

Simuleringsforsøk av primærmøllekretsene på Titania AS

Mari Kristin Tro

Tekniske geofag Innlevert: september 2017 Hovedveileder: Rolf Arne Kleiv, IGP

Norges teknisk-naturvitenskapelige universitet Institutt for geovitenskap og petroleum

Sammendrag

«Simuleringsforsøk av primærmøllekretsene på Titania AS» er skrevet av Mari Kristin Tro. Den er skrevet på Institutt for geologi og bergteknikk ved Norges teknisknaturvitenskapelige universitet i Trondheim våren 2017.

Hensikten med denne oppgaven var å se mulighetene for å simulere primærmøllekretsene ved Titania med en pilotkrets satt opp på Oppredningslaboratoriet ved IGB ved å sammenligne partikkelstørrelsefordelingen på kretsproduktet, interne massestrømmer, skilleeffektivitet og energiforbruk. Det skulle også kommenteres hvordan endringer i oppsett/driftsparametere for pilotprosessene påvirker parameterne som er nevnt. Det skulle også gjøres innledende forsøk med repulping på sikt og vurdere effekten av dette opp mot sikting uten repulping.

Ved forsøk for å simulere primærmøllekretsene ble det satt opp en pilotkrets med sikt for å simulere møllekrets 1 til 3, og med syklon for å simulere møllekrets 4. Ved pilotforsøk med sikt ble tre driftsparametere variert; turtall, påmatingshastighet og lysåpning på sikt, og ved syklonforsøk ble underløpsdiameteren variert.

Resultatene viste at partikkelstørrelsefordelingen ble finere enn Titanias, både ved sikte- og syklonforsøk, og et optimalt pilotoppsett for simulering av primærmøllekretsene ble dermed ikke oppnådd. Resultatene viser derimot at dette skal være mulig å oppnå ved å endre enkle driftsparametere.

Forsøkene med repulping viste små forskjeller mellom et siktetrinn uten og med repulping. Ved videre pilotforsøk kan det være interessant å se på ulike løsninger for vanntilsatsen på dette trinnet. Swecosiktene som ble brukt til dette forsøket kan også ha økt kapasiteten på klasseringstrinnet slik at effekten av repulpingen ikke kommer til sitt fulle potensial.

Abstract

"Simulation of the primary millcircuit at Titania AS" is written by Mari Kristin Tro. It is written at the Department of Geoscience and Petroleum at the Norwegian University of Science and Technology in Trondheim in the spring of 2017, and is on ... pages.

The purpose of this task was to look at the possibilities of simulating the primary mill circuits at Titania with a pilot circuit set up at the IGB Survey Laboratory by comparing the particle size distribution of the circuit product, internal mass currents, separation efficiency, and energy consumption.

It should also be commented on how changes in the setup / operating parameters for the pilot processes affect the parameters as mentioned. Initial trials with repulping was a part of the assignment and assess the effect of this against sifting without repulping.

By attempting to simulate the primary mill circuits, a pilot circuit was established with the aim of simulation mill circuits 1 to 3 with a screen, and with cyclone for simulation mill circuit 4. For simulation tests with screens, three operating parameters were varied; speed of the mill, feed rate and screening size, and in the simulation tests with a cyclone, the apex diameter was varied.

The results showed that the particle size distribution was finer than Titanias, both with a screening and cyclone separation step, and an optimal pilot setup for simulation of primary mill circuits was thus not achieved. The results, on the other hand, show that this should be possible by changing simple operating parameters.

The experiments with repulping showed small differences between a screening step without and with repulping. With further pilot tests, it may be interesting to look at different solutions for the water supply at this stage. The screens used for this experiment may also have increased the capacity of the classifying step so that the effect of repulping does not come to its full potential.

Forord

Denne masteroppgaven er skrevet ved Institutt for geologi og bergteknikk ved Norges teknisknaturvitenskapelige universitet i Trondheim våren 2017.

Oppgaven er gjennomført i samarbeid med Titania A/S. Kai-Inge Seim har vært ekstern kontaktperson og har kommet med gode innspill under prosessen. Wolfgang Schubert har også kommet med svar på spørsmål og vært behjelpelig under hele prosessen. Tusen takk for å ha fått tildelt en flott oppgave og all hjelp.

En stor takk må også rettes til Erik Larsen, Håkon Havskjold og Torkjell Breivik ved Oppredningslaboratoriet ved IGP for all hjelp med oppsett og kjøring av pilotkrets. Dette prosjektet kunne ikke blitt gjennomført uten deres arbeidsvilje og positive innstilling.

Ved NTNU har Rolf Arne Kleiv vært veileder og kommet med synspunkter og kommentarer. Takk for at kontordøren din alltid er åpen og at du tar deg tid til å komme med innspill på hvordan ting kan gjøres, svare på alle spørsmål og konstruktive diskusjoner.

Innholdsfortegnelse

Sammendragi					
A	bstr	act	•••••		iii
Fo	oror		•••••		v
Fi	gur	liste	e		ix
Та	abel	llist	e		xi
1	Opp	pset	t av	rapport	2
	1.1		Defi	inisjoner og forkortelser	2
2]	Innl	edni	ng	4
	2.1		Tita	nia A/S	4
	2.2		Prin	nærmøllekretsene ved Titania	6
	2.3		Opp	ogaven	7
	2.4	-	Mål	og avgrensinger	8
3	r.	Гео	retis	k bakgrunn	9
	3.1		Mal	ing i lukket krets	9
	3.2		Bru	k av sikt eller syklon i en lukket møllekrets	10
	3.3		Rep	ulping	11
4	l	Met	ode.		12
	4.1		Pilo	toppsett	12
	4.2		Prøv	vetaking pilot	15
	4.3		Ana	lysemetoder	16
	2	4.3.	1	Partikkelstørrelseanalyse	16
	2	4.3.	2	Kjemisk analyse	18
	4.4	-	Bere	egningsmetoder	20
	4	4.4.	1	Beregning og analyse av seperasjonsresultat	20
	4	4.4.	2	Beregning av turtall	22
5]	Del	1: S	imulering av møllekrets med syklon	23
	5.1		Kret	tsoppsett	23
	5.2		Res	ultater	25
	4	5.2.	1	Syklon 1	25
	4	5.2.2	2	Syklon 2	27
	4	5.2.	3	Syklon 3	27
	5.3		Disł	kusjon	29

5.3.1		.1	Vurdering av hvordan endringer i driftsparametere påvirker resultatet	29
5.3.2		.2	Vurdering av hvordan pilotkretsen gjenspeilet storskalakrets på Titania	31
6	De	1 2: S	imulering av møllekrets med sikt	33
	6.1	Kre	tsoppsett	33
	6.2	Res	ultater	36
6.2. 6.2.		.1	Forsøk med ulikt turtall	36
		2	Forsøk med økt påmatingshastighet	38
	6.2	.3	Forsøk med ulik lysåpning på sikt	38
	6.3	Dis	kusjon	39
	6.3	.1	Vurdering av hvordan endringer i driftsparametere påvirker resultatet	39
	6.3	.2	Vurdering av hvordan pilotkretsen gjenspeilet storskalakrets på Titania	46
7	De	1 3: R	e-pulping	48
	7.1	Kre	tsoppsett	48
7.2 Resultater		Res	ultater	49
	7.2	2.1	Med re-pulping	50
	7.2.2		Uten re-pulping	50
	7.3	Dis	kusjon	52
8	Ko	nklus	sjon og videre anbefalinger	55
9	Refera	anser		57

Figurliste

Figur 2-1:Grovt flytskjema over prosessene malmen gjennomgår før endelig produkt (Titania
A/S, 2002, p. 55)
Figur 4-1: Generelt flytskjema for pilotoppsett. (1) Kulemølle (2) pumpe med
frekvensomformer (3) syklon eller sikt
Figur 4-2: Pilotmølle
Figur 4-3: Innsiden av møllen etter kulene ble lagt inn 15
Figur 4-4: Mastersizer
Figur 4-5: Partikkelstørrelseanalyse gjort på samme materiale med camsizer og mastersizer 18
Figur 4-6: Fastmontert FPXRF
Figur 4-7: En enkel prosess med to produkter
Figur 4-8: Eksempel kornfordelingskurve (Figur 3.1-2, Sandvik et al., 1999, s.143)
Figur 5-1: Flytskjema for krets med syklon. Definisjonene for massestrøm 1-7 ligger i tabell 4-
1
Figur 5-2: Syklon 1
Figur 5-3: Syklon 2
Figur 5-4: Syklon 3
Figur 5-5: Partikkelstørrelsefordelingen til kretsproduktet for syklon 1 ved ulike
underløpsdysediameter (D _u) i forhold til Titanias kretsprodukt
Figur 5-6: TiO2-gehaltene for de ulike størrelsesfraksjonene i kretsproduktet ved
forsøkskjøring med syklon 1 og underløpsdiameter 7,5 mm
Figur 5-7: Partikkelstørrelsefordeling for kretsproduktet ved bruk av syklon 2 i kretsen med
ulike underløpsdiametere og partikkelstørrelsefordelingen for kretsproduktet ved Titania 27
Figur 5-8: Partikkelstørrelsefordeling for kretsproduktet ved bruk av syklon 3 i kretsen med
ulike underløpsdiametere og partikkelstørrelsefordelingen for kretsproduktet ved Titania 28
Figur 5-9: TiO2-gehaltene for de ulike størrelsesfraksjonene i kretsproduktet ved
forsøkskjøring med syklon 3 og underløpsdiameter 10 mm
Figur 5-10: Skillekurve for syklon 1 ved ulike underløpsdiametere [mm] og for Titanias syklon
i møllekrets 4
Figur 5-11: Skillekurve for syklon 2 ved ulike underløpsdiametere [mm] og for Titanias syklon
i møllekrets 4
Figur 5-12: Skillekurve for syklon 3 ved ulike underløpsdiametere [mm] og for Titanias syklon
i møllekrets 4
Figur 5-13: Sammenligning av sirkulerende last syklon 1, 2 og 3
Figur 5-14: Spesifikt energiforbruk ved forsøkskjøringene med syklon 1-3
Figur 6-1: Pilotoppsett med sikt
Figur 6-2: Swecosikt
Figur 6-3: Bilde av swecosikt under forsøkskjøring. Massen presses ut i kantene av
rotasjonsvibrasjonen og materialet bygges opp i kantene til det går ut i returrøret
Figur 6-4: Nærbilde av sikteduk på swecosikt. Her kan man se de kvadratiske lysåpningene.35
Figur 6-5: Partikkelstørrelsefordeling for kretsprodukt ved 390 µm sikt og ulikt turtall og for
Titanias kretsprodukt
Figur 6-6: Partikkelstørrelsefordeling for kretsprodukt ved 450 µm sikt og ulikt turtall og for
Titanias kretsprodukt

Figur 6-7: Partikkelstørrelsefordeling for kretsprodukt ved økende påmatingshastighet og for				
Titanias kretsprodukt				
Figur 6-8: Partikkelstørrelsefordeling for kretsprodukt ved endring i lysåpning på sikt og for Titanias kretsprodukt				
skillekurven for Titanias sikt				
Figur 6-10: Skillekurve for 450 µm sikt ved 150 kg/h påmatingshastighet og ulikt turtall, og				
skillekurven for Titanias sikt				
Figur 6-11: Spesifikt energiforbruk ved endring i turtall ved en påmatingshastighet på 150 kg/h.				
Figur 6-12: Skillekurve for 390 μ m sikt ved ulik påmatingshastighet, og skillekurven for				
Titanias sikt				
Figur 6-13: (A) Sikt etter resterende masse er fjernet, men før spyling. (B) Sikt etter spyling, men før ultralydbehandling				
Figur 6-14: Spesifikt energiforbruk ved endring i påmatingshastighet ved bruk av sikt med				
lysåpning 390 µm og turtall 40 rpm43				
Figur 6-15: Skillekurve ved forsøkskjøringer med ulik lysåpning på sikt				
Figur 6-16: Spesifikt energiforbruk ved forsøkskjøringer med ulike lysåpning på siktetrinn ved				
turtall 40 rpm og påmatingshastighet 300 kg/h 45				
Figur 6-17: TiO2-gehaltene for de ulike størrelsesfraksjonene i kretsproduktet ved en				
forsøkskjøring med sikt og to med syklon som har samme partikkelstørrelsefordeling				
Figur 7-1: Oppsett swecosikt. (A) Første sikt (B) Retur fra første sikt og påsetning vann til re-				
pulping (C) Andre sikt (D) Uttak kretsprodukt				
Figur 7-2: Slange som ble brukt til re-pulping. Den ble sammenklemt for å få trykk og spre				
vannet mer utover for å dispergere partikler fra hverandre. Ble koblet på i punkt (B) i figur 7-				
1				
Figur 7-3: Partikkelstørrelsefordeling for totalt kretsprodukt for 390 og 450 um som første sikt				
med re-pulping				
Figur 7-4: Partikkelstørrelsefordeling for totalt kretsprodukt uten re-pulping sammenlignet med				
re-nulning				
Figur 7-5: Ti Ω -gehaltene for de ulike størrelsesfraksjonene i kretsproduktet fra det første siktet				
i repulatrinaet				
Figur 7-6: TiO_2 gebaltene for de ulike størrelsesfraksjonene i kretsproduktet fra det andre siktet				
i repulatrinaet				
Figur 7-7: Skillekurve for forsøk med repulping (450 um som første sikt) og uten repulping#2				
$\frac{112}{12} (430 \mu \text{m} \text{som } 10130 \text{som repurping} (430 \mu \text{m} \text{som } 10130 \text{som} \text{og } \text{uten repurping} (430 \mu \text{m} \text{som } 10130 \text{som } 101300 \text{som } 10130 \text{som } 10130 \text{som } 10130 \text{som } 10130 \text{som } 101300 \text{som } 1$				
Figur 7-8: Partikkelstørrelsefordeling for pågangsmateriale ved repulpforsøkene 54				
1 1941 / O. I aranneistpiteiseroraening for pagangoinateriate voa repulpioisphene				

Tabelliste

Tabell 2-1: Dimensjoner for kulemøllene i primærmøllekretsene.	6
Tabell 2-2: Syklondimensjoner for syklonbatteri som lukker møllekrets 4	6
Tabell 4-1: Oversikt over massestrømmer fra Figur 4-1	13
Tabell 4-2: Prosent av kritisk turtall ved ulike rotasjonshastigheter (rpm)	14
Tabell 4-3: Fordeling av kulestørrelser.	15
Tabell 5-1: Oversikt over dimensjoner til forsøkssykloner	24
Tabell 5-2: Sirkulerende last og effektbruk mølle for ulike underløpsdyser på syklon 1	
Tabell 5-3: Sirkulerende last for ulike underløpsdyser på syklon 2	27
Tabell 5-4: Sirkulerende last og effekt mølle for ulike underløpsdyser på syklon nr. 3	
Tabell 6-1: Sirkulerende last og effekt mølle	37
Tabell 6-2: Sirkulerende last og effekt mølle ved økende påmatingshastighet	38
Tabell 6-3: Sirkulerende last ved økende lysåpning sikt	39
Tabell 7-1: Sirkulerende last og effekt mølle ved forsøkskjøringer med repulping	50
Tabell 7-2: Sirkulerende last og effekt mølle ved forsøkskjøringer uten repulping	51

1 Oppsett av rapport

Denne rapporten en masteroppgave innen mineralprosessering ved Norges Tekniske og Naturvitenskapelige universitet og er gjennomført ved bedriften Titania AS og Oppredningslaboratoriet ved IGP. Rapporten starter med bakgrunnsinformasjon om Titania AS og en kort oversikt over de viktigste prosessene i oppredningsanlegget. En nærmere oversikt over primærmølletrinnet, som er den viktigste prosessen for denne rapporten, vil så bli presentert. Videre vil problemstillinger, mål og avgrensninger for oppgaven bli gjennomgått.

Kapittel tre gjennomgår relevant teori fra litteraturen som beskriver maling i lukket krets og hvordan syklon eller sikt fungerer ulikt som klasserer i en slik krets. En kort forklaring bak begrepet repulping vil så bli presentert.

I kapittel fire vil et generelt oppsett av pilotforsøk og pilotutstyr bli presentert. Dette kapittelet inkluderer også en oversikt over prøvetaking av pilotkrets, og de metoder for analyser og beregninger som er blitt brukt og ligger til bakgrunnen for resultatene som blir presentert.

Hoveddelen av rapporten består av kapittel 5-7, og er delt opp i tre deler:

Del 1: Simulering av møllekrets med sykloner

Del 2: Simulering av møllekrets med sikt

Del 3: Re-pulping

Hver enkelt del inneholder en forklaring av kretsoppsett og hvilket utstyr som ble utnyttet til de enkelte forsøkene, resultater fra analyser og en diskusjon som omhandler disse delene separat. Diskusjonen på del 2 vil også inneholde en kort sammenligning av resultatene fra forsøkskjøringene med sikt i forhold til ved bruk av syklon som klasserer.

Samlede konklusjoner fra rapporten oppsummeres i kapittel åtte.

1.1 Definisjoner og forkortelser

Frimalte korn: korn som kun består av et mineral. Dette begrepet brukes som regel om det verdifulle mineralet.

Dødmaling: nedmaling av partikler som er under den gitte skillegrense for klasserer.

Stabil møllekrets: Mengde av materiale inn i møllekretsen er det samme som materialmengden som går ut.

Sirkulerende last: Forholdet mellom mengden retur som sendes tilbake i møllekretsen fra en klasserer og ny pågangsmateriale.

HGMS: Høyfelts magnetseparering

Sikteeffektivitet: Hvor effektivt en klasserer skiller materialet over og under skillegrensen.

Kg/h, t/h: kilo per time, tonn per time

Rpm: Rounds per minute

2 Innledning

2.1 Titania A/S

Titania A/S holder til i Hauge i Dalane. Hovedproduktet som utvinnes i dag er ilmenitt, og i tillegg produseres to biprodukter – magnetitt og et kiskonsentrat. Ilmenittkonsentratet selges på verdensmarkedet til pigmentfabrikker og til mellomforedling. Magnetitt benyttes i kullutvinning til rensing av kull. Kiskonsentratet for sin del selges for sitt innhold av nikkel og kobber.

