
Design of a Switch-Mode Power
Electronic Converter for Teaching
Laboratory

Ragnhild Solheim

Master of Energy and Environmental Engineering

Supervisor: Lars Einar Norum, ELKRAFT

Department of Electric Power Engineering

Submission date: June 2012

Norwegian University of Science and Technology

II

PROBLEM DESCRIPTION

This work should focus on creating a switch-mode power electronic

converter for use in practical teaching within the disciplines of power

electronics, electric drive systems and digital control. To broaden the

expediency, it should be made suitable for a wide range of applications. As

it will be used as a teaching material, a safe user interface must be

implemented. A digital controller should be used for the converter control,

including the generation of PWM signals and an analog-to-digital

conversion of suitable measurements. A case study showing how the

converter can be used in a DC motor drive should be presented.

Assignment given February 1
st
 2012

Professor Lars E. Norum

III

PREFACE

This report shows the work of the last semester of my master degree in

Energy and Environmental engineering at Norwegian University of Science

and Technology (NTNU). It has been a very interesting project, with a wide

range of challenging tasks, most of them unfamiliar for me when starting.

Therefore I have learned a lot; how to design a printed circuit board, the

theory behind control of motor drives and how to implement this in real-

time programming and how to measure motor speed by a microcontroller, to

mention the most specific. I have also gained a lot more experience with lab

work and real-time programming in general.

Finishing this work, there are a number of people I would like to address my

thanks to, who I could never have done this without. First of all, I would

like to thank my supervisor, Professor Lars E. Norum, who defined the

problem of my thesis and who seems to know exactly what will interest me,

before I know it myself. I also want to say how much I appreciate him being

optimistic according to my work. Then I will thank my co-supervisors, Fritz

Schimpf and Frederick Ishengoma for always having time for my questions

about respectively PCB design and the microcontroller coding. I would also

like to thank Bård Almås and Vladimir Klubicka at the institute’s service

lab, for helping me with all the practical work and for lending me a desk in

their very pleasant working environment.

All the time spent working on this thesis would not have been the same

without my fellow students. Thank you for always being relaxed and

helping me clear my mind during the breaks. I will also like to express my

gratitude to you, Ragnhild, Maren, Kristin and Granpa for proofreading my

report.

Finally, I would like to thank my parents for all their support.

Ragnhild Solheim

Trondheim, June 20
th

 2012

IV

SUMMARY

A power electronic switch-mode three-leg converter is a flexible converter

and hence very useful for practical teaching of several disciplines within

electric power engineering. It can be used as a half-bridge, full-bridge and

three-phase converter, to mention a few, and enables the user to study many

different power electronic topologies. The converter, controlled by a

microcontroller, can also be used for teaching digital control of power

electronics. Its output can be varied in frequency, magnitude and waveforms,

and can also be measured by the microcontroller. The flexibility of the

converter makes it possible to utilize it in drive circuits for a wide range of

loads and can therefore also be used for teaching electric drive systems.

This thesis shows a solution of how to design the switch-mode three-leg

power electronic converter. The converter is designed and implemented on a

printed circuit board (PCB) together with other necessary components. To

meet the safety requirements of the problem description, the power rating is

low, 12 A * 50 V, and the power circuit is isolated from the microcontroller

on the PCB. The microcontroller chosen is the Texas Instruments Piccolo
TM

ControlCARD and pulse-width modulation and analog-to-digital conversion

is implemented with real-time programming.

This system developed is verified, except for the MOSFET drivers and

measurement circuits. As time was limited, the laboratory work had to be

ended in favor of writing the report. Unfortunately, this made it impossible to

test the full system setup. A full description of the changes to be implemented

for the whole system to be functioning and further tested is provided.

A system for using the converter designed in a DC motor drive, by utilizing

two of the bridge-legs as a full-bridge converter, is studied. The programming

code is tailored for the specific purpose and speed measurements and control

algorithms were added. Due to the converter not functioning, the testing of

the DC motor drive could not be performed. However, full planning and

controller implementation was done.

V

SAMMENDRAG

En ”switch-mode” kraftelektronikkomformer med tre brolegger er en

fleksibel omformer som er svært nyttig for bruk i praktisk

læringssammenheng, innenfor flere fagområder innen elkraftteknikken. Den

kan bli brukt som en halvbro, fullbro eller trefase omformer, for å nevne

noen, noe som gjør det mulig å studere mange kraftelektroniske topologier.

Omformeren, som er kontrollert av en mikrokontroller, kan også bli brukt til å

lære digitalkontroll av kraftelektronikk. Utgangsspenningen kan varieres i

frekvens, størrelse og kurveform, i tillegg til at den også kan måles av

mikrokontrolleren. Det at omformeren er så fleksibel gjør at den kan brukes i

driverkretser for et vidt spekter av forskjellige laster, og kan dermed også

brukes til praktisk læring av elektriske driversystemer.

Denne masteroppgaven viser en utforming av en ”switch-mode”

kraftelektronikkomformer med tre brolegger. Omformeren er laget på et

printet kretskort (PCB) sammen med andre nødvendig komponenter. For å

imøtekomme sikkerhetskravene i oppgaveteksten er det valgt en lav

merkeeffekt på 12 A*50 V, i tillegg til at kraftkretsen er isolert fra

kontrollkretsen på kortet. Mikrokontrolleren brukt er Texas Instruments

Piccolo
TM

 ControlCARD og pulsbreddemodulasjon og analog-til-digital

konvertering er implementert ved bruk av sanntidsprogrammering.

Hele systemet er verifisert, bortsett fra MOSFET driverne og målekretsene.

Ettersom tiden var begrenset, måtte laboratoriearbeidet avsluttes til fordel for

rapportskrivingen. Dessverre førte dette til at det ikke var mulig å sjekke

systemet som en helhet. En fullstendig beskrivelse av endringer som må

utføres for å få systemet til å virke og videre testet, er imidlertid tilgjengelig.

Et system for å bruke omformeren i en DC motordriver, ved å nyttiggjøre to

av broleggene som en fullbro-omformer, er studert. Programmeringskoden er

skreddersydd til dette formålet og hastighetsmåling og regulatoralgoritmer er

inkludert. Hele systemet er planlagt og regulatoren implementert, men da

VI

omformeren på nåværende tidspunkt ikke virker, har ikke systemet blitt

verifisert som helhet.

VII

TABLE OF CONTENT

Problem Description .. II

Preface .. III

Summary .. IV

Sammendrag .. V

Table of Content .. VII

List of Tables .. XI

List of Figures ... XII

1 Introduction ... 1

1.1 Creating a Switch-Mode Three-Leg Power electronic Converter 1

1.2 Scope and Limitations ... 3

1.3 Organization of the Report .. 3

2 Creation of the Converter .. 5

2.1 Converter Theory ... 5

2.1.1 One Bridge-Leg .. 5

2.1.2 Two Bridge-Legs .. 10

2.1.3 Three Bridge-Legs .. 15

2.2 Converter Design and Implementation .. 17

2.2.1 Microcontroller ... 19

2.2.2 The Three Converter Legs .. 20

2.2.3 Output filter .. 22

2.2.4 The Current and Voltage Measurements .. 24

2.2.5 Voltage Supplies .. 29

2.3 Printed Circuit Board (PCB) Layout ... 32

2.4 Software for Driving the Converter ... 39

2.4.1 Main File .. 41

VIII

2.4.2 Device Initialization ... 43

2.4.3 PWM Signal Initialization .. 45

2.4.4 ADC Initialization .. 47

2.4.5 ADC Interrupt Service Routine .. 48

3 A Case Study: DC Motor Drive .. 50

3.1 The DC Motor ... 51

3.2 The Control Theory of the DC Machine ... 55

3.2.1 PI controllers .. 55

3.2.2 The Cascade Control Structure .. 59

3.3 Speed Measurement ... 64

3.4 Utilizing the Converter in the DC Motor Drive .. 66

3.5 Software Implementation for dc Motor Drive ... 68

3.5.1 Current Loop .. 69

3.5.2 QEP initialization and Speed Calculation .. 70

3.5.3 QEP Interrupt Service Routine ... 74

3.5.4 Modifications of the existing code ... 75

4 Verification of the Design ... 77

4.1 Hardware ... 77

4.1.1 Mounting of Components on PCB ... 77

4.1.2 Verification of PCB .. 80

4.2 Software Verification .. 87

4.2.1 PWM Signals .. 87

4.2.2 ADC ... 90

4.2.3 Speed Calculation and Speed-Control Loop .. 92

4.2.4 The System Put Together ... 97

4.3 System Verification ... 98

4.3.1 Speed Measurement Verification ... 99

IX

5 Improvements on PCB Version 2 .. 103

6 Conclusion and Further Work ... 106

6.1 What is Done ... 106

6.2 Present state of system ... 106

6.3 Further Work ... 107

7 References ... 109

Appendix A: PCB Version I ... 112

A-1: List of Components .. 112

A-2: Schematics .. 113

A-3: Layout ... 119

Appendix B: PCB Version II: .. 120

B-1: List of Components ... 120

B-2: Schematics .. 123

B-3: Layout ... 129

Appendix C: General Converter Microcontroller Code ... 130

C-1: Main File ... 130

C-2: Device Initialization .. 132

C-3: PWM Initialization ... 141

C-3: ADC Initialization ... 145

Appendix D: DC Motor Drive Microcontroller Code .. 148

D-1: Main File ... 148

D-2: Device Initialzation ... 152

D-3: PWM Initialization ... 152

D-4: ADC Initialization .. 152

D-5: QEP Initialization ... 153

D-6: PWM4 Initialization ... 154

Appendix E: List of the Available Digital Content .. 155

X

E-1: Eagle Files ... 155

E-2: Code Composer Studio Projects ... 155

Appendix F: First page of datasheets ... 156

XI

LIST OF TABLES

Table 2.1: Maximum error of the measurement signal with 1 % presision resistances 28

Table 2.2: Pin configuration ... 44

Table 4.1: Verification of ADC .. 91

Table 4.2: Verification of the high and low speed calculations ... 95

Table 4.3: Reults of speed-measurement ... 102

XII

LIST OF FIGURES

Figure 1.1: Converter with three bridge-legs (Mohan, et al., 2003) .. 2

Figure 1.2: Block diagram of motor control .. 3

Figure 2.1: Half-bridge converter ... 5

Figure 2.2: PWM signal and output voltage waveform for one bidge-leg (Mohan,

2003) ... 7

Figure 2.3: AC operation of the half-bridge converter (Mohan, et al., 2003) 9

Figure 2.4: Full-bridge converter (Mohan, et al., 2003)... 10

Figure 2.5: Four-quadrant operation of a full-bridge converter ... 11

Figure 2.6: PWM for a full-bridge converter with bipolar voltage switching (Mohan,

et al., 2003) ... 12

Figure 2.7: Sinusoidal PWM for a full-bridge converter with bipolar voltage

switching (Mohan, et al., 2003) .. 13

Figure 2.8: PWM for full-bridge converter with unipolar voltage switching (Mohan,

et al., 2003) ... 14

Figure 2.9: Sinusoidal PWM for full-bridge converter with unipolar voltage

switching (Mohan, et al., 2003) .. 15

Figure 2.10: PWM for three phase dc-ac inverter .. 16

Figure 2.11: Block diagram of the printed circuit board .. 18

Figure 2.12: Texas Instruments Piccolo
TM

 ControlSTICK .. 19

Figure 2.13: Clip of sheet 3 with the drivers and MOSFETs marked 21

Figure 2.14: One bridge-leg (clip of sheet 3) ... 22

Figure 2.15: The output voltage filters (clip of sheet 3) ... 23

Figure 2.16: A simplified diagram of the filters ... 23

Figure 2.17: Clip of sheet 3 with the current transducers (pink) and voltage dividers

(yellow) marked ... 24

Figure 2.18: Differential amplifier topology .. 26

Figure 2.19: The current analog converter circuit (clip of sheet 4) .. 27

Figure 2.20: Isolation amplifiers for the voltage measurement signal (clip of sheet 4) 29

Figure 2.21: An overview of the power supplies on the PCB .. 30

Figure 2.22: Printed circuit board layout ... 34

Figure 2.23: The filter .. 35

XIII

Figure 2.24: The converter bridge-legs .. 35

Figure 2.25: The MOSFET driver circuits ... 36

Figure 2.26: The control circuit for one converter bridge-leg .. 36

Figure 2.27: Voltage-measurement-signal isolation .. 37

Figure 2.28: The two +12V converters .. 37

Figure 2.29: The current measurement signal scaling .. 38

Figure 2.30: The +5V_GND2, +/-15V_GND2 and +3V3_GND2 power supplies 38

Figure 2.31: The principle behind the PWM and ADC in the code ... 40

Figure 2.32: Overview of the PWM and ADCsignals ... 41

Figure 2.33: Block diagram of main function .. 42

Figure 2.34: The main function .. 43

Figure 2.35: Excerpts of the device initialization code for pin and clock configuration 44

Figure 2.36: Excerpts of the PWM setup code of how to configure the PWM signals 45

Figure 2.37: TBCTR, CMPA, PWM, ADCSOCA, blanking time (Texas Instruments

A, 2011) .. 47

Figure 2.38: Block diagram of the ADC interrupt service routine ... 49

Figure 3.1: Fundamentals of the DC machine (Chapman, 2005) ... 51

Figure 3.2: Circuit diagram of separately exited DC motor (Chapman, 2005) 52

Figure 3.3: PI controller (Mohan, 2003) .. 55

Figure 3.4: Frequency response of the open-loop transfer-function (Mohan, 2003) 58

Figure 3.5: Cascade control structure for DC motor control (Mohan, 2003) 59

Figure 3.6: Torque control loop (Mohan, 2003) .. 60

Figure 3.7: Simplified torque control loop (Mohan, 2003) .. 60

Figure 3.8: Speed control loop (Mohan, 2003) .. 61

Figure 3.9: The principle behind the quadrature encoder (Texas Instruments, 2010) 64

Figure 3.10: A full-bridge dc-dc converter controlling a DC motor (Mohan, et al.,

2003) ... 66

Figure 3.11: Block diagram of the system ... 67

Figure 3.12: Current/torque control loop ... 69

Figure 3.13: The initialization of the QEP module .. 70

Figure 3.14: The two quadrature encoder pulses, quadrature unit timer, direction, and

position counter (Texas Instruments A, 2011) ... 72

Figure 3.15: The edge-capture pulses (Texas Instruments A, 2011).. 73

Figure 3.16: Speed calculation ... 74

XIV

Figure 3.17: Speed control loop ... 75

Figure 3.18: PWM setup .. 76

Figure 3.19: Initialization of QEP module clock and pins ... 76

Figure 4.1: The PCB with the surface mounted components ... 77

Figure 4.2: The PCB with all components soldered onto it ... 78

Figure 4.3: Inductor in +12V_GND2 circuit mounted with cupper tape 78

Figure 4.4: TSR DC-DC converter too big and placed on top of the capacitors...................... 79

Figure 4.5: The PCB ready for use ... 80

Figure 4.6: TI Piccolo experimenter's kit: controlCARD with docking station (Texas

Instruments D, 2012) .. 81

Figure 4.7: The quadrature encoder and its connection wires .. 82

Figure 4.8: Circuit diagram of optocoupler connection for PWM signal 84

Figure 4.9: Verification of optocoupler connection ... 85

Figure 4.10: PWM1A (yellow) and PWM2A (blue) with a duty ratio of 50 % and a

Blanking time of 200 time-base-clock cycles .. 87

Figure 4.11: One cycle of PWM1A (yellow) and PWM1B (blue) with a duty ratio of

50 %. Cursors are showing forward-edge delay (FED) as 2500 µs = 200 time-base-

clock cycles .. 88

Figure 4.12: One cycle of PWM1A (yellow) and PWM1B (blue) with a duty ratio of

50%. Cursors are showing the rising edge delay (RED) as 2500 µs = 200 time-base-

clock cycles .. 88

Figure 4.13: PWM1A (yellow) and PWM1B (blue) with a duty ratio of 75 % and a

blanking time of 200 time-base-clock cycles ... 89

Figure 4.14: PWM1A (yellow) and PWM2B (blue) for duty ratio 75 % with bipolar-

voltage-switching setup .. 89

Figure 4.15: PWM1B (blue) and PWM2a (yellow) with duty ratio of 75 % with

bipola- voltage-switcing setup ... 90

Figure 4.16: The QEP signals made by the PWM4A and PWM4B pins 93

Figure 4.17: Speed controller controlling PWM-4 ... 97

Figure 4.18: The speed response for a change in setSpeed from 400 to 300 rpm. 97

Figure 4.19: System setup for DC motor control ... 98

Figure 4.20: QEP signals with input voltage 11.26 V and input current of 1.391 A. 100

Figure 4.21: QEP signals with input voltage of 18.99 V and input current of 2.179 A 100

Figure 5.1: Overview of the power supplies on PCB after improvements............................. 105

XV

1

1 INTRODUCTION

1.1 CREATING A SWITCH-MODE THREE-LEG

POWER ELECTRONIC CONVERTER

To answer the problem description and make a flexible power electronic

switch-mode converter suitable for general laboratory usage, the three-leg

converter topology is chosen. According to Mohan et. al. (2003), it can

operate as a half-bridge, full-bridge or three-phase converter, in four

quadrants, leading to a wide range of usage: DC-DC converter, DC-AC

single-phase or three-phase inverter, in a DC or AC motor drive, to mention

some. It can hence be used to teach a broad coverage of the disciplines of

power electronics and electric drive systems.

The converter is being controlled by a microcontroller, which can vary the

output voltage in magnitude, frequency and waveform. A real-time digital

control algorithm will be used to control the microcontroller. This will also

make the system suitable for practical teaching of digital control theory.

The circuit diagram of the converter with three legs is shown below. Each

leg includes two switches and its output is the point between the two,

marked A, B or C. The switches are controlled by a pulse-width-modulation

(PWM) signal. The output is determined by how the switches in a leg are

controlled, how many of the three legs that are used and how they are

controlled compared to each other. The input voltage is usually DC.

2

FIGURE 1.1: CONVERTER WITH THREE BRIDGE-LEGS (MOHAN, ET AL.,

2003)

The converter topology is implemented on a printed circuit board (PCB)

together with other necessary equipment to run the converter. The planning

of this is done in CadSoft Eagle
TM

 PCB Design Software. The

microcontroller used is the Texas Instruments Piccolo
TM

 ControlSTICK. It

controls the converter by generating the switches’ PWM signal. The control

algorithm is implemented with real-time programming in Code Composer

Studio
TM

.

To see how the converter behaves for different switching schemes, the

currents and voltages will be measured, and analog-conversion circuits will

be implemented to be able to convert the measurements to digital by the

microcontroller.

To overcome the safety requirements, the control circuit including the

microcontroller will be isolated from the power circuit and the power ratings

is limited to a maximum of 50 V and 12 A.

As required, the second part of this report describes and implements how the

converter can be utilized as a full-bridge converter in a DC motor drive. A

feedback speed and torque controller is implemented within the

microcontroller’s code. It uses the output current and the speed which is

measured by a quadrature encoder. A simple block diagram of the system is

presented under.

3

FIGURE 1.2: BLOCK DIAGRAM OF MOTOR CONTROL

1.2 SCOPE AND LIMITATIONS

The two main areas which have been focused on during this study are

marked yellow in the figure above. These are the converter, both hardware

and software, and how to use it in a DC motor drive.

As a first draft, it is focused on getting the converter to work and to use it

with a simple control algorithm to control a DC motor. Therefore an

optimizing of the design is not considered. This applies to the schematics

and board layout, choice of components and programming. Apart from that,

the safety aspect mentioned in the problem description is considered by

isolating the control circuit from the power circuit and having a low power

rating.

While writing this report, it has been tried to describe what is done and the

thoughts behind it in a way which makes it as easy as possible to understand

for the student who is continuing the work. However, it is assumed the

reader has some knowledge about real-time programming, Code Composer

Studio
TM

 and CadSoft Eagle
TM

 PCB Design Software.

1.3 ORGANIZATION OF THE REPORT

This first chapter gives an overview of the solution of the problem

presented. Further, it outlines the scope and limitations of the work.

The second chapter describes the converter design. First, it presents the

theory about one, two and three-leg converters followed by the description

CONTROLLER DRIVE
DC

MOTOR
LOADsetSpeed

Current, speed

4

of the planning and implementation of the converter on a printed circuit

board. Then, a programming code doing the general tasks of the

microcontroller is explained.

The third chapter describes how the converter can be used as a DC motor

drive. First, some theory about the DC motor, operation and control theory

are given, and then the system as a whole is described. Finally, the

modifying of the general code together with the additional code for motor

control is explained.

The mounting and verification of the, hardware, software and the system as

a whole is given in chapter 4.

Chapter 5 provides the improvements for later versions.

The conclusion and recommendations for further work is outlined in chapter

6.

5

2 CREATION OF THE CONVERTER

2.1 CONVERTER THEORY

This section is based on the theory about switch-mode power electronic

converters given in Mohan, et al. (2003) and Mohan (2003).

2.1.1 ONE BRIDGE-LEG

To explain the theory behind the converter, the one-leg operation is first

considered, since the basic operation theory of each leg is the same

regardless of how many legs connected. This topology is also called a half-

bridge converter, and is shown in Figure 2.1.

The voltage applied across the bridge-leg is . The two switches are

switched asynchronously; one is on when the other is off. The output

voltage is measured between point A and N (=ground) is hence set to either

 or ground, depending on which switch is on. Its average value depends

on how long each of the switches is turned on compared to the other one.

FIGURE 2.1: HALF-BRIDGE CONVERTER

6

To express the output voltage mathematically, a few terms must first be

presented. The switching period is defined as the time it takes for both

switches to be turned on and off once. The upper switch is on during and

off during , and the opposite is true for the lower switch. Thus,

 . The switching frequency is one over the switching period. A

duty ratio is defined as the on-time over the switching period. The duty

ratio for the upper switch and the bridge-leg’s output voltage is given by

 , and for the lower switch as . By these

terms, the average output voltage can be written as

2.1

(Mohan, et al.,

2003)

P W M

The switches are controlled by a pulse-width-modulation (PWM) signal,

which is a square wave pulse alternating between high and zero. It turns the

switch on during the high pulse and off when it is zero. Hence, the

frequency of the PWM signal determines the switching frequency. The

PWM signals for the two switches are opposite, to make the switching

asynchronous.

The two PWM signals for the two switches in a bridge-leg are both made of

one triangular waveform and one control voltage . The

triangular waveform is alternating between and . The upper

switch’s PWM signal is high when the control voltage is higher than the

triangular and low otherwise. The opposite is true for the lower switch’s

signal. The waveforms are shown in Figure 2.2, where qA is the PWM signal

of the upper switch.

7

FIGURE 2.2: PWM SIGNAL AND OUTPUT VOLTAGE WAVEFORM FOR ONE

BIDGE-LEG (MOHAN, 2003)

A little blanking time interval where both switches are off is implemented

for safety reasons to avoid short circuiting of the input voltage, if both

MOSFETs occasionally are on simultaneously. It is important that this

interval is not too long, since the output current has to be continuous for the

linearity of equation 2.1 to apply.

To get a smooth output voltage waveform at the average value over one

switching period, a filter consisting of a capacitor and inductor is needed.

This is explained later in sub-section 2.2.3.

The duty ratio of the upper switch’ PWM, signal can also be given as a

function of the control voltage versus the amplitude of the

triangular signal as shown in equation 2.2.

2.2

(Mohan, et al.,

2003)

8

Hence, can be used to control the output voltage. It can be held

constant for DC – DC converter operation or it can vary sinusoidaly to get a

sinusoidal output voltage, for instance. The frequency of the output voltage

will be the same as the frequency of the control voltage.

D C A N D A C O U T P U T V O L T A G E

For DC-DC converter operation of the half-bridge converter, the output

voltage is measured between point A and ground N. The polarity of the

voltage cannot be changed. The switches used are MOSFET, and because of

their anti-parallel diodes, the current can flow in both directions through the

switch when it is on. Therefore, the one-leg converter can operate in two

quadrants of the current-voltage plane: +V, +I and +V, -I. The voltage

magnitude is controlled by controlling . The waveforms of this type

of operation are shown in Figure 2.2.

For DC-AC operation, two capacitors in series are connected at the DC

input, as shown in Figure 2.1. The output voltage is measured between point

A and their junction, o. It is important that they are sufficiently large such

that the voltage at the point o stays constant at . The output voltage is

thus alternating between and .

The right term to use is now inverter. To get a sinusoidal output, the control

voltage has to vary sinusoidal. This is shown in the figure under. The

frequency of the output voltage is given by the frequency of the control

voltage, .

 2.3

9

FIGURE 2.3: AC OPERATION OF THE HALF-BRIDGE CONVERTER(MOHAN,

ET AL., 2003)

For a sinusoidal , the ratio between the control signal’s amplitude

and the triangular signal’s amplitude is called amplitude modulation .

2.4

(Mohan, et al.,

2003)

The frequency modulation is the ratio between the control signal’s

frequency and the triangular signal’s frequency

2.5

(Mohan, et al.,

2003)

To get a sinusoidal output voltage, . If , the converter

operates in overmodulation mode. When , the output voltage is

square wave form with duty ratio equal to 0.5. This is because the control

voltage now is larger than the triangular waveform amplitude half of its

10

period, and lower than it the other half, no matter where in the cycle the

triangular waveform is.

2.1.2 TWO BRIDGE-LEGS

For the two-leg converter, also called full-bridge converter, the load is

connected between the outputs of the two legs. The load voltage can thus

vary between and . Therefore, when the one-leg converter operates

in two quadrants of the current-voltage plane, the full-bridge converter can

operate in all four.

FIGURE 2.4: FULL-BRIDGE CONVERTER (MOHAN, ET AL., 2003)

The switching theory described for one bridge-leg apply for the full-bridge

converter, but there are two types of switching schemes for how to switch

the two bridge-legs relative to each other; bipolar and unipolar voltage

switching.

B I P O L A R SWITCHING

Bipolar voltage switching indicates that the opposite switches (Ta+ and Tb-,

Ta- and Tb+) are treated as switch pairs and switched simultaneously. The

switches in each pair are controlled by the same PWM signal. The possible

current direction and voltage polarities for both switch states are shown in

the figure under. The current direction depends on if the load is generating

or consuming power.

11

FIGURE 2.5: FOUR-QUADRANT OPERATION OF A FULL-BRIDGE

CONVERTER

The output voltage of bridge-leg A with respect to ground N is given as

 2.6

While the output voltage of bridge-leg B with respect to ground N is given

as

 2.7

Combining equation 2.2, 2.6 and 2.7, the average load voltages is

2.8

(Mohan, et al.,

2003)

As shown in equation 2.8, the average load voltage is proportional to the

control voltage which can be varied in both magnitude and polarity.

The voltage and signal waveforms for bipolar voltage switching are given in

the figure below.

12

FIGURE 2.6: PWM FOR A FULL-BRIDGE CONVERTER WITH BIPOLAR

VOLTAGE SWITCHING (MOHAN, ET AL., 2003)

As for one bridge-leg, the control voltage is held constant for DC-DC

operation, as shown in Figure 2.6. For sinusoidal DC-AC operation, the

magnitude of the control voltage is varied sinusoidal, as shown in the figure

below.

13

FIGURE 2.7: SINUSOIDAL PWM FOR A FULL-BRIDGE CONVERTER WITH

BIPOLAR VOLTAGE SWITCHING (MOHAN, ET AL., 2003)

U N I P O L A R V O L T A G E S W I T C H I N G

With unipolar voltage switching, the two bridge-legs are controlled by their

own PWM signals made of the two control voltages and

 . The waveforms are given in Figure 2.8.

It can be proven that the average output voltage is proportional to

and given by equation 2.8, as for bipolar voltage switching. However,

within a switching period, the output voltage will now oscillate between

 and or between 0 and . The voltage ripple will have a higher

frequency, but lower magnitude, as seen in Figure 2.8. The RMS value

equals , and is independent of the duty ratio.

14

FIGURE 2.8: PWM FOR FULL-BRIDGE CONVERTER WITH UNIPOLAR

VOLTAGE SWITCHING (MOHAN, ET AL., 2003)

For DC-AC operation with unipolar switching, the waveforms look like in

the following figure. The two control signals are of the same magnitude,

with opposite polarity. Unlike bipolar voltage switching at AC operation,

the output voltage is for half of the cycle alternating between and ,

while for the other half cycle between and . The ripple is therefore

lower in magnitude.

15

FIGURE 2.9: SINUSOIDAL PWM FOR FULL-BRIDGE CONVERTER WITH

UNIPOLAR VOLTAGE SWITCHING (MOHAN, ET AL., 2003)

2.1.3 THREE BRIDGE-LEGS

When all three bridge-legs are used, the topology is a three-phase DC-AC

inverter. The PWM signal for three bridge-legs are made of one triangular

waveform with three different control voltages varying sinusoidal, 120°

shifted from each other. The PWM signals will hence look as in the figure

below.

16

FIGURE 2.10: PWM FOR THREE PHASE DC-AC INVERTER

As explained for one or two bridge-leg operation, for sufficiently large

values of , the three-leg converter will also operate in square wave mode.

Each bridge-leg will have a duty ratio of 50 %, and the output signals of

each are shifted 120° from the others.

17

2.2 CONVERTER DESIGN AND

IMPLEMENTATION

The converter is implemented on a printed circuit board (PCB) together with

other necessary equipment. This includes the microcontroller connections,

MOSFETs driver circuits, output filters, voltage and current measurement

circuits, and voltage supplies for the different components used. The

different parts and equipments are divided into two groups: the power

electronic group including the main power flow, and the control group with

the components connected directly to the microcontroller.

