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Abstract

In the last few years, the issue of reproducibility has gained increased attention in many
scientific fields, including Artificial Intelligence (AI). Reproducibility of published results
is a key concept of the scientific method, yet recent studies in AI and other computa-
tional sciences have shown that many experiments cannot be reproduced, and that current
documentation practices are insufficient. In this project, reproductions are attempted of
experiments from 30 highly cited papers in AI from recent years. The goal is to provide a
better understanding of the state of reproducibility in the field, and identify issues limiting
reproductions.

Three hypotheses are investigated in the project. First, it is hypothesized that most studies
are difficult to reproduce. Secondly, the issues that make reproductions difficult are hypoth-
esized to be similar across different studies. Thirdly, the level of documentation measured
for an article is hypothesized to be related to how easily it can be reproduced. From the
30 papers investigated, 22 reproduction attempts were performed, where 10 were partially
successful. The results achieved corroborate the first and second hypothesis, and the third
hypothesis can neither be rejected nor corroborated.

Lastly, this project presents three contributions. The first contribution is the overview of the
current state of reproducibility in AI provided by the results of the reproduction attempts.
The second is a model for interpreting research articles in AI and estimating the level of
documentation provided. The last is a set of categories of issues intended to cover most
issues encountered during reproductions.





Sammendrag

Reproduksjon er et tema som i de senere år har fått økt interesse i flere vitenskapelige
områder, deriblant Kunstig Intelligens (KI). Reproduksjon av publiserte resultater er et av
nøkkelkonseptene i den vitenskapelige metoden, men nyere studier i KI og datateknologi
har vist at mange publiserte eksperimenter ikke kan reproduseres. I dette prosjektet blir
eksperimenter fra 30 nyere, høyt siterte artikler fra KI forsøkt reprodusert. Prosjektets mål
er å skape en bedre forståelse for tilstanden til reproduksjon i KI i dag, og identifisere
problemer som begrenser reproduksjonsforsøk.

Tre hypoteser ble undersøkt i dette prosjektet. Først, det antas at de fleste artikler er
vanskelig å reprodusere. Den neste, problemene som gjør reproduksjon vanskelig antas å
være liknende imellom artikler. Den siste, nivået av dokumentasjon målt for en artikkel
antas å være relatert til hvor enkelt den kan reproduseres. Av de 30 artiklene undersøkt ble
22 forsøkt reprodusert, og av disse var 10 delvis suksessfulle. Resultatene støtter den første
og den andre hypotesen, og den siste hypotesen kan hverken bekreftes eller forkastes.

Dette prosjektet har tre hovedbidrag. Det første bidraget er bildet av den nåværende til-
standen til reproduksjon i KI som gis av reproduksjonsresultatene. Det andre bidraget er en
modell for å tolke forskningsartikler i KI og estimere dokumentasjonsnivået til en artikkel.
Det siste bidraget er et sett med problemkategorier som er tiltenkt å dekke all problemer
møtt under reproduksjonene.
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Chapter 1

Introduction

Reproducibility, or replicability, of studies is a fundamental aspect of the scientific method.
Through the process of reproduction researchers can corroborate good results, discard false
leads, and build upon the work of others. However, in recent years the reproducibility of
published results in many fields have been drawn into question [1]. The so-called "Replication
Crisis" [2] has spread from psychology, and today touches most scientific fields, including
the computational sciences and our field, AI [3]. This crisis refers not only to that fact
that a significant portion of published results are being refuted as a result of reproductions,
but also to the problem of many results being neither refuted nor corroborated because the
experiments which produced the results are impossible to recreate.

Access to good documentation is a key requirement for reproducibility. In order to success-
fully reproduce a study researchers need a thorough understanding of the research question,
methodology, and experimental setup of the original study. The current "Replication Crisis"
is believed to be in part a crisis of documentation, arising from the difficulty of sharing all
details of an experiment. However, the majority of experiment in computer science are com-
putational experiments, where the experiment consists of running some program, or code,
on some defined problem or data set. Computational experiments can be defined by the
code executed, the hardware and software platform used, and, if applicable, one or more
data sets. Sharing these resources should allow anyone to replicate the experiment. Models
for packaging code and data into experiments that can be executed automatically have been
suggested [4]. However, such models have not been widely adopted, and recent studies show
major limitations in current code and data sharing policies [5], [6]. These studies indicate
that the reproducibility problem has not been solved for AI.

The goal of this project is to provide a quantitative overview of the state of reproducibility
in our field, AI, and to help produce a better understanding of the problems currently
limiting reproducibility. The method proposed to achieve this goal is to perform a series of
reproduction attempts on 30 recent, highly cited studies in AI. 10 studies are selected from
each of the years 2012, 2014, and 2016, and the reproduction attempts are performed in a
structured and transparent manner.

1



Three hypotheses are proposed for the project. The first hypothesis is that it is difficult
to reproduce many of the results achieved in AI research in recent years. The second
hypothesis is that the issues which make reproducibility difficult are the same across many
studies. The third hypothesis is that there is a link between the level of documentation
provided by an article, and how easy it is to reproduce. A prediction is defined for testing
each hypothesis. The first prediction is that the majority of studies in this project cannot
be reproduced within the limitations of the experiment. The second prediction is that it
is possible to group the majority of issues encountered in the reproduction attempts into a
set of categories. The third prediction is that there is a significant correlation between the
documentation level measured for an article, and the outcome of the related reproduction
attempt.

This study also has three main contributions. Firstly, it provides an overview of the
state of reproducibility in AI research. Secondly, a model for understanding AI articles is
proposed, along with a metric for estimating documentation levels. Third and lastly, a set of
issue categories is proposed covering all major issues encountered during the reproductions.

The project builds upon the work done by Sigbjørn Kjensmo during his master project,
also under the supervision of Odd Erik Gundersen. Kjensmo studied documentation and
reproducibility in AI research through a survey of 400 papers, and developed a method
for quantifying reproducibility. The result of Kjensmo’s study was presented in a scientific
paper [6], which has been accepted for publication in AI Magazine.

The remaining parts of this report are structured as follows. Chapter 2 provides an introduc-
tion to the scientific method in AI, followed by an overview of the concept of reproducibility
in AI and of related work on the subject. Chapter 3 presents the model for understanding
AI articles proposed in this project, followed by an overview of the reproduction procedure
used. Chapter 4 presents the results achieved in the experiment, and the categories of issues
encountered. Chapter 5 discusses the results and evaluates the project. Lastly, Chapter 6
concludes the report.

2



Chapter 2

Background

This chapter provides an introduction to the scientific method of AI research, followed by
an overview of the concept of reproducibility as it is understood in computational sciences
and AI. This also includes a presentation of some suggested methods for differentiating and
classifying levels of reproducibility. Lastly, a brief overview of earlier work on reproducibility
in computational sciences and AI is provided.

2.1 The Scientific Method in AI Research

The field of AI is highly diverse and covers many different topics such as classification,
function optimization, and clustering. Defining exactly what constitutes AI and AI studies
is therefore a difficult problem. Cohen [7] defined AI research as the study of AI programs
and their behaviour. Gundersen and Kjensmo [6] expanded on this definition by introducing
the concept of an AI method. The AI method is the conceptual algorithm or system which
is implemented by an AI program. According to them, the scientific process in AI consists
of the formulation and adjustment of beliefs about an AI program through the execution of
experiments. Based on some initial beliefs, a set of hypotheses and predictions are made.
An experiment is constructed to test the predictions, and the results are compared with the
predicted outcomes. Based on the researcher’s interpretation of the results, the beliefs are
adjusted.

For this project, Gundersen and Kjensmo’s model was expanded to explicitly encompass the
concepts of AI method and phenomenon. In this model, illustrated in Figure 2.1, the set
of initial beliefs are assumed to concern either what an AI method can do, or how to study
or solve a phenomenon or task. If the beliefs are focused on the method, a phenomenon
is chosen to test the method. If the beliefs are about a phenomenon or task, a method is
proposed for investigating or solving it. When the method and phenomenon are chosen,
one or more hypotheses are formulated, followed by a set of predictions. The method is
implemented in a program, and a data set, or task specification, is created to represent
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2.2. REPRODUCIBILITY

Figure 2.1: The research process in AI as understood in this project

the phenomenon. Using the implementation and data, the predictions are then tested in
an experiment which produces results. The results are compared with the predictions and
interpreted, and based on the interpretation the initial beliefs are updated. This model
forms the basis for our understanding of empirical research in AI.

2.2 Reproducibility

Although reproducibility is an important aspect of research and the scientific method, there
exists no commonly agreed upon definition of what reproducibility is. The U.S. National
Science Foundation has the following definition of reproducibility, "Reproducibility refers to
the ability of a researcher to duplicate the results of a prior study using the same materials
and procedures as were used by the original investigator" [8]. However, this definition does
not distinguish between different degrees of reproducibility, and it remains unclear what the
exact goal of a reproduction team should be.

Several researchers have suggested a separation between the terms replication and repro-
duction [5], [9]–[11], but no consensus seems to exist on precise definitions. According
to Drummond [9], replication is the re-running of the original experiment with minimal
changes to the experiment. Reproduction, on the other hand, is testing or corroborating
the conclusions of the original study through new and different experiments. The creators
of the ReScience Initiative [11] have adopted the reverse position. According to their defini-
tion, reproduction is running the same software with the same data and obtaining the same
results. Replication is writing a new implementation and aiming at achieving results which
are equivalent, but not necessarily identical.

Goodman, Fanelli, and Ioannidis [12] proposes an alternative division of reproducibility
into three categories; methods reproducibility, results reproducibility, and inferen-
tial reproducibility. In their system, a study is methods reproducible if it is documented
well enough to be repeated exactly, using the same experimental setup, code, and tools.
It is results reproducible if a reproduction using the same experimental methods yield re-
sults which corroborate the results of the original study, and inferential reproducible if a
reproduction results in conclusions which are similar to the conclusions of the original study.

In their paper, Gundersen and Kjensmo [6] proposes a new definition for reproducibility in AI
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research: "Reproducibility in empirical AI research is the ability of an independent research
team to produce the same results using the same AI method based on the documentation
made by the original research team." With this definition they emphasis the importance of
the reproducibility being carried out by a team of researchers independent of the original
research team. They also introduce the term AI method to refer to the proposed algorithm or
method, and distinguishes it from the specific implementation created in the original study.
From this definition, Gundersen and Kjensmo, proposes three degrees of reproducibility,
distinguished by their independence from the original implementation and data set, similar
to the separation between reproduction and replication. The three degrees of reproducibility
proposed in [6] are:

R1: Experiment Reproducible The results of an experiment are experiment repro-
ducible when the execution of the same implementation of an AI method produces the same
results when executed on the same data.

R2: Data Reproducible The results of an experiment are data reproducible when an
experiment is conducted that executes an alternative implementation of the AI method that
produces the same results when executed on the same data.

R3: Method Reproducible The results of an experiment are method reproducible when
execution of an alternative implementation of the AI method produces the same results
when executed on different data.

R1 reproducibility involves the least independence from the original experiment, using the
exact same code and data. Its goals can be considered equivalent to those of replication.
R3 reproducibility involves reproduction independent of both the implementation and data
set of the original experiment, and is closer to reproducibility as defined in [9].

For the remaining part of this report, the term reproduction and reproducibility will be used
according to the definition proposed by Gundersen and Kjensmo. Furthermore, a modified
version of their degrees of reproducibility, presented in Section 3.3, will be used to classify
reproduction attempts.

2.3 Related Work

There have been several studies into reproducibility in computational research and AI, re-
vealing different issues about the current state of reproducibility. Various initiatives for
improving the situation have also been proposed. Section 2.3.1 discusses some selected
studies on concrete reproduction attempts and their outcomes. Section 2.3.2 presents some
of the initiatives for increased reproducibility and openness which have been proposed in
recent years, as well as surveys documenting the current state of reproducibility and docu-
mentation practices.
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2.3. RELATED WORK

2.3.1 Reproduction Attempts in Computational Sciences and AI

In 2010, Mende [13] attempted to replicate two studies in Defect Prediction Models (DPM),
with the goal of identifying potential problems. Using the same data, but independent
code implementation, Mende was able to replicate the results of one of the studies, but not
the other. He also produced some recommendations for facilitating replication, including
explicit description of data transformation and summaries of data sets.

In 2013, Fokkens et al. [14] in a similar study attempted to reproduce two studies in Natural
Language Processing (NLP). They showed that documentation is often too poor to exactly
replicate the results of the original studies. Furthermore, they showed that the results of an
experiment can be heavily influenced by aspects which are often not thoroughly documented,
such as data pre-processing and resource versioning.

In 2015, Topalidou, Leblois, Boraud, and Rougier [15] attempted to reproduce a model
from computational neuroscience. In their case, the source code of the original model was
provided, but due to missing packages they were unable to compile it. Their effort at re-
coding the model in a new programming language was successful, but the entire process
took approximately 3 months. Their reproduction attempt was published as one of the first
in the ReScience Initiative [11].

In 2016, Vitay [16] published a reproduction attempt of a study on recurrent neural networks.
This reproduction attempt was successful, and was made possible by the original article
being detailed and well documented, and the original source code being available.

In 2017, Manninen, Havela, and Linne [17] studied reproducibility in their field of com-
putational neuroscience. They attempted to reimplement and reproduce results from four
computational models of astrocyte excitability using only published information. They were
only able to completely reproduce results for one of the models, and found that the three
other models did not provide sufficient information for reimplementation.

2.3.2 Initiatives for Increased Reproducibility

Several initiatives for increased reproducibility have been proposed. Since access to docu-
mentation, code, and data generally are accepted as important criteria for reproducibility,
several of the initiatives have been focused on increased openness. Perspectives calling for
increased openness and focus on reproducibility in computational sciences have been pub-
lished in several leading scientific journals [5], [18], [19]. The goal of these efforts have been
to encourage computational scientist to make more of their data and code publicly avail-
able, and encourage the scientific community to adopt stricter data sharing policies. As
stated by Ince, Darrel, and Graham-Cumming [19], "..., anything less than release of actual
source code is an indefensible approach for any scientific results that depend on computa-
tion, because not releasing such code raises needless, and needlessly confusing, roadblocks to
reproducibility."
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2.3. RELATED WORK

The OpenML project [20] is an initiative for increased reproducibility specifically targeting
the AI and Machine Learning community. OpenML is a platform for sharing code, data, and
experiments, with the goal of making these resources easily accessible to other researchers
and encouraging collaborative work.

The ReScience Initiative [11], launched in 2015, is a peer-reviewed journal in computational
research focused on the reproduction of previously published results. Their aim is to en-
courage reproduction of existing science, and provide a journal were such efforts can be
published. Furthermore, in order to encourage good documentation practices, all published
reproduction attempts must themselves be re-runnable by other researchers. As of May
2018 19 papers on reproduction attempts have been published in ReScience, all reporting
successful reproductions [21].

Despite the initiatives for increased reproducibility, recent surveys show that the situation
is far from ideal. A survey of data sharing policies for journals showed that as of June
2012, only 38% of journals had explicit data policies, and only 22% had code policies [22].
Furthermore, in a 2010 survey of participants at the Neural Information Processing Systems
(NIPS) conference, participants self reported sharing only approximately 32% of their code
and 48% of their data online [23].

Even when efforts have been made at making research reproducible, the quality of the doc-
umentation may cause problems. Mayer and Rauber [24] studied experiments documented
through workflows, systems used for defining and executing a series of computational steps,
and showed that many experiments still were difficult to reproduce. Surveying 1 443 pub-
licly available workflows, they found that only 29.2% of the experiments could be executed
successfully. Several of the encountered failures were due to inadequate documentation, or
missing resources.

