate
agent Voronoi cells.

Figure 2.12: 2D simulation 1. α � 0.5. The diamonds and asterisks are final agent Cheby-
shev centers and positions respectively.
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(a) Agent trajectories xipkq are given by the
solid lines. Dots indicate initial agent positions.
The diamonds and asterisks are final agent
Chebyshev centers and positions respectively.
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(b) The final MAS configuration. The circles are
agent Chebyshev balls. Colored regions indicate
agent Voronoi cells.

Figure 2.13: 2D simulation 2. α � 0.5.
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(a) Agent trajectories xipkq are given by the
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(b) The final MAS configuration. The circles are
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Figure 2.14: 2D simulation 3. α � 1. The diamonds and asterisks are final agent Chebyshev
centers and positions respectively.
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Figure 2.15: 2D simulation 1. Agent depth trajectories. ripkq’s given by colored lines.
Agent indices are not important and therefore omitted. The upper and lower dashed lines
are r̄M pkq and rmpkq respectively.
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Figure 2.16: 2D simulation 2. Agent depth trajectories. ripkq’s given by colored lines.
Agent indices are not important and therefore omitted. The upper and lower dashed lines
are r̄M pkq and rmpkq respectively.
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Next we illustrate a degenerate case where the MAS exhibits convergence to the set of
Chebyshev centers, but does not converge to a static configuration. N � 2 agents are
deployed to the rectangle W � w P R2 | |eT

1 x| ¤ 3, |eT
2 x| ¤ 1 with agent controller gains

α � 0.5. Figure 2.17 shows the simulation results. Eventually r̄ipkq � ripkq � 1 for
both agents. Consequently V pxpkq, Wq Ñ 0. In this sense the simulation supports the
hypothesis of convergence to the set of Chebyshev configurations,

lim
kÑ8

xpkq P XCC. (2.93)

However, the trajectories in figure 2.17a exemplifies how satisfying (2.93) does not guar-
antee convergence to a static configuration. The cause is apparent when considering the
rectangular polytope in figure 2.18. It is possible to place a ball of radius r̄ anywhere along
the purple line, thus x̄ is not unique. A similar observation holds for the trajectories of the
MAS in figure 2.17a. Even when r̄1pkq � r̄2pkq � r1pkq � r2pkq � 1, the agents may move
in a subset of the purple line. The control law requirements (2.68)-(2.70) are not sufficient
to ensure the convergence of the MAS to a static configuration whenever non-uniqueness
of Chebyshev centers arises.
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(a) The blue lines show the trajectories xipkq.
Shaded areas represent agent Voronoi cells at
the k’s indicated by the k-axis labels.
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(b) Trajectories of r1pkq, r2pkq and rM pkq.
rM pkq is constant throughout the simulation.

Figure 2.17: 2D simulation 4.
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Figure 2.18: A rectangle in the plane illustrating the non-uniqueness of the Chebyshev
center. Any x̄ on the purple line is a valid placement for a ball with radius r̄.
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2.7.3 Concluding remarks on motivating examples

The preceding numerical illustrations inform our expectations as to which convergence
properties we believe can be proved. All simulations support the hypothesis

lim
kÑ8

xpkq P XCC. (2.94)

In 1D, convergence to XCC appears to:

(i) Coincide with convergence to a static configuration.

(ii) Coincide with convergence to consensus on ri.

(iii) Be asymptotic rather than finite time.

Moreover:

(iv) The steady state configuration of the MAS in 1D appears to be unique modulus
boundaries xl, xu of W � rxl, xus and number of agents N . I.e. XCC consists of a
single configuration.

(v) r̄M pkq ¡ ripkq for all agents i appears to propagate to an increase in all ri’s in at
most N steps.

Judging from the 2D simulations, several of these properties do not generalize beyond R.
Importantly the simulations in R2 illustrate:

(vi) XCC will in general not be a singleton set.

(vii) If the MAS converges to a particular Chebyshev configuration, the configuration
to which it converges is not invariant to neither initial conditions nor choice of
admissible agent controllers.

(viii) Convergence to XCC does not guarantee convergence to static configurations in
degenerate cases.

(ix) The agents can in general not be expected to achieve consensus on r̄i and ri.

Meanwhile the same simulations support:

(ix) Convergence to a static configuration provided the agent Chebyshev centers are
unique.

(x) The existence of some structure steering the MAS to consensus on r̄i and ri among
subsets of neighboring agents.

In a sense, we expect the framework to exhibit mathematical properties in the multi-
dimensional case which are similar but more general than in the 1D-case.
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2.8 Problem statement

The main objective of the forthcoming theoretical developments is to revisit convergence
results and address a series of open problems in this framework. Further to the obser-
vations in the motivating examples, we approach this objective by first investigating the
special case of convergence under deployment to one-dimensional environments and next
pursue similar yet more general results for the multi-dimensional case.

Thus the first objective is to formally prove convergence to the set of Chebyshev centers in
the one-dimensional case. Related objectives are proofs of properties (i)-(iv) from section
2.7.3. Next we seek generalizations which are applicable also in the multi-dimensional case.
In this respect, the consensus-like behavior is the most pertinent candidate for generaliza-
tion. It is reasonable to expect that the mechanics driving the consensus-like behavior in
2D are the same driving the 1D MAS to consensus on Chebyshev radii. Thus uncovering
the structure by which subsets of MAS agents are steered to consensus on Chebyshev radii
and depths will be central to the developments. As a starting point, we aim to characterize
the static MAS configurations in a manner which underpins the consensus among subsets
of agents in higher dimensions. We expect the same characterization to yield consensus
among all agents in static 1D configurations and additional unicity properties. Moreover,
this line of research is motivated by the hypothesis that the consensus-like behavior is
essential in driving the MAS to a Chebyshev configuration. To this end, information
propagation between agents will be scrutinized. Under assumptions which resemble the
1D-conditions, we aim to prove convergence to a Chebyshev configuration with consensus
on Chebyshev radii in the multi-dimensional case.

An important point of view due to the optimization-based nature of the Chebyshev center,
is the effect of unicity properties of the optimizer with respect to MAS convergence.
Convergence to a Chebyshev configuration is not sufficient for convergence to the set of
static configurations in degenerated cases. A complete treatment of this issue is left as a
future research direction. We do however suggest specific promising modifications to the
framework in order to mitigate the problem.

Further to strengthening formal convergence results, we also aim to show convergence to
globally optimal configurations in the general case. Specifically, we seek results showing
that limit configurations of the MAS corresponds to local optima of the sphere packing
function presented in [Cortes and Bullo, 2005].

The derivation of convergence results will be the topic of chapter 3.
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2.9 Chapter notes

The theory on polyhedra and polytopes in section 2.1.2 is only a small excerpt of a
rich theory. For instance we have left out the important Minkowski-Weyl theorem from
which we know that all polyhedra admit both an H-representation and a so-called vertex-
representation, abbreviated V-rep. In this latter representation, the polyhedron is rep-
resented as as the Minkowski sum of the set of convex combinations of its vertices and
the set of conic4 combinations of a particular set of rays. For theoretical purposes it is
often useful to go back and forth between the two representations, but in practical appli-
cations this can be very computationally demanding. See for instance [Ziegler, 2012] or
[Grünbaum, 2003] for more on polyhedra.

Linear programming has been extensively studied and is considered to be well understood.
For more on linear programming, both [Boyd and Vandenberghe, 2004] and [Nocedal
and Wright, 2006] are recommended. We assume that the reader is familiar with linear
programming from before, and therefore limit the presentation to illustrating some of the
many connections between polyhedra and linear programming.

Assuming single integrator agent dynamics may seem restrictive. However, this simplifi-
cation is quite common in the literature on distributed control. Bruce Francis explains
a possible justification for this in his 2014 Bode lecture [Francis, 2014]. He shows how a
large class of mobile robots can be modeled as so-called unicycles. A particular lineariza-
tion of the unicycle model, originally suggested by Yun and Yamamoto [1992], is in fact
a single integrator system.

The Voronoi partition is also called a Voronoi tessellation, diagram or decomposition.
While one may consider the partition with respect to other norms, the euclidean norm is
the standard choice. In this case the so-called Delaunay complex is the dual of the Voronoi
diagram [Rakovic et al., 2004]. The Delaunay Complex is commonly called The Delaunay
triangulation. It does in fact not satisfy the formal requirements for being a triangulation
unless the set of points generating the complex satisfy certain regularity conditions. A
cell complex or just complex is a collection of polytopes with some additional mutual
structure. See for instance [Fukuda, 2016] for a definition. The collection of Voronoi cells
is in fact a cell complex, hence the name Voronoi cell.

The Delaunay graph [Bullo et al., 2009] is an undirected graph in which the nodes are
the points generating the Voronoi diagram and for all nodes i there is an edge to node
j � i if Vi X Vj � H. Thus the set of neighbors Ni is implicitly derived from this
graph. It is related to the Delaunay complex not only by name, but we will not discuss
these connections any further. Computing Ni amounts to determining the set of edges
connected to node i in the Delaunay graph. A method for doing this is presented in
[Fukuda, 2004]. Essentially one has to determine the set of irredundant constraints in the
half-space representation of Vi. Existing methods are well documented. Thus we will not
present any such methods here, but refer the reader to [Fukuda, 2004].

4The conic combinations of a set P of points/rays/vectors are linear combinations of the elements in
P where all coefficients are non-negative.
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Neither will we present methods for computing the complete Voronoi diagram. We have
applied it to make some of the illustration in this report (e.g. figure 2.6). However, it is not
applied in the theoretical developments and thus excluded from the presentation. We refer
the reader to Rakovic et al. [2004] where it is shown how one may compute both Voronoi
diagrams and Delaunay Triangulations for arbitrary high dimensional spaces by solving a
parametric linear program. Conveniently this method is implemented in the open source
Matlab toolbox Multi-Parametric Toolbox 3 [Herceg et al., 2013]. All Voronoi diagrams
in the various figures in this report have been computed in this manner.

As apparent from the framework description, we do however depend on the agents being
able to construct their individual Voronoi cells. While assumption 2.4.1 is sufficient in
this respect, it may be replaced by other assumptions. In [Bash and Desnoyers, 2007] and
[Alsalih et al., 2008], they show efficient methods for computing Vi provided the agents
can transmit their positions to each other over a connected communications graph. This
assumption is not necessarily weaker than assumption 2.4.1, but the abstraction it relies
on can be more plausible or convenient in practical situations.

The assumption of distinct agents states may be dropped by introducing appropriate
schemes for handling situations where agents are superimposed. For instance [Nguyen,
2016] suggest a scheme where one first partitions W with respect to the (possibly im-
proper) subset of distinct agents states and next sub-partition Voronoi cells corresponding
to states with multiplicity higher than one. Therefore this assumption is not critical, but
simplifies the presentation. Moreover, it is obviously a reasonable assumptions in scenarios
where the state of an agent its position in the room or in the plane.

With regards to the Chebyshev configurations observed in the 2D simulations in figure
2.7, it would in fact be reasonable to expect non-unique Chebyshev and static configura-
tions from the outset. Due to the choice of squared environment W, it is easy to see that
reflecting any Chebyshev configuration about the e1 and/or e2 axis yields a new Cheby-
shev configuration. It is quite typical for formation control type frameworks to exhibit
symmetries related to rotation, reflection and permutations of agent indices. As such, the
interesting nature of the non-uniqueness of the Chebyshev configurations is the fact that
considering Chebyshev configurations modulus these three classes of symmetries is not
sufficient to recover uniqueness.



Chapter 3

Convergence

In this chapter we derive theoretical convergence results for the framework presented in
chapter 2. After discussing preliminary convergence notions in section 3.2, we analyze de-
ployment to R in section 3.3. As we will see, the framework has several useful connections
to discrete time averaging systems. This is particularly prominent when deploying to R.
In fact the MAS dynamics can be analyzed with standard tools from linear discrete time
averaging systems. Section 3.4 is devoted the more complicated case of deployment to Rd.
While the tools for analyzing stability of linear dynamical systems cannot be applied here,
several concepts carry over. We start by providing additional theoretical background in
section 3.1.

3.1 Theoretical background

Standard definitions, results and notions from theory on non-negative matrices and graphs
are introduced in sections 3.1.1 and 3.1.2 respectively. Section 3.1.2 also discusses ele-
ments of algebraic graph theory. In particular we present results on adjacency matrices.
Sections 3.1.1 and 3.1.2 are the foundation for the discrete time linear averaging part in
section 3.1.3. A complete introduction to the topics are beyond the scope of thesis, and we
refer to [Bullo, 2018] for a comprehensive treatment. The theory on discrete time linear
averaging is applicable when analyzing deployment to R. However, we need a different set
of tools when analyzing the more complex case of deployment to Rd. To this end, section
3.1.4 presents a few selected results from real analysis.

3.1.1 Matrix theory

We start by introducing elements of matrix theory - with emphasis on theory related to
non-negative matrices.

37
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Let A P Rn�n be a square matrix with elements pAqij � eT
i Aej P R.

We characterize the convergence of Ak, with k P N, via the following definitions:

Definition 3.1.1 (Semi-convergent and convergent matrices). The square matrix A P
Rn�n is

(i) semi-convergent if limkÑ8 Ak exists.

(ii) convergent if limkÑ8 Ak � 0n�n.

E.g.

A1 �

�
1 0
0 0.3

�
, A2 �

�
0.9 0
0 0.3

�
, A3 �

�
0 1
1 0

�
, (3.1)

are respectively semi-convergent, convergent and neither convergent nor semi-convergent.

As known from standard linear algebra, the convergence properties of A is related to its
eigenstructure. In this respect, we rely on the following definitions:

Definition 3.1.2 (Spectrum and spectral radius). Let A P Rn�n be a square matrix.

(i) The spectrum, specpAq, of A is the set of eigenvalues of A.

(ii) The spectral radius ρpAq of A is the maximum modulus of any eigenvalue of A. I.e.

ρpAq � maxt|λ| | λ P specpAqu. (3.2)

E.g. specpA1q � t1, 0.3u and ρpA1q � 1. An eigenvalue is simple if its algebraic and
geometric multiplicities are equal to one. It is semi-simple if its algebraic and geometric
multiplicities are equal.

The spectrum can, to some extent, be localized via the very important Gershgorin Disks
Theorem.

Theorem 3.1 (Gershgorin Disks Theorem, theorem 2.8 in [Bullo, 2018]). For any square
matrix A P Rn�n with aij � pAqij ,

specpAq �
¤

iPNn

tz P C | |z � aii| ¤
¸

jPNnztiu
|aij |u. (3.3)

We will use this useful theorem to locate the spectrum of matrices in the MAS frame-
work under consideration. Remark that it plays an important role in the proofs of several
standard results from discrete time averaging systems. In particular it is vital for char-
acterizing the spectrum of stochastic matrices. Stochastic matrices as well as the related
classes of non-negative and positive matrices are defined as follows:

Definition 3.1.3 (Non-negative and positive matrices). The square matrix A P Rn�n is

(i) non-negative if pAqij ¥ 0 for all i, j in Nn, denoted by A ¥ 0.

(ii) positive if pAqij ¡ 0 for all i, j in Nn, denoted by by A ¡ 0.
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Definition 3.1.4 (Stochastic matrices). The non-negative matrix A P Rn�n is

(i) row-stochastic if A1 � 1.

(ii) column-stochastic if AT 1 � 1.

(iii) doubly stochastic if A ¥ 0 and AT 1 � A1 � 1. I.e. a doubly stochastic matrix is
both row- and column-stochastic.

We omit the result for brevity, but remark that theorem 3.1 can be used to show that
the spectrum of any stochastic matrix is contained in the unit disk. Also, observe that
p1, 1q is a right eigenpair of any row-stochastic matrix by definition. Similarly, p1, 1T q is
a left eigenpair of a column-stochastic matrix. Another related class of matrices, is that
of sub-stochastic matrices:

Definition 3.1.5 (Row-substochastic matrix). The non-negative matrix A P Rn�n is
row-substochastic if

(i) A1 ¤ 1, and

(ii) eT
i A1   1 for at least one i P Nn.

In determining the convergence properties of non-negative matrices, the following char-
acterizations are vital:

Definition 3.1.6 (Irreducible and primitive matrices). Let A P Rn�n be a non-negative
matrix where n ¡ 1. A is

1. irreducible if
n�1̧

k�0
Ak ¡ 0, (3.4)

2. primitive if there exists k P N such that

Ak ¡ 0. (3.5)

A non-negative matrix is reducible if it is not irreducible.

Neither definition is particularly intuitive on first sight. However, they are easier to un-
derstand after linking them to specific graph theoretical concepts. This will be the topic
of the next section.

3.1.2 Graph theory

Let G � pV, Eq be a graph with nodes V � N and edges E � V � V. G can either be
directed or undirected. In the latter case, pu, vq P E ðñ pv, uq P E and pu, uq R E (i.e.
no self loops). Both cases are illustrated in figure 3.1. For the directed case, we follow the
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convention where pi, jq P E is represented by arrow from i to j. This should be interpreted
as i "listens to" or "is affected by" j. For instance node 1 in figure 3.1a listens to nodes 2
and 5.