To meet the safety requirements in the problem description, the control and

the power electronic parts are isolated from each other letting the system

have two ground potentials; GND1 for the power electronic part and GND2

for the control part. The power electronic part includes the three-leg

converter with filters and voltage supplies. Some of the measurements are

also done on this ground potential. The control part includes the

microcontroller, some voltage supplies, and some parts of the measurement

circuits. Signals crossing the isolation are transferred with isolated

components. These are the PWM and the current and voltage measurement

signals. There are two sets of voltage supplies, one for each ground

potential.

The PCB is supplied by one external power supply. It supplies the converter

as well as the voltage supplies which are supplying the different

components. Its maximum voltage and current is respectively 50 V

and 12 A.

A block diagram of the circuit is shown in the figure under. Signal scaling

refers to the scaling of the measurement signals to fit the microcontroller

input. This will be explained later.

18

FIGURE 2.11: BLOCK DIAGRAM OF THE PRINTED CIRCUIT BOARD

The design of the schematics and board layout is done in CadSoft Eagle
TM

PCB Design Software and based on the work of Ishengoma, et al. (2011).

The file is called master. The 5 sheets of the schematics are given in

appendix A in figure A-1 to A-5. Sheet 1 and 2 shows the power supplies

and the test-pin outputs. In sheet 3 is the main power flow including the

converter’s bridge-legs with MOSFETs and drivers, the current and voltage

measurements, the filter and the three output connections. In sheet 4 one can

find the signal scaling circuits for the current and voltage measurements to

fit the voltage levels of the microcontroller. The last sheet, number 5, shows

the connections to the microcontroller.

The different parts, components and layout, of the circuit will now be

explained in more detail. The components used and their ratings are listed in

table A-1. The first page of each datasheet is given in appendix F. All values

for the different components are gotten from the datasheets.

GND1GND2 Isol-
ation

3 inverter
bridges

Current
transducer

Isolated
drivers

Power
supplies

GND1

Isolated
amplifier

Signal scaling

MCU

Power supplies GND2

PWM

Iin, 3xIout

Vin, 3xVout
Vin, 3xVout

Iin, 3xIout

Iin, 3xIout

Vin, 3xVout

PWM

Main power
supply

Isolated
converter

19

2.2.1 MICROCONTROLLER

For the converter control, the Texas Instruments TMS320F28069
TM

Piccolo
TM

 controlSTICK microcontroller unit (MCU) is chosen (Texas

Instruments D, 2012). It is generating PWM signals for the switches and

does an analog-to-digital (ADC) conversion of the input and output current

and voltage measurements.

FIGURE 2.12: TEXAS INSTRUMENTS PICCOLO
TM

 CONTROLSTICK

This microcontroller is first of all chosen because it is used in other

laboratory work at NTNU and was therefore readily available. According to

Texas Instruments (2012 C) it is suitable for this purpose because of its high

efficiency, low cost, real-time control, high frequency of 80 MHz, fast

interrupt response and processing. It is a 32-bit microcontroller, which is

adequate enough for this system. It is made for high precision and efficiency

for systems such as solar inverters, white goods appliances, hybrid

automotive batteries, power line communications (PLC) and LED lightning

(Texas Instruments C, 2012).

Depending on which pins that should be available, one can either choose the

controlSTICK or controlCARD layout. The controlSTICK is suitable for

controlling the converter since both the PWM output pins and the ADC pins

are available.

20

The code controlling the microcontroller is implemented in Code Composer

Studio
TM

 (CCStudio). This is an integrated development environment (IDE)

for developing and debugging embedded applications controlled by Texas

Instruments embedded processors (Texas Instruments B, 2012). Among

some, it comprises compilers, source code editor, project build environment,

debugger, profiler, simulators and real-time operating system (Texas

Instruments B, 2012).

The MCU needs a voltage supply of 5V, which is usually gotten from the

computer (Texas Instruments D, 2012). All other connections are between 0

and 3.3 V (Texas Instruments A, 2011). This indicates that the PWM signal

alters between 0 and 3.3 V and that the signals to be converted must be

within this range. The analog-to-digital conversion (ADC) ratio of the

controller is given by equation 2.9.

2.9

(Texas

Instruments A,

2011)

2.2.2 THE THREE CONVERTER LEGS

The switches in the bridge legs are MOSFETs controlled by isolated drivers,

one per MOSFET. The drivers are marked pink and the MOSFETs are

marked yellow in sheet 3 of the circuit schematics below (full-page figure in

Figure A-3). The MOSFETs and its driver are numbered from the upper left

corner, such that the first bridge-leg consists of MOSFET 1 and 2 and so on.

21

FIGURE 2.13: CLIP OF SHEET 3 WITH THE DRIVERS AND MOSFETS

MARKED

The MOSFET chosen is IRFB4110PbF (International Rectifiers, 2011),

because of its high switching speed and suitable voltage range. The turn-on

time is less than 0.1 µs, while the turn-off time is about 0.15 µs at voltage

and current conditions larger than needed in this study. This indicates that a

switching frequency of 50 kHz, as intended in this work, with a period of 20

µs is suitable for most duty ratios. With a duty ratio of

(0.1µs+0.15µs)/20µs=0.0125=1.25%, the MOSFET just reaches to turn on

and off once.

The MOSFET needs a gate-source voltage of about 10V to turn completely

on. The drivers steps the PWM signal up from 3.3 V and isolate it while

transferring it from the microcontroller to the MOSFETs and power

electronic circuit.

A suitable driver found is IRS2123S (International Rectifiers, A, 2009).

Although the driver is not galvanic isolated, the silicon which it is made of

isolates the high-side from the level shifters, this makes it suitable for this

purpose (International Rectifiers, 2012).

22

A closer figure of the circuit layout of one bridge-leg is shown below. The

driver needs a voltage supply of around 12 V on both microcontroller and

MOSFET side. The capacitances are there to reduce noise and to keep the

voltage stable at its connections. The driver’s reset pin, RESET-, needs to be

set high (3.3 V) for the driver to turn on. This is connected to and controlled

by the microcontroller.

FIGURE 2.14: ONE BRIDGE-LEG (CLIP OF SHEET 3)

2.2.3 OUTPUT FILTER

As described in section 2.1, the converter output voltage will have a square-

wave form. To smooth this, a LC filter is included. It is marked blue on

Figure 2.15. A simplified circuit diagram of the filter is given in Figure

2.16.

The filter must be customized for the specific load used, since all

components include some inductance and capacitances. Therefore, at first

eyesight it may look as if there are several different capacitors in the filter,

but only one should be used. Doing it this way gives the ability to try

different capacitors and see which works best for the final system. The coils

are made by a core named “Amidon T106-26 stacked” and can be ordered

23

from www.reichelt.de. The number of windings determines the inductor

value.

For motor control, for instance, the filter is not needed because the motor

filters the voltage itself. To choose whether the filter should be used or not,

switches are placed such that the filter can be included or bypassed. The

switches connections are marked pink in Figure 2.15. They consist of three

pins per bridge-leg output. The middle one is the output, and one can either

connect it to the right to bypass the filter or to the left to include the filter.

FIGURE 2.15: THE OUTPUT VOLTAGE FILTERS (CLIP OF SHEET 3)

FIGURE 2.16: A SIMPLIFIED DIAGRAM OF THE FILTERS

24

2.2.4 THE CURRENT AND VOLTAGE MEASUREMENTS

The currents and voltages are both measured at the input and output of the

converter for all three bridge-legs. The measurement devices are shown in

sheet 3 of the circuit diagrams in appendix A, figure A-3. The sheet is

reproduced in a smaller version here (Figure 2.17) where the current

measurement devices are marked pink and the voltage measurements

marked yellow. The measurement signals out of the devices are first

converted by an analog converter circuit to be within the accepted voltage

range of the microcontroller of 0 - 3.3 V. They are then converted to digital

by the microcontroller. They also have to be isolated somewhere on the way

from the power electronic part to the microcontroller. The current and

voltage measurement circuits will be explained separately in the following

text.

FIGURE 2.17: CLIP OF SHEET 3 WITH THE CURRENT TRANSDUCERS

(PINK) AND VOLTAGE DIVIDERS (YELLOW) MARKED

25

C U R R E N T M E A S U R E M E N T S

A current transducer is chosen for the current measurements, because of its

directly galvanic isolation of the measurement signal. They are marked pink

on Figure 2.17. The main current flows through three coils in the transducer

which induces an output voltage, called the current measurement signal,

 . This signal is proportional to and isolated from the power current.

The transducer used is a LEM Current Transducer LTS 25-NP (LEM, u.d.),

chosen because of its suitable voltage and current levels. The transducer’s

measurement-current range is determined by how the three coils are

interconnected. To get a +/-12 A input current range, the first two coils (pin

1,6 and 2,5) must be parallel connected, while the last coil (pin 3,4) is

connected in series with these two. This is shown in Figure 2.17.

The transducers need a voltage supply of +5 V on the GND2 side. The

output signal range is between 0.5 and 4.5 V and it is given as a function of

the current in 2.10.

 2.10

To get these signals to the range of the microcontroller from 0 to 3.3 V, an

analog-signal-scaling circuit is needed. It mainly consists of an operational

amplifier which is connected as a differential amplifier. The operational

amplifier chosen is a TLC274INE4 (Texas Instruments, 1987). It includes

all four amplifiers needed, one for each current signal, and need a supply

voltage of +/-15 V.

The main feature about difference amplifiers is that its output is the

difference between its +pin and –pin input signal, amplified with the ratio of

 over . is the resistance between the two input signals and the

amplifier, while R2 is the resistance in the feedback loop between the output

and the –pin and between the +pin and ground. A circuit diagram of this is

shown in Figure 2.18.

26

FIGURE 2.18: DIFFERENTIAL AMPLIFIER TOPOLOGY

The difference amplifier transfer function is given as

 2.11

To get the current measurement signal from 0.5-4.5 V to 0-3.3 V, it is

connected to the +pin and 0.5 V is connected to the –pin. = 100 kΩ and

 = 75 kΩ, hence a gain of 0.75. The analog signal scaling circuit is shown

in Figure 2.19. The output signal is given as

 2.12

 is connected directly to the microcontroller and is the current

measurement signal from the transducer connected at the opamp input.

Combining equation 2.10 and 2.12, one gets the current value into the

microcontroller as a function of the measured current to be

 2.13

27

FIGURE 2.19: THE CURRENT ANALOG CONVERTER CIRCUIT (CLIP OF

SHEET 4)

The last part of the analog signal converter is a RC low-pass filter consisting

of a resistor and a capacitor with a cutoff frequency of 16 kHz, which suites

a switching frequency of 50 kHz (Ishengoma, 2011).

2.14

(Balchen, et

al., 1999)

(Ishengoma, et

al., 2011)

The two zener diodes make sure the voltage into the microcontroller stays

between 0 and 3.3 V at any time.

V O L T A G E M E A S U R E M E N T S

For the voltage measurements, voltage dividers made of large precision

resistances (+/- 1 %) are used get the voltage measurement signal into the

range of the microcontroller of 0-3.3 V. The resistances need to be large to

minimize their affection on the power circuit. The voltage dividers are

marked yellow in Figure 2.17. They are placed after the filter such that the

smooth output waveform is measured if the filter is included.

The voltage range for both the input and output voltages is between 0 and

 = 50 V. The resistances chosen are 3 MΩ and 200 kΩ making the voltage

measurement signal equal to 3.125 V for a maximum input voltage of

28

50 V. The voltage divider affects the power circuit by drawing a current of

50V/3.2 MΩ = 15.6 µA, which is negligible.

Each voltage measurement signal is then isolated by an isolation amplifier,

with gain equal to 1. Hence the voltage measurement signal to the

microcontroller equals . These are given as a function of the

measured voltage by equation 2.15.

2.15

Table 2.1 shows the maximum error with the 1 % precision resistances used.

The error is small and hence negligible.

TABLE 2.1: MAXIMUM ERROR OF THE MEASUREMENT SIGNAL WITH 1 %

PRESISION RESISTANCES

R 1 R 2

%

E R R O R

200kΩ 3 MΩ 0.0625*V 3.125 V 50 V 0

200kΩ+1

% = 202

kΩ

3 MΩ - 1

% = 2.97

MΩ

0.0637*V 3.184 V 50.944 V 1.888 %

200 kΩ - 1

% = 198

kΩ

M mΩ +

1 % =

3.03 MΩ

0.0613*V 3.065 V 49.04 V - 1.92 %

The isolated amplifier chosen is ISO124D (Burr-Brown Products from

Texas Instruments, 1997) because of its simplicity, suitable voltage range

and low power consumption of maximum 7 mA. It needs a supply voltage

of +/- 15 V on both GND1 and GND2 sides.

29

Before the signal is connected to the microcontroller, it passes through a

low-pass filter and the safety diodes, the same as for the current

measurements. The isolation amplifier, filter and diodes are shown in Figure

2.20.

FIGURE 2.20: ISOLATION AMPLIFIERS FOR THE VOLTAGE MEASUREMENT

SIGNAL (CLIP OF SHEET 4)

2.2.5 VOLTAGE SUPPLIES

The components presented above need voltage supplies of different voltage

levels. These are made of IC (integrated circuits) DC-DC converters. A

block diagram of the voltage supplies and the components they are

supplying are shown in Figure 2.21. There, the name of the load or voltage

supply, its manufacturer’s part number and input voltage rating is written in

the boxes. The number on the arrow into and out of the box is respectively

the input and output current rating. The green box is the main power supply

which also supplies the converter. The details of the supplies which are not

self-explained by the figure, are further described below.

The names of the power supplies are given by the output voltage level and

the ground potential. +12V_GND2 is +12V with respect to GND2.

+12V_DRIVE1 is the +12V supplying the MOSFET side of driver 1.

The circuit diagrams of the power supplies are shown in the schematics in

sheet 1 and 2 and a complete list of power supplies is given in Table A-1.

30

FIGURE 2.21: AN OVERVIEW OF THE POWER SUPPLIES ON THE PCB

(Burr-Brown Products from Texas Instruments, 1993)(Burr-Brown Products

from Texas Instruments, 1997)(International Rectifiers, 2011)(International

Rectifiers, B, 2009)(International Rectifiers, A, 2009)(LEM, u.d.)(Lineage

Power, 2009)(Murata Power Solutions, Inc., 2012)(National Semiconductor,

2006)(Texas Instruments, 1987)(Traco Power, 2009)(Würth Elektronik,

2005).

The main input voltage is directly supplying +12V_GND1 and

+12V_GND2 which further supplies all components within each ground

group. The main supply is referred to GND1 and hence the +12V_GND2

DC-DC converter must be isolated. Both of them should have an output

current of up to 1A to manage the supply of the other devices with a good

margin. For +12V_GND1 the TSR 1-24120 (Traco Power, 2009) is chosen

+UB=Vd
36V

GND1

+12V_GND1
TSR 1-24120
Vin=15-36 V

+12V_GND2
SW001A2B91

Vin=36-75 V

3*Drives (2,4,6)
MOSFET side
IRS2123SPBF
Vin=10-20 V

+/-15V_GND2
NMA1215SC

Vin=12 V

+3V3_GND2
TSR 1-2433

Vin=4.75-36 V

+5V_GND2
TSR 1-2450

Vin=6.5-36 V

+12V_DRIVER1
NMA1212SC

Vin=10-20 V

+/-15V_GND1
NMA1215SC

Vin=12 V

+12V_DRIVER3
NMA1212SC

Vin=10-20 V
+12V_DRIVER5

NMA1212SC

Vin=10-20 V

5V_REF_GND2
REF02AU

Vin=8-40 V

6*Drives
GND2 side

IRS2123SPBF
Vin=10-20 V

4*Iso amp
GND1 side
ISO124D

Vin = +/-(4,5-18)

4*current
transducers

LTS15-NP
Vin = 5 V

2*opamps
GND2

TLC274INE4-A
TLC274INE4-B
Vin = 3 -16 V

4*Iso amp
GND2 side

ISO124D
Vin = +/-(4,5-18)

Drive 1
MOSFET side
IRS2123SPBF
Vin = 10-20 V

Drive 5
MOSFET side
IRS2123SPBF
Vin = 10-20 V

Drive 3
MOSFET side

IRS2123SPBF
Vin = 10-20 V

1 A

1 A

1 A

1 A

0.11 A

3*150 uA

0.11 A

0.123 A

0.111 A

0.111 A

0.111 A

6*240 uA

0.0014 A

0.033 A

0.033 A

4*0.007A

2*0.045 A

4*0.038 A
1 A

0.042 A

0.042 A

0.042 A

150 uA

150 uA

150 uA

31

and for +12V_GND2, the SW001A2B91 (Lineage Power, 2009) is chosen.

They are shown at the coordinates A1-A2 and B1-B2 in sheet 1 of the

schematics in Figure A-1.

The +12V_GND1 converter requires an input voltage range of 15-36 V

(Traco Power, 2009) while the +12V_GND2 one requires an input voltage

range of 36-75 V (Lineage Power, 2009). Since they are supplied by the

same supply , clearly, this is not the best solution and must be considered

for the next version. In the mean time, the input voltage has to be fairly

constant at 36 V, and cannot be used to control the input voltage of the

converter. Therefore, the control of the inverter bridge-legs has to stand for

the control of the output voltage.

The MOSFETs’ drivers are supplied by +12V_GND2 on the

microcontroller side. On the MOSFET side, the drivers must be supplied by

+12V with respect to the MOSFET’s source’s potential. For the three lower

drivers (2, 4, 6), source is connected to GND1, and they thus supplied by

+12V_GND1. The three upper drivers (1, 3, 5) have their source potential at

the bridge-leg’s output, which is alternating between 0 and . They are

therefore supplied by a voltage source supplying +12V with respect to that

potential. Hence, +12V_DRIVER1, +12V_DRIVER3 and +12V_DRIVER5

which are shown in sheet 2 of the schematic (Figure A-2).

5V_REF_GND2 (REF02AU (Burr-Brown Products from Texas

Instruments, 1993) is the 5V reference voltage which the 0.5 V voltage

reference is made of. This is done by an operational amplifier

(TLC274INE4 (Texas Instruments, 1987)) and precision resistances (+/-

1%), as shown in coordinates B3-D4 of sheet 1, Figure A-1. The operational

amplifier is the same type as for the current measurement scaling circuit and

also this one is also supplied by the +15V_GND2 supply.

32

2.3 PRINTED CIRCUIT BOARD (PCB)

LAYOUT

Next, the layout of the printed circuit board (PCB) will be explained. In the

process of placing the components, there were several considerations to

take, some even conflicting each other.

First of all, the two ground potentials should be physically separated from

each other, and all components placed on their respective areas. The

components bringing signals across from one potential to the other should

be placed right between the two potentials.

To reduce electromagnetic interference issues, the components in the power

electronic circuit should be placed as close to each other as possible, and the

wires should be as short as possible. In this part of the board, there should

also be room for heat sinks on the 6 MOSFETs. All power supplies should

be placed fairly close to the object they are supplying, as far it is possible.

The noise reducing capacitors must be placed as close to the components

they are protecting, this is very important. In addition, signals and voltages

should travel as short as possible.

The printed-circuit-board layout is shown as an illustration along the text in

Figure 2.22 and as a full-page picture in the figure A-6. The board has two

conducting layers, one on top and one on the bottom. The current paths on

the top side are marked red and on the bottom side blue. The current paths

of the power circuit are made wide in order to conduct the large current of

up to12 A. The two ground potentials are placed as areas on the bottom side,

shown by the two large blue areas. The surface mounted (SMD)

components should be soldered on the white pads, while the through-hole

components soldered onto the green pads. The component’s areas are

marked white.

The components were placed in steps. As a starting point, the two ground

potential areas were roughly set. Then, all components were divided into

33

three groups: GND1, GND2 and isolation components. The third step was

the layout of the GND1 area. It was tried to get the wires as short as

possible. But the space required by the components and heat sinks on the

MOSFETs sat a limit of how close they could be placed. The MOSFETs

should be placed close to the driver circuits placed in the isolated area. The

filters were placed furthest away from the isolated area and GND2 since no

connection between these are required.

Some compromises had to be made. The current transducers had to be

placed between the converter bridge-legs output, and the filter to shorten the

power circuit wires, even if they should be placed at the isolation area. Since

the drivers were placed at the isolating area close to the MOSFETs, there

was no room for the current transducers there anyways. In order not to let

the wires with the signals from and supply to the current transducers, split

any of the ground potential areas, they are drawn around, which made them

very long.

The next step was the layout of the isolation components. It was tried to get

the drivers as close to the MOSFETs as possible. The +12V_DRIVE1/3/5

power supplies could just as well be placed near the drivers, since those are

their only load. To place the voltage-measurement circuits near the output

connections and at both ground potentials, the GND2 area had to be

expanded along the right edge of the board.

The next step was to place the GND2 components which are the power

supplies, current measurement signal scaling circuit, and the MCU

connections. The two +12V power supplies were placed near the input

voltage. Wires go from them along the isolation area to their loads. The +/-

15V_GND1 were placed by its only load, the isolation amplifiers. The

current measurement circuit was placed near the 3V3_GND2 and +/-

15V_GND2 supplies in the bottom right corner and the +5V_GND2 was

placed near those.

34

The last step was the wiring. The wires which lead a large current are made

wide, and the others are thinner to save space.

The placing of components could have been made easier and the wires

shorter with a board containing more than two conducting layers. The

drawback with this is that the wires cannot be accessed and hence not cut or

redirected if any faults should be found later.

FIGURE 2.22: PRINTED CIRCUIT BOARD LAYOUT

Now, a more detailed description of the layout chosen is given to show

where exactly the different components are placed and how they look on the

board print.

The output filters are placed in the top centre of the board, a clip of the filter

from circuit board is given below. The capacitors are the squares while the

inductances are the white striped areas. Here one can see that it is possible

35

to connect different capacitors to see which works best for the final system,

as explained in sub-section 2.2.3.

The output connections, A, B, C, are placed to the right of the filters. The

three switches used to bypass or use the filters are placed right under the

output. They are as explained in sub-section 2.2.3.

FIGURE 2.23: THE FILTER

In the area called ‘Converter’ one can find the MOSFETs, current

transducers and capacitors. The current transducer placed separately from

the others is measuring the input current. The capacitors are placed close to

each bridge-leg to reduce noise.

FIGURE 2.24: THE CONVERTER BRIDGE-LEGS

The control part of the MOSFETs is placed under its respective converter

bridge-legs, in the area marked “Control”, see the clip under. Here, one can

see the two ground potentials marked blue with the neutral area marked

36

black between them. The GND1 is on the upper side. The components

transferring signals from one side to the other are partly on each potential.

FIGURE 2.25: THE MOSFET DRIVER CIRCUITS

Figure 2.26 gives a closer look at the driver circuit components for one

bridge leg. One can see the two drivers, one on each side and the 12V DC-

DC converter supplying the upper MOSFET is in the middle getting its

voltage supply from 12V_GND2.

FIGURE 2.26: THE CONTROL CIRCUIT FOR ONE CONVERTER BRIDGE-LEG

A clip of the voltage measurement circuit is given in Figure 2.27. The large

squares are the isolation amplifiers and in the bottom is the +/-15V DC-DC

converter supplying the GND1 side of the amplifiers. The voltage dividing

resistors are placed between the outputs and the isolation amplifiers.

37

FIGURE 2.27: VOLTAGE-MEASUREMENT-SIGNAL ISOLATION

The main power input is in the upper left corner. Both the GND1 and GND2

12V voltage supply are placed near the input within the area called “Power

Supply”. A clip of this part is shown under.

FIGURE 2.28: THE TWO +12V CONVERTERS

38

The current measurement circuits are placed in the lower middle of the

board, a clip is shown in Figure 2.29. In the upper right corner are the

reference voltages and in the middle is the IC with four operational

amplifiers doing the analog signal scaling of the current measurements

before they are connected to the microcontroller.

FIGURE 2.29: THE CURRENT MEASUREMENT SIGNAL SCALING

The rest of the power supplies are placed in the bottom right corner of figure

Figure 2.22, a clip given in Figure 2.30. These are the +5V_GND2,

+3V3_GND2 and +/-15V_GND2.

FIGURE 2.30: THE +5V_GND2, +/-15V_GND2 AND +3V3_GND2

POWER SUPPLIES

39

2.4 SOFTWARE FOR DRIVING THE

CONVERTER

To summarize what is explained earlier, the microcontroller has two main

tasks: Generation of 3 independent pairs of PWM signals and do an analog-

to-digital conversion (ADC) of the voltage and current measurements. This

is implemented with real-time programming with the C programming

language in Code Compose Studio
TM

 v4 Core Edition. The project folder is

called “converter” and the code is given in appendix C. When the exact

purpose of the converter is decided, this code must be tailored for that, and

any additional code added.

The theory behind the software design is obtained from the TMS320x2806x

Piccolo Technical Reference Manual (Texas Instruments A, 2011) and the

lectures in ELK-21 Electronic for Control of Power taught at NTNU by

Frederick Ishengoma fall 2011 (Ishengoma, 2011). The setup of the ADC,

PWM and main file is based on the course material in that course.

Both the PWM signals and the ADC are controlled by the same clock; the

PWM time-base counter. It counts up and down, and the PWM channels use

it as their triangular waveform. Hence, the switching frequency is set by this

clock. At every zero point, the lowest point, the start-of-conversion (SOC)

of the signals connected to the ADC pins is triggered. This is also called the

sampling of the signals. The sampling frequency is thus the same as the

switching frequency and set by this clock. This is shown in the figure under.

40

FIGURE 2.31: THE PRINCIPLE BEHIND THE PWM AND ADC IN THE CODE

It is important that the ADC is triggered at the zero point of the clock, since

the sampling then will happen in the middle of the switching period, where

the current and voltage ripple is equal to its average value over the

switching period. This is illustrated in Figure 2.6. There is hence no need for

additional sampling within one switch period to find the average value.

The end of conversion (EOC) of the last converted channel triggers the

ADC interrupt. The interrupt service routine (ISR) reads and stores the

conversion results. An interrupt causes a pause in the program to run its

interrupt service routine, and goes back to the program when finished.

To summarize, a block diagram of this is given in Figure 2.32. The TBCTR

and TBPRD are the bit names for respectively the time-base counter and the

time-base period. The latter is the bit where the frequency is set. CMPA is

the signal.

41

FIGURE 2.32: OVERVIEW OF THE PWM AND ADCSIGNALS

The way this is done, the sampling frequency and switching frequency are

equal. However, the usage of the conversion results does not have to be

done at the same frequency, i.e. in motor control for instance.

The program is organized from the main file and the main function; hence

the more detailed description of the code is explained with the basic of the

main file. Excerpts of some of the code are given along with the

explanations, but all is given in appendix C.

2.4.1 MAIN FILE

The main file (converter_main-F2806x_1.c) of the code is organized as

shown in the block diagram below. First, the parameters and functions are

initialized. Then, the main function is called. It starts by calling the

functions DeviceInit(), InitPWMs(), InitADC() which respectively

initializes the different devices used and the PWM and ADC modules, by

their registers. These functions’ headers are written in separate files, to

make the code tidier, and are explained in more detail later. The next step is

the enabling of the interrupts. Finally, an endless loop is called to make the

code run as long as wanted, and do as many interrupts as desired. The code

of the main function is written in the text box, Figure 2.34.

CMPA-1

CMPA-2

CMPA-3

TBPRD TBCTR

PWM 1

PWM 2

PWM 3

SOC ADC EOC ADC ISR

PWM 1A

PWM 1B

PWM 2A

PWM 2B

PWM 3A

PWM 3B

42

FIGURE 2.33: BLOCK DIAGRAM OF MAIN FUNCTION

Main

Initialize:
- Devices

-PWM
-ADC

Enable
interrupts

Endless loop ISR

End

Initialize
parameters

43

FIGURE 2.34: THE MAIN FUNCTION

The following sub-sections will describe the initialization of the devices,

PWM signals and ADC modules and the interrupt-service-routine.

2.4.2 DEVICE INITIALIZATION

The device initialization (DeviceInit()) function initializes the devices

specific for this application. Its header is given in the file

converter_DevInit_F2806x.c. The function includes enabling the peripheral

clocks for the ADC and the first three ePWM modules and the system time-

base clock. The clocks are explained under their respective sub-sections. It

configures the 6 eEPWM pins. The configuration commands are given in

the text box and the pins chosen for PWM and ADC are given in the table

below. The GPIO-18 pin is set to give a high output signal constantly. This

is to supply the RESET- pin of the MOSFET driver. It can later be turned

void main(void)

{

// Initialize System Control

// Enable Peripheral Clocks, GPIO

// Initialize the PIE control registers to their default state.

// The default state is all PIE interrupts disabled and flags

// are cleared.

 DeviceInit();

 InitEPWMs(); //Initialize PWM modules

 InitADC(); // Initialize ADC

 //Enable the interrupt

 EALLOW;

 PieVectTable.ADCINT1=&ADCINT1_ISR;

 EDIS;

 PieCtrlRegs.PIEIER1.bit.INTx1=1;

 IER |= M_INT1;

 EINT;

 for(;;) //infinite loop

 {

 asm(" NOP");

 if (EndlessLoopCounter++ >= 4294967295)

 {

 EndlessLoopCounter=0;

 }

 }

}// end of main

44

off as wanted either within the interrupt or manually in the watch window of

Code Composer Studio
TM

. The statements used are shown in Figure 2.35.

The pins chosen and their function is shown in Table 2.2.

