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Abstract

Nowadays hydraulic fracturing is a key part of the oil and gas industry to enhance the field’s
production. Therefore, is important to understand how fractures initiate and how to extract im-
portant information from them for further models. The aim of this work is to provide some
insights about how the pressure declines with time during a Micro/minifrac test, discuss dif-
ferent techniques for minimum stress determination, and to create a numerical modeling to
determine the fracture initiation using plastic models. To accomplish these goals the first part
of the work is a theoretical review, in which it can be found the factor that controls the behavior
of the pressure decline, followed by fundamentals and advantages of two methods for mini-
mum stress estimation (system stiffness approach and G function). The second objective, is to
perform the numerical model by mimicking a typical rock undergoing a normal stress regime
at 3000 m depth with a well in the center of the model of 0.3 m radio, afterwards a mesh was
built in which the cell size varies depending on the location of the elements, being 0.02m at the
wellbore wall and 0.25m at the edge of the model. During each simulation, the pressure inside
the well is increased at different injection stages, simulating a fracturing operation. The rock
properties are constant during all the simulations besides the hardening rule. It was found that
only by changing the hardening rule is unlikely to reach the tensile failure criteria and initiate
the fracture; as a matter of fact, at the highest well pressure, it was noticed a stress cage that
builds up tangential stress making more difficult to fracture the rock. Another important part
of this work was to assess the effect of the packer on the rock, the results show a plastic zone
deformation that goes beyond the packer and generates some damage to the rock above and
below the packers.
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Chapter 1
Introduction

The fluctuating prices of the oil an gas of the past few years led to the operators companies
to improve their operational efficiency for maximal production. Hydraulic fracturing has and
has had a key role in the increment of production for many years in the industry by making
profitable reservoir with low permeability or bypassing the damage zone. In order to execute
the hydraulic fracturing in an optimum way the fracture has to be previously designed with the
objective of preparing pump, tubing, proppant, and fluid, among other factor (Michael J. Econo-
mides (2007)). Of all the parameter that takes place during the design stage of a fracture oper-
ation the fracture initiation pressure and the minimum horizontal stress magnitude play a key
role. Normally to determine these parameter a micro/minifrac test is performed before the ac-
tual fracturing job to ensure the model correspond to the reality.

Fracture design models often use commonly elastic or poroelastic models (Nordgren et al.
(1972), Charlez et al. (1997), Valkó et al. (1997)), which could lead to a significant difference
between the theoretical fracture initiation pressure and the reality of the fracture operation in
rocks that exhibit an inelastic behavior. To overcome this weakness usually a more advanced
model needs to be considered, as well as incorporate realistically the nonlinear behavior of the
rocks.

For a long time plastic models have been incorporated in different area of material, rocks
and soil mechanics. Particularly in the oil and gas industry the effects of hardening/ softening
of rocks have been quantified in core plugs aiming to applications on wellbore stability, sanding
and reservoir scale application (Bradford et al. (1994), Chen et al. (2016), Risnes et al. (1998),
Han et al. (2005)).

Regarding hydraulic fracturing, there have been several studies performing finite element
analysis for fracture propagation (Ingraffea et al. (1976), Sepehri et al. (2015)) or highlighting
the importance of stress cages for controlling mud losses due to hydraulic or natural fractures.
(Feng et al. (2015), Alberty et al. (2004)).

This work is divided into two main parts. The first part is a theoretical review of the
mini/microfrac test with special emphasis on how the minimum horizontal stress can be de-
termined through pressure decline analysis and several ways to do so. The second part is a
numerical modeling analysis of the behavior of plastic materials undergo high pressure to sim-
ulate fracture initiation situation.
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The approach of this work consists on performing a finite element analysis in a model built
to recreate a typical rock undergoing a normal stress regime at 3000m depth with an already
drill borehole of 0.3m radio a hardening rule is set and the pressure inside the wellbore is in-
creased to emulate a fracture operation. The goal is to determine the effect of the plastic model
on the stresses around the borehole, also to determine if under this kind of model is possible to
reach the tensile failure criteria and lastly quantify the effects that the packer could have in a
microfrac operation.

The outline of this work starts by presenting the theoretical concept regarding plasticity
theory, followed by Chapter 3 in which is presented a theoretical review of micro/minfrac test
describing the behavior of the pressure decline curve and interpretation of minimum horizontal
stress. Chapter 4 describes the implemented methodology during the project. The results and
analysis are presented in Chapter 5, and finally, Chapter 6 are shows the most important remarks
and conclusions.
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Chapter 2
Theory

2.1 Plasticity
The theory of linear elasticity is useful for modelling materials which undergo small deforma-
tions and which return to their original configuration upon removal of the load. Almost all
real materials will experience some permanent deformation, which remains after removal of the
load. With metals, rock or any material, important permanent deformations will usually occur
when the stress exceed some critical value, called the yield stress.

Elastic deformations are reversible; the energy used in the deformation is stored as elastic
strain energy and is completely recovered after releasing the stress. Permanent deformations
involve losing of energy; these processes are known as irreversible, in the sense that the original
state can be reached only by the expenditure of more energy.

The classical theory of plasticity described materials which at the beginning deform elasti-
cally but starts to deform plastically after reaching the yield stress. In metals and other crys-
talline materials the manifestation of plastic deformations at the micro-scale level is because
of the movements and migration of grain boundaries on the micro-level. In sands and other
granular materials, plastic flow is due to the permanent reorganization of individual particles
and to the irreversible crushing of individual particles Kelly (2013).

The prediction of at which stress state the rock will fail is a meaningful phenomenon for
applications in civil engineering, petroleum industry, among others. Rock failure is a complex
phenomenon which is still not fully understood. A failure point can be defined fairly easily in
a uniaxial test in Fig. 2.1. The situation is not that clear for the higher confining pressures as
shown in Fig 2.2, the increase in the confining pressure gradually decreasing of the stiffness of
the material, but increases the bearing load capabilities as the strain increase. Thus the mate-
rial cannot be considered as completely failed, although it has been significantly altered at this
stage. Fjaer et al. (2008)
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Figure 2.1: Sketch of stress versus deformation in a uniaxial compression test.

Tresca in 1864 had the first approach to plasticity theory, by an experiment with metals
extrusion and published his well-known yield criterion that will be discussed on section 2.2.1.
Additional progress in yield criteria and plastic flow rules were made in the following years.
The 1940s; Prager, Hill, Drucker, and Koiter among others brought together many fundamental
aspects of the theory into a single framework. The arrival of powerful computers in the 1980s
and 1990s provided the impulse to develop the theory further, giving it a more rigorous basis
founded on thermodynamic principles, and bring it the need to study many numerical and com-
putational aspects to the plasticity problem. Kelly (2013)

Figure 2.2: Triaxial testing: typical influence of the confining pressure on stress vs strain relationship.

The stress-strain curve for a rock subjected to a uniaxial compression can be divided theo-
retically into several regions (Figure 2.3). In region OAB, the curve is almost linear. The curve
continues to growth in region BC, with a change in the slope. The strain reaches a maximum
at C, afterward it falls during the course of region CD. In the first region, OAB, the behavior is
nearly elastic, loading and unloading in this region will not produce permanent deformation in
the framework or properties of the rock. In the second region, BC, the slope of the stress-strain
curve, also known as the tangent modulus, decreases gradually to zero as the stress increases.
In this region (BC), irreversible changes take place in the rock, and following cycles of loading
and unloading would show hysteresis curves, an unloading cycle such as PQ that starts in region
BC would provoke permanent strain εo when the stress reaches zero. If the rock is reloaded,
a path such as QR would be drew out until rejoins it, at a stress greater than the stress at P.
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The third region CD, starts at the point of maximum stress C and has a negative slope; in this
region the ability of the rock to sustenance a load has decreased. This region of the stress-strain
curve is not reached in a testing machine in which the stress is the controlled variable, on those
cases a violent failure of the specimen will occur near point C, commonly referred as a uniaxial
compressive strength. J. C. Jaeger and Zimmerman (2007)

The second region, BC, the behavior of the rock is identified as a plastic behavior or duc-
tile state, or simply to be ductile. As indicated previously this behavior is characterized by the
capability of the rock to support greater loads as it deforms. The range of stresses in which a
rock shows elastic or plastic behavior depends on the mineralogy, microstructure, and also on
factors such as the temperature.

Figure 2.3: Complete stress-strain curve for a rock under compression

After exceeding the elastic limit (point B), the material goes through plastic flow. Further
increases in stress are usually required to preserve the plastic flow and an increase in the defor-
mation; this phenomenon is known as hardening (see section 2.2.3).

2.2 Plasticity Theory
According to Kelly (2013) the plasticity theory for solid materials is founded in the following
assumption:

• The response is independent of rate effects.

• The material is incompressible in the plastic range.

• There is no Bauschinger effect (Bauschinger effect represents loss of isotropic behavior
in strength-strain behavior produced due to deformation produced in metallic materials).

• The yield stress is independent of hydrostatic pressure.

• The material is isotropic.
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The first two items will usually be very good approximations, the other three may or may
not be, depending on the material and conditions. For example, normally metals will be as-
sumed to be isotropic. Nevertheless, after large plastic deformation, however, for example in
rolling, the material will have become anisotropic: there will be distinct material directions and
asymmetries.Is important to notice that Kelly (2013) is describing the plasticity in metals, be-
side the fact that usually metals are tested under tension and rock under compaction, the main
difference in behavior is that rocks are porous material.

The theory of plasticity is based on four major concepts:

1. Plastic strain. The total strain increase associated with a stress increment is presumed to
consist of an elastic part and a plastic part:

dεij = dεeij + dεpij (2.1)

dεeij is related to the stress increment by traditional elasticity theory, and will disappear when
the stress is released. The plastic strain dεpij is a permanent deformation, and will remain when
the stress is relieved.

2. A yield criterion. Yield as the point at which permanent changes occur in the rock. Thus,
the yield point characterizes the onset of plastic deformation. Then, yield can be defined more
accurately than failure. A yield criterion is similar to the failure criteria and describes the sur-
face in stress space where plasticity began.

3. A flow rule. The flow rule describes the way that plastic strains change for a given load-
ing situation.

4. A hardening rule. A rock under given conditions may withstand increasing load after
the initial failure. This is described by the hardening rule. The hardening (or, alternatively, the
softening) may be understood as a change of the yield surface in principal stress space. This
can be defined by changing Eq. 2.2 to

f(σ′1, σ
′
2, σ

′
3, κ) = 0 (2.2)

where κ is a parameter describing the hardening effects.

For rocks that are loaded below the yield stress, the stress-strain behavior is normally ide-
alized as having a linear relationship between stress and strain, as indicated in the previous
section. For rocks that are loaded beyond the yield point, it is necessary to characterize the
stress-strain behavior in the region BC of Figure 2.3.