Looking specifically at the availability of code, Collberg and Proebsting [25] attempted to
estimate the repeatability of several computational studies by attempting to find and build
the code used in the original studies. Surveying 402 studies, they were only able to build
the code independently in 48.3% of the cases, rising to 54.0% when they contacted the
original authors. The study did not attempt reproduction of results, and it is not known
what percentage of built code would produce the same results as was published.

Gundersen and Kjensmo [6], did a survey specifically within the field of AI. Attempting
to estimate the degree to which studies were R1, R2, and R3 reproducible using a set of
variables measuring documentation level, they found that out of 400 papers only about 25%
were R1 reproducible, 28% R2 reproducible, and 30% R3 reproducible.
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Chapter 3

Experiment

This chapter presents and explains the experiment carried out in this project. Section 3.1
introduces the idea of an empirical study in AI as understood in this project. Section
3.2 presents the model for understanding AI articles developed in the project. Section 3.3
presents the classification of reproducibility used in the project. Section 3.4 mentions the
selection process for studies, but this is discussed in greater detail in Nicklas Grimstad
Nilsen’s master thesis. Section 3.5 discusses the methodology and procedure used in the
reproduction attempts. Lastly, Section 3.6 gives an overview of the documentation practices
of this project.

The goal of the experiment is to perform reproduction attempts of multiple recent, highly
cited AI studies in a structured and transparent manner. The aim is to produced quanti-
tative results on the degree to which the selected studies can be reproduced, and on the
problems and issues encountered in the reproduction processes. The methodology used in
the experiment is intended to be sufficiently structured to enable a good comparison of the
outcomes of several different reproduction attempts, while also flexible enough to handle
the wide variety of empirical studies published in the field of AI. Furthermore, the proposed
methodology is intended to be as transparent as possible, to encourage other researchers to
understand and build upon the work.

3.1 Empirical Studies in AI

The focus of this project is empirical studies in the field of AI. For the purpose of this project,
AI is interpreted broadly and a study is considered to be within AI as long as the method
studied or used is commonly agreed to fall within AI. Empirical studies are interpreted as
studies which propose new methods or hypotheses, and perform new experiments. Survey
studies, technical guides, or papers which present only a data set and not a method are not
classified as empirical in this project.
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3.2. MODEL FOR UNDERSTANDING AI STUDIES

3.2 Model for Understanding AI Studies

To aid the work with the studies an Article Model is proposed, along with an associated
Article Model Metric. The model provides a structured overview of the different aspects of
an AI study. Given an article, the goal is to be able to use the model to identify the most
important aspects of the study, and which aspects are well documented by the article, and
which are not. The model is represented as an UML diagram in Figure 3.1. The model is
based on the factors and variables proposed by Gundersen and Kjensmo in [6].

For most studies the research article is the main form of documentation provided, and
should cover all important parts of the study. The Article Model divides an article into
a set of components, with relations between them. Some of the components are further
divided into sub-components, which are separate parts of a component. A component is an
aspect of the research, such as the AI method implementation or the data sets used, which
should be documented in the article. For each component there is a proposed Component
Metric, which provides a method for estimating the degree to which the component is well
documented in the article. Together, Component Metrics make up the Article Model Metric.

The purpose of the metrics is to provide a quantitative measure of the documentation level of
each component in a given article, and the overall documentation level. I.e. they can be used
to estimate how well a given article documents the main aspects of its study. Each metric
is designed to use values between 0 and 1, with 0 indicating a poor documentation level,
and 1 a good documentation level. For components with one or more sub-components,
the Component Metric of the entire component is the average of the values for the sub-
components. Like the model, the metrics selected are heavily influenced by the work of
Gundersen and Kjensmo [6].

In the following sections we describe each component and the relations between them.
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Figure 3.1: UML model of the Article Model
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3.2.1 Research

The Research component of the model gives an overview of the research conducted in the
study and should include the groundwork of the study. The first five sub-components covers
which problem the article seeks to solve, what the goal of the research is, which research
method is employed, what the research question is, and what the contribution of the study
is. Additionally, other factors of the research, such as the type, the outcome, and the
affiliation of the authors is included in this component.

The component is connected to the Method and Phenomenon components because each
study should focus on one AI method and one phenomenon which the method is applied to.
The component is also connected to the Experiment Description component because one or
more experiments can be performed as part of the study.

A metric is proposed for each sub-component. As stated above, the aim of the Component
Metric is to provide a quantitative measure for how well the given component or sub-
component is documented in the article. The proposed metrics for the sub-components of
the Research component are listed below. The type, outcome, and author affiliation of the
study are not quantified, but rather classified with a set of possible values. The proposed
metric for the entire component is the average of the values estimated for the first five
sub-components.

Problem: Explicitly mentioned in article (1), or not mentioned (0).

Goal/Objective: Explicitly mentioned in article (1), or not mentioned (0).

Method: Explicitly mentioned in article (1), or not mentioned (0).

Question: Explicitly mentioned in article (1), or not mentioned (0).

Contribution: Explicitly mentioned in article (1), or not mentioned (0).

Type: Experimental (E) or Theoretical (T).

Outcome: Positive (P) or Negative (N).

Affiliation: Academia (A), Collaboration (C), or Industry (I).

3.2.2 Method

The Method component covers the AI method, or algorithm, used in the study. The de-
scription of the method is divided into two main parts. Many new methods proposed in
AI are variations of existing methods, and the first part of the description is the the gen-
eral method description, which covers the fundamentals of the existing method on which
the new method is based. The second part is the method modification description, which
covers modifications made to the original method in this particular study, if it is based on
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a general method. In addition to this, all hyper-parameters used by the AI method should
be described as part of the method description.

For every sub-component, a metric is proposed for estimating the level of documentation of
that sub-component. These are listed below. The proposed metric for the entire component
is the average of the values estimated for the sub-components.

General method: Described (1) or not described (0).

Method modification: Described (1) or not described (0).

Hyper parameter description: All parameters described (1), some parameters described
(0.5), or no parameters described (0).

3.2.3 Pseudocode

In many cases a research article in AI will include pseudocode to explain the proposed AI
method. The Pseudocode component covers this aspect of an article. The pseudocode can
be viewed as a formalization of the method description given in the Method component, and
in the model it is therefore considered an implementation of that component.

In order to measure the level of pseudocode documentation provided by an article, a metric
with the following possible values is proposed: Method completely covered by pseudocode
(1), method partially covered by pseudocode (0.5), and no pseudocode (0).

3.2.4 Implementation

The Implementation component covers the actual implementation of the AI method. When
covered in an article, the implementation is well documented if the following aspects are
covered. First, the programming language used in the implementation should be men-
tioned in the article. Second, any external libraries used as part of the implementation
should be listed. Both of these aspects need to be documented in order to enable exact
re-implementation. In addition to this, the source code of the implementation should ide-
ally be available, to allow researchers to replicate the experiments with the same code. The
implementation code is only part of the code necessary for an experiment, which also in-
cludes experiment setup and potentially data pre-processing. Details about the experiment
and experiment code is found in Section 3.2.10. In some cases the method implementation
is further developed after a paper is published. Because of this, the version of the method
code used in the article should also be specified.

Since the running program can be viewed as an implementation of pseudocode, the Im-
plementation component is viewed as an implementation of the Pseudocode component in
Figure 3.1.
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The degree of documentation provided about the implementation can be estimated using a
set of metrics. Below are the proposed metrics for each sub-component. The metric for the
entire component is the average of the values for the sub-components.

Programming language: Specified in article (1), or not specified (0).

External libraries: Specified in article (1), or not specified (0).

Method code version: Average of the two following metrics:

1. Code provided with article (1), code available online (0.5), or code not available
(0).

2. Code version used specified (1), or code version used not specified (0).

3.2.5 Phenomenon

The phenomenon of a research article is the real world event or concepts that the research
tries to study, or apply the AI method to. The Phenomenon component covers information
about the phenomenon.

To measure the degree to which the phenomenon is documented in the article, a metric
with three possible values is proposed. The possible values are: phenomenon described (1),
phenomenon mentioned (0.5), and phenomenon not mentioned (0).

3.2.6 Data Description

Most AI studies are performed by running an AI method on some data. When data is used,
the article documenting the study should include a description of the data instances. This
description should include the format of the data, e.g. the file format such as png or csv.
Additionally, the properties or meta-data of the data instances should be described. This
can be information about the structure of the data, or a description of the method used
to gather or generate the data. The purpose of the data description is to document the
properties of the data sufficiently well that independent researchers can recreate equivalent
data sets.

Any description of the data used will depend upon the phenomenon studied, and the Data
Description is therefore associated with the Phenomenon component in Figure 3.1.

The quality of documentation provided by the data description depends on the level of
documentation provided about the data format and data properties. To estimate the level
of documentation provided for the sub-components, the following metrics are proposed. The
estimate for the entire Data Description component is the average of the estimates for the
sub-components.

Format: Specified in article (1), or not specified (0).
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Properties: Specified in article (1), or not specified (0).

3.2.7 Data

The Data component covers the actual data sets used in the study, and their level of avail-
ability to independent researchers. Whenever external data sets are used they should be
clearly documented in the article, either through references to the articles which originally
presented the data sets, or through links to online repositories where the data sets are avail-
able. Having all data sets used in a study be available to other researchers allows these
researchers to use the exact same data when performing a reproduction attempt, and is key
to enabling replication of studies.

The choice of data sets is dependent upon which properties are desired of the data. As
such, the Data component is related to the Data Description component, which provides
information about the data instances.

The level of the documentation provided about the data used in a study is entirely based
on availability. More precisely, how many of the data sets used in the original study are
available to independent researchers. When estimating the level of availability, the model
differentiates between availability for two sub-components. The first sub-component covers
the original, or raw form, data. Often a study will use external data sets created by other
researchers, or originally gathered for some other experiment. These data may require some
pre-processing before they are used in the new experiment. Having access to the original
data is important for researchers seeking to reproduce an entire study, starting with the
same resources as the original researchers.

The second sub-component covers data in a processed state. As mentioned, many studies
will use existing data, but perform some sort of pre-processing or augmentation before
passing the data to their AI program. This can involve reducing dimensionality of data,
performing image processing, or other tasks. Having access to the processed data is key for
researchers seeking to replicate a study, using the exact same data.

When estimating the availability of the data, the availability of the two sub-components are
estimated separately. For each data set being used in an experiment, the model differentiates
between three levels of availability for that data set, each with a score:

1. Data set is provided by article. Either through a link to an online repository, or
through references to the original articles describing the data set. (1)

2. Data set is not provided by the article, but it is retrievable. This means that the data
set is not linked or adequately referenced in the article, but it is possible to find or
reconstruct the data set using resources online. (0.5)

3. Data set is missing, i.e. not provided or retrievable. (0)

The relationship between these levels of availability is illustrated in figure 3.2.
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Figure 3.2: Different levels of data availability

The metric for estimating the level of availability, or documentation, for each sub-components
is based on the total number of data sets used, and the number of data sets in each of the
above categories. For each sub-component, the values for the following set of variables are
recorded:

DT Total number of data sets used in the original study.

DP Number of data sets provided.

DR Number of data sets retrievable.

DM Number of data sets missing.

Based on these variables, and the scores of each category outlined above, the following
metric is proposed for estimating the level of data availability for each sub-component.

Availability =
DP + 1

2DR

DT

Using this formula on each of the two sub-components results in two measure of avail-
ability. One for original, or raw, data, and one for processed data. The estimate for the
documentation level of the entire Data component is the average of these two values.

We observe that this metric gives the highest score of 1 to articles where all data sets used
are provided in both raw and processed form. This is the ideal level of documentation, and
gives independent researchers the greatest possibilities for reproducing or replicating the
study. Data sets which are not provided, but which have been made available online, i.e.
are retrievable, are given partial credit. When some data sets are missing, they are given
no credit, and the total score of the article drops.
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3.2.8 Partitioned Data

Several AI methods use parts of the available data for different purposes. A common pattern
is to divide data into a training set, a validation set, and a test set. Others only utilize
a part of the data by using a subset of the data. The Partitioned Data component covers
this partitioning, and the methods used to perform it. When documenting the partitioning
of the data, a research article should ideally provide all the partitions used in the study.
Additionally, the method used to perform the partitioning should be described. In cases
where the actual partitions are not provided, the description of the method should allow
independent researchers to reconstruct the partitions from the original data sets.

As mentioned in the discussion of the Data component, data sets are often pre-processed
before being used in an experiment. In these cases, the method used for processing the
data should be described. The purpose of this description is to allow other researchers to
re-implement the pre-processing method. In the model, the method for pre-processing is
viewed as part of the Partitioned Data component.

Since the data instances of the partitioned data are the same as those in the original data
sets, the Partitioned Data component is represented as specialization of the Data component
in the UML diagram of Figure 3.1.

Ideally, a research article should provide all data used in the study in a processed and
partitioned state, in the final form in which it was used in the original experiment. To
measure how well this documentation actually is, the following set of metrics has been
proposed for the sub-components of the Partitioned Data component. The estimate for the
entire component is the average of the estimates for the sub-components.

Training set: All training sets provided (1), some training sets provided (0.5), No training
sets provided (0).

Validation set: All validation sets provided (1), some validation sets provided (0.5), no
validation sets provided (0).

Test set: All test sets provided (1), some test sets provided (0.5), no test sets provided (0).

Partitioning method: Provided for all data sets (1), provided for some data sets (0.5),
provided for none of the data sets (1).

Subset of data: All subsets provided (1), some subsets provided (0.5), no subset provided
(0).

Pre-processing method: Described (1), or not described (0).
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3.2.9 Experiment Description

All empirical studies should contain one or more experiments. Each experiment starts
with an overall description outlining the purpose of the experiment. Central to this is the
formulation of a hypothesis, and a set of predictions. Documenting these are important for
expressing the purpose of the experiment to other researchers. Furthermore, experiments
should be related to one AI method performed on one phenomenon, as shown if Figure 3.1.

When measuring how well a research article documents the purpose of an experiment, this
model proposes to estimate the level of documentation for the hypotheses and predictions,
and use the average of these values as an estimate for the documentation level of the entire
Experiment Description component. To estimate the documentation of the hypotheses and
predictions, the following metrics are proposed.

Hypothesis: Explicitly mentioned in article (1), or not mentioned (0).

Predictions: Explicitly mentioned in article (1), or not mentioned (0).

3.2.10 Experiment

An actual experiment in AI is an implementation of the experiment description discussed
above, aiming to test a proposed prediction. In practice, it usually involves running some
AI program with some data, in a particular setting. There are several aspects of the ex-
periment which should be documented in order for replication to be possible. Experimental
setup factors, such as the hardware running the experiment and the operating system of
that hardware are important aspects. Furthermore, most AI programs accept some hyper-
parameters which controls the running of the program. Documenting these are vital to
enable others to recreate the experiment. Lastly, the execution of the experiment is also
usually performed using an experiment program. This program may perform tasks such as
reading and pre-processing data, setting hyper-parameters, and calculating results.

In terms of relations to other components, the Experiment component can be viewed as
an implementation of the Experiment Description component. Furthermore, as mentioned
above, the experiment usually involves running an implementation of an AI method with
some data, often partitioned into training, validation, and test sets. Because of this the Ex-
periment component is related to the Implementation and Partitioned Data components.

The estimate for the documentation level of the experiment provided by an article is based
on how well the aspects discussed above are documented. The following metrics are proposed
for estimating the documentation level of each sub-component. For the entire component,
the estimate is the average of the values for the sub-components.

Hardware description: Provided (1), or not provided (0).

Platform (OS): Provided (1), or not provided (0).
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Hyper-parameter values: All values given (1), some values given (0.5), or no values given
(0).