FIGURE 2.35: EXCERPTS OF THE DEVICE INITIALIZATION CODE FOR PIN

AND CLOCK CONFIGURATION

TABLE 2.2: PIN CONFIGURATION

SIGNAL PIN

PWM-1A GIPO-00

PWM-1B GIPO-01

PWM-2A GIPO-02

PWM-2B GIPO-03

PWM-3A GIPO-04

PWM-3B GIPO-05

Input current ADC-A0

Output current A ADC-A1

Output current B ADC-A2

Output current C ADC-A3

Input voltage ADC-B0

Output voltage A ADC-B1

Output voltage B ADC-B2

Output voltage C ADC-B3

RESET- GPIO-18 (configured to be set high

initially)

SysCtrlRegs.PCLKCR0.bit.ADCENCLK = 1; // ADC

SysCtrlRegs.PCLKCR1.bit.EPWM1ENCLK = 1; // ePWM1

SysCtrlRegs.PCLKCR1.bit.EPWM2ENCLK = 1; // ePWM2

SysCtrlRegs.PCLKCR1.bit.EPWM3ENCLK = 1; // ePWM3

SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1; // Enable TBCLK

GpioCtrlRegs.GPAMUX1.bit.GPIO0 = 1; // 1=EPWM1A

GpioCtrlRegs.GPAMUX1.bit.GPIO1 = 1; // 1=EPWM1B,

GpioCtrlRegs.GPAMUX1.bit.GPIO2 = 1; // 1=EPWM2A

GpioCtrlRegs.GPAMUX1.bit.GPIO3 = 1; // 1=EPWM2B

GpioCtrlRegs.GPAMUX1.bit.GPIO4 = 1; // 1=EPWM3A

GpioCtrlRegs.GPAMUX1.bit.GPIO5 = 1; // 1=EPWM3B

GpioCtrlRegs.GPAMUX2.bit.GPIO18 = 0; // 0=GPIO

GpioDataRegs.GPASET.bit.GPIO18 = 1; // Set High initially

45

If additional functions are implemented in the code later, one must

remember to specify the pins and enable the module clocks within this

function.

2.4.3 PWM SIGNAL INITIALIZATION

The PWM modules are initialized in the InitEPWMs() function given in

converter_PWM_Setup.c file. Three ePWM channels are used; ePWM1,

ePWM2 and ePWM3, controlling each converter bridge. This file initializes

the registers for all three. Each channel has two ePWM outputs, A and B,

which are controlling the two MOSFETs in one bridge-leg. When one turns

on, the other one turns off and vice versa. All three channels are using an

equal triangular waveform signal, a PWM time base counter (TBCTR) and

one control signal (CMPA) each to make the PWM signal. Hence, the three

bridge-legs are independent of each other while having the same frequency.

The PWM-A signal is set to low (AQ_CLEAR) when the time-base counter

equals CMPA on down-count (CAD) and set to high (AQ_SET) when they

are equal on the time base counter’s up-count (CAU). The opposite is set for

the B signal. The textbox under shows the implementation of this in the

code.

FIGURE 2.36: EXCERPTS OF THE PWM SETUP CODE OF HOW TO

CONFIGURE THE PWM SIGNALS

The frequency of the time-base counter, the switching frequency, is

set by the time-base-period bit, EPwmXRegs.TBPRD, and the system clock

frequency of the microcontroller, , of 80 MHz.

// PWM1A low (AQ_CLEAR) when CMPA = TBCNT on down count (CAD)

EPwm1Regs.AQCTLA.bit.CAD = AQ_CLEAR;

// PWM1A high (AQ_SET) when CMPA = TBCNT on up count (CAU)

EPwm1Regs.AQCTLA.bit.CAU = AQ_SET;

// PWM1B high (AQ_SET) when CMPA = TBCNT on down count (CAD)

EPwm1Regs.AQCTLB.bit.CAD = AQ_SET;

// PWM1B low (AQ_CLEAR) when CMPA = TBCNT on up count (CAU)

EPwm1Regs.AQCTLB.bit.CAU = AQ_CLEAR;

46

2.16

(Texas

Instruments

A, 2011)

For a PWM frequency, , of 50 kHz, the TBPRD becomes 800. The

switching frequency can easily be varied by selecting another value for

TBPRD.

The duty ratio is calculated from the EPwmXRegs.CMPA.half.CMPA value

by the equation

2.17

(Texas

Instruments

A, 2011)

The initial CMPA value is set to TBPRD/2 within this file which gives a

duty ratio of 50 % for all PWM signals. While the program is running, the

CMPA value can be changed within the interrupt to fit the desired output

values.

The blanking-time is set by the EPwmXRegs.DBFED (forward edge delay)

and EPwmXRegs.DCRED (reverse edge delay) bits to 200 time base

periods for both rising and falling edge of the signal. One time base period

is one period of the system clock of 80 MHz. The blanking time is thus

200/80 MHz = 2.5 µs. Recalling the MOSFET’s turn on and off time of 0.1

and 0.15 µs, this is high enough. It should be adjusted when the system is up

and running.

ePWM1, ADCSOCA will be used to trigger the analog to digital conversion

(ADC) once every period of the triangular waveform, 50 kHz, at its zero

crossing by the statement EPwmXRegs.ETSEL.bit.SOCASEL =

ET_CTR_ZERO.

47

To summarize, Figure 2.37 shows the different waveforms, values and

signals for one ePWM channel. The three main parameters of the PWM

modules are

 The switching frequency, which is determined by TBPRD

 The duty ratio, set by CMPA, sets on the desired value of the

converter’s output.

 The blanking time, set by DBFED and DBRED, will depend on the

MOSFETs and must be fit for the ones chosen.

FIGURE 2.37: TBCTR, CMPA, PWM, ADCSOCA, BLANKING

TIME(TEXAS INSTRUMENTS A, 2011)

2.4.4 ADC INITIALIZATION

The initialization of the ADC setup is done in InitADC() which header is

given in the converer_Adc.c file. The eight channels of conversions are

specified in this function. They are all set to be triggered by ePWM1,

ADCSOCA, by the statement AdcRegs.ADCSOCYCTL.bit.TRIGSEL = 5.

Which pin each channel is going to convert is set by the

AdcRegs.ADCSOCYCTL.bit.CHSEL bit.

The ADC ISR is triggered by the end-of-conversion (EOC) of channel 7,

which is the last one. It is determined that the flag bit must be cleared in

48

order to start another ISR. The flag bit is cleared within the ADC interrupt

service routine.

The conversion results are given as digital numbers of 12 bit. Equation 2.9

gives the ratio of the input signal.

2.4.5 ADC INTERRUPT SERVICE ROUTINE

As explained above, the ADC interrupt service routine (ISR) is what is done

after the signals of the 8 channels have been converted. A block diagram of

the ADC ISR is given in Figure 2.38. The conversion results are stored in a

circular array with room for 50 values of each conversion. The term circular

array referrers to the overwriting of the oldest values as the array becomes

full. Equations given in sub-section 2.2.4 and equation 2.9 are used to get

the real current and voltage values from the digital numbers. This is not

calculated within the ISR, to save time. The values can be processed later in

Matlab for instance.

The microcontroller has a limit of storing around 2000 values, making 50

per channel OK, and allowing a maximum of 250. This can be rearranged in

order to get more values for one parameter.

In the end, the PIE group is acknowledged and the ADC int flag bit cleared

to enable further interrupts. A counter counts the number of ISRs. This is

done for debugging such that it easily can be seen if the ISR is done.

49

FIGURE 2.38: BLOCK DIAGRAM OF THE ADC INTERRUPT SERVICE

ROUTINE

ISR ADC
(50 kHz)

Store
conversion
results in

circular array

Acknowledge
PIE group

Clear ADC int
flag

ADC int
counter

50

3 A CASE STUDY: DC MOTOR DRIVE

As written earlier, the switch-mode power electronic converter has a wide

range of usage. These kinds of converters are often utilized in power

processing units because of their high energy efficiency and low cost, size,

and weight (Mohan, 2003). The full-bridge converter and three-phase

inverter are the two most common. These can operate in all four quadrants

of the current-voltage plane and can hence be used as a dc-to-ac inverter or

ac-to-dc rectifier or just dc-dc operation (Mohan, et al., 2003).

 The full-bridge converter is mostly used in dc motor drives, dc-ac

conversion in single-phase uninterruptible ac power supplies, or dc-ac high

intermediate frequency conversion in switch-mode transformer-isolated dc

power supplies (Mohan, et al., 2003). The three-phase dc-ac inverters are

generally used in ac motor drives and uninterruptible ac power supplies

(Mohan, et al., 2003). When used in such power processing units (PPUs),

the converter’s efficiency can exceed 95 %, and even exceed 98 % for large

power ratings (Mohan, 2003).

This second part of this study, explains the utilizing of the converter in a DC

motor drive for speed control. First, some basic theory about the DC motor,

DC motor control and speed measurement is given. It is explained what

parameters that needs to be controlled in order to vary the speed of the DC

motor, how the control is done and structured and how to measure the actual

rotational speed of the DC motor. Then the system as a whole is described,

i.e. how to connect the different parts together to control the speed of the

motor. Finally, the software tailored for this operation is explained.

51

3.1 THE DC MOTOR

The theory behind this section is obtained from (Chapman, 2005) and

(Mohan, 2003).

A fundamental figure of the DC machine is displayed in Figure 3.1. The

stator generates a magnetic field in which the rotor rotates. The rotor

consists of one or more current coils, generating a magnetic field when

voltage is applied. The magnetic field from the rotor coils opposes the

magnetic field from the stator and causes the rotor to rotate. When the fields

are pointing in the same direction, the rotor current direction is altered. Such

will the stator field continue to cause the rotor to rotate. The voltage source

is connected to the rotor through brushes and conductors while it rotates.

The connection between the stationary brushes on the supply side and the

conductors at the rotor side alters every half rotation to change the rotor

current direction.

FIGURE 3.1: FUNDAMENTALS OF THE DC MACHINE(CHAPMAN, 2005)

The equivalent circuit of such a separately exited DC machine is shown in

the Figure 3.2 below. The left hand side circuit represents the field circuit

which generates the magnetic field in the stator of the machine. This

requires a separate power source, hence the name separately excited. RF

52

represents the resistance and LF represents the inductance in those windings.

For a permanent magnet (PM) DC machine, the stator field is made by

permanent magnets, and is thus constant.

FIGURE 3.2: CIRCUIT DIAGRAM OF SEPARATELY EXITED DC

MOTOR(CHAPMAN, 2005)

The right hand side of the circuit diagram represents the rotor. is the

applied rotor voltage and is the resistance in the windings. The back emf,

 , is the induced voltage in the rotor from the stator field when the rotor is

rotating. The applied voltage is given as

 3.1

Where is given as

 3.2

 is a constant depending on the machine’s characteristics, is the flux

from the stator field, and is the rotational speed given in radians per

second.

The DC machine can operate in all four quadrants of the current-voltage

plane. The applied voltage polarity determines the direction of the rotation

and the current direction of the determines whether it is operating as a motor

53

or generator. In this report, the motor operation is considered and the current

is thus only flowing into the machine.

The torque of the motor is given as

 3.3

By inserting equation 3.2 and 3.3 into 3.1, one can see that the rotational

speed is given as

3.4

The speed is controlled by varying the applied voltage .

The magnetic field is supplied by an external voltage source which in this

study is considered a constant power source or a permanent magnet which

cannot be varied.

The induced torque depends on the load and the change in speed, according

to equation 3.5.

This shows that during constant speed, the induced torque must be equal to

the load torque. While during an acceleration or deceleration of the speed,

the induced torque must be respectively higher or lower than the load

torque. The machine will thus draw the needed current from the DC source

to either rotate the load during steady state, or to accelerate or decelerate the

load during speed increase or decrease.

3.5

To avoid over-current condition in the process of controlling the speed by

the applied voltage , it is required to control the current drawn by the

54

motor. The following sections will describe how one can control both the

input voltage and current to the motor by means of an electric drive.

The motor constants and are given as

3.6

(Chapman,

2005)

Where Z is the total number of conductors in the rotor, a is the number of

current paths and P is the number of pole pairs.

55

3.2 THE CONTROL THEORY OF THE DC

MACHINE

The theory described here is obtained from (Mohan, 2003) and (Wescott,

2000).

3.2.1 PI CONTROLLERS

For the control of a DC motor, the proportional-integral (PI) controller is

sufficient (Mohan, 2003). A block diagram of a general PI controller

controlling a plant is shown in the figure below. The plant in this concern

includes the motor and drive.

FIGURE 3.3: PI CONTROLLER (MOHAN, 2003)

This is a feedback system, where the controller’s input is the error

between the system’s input and output.

The proportional controller’s output is the error multiplied by the

proportional gain . This is the simplest way to control a motor. For low

gains, the system slowly reaches the desired point of operation. For higher

gains the system does so faster, but by increasing the gain there will be more

and more oscillations before the desired point is reached. For too high gains

the system may get unstable and oscillate around the desired output. For

systems with too much delay, the proportional controller will cause

56

oscillations even for low gains. With too low gain, this system will not reach

the desired output with only the proportional controller, and a long term

error will occur.

The integral controller summarizes all errors and multiplies the sum to the

integral gain, . The integral controller hence “remembers” what it has

gone through before and will therefore help to cancel long term errors.

However, the integral controller alone is too slow and hence the system will

easily get unstable with only the integral controller implemented. Since the

integral controller summarizes the error over time, the sum can get too high

and drive the system far away from the target. To prevent this, a maximum

and minimum value of the integrator must be set. This is called anti-windup.

The sum of the proportional and integral controller’s output is the input to

the drive of the motor. This will regulate the control signal to the motor such

that the error between the desired and actual value eventually becomes zero.

The ratio between the input and output to a system is defined as the

system’s transfer function. The general transfer function of the PI controller

is in the s plane written as

 3.7

In time domain it is given as

3.8

(Balchen, et

al., 1999)

To implement the controller digitally, to be able to use the microcontroller

for the control, the transfer function must be made discrete, as by equation

3.9. k is the sample number k=0,1,2… and is the sampling period.

 (Balchen, et al., 1999) 3.9

57

To find the proportional and integral gains, and , of the controller the

transfer function for the whole system must be considered.

The open-loop transfer function of a system is disregarded the

feedback loop. For the system shown in Figure 3.3 above it is given as

3.10

(Mohan, 2003)

 is the controller’s transfer function and is the plant’s transfer

function. The closed-loop transfer function for a unity feedback

system is given as

3.11

(Mohan, 2003)

The open-loop frequency-response is shown in the figures under. Here, the

cross-over frequency and the phase margin are marked. These are two

terms that categorize the system which can be used to find the gain

constants of the controllers.

58

FIGURE 3.4: FREQUENCY RESPONSE OF THE OPEN-LOOP TRANSFER-

FUNCTION (MOHAN, 2003)

The cross-over frequency is defined as the frequency where the gain

(magnitude) equals unity, i. e. . In most systems, the cross-

over frequency is equal to the closed-loop bandwidth which is proportional

to the response time.

At the cross-over frequency the phase delay of the open-loop transfer-

function must be less than 180° for the closed-loop feedback-system to be

stable. The phase margin is defined as the phase angle of the open-loop

transfer-function, measured with respect to -180°.

 3.12

(Mohan, 2003)

For a stable system, the phase margin should be greater than 45°,

close to 60°.

59

3.2.2 THE CASCADE CONTROL STRUCTURE

For full DC motor control, three different controllers are needed: The torque

(current), speed and position controller. These are organized into the

cascade control structure which is of common usage for the DC motor

control because of the high flexibility.

FIGURE 3.5: CASCADE CONTROL STRUCTURE FOR DC MOTOR

CONTROL(MOHAN, 2003)

The innermost loop represents the torque control and the electrical system,

here consisting of a DC machine and the drive which is its power processing

unit. Since the current is proportional to the torque, this loop controls the

current too. The second loop is the speed-control loop together with a

representation of the mechanical system. The outermost loop is the position

control loop which is not considered in this report.

Each loop is having a bandwidth (crossover frequency) of one order of

magnitude lower than the loop within. The response time is therefore

shortest for the torque loop and longest for the position loop.

The first step in the design is to assume operation around the steady-state

point where the system is assumed to be linear. Then, if it is not, the

controller must be adjusted as appropriate.

When finding the gain constants of each control loop, one has to start with

the torque/current control loop. Its crossover frequency should be one or

two orders of magnitude smaller than the switching frequency of the motor

control (Mohan, 2003).

60

The block diagram of the torque loop is given in the figure under. The first

block is the PI controller with the current error as its input. The drive is

represented by a proportional controller, . The rest of the system

represents the DC motor, from equation 3.1, 3.2 and 3.3.

FIGURE 3.6: TORQUE CONTROL LOOP(MOHAN, 2003)

To find its transfer function, the block diagram should first be simplified.

Noticing the current and torque being proportional to each other according

to equation 3.3, and lumping together the motor blocks into one, the block

diagram now looks like:

FIGURE 3.7: SIMPLIFIED TORQUE CONTROL LOOP(MOHAN, 2003)

The subscript i indicates current/torque control. The open-loop transfer

function is thus

 3.13

The gains are selected by setting the zero () of the PI controller to

cancel the motor pole at).

61

3.14

(Mohan, 2003)

Under these conditions, the transfer function is simplified into

3.15

(Mohan, 2003)

At the selected cross over frequency,

3.16

(Mohan, 2003)

When considering the speed loop, the crossover frequency and bandwidth is

set to one order of magnitude smaller than that of the torque loop. The

torque-control loop can therefore be set to 1, while considering the speed

loop. This part of the cascade structure is shown in the figure under. The last

block represents the mechanical system.

FIGURE 3.8: SPEED CONTROL LOOP(MOHAN, 2003)

This gives an open loop transfer function of

3.17

62

The subscript stands for speed and is the total effective inertia for the

motor and load.

This transfer function has a double pole at the origin. At the crossover

frequency, the magnitude of the transfer function equals 1 and the angle is

the phase margin subtracted by 180°.

 3.18

 3.19

The gain constants of the speed controller and can now be found by

solving 3.18 and 3.19.

An easier way to determine the gain constants is by trying and failing

systematically, as explained by Wescott (2000). First, both gains are set to

zero. Then the proportional gain start value is chosen between 1 and 100. If

the system is oscillating, decrease the gain with a factor of 10, of it is not

oscillating, increase it with the same factor. The closer one gets to the

desired value, the smaller rate of change for the gain constant should be

used. Stop when the system responds well to the change with a fast response

with not too much overshoot. Then the integral gain should be tuned. Start

with a value between 0.0001 and 0.01. Change it until the response is fairly

fast without too much oscillation.

S A M P L I N G T I M E

The sampling time should initially be set to between 1/100
th

 and 1/10
th

 of

the desired settling time (Wescott, 2000). It can be beneficial to keep the

sampling frequency as a variable and have the opportunity to increase it. In

the code, the sampling time should hence be made to a controllable variable.

63

Since this system does not have a differential controller, the sampling

frequency can be decreased a bit. The sampling frequency should never be

set lower than 5 times the desired settling time.

64

3.3 SPEED MEASUREMENT

The instantaneous rotational speed of the motor is measured by a

quadrature encoder of the type HEDS-5540. It is mounted directly on the

motor shaft and sends pulses to the microcontroller which it can use to

calculate the speed. The encoder is explained here by use of the information

from the QE’s datasheet (Hewlett Packard, u.d.) and Texas Instruments A

(2011).

It is made of a disk with 1024 slots placed evenly around the edge,

degrees apart. A light source is set on one side, and two photo sensors, A

and B, placed degrees apart on the other side are sensing every time a

slot pass and use this to generate the quadrature encoder pulse (QEP)

signals, QEP-A and QEP-B. They are shown in Figure 3.9, together with the

disk, light and photo sensors.

FIGURE 3.9: THE PRINCIPLE BEHIND THE QUADRATURE ENCODER

(TEXAS INSTRUMENTS, 2010)

High rotational speeds are calculated by counting the number of pulses

passed during a fixed time interval. For low rotational speeds the time it

takes for one pulse to pass is measured. Hence, the encoder can measure a

wide range of speeds.

65

One of the QEP signals will lead the other by 90°, and this is used to find

the rotational direction.

According to its datasheet (appendix F), the quadrature encoder needs a

voltage suppliy of 0-7 V. It is supplied by the +3V3_GND2 on the PCB,

hence its output signals are within the microcontroller’s range of 0-3.3 V.

Since it is not connected to the power circuit, only the axis of the motor, its

output signals can directly be connected to the microcontroller unit without

isolation.

66

3.4 UTILIZING THE CONVERTER IN THE DC

MOTOR DRIVE

To use the converter in a DC motor drive only two of the bridge-legs are

needed. The motor is connected between the outputs of the two, which

configures a full-bridge converter. The input voltage to the motor can now

be varied and hence its rotational speed and input current controlled. The

circuit diagram of the connections is shown in the figure under.

FIGURE 3.10: A FULL-BRIDGE DC-DC CONVERTER CONTROLLING A DC

MOTOR(MOHAN, ET AL., 2003)

With bipolar voltage switching, the full-bridge converter can be used to

drive the motor in all 4 quadrants. However, only the two quadrants with

positive current flow into the machine will be used in this study. The

polarity of the motor input voltage determines the rotational direction.

The PI controllers must be implemented within the microcontroller’s code.

The microcontroller gets the set-speed input and calculates the actual motor

speed by the QEP signals from the encoder. The error between these two is

the input to the speed PI controller. Its output is the set-current. The set-

current minus the measured current, is the input to the current PI controller

which controls the PWM duty ratio. The PWM signals are fed into the drive

67

which controls the motor. The PWM duty ratio is adjusted in such a way

that the actual speed will meet the set speed, at the same time as undesirably

high current transients are avoided.

The switching frequency is initially set to 50 kHz. The current-loop

crossover-frequency has to be one order of magnitude lower, 5 kHz. The

speed-loop crossover-frequency is set to one order of magnitude lower than

the current loop’s, at 100 Hz. The controller gains are initially set to 0 and

the value should be found, as described above, when the system is up and

running.

The system block diagram is given in Figure 3.11.

FIGURE 3.11: BLOCK DIAGRAM OF THE SYSTEM

Microcontroller

PI PI PWM

Driver

DC source

DC
motor

Load

Encoder

ADC

Speed
calculation

QEP A, B

PWM 1A, 1B, 2A, 2B

Iin, 2xIout, Vin, 2xVout
Iout

setI
+ -setSpeed

Speed

Speed
error

Current
error

68

3.5 SOFTWARE IMPLEMENTATION FOR DC

MOTOR DRIVE

For specific task of DC motor control, the code presented in section 2.4,

with some modifications, is used as a foundation and additional code is

added to do the speed measurement and control. The controller algorithm is

based on the examples given by Wescott (2000). The code will be explained

in detail as in section 2.4, but first comes a short description to give an

overview.

The switching frequency, the frequency of the PWM signals, is initially set

to 50 kHz. The code is written such that this can be varied by only one

parameter, TBCTR. The current loop is implemented within the ADC ISR.

Because the ADC ISR is called at the switching frequency, the current loop

is placed within an if-loop which is only called every 10
th

 ADC ISR. This

makes the frequency of the current loop one order of magnitude lower than

the switching frequency, i.e. 5 kHz for a switching frequency of 50 kHz.

A setup for the QEP input is made and the speed is measured by the

quadrature encoder pulse (QEP) and calculated within the QEP ISR. The

speed loop is also implemented in the QEP ISR which is triggered at 100

Hz, one order of magnitude lower than the current loop.

What is added to the existing code is the settings for the QEP and QEP ISR,

as well as some changes in the DeviceInit() and main(). The PWM-1 and

PWM-2 modules are set to bipolar voltage switching, and the PWM-3

module is disabled. The code will now be explained in more detail. The

most important parameters are the switching frequency, the current-loop and

speed-loop bandwidth, the controller’s gains and the maximum values for

the current controller.

The code is included in appendix D.

69

3.5.1 CURRENT LOOP

The current loop, implemented within the ADC ISR, is shown in the textbox

below. The code is based on Wescott (2000) and the equations presented in

section 0. The sampling period is given as indexB times

EPwm1Regs.TBPRD, such that the code will follow any changes done to

the sampling/switching frequency automatically. When indexB is 10, the

execution of the current loop will be one order of magnitude lower than the

switching frequency.

The rest of the code is self-explained from the comments and equations in

section 3.2.

FIGURE 3.12: CURRENT/TORQUE CONTROL LOOP

//Current/torque loop

 if (indexB==10)

//To make the current loop calculate for every 10th

interrupt, making the sampling time for the current loop on

order of magnitude lower than the switching frequency

 {

 //calculates the output of the current control loop

 currentError=setCurrent-AdcResult.ADCRESULT2;

 //calculates the current error

 pTermI=kpI*currentError;

 //proportional term

 iStateI+=currentError;

 //sums up the current errors

 if(iStateI>iStateIMax) iStateI=iStateIMax;

 //anti-windup

 if(iStateI<iStateIMin) iStateI=iStateIMin;

 iTermI=kiI*iStateI*EPwm1Regs.TBPRD/4000000;

 //integral term: sampling period =

//10*EPwm1Regs.TBPRD*2/80MHz

 currentController=pTermI+iTermI;

 //current controller output

 //calculate the new duty ratio

 EPwm1Regs.CMPA.half.CMPA -= currentController;

 EPwm2Regs.CMPA.half.CMPA=EPwm1Regs.CMPA.half.CMPA;

 indexB=1;

 }

70

3.5.2 QEP INITIALIZATION AND SPEED CALCULATION

The initialization of the QEP peripherals, is done in the InitEQEP() function

called by the main() function. Its function header is shown in the textbox

below and given in the DC_md_QEP_Setup.c file. The basics of this

function are taken from the eqep_freqcal example in the TI’s ControlSUITE

folder.

FIGURE 3.13: THE INITIALIZATION OF THE QEP MODULE

The quadrature unit timer (QUTMR) is enabled by the UTE bit and set to a

frequency of 100 Hz by setting its period (QUPRD) to 800000, i.e. equation

3.20. It is a saw-tooth waveform which counts to 799999 before it is resets

void InitEQEP()

{

EQep1Regs.QUPRD=800000; // Unit Timer =

100Hz=80 MHz/800000.

EQep1Regs.QDECCTL.bit.QSRC=00; // QEP input is

quadrature count mode

EQep1Regs.QEPCTL.bit.FREE_SOFT=2; // Position counter is

unaffected by emulation suspend

EQep1Regs.QEPCTL.bit.PCRM=11; // PCRM=11 mode:

//QPOSCNT is latched into QPOSLAT and reset on unit time

//out event

EQep1Regs.QEPCTL.bit.UTE=1; // Unit Timer Enable

EQep1Regs.QPOSMAX=4294967295; // Max value of

POSCNT, = max value of 32 bit int.

EQep1Regs.QEPCTL.bit.QPEN=1; // QEP enable

EQep1Regs.QCAPCTL.bit.UPPS=2; // 1/4 for unit

position

EQep1Regs.QCAPCTL.bit.CCPS=6; // 1/64 for CAP clock

EQep1Regs.QCAPCTL.bit.CEN=1; // QEP Capture Enable

EQep1Regs.QEPCTL.bit.QCLM=1; // Latch on unit time

out

EQep1Regs.QEINT.bit.UTO=1; // Enable unit time

out interrupt

EQep1Regs.QFLG.bit.UTO=1; // Unit time out

interrupt flag: Set by eQEP unit timer period match

} // end InitEQEP()

71

to 0. The zero reaching is called the unit time event and it will trigger the

QEP interrupt service routine.

 3.20

The position counter (QPOSCNT) is set to count every rising and falling

edge of both QEP-A and QEP-B signals, i.e. 4 counts per pulse period. The

value is latched into the QPOSLAT bit and then reset on every unit time

event, i.e. once every period of the unit timer.

These parameters are used for the high speed measurements. The

QPOSLAT value over 4 says how many pulses that have passed, and the

unit timer period is the time it took for them to pass. The high speed given

in periods per seconds, is thus QPOSLAT over 4 divided by the switching

period, given in equation 3.20. To get the speed in revolutions per minute, it

is multiplied by 60 s/min over 1024 pulses/rotation. The high speed

equation is given below.

3.21

These parameters are shown in Figure 3.14. Notice the change in direction

after two QEP pulses. The QDIR bit is 1 for forward, and 0 for backward

rotation. For the illustration of it, QPOSMAX, the maximum value of the

position counter, is set to 10 in the figure. As seen, the position counter is

reset to the maximum value on the unit time even when rotation

counterclockwise. In the code, the maximum value is set to 2^32-

1=4294967295. The value of the position counter is reset if it exceeds this

value. According to equation 3.21 this gives a possible maximum

measureable speed of 6.29*10
9
 rpm, which is more than high enough.

72

FIGURE 3.14: THE TWO QUADRATURE ENCODER PULSES, QUADRATURE

UNIT TIMER, DIRECTION, AND POSITION COUNTER (TEXAS

INSTRUMENTS A, 2011)

For counterclockwise (CCW) rotation, the QPOSCNT counts backwards,

starting with its maximum value. The high-speed calculation is thus done by

subtracting the QPOSLAT (QPOSCNT) value from QPOSMAX value and

putting a negative sign in front of the answer. The rest is done as in equation

3.21.

3.22

For low speed measurements the QEP edge capture unit is used. It is

measuring the time for the QEP pulses to pass. The QEP capture timer

(QCTMR) is pre-scaled from the system clock of 80 MHz by the CCPS bit

which is set to 1/64. It (QCTMR) is latched into the capture period register

(QCPRDLAT) on every unit position event (UPEVNT). Hence,

QCPRDLAT/CCPS is the time it takes for one unit position event to occur.

The UPEVNT is pre-scaled by the UPPS bit to happen every 4th count of

73

the position counter (QPOSCNT). Recalling that the position counter counts

four per pulse of the QEP signal, the unit position event will happen once

every period of the QEP signal. This is summarized in the low-speed

equation below. The low speed calculation will be the same regardless of

the rotational direction. But for counterclockwise rotation, a negative sign is

used.

3.23

The waveforms of the capture signals are shown in Figure 3.15. In the

figure, notice that the speed decreases after a couple of QEP pulses, and that

the unit position event (UPEVNT) happens every other, not fourth, position

counter (QPOSCNT) in the illustration.

FIGURE 3.15: THE EDGE-CAPTURE PULSES(TEXAS INSTRUMENTS A,

2011)

EQep1Regs.QCPRD is a 32 bit paramenter, which can hold a value up to

2^32-1=4294967295. If the time measured for one slot to pass is this long,

74

the motor should be considered at stand-still. This will give a speed of

2.84*10
-7

 rpm. Therefore, this calculation will work for unrealistic low

speeds.