Several idealizations of the plastic behavior of a material can be made (see Figure 2.4). The
first one is called plastic behavior with strain hardening. It consists of a linear strain-stress
relationship until the yield point, after the yield stress σ0 is reached, the stress-strain curve con-
tinues to rise but with a gentler slope. The stress σ0 is known as the yield stress under uniaxial
loading (Figure 2.4a). A yet simpler idealization, in which the stress remains at σ0 as the strain
continues to increase. A material that obeys a stress-strain law such as that shown in Figure
2.4b. is known as elastic-perfectly plastic. An additional simplification, in which the elastic
strains are ignored entirely and assumed to be negligible compared to the plastic strains, is that
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of a rigid-perfectly plastic material (Figure 2.4c).J. C. Jaeger and Zimmerman (2007)

Figure 2.4: Idealized uniaxial stress-strain curves: (a) elastic plastic with strain hardening, (b) elastic-
perfectly plastic, and (c) rigid-perfectly plastic. Unloading curves are shown as dashed lines.

2.2.1 Yield Criteria
Before going into a detailed definition of the yield criteria is important to give at least a basic
definition of shear failure. Shear failure occurs when the shear stress along some plane in the
sample is sufficiently high. Eventually, a fault zone will develop along the failure plane, and
the two sides of the plane will move relative to each other in a frictional process. Failure occurs
along a clearly defined plane of fracture, this plane is typically inclined at an angle less than 45◦

from the direction of σ1 (the axial direction, in this case). This plane is characterized by shear-
ing movement along its surface and is denoted as a shear fracture. If the confining pressure is
increased, so that the rock has fully ductile behavior, a network of small shear fractures appears,
together with plastic deformation of the individual rock grains. J. C. Jaeger and Zimmerman
(2007).

Now, we can assume that yield will occur at a particle when some combination of the stress
components reaches some critical value.

F (σ11, σ12, σ13, σ22, σ23, σ33) = κ (2.3)

F is some function of the 6 independent components of the stress tensor and κ is a material
property which can be determined experimentally. the function F will also contain other param-
eters that must be found experimentally.

On the other hand, it is useful to express yield criteria in terms of principal stresses. As-
suming that the principal stresses are known everywhere, (σ1, σ2, σ3). Yield must depend in
some way on the microstructure on the direction of the axes x1, x2, x3, but this information is
not contained in the three numbers (σ1, σ2, σ3). Thus we express the yield criterion in terms of
principal stresses in the form

F (σ1, σ2, σ3, ni) = κ (2.4)

Where ni represent the principal directions. These give the orientation of the principal
stresses relative to the material directions x1, x2, x3. If the material is isotropic, the response do
not depends of some material direction, then the yield criterion can be conveyed in the simple
form. Kelly (2013).

F (σ1, σ2, σ3) = κ (2.5)
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Mohr Coulomb criterion

It is established that the frictional force that acts against the relative movement of two objects
in contact is governed by on the force that presses the bodies together. Thus, it is realistic to
accept that the critical shear stress (τmax) for which shear failure occurs, depends on the normal
stress (σ′) acting over the failure plane. That is:

|τmax| = f(σ′) (2.6)

This assumption is called Mohrs hypothesis.

In the τ − σ′ plane, Eq. 2.6 defines a line that separates a safe zone from a failure region,
and Eq. 2.6 might be consider as a representation of the failure surface in the τ − σ′ plane. The
line is often known to as the failure line or the failure envelope. An example is shown in Figure
2.5, where we have also indicated the three principal stresses and the Mohrs circles connecting
them

Figure 2.5: Failure line, as specified by Eq.2.6, in the shear stressnormal stress diagram. Mohr circles
connecting the principal stresses are also shown

The stress state of Figure 2.5 represents a situation with no failure, as no plane within the
rock has a combination of τ and σ′ that touch the failure line. Assume now that σ′1 is increased.
The circle form by connecting σ′1 and σ′3 will expand and eventually reach the failure line. The
failure criterion is then satisfied for some plane(s) in the sample, and the sample fails. Note that
the value of the intermediate principal stress (σ′2) has no influence on this situation.

Since σ′2 by definition lies within the range (σ′3, σ′1), it does not disturb the outermost of
Mohr is circles, and therefore it does not affect the failure. So, pure shear failure, as defined
by Mohr is supposition, will be governed by the minimum and maximum principal stresses and
not on the intermediate stress.

Mohr-Coulomb criterion, which is based on the assumption that f (σ′) is a linear function of
σ′:

|τmax| = S0 + µσ′ (2.7)

S0 is the inherent shear strength (also called cohesion) of the material.
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Here µ is the coefficient of internal friction. The final term is obviously chosen by analogy
with sliding of a object on a surface, which to the first approximation is defined by Amontons
friction law:

τmax = µσ′ (2.8)

In Figure 2.6 it is drawn the Mohr-Coulomb criterion and a Mohrs circle that touches the
failure line. The angle defined in the Figure is called the angle of internal friction (or friction
angle) and is related to the coefficient of internal friction by

tanϕ = µ (2.9)

Figure 2.6: MohrCoulomb criterion and Mohrs circle showing a critical stress state.

The MohrCoulomb failure surface looks in three dimensional principal stress space as an
irregular hexagonal pyramid shape, failure is independent of the intermediate principal stress.
To build the surface is necessary to abandon momentarily the convention σ′1 > σ′2 > σ′3. The
projection onto (σ′1, σ

′
3) plane when σ′1 > σ′3 and σ′1 < σ′3 can be represented as two straight

lines with symmetry around σ′1 = σ′3. (figure 2.7a). Similar projection can be perform on the
remaining two planes obtaining an irregular hexagon pyramid shape shown on figure 2.7b. The
surface is not differentiable at the corners, a fact that may cause problems in numerical calcula-
tions involving the criterion. Fjaer et al. (2008).

Figure 2.7: (a)Projections onto the (σ′1, σ
′
3) plane, of the failure surface. Symmetry about the projection

of the hydrostatic axis (dashed line). (b) The MohrCoulomb failure surface in principal stress space.
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Tresca Yield Condition

By choosing specific forms of the function f (σ′) of Eq. 2.6, various criteria for shear failure are
obtained. The simplest possible option is a constant. The resulting criterion is called the Tresca
criterion. The criterion basically states that the material will yield when a critical level of shear
stress is touched:

|τmax| =
1

2
(σ′1 − σ′3) = S0 (2.10)

In a Mohr τ − σ′ plot the Tresca criterion appears simply as a straight horizontal line.

The Tresca criteria representation on a three-dimensional principal stress space will be six-
sided cross-section as the Mohr-Coulomb, but for this criterion, the section will be a regular
hexagon. Since the friction angle is zero, the failure surface will be parallel to the hydrostatic
axis.

Von Mises Yield Condition

The Von Mises criterion states that yield occurs when the principal stresses satisfy the Relation

(σ′1 − σ′2)2 + (σ′1 − σ′3)2 + (σ′2 − σ′3)2 = C2 (2.11)

C is a material parameter related to cohesion

The criterion is seen to be identical to the Tresca criterion for σ′2 = σ′1 or σ′2=σ
′
3. Like the

Tresca criterion, the von Mises criterion describes a shear failure mechanism where the failure
condition is independent of the stress level in the material. The von Mises criterion is com-
monly used to describe yield in metals. It has however very limited applications for rocks. In a
three-dimensional principal stress space the criteria would behave as a cylinder where the center
is the hydrostatic axis.Fjaer et al. (2008)

2.2.2 Plastic flow
The function of the flow rule is to describe the development of the plastic strain increments.
The basic assumption concerning plastic flow states

dεij = dλhij(σ
′
kl) (2.12)

Where λ is a scalar not indicated by the flow rule. hij are functions of the stress components.
There are two main consequences of Eq. 2.12. First, it claims that the direction of plastic flow
is given by the stress state, and is not influenced by the stress increments or by stress gradients.
Second, the amount of the plastic strain is not unique. These states make sense intuitively for an
perfectly plastic material since the yield stress doesn’t change for any magnitude of the plastic
strain.

The assumption that plastic strains are independent of stress increments, can be easily ex-
plained using the following simple example. Consider a body placed on some surface and
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assume that a force close to overcome the static friction between the object and the surface is
applied. Now, a small force increment is applied at some angle to the primary force. If the
force increment has a component in the direction of the primary force, the static friction will be
overcome, and the body will start to move in the direction of the primary force, regardless of
the direction of the force increment. Fjaer et al. (2008)

Eq 2.12 places some restrictions on the plastic behavior, nevertheless it is far from a com-
plete explanation which requires a specification of the functions hij . Some hint is found from
the fact that plastic deformation is a dissipative process, which implies that∑

ij

σ′ijdε
p
ij ≥ 0 (2.13)

A significant simplification results from the assumption of von Mises (1928), that thehij s
can be derived as the gradient of a function g in stress space:

dεij = dλ
∂g

∂σ′ij
(2.14)

The function g is named plastic potential and have to be chosen such that Eq. 2.13 is obeyed.
Though the assumption of a plastic potential decreases the necessity for a specification of six
functions hij of six variables to one function g of six variables, it is by no means sufficient to
completely specify plastic flow. The plastic potential is also called a non-associated flow rule.

One explanation to the problem is Druckers (1950) description of a stable, work hardening
material. Such a material is defined by a harsher version of Eq. 2.13:∑

ij

dσ′ijdε
p
ij ≥ 0 (2.15)

Note that while Eq. 2.13 is a thermodynamic law, meanwhile Eq. 2.15 is not, and thus the
consequences resulting from Eq. 2.15 need not be followed by all materials. From Eq. 2.15
Drucker establish that the plastic potential g is identical to the function f describing the yield
surface, that is:

dεpij = dλ
∂f

∂σ′ij
(2.16)

This flow rule is known as associated flow-rule. The flow rule is associated with a specific
yield criterion. Fjaer et al. (2008).

Associated Flow Rules

The yield surface f(σ′)=0 is represented as a projection on the σ1, σ3 plane as a straight line;
the material is subjected to the stress state shown in the point A of the figure 2.8. The normal
to the yield surface is in the direction df /σij and so the associated flow rule Eq. 2.16 can be
understood as that the plastic strain increment vector is perpendicular to the yield surface, as
indicated in the figure 2.8. This is called the normality rule. Kelly (2013)

From the figure we see that

dεp1 = dλ cos γ (2.17)
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dεp3 = −dλ sin γ (2.18)

Therefore

dεp3 + dεp1 tan γ = 0 (2.19)

For example the Coulomb criterion does not depend on the intermediate principal stress σ′2
and then dεp2 = 0. The volumetric strain increment dεpvol=dεp1 + dεp2+ dεp3 is then:

dεpvol = dεp1(1− tan γ) (2.20)

Figure 2.8: Associated plastic flow for the Coulomb criterion in a principal stress plot.

For the Coulomb criterion, γ is greater than 45, since σ1 is greater than σ3 and therefore.
Due to the sign convention, this means an increase in the volume. This effect is called dilatancy.
For perfectly plastic material the dilatancy occurs while the mean stress remains constant. On
the other hand, if we consider a linear elastic material, the volume of the sample will change as
a result of the mean stress.Fjaer et al. (2008)

Non-associated flow

Non-associated plastic flow may occur if the plastic potential is not identical to the yield surface.
It is a convenient model to implement aiming to have control on dilatancy without changing the
yield surface. A non-associated yield criterion is found by changing the angle in the equation
of plastic potential form friction angle to angle of dilatation.