Experiment code: Code provided by article (1), code available online (0.5), or not avail-
able (0).

3.2.11 Experiment Result

When running an experiment, a set of results is produced. In a research article, these results
are usually documented through some form of aggregation or summary, which conveys the
most important observations from the experiment. To fully facilitate reproduction, the full
results of an experiment should also ideally be made available. The full result is the actual
output of the AI program when run on a data set. The Experiment Result component covers
both these kinds of results. Since the results are directly dependent on an experiment, the
component is related to the Experiment component i Figure 3.1.

The estimate for the documentation level of the Experiment Result component is based on
the degree to which result summaries and full results are provided. Below is the proposed
metric for evaluating the documentation of these sub-components. For the entire component,
the estimate is the average of the values for the sub-components.

Full results: Provided (1), or not provided (0).

Results summary: Provided (1), or not provided (0).

3.3 Levels of Reproducibility

All reproduction attempts are classified according to the reproduction level attempted. As
discussed in Chapter 2, Gundersen and Kjensmo [6] proposed three levels of reproducibility,
R1, R2, and R3. However, their system did not cover the case where the method implemen-
tation used in a study is available, but not the data. To cover this situation, we expanded
their system by dividing the R2 reproduction level into two levels, R2-D and R2-M. R2-D
retains the original definition of R2, while R2-M is introduced to describe reproductions
where implementations, but not data, are available. The definitions for the four levels of
reproduction used in this project are therefore as follows.

R1: Experiment Reproducible The results of an experiment are experiment repro-
ducible when the execution of the same implementation of an AI method produces the same
results when executed on the same data.

R2-D: Data Reproducible The results of an experiment are data reproducible when an
experiment is conducted that executes an alternative implementation of the AI method that
produces the same results when executed on the same data.
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R2-M: Method Reproducible The results of an experiment are method reproducible
when the execution of the same implementation of an AI method produces the same results
when executed on different data.

R3: Method and Data Reproducible The results of an experiment are method and data
reproducible when execution of an alternative implementation of the AI method produces
the same results when executed on different data.

The term same implementation is slightly unclear since, in practice, only part of the im-
plementation required for an experiment might be shared. For the purpose of this project,
we consider same implementation to mean that the method implementation is the same
in the original study and reproduced attempt. The implementation of the experiment, or
pre-processing of data, might therefore be different.

In practice a published study can contain multiple experiments with different levels of re-
producibility. However, in this project we limit ourselves to one level of reproducibility per
study. More specifically, the highest level of reproducibility is chosen. Therefore, a study
is considered R1 reproducible if at least one of its experiments are R1 reproducible, and
similarly for R2-D and R2-M. A study which is neither R1, R2-D, or R2-M reproducible is
only R3 reproducible.

3.4 Selection of Studies

The process for selecting studies to be reproduced was created by Nicklas Grimstad Nilsen,
and is discussed in detail in his master thesis. A short summary of the process is provided
in this section.

In total 30 papers were used in this study, 10 each from the years 2012, 2014, and 2016.
Using the Scopus website1, a search was performed in each year for empirical papers in AI,
and the results were ranked according to the number of citations. The ten most highly
cited papers from each year were selected for this project. In the initial read through of the
top ranked papers it was discovered that some of the papers produced by the search were
not empirical AI studies as described in Section 3.1. These papers were replaced by next
most highly cited papers. The final list of papers therefore contains the most highly cited
empirical papers in AI from the years 2012, 2014, and 2016. The final list of papers is given
in Table 4.1 in Chapter 4.

3.5 Reproduction Procedure

This section describes the procedure used during the reproduction attempts. Having se-
lected a study to reproduce, the article documenting the study is found and read through.

1www.scopus.com
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The possible levels of reproducibility for the study is then determined. When searching
for implementations to determine if a study is R1 reproducible we first check if code or
implementation is linked from the research article. If no link to implementation is provided
we perform a search online using the Google search engine2, searching for the name of the
study, and the name of the study followed by the term "github" to specifically check the
popular code hosting platform GitHub3. Lastly, we check the web pages of the main authors
of the study. If an implementation is found we try to determine if this implementation is
original, or just another reproduction. To do this we check if the implementation explicitly
mentions being part of the original study, or if the code author is one of the authors of the
original study. If either of these requirements are met, the implementation is assumed to be
original. Implementations shared in a non-inspectable manner, i.e. as compiled programs,
are not used in this project since the reproduction team is unable to verify that the program
implements the correct method.

A similar procedure is used when searching for data sets. When a data set is mentioned
in the study, we check if a link is provided to the web page hosting the data set, or if the
paper proposing the data set is referenced. If a link or reference is not provided we perform
a search for the data set name using the Google search engine. If no matches are found
we then look to referenced articles for information on where to find the data set. When
determining if a data set found online is the same as was used in the original study, the
data set is assumed to be the same if the name of the data set is identical, or if the original
article and the page hosting the data set references the same research paper.

As a policy we do not contact the original authors during our reproduction attempts. Neither
to ask for original implementations or data, or to resolve uncertainties in our understand-
ing of the studies. It is our opinion that studies should be reproducible by independent
researchers using only the publicly available documentation.

In some cases a study will use a popular data set in one or more of its experiments, but will
perform significant pre-processing on the data before using it in the proposed method. Pre-
processing may change the data instances or the composition of the data set, and results in a
new data set slightly different from the original. However, since a study often uses data sets
owned by other researchers or institutions, the authors may have limited ability to share the
new data. When encountering studies with data pre-processing where the processed data
is not shared we try to re-run, and if necessary re-implement, the data pre-processing. The
only exceptions to this are studies where the pre-processing must be re-implemented and
involves multiple complex stages, or where the pre-processing requires manual editing. In
these cases, the likelihood of us creating a data set which is identical or equivalent to the
original data set is deemed low. Studies with these kinds of pre-processing are considered
to be R3 reproducible, on the grounds that the processed data is sufficiently different from
the original data set to be considered a new data set.

2www.google.com
3www.github.com
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When the possible levels of reproduction for a study have been determined reproduction is
started. As stated in Section 3.3 reproductions are only performed at the highest possible
level for each study. I.e. if a study is deemed R1 reproducible, only R1 reproduction
is attempted. R3 reproduction is not attempted for any study, due to the difficulty of
comparing results on different data sets. Also as discussed in Section 3.3, our definition
of R1 reproducible requires the method implementation to be provided for at least one
experiment. As such, R1 reproduction may involve the writing of new code, primarily
implementation of experiments.

In this project each reproduction attempt is limited to a maximum of 40 work hours, or
approximately one work week. 40 hours is considered a reasonable effort, and it is our belief
that well documented studies should be reproducible within this time frame.

Many published studies include more than one experiment. When attempting reproduction
we focus on one experiment at a time. When selecting which experiment to attempt first,
emphasis is put on the importance of the experiment in the article, i.e. how much it is
discussed, and the order in which the experiments are presented. In most cases, the first
eligible experiment is chosen as the first to be reproduced. Some experiments may be ex-
cluded as a result of the level of reproduction attempted. For example, when attempting R1
reproduction only experiments covered by the provided method code is considered eligible
for reproduction. If, after having achieved results for the first experiment, there is still time
left, we move on to the next eligible experiment.

Counting the number of experiments in an article and differentiating between them may be
difficult. Since different articles use different definitions of experiment, there is a need for a
common definition. The definition used in this project is that one experiment is one method
run on one data set or function. When running multiple methods or using multiple data
sets, these are considered to be multiple experiments even if the original article does not
classify them as such.

When performing a reproduction attempt, programming language and third-party libraries
are chosen to be the same as was used in the original study. When programming language is
not specified, a language considered suitable is chosen. The hardware used for reproduction
are the personal computers of the reproduction team and one high-end GPU system operated
by NTNU. When the use of a third-party library is mentioned in a study we will attempt
to use the same library and version. However, if the mentioned library is unavailable or
highly impractical to use a substitute library may be used. We also allow the use of third-
party libraries not mentioned in the original paper in our implementation in cases where
this is considered practical. For example in cases where a study uses a known algorithm as
part of its method, but does not describe how this algorithm was implemented. During the
reproduction, whenever a random number generator is used, the seed is explicitly set in the
code. All results produced by a method, not just metrics and result aggregates, are written
to file.

In some cases a reproduction attempt may be aborted before all experiments have been
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attempted or the time limit is reached. This is done for studies where the hardware demand
exceeds what is available to our reproduction team, or in cases where a reproduction attempt
has reached a situation where it is deemed impossible to get any results within the remaining
time frame of the reproduction attempt.

In order to analyze the results of the project some way of classifying the outcomes of the
reproduction attempts is needed. There are two level of outcomes to consider: The outcome
of an experiment, and the overall outcome for the reproduction attempt. The classification
of experiment results is addressed first.

In cases where the reproduced results are identical to the original results, the experiment is
considered a success. However, in many cases the reproduced results will not exactly match
the original values. Still, the results which are close to the original should be distinguished
from those which are far off. Most studies include results from at least one baseline algorithm
which is used to compare the results of the new method proposed in the study with the
existing state-of-art methods. When this is the case, the outcome of a reproduction attempt
can be evaluated using the baseline results. If the results from a reproduction attempt have
the same performance relative to all baseline methods as the original results, the reproduced
results are considered consistent with the original results. In these cases, the conclusions
drawn about the performance of the method are the same for the reproduced and original
implementation. If the reproduction result is classified as neither identical or consistent,
it is classified as different. For this project we therefore define three possible outcomes for
each experiment reproduction attempt: identical, consistent, and different. A reproduction
attempt is identical if all results for that experiment are identical to the original results. The
attempt is consistent if the performance of the reproduced results, relative to all baseline
methods, is the same as the original results. Lastly, results which are neither identical or
consistent are classified as different.

The comparison of results is primarily performed on reported aggregated metrics or sum-
mary of results. I.e. when comparing two implementations of a classification method, the
comparison is performed based on accuracy or error achieved, not on the exact classification
of each example in the test set. The main reason for this is that most studies only report
a result summary, and do not provide the full results. Furthermore, requiring exact match
on the full results is a significantly harder requirement.

When it comes to classifying the overall outcome of a reproduction attempt, four categories
were defined. An outcome is defined as a Success if all of the performed experiments achieved
identical results. If at least one of the experiments achieved either identical or consistent
results, the outcome is defined as Partial Success. In the case of all experiments being
different, the outcome is defined as a Failure. Lastly, if no experiment were successfully
conducted, the outcome is classified as No Result. This is judged as a less favourable
outcome than Failure.
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3.6 Documentation

The code developed for a selection of the reproduction attempts is available on GitHub 4,
along with code develop for use in this report. The selection of reproduction attempts cover
all different outcomes, reproduction levels, and a variety of areas. The results achieved are
also provided for these studies, along with a description of the experiment setup. The full
results are provided if it does not require including the original data set.

A Google Forms form 5 was used to register data for the Article Model Metrics. These scores
were entered during each reproduction attempt. The responses from the Google Forms form
is also available 6.

4https://github.com/AIReproducibility2018
5https://goo.gl/forms/5eXAC9TOuR97nS063
6https://docs.google.com/spreadsheets/d/1ciwZ2GW3EZbS9mCHbiCyTpC1J5xMoXkBuPTPjRCsnP4/edit?usp=sharing
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Chapter 4

Results

This chapter presents the results achieved in the reproduction attempts. Section 4.1 lists
the 30 studies covered in the experiment, and the results achieved for each reproduction
attempt. Section 4.2 presents the system for categorizing issues in reproductions which is
one of the contributions of this project. This includes statistics on the number of issues
encountered for each paper.

4.1 Reproduction Attempts

The experiment conducted involved 30 articles, 10 for each year studied. The articles are
listed in Table 4.1. Out of the 30 papers, 7 were found to be R1 reproducible, 15 R2-D
reproducible, and 8 R3 reproducible. No R2-M articles were encountered. Table 4.1 lists the
title of each article, their reproduction level, the hours spent in the reproduction attempt,
and the id used as identification for the articles in the rest of the tables. Time spent only
covers time spent on actual reproduction attempts, and R3 studies are therefor registered
with no time, even though some effort was spent reading the papers and attempting to find
associated code and data. More information on the articles can be found in Appendix A.
The list of the persons responsible for each reproduction attempt can be found in Table A.1.
The count of experiments per article and the outcomes are found in Table A.2. The Article
Model Metric calculated per component is found in Table A.3.

The results of the reproduction attempts are presented in the Table 4.2. The first column
identifies which article the row is connected to. The second row shows how many experiments
were identified for the article. The following four columns provide statistics on how many
experiments were conducted, and the outcomes achieved. Column seven list the reasons why
not all experiments were conducted in the reproduction attempt. There are four different
reasons found. Time: There was not enough time to complete all the experiments. Code:
The code in the R1 article did not cover all the experiments. Data: One of more experiments
needed data sets not available or only available in a form not suited for the experiment.
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Id Title Type Year Hours
spent

1 Measuring the Objectness of Image Windows [26] R1 2012 40
2 Generalized Correntropy for Robust Adaptive Filtering [27] R2-D 2016 40

3 Development and investigation of efficient artificial bee colony algorithm
for numerical function optimization [28] R2-D 2012 40

4 Blind Image Quality Assessment: A Natural Scene Statistics Approach
in the DCT Domain [29] R1 2012 25

5 Cooperatively Coevolving Particle Swarms for Large Scale Optimization
[30] R2-D 2012 40

6 Learning Sparse Representations for Human Action Recognition [31] R2-D 2012 40
7 Visualizing and Understanding Convolutional Networks [32] R2-D 2014 40

8
iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incor-
porating sequence-coupling effects into pseudo components and optimiz-
ing imbalanced training dataset [33]

R2-D 2016 22

9 A modified Artificial Bee Colony algorithm for real-parameter optimiza-
tion [34] R2-D 2012 40

10 RASL: Robust alignment by sparse and low-rank decomposition for lin-
early correlated images [35] R1 2012 10

11 Classification with Noisy Labels by Importance Reweighting [36] R2-D 2016 40

12 Deep Convolutional and LSTM Recurrent Neural Networks for Multi-
modal Wearable Activity Recognition [37] R1 2016 20

13 Context Aware Saliency Detection [38] R2-D 2012 40
14 Distributed representations of sentences and documents [39] R2-D 2014 40
15 XGBoost: A scalable tree boosting system [40] R1 2016 40
16 Facial landmark detection by deep multi-task learning [41] R2-D 2014 40
17 Deep learning-based classification of hyperspectral data [42] R1 2014 8
18 Semi-supervised and unsupervised extreme learning machines [43] R2-D 2014 40

19 DeepReID: Deep Filter Pairing Neural Network for Person Re-
Identification [44] R2-D 2014 22

20 Deep neural networks: A promising tool for fault characteristic mining
and intelligent diagnosis of rotating machinery with massive data [45] R2-D 2016 8

21 Clustering by fast search and find of density peaks [46] R1 2014 33

22 DeCAF: A Deep Convolutional Activation Feature for Generic Visual
Recognition [47] R2-D 2014 40

23 Single image super-resolution with non-local means and steering kernel
regression [48] R3 2012 -

24 Multi-modal multi-task learning for joint prediction of multiple regres-
sion and classification variables in Alzheimer’s disease [49] R3 2012 -

25 Robust text detection in natural scene images [50] R3 2014 -

26 Towards end-to-end speech recognition with recurrent neural networks
[51] R3 2014 -

27 Mastering the game of Go with deep neural networks and tree search
[52] R3 2016 -

28 Deep Convolutional Neural Networks for Computer-Aided Detection:
CNN Architectures, Dataset Characteristics and Transfer Learning [53] R3 2016 -

29 MLlib: Machine learning in Apache Spark [54] R3 2016 -

30 Learning Rotation-Invariant Convolutional Neural Networks for Object
Detection in VHR Optical Remote Sensing Images [55] R3 2016 -

Table 4.1: Information about the articles used in the reproduction attempts.
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% of
Total results % of % of % of Why not all
number of that were results results experiments experiments
experiments that were that were that were were Overall

Id in article identical consistent failures not conducted conducted outcome
1 18 0% 22% 0% 78% Time Partial Success
2 4 25% 0% 25% 50% Time Partial Success
3 46 37% 37% 26% 0% - Partial Success
4 10 0% 10% 0% 90% Code Partial Success
5 21 0% 19% 14% 67% Time Partial Success
6 14 0% 0% 7% 93% Time Failure
7 20 0% 0% 0% 100% Time No Result
8 1 0% 100% 0% 0% - Partial Success
9 68 0% 1% 10% 88% Time Partial Success
10 31 0% 0% 77% 23% Code Failure
11 6 0% 0% 17% 83% Data, Time Failure
12 4 0% 25% 25% 50% Code Partial Success
13 2 0% 0% 100% 0% - Failure
14 3 0% 0% 0% 100% Time No Result
15 4 0% 50% 0% 50% Time Partial Success
16 12 0% 0% 0% 100% Time No Result
17 16 19% 19% 0% 63% Code Failure
18 38 0% 0% 13% 87% Time Failure
19 6 0% 0% 0% 100% Time No Result
20 10 0% 0% 0% 100% Time No Result
21 7 86% 0% 0% 14% Presentation Success
22 4 0% 0% 25% 75% Time Failure

Table 4.2: Summary of the results of the reproduction attempts: The number of experiments in the original
article and the status of these in the reproduction attempt. In addition, the overall reproduction outcome
for each article.

