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Abstract Layer II of the medial entorhinal cortex (MEC) contains two principal cell types:

pyramidal cells and stellate cells. Accumulating evidence suggests that these two cell types have

distinct molecular profiles, physiological properties, and connectivity. The observations hint at a

fundamental functional difference between the two cell populations but conclusions have been

mixed. Here, we used a tTA-based transgenic mouse line to drive expression of ArchT, an

optogenetic silencer, specifically in stellate cells. We were able to optogenetically identify stellate

cells and characterize their firing properties in freely moving mice. The stellate cell population

included cells from a range of functional cell classes. Roughly one in four of the tagged cells were

grid cells, suggesting that stellate cells contribute not only to path-integration-based

representation of self-location but also have other functions. The data support observations

suggesting that grid cells are not the sole determinant of place cell firing.

DOI: https://doi.org/10.7554/eLife.36664.001

Introduction
The medial entorhinal cortex (MEC) is thought to create a map of space through a set of functionally

distinct cell types: grid cells, border cells, head direction cells, and speed cells (Rowland et al.,

2016). Each functional cell type follows its own developmental trajectory (Bjerknes et al., 2014;

Langston et al., 2010; Wills et al., 2010), suggesting that the functional identity of the cell is hard-

wired during development. A reasonable hypothesis is therefore that these functional cell types map

onto the diversity of morphologically or molecularly defined cell types found in the MEC. Layer II of

the MEC contains two largely distinct populations of principal cells: stellate cells and pyramidal cells.

Stellate cells express reelin (Pesold et al., 1998; Kitamura et al., 2014; Fuchs et al., 2016;

Winterer et al., 2017), have large sag potentials (Dickson et al., 2000), superficially branching den-

drites (Canto and Witter, 2012), and, at least in rodents, sub-threshold membrane potential oscilla-

tions in the theta range (Alonso and Llinás, 1989). Pyramidal cells form tight clusters

(Kitamura et al., 2014; Ray et al., 2014), express calbindin and WFS-1 (Kitamura et al., 2014),

have thick apical dendrites (Canto and Witter, 2012), and receive strong cholinergic input from the

medial septum (Ray et al., 2014). Within the local circuit, the two-cell populations form largely dis-

tinct microcircuits: pyramidal cells are connected via 5-HT 3a positive interneurons (Fuchs et al.,

2016), while stellate cells are connected via fast-spiking parvalbumin (PV+) cells and slower spiking

somatostatin-positive cells (Fuchs et al., 2016). However, the two subnetworks are not entirely inde-

pendent; it has been estimated that up to 14% of pyramidal cells project to stellate cells

(Winterer et al., 2017) and some cells express an intermediate stellate/pyramidal identity

(Fuchs et al., 2016).

The functional identity of stellate cells and pyramidal cells has implications for the broader hippo-

campal-entorhinal circuit. Nearly every stellate cell projects to the DG, CA3 and/or CA2 regions of

the hippocampus, where terminals from stellate cells make up the main, and nearly exclusive,
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excitatory input from the MEC (Kitamura et al., 2014; Ray et al., 2014; Varga et al., 2010). The

targets of layer II pyramidal cells remain largely unclear. A subset of the cells project to the CA1

region (Kitamura et al., 2014) and to the contralateral hemisphere of the MEC (Varga et al., 2010),

but importantly, they do not terminate in the DG, CA3 or CA2 regions (Kitamura et al., 2014;

Ray et al., 2014). Because some theoretical models propose that the spatial specificity of cells in the

DG and CA fields are formed in large part by combining input from grid cells (Solstad et al., 2006;

McNaughton et al., 2006; Savelli and Knierim, 2010; Monaco et al., 2011; de Almeida et al.,

2012), determining the functional identity of the two MEC layer II populations is critically important.

Previous attempts to functionally characterize stellate cells have produced mixed results. Intracel-

lular recordings of stellate and pyramidal cells in mice running on a virtual linear track have shown

that both types could be putative grid cells (Domnisoru et al., 2013; Schmidt-Hieber and Häusser,

2013) and imaging studies of freely moving animals have found the same (Sun et al., 2015). These

findings contrast with those of another study, which assigned cells into putative stellate or pyramidal

cells based on their phase locking to the ongoing theta oscillation. Based on this classifier, only 3 of

94 putative stellate cells (near chance levels) were grid cells (Tang et al., 2014), calling into question

the role of grid cells in enabling spatial firing in target regions of stellate cells, such as the hippocam-

pus. Here, we attempt to reconcile these differences using a mouse line in which the inhibitory opsin

ArchT (Chow et al., 2010; Han et al., 2011) is expressed almost exclusively in stellate cells. Using

ArchT expression and optogenetic inhibition to identify stellate cells, we first showed that approxi-

mately one in four stellate cells are grid cells. We then revisited the previously published classifier

using an extended dataset of over 1300 cells and 400 grid cells recorded in layer II. Consistent with

prior observations (Latuske et al., 2015), we found that neither the classifier’s cell assignment nor

the relationship between the firing of the cell and the theta oscillation cleanly separated grid cells

from other cell types. Taken together, the results suggest that substantial fraction of the stellate cells

are grid cells, although they can have other functional identities as well, and the relationship

between the cell’s firing and the theta oscillation is a poor predictor of the functional identity of the

cell.

Results
We sought to characterize the functional properties of stellate cells using an optogenetic tagging

approach. To gain genetic access to stellate cells, we used the ‘EC-tTA’ line (Yasuda and Mayford,

2006) that expresses almost exclusively in the parahippocampal region (entorhinal cortex together

with the pre- and para- subiculum). Within the MEC, where we targeted our tetrodes, the expression

is confined to layer II (Figure 1). Previous work on the ‘EC-tTA’ line has shown that the transgene-

expressing cells in layer II of the MEC have stellate-like morphologies, project to the dentate gyrus

and CA3 regions of the hippocampus (Rowland et al., 2013), and often show distinctive circular

gaps in expression (Kanter et al., 2017), which presumably correlate with circular clusters of calbin-

din-positive pyramidal cells (Kitamura et al., 2014) and would be expected if the transgene-express-

ing cells were stellate cells. Because the tTA-line allows expression of our transgene of interest in

stellate cells, we crossed the line to a tetO-ArchT-GFP (Weible et al., 2014) line to enable functional

characterization of these cells through optogenetic tagging. To characterize expression of ArchT in

this particular cross, we combined an in situ hybridization staining for the transgene with antibody

staining for either calbindin, a marker for pyramidal cells (Figure 1A,B), or in situ staining for reelin,

a marker for stellate cells (Figure 1C,D), on alternating sections of one mouse. Arch-expressing cells

avoided clusters of calbindin-positive cells (Figure 1B) but overlapped extremely well with reelin

(Figure 1D). Overall, only a small minority of the Arch-expressing MEC cells expressed calbindin (3

of 303 Arch-expressing cells expressed calbindin, ~ 1%; 3 of 433 calbindin expressing cells

expressed Arch, less than 1%) while 97.2% expressed reelin (315 of 324 ArchT-expressing cells

expressed reelin; 315 of 967 of reelin expressing cells expressed ArchT, 32.5%; Figure 1C,D). The

fact that not all stellate cells express Arch raises the possibility that the EC-tTA line targets a subclass

of stellate cells, but we could not test for that because there are no known markers for any subclass.