Remark 3.1.1. Beware that this convention can be counter-intuitive on first glance. We
have chosen to be consistent with [Bullo, 2018]. Later we will introduce the adjacency
matrix ApGq associated with a graph G. The convention makes sense when using this
adjacency matrix in discrete time systems on the form xpk�1q � ApGqxpkq. The presence
of an edge pi, jq ensures that ApGqij ¡ 0 and in turn leads to xipk � 1q being directly
affected by xjpkq.
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(a) Sample directed graph. Arrows show di-
rectionality.
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(b) Sample undirected graph.

Figure 3.1: Sample graphs embedded in the plane. A line between two nodes show the
existence of edges between them.

Selecting subsets of nodes allow us to consider so-called subgraphs of G. The formal
definition is as follows.

Definition 3.1.7 (Subgraph). Graph G1 � pV 1, E 1q is a subgraph of G provided

(i) V 1 � V, and

(ii) E 1 � E and pi, jq P E 1 only if i P V 1 and j P V 1.

The subgraph of G induced by V 1 is the graph G1 � pV 1, E 1q where E 1 � tpi, jq P E |
i P V 1, j P V 1u. We say that a sub-graph G1 � pV 1, E 1q strictly contains the sub-graph
G2 � pV2, E2q provided V2 � V 1 and E2 � E 1.

Figure 3.2 shows two subgraphs of the graphs in figure 3.1.

For our purposes, graph connectivity notions are of particular importance. They determine
the ability for information to propagate through the graph. Graph connectivity is defined
via so-called paths.

Definition 3.1.8 (Path). Let G � pV, Eq be a graph. A path in G is a finite sequence
tvmuM

m�0 of nodes vm P V such that any two consecutive nodes in the sequence are
connected by an edge. I.e. pvm�1, vmq P E for all m P NM .
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(a) Sub-graph induced by
V 1 � t1, 2, 3, 5, 6, 9u.
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(b) Sub-graph induced by
V 1 � t4, 6, 7, 8, 9u.

Figure 3.2: Sub-graphs of the graphs in figure 3.1.

E.g. the sequence of nodes 1, 2, 10, 4, 8 is a path in both graphs in figure 3.1a. As customary
we define separate graph connectivity notions for directed and undirected graphs.

Definition 3.1.9 (Connected undirected graph). An undirected graph is connected if for
any pair of nodes i � j with i, j P V there exists a path from i to j.

If an undirected graph is not connected, we say that it is disconnected.

Figure 3.3 shows a connected and disconnected directed graph in figure 3.3a and figure
3.3b respectively. The graph in figure 3.3b is disconnected as nodes i P N10zt1, 5u have no
path to agents 1 and 5.
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(a) A connected undirected graph.
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(b) A disconnected undirected graph.

Figure 3.3: Connectivity notions for undirected graphs.

Due to the addition of directionality, directed graphs have more elaborate connectivity
notions.

Definition 3.1.10 (Connectivity notions for directed graphs). Given a directed graph
G � pV, Eq,

(i) G is strongly connected if for all ordered pair of nodes pi, jq P V � V there exists a
path from i to j.
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(ii) G has a globally reachable node if there exists a node i P V such that for all j P Vztiu
there exists a path from j to i.

Figure 3.4 illustrates these connectivity notions. The graph in figure 3.4a is strongly
connected as there exists a path from any start node i P N10 to any end node j P N10.
However, the strongly connected property is lost if one, for instance, removes the edge
p2, 1q. This is the case in figure 3.4b. Nodes i P N10zt1, 5u have no path to nodes 1 and
5. On the other hand, all nodes i P N10zt1, 5u can be reached via a path from any node
j P N10 and thus the graph has several globally reachable nodes. Finally, the graph in
figure 3.4c is neither strongly connected nor contains a globally reachable node due to the
lack of edges between i P t1, 5u and j P N10zt1, 5u.
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(a) A strongly connected di-
rected graph.
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(b) A directed graph with a
globally reachable node.
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(c) A directed graph which is
not strongly connected and
with no globally reachable
nodes.

Figure 3.4: Connectivity notions for directed graphs.

Even if an undirected graph is not connected, it may contain subgraphs which are con-
nected. Analogously, directed graphs may contain strongly connected subgraphs even
when the graph itself is not strongly connected. Interpreting edges between nodes as en-
coding dependencies, it is often vital to uncover the subsets of nodes which depend on
each other. Utilizing the notions of connected components and strongly connected com-
ponents, for undirected and directed graphs respectively, allows us to identify large scale
dependency patterns between subsets of nodes.

Definition 3.1.11 (Strongly connected and connected components).

(i) A subgraph G1 is a connected component of the undirected graph G if G1 is connected
and any other subgraph of G strictly containing G1 is not connected.

(ii) A subgraph G1 is a strongly connected component of the directed graph G if G1 is
strongly connected and any other subgraph of G strictly containing G1 is not strongly
connected.

E.g. the undirected graph in figure 3.3a consists of a single connected component whereas
the graph in figure 3.3b has two connected components. In the latter case, the connected
components are the subgraphs induced by the nodes N10zt1, 5u and t1, 5u respectively.
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As for the directed case, we observe that the graphs in figures 3.4b and 3.4c both have
two strongly connected components. Again, these are the subgraphs induced by the nodes
N10zt1, 5u and t1, 5u respectively

If an undirected graph consists of more than one connected component, then graph is
simply the union of the disjoint subgraphs contained in its collection of connected com-
ponents. The subgraphs are disjoint in the sense that there are no edges between these
subgraphs - the connected components do not interact at all. Strongly connected compo-
nents in directed graphs may interact, but only in an asymmetric way. E.g. in figure 3.4b
nodes t1, 5u are affected by nodes in N10zt1, 5u, but not vice versa. Given two separate
strongly connected components G11 and G12 of a directed graph G, there may exist a path
from G11 to G12 or from G12 to G11 or no path between them at all. The latter is the case in
figure 3.4c.

Next we introduce the notion of weighted directed graphs and their so-called adjacency
matrix representation.

Definition 3.1.12 (Weighted directed graph). A weighted directed graph, represented
by the triple G � pV, E , taijupi,jqPEq, is a directed graph where each edge pi, jq P E has an
associated positive weight aij ¡ 0.

Definition 3.1.13 (Adjacency matrix). Let G � pV, E , taijupi,jqPEq be a weighted directed
graph. Then the adjacency matrix associated with G is the square matrix A P R|V|�|V|

where

(i) pAqij � aij for all pi, jq P E , and

(ii) pAqij � 0 otherwise.

Conversely we associate a directed graph to all non-negative matrices.

Definition 3.1.14 (Weighted directed graph associated with non-negative matrix). Let
A P Rn�n be a non-negative matrix, then its associated graph G is the weighted directed
graph G � pV, E , taijupi,jqPEq where

(i) V � Nn,

(ii) E � tpi, jq | pAqij ¡ 0u,

(iii) aij � pAqij for all pi, jq P E .

See figure 3.5 for an example of a graph G and its associated adjacency matrix A.

Observe that:

• eT
i A � rowipAq contains the weights of edges leaving node i.

• Aei � colipAq contains the weights of edges entering node i.

We also remark that an adjacency matrix A associated with an undirected graph G �
pV, Eq has to satisfy the following additional structural requirements:

(i) Diagonal entries of A are all zero, to satisfy the requirement of no self loops.
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(a) G � GpAq, the graph induced by the
adjacency matrix A.

A �

�
���

7 8 3 0
9 0 0 0
0 0 0 1
0 0 4 5

�
���

(b) The adjacency matrix A associated with
G.

Figure 3.5: A weighted graph G and its associated adjacency matrix.

(ii) AT � A, i.e. the adjacency matrix is symmetric. This requirement is somewhat
stronger than pi, jq P E ðñ pj, iq P E since the weights have to be equal, but is
the natural and common extension of weighted graphs to the undirected case.

Even if a directed or undirected graph is unweighted, we may use an adjacency matrix
to encode the presence of edges between nodes. In this case one usually considers the
so-called binary adjacency matrix A0,1 where aij � 1 provided pi, jq P E and aij � 0
otherwise.

The ability to go back and forth between the graph representation G and the adjacency
matrix A enables us to use properties of the graph to show properties of the adjacency
matrix, and vice versa. First we relate non-zero entries in Ak with the existence of a
length k path between nodes i and j where pAkqij ¡ 0.

Consider an adjacency matrix A P Rn�n and its associated graph GpAq � pV, Eq. Remark
that eT

i Aej ¡ 0 if and only if pi, jq P E . I.e. eT
i Aej ¡ 0 implies the existence of a length-1

path from i to j. Now consider

eT
i A2ej � rowipAqlooomooon

Edges exiting node i

� coljpAqloomoon
Edges entering node j

�
ņ

l�1
peT

i AelqpeT
l Aejq. (3.6)

Thus eT
i A2ej ¡ 0 if and only if node i has a length one path to at least one node l

with a length one path to node j. I.e. eT
i A2ej ¡ 0 if and only if there exists at least one

length-2 path from node i to j. Formalizing and extending this line of reasoning yields
the following result:

Lemma 3.1.1 (Paths and powers of the adjacency matrix, lemma 4.2 in [Bullo, 2018]).
Let G be a weighted directed graph with the associated adjacency matrix A P Rn�n. Then

(i) the entry eT
i Akej ¡ 0 if and only if there exists at least one length-k path from

node i to node j.

Moreover, let A0,1 P Rn�n be the binary adjacency matrix of G where eT
i A0,1ej � 1 if

eT
i Aej ¡ 0 and eT

i A0,1ej � 0 otherwise. Then

(ii) the entry eT
i Akej equals the number of length-k paths from node i to node j.
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We refer to [Bullo, 2018] for more info on this lemma. With this result in mind, the
following important result is not surprising:

Theorem 3.2 (Connectivity properties of the digraph and irreducibility of the adjacency
matrix, theorem 4.2 in [Bullo, 2018]). Let G � pV, Eq be a weighted directed graph where
|V| ¡ 1 and let A P R|V|�|V| be its associated adjacency matrix. The following statements
are equivalent:

(i) A is irreducible, i.e.
°|V|�1

i�0 Ak ¡ 0.

(ii) G is strongly connected.

(iii) For all partitions tI, J u of the index set t1, 2, . . . , |V|u there exists i P I and j P J
such that aij ¡ 0. I.e. there exists and edge pi, jq P E .

We refer the reader to [Bullo, 2018] for a proof. However, it is quite easy to grasp the
intuition of piq ðñ piiq in light of lemma 3.1.1. Since eT

i Akej ¡ 0 if and only if there
exists a length-k path from i to j, then eT

i p
°|V|�1

i�0 Akqej �
°|V|�1

i�0 eT
i Akej ¡ 0 if and only

if there exists one or more paths with maximal length |V| from node i to node j. Remark
that it is sufficient to consider paths of maximal length |V| when checking if G is strongly
connected, since longer paths necessarily will contain repetitions of one or more nodes.

Importantly, the theorem allows us to relate irreducibility as a matrix property with con-
nectivity properties of the associated graph. We can gain some intuition about irreducibil-
ity by considering the dynamical system xpk � 1q � Axpkq. In this case, irreducibility
entails communication back and forth between all sub-systems. Eg. an irreducible matrix
A can not have a structure such as

A �

�
� A

p11q
r�r A

p12q
r �pn�rq

0pn�rq�r A
p22q
pn�rq�pn�rq

�
� P Rn�n. (3.7)

The subscripts indicate the sizes of the sub-matrices of A. Let GpAq � pV, Eq be the graph
associated with A. Note that the partitioning J � t1, . . . , ru, I � tr � 1, . . . , nu yields
Epi, jq P E : i P I, j P J , contradicting theorem 3.2. Assuming the sub-matrices Ap11q

and Ap12q are irreducible, the matrix structure in (3.7) corresponds to a graph with two
strongly connected components. If Ap12q � 0, then GpAq contains a globally reachable
node. To see this, observe that all nodes i P t1, . . . , ru can reach nodes j P tr � 1, . . . , nu
via some edge represented by Ap12q. Figure 3.5 can be revisited for an example of this
situation. In turn, the nodes j P J are unaffected by the nodes in I. Specifically

xpk � 1q �
�

xp1qpk � 1q
xp2qpk � 1q

�
�

�
Ap11qxp1qpkq �Ap12qxp2qpkq

Ap22qxp2qpkq

�
. (3.8)

I.e. xp2qpkq is independent of xp1qpkq for all k.
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Irreducibility is of particular importance when investigating the semi-convergence of
stochastic matrices. However, the system

xpk � 1q �
�
0 1
1 0

�
loomoon

P

xpkq (3.9)

illustrates that irreducibility is not sufficient. The permutation matrix P is clearly doubly
stochastic and irreducible. Meanwhile it is neither convergent or semi-convergent. The
deficiency of P is related to the notion of graph periodicity. This is defined via graph
cycles.

Definition 3.1.15 (Cycle in directed graph). A cycle in a directed graph G � pV, Eq is a
path tvmuM

m�0, M ¥ 0, such that:

(i) v0 � vM , i.e. the initial and final node is the same.

(ii) Apart from the final node which is equal to the initial node, no node in the path
appears more than once. More precisely vi P V and vi � vj for all i � j in
t0, 1, 2, . . . , M � 1u and vM � v0 when M ¡ 0. If M � 0 then the initial and
final node have the same index and are trivially equal.

By definition the cycle length is M � 1.

E.g. 6, 9, 8, 4, 7, 6 is a cycle of the graph in figure 3.4a.

Definition 3.1.16 (Periodicity of directed graphs). The strongly connected directed
graph G is periodic if there exists some k ¡ 1 dividing the length of every cycle in
the graph. If G is not periodic, it is aperiodic.

Given some directed graph G � pV, Eq, assume that some node i P V has a self-loop. That
is, pi, iq P E . In this case G has at least one length-1 cycle tviu. Therefore the presence of
at least one self-loop in G is sufficient to ensure aperiodicity. See 3.6 for examples. The
graph illustrated in 3.6a is periodic since both cycles 1, 2, 1 and 2, 1, 2 have cycle lengths
divisible by 3. On the other hand, the presence of a self-loop in the graph in figure 3.6b
ensures its aperiodicity.

1 2

(a) A periodic graph.

1 2

(b) An aperiodic graph.

Figure 3.6: Graph periodicity examples.

The notion of periodicity allows us to provide a graph theoretic characterization of prim-
itive matrices.

Theorem 3.3 (Graph theoretical characterization of primitive matrices, theorem 4.7
in [Bullo, 2018]). Let G be a weighted directed graph with |V| ¡ 1 and an associated
adjacency matrix A. The following two statements are equivalent:



Chapter 3. Convergence 47

(i) G is strongly connected and aperiodic.

(ii) A is primitive. I.e. Dk P N such that Ak ¡ 0.

A complete proof of this theorem is beyond the scope of the thesis, and we once again
refer to Bullo [2018]. However, considering a simple case can provide a bit of intuition
regarding why (i) ùñ (ii). Recall that eT

i Akej ¡ 0 if and only if there exists at least one
length k path from i to j. Since G is connected, A is irreducible. In turn Dk such that
eT

i Akej ¡ 0 for any pair of nodes pi, jq. Assuming no path from i to j of length k � 1
exists, then the corresponding entry will go from positive to zero from Ak to Ak�1. Now
assume that all nodes have a self-loop, then eT

i Akej ¡ 0 ùñ eT
i Ak�1ej ¡ 0 since any

path of length k from i to j can be extended to a length k�1 path from i to j by following
the edge pj, jq. Aperiodicity ensures that eventually, for a large enough k, all elements of
Ak of an irreducible matrix A remain non-zero for increasing k.

Next we turn to applications of the newly presented theory in the context of discrete time
averaging systems.

3.1.3 Discrete time averaging systems

We now combine the graph theoretical concepts with stochastic matrices and present
results on discrete time averaging systems. For brevity we do not pursue any proofs, but
refer to Bullo [2018]. Consider the discrete time linear time-invariant system

xpk � 1q � Axpkq (3.10)

where A P Rn�n is row-stochastic. We say that the dynamical system achieves consensus
and that xpkq converges to consensus provided

lim
kÑ8

xpkq � pwT xp0qq1. (3.11)

If additionally wT � 1
N 1, then the dynamical system achieves average consensus.

The following theorem relates the primitivity of the matrix A to consensus.

Theorem 3.4 (Consensus for primitive row-stochastic matrices, corollary 2.14 in [Bullo,
2018]). Let A be a primitive row-stochastic matrix. Then the following properties hold:

(i) The eigenvalue 1 is simple and has strictly larger magnitude than all other eigen-
values of A.

(ii) limkÑ8 Ak � 1wT where w ¥ 0 is the left eigenvector corresponding to the eigen-
value 1. I.e. wT A � wT . Additionally w satisfies 1T w � 1.

(iii) The limit of xpk � 1q � Axpkq satisfies

lim
kÑ8

xpkq � pwT xp0qq1. (3.12)

I.e. xpkq converges to consensus with consensus value wT xp0q. Moreover, the con-
sensus value is a convex combination of the elements in xp0q.
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(iv) If A is additionally doubly stochastic, then w � 1
n 1 and therefore

lim
kÑ8

xpkq �
1
n

1T xp0q1 � averagepxp0qq1. (3.13)

I.e. xpkq converges to consensus with averagepxp0qq as the consensus value.