Presentation: The result of an experiment was presented in such a way that it would
be difficult to compare the results from the reproduction with the original article. The
last column present the one of four possible outcomes of the reproduction. Success: All
experiments conducted had identical results. Partial success: At least one experiment
reproduced had either identical or consistent results with the article. Failure: All of the
experiments conducted were failures. No Result: No experiment was fully conducted in
the reproduction. It must be noted that the overall outcome of a reproduction attempt
reported here should not be interpreted as a definitive statement about whether the study
can or cannot be reproduced. The reproduction attempts in this project are carried out with
limited time and resources, and by a limited group of reproducers. Several of the studies on
whose reproduction we report Failure or No Result may be reproducible given more time,
or by other researchers. However, since it is our belief that reproductions should be easy
and well facilitated, we do not believe that these disclaimers invalidate the results presented
in the following parts of this report.
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4.2 Discrepancies

During the reproduction attempts several kinds of issues were encountered, complicating the
reproductions. The issues cover everything from poor documentation to lack of resources,
and are characterized by the fact that they increase the difficulty of the reproductions and
introduce sources of error in the outcomes. The second hypothesis of this project is that
the issues which complicate reproductions are the same across studies. We predicted that
the issues encountered in the reproductions could be grouped into categories. To test this,
a system of categories was created, with the categories covering all major issues encoun-
tered. The system provides a method for systematically and quantitatively identifying how
a reproduction attempt diverged from the original experiment it aimed to reproduce, and
provides a way of identifying the most common issues over all reproductions.

The issues encountered in the reproductions are referred to as discrepancies since they
introduce differences between the original and reproduced experiment. Three main types of
discrepancies were identified immediately after the reproductions: Problems, Assumptions,
and Errors. Each of these types cover a broad number of issues, and are further divided
into sub-categories, with each category describing a particular type of issue.

This section presents the system of discrepancy categories proposed in this project. The
categories are based on the issues observed during the reproduction attempts. Each type
of discrepancies is discussed, and their sub-categories are listed and explained. Statistics
on the number of observed instances of each discrepancy category is also reported. Lastly,
statistics are given on the number of discrepancies identified for each paper which was at-
tempted reproduced. Since discrepancies are discovered during reproductions, the statistics
are limited to the 22 papers which were attempted reproduced. Complete data on which
discrepancies were encountered for which papers are reported in Appendix B.

4.2.1 Problem Categories

Problem discrepancies are difficulties encountered as a result of missing or unclear documen-
tation, or the reproducers not having access to necessary resources such as hardware. Many
of these issues would be improved by more openness and more thorough descriptions from
the original authors. During the reproductions it was found that most papers had one or
more problems. Furthermore, identical or similar problems were often found across different
studies. After the completion of all reproduction attempts the problems encountered were
therefore grouped into categories. In total, 20 categories of problems were found. Table 4.3
lists the identified problem categories. As seen by the descriptions, some of the problems
are only relevant for R1 reproducible studies. All other problems affect both R1 and R2-D
reproducible studies.
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Description of Problem Categories

This section contains a more detailed description of each problem category, along with
examples which were encountered during our reproduction attempts.

Problem category P1 concerns the situation where the authors of an article have shared
an implementation of their method, but not the experiment code. Alternatively, if an
implementation of experiments is provided, it does not cover all experiments. Category P1
was observed in several R1 papers, including "Measuring the Objectness of Image Windows"
[26]. When reproducing the experiments of this paper the method implementation could be
used without modification, but the experiment, including loading of data and comparison
of predictions with ground truths, had to be reimplemented.

Category P2 covers instances where the authors of an article have shared method code, but
where the implementation does not cover the entire method. This was an issue for "Blind
Image Quality Assessment: A Natural Scene Statistics Approach in the DCT Domain" [29].
For this paper, which trains a model for evaluating image quality, the method for testing
the model was provided, but not the method for training it. R1 reproduction attempts are
therefore limited to using those learned models which were provided with the code.

Category P3 covers issues of poor documentation in implementations. In some cases where
researchers have shared an implementation of their method or experiments, the code lacks
good documentation. This makes the code unnecessary difficult to understand and interpret.
It is particularly impactful in cases where the reproducers are uncertain about how well
the available implementation covers the proposed method or experiments. A problem of
category P3 was encountered during the reproduction of "Blind Image Quality Assessment:
A Natural Scene Statistics Approach in the DCT Domain" [29]. Some sections of the method
are commented out without sufficient explanation, and it is difficult to determine if these
sections were used in the original experiment.

Category P4 concerns situations where method or experiment code is shared, but where not
all parameters are included, or where the included parameters differ from the parameters
described in the associated article. This problem was encountered during the reproduction
of "Deep Convolutional and LSTM Recurrent Neural Networks for Multi-modal Wearable
Activity Recognition" [37]. Implementations of both the method and one of the experiments
were provided for this paper. As part of the experiment code, parameters for sliding window
length and step size were defined. However, their values appear to differ from those given
in the paper. Furthermore, when using the parameters provided with the available imple-
mentation, 9894 instances are classified. In the paper, it is reported that 16 900 instances
were classified.

Category P5 covers issues relating to versioning of provided implementations. Ideally, any
piece of code shared from a study should be versioned, and the research paper documenting
the study should mention which version was used in the experiments. This allows repro-
ducers to ensure that the code they have available is the same as was used in the original
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experiments. In many cases the shared code is not versioned, but even when it is, such as
for "Measuring the Objectness of Image Windows" [26], the gain is limited if the research
paper does not state which version was used in the experiments.

Category P6 covers the issue of code being shared in a compiled or non-inspectable form.
In these cases the program can be executed, but the source code cannot be inspected, and
reproducers cannot verify that the code implements the method described in the associ-
ated paper. When attempting reproduction of "Context Aware Saliency Detection" [38], a
MATLAB implementation was available. However, it was shared in the MATLAB protected
format, which is obfuscated, and R1 reproduction could therefore not be performed.

Category P7 concerns issues relating to random numbers and random number generators.
Many methods and experiments in AI involve some level of randomness, for example in
random initialization of weights or random partitioning of data. However, the random
numbers used, or the random number generator and its seed, is rarely provided. How sen-
sitive a method is to variations in random initialization may vary greatly, and even if a
method is insensitive to random initialization, experiments often employ random partition-
ing of data which may influence the results, e.g. when partitioning data into training and
test sets in supervised learning. Problem category P7 is intended to cover all problems
arising from the lack of documentation of random numbers. Instances are only recorded
for studies where random numbers are used in a significant way, i.e. where change in the
random numbers influence the results. P7 was a problem during the reproduction of "Co-
operatively Coevolving Particle Swarms for Large Scale Optimization" [30]. The paper’s
function optimization method is tested on seven test functions, each of which is shifted with
a random value in each dimension. However, these random values were not shared. Sharing
these random vectors would have ensured that any reproduction attempt would have access
to the exact same functions as was used in the original experiment.

Category P8 concerns issues relating to how the method of a study is described in the
research article. Even though the presentation of a new method often is the main purpose
of a research article, some aspects of the method may be accidentally omitted, or poorly
described. This may cause significant issues for reproduction teams, particularly when
reimplementation of the method is required, because the reproduction team is forced to
make assumptions about these aspects. A problem of category P8 was encountered during
the reproduction of the above mentioned "Cooperatively Coevolving Particle Swarms for
Large Scale Optimization" [30]. The proposed particle swarm optimization method searches
for a vector of variables which minimizes the given function. Each variable in the vector has
a range of legal values it can take, but the method for ensuring that a variable remained
within its range was not described in the paper.

Category P9 is similar to P8, but covers issues relating to the description of the experiment,
rather than the method. In order to correctly reproduce results, the experiments of the
original study must be correctly recreated. However, in some cases parts of an experiment
are not described, or poorly described. For example, in "Visualizing and Understanding
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Convolutional Networks" [32], the method for estimating the accuracy of the validation
data after data pre-processing was not well described.

Category P10 concerns problems arising from unclear description of the implementation
of the method or experiment. Even if a method or experiment is well described, issues
and ambiguities may arise during implementation. An example of this problem category is
provided in "Classification with Noisy Labels by Importance Reweighting" [36]. The method
of this study, for performing classification in the presence of noisy or corrupted labels, is
well described through mathematical equations, but how it was implemented in practice
was difficult to understand. The lack of a clear description of the implementation caused
significant delays to the reproduction.

Category P11 covers a specific type of problem where a paper suggests multiple methods
for solving a task, but does not mention which method was used in their implementation.
The suggested methods are often references to other scientific papers. While providing
alternative methods for solving a problem may be positive, a paper should mention which
method was used to help reproducibility. A problem of category P11 was encountered in
"iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-
coupling effects into pseudo components and optimizing imbalanced training dataset" [33].
In this paper three methods for inserting hypothetical examples into training data were
suggested, all referencing different papers, but the paper did not mention which variation
was used in the experiments.

Category P12 covers the problem where a set of trained weights or parameters from a
supervised learning method are shared online, but where these weights are not the same
as the ones used in the original experiments. Training a supervised learning model may
take significant time or, in the case of R1 reproduction attempts, be impossible given the
available code. Researchers sharing the weights they have trained is therefore helpful for
the purpose of reproduction, and for other researchers who wish to use the code. However,
in some cases the weights which are shared are not the same as the ones used in the original
experiment. For example, they might be trained on different data sets. This was an issue
during the R1 reproduction of "Blind Image Quality Assessment: A Natural Scene Statistics
Approach in the DCT Domain" [29]. As mentioned in the discussion of category P2, this
paper had not shared the code for training the weights. Several sets of weights trained on
different subsets of the data set had been included, making the testing part of the method
useful, but only one of the subsets matched a subset used in the original experiments. As a
result, only one experiment from the article could be R1 reproduced.

Category P13 covers the issue of some experiment- or hyper-parameters not being provided.
Having the correct values for experiment- and hyper-parameters is highly important for
reproducing an experiment. However, in some cases not all of these values are provided
in the research paper. For example, in "XGBoost: A scalable tree boosting system" [40],
the number of epochs for which the model was trained was not provided, even though the
number of epochs significantly influenced the results. The absence of experiment- and hyper-
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parameters force reproducers to estimate these themselves, and this introduces unnecessary
difficulties in the reproduction process.

Category P14 covers problems arising from there being an error in a paper. In this project,
only one possible case was identified, but problems of this category may occur. The case
encountered was during the reproduction of "A modified Artificial Bee Colony algorithm
for real-parameter optimization" [34], where the mathematical formula for one of the test
functions (the Schwefel function) did not match the common definition.

Category P15 concerns the situation where a data set is found online whose name matches
a data set referenced in a paper, but where there is a mismatch between the content of the
two data sets. In cases where the available data set is larger than the one described in the
paper, the correct data set can sometimes be extracted. In other cases the mismatch is too
significant to reconcile. The Weizmann Action and Robustness data set [56] as described in
"Learning Sparse Representations for Human Action Recognition" [31] contains 90 examples.
However, the version available online contains 93 examples. In this case the additional three
examples appeared to be alternative versions of other examples, and a subset of 90 examples
could be extracted.

Category P16 also concerns problems of data availability. It specifically concerns the issue
of a paper using a subset of a known data set, but that subset not being shared. Not having
access to the correct subset of a data set can in some cases be equivalent to not having
access to the data set. In one of the experiments of "Context Aware Saliency Detection"
[38], a subset of 100 examples was used from a data set of 1003 examples, but the subset
was not specified in the referenced article.

Category P17 concerns the problem of augmented and pre-processed data not being shared.
In some situations a study will use a known data set in its experiments, but will pre-process
the data or augment it with hypothetical data before use. The processed data created
in this process is in many cases not shared, and since the pre-processing procedure is not
an integral part of the method, it may in some cases be described less thoroughly than
other aspects. Category P17 was encountered during the reproduction of "iSuc-PseOpt:
Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects
into pseudo components and optimizing imbalanced training dataset" [33]. In this study, the
original data set, which was shared, is augmented by the insertion of hypothetical positive
examples, and the removal of redundant negative examples. The augmented data set was
not shared and the description was ambiguous at times, for example in the description of
the method for inserting hypothetical examples, as mentioned in the discussion of problem
category P11.

Category P18 covers problems relating to the partitioning of data into training, validation,
and test sets. In supervised learning methods, a data set is usually partitioned into training,
validation, and test sets. This partitioning may either be part of the original data set, or be
performed as part of each study. The k-fold cross-validation method is a popular method for
partitioning data and for testing supervised learning methods. Partitioning of data affects
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which data is used in the training and test stages of a method, and will in many instances
affect the results of a method. Still, in cases where the partitioning is not a part of the
original data set, the partitioning is rarely shared. Furthermore, the process by which the
data is partitioned is not always well described. In "Classification with Noisy Labels by
Importance Reweighting" [36], each data set is partitioned independently 10 times. During
each partitioning 75% of the data is assigned for training, and 25% for testing. However,
this description is not sufficient for reproducing the exact partitions.

Category P19 concerns the problem of result presentations. In order for results to be
reproducible they need to be quantitative in some manner, and it must be possible for a
reproducer to estimate the error between reproduced and original results. However, even
when results are presented quantitatively, they may be presented in a manner which makes
exact comparison of results difficult. Specifically, when data is presented only in a visual
plot, reading the correct values may be difficult and may introduce unnecessary error. This
was a problem during the reproduction of "Generalized Correntropy for Robust Adaptive
Filtering" [27], where the results were presented in a series of plots.

Lastly, category P20 covers problems caused by reproducers lack of access to specialized
hardware and software. Some experiments proposed are highly resource demanding, and
can only be executed on very powerful hardware. Similarly, some methods may rely on
specialized software which is not publicly available. Having such requirements in an exper-
iment may in some cases be unavoidable, but it can make reproduction significantly more
difficult, and limit who can attempt reproduction. In this project, P20 was only an issue
during the reproduction of, "Visualizing and Understanding Convolutional Networks" [32],
whose experiments were performed on large data sets requiring powerful hardware.