Bedriften ble startet opp i 1902 som Aktieselskapet Titania og har i hovedsak tatt ut malm fra to forskjellige forekomster. Fra 1916 og frem til 1965 var det underjordsproduksjon i Storgangen ved Sandbekk. Fra og med 1960 ble det dagbruddsdrift på Tellnes. Tellnesforekomsten er verdens største forekomst av ilmenittmalm (Titania A/S, 2002). Produksjonen på Tellnes utgjør om lag åtte prosent av den totale verdensproduksjonen av pigmentråstoff.

Etter malmen er tatt ut fra bruddet fraktes den videre til oppredningsverket hvor den gjennomgår flere steg for å skille de verdifulle mineralene ut og bearbeides til salgbare produkter. For å fremstille disse produktene gjennomgår malmen flere prosesser. Operasjonene i oppredningen ved bedriften kan deles inn i flere hovedprosesser:

- Knusing
- Nedmaling
- Klassering
- Mineralseparasjon
- Avvanning
- Avgangsdeponering

Disse prosessene og sammenhengen mellom dem er vist i et forenklet flytskjema i figur 2-1

Figur 2-1:Grovt flytskjema over prosessene malmen gjennomgår før endelig produkt (Titania A/S, 2002, p. 55)

2.2 Primærmøllekretsene ved Titania

Primærmølletrinnet ved Titania består av fire kulemøller som står i parallell og får identisk type pågangsmateriale levert fra knusetrinnet. Alle er overløpsmøller som står i lukket krets med en klasserer som sender for grove partikler i retur tilbake i mølla for videre nedmaling. Partikler kan dermed ikke forlate kretsen før det har kommet under den gitte kuttstørrelsen for klassereren og sendes da videre i prosessen.

Møllene på Titania er nummerert fra 1 til 4, hvor mølle 1 til 3 er kulemøller av identisk størrelse og er alle lukket med Derrick-sikt. Eneste differansen mellom disse tre er at mølle 3 har installert hastighetsregulator for å kunne regulere turtall. Mølle 4 har derimot et større indre volum enn de andre og er lukket med sykloner. Dimensjonene for de ulike møllene er vist i tabell 2-1.

Mølle	Effektiv indre diameter [m]	Effektiv indre lengde [m]	
1,2,3	3,15	5,05	
4	4,98	5,05	

Tabell 2-1: Dimensjoner for kulemøllene i primærmøllekretsene.

Klassereren som blir brukt i møllekrets 1 til 3 er fire Derricksikt som får lik pågang fra en fordeler. Derricksiktene er utformet med rektangulære lysåpninger med en bredde på 390 μ m. På mølle 4 brukes et syklonbatteri med enten fire eller fem sykloner i drift samtidig. Syklondimensjonene er vist i tabell 2-2. Sirkulerende last ved normal drift for kretsene er 43% for møllekrets 1 til 3 og 320% for møllekrets 4. Det spesifikke energiforbruket ved normal drift for kretsene er 7,39 kWh/t for møllekrets 1 til 3 og 8,83 kWh/t for møllekrets 4.

Tabell 2-2: Syklondimensjoner for syklonbatteri som lukker møllekrets 4.

Indre diameter (D)	508 mm
Diameter innløp (Di)	131 mm
Diameter overløp (D ₀)	171 mm
Diameter underløp (D _u)	83 mm
Konvinkel	20°

Hvordan primærmølletrinnet behandler materialet er en viktig faktor for videre prosess. Det ønskelige resultatet er å ha maksimal frimaling av verdifulle mineraler med minst mulig dødmaling som kan føre til unødig finstoff og slamproduksjon. For grovt materiale kan gjøre videre prosess ueffektiv og føre til at man kan ende opp med et dårligere produkt eller tape verdifulle mineraler som ikke er frimalt. For nedmalt materiale med en høy finstoffandel kan også føre til tap av verdifulle mineraler og ha negative effekter videre i prosessen:

- Fine magnetittpartikler kan gå tapt ved svakfelts magnetseparasjon og kan gå videre til HGMS-separering og flotasjon.
- Finstoff er uønsket i flotasjon. Dette vil føre til økte kostnader og kjemikaliebruk.
- Verdifulle mineraler som er for mye nedmalt kan gå tapt ved gravitativ separering.

Økt finstoffproduksjon fra primærmølletrinnet kan dermed føre til uønskede tap videre i prosessen og forhøye kostnader.

2.3 Oppgaven

Masteroppgaven vil utføres med Titania AS som ekstern samarbeidspartner.

Oppgaven består i å vurdere mulighetene for å benytte pilotmølla ved Oppredningslaboratoriet ved IGP til å simulere de lukkede primærmøllekretsene ved Titanias oppredningsanlegg. Det skal gjennomføres pilotforsøk der kretsen lukkes med syklon og der kretsen lukkes med sikt. Partikkelstørrelsesfordelingen til møllekretsproduktet fra Titanias oppredningsanlegg vil representere målet man skal forsøke å oppnå.

Oppgaven skal:

- Sammenligne pilotprosessene med fullskalaprosessen med hensyn på partikkelstørrelsesfordeling for kretsprodukt, interne massestrømmer, skilleskarphet for prosessen som lukker kretsen og energiforbruk. Sammenligningen skal belyse i hvilken grad pilotprosessene gjenspeiler fullskalaprosessen.
- 2. Gjøre rede for, og om mulig forklare, hvordan endringer i oppsett/driftsparametere for pilotprosessene påvirker resultatet i punkt 1.
- Beskrive de praktiske utfordringene og begrensningene ved pilotskalaprosessen og komme med forslag til endringer i kretsoppsett eller driftsparametere som kan vil kunne gi bedre samsvar mellom pilot og fullskala.

For pilotskalakretsen som lukkes med sikt skal oppgaven i tillegg:

4. Gjøre innledende forsøk med repulping på sikt og vurdere effekten av dette opp mot sikting uten repulping.

Oppgaven skal også gi et kortfattet teoretisk grunnlag for maling i lukket krets med fokus på konsekvenser/premisser for valg av syklon eller sikt, samt en kort beskrivelse av de relevante prosessene ved Titania.

2.4 Mål og avgrensinger

Målsetningen med arbeidet som er gjort i forbindelse med denne rapporten er å:

- gi en vurdering om mulighetene for å benytte pilotmølla ved Oppredningslaboratoriet ved IGP til å simulere primærmøllekretsene ved Titanias oppredningsanlegg.
- Vise hvordan endringer i oppsett/driftsparametere påvirker pilotkretsen.
- gjøre innledende forsøk med repulping på sikt og vurdere effekten av dette opp mot sikting uten repulping

Forsøksarbeidet som presenteres i denne rapporten fokuserer kun på primærmøllekretsene på Titania. På grunn av tidsmessige begrensninger er kun et begrenset antall forsøk gjennomført og det er ikke gjort noen systematisk gjentakelse av disse for å sikre statistisk gjentakelsessikkerhet. Alle forsøkene regnes derfor som innledende og har den hensikt å gi en indikasjon på hvordan et pilotoppsett kan settes opp for å simulere storskalaprosessen og hvilken effekt repulping har.

Det er blitt gjort antagelser ved pilotoppsett som kan ha hatt påvirkning på det endelige resultatet som ikke er blitt diskutert videre i oppgaven. Disse antagelsene er gjennomgått i kapittel 4.1.

Vurderingen av mulighetene for forsøksoppsett ved IGP er kun ment som veiledende ved videre vurdering av pilotoppsett.

3 Teoretisk bakgrunn

I dette kapittelet skal det fokuseres på bakgrunnsteori som er viktig for grunnforståelsen bak resultatene og diskusjonene i denne rapporten. Det skal først gjennomgås grunnleggende teori for maling i lukket krets og hvordan bruk av sikt eller syklon i en slik krets kan endre kretsens virkemåte. Det vil så kort forklares hva repulping er og hva dette kan brukes til.

3.1 Maling i lukket krets

For å forstå hvorfor man ønsker nedmaling i en lukket krets må man først se på hva som skjer i en åpen møllekrets. I en åpen krets mates materialet inn i møllen med en hastighet beregnet for å produsere riktig produkt i en passering. Denne typen krets brukes sjelden i mineralbehandling, da det ikke er kontroll over produktstørrelsesfordeling. Påmatingshastigheten må være lav nok til å sikre at hver partikkel tilbringer nok tid i møllen til å bli brutt ned til produktstørrelsen. Som et resultat er mange partikler i kretsproduktet overmalt (dødmalt) som forbruker energi unødvendig, og kretsproduktet kan være vanskelig å behandle på grunn av bred partikkelstørrelsefordeling.

Primærmaling foregår dermed nesten alltid i lukket krets, hvor materiale av ønsket størrelse fjernes av en klasserer, som returnerer for store partikler tilbake til møllen. I en lukket møllekrets blir det ikke gjort noen innsats for å påvirke hele størrelsesreduksjonen i en enkelt passering. I stedet er fokuset på å fjerne materiale fra kretsen så snart den når den nødvendige størrelsen. Ved nedmaling til en bestemt størrelse, kan en kapasitetsøkning på opptil 35% oppnås ved lukket kretsoperasjon i forhold til en åpen krets (Wills & Napier-Munn, 2005). Materialet som returneres til møllen av klassereren kalles *sirkulerende last*, og massevekten av denne returen uttrykkes som en prosentandel av massevekten av ny pågang tilført kretsen.

Formålet med å male ned materiale i en lukket krets er dermed å:

- Kontrollere toppstørrelse på materiale som blir sendt til videre prosess:
 Ved å kontrollere toppstørrelsen på materialet som blir sendt videre i prosessen kan man øke andelen frimalte korn og øke effekten på videre separasjonstrinn.
- Redusere slamproduksjon:

Ved å få en raskere gjennomstrømningshastighet på materiale gjennom mølla vil mølleproduktet bli grovere. Man reduserer dermed muligheten for at små partikler som blir påsatt på mølla blir dødmalt.

• Øke nedmalingskapasitet

• Optimalisere energiforbruket

Nedmaling i en optimal lukket krets fører til at gjennomstrømningshastigheten blir større og at partikler forlater kretsen når de kommer under den gitte kuttstørrelsen. Kombinasjonen av dette fører til at energien som blir satt til mølla brukes til å male ned for grovt materiale og reduserer energiforbruk for å male ned allerede frimalte korn (dødmaling).

3.2 Bruk av sikt eller syklon i en lukket møllekrets

For at en lukket malekrets skal fungere som beskrevet i kapittel 3.1, må klassereren i kretsen fungere optimalt. De mest brukte skillemekanismene i primærmalekretser er sikt eller sykloner, som har to forskjellige seperasjonsmetoder med ulike fordeler og ulemper.

Bruk av sikt i en lukket krets gir en klasserer som er oftere enklere å styre ønsket kuttstørrelse på, siden dette er styrt av lysåpningen på siktet. Effektiviteten av siktet kan derimot blant annet bli påvirket av fastprosent på pågangen til siktet og påmatingshastighet. Ved for høy fastprosent vil partiklene klistres sammen, eller så kan enkelte partikler aldri få muligheten til å gå igjennom. Dermed kan korn som allerede er under kuttstørrelsen føres tilbake i mølla sammen med returen. Det er dermed ønskelig ved bruk av sikt å la hvert enkelt partikkel få en sjanse til å gå igjennom flere ganger for å øke effektiviteten på siktet. Denne uønskede effekten kan også forekomme ved for høy pågangsmengde. For høy påmatingshastighet kan føre til at små partikler skylles lettere over siktet og blir feilklassert(Wills & Napier-Munn, 2005).

Det fører oss til den største ulempen med sikt; kapasitet. For å ha samme kapasitet som sykloner ved samme pågangsmengde, trenger man et stort sikteareal. Sikt er en dyrere installasjon å sette opp og vedlikeholde, i tillegg til å ta opp større areal enn sykloner med samme kapasitet (Wills & Napier-Munn, 2005).

Sykloner bruker sentrifugalvirkning for å klassifisere, noe som øker klassifiseringen av fine partikler, gir mye skarpere separasjoner og øker optimal sirkulasjonsbelastning. De har mye mindre gulvareal enn mekaniske klassifiseringsmaskiner med samme kapasitet og har lavere kapitalkostnader og installasjonskostnader. På grunn av deres mye raskere tiltak kan malekretsen raskt bringes i balanse ved endringer i kretsen.

Sykloner er derimot mer følsom for mineralenes egenvekt enn sikt, noe som betyr at partikler klassifiseres ikke bare av størrelse, men også av spesifikk egenvekt. En liten partikkel med høy egenvekt kan derfor oppføre seg på en lignende måte som en stor partikkel med lav egenvekt. Partikler med høy egenvekt vil dermed søke til underløpet av syklonen. Når en malm som inneholder et tungt verdifullt mineral er malt, vil det derfor sannsynligvis forekomme overmaling av dette materialet fordi det blir returnert i sirkulasjonsbelastningen, selv om det er under den nødvendige produktstørrelsen. Det vil dermed være en vanskeligere beregning for ønsket kuttstørrelse ved bruk av sykloner enn med sikt (Wills & Napier-Munn, 2005).

3.3 Repulping

Når materiale skal skilles etter partikkelstørrelse over et sikt, er en av utfordringene med denne skillemetoden sammenhengende partikler som nevnt i kapittel 3.2. Siden vannet renner gjennom tidlig på siktet, vil ofte de mindre partiklene klistre seg fast til andre når materialet er fuktig. Dette fører til at små partikler under kuttstørrelsen kan følge med materialet som går over siktet og bli feilplassert i den grove strømmen. Ved slike forhold kan dette føre til lav sikteeffektivitet.

Repulping er et begrep som brukes for et sikt som bruker vann for å dispergere partikler for å øke sikteeffektiviteten. På et repulpsikt vil pågangen settes på et ordinært sikt uten ekstra vanntilsats hvor materialet beveger seg over siktet uten noen annen ytre påvirkning. Etter materialet har passert første sikterunde vil en vanntilsats med trykk dispergere sammenhengende partikler. Disse frigjorte partiklene har dermed en større sannsynlighet for å bli korrekt klassert.

Ved bruk av et optimalt repulptrinn i en malekrets, kan dette teoretisk redusere dødmaling ved å få et mer effektivt skille.

4 Metode

I dette kapittelet blir først det generelle pilotoppsettet som ble brukt ved forsøkskjøring beskrevet og hvordan denne ble prøvetatt. Deretter vil det gjennomgås hvilke analyse- og beregningsmetoder som er blitt tatt i bruk for å få resultatene som er grunnlaget for denne rapporten.

4.1 Pilotoppsett

Piloten ble satt opp i oppredningslaben på NTNU med identisk oppsett som ved Titania AS med en lukket møllekrets. Kretsen var likt oppbygd for alle forsøk bortsett fra separeringstrinnet som bestod av enten syklon, sikt eller sikt med et repulpingtrinn. Et generelt flytskjema for kretsen med syklon eller sikt er vist i figur 4-1.

Det som skiller pilotoppsettet fra den reelle kretsen på Titania, er at det ble satt opp en sikt på utløpet til mølla med en lysåpning på 4 mm hvor den groveste delen av mølleproduktet ble tatt ut før syklon/sikt (se massestrøm 4 i generelt flytskjema). Dette var for å forhindre at pumpene og syklonene gikk tett. For å få en balansert massebalanse ble dette materialet samlet opp kontinuerlig og tømt tilbake i innløpet i mølla som retur hvert 3-5 minutt. Siden massestrøm 4 ble sendt tilbake i retur manuelt er denne strømmen merket med stiplet linje i figur 4-1. Det legges dermed vekt på at videre i denne rapporten skilles det mellom *mølleprodukt* og *pågang sikt*. Tabell 4-1 viser en full oversikt over massestrømmene.

Det ble tilsatt vann ved inn- og utløp på møllen. Begge ble styrt manuelt med kran, men vanntilsetningen ved innløpet var utstyrt med et flowmeter som overvåket vannmengden som var påsatt. Vanntilsetningen ved utløpet ble manuelt prøvetatt etter forsøk for å beregne vannmengden som ble tilsatt til kretsen i dette punktet. Ved enkelte forsøk var det nødvendig med ekstra vanntilsetning ved innløpet. Dette ble også kontrollert manuelt etter endt prøvekjøring.

Det ble brukt en kontinuerlig mater for å få nytt materiale inn i mølla. Denne materen ble innstilt manuelt og hadde ikke målere for å vise påmatingshastighet. Siden materen ikke hadde overvåkning over pågangsmasse som ble påsatt på møllekretsen, var det viktig å kalibrere materen før oppstart og sjekke at denne ga en stabil påmating.

Figur 4-1: Generelt flytskjema for pilotoppsett. (1) Kulemølle (2) pumpe med frekvensomformer (3) syklon eller sikt. Tabell 4-1: Oversikt over massestrømmer fra Figur 4-1

Massestrøm nr.	Definisjon
1	Pågang
2	Total pågang mølle
3	Mølleprodukt
4	Grovdel mølleprodukt (> 4 mm)
5	Pågang syklon/sikt (< 4 mm)
6	Retur
7	Kretsprodukt

Kulemølle

Forsøksmølla som ble brukt er vist i Figur 4-2. Den har en effektiv indre diameter på 0,69 meter og en effektiv indre lengde på 1 meter. Utløpsmekanismen på denne møllen er *«grate discharge»*, noe som skiller seg ut fra Titanias som er en overløpsmølle. Figur 4-3 viser et bilde fra innsiden av mølla hvor man kan se silveggen hvor materialet kan strømme gjennom. Siden Titanias kulemøller er overløpsmøller vil ikke materialet gå gjennom silveggen, men må gå i overløpet ved utløpet av mølla.

Figur 4-2: Pilotmølle.

Ved Titania brukes prosent av kritisk turtall for å måle omdreiningshastighet på møllene. Forsøksmølla styres etter rpm, så for å kunne sammenligne turtallet med Titanias innstillinger ble prosent av kritisk turtall kalkulert ut fra formel vist i kapittel 4.4.2. Tabell 4-1 viser en oversikt over verdiene for hvor mange prosent av kritisk turtall de enkelte turtallene gir.

Innstilling for omdreiningshastighet på forsøksmølle [rpm]	% av kritisk turtall
40	78
33	65
32	63

Videre i rapporten vil det bli referert til turtall som rpm.

Kulefylling

For å få en representativ størrelsesfordeling for kulefyllingen ble det antatt at ved regelmessig påfylling av nye kuler ville fordelingen i de ulike størrelsesfraksjonene blir som vist i tabell 4-3.

Tabell 4-3: Fordeling av kulestørrelser.