In terms of achieving consensus, A being row-stochastic and primitive is sufficient but not
necessary. For instance

xpk � 1q �
�
1 0
1 0

�
xpkq (3.14)

converges to consensus despite having its dynamics governed by a reducible matrix. The
following result is a generalization of theorem 3.4:

Theorem 3.5 (Consensus for row-stochastic matrices, theorem 5.1 in [Bullo, 2018]). Let
A P Rn�n be some row-stochastic matrix and let G be its associated directed graph. The
following statements are equivalent:

(i) The eigenvalue 1 is simple and all other eigenvalues have magnitude less than 1.

(ii) A is semi-convergent and limkÑ8 Ak � 1nwT for some w P Rn satisfying w ¥ 0
and 1T w � 1.

(iii) G contains at least one globally reachable node and the subgraph of globally reach-
able nodes is aperiodic.

If any, and therefore all, of the previous statements are true then A is said to be inde-
composable and the following properties hold:

(i) w ¥ 0 is the left eigenvector corresponding to the eigenvalue 1 and wi ¡ 0 if and
only if node i is globally reachable.

(ii) xpk � 1q � Axpkq satisfies

lim
kÑ8

xpkq � pwT xp0qq1. (3.15)

I.e. xpkq converges to consensus with consensus value wT xp0q. Moreover, the con-
sensus value is a convex combination of the elements in xp0q.

(iii) If A is additionally doubly stochastic, then w � 1
n 1 and therefore

lim
kÑ8

xpkq �
1
n

1T xp0q1 � averagepxp0qq1. (3.16)

I.e. xpkq converges to consensus with averagepxp0qq as the consensus value.

The system in (3.14) is covered by this theorem. Moreover, the following theorem is a
corollary:

Corollary 3.5.1 (Convergent row-substochastic matrices, corollary 4.10 in [Bullo, 2018]).
A row-substochastic matrix is convergent if and only if it is irreducible.
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To gain some insight into this corollary, consider the xpk � 1q � Axpkq with A P Rn�n

being row-substochastic and irreducible. Observe that the augmented system
�

xpk � 1q
xn�1pk � 1q

�
�

�
A pI �Aq1
0T

n 1

�
looooooooomooooooooon

Aaug

�
xpkq

xn�1pkq

�
(3.17)

yields equivalent trajectories xpkq provided xn�1p0q � 0. Clearly Aaug is row-stochastic.
Moreover, node n� 1 is globally reachable since GpAq is strongly connected and pI �Aq1
has at least one positive entry by respectively the irreducibility and substochasticity of A.
n� 1 is the only globally reachable node since there does not exists any paths from node
n�1 to the others. The self-loop at n�1 ensures aperiodicity of the subgraph of globally
reachable nodes. By theorem 3.5, the left eigenvector corresponding to the eigenvalue 1
is wT �

�
0T , 1

�
and

lim
kÑ8

xipkq � pwT xp0qq � xn�1p0q � 0 @i P NN�1. (3.18)

This concludes the theoretical background on discrete-time averaging systems. We con-
tinue by presenting elements of real analysis.

3.1.4 Real analysis

In this final section on theoretical background, we briefly introduce a few concepts from
real analysis.

We consider real sequences taku8k�1 with ak P R. A sequence is bounded provided it is
bounded from above and below. Formally, taku8k�1 is bounded if

sup
k

ak � U   8 and inf
k

ak � L ¡ �8 (3.19)

for finite constants U and L. The sequence is convergent provided the limit

lim
kÑ8

ak (3.20)

exists. Even if the sequence is not convergent, it may contain convergent subsequences. A
subsequence is defined as follows:

Definition 3.1.17 (Subsequence). tblu8l�1 is a subsequence of taku8k�1 if bl � akl
with

k1   k2   k3   � � � .

If a subsequence converges, i.e. if limlÑ8 akl
exists, then the limit is called an accumulation

point of the original sequence taku8k�1.

Definition 3.1.18 (Accumulation point). a0 is an accumulation point of taku8k�1 if and
only if there exist some subsequence takl

u8l�1 such that limlÑ8 akl
� a0.
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Consider for instance the sequence taku8k�1 � t1, 0,�1, 0, 1, 0,�1, 0, . . . u with

ak � cospk π

2 q. (3.21)

While this sequence does not converge, the following subsequences illustrate the existence
of three accumulation points 1, 0,�1.

tcospp0� 2lq
π

2 u
8
l�1 � t0u8l�1, (3.22)

tcospp1� 4lq
π

2 u
8
l�1 � t1u8l�1, (3.23)

tcospp2� 4lq
π

2 u
8
l�1 � t�1u8l�1. (3.24)

As the famous Bolzano-Weierstrass theorem shows, any bounded sequence has at least
one accumulation point.

Theorem 3.6 (Bolzano-Weierstrass theorem). All bounded sequences in Rd have a con-
vergent subsequence.

We refer to the literature on real analysis for a proof. See for instance [Kolmogorov and
Fomin, 1975]. By the following theorem, a bounded sequence is convergent if and only if
it has a single unique accumulation point.

Lemma 3.1.2 (Unique accumulation point). A bounded sequence is convergent if and
only if it has exactly one accumulation point.

Proof. Assume that the sequence taku8k�1 is convergent and converges to the limit a0.
Then for any ε ¡ 0 there exists k1 P N such that ‖ak � a0‖   ε @k ¡ k1. Consider any
subsequence of takl

u8l�1 and note that for all kl ¡ k1 also
∥∥akl

� a0
∥∥   ε. Since this holds

for arbitrarily small ε and for any subsequence, convergence of all subsequences to the
accumulation point a0 follows.

Consider now the converse direction. Assume for the sake of contradiction the existence a
subsequence takl

u8l�1 which does not converge to the unique accumulation point a0. In this
case, there exists some ε ¡ 0 such that ||ak�

l
�a0|| ¡ ε for infinitely many indices k�l . Pick

these indices, denoted by k�1, k�2, . . . . Then tak�
l
u8l�1 is a new sub-sequence of taku8k�1.

By theorem 3.6, the boundedness of this latter subsequence if sufficient to ensure the
existence of an accumulation point. And by construction, the accumulation point must
be different than the a0. This contradicts the uniqueness of the accumulation point a0.
Thus all subsequences converge to a0. Note that taku8k�1 is a subsequence of itself. Thus
it is convergent.

Thus convergence of all subsequences to the same accumulation point is sufficient to show
convergence of the original sequence. Finally we include the definition of a peak of a
sequence.

Definition 3.1.19 (Peak of sequence). An index k is a peak of taku8k�1 if ak ¡ ak1 for
all k1 ¡ k.
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E.g. the peaks l1, l2, . . . of taku8k�1 � tp�1qk expp� 1
25 kqu8k�1 are given by li � 2i, i P N.

See figure 3.7 for a visual example.
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Figure 3.7: Plot of the first few elements of the sequence with ak � p�1qk expp� 1
25 kq.

Even k are the peaks of the sequence.

This concludes the theoretical background for the convergence chapter. The remaining
chapter sections are devoted to theoretical developments directly related to the MAS
framework, and will be using the notions and results presented up to this point.

3.2 Preliminaries

In the following sections we will discuss convergence of the MAS with respect to the sets
of configurations:

• XSC, static configurations (see definition 2.6.1).

• XCC, Chebyshev configurations (see definition 2.6.2).

• X � � XCC X XSC, static Chebyshev configurations (see definition 2.6.3).

With regards to the deployment objective of attaining an optimal static configuration,
the ultimate goal is to attain a static Chebyshev configuration. We defer the discussion of
optimality of such configurations to section 3.4.3. Rather we start by highlighting relations
between the sets XSC and XCC. The following result is of particular importance.

Proposition 3.2.1. The MAS subject to the agent controllers K1, . . . , KN satisfying
the control law requirements (2.68)-(2.70) is in a static configuration only if it is in a
Chebyshev configuration.

Proof. Assume that the MAS is in a static configuration which is not a Chebyshev
configuration. Then Di P NN , r̄ipkq ¡ ripkq. By the control law requirement (2.68),
xipk�1q P intpVipkqaBripkqq for this particular agent. Meanwhile xipkq P BpVipkqaBripkqq
by construction and intpVipkq a Bripkqq X BpVipkq a Bripkqq � H. Thus xipk� 1q � xipkq,
which proves the claim by contradiction.
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I.e. the convergence to some x P XCC is necessary for convergence to some x P XSC. That
is XSC � XCC. From the motivating examples in section 2.7, we know that the converse is
not true. In particular the simulation in figure 2.17 illustrated that non-uniqueness of the
Chebyshev centers may preclude convergence to a static configuration. We consider the
case where one or more Chebyshev centers are non-unique as degenerate. In the present
chapter we sometimes assume non-degeneracy by invoking the following assumption:

Assumption 3.2.1. The Chebyshev centers x̄ipkq are assumed to be unique for all i for
all k. I.e. while the Chebyshev centers may be time-varying, they are unique at each time
step.

Whenever assumption 3.2.1 holds, a strengthened version of proposition 3.2.1 applies.

Proposition 3.2.2. Consider some MAS with agent controllers K1, . . . , KN satisfying
the control law requirements (2.68)-(2.70). Assume x P XCC where dimpViaBr̄iq � 0 @i P
NN . I.e. the Chebyshev centers are unique for all agents at the particular Chebyshev
configuration x. Then x P XSC.

Proof. By control law requirement (2.69), r̃ipkq � r̄ipkq. By construction, r̃ipkq � r̄ipkq ðñ
xpk� 1q P VipkqaBr̄ipkq. Since dimpVipkqaBr̄ipkqq � 0, VipkqaBr̄ipkq consists of a single
point. Thus xipk � 1q � xipkq for all i P NN . The result follows.

Thus whenever assumption 3.2.1 applies, convergence to a Chebyshev configuration is
equivalent to convergence to a static configuration. To some extent, this explains the
steady state configurations in all but the last 2D simulations in section 2.7. The Chebyshev
centers are unique in the final configuration of the respective simulations.

Remark 3.2.1. Note that the MAS may be in a static configuration despite degeneracy.
If r̄ipkq � ripkq for all agents i P NN , then xipk � 1q � xipkq would be a valid control
action in order to satisfy the requirement ripkq � ripkq ùñ r̃ipkq � ripkq � r̄ipkq. This
is true even when the Chebyshev center is non-unique for one or more agents. See figure
3.8 for an example.

Figure 3.8: A possible static configuration with non-unique Chebyshev center for the
rightmost agent. Dots represent agent positions and the circles are the respective agent
Chebyshev balls. Colored regions indicate Voronoi cells.

The results in this section are valid regardless of the dimension of the target environment.
We now turn to more specialized results for deployment to 1D in section 3.3 before
returning to arbitrarily-dimensional environments in section 3.4.
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3.3 Convergence in one-dimensional environments

First we consider deployment to the one-dimensional environment W � R. This has
several advantages:

• It is possible to derive simple explicit expressions for Vipkq, x̄ipkq and r̄ipkq.

• We can derive linear affine time-invariant equations for the closed loop dynamics of
xipkq and r̄ipkq.

• Standard results from linear systems theory and algebraic graph theory may be used
to rigorously characterize MAS convergence.

As such, considering the one-dimensional case is an accessible manner of gaining insight
and intuition about the inner workings of the framework. Furthermore, the additional
mathematical structure available when deploying to R allows us to prove stronger results
than in the multi-dimensional case.

Let W � rxl, xus � R with xl   xu. We disregard the trivial case of N � 1, and consider
a MAS with N ¡ 1 agents whose distinct initial positions are x1p0q, . . . , xN p0q P W.
Assume, without loss of generality, the ordering x1p0q   x2p0q   � � �   xN p0q. To focus
the presentation on effects stemming from the particular framework rather than variations
in agent dynamics, we pick single integrator dynamics

xipk � 1q � xipkq � uipkq P R (3.25)

for all agents i P NN . Further to the same goal, we pick linear agent controllers

uipkq � Kpxipkq,Vipkqq � αpx̄ipkq � xipkqq, α P r0, 1q (3.26)

for all i P NN .

3.3.1 Agent neighborhoods

In R, each Voronoi cell Vi is simply a sub-interval of W. First consider agents i P
t2, . . . , N � 1u. From the definition of Vi in (2.54) it is apparent that

Vi � r
xi � xi�1

2 ,
xi � xi�1

2 s. (3.27)

By the same equation, the Voronoi cells of the first and last agents are

V1 � rxl,
x1 � x2

2 s, (3.28)

VN � r
xN�1 � xN

2 , xus. (3.29)

See figure 3.9 for a minimal example where all three cases are illustrated.
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R
xl xux1 x2 x3

V1 V2 V3

Figure 3.9: N � 3 agents deployed to a subset W of R and their respective Voronoi cells.

3.3.2 Agent depth, Chebyshev center and Chebyshev radius

The Chebyshev center of a line segment ra, bs, a   b, is particularly easy to compute. We
start by finding its Chebyshev radius. First compute

ra, bs a Br � ra� r, b� rs. (3.30)

I.e. x P ra, bs a Br if and only if

a� r ¤ x ¤ b� r, (3.31)

implying

r ¤
b� a

2 . (3.32)

This yields a maximal depth of

rcpra, bsq �
b� a

2 . (3.33)

Since dimpra, bsq � 1, we know from proposition 2.1.4 that dimpra, bs a BrcpP qq � 0.
I.e. the Chebyshev center xcpra, bsq must be unique. This is also obvious when inserting
r � rcpra, bsq in (3.31), then pa� bq{2 ¤ xcpra, bsq ¤ pa� bq{2 and

xcpra, bsq �
a� b

2 . (3.34)

The depth of a point q in ra, bs, denoted depthpq, ra, bsq, is also easy to define but somewhat
more complicated to compute. It is not linear in a and b. Applying the definition and
exploiting that q ¥ a and b ¥ q yields

depthpq, ra, bsq � mint‖q � qBP ‖ | qBP P Bra, bs � ta, buu, (3.35)
� mint|a� q|, |b� q|u � mintq � a, b� qu. (3.36)

Figure 3.10 illustrates the various notions. With this figure in mind, it is easy to follow
the preceding results graphically.

Applying (3.33) to the expressions for Vi yields the following linear equations for the
Chebyshev centers.

x̄1 �
1
2xl �

1
4x1 �

1
4x2, (3.37)

x̄i �
1
4xi�1 �

1
2xi �

1
4xi�1 when i P NNzt1, Nu, (3.38)

x̄N �
1
4xN�1 �

1
4xN �

1
2xu. (3.39)
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R
a bxcpra, bsq

rcpra, bsq

q

depthpq, ra, bsq

Figure 3.10: A line segment ra, bs � R and its associated Chebyshev center xc and Cheby-
shev radius rc. Additionally, the depth of an arbitrary point q P ra, bs is illustrated.

Moreover, the uniqueness of the Chebyshev centers affords us the following result.

Proposition 3.3.1. The configuration x P RN of N agents in R with positions x1, . . . , xN P
R is a Chebyshev configuration if and only if it is a static configuration. I.e. x P XSC ðñ
x P XCC.

Proof. x P XSC ùñ XCC follows from proposition 3.2.1. The converse direction follows
from proposition 3.2.2 since the assumption of unique Chebyshev centers always holds in
R.

Moving on to the Chebyshev radii, applying (3.34) to V1, . . . ,VN yields the following
linear equations

r̄1 �
x1 � x2

4 �
xl

2 , (3.40)

r̄i �
xi�1 � xi�1

4 when i P NNzt1, Nu, (3.41)

r̄N �
xu

2 �
xN�1 � xN

4 . (3.42)

While the equations for x̄i and r̄i are linear, equations for ri’s are more involved. Applying
(3.36) with q � xi and ra, bs � Vi yields

r1 �
1
2 mintx2 � x1, 2px1 � xlqu, (3.43)

ri �
1
2 mintxi�1 � xi, xi � xi�1u when i P NNzt1, Nu, (3.44)

rN �
1
2 mint2pxu � xN q, xN � xN�1u. (3.45)

3.3.3 Closed loop position dynamics

By (3.37)-(3.39), it is possible to express x̄T pkq � rx̄1pkq . . . x̄N pkqsT with the following
affine equation

x̄pkq � Axpkq � b, (3.46)
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where

A �

�
���������

0.25 0.25
0.25 0.50 0.25

0.25 0.50 0.25
. . . . . . . . .

0.25 0.50 0.25
0.25 0.25

�
���������
P RN�N , b �

�
�0.5xl

0N�2
0.5xu

�
� P RN . (3.47)

Exploiting (3.46) yields the following closed loop MAS dynamics.

xpk � 1q � xpkq � αpx̄pkq � xpkqq � (3.48)
� p1� αqxpkq � αpAxpkq � bq (3.49)
� pαA� p1� αqIqlooooooooomooooooooon

Apαq

xpkq � αb � Apαqxpkq � αb (3.50)

Remark 3.3.1. Beware that (3.50) might give the misleading impression that its steady
state solution (assuming it exists) depends on α due to the excitation αb. As we will see
later on, the α cancels out when computing the steady state value.

