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Abstract

The main objective of this thesis has been to investigate some methods for simu-
lating CO2 storage and hydrocarbon recovery on complex polyhedral grids, with
main focus on the nonlinear two-point flux approximation method. The indus-
try standard has for many years been the (linear) two-point flux approximation
method, but as this method only calculates the flux across an internal face by
approximating the transmissibilities as averages between two cells, it does not ac-
count for transverse flux across the face making it inconsistent for problems where
transverse flux occurs. The nonlinear two-point flux approximation method does
take transverse flux into consideration, and so it is of interest to implement it
as a part of SINTEF’s Matlab Reservoir Simulation Toolbox (MRST). This the-
sis will begin by going through the physical aspects of the flow equation and it’s
discretization. We will follow up by deriving the linear and nonlinear two-point
flux approximation methods, as well as a multipoint flux approximation method.
Further, use and syntax of MRST is presented, together with explanation of the
written code. Through a few examples and comparisons, we investigate the robust-
ness and accuracy of the nonlinear two-point flux approximation method compared
to established solvers in MRST. It is shown that the nonlinear two-point flux ap-
proximation method is versatile and an equally good candidate compared to other
established methods within reservoir simulation. However, it is sensitive to full
permeability tensors on complex grids, and thus, as is, ineffective for the purpose
it is intended.
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Sammendrag

Hovedmålet med denne avhandlingen har vært å utforske metoder innen simulering
av CO2 lagring og hydrokarbonutvinning på avanserte polyhedrale rutenett, med
fokus på en ikke-lineær topunkts flukstilnærmings metode. Industristandarden har
i mange år vært en (lineær) topunkt flukstilnærmingsmetode, men ettersom denne
metoden kun bruker to punkter i to naboceller til å beregne fluksen mellom cel-
lene tar den ikke høyde for tverrgående fluks, noe som gjør den ukonsistent. Den
ikke-linære metoden tar hensyn til tverrgående fluks ved å benytte seg av trykk
i flere naboceller til å beregne transmissibiliteten, før også den bruker to punkter
for å beregne fluksen mellom to celler. Med bakgrunn i dette er det av interesse å
implementere den ikke-lineære topunktsmetoden som en del av SINTEF’s Matlab
Reservoir Simulation Toolbox (MRST). Avhandlingen begynner med å presentere
de fysiske aspektene ved flytligningen, og dens diskretisering. Vi fortsetter med
utledningene av den lineære og den ikke-lineære topunkts metoden, i tillegg til en
flerpunkts flukstilnærmingmetode. Videre er bruk og syntaks i MRST presentert,
sammen med forklaring på koden som er skrevet. Avsluttningsvis har vi gjennom
eksempler og sammenligninger med etablerte løsere i MRST utforsket bruksom-
rådene og nøyaktigheten til den ikkelineære topunkts metoden. Det er vist at
den ikke-lineære topunkts flukstilnærmingsmetoden er alsidig og en likeverdig god
kandidat sammenlignet med andre metoder innen reservoar simulering. Metoden
er på den annen side sensitiv for fullstendige permeabilitets tensorer på komplekse
grid, noe som gjør den, som den er, ineffektiv innen de feltene den er tiltenkt.
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Chapter 1

Introduction

Reservoir simulation is the process of modelling and predict the flow of various
fluids through porous media. The fluids are typically oil, gas and water, and
the porous media are sedimentary rocks located sub-sea that have been formed
throughout centuries. These sedimentary rocks constitute a reservoir, and does
usually have a layer of impermeable rock over it that prevents the hydrocarbon
from migrating from the reservoir to the surface. The size of the reservoirs vary
greatly, from small reservoirs of a few cubic kilometers, to large ones on thousands
of cubic kilometers. The ability to accurately predict and simulate the flow in
porous media has become of great importance when developing and planning a
new field, as well as plan and improve ongoing recovery from existing fields.

Oil companies became increasingly aware of the importance of predicting reliable
reservoir behaviour during the early twentieth century (Care, 2010). Mathemati-
cal models for pressure gradients and fluid flow were developed, but the increasing
complexity made the engineers turn to analogue models called reservoir analyz-
ers. In the 1930’s, researchers working for large petroleum companies started
developing electrical models, with reference to the analogue analyzers, to model
hydrodynamics in oil reservoirs. Since then, great development has been made
within the field of reservoir simulation, but there is still room for improvements.
The industry standard relies today on methods based on finite difference, and the
two-point flux approximation method is frequently applied to solve sub-sea flow
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problems (Lie, 2016). The method approximates the flux through a cell wall by
using the pressure in the two neighboring cells. However, as the method is linear
and only accounts for two pressure points to approximate the flux, it will not be
consistent on grids that are not so-called K-orthogonal, i.e., grids where the vector
between two solution nodes is not parallel to the normal vector of the cell wall.
It may thus fail to give reasonable results on geologically difficult grids (Wu and
Parashkevov, 2009). Methods that are consistent, such as the multipoint flux ap-
proximation method (Aavatsmark, 2002), the mixed finite element method (Brezzi
and Fortin, 1991), or the mimetic finite-difference methods (Brezzi et al., 2005),
are in general not monotone for quadrilateral grids, and thus may cause unnatu-
ral oscillations (Keilegavlen et al., 2009; Nordbotten et al., 2007). One could get
around the problem of not having a method that is both monotone and consistent
by applying different methods on the flow-problem and combine them to find the
most likely solutions, as reservoir simulations will have many uncertainties anyway.
However, a solution that has been developed is to make the solver nonlinear, and
thus monotone and consistent by construction. One such method is the nonlinear
two-point flux approximation method, where the first to propose the method are
Potier (2009) and Nikitin et al. (2014). The method has shown great potential,
but has little research done on its accuracy.

1.1 Objectives

The main objective of this thesis has been to improve a preliminary implemen-
tation of the nonlinear two-point flux approximation method (NTPFA) done by
Olav Møyner in SINTEF’s Matlab Reservoir Simulation Toolbox (MRST) (Berge
et al., 2017). The existing code was close to finished, but used a search method
to decompose the directional derivatives of the pressure variables. The new imple-
mented method uses optimization. A comparison between the results of the two
decompositions has been done and is presented. Further, the NTPFA method is
compared to other established methods already existing in MRST to investigate
its applications.
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1.2 Approach

Understanding both the physical aspects of subsurface flow and established meth-
ods for solving the incompressible flow equations is inevitable to implement the
NTPFA method. In the project done during the first half of my fifth year, I be-
gan studying these topics and made a first, preliminary implementation of the
NTPFA method (Heigrestad, 2018). This has been used as background, and fur-
ther investigations has been made built on results and insights from this project.
A few methods already incorporated to MRST has been used as learning tool and
validation of implementations done.

1.3 Outline

In this thesis, I will introduce you briefly to the physics of flow in porous media,
present the key governing equations for the basic models, and introduce you to the
problem of formulating consistent and monotone schemes on general polyhedral
grids. A more thorough investigation is made for the nonlinear two-point flux
approximation method, on which this thesis has main focus. Further, comparison
and validational tests are done and presented. In Chapter 2, a brief introduction
to reservoir physics is given, as well as an introduction to key mathematical mod-
els (Darcy’s law). Further, the elliptic model, discretization, and derivations are
presented. In Chapter 3, MRST notations and a thorough explanation of the im-
plementations done are given. We discuss through examples and comparisons to a
few established methods the NTPFA method’s soundness in Chapter 4. The the-
sis is completed in Chapter 5 with a conclusion and recommendations for further
work.

3





Chapter 2

Theory

2.1 Reservoir Properties

When modeling subsurface flow it is necessary to have some background knowledge
on the flow through permeable rocks. All natural reservoirs consist of sedimen-
tary rocks with sufficient porosity and permeability to store and transmit fluids
(Nordbotten and Celia, 2012; Lie, 2016). A rock’s porosity is its ability to store
fluids, and is determined by the volume fraction of pores. The porosity will thus
have a value between [0, 1), and the value is mainly determined by the pore and
grain-size distribution. For rigid mediums, the porosity will be static, whereas for
non-rigid mediums it is common to model the porosity as a pressure-dependent
variable. Denoting the porosity by φ, we can define the rock compressibility, cr,
depending on the porosity and overall reservoir pressure p by

cr =
1

φ

dφ

dp
=
d lnφ

dp
. (2.1)

The porosity is usually assumed to be a piece-wise continuous spatial function.
Assuming constant compressibility, integration of Equation (2.1) followed by lin-
earization yields

φ = φ0

(
1 + cr(p− p0)

)
.

The permeability is the ability to transmit fluids, and is given by the interconnec-
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tion of the pores. We denote permeability by K. The permeability will generally
be a full tensor

K =

Kxx Kxy KxzKyx Kyy Kyz
Kzx Kzy Kzz

 , (2.2)

where the diagonal elements represent how pressure drop in one axial direction
effects the flow rate in the same direction. The connection between the flow in the
axial direction and pressure drop in perpendicular directions is described by the
off-diagonal elements in (2.2). It is common to specify permeability in millidarcys
(mD), where 1D≈ 0.987 · 10−12m2, whereas porosity is dimensionless. When mod-
eling a physical system, we must require that the permeability tensor in Equation
(2.2) is symmetric and positive definite. The requirement of positive definiteness
comes from the fact that the flow component parallel to the pressure drop should
be in the same direction as the pressure drop.