To check for consistency across animals, we also examined the overlap between ArchT and reelin in

three additional mice and each additional mouse showed a very similar pattern (Figure 1—figure

supplement 1). Finally, to confirm that the ArchT-expressing cells project to the hippocampus, we

checked for GFP-labeled fibers in the molecular layer of the dentate gyrus and CA3, the expected

Rowland et al. eLife 2018;7:e36664. DOI: https://doi.org/10.7554/eLife.36664 2 of 17

Research article Neuroscience

https://doi.org/10.7554/eLife.36664


Figure 1. Characterization of ArchT expression in the EC-tTA x tetO-ArchT-GFP transgenic mouse line. Images are 63x scans acquired under a confocal

microscope at multiple focal planes and collapsed into a single maximum intensity projection. (A) Overlap between Arch mRNA expression (cyan) and

calbindin, a marker for MEC layer II pyramidal neurons, protein expression (magenta). (B) Blowup of boxed area in (A) for Arch mRNA expression (top),

calbindin protein expression (middle) and overlay (bottom). Asterisks indicate islands of calbindin-positive cells. None of the Arch-expressing cells in

this section also expressed calbindin. (C) Overlap between Arch mRNA expression (cyan) and reelin, a marker for MEC layer II stellate cells, mRNA

expression (magenta). (D) Blowup of boxed area in (C). All the Arch-expressing cells also expressed reelin in this field of view. Scale bars are 200 um for

overview images and 50 mm for blowups.

DOI: https://doi.org/10.7554/eLife.36664.002

The following figure supplements are available for figure 1:

Figure supplement 1. Examples of ArchT and reelin mRNA labeling in three additional EC-tTA x tetO-ArchT-GFP mice.

DOI: https://doi.org/10.7554/eLife.36664.003

Figure supplement 2. Arch-expressing cells project to the dentate gyrus (DG) and CA3 regions of the hippocampus.

DOI: https://doi.org/10.7554/eLife.36664.004

Figure supplement 3. Nissl-stained saggital brain sections showing recording locations for seven EC-tTA x tetO-ArchT-GFP mice used in the study and

three additional wild-type animals used in the extended layer II dataset.

DOI: https://doi.org/10.7554/eLife.36664.005
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termination zones of MEC stellate cells, and found intense labeling in these areas (Figure 1—figure

supplement 2). The cross therefore drives expression of ArchT almost exclusively in stellate cells in

MECII.

To functionally characterize the transgene-expressing cells, we implanted a bundle of four tetro-

des glued to an optic fiber (see Materials and methods) into the MEC (Figure 1—figure supplement

3) of seven double positive EC-tTA x tetO-ArchT-GFP mice. After recovery from surgery, single units

were recorded as the mice foraged for food in a 0.8 or 1 m wide square open field (Figure 2A).

Immediately following the open-field session, the mice were placed in a smaller box (27cm � 20

cm�14 cm height) and connected to a 532 nm green laser via a patch cable for an optogenetic tag-

ging session. Optogenetic tagging is typically performed using excitatory opsins (Lima et al., 2009;

Zhang et al., 2013). However, inhibition has been used for the same purpose (Wolff et al., 2014)

and has the advantage that it circumvents the problem of false positives caused by recurrent excita-

tion. Previous work has shown that Arch silences cells with near-zero latency (Chow et al., 2010;

Wolff et al., 2014), and we therefore reasoned that we could reliably tag ArchT-expressing cells

using short (10 to 20 ms) pulses of light delivered thousands of times at 1–4 Hz (Figure 2B,C; addi-

tional examples in Figure 2—figure supplement 1). The large number of trials was necessary to

have sufficient data for reliable statistics and to accurately estimate the latency to inhibition because

the cell needs to be active precisely when the light comes on. We spike-sorted the baseline and tag-

ging sessions together to avoid cluster assignment errors, and only analyzed cells with fewer than

1% of spikes between 0 and 2 ms in the interspike interval histogram and with high waveform

Figure 2. Experimental design and examples of tagged grid cells. (A) Mice were run in a 0.8 or 1 m box for 30–40 min while cells in the MEC were

recorded. The mice were then connected to a patch cable and placed in a towel-lined holding box for an optogenetic tagging session. The tagging

session consisted of 10–20 ms light pulses delivered thousands of times at 1–4 Hz. (B) Cartoon of the experimental logic. ArchT-expressing stellate cells

(cyan stars) should be immediately inactivated by light delivery while neighboring pyramidal cells (black triangles) should not, allowing functional

identification of stellate cells. (C) Raster plot (top) and histogram (bottom; bin size = 1 ms) for an example tagged cell. The cell was silenced with an

estimated latency of 1.15 ms. (D) Cumulative histogram of latencies for all inhibited cells. Median latency was 0.85 ms. (E) Two further example tagged

grid cells (spike-path plots on left and color-coded rate maps with colorbar in the middle) and their corresponding raster plots and histograms from the

tagging session (right). Both cells had sub-millisecond latencies.

DOI: https://doi.org/10.7554/eLife.36664.006

The following figure supplement is available for figure 2:

Figure supplement 1. Four additional tagged cells.

DOI: https://doi.org/10.7554/eLife.36664.007
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correlations (r > 0.99) between the baseline and tagging session. We considered the cell to be

silenced if the activity in the baseline period was more than during the laser-on period (two sided

t-test with stringent cutoff of p<0.001). The latency to inhibition was determined using a change

point analysis (Wolff et al., 2014). Most of the cells had near-zero millisecond latencies (median

latency = 0.85 ms, Figure 2C–E), making it highly improbable that silencing was caused through a

network mechanism. We applied a latency threshold of 5 ms, which eliminated three outlier cells and

left a total of 75 tagged cells from a population of 578 (~13% tagged cells). The non-tagged popula-

tion included non-expressing or non-responsive stellate cells as well as all other cell types (see

below).

To assign the cells into functional classes, we computed standard scores for speed modulation,

head directionality, gridness, and border-related firing (see Materials and methods). We then shuf-

fled the spike times of each cell 200 times, recalculated the measures each time, and used the 95th

percentile of the shuffled distribution as a cutoff for assigning cells to a particular class. For head

direction cells, we additionally required that the correlation of the directional firing of the first half

and the second half of the trial exceed 0.6. Cells that passed more than one criterion were consid-

ered mixed (light blue portion of bars in Figure 3A) and counted in all supra-threshold categories

(thus, the sum exceeds 100%). The tagged population included grid cells (25.3%; 16% pure, 9.3%

mixed), head direction cells (12%; 9.3% pure, 2.7% mixed), speed cells (16%; 8% pure, 8% mixed),

border cells (1.3%; 1.3% pure, 0% mixed), and unclassified cells (56.0%). To control for the possibility

that accidental resampling of cells between sessions created spurious results, we downsampled our

data to cells recorded 4 or more days apart, when the electrodes had been turned approximately

100 microns. The downsampled population had similar proportions in each functional class as the

full dataset, suggesting that percentages described here are representative of the functional diver-

sity in layer II of the MEC (Figure 3—figure supplement 1). We next compared the properties of

the tagged cells to the untagged population. The untagged population likely included layer II pyra-

midal cells, non-expressing stellates (i.e reelin-expressing cells that do not express Arch, Figure 1C,

D) and possibly even some layer III cells that fell within the ~100 micron recordable distance of the

tetrodes (Gray et al., 1995; Harris et al., 2000). The untagged population therefore represents the

properties of superficial layer cells of multiple morphologically- and molecularly- defined cell types.