From the motivating examples in section 2.7, we expect (3.48) to have an unique steady
state value xss for any choice of α P p0, 1s. For this to hold, Apαq must be convergent.
Considering α � 1 in particular, the following result is therefore expected.

Lemma 3.3.1. The matrix A as given by (3.47) is convergent.

1 2 3 N � 1 N

0.25

0.50 0.50 0.50

0.25
0.25

0.25

0.25

0.25

0.25

0.25

. . .
0.25

0.25 0.25

0.25

Figure 3.11: The graph associated with the matrix A.

Proof. Inspecting the structural properties of A reveals:

(i) A is row-substochastic,

A1N �

�
� 1{4

1N�2
1{4

�
� . (3.51)
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(ii) A is irreducible. To see this, consider the graph GpAq associated with the positive
matrix A. This is illustrated in figure 3.11. For all pairs of vertices pi, jq with i � j
there exists a path from vertex i to vertex j. I.e. GpAq is strongly connected and
therefore A is irreducible by theorem 3.2.

By these properties, A satisfies the assumptions of corollary 3.5.1 and is therefore con-
vergent.

Tuning α between p0, 1s simply interpolates between the identity matrix and A. It is
easy to verify that row-substochasticity is maintained for Apαq. In turn, Apαq is also
convergent. We prove this, as well as some other interesting properties of Apαq, in the
following lemma.

Lemma 3.3.2. The matrix Apαq � αA�p1�αqI, α P p0, 1s, with A given by (3.47) and
eigenvalues λα

1 , . . . , λα
N satisfies the following properties:

(i) λα
1 , . . . , λα

N P R.

(ii) λα
i � αλi � p1� αq @i P NN , where λi are the eigenvalues of A.

(iii) λα
i P rp1� αq, 1q @i P NN .

(iv) Apαq is convergent.

Proof. The first property follows from the fact that A and I and therefore also their
convex combination Apαq is symmetric real. Since A is symmetric real, it admits the
modal decomposition A � V DV T where D � diagpλ1, . . . , λN q and V V T � V T V � I.
Therefore

Apαq � αV DV T � p1� αqV V T (3.52)
� V pαD � p1� αqIqV T . (3.53)

Let

Dpαq � V T ApαqV � αD � p1� αqI. (3.54)

Since eigenvalues are invariant to similarity transformations, it is clear that the eigenvalues
of Apαq are given by

λα
i � eT

i Dpαqei � αλi � p1� αq. (3.55)

This proves the second property. To show the third property, we first consider the matrix
A in light of theorem 3.1.

specpAq � YiPNN
tz P C | |z � aii| ¤

¸
jPNN ztiu

|aij |u (3.56)

� pY2
i�1tz P C | |z �

1
4 | ¤

1
4uq Y pYiPNN zt1,2utz P C | |z �

1
2 | ¤

1
2uq. (3.57)
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Since additionally the λi’s are real and A is convergent, λi P r0, 1q. Consequently

min
i

λα
i ¥ α � 0� p1� αq � p1� αq, (3.58)

max
i

λα
i   α � 1� p1� αq � 1, (3.59)

proving the third property. The fourth property follows from ρpApαqq � maxi λα
i   1.

In turn, Apαq being convergent is sufficient to ensure the existence of a steady state value
xss of the closed loop MAS dynamics,

xss � pαA� p1� αqIqxss � αb, (3.60)
αpI �Aqxss � αb, (3.61)

xss � pI �Aq�1b. (3.62)

Note that the inverse is well defined as pI �Aq is non-singular by ρpAq   1. Consider the
error coordinates epkq � xpkq � xss. The error dynamics are

epk � 1q � xpk � 1q � xss (3.63)
� pαA� p1� αqIqxpkq � αb� rpαA� p1� αqIqxss � αbs (3.64)
� pαA� p1� αqIq � Apαqepkq (3.65)

Lemma 3.3.2 and the error dynamics (3.65) form the basis for the main result of this
section.

Theorem 3.7 (MAS convergence in 1D). The MAS with agent dynamics xipk � 1q �
xipkq�uipkq and agent controllers uipkq � Kipxipkq,Vipkqq � αpx̄ipkq�xipkqq, α P p0, 1s,
converges to the steady state value xss where xss

i � p2i� 1qxu�xl

2N � xl.

Proof. Since Apαq is convergent for any α P p0, 1s,

lim
kÑ8

epkq � 0. (3.66)

Furthermore, epkq � 0 ðñ xpkq � xss. I.e. the convergence of epkq to zero ensures
the convergence of xpkq to xss. Note that xss is unique, e.g. by checking that pI � Aq is
invertible. Thus if we find any configuration x such that x � Apαqx � αb then x � xss.
As a qualified guess, let xi � eT

i x � p2i � 1qxu�xl

2N � xl. Inserting this expression into
(3.37)-(3.39) yields x � Apαqx� αb. I.e. x � xss. The result follows.

The steady state configuration xss is illustrated in figure 3.12.

This result coincides with our expectations from the first two 1D simulations in section 2.7.
Invariant to the initial configuration, xpkq Ñ xss. We still need to analyze the effect of
changing α. To this end, consider convergence factor of epkq.

Theorem 3.8 (Asymptotic MAS convergence in 1D). Let λM be the maximal eigenvalue
of A. The MAS converges asymptotically to the steady state value xss with a convergence
factor of ρpApαqq � αλM � p1� αq.



Chapter 3. Convergence 59

R
xl xu

V1 V2 VN�1 VN

pxu � xlq{2N

3pxu � xlq{2N

p2N � 3qpxu � xlq{2N

. . .
x1 x2 xN�1 xN

Figure 3.12: The steady state configuration xss for N agents in R.

Proof. Recall that Apαq being symmetric real ensures the existence of a modal decom-
position Apαq � V DpαqV T where Dpαq � diagpλα

1 , . . . , λα
N q and V V T � V T V � I.

Considering the norm of epkq yields

‖epkq‖ �
∥∥∥Akpαqep0q

∥∥∥ �∥∥∥V DkpαqV T ep0q
∥∥∥ (3.67)

�
b

eT p0qV DkpαqV T V DkpαqV T ep0q �
b

eT p0qV D2kpαqV T ep0q (3.68)

¤ ρkpApαqq
b

eT p0qV V T ep0q � ρkpApαqq
b

eT p0qep0q � ρkpApαqq‖ep0q‖ . (3.69)

From lemma 3.3.2 we know that ρpApαqq � maxirαλi � p1� αqs � αλM � p1� αq. Note
that we do not need to take the modulus of the eigenvalues of Apαq in this maximization
since they are real and non-negative. Thus

‖epkq‖
‖ep0q‖ ¤ pαλM � p1� αqqk. (3.70)

Theorem 3.8 is consistent with expectations from the 1D simulations in section 2.7, and
verifies the correctness of our presumptions regarding the role of α.

Further to the investigations of the nature of convergence, we provide an example showing
that one cannot expect finite time convergence even when α � 1. Consider a MAS with
N � 2 agents deployed to W � r0, 1s. Then

x1pk � 1q � 1
4x1pkq �

1
4x2pkq (3.71)

x2pk � 1q � 1
4x1pkq �

1
4x2pkq �

1
2 . (3.72)

By theorem 3.7, the steady state value is simply xss �
�
1{4, 3{4

�T . Let h � 1
2 px1 � x2q.

This is the position of the border between the two agents. In the steady state configuration,
h is 1{2. Consider the trajectories of h,

hpk � 1q � 1
2 px1pk � 1q � x2pk � 1qq � 1

4 px1pkq � x2pkqq �
1
4 �

1
2hpkq �

1
4 . (3.73)
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In error coordinates eh � h� 1{2,

ehpk � 1q � 1
2hpkq �

1
4 �

1
2ehpkq. (3.74)

Thus for any initial value but ehp0q � 0, hpkq will not converge in finite time. Rewriting
the dynamics of x1,x2 in terms of hpkq yields

x1pk � 1q � 1
2hpkq, (3.75)

x2pk � 1q � 1
2hpkq �

1
2 . (3.76)

Thus finite time convergence cannot hold for x1pkq, x2pkq either whenever hp0q � 1{2.
However, the same example illustrates finite time convergence in certain symmetric cases.
If the agent positions are symmetric about 1{2, e.g. xp0q �

�
0, 1

�T , then hp0q � 1{2. In
turn xp1q � xss for this two-agent system.

Note that this example is consistent with 1D simulation 2 in 2.7. Recall the results from
figure 2.9b. The simulation exhibits asymptotic convergence despite unitary gains αi. The
example sheds some light on why this is the case. Finite time convergence is precluded
by the fact that the Voronoi cells converge asymptotically rather than in finite time.

The third 1D-simulation from section 2.7, with time-varying agent gains αipkq, is not
covered by the results in the present section. Rather we will apply the forthcoming results
on Rd-convergence to explain the behavior. For now we continue by pursuing results on
convergence of r̄i and ri in 1D.

3.3.4 Closed loop Chebyshev radii dynamics

From the convergence xpkq Ñ xss we expect similar convergence results for the Chebyshev
radii r̄T pkq � rr̄1pkq, . . . , r̄N pkqsT . As we will see, we can derive linear time-invariant
dynamics r̄pk� 1q � Ar̄pαqr̄pkq which provably converges to consensus. First we consider
convergence of Chebyshev radii and agent depth in light of the preceding results on closed
loop position dynamics.

The convergence of the agent positions x1, . . . , xN provides plenty of information regarding
the convergence of r̄1, . . . , r̄N . By proposition 3.3.1,

lim
kÑ8

xpkq � xss ùñ lim
kÑ8

r̄ipkq � lim
kÑ8

ripkq � r̄8i @i P NN . (3.77)

We can obtain stronger results by exploiting other relations between xpkq and r̄pkq. Ob-
serve that translating (3.40)-(3.42) to matrix form yields

r̄pkq � Cxpkq � d P RN , (3.78)
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where

C �

�
���������

0.25 0.25
�0.25 0 0.25

�0.25 0 0.25
. . . . . . . . .

�0.25 0 0.25
�0.25 �0.25

�
���������
P RN�N , d �

�
��0.5xl

0N�2
0.5xu

�
� P RN . (3.79)

That is, r̄ can be interpreted as a particular measurement of the MAS positions with mea-
surement matrix C and bias d. In turn, the convergence x Ñ xss ensures the convergence
r̄ Ñ r̄ss. By (3.78),

r̄ss � Cxss � d. (3.80)

Computing eT
1 r̄ss, eT

N r̄ss and eT
i r̄ss (assuming i P NNzt1, Nu) yields

r̄ss � Cxss � d �
1
2

xu � xl

N
1. (3.81)

Inserting for xss in the agent depth expressions (3.43)-(3.45) yields

rss
i �

1
2

xu � xl

N
, @i P NN . (3.82)

I.e. r̄ss
i � rss

i for all i P NN . (3.81) and (3.82) verif (3.77) and imply the stronger result

lim
kÑ8

r̄ipkq � lim
kÑ8

ripkq �
1
N

xu � xl

2 . (3.83)

Consistent with the simulations in section 2.7, the MAS converges to consensus on r̄i and
ri. Our conjecture of consensus value 1

2N provided W � rxl, xus � r0, 1s was correct. The
result is also unsurprising when revisiting figure 3.12. The following relation is somewhat
less apparent.

averagepr̄pkqq � 1
N

1T r̄pkq �
1
N
r 1T Cloomoon

�0

xpkq � 1T dloomoon
� xu�xl

2

s �
1
N

xu � xl

2 . (3.84)

That is, the limit value r̄ss � rss equals averagepr̄q. Also, averagepr̄q is time-invariant
and independent of initial positions xp0q. In fact the limit value only depends on the
boundaries xl, xu of W and the number of agents N .

Remark 3.3.2. It is interesting to note that r̄pkq is translationally invariant with respect
to x in the sense that �

� x̂
x̂u

x̂l

�
� �

�
� x

xu

xl

�
�� t

�
�1N

1
1

�
� , t P R, (3.85)
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implies

r̄pkq � Cx�

�
��0.5xl

0N�2
0.5xu

�
� � Cx̂�

�
��0.5x̂l

0N�2
0.5x̂u

�
� . (3.86)

If r̄pkq was the only measurement we had of MAS state, absolute positions xpkq would
therefore not be observable.

While the above results are sufficient to prove convergence of r̄pkq to consensus, we still
pursue an approach of uncovering the dynamics of r̄pk � 1q � Ar̄pαqr̄pkq to highlight
interesting connections to discrete time averaging systems.

First, assume the existence of some matrix Ar̄pαq such that r̄pk � 1q � Ar̄pαqr̄pkq. By
now we expect the following properties:

(i) p1, 1q is a right eigenpair, i.e. Ar̄pαq1 � 1, in order to satisfy r̄ss � Ar̄pαqr̄ss �
Ar̄ averagepr̄q1 � averagepr̄q1

(ii) p1, 1T q is a left eigenpair, i.e. 1T Ar̄pαq � 1T , in order to satisfy

0 � averagepr̄pk � 1qq � averagepr̄pkqq (3.87)

�
1
N

1T rAr̄ � Isr̄pkq �
1
N
r1T Ar̄ � 1T srpkq. (3.88)

(iii) From the two former properties, Ar̄pαq must be doubly stochastic.

(iv) Since r̄pkq converges to consensus, Ar̄pαq must be semi-convergent.

To find the matrix Ar̄, let the r̄ipk � 1q’s be given by the Chebyshev radii expressions
(3.40)-(3.42) and replace all instances of xipk � 1q’s with the closed loop agent position
dynamics (3.48). We omit the derivations as these are easy albeit somewhat tedious. By
following the outline procedure, we arrive at

r̄pk � 1q � Ar̄pαqr̄pkq � pαAr̄ � p1� αqIqr̄pkq (3.89)

with

Ar̄ �

�
���������

0.75 0.25
0.25 0.50 0.25

0.25 0.50 0.25
. . . . . . . . .

0.25 0.50 0.25
0.25 0.75

�
���������

. (3.90)

Inspecting the matrix Apαq � pαAr̄ �p1�αqIq, it is apparent that the first three conjec-
tured properties are indeed true. We also make the following observations:

(i) Apαq is symmetric real implying that all its eigenvalues are real.
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1 2 3 N � 1 N

. . .

Figure 3.13: The graph associated with the matrix Ar̄pαq.

(ii) Additionally, by theorem 3.1 all eigenvalues of Ar̄ must be in the interval r0.25, 1s.
Since all eigenvalues of Ar̄ are real, positive and less or equal to 1 all eigenvalues of
Ar̄pαq will also be.

(iii) The directed graph GpAr̄pαqq associated with Ar̄pαq is illustrated in figure 3.13.
Observe that GpAr̄pαqq is strongly connected. The presence of self-loops ensures
aperiodicity. By theorem 3.3, Ar̄pαq is therefore primitive.

The third observation is important for the following result, verifying the fourth conjec-
tured property.

Theorem 3.9 (Convergence to consensus on r̄ in 1D). The MAS converges to consensus
on r̄ with consensus value

lim
kÑ8

r̄pkq �
1
N

1T r̄p0q1 � averagepr̄p0qq1 � 1
N

xu � xl

2 1 (3.91)

Proof. The graph GpAr̄pαqq associated with Ar̄pαq, illustrated in figure 3.13, is strongly
connected and aperiodic. Therefore Ar̄pαq is primitive by theorem 3.3. Since Ar̄pαq is
primitive, the statement follows from theorem 3.4.

Having found Ar̄, we can compute the convergence factor associated with r̄pkq. Let the
essential radius of Ar̄pαqq, ρesspAr̄pαqq, be the magnitude of the second largest eigenvalue
of Apαq. By theorem 3.4, ρesspApαqq   1. ρessp�q has the same role in determining the
convergence factor of r̄pkq as ρp�q had in determining the convergence factor of xpkq. To
see this, consider the norm of the error dynamics ‖r̄pkq � averagepr̄p0qq1‖. Since Ar̄pαq
is symmetric real, it admits a modal decomposition Ar̄pαq � V DpαqV T where V �
r 1?

N
1, v2, � � � , vN s, V V T � V T V � I and Dpαq is a diagonal matrix of eigenvalues µα

i .
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Therefore

‖r̄pkq � averagepr̄p0qq1‖ �‖Ar̄pαqr̄pk � 1q � averagepr̄p0qq1‖ (3.92)

�
∥∥∥°iPNN

pµα
i q

kpvT
i r̄p0qqvi � averagepr̄p0qq1

∥∥∥ (3.93)

�

∥∥∥∥∥
�

1
N

1T r̄p0q1� averagepr̄p0qq1
�
� °

iPNN zt1upµ
α
i q

kpvT
i r̄p0qqvi

∥∥∥∥∥ (3.94)

�
∥∥∥°iPNN zt1upµ

α
i q

kpvT
i r̄p0qqvi

∥∥∥ (3.95)

¤ ρk
esspAr̄pαqq‖r̄p0q‖ . (3.96)

This result is analogous to theorem 3.8.