2.2 Darcy’s Law

Darcy’s law describes the connection between pressure and flow rate, and is, to-
gether with the equation of conservation of mass, one of the main equations de-
scribing flow and continuity of fluid phases. Henry Darcy wanted to understand
the physics of flow through the sand filters used to filtrate the water supply in the
city of Dijon in the 19th century France. He performed a series of experiments on
a sand pack and established that the flow rate of that pack was proportional to
the cross-section area and the difference in water height, and in addition it was
inversely proportional to the flow length of the tank. His results were published
as an appendix in Darcy (1856), where the law, which today is known as Darcy’s
law, was stated

Q = AK
(h1 + z1)− (h2 − z2)

L
. (2.3)

In Equation (2.3), Q denotes the volume flow rate. Furter, A is the area cross
section, L the length of the flow path, K the hydraulic conductivity, z the elevation
on top and bottom, and h the pressure head in the position of z, i.e. the pressure
divided by the specific weight (Brown, 2002). By replacing Q/A with u we get
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the specific flow rate, known as Darcy flux, through the sand pack. Darcy flux
has dimension [m/s] and measures the volume of fluid per total area per time.
The hydraulic conductivity is given by K = ρgK/µ, where g is the gravitational
acceleration constant, ρ is the fluid density and µ is the fluid viscosity. Introducing
the fluid potential Φ, Equation (2.3) can now be written

u = −K
µ
∇Φ. (2.4)

We see that the permeability is a proportionality factor between the flow rate and
the applied pressure.

2.2.1 Single-phase Flow

Exploring Darcy’s equation we find the extension for a single-phase flow

u = −K
µ

(∇p− ρg∇z), (2.5)

where (∇p − ρg∇z) corresponds to ∇Φ in Equation (2.4). In Equation (2.5), ρ
and g are defined as before, and z is the vertical coordinate. We have that the
gradient of the vertical coordinate can be denoted by its unit vector, ez, and further
the gravitational acceleration can be expressed g = gez, so Equation (2.5) can be
written

u = −K
µ

(∇p− ρg).

For more general flow equations for single-phase flow we consider the law of mass
conservation. All mass produced inside a specific volume or area must equal the
total flux over the boundaries. This can be expressed

∂

∂t

∫
Ω

φρ d~x+

∫
∂Ω

ρ~u · ~n ds =

∫
Ω

ρq d~x, (2.6)

where ~n is the normal at the boundary ∂Ω of the domain Ω, and q denotes the
sinks and sources. Equation (2.6) must be satisfied for any (infinitesimal) region,
and thus must satisfy the following continuity equation

∂(φρ)

∂t
+∇ · (ρ~u) = ρq.
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By combining this equation with Darcy’s law as well as fluid and rock compress-
ibilities, we obtain a parabolic equation for the fluid pressure

ctφρ
∂p

∂t
−∇

[ρK
µ

(∇p− ρg)
]

= ρq,

where ct is the total compressibility in the system. If incompressible flow is con-
sidered, ct = 0, and we get a linear elliptic equation

−∇ ·
[K
µ
∇(p− gρz)

]
= q. (2.7)

We introduce Φ = p−gρz and recognize Equation (2.7) as the generalized Poisson
equation.

We henceforth neglect gravity and set viscosity to one, and consider an elliptic
Poisson equation on the form

−∇ · K∇p = q, (2.8)

where we assume that K is symmetric and positive definite. In Equation (2.8), Φ

from Equation (2.7) coincides with the pressure. To be able to find a well-posed
solution, boundary conditions to Equation (2.8) are required. We thus impose the
boundary conditions

p = pD, onΓD

−(K∇p) · ~n = νN , onΓN .

Here, the boundary for each cell in the grid is divided into Dirichlet boundary, ΓD,
and Neumann boundary, ΓN . In reservoir simulations, it is common to assume no
flow across the outer boundaries to the reservoir, and so the Neumann condition,
νN , will be 0 on the boundary of the reservoir.

2.3 Discretization

To discretize Equation (2.8) by a finite-volume method, we integrate both sides
over a control volume Ωi to get∫

∂Ωi

−K∇p · ~n dS =

∫
Ωi

q d~x, (2.9)
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where the mass is conserved for each cell. We denote ~v = −K∇p and use Darcy’s
law to define the flux across the face between cell i and j as

vi,j =

∫
Γi,j

~v · ~n dS. (2.10)

We then have the following ∑
j

vi,j =

∫
Ωi

qd~x. (2.11)

In Equation (2.10), Γi,j is considered a half-face that bounds cell i against its
neighboring cell j. The set of all faces is defined

F := {Γi,j|Γi,j = Ωi∩Ωj, j ∈ N (i)}∪{Γi,ΓD∪ΓN
|Γi,ΓD∪ΓN

= Ωi∩(ΓD∪ΓN)}, (2.12)

where N (i) is the set of neighboring cell indices, such that ∂Ωi = ∪j∈N (i)Γi,j. The
half-face from j to i will be identical, but with opposite normal vector. We now
approximate the integral in (2.10) by the midpoint rule and obtain

vi,j ≈ Aij~v(~xij) · ~ni,j = −Aij(K∇p)(~xij) · ~ni,j, (2.13)

where Aij is the area of the shared face between cell i and j, and ~xij denotes
the centroid on Γi,j. Note that Aij and ~xij is without comma between i and j as
Ai,j = Aj,i and ~xi,j = ~xj,i. As we only know the averaged value of the pressure
inside each cell, and not the pressure at the face centroids, which we will denote πi,j,
we need to make some assumptions to be able to evaluate the pressure gradient.
The right hand side of Equation (2.9) is found using quadrature rules.

2.4 Two-Point Flux Approximation

For the TPFA method, only the cell pressure in one neighboring cell is assumed
to contribute to the flux across the interface between the two cells. Since, as
mentioned, we do not have the pressure πi,j at the face centroid, we need to
approximate the pressure gradient in Equation (2.13). As we know the average
pressure pi inside the cell, we assume that the pressure is linear inside each cell
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so that the pressure at the cell center is identical to pi. The flux vi,j can thus be
approximated as

vi,j ≈ AijKi
(pi − πi,j)~ci,j
|~ci,j|2

· ~ni,j = Ti,j(pi − πi,j),

where Ti,j is the one-sided transmissibility and is associated with the half face
between cell i and j, and ~ci,j is the vector between the solution nodes pi and πi,j
as seen in Figure 2.1.

Figure 2.1: Two cells, Ωi and Ωj , for the two-point finite-volume discretization. The
pressure pi and pj are at the cell centroids, and the pressure πi,j is at the centroid of the
face Γi,j .

By taking continuity of fluxes across all faces and continuity of face pressures into
account, so that vi,j = −vj,i = vij and πi,j = πj,i = πij, we end up with the
following scheme for the TPFA method by eliminating the interface pressure

vij =
[
T−1
i,j + T−1

j,i

]−1
(pi − pj) = Tij(pi − pj). (2.14)

Tij describes the transmissibility between the two cells. We now insert the flux in
Equation (2.14) into Equation (2.11) to get the following system of equations∑

j

Tij(pi − pj) = qi, ∀Ωi ⊂ Ω,

where we define the matrix A = {aik} with

aik =


∑

j Tij, if k = i.

−Tik, if k 6= i.
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This system is symmetric due to the zero Neumann condition, and a solution is
defined up to an arbitrary constant for the continuous problem. By specifying the
pressure in a single point, the system is both positive definite and symmetric.

2.5 Consistency

To guarantee convergence of a numerical method, it is necessary for the method
to be consistent. As mentioned, the TPFA method is consistent for K-orthogonal
grids only. To see that it is not consistent for grids that are not K-orthogonal, we
look at an example with a full permeability tensor in 2D on the form

K =

[
Kxx Kxy
Kxy Kyy

]
,

which is symmetric and assumed positive definite. As we know that the flux across
a face Γi,j is approximated by the pressure in the two neighboring cells, Ωi and Ωj,
we consider a simple Cartesian grid as the one seen in Figure 2.2, and see that the
normal vector from cell i to cell j will be ~ni,j = [1, 0], and is equal to the vector
~ci,j. Thus the flux in Equation (2.10) will be

vi,j =

∫
Γi,j

(−K∇p) · ~n dS = −
∫

Γi,j

(Kxx
∂p

∂x
+Kxy

∂p

∂y
) dS.

However, since we only consider the two pressure-points varying in the x-direction,
we do not have an estimation for ∂p

∂y
, and the TPFA method will thus not be

Figure 2.2: A simple cartesian grid where ~ni,j = ~ci,j = [1, 0], and where the axes of the
full permeability tensor does not align with the coordinate system.
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consistent unless Kxy ≡ 0 in all cells in the grid. In this case, there is no flux in the
transverse direction, and (K~ni,j)‖~ci,j, i.e., the grid is K-orthogonal. The NTPFA
method solves this problem by utilizing several pressure points to estimate the flux
across a face, and is thus potentially consistent for all grids.

2.6 Nonlinear Two-Point Flux Approximation

The NTPFA scheme lets the transmissibilites depend on one or more pressure
values. We then get a two point expression for the flux on the form

vi,j = Ti(~p)pi − Tj(~p)pj.

The main idea for the NTPFA method is to approximate the directional deriva-
tives of p in the conormal direction, ~dΓ := K~nΓ (Berge et al., 2017; Schneider
et al., 2017), where Γ denotes the faces as defined in Equation (2.12). Further, ~nΓ

describes the integrated normal,

~nΓ =

∫
Γ

~n dS, (2.15)

as the faces generally cannot be assumed to be planar. The integration of Equation
(2.15) is done in Subsection 2.9.1.

Let mi denote the number of faces in cell i. In conormal decomposition, the conor-
mal ~dΓ for each face k = 1, ...,mi of a cell i, is expressed as a linear combination
of vectors ~tk, for which ∇p is assumed known, as follows

∇p · ~dΓ =
∑
k

αk∇p ·~tk =
∑
k

[
αk
(
p(~xk)− p(~xi)

)
+O

(
‖~xk− ~xi‖2

)]
, ~tk = ~xk− ~xi.

(2.16)
Here, ~xi denotes the centroid of cell i, and ~xk is some point in a neighboring cell
k. The vectors ~tk and corresponding coefficients αk can be found using search
algorithms with the constraint αk ≥ 0, such that ~dΓ =

∑
k αk~tk. The choice of

the vectors ~tk is important as the decomposition in general is neither trivial nor
unique. Thus, search algorithms might give a variety of solutions, where the best
one is difficult to distinguish. As proposed by Schneider et al. (2017), optimization
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techniques can be applied. We then let the points ~xk be face interpolation points
and denote them ~xΓi,k

. An illustration of a cell with the mentioned variables can be
seen in Figure 2.3, where the permeability is so that it changes the flow direction
across the face Γi,j, as illustrated by the vector ~dΓi,j

.