The angle of dilation controls an amount of plastic volumetric strain developed during plas-
tic shearing and is assumed constant during plastic yielding. The value of ψ =0 corresponds
to the volume preserving deformation while in shear. A negative value of dilatancy angle is
acceptable only for very soft rocks, more similar to loose sands .

2.2.3 Hardening
In a uniaxial case, a rock will deform up to yield and then generally harden, in figure2.9 is
shown a perfectly-plastic idealization as well as hardening case. In the perfectly plastic mate-
rial, once the material undergoes a stress state equal to the yield point (A), plastic deformation
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will occur, as long as the stress is maintained at Y. If the stress is decreased, elastic unloading
will take place. In the hardening case, once yield point is reached, the stress needs to have a
continuous increment in order to keep the plastic deformation. If the stress is held constant, for
example at B, no additional plastic deformation will occur; neither elastic unloading.

Figure 2.9: Uniaxial stress-strain curve

According to Eq 2.5 in three dimensions the hardening can be described as the change on
size, shape or position of the yield surface as a function of κ parameter related to the plastic
strains.

There are two common types of hardening modes (Figure 2.10), isotropic and kinematic
hardening. Isotropic hardening occurs when the yield surface change expands or shrinks in a
uniform around the hydrostatic axis. On the other hand, kinematic hardening relates to a change
in the yield surface in the stress-space axes. In practice, hardening has to be defined by a mix-
ture of the modes or an even more complicated behavior, where different parts of the failure
envelop deform in different ways. Kelly (2013)

Figure 2.10: Isotropic and kinematic hardening in principal stress space.
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Chapter 3
Literature Review

3.1 Micro/mini Frac Test
A typical ideal pressure-time recording for a series of micro/minifrac test cycles is shown in
Figure 3.1; this indicates a number of short pumping cycles to pressurize a preselected (nor-
mally perforated) interval. Each cycle is followed by a shut-in period of about 15-20 min.

A micro/minifrac test consists on adding the pressure in the wellbore, ideally, the fluid
pumping into a well occurs at a constant rate and the pressure should increase linearly with
time as the volume of the system is fixed. At the pressure where there is a clear departure from
a linear increase of wellbore pressure with time (referred to as the LOP, the leak-off point). A
clear LOP is approximately equal to the least principal stress. If the LOP is not reached, a limit
test, or formation integrity test (LT, or FIT), is said to have been conducted. The peak pressure
reached during a micro/minifrac is known as formation breakdown pressure (FBP) and repre-
sents the pressure at which unstable fracture is created in the wellbore because volume of the
system has increased enough to change the pressurization on the well. As pumping continues at
a constant rate, the pumping pressure measured in the well drops below the FBP to a relatively
constant value called the fracture pumping pressure (FPP), the pressure associated with propa-
gating the fracture far from the well, the FPP is close to the least principal stress. After abruptly
stopping flow into the well, two inflection points are expected on the decline pressure curve.
The first one is a sudden drop in pressure and is known as instantaneous shut-in pressure (ISIP),
this point normally is easy to interpret. Although the ISIP is often interpreted as an upper limit
of the minimum horizontal stress, actually correspond to the created net pressure that keeps the
fracture open to flow and should, for small friction losses, be close to the fracture propagation
pressure. Bree and Walters (1989), Proskin et al. (1989)

A more accurate measure for the far-field minimum in situ stress, is provided by the fracture
closure pressure (FCP). Which corresponds to the fracture fluid pressure at which the fracture
width reduces to zero. The FCP corresponds to the second slope inflection point on the post-
shut-in pressure decline curve (below the ISIP), this change in slope being attributed to the
different leak-off rates over the ”open” and ”closed” fracture faces.

When performing more than one pumping cycle, the pressure build-up curve follows can
provide another measurement for the minimum in situ stress. This is called fracture reopening
pressure (FRP), to be identified as the pressure at which build-up observed during fluid injec-
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tion starts to deviate from a straight line (Figure 3.1). An accurate determination of the FRP is
important to use a low injection rate and to bleed off the fluid pressure between cycles in order
to obtain a sufficiently large initial reference straight-line portion.

Figure 3.1: Sketch of a typical ideal pressure-time recording for a series of micro/minifrac test cycles.

For low rates, the FRP turns out to be close to the FCP, indicating that fracture reopening is
not much affected by the near-wellbore stress concentrations. This suggests that the presence of
(narrow) conductive channels along the ”closed” fracture surface generally govern the reopen-
ing process. (Bree and Walters (1989))

In low leak-off formations (for example low permeability sands, shales, rock salts), an ex-
tended shut-in test can take an excessively long time. In such cases, a pump-in/flow-back test is
more suitable (see Figure 3.2). This test might also have benefits over the direct test procedure
discussed above, after shut-in and after the start of backflow, shows a more easily identifiable
slope variation at fracture closure (Figure 3.2). By adjusting flow-back rates over several cycles,
optimum conditions can be accomplished.

At high backflow rates, a part of the fracture could pinch off from the well as a result of
a high viscous pressure drop close to the mouth of the fracture. The FCP will then agrees to
the pressure at which the fracture closes in the near wellbore vicinity and will, for this reason,
provide an upper limit for the total minimum in situ stress. The fluid pressure in the remaining,
pinched-off, part of the fracture, nonetheless, may remain in excess of the FCP. An indication
of this is that, once the well is shut in, the well pressure increases as a consequence of the
reopening of the fracture mouth, letting higher-pressure fluids to communicate with the well
(Figure 3.2). This reopening of the fracture provides the possibility of detecting a second FCP
by initiating the backflow again (possibly at a different flow-back rate).
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Figure 3.2: Sketch of a pressure profile for pump-in/flow-back test.

In the following example carried out at one location in the Netherlands it can be seen
schematically the difference between a test conducted with or without backflow. Figures 3.3a-d
show several cycles of the test, performend in a sandstone formation, using an injection rate
of 10 barrels/min and a fracturing fluid emulsion of kerosene/water gel. Having a formation
permeability (0.11 mD) and a low leak-off, no positive identification of an FCP could be made
from traditional cycles (no backflow, Fig. 3.3a). At very high backflow rates (Fig. 3.3b), appre-
ciable pinching-off was observed. At low backflow rates (Fig. 3.3c), it was possible to reach at
a well-defined FCP. The last cycle (Fig. 3.3d) shows the use of a number of backflow start/stop
cycles within one post-shut-in period. Bree and Walters (1989)

Figure 3.3: Example of FCP determination without backflow and with different rate of backflow.
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3.1.1 Pressure Decline Curve Behavior
As described in the previous section the hydraulic fracturing is used to determine the minimum
horizontal stress. Typically is assumed a vertical well and the minimum principal stress is as-
sume to be normal to the borehole direction (figure 3.4. A pressure is applied in a borehole
interval (normally separated by two packers). The pressure between the packers is raised by
injecting fluid under a constant flow rate until the fracture breakdown pressure is reached.

Figure 3.4: Schematic presentation of a classical HF test for stress measurement.

Injection continues so that the hydraulic fracture extends away from the well and it may be
shown that the fracture extends perpendicularly to the local minimum principal stress direction.
To be able to measure the minimum horizontal stress the injection can stop when the fracture
tip reaches domains where the stress field is unaffected by the borehole. If the treatment stop
before this point it will be measurement the hoop stress (tangential stress) around the borehole.
Before shut-in, the injected fluid flows into the fracture from the wellbore toward the fracture
tip, and consequently a pressure gradient due to viscous loss exists within the fracture. Accord-
ing to linear fracture mechanics, the stress intensity factor at a fracture tip can never exceed the
fracture toughness of the medium containing the fracture, and thus the fracture extends so as to
maintain the balance between the two. Hayashi (1991)

At the shut-in, the inflow into the fracture stops and the pressure gradient reduces, causing
the pressure in the near of the fracture tip to rise. These forces the make the fracture to keep
growing until the fracture fluid pressure decreases to a level for which the stress intensity and
the fracture toughness are equal. After shut-in, fluid pressure will be uniform within the fracture
and will decrease gradually due to leak-off into the rock causing the fracture aperture to decrease
accordingly. Fracture closure begins at its tip and continues toward the well bore. Finally, the
fracture closes completely. After that, the fluid may continue to leak off, but only through the
wellbore surface. The entire fracture closure process is shown schematically in Figure 3.5.
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Figure 3.5: Different stage in hydraulic fracture closure process.

Hayashi (1991) identify the mains stages that control the pressure time decay during fracture
closure. The first stage will be as described previously, during fracture propagation, a pressure
gradient exists along the fracture and when injection stops, the initial phase of the pressure
decay observed at the borehole wall corresponds to the phase during which the pressure gets
uniform along the fracture, up to the fracture tip. Then the fracture surfaces get closer to each
other, because of the drop in pressure associated with the flow through the fracture walls and
because the fracture keeps extending. During this phase, the two sides of the fracture do not
touch each other yet.

The second stage corresponds to the time when the fracture closes progressively, (the area
of solid contacts between both faces of the fracture increases with time). It is followed by a
third and final stage during which the fracture is mechanically closed so that the pressure decay
is only dependent on permeability effects (and possibly leakage of the testing system).

Fundamentals

The following analysis of the pressure decay curves after shut-in in hydraulic fracturing stress
measurements is based on linear theory of elasticity and global mass balance of fracturing fluid
after shut-in, uniform average with, fluid loss rate into formation and elapsed time (Howard
(1957) and Pattillo (1975)). Based on these characteristics, it was possible to develop a method
for the determination of the in situ minimum compressive stress from the pressure time curve.

The basis of the interpretational model for micro/minifrac test analysis comes from the
following volume balance equation:
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Qinj(t) = cṖ [V + v(t)] + v̇(t) +QlO (3.1)

Where
Qinj(t) is the fluid injection rate at surface. Qlo(t) is the momentary fluid leak-off rate into the
formation. V is the geometrical volume of the pressurized part of the completion’. v(t) is the
momentary geometrical volume of the fracture. c is the fluid compressibility. P(t) is the bot-
tomhole pressure (BHP).

The dotted letters on the equation correspond to derivatives with respect to time. All friction
losses are neglected and it is implicitly assumed that the pressure is uniformly distributed over
the fracture. (Alternatively, P(t) represents an average of the pressures prevailing at the well
bore and the fracture tip.)Bree and Walters (1989)

During fracture reopening (pressure build-up period) and fracture closing (pressure decline
period), zero fracture propagation is assumed and the fracture’s response to the pressure is
described by a ”fracture compressibility”(cf ) or ”fracture compliance” (H):

v̇(t) = cf (t)v(t)Ṗ (t) = HṖ (t) (3.2)

By combining Eq3.1 and Eq3.2 the equation governing the pressure build-up and decline
phases reads:

Qinj(t) = Ṗ (t)[cV + c+ cfv(t)] +Qlo(t)

' Ṗ (t)[cV +H(1 + c/cf )] +Qlo(t)
(3.3)

This equation provides the essentials for a global description of leak-off tests (Qinj(t)=O
after shut-in, v(t)=O), low and constant rate reopening tests (Qinj(t)=Q), extended shut-in tests
(Qinj(t)=0 after shut-in) and pump-in/flow-back tests (Qinj(t)=Qbf after shut-in, where Qbf de-
notes the constant backflow rate).