3.5.3 QEP INTERRUPT SERVICE ROUTINE

The speed control is done within the QEP interrupt service routine (ISR).

The main purpose with this file is to calculate the speed and get a new

setCurrent value as an input to the current loop.

First, the speed is calculated. The EQep1Regs.QEPSTS.bit.QDF bit

indicates if the motor is turning clockwise (=1) or counterclockwise (=0).

The register EQep1Regs.QPOSLAT indicates the position counted since last

interrupt. If this value is high, the equation 3.21 for high speeds should be

used, if the value is low, equation 3.23 for low speeds should be used. The

value on the border of high and low, ‘border’ must be set after testing the

calculation. This is done in section 4.2.3.

FIGURE 3.16: SPEED CALCULATION

Then, the error between this measured speed value and the desired speed is

calculated and this will be the speed PI controllers input.

 int border = 70; //indicates the QPOSLAT value at the border

between the high and low speed measurements

 //Speed calculation

 if (EQep1Regs.QEPSTS.bit.QDF==1) // If forward motor rotation

 {

 //if high speed, equation 3.19 (rpm):

 if (EQep1Regs.QPOSLAT>border) actualSpeed =

1171875*EQep1Regs.QPOSLAT/EQep1Regs.QUPRD;

 // if low speed, equation 3.21 (rpm):

 else if(EQep1Regs.QPOSLAT<=border) actualSpeed =

75000000/EQep1Regs.QCPRDLAT/1024;

 }

 else if (EQep1Regs.QEPSTS.bit.QDF==0)// If reverse motor direction

 {

 Uint32 POSLAT = EQep1Regs.QPOSMAX - EQep1Regs.QPOSLAT;

 //if high speed, equation 3.20 (rpm):

 if(POSLAT >border) actualSpeed = -

(1171875*POSLAT/EQep1Regs.QUPRD);

 //if low speed, equation 3.21 (rpm):

 else if (POSLAT<=border) actualSpeed = -

75000000/EQep1Regs.QCPRDLAT/1024;

 }

 //Store the results in a circular array

 speedArray[index]=actualSpeed;

75

The speed control loop is given in the text box under. It is explained by the

comments and equations in section 3.2.

FIGURE 3.17: SPEED CONTROL LOOP

To summarize, the most important variables for the speed loop and speed

calculation are:

 QUPRD which controls the speed sampling and speed controller

frequency. This bit is set in the InitEQEP() function.

 The value of QPOSLAT which decides the border of the high and low

speed equation. This value is set by the border variable before the

speed-calculation loop in the QEP ISR. This value must be verified

for the specific motor chosen, it is done in sub-section 4.2.3.

 The proportional and integral gain, kpS and kiS. These are set at their

initialization in the beginning of the main file. These are found as

described under section 0 and equation 3.9.

3.5.4 MODIFICATIONS OF THE EXISTING CODE

In the PWM initialization, the PWM-2A and –2B is set to go high and low

opposite of the PWM-1A and -1B to get bipolar voltage switching with both

control signals being equal. This makes it easier to control the CMPA in the

current-control loop. How to do this was described in sub-section 2.4.3.

PWM-1A and PWM-2B are now equal, and PWM-1B and PWM-2A are

equal.

//Speed PI controller:

 speedError = setSpeed - actualSpeed; //Calculate the error

 pTermS = kpS*speedError;

 // proportional term

 iStateS += speedError;

 // the sum of the speed errors

 if (iStateS>iStateSMax)iStateS=iStateSMax; // anti-windup

 if (iStateS<iStateSMin)iStateS=iStateSMin;

 iTermS = kiS*iStateS*EQep1Regs.QUPRD/80000000; // integral term.

Sampling period=EQep1Regs.QUPRD/80MHz

 speedController=pTermS+iTermS;

 // speed controller's output

 setCurrent+=speedController; // update setCurrent

 if(setCurrent >4096)setCurrent = 4096;// avoid setcurrent to

become too high.

// This is the maximum value of the input current.

76

FIGURE 3.18: PWM SETUP

The deviceinit function must also enable the QEP clocks and configure the

QEP pins. The QEP-A and QEP-B signals are connected to respectively the

GPIO-20 and GPIO-21 pins. Since only PWM channel 1 and 2 are used, the

PWM channel 3 is disabled.

FIGURE 3.19: INITIALIZATION OF QEP MODULE CLOCK AND PINS

The declaration of the new ISRs and functions, variables and interrupts must

be done before the main function. Within the main function, the

initialization function InitADC() must be called as well as the enabling of

the new interrupts.

The setCurrent is initially set to 0, since the current loop will run around

5000 times before the speed loop is called. The set-speed and set-current are

also set to zero initially, to avoid any start up transients. The gains are also

set to zero initially. The iStateMax and iStateMin values are set to +/-100.

This value, together with the gains must be specified after the system is up

and running.

SysCtrlRegs.PCLKCR1.bit.EQEP1ENCLK = 1; // eQEP1

SysCtrlRegs.PCLKCR1.bit.EQEP2ENCLK = 1; // eQEP2

SysCtrlRegs.PCLKCR1.bit.EPWM3ENCLK = 1; // ePWM3

// 0=GPIO, 1=EQEP1A, 2=MDXA, 3=COMP1OUT

GpioCtrlRegs.GPAMUX2.bit.GPIO20 = 1;

// 0=GPIO, 1=EQEP1B, 2=MDRA, 3=COMP2OUT

GpioCtrlRegs.GPAMUX2.bit.GPIO21 = 1;

// Settings for the PWM1A and PWM1B

EPwm1Regs.AQCTLA.bit.CAD = AQ_CLEAR;

EPwm1Regs.AQCTLA.bit.CAU = AQ_SET;

EPwm1Regs.AQCTLB.bit.CAD = AQ_SET;

EPwm1Regs.AQCTLB.bit.CAU = AQ_CLEAR;

// Settings for the PWM2A and PWM2B

EPwm2Regs.AQCTLA.bit.CAD = AQ_SET;

EPwm2Regs.AQCTLA.bit.CAU = AQ_CLEAR;

EPwm2Regs.AQCTLB.bit.CAD = AQ_CLEAR;

EPwm2Regs.AQCTLB.bit.CAU = AQ_SET;

77

4 VERIFICATION OF THE DESIGN

4.1 HARDWARE

4.1.1 MOUNTING OF COMPONENTS ON PCB

First, all components were soldered onto the PCB. The surface mounted

(SM) components were the first ones out, since these are the most difficult

ones, and plenty of space around the component is required during the

soldering.

FIGURE 4.1: THE PCB WITH THE SURFACE MOUNTED COMPONENTS

Then the other components were soldered.

78

FIGURE 4.2: THE PCB WITH ALL COMPONENTS SOLDERED ONTO IT

The inductor in the +12V_GND2 circuit was a little larger than first

assumed, and cupper tape was used to conduct it to its SMD pad as seen in

Figure 4.3.

FIGURE 4.3: INDUCTOR IN +12V_GND2 CIRCUIT MOUNTED WITH

CUPPER TAPE

The holes for the current transducers were too small. A drill was used to

expand the holes. Doing this, there were no longer any connection at the

hole’s wall, and they had to be soldered on the upper side to be properly

connected.

79

The three TSR DC-DC converters were larger than first assumed; therefore

they had to be placed on top of the small capacitors. This works for now, but

it needs to be fixed for the next version. A picture of the +12V_GND1 DC-

DC converter is shown under as well as clip from the circuit board layout,

where the space taken by the DC-DC converters are marked yellow.

FIGURE 4.4: TSR DC-DC CONVERTER TOO BIG AND PLACED ON TOP OF

THE CAPACITORS

The finished board with all components and connection wires is shown in

Figure 4.5. The bypassing of the filters, as explained in sub-section 2.2.3, is

done as shown with the orange wires in the upper right corner. The heat

sinks were mounted with isolation between them and the MOSFETs. Notice

that the microcontroller also is mounted.

80

FIGURE 4.5: THE PCB READY FOR USE

4.1.2 VERIFICATION OF PCB

When the mounting was finished, and it turned out the converter did not

work, it was difficult to localize the faults on the PCB since all components

were connected. A better way to do it would have been to solder and verify

part by part. But by debugging the circuit and cutting some current paths,

the faults were found eventually. The first one was that the +/-15V_GND2

DC-DC converter was overloaded. It supplied the GND2 side of the four

isolated amplifiers as well the two operational amplifiers in the current

measurement part. The four isolated amplifiers draw 7 mA each (Burr-

Brown Products from Texas Instruments, 1997) and the two operational

amplifiers draw 45mA each (Texas Instruments, 1987), while the one

converter is able to supply only 33mA (Murata Power Solutions, Inc.,

2012). As a temporary solution, the two operational amplifiers were

disconnected from the voltage supply. A better solution of this for future

versions is presented in chapter 5.

The 5V_GND2 DC-DC converter supplying the current transducers was

also overloaded. The reason for this problem is not as clear, the current

transducers should draw maximum 18 mA each (LEM, u.d.), and the

81

+5V_GND2 voltage supply should be able to supply up to 1 A (Traco

Power, 2009). Since the operational amplifiers for the current measurements

were disconnected, the voltage supply to the current transducers could just

as well be disconnected too. The reason of the problem is not yet found,

when it was focused on getting the converter part to work first of all.

As explained in sub-section 2.2.5, the two +12V DC-DC converters require

conflicted operating voltage ranges. Despite this, both work at an input

voltage of around 36 V. However, a better solution should be found for the

next version. This is described in chapter 5.

The rest of the power supplies work as they should.

The problem description was modified after the PCB was ordered to include

DC motor control. Hence, the speed measurements were not implemented in

the PCB. Nor did the TI Piccolo
TM

 controlSTICK have the QEP input pins

available. A new microcontroller was ordered, the Texas Instruments

Piccolo
TM

 Experimenter’s kit: A Piccolo
TM

 controlCARD with a docking

station. This was wire-connected to the PCB, since it did not fit the original

microcontroller connections on the PCB.

FIGURE 4.6: TI PICCOLO EXPERIMENTER 'S KIT: CONTROLCARD WITH

DOCKING STATION(TEXAS INSTRUMENTS D, 2012)

The signals from the encoder and its voltage supply are connected to the

microcontroller and the PCB via a separate circuit board. The picture under

shows the encoder (the black box mounted on the motor shaft to the left),

82

the separate circuit board and wires. These are the wires for the QEP-A,

QEP-B, QEP-1 signals and 3.3V and GND2. The signals are connected to

the QEP pins of the microcontroller while the voltage supply is connected to

the PCB.

FIGURE 4.7: THE QUADRATURE ENCODER AND ITS CONNECTION WIRES

The Mosfet drivers were supposed to drive the MOSFETs from the PWM

signal of the microcontroller. Even if all pins on the driver had the correct

voltage level and signal, the driver did not give any output signal. By

verifying the drivers on a separate circuit board, it turned out that the high

level of the PWM signal must be around 9 V for the drivers to notice it. It is

actually written in the datasheet that the high part must be 0.7 times the

supply voltage, and that the supply voltage must be in the range of 10-20V

(International Rectifiers, A, 2009). Supplying the drivers by a 12 V source

would need a PWM high signal of at least 0.7*12 V = 8.4 V. The signal

from the microcontroller is only 3.3 V and therefore, the driver did not see

it.

A signal generator was then connected to the PCB’s PWM input, and the

drivers worked properly for that signal, which means that it is only the

signal level which prevents the drivers from working. Since the signal

generator only had one output channel, both MOSFETs could not be

83

switched at the same time and the whole bridge leg could hence not be

verified by this method.

But the power circuit could be verified even if the MOSFETs could not be

controlled by their drivers. First, all MOSFETs were turned off manually,

by connecting the gate to the source for a short time, to de-charge the stray

capacitances in the MOSFET. This was very important in order to prevent

any short circuiting of the main power supply. The voltage between the

upper MOSFET’s drain, which is the input potential, and the lower

MOSET’s source, which is GND1 potential, was equal to the applied

voltage . This implies that the current transducers and the rest of the

circuit from the input connections to the MOSFETs work.

Then, the upper MOSFETs were turned on by connecting the gate to its

respective +12V_DRIVE voltage for a short time. The input voltage was

now measured at the outputs A, B and C of the PCB. Hence, the power

circuit works.

As a solution to the driver problem, an optocoupler (ACNV4506 (Avago

Technologies, 2011)) was used to lift the PWM signal from the

microcontroller to the driver. Since the optocoupler prevents a better

isolation than the driver itself, the drivers were reconnected to as shown in

their datasheet with only one voltage supply, +12V_GND1 (International

Rectifiers, A, 2009). Because it is a high side driver, it did not need a

different supply or arrangement to driver the upper MOSFET in a bridge

when connected this way. Since the optocoupler inverts the signal, an

inverting buffer (HEF4049B (Fairchild Semiconductor(tm), 1987)) was

connected between it and the microcontroller. Otherwise, the blanking time

of the PWM signal would have been turned into an “on-time” where both

MOSFETs were turned on at the same time, hence short circuiting the input

voltage source. The inverting buffer also prevents too much current being

drawn from the microcontroller by the octocoupler.

The components were connected as recommended in their datasheets, with

values of resistances and capacitances as given there (Fairchild

84

Semiconductor(tm), 1987)(Avago Technologies, 2011). A schematic of this

solution is shown in the figure below.

FIGURE 4.8: CIRCUIT DIAGRAM OF OPTOCOUPLER CONNECTION FOR

PWM SIGNAL

The inverting buffer is supplied by +5V_GND2, it draws only 4 µA and the

voltage supply can supply up to 1A (Fairchild Semiconductor(tm), 1987).

The inverting buffer draws a current of +/-0.3 µA from the PWM signal, so

there is no problem with too much current being drawn from the

microcontroller either (Fairchild Semiconductor(tm), 1987). The

optocoupler is supplied on the GND1 side by +12V_GND1. This can supply

a total current of up to 1A, and an additional current of 20 mA to the

optocoupler is negligible (Avago Technologies, 2011).

Before soldering this part it was verified with a board as shown in the figure

below. The power supplies were now gotten from separate power sources

and the PWM signal from a signal generator.

85

FIGURE 4.9: VERIFICATION OF OPTOCOUPLER CONNECTION

The optocoupler’s response time was too long to make it work properly for

high frequencies. The resistances connected between its pin 8 and 10 were

varied until the best response was reached with 3.5 kΩ. But even then, the

output signal was not a perfect square wave and the response time longer

than specified in the datasheet (Avago Technologies, 2011). This is most

likely due to the long wires connecting it from the microcontroller to the

PCB. The capacitors were also tried varied, but without any noticeable

change.

The inverter and optocoupler with connections were soldered onto a

separate circuit board and connected to the drivers and voltage supply on the

PCB. The drivers were disconnected from the SMD pads and reconnected

by wires to the new potentials. The signal got all the way to the MOSFETs,

turning them on and off. However, because of the shape of the PWM signal

from the optocoupler, was not a perfect square wave, the duty ratio of the

PWM signal out of the drivers was a bit lower than the signal out of the

microcontroller.

After this was done, another driver was found (IRS21171 (International

Rectifiers, B, 2009)). This one has the same connections as the previous

86

one, but it can see an input signal of 3.3 V. Hence, with this driver,

everything can be connected as it was planned from the beginning. The

octocoupler solution was therefore discarded, because of the complicity of it

compared to using the new drivers. Unfortunately, time ran out and the new

drivers were not verified.

87

4.2 SOFTWARE VERIFICATION

4.2.1 PWM SIGNALS

To verify the PWM signals, the microcontroller’s PWM pins were

connected to an oscilloscope. Figure 4.10 shows the PWM signals from one

channel with blanking time of 200 system clock cycles and a duty ratio of

50 %. Figure 4.12 and Figure 4.13 show the same signal, only a little closer

and with cursors measuring the forward and rising edge delay (FED/RED).

To the right it is seen that the time between the cursors are 2.5 µs which

equals a blanking time of 200 cycles with the system time-base clock of 80

MHz, as written in the code. The frequency of the signal is measured to be

50.17 kHz, which is close enough to the desired value of 50 kHz.

FIGURE 4.10: PWM1A (YELLOW) AND PWM2A (BLUE) WITH A DUTY

RATIO OF 50 % AND A BLANKING TIME OF 200 TIME-BASE-CLOCK

CYCLES

88

FIGURE 4.11: ONE CYCLE OF PWM1A (YELLOW) AND PWM1B (BLUE)

WITH A DUTY RATIO OF 50 %. CURSORS ARE SHOWING FORWARD-EDGE

DELAY (FED) AS 2500 µS = 200 TIME-BASE-CLOCK CYCLES

FIGURE 4.12: ONE CYCLE OF PWM1A (YELLOW) AND PWM1B (BLUE)

WITH A DUTY RATIO OF 50%. CURSORS ARE SHOWING THE RISING EDGE

DELAY (RED) AS 2500 µS = 200 TIME-BASE-CLOCK CYCLES

Figure 4.13 shows the two PWM signals with a CMPA value of 600, which

equals a duty ratio of 600/800 = 75 %.

89

FIGURE 4.13: PWM1A (YELLOW) AND PWM1B (BLUE) WITH A DUTY

RATIO OF 75 % AND A BLANKING TIME OF 200 TIME-BASE-CLOCK

CYCLES

The next two figures show that the PWM1A and PWM2B are equal and

PWM1B and PWM2A are equal as for bipolar voltage switching. The duty

ratio is still 75 %.

FIGURE 4.14: PWM1A (YELLOW) AND PWM2B (BLUE) FOR DUTY

RATIO 75 % WITH BIPOLAR-VOLTAGE-SWITCHING SETUP

90

FIGURE 4.15: PWM1B (BLUE) AND PWM2A (YELLOW) WITH DUTY

RATIO OF 75 % WITH BIPOLA- VOLTAGE-SWITCING SETUP

4.2.2 ADC

To verify the analog-to-digital conversion ratio, a potmeter was connected

with its input pins to the microcontrollers 3.3 V and GND pins and the

output to the ADC-A0 pin. The voltage value at the ADC-A0 pin is

measured by a multimeter and compared to the digital value gotten from the

ADC results. The results are shown in the table under. The expected digital

value is calculated from equation 2.9.

91

TABLE 4.1: VERIFICATION OF ADC

VADC-A0 (V) Expexcted digital

value

ADC result

(digital)

Ratio between

ADC result and

VADC-A0

0.001 1 0 0

0.197 245 288 1462

0.401 498 587 1464

0.600 745 879 1465

0.798 990 1175 1472

1.007 1250 1480 1470

1.208 1499 1780 1474

1.400 1738 2061 1472

1.606 1993 2365 1473

1.802 2237 2655 1473

1.996 2477 2940 1473

2.205 2737 3250 1474

2.400 2979 3535 1473

2.604 3232 3837 1474

2.747 3410 4049 1474

2.797 3472 4095 1464

3.200 3972 4095 1280

3.314 4095 4095 1236

The right column shows the ratio between the digital value gotten from the

ADC and the value measured by the multimeter. This ratio should have been

equal to 4096/3.3=1241.2 as given in equation 2.9. Even if it far from this

value, the ratio stays fairly constant at 1474 for input signals between 1.2

and 2.75 V which seems to be the highest value it can convert. For signals

lower than 1.2V, the 1475 ratio could be used without much fault level.

This makes the conversion range 0-2.7 V instead of 0-3.3 V. The current

and voltage measurement signals should be scaled for this new range for a

new version of the PCB. For now, the maximum current and voltage value

which can be measured is given by respectively equation 2.13 and 2.15.

92

The current maximum value of 9 A is OK. Since the +12V_GND2 DC-DC

converter requires an input voltage of 36, and the +12V_GND1 requires a

voltage of less than 36 V, the maximum measureable voltage of 43 V is OK

as well. However, this might be considered when making a new version of

the PCB.

For low voltage and current values, the ADC is not accurate enough. A

solution of this problem can be to lift the 0 value a bit, as the current

transducers already do. The 0 point of the measured value could give a

measurement signal of 0.5 V, for instance. However, this will give a poorer

resolution of the results.

It should also be possible to do something about the conversion ratio by

calibrating the microcontroller as explained in sub-section 8.1.9 in (Texas

Instruments A, 2011).

To summarize, the ADC works, but it should be calibrated or the analog

conversion circuit adjusted.

4.2.3 SPEED CALCULATION AND SPEED-CONTROL LOOP

This sub-section shows the verification of the high and low speed

calculation and the PI controller in the speed loop.

The verification is done by generating two PWM signals, one shifted 90°

from the other, to emulate the QEP-A and QEP-B signals from the encoder.

They are generated on the PWM4A and PWM4B pins and connected to the

QEP-A and QEP-B pins. These are initialized in a separate function,

InitEPWM4() called from the main function. The function header is given in

a separate file, DC_md_EPwm4Setup.c. The signals are shown in Figure

4.16 under. To emulate a varying speed, the signals’ period

(EPwm4Regs.TBPRD) can be varied in the watch window. The CMPA

93

value is set in the QEP ISR to be half the period, such that the duty ratio

always is 50 %.

FIGURE 4.16: THE QEP SIGNALS MADE BY THE PWM4A AND PWM4B

PINS

First, the high and low speed calculation are verified, to see if they are

correct and in which range they work best. This is to find the border

parameter described in sub-section 3.5.3. The results are shown in

94

Table 4.2 under. It shows the TBPRD value of the PWM4 signal, the

frequency this will represent calculated by 80MHz/TBPRD and the speed

calculated from the frequency by

 4.1

The last two columns show the high and low speed measurements from the

code, based on respectively equation 3.21 and 3.22. If the resulting value

were alternating between two values, the two are both presented in the table

separated by a comma.

95

TABLE 4.2: VERIFICATION OF THE HIGH AND LOW SPEED

CALCULATIONS

TBPRD Calculated

frequency

(Hz)

Speed

calculated

by the

frequency

High speed

(rpm)

Low speed

(rpm)

10 4000000 234375 32767 0, 7706

50 800000 46875 32767 7706, -

28915

100 400000 23438 23437 18310,

24414

200 200000 11719 11718 10463,

12207

400 100000 5859 5859 5634, 6103

600 66667 3906 3906 3854

800 50000 2930 2929 2929

1000 40000 2344 2343 2362

2000 20000 1172 1171 1162

3000 13333 781 780-782 779, 787

4000 10000 586 485 485

5000 8000 469 468 469

10000 4000 234 234 234

20000 2000 117 117 117

30000 1333 78 77-79 78

40000 1000 59 58 58

50000 800 47 46 46

60000 667 39 38-39 39

65535 610 36 36.35 36

For the lower speeds, from 36 to 781 rpm (TBPRD = 65535 to 3000), both

high and low speed measurements are correct.

It was not possible to emulate lower speeds than 36 rpm, since the TBPRD

bit is a 32 bit signed integer which maximum value is 65535. But the low

speed measurements should work for these speeds according to sub-section

0.

96

For speeds higher than 781 rpm, only the high-speed measurements are

correct.

Despite what is written in sub-section 0, that the high speed function works

for all “unrealistic high speeds”, one can see that the maximum value is

reached for TBPRD 50 and 10, of 32767 rpm. However, even if there is a

limit, it is high enough.

Therefore, for speeds between 0 and, say, 100 rpm, the low speed

measurements should be used. The high speed measurements should be used

for speeds between 100 rpm up to as far as it can measure, 32767 rpm.

100 rpm gives a QPOSLAT value of around 70, using equation 3.21. This is

now implemented in the “border” parameter in the speed measurements in

QEP ISR in DC_md_main-F2806x_1.c.

The backward speed is verified by switching the signal wires such that

PWM4A is connected to QEPB and PWM-4B is connected to QEPA. The

measurements give the same results as for the forward rotation for all

values, only with a minus sign in front.

It is then verified that the PI speed-control loop works. Instead of

controlling the set current, the code is rewritten to control the

EPwm4Regs.TBPRD value directly as shown in the textbox under. The

code will hence control the frequency of the signal until it emulates the

speed given in the setSpeed variable. There is no dynamics included within

the system, the response is thus immediate and so the gain must be set when

the real system is up and running. A proportional gain of 10 and an integral

gain of 0.1 are set for this test.

97

FIGURE 4.17: SPEED CONTROLLER CONTROLLING PWM-4

With no dynamics included, the system responds fast at a setSpeed change

from 300 to 400 rpm, seen in Figure 4.18.

FIGURE 4.18: THE SPEED RESPONSE FOR A CHANGE IN SETSPEED FROM

400 TO 300 RPM.

The current-control loop cannot be verified by this method, but for now, if

the speed loop works, it is likely to believe that the current loop does so

too.

4.2.4 THE SYSTEM PUT TOGETHER

The project compiles and the pins are used in the parts above, which implies

that the device initialization function works.

The different parameters are checked and changed manually in the watch

window and the desired response is received, indicating that all parts of the

code work and are executed. The correct values are calculated.

//Speed PI controller:

 speedError = setSpeed - actualSpeed; //Calculate the error

 pTermS = kpS*speedError; // proportional term

 iStateS += speedError; // the sum of the speed errors

 if (iStateS>iStateSMax)iStateS=iStateSMax; // anti-windup

 if (iStateS<iStateSMin)iStateS=iStateSMin;

// integral term. Sampling period=EQep1Regs.QUPRD/80MHz

 iTermS = kiS*iStateS*EQep1Regs.QUPRD/80000000;

 speedController=pTermS+iTermS; // speed controller's output

 EPwm4Regs.TBPRD-=speedController;

98

4.3 SYSTEM VERIFICATION

The verification of the whole system cannot be done at this stage since the

board is still not working. First of all, the drivers are not working, which

implies that the MOSFETs do not turn on. Second, the current measurement

circuits are not working, such that the control part would not get its required

input.

Anyway, to see how it should have been, the system is mounted as shown in

the block diagram of Figure 3.11. This includes the main power supply, a

motor with its field supply, quadrature encoder and load. The load is a

generator with a load resistance of 10 Ω. The setup is shown in Figure 4.19.

FIGURE 4.19: SYSTEM SETUP FOR DC MOTOR CONTROL

The main power supply (the yellow one in the middle) supplies the circuit

board. A separate power supply (the grey beside of the yellow) supplies the

field current of the motor and load-generator. The motor and generator are

mounted on the board shown to the left.

99

Only the two bridge-legs used are connected to the microcontroller. PWM-

1A, PWM-1B, PWM-2A and PWM-2B are used to control respectively

driver 1 to 4.

The current and voltage measurement signals are connected to each respective ADC

pin (Table 2.2).

The computer and microcontroller must be at the same potential as GND2,

which is floating with respect to the power points and GND1. The computer

thus had to be connected to a separation transformer.

The output of the QEP module was connected via the separate circuit board

to the QEP inputs. Its power supply wires are connected to the PCB.

To prevent connection transients, the system was connected before the code

was started. The code was also the first that was turned off.

4.3.1 SPEED MEASUREMENT VERIFICATION

For these verifications, the motor was connected directly to a variable power

supply and a to a field current supply together with the generator which was

set to Vf = 14.5V and If = 1.35 A . The generator load was a 8.2 Ω resistor.

The PCB was connected to its power supply. The quadrature encoder was

connected to the 3.3 V voltage supply and GND2 at the PCB. The

microcontroller was also connected to the PCB.

First, the QEP-A and QEP-B signals are connected to the oscilloscope to see

the waveforms for different speeds. The field supply was constant, while the

input voltage was varied, to emulate the variable voltage out of the

converter. Two pictures recorded from the oscilloscope are shown below,

for an input voltage of respectively 11.26 V and 18.99 V, both within the

range of the converter, which makes this realistic.

100

FIGURE 4.20: QEP SIGNALS WITH INPUT VOLTAGE 11.26 V AND INPUT

CURRENT OF 1.391 A.

FIGURE 4.21: QEP SIGNALS WITH INPUT VOLTAGE OF 18.99 V AND

INPUT CURRENT OF 2.179 A

The speed can be calculated by the frequency by equation 4.1, which is

written at the lower right corner of the figures, respectively 13.7616 and

24.4527 kHz.

Speed1=13.7616 kHz/1024 slots/rotation*60 sec/min = 806.32 rpm

Speed2=24.4527 kHz/1024 slots/rotation*60 sec/min= 1432 rpm

Then, the speeds for several input voltages are measured by both the

code and oscilloscope. The results are shown in

101

Table 4.3. The first two columns show the voltage and current input to the

motor. Both high and low speed measurements from the code are shown,

but the red ones are the ones that should not be used according to sub-

section 4.2.3. The QEP frequency is measured by the oscilloscope, and the

6
th

 column shows the speed calculated by the frequency with equation 4.1.

The fault level is shown in the rightmost column.

The code is rewritten a little in order to get both high and low speed values

such that these can be compared.

102

TABLE 4.3: REULTS OF SPEED-MEASUREMENT

DC

motor

input

voltage

DC

motor

input

current

High

speed

calculation

(equation

3.21)

Low speed

calculation

(equation

3.23)

QEP

frequency

Speed

calculated

by the

frequency

and

equation

over

Fault

level:

coloumn

3 or 4

minus 6

23.07 2.58 1757 1786-1843 30.13 1765 -8

22.15 2.4 1721 1720 29.50 1729 -8

21.08 2.3 1640 1641 28.05 1644 -4

20.16 2.21 1561 1592 26.78 1569 -8

19.09 2.10 1483 1494 25.33 1484 -1

18.18 2.01 1406 1408-1436 24.08 1411 -5

17.02 1.89 1313 1300-1321 22.50 1318 -5

16.03 1.79 1233 1210-1240 21.10 1236 -3

14.96 1.7 1149 1148 19.67 1153 -4

14.07 1.62 1070 1072 18.40 1078 -8

13.08 1.53 993 989 17.01 997 -8

1.99 1.42 906 904 15.48 907 -3

11.05 1.32 829 828 14.18 831 -3

10.00 1.22 747 747 12.80 750 -3

8.99 1.13 666 665 11.37 666 -1

7.98 1.03 584 581 9.99 585 -4

6.9 0.93 498 498 8.53 500 -2

6.17 0.85 439 438 7.54 442 -4

5.60 0.73 348 345 5.96 349 -4

3.97 0.63 266 267 4.58 268 -1

2.97 0.53 188 187 3.22 189 -2

2.09 0.47 116 117 1.97 115 -2

1.01 0.35 27-33 29-38 0.56 33 -1

The difference between the value calculated by the code in column 3 or 4

and the value calculated from the frequency measured by the oscilloscope in

column 5, is small. This is most likely due to inaccurate readings; all values

were alternating a bit while reading them.