Problem Category Results

Figure 4.1 shows the number of instances of each problem category encountered during the
reproduction attempts. R1 and R2-D studies are separated and stacked to show the differ-
ence in problems encountered by these types of reproductions. Categories P1-P5 concerns
problems only applicable for R1 studies. It is observed that categories P9 and P10 are the
most frequent categories, with 12 of 15 R2-D studies having at least one issue of category
P10. Categories P9 and P10 cover problems encountered due to poor documentation of the
experiment or method implementation.
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Figure 4.1: Stacked bar plot of number of observed instances of each problem category
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Id Description

P1 For R1 study, the experiment code is not shared, or the experiment code does not cover
all experiments

P2 For R1 study, the method code does not cover the entire method as described in the paper

P3 For R1 study, the code is poorly documented and difficult to interpret

P4 For R1 study, the parameter values shared with the code are not complete, or differ from
the values given in the paper

P5 For R1 study, code was not versioned, or the paper did not state which version was used
in experiments

P6 An implementation of the method or experiment is shared, but the code is not inspectable

P7 Random numbers are used in a significant way, but the numbers, random number gener-
ator, and random seed are not shared

P8 An aspect of the method is not described, or described in a manner difficult to understand

P9 An aspect of the experiment is not described, or described in a manner difficult to under-
stand

P10 The implementation of the method, or an aspect of it, is not described, or difficult to
understand

P11 Multiple methods or implementations are suggested, but which variation is used is not
stated

P12 Trained weights or trained parameters shared online are not the same as was used in
original experiments

P13 Not all parameter or hyper-parameters needed are given

P14 There is a possible error in the paper

P15 There is a mismatch between a data set as described in the paper and as available online

P16 A necessary subset of a data set is not shared

P17 Augmented or pre-processed data set is not shared, and the method for pre-processing
and data augmentation is not clearly described

P18 Partitioning of data into training, validation, and test set is not shared, and the method
for performing the partitioning is not clearly described

P19 Results, although quantitative, are presented in a manner unsuitable for reproduction

P20 Significant resource demands (hardware or software) make reproduction complicated

Table 4.3: List of problem categories identified in the project
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4.2.2 Assumption Categories

Assumption discrepancies are potential deviations introduced consciously by the reproducers
as a result of ambiguities or missing access to documentation or resources. Assumptions
may in some cases be unavoidable, and may be directly related to problem discrepancies.
Similarly to problems, the assumptions made for different studies often have similarities,
and they can be grouped into assumption categories. 15 assumption categories were found
across all reproduction attempts, and are listed in Table 4.4.

Description of Assumption Categories

This section provides a description and example of each assumption category.

Assumption category A1 covers the assumption that the code which is shared and found
online is the same as was used in the original experiments of a study. This assumption
is necessary in almost all R1 reproductions, since few papers link directly to a shared
implementation and provide proper versioning. As discussed in section 3.5, measures should
be taken when searching for implementations to increase the validity of this assumption.
The specific form of the assumption may vary between studies. For example, for "Measuring
the Objectness of Image Windows" [26] the main assumption is that the version available
online is equivalent to the version used in the original experiments.

Category A2 is similar to A1, but concerns assumptions about experiment- and hyper-
parameters shared being the same as were used in the original experiments. These pa-
rameters may be part of the code shared online. This assumption should be tested by
inspecting the parameter values in the code, and comparing them with those reported in
the associated paper. Ideally, if all parameters are clearly given in both the code and paper,
and have identical values, then no assumption is necessary. In the code shared for "Deep
Convolutional and LSTM Recurrent Neural Networks for Multi-modal Wearable Activity
Recognition" [37], all experiment parameters are provided. Some of these values appear to
be different from the values described in the paper, but are assumed to be correct.

Category A3 covers the specific assumption that when using code created by others, a minor
change to the code does not impact the results. By minor change, it is meant a change which
does not affect the method and which does not cause the implementation to deviate from
the experiment description. The change should only be made to ensure that the code can
be executed on the available system. This assumption was made during the reproduction
of "Deep Convolutional and LSTM Recurrent Neural Networks for Multi-modal Wearable
Activity Recognition" [37], when an import statement and system flag set operation was
added to the top of the code to facilitate running the Theano library on our available GPU.

Category A4 concerns assumptions made about terms or concepts in the face of ambiguous
descriptions. In some cases the language of a paper may be slightly unclear, introducing
ambiguity about what is actually meant by a term. In these cases an assumption must
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be made about how to interpret the ambiguity. In the reproduction of "Learning Sparse
Representations for Human Action Recognition" [31], the concept "improved Harris keypoint
detector" was interpreted as the Harris-Laplace keypoint detector.

Category A5 is related to problem category P8, and concerns the assumptions which are
made about an aspect of a method which is not well described. However, the assumptions
categorized under category A5 are based on how similar aspects have been treated in other
papers. Assumptions based on other research papers are believed to be better founded than
assumptions not based directly on examples from other papers. An example of this kind of
assumption comes from the reproduction of "Cooperatively Coevolving Particle Swarms for
Large Scale Optimization" [30]. As mentioned in the discussion of problem category P8, the
method for ensuring that all variables remained within their legal range was not described
in the paper. It was therefore assumed that the paper used the same procedure as was used
in the update function described in "Development and investigation of efficient artificial bee
colony algorithm for numerical function optimization" [28].

Category A6 covers assumptions which are similar to those of A5, except that they are
not based on descriptions from other research papers. Ideally, assumptions should be based
on examples from other research papers, but such examples are not always available. The
distinction between assumptions of category A5 and A6 is considered important because
assumptions of category A5 are believed to have a stronger foundation. "Cooperatively
Coevolving Particle Swarms for Large Scale Optimization" [30] also provides an example
of an A6 assumption. In the method proposed in the paper, the termination criterion is
the number of function evaluations performed. The pseudocode of the method indicates
four function evaluations per variable (particle) per iteration. However, in the practical
implementation the number of evaluations can be reduced to approximately one per particle
per iteration. In this situation the practical implementation with minimum number of
function evaluations was chosen.

Category A7 is directly related to problem category P11. When a paper suggests multiple
methods for solving a task, an assumption must be made about which to use. This assump-
tion should be based on which method appears best or most likely, but this is not always
obvious. As mentioned in the discussion of problem category P11, "iSuc-PseOpt: Identi-
fying lysine succinylation sites in proteins by incorporating sequence-coupling effects into
pseudo components and optimizing imbalanced training dataset" [33] references three pos-
sible methods for inserting hypothetical examples. In the reproduction, two of the methods
were implemented, and the best performing method was assumed to be correct.

Category A8 concerns assumptions about the use of third party libraries. In some situations
a paper will use a commonly known algorithm or function as part of its method, but not
provide details on how this was implemented. For these algorithms, public third party im-
plementations are often available. A reproducer should in these cases be able to use a third
party implementation rather than reimplementing the algorithm. However, the implicit
assumption made by the reproducer is then that the third party implementation is equiv-
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alent to the implementation used in the original experiment. Category A8 aims to make
these assumptions explicit. In "Classification with Noisy Labels by Importance Reweight-
ing" [36], the Kullback-Leibler Importance Estimation Procedure was used for density ratio
estimation, but no implementation details were given. In the reproduction it was therefore
decided to use a third party implementation of this algorithm, and it was assumed that this
implementation would produce results equivalent to the implementation used in the original
study.

Category A9 also concerns third party libraries, but specifically the use of third party
libraries which are mentioned in the original study. In some cases a study will use a third
party library and provide the name of that library. However, the version of the library used
may not be provided. In these cases it may be reasonable to use the newest version of the
library available, and assume that this version produces results which are equivalent to the
version used in the original study. In the reproduction of "DeCAF: A Deep Convolutional
Activation Feature for Generic VisualRecognition" [47] the Caffe library [57] was used in
place of its predecessor DeCAF, which was deprecated at the time of reproduction.

Category A10 is related to problem category P12, and concerns assumptions about shared
trained weights and parameters. In cases where a study based on supervised learning shares
weights or trained parameters, using these may significantly ease reproduction. However,
the weights must then be assumed to be the same as were used in the original experiments.
Pre-trained parameters were included in the code from "Measuring the Objectness of Image
Windows" [26]. These were assumed to be the same as were used in the original experiments,
and were used in the reproduction.

Category A11 concerns assumptions about parameter values. In some situations a study
does not include all experiment- or hyper-parameter values. In these instances an assump-
tion must be made about the value of the parameter, with the goal being to use parameters
which are as close to the ones used in the original study as possible. In "Learning Sparse
Representations for Human Action Recognition" [31] one of the hyper-parameter values,
error threshold, was not provided. The paper stated that the parameter value was found
empirically, and provided a suggestion for estimating it. The suggested method was used
to estimate the parameter value, and an assumption of category A11 was made.

Category A12 is related to problem category P17. When a study pre-processes or augments
a data set before use, the processed data is sometimes not shared. In these instances the
augmentation and pre-processing steps must be performed by the reproducers. Even if the
reproducers cannot recreate identical processed data, the recreated processed data can be
assumed to be equivalent to the original data. As mentioned in the discussion of problem
category P17, the paper "iSuc-PseOpt: Identifying lysine succinylation sites in proteins by
incorporating sequence-coupling effects into pseudo components and optimizing imbalanced
training dataset" [33] employs data augmentation. The augmentation process had to be
reimplemented during the reproduction attempt, but the new data was assumed to be
equivalent to the original for testing purposes.
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Category A13 concerns assumptions made about how to partition a data set. In supervised
learning methods, a data set is commonly partitioned into training, validation, and test
sets. In some instances this process is not well described, and assumptions must be made
about how it should be performed. In "XGBoost: A scalable tree boosting system" [40] two
test sets were provided for one of the data sets, but the paper did not state which was used.
Based on their performance, the second test set was assumed to be the correct one.

Category A14 concerns assumptions about how to use a data set in the face of unclear
description. In some cases the correct data set is available, but a study is unclear about
how it is used. An assumption must then be made about how to use the data. In "Context
Aware Saliency Detection" [38] one of the data sets provided four ground truths for each
image, but it was not stated how they were used. An assumption was made that each
prediction was compared to all ground truths, and that the average score for all ground
truths was used as result.

Category A15 covers the specific assumption that when running an experiment where the
hardware is described in the study, the experiment can be reproduced on different hardware.
For "Deep Convolutional and LSTM Recurrent Neural Networks for Multi-modal Wearable
Activity Recognition" [37], information about the GPU used to run the convolutional neural
networks was provided. Since the exact GPU was not available to our reproduction team,
it was assumed that similar results could be achieved on a different GPU.

Assumption Category Results

Figure 4.2 shows the number of instances of each assumption category encountered during
reproduction, with R1 and R2-D separated and stacked. Assumptions A1-A3 are only
applicable for R1 studies. Assumption category A6, which covers assumptions about the
method not taken directly from other articles, is the most common, being encountered in
over half of the R2-D studied investigated.
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Figure 4.2: Stacked bar plot of number of observed instances of each assumption category
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Id Description

A1 For R1 study, the code available is assumed to be the same as was used in the
original experiments

A2 For R1 study, the parameter values in available code are assumed to be the
same as was used in the original experiments

A3 For R1 study, a minor change to the code to facilitate running on our hardware
is assumed to not affect results

A4 An assumption is made about how to interpret a term or concept which is
ambiguous

A5 An assumption is made about how to treat an aspect of the method which is
not well described, based on how that aspect is treated in another paper

A6
An assumption is made about how to treat an aspect of the method which
is not well described, but this assumption is not based on how that aspect is
treated in another paper

A7 For aspects where multiple methods are suggested, an assumption is made
about which to use

A8 A third party implementation of a method is assumed to be similar to the
original implementation

A9
When using a third party library or framework used in the original experiment,
it is assumed that the version used in the reproduction can produce the same
results as the version used in the original experiment

A10 Trained weights or trained parameters shared online are assumed to be the
same as were used in the original experiments

A11 Assumption is made about one or more parameter values

A12 Augmented or pre-processed data set is assumed to be equivalent to original
data set used in experiment, even if it is not identical

A13 An assumption is made about how to partition a data set

A14 An assumption is made about the usage of a data set

A15 The hardware is assumed to not significantly influence the results of the ex-
periment

Table 4.4: List of assumption categories identified in the project
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4.2.3 Error Categories

As discussed in Section 3.5, a reproduction attempt will often produce results which are
not identical to the results of the original study. Error discrepancies are the possible error
sources which may be the direct cause of differences in results. The exact cause of difference
in results is rarely known, but predicting the most likely errors is useful to understand
what the most common error sources are. Just as for problems and assumptions, the errors
identified for one study often share similarities with errors identified for another study, and
they can be grouped into categories. Table 4.5 lists the 15 error categories identified in this
project.

Some of the error discrepancies cannot be determined to be present with full certainty, for
example E5 and E6. However, they are counted if they are deemed likely to be present. Even
though certainty cannot be achieved, identifying error discrepancies can still be valuable,
as it gives an estimate of the most probable sources of difference between original and
reproduced experiment.

Description of Error Categories

This section provides a description and example of each error category. Each error category
represents one possible source of error, and not a definitive error in a reproduction.

Error category E1 covers the possible errors resulting from code used in R1 reproduction
not being identical to the code used in the original study. As discussed in the paragraph on
assumption category A1, code available online is sometimes assumed to be identical to the
code used in the original study. However, in some cases this assumption can be challenged,
and error category E1 then becomes a possible source of error. An E1 error is believed
to be among the most likely sources of deviation in the reproduction of "Measuring the
Objectness of Image Windows" [26], since we lack information about the version of the code
used in the original experiment.

Category E2 covers possible errors resulting from faults in the reproducers assumptions
about the method. As mentioned in the discussion on assumption categories A5 and A6,
reproducers must sometimes make assumptions about an aspect of the method which is not
well described. While these assumptions may be well founded, they introduce possible error
in the reproduction process. In the reproduction of "Cooperatively Coevolving Particle
Swarms for Large Scale Optimization" [30] two major assumptions were made about the
method. Error category E2 is therefore a likely source of error for this reproduction.

Category E3 covers errors resulting from faults in the reproducers assumptions about the
experiment. Just as for the method, assumptions must sometimes be made about the exper-
iment of a study, and these introduce possible deviation in the results. In the reproduction of
"Learning Sparse Representations for Human Action Recognition" [31] different assumptions
were made about the experiment. These can have resulted in the reproduced experiment
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being different from the original, and be the source of differences in results.

Category E4 covers errors resulting from faults in the reproducers assumptions about how to
implement the method. When implementing a method, some assumptions often have to be
made, even in the presence of good method description. However, these assumptions can be
mistaken and result in deviations. In the reproduction of "Cooperatively Coevolving Particle
Swarms for Large Scale Optimization" [30], an assumption is made about the number of
function evaluations per iteration, as mentioned in the discussion of assumption category A6.
If this assumption is wrong, it is probable that it influences the results of the reproduction.

Category E5 is a generic error category covering all errors caused by unknown faults in
the reproducers implementation of the method of a study. During R2-D reproduction of a
study there is a possibility of unknown errors appearing in the implementation of a method.
These errors might be the result of implicit assumptions from the reproducer, wrong in-
terpretation of a concept, or simple mistakes. E5 errors are possible sources of deviation
in most reproductions, but are more likely in complex reimplementations, such as that for
"Learning Sparse Representations for Human Action Recognition" [31].

Category E6 is similar to E5, but covers errors caused by unknown faults in the reim-
plementation of an experiment rather than method. These errors can also be caused by
wrong implicit assumptions, misinterpretations, or pure mistakes. E6 errors are likely to
be sources of deviation for reproductions where the experiment implementation is complex
and involves multiple steps, for example in data pre-processing. It is believed to be one
of the most probable error sources for the reproduction of "iSuc-PseOpt: Identifying ly-
sine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo
components and optimizing imbalanced training dataset" [33].