The following results are found for the post-shut-in pressure decline stages connected with
extended shut-in tests and backflow tests: Bree and Walters (1989)

prior to fracture closure:

Ṗ = − Qbf +Qlo(t)

[cV + (c+ cf (t))v(t)]
= − Qbf +Qlo(t)

[cV +H(1 + c/cf )]
(3.4)

after fracture closure:

Ṗ = −Qbf +Qlo(t)

c(V + vfc)
(3.5)

The previous expression takes into account that with the fracture ”closed”, open conductive
channels are still to be expected (the subscript fc pertains to this closed fracture). In a pump-
in/flow-back test, in which a constant backflow rate Qbf � Qlo(t), Qlofc(t), the pressure fall-off
curve is estimated to be made up of two straight-line portions, their slopes being fully deter-
mined by the value of backflow rate choose. Once the fracture is closed a steepening of the
slope is anticipated as a result of the loss of the fractures’ compliance.
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In the conventional extended shut-in test (Qbf = 0), the pressure decline with time rate re-
lated with fracture closure is generally less obvious because of the implicit non-linear behavior
of the pressure fall-off. A less steep slope is now expected over the closed fracture, where the
total area available for leak-off is supposed to be drastically reduced in comparison with the
open fracture. The majority of practical case show the characteristic concave-upward pressure
decline curves. It should be noted, however, that this trend will be counteracted by the effect of
a reducing fracture compliance as the fracture closes. Bree and Walters (1989)

The response of the pressure decay becomes more complicated when the fracture only partly
closes, which would result in a less salient reduction of the leak-off area on closure; or when a
loss of compliance occurs for the open fracture, for example as a result of the roughness of the
fracture faces or of natural induced debris accumulation between the fracture faces. Therefore,
it is quite possible to observe both a concave-upward and concave-downward post-shut- pres-
sure decline.

Characteristics Of Pressure Decrease After Shut-In

Pressure decrease after shut-in is governed by the following differential equation derived from
global mass conservation of the fracturing fluid Hayashi (1991)

dP

dT
=

ρcQ1

(d/dP )(ρc + Vc + ρcVb +MH)
(3.6)

Where P is the interval pressure, T is the time after the onset of pressurization, Pc is the
mass density of the injected fluid in the pressurized interval, Q1 is the volumetric fluid loss rate
due to permeation into the rock, Vc is the volume of the hydraulic fracture, VB is the volume of
the pressurized interval, and MH is the fluid mass in the tubing connecting the straddle packer
system to the pump. The volumetric fluid loss rate can be expressed as Nolte (1986)

Ql =
A0C

(T0)1/2
2[(

T

T0
)1/2 − (

T

T0
− A

A0

)1/2]2πRhB
C

T 1/2

=
C(T0)

1/2

R

R3

T0
{a[(

T

T0
)1/2 − (

T

T0
− A

A0

)1/2] +
b

(T/T0)1/2

(3.7)

a = 8
hcL

RR′
, b = 2π

hB
R

(3.8)

Where C is the fluid loss coefficient, To is the time at shut-in, R is the well bore radius, ha
is the length of the pressurized interval, h c is the fracture height, and L is the fracture length.
The areas of fluid permeation from the fracture before and after fracture tip closure as denoted
by A0 and A, respectively.

After complete hydraulic fracture closure (stage III), fracture volume is zero, and hence
fluid leakage from the fracture surfaces into the rock is negligibly small, so that equations 3.6
and 3.7 become:

dP

dT
=

ρcQ1

(d/dP )(ρcVB +MH)
(3.9)
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Ql =
C(T0)

1/2

R

R3

T0

b

(T/T0)1/2
(3.10)

After several approximation Hayashi (1991) found an analytical solution for the first and
the third stage of the fracture closure

For the first stage the pressure can be approximated to

p ∼=
1

3
(
ka

ϕ
)2
dt

dp
+ p∗1 (3.11)

p∗1 = p1 −
1

3

k

ϕ
a+

2

3

k

ϕ
a{t3/21 − (t1 − 1)3/2} (3.12)

And for the third as:

p = 2(
k

varphi
b)2

dt

dp
+ p∗2 (3.13)

where

p∗2 = p2 + 2
k

ϕ
b(t2)

1/2 (3.14)

where a depend of fracture height, the fracture Length R and the wellbore radius, b depend of
the wellbore radius, the length of the pressurized interval, and k depend of the fluid loss coeffi-
cient, the time at shut-in, and the well bore radius.

Is important to notice that the behavior of both stages represented by eq 3.11 and eq 3.13
can be seen as the described as a straight line.

Pw − P ∼ A(dPw/dt) + C (3.15)

With A and C as parameters which depend on the problem geometry and on the material
properties Cornet (2016).

On the other hand for the second stage there is no analytical model yet (Hayashi (1991)),
nevertheless the pressure decline can be described in a qualitative fashion. Suppose the fracture
is absent. Then the contribution of the maximum and minimum horizontal in situ compressive
stresses to the hoop stress around the wellbore tested at the point corresponding to the fracture
lip (where fracture meets well bore wall). To close the fracture at the fracture lip is necessary to
the pressure acting in the fracture to become lower than the of the hoop stress due to horizontal
stress and the fluid pressure. Meanwhile, the fracture tip closes when the pressure in the fracture
decrease just below the minimum horizontal stress. Meaning that the lip of the fracture reaming
open when the tip of the fracture is closed.

When the behavior of the three stage is put together it can be seen the first stage have a near
linear performance, entering to the phase two this behavior is lost, so the end of the linearity of
the transition between phase one and two provides an upper limit to minimun horizontal stress.
The same analysis can be perform from stage two to three providing a lower limit.
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A typical pressure record is shown on figure 3.6. It shows that an HF test includes at least
three phases, the first two phases involve the development and the propagation of the hydraulic
fracture together with fracture closure phases, the third phase involves the reopening of the frac-
ture followed up by a fracture closure phase. This procedure provides two fracture closure and
one fracture reopening, or three different estimates for the far field minimum principal stress
magnitude. When possible, a second reopening phase is conducted so as to provide additional
redundancy in the results.

Figure 3.6: A Typical HF test. In the upper diagram. The blue curve is to the straddle packer, the green
curve is to the interval pressure both as function time. The lower diagram represents the flow rate.

3.1.2 Interpretational Techniques
System Stiffness Approach

The behavior of the pressure respect to the time after the fracture is close depends on the in-
teraction of two competing factor. One is the system stiffness (change in pressure over change
in volume of the system) which is increase when fracture closed and contributes to an increase
in the slope. the second factor is the leak-off rate decreases as the fracture closes and the flow
path pinches off, contributing to a decrease in slope (Figure 3.7). Therefore, there is a com-
bination of these two factor that would lead to a very sutil change in the slope of the pressure
decay curve, making conventional analysis of p vs t inaccurate and very difficult to interpret
closure pressure. The net result is unpredictable, nevertheless if the micro/minifrac is perform
with flowback the change in slope must increase making the fracture closure pressure easier to
identify. Raaen et al. (1991).
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Figure 3.7: Behavior of the pressure respect to the square root of time. Different slopes correspond in
which of the competing process (leakoff or stiffness) dominates the fracture.

The system stiffness approach is based in a simple conceptual model of what happens in
a pump in- /flowback or a pump-in /shut-in test when the fracture closes. The fundamental
statement of the model is that changes in the well pressure can be related to the mass of fluid
entering or leaving the well/fracture system. Assuming the fluid to be a liquid, the density is
nearly constant, and we may use the volume entering or leaving the system instead of the mass.

The pressure is then related to the change in system volume according to the simple equation

S =
dP

dV
(3.16)

Note equation 3.16 is not normalized, therefore, the stiffness is dependent on the actual well
configuration also the pressure P in principle may be either a downhole pressure or a surface
pressure, related by the hydrostatic pressure due to the weight of the mud column. Eq 3.16
allows to predict how the pressure evolves with time, since we know how the system stiffness
and the system volume change with time. Raaen et al. (1991).

During the micro/minifrac test the system volume may change according to two mecha-
nisms, fluid flow into the formation and controlled flowback at the surface. If the rate of con-
trolled surface flowback is considerably higher than the rate of leak-off into the formation, a
direct measurement of the system stiffness (as a function of time) by plotting p versus flowback
volume Vfb. On the other hand, if leak-off is the dominant factor, we have no volume control,
and the interpretation must be based on the time development of p only, in other words, the
stiffness approach is limited to a formation in which the leakoff rate is relatively low. Another
assumption of this model is that the most of the leak-off will occur in the open fracture rather
than in the open surface area of the well, this hypothesis is reasonable because in the case of
an open hole minifrac test mudcake form by the drilling fluid will create an impermeable area
in the hole, and by consequence most of the fluid loss will occur thru the fracture. Since most
of the leak-off is through the fracture, the leak-off rate will change considerably as the fracture
closes. Raaen et al. (1991)
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The system stiffness is given by the stiffness of the fluid and the stiffness of the fracture. The
fluid stiffness refers to the compression/decompression of the fluid volume in the well, since the
fluid volume in the well is much bigger than the fluid in the fracture, is possible to get a good
estimation of the fluid stiffness by knowing the fluid volume in the well and its compressibility.

The fracture contribution to the system stiffness is more complicated because it will depend
on the fracture sizes. As stated before, during the closure of the fracture (stage 2, section 3.1.1)
there is no analytic solution for the pressure decline and therefore the exact width of the frac-
ture is unknown. Nevertheless, to get an order of magnitude of the fracture stiffness Raaen et al.
(1991). assume and uniform width of the fracture (stage 1) and calculate the fracture stiffness
using equation 3.16. With is assumption, it was found that the fracture stiffness is much lower
than the fluid stiffness. Even when the result is reached for a specific case the conclusion of the
different magnitude of the stiffness may be made for more general fracture shape. At the end is
to expect a noticeable increase of the system stiffness when the fracture closed.

By plotting the pressure vs the system stiffness it can be easily determined at the change in
slope the fracture closure pressure. In this case, the interpretation does not depend on a constant
flowback rate, which is generally assumed in standard interpretations of flowback tests.

If volume data was not recorded during the treatment, the test must be analyzed based be-
havior of the pressure against the time. However, in Eq 3.16 is shown that if the system stiffness
and the volume are known, the time development of pressure can be predicted. This offers an
alternative way of performing a flowback test, using a constant choke. By having a constant
choke during the flowback, the flowblack rate will decrease as the system pressure decreases.
Nonetheless, there is a relation between the pressure drop across the choke and the flow rate.
By assuming a pressure dependence of stiffness, we may then predict pressure versus time, and
hence deduce optimal ways of plotting the data. (Raaen et al. (1991).