Størrelsesfraksjon [mm]	%Vektandel
75-50	40 %
50-38	30 %
38-25	20 %
25-	10 %

Ved Titania blir kulefyllingen målt fra bunn i mølla til topp av kulefylling som en prosentandel av den indre diameteren. For å bruke like mye kulefylling på Titania (25%), ble det kalkulert hvor stort volum av forsøksmølla dette tilsvarte. Deretter ble det antatt en totalvekt for kulene som skulle ta hensyn til luftrom som oppstår mellom kulene i fyllingen. Deretter ble vektene for de ulike størrelsesfraksjonene utregnet etter vektandelen vist i tabell 4-3 og veid opp.

Figur 4-3: Innsiden av møllen etter kulene ble lagt inn.

4.2 Prøvetaking pilot

Ved prøvekjøring ble verdien for møllevekten overvåket. Ved oppstart av en ny prøvekjøring, steg denne verdien. Når denne verdien stabiliserte seg over tid ble det antatt at kretsen var stabil. Med dette menes at kretsen har stabilisert seg etter oppstart og at det går like mye masse inn som ut av systemet. Materialet som beveger seg i de ulike strømmene vil dermed ikke endre seg nærmere, og vil være representative for forholdene som oppstår slik kretsen blir kjørt ved dette tidspunktet. Når en stabil krets ble oppnådd, ble det prøvetatt ved tre steder:

- Grovdel mølleprodukt
- Retur
- Kretsprodukt

For å få et oversiktsbilde over massebalansen ble hele massestrømmen tatt direkte over i en prøvebøtte når prøvene ble tatt. Fra massestrømmen ble flyttet over til prøvebøtten til strømmen ble kuttet, ble tiden tatt. Våtvektene til prøvene ble så loggført, og de våte prøvene ble satt til tørking. Tørrvektene til prøvene ble også loggført etter de var ferdigtørket, og ut fra dette ble fastprosent for strømmen og massebalansen for systemet beregnet. Denne massebalansen ble brukt i ettertid for å dobbeltsjekke at systemet var stabilt ved prøvetaking.

4.3 Analysemetoder

4.3.1 Partikkelstørrelseanalyse

For å analysere partikkelstørrelsefordeling ble manuell sikting på siktetårn og mastersizer brukt på materialet som ble prøvetatt ved forsøkskjøringene. En prøve i denne rapporten (kretsproduktet fra møllekrets lukket med sikt) er også blitt analysert på camsizer ved laboratoriet på Titania.

Mastersizer

Mastersizer brukes til å analysere partikkelstørrelser med laserdiffraksjon. Ved partikkelstørrelseanalysering av prøvene tatt ved forsøkskjøring, har denne analysemetoden har blitt brukt til å analysere kornfordelingen for:

- Prøver med en toppstørrelse under 1 mm
- Prøver med en toppstørrelse over 1 mm, men her har kun materialet under 208 µm blitt analysert på mastersizer.

Ved laserdiffraksjonsmåling sendes en laserstråle gjennom en dispergert partikkelprøve, og vinkelvariasjonen i intensiteten til det spredte lyset måles. Store partikler sprer lys i små vinkler i forhold til laserstrålen og små partikler sprer lys ved store vinkler. Vinkelspredningsdataene analyseres deretter for å beregne størrelsen på partiklene som skapte spredningsmønsteret ved

hjelp av Mie-teorien om lysfordeling. Partikkelstørrelsen blir da rapportert som en volumekvivalent sfærediameter.

Figur 4-4: Mastersizer

Sammenslåing av mastersizer og manuell siktedata

Mastersizer ble som nevnt brukt på prøver som hadde en toppstørrelse under 1 mm. For de prøvene som var i denne størrelsesordenen ble prøven først siktet manuelt. Partiklene under 208 μ m ble så analysert på mastersizer malvern slik at man fikk en mer grundig analyse av kornfordelingen for det fineste materialet.

Ved disse tilfellene er det viktig å ta hensyn til at mastersizer bruker laser for å måle kornstørrelse. Når man sikter ut en finfraksjon manuelt for så å analysere denne på mastersizer, vil man få en toppstørrelse høyere enn siktesatsen man har brukt (i dette tilfellet en toppstørrelse over 208 μ m). Dette forekommer når avlange korn går igjennom sikteåpningen, men blir målt til en grovere kornstørrelse når de analyseres med laser. Dette korrigeres med å legge til andelen med korn over 208 μ m i mastersizeranalysen i det manuelle sikteresultatet. Andelen korn som

måles over 208 µm har vært 2-4% av den totale prøven av materiale under 208 µm, og man kan da anta at denne tilnærmingen er tilstrekkelig for å korrigere prøveresultatene.

Analyser på mastersizer i forhold til camsizer

Som nevnt i starten av dette delkapittelet er det blitt brukt camsizeranalyse for Titanias kretsprodukt fra siktekrets. Camsizer bruker bildeanalyser for å bestemme partikkelstørrelse, og bruker dermed en annen analyseteknikk enn mastersizer. For å sammenligne disse to analysemetodene ble materiale fra den ene møllekretsen analysert på mastersizer i tillegg til camsizer. Analysene viste at mastersizeren gir generelt et finere resultat enn ved analysering på camsizer, men med varierende forskjeller. Et eksempel på resultater fra de to analysemetodene gjort på samme material dette er vist i figur 4-5.

Figur 4-5: Partikkelstørrelseanalyse gjort på samme materiale med camsizer og mastersizer

4.3.2 Kjemisk analyse

For å analysere prøvene kjemisk ble en FPXRF (Field-Portable X-Ray Fluorescence) ble valgt som analyseverktøy for å få raske analyser. FPXRF-analysatoren måler de karakteristiske energinivåene av røntgenstråler som sendes ut fra elementer når det bestråles med en høyenergisk fotonkilde (røntgenrør eller radioaktiv kilde). Energien til hver røntgenstråle identifiserer et bestemt element tilstede i prøven, og hastigheten til røntgenstrålene av en gitt energi bestemmer mengden av elementet som er tilstede i prøven.

Figur 4-6: Fastmontert FPXRF

Preparering av prøver og analyse

FPXRF ble brukt til å analysere elementinnholdet i ulike fraksjoner i prøvematerialet. Prøvene ble først siktet opp i fraksjoner på siktestativ og hver fraksjon ble splittet opp for å få en prøve på 15-20 gram. Disse oppsplittede prøvene ble så malt ned i slyngmølle og preparert opp i en prøvebeholder.

Ved bruk av en FPXRF vil prøveresultatene bli mer nøyaktig når prøven analyseres over tid. I dette tilfelle ble dermed prøvene analysert i 120 sekunder. Analyseverktøyet be derfor fastsatt i et stativ, slik at vibrasjonsstøy ble redusert og analysene ble mest mulig nøyaktig.

4.4 Beregningsmetoder

4.4.1 Beregning og analyse av seperasjonsresultat

Figur 4-7: En enkel prosess med to produkter

Når en massestrøm deles i to eller flere delstrømmer, vil summen av delstrømmene være lik pågangsstrømmen. Hvis man eksempelvis tar for seg en pågang som splittes inn i konsentrat og avgang med tilhørende gehalter av mineral i (se Figur 4-7) kan man bruke ligning (1) og (2) som oppfyller systemet.

$$M_1 g_{i1} + M_2 g_{i2} = M_p g_{ip} \tag{1}$$

$$M_1 + M_2 = M_p \tag{2}$$

Løsningen av disse to likningene kalles toproduktsformelen:

$$\frac{M_1}{M_p} = \frac{g_{ip} - g_{i2}}{g_{i1} - g_{i2}} \tag{3}$$

Ved skilleprosesser deles partikkelsamlingen (mengden) pågang i delmengder som kalles produkter. Vanligvis brukes en eller annen fysisk egenskap som skillekriterium. Det enkleste eksempel er at vi deler pågangen i to delmengder etter kornstørrelse hvor partiklene har større eller mindre diameter enn d_s som da blir skillegrensen. Kornstørrelse blir da skillekriteriet (Sandvik et al., 1999).

Fortsetter vi å bruke kornstørrelse som skillekriterium, vil grovgods i finfraksjonen og fingods i grovfraksjonen være feilplassert. Ved å bestemme vekt og sikteanalyse for hvert av produktene kan man beregne delingstallet E for hver kornklasse. *Delingstallet E_i* definerer hvor meget av pågangsmassen i kornklasse i som ender i det undersøkte produkt, j (Sandvik et al., 1999);

$$E_{ij} = \frac{M_j \cdot g_{ij}}{M_p \cdot g_{ip}} \tag{4}$$

For å analysere verdiene av delingstallet for de forskjellige fraksjonene setter man verdiene inn i en *skillekurve* (se eksempel Figur 4-8). Dess brattere denne skillekurven er, dess bedre skille gir skilletrinnet.

Figur 4-8: Eksempel kornfordelingskurve (Figur 3.1-2, Sandvik et al., 1999, s.143)

I denne rapporten er delingstallet satt som en funksjon av pågang sikt og kretsprodukt.

4.4.2 Beregning av turtall

Møllas kritiske turtall defineres som det turtall hvor sentrifugalkraft og tyngdekraft er like store for et massepunkt som befinner seg på møllens innvendige periferi. Massepunktet vil da følge trommelen rundt, mens ved lavere turtall vil malelegemet slippe trommelen når det kommer til en viss høyde og bevege seg i en kaste- eller rullebane mot nedre del av trommelen. For å finne en sammenheng mellom møllas diameter og hvor stort det kritiske turtallet vil være, brukes formelen (Sandvik et al., 1999):

$$n_c = \frac{1}{\pi} \sqrt{\frac{g \cdot 1800}{D}} = 42.3 \cdot D^{-0.5}$$

hvor

n_c= møllens kritiske turtall [rpm] g= tyngdens akselerasjon [m/s²] D = møllens diameter [m]

5 Del 1: Simulering av møllekrets med syklon

I dette kapittelet blir kretsoppsettet og resultatene fra forsøkskjøringene ved møllekrets med syklon gjennomgått og diskutert. Hver syklon ble prøvd ut med ulike underløpsdyser for å se hvordan kretsen ble påvirket av ulike syklondimensjoner for å forsøke å simulere møllekrets 4 på Titania. Syklonene som ble brukt i disse forsøkene var:

- Syklon 1: syklon med 55 mm indre diameter
- Syklon 2: syklon med 80 mm indre diameter
- Syklon 3: Mozley syklon

Det ble i tillegg forsøkt å kjøre kretsen med en syklon med syklondiameter 45 mm, men det viste seg at den ikke hadde nok kapasitet til å brukes til dette forsøket. Dette førte til at systemet gikk tett fort etter oppstart, og det er dermed ingen analyser å vise til. For de resterende syklonene fikk man kretsen stabil og fikk prøvetatt massestrømmene.

5.1 Kretsoppsett

Figur 5-1 viser oppsettet for pilotkretsen med syklon. Strømmene er like som det generelle flytskjemaet fra kapittel 4.1 med en syklon som klasserer.

Figur 5-1: Flytskjema for krets med syklon. Definisjonene for massestrøm 1-7 ligger i tabell 4-1.

Det ble gjennomført forsøk med tre sykloner med ulik størrelse i kretsen. Disse ble prøvd med ulike underløpsdiameterere for å kartlegge hvordan endringene i denne driftsparameteren endrer resultatet. En oversikt over dimensjonene på syklonene som ble kjørt og prøvetatt er vist i tabell 5-1.
Syklon nr	Diameter [mm]	Overløpsdiameter [mm]	Underløpsdiameter (Du) [mm]
1	55	14.8	10, 9, 8, 7.5
2	80	15	10, 9, 8
3	62	14	10, 8

Tabell 5-1: Oversikt over dimensjoner til forsøkssykloner.

Ved alle forsøkskjøringer med syklon som klasserer var det kun syklonparametere som ble endret. Påmatingshastighet og turtall på mølle var dermed konstant på henholdsvis 150 kg/h og 40 rpm.

Bilder av syklonene som ble brukt er vist i figur 5-2 til 5-4.

Figur 5-2: Syklon 1

Figur 5-3: Syklon 2

Figur 5-4: Syklon 3

5.2 Resultater

I dette resultatkapittelet er resultatene delt opp i underkapitler hvor partikkelstørrelsefordelingen for kretsproduktet, sirkulerende last og effekt mølle for hver enkelt syklon blir vist frem og sammenlignet med underløpsdyser med ulik diameter. Enkelte av kretsproduktene er i tillegg analysert med FPXRF.

For å få en korrekt sammenligning mellom kornstørrelsefordelingen til kretsproduktet i den reelle møllekretsen på Titania og det som ble prøvetatt ved pilotkjøringene, ble materiale fra Titania analysert på mastersizeren på NTNU. Dette for å redusere risikoen for forskjeller mellom analysemetoder (se kapittel 4.3.1).

5.2.1 Syklon 1

Figur 5-5 viser partikkelstørrelsefordelingen for kretsproduktet fra møllekretsen ved ulike underløpsdiameter på syklon 1. Ved forsøk med denne syklonen ga den minste underløpsdysen på 7,5 mm diameter det groveste kretsproduktet, mens den største underløpsdysen (10 mm) ga det fineste kretsproduktet.

Sirkulerende last og effekt mølle økte med økende underløpsdiameter (Se tabell 5-2).

Figur 5-5: Partikkelstørrelsefordelingen til kretsproduktet for syklon 1 ved ulike underløpsdysediameter (D_u) i forhold til Titanias kretsprodukt.

Du [mm]	Sirkulerende last	Effekt mølle [kW]
10	534%	4,4
9	424%	4,3
8	305%	4,23
7,5	309%	4,23

Tabell 5-2: Sirkulerende last og effektbruk mølle for ulike underløpsdyser på syklon 1.

Figur 5-6 viser en oversikt over TiO2-gehaltene i ulike størrelsesfraksjoner i kretsproduktet ved bruk av underløpsdiameter 7,5 mm. Gehalten i de største fraksjonene er lave, og øker i de lavere fraksjonene.

Figur 5-6: TiO2-gehaltene for de ulike størrelsesfraksjonene i kretsproduktet ved forsøkskjøring med syklon 1 og underløpsdiameter 7,5 mm.

5.2.2 Syklon 2

Figur 5-7 viser partikkelstørrelsefordelingen for kretsproduktet fra møllekretsen ved ulike underløpsdiameter på syklon 2. Ved forsøk med denne syklonen ga den største underløpsdysen på 10 mm diameter det groveste kretsproduktet, mens den minste underløpsdysen (8 mm) ga det fineste kretsproduktet.

Sirkulerende last og effekt mølle økte med økende underløpsdiameter (Se tabell 5-3).

Figur 5-7: Partikkelstørrelsefordeling for kretsproduktet ved bruk av syklon 2 i kretsen med ulike underløpsdiametere og partikkelstørrelsefordelingen for kretsproduktet ved Titania.

Du [mm]	Sirkulerende last	Effekt mølle [kW]
10	559%	4,42
9	440%	4,34
8	320%	4,2

Tabell 5-3: Sirkulerende last for ulike underløpsdyser på syklon 2

5.2.3 Syklon 3

Figur 5-8 viser partikkelstørrelsefordelingen for kretsproduktet fra møllekretsen ved ulike underløpsdiameter på syklon 3. Ved forsøk med denne syklonen ga den største underløpsdysen på 10 mm diameter det groveste kretsproduktet, mens den minste underløpsdysen (8 mm) ga det fineste kretsproduktet.

Sirkulerende last og effekt mølle økte med økende underløpsdiameter (Se tabell 5-4)

Figur 5-8: Partikkelstørrelsefordeling for kretsproduktet ved bruk av syklon 3 i kretsen med ulike underløpsdiametere og partikkelstørrelsefordelingen for kretsproduktet ved Titania.

D _u [mm]	Sirkulerende last	Effekt mølle[kW]
10	741%	4,4
8	501%	4,37

Figur 5-9 viser en oversikt over TiO2-gehaltene i ulike størrelsesfraksjoner i kretsproduktet ved bruk av underløpsdiameter 10 mm. Gehalten i de største fraksjonene er lave, og øker i de lavere fraksjonene.

Figur 5-9: TiO2-gehaltene for de ulike størrelsesfraksjonene i kretsproduktet ved forsøkskjøring med syklon 3 og underløpsdiameter 10 mm.

5.3 Diskusjon

5.3.1 Vurdering av hvordan endringer i driftsparametere påvirker resultatet

Skillekurvene er vist som forholdet mellom pågang sikt og kretsproduktet. For syklon 1 (figur 5-10) ga de to minste underløpsdysene (7,5 og 8 mm) en skillekurvene som er brattere enn ved de to største underløpsdysene (9 og 10 mm). For de to minste underløpsdysene vil 27-30% av pågangsmateriale til sikt i kornklassen 50 μ m være korrekt plassert i kretsproduktet. For de to største underløpsdysene er 18-19% korrekt plassert i samme kornklasse. Den store forskjellen mellom disse ser man i produkt under 50 μ m, hvor de to minste underløpsdysene gir et bedre (brattere) skille enn ved bruk av de to største underløpsdysene.

Endring i underløpsdiameter for syklon 2 og 3 ga ikke store variasjoner i skilleeffektiviteten. Skillekurven for syklon 2 (figur 5-11) viser at denne gir en høyere skilleeffektivitet enn for syklon 1 (ved høy underløpsdiameter) og syklon 3. Figur 5-12 viser at skillekurven for syklon 3 er slak uansett underløpsdyse og at syklonen har en lavere skilleeffektivitet.

1 0,8 Delingstall, E 0,6 0,4 0,2 0 0 50 100 200 150 250 300 Kornstørrelse [µm]

Figur 5-10: Skillekurve for syklon 1 ved ulike underløpsdiametere [mm] og for Titanias syklon i møllekrets 4.

Figur 5-11: Skillekurve for syklon 2 ved ulike underløpsdiametere [mm] og for Titanias syklon i møllekrets 4.

Figur 5-12: Skillekurve for syklon 3 ved ulike underløpsdiametere [mm] og for Titanias syklon i møllekrets 4. Den sirkulerende lasten økte med økende underløpsdyser for alle syklonene (figur 5-13). Syklon 1 og 2 ga like sirkulerende laster ved samme underløpsdiametere, mens syklon 3 ga en høyere sirkulerende last.

Figur 5-13: Sammenligning av sirkulerende last syklon 1, 2 og 3.