The untagged population included grid cells (35.6%; 26.8% pure, 8.8% mixed), head direction cells

(9.1%; 6.1% pure, 3% mixed), speed cells (18.9%; 10.1% pure, 8.8% mixed), border cells (5.8%; 4.6%

pure and 1.2% mixed), and unclassified cells (41.6%). We next compared the raw scores between

Figure 3. Properties of tagged cells. (A) Percentage of tagged (cyan, left) and untagged (black, right) cells in the unclassified category (Unx) and each

of the 4 functional cell classes: grid (G), head direction (HD), speed (S) and border cells (B). Light regions of the bar plots show the percentage of cells

in each class that belonged to more than one class (‘Mix’). Note that because a cell could belong to more than one class, the total percentages exceed

100. (B) Violin plots of grid, head direction, speed and border scores where the shaded region gives kernel density estimate for tagged (light cyan) and

untagged cells (grey). Individual data points overlaid on top of the violins. Asterisks indicate a significant difference between the two populations

(**p<0.01, all tests Mann-Whitney U-tests).

DOI: https://doi.org/10.7554/eLife.36664.008

The following figure supplement is available for figure 3:

Figure supplement 1. Distribution of functional cell types for the whole dataset (A) and a downsampled dataset of all cells with sessions separated by

4 or more days (B), when the electrodes had been turned 100 microns.

DOI: https://doi.org/10.7554/eLife.36664.009
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the populations using two-sided, non-parametric statistics (Figure 3B). The untagged population

had lower head direction scores (two-sided Mann-Whitney U test, U = 22869.0, p=0.003), higher

grid scores (Mann-Whitney U test, U = 14225.0, p=0.0037), and lower spatial information content

(two-sided Mann-Whitney U test, U = 21692.0 p=0.036) compared to the tagged cells. There was no

significant difference in border score (two-sided Mann-Whitney U test, U = 16536.0, p=0.085), or

speed score (two-sided Mann-Whitney U test, U = 18307.0, p=0.68). We also tested whether the

grid scores of cells categorized as grid cells (two-sided Mann-Whitney U test, U = 1786.0, p=0.72),

head direction score of head direction cells (two-sided Mann-Whitney U test, U = 208.0, p=0.99),

and speed score of speed cells (two-sided Mann-Whitney U test, U = 461.0, p=0.28) differed

between the tagged and untagged populations, and we found no significant differences. The num-

ber of border cells was too small to do a statistical comparison. In summary, the tagged and

untagged populations were heterogeneous but notably both groups included substantial numbers

of grid cells (approximately 1 in 4 for tagged cells and 1 in 3 for untagged cells).

These results contrast with a previous study by Tang and colleagues (Tang et al., 2014). Tang

et al. assigned extracellularly recorded cells into putative pyramidal and stellate classes based on

depth of modulation and preferred firing phase relative to the ongoing theta oscillation. The authors

concluded that stellate cells were grid cells only ~3% of the time (near chance levels) but were more

frequently border cells (~11%). In contrast, putative pyramidal cells were more often grid cells

(~19%) and less often border cells (~1%). We first asked how well the classifier approach worked to

identify our tagged cells. We found that the classifier identified our tagged cells as putative stellate

cells 81.3% of the time (Figure 4A). Most of the misidentified cells were clearly in the putative pyra-

midal region and the tagged grid cells showed a similar distribution as the other tagged cells (Fig-

ure 4—figure supplement 1; mean distance to decision boundary for the misidentified cells = 0.87).

Because the untagged population also includes stellate cells, among others, we cannot determine

the number of cells falsely identified as stellate cells and therefore cannot fully evaluate the classifier.

Nevertheless, we note that our calculated true positive rate for stellate cells is only around 80%.

Therefore, there is currently no available substitute for identifying stellate cells with high precision

besides more labor intensive options like functional imaging combined with a marker of stellate cells

(Sun et al., 2015), intracellular recordings with post-hoc reconstructions (Domnisoru et al., 2013;

Schmidt-Hieber and Häusser, 2013; Burgalossi et al., 2011), or optogenetic tagging, as we have

done here.

The Tang et al. results also suggested that theta phase and strength could be used to predict the

functional identity of the cells. We therefore evaluated their classifier on an extended dataset of

1332 cells including 411 grid cells. This extended dataset included recordings from the EC-tTA x

tetO-ArchT-GFP mice and three additional mice with histologically confirmed layer II recordings

(N = 270 putative pyramidal cells, 999 putative stellate and 63 cells in the guard zone). We observed

a similar distribution in plots of the preferred firing phase and strength of theta modulation as Tang

et al. (Figure 4B). The preferred firing phase of the cells was not evenly distributed across the theta

cycle (Rayleigh test for non-uniformity, p=3.79 � 10�9) and there were two peaks in the distribution:

one near the peak and one near the trough of the oscillation (Figure 4B, Figure 4—figure supple-

ment 2; see also [Newman and Hasselmo, 2014]). In contrast to the Tang et al. findings, however,

we found that cells classified as stellate cells had overall higher grid scores than cells that were classi-

fied as pyramidal cells (two-sided Mann-Whitney U test, U = 114913, p=0.0003). Corre-

spondingly,~32% of the putative stellates were grid cells, compared to ~23% of the putative

pyramidal cells (Figure 4C,D). We did not find a significant difference in border scores between the

two populations (two-sided Mann-Whitney U-Test, U = 127330.5, p=0.158, Figure 4C).

We then considered whether grid cells preferentially fired at a particular phase of the theta oscil-

lation. Individual grid cells showed large diversity in their preferred firing and depth of theta modula-

tion (Figure 4B,E) as expected given the propensity of layer II grid cells to phase-precess

(Hafting et al., 2008). Clustering of the cells using an agglomerative clustering approach captured

one population that fired near the peak and one that fired near the trough of the theta oscillation.

Similar to what we found when we used the classifier, the clustering approach revealed higher grid

scores in the peak-preferring population but cells with high grid scores in both populations (Fig-

ure 4—figure supplement 2). Border scores were not significantly different between the two

populations.
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Figure 4. Classifier performance and comparison of theta phase locking for different functional classes on an extended layer II dataset. (A) Classifier

performance on the population of tagged cells. Numbers of cells correctly identified as stellate cells (purple), incorrectly identified as pyramidal cells

(orange), and in the guard zone (green) are shown in the stacked bar chart. (B) Preferred theta phase (angle) and strength of theta phase modulation

(mean vector length, MVL, radius, peak of the oscillation is 0 and trough is pi) for all cells in in the extended layer II dataset. The data for all cells are

presented in circular form on the left and unwrapped on the top right. Cells are color-coded based on their classification into putative stellate and

pyramidal categories (classification based on phase locking to local theta oscillation; see text). Cells showed some clustering around the peak (0) and

trough (pi). Bottom right shows the distribution of grid cells only where the dot size is proportional to the grid score. (C) Kernel density estimates (KDE)

of grid scores (top) and border scores (bottom) for putative stellate cells and putative pyramidal cells. (D) Breakdown of the two groups by functional

category. (E) Example grid cells (path plots and color-coded rate maps) with theta phase histograms (normalized such that the area under the curve

equals 1 for comparison of depth of modulation between cells) for the two categories of cells. Peak rates for rate maps are indicated above the maps.