Category E7 covers errors resulting from the use of third party libraries in reproduction.
As mentioned in the discussion of assumption category A8, third party implementations of
known algorithms can be used in reproduction attempts. These are then assumed to be
equivalent to the implementations used in the original study. However, if this assumption
is mistaken, the use of these third party implementations can result in deviations in result.
In the reproduction of "Classification with Noisy Labels by Importance Reweighting" [36],
an implementation of the Kullback-Leibler Importance Estimation Procedure is used. This
implementation might be different from the implementation used in the original experiments,
and may cause difference in results.

Category E8 covers errors resulting from the use of trained weights and parameters which
are not identical to those which were used in the original study. In certain cases a study will
share trained weights or model parameters, which can be assumed to be the same as those
which were used in the original experiment. These are useful for reproduction, but if they
are not the same weights as were used in the original study, their use may result in outcome
deviations. In the reproduction of "Blind Image Quality Assessment: A Natural Scene
Statistics Approach in the DCT Domain" [29] available trained parameters were used. The
reproduction did not receive results which were identical to those reported in the original
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paper, and it is probable that this was due to the trained parameters not being identical.

Category E9 concerns errors resulting from the use of experiment- or hyper-parameters
which are different from those used in the original study. Using different hyper-parameters
are likely to result in different outcomes, and in cases where an assumption has been made
about a parameter value, error category E9 is a likely source of deviation. In the re-
production of "Learning Sparse Representations for Human Action Recognition" [31], an
assumption is made about one of the parameter values, and the assumed value is unlikely
to be identical to the value used in the original study. E9 is therefore a probable source of
deviation in results for this paper.

Category E10 covers errors resulting from the use of different random numbers in the
original study and reproduction. As mentioned in the discussion of problem category P7,
many methods and experiments include some random elements. If the random numbers
selected have significant influence on the results the use of different random numbers can
cause deviation in results between the original study and its reproduction. Random numbers
can have particularly important influence when they are used to augment data, since using
two different random value sets will result in two different data sets. An error of category
E10 is suspected to be a factor in the failure of the reproduction of "Classification with
Noisy Labels by Importance Reweighting" [36], where noise is added to the data through a
random process.

Category E11 concerns errors resulting from the use of pre-processed or augmented data.
As mentioned in the discussion of problem category P17, some studies will augment or
pre-process their data before use in experiments, but may not share the processed data.
If this data is not shared, and the augmentation or pre-processing is reimplemented by
reproducers, this creates a possible source of deviation. The data pre-processing of "iSuc-
PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling
effects into pseudo components and optimizing imbalanced training dataset" [33] involves
both the insertion of hypothetical examples and removal of redundant examples. Since this
process was reimplemented in the reproduction it is a likely error source.

Category E12 concerns errors arising from the use of a wrong data set. If the data set
used in the reproduction of an experiment is different from the data set used in the original
experiment, the reproduction is likely to produce different results. In most cases data sets
should be referenced well enough that no ambiguity exists. However, if a study uses a
subset of a data set, the description of the subset selection might be unclear, and introduce
uncertainty. In the reproduction of "Context Aware Saliency Detection" [38] the subset used
in one of the experiments was not precisely defined, and it is likely that a different subset
was used in the reproduction.

Category E13 concerns errors resulting from wrong partitioning of data into training, val-
idation, and test sets. When the partitioning used in a reproduction is different from the
partitioning of the original experiments, it introduces a possible source of difference in re-
sults. E13 might be a likely source of deviation in the reproduction of "Classification with
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Noisy Labels by Importance Reweighting" [36], where random selection was used to partition
data into training and test sets.

Category E14 concerns errors resulting from the use of hardware which is not identical to
the hardware of the original experiment. For most experiments hardware is assumed to
not influence the results. However, in cases where no other difference between original and
reproduced experiment is identified, hardware differences becomes the most likely source of
result deviation. This is the case for the reproduction of "Deep Convolutional and LSTM
Recurrent Neural Networks for Multi-modal Wearable Activity Recognition" [37], where
neither experiment nor method was reimplemented in reproduction.

Category E15 concerns errors resulting from difficulties in comparing the results of a re-
production with those presented in the original study. This is primarily an issue in the
reproduction of studies where results are presented qualitatively, or in a quantitative man-
ner unsuitable for reproduction. It is considered the most important error source in the
reproduction of "RASL: Robust alignment by sparse and low-rank decomposition for lin-
early correlated images" [35], where the output of the shared method could not be compared
with the results presented in the original study.

Error Category Results

Figure 4.3 shows the number of instances encountered for each error category, split between
R1 and R2-D studies. Category E1 is only applicable to R1 studies. The most common
error categories are E5 and E6, which cover the possible errors resulting from mistakes in the
implementation of method and experiment. Since reproduction attempts with the outcome
No result do not report error type issues the total set of papers is limited to 17. It should
again be noted that counted errors are not guaranteed to be present, but are considered
likely.
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Figure 4.3: Stacked bar plot of number of observed instances of each error category
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Id Description

E1 For R1 study, the code available is not exactly the same as was used in the
original experiments

E2 There are faults in our assumptions about the method

E3 There are faults in our assumptions about the experiment

E4 There are faults in our assumptions about the implementation

E5 There are unknown faults in our implementation of the method

E6 There are unknown faults in our implementation of the experiment

E7 An implementation in a third party library is not equivalent to the implemen-
tation used in the original experiment

E8 The trained weights or trained parameters shared are not the same as were
used in the original experiment

E9 The hyper-parameters are not the same as were used in the original experiment

E10 The randomness in the method or experiment, and the lack of shared random
numbers and random number generator, influences the result

E11 Augmented and pre-processed data set used in reproduction is not equivalent
to the data set used in original experiment

E12 The data subset used in reproduction is not the same as was used in original
experiment

E13 The partitioning of data into training, validation, and test set is not the same
as was used in the original experiment

E14 Differences in hardware influenced the result

E15 The reproduced results are difficult to compare to the original results

Table 4.5: List of error categories identified in the project
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4.2.4 Number of Discrepancies Per Paper

Figure 4.4 shows a heatmap of discrepancy distribution across the papers. The distribution
is provided for each discrepancy type, and the combination of all discrepancies. To make
the comparison easier, the data is normalized by the highest occurrence within each column.
It should be noted that papers whose reproduction ended in No Result do not report error
discrepancies. The total number of discrepancies are therefore artificially low for these
papers. We observe that there is significant variation in the the distribution of discrepancies
across the papers. Paper 18, "Semi-supervised and unsupervised extreme learning machine"
[43], has the most assumption and error discrepancies, and most overall. In comparison,
paper 10, "RASL: Robust alignment by sparse and low-rank decomposition for linearly
correlated images" [35], has very few discrepancies of any type. It is also observed that
every paper in the study reports at least one discrepancy of the problem type, but not
necessarily an assumption.

Figure 4.4: Heatmap of discrepancies per paper. Data is normalized by the highest value in each
column. Papers 7, 14, 16, 19, and 20 ended in No result and do not report error discrepancies.
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Figure 4.5 shows the actual number of observed discrepancies of each type encountered in
the reproduction of each paper. Though no new pattern is immediately present, we would
expect there to be a correlation between the number of discrepancies observed of each type.
I.e. the reproduction of a paper with many problem discrepancies would be expected to have
more error discrepancies than other papers. Table 4.6 shows the correlation matrix for the
number of problems, assumptions, and errors observed in a reproduction. The correlation
is computed using the Spearman correlation method. Reproductions ending in No Result
are excluded since they do not report error discrepancies. There seems to be some positive
correlation between the number of problems and the number of error sources. However, the
number of assumptions encountered do not appear to be correlated to either the number of
problems or errors.

#Problems #Assumptions #Errors
#Problems 1.00 0.366 0.737

#Assumptions 0.366 1.00 0.473
#Errors 0.737 0.473 1.00

Table 4.6: Correlation matrix for number of observed discrepancies of each type in a paper.
Reproductions ending in No Result are not included.

Discrepancies Grouped by Reproduction Type

The boxplot in FIgure 4.6 displays data about the number of discrepancies of each type
observed for the different reproduction levels R1 and R2-D. Based on the boxplot there
does not appear to be a significant difference in the number of discrepancies observed for
the two reproduction levels. The median number of discrepancies only differs by 1 for
each discrepancy type, and for the total. When looking at all discrepancies, it can also be
observed that the edges of the lower and upper whiskers are the same for both reproduction
levels. However, the second and third quartile groups are larger for the R1 reproductions.

Discrepancies Grouped by Outcome

The boxplot in Figure 4.7 displays data about the number of discrepancies of each type
observed for the different reproduction outcome levels. Since only one reproduction attempt
ended in Success there is no variation in the data for that category. Furthermore, since
reproduction attempts ending in No result do not report error discrepancies, comparing
the total number of discrepancies in this category to the other categories is difficult. The
two remaining categories, Partial success and Failure, are the biggest categories. Looking
at the data, we observe that their median values are close for all discrepancy types, and
total number of discrepancies. However, the reproductions ending in Failure have greater
variation in the total number of discrepancies, as seen by the larger quartile groups.
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Figure 4.5: Number of discrepancies of each type encountered per paper
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Figure 4.6: Boxplot showing statistics on the different types of discrepancies for each reproduction
level: R1 and R2-D
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Figure 4.7: Boxplot showing statistics on the different types of discrepancies for each outcome
category
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Chapter 5

Discussion

This chapter discusses the results presented in Chapter 4 and the project overall. Section 5.1
provides a deeper overview and discussion of the results from the reproduction attempts.
Section 5.2 discusses the reproduction procedure of Chapter 3 and how it affected the
reported outcomes. Section 5.3 discusses the results for the discrepancies, and provides
an evaluation of the discrepancy system. Section 5.4 presents the results achieved for the
metrics of the Article Model of Section 3.2, and discusses how well these metrics predict
the outcome of a reproduction attempt. The metrics are also compared to the score system
presented in Gundersen and Kjensmo’s paper [6]. Lastly, Section 5.5 discusses further work
that could be done based on the results of this project.

5.1 Summary of Results

From the 30 articles chosen for possible reproduction, 7 R1 and 15 R2-D reproductions
were attempted. The result were 1 Success, 9 Partial Successes, 7 Failures, and 5 with No
Results. These categories will be discussed in detail in the following subsections. Table 5.1
gives the percentage of reproduction attempts in each outcome category by reproduction
level. More than 2/3 of the R1 reproductions achieved either partial or full success. In
comparison 1/3 of R2-D reproductions achieved the same results.

Outcome Percentage of total Percentage Percentage
Category reproduction attempts of R1 of R2
Success 4.55% 14.29% 0.00%

Partial Success 40.91% 57.14% 33.33%
Failure 31.82% 28.57% 33.33%

No Result 22.73% 0.00% 33.33%

Table 5.1: The percentage of reproduction attempts that fell into each of the four outcome
categories
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5.1.1 Success

Only one of the 22 reproduction attempts ended in a successful outcome. Therefore, "Clus-
tering by fast search and find of density peaks" [46] will be discussed in some detail. This
was an R1 reproduction attempt where the method code was linked from the article itself.
The article ran the method on multiple data sets, with different measurements for the re-
sults. In total seven experiments were counted, and six were reproduced. The experiment
not conducted (Figure 3B in [46]), was disregarded because comparing the results from the
reproduction with the original article would be very difficult. The article presented the clus-
ters created in the experiment by coloring the different points. This was also done for three
other experiments in the article, but these contained more separated points, which made it
possible to distinguish between each point. Of the six experiments conducted, two used an
accuracy score, and in the rest the output from the reproduction attempts was matched with
the article’s cluster plot. The accuracy scores were presented with two decimal precision.

This was the only article where the reproduction obtained identical results for every experi-
ment conducted. There was one area where this article differed from the others: The article
used for the most part data sets where it achieved the optimal results. Therefore it is less
ambiguity whether the reproduction achieved the same results as the article; if the output
of the reproduction is optimal, then it is the same. The article also used data sets where
the results where measured in percentage accuracy. In these there were two factors that
contributed to achieving identical results: A deterministic method, and the precision of the
accuracy. First, the method is deterministic which makes it give the same results for each
run with the same hyper-parameters. Therefore, if the reproduction is run with the same
data and hyper-parameters then it should achieve the same accuracy as the article. The
second important factor is the precision of the accuracy. Two decimal precision were used
in the article. This makes it so two outputs are seen as identical even if their accuracy differ
in the third or later decimal. In other articles these differences leads to the results being
seen as consistent. One of the experiment conducted in the reproduction of "XGBoost: A
scalable tree boosting system" [40], achieved an accuracy of 0.8323 while the article reported
0.8304. These were similar to the second decimal, but since the article included a higher
precision, the results were deemed not identical.

5.1.2 Partial Success

Among the four outcomes, the biggest group was the Partial Success containing nine re-
production attempts. Out of these, four were R1 and five were R2-D reproductions. This
makes the R1 reproductions over-represented compared to the R2-D reproductions, consid-
ering there are seven R1 articles and 15 R2-D articles. There are 40% more R1 articles
among the partial success than expected by the count.

4
4+5

7
7+15

≈ 1.40
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5.1.3 Failure

Seven of the reproduction attempts were classified as Failures. Out of these, two were R1
and five were R2-D reproductions. The ratio of articles are consistent with the total number
of R1 and R2-D articles. The Failure category encompasses a broad range of outcomes when
it comes to the distance from the goal. Some attempts are very far from the desired results,
like "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition" [47]
where the classifier in the reproduction outputs the same class for all test inputs, meaning
there is almost certainly a fundamental flaw in the implementation of the reproduction.
Other reproductions are close to the results presented in the original article, but the results
are not consistent with the conclusions in the article. The reproduction of "Classification
with Noisy Labels by Importance Reweighting" [36] was deemed not consistent because the
result differed too much from the baseline algorithms on two out of 12 tests. Furthermore,
the "Context Aware Saliency Detection" [38] article used two data sets to test the perfor-
mance of the method, and the reproduction ended up with a lower score on one data set
and higher on the other.

5.1.4 No Result

There were five reproduction attempts that ended in No Result, and all of these were R2-D
reproductions. There was not a unified cause for this among the two papers covered by the
authors of this report. In "Visualizing and Understanding Convolutional Networks" [32] the
running time and resources needed ended up being too significant to allow reproduction.
In "Distributed representations of sentences and documents" [39] the method code was not
completed within the 40 hours allocated. However, time was an important factor in both
reproductions, as both used all of the time allocated. In R2-D reproductions it is needed
to both recreate the method and the experiment, unlike R1 reproductions where only the
latter is needed. Fitting both of these into the time allocated can be difficult. This could
be one of the reasons why there were only R2-D articles that ended up with No Results.
However, time is not the only reason for No Result as there was two reproduction attempts
that did not spend all of the allocated time. These were performed by Nicklas Grimstad
Nilsen, and will not be discussed in this report.

5.1.5 Comparison With Other Studies

Counting reproduction attempts ending in Success and Partial Success as successes, a suc-
cess rate of 45.5% was achieved. Though no comparable study on reproducibility in AI is
available, the results are mostly in line with those reported by other researchers on smaller
reproduction studies and in related computational fields, for example in [13], [17]. It should
however be mentioned that the lack of common methodology, and in particular common
criteria for success, makes comparison across studies difficult. Clearly defining what the
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requirements for a successful reproduction are and agreeing on a common methodology are
therefore important further steps for the AI community.