Figure 2.3: A cell with cell centroid ~xi and k = 5 faces with face interpolation points
~xΓi,k

, together with the decomposed conormal vector for face 1 in red.

The face interpolation points ~xΓi,j
can be calculated using various strategies, where

the harmonic averaging point is suitable for complex grid geometries (Agélas et al.,
2009). The harmonic averaging point does not require any sub-grid information,
and is thus easy to calculate. For the harmonic averaging point of a face Γi,j, it is
assumed that the pressure is an affine function in the two cells Ωi and Ωj, and it is
assumed to be continuous over the face. Thus, the following continuity condition
holds

∇pi · Ki · ~nΓi,j
= ∇pj · Kj · ~nΓj,i

.

By taking the continuity and the restriction of the affine function into account,
the pressure in a point ~x on the face Γi,j can be defined

p|Γi,j
(~x) =

βi,jpi + βj,ipj
βi,j + βj,i

+ ~gΓi,j
· (~x− ~xΓi,j

),
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where ~gΓi,j
is a tangential gradient to the face Γi,j, and ~xΓi,j

now denotes the
harmonic averaging point on Γi,j defined with βi,j and βj,i as follows

~xΓi,j
=
βi,j~xi + βj,i~xj + (Ki −Kj) · ~nΓi,j

βi,j + βj,i
, βi,j =

~nΓi,j
· Ki · ~nΓi,j

dist(~xi,Γ)

βj,i =
~nΓi,j

· Kj · ~nΓi,j

dist(~xj,Γ)
.

(2.17)

Here, dist(~x,Γ) = inf~z∈Γ‖~x−~z‖2, and is the distance from some point ~x to a face Γ.
The face interpolation points are always calculated such that ~xΓi,j

= ~xΓj,i
= ~xΓij

.

Having defined the face interpolation points as the harmonic averaging points, we
can move on to the problem of optimization. To find optimal coefficients αk so that
~dΓ =

∑
k αk~tk, we search for a solution to the constrained minimization problem

min
α∈Rmi

F (α) subject to ~dΓ = tα, αk ≥ 0 k = 1, ...,mi, (2.18)

where the matrix t ∈ Rd×mi contains the vectors that are used for the decompo-
sition, i.e., t = (~t1, ...,~tmi

). The objective function can be set to F (α) =
∑

k αk.
However, there will exist cell geometries where the restriction to nonnegative α’s
may cause the minimization problem to not have a solution. Further, problems
can occur if the vector αk~tk is too long, so that it points beyond the neighboring
cell; for instance if the neighboring cell is very thin. To be able to get past this
problem, the restriction to nonnegative α’s must be weakened. This can be done
by choosing a different objective function and adding weighting parameters in the
decomposition so that the chosen objective function is less dependent on the vector
lengths. We thus introduce the weighting parameters

σk =
‖~tk‖2

‖~dΓ‖2

,

and normalize ~dΓ and t

~dnΓ =
~dΓ

‖~dΓ‖2

, tn =
~t

‖~t‖2

.

We then set the objective function to F (α) =
∑

k σkαk, so that we now search for
a solution to the following minimization problem

min
γ≥0,σiαi∈Rmi

κγ +
∑
k

σkαk subject to ~dnΓ = tnσα,∑
k

αk ≥ δ, σkαk ≥ −γ.
(2.19)
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We require that δ ≥ 0, and that the constant κ� mi

minσk
so that γ = 0 if a positive

conormal decomposition exists. We define the face stencil SΓ as the set of indices
needed for the conormal decomposition in each cell, i.e., the number of faces in a
cell where αk 6= 0.

After the decomposition of ~di,j and ~dj,i is done for each face Γi,j ∈ F , we get

~di,j =
∑
k∈Sij

αij,k~ti,k, ~dj,i =
∑
k∈Sji

αji,k~tj,k, (2.20)

where ~ti,k and ~tj,k are defined as in Equation (2.16) for the two cells i and j

connected by the face Γij. To get an approximation for the flux using the conormal
decomposition, we assume that K is a constant tensor and look at the integrand
in Equation (2.10) to see that ~v · ~n = −K∇p · ~n = −∇p · (K~n) = −∇p · ~dΓ. We
now use (2.16) and the notation in (2.20) to get the following approximation for
the face flux on each side of a face Γi,j

vi,j = −
∑
k∈Sij

αij,k(pΓik
− pi), vj,i = −

∑
k∈Sji

αji,k(pΓjk
− pj). (2.21)

In (2.21), pi and pj are the primary cell pressure values evaluated at the cell
centroids, and pΓik

and pΓjk
are the secondary face values evaluated at the harmonic

averaging point. The secondary values are reconstructed from cell pressures,

pΓi,j
=
βi,jpi + βj,ipj
βi,j + βj,i

= ωi,jpi + ωj,ipj, (2.22)

where βi,j and βj,i are defined as in (2.17). The approximation in (2.22) is allowed
by the harmonic averaging point. We now let α̃ij,k = αij,kωki, and insert (2.22)
into (2.21) to get

vi,j = −
∑
k∈Sij

α̃ij,k(pk − pi), vj,i = −
∑
k∈Sji

α̃ji,k(pk − pj). (2.23)

Finally, we have the total face flux as a weighted sum of the fluxes in (2.23) as
follows

vij := µi,jvi,j − µj,ivj,i, (2.24)
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with µi,j +µj,i = 1, 0 ≤ µi,j ≤ 1, where we require that vji = −vij. Notice that for
the total flux, the comma between i and j is removed. The half-fluxes in (2.23)
inserted into (2.24) gives us

vij = Ti,jpi − Tj,ipj + (µj,iλj,i − µi,jλi,j),

with transmissibilities

Ti,j = µi,j
∑
k∈Sij

α̃ij,k + µj,i
∑

k∈Sji∩{i}

α̃ji,k, (2.25)

Tj,i = µj,i
∑
k∈Sji

α̃ji,k + µi,j
∑

k∈Sij∩{j}

α̃ij,k,

and
λi,j :=

∑
k∈Sij\{j}

α̃ij,kpk, λj,i :=
∑

k∈Sji\{i}

α̃ji,kpk.

The main goal now is to calculate the weights so that the residual rΓi,j
= µj,iλj,i−

µi,jλi,j is minimized. We thus choose these weights so that

µi,j = µj,i = 0.5, if λi,j = λj,i = 0,

µi,j =
|λj,i|

|λi,j|+ |λj,i|
, µj,i =

|λi,j|
|λi,j|+ |λj,i|

, otherwise.
(2.26)

The mentioned residual, rΓi,j
, can be viewed as a truncation error, and will be zero

if λi,jλj,i ≥ 0, which follows from Equation (2.26), and the expression for r:

rΓi,j
=

µj,iλj,i − µi,jλi,j, if Γi,j ∈ ∂Ωi ∩ ∂Ωj,

−λi,j if Γi,j ∈ ∂Ωi ∩ ΓD,

as seen in Potier (2009). Given Equation (2.25) and (2.26), we see that the trans-
missibilities in general depend on unknown pressure values, and thus the flux
expression is likely to be nonlinear. If λi,jλj,i < 0, the flux can be reformulated as

vij =

(
Ti,j +

|rΓi,j
|+ rΓi,j

2(pi + ε)

)
pi −

(
Tj,i +

|rΓi,j
| − rΓi,j

2(pj + ε)

)
pj

+ ε

(
|rΓi,j
|+ rΓi,j

2(pi + ε)
−
|rΓi,j
| − rΓi,j

2(pj + ε)

)
,

(2.27)

16



as presented by Gao and Wu (2015), where ε is a positive number up to machine
precision. By neglecting the last term in Equation (2.27) multiplied with ε, the
remaining first two terms represents the flux vij, i.e.,

vij =

(
Ti,j +

|rΓi,j
|+ rΓi,j

2(pi + ε)

)
pi −

(
Tj,i +

|rΓi,j
| − rΓi,j

2(pj + ε)

)
pj. (2.28)

The neglected term is the truncation error, τ , which will only impact the numerical
result if τ ∈ (−|rΓi,j

|, |rΓi,j
|) and at the same time |τ | � Ch2, as the system is of

second order. To find the final system to be solved, the final flux in Equation (2.28)
is inserted into the discrete system in Equation (2.11) to obtain a non-linear system
on the form

A(~p)~p = b(~p,Q, pD, νN),

with Q ≈
∫

Ωi
qd~x.

2.7 Monotonicity

Another important property of convergent and precise methods is the monotonicity
of the method. This section will briefly go through the concept of monotone
methods before monotonicity of the NPTFA method is outlined.

We consider the elliptic Poisson equation in Equation (2.8), and let L denote the
operator Lp = −∇ · (K∇p) so that Equation (2.8) can be written on the form

Lp = q (2.29)

in some open domain D. We assume as before that K is symmetric and positive
definite. Further, we also assume K to be sufficiently smooth and that the source
term q is non-negative: q ≥ 0. It follows from Hopf’s Lemma that if there is a
point x0 ∈ D such that p(x0) ≥ p(x) for all other x ∈ D, then p is constant in
D (Prottern and Weinberger, 1984). A weaker form saying that if q ≥ 0 ∈ D,
then there is no point x0 ∈ D such that p(x0) < p(x) for all other x ∈ D, is used
in Nordbotten et al. (2007). Thus, as this can be stated for any subdomain D,
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it follows that p can have no local minima in D. This property is used to define
monotone methods.

Green’s function is used to formulate the solution of Equation (2.29) with suffi-
ciently smooth boundary ∂Ω of a domain Ω ⊂ D. The solution will be on the
form

p(x) =

∫
Ω

GΩ(x, ς)q(ς)dSς , (2.30)

where GΩ(x, ς) is Green’s function and q(x) = δ(x − ς). The assumption of suffi-
ciently smooth K and ∂Ω makes Green’s function continuous at all points but ς.
This gives that

GΩ(x, ς) ≥ 0 ∀x, ς ∈ Ω. (2.31)

It follows from Equation (2.30) and (2.31) that

q ≥ 0 ⇒ p ≥ 0 in Ω. (2.32)

Equation (2.32) is referred to as the monotonicity property (Nordbotten et al.,
2007).

