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Abstract

Social Media produces vast amounts of user-generated content (UGC) every second, and
images are increasingly part of enriching this content. The need for effective ways to or-
ganize and categorize content is bigger than ever. The proliferation of Big Data also offer
new opportunities in regards to utilizing UGC in recommender systems. Considering the
noisy and unstructured nature of user-generated text however, extracting valuable knowl-
edge from it is not an easy task. Therefore, this thesis looks in the direction of images.

With the goal to extract some usable knowledge from these Social Media images, this
thesis proposes a novel approach to predicting the tags and content of an image from
Social Media with the help of deep convolutional neural networks (deep CNNs) and word
embedding models.

A pre-trained model for computer vision is used to classify an image and extract pre-
dictions of its most likely content, and then evaluated against the image’s tags to discover
the model’s tag prediction ability. Each of the predictions are used to produce similar syn-
tactic and semantic information from a word embedding model. Using this aggregated in-
formation, the model’s prediction ability is re-evaluated and performances are compared.
In addition, the predictions are studied qualitatively to understand their degree of rele-
vance.

The model is evaluated on a subset of the MIRFLICKR25000 data set, which consists
of 25000 images under the Creative Commons licence gathered from the Social Media
platform Flickr. Although image auto-tagging is thoroughly researched, the task of tag
prediction from images using computer vision and word embedding in this way is not
done previously. The evaluation of this model on the data subset shows that comparable
accuracy to state-of-the-art is achieved. Although they are not groundbreaking in terms of
accuracy, results show a significant increase when expanding queries using a word embed-
ding model.
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Sammendrag

Sosiale medier produserer store mengder brukergenerert innhold hvert sekund, og bilder
er i stadig økende grad del av denne. Med Big Data kommer nye muligheter for analyse
og anvendelser av dette innholdet i anbefalingssystemer. Den økte datamengden medfører
også økt behov for effektive metoder for kategorisering og lagring. På bakgrunn av bruk-
ergenerert innholds ustrukturerte og støyrike natur, er det heller ingen enkel oppgave å
utvinne verdifull kunnskap fra den.

Med mål om å utvinne brukbar kunnskap fra disse brukergenererte bildene, foreslås
det i denne oppgaven et system for prediksjon av emneknagger og innhold i bilder fra
sosiale medier, ved hjelp av dype nevrale nettverk og modeller for semantisk vektorisering
av ord (word embedding models).

En ferdig trent modell for datasyn brukes til å klassifisere et bilde og hente predik-
sjoner for mest sannsynlig innhold, hvorpå disse matches mot bildets emneknagger for å
oppdage systemets evne til emneknaggprediksjon. Deretter brukes hver av prediksjonene
til å uthente syntaktisk og semantisk liknende ord fra en ordvektormodell. Ved bruk av
denne sammensatte informasjonen evalueres systemets evne til emneknaggprediksjon på
nytt og ytelsen sammenliknes. I tillegg studeres prediksjonene kvalitativt for å oppdage
deres relevanse.

Systemet evalueres på en delmengde av et datasett bestående av bilder og deres em-
neknagger oppsamlet fra den sosiale medieplattformen Flickr. Å predikere emneknagger
på denne måte er ikke gjort tidligere, men resultatene kan indikere at den er verdig av
videre forskning. Evalueringen viser sammenliknbare resultater for treffsikkerhet med
nyere forskning. Selv om systemet ikke tilbyr grensesprengene treffsikkerhet, vises ty-
delig effektiviteten av å bruke modeller for semantisk ordvektorisering på denne måten.
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Chapter 1
Introduction

As an introduction to this thesis, this chapter aims to provide some background information
to explain some of the motivation and challenges regarding tag prediction. Section 1.1
describes some of the circumstances behind the appearance of the problem, and why it
should be solved. Section 1.2 follows with a description of the problem, and what has been
done to solve it. Section 1.3 presents the main objectives this thesis seeks to accomplish.
Some limitations apply to this work, and are explained in Section 1.4. Lastly, Section 1.5
provides an outline of the rest of the paper.

1.1 Motivation
Social Media has taken a firm role in our everyday life. Instead of talking to each other,
even if we are in the same room, we might send a Snapchat photo or write a message
on an online chat platform. Since we are now to some degree living our lives online, it
has become an important arena for advertising, business, marketing and research. Ana-
lyzing users’ online profiles and interactions can provide a great deal of insight to their
interests and personalities. User-generated content (UGC) is one of the types of data that
can be analyzed to obtain some of this knowledge. Status updates, or posts, on Social
Media often come attached with a useful set of metadata. User profiling techniques use
these kinds of insights to help make effective personalized recommendations, which have
valuable applications. For instance, the selection of which products to recommend in ads
greatly increases the likelyhood of a purchase. According to a study by Barilliance on its
clients using their recommendation engine, up to 31%1 of revenues from E-commerce sites
came from the personalized recommendation of products, therein displaying the economic
benefits of UGC utilization.