It is possible to use the stiffness method approach in the interpretation of a pump-in/shut-in
test, nevertheless is necessary to have low permeation of fluid through the fracture, which im-
plies a tight mud cake or low permeability in the formation Raaen et al. (1991) determinate that
with a plot of pressure differentiated with respect to the square root of time versus the square
root of time the same features observed during the pump-in/flowback test appears, allowing the
interpretation of the fracture closure pressure when an increase on the system stiffness is ob-
served.

Is important to highlight due to the complexities of the fracture closure process (section
3.1.1)the stiffness approach provides a simple and obviously more imprecise approach. Con-
sidering that is useful to distinguish between mechanical and hydraulical closure, where me-
chanical closure occurs when asperities of the two fracture faces start to contact (second stage)
(i.e. when the stress on the fracture faces starts to increase above the fluid pressure), while
hydraulical closure occurs when the fracture stops being conductive (third stage). Mechanical
closure is considered to represent the in situ stress. The pressure at mechanical closure must be
greater than (or at least equal to) the pressure at hydraulical closure.
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G function

One important method that minimizes ambiguity and provides useful in-situ stress and leak-off
information is the G-function analysis. It is derived so that the cumulative fluid leaked-off vol-
ume from the fracture after shut-in is linearly proportional to the G-function. In other words, at
a G-time =4, twice as much fluid has leaked-off after shut-in as at G-time=2. The G-function is
a dimensionless time function that relates shut-in time to total pumping time. This process uses
derivative curves to identify leak-off mechanisms and fracture closure point through the char-
acteristic shapes of the curves. The G-function plot features a pressure and semi log derivative
of pressure vs. G-time curve. In many cases, the expected signature of the semi log curve is a
straight line that passes through the origin, representing normal fluid leak-off behavior. Fracture
closure point is identified at the point when the G-function semi-log derivative curve starts to
deviate from its straight tangent line in a normal leak-off (most ideal) case Tangent Method.

This technique was introduced by Nolte (1979), and has been widely used in the industry. G-
function does not assume a single planar fracture and will show the effects of multiple fracture
planes propagating against different closure stresses. One important assumption in G-function
derivation is that the fluid pressure is constant during shut-in. Clearly, fluid pressure is not con-
stant and decreases over time after shut-in. But during early shut-in period, it is approximately
valid to assume that the fracture pressure is constant. The normal leak-off model is applied to
the sole case of perfectly linear pressure decay on the P vs. G plot. However, deviation from
this ideal behavior is generally expected. The other pressure fall-off scenarios are pressure de-
pendent leak-off, fracture height extension and transverse storage, fracture tip extension. The
G-function curves for each of these scenarios display a different signature; therefore, analysis
and interpretation for each case are also handled differently.

Derivation
The basic assumptions for the applicability of the analysis are that the fracture:

1. has essentially constant height.
2. propagate through a quasi.-elastic formation with negligible slip of bedding planes.
3. was created by a constant injection rate of a power-law fluid into two symmetric wings.
4. propagates continuously during pumping and propagation stops when pumping stops.
5. closes freely without significant interference from proppant.

Nolte continues the work of Nordgren who states that the equation for flow down a fracture
can be represented as

− ∂Q(z, t)

∂z
= λ(z, t) +

∂A(z, t)

∂t
(3.17)

This equation denote that the gradient of a flow rate is equal to the rate fluid lost to the
formation, per unit of length, plus the time rate fluid storage due to cross-sectional area change
(Nolte (1979)). Nolte assumes as well the fluid loss relationship (λ) and the cross section area
are given by:

λ =
2CHp√
t− τ(z)

(3.18)

A =
π

4
wH =

πH2

2E ′
P (3.19)
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Where, C is the fluid loss coefficient, Hp is the height over the fracture where fluid loss oc-
curs, τ is the time the fracture was created at point z. H is the fracture height, w is the maximum
fracture width at z. P is the pressure of the formation a E is the effective plane-strain modulus
across the fracture height.

By combaning equations 3.17 to 3.19 results in

− ∂Q

∂Z
=

2CHp√
t− τ

+
π

2

H2

E ′
∂p

∂t
(3.20)

And then integrating equation 3.20 yields to:

−Q(L) +Q(0) = 2CHp

∫ L

0

dz√
t− τ(z)

+
π

2

H2

E ′

∫ L

0

∂p

∂t
dz (3.21)

Further assumption are required, if the fracture is shut-in and free extension of the tip after
the shut-in has ceased (Q(0)= Q(L) =0) and substituting this assumption in equation 5 and re-
placing the integrals for the average value of the function over the length of the fracture Nolte
(1986).

0 =
2CHpL√

t0
f(t) +

π

2

H2

E ′
L
∂p̄

∂t
(3.22)

where

f(t) =

√
t0
L

∫ L

0

dz√
t− τ(z)

(3.23)

P̄ =
1

L

∫ L

0

pdz = βsP (3.24)

In equation 3.22 To correspond to the injection time prior to shut-in and in equation 3.24
P is the wellbore pressure. βs) is defined as the ratio of the average pressure to the wellbore
pressure. By combining equation 3.22 3.23 and 3.24

dP

dt
= − 4

π

CHpE
′

H2βs
√
t0
f(t) (3.25)

The pressure decline function, f, in equation 3.23 can be evaluated by an upper and lower
limit, these limits comes from the time the fracture creation τ(z) and require the assumptions
that the height, injection rate and injection fluid are constant and that the fracture propagates
continuously during pumping.

The lower bound on the rate of extension is for the fluid-loss dominated case and assumes
that the first term on the right hand side of equation 3.17 dominates the behavior of the pressure
decline function making the fluid storage term neglected. On the other hand the upper bound
assumes minimal fluid loss making the term of λ on equation 3.17 neglected Nolte (1986).

fupper = 2(
√

1 + ∆t/t0 −
√

∆t/t0

flower = sin[(1−∆t/t0)
1/2]−1

(3.26)
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Where, t0 at which the shit in occurs, delta t is the time since the shut-in, ∆t/to is the di-
mensionless shut-in time in terms of the pump-in. Nevertheless, Nolte (1986) establish that
both bound are fairly close to each other and usually differ by less than a 10%, as a result any
of the bound can be used to solve the equation 3.25 without compromising the accuracy of the
solution. In follow , ∆t/t0 will be refer as td.

The pressure difference between two shut-in time can be found after integrating the equation
3.25 between two times and can be express as

∆P (δ0, δ) =
CHpE

′√to
H2βs

G(δ, δ0) (3.27)

for which

δ = ∆t/t0

∆P (δ0, δ) = P (δ0)− P (δ)

G(δ, δ0) =
4

π
[g(δ)− g(δ0)

(3.28)

and the upper and lower bounds of the function g are:

gupper =
4

3
[1 + δ)1.5 − δ1.5]

glower =
4

π
sin−1(1 + δ)−0.5 + δ0.5

(3.29)

Castillo (1987)rewrite the equation 3.27 in terms of C is the leakoff coefficient, fp is the
ratio of permeable area to gross area and cf is fracture’s compliance for width.

∆P (∆t∗,∆t) =
πCfp

√
tp

2cf
G(tD, t∗D) (3.30)

By selecting a dimensionless time (tD) earlier than fracture closure and plotting G function
versus tD on log-log coordinates. The same reference time is use to plot ∆P against ∆t. A
curve match can be obtained by overlying the curves, aligning the x axes so that ∆t correspond
to tD and shifting along the y axes. Once the match is achieved, a match point is selected and
the Nolte match pressure (P*) is computed from ∆P/G. the match is equivalent to:

P ∗ =
πCfp

√
tp

2cf
(3.31)

If the fracture compliance is fixed, the leakoff coefficient can be estimated from Equation
3.31. Then Castillo proposed a new plot by realizing that Equation 3.30 is a linear equation.
Substituting Equation 3.31 into Equation 3.30, and selecting a reference time of ∆t∗ = 0 results
in:

P (∆t) = P ∗G(tD, 0) + P (∆t∗ = 0) (3.32)
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This equation is in the familiar form of y = mx + b. Therefore, a plot of decline pres-
sure against should result in a straight line during the closure period with slope equal to P*
and y-intercept equal to a theoretical pressure at shut-in. The closure period is recognized by
linearity; deviation from linearity identifies the closure pressure. From this single plot, then,
all of the pressure parameters ( Pc, P*, ISIP) required in the analysis calculations are inferred.
Interpretation of the G-Function plot is enhanced by differentiating Equation 3.32 to give

dP

dG
= P∗ (3.33)

A graph of dP/dG against t (referred to as the G-Function derivative plot) should provide
a horizontal line during the closure period with a constant y axis value of P*. The derivative,
dP/dG, may be computed by using linear regression on a small number of data points (e.g. 5);
the t value that corresponds to dP/dG is a time average of the points used. Fracture Closure
pressure can be easily identify as well by the departure of the semi-log derivative of pressure
with respect to G-function (Gdp/dG) from the stright line through the origin (Castillo (1987),
Barree et al. (2007),Michael J. Economides (2007)) . In the following image is show a semi log
plot of the pressure and the derivatives of pressure against the G function and it can be clearly
identify the fracture closure pressure

Figure 3.8: Normal leak-off G function plot.
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Chapter 4
Methodology

As stated before (Chapter 1) the idea of this work is to understand fracture initialization around
the borehole having in consideration plastic material behavior. In order to accomplish this task,
it was implemented a finite element analysis.

4.1 Geometry
First of all, a geometry of the model has to be established. Since the objective of the analysis
is to perform the simulations in a typical operational environment for the oilfield industry and
specifically for a fracture operation. The model consists in a cube of 5 meters length, high and
deep, buried at 3000 m deep in the center of the cube it was set a vertical hole that will simulate
the borehole. This borehole has 0.3m radio, simulating a typical hole section, the arista size of
5 meters was choose in order to be big enough to avoid edge effect on interest section (around
the borehole) figure 4.1.

In order to have results as accurate as possible is important to have elements as small as pos-
sible in the interest zone. Nevertheless, a large number of elements will increase dramatically
the computer power and time required to achieve a solution in each run. Thus, is important to
have a balance between the accuracy required to have reliable results and optimize the amount
of time of each run. Since the most sensitive area is the first few centimeters around the bore-
hole in this zone the mesh size is smaller, and the cell size is increasing as the distance from the
center of the cube increase figure 4.2.
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Figure 4.1: Geometry and mesh of the model showing the subdivision of it on, Overburden, Underbur-
den, Upper and Lower Packer, Zone between the packers and zone of high resolution above and below
the packers.

One important part of this project was to asses the behavior and influence of the packers
during a micro-frac operation. In order to determine the stress and strain distribution not only
in the zone between the packers but also the packers zone and it surrounding (above and below
of the packer). In order to have a good resolution of the results the model was divided in zones
according with the previous description. In the same way, since the stress concentration and
rock deformation is concentrated in the surrounding of the borehole, another areas were also
defined in order to set an appropriate cell size. The closet zone is from the wellbore wall until
0.1m inside the formation, this zone will have a cell size of 0.02m. 0.4m away from the center
of the model until 0.7m the cell size was set to 0.05m, in the same way from 0.7m to 1.2m the
cell size was increased to 0.1m and finally for 1.2m to the edge of the model at 2.5m the cell
size will increase progressively until 0.25m. Having this smooth change in cell sizes will allow
the numerical model to have an accurate solution in the interest zone as well as optimizing the
number of cell in the whole model. in the end the final geometry has a total of 275.521 elements.