Clear grid cells exist in both populations and exhibit a variety of theta phase preferences. (F) KDEs showing that grid cells exhibit no significant

difference in theta modulation from border cells (top) but less theta modulation than non-grid cells as a group. (G) Violin plots with individual data

points in white overlaid for theta modulation by cell class (shaded regions give the kernel density estimates and the white dots are individual data

points). We only included pure cells (cells that classified criteria for only one cell type) in this analysis to preserve independence between groups.

(**=P < 0.01, ***=P < 0.001, two-sided Mann-Whitney U-test).

DOI: https://doi.org/10.7554/eLife.36664.010

The following figure supplements are available for figure 4:

Figure supplement 1. Performance of the Tang et al

DOI: https://doi.org/10.7554/eLife.36664.011

Figure supplement 2. A second approach to clustering the data gives similar results.

DOI: https://doi.org/10.7554/eLife.36664.012

Figure supplement 3. Grid score is negatively correlated with depth of theta modulation.

DOI: https://doi.org/10.7554/eLife.36664.013
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We then asked whether grid cells had stronger theta modulation than non-grids. As a group,

despite having many strongly modulated example cells, grid cells were significantly less theta modu-

lated, as measured by the mean vector length of the cell firing with respect to the theta oscillation,

than non-grids (Figure 4F; two-sided Mann-Whitney U test, U = 162644.0, p=9.28�10�5), perhaps

again reflecting the strong phase precession of layer II grid cells (Hafting et al., 2008). Consistent

with these results, the strength of theta modulation had a very weak but significant negative correla-

tion to grid score (Pearson’s r = �0.15, p=6�10�8; Figure 4—figure supplement 3). We next com-

pared the depth of theta modulation by class. To avoid comparing cells against themselves, we

compared only cells that were ‘pure’ (i.e. above threshold in just one category; number of pure grid

cells = 327, pure speed cells = 127, pure border cells = 68, pure head direction cells = 121). Pure

grid cells were not significantly different in theta modulation compared to pure border cells (two-

sided Mann-Whitney U test, U = 22816, p=0.087, Figure 4G), but had less theta modulation than

pure speed cells (two-sided Mann-Whitney U test, U = 16548.0, p=0.0002) and more theta modula-

tion than pure head direction cells (two-sided Mann-Whitney U test, U = 23391.0, p=0.003). In sum-

mary, theta modulation is prevalent across all functional cell types in the MEC but with some small,

although significant, differences between groups. For example, we observed a small negative corre-

lation between grid score and depth of theta modulation but the correlation accounted for approxi-

mately 2% of the variance. These results show that, despite some differences between groups, the

large diversity in theta modulation and preferred theta phase within cell types makes the relationship

between the firing of the cell and the theta oscillation a poor predictor of the functional identity of

the cell, in close agreement with the results of Latuske et al., 2015.

Discussion
We have shown that stellate cells in layer II of the MEC can belong to multiple functional cell classes

and that approximately one in four are grid cells. These results serve to reconcile conflicting evi-

dence in the field. On the one hand, in vivo whole cell recordings and functional imaging of stellate

cells have both found approximately equal or greater numbers of putative grid cells in the stellate

population than in the pyramidal cell population (Domnisoru et al., 2013; Schmidt-Hieber and

Häusser, 2013; Sun et al., 2015). On the other hand, it has been reported, in work where cell iden-

tity was classified on the basis of locking to the theta phase, that putative stellates are almost never

grid cells (Tang et al., 2014). We addressed this controversy in two ways. First, we optogenetically

tagged stellate cells using a mouse line that expresses transgenes almost exclusively in stellate cells

of MEC layer II. Second, we used the previously published classifier (Tang et al., 2014) on a dataset

of 1332 cells and 411 grid cells.

Optogenetic tagging showed that roughly 25% of stellate cells are grid cells. The actual propor-

tion of grid cells may be larger than this estimate, for three reasons: (i) spike sorting errors can lead

to misassignment of cells into the wrong functional class (Navratilova et al., 2016), (ii) boundary-

induced distortions of the grid pattern could, in theory, cause a grid cell to fall below the cutoff

(Stensola et al., 2015), and (iii) grid cells with inter-field spacing larger than our 0.8–1.0 meter

recording box would be missed in our analysis (Stensola et al., 2012). The widespread presence of

grid cells in the stellate cell population was corroborated by the use of the theta classifier, which

showed that putative stellate cells are more likely to be grid cells than putative pyramidal cells, in

agreement with a previous study re-testing the same classifier (Latuske et al., 2015). The classifier

results should be taken with a note of caution, because our data and the Tang et al. data suggest

that the classifier correctly assigns stellate cells only around 80% of the time. One unanswered ques-

tion is why the classifier assigned grid cells almost exclusively to the putative pyramidal category in

the original Tang et al. study, but not in the present study and the Latuske et al. study. One clear dif-

ference is that the number of cells and animals recorded in the present study and the Latuske et al.

study is higher than in the Tang et al. study. A second difference is the fraction of grid cells reported

in the studies. We report approximately 30% grid cells in our layer II recordings using the 95th per-

centile cutoff and the Latuske study reported around 20% using the 99th percentile cutoff. In con-

trast, the Tang et al. study reported only 10% grid cells at the 95th percentile cutoff, well below any

other published estimate with layer II tetrode recordings in rodents. As there are now clear indica-

tions from imaging work that grid cells are not homogeneously distributed in layer II (Heys et al.,

2014), one possibility is that Tang et al. did not sample from a large enough region of layer II to get
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a representative sample. However, the lack of histology in the Tang et al. paper makes it impossible

to compare recording locations between the studies.

Although the suggestion that one of four stellate cells probably is an underestimate, the majority

of stellate cells are probably not grid cells. The remaining cells include smaller fractions of cells of all

functional types, as well as a large number of unclassified cells, which might include the recently dis-

covered object vector cells (Hoydal et al., 2018). This is consistent with recent observations of the

role of PV+ cells, which contact stellate cells but not pyramidal cells (Fuchs et al., 2016). On the one

hand, PV+ cells are preferentially connected with grid cells in vivo (Buetfering et al., 2014) and

manipulations of the PV+ network alters grid cell firing (Fuchs et al., 2016). On the other hand, the

effects of manipulating the PV+ network are not strictly limited to grid cells alone (Buetfering et al.,

2014; Miao et al., 2017). Moreover, although we cannot address the functional identity of layer II

pyramidal cells using our approach due to the high numbers of non-expressing stellate cells, it is

very likely that grid cells are present also among pyramidal cells, along with other functional cell

types (Domnisoru et al., 2013; Sun et al., 2015). Taken together, the observations suggest that

there is no 1:1 relationship between morphological and functional cell types in layer II of the MEC.

One possibility is that grid cells are specific subclasses of pyramidal and stellate cells, perhaps with a

distinct molecular expression profile. In agreement with this possibility, in vitro recordings have

found some heterogeneity among both stellate cells and pyramidal cells (Fuchs et al., 2016;

Ferrante et al., 2017; Giocomo et al., 2007; Giocomo and Hasselmo, 2009; Shay et al., 2016).