Effekten på mølla varierte mellom syklonene og underløpsdysene som ble brukt, og siden påmatingshastigheten var lik for alle syklonene varierer det spesifikke energiforbruket deretter. For syklon 1 var differansen mellom det spesifikke energiforbruket ved underløpsdiameter 8 mm til 10 mm med 1,1 kWh/t. For syklon 2 var denne differansen 1,5 kWh/t. Syklon 3 ga derimot en mindre differanse i spesifikt energiforbruk ved bruk av 8 og 10 mm underløpsdyser; 0,2 kWh/t. Som vist i figur 5-14 lå det spesifikke energiforbruket ved forsøkskjøring med syklon 3 og underløpsdiameter 8 mm høyere enn de to andre syklonene ved bruk av samme

underløpsdiameter. Ved bruk av 10 mm underløpsdiameter var derimot energiforbruket for mølla det samme ved installasjon av syklon 1 og 3 (29,3 kWh/t) og 0,2 kWh/t høyere for syklon 2.

Figur 5-14: Spesifikt energiforbruk ved forsøkskjøringene med syklon 1-3.

5.3.2 Vurdering av hvordan pilotkretsen gjenspeilet storskalakrets på Titania

Syklonene som er blitt brukt i forsøkskjøringene har gitt en lavere skillegrense enn ved Titania ved de driftsparameterne pilotkretsen har blitt kjørt på, og kretsproduktet har blitt for fint for å kunne simulere Titanias krets. Skillekurvene for forsøkssyklonene viser at syklon 1 (ved lav underløpsdiameter) og syklon 2 har en bedre sikteeffektivitet enn syklonene på Titania. De fineste kornene søker lett til overløpet, og gir en bratt skillekurve. Titanias sykloner gir et mindre presist skille, noe som må tas i betraktning ved eventuelt videre forsøk. Hvis syklonen i forsøkskretsen fungerer bedre enn syklonen den skal simulere, kan dette gi et ukorrekt bilde for endringer i kretsparametere på pilotskala i forhold til hvordan de fungerer i storskala.

Partikkelstørrelsefordelingen for kretsproduktene var ved alle forsøkskjøringene med syklon var, som nevnt tidligere, for fine i forhold til Titanias kretsprodukt. I forhold til hverandre var ikke variasjonen stor mellom partikkelstørrelsefordelingen ved forsøkskjøringene. Skillekurvene for syklon 3 skilte seg derimot ut med en kurve som var nærmere Titanias, selv om kuttstørrelsen var lavere. Dette kan tyde på at denne syklonen skiller mer likt som syklonene i møllekrets 4 på Titania, og kan gi et mer likt skilleresultat som ved storskala hvis man får til å gjøre kretsproduktet ved forsøkskjøringene grovere. Underløpsdiameterne som ble forsøkt på syklon 3 var 10 og 8 mm. Med disse underløpsdiameterne er den sirkulerende lasten rundt dobbelt så høy som ved storskala på møllekrets 4 som kun har 320% sirkulerende last. Siden denne syklonen gir en lignende tendens til skilleeffektivitet, kan en mindre underløpsdyse kanskje føre til et grovere kretsprodukt med en lik skillekurve og en sirkulerende last som er nærmere det som er ønskelig å simulere. Det eneste forbeholdet for at et slikt forsøk kan gjennomføres er at syklonen fortsatt har nok kapasitet ved redusering av underløpsdiameter.

For syklon 1 og 2 var den sirkulerende lasten ved det ønskede simuleringsresultatet med de minste underløpsdysene, men forsøkssyklonene hadde en brattere skillekurve enn Titanias sykloner og fungerer dermed mer effektivt enn klassereren de skal simulere.

På Titania er det spesifikke energiforbruket 8,83 ved normale innstillinger på 210 t/h. Dette er mye lavere enn det spesifikke energiforbruket som blir brukt ved forsøkskjøringer ved NTNU, og kan dermed ikke brukes i direkte sammenligning med Titanias målinger. Effektmålingene har derimot vist seg å være følsomme for endringer i driftsparametere og kan dermed brukes for å sammenligne endringer i spesifikt energiforbruk ved forsøkskjøringer. En sammenligning av disse verdiene kan uansett gi viktig informasjon om redusering eller økning i energiforbruk ved endringer av driftsparametere ved simulering.

6 Del 2: Simulering av møllekrets med sikt

I dette kapittelet blir kretsoppsettet og resultatene fra forsøkskjøringene ved møllekrets med sikt gjennomgått og diskutert. Ved disse forsøkskjøringene er variasjoner i ulike driftsparametere blitt forsøkt; turtall, påmatingshastighet og lysåpning på sikt.

Siden de tre møllekretsene som er lukket med sikt har et identisk oppsett, er data for møllekrets 3 som er kjørt ved 78% av kritisk turtall og en påmatingshastighet på 85 t/h blitt brukt ved sammenligning med pilotkrets og sees på som representativ for møllekrets 1-3.

Partikkelstørrelsefordelingen for kretsproduktet fra møllekrets 3 ved Titania er fra prøvetaking sommeren 2016 i tilknytning til prosjektoppgave skrevet av undertegnede, og er analysert på camsizer. Som vist i kapittel 4.3.1 kan det vise seg at prøver som blir analysert på camsizer gir et grovere resultat enn hvis samme prøve blir analysert på mastersizer. Kornfordelingen for Titanias kretsprodukt er derfor ment som henvisende, og resultatene fra prøvekjøringene kan dermed være nærmere ønsket resultat enn det vises til i grafene.

6.1 Kretsoppsett

Kretsen ble satt opp med samme elementer som vist i kapittel 4.1 med swecosikt (Figur 6-2) som klasserer. Det ble som normalt tilsatt vann ved innløpet og utløpet på mølla, men under forsøk som ble kjørt med en påmatingshastighet over 200 kg/h måtte det tilsettes mer vann ved

innløpet for å forhindre tettkjøring i innløp. Det ble dermed installert en ekstra vanntilsats med mer trykk ved innløpet for å forhindre at pågangsmasse bygde seg opp.

Figur 6-1: Pilotoppsett med sikt.

Figur 6-2: Swecosikt.

Swecosiktet fikk tilsatt pågang midt over siktet. Siktet bruker roterende vibrasjon for å sikte gjennom partikler finere enn lysåpningen. Partikler som er for grove bygges opp langs kanten oppå siktet før det bygges opp en stor nok masse for å bli presset ut returslangen og går tilbake i mølla. Et eksempel på dette er vist i figur 6-3.

Figur 6-3: Bilde av swecosikt under forsøkskjøring. Massen presses ut i kantene av rotasjonsvibrasjonen og materialet bygges opp i kantene til det går ut i returrøret.

Siktesatsene som ble brukt ved forsøkskjøring var:

- 390 µm
- 425 μm
- 450 µm
- 550 µm

Alle disse siktesatsene var utformet med kvadratiske lysåpninger (se figur 6-4). I tillegg til endringer i lysåpning, ble det gjort variasjoner i turtall og påmatingshastighet.

Figur 6-4: Nærbilde av sikteduk på swecosikt. Her kan man se de kvadratiske lysåpningene.

6.2 Resultater

I dette delkapittelet vil partikkelstørrelsefordelingen for kretsproduktet, sirkulerende last og effekt mølle ved de ulike forsøkskjøringene bli presentert. For enkelte prøvekjøringer vil også kjemiske analyser bli presentert. Resultatene er sammenlignet og delt inn i tre underkapittel:

1. Forsøk med ulikt turtall

Ved disse forsøkene ble det satt på en fast påmatingshastighet på 150 kg/h med to ulike turtallsinnstillinger for to siktesatser med lysåpning 390 og 450 μ m.

2. Forsøk med økt påmatingshastighet

Ved disse forsøkene var lysåpningen på siktesatsen fastsatt på 390 µm og konstant turtall på 40 rpm. Påmatingshastigheten ble da økt med 50 kg/h per forsøkskjøring fra 150 kg/h til 300 kg/h.

 Forsøk med ulik lysåpning på sikt
Ved disse forsøkene var påmatingshastigheten fastsatt på 300 kg/h og turtall 40 rpm. Kun lysåpningen på siktesatsen ble endret.

6.2.1 Forsøk med ulikt turtall

Ved disse forsøkene ble det kjørt med en fast påmatingshastighet på 150 kg/h. To siktesatser med ulik lysåpning ble forsøkt i kretsen: 390 og 450 µm. Disse ble igjen kjørt i en møllekrets hvor mølla hadde to ulike turtall: 40 rpm og 32/33 rpm. Figur 6-5 og 6-6 viser partikkelstørrelsefordelingen for kretsproduktet ved disse forsøkene hvor man kan se at kretsproduktet ble grovere ved lavere turtall i forhold til samme lysåpning ved 40 rpm.

Figur 6-5: Partikkelstørrelsefordeling for kretsprodukt ved 390 µm sikt og ulikt turtall og for Titanias kretsprodukt.

Figur 6-6: Partikkelstørrelsefordeling for kretsprodukt ved 450 µm sikt og ulikt turtall og for Titanias kretsprodukt.

Tabell 6-1 viser sirkulerende last og effekt mølle for de ulike forsøkene.

Lysåpning [µm]	Turtall [rpm]	Sirkulerende last	Effekt mølle[kW]
200	40	11%	3,8
390	32	16%	3,38
450	40	10%	3,83
	33	15%	3,47

Tabell 6-1: Sirkulerende last og effekt mølle.

6.2.2 Forsøk med økt påmatingshastighet

Ved dette forsøket ble påmatingshastigheten på forsøkskjøringene økt trinnvis med 50 kg/h fra 150 til 300 kg/h. Alle forsøkene ble kjørt med et sikt med lysåpning 390µm og et turtall på 40 rpm. Figur 6-7 viser partikkelstørrelsefordelingen for kretsproduktet ved de ulike forsøkene. Den viser at fra 150 kg/h til 250 kg/h blir kretsproduktet grovere ved økt påmatingshastighet. Når kretsen ble kjørt med en påmatingshastighet på 300 kg/h er det finere enn ved lavere tonnasje, men grovere enn ved 150 kg/h.

Tabell 6-2: Sirkulerende last og effekt mølle ved økende påmatingshastighet.

Påmatingshastighet [kg/h]	Sirkulerende last	Effekt mølle[kW]
150	11%	3,8
200	22%	3,86
250	36%	3,99
300	93%	4,08

6.2.3 Forsøk med ulik lysåpning på sikt

Forsøkene i kapittel 6.2.2 viste at partikkelstørrelsefordelingen for kretsproduktet ble grovere når påmatingshastigheten økte. Det ble dermed kjørt forsøk med en høy påmatingshastighet (300 kg/h) og sikt med større lysåpning for å få et lignende resultat som ved Titania. Figur 6-8 viser partikkelstørrelsefordelingen for kretsproduktet fra disse forsøkskjøringene. Den sirkulerende lasten ble redusert ved økende lysåpning på siktet som vist i tabell 6-8. Resultatene som vises for forsøkskjøringen med 390 μ m sikt er den samme forsøkskjøringen som henvises som forsøkskjøring med 300 kg/h i kapittel 6.2.2.

Figur 6-8: Partikkelstørrelsefordeling for kretsprodukt ved endring i lysåpning på sikt og for Titanias kretsprodukt.

Lysåpning sikt [µm]	Sirkulerende last
390	93%
425	43%
550	41%

Tabell 6-3: Sirkulerende last ved økende lysåpning sikt.

6.3 Diskusjon

6.3.1 Vurdering av hvordan endringer i driftsparametere påvirker resultatet

I dette delkapittelet vil det diskuteres hvordan endringene i oppsett/driftsparameterne påvirket partikkelstørrelsefordelingen for kretsprodukt, interne massestrømmer, skilleskarphet for siktet og energiforbruk ved pilotkjøring. Det vil også være en generell sammenligning av resultatene fra del 1 mot del 2. Disse er delt inn under hvilke endringer som ble gjort i kretsen:

- Redusering av turtall
- Ulik påmatingshastighet
- Ulik lysåpning på sikt

• Sikt i forhold til syklon som klasserer

Redusering av turtall

Ved redusering av turtall ble partikkelstørrelsefordelingen for kretsproduktet grovere som vist i kapittel 6.2.1. Dette vises i skillekurvene i figur 6-9 og 6-10 ved at kuttstørrelsen for siktet er ved en høyere partikkelstørrelse. Skillet er derimot litt slakere ved et lavere turtall, noe som viser til en mindre effektivt sikteprosess.

Figur 6-9: Skillekurve for 390 µm sikt ved 150 kg/h påmatingshastighet og ulikt turtall, og skillekurven for Titanias sikt.

Figur 6-10: Skillekurve for 450 µm sikt ved 150 kg/h påmatingshastighet og ulikt turtall, og skillekurven for Titanias sikt.

Den sirkulerende lasten ble redusert med 5 prosentpoeng ved bruk av både 450 og 390 µm sikt når turtallet økte. Dette viser at materialet ble raskere nedmalt ved høyere turtall. Det spesifikke energiforbruket økte ved høyere turtall, siden effekten øker ved raskere møllehastighet (figur 6-11).

Figur 6-11: Spesifikt energiforbruk ved endring i turtall ved en påmatingshastighet på 150 kg/h.

Ulik påmatingshastighet

Partikkelstørrelsefordelingen for forsøkene ved ulik påmatingshastighet viste at kretsproduktet ble finest ved 150 kg/h og grovest ved 200 og 250 kg/h. Ved de to sistnevnte forsøkskjøringene var alle partikler plassert korrekt i kretsproduktet under 190 μ m (se figur 6-12). For grovere kornstørrelser enn 190 μ m var det et mindre klart skille ved 200 kg/h enn ved 250 kg/h, ved at med en påmatingshastighet på 200 kg/h ble skillekurven brattere.

Ved 300 kg/h viser skillekurven en ineffektiv sikteprosess under 190 μ m i forhold til ved lavere påmatingshastighet. For partikler i størrelsen 190 til 100 μ m er 15 % av materialet i denne størrelsesfraksjonen feilplassert av klassereren og går dermed i returen tilbake i mølla i stedet for i kretsproduktet. Dette ineffektive skillet kan ha ført til et finere kretsprodukt, ved at partikler som allerede har en partikkelstørrelse lavere enn lysåpningen går i retur og blir videre nedmalt i mølla.

Figur 6-12: Skillekurve for 390 µm sikt ved ulik påmatingshastighet, og skillekurven for Titanias sikt.

Etter forsøkskjøringen med 300 kg/h i påmatingshastighet ble sikten undersøkt. Etter resterende masse som lå igjen på siktet ble fjernet, så sikten ut som vist i figur 6-13A. Siktet var tettet igjen på det midtre partiet med masse. Figur 6-13B viser siktet etter spyling, hvor det fortsatt er partikler kilt fast i lysåpningene i midten av sikten. Dette kan ha ført til ineffektiv sikting, siden det er størst sjanse for partiklene å gå gjennom sikten på det midtre partiet av sikten hvor pågangen kommer inn. Hvis et partikkel som har en partikkelstørrelse under størrelsen på lysåpningen blir forhindret å gå gjennom sikten på det midtre partiet, vil det havne i returmassen som sendes ut mot kanten av siktet (se figur 6-3). Når et partikkel havner i denne massen vil det ha en lavere sjanse å gå gjennom siktet på grunn av at det klebres til de andre partiklene i massen eller at det ikke havner direkte på sikten.

Denne teorien støttes opp når man ser på den sirkulerende lasten for de ulike forsøkskjøringene. Fra 150 kg/h til 250 kg/h øker den sirkulerende lasten fra henholdsvis fra 11% til 36%. Ved forsøkskjøringen med 300 kg/h økte den sirkulerende lasten til 93%. Den sirkulerende lasten har dermed nesten blitt tredoblet ved å øke påmatingshastigheten fra 250 til 300 kg/h, noe som virker urealistisk i forhold til økningen mellom forsøkskjøringene med lavere påmatingshastighet.

Figur 6-13: (A) Sikt etter resterende masse er fjernet, men før spyling. (B) Sikt etter spyling, men før ultralydbehandling.

Som vist i resultatkapittelet økte effekten gradvis fra laveste til høyeste påmatingshastighet. Økningen i effekt var 280 W fra 150 til 300 kg/h. Denne endringen i effekt er liten i forhold til endringen i påmatingshastighet, og dermed vil energien per tonn som er malt ned (kWh/t) blir lavere. Ved å kjøre inn mer tonn materiale per time vil altså denne energien brukes på en større massestrøm, noe som vil redusere energiforbruket per tonn med materiale. Det spesifikke energiforbruket for forsøkskjøringene ved endring i påmatingshastighet er vist i figur 6-14.

På grunn av at det er lite variasjon i effektforbruk ved økning i påmatingshastighet, vil dermed det spesifikke energiforbruket nesten halveres ved å doble påmatingshastigheten. Denne driftsparameteren er dermed den mest avgjørende for endringer i spesifikt energiforbruk.

Figur 6-14: Spesifikt energiforbruk ved endring i påmatingshastighet ved bruk av sikt med lysåpning 390 µm og turtall 40 rpm.

Ulik lysåpning på sikt

Forsøkskjøringen med 390 μ m sikt er som nevnt tidligere samme som ble diskutert ved forsøk med ulik påmatingshastighet og vil ikke bli diskutert videre her. Ved forsøkskjøringen med 425 μ m sikt ble partikkelstørrelsefordelingen for kretsproduktet grovere enn ved 300 μ m. Kretsproduktet ved bruk av 550 μ m sikt ble meget likt som ved 425 μ m sikt, men fordelingen ble i dette tilfellet slakere med en høyere toppstørrelse.

Skillekurvene for disse forsøkene viser at ved forsøkskjøringen hvor 425 μ m sikt var installert i kretsen hadde man et effektiv skille, noe som gjenspeiles i en bratt skillekurve i figur 6-15. Man kan se i samme figur at kuttstørrelsen har vært lav ved dette forsøket (alt under 300 μ m går i retur). Ved bruk av 550 μ m sikt er derimot sikteeffektiviteten lavere, noe som gjenspeiles i en slak kurve. Selv om skillekurven har en lavere stigningsgradient fra toppstørrelsen til 190 μ m, er nærmest alt under plassert korrekt i kretsproduktet. De finere kornene har dermed blitt skilt korrekt, mens de grovere kornene (over 190 μ m og under 550 μ m) har blitt skilt mer ineffektivt.

Figur 6-15: Skillekurve ved forsøkskjøringer med ulik lysåpning på sikt.

Den sirkulerende lasten reduseres ved økende lysåpning, noe som viser til at flere partikler slippes gjennom siktet. Endringene i effekt ved å endre lysåpningen på siktet var mindre i forhold til å variere turtall og påmatingshastighet. Siden påmatingshastigheten var konstant ved disse forsøkskjøringene, varierte det spesifikke energiforbruket på samme måte. Energiforbruket ble redusert ved redusering i lysåpning som vist i figur 6-16.