103

5 IMPROVEMENTS ON PCB VERSION 2

Most of the faults found and described in the earlier parts of the report, are

fixed in a new version of the PCB, version II. These are not yet verified, but

the ratings or placing of the new components is based on the faults found in

version I. Version II is saved in the new Eagle file master v2.

The sheets have been reorganized a little. The first sheet now includes the

power supplies on GND1 and the three upper drivers. The second sheet

includes all power supplies for GND2. The third and fourth sheets are

unchanged. Sheet three still includes the power circuit, bridge-legs,

MOSFETs, drivers, filters, current transducers and voltage dividers. Sheet

four still includes the signal conversion circuits for the current and voltage

measurements. The fifth and last sheet includes the test pins, the

microcontroller connections, the quadrature connections and some

capacitances for the +5V source.

First of all, new operational amplifiers for the current measurement circuits

are found (LMC660CM (National Semiconductor, 2006)). These are

supplied by their own power supplies, two NMA1212SC. According to the

datasheets, the new operational amplifiers need a maximum current supply

of 18 mA and an input voltage between 5 and 15.5 V(National

Semiconductor, 2006). The new power supplies can supply up to 42 mA at

12 V (Murata Power Solutions, Inc., 2012).

The +12V_GND2 voltage supply is changed to SC001A2B91Z, to suit the

voltage level of the +12V_GND1 voltage converter better. Both of them are

now requiring a voltage level between 18 and 36 V(Lineage Power, 2009).

The drivers are changed to IRS21171 because they suite the output PWM

signal from the MCU (International Rectifiers, B, 2009).

During the verification and mounting of the components on the PCB, more

test pins were needed. The new components also require their own test pins.

Therefore, the test pins are reorganized a little and some new pins are added.

104

The microcontroller connection is new. Since it is already mounted on a

docking station which has a PC connection and LEDs, this is considered the

best solution for now. The pins are therefore connected to the PCB by wires.

Also included in the new PCB is the connections for the qudrature encoder.

Larger SMD pads for the inductor in +12V_GND2 circuit are made. Larger

space for the TSR DC-DC converters (+12V_GND1, +3V3_GND2,

+5V_GND2) is also given. The diameter of the holes for the current

transducers is increased.

An overview of the new power supplies are given in the block diagram

under and a new list of components are added in the appendix B table B-1.

105

FIGURE 5.1: OVERVIEW OF THE POWER SUPPLIES ON PCB AFTER

IMPROVEMENTS

(Burr-Brown Products from Texas Instruments, 1993)(International

Rectifiers, 2011)(International Rectifiers, B, 2009)(LEM, u.d.)(Lineage

Power, 2009)(Murata Power Solutions, Inc., 2012)(National Semiconductor,

2006)(Traco Power, 2009)

Vd=+UB
36V

GND1

+12V_GND1
TSR 1-24120-1

Vin=15-36 V

+12V_GND2
SW001A2B91

Vin=36-75 V

3*Drives
On GND1/high side

IRS21171
Vin=10-20 V

+/-15V_GND2
NMA1215SC-A

Vin=12 V

+3V3_GND2
TSR 1-2433

Vin=4.75-36 V

+5V_GND2
TSR 1-2450

Vin=6.5-36 V

+12V_DRIVER1
NMA1212SC-B

Vin=10-20 V

+/-15V_GND1
NMA1215SC-B

Vin=12 V

+12V_DRIVER2
NMA1212SC-

Vin=10-20 V
+12V_DRIVER3

NMA1212SC-D

Vin=10-20 V

5V_REF_GND2
REF02AU

Vin=8-40 V

6*Drives
on GND2/signal side

IRS21171
Vin=10-20 V

4*Iso amp
GND1 side

ISO124D
Vin = +/-(4,5-18)

4*current
transducers

LTS15-NP
Vin = 5 V

Op-amp
LMC660CM-B
Vin = 5-15.5 V

4*Iso amp
GND2 side

ISO124D
Vin = +/-(4,5-18)

Drive
On pct A/high side

IRS21171
Vin = 10-20 V

Drive
On pct C/high side

IRS21171
Vin = 10-20 V

Drive
On pct B/high side

IRS21171
Vin = 10-20 V

1 A

1 A

1 A

1 A

0.11 A

3*150 uA

0.11 A

0.123 A

0.111 A

0.111 A

0.111 A

6*240 uA

0.0014 A

0.033 A

0.033 A

4*0.007A

4*0.038 A
1 A

0.042 A

0.042 A

0.042 A

150 uA

150 uA

150 uA

+12V_GND2
NMA1212SC-E

Vin=10-20 V

+12V_GND2
NMA1212SC-F

Vin=10-20 V

Op-amp
LMC660CM-A
Vin = 5-15.5 V

0.018 A

0.018 A

0.042 A

0.042 A

0.111 A

0.111 A

Quadrature
encoder
Vin = 0-7 V

0.085 A

4*0.007A

106

6 CONCLUSION AND FURTHER WORK

6.1 WHAT IS DONE

The design of a three-leg converter topology is presented in this thesis. The

converter was implemented on a PCB together with other necessary

equipment such as power supplies, filters, current and voltage measurement

circuits, and microcontroller connections. The schematic and layout of the

PCB was planned in CadSoft Eagle PCB Design Software. The circuit board

was mounted and verified and improvements to the PCB implemented on a

second version of the Eagle files. The main parts that remain are to get the

MOSFET drivers and the measurement circuits to work.

A TI Piccolo
TM

 ControlCARD microcontroller controls the circuit board and

the code implemented is written in Code Composer Studio
TM

. The code is

meant to be used as a general code, which must be tailored for the specific

purpose of the converter. The code is verified through testing, except for the

parts of that needed to be verified using the PCB.

A system for DC motor control is planned and implemented. A DC motor, a

quadrature encoder and power supply were connected to the PCB, the

general code was tailored to be able to control the speed and input current of

the motor. As much as possible of the system were verified, but since the

PCB was not functioning at the end of the laboratory work, the system as a

whole could not be demonstrated or verified.

6.2 PRESENT STATE OF SYSTEM

At the present state, all voltage supplies and the power circuit part of the

PCB works. The drivers get all their correct inputs, but the drivers

themselves are not suitable for the purpose and do not give any PWM

output. New drives are found, but not verified. The voltage-measurement-

107

signal-isolation circuit is expected to work, just waiting for a variable

voltage output voltage to measure.

In the control code the device initialization, the main function and file, and

the setup for the PWM, QEP and ADC work. The speed measurements and

speed controller also function. What remains is to calibrate the ADC to get

the correct conversion ratio, and to verify the current controller code and

find the proper gain constants, anti-windup constants and maximum current

output values. Also, the control-system must be verified as a whole.

The quadrature encoder is connected to the microcontroller and it works as

it should.

6.3 FURTHER WORK

1. Verify the new drivers on the PCB

2. When the drivers work, verify the PCB and the general code by

measuring the output voltage while changing the CMPA value

3. Connect the DC motor at the converter’s output and try to vary the

speed manually by varying CMPA. Connect the quadrature encoder

and measure the speed digitally.

4. Verify voltage measurement circuit

5. Calibrate the ADC ratio of the microcontroller in the code

6. Find out why +5V_GND2 was overloaded with current transducers

connected

7. Implement the new improvements and order the PCB version II.

Solder and verify part by part, especially the current measurement

circuit

8. When all mentioned above works, the control part of the code must

be verified. Start with the current loop, anti-windup and the

maximum current output value. Finally find the controller’s gain

constants.

9. Optimize the existing system,

 Less losses

108

 More accurate conversions

 Shorter current paths

 Place microcontroller on the PCB

 Make a faster code with less calculations within the interrupt

Or use the converter in a three-phase AC motor drive. Much of the

control theory for the DC motor can be used, but it will be more

complicated and challenging.

10. Remember to set aside enough time for laboratory work and do not

assume that it will work initially.

109

7 REFERENCES

Avago Technologies, 2011. ACNV5406. s.l.:Avago Technologies.

Balchen, J. G., Andresen, T. & Foss, B. A., 1999. Reguleringsteknikk. 1.

red. Trondheim: Tapir.

Burr-Brown Products from Texas Instruments, 1993. Datasheet +5V

Precision Voltage Reference. s.l.:Burr-Brown Products from Texas

Instruments.

Burr-Brown Products from Texas Instruments, 1997. Datasheet Precision

Lowest-Cost Isolation Amplifier ISO124. s.l.:Burr-Brown Products from

Texas Instruments.

Chapman, S. J., 2005. Electric Machinery Fundamentals. Singapore:

McGraw-Hill.

Fairchild Semiconductor(tm), 1987. CD4049UBC Hex Inverting Buffer.

s.l.:Fairchild Semiconductor Corporation.

Hewlett Packard, u.d. Quick Assembly Two and Three Channel Optical

Encoders, Technical Data, HEDS-5540. s.l.:Hewlett Packard.

International Rectifiers, A, 2009. Datasheet IRS2123S/IRS2124S.

s.l.:International Rectifiers.

International Rectifiers, B, 2009. Datasheet IRS21171 Single Channel

Driver. s.l.:International Rectifiers.

International Rectifiers, 2011. Datasheet IRFB4110PbF HEXFET Power

MOSFET. s.l.:International Rectifiers.

International Rectifiers, 2012. Application Note AN-978: HV Floating MOS-

Gate Driver ICs. [Internett]

Available at: http://www.irf.com/technical-info/appnotes/an-978.pdf

[Funnet Mai 2012].

110

Ishengoma, F., 2011. Lecturen notes in ELK-21 Electronics for Control of

Power at NTNU, fall 2011. s.l.:s.n.

Ishengoma, F., Schimpf, F. & Norum, L., 2011. DSP-controlled

Photovoltaic Inverter for Universal Application in Reasearch and

Education. Trondheim: s.n.

LEM, u.d. Current Transducer LTS 15-NP. s.l.:LEM.

Lineage Power, 2009. Datasheet SW/SC001/003 Series DC-DC Converter

Power Modules. s.l.:World Wide Headquarters Lineage Power Corporation.

Mohan, N., 2003. Electric Drives - an integrative approach. Minneapolis:

MNPERE.

Mohan, N., Undeland, T. & Robbins, W. P., 2003. Power Electronics.

s.l.:John Wiley & Sons, Inc.

Murata Power Solutions, Inc., 2012. Datasheet NMA 5V, 12V & 15V Series.

s.l.:Murata Power Solutions, Inc..

National Semiconductor, 2006. Datasheet LMC660 CMOS Quad

Operational Amplifier. s.l.:National Semiconductor.

Rahman, F., 2008. Electric Drive Systems. Sydney: s.n.

Savitch, W., 2008. Apsolute C++. Boston: Pearson Education, Inc.

Texas Instruments A, 2011. TMS320x2806x Piccolo Technical Reference

Manual, s.l.: s.n.

Texas Instruments B, 2012. Texas Instruments - Digital Signal Processors

and ARM Microprocessors. [Internett]

Available at:

http://www.ti.com/lsds/ti/dsp/support/dev_tool/ccs_overview.page

[Funnet June 2012].

Texas Instruments C, 2012. Texas Instruments Microcontrollers. [Internett]

Available at:

111

http://www.ti.com/mcu/docs/mcuproductcontentnp.tsp?sectionId=95&famil

yId=919&tabId=2883&DCMP=Piccolo&HQS=piccolo

[Funnet June 2012].

Texas Instruments D, 2012. Texas Instruments. [Internett]

Available at: http://www.ti.com/tool/tmdsdock28335

[Funnet Mai 2012].

Texas Instruments, 1987. Datasheet TLC274 LinCMOS(TM) Precision

Quad Operational Amplifiers. s.l.:Texas Instruments.

Texas Instruments, 2010. C2000 Piccolo One-Day Workshop Module 3.

[Internett]

Available at:

http://processors.wiki.ti.com/index.php/File:Piccolo1DayWorkshopMod3_3

6_477.png

[Funnet Mai 2012].

Traco Power, 2009. Datasheet DC/DC Converters TRS 1 Series, 1A.

s.l.:Traco Electronic AG.

Wescott, T., 2000. www.eetimes.com. [Internett]

Available at:

http://www.eetimes.com/ContentEETimes/Documents/Embedded.com/2000

/f-wescot.pdf

[Funnet April 2012].

Würth Elektronik, 2005. Datasheet 744877100 Power-Choke WE-DD.

s.l.:Würth Elektronik elSos GmbH & Co.KG.

112

APPENDIX A: PCB VERSION I

A-1: LIST OF COMPONENTS

TABLE A-1: LIST OF COMPONENTS VERSION I

 COMPONENT MANUFACTURER

PART . NO .

ORDER

CODE AT

FARNELL

QUANTITY REFERENCE

1 DC-DC converter TSR 1-24120 1672130 1 (Traco Power, 2009)

2 DC-DC converter NMA1215SC 1021441 2 (Murata Power

Solutions, Inc., 2012)

3 DC-DC converter SW001A2B91 2076930 1 (Lineage Power, 2009)

4 DC-DC converter TSR 1-2433 1696319 1 (Traco Power, 2009)

5 DC-DC converter TSR 1-2450 1696320 1 (Traco Power, 2009)

6 DC-DC converter NMA1212SC 1021439 3 (Traco Power, 2009)

7 Inductor 744877100 1869664 1 (Würth Elektronik,

2005)

8 Voltage reference REF02AU 1234885 1 (Burr-Brown Products

from Texas Instruments,

1993)

9 Opamp TLC274INE4 1234855 2 (Texas Instruments,

1987)

10 Current transducer LTS15-NP 1617409 4 (LEM, u.d.)

11 Driver IRS2123SPBF 1925150 6 (International Rectifiers,

A, 2009)

12 MOSFET IRFB4110PBF 1436955 6 (International Rectifiers,

2011)

13 Isolated opamp ISO124D 1544012 4 (Burr-Brown Products

from Texas Instruments,

1997)

113

A-2: SCHEMATICS

114

FIGURE A-1: SHEET 1

115

FIGURE A-2: SHEET 2

116

FIGURE A-3: SHEET 3

117

FIGURE A-4: SHEET 4

118

FIGURE A-5: SHEET 5

119

A-3: LAYOUT

FIGURE A-6: BOARD LAYOUT

120

APPENDIX B: PCB VERSION II:

B-1: LIST OF COMPONENTS

TABLE B-1: LIST OF COMPONENTS VERSION II

 COMPONENT MANUFACTURER

PART . NO .

ORDER

CODE AT

FARNELL

QUANTITY REFERENCE

1 DC-DC converter TSR 1-24120 1672130 1 (Traco Power,

2009)

2 DC-DC converter NMA1215SC 1021441 2 (Murata Power

Solutions, Inc.,

2012)

3 DC-DC converter NMA1212SC 1021439 5 (Murata Power

Solutions, Inc.,

2012)

6 DC-DC converter SC001A2B91Z 2076930 1 (Lineage Power,

2009)

10 DC-DC converter TSR 1-2433 1696319 1 (Traco Power,

2009)

11 DC-DC converter TSR 1-2450 1696320 1 (Traco Power,

2009)

12 Inductor 744877100 1869664 1 (Würth Elektronik,

2005)

13 Voltage reference REF02AU 1234885 1 (Burr-Brown

Products from

Texas Instruments,

1993)

14 Opamp LMC660CM 9487115 2 (National

Semiconductor,

2006)

15 Current transducer LTS15-NP 1617409 4 (LEM, u.d.)

16 Driver 1 IRS21171 1925153 6 (International

Rectifiers, B,

2009)

22 MOSFET IRFB4110PBF 1436955 6 (International

Rectifiers, 2011)

23 Isolated opamp ISO124D 1544012 4 (Burr-Brown

Products from

Texas Instruments,

1997)

121

TABLE B-2: TEST PINS VERSION II

Test pin Connection Test pin Connection

TP1-1 GND1 TP14-1 PWM-3B

TP1-2 +UB TP14-2 GND2

TP1-3 +12V_GND1 TP14-3 +12V_GND2

TP2-1 GND1 TP14-4 PWM-3A

TP2-2 +15V_GND1 TP15-1 PWM_MOSFET6

TP2-3 -15V_GND1 TP15-2 GND1

TP2-4 +12V_GND1 TP15-3 +12V_GND1

TP3-1 PWM_MOSFET1 TP16-1 PWM_MOSFET4

TP3-2 12V_DRIVE1 TP16-2 GND1

TP3-3 GND1 TP16-3 +12V_GND1

TP3-4 S_MOSFET1 TP17-1 PWM_MOSFET2

TP4-1 PWM_MOSFET3 TP17-2 GND1

TP4-2 12V_DRIVE3 TP17-3 +12V_GND1

TP4-3 GND1 TP18-1 V_C_M

TP4-4 S_MOSFET3 TP18-2 GND1

TP5-1 PWM_MOSFET5 TP18-3 V_B_M

TP5-2 12V_DRIVE5 TP18-4 V_IN_M

TP5-3 GND1 TP18-5 V_A_M

TP5-4 S_MOSFET5 TP19-1 GND2

TP6-1 GND2 TP19-2 V_C_M_DIG

TP6-2 GND2 TP19-3 V_B_M_DIG

TP6-3 +12V_GND2 TP19-4 V_A_M_DIG

TP7-1 +12V_GND2 TP19-5 V_IN_M_DIG

TP7-2 -15V_GND2 TP21-1 GND2

TP7-3 +15V_GND2 TP21-2 I_A_M

TP7-4 GND2 TP21-3 I_IN_M

TP8-1 GND2 TP22-1 QEP-B

TP8-2 +12V_GND2 TP22-2 +3V3_GND2

TP8-3 +5V_GND2 TP22-3 QEP-A

TP9-1 GND2 TP22-4 QEP-1

TP9-2 +12V_GND2 TP22-5 GND2

TP9-3 +3V3_GND2 TP23-1 -VCC_SIGNALSCALING_OPAMP

TP10-1 GND2 TP23-2 +VCC_SIGNALSCALING_OPAMP

TP10-2 REF_2V5_GND2 TP23-3 GND2

TP10-3 REF_0V5_GND2 TP24-1 I_B_M

TP11-1 GND2 TP24-2 GND2

TP11-2 -VSS_VOLTREF_OPAMP TP24-3 I_C_M

TP11-3 +VSS_VOLTREF_OPAMP

TP11-4 +12V_GND2

TP12-1 PWM-1B

TP12-2 GND2

122

TP12-3 +12V_GND2

TP12-4 PWM-1A

TP13-1 PWM-2B

TP13-2 GND2

TP13-3 +12V_GND2

TP13-4 PWM-2A

123

B-2: SCHEMATICS

124

FIGURE B-1: SHEET 1

125

FIGURE B-2: SHEET 2

126

FIGURE B-3: SHEET 3

127

FIGURE B-4: SHEET 4

128

FIGURE B-5: SHEET 5

129

B-3: LAYOUT

FIGURE B-6: BOARD LAYOUT

130

APPENDIX C: GENERAL CONVERTER

MICROCONTROLLER CODE

C-1: MAIN FILE

/***********************************

File name: converter_main-F2806x_1.c

Purpose: Control a DC motor drive

**/

#include "F2806x_Device.h"

void DeviceInit(void); // defined in DC_md_DevInit_F2806x.c

void InitEPWMs(void); // defined in DC_md_PWM_Setup.c

void InitADC(void); // defined in DC_md_Adc.c

//define interrupt service routines

interrupt void ADCINT1_ISR(void);

Uint32 EndlessLoopCounter = 0;

int AdcIntCounter = 0;

//ADC ISR parameters

Uint16 AdcBuf[50][8]={0};

void main(void)

{

// Initialize System Control

// Enable Peripheral Clocks, GPIO

// Initialize the PIE control registers to their default state.

// The default state is all PIE interrupts disabled and flags

// are cleared.

 DeviceInit();

 InitEPWMs(); //Initialize PWM modules

 InitADC(); // Initialize ADC

 //Enable the interrupt

 EALLOW;

 PieVectTable.ADCINT1=&ADCINT1_ISR;

 EDIS;

 PieCtrlRegs.PIEIER1.bit.INTx1=1;

 IER |= M_INT1;

 EINT;

 for(;;) //infinite loop

 {

 asm(" NOP");

 if (EndlessLoopCounter++ >= 4294967295)

 {

 EndlessLoopCounter=0;

 }

 }

}// end of main

131

interrupt void ADCINT1_ISR(void)

{

 static int index = 0;

 //Store the converted values in a circular array:

 AdcBuf[index][0]=AdcResult.ADCRESULT0;

 AdcBuf[index][1]=AdcResult.ADCRESULT1;

 AdcBuf[index][2]=AdcResult.ADCRESULT2;

 AdcBuf[index][3]=AdcResult.ADCRESULT3;

 AdcBuf[index][4]=AdcResult.ADCRESULT4;

 AdcBuf[index][5]=AdcResult.ADCRESULT5;

 AdcBuf[index][6]=AdcResult.ADCRESULT6;

 AdcBuf[index][7]=AdcResult.ADCRESULT7;

 index ++;

 if (index == 50) index =0;

 static int indexB = 1;

 indexB ++;

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; // Must acknowledge the PIE group

 AdcRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; // Clear ADCINT1 flag to enable

further interrupts

 //ADC interrupt counter

 AdcIntCounter++;

 if (AdcIntCounter >=200)

 AdcIntCounter=0;

} //end of ADCINT1_ISR

132

C-2: DEVICE INITIALIZATION

//--

// FILE: converter_DevInit_F2806x.c

// Description: Device initialization specific to an Application

// Version: 1.0

// Target: TMS320F2806x family

// Type: Device Dependent

// Copyright ELK21 course 2011

// Date: June 2012

//--

#include "F2806x_Device.h" // DSP2860x Headerfile Include File

// Functions that will be run from RAM need to be assigned to

// a different section. This section will then be mapped to a load and

// run address using the linker cmd file.

#pragma CODE_SECTION(InitFlash, "ramfuncs");

#define Device_cal (void (*)(void))0x3D7C80

void DeviceInit(void); // peripheral clock enables and GPIO setups

void PieCntlInit(void); // initializes the PIE control registers to a known state.

void PieVectTableInit(void); // initialize vector Table

void WDogDisable(void); // disable watchdog timer

void PLLset(Uint16); // set the CLKIN to CPU

void ISR_ILLEGAL(void);

//--

// Configure Device for target Application Here

//--

void DeviceInit(void)

{

 WDogDisable(); // Disable the watchdog initially

 DINT; // Global Disable all Interrupts

 IER = 0x0000; // Disable CPU interrupts

 IFR = 0x0000; // Clear all CPU interrupt flags

// Select Internal Oscillator 1 as Clock Source (default),

// and turn off all unused clocks to conserve power.

// Refer to IntOsc1Sel function in F2806x_SysCtrl.c

 EALLOW;

 SysCtrlRegs.CLKCTL.bit.INTOSC1OFF = 0; // Internal Oscillator 1 Off Bit. 0=ON

8default)

 SysCtrlRegs.CLKCTL.bit.OSCCLKSRCSEL=0; // Clk Src = INTOSC1

 SysCtrlRegs.CLKCTL.bit.XCLKINOFF=1; // Turn off XCLKIN

 SysCtrlRegs.CLKCTL.bit.XTALOSCOFF=1; // Turn off XTALOSC

 SysCtrlRegs.CLKCTL.bit.INTOSC2OFF=1; // Turn off INTOSC2

 EDIS;

// SYSTEM CLOCK speed based on internal oscillator = 10 MHz

// Refer F2806x Technical reference manual table 1-24 page 84

// Table 1-24 PLL setings

// 0x10= 80 MHz (16)

// 0xF = 75 MHz (15)

// 0xE = 70 MHz (14)

// 0xD = 65 MHz (13)

// 0xC = 60 MHz (12)

// 0xB = 55 MHz (11)

// 0xA = 50 MHz (10)

// 0x9 = 45 MHz (9)

// 0x8 = 40 MHz (8)

// 0x7 = 35 MHz (7)

// 0x6 = 30 MHz (6)

// 0x5 = 25 MHz (5)

// 0x4 = 20 MHz (4)

// 0x3 = 15 MHz (3)

// 0x2 = 10 MHz (2)

133

// CLKIN=OSCCLK*PLLCR[DIV]*PLLSTS[DIVSEL]= 10MHz * 16)/2 = 80 MHz

 PLLset(0x10); // the value of 0x10 makes CLKIN to CPU = 80 MHz

 // PLLSet is within this file

 // It is a modification of InitPll(DSP28_PLLCR,DSP28_DIVSEL)

 // defined in F2806x_SysCtrl.c

// Initialise interrupt controller and Vector Table

// to defaults for now. Application ISR mapping done later.

 PieCntlInit();

 PieVectTableInit();

 EALLOW; // below registers are "protected", allow access.

// LOSPCP - LOW SPEED CLOCKS prescale register settings

// Refer F2806x Technical Reference manual table 1-19 page 75

// LOSPCP prescale register settings, normally it will be set to default values

// reset default is SYSCLKOUT/4

 SysCtrlRegs.LOSPCP.all = 0x0002; // Sysclk / 4 (20 MHz)

// XCLKOUT to SYSCLKOUT ratio. By default XCLKOUT = 1/4 SYSCLKOUT

// Refer F2806x Technical Reference manual Figure 1-35 page 95

 SysCtrlRegs.XCLK.bit.XCLKOUTDIV=2; // XCLKOUT=SYSCLKOUT

 // PERIPHERAL CLOCK ENABLES

//---

// If you are not using a peripheral you may want to switch

// the clock off to save power, i.e. set to = 0.

// Value of 1 means the clock is ON

//

// Note: not all peripherals are available on all 280x derivates.

// Refer to the datasheet for your particular device.