Figure 4.2: Geometry and Mesh: plant view the the mesh, showing small elements near the wellbore
and the progressive increment towards the edge.

4.2 Rock Properties and In situ Stresses
The rock properties used for this simulation where assigned having in mind typical reservoir
properties. Nevertheless, the objective of the work was not to simulate a particular field but
to develop an understating of the behavior of plastic rocks. In that way the implemented rock
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properties are specified on the table below (Table 4.1). One of the limitations of the finite el-
ement software used to run the simulation was the inability of allowing couple modelling, in
other words, there is no interaction between the fluid inside the borehole and the fluid inside the
rock, however this can very often be the situation in a borehole environment, if the permeability
of the rock is very low or if the effectiveness of the mud cake build during the drilling process
is very high, can lead to a situation of no interaction between fluid in the wellbore and the rock.

Once the geometry and the rock properties have been establish, the next stage is to set
the stress state. Since the model is only 5 meter high is necessary to apply at the top of the
model (@ 2995 m) a pressure equivalent to the overburden pressure. Assuming an overburden
density of 2150kg/m3 the overburden pressure at the top of the model was determine at 67.5
Mpa. Regarding the horizontal stress, for the comparison between the analytical and numerical
case, two settings were applied, the first one assuming horizontal stress isotropy as a 0.75 of
the vertical stress, and the second was to set the maximum horizontal stress and minimum
horizontals stress as a fraction of the vertical stress, 0.85 and 0.75 respectively, the maximum
stress azimuth is parallel to the X axis. Another important factor is the pore pressure, which
was to have a normal pressure in the whole model.

4.3 Analytical vs Numerical Solution
The next stage is to test the numerical solution and compare it with analytical calculation in
order to verify the parameters are set in a proper manner and as well as build confidence in the
accuracy of the geometry and mesh proposed. The simplest way to accomplish that is by per-
forming a linear elastic run of the model for different pressure inside the wellbore. Some rock
properties has to be define previous the linear elastic model initialization as Young modulus,
Poison ratio, and Friction angle; these properties are specified in the table below (4.1). The
chosen failure criteria is Mohr Coulomb.

Properties Value
Saturated Density 2300 kg/m3

Young’s Modulus 5 GPa
Poisson’s Ratio 0.3
Cohesion 2 MPa
Friction angle 30◦

Table 4.1: Rock Properties.

The analytical response, the stress around the borehole was calculated using the Kirsh equa-
tion, which describe the behavior of the axial, tangential and radial stress depending of the dis-
tance of the observation point and the borehole radio for elastic behavior. In the case of vertical
hole and assuming as described on the proposed model that the principal stresses correspond
with the vertical and horizontal stresses. The stresses around the borehole can be expressed as
demonstrated by Fjaer et al. (2008).
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(4.1)

Where σH represents the maximum horizontal stress, σh minimum horizontal stress, σV
vertical stress, νfr the framework poison ration, pw pressure in the wellbore, Rw wellbore radio,
and θ the azimuth angle relative to the direction of the maximum horizontal stress.

From equations 4.1 it can be seen that at the wellbore wall the tangential stress will have
critical values at θ = 0 and θ = 90, at this points is where the shear failure and the tensile
fracture will initiate. Therefore, those are the point in which the analysis will focus.

Now, among all the presented output on the finite element software used to develop this
project there exists the option to have the stress in X, Y and Z direction for each point. Accord-
ing to (Bower (2009)) the conversion between Cartesian to a Polar-Cylindrical tensor is given
by simplifying the expression for θ=0 one can find that the radial stress correspond to the Sxx
(stress in X direction) and the tangential stress to Syy (stress in Y direction). Thus, for θ = 90
the radial stress is equivalent to Syy and axial stress to Sxx. Note, for values of θ between 0 and
90 the solution is not that intituive, nonetheless, the calculation of the tangential stress could be
easily calculated by solving the equation above. However, by limitation on the exporting tool
on the software and more important, since the critical values are at θ 0 and 90 for the shear
failure and tensile failure initiation in enough by having the values along this angles. For both
cases the axial stress correspond to Szz

Sxx Sxy Sxz
Syx Syy Syz
Szx Szy Szz

 =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

Srr Srθ Srz
§θr Sθθ Sθz
Szr Szθ Szz

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (4.2)

Srr Srθ Srz
§θr Sθθ Sθz
Szr Szθ Szz

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

Sxx Sxy Sxz
§yx Syy Syz
Szx Szy Szz

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (4.3)

On figure 4.3 are shown the comparison between numerical and the analytical solution for
the linear elastic case for different wellbore pressure (emulating the mud weight) as well as for
different values of θ and stress anisotropy. The numerical data is represented by the continuous
line, meanwhile the analytical calculation is plotted as a points. The curves match as expected
for all the different simulation performed. One can note on the neighborhood of the wellbore
the change rate (gradient) of the stresses is high as the observation point is further apart of
the wellbore wall the stress magnitude reach the far field stress field. The implication on the
numerical model of this high gradient will be discussed in more detail in further chapter.
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Figure 4.3: Comparison between analytical and numerical case for different for isotropic and anisotropic
case with different Pw.

4.4 Plasticity Model
Once the parameters have been checked with the comparison between the analytical and nu-
merical case, is possible to move on towards the plasticity modelling. The plasticity criteria to
be used is the Mohr coulomb criteria. In order to use this criteria additional parameters have to
be defined besides the one used for the linear elastic as the dilatancy angle. During the upcom-
ing simulations the model will be set as a associated plasticity model (see section 2.2.2) which
means that dilatancy angle and the friction angle have the same value.

On the other hand, the main focus will be the hardening behavior of the rock, thus, the hard-
ening rule will be updated in each run in order to quantify the behavior of the stress and strain
distribution due to the plastic behavior of the rock .

Generally the hardening parameter will depend not only of the current plastic strain but
on the plastic strain history as well. This can lead to very complex theories but Vermeer and
De Borst (1984) propose to avoid this inconvenient by claiming that the plastic strain history
can also be registered on the hardening parameter. Numerically the hardening factor for the
Mohr Coulomb criteria according to Hill (1950) the can be expressed as:

ε̄p =

∫ √
2

3
(ε̇p1ε̇

p
1 + ε̇p2ε̇

p
2 + ε̇p3ε̇

p
3)dt (4.4)

The dot above a symbol implies the material time derivative which controls the sequence of
the loading process. Since this kind of loading and viscous effects are out of the scope of the
project the hardening parameter can be simplified to:

ε̄p =

√
2

3
((εp1)

2 + (εp2)
2 + (εp3)

2 (4.5)
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4.5 Output Display
After the simulation is perform the output display plays an important part on the analysis to
come. On the finite element analysis software there are several ways to display stress and
strains. For instance, on the stresses are available among others the normal stresses together
with the shear stress with which the whole stress tensor is represented as well as the principal
stress.

The normal stress and shear stress are perpendicular to each other, thus, for every azimuth
there are a stress vector with normal and shear components. Nevertheless, there is a space on
which the shear component is zero, making the normal component equal to the whole stress vec-
tor. The stress at this direction are called principal stresses. On the following figure are shown
the normal stresses and the principal stresses around the borehole for a given mud weight. As
stated before, they represents the same state of stresses but in different ways. Since the main fo-
cus is to study the behavior at the borehole wall and as shown before on the equation XX under
specific circumstances there is a direct relation between the normal stress and the hoop stresses
(tangential, radial and axial stress). Having this under consideration the following result will
be shown as a normal stress (Sxx, Syy, Szz) because along the specified direction of θ = 0 or
θ =90 is simple to get the hoop stresses and in further calculation performed stress invariant
calculation and /or compare the stress stated with the failure envelop.

Figure 4.4: a) Component X and Y of the stress tensor. b)Principal Stresses S1 and S3

In the case of strains, is easier to visualize the extend of the deformation by analyzing the
volumetric plastic strain, which is just the sum of the three principal components of the strain
tensor. However, due to the calculation of the hardening parameter is expressed in term of three
principal components of the strain tensor sometimes it will be useful to display the strains in
this way.
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Chapter 5
Results and Analysis

This chapter presents the results obtained for each stage of the project with their respective
analysis. Firstly, the linear elastic case is presented for different injection stage (increments of
pressure in the wellbore) with the respective Mohr circle present for each stage. Then by the
plasticity model using the Mohr-Coulomb criteria with different hardening rules. Finally, the
effect of the packer in the formation above and below it.

5.1 Linear elastic: Case 1
The first run of the model was performed for a linear elastic material. This case had horizontal
stress isotropy. The horizontal stresses are equivalent to 0.75 of the overburden stress. On figure
5.1a shows stress distribution on X component of the stress tensor, in this example the pressure
inside the borehole is 47MPa. Due to the horizontal stress isotropy, the component Y (figure
5.1b) shows exactly the same behavior, but rotated 90 degrees. Because of that fact, the shear
failure and the stress initialization have no preferential azimuth of occurrence making the rock
fairly stable.

Through analytical calculations it was determined the pressure inside the borehole (mud
weight) required to have an effective tangential stress equal to zero (tensile failuren assuming
zero tensile strength) as well as the pressure to generate shear failure (breakout). The necessary
pressure inside the hole necessary to reach the breakout condition was 41.5MPa and for tensile
failure initiation that condition is equivalent to 71.9MPa. The analytical calculation correlates
with the numerical solution as expected, showing the transition of the stresses nearby the well-
bore and the far field stresses. Nevertheless, it was noticed that when the initialization values
of the simulation are close to the failure point, the numerical iteration tend to be unstable and
therefore the solution of the system of equation diverge. Having this in consideration the initial
borehole pressure of each of the following case it is on the stable zone and the pressure will
increase progressively (a few megapascals on each iteration) until simulate a Micro/minifrac
operation.
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Figure 5.1: Horizontal Stress Isotropy @2997.5m, Pw=47MPa. a) component X of the stress tensor. b)
component Y of the stress tensor. c)comparison of analytical and numerical solution

The next simulation was run with the same rock properties and failure envelop but in this
case, a horizontal stress anisotropy was introduced. σH = 0.85σV and σh = 0.75σV , the az-
imuth of the maximum horizontal stress is parallel to the X axis. As establish on the previous
chapter the critical points are for = 0◦ and = 90◦. Following the same procedure has in the
horizontal stress isotropy, the analytical calculation was performed and the pressure to initiate
shear and tensile failure are 48.2MPa and 65.1Mpa respectively. The initial wellbore pressure
was set to 49Mpa (stable zone) to avoid numerical problems and as it was done in the previous
case the pressure was increased in each injection stage. On the figure 5.2 a and b shows the X
and Y component of the stress tensor when the pressure inside the well is 57MPa. Comparing
the numerical and analytical solution. The corretlation is as good as in the isotropic case as can
be seen in 5.2 c and d .
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Figure 5.2: Horizontal Stress Anisotropy @2997.5m, Pw=49MPa. a) component X of the stress ten-
sor. b) component Y of the stress tensor. c)comparison of analytical and numerical solution θ = 90.
d)comparison of analytical and numerical solution θ = 0.