Figur 6-16: Spesifikt energiforbruk ved forsøkskjøringer med ulike lysåpning på siktetrinn ved turtall 40 rpm og påmatingshastighet 300 kg/h.

Sikt i forhold til syklon som klasserer

Under forsøkskjøringene hvor møllekretsene som har blitt lukket med sikt, har man sett følgende forskjeller i forhold til møllekretsene lukket med syklon:

- Lavere sirkulerende last
- Brattere skillekurver
- Lavere spesifikt energiforbruk

I tillegg ser man en forskjell i elementfordelingen i de ulike størrelsesfraksjonene i kretsproduktet. Figur 8-17 viser en oversikt over TiO₂-gehaltene i ulike størrelsesfraksjoner i kretsproduktet fra en forsøkskjøring med sikt og to med syklon. Disse kretsproduktene har nærmest identisk partikkelstørrelsefordeling, og man kan dermed sammenligne gehaltene i fraksjonene direkte mot hverandre. Elementanalysen på sikteprøven viser at TiO2 er nærmest jevnt fordelt over fraksjonene med en antydning til høyere gehalt i de groveste fraksjonene.

Elementanalysene for kretsproduktet ved forsøkskjøringene med syklon viser at TiO2 oppkonsentreres i de fineste fraksjonene. Dette kommer av at sykloner skiller ikke kun på partikkelstørrelse, men også på egenvekt. Som forklart i kapittel 3.2 vil dermed blant annet ilmenitt, som er et tyngre mineral, gå lettere til underløpet til møllen enn lettere mineraler. Resultatet blir da at ilmenitt males mer ned, og beriker TiO2-gehalten i de lavere størrelsesfraksjonene.

Figur 6-17: TiO2-gehaltene for de ulike størrelsesfraksjonene i kretsproduktet ved en forsøkskjøring med sikt og to med syklon som har samme partikkelstørrelsefordeling.

6.3.2 Vurdering av hvordan pilotkretsen gjenspeilet storskalakrets på Titania

Vurderingsgrunnlaget for sammenligningen mellom pilotkretsen og storskalakretsen på Titania skal baseres på partikkelstørrelsefordelingen, skillekurven, massebalanse og energiforbruk. Sammenligningen skal belyse i hvilken grad pilotprosessene gjenspeilte fullskalaprosessen.

Som vist i resultatkapittelet, var partikkelstørrelsefordelingen for kretsproduktet finere enn Titanias kretsprodukt for alle forsøk. Selv om man ikke nådde en korrekt grovhet på kretsproduktet, ble produktet grovere ved visse endringer i driftsparametere. Ved å kjøre mølla med et lavere turtall, øke påmatingshastigheten, eller øke lysåpningen på siktet var det mulig å produsere et grovere kretsprodukt. Forsøkskjøringene som ga et kretsproduktene nærmest det ønskede resultatet var en kombinasjon av disse to faktorene; ved en påmatingshastighet på 300 kg/h, og med lysåpning 425 og 550 µm.

De kvadratiske lysåpningene på swecosikten kan ha ført til at man produserer et finere kretsprodukt enn ved bruk av Derricksikt med rektangulære lysåpninger. Ved bruk av rektangulære lysåpninger kan grove avlange korn slippe lettere gjennom, mens på swecosikt vil det være vanskelig for disse kornene å slippe gjennom. Det samme gjelder for korn som ligger i størrelsesjiktet rett under 390 μ m. Disse kornene har en mindre sannsynlighet for å treffe korrekt i sikteåpningene og slippe igjennom, og sannsynligheten for at de spretter tilbake er større på et swecosikt i forhold til på Derricksikt som brukes i møllekretsen på Titania.

Det kan også diskuteres hvor nært det ønskede resultatet disse forsøkskjøringene var på å få korrekt partikkelstørrelsefordeling. Titanias kretsprodukt er som nevnt analysert på camsizer, noe som har vist seg å gi et grovere resultat enn ved analyse på mastersizer som ble brukt ved analysering av prøvemateriale fra disse forsøkskjøringene.

I forhold til Titanias skillekurve vist i kapittel 6.3.1 har swecosiktene en generelt høyere sikteeffektivitet. I Titanias siktekrets vil partikler under 200 µm blir rundt 30% av materialet bli feilplassert i returen i stedet for å gå i kretsproduktet. Dette kan føre til et problem ved simulering hvis ønsket er å undersøke hvilke endringer i driftsparametere som kan øke siktekapasitet eller sikteeffektivitet for å gi noen eksempler. Hvis målet med å oppnå ønsket partikkelstørrelsefordeling for kretsprodukt er nådd, kan likevel en mer effektivt klasserer i pilotkretsen oppføre seg annerledes ved endringer i driftsparametere enn et med lavere sikteeffektivitet.

Forsøkene med 150 kg/h i påmatingshastighet ga en lav sirkulerende last i forhold til Titanias møllekretser med sikt. Ved å doble denne påmatingshastigheten økte den sirkulerende lasten til verdier som var lik Titanias. Det er dermed mulig å nå en lik indre massebalanse på pilotkjøring som ved storskala.

På Titania er det spesifikke energiforbruket 7,39 ved normale innstillinger på 85 t/h og 78% av kritisk turtall. Dette er mye lavere enn det spesifikke energiforbruket som blir brukt ved forsøkskjøringer ved NTNU, og kan dermed ikke brukes i direkte sammenligning med Titanias målinger. Effektmålingene har derimot vist seg å være følsomme for endringer i driftsparametere og kan dermed brukes for å sammenligne endringer i spesifikt energiforbruk ved forsøkskjøringer. En sammenligning av disse verdiene kan uansett gi viktig informasjon om redusering eller økning i energiforbruk ved endringer av driftsparametere ved simulering.

7 Del 3: Re-pulping

I dette kapittelet blir kretsoppsettet og resultatene fra forsøkskjøringene ved møllekrets med et repulpingtrinn gjennomgått og diskutert.

7.1 Kretsoppsett

Kretsoppsettet ble satt opp som i kapittel 4.1 med et repulp-trinn som klasserer. Dette trinnet ble satt opp som vist i figur 7-1. Hvis man ser på denne figuren, gikk pågang sikt først inn på en swecosikt (A) med lysåpning en lysåpning på enten 450 eller 390 μ m. Det som går igjennom sikten går ut av kretsen som første kretsproduktstrøm (D). Returen fra denne sikta ble så sendt gjennom et rør med en vinkel på 45 grader (B) hvor vann ble tilsatt for å dispergere partiklene. Materialet havner så på det andre siktet i klasserertrinnet (C) som har en lysåpning på 425 μ m. Det som går igjennom sikta går ut av kretsen som andre kretsproduktstrøm, mens returen fra dette trinnet går tilbake i innløpet på mølla. Massen som gikk gjennom første og andre sikt ble tatt ut av kretsen og ble lagt sammen i en pumpe til et *totalt kretsprodukt*.

Figur 7-1: Oppsett swecosikt. (A) Første sikt (B) Retur fra første sikt og påsetning vann til re-pulping (C) Andre sikt (D) Uttak kretsprodukt

Vannet som er påsatt i punkt (B) ble sammenklemt som vist i figur 7-2 for å få økt trykk og spre vannet mer utover i røret for å forsøke å dispergere massestrømmen i returstrømmen fra første sikt.

Figur 7-2: Slange som ble brukt til re-pulping. Den ble sammenklemt for å få trykk og spre vannet mer utover for å dispergere partikler fra hverandre. Ble koblet på i punkt (B) i figur 7-1.

Den andre sikten i klassereren (punkt B i figur 7-2) var konstant satt på en lysåpning på 425 μ m, mens den første sikten enten var satt opp med 450 eller 390 μ m lysåpning. Forsøkene med repulping ble prøvd ut med både 390 og 450 μ m lysåpning, mens forsøkene uten repulping kun ble forsøkt med 450 μ m på første sikt på grunn av for lite forsøksmateriale.

Alle forsøkene ble kjørt med en påmatingshastighet på 300 kg/t og turtall på 40 rpm. Under prøvetaking ble prøvene tatt på samme måte som beskrevet i kapittel 4.2 bortsett fra at kretsproduktet ble prøvetatt fra både det første og det andre siktet. Kornfordeling og massestrøm for det totale kretsproduktet ble så beregnet ut fra metoden i kapittel 4.4.1 ut fra kretsproduktet fra det første og det andre siktet.

Prøvetaking under de to forsøkene uten repulping foregikk under samme forsøkskjøring. Etter kretsen ble stabil og første prøvetaking ble tatt, ble ikke kretsen stoppet eller endret på. Kretsen fikk dermed stabilisere seg på nytt under samme forhold og andre prøvetaking ble tatt.

7.2 Resultater

I dette delkapittelet vil partikkelstørrelsefordelingen for kretsproduktet, sirkulerende last og energiforbruk ved de ulike forsøkskjøringene bli presentert. For enkelte prøvekjøringer vil også kjemiske analyser bli presentert.

7.2.1 Med re-pulping

Partikkelstørrelsefordelingen for det totale kretsproduktet fra de to forsøkene med re-pulping med ulik lysåpning på første sikt var identiske (se figur 7-3).

Figur 7-3: Partikkelstørrelsefordeling for totalt kretsprodukt for 390 og 450 µm som første sikt med re-pulping. Endringen av lysåpning på det første siktet ga ikke store variasjoner for sirkulerende last og

effekt på mølla som vist i tabell 7-1.

Lysåpning første sikt [µm]	Sirkulerende last	[kW]	
390	39,4%	3,99	
450	39,6%	3,91	

7.2.2 Uten re-pulping

Forsøkene uten repulping ble kun gjennomført med 450 μ m sikt som første sikt og 425 μ m sikt som andre sikt som forklart i kapittel 7.1. Partikkelstørrelsefordelingen for kretsproduktet uten repulpingen var relativt like mellom første og andre prøvekjøring. Ved andre prøvekjøring ble toppstørrelsen større enn ved den første.

Den sirkulerende lasten økte med 16 prosentpoeng fra første til andre forsøkskjøring, mens effekten var konstant ved begge forsøk.

Figur 7-4: Partikkelstørrelsefordeling for totalt kretsprodukt uten re-pulping sammenlignet med re-pulping.

Forsøk nr [µm]	Sirkulerende last	[kW]	
1	47%	4,03	
2	63%	4,03	

Tabell 7-2: Sirkulerende last og effekt mølle ved forsøkskjøringer uten repulping.

Figur 7-5 og 7-6 viser en oversikt over TiO2-gehalten i ulike størrelsesfraksjoner for kretsproduktet fra den første og den andre sikten i repulptrinnet.

Figur 7-5: TiO2-gehaltene for de ulike størrelsesfraksjonene i kretsproduktet fra det første siktet i repulptrinnet.

Figur 7-6: TiO2-gehaltene for de ulike størrelsesfraksjonene i kretsproduktet fra det andre siktet i repulptrinnet.

7.3 Diskusjon

Partikkelstørrelsefordelingen for kretsproduktet med og uten repulpingen var identisk for de fineste partiklene opp til 50 μ m som utgjorde d₄₅. Over 50 μ m ble kretsproduktet grovere under forsøkskjøringene med repulping i forhold til uten repulping. Et eksempel på dette er ved d₉₀ som var 187 μ m med repulping og 160 μ m uten repulping, en 17% økning i d₉₀.

Skillekurvene for forsøkskjøringene med og uten repulping viser at skilleeffektiviteten for de to metodene slik som forsøkskjøringene ble gjennomført ikke har de store variasjonene (se figur 7-7). De største forskjellene ligger i kornklassen 185 og 211 µm. I kornklassen 185 µm er 97% av materialet gått i kretsproduktet med bruk av repulping, mens uten er 3 prosentpoeng lavere. I kornklassen 211 µm er 60% av materialet gått i kretsproduktet med bruk av repulping, mens uten er 30 prosentpoeng lavere. Dette kan vises i partikkelstørrelsefordelingen for kretsproduktene, siden kretsproduktet med repulping ble grovere i de største størrelsesfraksjonene i forhold til uten bruk av repulping.

Figur 7-7: Skillekurve for forsøk med repulping (450 µm som første sikt) og uten repulping#2.

Den sirkulerende lasten økte ved forsøkskjøringene uten repulping i forhold til med repulping. Dette kan ha ført til det finere kretsproduktet når mer materiale i de grovere kornklassene går i retur for videre nedmaling. De to forsøkskjøringene uten repulping har en stor differanse i sirkulerende last (16 prosentpoeng differanse). Dette kan ikke ha kommet fra endringer i driftsparametere siden forsøkene ble kjørt kontinuerlig etter hverandre uten ytre påvirkning. En mulig forklaring for dette var en endring i partikkelstørrelsefordelingen til pågangsmaterialet som er vist i figur 7-8. Her kan man se at pågangsmaterialet som ble prøvetatt ved forsøk nr 1 var finere enn ved forsøk nr 2. Dette kan ha ført til at pågangen til sikt ble grovere, og dermed fikk en høyere sirkulerende last.

Figur 7-8: Partikkelstørrelsefordeling for pågangsmateriale ved repulpforsøkene.

Det spesifikke energiforbruket varierte lite mellom forsøkene. Med repulping hadde mølla et energiforbruk på 13,3 kWh/t ved 390 µm som første sikt og 13 kWh/t med 450 µm som første sikt. Uten repulping fikk man et likt spesifikt energiforbruk for begge forsøkene; 13,4 kWh/t. Det er dermed en liten økning i energiforbruk uten repulping, men ikke en så klar forskjell at man kan konkludere med at repulping reduserer forbruket av energi brukt på nedmaling.

Det kan diskuteres hvor representativ disse forsøkene er for et reelt repulping trinn. Disse forsøkene ble kun gjennomført med en innstilling for repulpingtrinnet i forhold til vanntilsetning. En endring i hvordan vannet sprer seg, trykk, innfallsvinkel og vannmengde kunne ha påvirket dispergeringen av sammenhengende partikler og gitt et klarere resultat fra prøvekjøringen.

Det kan også diskuteres hvorvidt swecosikt er den beste løsningen for et slikt forsøk. Skillekurven viser at klasseringstrinnet er effektivt både med og uten repulping. På swecosikt beveger massen seg på en annen måte enn ved derricksikt siden swecosikt bruker rotasjonsvibrering. Ved å doble siktearealet i forhold til sikteforsøkene gjort i del 2 av denne rapporten, har man økt siktekapasiteten betraktelig.

8 Konklusjon og videre anbefalinger

Simulering av møllekretsene på Titania ble ikke oppnådd ved disse forsøkskjøringene, siden partikkelstørrelsefordelingen for kretsproduktet ble for fin. Likevel tyder analysene på at dette kan oppnås ved hjelp av enkle justeringer.

Ved prøvekjøring av pilotkrets med sikt viste resultatene at kretsproduktet kan gjøres grovere ved redusering av turtall på møllen, økning av påmatingshastighet og økning i lysåpning på sikt. En påmatingshastighet på 300 kg/h ser ut til å gi en korrekt sirkulerende last ved fungerende klasserer. Siden siktene er kvadratiske på swecosiktene som er blitt brukt på pilotkretsen, kan det være en fordel å gå for et sikt med større lysåpninger enn Derricksiktet med rektangulære lysåpninger som pilotkretsen skal etterligne.

Ved prøvekjøring av pilotkrets med syklon så det ut til at syklon 3 hadde en lik skilleeffektivitet som syklonene på Titania. Denne ga et for fin partikkelstørrelsefordeling ved driftsparameterne som ble brukt ved forsøkskjøring og hadde en høy sirkulerende last i forhold til Titanias møllekrets. Dette kan rettes opp med å bruke en underløpsdyse med mindre diameter med forbehold om at syklonen fortsatt har nok kapasitet. Dette kan føre til at kuttstørrelsen i syklonen øker og reduserer i tillegg sirkulerende last.

Hvis kapasiteten på syklon 3 blir for lav ved de reguleringene, er det også mulig å bruke syklon 2 og øke påmatingshastighet, redusere turtallet på møllen eller en kombinasjon. Disse endringene viste seg i sikteforsøkene å gi et grovere mølleprodukt. Syklon 2 har ved erfaring vist seg å ha en høyere kapasitet enn de to andre forsøkssyklonene, og kan dermed være passende ved slike forsøk.

Forsøkene med repulping viste at det ikke utgjorde de store forskjellen under disse forsøkskjøringene. Videre forsøk på dette temaet burde se nærmere på virkningen av trykk, spredning og mengde på vanntilsatsen. Swecosiktene som ble brukt til dette forsøket kan også ha økt kapasiteten på klasseringstrinnet slik at effekten av repulpingen ikke kommer til sitt fulle potensial. Det kan dermed være interessant å se på bruk av en annen type sikt.

9 Referanser

Sandvik, K. L., Digre, M., & Malvik, T. (1999). *Oppredning av primære og sekundære råstoffer*. Trondheim: Tapir Forlag.

Titania A/S. (2002). Titania i 100! - jubileumsbok for Titania A/S.

Wills, B. A., & Napier-Munn, T. (2005). 7 - Grinding mills *Wills' Mineral Processing Technology (Seventh Edition)* (pp. 146-185). Oxford: Butterworth-Heinemann.