We now look at a given grid in D, and assume that the discretization of Equation
(2.29), with homogeneous Dirichlet boundary conditions, leads to a system on the
form

A~p = ~q, (2.33)

where both ~p and ~q are vectors of same length as the number of cells in the grid.
If each element in A−1 is nonnegative, i.e.,
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A−1 ≥ 0, (2.34)

where 0 is the zero matrix, then the matrix is called monotone and the system will
satisfy the same monotonicity property as in Equation (2.32), but in the discrete
form

~q ≥ 0 ⇒ ~p ≥ 0.

We use this to define a monotone method.

Definition 2.7.1 (Monotone Method). If Equation (2.33) is a discretization of
Equation (2.29) with homogeneous Dirichlet boundary conditions on any subgrid of
a grid in D, then a method which defines this discretization is said to be monotone
if inequality (2.34) is satisfied.

For the NTPFA method using optimization for the conormal decomposition, mono-
tonicity is guaranteed when a positive decomposition exists, i.e., when all coeffi-
cients α ≥ 0. When all coefficients are positive, the transmissibilities Ti,j and Tj,i
in Equation (2.25) will also be positive and thus the matrixA(~p) will be monotone.
This follows from the fact that the columns in A(~p) will have non-negative sum,
and is thus irreducible.

2.8 Multipoint Flux Approximation

For the sake of completeness and convergence results presented later on, a brief
overview of the multipoint flux approximation (MPFA) method is given.

The MPFA method more accurately approximates the pressure derivatives parallel
to the cell faces to obtain a consistent discretisation, also for grids that are not
K-orthogonal. This approximation is done by developing a multipoint stencil. A
dual grid is introduced inside each control volume cell, where each cell in the
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dual grid is termed interaction regions (Aavatsmark, 2002). The parts of the
interfaces of the main grid inside each interaction region are termed subinterfaces.
A construction of the dual grid for a grid consisting of four cells is shown in Figure
2.4, where the dashed lines illustrate the dual grid. The lines are drawn from each
cell centroid to the face centroids, and are extended outside the primary grid. For

Figure 2.4: A grid consisting of four cells, and its dual grid in dashed lines.

the MPFA method, transmissibility coefficients are found for the subinterfaces,
and contributes to the transmissibility for the main cell. That way, still taking
into account the same continuity conditions, transmissibilities from multiple cells
contribute to determine the transmissibility of the cell interface. We thus get a
flux expression through a face Γi,j on the form

vi,j =
∑
l∈L

τij,lpl, (2.35)

where τij,l are transmissibility coefficients with
∑

l∈L τij,l = 0, and L consists of
the number on the cells that are connected by the dual grid, including cell i. For
the grid in Figure 2.5, L = (1, 2, 3, 4, 5, 6) for the flux between cell i = 3 and cell
j = 4.
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Figure 2.5: A grid with 6 cells in solid lines and the corresponding dual grid in dashed
lines. The red lines on the dual grid indicate interaction regions that contribute to the
flux from cell 3 to cell 4.

There is a whole class of MPFA methods, and if one assumes linear pressure inside
each sub region, the method is called MPFA-O. In 2D, each interaction region
will consist of four subinterfaces Γl and four cells Ωi, each with two local surfaces
k. For the MPFA-O method, the flux through a subinterface Γl in an interaction
region will then be

vl =
2∑

k=1

ω̃lik(πlk − pxΓl
), ω̃lik = −~n

T
l Ki~uik
det(Xi)

,

where

Xi =

[
(xΓl1

−xΩi
)T

(xΓl2
−xΩi

)T

]
,

with cell centroid xΩi
and face centroid xΓlk

, k 6= l. Further, ~uik is defined

~ui1 =

[
0 1

−1 0

]
(xΓl2

− xΩi
), ~ui2 =

[
0 1

−1 0

]
(xΓl1

− xΩi
),

and is the inner normal vector to the triangle edge joining xΩi
and xΓlk

, with length
equal to the length of this edge. Lastly, πik is the pressure at the centroid of the
two local faces of cell i. An illustration of the given variables for one interaction
region, with cell centroids of the four cells involved denoted 1, 2, 3 and 4, is given
in Figure 2.6.
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Figure 2.6: One interaction region in dashed lines, consisting of four cells with cell
centroids 1,2,3 and 4, and four subinterfaces marked in solid lines. The vectors ~ui1 and
~ui2 (marked for cell Ω1 = 1) are for the approximation of the flux through subinterface
Γl. The pressures πik is positioned at the face centroids, here denoted by x.

Overall, this method requires a more dense calculation, resulting in higher cost
computation, but on the other hand yields consistency. It is, however, not uncon-
ditionally monotone as inequality (2.34) in general is not satisfied (Aavatsmark,
2002), with the matrix of coefficients A defined through Equation (2.35)

∑
j

vi,j =
∑
j

aijpj = A~p.

2.9 Integration and Optimization

In this section, we will go through some theory on a common optimization method,
and the integration of the normal vector in Equation (2.15). We begin with the
integrated normal, and finish the section and chapter with a brief overview of the
interior point method, which is a suitable method for the optimization problem in
Equation (2.19).
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2.9.1 Integrated Normal

We start of by repeating the integral in question

~nΓ =

∫
Γ

~ndS.

For evaluation in 3D, the transformation from the unit cube to physical space
is considered. The transformation is shown in Figure 2.7, where eight points
belonging to a cell are mapped by a trilinear mapping to ~xi, i ∈ [1, 8].

w (0,0,0) (1,0,0)

(1,0,1)

(1,1,0)

(1,1,1)(0,1,1)

(0,1,0)

(0,0,1)

u

v
z

y

x

Figure 2.7: The trilinear transformation from the unit cube to the physical cell.

We consider one face in the unit box, see Figure 2.8. The unit normal vector to
this face can be written

~n =
∂~x

∂u
× ∂~x

∂v
,

where ~x is the bilinear mapping for the face transformation (Aavatsmark, 2002).
Thus any point ~x at the surface in Figure 2.8 are given by

~x = u(v~x4 + (1− v)~x3) + (1− u)(v~x2 + (1− v)~x1).

We can now derive an expression for the integrated face normal using the partial
derivatives of x given by

∂~x

∂u
= v(~x4 − ~x3) + (1− v)(~x2 − ~x1)

∂~x

∂v
= u(~x4 − ~x2) + (1− u)(~x3 − ~x1).
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Thus

~nΓ =

∫ 1

0

∫ 1

0

∂~x

∂u
× ∂~x

∂v
du dv

=

∫ 1

0

∫ 1

0

[v(~x4 − ~x3) + (1− v)(~x2 − ~x1)]× [u(~x4 − ~x2) + (1− u)(~x3 − ~x1)]du dv.

Using cross-product properties on the integrand we obtain

~nΓ =

∫ 1

0

∫ 1

0

vu(~x4 − ~x3)× (~x4 − ~x2) + v(1− u)(~x4 − ~x3)× (~x3 − ~x1)+

(1− v)u(~x2 − ~x− 1)× (~x4 − ~x2) + (1− v)(1− u)(~x2 − ~x1)× (~x3 − ~x1) du dv.

Figure 2.8: Cell surface for corner-point geometry used for the integrated normal.

Integration yields

~nΓ =
[v2u2

2
(~x4 − ~x3)× (~x4 − ~x2) +

uv2

2
(1− u

2
)(~x4 − ~x3)× (~x3 − ~x1)

+
vu2

2
(1− v

2
)(~x2 − ~x1)× (~x4 − ~x2)

+ vu(1− v

2
)(1− u

2
)(~x2 − ~x1)× (~x3 − ~x1)

]∣∣∣(u,v)=1

(u,v)=0
,

and we finally obtain

~nΓ = 0.25
(

(~x4 − ~x3)× (~x4 − ~x2) + (~x4 − ~x3)× (~x3 − ~x1)

+ (~x2 − ~x1)× (~x4 − ~x2) + (~x2 − ~x1)× (~x3 − ~x1)
)

= 0.5(~x1 × ~x2 − ~x1 × ~x3 + ~x2 × ~x4 − ~x3 × ~x4).
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2.9.2 Optimization

The optimization problem in Equation (2.19) is a linear problem, and thus there
are many optimization methods that can be used to solve it. For the code writ-
ten, Matlab’s fmincon function has been used. The fmincon function allows for
nonlinear constraints, and so we can insert the third constraint of Equation (2.19)
as a nonlinear constraint. The function’s default algorithm is the interior-point
method, which is a method that solves convex optimization problems, but can
be extended to non-convex functions (Nocedal and Wright, 2006, Chapter 19).
We will shortly explain the approach for the interior-point method, and use of
fmincon for the written code is found in Section 3.4, but first a few basic concepts
for numerical optimization is required.

We look at a general constrained optimization problem on the form

min
x∈Rd

f(x) subject to

ci(x) = 0, i ∈ E ,

ci(x) ≥ 0, i ∈ I,
(2.36)

where f(·) is the objective function and is a mapping from Rd to R, and x ∈ Rd

is a real vector. Further, E is the set of indices for the equality constrains, and
I is the set of indices for the inequality constraints. We say that the solution to
the optimization problem is the optimal point x∗, so that the optimal value of the
function is at f(x∗). I.e., the point x∗ is a global minimizer if f(x∗) ≤ f(x)∀x in
a feasible set Ωopt, which is defined

Ωopt = {x | ci(x) = 0, i ∈ E ; ci(x) ≥ 0, i ∈ I}, (2.37)

i.e., the set of points where all constraints are satisfied. Further, we say that an
inequality constraint is active at a feasible point x if ci(x) = 0, and inactive if
ci(x) > 0. The active set A(x) at any feasible x is thus defined

A(x) = E ∪ {i ∈ I | ci(x) = 0}.