The importance to perform the linear elastic simulation lies as quality control of the input
parameters as well as the finite element software. Once the material reaches the plasticity, the
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behavior of stress is not as simple as in the linear elastic rocks, therefore in case of any discrep-
ancy between the numerical and analytical model was identified at this stage; several inputs, as
well as the geometry and mesh sizes would had to be reviewed in order to warranty the quality
of the upcoming results.

5.2 Plastic material with hardening rule: Case 2
The next stage is to introduce the plastic behavior of the material. As discussed in chapter 2, the
rock ideally could be classified as elastic-plastic with strain hardening, elastic-perfectly plastic,
and rigid-perfectly plastic. The rock subject to the model will have a strain hardening behavior
rule until a threshold in which the strength of the rock remain constant regardless of the strain
showing a perfectly plastic behavior. Different hardening rules will be applied to the material
in order to determine the behavior of stresses and strains.

As shown in the previous chapter the initial cohesion of the rock is 2MPa. When the rock
start deforms in a plastic way this cohesion has to be updated using the relationship between
deformations and hardening parameter, finally knowing the hardening rule (Table 5.1)for each
simulation a new cohesion and therefore failure envelop can be calculated for each injection
stage.

In the literature there are many compressive stress tests that can be used to show the behav-
ior of a rock once touch the yield point (Cheatham Jr et al. (1967), Risnes et al. (1998)). The
first simulation will be realized with a hardening rule as follows.

Hardening factor S0 plastic (MPa)
0 2
0.01 3
0.1 3

Table 5.1: Hardening rule for case 1 (S0 plastic until 3MPa)

The figure 5.3 shows the stress distribution along the model on a horizontal plane at 2997.5
m deep (center of the model) with 52MPa of pressure inside the well; the black lines represent
the probes used for extracting the data from the model. As shown in the figure 5.3c the stress
state of the rock at the wellbore wall is the safe zone. As expected if the stress state is below the
failure criteria, all the deformation at this moment are elastic (zero plastic deformation)(figure
3d). As soon as the analytical solution touches the Mohr-Coulomb criteria the numerical model
begins to experience plastic deformation.It is important to note that the analytical solution was
only performed for the linear elastic case, therefore for further comparison between analytical
and numerical solution it will be based on the linear elastic versus plastic behavior for the same
borehole pressure.
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Figure 5.3: Case 2: Plastic Material. Horizontal Stress Anisotropy @2997.5m, Pw=52MPa. a) compo-
nent X of the stress tensor. b) component Y of the stress tensor. c)comparison of analytical and numerical
solution θ = 90. d)Volumetric plastic deformation

In the following tables are shown the analytical and numerical solution for different injec-
tion stages (Table 5.2) and the strain on X, Y and Z components together with the calculation
of the hardening parameter and the Cohesion for the plastic material (S0 plastic) (Table 5.3), all
these values are for θ = 0 due to this point will be in which the fracture initiation will occur. The
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following image (figure 4) shows the same arrange of images as before, the difference is that in
this injection stage the wellbore pressure is 64Mpa.

Analytic
Radial
Stress (Pa)

Analytic
Tangential
Stress (Pa)

Analytic
Tangential
Stress (Pa)

Analytic
Tangential
Stress (Pa)

Initial Case 4.90E+07 7.25E+07 4.96E+07 7.25E+07
Injection1 5.20E+07 6.95E+07 5.25E+07 6.97E+07
Injection2 5.40E+07 4.05E+07 5.42E+07 4.37E+07
Injection3 5.70E+07 3.75E+07 5.67E+07 4.30E+07
Injection4 6.20E+07 3.25E+07 6.16E+07 4.20E+07
Injection5 6.40E+07 3.05E+07 6.34E+07 4.26E+07

Table 5.2: Analytical and numerical solution for different injection stages
EpXX EpYY EpZZ Hardening

factor
S0 plastic
(MPa)

Injection 2 3.18E-07 3.89E-04 -1.91E-04 4.33E-04 2.04E+06
Injection 3 1.22E-06 1.24E-03 -6.10E-04 1.38E-03 2.14E+06
Injection 4 2.61E-06 2.64E-03 -1.30E-03 2.94E-03 2.29E+06
Injection 5 -8.61E-04 4.40E-03 -1.29E-03 4.67E-03 2.47E+06

Table 5.3: Strain components X, Y and Z, hardening parameter and S0 plastic

As it can be appreciated in figure 5.4 a and b shows a stress distribution along the model
for the horizontal plane located at 29975.5m. The figure 5.4c presents the Mohr circle together
with the failure envelope for both analytical an numerical solution; from now every in case ev-
ery that reaches plastic deformation, two failure envelope will be shown, one correspond to the
state before the plastic hardening (blue line) and the other (purple) correspond to the state after
the injection stage. I this case specifically the mud weight was set to be 64 MPa. Is important to
notice that the final stress state of the rock match almost spot on with the new failure envelop, as
well we can observe through the comparison between both Mohr circle the analytic (linear elas-
tic) case is really close to fulfilling the tensile failure criteria, meanwhile the numerical (plastic)
has built an stress cage which prevents that Mohr circle grows and reach the null or negative
values. Also important is to notice in figure 5.4d the zone in which the rock has withstood
plastic deformation is confined only to 22 cm away from the wellbore wall, beyond that plastic
zone the material still behave in a linear elastic manner.
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Figure 5.4: Case 2: Plastic Material. Horizontal Stress Anisotropy @2997.5m, Pw=64MPa. S0plastic
= 3Mpa. a) component X of the stress tensor. b) component Y of the stress tensor. c)comparison of
analytical and numerical solution θ = 0. d) Volumetric plastic deformation

The building of the stress cage can be easily appreciated on the figure 5.5 where it is shown
the Mohr circle of all the injection stages modelled under these conditions. It is clear how as
the wellbore pressure increases the Mohr circle are expanding, nevertheless, looking closely to
the circle of the last stage (green curve) it can be appreciated how the tangential stress is greater
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that in the previous stage. This means that when the rock approximates to the transition be-
tween the strain hardening and the perfectly plastic material, the tangential stress start to build
up. This behavior can be attributed to the fact that the all stress states above the failure envelop
are unreachable for the rock, therefore it can stretch to lower values. If this was the only factor
once reached this point of strain hardening, then the tangential stress should remains fixed while
the radial stress increase with the wellbore pressure. The building of stress is also consequence
of the dilatancy of the rock, since the rock is undergoing plastic deformation, the volume is
increasing (as shown in chapter 2), however, the rock is in a highly confined environment (high
pressure fluid in one direction and the surrounding rock in all other) then, some stress is build
due to the increase of volume.

Figure 5.5: Case 2: Plastic Material. Horizontal Stress Anisotropy @2997.5m, Pw=62MPa. S0plastic =
3Mpa. All Mohr Circles generated for the different injection stages

In reality it is unlikely to find a rock under real circumstances that presents a hardening
strain behavior greater than a couple of megapascals. Nevertheless, in this project, it will tested
a theoretical rock that exhibits that kind of behavior aiming to understand under which circum-
stances the fracture will initiate. The goal is to have an effective tangential stress at least equal
to zero. In the previous case with an increment of one megapascal during the strain hardening
the failure envelop remained to close stress state making the rock to build up the stress cage
and not allowing to reach the tensile failure. On the next simulation the hardening rule it will
increase S0 plastic until 20MPa as follows:

Hardening factor S0 plastic (MPa)
0 2
0.01 20
0.1 20

Table 5.4: Hardening rule for case 2 (S0 plastic until 20MPa)
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Figure 5.6 shows similar results as in the previous case in a qualitative screening. In this
case, several injection stages were added to the simulation in an attempt to reach the tensile
failure. The stress distribution shown in figure 5.6a and b for a simulated mud weight of 62MPa
shows a similar behavior as before. The real difference between this two cases is that the value
in the hardening parameter and the effect of the different plastic deformation amount and stress
build up due to plastic effects, as presented in table 5 and 6. For example for a wellbore pressure
of 62MPa with a S0 plastic de 3MPa the tangential stress was 42 MPa, meanwhile with a S0

plastic of 20MPa the tangential stress is 39.3MPa (or σθ= 9.93 MPa)

After increasing 10 times the S0 plastic it was accomplished a decrease on the tangential
stress, but this reduction is still far from the tensile failure criteria as shown in figure 5.7 where
the mohr circles of this simulation are compared . It can be seen that as higher the wellbore
pressure, the trangential stress tend to be closer together and as in the previous case scenario;
for mud weight equal to 87MPa, the tangential stress is higher that for the previous step. So in
the attempt of reaching the tensile failure, this was and step on the right direction but not quite
enough by itself to accomplish the fracture initiation. Further increment on the strain hardening
could be perform.

Analytic
Radial
Stress (Pa)

Analytic
Tangential
Stress (Pa)

Analytic
Tangential
Stress (Pa)

Analytic
Tangential
Stress (Pa)

Initial Case 4.90E+07 7.25E+07 4.96E+07 7.25E+07
Injection1 5.20E+07 6.95E+07 5.25E+07 6.97E+07
Injection2 5.40E+07 4.05E+07 5.40E+07 4.31E+07
Injection3 5.70E+07 3.75E+07 5.66E+07 4.16E+07
Injection4 6.20E+07 3.25E+07 6.14E+07 3.93E+07
Injection5 6.70E+07 2.75E+07 6.45E+07 3.77E+07
Injection6 7.20E+07 2.25E+07 6.99E+07 3.80E+07
Injection7 7.70E+07 1.75E+07 7.53E+07 3.76E+07
Injection8 8.20E+07 1.25E+07 8.01E+07 3.70E+07
Injection9 8.70E+07 7.51E+06 8.49E+07 3.63E+07

Table 5.5: Analytical and numerical solution for different injection stages case 2
EpXX EpYY EpZZ Hardening

factor
S0 plastic
(MPa)

Injection 2 2.30E-07 2.81E-04 -1.38E-04 3.13E-04 2.56E+06
Injection 3 7.51E-07 8.08E-04 -3.96E-04 9.00E-04 3.62E+06
Injection 4 1.58E-06 1.64E-03 -8.06E-04 1.83E-03 5.29E+06
Injection 5 -4.78E-04 2.61E-03 -7.97E-04 2.77E-03 6.98E+06
Injection 6 -1.00E-03 3.38E-03 -7.98E-04 3.62E-03 8.51E+06
Injection 7 -1.65E-03 4.50E-03 -7.98E-04 4.86E-03 1.08E+07
Injection 8 -2.30E-03 5.33E-03 -7.98E-04 5.87E-03 1.26E+07
Injection 9 -2.94E-03 6.64E-03 -7.98E-04 7.31E-03 1.52E+07

Table 5.6: Strain components X, Y and Z, hardening parameter and S0 plastic case 2
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Figure 5.6: Case 2: Plastic Material. Horizontal Stress Anisotropy @2997.5m, Pw=62MPa. S0plastic
= 20Mpa. a) component X of the stress tensor. b) component Y of the stress tensor. c)comparison of
analytical and numerical solution θ = 0. d)Volumetric plastic deformation

For example increase even more the S0 plastic, but having in consideration that greater val-
ues are unrealistic it does not add more value to the study. Other way could be to try change
the friction angle of the rock and in this way achive a steeper slope of the failure envelop and
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therefore higher chances of reaching the tensile failure. Nevertheless, a change in an intrinsic
property of the rock as the fraction angle due to plastic deformation it will not be greater than a
few degrees, and the implication wont be as big as need it to fulfill the tensile failure criteria.