//*** Refer to BlinkingLED-DevInit_F2806x.c from

// C:\TI\controlSUITE\development_kits\F28069 controlSTICK\Timer - BlinkingLED

// also refer to F2806x TRM pages 70-74

// for the clocks refer F2806x TRM figure 1-13 page 69

// From TRM, Read the default clock setting (enabled or disabled)

// For example, CPUTIMERxENCLK (x=1-3) are enabled at reset. Refer figue 1-17 page 74

 SysCtrlRegs.PCLKCR0.bit.ADCENCLK = 1; // ADC

 //--

 SysCtrlRegs.PCLKCR3.bit.COMP1ENCLK = 0; // COMP1

 SysCtrlRegs.PCLKCR3.bit.COMP2ENCLK = 0; // COMP2

 SysCtrlRegs.PCLKCR3.bit.COMP3ENCLK = 0; // COMP3

 //--

 SysCtrlRegs.PCLKCR0.bit.I2CAENCLK = 0; // I2C

 //--

 SysCtrlRegs.PCLKCR0.bit.SPIAENCLK = 0; // SPI-A

 SysCtrlRegs.PCLKCR0.bit.SPIBENCLK = 0; //SPI-B

 //--

 SysCtrlRegs.PCLKCR0.bit.MCBSPAENCLK = 0; //McBSP-A

 //--

 SysCtrlRegs.PCLKCR0.bit.SCIAENCLK = 0; // SCI-A

 SysCtrlRegs.PCLKCR0.bit.SCIBENCLK = 0; //SCI-B

 //--

 SysCtrlRegs.PCLKCR1.bit.EQEP1ENCLK = 1; // eQEP1

 SysCtrlRegs.PCLKCR1.bit.EQEP2ENCLK = 1; // eQEP2

 //--

 SysCtrlRegs.PCLKCR1.bit.ECAP1ENCLK = 0; //eCAP1

 SysCtrlRegs.PCLKCR1.bit.ECAP2ENCLK = 0; // eCAP2

 SysCtrlRegs.PCLKCR1.bit.ECAP3ENCLK = 0; // eCAP3

 //--

 SysCtrlRegs.PCLKCR1.bit.EPWM1ENCLK = 1; // ePWM1

 SysCtrlRegs.PCLKCR1.bit.EPWM2ENCLK = 1; // ePWM2

 SysCtrlRegs.PCLKCR1.bit.EPWM3ENCLK = 1; // ePWM3

 SysCtrlRegs.PCLKCR1.bit.EPWM4ENCLK = 1; // ePWM4

 SysCtrlRegs.PCLKCR1.bit.EPWM5ENCLK = 0; // ePWM5

 SysCtrlRegs.PCLKCR1.bit.EPWM6ENCLK = 0; // ePWM6

 SysCtrlRegs.PCLKCR1.bit.EPWM7ENCLK = 0; // ePWM7

 SysCtrlRegs.PCLKCR1.bit.EPWM8ENCLK = 0; // ePWM8

 //--

 SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1; // Enable TBCLK

 //--

134

 SysCtrlRegs.PCLKCR3.bit.DMAENCLK = 0; // DMA

 //--

 SysCtrlRegs.PCLKCR3.bit.CLA1ENCLK = 0; // CLA

 //--

 //--

// GPIO (GENERAL PURPOSE I/O) CONFIG

//--

//-----------------------

// QUICK NOTES on USAGE:

//-----------------------

// If GpioCtrlRegs.GP?MUX?bit.GPIO?= 1, 2 or 3 (i.e. Non GPIO func), then leave

// rest of lines commented

// If GpioCtrlRegs.GP?MUX?bit.GPIO?= 0 (i.e. GPIO func), then:

// 1) uncomment GpioCtrlRegs.GP?DIR.bit.GPIO? = ? and choose pin to be IN or OUT

// 2) If IN, can leave next to lines commented

// 3) If OUT, uncomment line with ..GPACLEAR.. to force pin LOW or

// uncomment line with ..GPASET.. to force pin HIGH or

//--

// The following has included all GPIO for F28069 80 PINS (controlSTICK USB)

// for pins names refer F2806x datasheet Figure 3.8 page 26

// Also F2806x datasheet table 3-6 page 31

//--

// GPIO-00 - PIN FUNCTION = --Spare-- PIN 69

 GpioCtrlRegs.GPAMUX1.bit.GPIO0 = 1; // 0=GPIO, 1=EPWM1A, 2=Resv, 3=Resv

 //GpioCtrlRegs.GPADIR.bit.GPIO0 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO0 = 1; // uncomment if --> Set Low initially

 //GpioDataRegs.GPASET.bit.GPIO0 = 1; // uncomment if --> Set High initially

//--

// GPIO-01 - PIN FUNCTION = --Spare--PIN 68

 GpioCtrlRegs.GPAMUX1.bit.GPIO1 = 1; // 0=GPIO, 1=EPWM1B, 2=rsvd, 3=COMP1OUT

// GpioCtrlRegs.GPADIR.bit.GPIO1 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO1 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO1 = 1; // uncomment if --> Set High initially

//--

// GPIO-02 - PIN FUNCTION = --Spare-- PIN 67

 GpioCtrlRegs.GPAMUX1.bit.GPIO2 = 1; // 0=GPIO, 1=EPWM2A, 2=Resv, 3=Resv

 //GpioCtrlRegs.GPADIR.bit.GPIO2 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO2 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO2 = 1; // uncomment if --> Set High initially

//--

// GPIO-03 - PIN FUNCTION = --Spare-- PIN 66

 GpioCtrlRegs.GPAMUX1.bit.GPIO3 = 1; // 0=GPIO, 1=EPWM2B, 2=SPISOMIA,

3=COMP2OUT

// GpioCtrlRegs.GPADIR.bit.GPIO3 = 1; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO3 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO3 = 1; // uncomment if --> Set High initially

//--

// GPIO-04 - PIN FUNCTION = --Spare-- PIN 07

 GpioCtrlRegs.GPAMUX1.bit.GPIO4 = 1; // 0=GPIO, 1=EPWM3A, 2=Resv, 3=Resv

 GpioCtrlRegs.GPADIR.bit.GPIO4 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO4 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO4 = 1; // uncomment if --> Set High initially

//--

// GPIO-05 - PIN FUNCTION = --Spare-- PIN 08

 GpioCtrlRegs.GPAMUX1.bit.GPIO5 = 1; // 0=GPIO, 1=EPWM3B, 2=SPISIMOA, 3=ECAP1

// GpioCtrlRegs.GPADIR.bit.GPIO5 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO5 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO5 = 1; // uncomment if --> Set High initially

//--

// GPIO-06 - PIN FUNCTION = --Spare-- PIN 46

 GpioCtrlRegs.GPAMUX1.bit.GPIO6 = 1; // 0=GPIO, 1=EPWM4A, 2=EPWMSYNCI,

3=EPWMSYNCO

 GpioCtrlRegs.GPADIR.bit.GPIO6 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO6 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO6 = 1; // uncomment if --> Set High initially

//--

// GPIO-07 - PIN FUNCTION = --Spare-- PIN 45

 GpioCtrlRegs.GPAMUX1.bit.GPIO7 = 1; // 0=GPIO, 1=EPWM4B, 2=SCIRXDA, 3=ECAP2

 GpioCtrlRegs.GPADIR.bit.GPIO7 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO7 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO7 = 1; // uncomment if --> Set High initially

//--

// GPIO-08 - PIN FUNCTION = --PIN 43 // 0=GPIO, 1=EPWM5A, 2=Resv, 3=ADCSOCA0

 GpioCtrlRegs.GPAMUX1.bit.GPIO8 = 0;

 GpioCtrlRegs.GPADIR.bit.GPIO8 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO8 = 1; // uncomment if --> Set Low initially

135

// GpioDataRegs.GPASET.bit.GPIO8 = 1; // uncomment if --> Set High initially

//--

// GPIO-09 - PIN FUNCTION = --PIN 49 // 0=GPIO9, 1=EPWM5B, 2=SCITXDB, 3=ECAP3

 GpioCtrlRegs.GPAMUX1.bit.GPIO9 = 0;

 GpioCtrlRegs.GPADIR.bit.GPIO9 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO9 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO9 = 1; // uncomment if --> Set High initially

//--

// GPIO-10 - PIN FUNCTION = --PIN 60 // 0=GPIO, 1=EPWM6A, 2=Resv, 3=ADCSOCB0

 GpioCtrlRegs.GPAMUX1.bit.GPIO10 = 0;

 GpioCtrlRegs.GPADIR.bit.GPIO10 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO10 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO10 = 1; // uncomment if --> Set High initially

//--

// GPIO-11 - PIN FUNCTION = --PIN 59 // 0=GPIO11, 1=EPWM6B, 2=SCIRXDB, 3=ECAP1

 GpioCtrlRegs.GPAMUX1.bit.GPIO11 = 0;

 GpioCtrlRegs.GPADIR.bit.GPIO11 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO11 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO11 = 1; // uncomment if --> Set High initially

//--

// GPIO-12 - PIN FUNCTION = --Spare--

 GpioCtrlRegs.GPAMUX1.bit.GPIO12 = 0; // 0=GPIO, 1=TZ1n, 2=SCITXDA, 3=SPISIMOB

 GpioCtrlRegs.GPADIR.bit.GPIO12 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO12 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO12 = 1; // uncomment if --> Set High initially

//--

// GPIO-13 - PIN FUNCTION = --Spare-- PIN 75 // 0=GPIO, 1=TZ2, 2=Resv, 3=SPISOMIB

 GpioCtrlRegs.GPAMUX1.bit.GPIO13 = 0;

 GpioCtrlRegs.GPADIR.bit.GPIO13 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO13 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO13 = 1; // uncomment if --> Set High initially

//--

//--

// GPIO-14 - PIN FUNCTION = --Spare-- PIN 76 // 0=GPIO, 1=TZ3, 2=SCITXDB, 3=SPICLKB

 GpioCtrlRegs.GPAMUX1.bit.GPIO14 = 0;

 GpioCtrlRegs.GPADIR.bit.GPIO14 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO14 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO14 = 1; // uncomment if --> Set High initially

//--

//--

// GPIO-15 - PIN FUNCTION = --Spare-- PIN 70 // 0=GPIO, 1=ECAP2, 2=SCIRXDB, 3=SPISTEB

 GpioCtrlRegs.GPAMUX1.bit.GPIO15 = 0;

 GpioCtrlRegs.GPADIR.bit.GPIO15 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO15 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO15 = 1; // uncomment if --> Set High initially

//--

// GPIO-16 - PIN FUNCTION = --Spare-- PIN 44

 GpioCtrlRegs.GPAMUX2.bit.GPIO16 = 0; // 0=GPIO, 1=SPISIMOA, 2=Resv 3=TZ2n

 GpioCtrlRegs.GPADIR.bit.GPIO16 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO16 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO16 = 1; // uncomment if --> Set High initially

//--

// GPIO-17 - PIN FUNCTION = --Spare-- PIN 42

 GpioCtrlRegs.GPAMUX2.bit.GPIO17 = 0; // 0=GPIO, 1=SPISOMIA, 2=Resv 3=TZ3n

 GpioCtrlRegs.GPADIR.bit.GPIO17 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO17 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO17 = 1; // uncomment if --> Set High initially

//--

// GPIO-18 - PIN FUNCTION = --Spare-- PIN 41

 GpioCtrlRegs.GPAMUX2.bit.GPIO18 = 0; // 0=GPIO, 1=SPICLKA, 2=SCITXDB, 3=XCLKOUT

 GpioCtrlRegs.GPADIR.bit.GPIO18 = 1; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO18 = 1; // uncomment if --> Set Low initially

 GpioDataRegs.GPASET.bit.GPIO18 = 1; // uncomment if --> Set High initially

//--

// GPIO-19 - PIN FUNCTION = --Spare-- PIN 52

 GpioCtrlRegs.GPAMUX2.bit.GPIO19 = 0; // 0=GPIO, 1=SPISTEA, 2=SCIRXDB, 3=ECAP1

 GpioCtrlRegs.GPADIR.bit.GPIO19 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO19 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO19 = 1; // uncomment if --> Set High initially

//--

// GPIO-20 - PIN FUNCTION = --PIN 05

 GpioCtrlRegs.GPAMUX2.bit.GPIO20 = 1; // 0=GPIO, 1=EQEP1A, 2=MDXA, 3=COMP1OUT

 GpioCtrlRegs.GPADIR.bit.GPIO20 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO20 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO20 = 1; // uncomment if --> Set High initially

//--

// GPIO-21 - PIN FUNCTION = --PIN 06

136

 GpioCtrlRegs.GPAMUX2.bit.GPIO21 = 1; // 0=GPIO, 1=EQEP1B, 2=MDRA, 3=COMP2OUT

 GpioCtrlRegs.GPADIR.bit.GPIO21 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO21 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO21 = 1; // uncomment if --> Set High initially

//--

// GPIO-22 - PIN FUNCTION = --PIN 78

 GpioCtrlRegs.GPAMUX2.bit.GPIO22 = 1; // 0=GPIO, 1=EQEP1S, 2=MCLKXA, 3=SCITXDB

 GpioCtrlRegs.GPADIR.bit.GPIO22 = 0; // 1=OUTput, 0=INput

//GpioDataRegs.GPACLEAR.bit.GPIO22 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO22 = 1; // uncomment if --> Set High initially

//--

// GPIO-23 - PIN FUNCTION = --PIN 01

 GpioCtrlRegs.GPAMUX2.bit.GPIO23 = 1; // 0=GPIO, 1=EQEP1I, 2=MFSXA, 3=SCIRXDB

 GpioCtrlRegs.GPADIR.bit.GPIO23 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO23 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO23 = 1; // uncomment if --> Set High initially

//--

// GPIO-24 - PIN FUNCTION = --PIN 77 // ** special for PN device

 GpioCtrlRegs.GPAMUX2.bit.GPIO24 = 0; // 0=GPIO, 1=ECAP1, 2=rsvd, 3=SPISIMOB

 GpioCtrlRegs.GPADIR.bit.GPIO24 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO24 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO24 = 1; // uncomment if --> Set High initially

//--

 // GPIO-25 - PIN FUNCTION = PIN 31 // ** special for PN device

 GpioCtrlRegs.GPAMUX2.bit.GPIO25 = 0; // 0=GPIO, 1=ECAP2, 2=rsvd, 3=SPISOMIB

 GpioCtrlRegs.GPADIR.bit.GPIO25 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO25 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO25 = 1; // uncomment if --> Set High initially

//=====================

// GPIO-26 - PIN FUNCTION = --PIN 62 // ** special for PN device

 GpioCtrlRegs.GPAMUX2.bit.GPIO26 = 0; // 0=GPIO, 1=ECAP3, 2=rsvd, 3=SPICLKB

 GpioCtrlRegs.GPADIR.bit.GPIO26 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO26 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO26 = 1; // uncomment if --> Set High initially

//--

// GPIO-27 - PIN FUNCTION = --PIN 61 // ** special for PN device

 GpioCtrlRegs.GPAMUX2.bit.GPIO27 = 0; // 0=GPIO, 1=HRCAP2, 2=rsvd, 3=SPISTEB

 GpioCtrlRegs.GPADIR.bit.GPIO27 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO27 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO27 = 1; // uncomment if --> Set High initially

//--

// GPIO-28 - PIN FUNCTION = --PIN 40 //

 GpioCtrlRegs.GPAMUX2.bit.GPIO28 = 0; // 0=GPIO, 1=SCIRXDA, 2=SDAA, 3=TZ2

 GpioCtrlRegs.GPADIR.bit.GPIO28 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO28 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO28 = 1; // uncomment if --> Set High initially

//---

 //GPIO-29 - PIN FUNCTION = --PIN 34

 GpioCtrlRegs.GPAMUX2.bit.GPIO29 = 0; // 0=GPIO, 1=SCITXDA, 2=SCLA, 3=TZ3

 GpioCtrlRegs.GPADIR.bit.GPIO29 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO29 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO29 = 1; // uncomment if --> Set High initially

//---

// GPIO-30 - PIN FUNCTION = --PIN 33 ** special for PN device

 GpioCtrlRegs.GPAMUX2.bit.GPIO30 = 0; // 0=GPIO, 1=CANRXA, 2=rscvd, 3=EPWM7A

 GpioCtrlRegs.GPADIR.bit.GPIO30 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO30 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPASET.bit.GPIO30 = 1; // uncomment if --> Set High initially

//---

 // GPIO-31 - PIN FUNCTION = --PIN 32 ** special for PN device

 GpioCtrlRegs.GPAMUX2.bit.GPIO31 = 0; // 0=GPIO, 1=CANTXA, 2=rsvd, 3=EPWM8A

 GpioCtrlRegs.GPADIR.bit.GPIO31 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPACLEAR.bit.GPIO31 = 1; // uncomment if --> Set Low initially

 GpioDataRegs.GPASET.bit.GPIO31 = 0; // uncomment if --> Set High initially

 //---

// GPIO-32 - PIN FUNCTION = --Spare-- PIN 79

 GpioCtrlRegs.GPBMUX1.bit.GPIO32 = 0; // 0=GPIO, 1=I2C-SDA, 2=EPWMSYNCI, 3=ADCSOCA0

 GpioCtrlRegs.GPBDIR.bit.GPIO32 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPBCLEAR.bit.GPIO32 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPBSET.bit.GPIO32 = 1; // uncomment if --> Set High initially

//--

// GPIO-33 - PIN FUNCTION = --Spare-- PIN 80

 GpioCtrlRegs.GPBMUX1.bit.GPIO33 = 0; // 0=GPIO, 1=I2C-SCLA, 2=EPWMSYNCO, 3=ADCSOCB0

 GpioCtrlRegs.GPBDIR.bit.GPIO33 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPBCLEAR.bit.GPIO33 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPBSET.bit.GPIO33 = 1; // uncomment if --> Set High initially

137

//--

// GPIO-34 - PIN FUNCTION = PIN 55 = LED for F2806x controlSTICK

 GpioCtrlRegs.GPBMUX1.bit.GPIO34 = 0; // 0=GPIO, 1=COMP2OUT, 2=Resv, 3=COMP3OUT

 GpioCtrlRegs.GPBDIR.bit.GPIO34 = 1; // 1=OUTput, 0=INput

// GpioDataRegs.GPBCLEAR.bit.GPIO34 = 1; // uncomment if --> Set Low initially

 GpioDataRegs.GPBSET.bit.GPIO34 = 1; // uncomment if --> Set High initially

//--

// GPIO 35-38 are defaulted to JTAG usage, and are not shown here to enforce JTAG debug

// usage.

//--

// GPIO-39 - PIN FUNCTION = --PIN 53 // GPIO39

 GpioCtrlRegs.GPBMUX1.bit.GPIO39 = 0; // 0=GPIO, 1=Resv, 2=Resv, 3=Resv

 GpioCtrlRegs.GPBDIR.bit.GPIO39 = 0; // 1=OUTput, 0=INput

// GpioDataRegs.GPBCLEAR.bit.GPIO39 = 1; // uncomment if --> Set Low initially

// GpioDataRegs.GPBSET.bit.GPIO39 = 1; // uncomment if --> Set High initially

//--

// GPIO-40 - GPIO-58 does not exist for 80 pin device

 EDIS; // Disable register access

}

//==

// NOTE:

// IN MOST APPLICATIONS THE FUNCTIONS AFTER THIS POINT CAN BE LEFT UNCHANGED

// THE USER NEED NOT REALLY UNDERSTAND THE BELOW CODE TO SUCCESSFULLY RUN THIS

// APPLICATION.

//==

// disable watchdog - refer F2806x TRM Figure 35 and table 40 page 62

void WDogDisable(void)

{

 EALLOW;

 SysCtrlRegs.WDCR= 0x0068; // Bits 0-2 WDPS - Watchdog pre-scale = 000 => WDCLK =

OSCCLK/512/1 (default)

 EDIS; // Bits 3-5 - 101 -

 // Bit WDDIS - Watchdog disable - 1 is disable watchdog

}

// This function initializes the PLLCR register.

//void InitPll(Uint16 val, Uint16 clkindiv)

void PLLset(Uint16 val)

{

 volatile Uint16 iVol;

 // Make sure the PLL is not running in limp mode

 if (SysCtrlRegs.PLLSTS.bit.MCLKSTS != 0)

 {

 EALLOW;

 // OSCCLKSRC1 failure detected. PLL running in limp mode.

 // Re-enable missing clock logic.

 SysCtrlRegs.PLLSTS.bit.MCLKCLR = 1;

 EDIS;

 // Replace this line with a call to an appropriate

 // SystemShutdown(); function.

 asm(" ESTOP0"); // Uncomment for debugging purposes

 }

 // DIVSEL MUST be 0 before PLLCR can be changed from

 // 0x0000. It is set to 0 by an external reset XRSn

 // This puts us in 1/4

 if (SysCtrlRegs.PLLSTS.bit.DIVSEL != 0)

 {

 EALLOW;

 SysCtrlRegs.PLLSTS.bit.DIVSEL = 0;

 EDIS;

 }

 // Change the PLLCR

 if (SysCtrlRegs.PLLCR.bit.DIV != val)

 {

 EALLOW;

 // Before setting PLLCR turn off missing clock detect logic

 SysCtrlRegs.PLLSTS.bit.MCLKOFF = 1;

 SysCtrlRegs.PLLCR.bit.DIV = val;

 EDIS;

 // Optional: Wait for PLL to lock.

138

 // During this time the CPU will switch to OSCCLK/2 until

 // the PLL is stable. Once the PLL is stable the CPU will

 // switch to the new PLL value.

 //

 // This time-to-lock is monitored by a PLL lock counter.

 //

 // Code is not required to sit and wait for the PLL to lock.

 // However, if the code does anything that is timing critical,

 // and requires the correct clock be locked, then it is best to

 // wait until this switching has completed.

 // Wait for the PLL lock bit to be set.

 // The watchdog should be disabled before this loop, or fed within

 // the loop via ServiceDog().

 // Uncomment to disable the watchdog

 WDogDisable();

 while(SysCtrlRegs.PLLSTS.bit.PLLLOCKS != 1) {}

 EALLOW;

 SysCtrlRegs.PLLSTS.bit.MCLKOFF = 0;

 EDIS;

 }

 //divide down SysClk by 2 to increase stability

 EALLOW;

 SysCtrlRegs.PLLSTS.bit.DIVSEL = 2;

 EDIS;

}

// This function initializes the PIE control registers to a known state.

//

void PieCntlInit(void)

{

 // Disable Interrupts at the CPU level:

 DINT;

 // Disable the PIE

 PieCtrlRegs.PIECTRL.bit.ENPIE = 0;

 // Clear all PIEIER registers:

 // PIE Interrupt Enable Registers

 PieCtrlRegs.PIEIER1.all = 0;

 PieCtrlRegs.PIEIER2.all = 0;

 PieCtrlRegs.PIEIER3.all = 0;

 PieCtrlRegs.PIEIER4.all = 0;

 PieCtrlRegs.PIEIER5.all = 0;

 PieCtrlRegs.PIEIER6.all = 0;

 PieCtrlRegs.PIEIER7.all = 0;

 PieCtrlRegs.PIEIER8.all = 0;

 PieCtrlRegs.PIEIER9.all = 0;

 PieCtrlRegs.PIEIER10.all = 0;

 PieCtrlRegs.PIEIER11.all = 0;

 PieCtrlRegs.PIEIER12.all = 0;

 // Clear all PIEIFR registers:

 // PIE Interrupt Flag Registers

 PieCtrlRegs.PIEIFR1.all = 0;

 PieCtrlRegs.PIEIFR2.all = 0;

 PieCtrlRegs.PIEIFR3.all = 0;

 PieCtrlRegs.PIEIFR4.all = 0;

 PieCtrlRegs.PIEIFR5.all = 0;

 PieCtrlRegs.PIEIFR6.all = 0;

 PieCtrlRegs.PIEIFR7.all = 0;

 PieCtrlRegs.PIEIFR8.all = 0;

 PieCtrlRegs.PIEIFR9.all = 0;

 PieCtrlRegs.PIEIFR10.all = 0;

 PieCtrlRegs.PIEIFR11.all = 0;

 PieCtrlRegs.PIEIFR12.all = 0;

}

void PieVectTableInit(void)

{

 int16 i;

 PINT *Dest = &PieVectTable.TINT1;

139

 EALLOW;

 for(i=0; i < 115; i++)

 *Dest++ = &ISR_ILLEGAL;

 EDIS;

 // Enable the PIE Vector Table

 PieCtrlRegs.PIECTRL.bit.ENPIE = 1;

}

interrupt void ISR_ILLEGAL(void) // Illegal operation TRAP

{

 // Insert ISR Code here

 // Next two lines for debug only to halt the processor here

 // Remove after inserting ISR Code

 asm(" ESTOP0");

 for(;;);

}

// This function initializes the Flash Control registers

// CAUTION

// This function MUST be executed out of RAM. Executing it

// out of OTP/Flash will yield unpredictable results

void InitFlash(void)

{

 EALLOW;

 //Enable Flash Pipeline mode to improve performance

 //of code executed from Flash.

 FlashRegs.FOPT.bit.ENPIPE = 1;

 // CAUTION

 //Minimum waitstates required for the flash operating

 //at a given CPU rate must be characterized by TI.

 //Refer to the datasheet for the latest information.

 //Set the Paged Waitstate for the Flash

 FlashRegs.FBANKWAIT.bit.PAGEWAIT = 3;

 //Set the Random Waitstate for the Flash

 FlashRegs.FBANKWAIT.bit.RANDWAIT = 3;

 //Set the Waitstate for the OTP

 FlashRegs.FOTPWAIT.bit.OTPWAIT = 5;

 // CAUTION

 //ONLY THE DEFAULT VALUE FOR THESE 2 REGISTERS SHOULD BE USED

 FlashRegs.FSTDBYWAIT.bit.STDBYWAIT = 0x01FF;

 FlashRegs.FACTIVEWAIT.bit.ACTIVEWAIT = 0x01FF;

 EDIS;

 //Force a pipeline flush to ensure that the write to

 //the last register configured occurs before returning.

 asm(" RPT #7 || NOP");

}

// This function will copy the specified memory contents from

// one location to another.

//

// Uint16 *SourceAddr Pointer to the first word to be moved

// SourceAddr < SourceEndAddr

// Uint16* SourceEndAddr Pointer to the last word to be moved

// Uint16* DestAddr Pointer to the first destination word

//

// No checks are made for invalid memory locations or that the

// end address is > then the first start address.

void MemCopy(Uint16 *SourceAddr, Uint16* SourceEndAddr, Uint16* DestAddr)

{

 while(SourceAddr < SourceEndAddr)

 {

 *DestAddr++ = *SourceAddr++;

 }

140

 return;

}

//===

// End of file.

//===

141

C-3: PWM INITIALIZATION

//--

// FILE: converter_PWM_Setup.c

// Description: PWM setup for full-bridge DC-DC converter

// Version: 1.0

// Target: TMS320F2806x family

// Type: Device Dependent

// Copyright ELK21 course 2011

// Date: June 2012

//--

#include "F2806x_Device.h" // DSP2860x Headerfile Include File

#include "F2806x_EPWM_defines.h" // Defines specifics to EPWM

#include "DSP28x_Project.h" // Device Headerfile

and Examples Include File

#define TBCTLVAL 0x200E // up-down count, timebase=SYSCLKOUT

void InitEPWMs(void)

{

 //---

 //--- Must disable the clock to the ePWM modules if you

 //--- want all ePMW modules synchronized.

 //---

 asm(" EALLOW"); // Enable EALLOW protected

register access

 SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;

 asm(" EDIS"); // Disable EALLOW protected

register access

//---

//--- Configure ePWM1 for 50 kHz symmetric PWM on EPWM1A and EPWM1B pin

// Also configure ePWM1 to trigger the ADC

//---

 // Setup counter mode

 EPwm1Regs.TBCTL.bit.CTRMODE = TB_FREEZE; // Stop-freeze counter

operation until all bits are set

 EPwm1Regs.TBCTL.bit.FREE_SOFT=0x3; //1x - Free run

 EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase

loading - for MASTER mode

 EPwm1Regs.TBCTL.bit.PRDLD = TB_SHADOW; // reload PRD on

counter=0

 EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE; // sync-out disabled

 EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;

 EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV1;

 EPwm1Regs.TBPRD = 800; // Set timer

period for up-and-down-count

 EPwm1Regs.TBCTR = 0x0000; // Clear

counter

 EPwm1Regs.TBPHS.half.TBPHS = 0x0000; // Set Phase register to

zero

 EPwm1Regs.CMPA.half.CMPA=EPwm1Regs.TBPRD/2; // Initial duty ratio = 50 %

 // Setup shadowing

 EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; // shadow mode

 EPwm1Regs.CMPCTL.bit.LOADAMODE=CC_CTR_ZERO; // Load on Zero

 // Set actions- up-count

 EPwm1Regs.AQCTLA.bit.CAD = AQ_CLEAR; // PWM1A low (AQ_CLEAR) when

CMPA=TBCNT on down count (CAD)

 EPwm1Regs.AQCTLA.bit.CAU = AQ_SET; // PWM1A high (AQ_SET) when

CMPA =TBCNT on up count (CAU)

 EPwm1Regs.AQCTLB.bit.CAD = AQ_SET; // PWM1B high (AQ_SET) when

CMPA = TBCNT on down count (CAD)

 EPwm1Regs.AQCTLB.bit.CAU = AQ_CLEAR; // PWM1B low (AQ_CLEAR) when

CMPA = TBCNT on up count (CAU)

142

 // set deadband, Trip-zone and PWM_chopper units

 EPwm1Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE; // enable Dead-band module

 EPwm1Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC; // Active Hi complementary

 EPwm1Regs.DBFED = 200; // FED = 200

TBCLKs = 2.4us

 EPwm1Regs.DBRED = 200; // RED = 200

TBCLKs

 EPwm1Regs.PCCTL.bit.CHPEN = 0; // PWM

chopper unit disabled

 EPwm1Regs.TZDCSEL.all = 0x0000; // All trip

zone and DC compare actions disabled

 // Configure Event-Trigger Prescale Register (ETPS)

 // Refer table 3-64 TRM page 358

 EPwm1Regs.ETPS.all = 0x0000; // Configure SOCA

 EPwm1Regs.ETPS.bit.SOCAPRD=ET_1ST; // 01 = generate SOCA on

first event

 // bit 15-14 00: EPWMxSOCB, read-only

 // bit 13-12 00: SOCBPRD, don't care

 // bit 11-10 00: EPWMxSOCA, read-only

 // bit 9-8 01: SOCAPRD, 01 = generate SOCA on first event

 // bit 7-4 0000: reserved

 // bit 3-2 00: INTCNT, don't care

 // bit 1-0 00: INTPRD, don't care

 // Configure Event-Trigger Selection Register (ETSEL)

 //// Refer table 3-63 TRM page 357

 EPwm1Regs.ETSEL.all = 0x0000;

 EPwm1Regs.ETSEL.bit.SOCAEN=1; // Start of

Conversion A Enable

 EPwm1Regs.ETSEL.bit.SOCASEL= ET_CTR_ZERO; // 010=SOCA when TBCTR =

ZERO

 // bit 15 0: SOCBEN, 0 = disable SOCB

 // bit 14-12 000: SOCBSEL, don't care

 // bit 11 1: SOCAEN, 1 = enable SOCA

 // bit 10-8 010: SOCASEL, 010 = SOCA on PRD event

 // bit 7-4 0000: reserved

 // bit 3 0: INTEN, 0 = disable interrupt

 // bit 2-0 000: INTSEL, don't care

 EPwm1Regs.TBCTL.bit.CTRMODE=TB_COUNT_UPDOWN; //Enable the time-base in count up

down mode

//---

//--- Configure ePWM2 for 50 kHz symmetric PWM on EPWM2A and EPWM2B pin

//---

 // Setup counter mode

 EPwm2Regs.TBCTL.bit.CTRMODE = TB_FREEZE; // Stop-freeze counter

operation

 EPwm2Regs.TBCTL.bit.FREE_SOFT=0x3; //1x - Free run

 EPwm2Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase

loading - for MASTER mode

 EPwm2Regs.TBCTL.bit.PRDLD = TB_SHADOW; // reload PRD on

counter=0

 EPwm2Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE; // sync-out disabled

 EPwm2Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;

 EPwm2Regs.TBCTL.bit.CLKDIV = TB_DIV1;

 EPwm2Regs.TBPRD = 800; // Set timer

period for up-count

 EPwm2Regs.TBCTR = 0x0000; // Clear

counter

 EPwm2Regs.TBPHS.half.TBPHS = 0x0000; // Set Phase register to

zero

 EPwm2Regs.CMPA.half.CMPA=EPwm2Regs.TBPRD/2; //Duty ratio = 50 %

 // Setup shadowing

143

 EPwm2Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; // shadow mode

 EPwm2Regs.CMPCTL.bit.LOADAMODE=CC_CTR_ZERO; // Load on Zero

 // Set actions- up-count

 EPwm2Regs.AQCTLA.bit.CAD = AQ_SET; // PWM2A high when

CMPA = TBCNT on down count (CAD)

 EPwm2Regs.AQCTLA.bit.CAU = AQ_CLEAR; // PWM2A low when CMPA =

TBCNT on up count (CAU)

 EPwm2Regs.AQCTLB.bit.CAD = AQ_CLEAR; // PWM2B low when CMPA =

TBCNT on down count (CAD)

 EPwm2Regs.AQCTLB.bit.CAU = AQ_SET; // PWM2B high when

CMPA = TBCNT on up count (CAU)

 // set deadband, Trip-zone and PWM_chopper units

 EPwm2Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE; // enable Dead-band module

 EPwm2Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC; // Active Hi complementary

 EPwm2Regs.DBFED = 200; // FED

= 200 TBCLKs

 EPwm2Regs.DBRED = 200;

 EPwm2Regs.PCCTL.bit.CHPEN = 0; // PWM

chopper unit disabled

 EPwm2Regs.TZDCSEL.all = 0x0000; // All trip

zone and DC compare actions disabled

 EPwm2Regs.TBCTL.bit.CTRMODE=TB_COUNT_UPDOWN; //Enable the time-base in count up

down mode

//---

//--- Configure ePWM3 for 50 kHz symmetric PWM on EPWM3A and EPWM3B pin

//---

 // Setup counter mode

 EPwm3Regs.TBCTL.bit.CTRMODE = TB_FREEZE ; // Stop-freeze

counter operation

 EPwm3Regs.TBCTL.bit.FREE_SOFT=0x3; // 1x - Free run

 EPwm3Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase

loading - for MASTER mode

 EPwm3Regs.TBCTL.bit.PRDLD = TB_SHADOW; // reload PRD on

counter=0

 EPwm3Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE; // sync-out disabled

 EPwm3Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;

 EPwm3Regs.TBCTL.bit.CLKDIV = TB_DIV1;

 EPwm3Regs.TBPRD = 800; // Set timer

period for up-count

 EPwm3Regs.TBCTR = 0x0000; // Clear

counter

 EPwm3Regs.TBPHS.half.TBPHS = 0x0000; // Set Phase register to

zero

 EPwm3Regs.CMPA.half.CMPA=EPwm3Regs.TBPRD; //Duty ratio: Can this

become a sinusoidal signal? Set to an initial value to 50% and change it in the interrupt.