We use the active set to define the linear independence constraint qualification
(LICQ), which we need later on to state the first- and second-order necessary
conditions for a solution to be optimal. We say that the LICQ holds if the active
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constraint gradients, {∇ci(x), i ∈ A(x)}, are linearly independent at a point x in
the active set A(x).

We will also need the set of linearized feasible directions. Given a feasible point x
and the active constraintA(x), we can define the set of linearized feasible directions
D(x) as

D(x) =

{
d
∣∣ dT∇ci(x) = 0, ∀ i ∈ E ,

dT∇ci(x) ≥ 0, ∀ i ∈ A(x) ∩ I

}
,

where d is a tangent to Ωopt at a point x, and the set of all d is called the tangent
cone.

We now introduce the Lagrangian function L with the Lagrange multiplier λ for
Equation (2.36)

L(x, λ) = f(x)−
∑
i∈E∪I

λici(x), (2.38)

and notice that ∇xL(x, λi) = ∇f(x)− λi∇ci(x). Thus, at the optimal point x∗ of
Equation (2.36), there is a scalar λ∗i such that ∇xL(x∗, λ∗i ) = 0. This implies that
we can search for solutions to Equation (2.36) by seeking the stationary points of
Equation (2.38).

The first-order necessary conditions for x∗ to be a local minimizer can now finally
be stated.

Definition 2.9.1 (KKT conditions). The first-order necessary conditions, pop-
ularly known as the KKT conditions after Karush, Kuhn, and Tucker (Karush,
1939; Kuhn and Tucker, 1951), are

∇xL(x∗, λ∗) = 0,

ci(x
∗) = 0, ∀i ∈ E ,

ci(x
∗) ≥ 0, ∀i ∈ I,
λ∗i ≥ 0,∀i ∈ I,

λ∗i ci(x
∗) = 0, ∀i ∈ E ∪ I.

(2.39)

Given that the LICQ holds at a local solution x∗, there exists a Lagrange multiplier
vector λ∗ with components λ∗i , i ∈ E ∪ I, that satisfies the KKT conditions in
Equation (2.39) for the local solution x∗ and continuously differentiable functions
f and ci.
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If we have that both the LICQ and KKT conditions hold for a local solution x∗

and Lagrange multiplier λ∗, we have that x∗ is a strict local solution if the second
order necessary conditions hold. The second order necessary conditions are given
by

wT∇2
xxL(x∗, λ∗)w ≥ 0, ∀w ∈ C(x∗, λ∗), w 6= 0,

where C(x∗, λ∗) is the critical cone defined

C(x∗, λ∗) = {w ∈ D(x∗) | ∇ci(x∗)Tw = 0, ∀ i ∈ A(x∗) ∩ I with λ∗i > 0}.

2.9.3 Interior-Point Methods

Interior-point methods, also known as barrier methods, have proved themselves to
be effective for nonlinear optimization (Nocedal and Wright, 2006). For interior-
point methods, the solution is sought inside the feasible region defined by Equation
(2.37), and a barrier function, or barrier parameter, is used to prevent the solution
from going outside the feasible region. There are several ways to interpret interior-
point methods, where we limit ourselves to take a closer look at a continuation
approach.

We begin by transforming the inequality constraints of Equation (2.36) into equal-
ity constraints. This is commonly done by introducing a nonnegative vector s of
so-called slack variables, so that we get a problem formulation on the form

min
x∈Rd

f(x) subject to


ci(x) = 0, i ∈ E

ci(x)− si = 0, i ∈ I

si ≥ 0.

(2.40)

We let JE and JI denote the Jacobi matrix of the equality and inequality constraint
functions respectively, and λE and λI their Lagrange multipliers. The KKT con-
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ditions of Definition 2.9.1 can for Equation (2.40) then be written as follows

∇f(x)− JTE (x)λE − JTI (x)λI = 0,

SλI − µ1 = 0,

cE(x) = 0,

cI(x)− s = 0,

(2.41)

where µ is introduced as the barrier parameter. Further, S is a diagonal matrix
whose diagonal entries are given by s, and 1 is a vector on ones.

Due to condition two of Equation (2.41), we want to force µ to be strictly positive
so that the variables s and λI are also positive. The interior-point method now
consists of approximately solving the KKT conditions of Equation (2.41) for a
sequence of positive parameters {µk} which converges to zero as k increase, while
maintaining s, λI > 0. The iterates are decreased using a function that deter-
mines whether a step is productive and should be accepted. Such a function is
often referred to as a merit function, and by using a merit function to decrease
the iterates, the iteration is likely to converge to a minimizer and a KKT point.
Further, if the KKT conditions and the second order necessary conditions holds,
and we have that λ∗i > 0 for each i ∈ I ∩ A(x∗), then the system in Equation
(2.40) has a locally unique solution for all sufficiently small positive values µ.

When numerically solving an optimization problem, the optimal solution is sought
iteratively, and a search direction determines in which direction the next step
should be taken. The search direction p for the interior-point method is found by
applying Newton’s method to Equation (2.40). We get a system on the form
∇2
xxL 0 −JTE (x) −JTI (x)

0 Z 0 S

JE(x) 0 0 0

JI(x) −I 0 0



px

ps

pλE
pλI

 = −


∇f(x)− JTE (x)λE − JTI (x)λI

SλI − µ1
cE(x)

cI(x)− s

 ,
(2.42)

where Z is a diagonal matrix with diagonal entries given by λI . The Lagrangian
for Equation (2.40) is written

L(x, s, λE , λI) = f(x)− λTE cE(x)− λTI (cI(x)− s).
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The search direction is then used to compute the new iterate

xk+1 = xk + βmax
s px, sk+1 = sk + βmax

s ps, (2.43)

λE,k+1 = λE,k + βmax
λI

pλE , λI,k+1 = λI,k + βmax
λI

pλI ,

where

βmax
s = max{β ∈ (0, 1] : s+ βps ≥ (1− τ)s}, (2.44)

βmax
λI

= max{β ∈ (0, 1] : λI + βpλI ≥ (1− τ)λI},

with τ ∈ (0, 1). The values of β in Equation (2.44) are there to prevent the
variables s and λI from approaching 0 too quickly.

The pseudo-code for the interior-point algorithm can be seen in Algorithm 1, where
E is some error function. Nocedal and Wright (2006) suggest an error function,
with some vector norm ‖ · ‖, based on the KKT system of Equation (2.41):

E(x, s, λE , λI ;µ) = max{‖∇f(x)− JE(x)TλE − JI(x)TλI‖, ‖SλI − µ1‖,
‖cE(x)‖, ‖cI(x)− s‖}.

From the pseudo-code, we see that the barrier parameter is fixed until the KKT
conditions are satisfied for the current parameter to some accuracy in the inner
loop. The parameter is then decreased in the outer loop, which is run according
to some stopping test. The inner loop can however be removed to ensure that the
barrier parameter is updated at each iteration. The barrier parameter must then
be chosen according to a dynamic function on the form

µk+1 = σk
sTk λI,k
m

,

where m is the number of inequality constraints in problem (2.40).
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Algorithm 1 Basic pseudo-code for the interior-point method
set x0 and s0 > 0, compute initial values for λE,0 and λI,0 > 0. Select initial
barrier parameter µ0 > 0 and parameters σ, τ ∈ (0, 1).
k ← 0

while stopping test for Equation (2.40) is not satisfied do
while E(xk, sk, λE,k, λI,k;µk) > µk do
p← Equation (2.42);
βmax
s , βmax

λI
← Equation (2.44);

(xk+1, sk+1, λE,k+1, λI,k+1)← Equation (2.43);
µk+1 ← µk;
k ← k + 1;

end while
Choose µk ∈ (0, σµk);

end while
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Chapter 3

Tools

Throughout this work, SINTEF’s add-on to Matlab, the Matlab Reservoir Simula-
tion Toolbox (MRST), has been used as programming platform. A full description
of MRST can be found in Lie (2016). The toolbox already has modules for solving
equations for incompressible flow, such as the incomp, mimetic, and mpfa mod-
ules. There is also an unfinished module for the NTPFA method using search
methods for the decomposition. Many of the methods already implemented into
MRST involve in some way or another differentiation of large amount of data, and
automation of these differentiations is crucial for efficient and exact evaluation.
There is support for automatic differentiation (AD) in the AD-OO framework of
MRST, which has been used for the NTPFA method to solve the Newton iteration
performed after the coefficients are found.

A brief description of AD and the AD-OO framework follows an introduction to
the grid setup in MRST. At the end of the chapter, the NTPFA method, as it has
been written for MRST, is presented together with an example of a simple set-up.
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3.1 Unstructured Grids

When modeling and simulating a physical system, the domain at hand is sub-
divided into a set of discrete, non-overlapping cells, which together make up the
grid. Each cell will have a number of nodes/vertices and a set of edges/faces
connecting the nodes. The nodes are numbered, however, not necessarily system-
atically. The faces are represented in a set so that cells sharing faces are easy to
identify. Two cells sharing a face are called connected. If all cells in the grid share
the same simple shape and are distributed in a regular repeating pattern, the grid
is called a structured grid. In an unstructured grid, all cells can have different sim-
ple shapes, and any number of cells can share the same node. Thus the topology
of the grid can change throughout space depending on the reservoir’s structural
architecture, and take into account that real reservoirs will have spatially varying
permeability. This can for instance be done by generating a grid where nodes
are placed on the face of a cell and thus leaving a face to connect more than two
cells, as seen in Figure 3.1. For these kinds of grids, the faces that have floating
nodes will be split at that node and numbered accordingly, so that, again, each
face connects no more than two cells.

Figure 3.1: A grid with floating nodes in red.