Alternatively, the cell class or subclass might make little difference for the functional identity of the

cell. In the visual cortex, where there are also functionally defined cell types such as simple and com-

plex cells, a cell’s morphology, projection pattern, and layer assignment does not define its func-

tional class in a straightforward manner (Gilbert and Wiesel, 1979). Further studies are needed to

establish exactly what determines the functional identity of the cells in the MEC.

The diversity of functional cell types in the stellate population is consistent with the proposal that

grid cells contribute to, but are not the sole determinant of, place cell firing (Zhang et al., 2013).

The observation fits with earlier results that place cells show mature firing patterns before grid cells

in development (Langston et al., 2010; Wills et al., 2010; Bjerknes et al., 2018) and place cells can

maintain some significant spatial tuning even when grid cells lose their hexagonal firing patterns

(Brandon et al., 2011; Koenig et al., 2011). Such residual tuning could be upheld by border cells in

MEC, which are present from the earliest days that place cells have been recorded in the hippocam-

pus (Bjerknes et al., 2014; Muessig et al., 2015), and whose spatial modulation is retained under

circumstances that compromise the spatial periodicity of grid cells (Miao et al., 2017). These cells,

as well as the recently discovered entorhinal object-vector cells (Hoydal et al., 2018), may provide

vector-based spatial information to hippocampal place cells, as proposed by theoretical models pro-

posing cells with such properties in the MEC or elsewhere (O’Keefe and Burgess, 1996;

Hartley et al., 2000; Burgess et al., 2000). Whether border cells and object-vector cells are stellate

cells remains to be determined, since only one of the tagged cells was a border cell in the present

study. The low number of tagged border cells may reflect either that such cells are not stellate cells

or that we missed the border cells, given their low abundance in MEC (5–10% [Bjerknes et al.,

2014; Solstad et al., 2008; Boccara et al., 2010]) and the patchy organization of the MEC network

(Kitamura et al., 2014; Burgalossi et al., 2011; Heys et al., 2014). Finally, theoretical work

(Savelli and Knierim, 2010; de Almeida et al., 2012; Rolls et al., 2006) has suggested that place

cells may also be formed by inputs from cells with weak spatial modulation in the MEC

(Zhang et al., 2013; Diehl et al., 2017), or the LEC (Hargreaves et al., 2005), or elsewhere. By

showing that grid cells account for only a fraction of the hippocampal stellate-cell input, the present

findings point to multiple functional classes of MEC cells as possible sources for place-cell formation.

Taken in combination with previous recording and imaging efforts (Domnisoru et al., 2013;

Schmidt-Hieber and Häusser, 2013; Sun et al., 2015; Latuske et al., 2015), our findings settle the

controversy over whether stellate cells can be grid cells and suggest a major but not exclusive role

for grid cells in the formation and maintenance of place cells and other spatially modulated cells in

CA3 and dentate gyrus of the adult hippocampus. Taken together with recent work showing that

stellate cells are required for path integration behaviors (Tennant et al., 2018), our data also impli-

cate grid cells in path integration, in agreement with a large body of present and past theoretical

models of grid cells (McNaughton et al., 2006; Couey et al., 2013).
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Materials and methods

Subjects
We performed optogenetic tagging (N = 7; 5 males and 2 female) and anatomical characterization

(N = 4; 2 females and 2 males) of crosses between a neuropsin-tTA (‘EC-tTA’) line and a tTA-depen-

dent ArchT (tetO-ArchT-GFP) line. Both transgenic lines were bred in a C57BL6/DBA background.

The generation of these two lines has been described elsewhere (Yasuda and Mayford, 2006;

Weible et al., 2014). Only mice that were double positive for the two transgenes were used in this

study. We also used data from three additional C57BL6/J male mice with confirmed layer II record-

ings for the data in Figure 4. All mice were between 3 and 6 months of age at time of implant.

Before implantation, mice were group housed with up to three littermates (cage size: 32cm � 17

cm � 15 cm height). Prior to surgery and testing, the mice were handled and pretrained in the

recording environment at least twice. After implantation, the mice were housed individually in trans-

parent Plexiglass cages (36cm � 24 cm�26 cm height). The mice were maintained on a 12 hr light/

12 hr dark schedule and tested in the dark phase. The mice were never put on food or water

restriction.

The experiments were performed in accordance with the Norwegian Animal Welfare Act and the

European Convention for the Protection of Vertebrate Animals used for Experimental and Other Sci-

entific Purposes.

Optotrode construction
Tetrodes were constructed from four twisted 17 mm polyimide-coated platinum-iridium (90–10%)

wires (California Fine Wire, CA). Four tetrodes were inserted into a 22-gauge metal cannula mounted

onto a microdrive (Axona Ltd., Herts, UK). The tetrodes were cut to length using a sharp pair of scis-

sors and a 100 micron diameter fiber with a conical tip (Doric Lenses, MFC_100/125–0.37_17 mm,

ZF1.25, C45) was placed on the anterior side of the tetrode bundle. The tip of the fiber was approxi-

mately 200 microns above the tips of the tetrodes. The electrode tips were plated with platinum to

reduce electrode impedances to between 150 and 300 kW at 1 kHz using a NanoZ device (Neura-

lynx, Bozeman, MT).

Surgery
Anesthesia was induced by placing the animal in a closed glass box filled with 5% isoflurane flowing

at a rate of 1.2 L/min. Afterwards, the mice were rapidly moved into the stereotaxic frame, which

had a mask connected to an isoflurane pump. Air flow was kept at 1.2 L/min with 0.5–2% isoflurane

as determined by physiological monitoring. Mice were then given two pain killers (Temgesic and

Metacam) plus a local anesthetic (Marcain) underneath the skin over the skull. After exposing the

skull, a single hole was drilled on the skull anterior to the transverse sinus to reach the entorhinal cor-

tex. The mice were implanted with the optotrode aimed at medial entorhinal cortex. The coordi-

nates for optotrode implants were: 3.25 mm medial-lateral relative to lambda on the left

hemisphere, 0.35 mm anterior to the border of the sinus, and 0.7–0.8 mm dorso-ventral relative to

the surface of the brain. The inclination of the entorhinal tetrodes was 3–4˚ pointing in the posterior

direction. A ground wire soldered to a screw was placed in the occipital bone (over the cerebellum)

and a second anchoring screw was placed in the right parietal bone. The drive was affixed to the

skull using a three stage process. First, a thin layer of Optibond (Kerr, CA, USA) was applied to the

skull and cured with UV light; next, a thicker layer of Charisma (Kulzer, Hanau, Germany) was applied

and cured with UV light; finally, dental cement (Meliodent, Hanau, Germany) was used to bond the

foot of the drive to the Charisma layer.