3.3.5 Concluding remarks on 1D convergence

The specialized 1D theoretical results comply with the behavior exhibited in the 1D
motivating examples of section 2.7, and provide the mathematical background to un-
derstand the structural properties. In particular we have shown asymptotic convergence
to an unique static Chebyshev configuration where all agents are in consensus on their
Chebyshev radii and agent depths. The asymptotic configuration is invariant to initial
conditions, and only depend on the boundaries of the interval W and the number of
agents N . The results highlight the frameworks’ connection to discrete time averaging
systems. In particular we show how the 1D MAS dynamics can be translated to a form
amenable to analysis by standard tools from this field. In fact, the closed loop MAS po-
sition dynamics and Chebyshev radii dynamics are equivalent particular discrete time
averaging system.

While we cannot expect all properties to carry over, a natural question is whether similar
properties hold in the multi-dimensional case. From the motivating examples of section
2.7 we know, for instance, that asymptotic configurations are not invariant to initial condi-
tions and choice of controller gains αi. Meanwhile, consensus-like behavior on Chebyshev
radii and agent depth can be observed in the 2D numerical examples. Thus it is not
unreasonable to expect that some generalization of the consensus-property holds in the
non-linear multi-dimensional case.

Recall that several of the results in section 3.3 rely on the assumption of single inte-
grator agent dynamics and linear control laws. As we will see in 3.4, this assumption
can be relaxed. We now turn to convergence results for deployment to multi-dimensional
environments.
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3.4 Convergence in multi-dimensional environments

Whereas convergence is relatively easy to grasp in R, the situation is considerably more
complicated in two or more dimensions. Analytic closed loop dynamic equations are no
longer available, and we have to resort to different tools.

We consider an N -agent MAS where each agent has dynamics (2.47) satisfying the regular-
ity conditions in assumption 2.2.1. The agents utilize decentralized controllers K1, . . . , KN

satisfying the control law requirements (2.68)-(2.70). W is convex, polytopic and full-
dimensional. The initial agent states are distinct elements of W, i.e.

xp0q P XD � txT � rxT
1 � � �x

T
N s | xi P W @i P NN , xi � xj @j � i P NNu. (3.97)

Judging from the 2D motivating examples in section 2.7, the MAS does not converge
to a particular pre-defined final state. Rather we expect convergence towards the set of
Chebyshev Configurations, XCC. To this end, proving non-increase and convergence to
zero of the energy-like function

V pxpkq, Wq �
¸

iPNN

r̄ipkq � ripkq, (3.98)

would be sufficient. However, most quantities within the present framework do not exhibit
the necessary monotonicity. E.g. both r̄ipkq and ripkqmay increase and decrease with time.
The same holds for the time-varying upper bound r̄M pkq. See figures 2.15 and 2.16 for
illustrative examples. As such, it is non-trivial to show convergence of V pxpkq, Wq to zero.

Meanwhile, certain quantities exhibit some degree of monotonicity. rmpkq, the lower bound
on agent depth, is provably non-decreasing. This is intuitive from the simulations in
section 2.7, and will be shown formally in the sequel. By this result alone, the MAS moves
towards smaller and smaller subsets of XD. For any fixed r ¡ 0, the set of configurations
Xmprq � tx P WN | ri ¥ r @i P NNu � XD is an invariant set with respect to the MAS
dynamics. I.e.

xpkq P Xmprq ùñ xpk � 1q P Xmprq. (3.99)

Additionally, if rmpk � 1q ¡ rmpkq then

xpk � 1q P Xmprmpk � 1qq � Xmprmpkqq. (3.100)

We still need to uncover the additional structure which gives rise to the consensus among
subsets of agents as well as the mechanisms steering the MAS towards a Chebyshev
configuration. Convergence of rmpkq alone is not sufficient to explain this behavior. As
we will see, graph theoretical notions similar to those exploited in the 1D-case turn out
to be central in explaining this behavior.

The forthcoming presentation is structured as follows:

1. In section 3.4.2 we prove the convergence of rmpkq and analogous time-varying lower
bounds on r̃ipkq and r̄ipkq.
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2. Section 3.4.3 elaborates on the convergence of rmpkq and relates this to optimality
of limit configurations.

3. Section 3.4.4 introduces a novel MAS interaction graph notion to the present frame-
work. Furthermore we relate the topology of static configurations to the connectivity
properties of this graph. In this manner, we show how convergence to static configu-
rations is associated with convergence to consensus on r̄i and ri for disjoint subsets
of agents.

4. Section 3.4.5 is used to consider the notion of information propagation through the
interaction graph. We illustrate how imbalances in agent depth propagates through
a connected interaction graph and eventually leads to an increase in rm.

5. In section section 3.4.6 we exploit the preceding results as well as standard results
from real analysis to show convergence to consensus provided the interaction graph
remains connected for all time.

All results rely on more low level bounds on intra-agents distances and agent depth. We
begin our pursuit of convergence results in Rd by exploring these relations.

3.4.1 Bounding intra-agent distances and agent depths

The connection between agent depths and intra-agent distances can be used to derive
useful bounds for both quantities. First, depth with respect to some polyhedron P � tx |
aT

i x ¤ bi, i � 1, . . . , mu � Rd. Revisiting (2.37) for the definition of depth x P P , we
observe the relations

depthpx, P q � mintb1 � aT
i x, . . . bm � aT

mxu (3.101)
� mintdistpx, Btx̂ | aT

1 x̂ ¤ b1uq, . . . , distpx, Btx̂ | aT
mx̂ ¤ bmuqu (3.102)

� mintdepthpx, tx̂ | aT
1 x̂ ¤ b1uq, . . . , depthpx, tx̂ | aT

mx̂ ¤ bmuqu. (3.103)

Next, recall the use of this notion in the context of agent positions in their respective
cells,

ripkq � depthpxipkq,Vipkqq. (3.104)

For some Voronoi cell Vi, normalizing the inequality constraint associated with some
agent j � i yields the half plane representation

Hij � tw P Rd |
pxj � xiqT∥∥xj � xi

∥∥ w ¤
pxj � xiqT∥∥xj � xi

∥∥
�

xi � xj

2



u. (3.105)

Compared to the Voronoi cell representation given in (2.54), we have also used
∥∥xj

∥∥2
�

‖xi‖2 � pxj � xiqT pxi � xjq. In turn

distpxi, BHijq �
pxj � xiqT∥∥xj � xi

∥∥
�

xi � xj

2 � xi

�
�

1
2

∥∥xj � xi

∥∥ . (3.106)
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That is, the distance from either agent to the hyperplane separating them is simply half
the intra-agent distance

∥∥xj � xi

∥∥. Therefore

ripkq � depthpxipkq,Vipkqq (3.107)

� mintdistpxipkq, BWq, min
j�i

1
2

∥∥xjpkq � xipkq
∥∥u. (3.108)

Note that the depth with respect to W is accommodated by distpxipkq, BWq. By the
redundancy of constraints arising from agents j R Nipkq

ripkq � mintdistpxipkq, BWq, min
jPNipkq

1
2

∥∥xjpkq � xipkq
∥∥u. (3.109)

Exploiting this final expression, it is easy to see how intra-agent distances at time k can
be lower bounded via agent depths.

Lemma 3.4.1. The distance distpxipkq, xjpkqq between any pair of agents i � j satisfies
the inequality

distpxipkq, xjpkqq ¥ 2 maxtripkq, rjpkqu. (3.110)

Proof. By the definition of ripkq and rjpkq,

1
2

∥∥xjpkq � xipkq
∥∥ ¥ ripkq @j � i,

1
2

∥∥xipkq � xjpkq
∥∥ ¥ rjpkq @i � j (3.111)

implying the result
∥∥xjpkq � xipkq

∥∥ ¥ 2 maxtripkq, rjpkqu.

Correspondingly, we are interested in lower bounding the intra-agent distances at time
k� 1 as a function of the quantities available at time k. To this end, recall the definition

r̃ipkq � depthpxipk � 1q,Vipkqq. (3.112)

Even though the depth is with respect to the Voronoi cell at time k, we can find a lower
bound on intra-agent distance at time k � 1 by exploiting that the interiors of the agent
Voronoi cells are pairwise disjoint.

Lemma 3.4.2. The distance distpxipk � 1q, xjpk � 1qq between any pair of agents i � j
satisfies the inequality

distpxipk � 1q, xjpk � 1qq ¥ r̃ipkq � r̃jpkq. (3.113)

Proof. Consider the N distinct balls Br̃ipkqpxipk � 1qq � Vipkq : i P NN . Observe that
intpBr̃ipkqpxipk � 1qqq X intpBr̃jpkqpxjpk � 1qqq � H since intpVipkqq X intpVjpkqq � H
provided i � j. Thus for any two agents i � j,

∥∥xipk � 1q � xjpk � 1q
∥∥ ¥ r̃ipkq�r̃jpkq.

Moreover, r̃ipkq bounds the distance to BW at time k � 1.

Lemma 3.4.3. The distance from xipk � 1q to the boundary of W satisfies

distpxipk � 1q, BWq ¥ r̃ipkq. (3.114)
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Proof. Since Vipkq � W and by the time-invariance of W,

r̃ipkq � depthpxipk � 1q,Vipkqq (3.115)
¤ depthpxipk � 1q, Wq � distpxipk � 1q, BWq. (3.116)

Combining lemma 3.4.2 and lemma 3.4.3 yields the following lower bound on ripk � 1q.

Lemma 3.4.4. For all agents i P NN , ripk � 1q satisfies the inequality

ripk � 1q ¥ mintr̃ipkq, min
jPNipk�1q

r̃ipkq � r̃jpkq
2 u. (3.117)

Proof. By definition,

ripk � 1q � mintdistpxipk � 1q, BWq, min
jPNipk�1q

1
2

∥∥xjpk � 1q � xipk � 1q
∥∥u. (3.118)

By lemma 3.4.2, minjPNipk�1q 1
2
∥∥xjpk � 1q � xipk � 1q

∥∥ ¥ minjPNipk�1q
r̃ipkq�r̃jpkq

2 . By
lemma 3.4.3, distpxipk � 1q, BWq ¥ r̃ipkq. The result follows.

3.4.2 Convergence of the minimal agent depth

Unfortunately, the intricate structure of the bound in lemma 3.4.4 makes it difficult to
extract useful information regarding the individual agent depth trajectories. In particular
the minimization over Nipk � 1q is impractical. To remove this dependence, let us define

r̃mpkq � min
iPNN

r̃ipkq. (3.119)

Note that

min
jPNipk�1q

r̃jpkq ¥ min
iPNN

r̃jpkq � r̃mpkq. (3.120)

Thus

ripk � 1q ¥ mintr̃ipkq,
r̃ipkq � r̃mpkq

2 u ¥
r̃ipkq � r̃mpkq

2 ¥ r̃mpkq, (3.121)

where we also used that r̃ipkq ¥ r̃mpkq by construction. While this bound is not particu-
larly tight, it is sufficiently so to show

(i) rmpkq � miniPNN
ripkq is non-decreasing and convergent.

(ii) r̄mpkq � miniPNN
r̄ipkq is convergent.
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First note that the r̄ipkq’s and ripkq’s are all bounded since W is bounded. Let γpWq �
rcpWq be the Chebyshev radius of W. Necessarily

γpWq ¥ r̄ipkq @i P NN . (3.122)

Also note that

γpWq ¥ r̄ipkq ¥ r̃ipkq ¥ ripkq @i P NN . (3.123)

The rightmost inequality follows from the control law requirements (2.68) and (2.69),
whereas the middle inequality follows from r̃pkq P rripkq, r̄ipkqs by the control law require-
ment (2.70). First we show the non-decrease and convergence of rmpkq.

Theorem 3.10. rmpkq is non-decreasing and converges to its finite supremum r8m �
supk rmpkq. I.e. rmpk � 1q ¥ rmpkq and limkÑ8 rmpkq � r8m � supk rmpkq.

Proof. For the non-decrease, consider the bounds (3.123). The ordering is preserved when
taking the individual minimums over i. I.e.

γpWq ¥ min
iPNN

r̄ipkq ¥ min
iPNN

r̃ipkq ¥ min
iPNN

ripkq (3.124)

which by definition is equivalent to

γpWq ¥ r̄mpkq ¥ r̃mpkq ¥ rmpkq. (3.125)

Taking the minimum over i in the inequality (3.121) and combining this with r̃mpkq ¥
rmpkq shows the non-decrease of rmpkq,

rmpk � 1q � min
iPNN

ripk � 1q ¥ r̃mpkq ¥ rmpkq. (3.126)

Next we prove the convergence of rmpkq. Define r8m � supk rmpkq. The supremum is
finite since rmpkq is upper bounded. Assume, for the sake of contradiction, the existence
of some ε ¡ 0 such that r8m � rmpkq ¡ ε for infinitely many k. By the non-decrease
of rmpkq, this must hold for all k. But then r8m � ε is an upper bound for the entire
sequence trmpkqu8k�0, contradicting the definition of the supremum. Thus limkÑ8 rmpkq �
supk rmpkq � r8m.

Revisiting figures 2.15 and 2.16, it can be concluded that the simulations in section 2.7
are consistent with and illustrative for this result. rmpkq is non-decreasing in both cases.

From (3.126) in the preceding proof, we also inherit a convergence result for r̃mpkq.

Corollary 3.10.1. The sequence r̃mpkq converges and limkÑ8 r̃mpkq � limkÑ8 rmpkq �
r8m.

Proof. Follows from taking the limit of

rmpk � 1q ¥ r̃mpkq ¥ rmpkq. (3.127)

Then r8m ¥ limkÑ8 r̃mpkq ¥ r8m.
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Let Impkq be the indices of agents with ripkq � rmpkq. I.e.

i P Impkq ðñ ripkq � rmpkq. (3.128)

The inequality

rmpk � 1q ¥ r̃mpkq ¥ rmpkq (3.129)

is stricter whenever r̄ipkq ¡ ripkq @i P Impkq. By the control law requirement (2.68),

r̄ipkq ¡ ripkq @i P Impkq ùñ r̃ipkq ¡ ripkq @i P Impkq. (3.130)

For the other agents, i P NNzImpkq, the control law requirements (2.68) and (2.69) ensure

r̃ipkq ¥ ripkq ¡ rmpkq @i P NNzImpkq. (3.131)

Thus r̃mpkq ¡ rmpkq whenever r̄ipkq ¡ ripkq @i P Impkq. In turn this leads to strict
increase of rmpkq,

rmpk � 1q ¥ r̃mpkq ¡ rmpkq when r̄ipkq ¡ ripkq @i P Impkq. (3.132)

Since r̄mpkq ¡ rmpkq ðñ r̄ipkq ¡ ripkq @i P Impkq, we therefore go further and state
the convergence result for r̄mpkq as another corollary of theorem 3.10.

Corollary 3.10.2. The sequence r̄mpkq converges and limkÑ8 r̄mpkq � limkÑ8 rmpkq �
r8m.

Proof. By the control law requirement (2.70) and by definition of r̃mpkq,

r̃mpkq � min
i
rp1� αipkqqripkq � αipkqr̄ipkqs (3.133)

¥ p1� αi�pkqpkqqrmpkq � αi�pkqpkqr̄mpkq. (3.134)

i�pkq is the index of some agent i P NN such that r̃ipkq � r̃mpkq. The index or actual value
of αi�pkq is not important. From the inequality (3.129) and exploiting r̄mpkq ¥ rmpkq,

rmpk � 1q ¥ p1� αi�pkqpkqqrmpkq � αi�pkqpkqr̄mpkq ¥ rmpkq. (3.135)

Rewriting and dividing by αi�pkqpkq yields

1� αi�pkqpkq
αi�pkqpkq

rrmpk � 1q � rmpkqs � rmpk � 1q ¥ r̄mpkq ¥ rmpkq. (3.136)

Note that the division by αi�pkq is valid since αipkq ¡ 0 @i P NN @k by construction. The
results follows from taking the limits on both sides, then

r8m ¥ lim
kÑ8

r̄mpkq ¥ r8m. (3.137)
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3.4.3 Optimality of limit configurations

The convergence of rmpkq illustrates how local interactions between agents yield conver-
gence to a set of globally optimal configurations in the sense that

lim
kÑ8

xpkq (3.138)

is a local optimum of the global optimization problem

max
x1,...,xN

min
iPNN

depthpxi,Vipx1, . . . , xN , BWqq. (3.139)

By the derivations in section 3.4.1, we can remove the dependence on the Voronoi parti-
tion. In particular the relation

depthpxi,Vipx1, . . . , xN , BWqq � mintdistpxi, BWq, min
j�i

1
2

∥∥xj � xi

∥∥u (3.140)

allows us to define

Hsppx1, . . . , xN , Wq � min
iPNN

min
j�i

mintdistpxi, BWq, min
j�i

1
2

∥∥xj � xi

∥∥u (3.141)

and finally rewrite (3.139) to

max
x1,...,xNPW

Hsppx1, . . . , xN , Wq (3.142)

In [Bullo et al., 2009], Hsp is referred to as a sphere packing multicenter function. They
justify this terminology by highlighting the connection to classic sphere packing problems.
Typically one is interested in finding the maximal number of non-overlapping equal-radius
open spheres which fit inside some connected region of Rd. Inspecting Hsp, observe that
the value of Hsppx1, . . . , xN , Wq is the largest radius guaranteeing that N equal-radius
open spheres centered at points x1, . . . , xN in W are non-overlapping and contained in
W.