In MRST, each grid G is stored as a structure which consists of three mandatory
substructures; cells, faces, and nodes. The cell structure has three mandatory
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fields: num, faces, and facePos. num represents the number of cells in the grid,
faces gives an index to the faces defining a cell, and all faces belonging to cell i
are found in elements facePos(i) to facePos(i+1)-1. The face structure has
four mandatory fields: num, nodes, nodePos, and neighbors. Again, the first
is the number of faces in the grid, the second is an index to the nodes connected
by a face, and through the third all nodes connected by a face is found. The
fourth, neighbors, identifies the cells that share a common face. The node struc-
ture has two mandatory fields: num, and coords, where the first is the number
of nodes in the grid, and the second gives the coordinates to each node. Each
cell in the grid has a corresponding set of faces, and if two cells have a common
face, the cells are neighboring cells. Each face corresponds to a set of edges, where
the edges are determined by the nodes. Hence, by numbering and construction
of the grids, it is easy to find neighboring cells and common faces. This is used
when implementing and solving the flow equation using numerical methods dis-
cussed. In Figure 3.2, an example of a set up is shown for a simple unstructured
grid. The grid is to the left with cell numbers marked with black, and face num-
bers marked with red. The corresponding MRST-representation for the faces and
neighbors are to the right. In the grid, we see that cell 1 has three faces. These

Figure 3.2: A simple unstructured grid with cell numbers in black, face numbers in red,
and the corresponding MRST structure to the right.
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corresponds to the first three rows in G.cells.faces. Cell 2 has 5 faces, and
thus row 4 through 8 correspond to cell 2. For structured grids, G.cells.faces
will have a second column representing the direction of each face. The number
of faces for each cell is found through the call diff(G.cells.facePos), and the
information for cell i is found through G.cells.faces(G.cells.facePos(i) :
G.cells.facePos(i+1)-1,:). For the faces, each row corresponds to the respec-
tive face number, i.e., face number one has neighboring cells 1 and 2, face number
2 has neighboring cells 2 and 3, etc. The routine computeGeometry(G) will add
additional information to the substructures, such as face areas, centroids of both
cells and faces, and face normals. The face normal is stored as one value for each
face, and thus the sign of the normal must be changed if we are dealing with the
second neighboring cell.

3.2 Discrete Differentiation Operators

As a basic model, the single-phase continuity equation is considered

∂

∂t
(φρ) +∇ · (ρ~v) = q, ~v = −κ

µ
(∇p− gρ∇z),

with p as primary unknown. The basic implicit discretization reads

(φρ)n+1 − (φρ)n

∆tn
+∇ · (ρv)n+1 = qn+1,

~vn+1 = − κ

µn+1

(
∇(pn+1)− gρn+1∇(z)

)
,

where ∇· (·) is the divergence operator, and ∇(·) is the gradient. All variables are
defined as before. The divergence operator is a differential vector operator that
gives the quantity of a vector field’s source at each point, and produces a scalar
field. For a continuous vector field F = Fx+Fy+Fz, where the subscript describes
the unit direction, the divergence is defined

∇ · F =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

.

34



Further the gradient is formally defined

∇F =
(∂F
∂x

,
∂F

∂y
,
∂F

∂z

)
.

We will denote the discrete versions of the operators div and grad. They are in-
troduced to mimic their continuous counterparts, and enable us to write a discrete
version of the Poisson Equation given in Equation (2.8) in a very compact form.
For the grid structure as presented in the previous section, the div operator is a
linear mapping from faces to cells. The divergence describes the total amount of
matter leaving a cell Ω and the discretized form can thus be written

div(v)[Ω] =
∑

Γ∈F(Ω)

~v[Γ]1{Ω=Ω1} −
∑

Γ∈F(Ω)

~v[Γ]1Ω=Ω2 ,

where Ω1 is the first neighbor to the face Γ and Ω2 is the second, i.e., first and
second column of G.faces.neighbors(Γ,:). We denote by mΩ the total number
of cells in the grid, and by mΓ the total number of faces. The grad mapping is
defined for any ~p ∈ RmΩ as

grad(~p)[Γ] = ~p[Ω2(Γ)]− ~p[Ω1(Γ)],

and maps RmΩ to RmΓ .

Taking the flux approximation given by Equation (2.14) into consideration, we see
that we can write Equation (2.8) with ~v = −K∇p with the discrete operators as
follows

div(~v) = q

~v = −Tgrad(p),

where T is the transmissibility.

The discrete forms of the divergence and the gradient operators can be combined
with automatic differentiation to write equations on a compact form, and thus
automatically estimate Jacobi matrices without explicit calculations.
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3.3 Automatic Differentiation

The key idea for automatic differentiation (AD) is to implement basic operations
in a numerical environment (Neidinger, 2010). By use of basic derivative rules,
the derivatives of a function can be calculated automatically in the numerical
environment, allowing the user to evaluate both the function and it’s derivatives.

In MRST, an AD object oriented (AD-OO) framework has been introduced. The
AD-OO framework separates the implementation of physical models, discrete oper-
ators, nonlinear solvers and time-stepping, and assembly and solution of the linear
system. Thus, by exploiting the AD-OO framework, new methods can be imple-
mented to work with existing solvers in MRST, and models with more complex
features, such as multi-phase flow, can be simulated more easily by use of inher-
itance of classes. This inheritance property has also been used for the NTPFA
method implemented for this thesis, and will be explained shortly.

The AD-OO framework allows the user to define a new type of data for vectors in
R. The new data uses operator overloading to calculate both resulting operations
as well as the partial derivatives with respect to all primary variables. For instance,
a variable x will be stored as an object with both the value of x and the derivative
of x which will be 1. For a vector variable or multiple variables, the derivative
will be the Jacobian. The standard is to use a simple matrix with respect to
all primary variables to represent the Jacobian. However, MRST uses a list of
matrices that represent the derivatives with respect to each individual variable that
will constitute sub-blocks in the Jacobian of the full system (Lie, 2016, p. 609). In
Example 3.3.1 a simple demonstration of the use of the AD in MRST is given.

Example 3.3.1. We look at the function

f(x, y) = 3x+ 2y − 1,

with derivatives
∇f(x, y) = [3, 2].

We let x = 5, and y = 10. The function [x,y] = initVariablesADI(5,10)
returns the ADI representation of x and y, and f can now be assembled to obtain
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a third ADI variable. The output in Matlab is shown in Listing 3.1, where we see
that the value of the function is f.val = 34, and the Jacobian is a matrix with
two submatrices corresponding to x and y, i.e. f.jac = [3] [2].

Listing 3.1: Matlab output for AD representation of the problem in Example 3.3.1.

1 f =

2
3 ADI with properties:

4
5 val: 34

6 jac: {[3] [2]}

3.4 NTPFA in MRST

To finish off this chapter, we will go through the setup of the NTPFA method
in MRST. We start by repeating the flux-expression for the NTPFA method as
presented in Equation (2.28):

vij =

(
Ti,j +

|rΓij
|+ rΓij

2(pi + ε)

)
pi −

(
Tj,i +

|rΓij
| − rΓij

2(pj + ε)

)
pj.

To be able to solve the nonlinear system of equations, the base class PhysicalModel
in MRST has been used. This base class uses AD to implement a generic dis-
cretized model. To exploit the already existing functions in MRST, a subclass to
PhysicalModel has been written, where a model for the NTPFA method is built.
To distinguish the method using optimization for the decomposition from the one
using search methods, the written model is henceforth referred to as NTPFAopt
while the other will be referred to as NTPFA. The model is built using two differ-
ent functions; getCollactionSetOPT and computeNonLinearTransForOpt. The
getCollactionSetOPT function is run once for each grid to find all constant values.
The computeNonLinearTransForOpt-function assembles the values together with
pressure values to find the nonlinear transmissibilities and the gradient operator.

In the getCollactionSetOPT-function, the harmonic averaging points in Equation
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(2.17) are found for the grid G, as well are the values for β and ω. To find the
distance in Equation (2.17), we use the normal vectors ~nΓ already calculated by
computeGeometry(G), and the face centroid xΓi

= (xi, yi, zi). We denote the cell
centroid from which we want to find the distance by ci = (x0, y0, z0). The shortest
distance is then calculated through the function

d(xΓi
, ci, ~nΓ) =

|~nΓ(x)(xi − x0) + ~nΓ(y)(yi − y0) + ~nΓ(z)(zi − z0)|
‖~nΓ‖2

.

Further, in getCollactionSetOPT, the decomposition ~dΓij
= tα is done twice

for each face Γ in a for-loop. The optimization problem in Equation (2.19) has
been solved using Matlab’s fmincon-function. To use the fmincon-function in
Matlab on this problem, we collect the variables in vectors and matrices so that
the minimization problem is on the form

min
x∈RmΓ+1

cTx subject to Ax = ~dnΓ, −bx ≤ ~0,

where we let cT = [1, 1, ..., 1, κ], xT = [α1σ1, α2σ2, ..., αmΓi
σmΓi

, γ], A = [tn,~0], and

b =



σ−1
1 σ−1

2 ... σ−1
mΓi

0

1 0 ... 0 1

0 1 0 ... 1

0 0 1 ... 1
...
0 0 ... 1 1


.

The code can be seen in Listing 3.2. In the listing, the value coeff are the α
coefficients and is a vector of length mΓ + 1 to allow for the γ-value, and t is as in
Equation (2.18). Further, center is the coordinates to the current cell centroid, d

Listing 3.2: Matlab code for the decomposition of ~dΓij using Matlabs’s fmincon-function.

1 function [t, coeff] = decomp(center,d,hap)

2
3 % input:

4 % center = centroid of cell

5 % d = scaled normal vector

6 % hap = harmonic averaging points for each face in current cell
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7
8 N = size(hap,1); %number of faces in current cell

9 coeff = zeros(N+1,1);

10
11 t = bsxfun(@minus,hap,center);

12 t_v = sqrt(sum(t.^2,2)); %norm of each row in t

13 t_u = bsxfun(@rdivide, t, t_v)'; %normalized t

14
15 d_v = norm(d,2); %norm of facenormal

16 d_u = d./d_v; %normalized facenormal

17
18 s = bsxfun(@rdivide,t_v,d_v); %sigma

19 k = N/min(s)+10000; %kappa >> N/min(s)

20 c = ones(N+1,1);

21 c(end) = k;

22
23 funk = @(x) c'*x;

24 A = t_u;

25 A(:,end+1) = 0;

26 lb = zeros(N+1,1);

27 lb(1:end−1) = −1000;
28 nonlinCon = @(x) con(x,s); %nonlinear constraint

29
30 coeff = fmincon(funk, coeff, [], [], A, d_u', lb, [], nonlinCon(

coeff));

31 g = coeff(end);

32 coeff(end) = [];

33 coeff = coeff./s;

34 end

35 function [c,ceq] = con(x,s)

36 % function for nonlinear constraint.