Recordings and optogenetic tagging
Testing began only after a complete recovery from surgery (approximately 1 week). A session con-

sisted of two phases. First, neural activity was recorded as the animal freely explored either a 0.8 m

or 1 m black box with a single sheet of white, laminated A4 paper fixed to one wall of the box, which

served as a polarizing cue. For recordings, the microdrive was connected to the recording equip-

ment via an a.c coupled unity-gain operational amplifier and passed via wires to a digital acquisition

system (Axona Ltd.). The animal was then placed into the box and allowed to move around freely
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while the experimenter periodically threw crumbs of cookies into the environment. Recorded signals

were amplified 5000 to 10000 times and band-pass filtered between 0.3 and 7 kHz. Triggered spikes

were stored to disk at 48 kHz (50 samples per waveform, 8 bits/sample) with a 32 bit time stamp

(clock rate at 96 kHz). EEG was recorded single-ended from one or more of the electrodes. The EEG

was amplified 3000–10 000 times, low-pass-filtered at 500 Hz, sampled at 4800 Hz, and stored with

the unit data. A tracker system (Axona Ltd.) was used to record the position of two LEDs attached to

the head stage at a rate of 50 samples per second, allowing tracking of position and head direction.

In the second phase, the animal was placed into a smaller towel-lined plexiglass box while still

connected to the recording equipment for optogenetic tagging of the cells. The implanted fiber was

connected to a 200 mW green (532 nm) laser (Laser Century, Shanghai, China) via a patch cable

(Doric Lenses, Quebec Canada). The power was approximately 5 mW from the end of the patch

cable (approximately 3.5 mW from the tip of the fiber). A mechanical shutter (Uniblitz shutter sys-

tem, Vincent Associates, NY, USA) was used to deliver pulses of light through the patch cable. The

shutter was controlled by TTL pulses sent from an Arduino Uno (Arduino, Italy). 10–20 ms light

pulses were delivered 1 to 10 times per second. A sensor in the shutter triggered a second TTL pulse

that was sent to the acquisition system for synchronizing the light pulses with the electrophysiologi-

cal recordings. In order to obtain the most accurate estimate of latency to inhibition, thousands of

trials were run over a 30 to 60 min session. During the procedure, the small holding box was occa-

sionally moved approximately 10 cm in order to recruit new cells that might be active in a different

room location. We considered the cell to be silenced if the activity in the baseline period was more

than during the laser-on period (t-test with stringent cutoff of p<0.001). The latency to inhibition was

determined using a change point analysis (Wolff et al., 2014). The tetrodes were advanced approxi-

mately 25 microns at the end of each trial and allowed to settle overnight before the next session.

This procedure was repeated until single units could no longer be isolated (10–50 recording sessions

per animal, median = 25).

Spike sorting
Spike sorting was performed offline using KlustaKwik (Kadir et al., 2014; Rossant et al., 2016).

Spikes were first automatically sorted and then extensively refined manually (including elimination of

poorly isolated clusters, merging of clusters, and refining of cluster boundaries) through a graphical

user interface (Klustaviewa). The baseline and tagging sessions were merged and cut as one block

and then split up for subsequent analysis.

Measures used for cell type classification
All data were analyzed using custom Matlab and Python code. For circular statistics, we adapted

scripts from the circstat toolbox (Berens, 2009).

Gridness score (Langston et al., 2010; Sargolini et al., 2006)
The gridness score for each cell was determined from a series of expanding circular samples of the

spatial autocorrelogram, each centred on the central peak but with the central peak excluded. The

radius of the central peak was defined as either the first local minimum in a curve showing correla-

tion as a function of average distance from the center, or as the first incidence where the correlation

was under 0.2, whichever occurred first. The radius of the successive circular samples was increased

in steps of 1 bin (2.5 cm) from a minimum of 10 cm more than the radius of the central peak, to a

maximum of 90 cm. For each sample, we calculated the Pearson correlation of the ring with its rota-

tion in a degrees first for angles of 60˚ and 120˚ and then for angles of 30˚, 90˚ and 150˚. We then

defined the minimum difference between any of the elements in the first group (60˚ and 120˚) and
any of the elements in the second (30˚, 90˚ and 150˚). The cell’s gridness score was defined as the

highest minimum difference between group-1 and group-2 rotations in the entire set of successive

circular samples.

Mean vector length (head-direction score) (Langston et al., 2010)
Given the head-direction tuning map of a cell, if the bin i with orientation �i expressed in radians is

associated with a firing rate li, the mean vector length was computed as
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where the sums were performed over all N directional bins and the modulus of the resulting com-

plex number was obtained. A cell was considered a head direction cell if it exceeded the shuffling

criterion and had an inter-trial stability of more than 0.6. The inter-trial stability was defined as the

Pearson’s correlation between the tuning map in the first half of the trial and the second half.

Information per spike (Skaggs et al., 1996)
Given a spatial or head-direction map with mean firing rate l and a value li for each of its N bins,

information rate was computed as

X

N

i¼1

pi
li

l
log2

li

l

� �

where pi is the occupancy probability of bin i.

Border score (Solstad et al., 2008)
The border score was computed as the difference between the maximal length of a wall touching on

any single firing field of the cell and the average distance of the field from the nearest wall, divided

by the sum of those values. The range of border scores was thus �1 to 1. Firing fields were defined

as collections of neighboring pixels with firing rates higher than 20% of the cell’s peak firing rate and

a size of at least 200 cm2.

Speed score (Kropff et al., 2015)
The speed score for each cell was defined as the Pearson product-moment correlation between the

cell’s instantaneous firing rate and the rat’s instantaneous running speed, on a scale from �1 to 1.

Shuffling
A cell was defined as a functional cell type if its score in a functional category exceeded a chance

level determined by repeated shuffling of the experimental data (200 permutations per cell). For

each permutation, the entire sequence of spikes fired by the cell was time-shifted along the animal’s

path by a random interval between ± 20 s, with the end of the session wrapped to the beginning.

Time shifts varied randomly between permutations and between cells. From the shuffled distribu-

tion, we calculated the 95th percentile and used this value as a threshold for assigning cells into a

particular functional class.

Classification of cells into putative stellate and putative pyramidal using the
Tang et al. (2014) classifier
The local field potential was band-pass filtered (4–12 Hz). The Hilbert transform was then used to

determine the instantaneous phase of the theta oscillation. The strength of locking to theta phase

and the preferred phase angle was determined by the Rayleigh vector. These two properties were

then used to classify each cell as a putative pyramidal or putative stellate using the code published

in the Tang et al. (2014) study. Cells within 0.1 of the decision boundary were placed in the ‘guard

zone.’ We also clustered the cells using an agglomerative clustering method with the number of clus-

ters set to 2 (Berens, 2009).

Statistical tests and data availability
All comparisons were two sided. Due to the non-normal distributions of the measures used for cell

type classification (see violin plots in Figures 3 and 4), we used nonparametric statistics for those

comparisons. For analysis of the cell’s firing relationship to theta phase, we used circular statistics

(Berens, 2009).

Python code and preprocessed source data used for statistical analysis and visualization relating

to Figures 3 and 4 are available on GitHub (https://github.com/davidcrowland/
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archdata, Rowland, 2018a; copy archived at https://github.com/elifesciences-publications/arch-

data). Unprocessed data are archived on Norstore (https://archive.norstore.no/) (Rowland, 2018b).

In situ hybridization and antibody staining
Mice were perfused transcardially with 4% paraformaldehyde (PFA) in PBS. The brain was extracted

and stored in 4% PFA overnight before being transferred to 30% sucrose solution for approximately

2 days. The brain was then sectioned sagitally in 30 micrometer thick sections and divided into a set

of approximately 6 series and stored in a �80˚C freezer. A series was then thawed before use.