The connection to sphere packing opens for interesting interpretations and applications of
the present framework. It can be seen as, and used as, an optimization scheme (iterative
procedure) to find a local optimum of the geometric optimization problem (3.142). We
refer the interested reader to [Bullo et al., 2009] and its references for more information
on the sphere packing problem.

However, the convergence to a local optimum of (3.142) is not sufficient to show the
stronger result of convergence to the set of Chebyshev configurations. Neither does it ex-
plain the consensus-like behavior we conjecture from the earlier simulations. To strengthen
the results on convergence, we proceed by introducing the notion of an interaction graph.

3.4.4 Interaction graph

The interaction graph encodes the agents ability to affect each others Chebyshev radii.
In this sense it generalizes the graph associated with the Ar̄ extensively used for 1D
convergence.
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Definition 3.4.1 (Interaction graph). Let the interaction graph G � pV, Eq be the undi-
rected graph with nodes V � NN and edges E � V � V. To all ordered pairs of nodes
pi, jq P V � V : i � j, we associate a unit normal

nij �
xj � xi∥∥xj � xi

∥∥ P Rd, (3.143)

and edge set

E � tpi, jq P V � V | nT
ijpx̄j � x̄iq � r̄i � r̄j , i � ju. (3.144)

Observe that G is undirected as a consequence of the symmetry of the edge membership
criterion. I.e. pi, jq P E ðñ pj, iq P E since

nT
ijpx̄j � x̄iq � r̄i � r̄j ðñ nT

jipx̄i � x̄jq � r̄i � r̄j . (3.145)

To gain insight into what edge set membership entails, it is instructive to define the
corresponding directed interaction graph.

Definition 3.4.2 (Directed interaction graph). Let the undirected interaction graph G̃ �
pV, Ẽq be the directed graph with nodes V � NN and edges Ẽ . To all ordered pairs of
nodes pi, jq P V � V : i � j, we associate a half space

Hij � tw P Rd | nT
ijw ¤ nT

ijp
xi � xj

2 qu, (3.146)

where

nij �
xj � xi∥∥xj � xi

∥∥ P Rd. (3.147)

The edge set is defined as

Ẽ � tpi, jq P V � V | distpx̄i, BHijq � r̄i, i � ju, (3.148)

with

distpx̄i, BHijq � nT
ijr

xi � xj

2 � x̄is. (3.149)

That is, pi, jq P Ẽ provided the distance from x̄i to the half space of Vi associated with
j � i is equal to the Chebyshev radius. For some fixed i, tj | pi, jq P Ẽu is the set of agents
constraining its Chebyshev radius. Assume that pi, jq P Ẽ and pj, iq P Ẽ . Then

nT
ijr

xi � xj

2 � x̄is � r̄i, (3.150)

�nT
ijr

xi � xj

2 � x̄js � r̄j , (3.151)
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since nij � �nji. Summing these equations yields

nT
ijrx̄j � x̄is � r̄i � r̄j . (3.152)

Thus the interaction graph and its corresponding directed version are related by

pi, jq P Ẽ and pj, iq P Ẽ ðñ pi, jq P E . (3.153)

That is, pi, jq P E provided the i and j constrain each others Chebyshev radii via their
separating hyperplane BHij � BHji.

We remark that G is a sub-graph of the so-called Delaunay graph GD � pNN , EDq in
which two nodes i, j P NN are adjacent provided they are Voronoi neighbors. Formally
ED � tpi, jq | Vi X Vj � H, i � j P NNu.

The interaction graph is inherently time-varying since the edge set E is constructed based
on the time-varying quantities xipkq, x̄ipkq and r̄ipkq. Correspondingly, the interaction
graph is time-invariant for all static configurations x P XSC. Thus we may exploit the
interaction graph to uncover the topology of static MAS configurations.

Theorem 3.11. Consider some static MAS configuration x P XSC and its associated
interaction graph G � pV, Eq. For all connected components G0 � pV, Eq of G, r̄i � r̄j for
all pairs pi, jq P V0 � V0.

Proof. Recall that x P XSC ùñ XCC by proposition 3.2.1. Let G0 � pV0, E0q be any
connected component of G. If |V0| � 1, the results holds trivially. If |V0| ¡ 1, consider any
edge pi, jq P E0. Since x P XCC ùñ xi � x̄i (for some fixed agent Chebyshev center x̄i)
and ri � r̄i for all i P NN ,

nT
ijrx̄j � x̄is �

pxj � xiqT∥∥xj � xi

∥∥ pxj � xiq �
∥∥xj � xi

∥∥ � r̄i � r̄j � ri � rj . (3.154)

Assume, for the sake of contradiction, that ri � rj . Without loss of generality, assume
ri ¡ rj . Applying the result of lemma 3.4.1 yields∥∥xj � xi

∥∥ ¥ 2 maxtri, rju � 2ri ¡ ri � rj . (3.155)

This contradicts (3.154), proving

ri � rj @pi, jq P E0. (3.156)

Since G0 is connected, there exists a path tvmuM
m�0 in G0 between any two distinct nodes

v0, vM P V0. Along the path, rvm�1 � rvm for all m � 1, . . . , M by (3.156). Thus rv0 � rvM
.

Since v0 and vM can be chosen arbitrarily, ri � rj @j P V0 for any i P V0. The result
follows when re-applying r̄i � ri @i P NN and noting that the derivations hold for any
connected component of G.

Thus convergence to a static configuration will necessarily lead to consensus on the radii
r̄i and ri within each connected component of G. This can be seen as a generalization of
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the 1D result of section 3.3 showing consensus on r̄i and ri in the static configuration.
As we expected from the motivating illustrations in section 2.7, the associated multi-
dimensional result is of a similar yet more general nature. While the concept of consensus
is applicable in both cases, deployment to multi-dimensional environments entails a more
general type of consensus-behavior with consensus in between subsets of agents rather
than the entire MAS.

Figure 3.14 shows the interaction graphs for the final configurations of all three 2D sim-
ulations in section section 2.7.
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(a) 2D simulation 1. The
graph consists of a single
connected component.
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(b) 2D Simulation 2. The
graph consists of two con-
nected components.
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(c) 2D simulation 3. The
graph consists of two con-
nected components.

Figure 3.14: Interaction graphs associated with the final configurations of the 2D simula-
tions. The dots are the agent positions and the circles are agent Chebyshev balls. There
is a line between two agents i, j provided the edge pi, jq exists in the edge set.

Inspecting these illustrative graphs reveals how theorem 3.11 explains the consensus pat-
terns observed for r̄i and ri with respect to the final configurations.

• For 2D simulation 1, figure 3.14a reveals that the interaction graph consists of a
single connected component. Consistent with this connectivity pattern, figure 2.15
supports consensus on agent depth.

• For 2D simulation 2, the interaction graph in figure 3.14b consists of two discon-
nected components - the subgraphs induced by V1

0 � t1, 5u and V2
0 � N10zt1, 5u

respectively. Correspondingly, the agent depth trajectories in figure 2.16 exhibit
convergence to two distinct values.

• Finally, for 2D simulation 3, the interaction graph consists of two connected compo-
nents. Agent 1 clearly has greater agent depth than the other agents. Agents N10zt1u
are in the same connected component, and exhibit consensus on agent depths.

Obviously the multi-dimensional interaction graph notion also applies in 1D. The 1D in-
teraction graph is straightforward to find. Exploiting the explicit equations for Chebyshev
centers and Chebyshev radii, it is easy to verify that for all i P t1, 2, . . . , N � 1u

x̄jpkq � x̄ipkq � r̄ipkq � r̄jpkq ðñ j � i� 1 @k P t0, 1, 2, . . . u. (3.157)
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1 2 3 N � 1 N

. . .

Figure 3.15: The interaction graph w.r.t. MAS deployment to R. The graph is time in-
variant and connected.

I.e. there is an edge between two agents provided they have neighboring Voronoi cells1.
The resulting graph is shown in figure 3.15. Remark that this is simply GpAr̄q � pV, Ê , W q
from figure 3.13 disregarding weights and self-loops. Formally the interaction graph is
G � pV, Eq where

pi, jq P E ðñ pi, jq P tpi, jq P Ê | i � ju. (3.158)

In this sense, the interaction graph generalizes GpAr̄q to the multi-dimensional case. At the
same time, the 1D interaction graph has some useful particularities. It can be constructed
on the basis of initial conditions and importantly it is time-invariant since the edge set is
the same for all time steps k. This is useful for the construction of analytic results such
as the ones presented in section 3.3.

The treatment of convergence in one-dimensional environments in section 3.3 is con-
strained to single integrator agent dynamics and linear control laws. We can extend sev-
eral of the results to more general agent dynamics and controllers by utilizing the results
on multi-dimensional convergence. In this regard, the following result is useful:

Proposition 3.4.1. Let Σ be an N -agent MAS deployed to W � rxl, xus � R, xu ¡ xl.
The MAS is subjected to the controllers K1, . . . , KN where each satisfy the control law
requirements (2.68)-(2.70). Then Σ has an unique Chebyshev configuration, and con-
sequently an unique static configuration, xss. The entries of xss are given by xss

i �
p2i� 1qxu�xl

2N � xl.

Proof. Assume that Σ is in a static configuration and let G be the interaction graph
associated with the MAS. r̄ and r denote the vectors collecting agent Chebyshev radii
and agent depths respectively (as in section 3.3). Since G is time-invariant and connected,
theorem 3.11 ensures that r̄ � r � β1 for some constant β ¡ 0. Then the average of
the Chebyshev radii is 1

N 1T r̄ � β. (3.78) ensures that 1
N 1T r̄pkq � 1

N
xu�xl

2 , invariant to
MAS state. Thus β � 1

N
xu�xl

2 when the MAS is in a static configuration. In turn xss,
with entires xss

i � p2i � 1qxu�xl

2N � xl, is the unique static configuration. Σ satisfies the
assumptions of proposition 3.3.1, and thus Σ is in a Chebyshev configuration if and only
if it is in a static configuration. I.e. the uniqueness of the static configuration implies
uniqueness of the Chebyshev configuration. That is, Σ has an unique static Chebyshev
configuration. The result follows.

1Recall that we assume the ordering x1   x2   � � �   xN in 1D.
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The uniqueness of xss shown in section 3.3 can be seen as a special case of proposi-
tion 3.4.1.

The next step is to uncover mechanisms steering agents within the same connected com-
ponent to consensus on ri and r̄i. Just like we were able to prove convergence to consensus
in 1D by exploiting connectivity properties of GpAr̄q, we would like to find more general
results for Rd by exploiting connectivity properties of the interaction graph. In a sense
we are generalizing the 1D results. However, in Rd we necessarily need to account for the
fact that the interaction graph may not be connected.

3.4.5 Information propagation

First we investigate how imbalances in r̄i and ri propagate through the graph. Assume
that for some configuration xp0q P XD the corresponding interaction graph consists of
a fixed number Nc ¤ N of connected components with node sets Vp1q

0 , . . . , VpNcq
0 which

are time-invariant along the trajectory of the MAS. It is clear from proposition 3.11 that
convergence to a static configuration must be associated with convergence to consensus
on r̄i and ri within each connected component of G. Equivalently, assuming convergence
to some static configuration XSC,

lim
kÑ8

xpkq P XSC ùñ max
iPV0

r̄ipkq � min
iPV0

ripkq @G0 � pV0, E0q P tGp1q0 , . . . , GpNcq
0 u. (3.159)

As a stepping stone to such a result, we illustrate information propagation through some
interaction graph G which is connected along the trajectory of the MAS.

Consider the set

Lpk, τq � tl P NN | r̄lpk � τq ¡ rmpkqu, (3.160)

indexed by k P t0, 1, 2, . . . u and a finite offset τ P t0, 1, 2, . . . u. Intuitively Lpk, τq contains
the indices of agents whose Chebyshev radius is greater than the baseline rmpkq at time
k � τ . By r̄i ¥ ri, Lpk, τq will also contain the indices of agents with agent depth greater
than rmpkq at time k � τ .

Also define

∆pk, τq �

#
minlPLpk,τq r̄lpk � τq � rmpkq |Lpk, τq| ¡ 0,

0 |Lpk, τq| � 0.
(3.161)

∆pk, τq measures the smallest non-zero deviation between the Chebyshev radii and rmpkq.
If there are no non-zero deviations, i.e. if Lpk, τq is empty, then ∆pk, τq � 0 by convention.

First we illustrate what set membership in Lpk, τq entails in terms of agent depth trajec-
tories. This intermediate result will be used several times in the sequel.

Lemma 3.4.5. For all agents l P Lpk, τq,

rlpk � τ � 1q ¥ αlpk � τq
2 ∆pk, τq � rmpkq ¡ rmpkq. (3.162)
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Proof. Exploiting the bound (3.117) from lemma 3.4.4 yields

ripk � τ � 1q ¥ mintr̃ipk � τq, min
jPNipk�τ�1q

r̃ipk � τq � r̃jpk � τq
2 u. (3.163)

Since r̃jpk � τq ¥ rmpk � τq ¥ rmpkq by the construction of r̃jpkq and the non-decrease
of rmpkq,

ripk � τ � 1q ¥ mintr̃ipk � τq,
r̃ipk � τq

2 �
rmpkq

2 u. (3.164)

The minimization can be removed when using r̃ipk � τq ¥ rmpkq once more,

ripk � τ � 1q ¥ r̃ipk � τq
2 �

rmpkq
2 . (3.165)

Consider now r̃ipk � τq. Exploiting rmpkq yet again yields the following bound:

r̃ipk � τq � p1� αipk � τqqripk � τq � αipk � τqr̄ipk � τq (3.166)
¥ p1� αipk � τqqrmpkq � αipk � τqr̄ipk � τq (3.167)

By construction r̄lpk � τq ¥ ∆pk, τq � rmpkq for all l P Lpk, τq. Therefore

r̃lpk � τq ¥ p1� αipk � τqqrmpkq � αipk � τqr∆pk, τq � rmpkqs (3.168)
¥ rmpkq � αipk � τq∆pk, τq (3.169)

for all agents l P Lpk, τq. Thus,

rlpk � τ � 1q ¥ αipk � τq
2 ∆pk, τq � rmpkq. (3.170)

for all agents l P Lpk, τq. Since Dl P Lpk, τq ùñ ∆pk, τq ¡ 0 and αipkq ¡ 0 by
construction,

rlpk � τ � 1q ¥ αipk � τq
2 ∆pk, τq � rmpkq ¡ rmpkq (3.171)

as claimed.

The study of Lpk, τq and ∆pk, τq is motivated by the following result - relating the car-
dinality of Lpk, τq with increase in rmpkq.

Lemma 3.4.6. If Lpk, τq has cardinality |Lpk, τq| � N then rmpk � τ � 1q ¡ rmpkq.

Proof. By lemma 3.4.5 and the fact that i P Lpk, τq @i P N,

ripk � τ � 1q ¥ αipk � τq
2 ∆pk, τq � rmpkq. (3.172)

Taking the minimum over i yields the desired result,

rmpk � τ � 1q � min
iPNN

ripk � τ � 1q ¥ mini αipk � τq
2 ∆pk, τq � rmpkq ¡ rmpkq. (3.173)
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Hence we can use Lpk, τq to prove strict increase of rmpk � τ � 1q versus the baseline
rmpkq provided the cardinality of Lpk, τq reaches N . We first show the non-decrease of
|Lpk, τq| in τ .

Lemma 3.4.7. Lpk, τq � Lpk, τ � 1q.

Proof. By lemma 3.4.5

rlpk � τ � 1q ¥ αipk � τq
2 ∆pk, τq � rmpkq @l P Lpk, τq. (3.174)

That is

r̄lpk � τ � 1q ¥ rlpk � τq ¡ rmpkq @l P Lpk, τq. (3.175)

I.e. l P Lpk, τ � 1q @l P Lpk, τq.

Proposition 3.4.2. |Lpk, τ � 1q| ¥ |Lpk, τq|.

Proof. |Lpk, τ � 1q| ¥ |Lpk, τq| since Lpk, τq � Lpk, τ � 1q by lemma 3.4.7.

Next we want to establish conditions under which |Lpk, τq| increases. To this end we
exploit the interaction graph Gpkq. We also define the complement of Lpk, τq as

Lcpk, τq � NNzLpk, τq. (3.176)

Lemma 3.4.8. Assume that

(i) Gpk � τq is connected for all τ P t0, 1, 2, . . . u.

(ii) |Lpk, 0q| ¡ 0. I.e. at least one Chebyshev radius is strictly higher than rmpkq at time
k.

Then r̄lc
pk � τ � 1q ¡ rmpkq for at least one lc P Lcpk, τq provided Lcpk, τq � H.

Proof. First observe that Lpk, τq is non-empty at the particular τ in question by |Lpk, 0q| ¡
0 and the non-decrease in cardinality by lemma 3.4.7.