Looking at the number of R1 and R2 reproductions, 23% of the reproductions were R1
and 50% were R2-D. In other words, 73% of the papers shared enough data to be either R1
or R2 reproducible, which is better than the 49% reported by Gundersen and Kjensmo [6].
This might be because this project uses on average higher cited articles, which are assumed
to generally be better documented.

5.2 Reproduction Procedure

This section discusses the reproduction procedure and methodology used in this project.
Specifically the areas which are believed to have had the greatest impact on the results
achieved, and the areas which could have been improved.

The first area which should be discussed are the possible error sources in the reproduction
procedure. Most reproduction attempts were carried out by only one reproducer, and with
limited time. Furthermore, AI is a broad field, and some of the studies investigated concern
problems or methods previously unknown to the reproduction team. It is therefore possible
that mistakes have been made in the reproductions, either as a result of the reproducers
misunderstanding the documentation, or making implementation errors. Since R2-D re-
productions generally involve more implementation than R1 reproductions, the mistakes
are more likely in R2-D reproductions. The time allocated per article is also an important
factor in the outcome. 14 out of 22 reproductions used all of the allocated time. If avail-
able, more time could have been used to discover errors and figuring out solutions. This in
turn could have helped achieve a better outcome. Based on the results, it appears that 40
hours was an unreasonably low time restriction for each reproduction attempt. However,
the strict time restriction was necessary to cover a significant number of articles within the
time allocated to this project. Because of these factors, it must again be stated that we
make no definite claim about the reproducibility of the studies for which our reproductions
ended in Failure or No Result. In order to state that a study is not reproducible, more time
should be devoted to the reproduction, and several reproducers should review it.

An important factor that affects the outcome of the reproduction attempts are the definitions
of outcomes used. This is divided into reproduction outcomes, and experiment outcomes.
Out of the four categories of reproduction outcomes, Partial Success is the one with most
ambiguity. As an example: Out of the eight experiments performed in the reproduction
of "A modified Artificial Bee Colony algorithm for real-parameter optimization" [34], one
result was consistent and seven were different. This reproduction had the same outcome
category as "Deep learning-based classification of hyperspectral data" [42], where out of the
six performed experiments three achieved identical results and three were consistent. The
last one is a lot closer to the Success category, but they are both labeled as Partial Success.
Even though there are questionable cases, the definition of Partial Success covers the area
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between Success and Failure as intended. To remove the ambiguity, more categories likely
had to be added, which would make the number of reproductions in each outcome category
small. The definitions for Success, Failure, and No Result outcome categories were clearer,
and achieved their intention.

When it comes to experiment outcomes there were two considerations: What constitutes
identical, and what constitutes consistent. In this project identical was defined as having
an exact match. I.e. it is not enough to show that achieving a exact match is probable. An
example of this is "XGBoost: A scalable tree boosting system" [40], where an experiment
was rerun with two different epoch values and achieved higher and lower accuracy than the
article. By the definition, this was classified as consistent. An argument could have been
that the exact result could have been achieved given that a higher and a lower result was
possible.

Since identical was defined to be exact match up to the decimal precision used in the article,
articles using higher precision have a harder time being labeled identical. As mentioned in
Section 5.1.1: Both "Clustering by fast search and find of density peaks" [46] and "XGBoost:
A scalable tree boosting system" [40] had experiment results identical to their articles when
rounded to two decimals. However, they were labeled differently. The reason was that they
used two and four decimal precision respectively. A standard could have been set in the
reproduction where the results would be rounded to two decimals in all articles. With a
wider definition of identical the number of reproductions with Success as outcome would
increase.

The leniency of the consistent category is indirectly decided by the articles themselves. The
more stringent the conclusions drawn in the article, the more difficult to achieve consis-
tent results. This often comes down to the choice of baseline method used as comparison.
Choosing a baseline method which achieves good results makes it more difficult to achieve a
consistent reproduction. Two articles that has experiments demonstrating the effect of the
baseline method used is "Measuring the Objectness of Image Windows" [26] and "Classifica-
tion with Noisy Labels by Importance Reweighting" [36]. In the first, the baseline method
achieves between 12 and 27 percentage points lower accuracy than the method presented
in the article. In the second the baseline method is within 0.3 percentage points from the
method presented.

Choosing a baseline method which is not strictly worse than the proposed method also
makes it difficult to achieve consistent results. In one of the experiments from "Context
Aware Saliency Detection" [38] the baseline method was worse and better than the proposed
method on different points. The reproduction achieved the same or better on every point
compared to the proposed method. This was not categorized as identical, because it achieved
a different accuracy than the original article. However, the outcome was also not classified
as consistent. The proposed method was not strictly better than the baseline method, but
the reproduction was. Therefore the experiment was classified as different.

A way to avoid the issues related to definitions of outcomes would be to not classify them,
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but use the error rate for each experiment to analyze the results. However, there are
multiple challenges with this approach. Some articles like "Generalized Correntropy for
Robust Adaptive Filtering" [27] use graphs to display their results. Therefore, a quantitative
measure would be difficult to calculate. Even among the experiments with numerical results,
this choice of metric could prove difficult. In articles dealing with function optimization,
like "Development and investigation of efficient artificial bee colony algorithm for numerical
function optimization" [28], the values reproduced can be of a huge negative magnitude. In
the paper, the experiment output range from 0 to a couple of thousand, and the highest
negative order of magnitude was -197. The error rate of these type of experiments could be
in different orders of magnitude compared to experiments where the result is presented as
accuracy.

Another alternative is to use statistical tests to determine the significance level of difference
in results for experiments. This is most viable for experiments where the reported metric
is the average of multiple runs, and where the standard deviation is also reported. In such
instances it is possible to use e.g. a Student’s t-test to test for significant difference in the
average result achieved by original study and reproduction. If the difference is statistically
different, the reproduction of an experiment can be classified as a failure, and if not it can be
considered a success. Studies in the area of function optimization, such as "Cooperatively
Coevolving Particle Swarms for Large Scale Optimization" [30], do in many cases report
the average minimum value found across several runs along with the standard deviation,
enabling the use of statistical tests for comparing results. However, must studies investigated
in this project do not report results over multiple runs.

An area of the reproduction procedure which could have been improved was the documen-
tation practices during reproductions. With the exception of the Google Forms form for
registering data related to the Article Model Metrics, no unified system for taking notes was
used during the reproductions, and all reproducers used different systems. Having a better
unified system would have resulted in less work after the reproduction attempts, when the
documentation had to be combined for registering e.g. discrepancies.

Lastly, it should be noted that the selection of papers as presented in Section 3.4 was not
performed in a randomized way. Ideally, when attempting to understand a phenomenon
in a large population, in this case reproducibility in AI studies, the samples selected for
use in the experiment should be randomly selected. This increases the likelihood that the
results observed in the experiment generalizes to the population as a whole. The main
reason why randomized selection was not used was because we wished to understand how
the situation was at the top of AI research. The underlying assumption here is that the
number of citations achieved by a study is a valid measure of its quality.
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5.3 Discrepancies

The system of discrepancies was proposed to quantify the number of issues encountered
during reproduction. It is intended to provide a quantitative measure of which issues most
commonly affect reproductions, as well as an estimate for how difficult a reproduction
attempt was, and how confident the reproducer is about the results. This section discusses
the results presented in Section 4.2, and evaluates the value of the discrepancy system for
reproducibility.

Figures 4.1 to 4.3 give some interesting insights about the prevalence of the different dis-
crepancy categories. When investigating which discrepancies are the most common, it is
observed that the most common problem category (P10 ) and the most common error cat-
egories (E5 and E6 ), all concern issues relating to the implementation of a method or
experiment. The most common assumption category (A6 ) is also related to this issue,
though it is more directly tied to the method. When performing the implementation of a
method or experiment, questions often arise which are not obvious from the description of
the method or experiment. Furthermore, since the goal of the paper usually is to present the
method, comparatively little space is often used for explaining the implementation. As an
example, 19 of the 30 papers covered in this project failed to even mention the programming
language used in the implementation. Based on the number of discrepancies arising from
poor implementation description, it appears that this is an area of documentation practices
where additional focus should be placed.

The majority of reproduction attempts performed have been R2-D reproductions. However,
some observations are also made specifically about R1 studies. It is observed from Figure 4.1
that every R1 study except one has a discrepancy of type P1, i.e. even when some method
code is shared, experiment code is mostly not shared, at least not for all experiments. This
indicates that even when researchers have taken steps to share their code, their effort can
and should be improved to increase reproducibility.

Based on the results in Table 4.6 it is unclear whether there is any definite correlation
between the number of problems, assumptions, and error discrepancies encountered in a
reproduction attempt. The correlation coefficient between the number of problem and er-
ror discrepancies of 0.737 is quite strongly positive, but the correlation coefficients between
assumption discrepancies and problems and error discrepancies are only moderately posi-
tive. As stated in Section 4.2.4, it was assumed that there would be a significant positive
correlation between the number of discrepancies. This was based on the intuition that
problems create the need for assumptions, and that both problems and assumptions create
possible error sources. However, based on the observed results and the limited data set of
17 reproduction attempts, we cannot confirm this intuition.

There is no clear pattern in the distribution of discrepancies between papers either. As
mentioned in the discussion of Figure 4.7 there does not appear to be any significant dif-
ference in the number of discrepancies between reproduction attempts reporting Partial
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success and Failure. With the assumption that more discrepancies increase the difficulty
of reproduction attempts, we would have expected reproduction attempts ending Partial
success to have fewer discrepancies than those with Failure. However, based on the results
currently available, the number of discrepancies observed during a reproduction attempt
does not appear to be indicative of the outcome of the reproductive attempt. The number
of discrepancies does not appear to be significantly different for R1 and R2-D reproductions
either, as shown in Figure 4.6.

The current system of discrepancies cover most of the major issues encountered during our
reproduction attempts. Furthermore, it is believed to be rather comprehensive with respect
to possible issues that can be encountered during reproductions. However, some important
limitations have already been encountered. These limitations might partly explain why the
number of discrepancies is a poor indicator of reproduction outcome, and why the system
might only partially achieve its goal of quantitatively describing how a reproduction attempt
diverges from an original study.

Firstly, the current system and method for counting discrepancies does not account for
multiple instances of a discrepancy. In some reproduction attempts a discrepancy will
occur several times, and the severity of the issue will be greater than for reproduction
attempts where the discrepancy only occurs once. As an example, during the reproduction
of "Learning Sparse Representations for Human Action Recognition" [31] three different
third-party libraries were used, resulting in three assumptions of category A8. During the
reproduction of "Classification with Noisy Labels by Importance Reweighting" [36] only one
third-party library was used, producing only one assumption of category A8. Despite this,
the current system counts both papers as having one discrepancy of category A8.

A second issue is that the current system for counting discrepancies does not provide a way
of quantifying the magnitude of the discrepancy. Several of the discrepancies identified in
this project will have significantly differing consequences in different reproduction attempts.
In some cases, a study may have many discrepancies, but still be partially reproducible if the
discrepancies are manageable or do not affect all experiments. On the other hand, a study
might have only one discrepancy, but it might be so severe as to make any reproduction
attempt extremely difficult. For "Distributed representations of sentences and documents"
[39], the only reported discrepancy was of category P10. This problem category was also
reported for eleven other papers. However, the proposed method in the paper was so
complex and the implementation so difficult to understand that the single discrepancy P10
resulted in the reproduction attempt resulting in No result. This can be compared with
"iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-
coupling effects into pseudo components and optimizing imbalanced training dataset" [33],
which was also believed to be R2-D reproducible, but where three problem discrepancies,
including P10, were encountered. In this instance, all experiments could be reproduced,
and the reproduced results were found to be consistent with the original results.

The discrepancies identified in this project are not necessarily equal in their expected severity
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either. For example, assumptions of category A9, assuming the version of a third-party
library used does not affect its output, will in most cases be easier to justify than assumptions
from category A6, which concerns assumptions about how to treat an aspect of a method
which do not have support in similar papers.

Lastly, a combination of discrepancies may give rise to difficulties greater than the sum
of each individual discrepancy. For "Blind Image Quality Assessment: A Natural Scene
Statistics Approach in the DCT Domain" [29], only 10% of experiments could be conducted,
even though 15 hours remained of the 40 hour limit. This was the result of a combination of
problem discrepancies encountered where the necessary weights for most of the experiments
could not be recovered within the limits of an R1 reproduction attempt. Specifically, the
method code which was shared did not include the procedure for training weights (problem
category P2 ), and even though some weights were shared, they were not the same weights as
the ones used in the original experiments (problem category P12 ). If either of these problems
had been resolved, most of the experiments could have been conducted by a reproducer.
The combination of them resulted in only 1 of 10 experiments being reproducible.

As a result of the above four issues, reporting the number of discrepancies encountered
during a reproduction attempt may give an inaccurate picture of how difficult the study
is to reproduce. The system do still partly provide a quantitative measure of which issues
are most common, and might be used to identify where initiatives for better documentation
policies should be focused. In this sense, the results presented in Figures 4.1, 4.2, and
4.3 may be more informative than those of Figure 4.5. If the system is ensured to be
comprehensive, i.e. the discrepancies cover all possible issues, it may still be useful for
identifying the most pressing documentation issues, and may form the basis for a checklist
that can be used by researchers to ensure that their science is easily reproducible.

5.4 Article Model

Predicting on unseen data is a good way to evaluate a model. During the preliminary work
for the reproduction attempts, the Article Model Metric, see Section 3.2, was developed.
The goal of this metric was to quantify the level of documentation in an article, with the
hypothesis that an article with a high score was more likely to be reproduced successfully.
The metric consists of a set of scores for different components of an article, called Compo-
nent Metrics, which can be used to highlight possible problem areas for reproduction. This
sections evaluates the Article Model Metric with the reproduction attempts conducted dur-
ing the project. The Article Model Metric and Component Metrics for each article can be
found in Table A.3 in Appendix A. The Article Model Metric was influenced by the metric
proposed by Gundersen and Kjensmo [6], and their metric is also evaluated. The overall
score from both metrics are shown in Table 5.2, where the average is calculated per result
category.

The metrics does not match well with the outcome categories. The predicted ordering of the
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Outcome Article Model Metric Gundersen and Kjensmo [6]
Metric

Success 0.44 0.23
Partial Success 0.47 0.32
Failure 0.50 0.30
No Result 0.41 0.37

Table 5.2: The average documentation level per outcome category, using the Article Model Metric
and Gundersen and Kjensmo [6] Metric

categories by declining metric should be: Success, Partial Success, Failure, and No Result.
Neither of the metrics match this, and the categories with highest scores are respectively
Failure for the Article Model Metric and No Results for Gundersen’s and Kjensmo’s metric.
Performing a Speraman’s Rank Correlation test on the correlation between the Article Model
Metric score of a paper and the outcome of the reproduction produces a correlation value
of 0.02, indicating almost no correlation between the two variables. These results makes
it difficult to use the metrics as a way to predict the outcome of a reproduction attempt.
There are however multiple possible factors contributing to this poor result.

As mentioned in Section 5.1.3 the Failure category can contain articles where the results
from the reproduction had a lower error rate than some articles in the Partial Success
category, but because of stricter conclusions were not consistent with the article’s claims.
This can be a contributing factor to these two categories having similar score in the Article
Model Metric.

The selection of articles is small, and there is only one article in the Success category.
This make the score for the category an unreliable representation of the performance of the
metrics. The small sample size is not limited to the Success category, but it stands out
from the rest with four less articles than the second smallest category: No Result. When
excluding the Success category, the metric created by Gundersen and Kjensmo ends up
having Failure as the lowest scoring category instead of Success.

If both of these factors are taken into consideration, in an advantageous way for the metrics,
so Success is excluded and Partial Success and Failure are seen as equal, the usability of
the metrics are still questionable. The usability of Gundersen’s and Kjensmo’s metric does
not change, while the Article Model Metric seem to be able to separate articles where
reproduction attempts will give results or not.