There are difficulties concerning these techniques, such as the lack of ratings or other
information in new users resulting in cold starts. This is a problem, because even if a
user has not seen a movie or clicked on a product, that does not imply a dislike toward

1https://www.barilliance.com/personalized-product-recommendations-stats/
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Chapter 1. Introduction

it. Techniques use different approaches to estimate these missing values. For example,
collaborative filtering (Goldberg et al., 1992) employs the ratings of users similar to one
self, in the way that if person A and B both like an item X, and person A likes item Y,
then person B is more likely to like Y as well. Another solution has been to focus on
utilizing other metadata to strengthen the profiles, tags, or hashtags, being one of them.
Tags are metadata in the form of keywords, which describe the content. Tag-based user
profiling uses the tags associated with a user’s profile and has proven quite successful.
I.e., Firan et al. (2007) uses a tag-based approach for song recommendation which yields
significantly improved results. Another application example is Ruocco and Ramampiaro
(2015), who extract geo-spatial features from user tags, increasing performance of event-
related image retrieval.

While user-generated text has a high degree of sparsity and unstructured nature, images
are less unpredictable and can be expressed quite easily by three-dimensional vectors.
Also, images from Social Media tend to have a reasonable degree of quality. One reason
for that might be that our online user profiles seem to influence and reflect on our social
status in real life. They are produced in enormous quantities as well; in just one day, over
95 million2 photos and videos are posted on Instagram3 alone. On Flickr4, the number
reaches about 25 million5 photo posts on a busy day. Therefore a way should be found to
extract knowledge from and organize these masses of visual content, so they can be more
easily searched and retrieved. However, even though our brains make vision seem easy, it
is a difficult and complex problem to solve for computers. Flickr for example has its own
auto-tagging function which has run into some problems in the past, tagging images with
controversial tags6.

For the purpose of overcoming some of the challenges discussed above, this thesis’
main contribution is an exploratory approach to predicting the tags of an image from
its visual content. Image classification is first performed using a pre-trained deep neu-
ral network model, and then an attempt is made to increase prediction ability using a word
embedding model to expand the predictions. The predictions are tested against the user-
generated image tags from a subset of a research dataset for evaluation. The information
offered by such a system is likely of interest to businesses, advertizers and researchers who
use tag-based user profiling, and as another application, the tags suggested can be used in
auto-tagging to categorize and organize photos without knowing their tags beforehand to
enhance search and retrievability.

1.2 Context

1.2.1 Tag Prediction
The proliferation of Big Data has opened the eyes of researchers everywhere to the pos-
sibilities that lie in predicting the future using UGC and other forms of Social Media

2https://louisem.com/152018/instagram-stats-2017
3https://www.instagram.com/
4https://www.flickr.com/
5https://expandedramblings.com/index.php/flickr-stats/
6http://www.independent.co.uk/life-style/gadgets-and-tech/news/flickr-s-auto-tagging-feature-goes-awry-

accidentally-tags-black-people-as-apes-10264144.html
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1.2 Context

data. As Schoen et al. (2013) mention in their paper, articles concerning predictions have
gone from 0 to 18% between 2006 and 2012 at the WWW, ICWSM and IEEE SocialCom
Conferences. While some motives are business oriented, there are practical real world ap-
plications as well, from predicting outbreak of diseases to elections and stock markets. It
may even possible to predict nature catastrophies and provide earlier warnings. Tkachenko
et al. (2017) for example, investigate the correlation between an increased use of certain
image hashtags and real life flooding events. Other motivations include increasing search
and retrievability, avoiding incorrect user tags and being able to discover events and trend-
ing topics.

Tag prediction is the task of predicting a set of tags given some content. It is closely
related to that of automatic image annotation, especially in the research field, where the
line between them seems to be largely obscured. One difference worth pointing out is
that automatic image annotation’s main goal of attaining categorization opts for tags at a
higher semantic level, rather than accounting for the users’ individual differences in tag
conceptuality. This noisy nature of wild user tags makes tag prediction a truly challenging
task, and remains an unsolved problem. Some of these challenges are discussed at length
in Section 3.3.