37 b = zeros(length(x));

38 b(1,1:end−1) = s.^(−1);
39 b(2:end,end) = 1;

39



40 b(2:end,1:end−1)=eye(length(x)−1);
41 c = −b*x;
42 ceq = [];

43 end

is the face normal weighted with the permeability, and hap is the coordinates to
the harmonic averaging points to each face of the cell.

As mentioned, the decomposition is done twice for each face inside a for-loop. This
was shown necessary due to all the different variables needed for the optimization,
and has had noticeably effect on the running time of the code. A solution tried for
the problem, was to assemble matrices for the different variables in the loop, and
do the optimization once throughout the code. However, fmincon was not able to
solve the resulting problem satisfactory, and the implementations were returned
to the original of loop-based optimization. Even if fmincon had been able to solve
the problem satisfactory, the building of the matrices also had a long running time,
and thus little improvements would have been made. However, considering that
the decomposition is done before the Newton iterations, they only have to be done
once for each grid. Thus source terms, boundary conditions, and wells can be
changed and/or added after the tedious decomposition has been done.

After the decomposition if found, the getCollactionSetOPT-function calculates
α̃i,j and α̃j,i. The values are stored as matrices where each row represents one
internal face. For the λ’s, we notice that they consist of the values α̃ij,k, but
excludes the neighbor sharing the face. Instead of making separate matrices for the
λ’s, active points are stored in a matrix as logicals. Each row in the active matrix
represents the same internal face of the grid, and consist of true (1) or false (0) to
indicate which neighboring cell is active in the sum. By representing all α̃’s and
active cells in λ as matrices, the values for µ and λ can easily be assembled to find
the transmissibilies without too many matrices stored, and without using for-loops
in each Newton iteration. In addition, a matrix representing the neighboring cells
are stored, as to avoid having to find these again later on. All values are assembled
with the respective pressure values in the function computeNonLinearTransOPT.

To be able to test the written function for the NTPFA method in Matlab, a few
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values have to be defined. In the following, a simple example on how to define and
test the written function is described for a Cartesian grid, using MRST’s AD-core.

Example 3.4.1. First of all, the grid G must be defined as described previously.
This is done in line 1 through 3 in Listing 3.3. In line 4, the function compute-
Geometry(G) computes the cell centroids and volumes, as well as face areas and
normals. It also computes the face centroids, which are used to conpute the har-
monic averaging point. Further, rock properties has to be determined. As seen in
line 5, this is done by a call to the function rock = makeRock(G, perm, poro),
where perm is the permeability in millidarcys, and poro is the porosity of the rock.

Listing 3.3: Set up of variables and model to test the NTPFA method in MRST

1 dims = [5, 5];

2 pdims = [1, 1];

3 G = cartGrid(dims,pdims); %create simple cartesian grid

4 G = computeGeometry(G); %computes cell centroids and volumes, and

face areas, centroids and normals.

5 rock = makeRock(G, 100*milli*darcy, 0.002); %add rock properties

6 fluid = initSimpleADIFluid(); %initiate fluid

7 [bc, src, W] = deal([]); %initiate boundary conditions, source, and

wells

8 bc = pside(bc, G, 'Left', 1, 'sat', [1]);

9 bc = pside(bc, G, 'Right', 0, 'sat', [1]);

10 src = addSource(src, [1,G.cells.num], [1,1], 'sat', [2]);

11
12 state0 = initResSol(G, 0, [0 1]); %initial value

13 model = PressureOilWaterModelNTPFAopt(G,rock,fluid);

14 state = incompSinglePhaseNTPFA(model, state0,'bc', bc, 'src',src,'

wells',W);

To be able to do a full simulation, we also need fluid properties. A fluid object
in MRST is again stored as a structure, this time containing the density, viscos-
ity and compressibility of the fluids. For incompressible fluid, only the density
and viscosity are necessary. In line 6, the fluid is initialized using the function
initSimpleADIFluid(), which creates a structure based on automatic differenti-
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ation. When no input is given, it applies standard water properties. In line 7,
boundary conditions, source terms and wells are initialized as empty. At least one
of them has to be prescribed a value for a force term to exist. In lines 8 − 9,
pressure boundary conditions are set through a call to the function pside(bc,
G, ’side’, pressure, ’sat’, sat). The function adds a boundary condition
to a Cartesian grid on a global side indicated by ’side’. For grids that are
not Cartesian, the function addBC(bc, faces, ’type’, values) must be used.
Here, faces indicate on which external faces the boundary should be applied, and
type can be either pressure or flux. The source terms src is added through the
function addSource(src, cells, values) in line 10, which adds a source to
a new or existing source object. The input cells indicates on which cells the
source is active, and values the respective strength for each active source cell.
Negative values indicate sinks, and positive values indicate producers. The well
is left empty to create a simple model for testing. In line 12, the initial value
for the Newton iteration is initiated, and the NTPFA model using optimization
is built in line 13. The PressureOilWaterModelNTPFAopt model runs the func-
tion getCollactionSetOPT as described previously. Lastly, the problem is solved
iteratively in line 14 by a call to incompSinglePhaseNTPFA. Here the function
computeNonLinearTransOPT is run. The resulting structure state is displayed in
Listing 3.4.

Listing 3.4: The resulting structure state of Listing 3.3.

1 state =

2
3 pressure: [25x1 double]

4 flux: [60x1 double]

5 s: [25x2 double]

6 wellSol: [1x0 struct]

7 rs: 0

8 rv: 0

9 upstreamFlag: [40x2 logical]

10 timestep: 1

11 dpRel: [25x1 double]
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The result of the given example can be seen in Figure 3.3, which has been plotted
using the function plotCellData(G,state.pressure).

Figure 3.3: Result of the simple setup given in Listing 3.3.
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Chapter 4

Results

We will look at two examples illustrating the convergence results for the NTPFAopt
method in 2 and 3D, before we compare the NTPFAopt method to other methods
through several test cases. To illustrate the use of the NTPFAopt method, a set of
illustrative examples follows, where we investigate different permeability tensors,
grid-types, and source terms.

4.1 Convergence Results

We look at a simple Cartesian grid on the unit square and the unit cube with
linear pressure drop from right to left, before we investigate the convergence for
the NTPFAopt method compared to the NTPFA and MPFA methods.

Example 4.1.1. We consider a Cartesian grid of dimension 30× 30 on the unit
square. We use isotropic permeability with value 100mD. We impose pressure
boundary conditions to the left and right of the grid, where we let the left hand
side be 0bar and the right hand side 200bar. Hence, a linear pressure drop from
right to left is expected. To somewhat challenge the solver, we twist the grid by
a call to the MRST function G=twister(G). The function permutes the x and y
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coordinates in the grid according to the mapping

(xi, yi)→
(
xi + f(xi, yi), yi − f(xi, yi)

)
, f(x, y) = 0.03 sin

(
πx) sin(3π(y − 1/2)

)
.

The result is shown in Figure 4.1a, and the pressure distribution along the x-axis
is shown in Figure 4.1b. We see from Figure 4.1b that the pressure drop is linear
from right to left as expected. The permutation of the grid did not effect the result.

(a) Resulting pressure distribution of Exam-
ple 4.1.1.

(b) The linear pressure drop along the x-
axis.

Figure 4.1: The linear pressure drop of Example 4.1.1.

Example 4.1.2. We still consider a linear pressure drop, but look at a grid of
dimension 10×10×5 on the unit cube. We use the same twister-function on the
Cartesian grid, and impose the same pressure boundary conditions as in Example
4.1.1, so that the west side is 0bar and the east side is 200bar. The result is shown
in Figure 4.2, where we see that the pressure drop is linear as expected.

We move on to a few examples showing convergence of the NTPFAopt method.
The discrete relative L2-norm has been used to estimate the numerical error, giving
an error estimate on the form

e =

√∑
i |Ωi|(pexact(xi)− p(xi))2∑

i |Ωi|p2
exact(xi)

.
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(a) Resulting pressure distribution of
Example 4.1.2.

(b) The linear pressure drop along the x-
axis.

Figure 4.2: The linear pressure drop of Example 4.1.1.

Example 4.1.3. We look at the unit square with permeability tensor

K =

[
1 0.5

0.5 1

]
mD,

and exact solution
pexact(x, y) = sin(x) + 2y.

The simulation has been run on grids with 100, 200, 1600 and 6400 cells, which has
all been perturbed by the twister-function. Boundary conditions are set to the
exact solution. We expect the numerical solutions to improve as the grid is refined,
and as the grid is Cartesian both solvers should be able to estimate the solution
closely on all grids and should align. A plot showing the exact solution on the
grid with 100 cells is shown in Figure 4.3a, and the pressure distribution along the
x-axis on the same grid for the exact solution, the solution found using NTPFA
and the solution found using NTPFAopt are shown in Figure 4.3b. We see from
Figure 4.3b that already on the smallest grid, the exact solution and the numerical
solutions almost completely align all throughout the grid. Both numerical solutions
align as expected. In Figure 4.4, a loglog-plot of the error is shown, and we see that
the errors does decrease as the number of cells increase. Both numerical methods
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(a) Exact solution on the grid with 100

cells.

(b) Pressure distribution along the x-axis for
the exact solution, and the numerical solu-
tions.

Figure 4.3: Plots from Example 4.1.3.

have the same convergence rate.

For the next example we will look at the error in 3D, and compare the result to
both the NTPFA and the MPFA methods.

Example 4.1.4. We look at a Cartesian grid on the unit cube, and impose on the
boundary the exact solution

p(x, y, z) = sin(πx) sin
(
π(y +

1

2
)
)

sin
(
π(z +

1

3
)
)

+ 1

with permeability tensor

K =

 1 0.5 0

0.5 1 0.5

0 0.5 1

mD.