Since Gpk� τq and Gpk� τ � 1q are connected and |Lcpk, τq| ¡ 1, there exists at least one
edge pl, lcq P Epk � τ � 1q such that lc P Lcpk, τq and l P Lpk, τq. Pick any such edge.

Assume for the sake of contradiction that

r̄lc
pk � τ � 1q � rmpkq. (3.177)

Due to r̄lcpk�τ�1q ¥ rlcpk�τ�1q ¥ rmpkq we have r̄lcpk�τ�1q � rlcpk�τ�1q � rmpkq.
That is, the agent lc is at at Chebyshev center and has Chebyshev radius rmpkq. In this
case the distance from x̄lc

pk � τ � 1q � xlc
pk � τ � 1q to all hyperplanes constraining

r̄lc
pk � τ � 1q is rmpkq. Thus for all tln, lcu P Epk � τ � 1q,

distpxlc
pk � τ � 1q, xln

pk � τ � 1qq
2 � r̄lcpk � τ � 1q � rlcpk � τ � 1q � rmpkq. (3.178)
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Meanwhile, for any pair of agents i � j and any k,

distpxipkq, xjpkqq ¥ 2 maxtripkq, rjpkqu (3.179)

by lemma 3.4.1. Consider now the particular edge tl, lcu. By the bound (3.179),

1
2 distpxlcpk � τ � 1q, xlpk � τ � 1qq ¥ maxtrlcpk � τ � 1q, rlpk � τ � 1qu (3.180)

¥ maxtrmpkq,
∆pk, τq

2 � rmpkqu (3.181)

¥
∆pk, τq

2 � rmpkq ¡ rmpkq. (3.182)

From the first to second step we use the non-decrease of rmpkq and the bound from
lemma 3.4.5. The inequality (3.182) contradicts (3.178). Thus r̄lcpk � τ � 1q � rmpkq.
Furthermore r̄lc

pk� τ � 1q ¥ rmpk� τ � 1q ¥ rmpkq by the non-decrease of rm. Therefore
the only possibility is r̄lc

pk � τ � 1q ¡ rmpkq as claimed.

This result can easily be extended to a result on increase in cardinality of Lpk, τq

Proposition 3.4.3. Under the same assumptions as in lemma 3.4.8, |Lpk, τ � 1q| ¡
|Lpk, τq|.

Proof. By proposition 3.4.2, l P Lpk, τ � 1q @l P Lpk, τq. By proposition 3.4.8 there exists
at least one l P Lpk, τ � 1q such that l P Lcpk, τq. Thus |Lpk, τ � 1q| ¡ |Lpk, τq| whenever
0   |Lpk, τq|   N .

Under the same set of assumptions, its now apparent that we can find a finite τ which
guarantees |Lpk, τq| � N .

Proposition 3.4.4. Under the same assumptions as in lemma 3.4.8, |Lpk, N � 1q| � N .

Proof. Consider the worst case. Namely

• |Lpk, 0q| � 1, which is the lowest possible cardinality satisfying the assumptions.

• By proposition 3.4.2, |Lpk, τ �1q| ¡ |Lpk, τq|. Thus in the worst case |Lpk, τ �1q| �
|Lpk, τq| � 1.

Then |Lpk, τq| ¥ τ � 1 and the result follows.

Remark 3.4.1. Under the same assumptions as in lemma 3.4.8, proposition 3.4.4 can be
stated in a more general from stating DK P t0, 1, . . . , N � 1u such that |Lpk, Kq| � N .

The final result of this section is simply a summary of the preceding results.

Theorem 3.12. Assume

(i) Gpk � τq is connected for all τ P t0, 1, 2, . . . u.

(ii) |Lpk, 0q| ¡ 0.
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Then

rmpk �Nq ¡ rmpkq. (3.183)

Proof. By proposition 3.4.4, |Lpk, N � 1q| � N . The result follows by lemma 3.4.6.

Recall the 1D information propagation simulation in section 2.7. It illustrates that the
propagation of a deviation r̄M pkq ¡ rmpkq to an increase in rm such that rmpk � Kq ¡
rmpkq, for some K P N, can at best happen after K � N steps in the general case.
The results of the present section are sufficient to establish that, for deployment to R, N
indeed represents a worst case delay K between the time at which r̄M pkq ¡ rmpkq until
rmpk �Kq ¡ rmpkq. In particular theorem 3.12 applies since the interaction graph for a
1D MAS is time-invariant and connected. The simulation represents an instance of the
edge case considered in the proof of proposition 3.4.4. In particular, |Lp0, 0q| � 1 and
the cardinality |Lp0, τq| increases by exactly one per increase in offset τ until τ � N � 1.
Interestingly we see that the same mechanics driving the propagation of a deviation
r̄M pkq ¡ rmpkq to an increase in rm generalize to the multi-dimensional case provided the
interaction graph is connected.

Based on theorem 3.12, it is apparent that convergence to some Chebyshev configuration
can be proved whenever the interaction graph is connected along the trajectory of the
MAS. Informally r̄M p8q ¡ rmp8q in a sense contradicts the convergence of rmpkq as then
rmp8 � Nq ¡ rmp8q � r8m. Showing this in a formal manner is the topic of the next
section.

3.4.6 Convergence over connected interaction graphs

The following theorem is the main convergence result of this manuscript.

Theorem 3.13. Let xp0q P XD be some initial MAS configuration with an associated
interaction graph Gp0q which stays connected along the trajectory of the MAS. I.e. Gpkq
is connected for all k P t0, 1, 2, . . . u. Then

lim
kÑ8

xpkq P XCC (3.184)

and

lim
kÑ8

r̄M pkq � lim
kÑ8

max
i

r̄ipkq � lim
kÑ8

rmpkq � r8m. (3.185)

I.e. the MAS converges to a Chebyshev Configuration where all agents attain consensus
on Chebyshev radii and agent depths.

We prove this theorem by via two different procedures. First by showing that r̄M pkq has
an unique accumulation point corresponding to r8m. Next we use a fixed point theorem like
procedure where we show convergence of a particular decreasing subsequence of r̄M pkq.
While either approach is valid, they differ in their interpretation and complexity.
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Proof - Unique accumulation point approach. Consider the sequence tr̄M pkqukPN. This is
a bounded sequence in R, r̄M pkq P rrmpkq, γpWqs � r0, γpWqs � R. By theorem 3.6,
tr̄M pkqukPN has at least one accumulation point.

The inequalities γpWq ¥ r̄M pkq ¥ rmpkq ensures that any accumulation point r8M of
trM pkqu must be in the interval r̄8M P rr8m, γpWqs. Assume that tr̄M pkqu has an accumu-
lation point r̄8M strictly greater than r8m. Then, by definition, there exists a subsequence
tr̄M pklqulPN such that

lim
lÑ8

r̄M pklq � r̄8M ¡ r8m. (3.186)

Using the same sequence of indices tklulPN, we consider the subsequence trmpklqulPN
of trmpkqukPN. Since rmpkq is convergent, it has an unique accumulation point r8m by
lemma 3.1.2. By the same lemma, all subsequences of trmpkqukPN converge to r8m. In
particular

lim
lÑ8

rmpklq � r8m. (3.187)

For r̄8M ¡ r8m to hold, there has to exist a MAS configuration where rmpkq is constant
despite r̄M pkq ¡ rmpkq. By theorem 3.12 and by the assumptions on interaction graph
connectivity, r̄M pkq ¡ rmpkq ùñ |Lpk, 0q| ¡ 0 ùñ rmpk � Nq ¡ rmpkq thus contra-
dicting the existence of such a configuration.

As such, any accumulation point r̄8M of tr̄M pkqukP8 must satisfy r8m ¥ r̄8M ¥ r8m. Therefore
tr̄M pkqukPNN

has a single unique accumulation point r̄8M � r8m. Subsequently tr̄M pkqukPNN

is convergent by lemma 3.1.2 and

lim
kÑ8

r̄M pkq � lim
kÑ8

rmpkq � r8m. (3.188)

That is, the MAS converges to a configuration

x P tx | max
iPNN

r̄ipViq � min
iPNN

ripx,Viqu � XCC. (3.189)

Proof - Fixed point approach. Even though r̄M pkq is not non-increasing, it is possible to
construct a convergent sequence upper bounding r̄M pkq.

Three cases will have to be dealt with in order to construct a convergent subsequence.

i) For a sequence with infinitely many peaks, let tr̄M pklqulPN be the subsequence of these
peaks. Obviously, the subsequence is non-increasing and convergent.

ii) For a sequence with finitely many peaks K, we construct a subsequence in the following
manner: Let the first K indices of the subsequence be the peaks k1, . . . , kK . Since the
sequence has a finite number of peaks, there exists a minimal index k� ¡ kK such that
the value r̄M pk�q is repeated infinitely many times and r̄M pkq ¤ r̄M pk�q @k ¡ k�. Thus
the subsequence will be completed with the indices beyond index kK with corresponding
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sequence value r̄M pk�q. The obtained subsequence yields a non-increasing, bounded and
convergent subsequence of r̄M pkq.

iii) The last case to be considered is that of a sequence which has no peaks. Following the
definition of peaks, absence of peaks yields El : r̄M pkq   r̄M plq @k ¡ l. In this case,

@k Dl ¡ k : r̄M pkq ¤ r̄M plq. (3.190)

As such there exists at at least one non-decreasing subsequence of r̄M pkq. A particular
such subsequence can be constructed effectively starting at index k1 � 0 and picking
indices kl�1 such that r̄M pkl�1q ¥ r̄M pklq. By construction

lim
lÑ8

r̄M pklq � sup
k

r̄M pkq. (3.191)

Whether r̄M pkq exhibits peaks or not, we have now shown that r̄M pkq has a specific
convergent subsequence tr̄M pklqu. Define the limit of this sequence by r̄8M ,

lim
lÑ8

r̄M pklq � r̄8M . (3.192)

Using the same sequence of indices tklulPN, we consider the subsequence trmpklqulPN
of trmpkqukPN. Since rmpkq is convergent, it has an unique accumulation point r8m by
lemma 3.1.2. By the same lemma, all subsequences of trmpkqukPN converge to r8m. In
particular

lim
lÑ8

rmpklq � r8m. (3.193)

The sub-sequence of r̄M pkq is constructed in a manner which allows us to bound the
original sequence r̄M pkq.

• Assuming r̄M pkq has at least one peak, i.e. cases i) and ii) above, then for any index
kl of the subsequence, r̄M pkq ¤ r̄M pklq @k ¡ kl,

• Assuming r̄M pkq has no peaks, i.e. case iii), then still r̄M pkq ¤ supl r̄M pklq @k.

Thus we know that the original sequence converges to the interval

lim
kÑ8

r̄M pkq P rr8m, r̄8M s. (3.194)

Consider now the limits of the subsequences. Assume that r̄8M ¡ r8m. For this to hold,
there has to exist some configuration (associated with the limit) where rmpklq is constant
despite r̄M pklq ¡ rmpklq. By theorem 3.12 and by the assumptions on interaction graph
connectivity, r̄M pklq ¡ rmpklq ùñ |Lpkl, 0q| ¡ 0 ùñ Dkl1 ¡ kl � N : rmpkl1q ¡
rmpklq contradicting the existence of such a configuration. I.e. r8m ¥ r̄8M ¥ r8m. In turn
limkÑ8 r̄M pkq P rr8m, r̄8M s � rr8m, r8ms and therefore

lim
kÑ8

r̄M pkq � r8m. (3.195)

That is, the MAS converges to a configuration

x P tx | max
iPNN

r̄ipViq � min
iPNN

ripx,Viqu � XCC. (3.196)
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Since any admissible 1D MAS has a time-invariant and connected interaction graph,
convergence to some Chebyshev configuration follows. Combined with proposition 3.4.1,
we now know that any admissible MAS converges to the unique static 1D configuration
given in section 3.3. Thus we now formally understand the behavior of the 1D MAS
simulation illustrated in figure 2.9c, where the agent controllers have time-varying gains.

We can strengthen the theorem provided the agent Chebyshev centers are unique along
the trajectory of the MAS.

Corollary 3.13.1. Let xp0q P XD be some initial MAS configuration with an associated
interaction graph Gp0q which preserves connectivity along the trajectory of the MAS.
I.e. Gpkq is connected for all k P t0, 1, 2, . . . u. Additionally, the agent Chebyshev centers
satisfy assumption 3.2.1. I.e. all agent Chebyshev centers are unique at all time steps.
Then

lim
kÑ8

xpkq P XSC. (3.197)

I.e. the MAS converges to a static configuration.

Proof. By theorem 3.13,

lim
kÑ8

xpkq P XCC. (3.198)

Since assumption 3.2.1 is satisfied, 3.2.2 applies and thus x P XCC ðñ x P XSC. The
result follows.

2D simulation 1 in section 2.7 satisfy the assumptions of corollary 3.13.1. In particular the
Chebyshev centers are unique and the interaction is graph connected along the trajectory
of the MAS. Thus the simulation is illustrative for the corollary. As expected, the MAS
converges to a Chebyshev static configuration with consensus on r̄i and ri.

3.4.7 Extension to multiple connected components

Intuitively we expect a result similar to theorem 3.13 to hold for all connected components
of G. However, the situation is complicated by the fact that lack of connectivity in G
only inhibits mutual influence. Agents i � j in two separate connected components of G
may still exhibit inter-dependence. 2D Simulations 2 and 3 in section 2.7 are practical
illustrations of this situation. In figure 2.13b, the Chebyshev radii of agents 1 and 5 are
constrained by agents in N10zt1, 5u. Similarly, agent 1 in figure 2.14b is constrained by
agent 8. These dependencies are not reflected in the interaction graph.

Meanwhile, said dependencies are reflected in the directed interaction graph G̃ � pV, Ẽq.
The directed interaction graph for both simulations are shown in figure 3.16. For simu-
lation 2, the edges p1, 2q and p5, 9q reflect that their Chebyshev radii are constrained by
agents 2 and 9 respectively. Likewise for simulation 3, the edge p1, 8q mirror the fact that
r̄1 is constrained by agent 8.
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(b) 2D simulation 3.

Figure 3.16: Directed interaction graphs associated with the final configurations of 2D
simulations 2 and 3. An arrow from agent i to agent j implies the existence of an edge
pi, jq in the graph edge set.

Thus convergence results when G consists of multiple disconnected components necessarily
must account for edges in G̃. A relatively simple extension in this respect, is to consider
the situation where there are no edges in the directed interaction graph between connected
components of the undirected version.

Proposition 3.4.5. Let xp0q P XD. G � pV, Eq and G̃ � pV, Ẽq is respectively the in-
teraction graph and the directed interaction graph associated with the MAS. Suppose
that:

(i) Along the MAS trajectories, G consists of a fixed number of Nc ¤ N connected
components.

(ii) For each connected component Gplq0 � pVplq
0 , Eplq0 q of G, l P NNc

, the node sets Vplq
0

are time-invariant along the MAS trajectory.

(iii) Along the MAS trajectories, Epi, jq P Ẽ such that i P Vpl1q
0 and j P Vpl2q

0 for l1 � l2.

(iv) Along the MAS trajectories, for each connected component Gplq0 � pVplq
0 , Eplq0 q, for

each i P Vplq
0 , mintmin

jPVplq
0

∥∥xj � xi

∥∥ , distpxi, BWqu ¤ min
jPNN zVplq

0

∥∥xj � xi

∥∥. I.e.
for any agent, its depth does not improve when disregarding agents belonging to
other connected components than that of agent i.

Then

lim
kÑ8

x P XSC (3.199)

and

max
iPV0

r̄ipkq � min
iPV0

ripkq @G0 � pV0, E0q P tGp1q0 , . . . , GpNcq
0 u (3.200)

Proof sketch. The assumptions of the proposition are constructed in such a manner that
r̄i and ri can be computed independently of all other agents but the ones in the same
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connected component of G as agent i. To see this, consider any connected component Gplq0
of G and note that:

• By assumption (iv),

ripkq � mintdistpxipkq, BWq, min
j�i

1
2

∥∥xjpkq � xipkq
∥∥u (3.201)

� mintdistpxipkq, BWq, min
jPVplq

0 ztiu

1
2

∥∥xjpkq � xipkq
∥∥u (3.202)

(3.203)

• Assuming some Chebyshev center x̄ipkq is given,

r̄ipkq � depthpx̄ipkq,Vipxpkq, Wqq (3.204)

� depthpx̄ipkq,Vipxipkq, txjpkq | j P Vplq
0 u, Wqq (3.205)

where Vipxipkq, txjpkq | j P Vplq
0 u, Wq is defined as

tw P W |‖xipkq � w‖ ¤
∥∥xjpkq � w

∥∥@j P Vplq
0 ztiuu. (3.206)

Disregarding j R Vplq
0 is valid by assumption (iii). At x̄ipkq the distance to half planes

of Vi associated with agents j R Vplq
0 is greater than r̄ipkq by construction.

The illustrated independence ensures that we may construct quantities analogous to
rmpkq, r̄mpkq and r̄M pkq for each connected component of G which, locally to the con-
nected component in question, inherits the important properties of its global counterparts.
In particular the non-decrease and convergence of the local variant of rmpkq is vital. The
result follows from applying a modified version of theorem 3.13 to each connected com-
ponent using these specialized component-local quantities in place of the regular global
rmpkq and r̄M pkq in the proof of theorem 3.13 as well as in the other results the theorem
relies on.