Vedlegg 1 – Partikkelstørrelsefordeling syklon

			Syklon 1 (kretsp	produkt)				
7,5 mm	ı		8 mm	9	mm	10 mm		
<u>Size Classes (μm)</u> 0,243229928	%kum 0	Size Classes (μm) 0,214080116	%kum 0	<u>Size Classes (µ</u> 0,243229928	%kum 0	<u>Size Classes (μm)</u> 0,214080116	%kum 0	
0,276348869	0,00064338	0,243229928	0,000644247	0,276348869	0,000677866	0,243229928	0,000597777	
0,313977388	0,071399609	0,276348869	0,075087776	0,313977388	0,075478614	0,276348869	0,069776675	
0,356729522	0,160880802	0,313977388	0,173088593	0,356729522	0,17103947	0,313977388	0,161243128	
0,40530292	0,269495432	0,356729522	0,295219539	0,40530292	0,288007455	0,356729522	0,275604491	
0,460490222	0,39896086	0,40530292	0,442979483	0,460490222	0,428345074	0,40530292	0,414280936	
0,523191999	0,552124876	0,460490222	0,618766783	0,523191999	0,595117242	0,460490222	0,579467443	
0,594431444	0,733287255	0,523191999	0,826526805	0,594431444	0,792834595	0,523191999	0,774731275	
0,675371072	0,948409141	0,594431444	1,072308716	0,675371072	1,027670563	0,594431444	1,005518276	
0,767331691	1,204937625	0,675371072	1,36448973	0,767331691	1,307288558	0,675371072	1,279351173	
0,871813953	1,511238805	0,767331691	1,/13563823	0,871813953	1,640269076	0,767331691	1,60562207	
0,990522844	1,875625038	0,8/1813953	2,1313/9546	0,990522844	2,035129503	0,8/1813953	1,994876672	
1,125395500	2,305124429	1 135305506	2,029835531	1,125395500	2,49909876	0,990522844	2,457606939	
1,2/005204/	2,804508291	1,125555500	2,219219092	1,270052047	2 650592042	1,125595500	2 626220222	
1,45275540	4 01/157/091	1,278032847	1 69/8810//	1,45273540	/ 330082402	1,278032847	3,030239233	
1 87528767	4 721056971	1 650544424	5 582931474	1 87528767	5 100422921	1 650544424	5 17409623	
2,130632654	5,490967915	1.87528767	6,567024479	2.130632654	5.933125568	1.87528767	6.074840082	
2.420746202	6.322766638	2.130632654	7.642802119	2.420746202	6.837713171	2.130632654	7.060635223	
2.75036251	7.21722931	2.420746202	8.806902209	2.75036251	7.817174087	2.420746202	8.131968528	
3,124860397	8,177601351	2,75036251	10,05774037	3,124860397	8,876648842	2,75036251	9,2923851	
3,550351077	9,209343248	3,124860397	11,39583759	3,550351077	10,02268679	3,124860397	10,54797833	
4,033777887	10,31927944	3,550351077	12,82406898	4,033777887	11,26215444	3,550351077	11,90603818	
4,58302959	11,51396864	4,033777887	14,34736505	4,58302959	12,60089655	4,033777887	13,37295965	
5,207069109	12,79787183	4,58302959	15,97119652	5,207069109	14,04257947	4,58302959	14,95178224	
5,916079783	14,17253867	5,207069109	17,69938721	5,916079783	15,58830075	5,207069109	16,64053329	
6,721631549	15,63725244	5,916079783	19,53303997	6,721631549	17,23737893	5,916079783	18,43298107	
7,636869741	17,19074095	6,721631549	21,47104817	7,636869741	18,9893576	6,721631549	20,32195136	
8,676729602	18,83410424	7,636869741	23,51136389	8,676729602	20,84690224	7,636869741	22,30380381	
9,858180007	20,57341745	8,676729602	25,65361664	9,858180007	22,81806009	8,676729602	24,38289456	
11,20050036	22,42091808	9,858180007	27,90117514	11,20050036	24,91696115	9,858180007	26,57315301	
12,72559522	24,39567364	11,20050036	30,26140122	12,72559522	27,1642682	11,20050036	28,89563074	
14,43635172	20,52417121	12,72559522	32,74303463	14,45855172	29,56610527	12,72559522	31,37488982	
18 66380319	31 37021567	16 42704571	38 1538832	18 66380319	35 10354284	16 42704571	36 90601189	
21.2051245	34.14286132	18.66380319	41.11475119	21.2051245	38.25638737	18.66380319	39.99955857	
24,09248	37,16338246	21,2051245	44,26082657	24,09248	41,69025749	21,2051245	43,32060073	
27,37298677	40,4185452	24,09248	47,58431008	27,37298677	45,39258559	24,09248	46,85353707	
31,10017752	43,87668932	27,37298677	51,0585271	31,10017752	49,33279138	27,37298677	50,56529764	
35,33487411	47,49596229	31,10017752	54,6403972	35,33487411	53,47299909	31,10017752	54,41297404	
40,14618012	51,23716739	35,33487411	58,27860214	40,14618012	57,78218929	35,33487411	58,35614216	
45,61260848	55,07571307	40,14618012	61,92555859	45,61260848	62,24588039	40,14618012	62,36979916	
51,82336267	59,00608586	45,61260848	65,54734223	51,82336267	66,86365674	45,61260848	66,45060314	
58,87979241	63,03701594	51,82336267	69,12510717	58,87979241	71,63260812	51,82336267	70,61017309	
66,8970475	67,18024367	58,87979241	72,64792813	66,8970475	76,51944251	58,87979241	74,85635376	
76,0059569	71,43766234	66,8970475	76,10240704	76,0059569	81,43016357	66,8970475	79,16811098	
86,35516364	/5,/8868813	76,0059569	/9,46614526	86,35516364	86,19239449	76,0059569	83,47379056	
36,11333040	84 50027551	00,35510504	02,70757557	36,11333040	90,5049202	00,33310304	01 4954502	
111,4723937	84,50027551	111 4729957	88 65993652	126 6515044	94,28143804	111 4729957	91,4834393	
143.8967659	92,31155734	126.6515044	91,28092694	143,8967659	98,97873383	126.6515044	97,35811819	
163.4901957	95.41596763	143.8967659	93.60558084	163.4901957	99.8616273	143.8967659	99.08123846	
185,7515276	97,75974855	163,4901957	95,59384453	185,7515276	99,99933516	163,4901957	99,95438879	
211,0440316	99,27359309	185,7515276	97,21273143	211,0440316	100	185,7515276	99,99956876	
239,7804412	99,97649872	211,0440316	98,44240208	239,7804412	100	211,0440316	100	
272,4296895	99,99974406	239,7804412	99,28766088	272,4296895	100	239,7804412	100	
309,5245607	100	272,4296895	99,77393697	309,5245607	100			
351,6703846	100	309,5245607	99,96120204	351,6703846	100			
399,5549145	100	351,6703846	99,99955442	399,5549145	100			
453,9595504	100	399,5549145	100	99,94692379				
515,7720903	100	453,9595504	100	99,99980634				
Syklon 2 (kretsprodukt)								
-------------------------	--------------	----------------------------	---------------------------	-------------------	--------------	--	--	--
8 mm		9) mm	10 mm				
Size Classes (µm)	%kum	Size Classes (µm)	%kum	Size Classes (µm)	%kum			
0,188423753	0	0,214080116	0	0,243229928	0			
0,214080116	0	0,243229928	0	0,276348869	0,000661876			
0,243229928	0,000578134	0,276348869	0,000631596	0,313977388	0,073350625			
0,276348869	0,067428629	0,313977388	0,070182542	0,356729522	0,164887715			
0,313977388	0,155606208	0,356729522	0,158486304	0,40530292	0,275622663			
0,356729522	0,265613488	0,40530292	0,266015327	0,460490222	0,407325323			
0,40530292	0,398746366	0,460490222	0,394538523	0,523191999	0,56303621			
0,460490222	0,557068831	0,523191999	0,546960495	0,594431444	0,747416515			
0,523191999	0,743996336	0,594431444	0,727660205	0,675371072	0,966979053			
0,594431444	0,964793794	0,675371072	0,942710584	0,767331691	1,229905871			
0,675371072	1,226772741	0,767331691	1,199713944	0,871813953	1,545443219			
0,767331691	1,539093856	0,871813953	1,507239005	0,990522844	1,922854454			
0,871813953	1,912074022	0,990522844	1,873842037	1,125395506	2,370083246			
0,990522844	2,356012526	1,125395506	2,306816119	1,278632847	2,892456169			
1,125395506	2,879716459	1,278632847	2,810981772	1,45273546	3,491899802			
1.278632847	3.489114698	1.45273546	3.387972779	1.650544424	4.167112304			
1.45273546	4.186499583	1.650544424	4.036440974	1.87528767	4.914798024			
1.650544424	4.970861734	1.87528767	4.75329088	2.130632654	5.731531398			
1.87528767	5.839353809	2.130632654	5,535533184	2.420746202	6.615472995			
2,130632654	6,789261332	2,420746202	6.381994469	2.75036251	7.567419453			
2,420746202	7.819497925	2,75036251	7,294325325	3.124860397	8.591227864			
2 75036251	8 931080081	3 124860397	8 277268449	3 550351077	9 693695702			
3 124860397	10 12688381	3 550351077	9 338284135	4 033777887	10 88356991			
3 550351077	11 41118659	4 033777887	10 48643262	4 58302959	12 169458			
4 033777887	12 78900929	4 58302959	11 73054415	5 207069109	13 5573948			
4 58302959	14 26507037	5 207069109	13 07730526	5,207009109	15 04971674			
5 207069109	15 8/279517	5 916079783	14 53034638	6 7216315/19	16 6/59912			
5 916079783	17 52451966	6 721631549	16 09083142	7 636869741	18 34550148			
6 721631549	10 31201363	7 6368697/1	17 759/19188	8 676729602	20 15102/3/			
7 6368697/1	21 21292024	8 676729602	19 54016454	9 858180007	20,13102434			
8 676729602	23,21252024	9 858180007	21 //292088	11 20050036	22,07133178			
9 858180007	25,25405205	11 20050036	21,44252000	12 72559522	26 32521105			
11 20050036	27,7161589/	12 72559522	25,48554472	11/15835172	20,32321103			
12 72550500	27,71013054	14 45835172	23,05200524	16 / 270/1571	20,70373343			
11/15925172	22 0/286521	16 42704571	20,00711241	18 66380310	34.08250144			
16,43704571	35,94380331	18 66380310	22 62/22267	21 2051245	27 10655856			
18 66280210	30,006/18785	21 2051245	26 81/25582	21,2051245	10 2/17222			
21 2051245	12 52122201	21,2031243	40 26803057	24,03248	40,3417333			
21,2031243	42,53123231	24,09248	40,20893937	21,37298077	43,73342771			
24,09248	40,17204828	21,37298077	43,37100231	25 22/07/11	47,30203271			
21,37298077	49,9708370	25 22/07/11	47,0770073 E1 04241922	10 1/619012	54 62402602			
25 22/07/11	53,87308124	40 14619012	51,54541025	40,14010012	54,03492093			
35,55467411	57,05090114	40,14018012	50,15002942	43,01200646	62 22072102			
40,14010012	65,03500050	45,01200848 E1 82226267	64 99171100	51,82350207	66 1970/792			
45,01200646	70 16205700	51,82550207	64,00171199	56,67979241	70 205 00111			
51,82330207	70,10295788	58,87979241	09,45325907		70,28589111			
58,87979241	74,54201713	36,8970475	74,14572109	76,0059569	74,50934834			
56,8970475	/9,0/5//6/5	76,0059569	78,89815692	86,35516364	78,79732088			
70,0059509	83,00924294	08 11255046	83,59107850	98,11355040	83,04044502			
00 1105504	00,13405382	38,11355046	02 02054 027	126 6545044	00 79032426			
98,11355046	92,20540716	111,4/2995/	92,03951607	142 9007050	90,78033126			
111,4729957	95,58898816	142,0515044	95,34404969	143,896/659	93,95033223			
126,6515044	98,05378236	143,8967659	97,78392321	105,4901957	96,47642247			
143,8967659	99,52275342	163,4901957	99,32941852	185,/515276	98,29741141			
163,4901957	99,99808884	185,/515276	99,99626395	211,0440316	99,43612794			
185,7515276	100	211,0440316	100	239,7804412	99,99717138			
211,0440316	100	239,7804412	100	272,4296895	100			

Syklon 3 (kretsprodukt)									
8 mm		10	0 mm						
Size Classes (µm)	%kum	Size Classes (µm)	%kum						
0,243229928	0	0,243229928	0						
0,276348869	0,000620121	0,276348869	0,000662221						
0,313977388	0,068670953	0,313977388	0,073419122						
0,356729522	0,154164402	0,356729522	0,165163826						
0,40530292	0,257338435	0,40530292	0,276364387						
0,460490222	0,379748975	0,460490222	0,409004396						
0,523191999	0,524127404	0,523191999	0,566459187						
0,594431444	0,694694961	0,594431444	0,753865746						
0,675371072	0,897362436	0,675371072	0,97835234						
0,767331691	1,139534598	0,767331691	1,248827738						
0,871813953	1,429515381	0,871813953	1,575311564						
0,990522844	1,775503557	0,990522844	1,967783258						
1,125395506	2,184338863	1,125395506	2,434708655						
1,278632847	2,660335304	1,278632847	2,981597261						
1,45273546	3,204685215	1,45273546	3,610112351						
1,650544424	3,815882634	1,650544424	4,318242573						
1,87528767	4,491270663	1,87528767	5,10171596						
2,130632654	5,229223413	2,130632654	5,956255097						
2,420746202	6,03101711	2,420746202	6,8798267						
2,75036251	6,901584167	2,75036251	7,874157008						
3,124860397	7,848968871	3,124860397	8,945276687						
3,550351077	8,882769774	3,550351077	10,10307172						
4,033777887	10,01197881	4,033777887	11,35978608						
4,58302959	11,24272765	4,58302959	12,72766802						
5,207069109	12,57679965	5,207069109	14,21653549						
5,916079783	14,01204927	5,916079783	15,83236137						
6,721631549	15,54490717	6,721631549	17,57712352						
7,636869741	17,17398106	7,636869741	19,44988432						
8,676729602	18,90378604	8,676729602	21,4497558						
9,858180007	20,74664037	9,858180007	23,57915222						
11,20050036	22,72199597	11,20050036	25,8460035						
12,72559522	24,85479981	12,72559522	28,26529086						
14,45835172	27,17408845	14,45835172	30,85989289						
16,42704571	29,70985582	16,42704571	33,658274						
18,66380319	32,48644929	18,66380319	36,68810127						
21,2051245	35,51395629	21,2051245	39,96746085						
24,09248	38,78153317	24,09248	43,49688614						
27,37298677	42,25604809	27,37298677	47,25565193						
31,10017752	45,88780521	31,10017752	51,20421333						
35,33487411	49,62313498	35,33487411	55,29304297						
40,14618012	53,42080106	40,14618012	59,47563677						
45,61260848	57,26546727	45,61260848	63,71952016						
51,82336267	61,17113662	51,82336267	68,00801269						
58,87979241	65,17290791	58,87979241	72,33094001						
66,8970475	69,30976392	66,8970475	76,66847023						
76,0059569	73,60336643	76,0059569	80,97528128						
86,35516364	78,03609795	86.35516364	85,1692396						
98,11355046	82,52968421	98,11355046	89,12527931						
111,4729957	86,93201901	111,4729957	92,67918457						
126,6515044	91,0232359	126,6515044	95,64994422						
· · ·	· · ·								

Syklon 1 (retur)								
7,5 mm		8	mm	9 m	ım	10 mm		
Size Classes (µm)	%Kum	Size Classes (µm)	%Kum	Size Classes (µm)	%Kum	Size Classes (µm)	%Kum	
0,243229928	0	0,214080116	0	0,243229928	0	0,460490222	0	
0,276348869	0	0,243229928	0	0,276348869	0	0,523191999	0	
0,313977388	0	0,276348869	0	0,313977388	0	0,594431444	0,000694	
0,356729522	0	0,313977388	0	0,356729522	0	0,675371072	0,062719	
0,40530292	0	0,356729522	0	0,40530292	0	0,767331691	0,136272	
0,460490222	0	0,40530292	0	0,460490222	0,000480704	0,871813953	0,222307	
0.523191999	0	0.460490222	0	0.523191999	0.04614167	0.990522844	0.322336	
0,594431444	0	0,523191999	0	0,594431444	0,119648016	1,125395506	0,437406	
0.675371072	0.00022661	0.594431444	0	0.675371072	0.205718917	1.278632847	0.56767	
0.767331691	0.020546761	0.675371072	0.000407615	0.767331691	0.306226037	1.45273546	0.712348	
0.871813953	0.088431552	0.767331691	0.036100994	0.871813953	0.423449647	1.650544424	0.869895	
0.990522844	0.16821798	0.871813953	0.107364089	0.990522844	0.559384456	1.87528767	1.038527	
1,125395506	0.260034966	0.990522844	0.189666749	1,125395506	0.71527061	2,130632654	1,216897	
1,278632847	0.363859371	1,125395506	0.283029393	1,278632847	0.89117669	2 420746202	1,404631	
1 45273546	0 478891647	1 278632847	0 387169933	1 45273546	1 085820336	2 75036251	1 602497	
1 650544424	0 603603023	1 45273546	0 501021324	1 650544424	1 296811975	3 124860397	1 81219	
1 87528767	0 736183934	1 650544424	0,501021324	1 87528767	1,230011373	3 550351077	2 03584	
2 120622654	0,7301833334	1 975 29767	0,022007334	2 120622654	1,521547552	4 022777007	2,05504	
2,130032034	1 0102/1002	2 120622654	0,730914210	2,130032034	2 002210782	4,033777887	2,273420	
2,420740202	1,019541095	2,130032034	1 02029672	2,420740202	2,003210783	4,38302333	2,332237	
2,75050251	1,106962552	2,420746202	1,02056072	2,75050251	2,200100773	5,207009109	2,000701	
3,124860397	1,324087470	2,75036251	1,1013/92/2	3,124860397	2,529995108	5,916079783	3,098310	
3,550351077	1,487622152	3,124860397	1,30747664	3,550351077	2,815423510	6,721631549	3,400358	
4,033777887	1,659081522	3,550351077	1,459813927	4,033777887	3,119155202	7,636869741	3,/30566	
4,58302959	1,840212053	4,033777887	1,61944964	4,58302959	3,443289017	8,676729602	4,072129	
5,207069109	2,0318/0251	4,58302959	1,/8/1646/1	5,207069109	3,/89188606	9,858180007	4,434384	
5,9160/9/83	2,234658981	5,207069109	1,963461077	5,916079783	4,157738217	11,20050036	4,822991	
6,721631549	2,449121182	5,916079783	2,148/5/565	6,721631549	4,549847168	12,72559522	5,245856	
7,636869741	2,676065142	6,721631549	2,343702639	7,636869741	4,96/1951/	14,45835172	5,/1303	
8,676729602	2,917029352	7,636869741	2,549541188	8,676729602	5,413080168	16,42704571	6,236131	
9,858180007	3,174652409	8,676729602	2,76855121	9,858180007	5,893002869	18,66380319	6,827098	
11,20050036	3,452866819	9,858180007	3,004292362	11,20050036	6,4146/534	21,2051245	7,496792	
12,/2559522	3,757203824	11,20050036	3,261546979	12,72559522	6,987909879	24,09248	8,254437	
14,45835172	4,095390295	12,72559522	3,546236274	14,45835172	7,624950013	27,37298677	9,108809	
16,42704571	4,477826522	14,45835172	3,86559207	16,42704571	8,34082365	31,10017752	10,07165	
18,66380319	4,917676904	16,42704571	4,2283/1622	18,66380319	9,153031644	35,33487411	11,16305	
21,2051245	5,430723613	18,66380319	4,645058326	21,2051245	10,0805066	40,14618012	12,41//2	
24,09248	6,035377324	21,2051245	5,128353932	24,09248	11,14270428	45,61260848	13,88953	
27,37298677	6,75326182	24,09248	5,694433325	27,37298677	12,359/945	51,82336267	15,65184	
31,10017752	7,610560523	27,37298677	6,3652/8212	31,10017752	13,/54/2004	58,87979241	17,79231	
35,33487411	8,640127789	31,10017752	/,1/198/022	35,33487411	15,35/2///2	66,8970475	20,40295	
40,14618012	9,884053314	35,33487411	8,158574472	40,14618012	17,20962771	76,0059569	23,56735	
45,61260848	11,39583842	40,14618012	9,385327539	45,61260848	19,37133708	86,35516364	27,34731	
51,82336267	13,24128116	45,61260848	10,93020583	51,82336267	21,92114716	98,11355046	31,77063	
58,87979241	15,49801667	51,82336267	12,88689371	58,87979241	24,95323239	111,4729957	36,82227	
66,8970475	18,25420902	58,87979241	15,35937709	66,8970475	28,56753791	126,6515044	42,44146	
76,0059569	21,60663136	66,8970475	18,4539745	76,0059569	32,85574238	143,8967659	48,5246	
86,35516364	25,65686329	76,0059569	22,27013602	86,35516364	37,88450698	163,4901957	54,93289	
98,11355046	30,50270234	86,35516364	26,89045969	98,11355046	43,67681249	185,7515276	61,50181	
111,4729957	36,22222115	98,11355046	32,36900894	111,4729957	50,19336627	211,0440316	68,05033	
126,6515044	42,84916095	111,4729957	38,71710595	126,6515044	57,31741717	239,7804412	74,3894	
143,8967659	50,33999264	126,6515044	45,88631689	143,8967659	64,84515761	272,4296895	80,32855	
163,4901957	58,53752021	143,8967659	53,74887148	163,4901957	72,4838476	309,5245607	85,68277	
185,7515276	67,14136302	163,4901957	62,07865033	185,7515276	79,86098989	351,6703846	90,28511	
211,0440316	75,70137529	185,7515276	70,53956235	211,0440316	86,55270054	399,5549145	94,0073	
239,7804412	83,65239178	211,0440316	78,69257442	239,7804412	92,14183401	453,9595504	96,78396	
272,4296895	90,40177151	239,7804412	86,035059	272,4296895	96,30624153	515,7720903	98,63562	
309,5245607	95,4669421	272,4296895	92,079751	309,5245607	98,92469702	586,0012172	99,67754	
351,6703846	98,63955549	309,5245607	96,47133666	351,6703846	99,99507992	665,7929599	99,99839	
399,5549145	99,94692379	351,6703846	99,10896049	399,5549145	100	756,4493935	100	
453,9595504	99,99980634	399,5549145	99,99624469			859,4498883	100	