Tag prediction is predominantly a natural language processing (NLP) problem, and a
well researched area within the Twitter domain. For tweets (short textual Twitter posts),
many approaches use topic modeling and latent Dirichlet allocation (LDA) (Godin et al.,
2013), which are techniques for discovering the abstract topics appearing in a text. Convo-
lutional neural networks (CNNs) which are discussed later in this thesis have been used as
well (Weston et al., 2014). In collaborative tagging systems, probabilistic modeling (Yin
et al., 2010) and nearest neighbor (Budura et al., 2009) are some pronounced examples
of effective approaches. Zhang et al. (2012) also look at tag temporal usage patterns. As
images have become common in UGC, research utilizing them for tag prediction has in-
creased the past years. Early attemps using probabilistic latent semantic analysis (PLSA)
(Monay and Gatica-Perez, 2003, 2004), then shifting toward similarity metrics and nearest
neighbor-approaches (Zhang et al., 2006; Makadia et al., 2008; Guillaumin et al., 2009)
before arriving at the paradigm of deep neural nets and image classification which today is
the load-bearing column in regards to extracting information from visual content. Usually,
works tend to pair a classifier together with other algorithms, i.e. robust logistic regres-
sion (RLR) (Izadinia et al., 2015), or provide a method of modeling the noisy user labels.
Recent related works are thoroughly discussed in Section 2.1.

The work in this thesis attempts to predict one or more tags of an image gathered from
Social Media. What constitutes the novelty of this approach is the combination of two
techniques:

• Using computer vision to obtain base predictions

• Using a word embedding model to expand predictions

A vision-only approach is seemingly only attempted once (Park et al., 2016), and the
combination with word embedding is equally rare. A few works use word embedding for
representation (Murthy et al., 2015; Denton et al., 2015) and handling unseen labels (Li
et al., 2015), but none as a form of query expansion as attempted in this work.

3



Chapter 1. Introduction

Definition of Tag

Most definitions of the word tag share a similarity; that it is a label designed to provide in-
formation about someone or something. In Social Networking and Media these are called
hashtags because of the hash character ’#’ used in front of them. These tags allow for
content categorization and marking which makes it available for later retrieval. However,
since the problem of tag prediction is looked at from the angle of using Social Media, the
fact that what is attemped to predict is something user-generated has to be considered.
This creates a random variable in the process of predicting tags of content, because one
has to deal with the individual’s interpretation of what an object is or means. For exam-
ple, a necklace to some might be only "necklace", while to others the label "heirloom"
may apply as well. Hung et al. (2008) define tags as the semantic concepts that an object
activates in a cognitive sense, which is the definition stuck to throughout the thesis.

1.2.2 Evaluation

To evaluate this system a dataset consisting of images and their belonging tags, preferably
pre-processed, is needed. It is possible to crawl the data using Flickrs API, although it
would take a considerable amount of time. Given the time and resource limitations, the
MIRFLICKR25000 dataset7 (Huiskes and Lew, 2008) is chosen instead. It is a research
dataset consisting of 25000 images gathered from Flickrs public API, all licensed under
the Creative Commons licence. The dataset also has complete manual annotations, raw
tags, preprocessed tags (Flickr’s automated pre-processor), pre-computed descriptors and
software for bag-of-words based similarity and classification. The dataset is described in
depth in Section 5.1.

1.3 Research Questions

The goal of being able to extract usable knowledge from user generated images is formal-
ized into the following main research question:

RQ: How to predict image tags from image visual content?

To help answer this question and accomplish the research goals, three subquestions are
defined:

RQ1: How to predict tags using image classification?

RQ2: How to use word embedding models to help predict tags?

RQ3: What source of text is best for training the word embedding models?

7http://press.liacs.nl/mirflickr/
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1.4 Limitations

1.4 Limitations
As this thesis and its work is conducted by a single person, there are some natural lim-
itations in terms of time resources. Given the amount of hours needed to envelop one
self into relevant research and theory behind it, it was decided to use a pre-trained model
for image classification. In addition, the applications in the research field relevant to this
thesis is generally highly demanding of hardware and computational power, which further
cemented the decision. Since the work in this thesis is conducted in Java, there are also
a few compatibility restrictions in regards to the chosen deep learning frameworks. For
example, utilizing GPUs for computation and training is not yet supported for machines
running Microsoft Windows as an operating system.