A complete proof involves the rewriting of a trove the results related to d-dimensional
convergence into a the specialized form required by the theorem using quite heavy nota-
tion and restrictive assumptions. This is outside the scope of the thesis. Meanwhile, the
theorem as well as the proof sketch highlights some of the elements to keep in mind for
generalizations.

While the assumptions of the theorem are quite restrictive, we have already seen one
example where it applies. Recall 2D simulation 4 in figure 2.17a in section 2.7 - the
example illustrating the degenerate case with non-unique Chebyshev centers. After a few
iterations, the agent radii are independent of one another. Consistent with the theorem,
the MAS converges to a set of Chebyshev configurations.
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3.4.8 Concluding remarks on multi-dimensional convergence

The theoretical developments of section 3.4 for multi-dimensional target environments
formally establish asymptotic MAS convergence to the set of Chebyshev configurations
over time-varying connected interaction graphs. The deployment objective of convergence
to optimal static configurations is achieved under the sufficient condition of unique agent
Chebyshev centers along the trajectory of the MAS. Convergence for single-dimensional
target environments is a special case in which the assumptions of the results always hold.
In particular we establish convergence to an unique static Chebyshev configuration for a
wider class of agent dynamics and agent control laws than assumed for analogous results
in section 3.3. As such convergence to optimal static configurations for deployment to
one-dimensional environments is now a solved problem.

Furthermore, the results verify that consensus-mechanisms are central for the convergence
of the MAS to the set of Chebyshev configurations. Over time-varying and connected
interaction graphs, the subsets of Chebyshev configurations to which the MAS converges
are associated with consensus on Chebyshev radii and agent depth. Again deployment to
one-dimensional environments represents a special case. The analogous multi-dimensional
result can be seen as a generalization from 1D in the following sense: When imposing
the connectedness-property inherent in the 1D case to the multi-dimensional case, the
property of convergence to consensus on Chebyshev radii and agent depth is maintained.

3.4.9 Towards generalized convergence proofs

The novel connection to consensus theory as well as the introduction of the interaction
graph opens for several interesting lines of research.

An extension of the results in order to show convergence to consensus within each con-
nected component of a time-varying interaction graph, starting from any arbitrary initial
structure, stands out in this respect. Such a result would be sufficient to show MAS
convergence to the set of Chebyshev centers in the general case.

The illustrative examples presented so far highlight key phenomena of the framework.
With regards to the 2D simulations in section 2.7, extensions of the interaction graph
based convergence results are needed to explain the exhibited convergence in respectively
2D simulation 2 in figure 2.13 and 2D simulation 3 in figure 2.14. In both cases the
observed behavior is less surprising given the presented theoretical developments. In par-
ticular the simulations resemble situations with convergence to consensus among agents
within the same connected component of a graph. However, the conditions are compli-
cated by the asymmetric dependencies among the strongly connected components of the
directed interaction graph. Moreover, the time-varying nature of the number of connected
components as well as members in each connected component must be accounted for.

The issue with degeneracy exemplified in 2D simulation 4, figure 2.17, must be dealt with
separately. It illustrates that convergence to the set of Chebyshev centers is not sufficient
to ensure convergence to optimal static configurations. While any Chebyshev configura-
tion is optimal in the sense discussed in section 3.4.3, Chebyshev configurations are not
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inherently static in degenerate cases. Further to the goal of achieving the deployment
objective, modifications are in order.

Lack of convergence to the set of static configurations in degenerate cases can be regarded
as a deficiency in the framework specification. The MAS behavior is under-constrained
when the dimension of the set of agent Chebyshev centers is non-zero. Ad-hoc solutions
include constraining the agents to stay at their current state whenever they are at a
Chebyshev center. However, such a scheme could steer agents to configurations which do
not exhibit the desired degree of symmetry. See figure 3.17 for an example. In both cases
depicted, the agents are in a Chebyshev configuration. Still figure 3.17b exhibits a better
coverage of the target region.

(a) MAS in Chebyshev center configuration. (b) MAS in general center configuration.

Figure 3.17: Symmetry of MAS Chebyshev configurations in a degenerate case. Dots
indicate agents positions. Circles are Chebyshev balls. Red lines indicate sets of agent
Chebyshev centers. Voronoi cells are indicated by colored regions.

Figure 3.17b shows an example of a general center configuration of a MAS, in which all
agents are at a general center of their respective cells. The general center was introduced
in [Nguyen, 2016] and an algorithm for its computation was derived in [Hatleskog, 2017].
The general center of a cell can be found by recursively computing the Chebyshev center
within the previous set of Chebyshev centers, starting with the Chebyshev centers of the
original cell as the first set2. The reader is referred to [Hatleskog, 2017] for details. For
the case of figure 3.17b, observe that the set of Chebyshev centers of the original agent
Voronoi cells are depicted with red lines. Additionally both agents are at a Chebyshev
center of these line segments.

In [Nguyen, 2016] the author outlines a promising approach for achieving MAS conver-
gence to a general center configuration. The author proposes the use of control actions
ensuring a particular kind of contraction of each agent towards their current general cen-
ter. A linear controller αipx

g
i � xiq, where xg

i is the agents’ current general center and
αi P p0, 1s, satisfies the above requirement. For the particular case of single integrator dy-
namics and such linear agent controllers, the conjectured property of MAS convergence
to a general center configuration is supported by simulations in [Hatleskog, 2017].

Subsequent to such an adaption of the framework, the framework convergence results must
be revisited once more. This time with the goal of proving convergence to a general center
configuration. To accommodate the more complex inter-agent dependencies induced by

2A projection is necessary for embedding the polytopic set of Chebyshev centers in a space in which
it is full-dimensional. Next the Chebyshev center within this set is computed in the normal manner by
utilizing this latter embedding.
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the general center, the interaction graph notion will have to be extended. Observe from
3.17b that the general centers of the agents depend on the half-plane separating the agents.
This is not reflected in the MAS interaction graph. Meanwhile the same figure indicates
that an appropriate extension of the interaction graph notion can have some explanatory
power. Observe that the MAS configuration with respect to the 1D environment indicated
by the dashed line in the middle of the figure is the unique static 1D configuration.

To summarize, we propose the following program for completing the convergence proofs
as well as remedying the degeneracy issue:

1. Extend results on convergence to Chebyshev configurations over time-varying con-
nected interaction graphs to convergence over time-varying graphs. A starting point
would be to show convergence assuming the number of components and their mem-
bers are time-invariant.

2. Modify the framework as suggested in [Nguyen, 2016] in order to steer the agents
towards general center configurations.

3. Prove convergence of the MAS to the set of general center configurations by ex-
tending the interaction graph notion as well as related results on convergence to
Chebyshev configurations.

If such a program were to succeed, the resulting deployment framework would have formal
proofs of convergence to configurations satisfying the deployment objective.

This finalizes the discussion on convergence in multi-dimensional target environments.
We refer the interested reader to section 3.5 for chapter notes. Next the thesis conclusion
follows in chapter 4.
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3.5 Chapter notes

The interaction graph is a novel notion for the framework discussed in this thesis. Mean-
while, the naming is inspired by graphs used in related settings. For instance the authors
of [Mesbahi and Egerstedt, 2010] define particular interaction graphs for use in the context
of formation control. As the interaction graph defined in this manuscript, the interaction
graphs in [Mesbahi and Egerstedt, 2010] encode inter-dependencies between agents.

[Mesbahi and Egerstedt, 2010] also discusses the notion of connectivity preserving control
in relation to formation control. Further to the introduction of the interaction graph
to the present framework, a natural question is whether one can construct control laws
maintaining interaction graph connectivity along the trajectory of the MAS. This is a
topic for further research.

A topic which has not been addressed in any research works on Chebyshev center based
deployment, is that of time-varying environments W. In addition to being relevant for
practical deployment scenarios, such a research direction could also inform the conver-
gence results for time-varying disconnected interaction graphs. To see this, assume that
a MAS has two strongly connected components in its directed interaction graph and
also a globally reachable node. E.g. a globally reachable node in component one. In this
case component one is unaffected by component two. Thus component two cannot affect
component one, and the boundary component two has towards component one therefore
resembles a time-varying environment boundary.

While we have chosen to use the section on convergence in multi-dimensional environments
to generalize the 1D case beyond single integrator dynamics and linear controllers, several
of the results derived in section 3.3 could also easily have been adapted in a direction of
increased generality. E.g. theorem 3.8 could be adapted to accommodate the case of time
varying gains α.

Further to the discussion on finite time convergence in section 3.3, a natural question is
whether there exists any control scheme for the framework which guarantees finite time
convergence. E.g. by having time-varying gains αipkq. This is a topic for future research.

While we model agents as point masses, real agents obviously have a certain extent.
The non-decrease of rmpkq is convenient in this context. Assume that d̄ is the minimal
distance between any pair of agents such that collision is avoided. Provided rmp0q ¥ d̄,
the non-decrease of rmpkq ensures collision avoidance.

In [Nguyen et al., 2017; Nguyen, 2016] the authors pursue a proof of MAS convergence
to the set of Chebyshev configurations by showing the non-increase and convergence to
zero of the energy-like function given in (3.98). However, a counterexample in [Hatleskog,
2017] illustrates that the result has certain limitations. These limitations are also difficult
to fix, hence we chose to not follow this line of research.
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Chapter 4

Conclusion

This thesis considers Voronoi-based multi-agent deployment utilizing the Chebyshev cen-
ters of the agents’ Voronoi cells as the target points. Under mild assumptions, such a
control policy leads to convergence of the multi-agent system (MAS) to particular static
configurations. In these so-called static Chebyshev configurations, all agents are at a
Chebyshev center of their associated Voronoi cell. The goal of the thesis is to provide
a theoretical framework for the characterization of Chebysev configurations and conver-
gence properties. While the subject is not new, the current work provides several novel
results contributing to both structural analysis and the qualitative characterization of the
MAS dynamics and behavior.

For the special case of deployment to R, we i) prove asymptotic convergence to an unique
static Chebyshev configuration, and ii) prove that the MAS achieves consensus on the
agent Chebyshev radii in this asymptotic configuration. For the general case of deployment
to Rd, we first extend an existing result on convergence of the minimal distance any agent
has to its cell boundary. Next we prove convergence of the minimal Chebyshev radius.
The most important contribution of the thesis is related to the introduction of a novel
undirected time-varying interaction graph. Exploiting this graph, we show that consensus-
like behavior is inherent to all static MAS configurations. In particular we prove that all
subsets of agents within the same connected component of the interaction graph have
consensus on their Chebyshev radii whenever the MAS is in a static configuration. The
final result considers MAS deployment to Rd when the time-varying interaction graph
remains connected along the MAS trajectories. We prove that the MAS converges to
a Chebyshev configuration in which all agents achieve consensus with respect to the
Chebyshev radii. The convergence results obtained for deployment in R and Rd represents
a significant strengthening of theoretical convergence results pertaining to the framework
at hand. These are the first results proving convergence to Chebyshev configurations for
multi-agent systems with more than one agent. Moreover, the consensus-like behavior has
not been uncovered in previous works.
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In the context of the present framework, the deployment objective entails driving the
MAS to a static Chebyshev configuration. As reiterated in the thesis, convergence to a
Chebyshev configuration is necessary to fulfill this goal. In this respect, generalizing the
new convergence results to interaction graphs with several connected components is a per-
tinent candidate for further research on the framework. Meanwhile, we also highlight the
fact that convergence to the set of Chebyshev configurations does not imply convergence
to a static configuration. In degenerate cases, additional constraints must be imposed.
This follows from the non-uniqueness of Chebyshev centers. We point to previous work
suggesting the so-called general center as a mean to solve this issue. Merging the new
convergence results with the general center notion thus represents the second interesting
line of research. Finally, the framework would also benefit from a relaxation of the regu-
larity constraints imposed on the agent dynamics. All of the three mentioned extensions
will be addressed in future work.



Appendix A

Generalizing dynamics

For completeness we briefly sketch how the assumptions on agent dynamics can be gen-
eralized. Notably this generalization allows agents to have dynamics of higher dimension
than the space to which they are deployed. The generalization proposed here follows
Nguyen [2016].

Recall from section 2.1 that the assumptions on agent dynamics are motivated by the
control law requirements (2.68)-(2.70) ensuring the following:

(i) By (2.69): If an agent is at a Chebyshev center of its Voronoi cell Vipkq, it can
pursue a trajectory such that xipk � 1q remains in the set of Chebyshev centers of
Vipkq. Thus for all xi P W all agents must have sufficient control authority to ensure
that xipk � 1q � xipkq can hold.

(ii) By (2.68): If an agent is not at a Chebyshev center of its cell, it may be steered to
some state xipk � 1q such that depthpxipk � 1q,Vipkqq ¡ depthpxipkq,Vipkqq. This
is ensured provided the agent can move from the boundary and to the interior of
any full-dimensional convex set.

The first generalization is to consider deployment in the agents output space rather than
their state space. I.e. all agent outputs evolve in a common output space Rd. The agents
are deployed to the target environment W � Rd. Assume that the dynamics of all agents
i P NN are governed by the discrete time linear time-invariant equations

vipkq � Aivipkq �Biuipkq P Rni (A.1)
xipkq � Civipkq P Rd (A.2)

where Ai P Rni�ni , ui P Rmi , Bi P Rni�mi and Ci P Rd�ni . This notation is somewhat
non-standard since one usually would let xi denote state and yi denote output. By letting
xi be the output, most of the definitions and derivations of the previous chapters still
make sense. For instance, the Voronoi cells are still computed with respect to the xi’s.
The same goes for agent depth and Chebyshev radii. However, the interpretation of xi

changes from agent state to agent output.
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The control law requirements also remain the same. The next step is to impose a new
set of regularity constraints on the dynamics in order to ensure that the control law
requirements (2.68)-(2.70) can be met.

Assumption A.0.1 (Regularity conditions for output space deployment).

(i) The pair pAi, Biq is controllable for all i P NN .

(ii) The pair pCi, Aiq is observable for all i P NN .

(iii) For all x̂i P Rd and for all i there exists pv̂i, ûiq such that x̂i � CipAiv̂i �Biûiq. I.e.
the system

v̄i � Aiv̄i �Biūi (A.3)
ȳi � Cix̄i (A.4)

is feasible for any yi P W.

(iv) For all agents i, any full-dimensional convex set P � Rd is output controlled λ-
contractive with respect to the agent dynamics. I.e. for any xi P intpP q and any
admissible vi satisfying Civi � xi there exists ui such that

CipAivi �Biuiq P λpP ` t�xiuq ` xi (A.5)

for some λ P r0, 1q whenever xi P P .

Now (2.69) is satisfied by (iii) in assumption A.0.1. Simple adjustments to the proof of
2.5.2 shows that also (2.68) is satisfied.

Still, particularly (iv) in assumption A.0.1 is relatively restrictive. In order to relax this
condition, Nguyen [2016] introduces the following notion:

Definition A.0.1. A full-dimensional convex set P � Rd is K-step controlled λ-contractive
with respect to the dynamics of an individual agent i P NN if for any xip0q P intpP q and
any admissible vip0q satisfying Civip0q � xip0q there exists an input sequence tuip0q, . . . , uipK�
1qu such that

xipKq � CipAivipK � 1q �BiuipK � 1qq P λpP ` t�xip0quq ` xip0q (A.6)

for some λ P r0, 1q whenever xi P P .

The following statement holds by theorem 4.1 in Nguyen [2016]: For any agent satisfying
regularity conditions (i), (ii) and (iii) in assumption A.0.1 there exists a finite integer Kpλq
such that any full-dimensional convex set P � Rd is Kpλq-step controlled λ-contractive
for any λ P p0, 1q.

Thus the non-standard notion of K-step controlled λ-contractiveness can be exploited to
relax the regularity conditions even further.

We end this section by outlining how deployment while exploiting this notion could be
conducted. In this outline, we assume that all agents can communicate over a centralized
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communications channel. Start from some static initial configuration xp0q. At time zero
each agent computes its Voronoi cell and a trajectory which will steer it to some output
with increased depth with respect to its cell. Next the regular deployment framework is
bypassed until all agents have reached such an output, still with respect to their time-
zero Voronoi cells. I.e. all agents simply follow the trajectories they have computed at
time zero. Once all agents have messaged over the centralized communications channel
that they have reached their respective targets, the procedure restarts with the present
configurations as a new initial condition. Agents which are at at Chebyshev center at time
zero can simply message that they have reached their target immediately. By theorem 4.1
in Nguyen [2016], the procedure will restart within some finite time K P N. In a sense, we
vary the clock speed of the deployment framework. Each tick starts after all agents have
communicated that they have reached their former targets. The time between each tick
is finite by theorem 4.1 in Nguyen [2016].

Note that for any practical scenario, the strict assumption of having a centralized com-
munications channel should be replaced in favor of a distributed scheme. It is beyond
the scope of the thesis to discuss the details of the modifications. In fact, it is an open
research problem to carve out the details of such a scheme. We refer to Nguyen [2016] for
more on this proposal.
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