Syklon 2 (retur)								
8	3 mm	9 n	nm	10 mm				
Size Classes (µm)	%Kum	Size Classes (µm)	%Kum	Size Classes (µm)	%Kum			
0,675371072	0,000700777	0,871813953	0,000554973	0,871813953	0,000757			
0,767331691	0,061301479	0,990522844	0,045930084	0,990522844	0,062642			
0,871813953	0,131664641	1,125395506	0,097747439	1,125395506	0,133168			
0,990522844	0,211959677	1,278632847	0,15485661	1,278632847	0,210929			
1,125395506	0,302635544	1,45273546	0,216068658	1,45273546	0,294605			
1,278632847	0,403515513	1,650544424	0,279800787	1,650544424	0,382466			
1,45273546	0,513577418	1,87528767	0,344287387	1,87528767	0,472607			
1,650544424	0,631211533	2,130632654	0,408097169	2,130632654	0,563585			
1,87528767	0,754649332	2,420746202	0,470495508	2,420746202	0,654831			
2,130632654	0,882536728	2,75036251	0,531604883	2,75036251	0,74681			
2,420746202	1,014368799	3,124860397	0,592282549	3,124860397	0,840819			
2,75036251	1,150614583	3,550351077	0,653781472	3,550351077	0,938538			
3,124860397	1,292531345	4,033777887	0,717329251	4,033777887	1,041551			
3,550351077	1,441782309	4,58302959	0,783802519	4,58302959	1,151051			
4,033777887	1,599987262	5,207069109	0,853630665	5,207069109	, 1,267829			
4,58302959	1,768342248	5,916079783	0,926949612	5,916079783	1,392403			
5.207069109	1.947436483	6.721631549	1.003913713	6.721631549	1.52519			
5.916079783	2.137360612	7.636869741	1.085095634	7.636869741	1.666666			
6.721631549	2.338113011	8.676729602	1.171975276	8.676729602	1.817477			
7.636869741	2.550221154	9.858180007	1.267359749	9.858180007	1.978481			
8.676729602	2,775454663	11.20050036	1.375587532	11,20050036	2,150808			
9.858180007	3.017283961	12.72559522	1.502482855	12.72559522	2.336313			
11.20050036	3,280919597	14.45835172	1.65510634	14,45835172	2.538713			
12.72559522	3.573220274	16.42704571	1.841233132	16.42704571	2,765103			
14.45835172	3.902689352	18.66380319	2.068759224	18,66380319	3.027437			
16.42704571	4 279181577	21 2051245	2 345462614	21 2051245	3 343711			
18,66380319	4 713141	24 09248	2 679661723	24 09248	3 738743			
21.2051245	5.214747444	27.37298677	3.082280637	27.37298677	4.24441			
24.09248	5.793709435	31.10017752	3.570467192	31.10017752	4.89931			
27.37298677	6,460494636	35,33487411	4.172454511	35,33487411	5,748081			
31.10017752	7.229529584	40.14618012	4.932762709	40.14618012	6.84074			
35.33487411	8.124501999	45.61260848	5.916089055	45.61260848	8.232448			
40.14618012	9.185170445	51.82336267	7.207914806	51.82336267	9,984229			
45.61260848	10.4741136	58.87979241	8.910400564	58.87979241	12.16536			
51,82336267	12,08131154	66,8970475	11,13302846	66,8970475	14,8576			
58.87979241	14.12488948	76.0059569	13.97851925	76.0059569	18.15996			
66.8970475	16.74693028	86.35516364	17.52535028	86.35516364	22.18992			
76,0059569	20,10353827	98,11355046	21,80882067	98,11355046	27,07518			
86,35516364	24,34787602	111,4729957	26,80370237	111,4729957	, 32,93037			
98.11355046	29.6047523	126.6515044	32.41209115	126.6515044	39.81672			
111,4729957	35,93737003	143,8967659	38,45954149	143,8967659	47,68862			
126,6515044	43,3095775	163,4901957	44,70205921	163,4901957	, 56,33955			
143.8967659	51,54945044	185.7515276	50.84522016	185.7515276	65.36802			
163.4901957	60.3244872	211.0440316	56.57540485	211.0440316	74.18776			
185.7515276	69.14242335	295	80.68285604	239.7804412	, 82,10301			
211.0440316	77,39303949	417	90.68261708	272,4296895	88.45073			
239,7804412	84,44214958	589	94,46036294	309,5245607	92,79617			
272,4296895	89,77232624	833	96,27507163	351,6703846	95,0852			
309.5245607	93.14759796	1168	97.42120344	399.5549145	95.36269			
351.6703846	94.56367894	1651	98.37631328	453.9595504	95.36307			
589	94.57032047	2362	99.14040115	515.7720903	95.36307			
833	96.30536844	3327	99.61795606	589	95.36307			
1168	97.55052051			833	96.94091			
1651	98.44866299			1168	97.95524			
2001	00 12226085			1651	08 55006			

Syklon 3 (retur)							
8	3 mm		10 r	nm			
Size Classes (µm)	%Kum		Size Classes (µm)	%Kum			
0,40530292		0,000488764	0,523191999	0,000524388			
0,460490222		0,047989386	0,594431444	0,048729897			
0,523191999		0,103509861	0,675371072	0,105815656			
0,594431444		0,167452897	0,767331691	0,172444226			
0,675371072		0,241132102	0,871813953	0,249851137			
0,767331691		0,326210106	0,990522844	0,339079055			
0,871813953		0,424366012	1,125395506	0,440596275			
0,990522844		0,536981475	1,278632847	0,554111462			
1,125395506		0,664699442	1,45273546	0,678506972			
1,278632847		0,807070941	1,650544424	0,812078481			
1,45273546		0,962445069	1,87528767	0,953056753			
1,650544424		1,128262537	2,130632654	1,10024818			
1,87528767		1,301763017	2,420746202	1,253509912			
2,130632654		1,480889608	2,75036251	1,413846834			
2,420746202		1,665013005	3,124860397	1,58312409			
2,75036251		1,855182764	3,550351077	1,763541903			
3,124860397		2,053883913	4,033777887	1,957067095			
3,550351077		2,264459194	4,58302959	2,165011173			
4,033777887		2,490365815	5,207069109	2,387897413			
4,58302959		2,734406651	5,916079783	2,625696212			
5,207069109		2,998128794	6,721631549	2,878375746			
5,916079783		3,281681903	7,636869741	3,146604415			
6,721631549		3,584317913	8,676729602	3,432435681			
7,636869741		3,905567121	9,858180007	3,739619452			
8,676729602		4,247087861	11,20050036	4,073449274			
9,858180007		4,614565432	12,72559522	4,440597907			
11,20050036		5,019073677	14,45835172	4,84933013			
12,72559522		5,477678079	16,42704571	5,309728881			
14,45835172		6,013006206	18,66380319	5,833640062			
16,42704571		6,651082624	21,2051245	6,434574472			
18,66380319		7,417369083	24,09248	7,128103456			
21,2051245		8,332066225	27,37298677	7,933107246			
24,09248		9,406576392	31,10017752	8,873928724			
27,37298677		10,64332766	35,3348/411	9,983182612			
31,10017752		12,04069535	40,14618012	11,3044446			
35,33487411		13,60361057	45,61260848	12,89340336			
40,14618012		15,35827204	51,82336267	14,81604264			
45,61260848		17,36648012	58,87979241	17,14356308			
51,82336267		19,/3322/39	66,8970475	19,94484696			
58,87979241		22,60176877	76,0059569	23,27767192			
76,0050560		20,13238053	80,35510304	27,17893243			
76,0059569		30,4644772	98,11355046	31,65296947			
00,30010304		300/0008	126 6615044	42 00201004			
30,11335040		41,0/083319	1/2 0007000	42,09391904			
126 6515044		40,20903382	162 1001057	47,79123234 52 51006107			
1/2 0067650		61 / 22062/1	105,4301357	50 06270001			
162 1001057		66 85610353	211 0440246	20,505/505/1 62 02000524			
105,4901957		70 86776201	211,0440310	03,02303324 84 00704305			
211 04/0216		72 25272652	233 /17	91 20212225			
211,0440310		, ,,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	71/	21,22210002			

Vedlegg 2-	Partikkelstø	orrelsefordeling	siktekrets
------------	--------------	------------------	------------

	390.150.40	390.150.32						
Kretsprodukt		Retur		Kretsp	rodukt	Retur		
Size Classes (µm)	%kum	Size Classes (µm)	%kum	Size Classes (µm)	%kum	Size Classes (%kum	
0,243229928	0	0,243229928	-8,4231E-15					
0,276348869	0,000465999	0,276348869	-8,4231E-15					
0,313977388	0,051862138	0,313977388	2,72788E-05	0,276348869	0	0,27634887	4,0065E-11	
0,356729522	0,1293358	0,356729522	0,002906229	0,313977388	0,000645627	0,31397739	3,05629E-05	
0,40530292	0,223796883	0,40530292	0,00711948	0,356729522	0,068562327	0,35672952	0,003357915	
0,460490222	0,336762027	0,460490222	0,012160878	0,40530292	0,151826375	0,40530292	0,020744344	
0.523191999	0.470876709	0.523191999	0.01813513	0.460490222	0.251107401	0.46049022	0.044326891	
0,594431444	0,630059041	0,594431444	0,025209517	0,523191999	0,36869649	0,523192	0,071656375	
0,675371072	0,819614828	0,675371072	0,033605214	0,594431444	0,508175358	0,59443144	0,103250949	
0,767331691	1,046031761	0,767331691	0,043585424	0,675371072	0,674465685	0,67537107	0,139919808	
0,871813953	1,316403465	0,871813953	0,055425034	0,767331691	0,873749419	0,76733169	0,182676338	
0,990522844	1,637503779	0,990522844	0,069364405	0,871813953	1,112984198	0,87181395	0,232644788	
1,125395506	2,014663875	1,125395506	0,085555401	0,990522844	1,399099049	0,99052284	0,290895728	
1,278632847	2,450771149	1,278632847	0,104016126	1,125395506	1,737956212	1,12539551	0,358243913	
1,45273546	2,945830324	1,45273546	0,124617105	1,278632847	2,13333889	1,27863285	0,435062686	
1,650544424	3,497473386	1,650544424	0,147119398	1,45273546	2,586334119	1,45273546	0,521189493	
1,87528767	4,102462042	1,87528767	0,171268121	1,650544424	3,095469012	1,65054442	0,615985702	
2,130632654	4,75867182	2,130632654	0,196915753	1,87528767	3,657716391	1,87528767	0,718553658	
2,420746202	5,466669306	2,420746202	0,224126601	2,130632654	4,27006138	2,13063265	0,828024051	
2,75036251	6,230210968	2,75036251	0,253219265	2,420746202	4,930999711	2,4207462	0,943782028	
3,124860397	7,055619613	3,124860397	0,284735156	2,75036251	5,641440527	2,75036251	1,065569906	
3,550351077	7,950351244	3,550351077	0,319348074	3,124860397	6,404883582	3,1248604	1,193522653	
4,033777887	8,92107713	4,033777887	0,357740617	3,550351077	7,226943644	3,55035108	1,328194598	
4,58302959	9,971736221	4,58302959	0,400479937	4,033777887	8,114272448	4,03377789	1,470529663	
5,207069109	11,10234721	5,207069109	0,447934238	4,58302959	9,073019324	4,58302959	1,621710474	
5,916079783	12,30950425	5,916079783	0,5002694	5,207069109	10,10731301	5,20706911	1,782954588	
6,721631549	13,58871328	6,721631549	0,557535406	5,916079783	11,21860887	5,91607978	1,955438898	
7,636869741	14,93779245	7,636869741	0,619820389	6,721631549	12,40627655	6,72163155	2,140416539	
8,676729602	16,36049298	8,676729602	0,687442908	7,636869741	13,66915082	7,63686974	2,339395622	
9,858180007	17,86848781	9,858180007	0,761097997	8,676729602	15,00778059	8,6767296	2,554340278	
11,20050036	19,48091703	11,20050036	0,84189836	9,858180007	16,42606558	9,85818001	2,78765926	
12,72559522	21,22301058	12,72559522	0,931336579	11,20050036	17,9317782	11,2005004	3,041834533	
14,45835172	23,12494148	14,45835172	1,031185854	12,72559522	19,53725378	12,7255952	3,318971098	
16,42704571	25,21897999	16,42704571	1,143247906	14,45835172	21,26093844	14,4583517	3,620531825	
18,66380319	27,53351397	18,66380319	1,268906957	16,42704571	23,12763539	16,4270457	3,947080848	
21,2051245	30,08536025	21,2051245	1,408590371	18,66380319	25,16558858	18,6638032	4,297932224	
24,09248	32,87380173	24,09248	1,561349238	21,2051245	27,40070595	21,2051245	4,670917229	
27,37298677	35,87956901	27,37298677	1,724787762	24,09248	29,84989179	24,09248	5,0626453	
31,10017752	39,07075875	31,10017752	1,895502091	27,37298677	32,51598059	27,3729868	5,469452826	
35,33487411	42,41589569	35,33487411	2,070072303	31,10017752	35,38632168	31,1001775	5,888893601	
40,14618012	45,90119848	40,14618012	2,246458376	35,33487411	38,43644769	35,3348741	6,321326654	
45,61260848	49,54510271	45,61260848	2,425386506	40,14618012	41,63867809	40,1461801	6,770884809	
51,82336267	53,40182081	51,82336267	2,611177258	45,61260848	44,97258346	45,6126085	7,244805746	
58,87979241	57,54991843	58,87979241	2,811607784	51,82336267	48,4329552	51,8233627	7,750350749	
66,8970475	62,06698484	66,8970475	3,036606222	58,87979241	52,03350833	58,8797924	8,289758439	
76,0059569	66,99577395	76,0059569	3,295829907	66,8970475	55,80652877	66,8970475	8,855049902	
86,35516364	/2,30833//3	86,35516364	3,595386439	76,0059569	59,79854943	76,0059569	9,425428029	
98,11355046	//,8/509313	98,11355046	3,93421532	86,35516364	64,05951079	86,3551636	9,969618417	
111,4/2995/	83,45102219	111,4/2995/	4,301212597	98,11355046	68,62212054	98,1135505	10,45411681	
126,6515044	88,09349545	120,0515044	4,674508799	111,4729957	73,47373734	111,472996	10,85719348	
143,896/659	93,21904656	143,896/659	5,023984609	142 8067650	78,52875010	120,051504	11,18053743	
163,4901957	96,69486858	163,4901957	5,31/4385/3	143,8967659	83,01008485	143,896766	11,49508568	
185,/5152/6	98,95026532	185,/5152/6	5,529701146	163,4901957	88,45516212	163,490196	11,8878583	
211,0440316	99,98069008	208	5,651994024	185,/5152/6	92,74278977	185,751528	12,5128/415	
233,/804412	39,9999458	295	28 12046060	211,0440316	30,10408232	211,044032	15 07042457	
212,4290895	100	41/	53 62602005	233,/804412	20,5180801/	233,780441	17 20277150	
		800	53,03002805 64 36735730	212,4230095	33,70732238	200 524564	10 02600274	
		833	76 0656000	251 6702940	100	251 670205	13,020382/1	
		1108	86 56220740	200 5540145	100	300 554014	22,1303285	
		1051	00,0000/49	377,3349145	100	535,334314	57 6660 4074	
		2362	24,330/2942			589	100	
		332/	<i>33,312</i> 40210			833	100	
						1168	100	
						1051	100	
						2002	100	
						5527	100	