 // Setup shadowing

 EPwm3Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; // shadow mode

 EPwm3Regs.CMPCTL.bit.LOADAMODE=CC_CTR_ZERO; // Load on Zero

 // Set actions- up-count

 EPwm3Regs.AQCTLA.bit.CAD = AQ_CLEAR;

 EPwm3Regs.AQCTLA.bit.CAU = AQ_SET; // Clear PWM1A on

CMPA=counter, up count

 EPwm3Regs.AQCTLB.bit.CAD = AQ_SET;

 EPwm3Regs.AQCTLB.bit.CAU = AQ_CLEAR;

 // set deadband, Trip-zone and PWM_chopper units

 EPwm3Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE; // enable Dead-band module

 EPwm3Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC; // Active Hi complementary

144

 EPwm3Regs.DBFED = 200; // FED = 200

system clocks

 EPwm3Regs.DBRED = 200;

 EPwm3Regs.PCCTL.bit.CHPEN = 0; // PWM

chopper unit disabled

 EPwm3Regs.TZDCSEL.all = 0x0000; // All trip

zone and DC compare actions disabled

 EPwm3Regs.TBCTL.bit.CTRMODE=TB_COUNT_UPDOWN; //Enable the time-base in count up

down mode

 //---

 // To start the ePWM Time-base clock (TBCLK) within the ePWM modules,

 // the TBCLKSYNC bit in PCLKCR0 must also be set.

 //--- Enable the clocks to the ePWM module.

 //--- Note: this should be done after all ePWM modules are configured

 //--- to ensure synchronization between the ePWM modules.

 //---

 asm(" EALLOW");

 // Enable EALLOW protected register access

 SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1; // TBCLK to ePWM

modules enabled

 asm(" EDIS"); //

Disable EALLOW protected register access

}// end InitEPWMs()

145

C-3: ADC INITIALIZATION

//--

// FILE: converter_Adc.c

// Description: ADC setup for measurements

// Version: 1.0

// Target: TMS320F2806x family

// Type: Device Dependent

// Copyright ELK21 course 2011

// Date: June 2012

//--

// TRM = F2806x Technical reference manual

#include "F2806x_Device.h" // F2806x header file peripheral address

definitions

#define CPU_RATE 12.500L // for a 80MHz CPU clock speed (SYSCLKOUT)

 // 1/80 MHz = 12.5 ns

#define ADC_usDELAY 1000L // used for delay of 1ms = 1000 us

// DO NOT MODIFY THIS LINE.

//DSP28x_usDelay defined in F2806x_usDelay.asm

#define DELAY_US(A) DSP28x_usDelay(((((long double) A * 1000.0L) / (long double)CPU_RATE) -

9.0L) / 5.0L)

extern void DSP28x_usDelay(Uint32 Count);

/**

** Description: Initializes the ADC on the F2806x

**/

void InitADC(void)

{

 EALLOW; // Enable EALLOW protected

register access

// enable ADC clock in case user forgot to enable it in DeviceInit()

SysCtrlRegs.PCLKCR0.bit.ADCENCLK = 1; // Enable ADC clock

//--- Reset the ADC module

// Note: The ADC is already reset after a DSP reset, but this example is just showing

// good coding practice to reset the peripheral before configuring it as you never

// know why the DSP has started the code over again from the beginning).

//ADC Control Register 1 (ADCCTL1) - refer TRM Table 8-3 page 491

 AdcRegs.ADCCTL1.bit.RESET = 1; // ADC module software reset - Bit 15

// Must wait 2 ADCCLK periods for the reset to take effect.

 asm(" NOP");

 asm(" NOP");

//--- Power-up and configure the ADC

// ADC Control Register 1 (ADCCTL1)

// Refer TRM table 8-3 page 491 also power-up sequence page 487

 AdcRegs.ADCCTL1.bit.ADCPWDN = 1; // ADC power down, 0=powered down, 1=powered up

 AdcRegs.ADCCTL1.bit.ADCBGPWD = 1; // ADC bandgap power down, 0=powered down,

1=powered up

 AdcRegs.ADCCTL1.bit.ADCREFPWD = 1; // ADC reference power down, 0=powered down,

1=powered up

 AdcRegs.ADCCTL1.bit.ADCREFSEL = 0; // ADC reference select, 0=internal, 1=external

 AdcRegs.ADCCTL1.bit.ADCENABLE = 1; // 0=disable, 1=Enable ADC - bit 14

 DELAY_US(ADC_usDELAY); // Delay - Delay - Must be there

for F2806x devices

 AdcRegs.ADCCTL1.bit.INTPULSEPOS = 1; // create int pulses 1 cycle prior to output latch

 // INT pulse generation, 0=start of conversion,

1=end of conversion

 // For other values, use default ones

146

//-----ADC Control Register 2 (ADCCTL2

// Refer TRM table 8-4 page 493

 //AdcRegs.ADCCTL2.all = 0x0001; // ADC clock configuration

 AdcRegs.ADCCTL2.bit.CLKDIV4EN=0; //ADC clock divider. 0=no effect,

1=CPUCLK/4 if CLKDIV2EN=1 (else no effect)

 AdcRegs.ADCCTL2.bit.ADCNONOVERLAP=0; // 0=overlap sample and conversion, 1=no

overlap

 AdcRegs.ADCCTL2.bit.CLKDIV2EN=1; //ADC clock divider. 0=CPUCLK, 1=CPUCLK/2

//--- SOC0 configuration

// ADC Sample Mode Register - ADCSAMPLEMODE - table 8-11 TRM page 499

 AdcRegs.ADCSAMPLEMODE.bit.SIMULEN0 = 0; // 0=Single sample mode set for SOC0 and

SOC1

 //

1=Simultaneous sample for SOC0 and SOC1

 //ADC SOC0 - SOC15 Control Registers (ADCSOCxCTL)

 //TRM table 8-18 page 503

 //bit TRIGSEL - SOCx Trigger Source Select.

 AdcRegs.ADCSOC0CTL.bit.TRIGSEL = 5; // Trigger using ePWM1SOCA

 AdcRegs.ADCSOC1CTL.bit.TRIGSEL = 5; // Trigger using ePWM1SOCA

 AdcRegs.ADCSOC2CTL.bit.TRIGSEL = 5; // Trigger using ePWM1SOCA

 AdcRegs.ADCSOC3CTL.bit.TRIGSEL = 5; // Trigger using ePWM1SOCA

 AdcRegs.ADCSOC4CTL.bit.TRIGSEL = 5; // Trigger using ePWM1SOCA

 AdcRegs.ADCSOC5CTL.bit.TRIGSEL = 5; // Trigger using ePWM1SOCA

 AdcRegs.ADCSOC6CTL.bit.TRIGSEL = 5; // Trigger using ePWM1SOCA

 AdcRegs.ADCSOC7CTL.bit.TRIGSEL = 5; // Trigger using ePWM1SOCA

 // bit CHSEL - SOCx Channel Select. Selects the channel to be converted when SOCx is

received by the ADC.

 AdcRegs.ADCSOC0CTL.bit.CHSEL = 0; // Convert channel ADCINA0 (ch0)

 AdcRegs.ADCSOC1CTL.bit.CHSEL = 1; // Convert channel ADCINA1 (ch0)

 AdcRegs.ADCSOC2CTL.bit.CHSEL = 2; // Convert channel ADCINA2 (ch0)

 AdcRegs.ADCSOC3CTL.bit.CHSEL = 3; // Convert channel ADCINA3 (ch0)

 AdcRegs.ADCSOC4CTL.bit.CHSEL = 8; // Convert channel ADCINB0 (ch0)

 AdcRegs.ADCSOC5CTL.bit.CHSEL = 9; // Convert channel ADCINB1 (ch0)

 AdcRegs.ADCSOC6CTL.bit.CHSEL = 10; // Convert channel ADCINB2 (ch0)

 AdcRegs.ADCSOC7CTL.bit.CHSEL = 11; // Convert channel ADCINB3 (ch0)

 // bit ACQPS -SOCx Acquisition Prescale. Controls the sample and hold window for SOCx.

 // Minimum value allowed is 6.

 AdcRegs.ADCSOC0CTL.bit.ACQPS = 6; // Acquisition window set to (6+1)=7

cycles

 AdcRegs.ADCSOC1CTL.bit.ACQPS = 6; // Acquisition window set to (6+1)=7

cycles

 AdcRegs.ADCSOC2CTL.bit.ACQPS = 6; // Acquisition window set to (6+1)=7

cycles

 AdcRegs.ADCSOC3CTL.bit.ACQPS = 6; // Acquisition window set to (6+1)=7

cycles

 AdcRegs.ADCSOC4CTL.bit.ACQPS = 6; // Acquisition window set to (6+1)=7

cycles

 AdcRegs.ADCSOC5CTL.bit.ACQPS = 6; // Acquisition window set to (6+1)=7

cycles

 AdcRegs.ADCSOC6CTL.bit.ACQPS = 6; // Acquisition window set to (6+1)=7

cycles

 AdcRegs.ADCSOC7CTL.bit.ACQPS = 6; // Acquisition window set to (6+1)=7

cycles

 //for calibrating:

 ///AdcRegs.ADCOFFTRIM.bit.OFFTRIM=350;

 // ADC Interrupt Trigger SOC Select 1 Register (ADCINTSOCSEL1)

 // TRM table 8-12, page 500

 AdcRegs.ADCINTSOCSEL1.bit.SOC0 = 0; // No ADCINT triggers SOC0. TRIGSEL field

determines trigger.

//ADC Start of Conversion Priority Control Register (SOCPRICTL)

// TRM table 8-12, page 500

//bit SOCPRIORITY -

 AdcRegs.SOCPRICTL.bit.SOCPRIORITY = 0; // All SOCs handled in round-robin mode

for all channels

//--- ADCINT1 configuration

// Interrupt Select 1 And 2 Register (INTSEL1N2)

147

// TRM table 8-9 page 496

 // bit INT1CONT - ADCINTy Continuous Mode Enable

 AdcRegs.INTSEL1N2.bit.INT1CONT = 0;

 // 1= ADCINTy pulses are generated whenever an EOC pulse is generated irrespective if

the flag bit is

 // cleared or not

 // 0=No further ADCINTx pulses are generated until ADCINTx flag (in ADCINTFLG register)

is cleared by user.

 // ADCINTy Interrupt Enable

 AdcRegs.INTSEL1N2.bit.INT1E = 1; // 0=ADCINT1 is disabled, 1=ADCINT1 is

enabled.

 //INTySEL - ADCINTy EOC Source Select

 AdcRegs.INTSEL1N2.bit.INT1SEL = 7; // EOC7 triggers ADCINT1

 // here you specify which EOC should

trigger an interrupt

//--- Enable the ADC interrupt - This is done in the main program

 EDIS; // Disable EALLOW

protected register access

} // end InitAdc()

//--- end of file ---

148

APPENDIX D: DC MOTOR DRIVE

MICROCONTROLLER CODE

D-1: MAIN FILE

/***********************************

File name: DC_md_main-F2806x_1.c

Purpose: Control a DC motor drive

**/

#include "F2806x_Device.h"

void DeviceInit(void); // defined in DC_md_DevInit_F2806x.c

void InitEPWMs(void); // defined in DC_md_PWM_Setup.c

void InitEQEP(void); // defined in DC_md_EQep_Setup.c

void InitADC(void); // defined in DC_md_Adc.c

void InitEPWM4(void); // defined in DC_md_Adc.c (used for verification)

//define interrupt service routines

interrupt void EQEP1_ISR(void);

interrupt void ADCINT1_ISR(void);

Uint32 EndlessLoopCounter = 0;

int QepIntCounter = 0;

int AdcIntCounter = 0;

// Speed controller parameters

int speedArray[50];

int actualSpeed = 0;

int setSpeed = 0;

int speedError=0;

double kpS=0;

double kiS=0;

double pTermS=0;

double iStateS=0;

int iStateSMax=100;

int iStateSMin=-100;

double iTermS=0;

int speedController=0;

// Current controller parameters

int setCurrent=0;

int currentError=0;

double kpI=0;

double kiI=0;

double pTermI=0;

double iStateI=0;

int iStateIMax=100;

int iStateIMin=-100;

double iTermI=0;

int currentController=0;

//ADC ISR buffer array

Uint16 AdcBuf[50][8]={0};

void main(void)

{

149

// Initialize System Control

// Enable Peripheral Clocks, GPIO

// Initialize the PIE control registers to their default state.

// The default state is all PIE interrupts disabled and flags

// are cleared.

 DeviceInit();

 InitEPWMs(); //Initialize PWM modules

 InitADC(); // Initialize ADC

 InitEQEP(); // Initialize QEP

 InitEPWM4(); // Initialize EPWM4

 //Enable the interrupt

 EALLOW;

 PieVectTable.EQEP1_INT=&EQEP1_ISR;

 PieVectTable.ADCINT1=&ADCINT1_ISR;

 EDIS;

 PieCtrlRegs.PIEIER1.bit.INTx1=1;

 PieCtrlRegs.PIEIER5.bit.INTx1=1;

 IER |= M_INT1;

 IER |= M_INT5;

 EINT;

 for(;;) //infinite loop

 {

 asm(" NOP");

 if (EndlessLoopCounter++ >= 4294967295)

 {

 EndlessLoopCounter=0;

 }

 }

}// end of main

//EQP ISR:

interrupt void EQEP1_ISR(void)

{

 static int index=0; //Initialize an index which counts every interrupt

 int border = 70; //indicates the QPOSLAT value at the border between the high and

low speed measurements

 //Speed calculation

 if (EQep1Regs.QEPSTS.bit.QDF==1) // If forward motor rotation

 {

 //if high speed, equation 3.19 (rpm):

 if (EQep1Regs.QPOSLAT>border) actualSpeed =

1171875*EQep1Regs.QPOSLAT/EQep1Regs.QUPRD;

 // if low speed, equation 3.21 (rpm):

 else if(EQep1Regs.QPOSLAT<=border) actualSpeed =

75000000/EQep1Regs.QCPRDLAT/1024;

 }

 else if (EQep1Regs.QEPSTS.bit.QDF==0) // If reverse motor direction

 {

 Uint32 POSLAT = EQep1Regs.QPOSMAX - EQep1Regs.QPOSLAT;

 //if high speed, equation 3.20 (rpm):

 if(POSLAT >border) actualSpeed = - (1171875*POSLAT/EQep1Regs.QUPRD);

 //if low speed, equation 3.21 (rpm):

 else if (POSLAT<=border) actualSpeed = - 75000000/EQep1Regs.QCPRDLAT/1024;

 }

 //Store the results in a circular array

 speedArray[index]=actualSpeed;

 //Speed PI controller:

 speedError = setSpeed - actualSpeed; //Calculate the error

 pTermS = kpS*speedError; // proportional term

 iStateS += speedError; // the sum of the

speed errors

 if (iStateS>iStateSMax)iStateS=iStateSMax; // anti-windup

 if (iStateS<iStateSMin)iStateS=iStateSMin;

 iTermS = kiS*iStateS*EQep1Regs.QUPRD/80000000; // integral term. Sampling

period=EQep1Regs.QUPRD/80MHz

 speedController=pTermS+iTermS; // speed

controller's output

150

 setCurrent+=speedController; // update setCurrent

 if(setCurrent >4096)setCurrent = 4096; // avoid setcurrent to

become too high.

 // This is the maximum value of the input current.

 index++;

 if (index==50) index=0;

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP5; // Acknowledge this interrupt to receive

more interrupts

 EQep1Regs.QCLR.bit.UTO=1; // Clears unit time out

interrupt flag

 EQep1Regs.QCLR.bit.INT=1; // Clears the interrupt flag

and enables further interrupts

 // to

be generated if an event flags is set to 1

 EQep1Regs.QEPSTS.bit.UPEVNT=1; // Clear unit position event

flag to allow for more latches

 // of

the QCTMR value into the QCPRD register

 //QEP interrupt counter

 QepIntCounter++;

 if (QepIntCounter==200) QepIntCounter=0;

}//end of ISR QEP

interrupt void ADCINT1_ISR(void)

{

 static int index = 0;

 //Store the converted values in a circular array:

 AdcBuf[index][0]=AdcResult.ADCRESULT0;

 AdcBuf[index][1]=AdcResult.ADCRESULT1;

 AdcBuf[index][2]=AdcResult.ADCRESULT2;

 AdcBuf[index][3]=AdcResult.ADCRESULT3;

 AdcBuf[index][4]=AdcResult.ADCRESULT4;

 AdcBuf[index][5]=AdcResult.ADCRESULT5;

 AdcBuf[index][6]=AdcResult.ADCRESULT6;

 AdcBuf[index][7]=AdcResult.ADCRESULT7;

 index ++;

 if (index == 50) index =0;

 static int indexB = 1;

 indexB ++;

 //Current/torque loop

 if (indexB==10) //To make the current loop calculate for every 10th interrupt, making

the sampling time for the current loop on order of magnitude lower than the switching

frequency

 {

 //calculates the output of the current control loop

 currentError=setCurrent-AdcResult.ADCRESULT2; //calculates the current

error

 pTermI=kpI*currentError;

 //proportional term

 iStateI+=currentError; //sums up the

current errors

 if(iStateI>iStateIMax) iStateI=iStateIMax; //anti-windup

 if(iStateI<iStateIMin) iStateI=iStateIMin;

 iTermI=kiI*iStateI*EPwm1Regs.TBPRD/4000000; //integral term: sampling

period=10*EPwm1Regs.TBPRD*2/80MHz

 currentController=pTermI+iTermI; //current controller

output

 //calculate the new duty ratio

151

 EPwm1Regs.CMPA.half.CMPA -= currentController;

 EPwm2Regs.CMPA.half.CMPA=EPwm1Regs.CMPA.half.CMPA;

 indexB=1;

 }

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; // Must acknowledge the PIE group

 AdcRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; // Clear ADCINT1 flag to enable

further interrupts

 //ADC interrupt counter

 AdcIntCounter++;

 if (AdcIntCounter >=200)

 AdcIntCounter=0;

} //end of ADCINT1_ISR

152

D-2: DEVICE INITIALZATION

See C-2

D-3: PWM INITIALIZATION

See C-3

D-4: ADC INITIALIZATION

See C-3.

153

D-5: QEP INITIALIZATION

//--

// FILE: DC_md_QEP_Setup.c

// Description: QEP setup for speed measurements and speed controller

// Version: 1.0

// Target: TMS320F2806x family

// Type: Device Dependent

// Copyright Texas Instruments

// Date: April 2012

//--

#include "F2806x_Device.h" // DSP2860x Headerfile Include File

void InitEQEP()

{

 EQep1Regs.QUPRD=800000; // Unit Timer = 100Hz=80 MHz/800000.

 EQep1Regs.QDECCTL.bit.QSRC=00; // QEP quadrature count mode

 EQep1Regs.QEPCTL.bit.FREE_SOFT=2; // Position counter is unaffected by

emulation suspend

 EQep1Regs.QEPCTL.bit.PCRM=11; // PCRM=11 mode: on unit time out event:

 // QPOSCNT is

latched into QPOSLAT and reset

 EQep1Regs.QEPCTL.bit.UTE=1; // Unit Timer Enable

 EQep1Regs.QPOSMAX=4294967295; // Max value of POSCNT, = max value of 32

bit int.

 EQep1Regs.QEPCTL.bit.QPEN=1; // QEP enable

 EQep1Regs.QCAPCTL.bit.UPPS=2; // 1/4 for unit position

 EQep1Regs.QCAPCTL.bit.CCPS=6; // 1/64 for CAP clock

 EQep1Regs.QCAPCTL.bit.CEN=1; // QEP Capture Enable

 EQep1Regs.QEPCTL.bit.QCLM=1; // Latch on unit time out

 EQep1Regs.QEINT.bit.UTO=1; // Enable unit time out interrupt

 EQep1Regs.QFLG.bit.UTO=1; // Unit time out interrupt flag:

Set by eQEP unit timer period match

} // end InitEQEP()

//--- end of file ---

154

D-6: PWM4 INITIALIZATION

//###

//

// FILE: Example_EpwmSetup.c

//

// TITLE: Pos speed measurement using EQEP peripheral

//

// DESCRIPTION: This is for the verification of the speed measurements and speed controller

algorithm

//

// This file contains source for the ePWM initialization for the

// pos/speed module

//

//###

// $TI Release: F2806x C/C++ Header Files and Peripheral Examples V130 $

// $Release Date: November 30, 2011 $

//###

#include "DSP28x_Project.h" // Device Headerfile and Examples Include File

#define CPU_CLK 80e6

#define PWM_CLK 5e3 // 5kHz (300rpm) EPWM1 frequency. Freq. can be changed here

#define SP CPU_CLK/(2*PWM_CLK)

#define TBCTLVAL 0x200E // up-down count, timebase=SYSCLKOUT

void InitEPWM4()

{

 EPwm4Regs.TBSTS.all=0;

 EPwm4Regs.TBPHS.half.TBPHS =0;

 EPwm4Regs.TBCTR=0;

 EPwm4Regs.CMPCTL.all=0x50; // immediate mode for CMPA and CMPB

 EPwm4Regs.CMPA.half.CMPA=SP/2;

 EPwm4Regs.CMPB=0;

 EPwm4Regs.AQCTLA.all=0x60; // CTR=CMPA when inc->EPWM1A=1, when dec->EPWM1A=0

 EPwm4Regs.AQCTLB.all=0x09; // CTR=PRD ->EPWM1B=1, CTR=0 ->EPWM1B=0

 EPwm4Regs.AQSFRC.all=0;

 EPwm4Regs.AQCSFRC.all=0;

 EPwm4Regs.TZSEL.all=0;

 EPwm4Regs.TZCTL.all=0;

 EPwm4Regs.TZEINT.all=0;

 EPwm4Regs.TZFLG.all=0;

 EPwm4Regs.TZCLR.all=0;

 EPwm4Regs.TZFRC.all=0;

 //EPwm4Regs.ETSEL.all=0x0A; // Interrupt on PRD

 //EPwm4Regs.ETPS.all=1;

 //EPwm4Regs.ETFLG.all=0;

 //EPwm4Regs.ETCLR.all=0;

 //EPwm4Regs.ETFRC.all=0;

 EPwm4Regs.PCCTL.all=0;

 EPwm4Regs.TBCTL.all=0x0010+TBCTLVAL; // Enable Timer

 EPwm4Regs.TBPRD=SP;

}

155

APPENDIX E: LIST OF THE AVAILABLE

DIGITAL CONTENT

E-1: EAGLE FILES

 Version I schematics: master.sch

 Version I layout: master.brd

 Version II schematics: master v2.sch

 Version II layout: master v2.brd

E-2: CODE COMPOSER STUDIO

PROJECTS

 General converter code project: Converter

 DC motor drive code project: DC_motor_drive

156

APPENDIX F: FIRST PAGE OF

DATASHEETS

157

http://www.tracopower.com Page 1 of 3

DC/DC Converters
TSR-1 Series, 1 A

Features
◆ Up to 96 % efficiency
 – No heat-sink required

◆ Pin compatible with LMxx linear regulators

◆ SIP-package fits existing TO-220 footprint

◆ Built in filter capacitors

◆ Operation temp. range –40°C to +85°C

◆ Short circuit protection

◆ Wide input operating range

◆ Excellent line / load regulation

◆ Low standby current

◆ 3-year product warranty

The new TSR-1 series step-down switching regulators are drop-in replacement for
inefficient 78xx linear regulators. A high efficiency up to 96 % allows full load
operation up to +60 °C ambient temperature without the need of any heat-sink or
forced cooling.
The TSR-1 switching regulators provide other significant features over linear regu-
lators, i.e. better output accuracy (±2 %), lower standby current of 2 mA and no
requirement of external capacitors. The high efficiency and low standby power
consumption makes these regulators an ideal solution for many battery powered
applications.

Order code Input voltage range Output voltage Output current Efficiency typ.

max. @ Vin min. @ Vin max.

TSR 1-2412 4.6 – 36 VDC* 1.2 VDC 74 % 62 %

TSR 1-2415 4.6 – 36 VDC* 1.5 VDC 78 % 65 %

TSR 1-2418 4.6 – 36 VDC* 1.8 VDC 82 % 69 %

TSR 1-2425 4.6 – 36 VDC* 2.5 VDC 87 % 75 %

TSR 1-2433 4.75 – 36 VDC* 3.3 VDC 1.0 A 91 % 78 %

TSR 1-2450 6.5 – 36 VDC* 5.0 VDC 94 % 84 %

TSR 1-2465 9.0 – 36 VDC* 6.5 VDC 93 % 87 %

TSR 1-2490 12 – 36 VDC* 9.0 VDC 95 % 90 %

TSR 1-24120 15 – 36 VDC* 12 VDC 95 % 92 %

TSR 1-24150 18 – 36 VDC* 15 VDC 96 % 94 %

Models

* For input voltage higher than 32 VDC an input capcitor 22 µF / 50 V is required. See application notes (page 3)

www.irf.com © 2008 International Rectifier
1

February 18, 2009

IRS211(7,71,8)(S)
 SINGLE CHANNEL DRIVER

IC Features
• Floating channel designed for bootstrap
 operation
• Fully operational to +600V
• Tolerant to negative transient voltage, dV/dt

immune
• Gate drive supply range from 10 V to 20V
• Undervoltage lockout
• CMOS Schmitt-triggered inputs with pull-down
• Output in phase with input
• RoHS compliant
• IRS2117 and IRS2118 available in PDIP8

Product Summary

Topology Single High Side

VOFFSET 600 V

VOUT 10V-20 V

IO+ & IO- (typical) 290 mA & 600 mA

IRS211(7,8) 9.5 V & 6 V IN voltage
threshold IRS21171 2.5 V & 0.8 V

Package Type

 SOIC8 PDIP8

IRS2117(1)

IRS2118

Bezeichnung :
description :

A mm
B mm
C mm
D mm
E mm
F mm

@@FRM 1@@

Eigenschaften / properties Wert / value Einheit / unit tol.

Induktivität (je Wicklg.) /
inductance (each wdg.)
DC-Widerstand (je Wicklg.) /
DC-resistance (each wdg)
DC-Widerstand (je Wicklg.) /
DC-resistance (each wdg)
Nennstrom (je Wicklg.)/
rated Current (each wdg.)
Sättigungsstrom (je Wicklg.) /
saturation current (each wdg.)
Eigenres.-Frequenz /
self-res.-fequency
Nennspannung /
rated voltage

33%

 Umgebungstemperatur / temperature: +20°C

Ferrit/ ferrite

SST 05-05-23

SST 05-03-29

MST 04-10-11

SST 04-09-15

MST 04-04-27

SST 04-03-12

AG 03-06-11

AG 02-10-30

Name Datum / date

7,3 ± 0,4

Typ M

Änderung / modification

Version 1

Version 2

Version 3

Version 4

Version 5

Version 6

typ.

0,110 typ.RDC1,2 Ω

AIsat

Version 7

Version 8

 F Werkstoffe & Zulassungen / material & approvals:

Freigabe erteilt / general release:
Kunde / customer

Basismaterial / base material:

Draht / wire:

HP 34401 A für/for IDC und/and RDC

Betriebstemperatur / operating temperature: -40°C - + 125°C

... ..

It is recommended that the temperature of the part does

not exceed 125°C under worst case operating conditions.

Würth Elektronik

..

Kunde / customer :

 http://www.we-online.com

Datum / date
..

Unterschrift / signature

Kontrolliert / approved

Würth Elektronik eiSos GmbH & Co.KG
D-74638 Waldenburg · Max-Eyth-Strasse 1 - 3 · Germany · Telefon (+49) (0) 7942 - 945 - 0 · Telefax (+49) (0) 7942 - 945 - 400

Geprüft / checked

Spezifikation für Freigabe / specification for release

DATUM / DATE : 2005-05-23

max.

Testbedingungen /
test conditions

0,120

±20%

Artikelnummer / part number :

 C Lötpad / soldering spec.: B Elektrische Eigenschaften / electrical properties:

Umgebungstemp. / ambient temperature: -40°C - + 85°C

27

2 SFBW; 155°C

 G Eigenschaften / general specifications:

Ω

744877100

10,0

4,0 ± 0,2
2,7 ± 0,1
1,0 ± 0,1
4,8 max.