Figure 5.7: Case 2: Plastic Material. Horizontal Stress Anisotropy @2997.5m, Pw=62MPa. S0plastic =
20Mpa. All Mohr Circles generated for the different injection stage

Finally, according to the simulations, is very unlikely to achieve the tensile failure in plastic
material, then, during a hydraulic fracturing it has to be another factors that helps to the fracture
initiation. This lies beyond the scope of the project, nevertheless among those factors it can be
include in the model that the rock is a completely intact rock, in reality, the rock tends to be
heterogeneous material with a lot of imperfections and small fracture or plane of weakness, as
well as some defect on the fabric of the rock could help the fluid to percolate even a bit from
the wellbore wall, and therefore, changing the stress field around the hole and transforming the
issue from initiation to propagation of the fracture.

Another factor that plays in favor of fracture initiation is the change in pore pressure. Since
the moment the well is drilled even for impermeable rock or if a perfect mud cake is build, the
establishment of pressure equilibrium will occur as a function of time. The increment on pore
pressure causes a reduction of the effective stresses and shifting the Mohr circle to the left mak-
ing it closer to the tensile failure. An additional factor that could contribute in some extend to
a fracture initiation is cooling effect between the treatment fluid and the formation by reducing
the tangential stress.
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5.3 Packer effect: Case 3
Another important factor during the minifrac test is the interaction between the packer and the
formation. Some operator company has noticed that during some minifrac job is not possible
to initiate the fracture, but if the packer is inflated and then moved the tool in a way that the
zone that used to be in contact with the packer is now in the pressurized zone, it is much easier
to initiate the fracture. The last simulation will try to give some insight into what could be
occurring in the surrounding zone of the packer.

As reviewed in chapter 3 the packer needs to have a ∆P above the pressure of the zone
between them. This means that for an undamaged rock the fracture it will be initiated on the
packer zone. However, this fracture can not grow. Since there is no fluid on the packer the
pressure at the fracture tip cant overcome the stresses around the hole.

As part of the modeling, the pressure of the packer was set to be increased in the same way
as the reservoir zone in the previous run, from 51MPa to 76MPa. The pressure on the zone
above and below the packers will remain constant at 49MPa and between the packers the pres-
sure will be 2MPa lower than inside the packers.

Figure 5.8 shows a vertical slide on the X direction focused on the stress distribution, in
which it can be easily appreciated the stress concentration along the borehole and especially in
the packer zone due to the great differential pressure in this zone. Once the numerical model
was made, it is interesting to take a look at the behavior of the deformation as shown in figure
5.9 where it can be observed the extent of the plastic zone. This zone as in the plastic case
extend around 20 cm inside the formation.

On the other hand, when comparing the geometry against the extension of the plastic zone,
it is clear how the plastic goes beyond the packer. Since the zones above the upper packer and
below the lower packer have a low radial stress (if compared with the packer zone or between
them) it could be created a condition low confining pressure in these zones, making possible
to generate brittle failure. When moving the tool, the damage zone will be on the pressured
interval making the fluid percolate into this imperfection. Once the pressurized fluid is beyond
the wellbore wall initiate the fracture is much easier.
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Figure 5.8: Vertical slide on the X direction a) component X of the stress tensor with PW = 49MPa. b)
component Y of the stress tensor with PW = 49MPa. c) component X of the stress tensor with PW =
72MPa. d) component Y of the stress tensor with PW = 72MPa.
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Figure 5.9: Vertical slide on the X direction showing volumetric plastic strain distribution
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Chapter 6
Conclusion

From the theoretical review is important to highlight the three main stages of the pressure de-
cline curves. Being the first one when the fracture starts to close but the walls are not touching
to each other, the second stage begins when the walls of the fracture start to be in contact to each
other, the third stage, the fracture is already mechanically closed. The pressure decline on the
first and last stages can be described as straight lines, which provide an upper and lower limits
for the stress estimation. The second stage is much more complex and there is no analytical
model capable to describe this process completely but this phase is quantitatively described as
the changing of pressure, the fracture tip will close when the pressure inside the fracture is lower
than the minimum horizontal stress and the fracture lip will remain open until the pressure at
this point is greater than the hoop stress acting in the wellbore face.

Decline pressure behavior mainly depends on two principal elements, fracture stiffness, and
leak-off rate. These two factors are competing with each other, and depending on which of them
is predominant during the fracture close different interpretation techniques can be implemented
to estimate the minimum horizontal stress. If the fracture closing process is dominated by the
fracture stiffness, the system stiffness approach will give better results. Normally this technique
will be used when rocks with low permeability or low leak-off rate were a conventional ap-
proach, so the pressure will take too long to decline. On the other hand, if the fracture closure
is dominated by the formation leak-off, the G function approach can give more accurate results.

Regarding the second part of this work, the fracture initiation is a complex phenomenon
with many variables taking place at the same time. In this project, the focus was in an aspect
normally neglected in the hydraulic modeling as the plasticity behavior of the materials. To
accomplish this objective a finite element analysis was performed simulating several wellbore
pressures and analyzing the stress and strain response on the rock. During the modeling phase,
the hardening rule was design such as the rock starts with a strain hardening when plastic defor-
mation is reached until a certain amount of strain in which the hardening factor and therefore
the strength will remain constant regardless of the deformation.

During the simulation it was shown that reaching the tensile failure criteria (negative ef-
fective or null tangential effective stress) is very unlikely by only changing the hardening rule.
Even for an unrealistic material in which the strain hardening reached ten times the initial value,
it was not possible to meet the criteria. The main cause for this behavior is the building of a
stress cage in the neighborhood of the wellbore. It was shown that when the plastic strain get
closer to the threshold in which the material will start to have a perfectly plastic behavior the
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stress cage is such that the tangential stress instead of decreasing with each increase of the radial
stress (as expected) start to build up, shifting the Mohr circle to the right and therefore further
away of the tensile failure criteria. Then, to initiate the fracture others factors have to be take
place at the same time, for instance, rock heterogeneities, plane of weakness and/or defects the
fabric of the rock.

In case of any of the previous factors exist, it was shown by the simulation that by using the
packers during a microfrac test, the zone where plastic deformation occurs extend beyond the
packer itself. This plastic deformation in a zone with low confining stress created by the lower
fluid pressure in the zones above and below the packers (mud weight) could cause brittle failure
of the rock. Then, if this microfrac tool is moved in a way that those brittle failure zones are
inside the interval to be pressured, this imperfection will cause perhaps a change in the hoop
stresses distribution around the borehole or the increment of the pressure beyond the borehole
wall, allowing fluid to penetrate into the formation. Either of those consequences will make
that the fracture initiate despite the plastic behavior and the stress cage describe before. As a
step forward, a laboratory test could be performed in order to check the results of the numerical
simulation. The test can be carried out by submitting a sample with a vertical borehole in the
center to a triaxial compression test.
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APPENDIX A: Injection stages for the
model with S0 plastic = 3MPa

Figure 6.1: Wellbore Pressure 49MPa. S0 plastic = 3Mpa. a) component X of the stress tensor. b) com-
ponent Y of the stress tensor. c)comparison of analytical and numerical solution θ = 90. d)Volumetric
plastic deformation
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Figure 6.2: Wellbore Pressure 54MPa. S0 plastic = 3Mpa. a) component X of the stress tensor. b)
component Y of the stress tensor. c)comparison of analytical and numerical solution θ = 0. d)Volumetric
plastic deformation
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Figure 6.3: Wellbore Pressure 57MPa. S0 plastic = 3Mpa. a) component X of the stress tensor. b)
component Y of the stress tensor. c)comparison of analytical and numerical solution θ = 0. d)Volumetric
plastic deformation
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Figure 6.4: Wellbore Pressure 62MPa. S0 plastic = 3Mpa. a) component X of the stress tensor. b)
component Y of the stress tensor. c)comparison of analytical and numerical solution θ = 0. d)Volumetric
plastic deformation
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APPENDIX B: Injection stages for the
model with S0 plastic = 20MPa

Figure 6.5: Wellbore Pressure 49MPa. S0 plastic = 20Mpa. a) component X of the stress tensor. b) com-
ponent Y of the stress tensor. c)comparison of analytical and numerical solution θ = 90. d)Volumetric
plastic deformation
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Figure 6.6: Wellbore Pressure 52MPa. S0 plastic = 20Mpa. a) component X of the stress tensor. b) com-
ponent Y of the stress tensor. c)comparison of analytical and numerical solution θ = 90. d)Volumetric
plastic deformation
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Figure 6.7: Wellbore Pressure 54MPa. S0 plastic = 20Mpa. a) component X of the stress tensor. b)
component Y of the stress tensor. c)comparison of analytical and numerical solution θ = 0. d)Volumetric
plastic deformation

59



Figure 6.8: Wellbore Pressure 57MPa. S0 plastic = 20Mpa. a) component X of the stress tensor. b)
component Y of the stress tensor. c)comparison of analytical and numerical solution θ = 0. d)Volumetric
plastic deformation
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Figure 6.9: Wellbore Pressure 67MPa. S0 plastic = 20Mpa. a) component X of the stress tensor. b)
component Y of the stress tensor. c)comparison of analytical and numerical solution θ = 0. d)Volumetric
plastic deformation
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Figure 6.10: Wellbore Pressure 72MPa. S0 plastic = 20Mpa. a) component X of the stress tensor. b)
component Y of the stress tensor. c)comparison of analytical and numerical solution θ = 0. d)Volumetric
plastic deformation
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Figure 6.11: Wellbore Pressure 77MPa. S0 plastic = 20Mpa. a) component X of the stress tensor. b)
component Y of the stress tensor. c)comparison of analytical and numerical solution θ = 0. d)Volumetric
plastic deformation
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Figure 6.12: Wellbore Pressure 82MPa. S0 plastic = 20Mpa. a) component X of the stress tensor. b)
component Y of the stress tensor. c)comparison of analytical and numerical solution θ = 0. d)Volumetric
plastic deformation
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Figure 6.13: Wellbore Pressure 87MPa. S0 plastic = 20Mpa. a) component X of the stress tensor. b)
component Y of the stress tensor. c)comparison of analytical and numerical solution θ = 0. d)Volumetric
plastic deformation
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