Another factor that could affect the Article Model Metric is the importance given to each
Component Metric. These 11 sub-metrics are weighted equally originally. The average score
for each of these can be seen in Figure 5.1. The case might be that some components are
more important than others, and changing the weight given to that Component Metric could
give an overall more consistent metric. When looking at the figure, one can observe that the
Success category outperforms the others on Method, Implementation, and Partitioned Data.
These might be some of the most important components in the model, but it is difficult to
draw any conclusions with the limited sample size. There are few components where the
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Figure 5.1: Bar plot of the score of all Component Metrics by type of outcome

division of Partial Success and Failure is clearly visible. In terms of the No Result category
some components stands out, by having a score of zero: Pseudocode, Implementation, and
Experiment Description. Out of these the Implementation is the only one where all the
others get a nonzero score. Again it is difficult to draw conclusions given the sample size.

Neither the Article Model Metric or Gundersen’s and Kjensmo’s metric allow for complex
relationships between components, which might limit their predicting capabilities. By com-
plex, it is specifically the interactions between different components that is being highlighted
here. E.g. deficiencies in some components by an article can be made up by containing cer-
tain other component parts. This is relevant for most articles because few, none in this
project, will score maximal on all parts of the documentation. Therefore, most articles will
be deficient in some aspects according to the metrics. Then it is important to be able to
separate between how big these impacts will be. The complex interaction between the parts
makes this task even more difficult. This will not be studied in this project, but more on
this can be read in Section 5.5.
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5.5 Further Work

This project has studied the current state of reproducibility in AI. A model for under-
standing empirical studies in AI have been proposed, along with metrics for estimating the
reproducibility of a study. The discrepancy system has also been proposed for categorizing
issues encountered during reproduction. However, further effort is required to enhance these
tools and improve the AI community’s understanding of reproducibility.

Constructing a metric for the documentation level in an article which corresponds more
closely to the outcome of a potential reproduction would be a valuable tool. If the metric
can make the complex interaction between the different components comprehensible, then
it could be used as part of the writing process of an article. When writing an article it
might be of interest to restrict the length or limit technical detail. In those circumstances a
metric like this could help in selecting the most important elements to include in the paper.

Two avenues for improving the Article Model Metric will be suggested in this section. In
both approaches it would be vital to have a larger sample of reproduction attempts, and keep
some attempts as a test to evaluate the performance of the metric. One way of improving
the Article Model Metric, would be to take into account the effect each component has on
the reproduction. This could be done by assigning weights to the Component Metrics, so
more important components have a bigger impact. Furthermore, this could also be done
on the sub-component level. This would take into account the effect of each separate sub-
component on the reproduction. To calculate the proper weights, the average metric per
outcome category could be calculated, similar to Figure 5.1. These could be used to adjust
the weights. This could also be done with sub-components. Then the sub-components that
were more prevalent in Success and Partial Success could get a higher weight, while others
would get a lower weight.

Another way of improving the Article Model Metric could be to find interactions between
sub-components. As an example: The sub-components A and B are often both scored highly
in the Success category, but when only one of them is scored high they are almost never
found in that category. These could be relevant to give a document score that reflects the
outcomes to a bigger extent. To discover patterns like these, or larger groupings, correlation
analysis could be used.

The system of discrepancies for categorizing issues in reproductions has some significant
limitations, and the number of discrepancies reported for a reproduction appears to have
little correlation to the outcome of the reproduction. The categories might need adjust-
ments and additions, but if ensured to be comprehensive and adopted for continued use in
reproduction attempts, it might be a valuable tool for identifying the most pressing issues
in reproducibility in AI. Furthermore, it might also be used by researchers as a guide for
ensuring that their research is not affected by common issues.

The lack of a clear methodology for performing a reproduction attempt, and the lack of
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consensus on what constitutes an successful reproduction are problems which make the
study of reproducibility difficult. To better understand the current state of reproducibility,
and encourage further efforts in reproducibility, these issues should be further considered.

Lastly, the overarching goal of this project and its related efforts are to improve the repro-
ducibility of AI research. The reproduction attempts carried out in this project have shown
that the current state of reproducibility is problematic, and that reproducing studies is more
difficult than it should be. The lack of clear documentation and resource publishing guide-
lines means that reproductions still are difficult, and that some studies are impossible to
truly reproduce. Establishing better guidelines and encouraging better documentation prac-
tices are therefore still the most important steps that need to be taken by the AI community
to improve reproducibility.
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Chapter 6

Conclusion

The ability to reproduce published results is a cornerstone of the scientific method. The
research goal of this project was to provide a quantitative overview of the state of re-
producibility in AI. We believe the results from the review of 30 articles, and reproduction
attempt of 22, provide interesting insights into the situation. As expected, the situation
was found to be less than ideal.

Three hypotheses were proposed for the project, along with three associated predictions.
The first prediction was that the majority of studies covered in the project would not be
reproducible within the limitations of the reproduction procedure. I.e. within 40 hours and
with the available resources. Out of the 30 articles covered, only 10 were reproduced with
Success or Partial Success. The majority of the articles were not found to be reproducible,
and the first hypothesis, that reproduction is difficult, is therefore considered to be sup-
ported. Though a disclaimer should be made about the possible error sources of the project
as discussed in Section 5.2.

The second prediction of the project was that it was possible to group the issues en-
countered during reproductions into general categories. This prediction is less precise than
the others, and therefore more difficult to test. However, an attempt was made using the
discrepancy system, which was used to group issues. When investigating which issues had
affected which papers, it was found that 12 out of the 22 articles attempted reproduced
had had at least one issue of problem category P10. We interpret this and the other results
from the discrepancy system as indicating that there is significant similarity in issues en-
countered between reproduction attempts. We therefore consider the second hypothesis,
that the issues which make reproduction difficult are the same across studies, to be largely
supported.

The third prediction was that there was a significant correlation between the documenta-
tion level measured for an article, and the observed outcome of the associated reproduction
attempt. Quantifying documentation levels is a difficult task, and was in this project per-
formed using the proposed Article Model Metric. When computing the average metric values
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for the different outcome levels the results were not higher for better reproduction outcome
levels. The correlation test also indicated no correlation between the metric score of an
article and the outcome of the reproduction. However, the results showed that R1 studies,
i.e. studies providing at least some code, were more likely to be successfully reproduced
than R2 studies. Though not conclusive, this indicates that documentation level do have
some relation to reproduction outcome. More documentation is almost always helpful for
reproductions, and increased sharing of data and code is positive. The results achieved
here more likely indicate that the Article Model Metric is unable to correctly estimate the
documentation levels of articles. We therefore do not believed that the third hypothesis,
that the level of documentation and the ease of reproduction is related, should be rejected,
though our results can not corroborate it.

In addition to the results of the reproduction attempts, which provide statistics on repro-
ducibility given the scope of this project, the project has two additional contributions.
The first is the Article Model which is intended as a framework for understanding all com-
ponents of a research article in AI. The associated metrics are intended to be used as a
system for quantifying the documentation level of a paper, which was hypothesized to pre-
dict the reproducibility of the paper. However, within the parameters of this study, the
metric did not achieve its goal. The second tool developed in the project is the discrepancy
system for categorizing and counting issues encountered during reproductions. This tool
can be used for identifying which issues commonly limit reproducibility.

This project, along with earlier studies, show that there are significant difficulties in re-
producing research within AI. Similar issues often prevent studies from being reproduced,
and this provides an indication of were better documentation practices are most needed.
We believe further work is needed in the area of reproducibility, most importantly in the
construction of better documentation guidelines and policies.
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Article Information
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Person
Id Title responsible
1 Measuring the Objectness of Image Windows [26] Odd Cappelen
2 Generalized Correntropy for Robust Adaptive Filtering [27] Martin Mølnå

3 Development and investigation of efficient artificial bee colony algorithm for numerical
function optimization [28] Martin Mølnå

4 Blind Image Quality Assessment: A Natural Scene Statistics Approach in the DCT
Domain [29] Odd Cappelen

5 Cooperatively Coevolving Particle Swarms for Large Scale Optimization [30] Odd Cappelen
6 Learning Sparse Representations for Human Action Recognition [31] Odd Cappelen
7 Visualizing and Understanding Convolutional Networks [32] Odd Cappelen

8
iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating
sequence-coupling effects into pseudo components and optimizing imbalanced training
dataset [33]

Odd Cappelen

9 A modified Artificial Bee Colony algorithm for real-parameter optimization [34] Nicklas Grimstad
Nilsen

10 RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated
images [35]

Nicklas Grimstad
Nilsen

11 Classification with Noisy Labels by Importance Reweighting [36] Odd Cappelen

12 Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable
Activity Recognition [37] Odd Cappelen

13 Context Aware Saliency Detection [38] Martin Mølnå
14 Distributed representations of sentences and documents [39] Martin Mølnå
15 XGBoost: A scalable tree boosting system [40] Martin Mølnå

16 Facial landmark detection by deep multi-task learning [41] Nicklas Grimstad
Nilsen

17 Deep learning-based classification of hyperspectral data [42] Nicklas Grimstad
Nilsen

18 Semi-supervised and unsupervised extreme learning machines [43] Nicklas Grimstad
Nilsen

19 DeepReID: Deep Filter Pairing Neural Network for Person Re-Identification [44] Nicklas Grimstad
Nilsen

20 Deep neural networks: A promising tool for fault characteristic mining and intelligent
diagnosis of rotating machinery with massive data [45]

Nicklas Grimstad
Nilsen

21 Clustering by fast search and find of density peaks [46] Martin Mølnå
22 DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition [47] Martin Mølnå
23 Single image super-resolution with non-local means and steering kernel regression [48] Odd Cappelen

24 Multi-modal multi-task learning for joint prediction of multiple regression and classifi-
cation variables in Alzheimer’s disease [49] Odd Cappelen

25 Robust text detection in natural scene images [50] Nicklas Grimstad
Nilsen

26 Towards end-to-end speech recognition with recurrent neural networks [51] Martin Mølnå
27 Mastering the game of Go with deep neural networks and tree search [52] Martin Mølnå

28 Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architec-
tures, Dataset Characteristics and Transfer Learning [53] Odd Cappelen

29 MLlib: Machine learning in Apache Spark [54] Odd Cappelen

30 Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in
VHR Optical Remote Sensing Images [55] Martin Mølnå

Table A.1: Information about which person was responsible for each reproduction attempt
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ID Experiments in paper Identical Consistent Different Not Conducted
1 18 0 4 0 14
2 4 1 0 1 2
3 46 17 17 12 0
4 10 0 1 0 9
5 21 0 4 3 14
6 14 0 0 1 13
7 20 0 0 0 20
8 1 0 1 0 0
9 68 0 1 7 60
10 31 0 0 24 7
11 6 0 0 1 5
12 4 0 1 1 2
13 2 0 0 2 0
14 3 0 0 0 3
15 4 0 2 0 2
16 12 0 0 0 12
17 16 3 3 0 10
18 38 0 0 5 33
19 6 0 0 0 6
20 10 0 0 0 10
21 7 6 0 0 1
22 4 0 0 1 3

Table A.2: The total number of experiments per article and the number of each experiment
outcome
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1 0.20 1.00 0.00 0.17 1.00 1.00 0.50 0.25 0.00 0.13 0.50 0.43
2 0.20 0.75 0.00 0.00 1.00 0.00 - - 0.00 0.13 0.50 0.29
3 0.40 1.00 0.50 0.00 1.00 0.00 1.00 - 0.00 0.25 0.50 0.47
4 0.20 1.00 0.00 0.67 1.00 1.00 1.00 0.80 0.00 0.13 0.50 0.57
5 0.00 1.00 0.50 0.00 0.00 0.50 0.50 - 0.50 0.25 0.50 0.38
6 0.60 1.00 0.50 0.00 1.00 1.00 0.50 0.60 0.00 0.25 0.50 0.54
7 0.20 1.00 0.00 0.00 1.00 1.00 0.50 0.80 0.00 0.50 0.50 0.50
8 0.20 0.50 0.00 0.50 1.00 1.00 0.50 0.50 0.00 0.13 0.50 0.44
9 0.20 1.00 0.50 0.50 0.00 0.00 1.00 - 0.00 0.63 1.00 0.48
10 0.40 1.00 0.50 1.00 1.00 0.00 1.00 - 0.00 0.75 0.50 0.61
11 0.20 0.83 0.00 0.00 0.00 0.00 0.42 0.40 0.00 0.13 0.50 0.23
12 0.40 0.83 0.00 0.67 1.00 0.50 0.50 1.00 0.50 0.63 0.50 0.59
13 0.20 1.00 0.00 0.33 1.00 0.50 1.00 0.50 0.00 0.50 0.50 0.50
14 0.20 0.83 0.00 0.00 1.00 1.00 0.33 1.00 0.00 0.13 0.50 0.45
15 0.60 0.83 0.00 1.00 1.00 0.50 0.63 1.00 0.00 0.38 0.50 0.58
16 0.40 1.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00 0.38 0.50 0.48
17 0.20 0.83 0.50 0.50 1.00 1.00 0.50 0.20 0.00 0.50 0.50 0.52
18 0.20 1.00 0.50 0.50 1.00 0.50 1.00 0.00 0.00 0.38 0.50 0.51
19 0.40 0.50 0.00 0.00 1.00 0.00 0.50 0.25 0.00 0.38 0.50 0.32
20 0.20 1.00 0.00 0.00 1.00 0.00 0.33 0.20 0.00 0.25 0.50 0.32
21 0.20 1.00 0.00 0.50 1.00 0.50 0.53 - 0.00 0.13 0.50 0.44
22 0.20 0.83 0.00 0.67 1.00 1.00 0.50 1.00 0.50 0.38 0.50 0.60
23 0.20 1.00 0.50 0.00 0.00 1.00 0.33 0.50 0.00 0.75 0.50 0.43
24 0.20 1.00 0.00 0.33 1.00 1.00 0.50 0.25 0.50 0.25 0.50 0.50
25 0.20 1.00 0.50 0.33 1.00 0.50 0.33 - 0.00 0.50 0.50 0.49
26 0.20 0.83 0.50 0.00 1.00 0.00 0.33 0.75 0.00 0.13 0.50 0.39
27 0.40 0.83 0.00 0.00 1.00 0.00 - - 0.00 0.38 0.50 0.35
28 0.60 1.00 0.00 0.33 1.00 1.00 0.50 0.25 0.50 0.75 0.50 0.58
29 0.20 0.00 - 1.17 0.00 0.00 0.00 0.00 0.00 0.38 0.50 0.22
30 0.20 0.83 0.00 0.00 1.00 1.00 0.50 0.25 0.00 0.38 0.50 0.42

Table A.3: The Component Metrics and Article Model Metric for each article
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Appendix B

Discrepancies

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
P1 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0
P2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
P5 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
P6 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
P7 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
P8 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1
P9 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0
P10 0 1 1 0 1 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 0 1
P11 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
P12 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P13 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0
P14 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
P15 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0
P16 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
P17 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0
P18 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0
P19 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
P20 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table B.1: Table of problem categories encountered for each paper
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ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
A1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0
A2 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0
A3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
A4 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
A5 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0
A6 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 1
A7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
A8 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
A9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
A10 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
A11 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0
A12 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0
A13 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0
A14 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
A15 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

Table B.2: Table of assumption categories encountered for each paper

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
E1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
E2 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
E3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
E4 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
E5 0 1 1 0 1 1 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1
E6 1 1 1 1 0 1 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0
E7 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0
E8 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
E9 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0
E10 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
E11 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0
E12 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
E13 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
E14 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
E15 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Table B.3: Table of error categories encountered for each paper
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