To stain for reelin and ArchT, 30 mm thaw-mounted sections were hybridized overnight at 62˚C
with a DIG-labeled riboprobe for reelin (1:400; Roche, Cat. 11277073910) and FITC-labeled ribop-

robe for Arch (1:500; Roche, Cat. 11685619910) and then incubated at room temperature for 4 hr in

the blocking solution (0.1M TRIS-HCL pH7.5, 0.15 M NaCL, 0.5% Blocking reagent Perkin Elmer TSA

kit). Next, the anti-Fluor-HRP (1:1000; Invitrogen, Cat. A21253) antibody was added and the sections

were incubated overnight at room temperature. The tissue was washed with TBST buffer and the

Fluorescein signal was developed for 45 min at room temperature using TSA Plus Fluorescein kit

(1:50; PerkinElmer, Cat. NEL7410001KT). The sections were then placed in the blocking solution for

4 hr before incubated overnight at 4˚C in Anti-Digoxigenin-POD (1:1000; Roche, Cat. 11207733910).

The tissue was exposed to TSA Plus Cyanine 3 (1:50; PerkinElmer, Cat. NEL744001KT) for 45 min at

room temperature, then washed in TBST buffer.

For calbindin antibody and ArchT in situ staining, we first performed the in situ for ArchT as

above but with a dilution of 1:600 of the DIG-labeled riboprobe. We then proceeded with the anti-

body stain for calbindin. The sections were washed twice with an incubation solution of PBS + 0.3%

Triton + 3% BSA and then incubated for 24 hr at room temperature with the primary antibody

diluted in a solution of PBS + 0.3% Triton + 3% BSA. The following day, the sections were washed

three times with a solution of PBS + 0.1% Triton+1% BSA and incubated overnight (17.5 hr) at room

temperature in the secondary antibody in a solution of PBS + 0.1% Triton + 1% BSA. We used a dilu-

tion of 1:1000 for the primary antibody (Monoclonal anti-Calbindin D-28k, Swant) and 1:700 for the

secondary (Donkey anti-Rabbit Cy3; Jackson Immuno Research, 711-165-152).

Confocal microscopy
Sections were scanned as a stack of images under a confocal microscope (Zeiss LSM800, Zeiss, Ger-

many) using a 40x or 63x oil immersion objective at multiple planes in the z dimension. The amount

of overlap in the MEC was quantified manually in Imaris (Bitplane, Zurich, Switzerland). For presenta-

tion (Figure 1 and Figure 1—figure supplement 1), the resulting Z-stacks were then collapsed into

a maximum intensity projection and pseudo-colored as cyan and magenta for display (ImageJ;

Adobe Photoshop, Adobe Systems Inc. CA).
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Harris KD, Henze DA, Csicsvari J, Hirase H, Buzsáki G. 2000. Accuracy of tetrode spike separation as determined
by simultaneous intracellular and extracellular measurements. Journal of Neurophysiology 84:401–414.
DOI: https://doi.org/10.1152/jn.2000.84.1.401, PMID: 10899214

Hartley T, Burgess N, Lever C, Cacucci F, O’Keefe J. 2000. Modeling place fields in terms of the cortical inputs
to the Hippocampus. Hippocampus 10:369–379. DOI: https://doi.org/10.1002/1098-1063(2000)10:4<369::AID-
HIPO3>3.0.CO;2-0, PMID: 10985276

Heys JG, Rangarajan KV, Dombeck DA. 2014. The functional micro-organization of grid cells revealed by cellular-
resolution imaging. Neuron 84:1079–1090. DOI: https://doi.org/10.1016/j.neuron.2014.10.048, PMID: 25467
986

Hoydal OA, Skytoen ER, Moser MB, Moser EI. 2018. Object-vector coding in the medial entorhinal cortex.
bioRxiv. DOI: https://doi.org/10.1101/286286

Kadir SN, Goodman DF, Harris KD. 2014. High-dimensional cluster analysis with the masked EM algorithm.
Neural Computation 26:2379–2394. DOI: https://doi.org/10.1162/NECO_a_00661, PMID: 25149694

Kanter BR, Lykken CM, Avesar D, Weible A, Dickinson J, Dunn B, Borgesius NZ, Roudi Y, Kentros CG. 2017. A
novel mechanism for the Grid-to-Place cell transformation revealed by transgenic depolarization of medial
entorhinal cortex layer II. Neuron 93:1480–1492. DOI: https://doi.org/10.1016/j.neuron.2017.03.001, PMID: 2
8334610

Kitamura T, Pignatelli M, Suh J, Kohara K, Yoshiki A, Abe K, Tonegawa S. 2014. Island cells control temporal
association memory. Science 343:896–901. DOI: https://doi.org/10.1126/science.1244634, PMID: 24457215

Koenig J, Linder AN, Leutgeb JK, Leutgeb S. 2011. The spatial periodicity of grid cells is not sustained during
reduced theta oscillations. Science 332:592–595. DOI: https://doi.org/10.1126/science.1201685,
PMID: 21527713

Kropff E, Carmichael JE, Moser MB, Moser EI. 2015. Speed cells in the medial entorhinal cortex. Nature 523:
419–424. DOI: https://doi.org/10.1038/nature14622, PMID: 26176924

Langston RF, Ainge JA, Couey JJ, Canto CB, Bjerknes TL, Witter MP, Moser EI, Moser MB. 2010. Development
of the spatial representation system in the rat. Science 328:1576–1580. DOI: https://doi.org/10.1126/science.
1188210, PMID: 20558721

Latuske P, Toader O, Allen K. 2015. Interspike intervals reveal functionally distinct cell populations in the medial
entorhinal cortex. Journal of Neuroscience 35:10963–10976. DOI: https://doi.org/10.1523/JNEUROSCI.0276-
15.2015, PMID: 26245960

Lima SQ, Hromádka T, Znamenskiy P, Zador AM. 2009. PINP: a new method of tagging neuronal populations for
identification during in vivo electrophysiological recording. PLoS ONE 4:e6099. DOI: https://doi.org/10.1371/
journal.pone.0006099, PMID: 19584920

McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB. 2006. Path integration and the neural basis of the
’cognitive map’. Nature Reviews Neuroscience 7:663–678. DOI: https://doi.org/10.1038/nrn1932, PMID: 1685
8394

Miao C, Cao Q, Moser MB, Moser EI. 2017. Parvalbumin and somatostatin interneurons control different Space-
Coding networks in the medial entorhinal cortex. Cell 171:507–521. DOI: https://doi.org/10.1016/j.cell.2017.
08.050, PMID: 28965758

Monaco JD, Abbott LF, Abbott LF. 2011. Modular realignment of entorhinal grid cell activity as a basis for
hippocampal remapping. Journal of Neuroscience 31:9414–9425. DOI: https://doi.org/10.1523/JNEUROSCI.
1433-11.2011, PMID: 21697391

Muessig L, Hauser J, Wills TJ, Cacucci F. 2015. A developmental switch in place cell accuracy coincides with grid
cell maturation. Neuron 86:1167–1173. DOI: https://doi.org/10.1016/j.neuron.2015.05.011, PMID: 26050036