450.150.40				450.150.33				
Kret	Kretsprodukt Retur		Kretspi	rodukt	Retur			
Size Classes (µm) 9	%kum	Size Classes (µm)	%kum	Size Classes (µm)	%kum	Size Classes (%kum	
0,214080116	0	0,313977388	7,48521E-11	0,243229928	0	<u>0,40530292</u>	<u>2,34472E-05</u>	
0,243229928	0	0,356729522	7,48521E-11	0,276348869	0,000430459	0,46049022	0,002323045	
0,276348869	0,000612811	0,40530292	7,48521E-11	0,313977388	0,047875978	0,523192	0,005093395	
0,313977388	0,007700855	0,460490222	0,000211552	0,350729522	0,12394803	0,59443144	0,008585099	
0.40530292	0,251754236	0.594431444	0.043743359	0.460490222	0.326361369	0.76733169	0.016932371	
0.460490222	0.370325984	0.675371072	0.071149441	0.523191999	0.456681617	0.87181395	0.022423676	
0,523191999	0,509759562	0,767331691	0,10306192	0,594431444	0,611267527	0,99052284	0,028864013	
0,594431444	0,674224645	0,871813953	0,140179646	0,675371072	0,795643294	1,12539551	0,036308166	
0,675371072	0,869573835	0,990522844	0,183102741	0,767331691	1,016722845	1,27863285	0,044745418	
0,767331691	1,103133345	1,125395506	0,232221696	0,871813953	1,282283898	1,45273546	0,05409112	
0,871813953	1,383096601	1,278632847	0,287608294	0,990522844	1,60007001	1,65054442	0,064200653	
0,990522844	1,717506036	1,45273546	0,348997764	1,125395506	1,976640256	1,87528767	0,074907409	
1,125395506	2,112974556	1,650544424	0,415890817	1,2/863284/	2,416246558	2,13063265	0,086074204	
1,2/803284/	2,573408912	1,8/528/6/	0,487759119	1,452/3546	2,920146347	2,4207462	0,097638245	
1 650544424	3 689012314	2,130032034	0.645334528	1 87528767	4 112665566	3 1248604	0,109032088	
1.87528767	4.337539862	2.75036251	0.731172182	2.130632654	4,794475172	3.55035108	0.135468547	
2,130632654	5,041463371	3,124860397	0,822093888	2,420746202	5,530251221	4,03377789	0,149705768	
2,420746202	5,799265929	3,550351077	0,918479364	2,75036251	6,320535638	4,58302959	0,165089141	
2,75036251	6,612623445	4,033777887	1,020708448	3,124860397	7,168459948	5,20706911	0,181783636	
3,124860397	7,486284191	4,58302959	1,129081434	3,550351077	8,079143264	5,91607978	0,199937185	
3,550351077	8,427022275	5,207069109	1,24377857	4,033777887	9,058446609	6,72163155	0,219731221	
4,033777887	9,441965904	5,916079783	1,365001937	4,58302959	10,11132738	7,63686974	0,241456787	
4,58302959	10,53677273	6,721631549	1,493298846	5,207069109	11,2404049	8,6767296	0,265603299	
5,207069109	11,/143193	7,636869741	1,6298/3/38	5,9160/9/83	12,44561751	9,85818001	0,29292607	
6 721631549	14 31618716	9 858180007	1,770800131	7 636869741	15,72318793	12 7255952	0 361557991	
7.636869741	15,73782574	11.20050036	2.113449535	8.676729602	16,50328258	14.4583517	0.405755495	
8,676729602	17,24135198	12,72559522	2,309217046	9,858180007	18,0079435	16,4270457	0,458748321	
9,858180007	18,83320666	14,45835172	2,526287062	11,20050036	19,60140865	18,6638032	0,522114294	
11,20050036	20,52489116	16,42704571	2,765455357	12,72559522	21,29846278	21,2051245	0,597008105	
12,72559522	22,33336621	18,66380319	3,025943943	14,45835172	23,11924202	24,09248	0,683839885	
14,45835172	24,282088	21,2051245	3,305422077	16,42704571	25,0880856	27,3729868	0,782040738	
16,42704571	26,40012278	24,09248	3,600652595	18,66380319	27,22921389	31,1001775	0,890006525	
18,66380319	28,/1/58834	27,37298677	3,908819201	21,2051245	29,56020722	35,3348741	1,005291893	
21,2051245	31,25825008	31,1001//52	4,229297823	24,09248	32,08595747	40,1461801	1,125000245	
24,09248	34,03200174	40 14618012	4,30338293	31 10017752	37 66502941	43,0120083 51 8233627	1,240747578	
31.10017752	40.22971808	45.61260848	5.321136204	35.33487411	40.66318571	58.8797924	1,490624043	
35,33487411	43,59543639	51,82336267	5,766372251	40,14618012	43,7649104	66,8970475	1,614267872	
40,14618012	47,10002192	58,87979241	6,270140279	45,61260848	46,9615526	76,0059569	1,74311404	
45,61260848	50,73453832	66,8970475	6,831849296	51,82336267	50,26660579	86,3551636	1,882098228	
51,82336267	54,51569518	76,0059569	7,437055378	58,87979241	53,7144713	98,1135505	2,036429615	
58,87979241	58,48164644	86,35516364	8,0572912	66,8970475	57,35451292	111,472996	2,209817869	
66,8970475	62,6776569	98,11355046	8,655421598	76,0059569	61,24242049	126,651504	2,402446951	
76,0059569	67,13590106	111,4729957	9,197137017	86,35516364	65,42755631	143,896766	2,609257166	
86,35516364	/1,85331513	126,6515044	9,66/360398	98,11355046	69,93306079	163,490196	2,8192/18/	
111 4729957	81 74914062	163 4901957	10,08707004	126 6515044	79,71269838	211 044032	3,010040743	
126.6515044	86.58081286	185.7515276	11.11027558	143.8967659	84.68635345	211,044032	6.80165435	
143,8967659	90,9944203	211,0440316	11,98413793	163,4901957	89,3758818	417	27,06222865	
163,4901957	94,70653599	239,7804412	13,29773255	185,7515276	93,46460442	589	50,9406657	
185,7515276	97,48734123	272,4296895	15,14452874	211,0440316	96,66315876	833	66,28075253	
211,0440316	99,24692898	309,5245607	17,51363526	239,7804412	98,80351345	1168	76,98986975	
239,7804412	99,9961906	351,6703846	20,25807834	272,4296895	99,87579991	1651	85,96237337	
272,4296895	100	399,5549145	23,10071434	309,5245607	99,9994445	2362	93,84949349	
309,5245607	100	589	49,38074907	351,6703846	100	3327	99,276411	
		833	64,08384362	399,5549145	100	351,670385	22,7363285	
		1168	/5,95383891			399,554914	25,6044919	
		1651	85,58643429			589	52,66684874	
		2362	93,90014131			833	100	
		3327,00	99,46			1621	100	
						2362	100	
						3327	100	

	390.200			390.250		390.300					
Kretsproo	dukt	<u>R</u>	<u>etur</u>	Kretsprodu	kt	<u>R</u>	<u>etur</u>	Kretsprodu	kt	Ret	ur
Size Classes (µm)	%kum	Size Classe	%kum	Size Classes (µm)	%kum	Size Classe	%kum	Size Classes (µm)	%kum	Size Classe	%kum
0,243229928	0	0,24323	9,21391E-15	0,243229928	0	0,24323	1,50813E-14	0,243229928	0	0,24323	-6,4
0,276348869	0,000295456	0,276349	9,21391E-15	0,276348869	5,37E-05	0,276349	1,50813E-14	0,276348869	0,000158	0,276349	-6,4
0,313977388	0,032919463	0,313977	4,53881E-06	0,313977388	0,006192	0,313977	1,50813E-14	0,313977388	0,01/981	0,313977	-6,4
0,330729322	0,107331748	0,35073	0,000307324	0,330723322	0,040345	0,35073	1,50813E-14	0,330729322	0,088281	0,33073	7 33 25
0.460490222	0,190922200	0,46049	0,003813280	0 460490222	0,100043	0,46049	1,50813E-14	0 460490222	0,1755032	0,46049	0.00
0.523191999	0 430084467	0 523192	0.012396442	0.523191999	0 258104	0 523192	4 43555E-05	0.523191999	0 395645	0 523192	0.01
0.594431444	0.577778965	0.594431	0.017875116	0.594431444	0.359263	0.594431	0.004128038	0.594431444	0.537932	0.594431	0.02
0,675371072	0,753328546	0,675371	0,024396844	0,675371072	0,483962	0,675371	0,008988815	0,675371072	0,707433	0,675371	0,04
0,767331691	0,963471698	0,767332	0,032211678	0,767331691	0,644638	0,767332	0,01469883	0,767331691	0,910488	0,767332	0,0
0,871813953	1,215764239	0,871814	0,041595955	0,871813953	0,840799	0,871814	0,021378942	0,871813953	1,154198	0,871814	0,07
0,990522844	1,517657439	0,990523	0,052813345	0,990522844	1,078559	0,990523	0,029130536	0,990522844	1,445572	0,990523	0,1
1,125395506	1,875321864	1,125396	0,066066299	1,125395506	1,362932	1,125396	0,037999798	1,125395506	1,79047	1,125396	0,12
1,278632847	2,292497137	1,278633	0,081447842	1,278632847	1,69668	1,278633	0,047957079	1,278632847	2,192593	1,278633	0,150440
1,45273546	2,769767253	1,452735	0,098910402	1,45273546	2,079718	1,452735	0,058885733	1,45273546	2,652929	1,452735	0,191602
1,650544424	3,304638336	1,650544	0,118268076	1,650544424	2,509279	1,650544	0,070596351	1,650544424	3,170008	1,650544	0,227527
1,87528767	3,892524741	1,875288	0,139239439	1,87528767	2,981054	1,875288	0,082865141	1,87528767	3,741036	1,875288	0,265627
2,130632654	4,528300203	2,130633	0,161520773	2,130632654	3,491075	2,130633	0,095484375	2,130632654	4,363524	2,130633	0,305369
2,420746202	5,207781519	2,420746	0,184866555	2,420746202	4,037678	2,420746	0,108304852	2,420746202	5,036/1/	2,420746	0,346436
2,75036251	5,928723607	2,750363	0,209158143	2,75036251	4,622/33	2,750363	0,121258979	2,75036251	5,762305	2,750363	0,388816
3 550351077	7 /98695063	3,12460	0,234436376	3,124800397	5,251011	3,12460	0,134309587	3,124800397	7 38886	3,12400	0,452625
4 033777887	8 355951616	4 033778	0 289392959	4 033777887	6 671051	4 033778	0,147752080	4 033777887	8 302135	4 033778	0,473041
4,58302959	9 269505882	4 58303	0 320206019	4,58302959	7 475181	4 58303	0 176217823	4,58302959	9 289522	4 58303	0 581022
5.207069109	10.24520174	5.207069	0.354276347	5.207069109	8.347545	5.207069	0.191884067	5.207069109	10.35374	5.207069	0.637988
5,916079783	11,28737895	5,91608	0,392453461	5,916079783	9,289049	5,91608	0,208941849	5,916079783	11,4947	5,91608	0,699325
6,721631549	12,39881741	6,721632	0,43555885	6,721631549	10,29943	6,721632	0,227725422	6,721631549	12,71084	6,721632	0,765047
7,636869741	13,5813804	7,63687	0,484312219	7,636869741	11,37928	7,63687	0,248566381	7,636869741	14,00136	7,63687	0,835155
8,676729602	14,83786093	8,67673	0,539307472	8,676729602	12,53226	8,67673	0,271820385	8,676729602	15,36885	8,67673	0,909987
9,858180007	16,17392459	9,85818	0,601021277	9,858180007	13,76643	9,85818	0,297914788	9,858180007	16,82102	9,85818	0,990575
11,20050036	17,5991464	11,2005	0,669836254	11,20050036	15,09421	11,2005	0,327405035	11,20050036	18,37053	11,2005	1,078921
12,72559522	19,12764475	12,7256	0,74609993	12,72559522	16,53213	12,7256	0,361047995	12,72559522	20,0345	12,7256	1,178164
14,45835172	20,77862316	14,45835	0,830217705	14,45835172	18,10113	14,45835	0,399882023	14,45835172	21,83462	14,45835	1,292649
16,42704571	22,5751316	16,42705	0,922684863	16,42704571	19,82572	16,42705	0,44524681	16,42704571	23,79573	16,42705	1,427656
18,66380319	24,54051158	18,6638	1,024005135	18,66380319	21,/3059	18,6638	0,498693061	18,66380319	25,94139	18,6638	1,588645
21,2051245	20,09301439	21,20512	1,134505181	21,2051245	23,83523	21,20512	0,561766885	21,2051245	28,28701	21,20512	2 004279
24,09248	31 59374106	24,09248	1,234090118	24,09248	20,14647	24,09248	0,03309449	24,09248	33 56102	24,09248	2,004278
31,10017752	34 33270185	31 10018	1 51699246	31,10017752	31 36789	31 10018	0 81747564	31,10017752	36 43494	31 10018	2,200204
35.33487411	37.25059835	35.33487	1.656812154	35.33487411	34.23013	35.33487	0.923662969	35.33487411	39.40874	35.33487	2.847618
40,14618012	40,34079556	40,14618	1,799159648	40,14618012	37,22783	40,14618	1,03754943	40,14618012	42,43996	40,14618	3,165544
45,61260848	43,60553411	45,61261	1,941843789	45,61260848	40,34801	45,61261	1,156914813	45,61260848	45,5047	45,61261	3,493614
51,82336267	47,05350829	51,82336	2,083357407	51,82336267	43,59495	51,82336	1,280244011	51,82336267	48,60837	51,82336	3,834724
58,87979241	50,69080837	58,87979	2,223318157	58,87979241	46,99095	58,87979	1,407814922	58,87979241	51,78945	58,87979	4,201251
66,8970475	54,50970824	66,89705	2,362810777	66,8970475	50,57312	66,89705	1,542855058	66,8970475	55,11617	66,89705	4,616293
76,0059569	58,48112507	76,00596	2,504649028	76,0059569	54,38841	76,00596	1,692482371	76,0059569	58,6776	76,00596	5,112277
86,35516364	62,55349085	86,35516	2,653432279	86,35516364	58,48592	86,35516	1,86797667	86,35516364	62,56828	86,35516	5,726016
98,11355046	66,65672439	98,11355	2,81502926	98,11355046	62,90309	98,11355	2,08386018	98,11355046	66,86286	98,11355	6,489667
111,4729957	/0,71058439	111,473	2,995342794	111,4729957	67,6454	111,473	2,35549472	111,4729957	71,58255	111,473	7,418593
126,6515044	74,63694905	126,6515	3,198560767	126,6515044	72,66364	126,6515	2,695278217	126,6515044	/6,6612	126,6515	8,499079
143,896/659	/8,3/188695	143,8968	3,425155974	143,896/659	77,83408	143,8968	3,107932091	143,896/659	81,92067	143,8968	9,680039
105,4901957	01,07507074	105,4902	2 02207216	105,4901957	02,95007	105,4902	3,36590190	105,4901957	01,00000	105,4902	11 06912
211 0440316	88 09905367	211 044	4 163819309	211 0440316	91 90001	211 044	4 633439788	211 0440316	95 53464	211 044	12 85363
239.7804412	90.80329091	295	11.30856249	239.7804412	95.18204	211,044	12.80628287	239.7804412	98.20276	295	26.03106
272,4296895	93,2106514	417	32,04393833	272,4296895	97,44859	417	36,95424625	272,4296895	99,66939	417	50,43949
309,5245607	95,28533006	589	56,36536374	309,5245607	98,72093	589	58,98477157	309,5245607	99,9984	589	68,96552
351,6703846	96,98354765	833	70,0732899	351,6703846	99,28996	833	71,26903553	351,6703846	100	833	79,5808
399,5549145	98,27220924	1168	79,66883822	399,5549145	99,67622	1168	80,40609137	399,5549145	100	1168	86,7478
453,9595504	99,15148398	1651	87,4864278	453,9595504	99,91071	1651	88,12182741	1651	-7240	1651	92,22448
515,7720903	99,64102749	2362	94,53040174	515,7720903	99,99951	2362	94,11167513	2362	-5589	2362	96,9574
586,0012172	99,8348175	3327	99,3485342	586,0012172	100	3327	99,39086294	3327	-3227	3327	99,72955
665,7929599	99,92636537			665,7929599	100						
756,4493935	99,96961004										
859,4498883	99,99334544										
976,4752498	99,9998636										
1109,435147	100										
1200,4992//	100			1							

Vedlegg 3- XRF analyser

SAMPLE	Ті
3045 -38	11,19
3045 53-38	10,315
3045 74-53	11,141
3045 104-74	11,032
3045 147-104	10,894
3045 208-147	9,669
3045 295-208	6,844
3045 425-295	3,456
3045 pluss 425	2,884
3044 -53	12,795
3044 74-533	15,302
3044 104-74	16,613
3044 147-104	18,191
3044 208-147	19,393
3044 294-208	19,347
3044 425-295	16,069
3044 589-425	12,894
3044 833-589	9,23
3044 1168-833	8,202
3044 pluss 1168	9,345
RP.450.425 F450 43-	8.517
RP.450.425 F450 74-43	8.71
RP.450.425 F450 104-74	8.876
RP.450.425 F450 147-104	9.188
RP.450.425 F450 208-147	10.037
RP.450.425 F450 295-208	9.811
RP.450.425 F450 pluss 295	9,289
•	
RP.450.425 F425 -43	7,814
RP.450.425 F425 74-43	7,602
RP.450.425 F425 104-74	7,586
RP.450.425 F425 147-104	9,144
RP.450.425 F425 208-147	9,962
RP.450.425 F425 295-208	10,068
RP.450.425 F425 pluss 295	9,365
	6 126
	0,130
NF.430.423 0423 147-104	0,47
RP.450.425 G425 208-147	9,031
RP.450.425 G425 295-108	0,97
rr.400.420 G425 piuss 295	8,181
URP#2 F425 43-	7,613
URP#2 F425 74-43	7,08
URP#2 F425 104-74	7,374
URP#2 F425 147-104	8,451
URP#2 F425 208-147	9,844
URP#2 F425 208-147	9,481
URP#2 F425 pluss 295	9.953