We compare the convergence rate to the convergence rate of the NTPFA method
and the MPFA method. We expect that the MPFA method will perform slightly
better than the other two methods, but they should all show convergence of the
error towards 0. The exact solution on a grid with 500 cells is shown in Figure
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Figure 4.4: Convergence plot from Example 4.1.3. The numerical solution is found on
grids with 100, 200, 1600, and 6400 cells.

4.5a, and the error of all three methods on grids with 500, 1500, 3000, and 5000

cells is shown in Figure 4.5b. We see that the error is decreasing, however very
slightly. The MPFA method shows somewhat better results than the other two, but
they are all within the 10−3 range.

Example 4.1.5. We again consider a linear pressure drop with the pressure on the
right side set to 0bar, and the left side 100bar. We look at a mixed grid with cells of
different shapes and sizes, as seen in Figure 4.6a. The grid has floating nodes as
described in Section 3.1, and thus some faces have been split. We expect the result
to be a linear pressure drop as in Example 4.1.1, but following the different cell
shapes, some irregularities can occur. The grid with the result of the NTPFAopt
method is seen in Figure 4.6a, and the pressure distribution along the x-axis is
seen in Figure 4.6b. We see from Figure 4.6b that the pressure drop is linear for
all the numerical methods, but the result of the MPFA method slightly outperforms
the other two methods. The NTPFAopt method is shown to be the method that
deviates the most from the straight line we were expecting.
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(a) Exact solution on the grid with 500

cells from Example 4.1.4

(b) Convergence plot of NTPFAopt, NTP-
FAlin and the MPFA methods on a grid with
500, 1500, 3000, and 5000 cells.

Figure 4.5: Exact solution of Example 4.1.4 and error plot using the MPFA, NTPFA,
and NTPFAopt methods.

(a) The solution using NTPFAopt on
a mixed grid with a linear pressure
drop.

(b) The pressure distribution of the NTPFA,
NTPFAopt, and MPFA methods on the lin-
ear pressure drop on a mixed grid

Figure 4.6: Grid and pressure distribution on the mixed grid from Example 4.1.5.
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4.2 Illustrative Examples

In this section, examples using the NTPFAopt method on different grids and with
different conditions are given. All solutions are compared to an established method,
such as the standard TPFA-method or the MPFA-O method. We begin by looking
at a simple example as to see the efficiency of the NTPFAopt method compared to
the standard TPFA method on a grid that is not K-orthogonal. The first example
will be followed by more complex problems to illustrate use of the NTPFAopt
method.

Example 4.2.1. We look at a skew Cartesian grid with two sinks placed equidis-
tantly from the side edge on the bottom of the grid. The sinks are distinguished
from the source by a negative value. In the center at the top, a source is placed.
The grid is not K-orthogonal, and so grid orientation errors are expected to appear
in the solution produced by the TPFA method. The result for both the NTPFAopt
method and the TPFA method are showed in Figure 4.7, where the source/sinks
are marked with a white circle. As the sources are symmetric to the sink, so should
the streamlines be. The streamlines for both methods can be seen in Figure 4.8.

Figure 4.7: The solutions produced by the TPFA and NTPFAopt methods on a skew
grid with symmetric sources and sinks, as described in Example 4.2.1.
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Figure 4.8: Time of flight for the skew grid in Example 4.2.1, solved with the TPFA
method on top and the NTPFAopt method on the bottom.

From the pressure distribution in Figure 4.7 we see that the solution produced by
the TPFA method is not symmetric, whereas the NTPFA solution shows better
results. This is enhanced by the streamlines in Figure 4.8, where we see that the
NTPFAopt method manages to capture the symmetry.

For the purpose of discussion, we include the results produced by the NTPFA
method. They should be equal, or at least similar, to the results produced by the
NTPFAopt method, but from Figure 4.9 we see that this is not the case. The
method completely fails to produce the expected results on the grid of dimension
61× 30 cells.

On a coarser grid of dimension 31 × 20, the NTPFAopt method did not manage
to converge to a solution at all. The NTPFA method did, but the results are still
strongly asymmetrical. Further, all pressure values are negative, whereas they are
positive for the TPFA and NTPFAopt methods. Thus, the NTPFA method does
not manage to find a solution for this problem, whereas the NTPFAopt method
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Figure 4.9: Pressure distribution and streamlines produced by the NTPFA method for
the problem in Example 4.2.1.

does produce a symmetric and positive solution on a more refined grid.

Example 4.2.2. For this example we generate a triangular grid using the Seamount
demo case provided by Matlab. In Figure 4.10, the grid is shown to the left in Fig-
ure 4.10a, and the part marked in red is zoomed in on and shown to the right,
in Figure 4.10b. In Figure 4.10b, the cell centroids, face centroids, and harmonic
averaging points are marked with ♦, ◦, and + respectively. We see that for this
particular part of the grid, the harmonic averaging points differs greatly from the
face centroids, due to the long thin cell. One of the harmonic averaging points even
move to the neighboring face, leaving one face unmarked. This may cause unwanted
errors in the numerical solution. Further, the long thin cells are expected to cause
trouble for the NTPFA method’s decomposition.

A source is placed at the center of the grid, and the boundary pressure is set to
50bar. The numerical results using NTPFAopt and MPFA can be seen in Figure
4.11. As expected, the NTPFA method failed to decompose all faces and hence are
not dispayed as a part of the result.
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(a) The Seamount triangle grid of
Example 4.2.2, with zoomed in area
marked in red.

(b) Part of the Seamount grid zoomed in,
with harmonic averaging points(HAP), cell
centroids, and face centroids marked.

Figure 4.10: The Seamount grid of Example 4.2.2.

Figure 4.11: Numerical results using NTPFAopt and MPFA on the Seamount grid.

Both the NTPFAopt method and the MPFA method produce similar results. The
thin cell did not cause for trouble as expected, but when investigating the decompo-
sitions there are several faces where the optimization does not satisfy all constraints
given by Equation (2.19). These include

∑
i αi ≥ δ, and σiαi ≥ −γ. The optimiza-

54



tion is run to a precision of 10−20, and so these violations should have minimal
effect. This is still something that should be kept in mind when evaluating the
results for grids with small and/or narrow cells, and a different way of calculating
the harmonic averaging point should be considered. A warning has been added and
will be displayed if not all constraints are met so that the user is alerted of the
issue, but as long as a solution to the optimization problem is found the code will
complete the model.

Example 4.2.3. We look again at a mixed, perturbed grid on the unit square as
seen in Figure 4.12, but impose a strongly anisotropic permeability tensor

K =

[
1 0

0 100

]
mD.

We again consider a linear pressure drop, with the left hand side set to 100bar

Figure 4.12: The mixed, perturbed grid of Example 4.2.3.

and the right hand side 0. We use the NTPFAopt, NTPFA, and MPFA methods
to solve the problem. The grid with dimension 10× 10 and numerical result using
NTPFAopt is shown in Figure 4.13a. In Figure 4.13b, the pressure distribution
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(a) The grid of dimension 10× 10 from
Example 4.2.3, with numerical results
using NTPFAopt.

(b) Pressure distribution along the x-axis
for the test case in Example 4.2.3.

Figure 4.13: The linear pressure

along the x-axis is shown for the three methods applied. We clearly see that both
the NTPFA and the NTPFAopt method does not manage to capture the linear
pressure drop with the anisotropic permeability tensor on a twisted, mixed grid.
In Figure 4.14a, the result on a grid of dimension 40 × 40 is shown, and we see
that the result has improved greatly for the NTPFA method, but the NTPFAopt
method still shows significant errors. When investigating the harmonic averaging
points, we notice again that not all of them lie on their respective faces. Some even
move into the cell, something which is likely to effect further calculations. When
reducing the largest element of the permeability by 1/10th, the results improve,
as seen in Figure 4.14b, where the grid is of dimension 20 × 20. However, the
NTPFAopt method still produces inaccurate results, where both the NTPFA and
MPFA methods produce satisfactory results. As the harmonic averaging points
are calculated using the permeability tensor, they are bound to rely greatly on the
magnitude of the tensor. This will necessarily effect the decompositions and further
calculations. Again, a different method of determining the face interpolation points
should be considered.
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(a) Pressure distribution on a grid of
dimension 30× 30 from Example 4.2.3.

(b) Pressure distribution along the x-axis
with a smaller permeability tensor from
Example 4.2.3.

Figure 4.14: Pressure distribution along x-axis with two different permeability tensors
and grid dimensions.
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Chapter 5

Conclusion and Final Remarks

The NTPFA method using optimization as decomposition has been successfully
implemented to run with MRST, both in 2D and 3D, for incompressible, single-
phase flow. We have shown that it produces satisfactory results on Cartesian
grids both with and without anisotropic permeability tensors. Further, we have
shown through examples that it is consistent where the TPFA method is not,
and monotone where the NTPFA method fails to give positive results. It has
also been shown to find decompositions on triangular grids, where the NTPFA
method failed to decompose all faces. However, the NTPFAopt method fails to give
satisfactory results on mixed grids with strongly anisotropic permeability tensors,
which was one of the main reasons why the method was of interest to implement.
As the method of determining the face interpolation points rely greatly on the
permeability tensor, we see following errors throughout the result when the face
interpolation points are found outside the face.

Due to the fact that decompositions has to be done twice for each internal face,
the method has a long running time regarding building the model. However, as
the model is built as a preprocessing step, boundary conditions, sources, and wells
can be added and/or removed after the model has been built. It would still be
desirable to find a way to improve the running time of the preprocessing step,
something that would be a natural next step in improving the written code.
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Overall, the NTPFAopt method has not been shown to outperform the MPFA
method in any of the given examples, and is, on the best, equally good. It has, on
the other hand, been shown to be consistent on a grid that is not K-orthogonal,
as seen in Example 4.2.1. The main issue of the method is the calculations of the
face interpolation points, as these, in some of the examples presented, are located
outside their respective faces. Further investigations should include improving the
calculations of the face interpolation points, as this is expected to improve the
final result. The NTPFAopt method does manage to find decompositions where
the NTPFA method does not, and so it is of interest to further investigate and
improve the method.
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