1.5 Thesis Outline
The thesis begins with Chapter 1, introducing the research field and the motivation behind
predicting using UGC, a short presentation of tag prediction and this thesis’ approach to
solve the problem. The main objectives this thesis will answer are stated at the end. To
give the work some perspective in the research field, a literature review on tag prediction is
performed in Chapter 2 and the research most closely related is discussed, summarizing at
the end. In Chapter 3 some theoretic background is provided on tag prediction and some
of the challenges faced when using Social Media images in this approach to solve the
problem are discussed. Then, some insights on the theory behind the techniques applied
in this approach are given. Chapter 4 describes the system and implementation in detail,
before the experiements chosen for evaluation in Chapter 5 are looked at. Chapter 6
presents the results and discuss their significance, before summarizing with a conclusion
and suggest possible directions of further work in the final chapter; Chapter 7.
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Chapter 2
Literature Survey

To gain some perspective on the research field and its main challenges, a literature survey
is performed on tag prediction and image annotation. First the works considered to be the
most similar to the work in this thesis are discussed in section 2.1. Since tag prediction and
automatic image annotation are named quite ambiguously and intermixed in the research
field, it was decided to include both in this section for the sake of practicality. Other related
works are detailed in in 2.2.

2.1 Related Works
The research considered most relevant to this thesis are works that perform image tag
prediction or image annotation, where predictions are made using CNN-extracted visual
features. Other works detail different methods of tag prediction or image annotation.

2.1.1 Image Tag Prediction
Tag Prediction at Flickr: A View from the Darkroom

Garrigues et al. (2016) present in their paper a large-scale system for image auto-annotati-
on, with the goal of achieving better image search on Flickr. One of their main arguments
is that the models trained from benchmark datasets like ImageNet (Deng et al., 2009)
often come short when deployed to user platforms like Social Media. One of the reasons
for this is that the majority of images in ImageNet are single-object images, and thus
are unable to span the width of user concepts when they annotate their photos. Creating
new datasets takes a huge amount of time and manpower, and is not a practical solution.
Instead they argue the possibility of training models from scratch using user-generated tags
only, resulting in an easier training process than the standard paradigm, ultimately without
compromising performance. They choose the YFCC (Yahoo Flickr Creative Commons)
(Thomee et al., 2015) dataset for training, as it is large in size and has tags that are solely
user-generated. To meet the problem of the noise present in user tags, Garrigues et al. look

7



Chapter 2. Literature Survey

specifically at tags relevant to Flickr users. To account for the absence of click logs from
personal image search, they visualize a substitution of (query, click) pairs with (photo, tag),
finding the 10,000 most frequently used tags. Those considered irrelevant are removed
(lanuage redundancies, locations, numbers and potentially offensive tags), resulting in a
vocabulary of 4,562 tags on which to train their classifier. In design of their model YFNet,
Garrigues et al. also deal with the problem of demanding computational costs and model
sizes of very deep CNNs which make them impractical for smaller devices and embedded
systems. Inspired by He and Sun (2014), they use a layer replacement strategy, factoring
larger 3 × 3 filters to two asymmetrical 3 × 1 and 1 × 3 ones as shown by Szegedy et al.
(2015). Reducing a 3 × 3 to an asymmetric double layer of 3 × 1 and 1 × 3 reduces
complexity from 3× 3 = 9 to 3× 1 + 3× 1 = 6, resulting in a 33% complexity decrease
without losing accuracy. They also use a spatial pyramic pooling (SPP) (He et al., 2014)
layer in place of the last convolutional.

For evaluation, Garrigues et al. first extract subsets of the COCO (Lin et al., 2014) and
VG (Krishna et al., 2016) datasets containing the overlapping concepts between their pre-
diction vocabulary and the datasets (respectively denoted COCO67 and VG903) to serve
as validation sets. Using training samples of 1000, 2000 and 4000 from YFCC, they test
both pre-training on ImageNet before finetuning is done as in the standard paradigm, and
training from scratch. Their results show that the accuracy of their model trained from
scratch is similar to that of the standard paradigm, convergingly so for the highest amount
of training samples. In addition to achieving the same mean average precision (mAP) on
VG903, there was only a 0.43% difference on COCO67, thus demonstrating the validity of
their argument that it should be possible to train effective classifiers from scratch without
clean data.

Secondly they evaluate their models ability to act as a pre-trained model, fine tuning
with both COCO and VG, before evaluating on COCO67 and VG903 respectively. The
results show a significant increase in mAP when fine-tuning to the relevant domains, and
they also demonstrate that pre-training on YFCC rather than ImageNet gives better per-
formance when the number of training samples reach 4000. It is however worth noting
that the number of ImageNet training samples remained constant at 1000. It is reasonable
to think that an increase in ImageNet training samples would yield a similar improvement
in accuracy. The authors also mention that they did not try training the Inception-v2 and
Inception-ResNet-v2 architectures from scratch on the 4000 training sample YFCC dataset
due to computational reasons. Also noted is that they mention recall as possibly of higher
importance than precision regarding personal photo search, but never compute it or give a
reason why they choose not to.