DOPPELDROSSEL WE-DD
POWER-CHOKE WE-DD

µH

RDC1,2

L1,L2

 A Mechanische Abmessungen / dimensions:

1 kHz / 0,25V

 Luftfeuchtigkeit / humidity:

typ.

HP 4274 A für/for L und/and Q

max.∆T = 40 K

 D Prüfgeräte / test equipment: E Testbedingungen / test conditions:

IN1,IN2 A

∆L/L = -10%

UDC max.V80

SRF MHz

1,10

2,80

[mm]

A B C
D

E

2 3

1 4

A
1

4

2 L1

3 L2

Start Finish

0,8

3,1

2,2

2,2

1,0

RoHS compliant

LF

SEITE 1 VON 3

© 2002 Fairchild Semiconductor Corporation DS005971 www.fairchildsemi.com

October 1987

Revised April 2002

C
D

4049U
B

C
 • C

D
4050B

C
 H

ex In
vertin

g
 B

u
ffer • H

ex N
o

n
-In

vertin
g

 B
u

ffer

CD4049UBC • CD4050BC
Hex Inverting Buffer •
Hex Non-Inverting Buffer

General Description
The CD4049UBC and CD4050BC hex buffers are mono-
lithic complementary MOS (CMOS) integrated circuits con-
structed with N- and P-channel enhancement mode
transistors. These devices feature logic level conversion
using only one supply voltage (VDD). The input signal high
level (VIH) can exceed the VDD supply voltage when these
devices are used for logic level conversions. These
devices are intended for use as hex buffers, CMOS to DTL/
TTL converters, or as CMOS current drivers, and at VDD =
5.0V, they can drive directly two DTL/TTL loads over the
full operating temperature range.

Features
■ Wide supply voltage range: 3.0V to 15V

■ Direct drive to 2 TTL loads at 5.0V over full temperature
range

■ High source and sink current capability

■ Special input protection permits input voltages greater
than VDD

Applications
• CMOS hex inverter/buffer

• CMOS to DTL/TTL hex converter

• CMOS current “sink” or “source” driver

• CMOS HIGH-to-LOW logic level converter

Ordering Code:

Devices also available in Tape and Reel. Specify by appending the suffix letter “X” to the ordering code.

Connection Diagrams
Pin Assignments for DIP

CD4049UBC

Top View

CD4050BC

Top View

Order Number Package Number Package Description

CD4049UBCM M16A 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow

CD4049UBCN N16E 16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

CD4050BCM M16A 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow

CD4050BCN N16E 16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Data Sheet
October 5, 2009

SW/SC001/003 Series DC-DC Converter Power Modules:
18-36V & 36-75Vdc Input; 3.3V-15Vdc Output; 1-3.5A Output Current

§

This product is intended for integration into end-use equipment. All of the required procedures of end-use equipment should be followed.

* UL is a registered trademark of Underwriters Laboratories, Inc.
† CSA is a registered trademark of Canadian Standards Association.
‡ VDE is a trademark of Verband Deutscher Elektrotechniker e.V.
** ISO is a registered trademark of the International Organization of Standards

Document No: DS03-086 ver. 1.91
PDF name: sw001-002-003_series.pdf

Applications
 Wireless Networks

 Distributed power architectures

 Optical and Access Network Equipment

 Enterprise Networks

 Latest generation IC’s (DSP, FPGA, ASIC)
and Microprocessor powered applications

Options
 Remote On/Off logic (positive or negative), pin

optional for TH version (Suffix 1 or 4)

 Output voltage adjustment-Trim, pin optional
for TH version (Suffix 9)

 Surface Mount/Tape and Reel (-SR Suffix)

Features
 Compliant to RoHS EU Directive 2002/95/EC (-Z

versions)

 Compliant to ROHS EU Directive 2002/95/EC with
lead solder exemption (non-Z versions)

 Delivers up to 3.5A Output current

 15V (1A), 12V (1.25A), 5.0V (3A) and 3.3V (3.5A)

 High efficiency – 86% at 5.0V full load (VIN=54 Vdc)

 Low output ripple and noise

 Small Size and low profile

27.94mm x 24.38mm x 8.5mm
 (1.10 x 0.96 x 0.335 in)

 Industry Standard pin-out:

 TH version is LW series compatible

 Surface mount (SMT) or Through hole (TH)

 Remote On/Off (optional pin on TH version)

 Output overcurrent/voltage protection

 Single Tightly regulated output

 Output voltage adjustment trim ±10%

 Wide operating temperature range (-40°C to 85°C)

 Meets the voltage insulation requirements for ETSI
300-132-2 and complies with and is Licensed for
Basic Insulation rating per EN 60950

 CE mark meets the 2006/95/EC directive§

 UL* 60950-1Recognized, CSA† C22.2 No. 60950-1-
03 Certified, and VDE‡ 0805: (IEC60950, 3rd
Edition) Licensed

 ISO** 9001 and ISO 14001 certified manufacturing
facilities

 Approved for Basic Insulation

Description
The SW/SC series power modules are isolated dc-dc converters that operate over a wide range of input voltage (VIN
= 18 - 36Vdc for SC modules and VIN = 36 – 75Vdc for SW modules) and provide a single precisely regulated
output. This series is a low cost, smaller size alternative to the existing LW/LAW/LC with enhanced performance
parameters. The output is fully isolated from the input, allowing versatile polarity configurations and grounding
connections. The modules exhibit high efficiency, typical efficiency of 86% for 5.0V/3A. Built-in filtering for both
input and output minimizes the need for external filtering.

RoHS Compliant

NMA 5V, 12V & 15V Series
Isolated 1W Dual Output DC/DC Converters

KDC_NMA.G02 Page 1 of 6

www.murata-ps.com

www.murata-ps.com/support

For full details go to
www.murata-ps.com/rohs

SELECTION GUIDE

Order Code

Nominal
Input

Voltage

Output
 Voltage

Output
Current

Input
Current at

Rated Load
Efficiency

Isolation
Capacitance

MTTF1 Package
Style

V V mA mA % pF kHrs
NMA0505DC 5 ±5 ±100 289 69 28 3103

DIP
NMA0509DC 5 ±9 ±55 267 75 32 2257
NMA0512DC 5 ±12 ±42 260 77 34 1579
NMA0515DC 5 ±15 ±33 256 78 36 1065

NMA0505SC 5 ±5 ±100 289 69 28 3103

SIP
NMA0509SC 5 ±9 ±55 267 75 32 2257
NMA0512SC 5 ±12 ±42 260 77 34 1579
NMA0515SC 5 ±15 ±33 256 78 36 1065

NMA1205DC 12 ±5 ±100 120 69 33 2193

DIP
NMA1209DC 12 ±9 ±55 113 74 46 1734
NMA1212DC 12 ±12 ±42 111 75 55 1303
NMA1215DC 12 ±15 ±33 110 76 54 932

NMA1205SC 12 ±5 ±100 120 69 33 2193

SIP
NMA1209SC 12 ±9 ±55 113 74 46 1734
NMA1212SC 12 ±12 ±42 111 75 55 1303
NMA1215SC 12 ±15 ±33 110 76 54 932

NMA1505DC 15 ±5 ±100 91 71 39 1941
DIPNMA1512DC 15 ±12 ±42 87 78 68 790

NMA1515DC 15 ±15 ±33 84 80 84 523

NMA1505SC 15 ±5 ±100 91 71 39 1941
SIPNMA1512SC 15 ±12 ±42 87 78 68 790

NMA1515SC 15 ±15 ±33 84 80 84 523

INPUT CHARACTERISTICS
Parameter Conditions Min. Typ. Max. Units

Voltage range
Continuous operation, 5V input types 4.5 5 5.5

V
Continuous operation, 12V input types 10.8 12 13.2
Continuous operation, 15V input types 13.5 15 16.5

Reflected ripple current 20 40 mA p-p

ABSOLUTE MAXIMUM RATINGS
Lead temperature 1.5mm from case for 10 seconds 300°C
Internal power dissipation 450mW
Input voltage VIN, NMA05 types 7V
Input voltage VIN, NMA12 types 15V
Input voltage VIN, NMA15 types 18V

1. Calculated using MIL-HDBK-217FN2 calculation model with nominal input voltage at full load.
All specifications typical at TA=25°C, nominal input voltage and rated output current unless otherwise specified.

DESCRIPTION
The NMA series of industrial temperature range
DC/DC converters are the standard building blocks
for on-board distributed power systems. They are
ideally suited for providing dual rail supplies on
primarily digital boards with the added benefit of
galvanic isolation to reduce switching noise. All of
the rated power may be drawn from a single pin
provided the total load does not exceed 1 watt.

FEATURES
n RoHS compliant

n Efficiency up to 80%

n Power density up to 0.85W/cm3

n Wide temperature performance at full
 1 Watt load, –40°C to 85°C

n Dual output from a single input rail

n UL 94V-0 package material

n No heatsink required

n Footprint from 1.17cm2

n Industry standard pinout

n Power sharing on output

n 1kVDC isolation

n 5V, 12V, & 15V input

n 5V, 9V, 12V and 15V output

n Internal SMD construction

n Fully encapsulated with toroidal
 magnetics

n No external components required

n MTTF up to 3.1 million hours

n No electrolytic or tantalum capacitors

LMC660
CMOS Quad Operational Amplifier
General Description
The LMC660 CMOS Quad operational amplifier is ideal for
operation from a single supply. It operates from +5V to
+15.5V and features rail-to-rail output swing in addition to an
input common-mode range that includes ground. Perfor-
mance limitations that have plagued CMOS amplifiers in the
past are not a problem with this design. Input VOS, drift, and
broadband noise as well as voltage gain into realistic loads
(2 kΩ and 600Ω) are all equal to or better than widely
accepted bipolar equivalents.

This chip is built with National’s advanced Double-Poly
Silicon-Gate CMOS process.

See the LMC662 datasheet for a dual CMOS operational
amplifier with these same features.

Features
n Rail-to-rail output swing
n Specified for 2 kΩ and 600Ω loads
n High voltage gain: 126 dB

n Low input offset voltage: 3 mV
n Low offset voltage drift: 1.3 µV/˚C
n Ultra low input bias current: 2 fA
n Input common-mode range includes V−

n Operating range from +5V to +15.5V supply
n ISS = 375 µA/amplifier; independent of V+

n Low distortion: 0.01% at 10 kHz
n Slew rate: 1.1 V/µs

Applications
n High-impedance buffer or preamplifier
n Precision current-to-voltage converter
n Long-term integrator
n Sample-and-Hold circuit
n Peak detector
n Medical instrumentation
n Industrial controls
n Automotive sensors

Connection Diagram

14-Pin SOIC/MDIP

00876701

LMC660 Circuit Topology (Each Amplifier)

00876704

June 2006
LM

C
660

C
M

O
S

Q
uad

O
perationalA

m
plifier

© 2006 National Semiconductor Corporation DS008767 www.national.com

FEATURES
● 100% TESTED FOR HIGH-VOLTAGE

BREAKDOWN

● RATED 1500Vrms

● HIGH IMR: 140dB at 60Hz

● 0.010% max NONLINEARITY

● BIPOLAR OPERATION: VO = ±10V

● DIP-16 AND SO-28

● EASE OF USE: Fixed Unity Gain Configuration

● ±4.5V to ±18V SUPPLY RANGE

APPLICATIONS
● INDUSTRIAL PROCESS CONTROL:

Transducer Isolator, Isolator for Thermo-
couples, RTDs, Pressure Bridges, and
Flow Meters, 4-20mA Loop Isolation

● GROUND LOOP ELIMINATION

● MOTOR AND SCR CONTROL

● POWER MONITORING

● PC-BASED DATA ACQUISITION

● TEST EQUIPMENT

DESCRIPTION
The ISO124 is a precision isolation amplifier incorporating a
novel duty cycle modulation-demodulation technique. The
signal is transmitted digitally across a 2pF differential capaci-
tive barrier. With digital modulation, the barrier characteris-
tics do not affect signal integrity, resulting in excellent reliabil-
ity and good high-frequency transient immunity across the
barrier. Both barrier capacitors are imbedded in the plastic
body of the package.

The ISO124 is easy to use. No external components are
required for operation. The key specifications are 0.010%
max nonlinearity, 50kHz signal bandwidth, and 200µV/°C
VOS drift. A power supply range of ±4.5V to ±18V and
quiescent currents of ±5.0mA on VS1 and ±5.5mA on VS2

make these amplifiers ideal for a wide range of applications.

The ISO124 is available in DIP-16 and SO-28 plastic surface
mount packages.

Precision Lowest-Cost
ISOLATION AMPLIFIER

+VS1

VIN VOUT

–VS1

+VS2

Gnd 2
–VS2

Gnd 1

ISO124

ISO124

ISO124

SBOS074C – SEPTEMBER 1997 – REVISED SEPTEMBER 2005

www.ti.com

PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.

Copyright © 1997-2005, Texas Instruments Incorporated

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

ww.irf.com © 2008 International Rectifier

July 1, 2009

IRS2123S/IRS2124S
HIGH SIDE DRIVER IC

Features
• Floating channel designed for bootstrap operation
• Fully operational to +600 V
• Tolerant to negative transient voltage – dV/dt immune
• Gate drive supply range from 10 V to 20 V
• Undervoltage lockout
• CMOS Schmitt-triggered inputs with pull-down
• Output in phase with input (IRS2123) or out of
 Phase with input (IRS2124)
• Leadfree, RoHS compliant

Typical Applications
• General purpose single highside inverters

Product Summary

Topology Single highside

VOFFSET ≤ 600 V

VOUT 10 V – 20 V

Io+ & I o- (typical) 500 mA

tON & tOFF (typical) 140 ns & 140 ns

Package Options

8-Lead SOIC

Typical Connection Diagram

07/07/11

Benefits
� Improved Gate, Avalanche and Dynamic dv/dt

Ruggedness
� Fully Characterized Capacitance and Avalanche
 SOA
� Enhanced body diode dV/dt and dI/dt Capability

www.irf.com 1

IRFB4110PbF
HEXFET��Power MOSFETApplications

��High Efficiency Synchronous Rectification in SMPS
��Uninterruptible Power Supply
��High Speed Power Switching
��Hard Switched and High Frequency Circuits

S

D

G

TO-220AB

D

G D S
Gate Drain Source

S
D

G

VDSS 100V
RDS(on) typ. 3.7m�
 max. 4.5m�
ID (Silicon Limited) 180A �
ID (Package Limited) 120A

Absolute Maximum Ratings
Symbol Parameter Units

ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) A

ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited)

ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Wire Bond Limited)

IDM Pulsed Drain Current �

PD @TC = 25°C Maximum Power Dissipation W

Linear Derating Factor W/°C
VGS Gate-to-Source Voltage V

dv/dt Peak Diode Recovery � V/ns
TJ Operating Junction and °C

TSTG Storage Temperature Range

Soldering Temperature, for 10 seconds

(1.6mm from case)

Mounting torque, 6-32 or M3 screw

Avalanche Characteristics
EAS (Thermally limited) Single Pulse Avalanche Energy � mJ

IAR Avalanche Current�� A

EAR Repetitive Avalanche Energy � mJ

Thermal Resistance
Symbol Parameter Typ. Max. Units

RθJC Junction-to-Case � ––– 0.402

RθCS Case-to-Sink, Flat Greased Surface 0.50 ––– °C/W

RθJA Junction-to-Ambient � ––– 62

300

Max.
180�

130�

670

120

190

See Fig. 14, 15, 22a, 22b

370

5.3

-55 to + 175

 ± 20

2.5

10lb	in (1.1N	m)

��������	
�

LMC660
CMOS Quad Operational Amplifier
General Description
The LMC660 CMOS Quad operational amplifier is ideal for
operation from a single supply. It operates from +5V to
+15.5V and features rail-to-rail output swing in addition to an
input common-mode range that includes ground. Perfor-
mance limitations that have plagued CMOS amplifiers in the
past are not a problem with this design. Input VOS, drift, and
broadband noise as well as voltage gain into realistic loads
(2 kΩ and 600Ω) are all equal to or better than widely
accepted bipolar equivalents.

This chip is built with National’s advanced Double-Poly
Silicon-Gate CMOS process.

See the LMC662 datasheet for a dual CMOS operational
amplifier with these same features.

Features
n Rail-to-rail output swing
n Specified for 2 kΩ and 600Ω loads
n High voltage gain: 126 dB

n Low input offset voltage: 3 mV
n Low offset voltage drift: 1.3 µV/˚C
n Ultra low input bias current: 2 fA
n Input common-mode range includes V−

n Operating range from +5V to +15.5V supply
n ISS = 375 µA/amplifier; independent of V+

n Low distortion: 0.01% at 10 kHz
n Slew rate: 1.1 V/µs

Applications
n High-impedance buffer or preamplifier
n Precision current-to-voltage converter
n Long-term integrator
n Sample-and-Hold circuit
n Peak detector
n Medical instrumentation
n Industrial controls
n Automotive sensors

Connection Diagram

14-Pin SOIC/MDIP

00876701

LMC660 Circuit Topology (Each Amplifier)

00876704

June 2006
LM

C
660

C
M

O
S

Q
uad

O
perationalA

m
plifier

© 2006 National Semiconductor Corporation DS008767 www.national.com

������� �������� ������	� ������
� ������
������ ��������� ���� ����������� ����������

SLOS092D − SEPTEMBER 1987 − REVISED MARCH 2001

1POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

� Trimmed Offset Voltage:
TLC279 . . . 900 µV Max at 25°C,

VDD = 5 V

� Input Offset Voltage Drift . . . Typically
0.1 µV/Month, Including the First 30 Days

� Wide Range of Supply Voltages Over
Specified Temperature Range:

0°C to 70°C . . . 3 V to 16 V
−40°C to 85°C . . . 4 V to 16 V
−55°C to 125°C . . . 4 V to 16 V

� Single-Supply Operation

� Common-Mode Input Voltage Range
Extends Below the Negative Rail (C-Suffix
and I-Suffix Versions)

� Low Noise . . . Typically 25 nV/ √Hz
at f = 1 kHz

� Output Voltage Range Includes Negative
Rail

� High Input Impedance . . . 1012 Ω Typ

� ESD-Protection Circuitry

� Small-Outline Package Option Also
Available in Tape and Reel

� Designed-In Latch-Up Immunity

description

The TLC274 and TLC279 quad operational
amplifiers combine a wide range of input offset
voltage grades with low offset voltage drift, high
input impedance, low noise, and speeds
approaching that of general-purpose BiFET
devices.

These devices use Texas Instruments silicon-
gate LinCMOS technology, which provides
offset voltage stability far exceeding the stability
available with conventional metal-gate
processes.

The extremely high input impedance, low bias
currents, and high slew rates make these
cost-effective devices ideal for applications which
have previously been reserved for BiFET and
NFET products. Four offset voltage grades are
available (C-suffix and I-suffix types), ranging
from the low-cost TLC274 (10 mV) to the high-
precision TLC279 (900 µV). These advantages, in
combination with good common-mode rejection
and supply voltage rejection, make these devices
a good choice for new state-of-the-art designs as
well as for upgrading existing designs.

Copyright 2001, Texas Instruments Incorporated���������� ���� ��������� �! "#��$� �! �� %#&'�"���� (��$)
���(#"�! "����� �� !%$"���"����! %$� �*$ �$��! �� �$+�! �!��#�$�!
!��(��(,�����-) ���(#"��� %��"$!!�. (�$! �� $"$!!���'- �"'#($
�$!��. �� �'' %����$�$�!)

−1200

P
er

ce
nt

ag
e

of
 U

ni
ts

 −
 %

VIO − Input Offset Voltage − µV

30

1200
0

−600 0 600

5

10

15

20

25
VDD = 5 V
TA = 25°C
N Package

DISTRIBUTION OF TLC279
INPUT OFFSET VOLTAGE

1

2

3

4

5

6

7

14

13

12

11

10

9

8

1OUT
1IN−
1IN+
VDD
2IN+
2IN−

2OUT

4OUT
4IN−
4IN+
GND
3IN+
3IN−
3OUT

D, J, N, OR PW PACKAGE
(TOP VIEW)

3 2 1 20 19

9 10 11 12 13

4

5

6

7

8

18

17

16

15

14

4IN+
NC
GND
NC
3IN+

1IN+
NC

VDD
NC

2IN+

FK PACKAGE
(TOP VIEW)

1I
N

 −
1O

U
T

N
C

3O
U

T
3I

N
 −

4O
U

T
4I

N
 −

2I
N

 −
2O

U
T

N
C

NC − No internal connection

290 Units Tested From 2 Wafer Lots

LinCMOS is a trademark of Texas Instruments.

ACNV4506
Intelligent Power Module and Gate Drive Interface Optocouplers

Data Sheet

CAUTION: It is advised that normal static precautions be taken in handling and assembly
of this component to prevent damage and/or degradation which may be induced by ESD.

Description
The ACNV4506 device contains a GaAsP LED optically
coupled to an integrated high gain photo detector.
Minimized propagation delay difference between
devices makes these optocouplers excellent solutions for
improving inverter efficiency through reduced switching
dead time. Specifications and performance plots are given
for typical IPM applications.

Functional Diagram

Features
•	 Performance Specified for Common IPM Applications

Over Industrial Temperature Range.

•	 Short Maximum Propagation Delays

•	 Minimized Pulse Width Distortion (PWD)

•	 Very High Common Mode Rejection (CMR)

•	 High CTR.

•	 Available in Widebody DIP10 and GulWing packages
with 13.0 mm creepage and clearance.

•	 Safety Approval (pending):
– UL Recognized with 7500 Vrms for 1 minute per

UL1577.
– CSA Approved.
– IEC/EN/DIN EN 60747-5-2 Approved with VIORM =

2262Vpeak.

Specifications
•	 Wide operating temperature range: –40°C to 105°C.

•	 Typical propagation delay tPHL = 200 ns, tPLH = 350 ns

•	 Typical Pulse Width Distortion (PWD) = 150 ns.

•	 30 kV/µs minimum common mode rejection (CMR) at
VCM = 1500 V.

•	 CTR = 90%(typ) at IF = 10mA

Applications
•	 IPM Isolation

•	 Isolated IGBT/MOSFET Gate Drive

•	 AC and Brushless DC Motor Drives

•	 Industrial Inverters

Note:
A 0.1 µF bypass capacitor must be connected between pins 7 and 10.

Truth Table
LED VO

ON LOW

OFF HIGH

ANODE

N.C.

CATHODE

VL

VO

Ground

92

83

74
SHIELD

5

1

6

10
20kΩ

VCC

N.C.

N.C.

N.C.

+5V Precision
VOLTAGE REFERENCE

FEATURES
● OUTPUT VOLTAGE: +5V ±0.2% max

● EXCELLENT TEMPERATURE STABILITY:
10ppm/°C max (–40°C to +85°C)

● LOW NOISE: 10µVPP max (0.1Hz to 10Hz)

● EXCELLENT LINE REGULATION:
0.01%/V max

● EXCELLENT LOAD REGULATION:
0.008%/mA max

● LOW SUPPLY CURRENT: 1.4mA max

● SHORT-CIRCUIT PROTECTED

● WIDE SUPPLY RANGE: 8V to 40V

● INDUSTRIAL TEMPERATURE RANGE:
 –40°C to +85°C
● PACKAGE OPTIONS: DIP-8, SO-8

APPLICATIONS
● PRECISION REGULATORS

● CONSTANT CURRENT SOURCE/SINK

● DIGITAL VOLTMETERS

● V/F CONVERTERS

● A/D AND D/A CONVERTERS

● PRECISION CALIBRATION STANDARD

● TEST EQUIPMENT

DESCRIPTION
The REF02 is a precision 5V voltage reference. The drift is
laser trimmed to 10ppm/°C max over the extended industrial
and military temperature range. The REF02 provides a stable
5V output that can be externally adjusted over a ±6% range
with minimal effect on temperature stability. The REF02
operates from a single supply with an input range of 8V to 40V
with a very low current drain of 1mA, and excellent temperature
stability due to an improved design. Excellent line and load
regulation, low noise, low power, and low cost make the
REF02 the best choice whenever a 5V voltage reference is
required. Available package options are DIP-8 and SO-8. The
REF02 is an ideal choice for portable instrumentation,
temperature transducers, Analog-to-Digital (A/D) and Digital-
to-Analog (D/A) converters, and digital voltmeters.

VOUT

REF02

VIN

Trim

GND

+5V Reference with Trimmed Output

2

6

5

4

RPOT
10kΩ
(Optional)

Output

3
Temp

REF02

REF02

REF02

SBVS003B – JANUARY 1993 – REVISED JANUARY 2005

www.ti.com

PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.

Copyright © 1993-2005, Texas Instruments Incorporated

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

	Title Page
	Masteroppgave Ragnhild Solheim V uten appendix F
	Appendix F II
	Appendix F
	DC-DC converter
	Drive vII
	Inductor
	inverting buffer
	Isolated DC-DC converter 1A
	Isolated DC-DC converter
	Isolated operational amplifier vII
	LMC660
	General Description
	Features
	Applications
	Connection Diagram
	Absolute Maximum Ratings
	Operating Ratings
	DC Electrical Characteristics
	AC Electrical Characteristics
	Ordering Information
	Typical Performance Characteristics
	Application Hints
	AMPLIFIER TOPOLOGY
	FIGURE 1. LMC660 Circuit Topology (Each Amplifier)

	COMPENSATING INPUT CAPACITANCE
	FIGURE 2. General Operational Amplifier Circuit

	CAPACITIVE LOAD TOLERANCE
	FIGURE 3. Rx, Cx Improve Capacitive Load Tolerance
	FIGURE 4. Compensating for Large Capacitive Loads with a Pull Up Resistor

	PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK
	FIGURE 5. Example, using the LMC660, of Guard Ring in P.C. Board Layout
	FIGURE 6. Guard Ring Connections
	FIGURE 7. Air Wiring

	BIAS CURRENT TESTING
	FIGURE 8. Simple Input Bias Current Test Circuit

	Typical Single-Supply Applications
	Physical Dimensions

	Isolated operational amplifier
	MOSFET driver
	MOSFET
	opamp vII
	LMC660
	General Description
	Features
	Applications
	Connection Diagram
	Absolute Maximum Ratings
	Operating Ratings
	DC Electrical Characteristics
	AC Electrical Characteristics
	Ordering Information
	Typical Performance Characteristics
	Application Hints
	AMPLIFIER TOPOLOGY
	FIGURE 1. LMC660 Circuit Topology (Each Amplifier)

	COMPENSATING INPUT CAPACITANCE
	FIGURE 2. General Operational Amplifier Circuit

	CAPACITIVE LOAD TOLERANCE
	FIGURE 3. Rx, Cx Improve Capacitive Load Tolerance
	FIGURE 4. Compensating for Large Capacitive Loads with a Pull Up Resistor

	PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK
	FIGURE 5. Example, using the LMC660, of Guard Ring in P.C. Board Layout
	FIGURE 6. Guard Ring Connections
	FIGURE 7. Air Wiring

	BIAS CURRENT TESTING
	FIGURE 8. Simple Input Bias Current Test Circuit

	Typical Single-Supply Applications
	Physical Dimensions

	Operational Amplifier
	Optocoupler
	QE
	Voltage reference
	Appendix F.pdf
	DC-DC converter
	Drive vII
	Inductor
	inverting buffer
	Isolated DC-DC converter 1A
	Isolated DC-DC converter
	Isolated operational amplifier vII
	LMC660
	General Description
	Features
	Applications
	Connection Diagram
	Absolute Maximum Ratings
	Operating Ratings
	DC Electrical Characteristics
	AC Electrical Characteristics
	Ordering Information
	Typical Performance Characteristics
	Application Hints
	AMPLIFIER TOPOLOGY
	FIGURE 1. LMC660 Circuit Topology (Each Amplifier)

	COMPENSATING INPUT CAPACITANCE
	FIGURE 2. General Operational Amplifier Circuit

	CAPACITIVE LOAD TOLERANCE
	FIGURE 3. Rx, Cx Improve Capacitive Load Tolerance
	FIGURE 4. Compensating for Large Capacitive Loads with a Pull Up Resistor

	PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK
	FIGURE 5. Example, using the LMC660, of Guard Ring in P.C. Board Layout
	FIGURE 6. Guard Ring Connections
	FIGURE 7. Air Wiring

	BIAS CURRENT TESTING
	FIGURE 8. Simple Input Bias Current Test Circuit

	Typical Single-Supply Applications
	Physical Dimensions

	Isolated operational amplifier
	MOSFET driver
	MOSFET
	opamp vII
	LMC660
	General Description
	Features
	Applications
	Connection Diagram
	Absolute Maximum Ratings
	Operating Ratings
	DC Electrical Characteristics
	AC Electrical Characteristics
	Ordering Information
	Typical Performance Characteristics
	Application Hints
	AMPLIFIER TOPOLOGY
	FIGURE 1. LMC660 Circuit Topology (Each Amplifier)

	COMPENSATING INPUT CAPACITANCE
	FIGURE 2. General Operational Amplifier Circuit

	CAPACITIVE LOAD TOLERANCE
	FIGURE 3. Rx, Cx Improve Capacitive Load Tolerance
	FIGURE 4. Compensating for Large Capacitive Loads with a Pull Up Resistor

	PRINTED-CIRCUIT-BOARD LAYOUT FOR HIGH-IMPEDANCE WORK
	FIGURE 5. Example, using the LMC660, of Guard Ring in P.C. Board Layout
	FIGURE 6. Guard Ring Connections
	FIGURE 7. Air Wiring

	BIAS CURRENT TESTING
	FIGURE 8. Simple Input Bias Current Test Circuit

	Typical Single-Supply Applications
	Physical Dimensions

	Operational Amplifier
	Optocoupler
	QE
	Voltage reference