Navratilova Z, Godfrey KB, McNaughton BL. 2016. Grids from bands, or bands from grids? an examination of
the effects of single unit contamination on grid cell firing fields. Journal of Neurophysiology 115:992–1002.
DOI: https://doi.org/10.1152/jn.00699.2015, PMID: 26683071

Newman EL, Hasselmo ME. 2014. Grid cell firing properties vary as a function of theta phase locking preferences
in the rat medial entorhinal cortex. Frontiers in Systems Neuroscience 8. DOI: https://doi.org/10.3389/fnsys.
2014.00193, PMID: 25352787

O’Keefe J, Burgess N. 1996. Geometric determinants of the place fields of hippocampal neurons. Nature 381:
425–428. DOI: https://doi.org/10.1038/381425a0, PMID: 8632799

Pesold C, Impagnatiello F, Pisu MG, Uzunov DP, Costa E, Guidotti A, Caruncho HJ. 1998. Reelin is preferentially
expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. PNAS
95:3221–3226. DOI: https://doi.org/10.1073/pnas.95.6.3221, PMID: 9501244

Ray S, Naumann R, Burgalossi A, Tang Q, Schmidt H, Brecht M. 2014. Grid-layout and theta-modulation of layer
2 pyramidal neurons in medial entorhinal cortex. Science 343:891–896. DOI: https://doi.org/10.1126/science.
1243028, PMID: 24457213

Rolls ET, Stringer SM, Elliot T. 2006. Entorhinal cortex grid cells can map to hippocampal place cells by
competitive learning. Network 17:447–465. DOI: https://doi.org/10.1080/09548980601064846,
PMID: 17162463

Rowland et al. eLife 2018;7:e36664. DOI: https://doi.org/10.7554/eLife.36664 16 of 17

Research article Neuroscience

https://doi.org/10.3389/fnsys.2011.00018
https://doi.org/10.3389/fnsys.2011.00018
http://www.ncbi.nlm.nih.gov/pubmed/21811444
https://doi.org/10.1126/science.1110449
http://www.ncbi.nlm.nih.gov/pubmed/15961670
https://doi.org/10.1152/jn.2000.84.1.401
http://www.ncbi.nlm.nih.gov/pubmed/10899214
https://doi.org/10.1002/1098-1063(2000)10:4%3C369::AID-HIPO3%3E3.0.CO;2-0
https://doi.org/10.1002/1098-1063(2000)10:4%3C369::AID-HIPO3%3E3.0.CO;2-0
http://www.ncbi.nlm.nih.gov/pubmed/10985276
https://doi.org/10.1016/j.neuron.2014.10.048
http://www.ncbi.nlm.nih.gov/pubmed/25467986
http://www.ncbi.nlm.nih.gov/pubmed/25467986
https://doi.org/10.1101/286286
https://doi.org/10.1162/NECO_a_00661
http://www.ncbi.nlm.nih.gov/pubmed/25149694
https://doi.org/10.1016/j.neuron.2017.03.001
http://www.ncbi.nlm.nih.gov/pubmed/28334610
http://www.ncbi.nlm.nih.gov/pubmed/28334610
https://doi.org/10.1126/science.1244634
http://www.ncbi.nlm.nih.gov/pubmed/24457215
https://doi.org/10.1126/science.1201685
http://www.ncbi.nlm.nih.gov/pubmed/21527713
https://doi.org/10.1038/nature14622
http://www.ncbi.nlm.nih.gov/pubmed/26176924
https://doi.org/10.1126/science.1188210
https://doi.org/10.1126/science.1188210
http://www.ncbi.nlm.nih.gov/pubmed/20558721
https://doi.org/10.1523/JNEUROSCI.0276-15.2015
https://doi.org/10.1523/JNEUROSCI.0276-15.2015
http://www.ncbi.nlm.nih.gov/pubmed/26245960
https://doi.org/10.1371/journal.pone.0006099
https://doi.org/10.1371/journal.pone.0006099
http://www.ncbi.nlm.nih.gov/pubmed/19584920
https://doi.org/10.1038/nrn1932
http://www.ncbi.nlm.nih.gov/pubmed/16858394
http://www.ncbi.nlm.nih.gov/pubmed/16858394
https://doi.org/10.1016/j.cell.2017.08.050
https://doi.org/10.1016/j.cell.2017.08.050
http://www.ncbi.nlm.nih.gov/pubmed/28965758
https://doi.org/10.1523/JNEUROSCI.1433-11.2011
https://doi.org/10.1523/JNEUROSCI.1433-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21697391
https://doi.org/10.1016/j.neuron.2015.05.011
http://www.ncbi.nlm.nih.gov/pubmed/26050036
https://doi.org/10.1152/jn.00699.2015
http://www.ncbi.nlm.nih.gov/pubmed/26683071
https://doi.org/10.3389/fnsys.2014.00193
https://doi.org/10.3389/fnsys.2014.00193
http://www.ncbi.nlm.nih.gov/pubmed/25352787
https://doi.org/10.1038/381425a0
http://www.ncbi.nlm.nih.gov/pubmed/8632799
https://doi.org/10.1073/pnas.95.6.3221
http://www.ncbi.nlm.nih.gov/pubmed/9501244
https://doi.org/10.1126/science.1243028
https://doi.org/10.1126/science.1243028
http://www.ncbi.nlm.nih.gov/pubmed/24457213
https://doi.org/10.1080/09548980601064846
http://www.ncbi.nlm.nih.gov/pubmed/17162463
https://doi.org/10.7554/eLife.36664


Rossant C, Kadir SN, Goodman DFM, Schulman J, Hunter MLD, Saleem AB, Grosmark A, Belluscio M, Denfield
GH, Ecker AS, Tolias AS, Solomon S, Buzsaki G, Carandini M, Harris KD. 2016. Spike sorting for large, dense
electrode arrays. Nature Neuroscience 19:634–641. DOI: https://doi.org/10.1038/nn.4268, PMID: 26974951

Rowland DC, Roudi Y, Moser MB, Moser EI. 2016. Ten years of grid cells. Annual Review of Neuroscience 39:19–
40. DOI: https://doi.org/10.1146/annurev-neuro-070815-013824, PMID: 27023731

Rowland DC, Weible AP, Wickersham IR, Wu H, Mayford M, Witter MP, Kentros CG. 2013. Transgenically
targeted Rabies virus demonstrates a Major monosynaptic projection from hippocampal area CA2 to medial
entorhinal layer II neurons. Journal of Neuroscience 33:14889–14898. DOI: https://doi.org/10.1523/
JNEUROSCI.1046-13.2013, PMID: 24027288

Rowland DC. 2018a. Github. 2c277a8. archdata. https://github.com/davidcrowland/archdata
Rowland DC. 2018b. Data from Rowland et al 2018. Norstore.https://archive.sigma2.no/pages/public/
datasetDetail.jsf?id=10.11582/2018.00025

Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser MB, Moser EI. 2006. Conjunctive
representation of position, direction, and velocity in entorhinal cortex. Science 312:758–762 . DOI: https://doi.
org/10.1126/science.1125572

Savelli F, Knierim JJ. 2010. Hebbian analysis of the transformation of medial entorhinal grid-cell inputs to
hippocampal place fields. Journal of Neurophysiology 103:3167–3183. DOI: https://doi.org/10.1152/jn.00932.
2009, PMID: 20357069
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