The authors conclude that their objective of training a state-of-the-art-performing clas-
sifier from noisy labels that also performs well in commercial deployment is met, but that
there still is a significant gap in performance that needs closing. They also argue that
training from noisy labels from datasets like YFCC and evaluating on VG is a suitable
benchmark for further research.

Deep Classifiers from Image Tags in the Wild

Izadinia et al. (2015) present a method for tag prediction using a classifier trained on wild
(user-generated) tags, and perform an analysis on the Yahoo Flickr Creative Commons
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(Thomee et al., 2015) dataset. They like Garrigues et al. (2016) voice the important ar-
gument that current datasets lack the ability to grasp concepts and categories important to
users (e.g. scenes, objects, attributes, activities, visual styles), thus proposing the use of
wild tags in training classifiers. To better understand the user-generated wild tags, they
perform an analysis on YFCC. Aiming to highlight some of the shortcomings of ground-
truth-annotated datasets, the authors compare the YFCC dataset to ImageNet, and look at
some statistical properties of the tags they contain. Looking at the 100 most frequent tags
in YFCC, they estimate that ImageNet is missing roughly half of the most used Flickr tags.
This is a surprisingly high number, and clearly demonstrates the conceptual gap between
users’ interests and current benchmark datasets. Other remarks by the authors confirm
common suspicions, for example that user tags are highly ambiguous and map to multiple
real-world concepts.

To meet the problem of noisy user-generated tags, Izadinia et al. introduce a stochastic
EM (Expectation-Maximation) (Cappé and Moulines, 2009) approach to robust logistic
regression for use in tag selection, performing prediction for each tag individually. In
addition, they include a bias which allows calibration and easy adaptation to new datasets,
or domains. Several models are then trained on the YFCC with different variations of the
tag selection algorithm, some fine-tuned using a subset of NUS-WIDE (Chua et al., July
8-10, 2009) annotations.

For evaluating their models, Izadinia et al. put them through three separate tasks.
First is tag prediction, where a baseline model using logistic regression (LR) is measured
against one with robust logistic regression (RLR). A 200,000 image subset of YFCC is
chosen for validation, predicting the 5 most likely tags for each image. For the 5, precision,
recall and F-score are computed. The results show that while RLR precision is similar to
LR, recall and F-scores respectively gain 17.1% and 8.4%. Next the authors evaluate the
ability to objectively annotate images. Here NUS-WIDE is used for validation, as it is
objectively and manually labeled according to 81 concepts. The models trained solely on
user-generated tags give high gains on recall and F-score, with precision matching that
of reported state-of-the-art (Gong et al., 2013). Training on clean NUS-WIDE data gives
better results than training on YFCC alone. However, combining YFCC training and the
calibration step ultimately produces the highest scores. The authors also show that their
method of training on user-generated tags and calibrating on NUS can potentially reduce
training costs by a factor of 200 while retaining performance, given the small amount of
samples needed for calibration. Finally the models are tested on tag-based image retrieval.
Good performance is given for single-tag queries, but here the NUS-WIDE trained model
scores highest.

Izadinia et al. conclude that models trained on user-generated tags can be useful despite
their noisy nature, especially paired with a small calibration, and that these wild tags are
still a largely untapped resource.

HARRISON: A Benchmark on HAshtag Recommendation for Real-world Images in
SOcial Networks

In their work, Park et al. (2016) present HARRISON (from the title), introducing a dataset
consisting of Instagram images and their user-generated tags, with the goal of introducing
a more suitable dataset for hashtag recommendation in the Social Network arena. The
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dataset consists of 57,383 images, and around 165,000 unique hashtags. They observe
that the top 1000 most frequently used tags form 59% of total hashtags, and therefore
choose this subset as dataset classes, serving as ground truth. Park et al. also design a
baseline model for hashtag prediction using a CNN classifier. The model is then evaluated
on the dataset.

As Garrigues et al. (2016) and Izadinia et al. (2015) both discuss, there are a large
amount of frequently used concepts in Social Media content missing in ImageNet. To help
solve this problem in regards to hashtag recommendation and bridge the dataset gap, the
authors employ two separate models, each performing a different category of feature ex-
traction. They use the pre-trained image classification model VGG-16 (Simonyan and Zis-
serman, 2014) for both models, training for object recognition (Simonyan and Zisserman,
2014; Szegedy et al., 2014; He et al., 2015) on the ImageNet dataset, and scene recog-
nition (Xiao et al., 2010; Patterson et al., 2013; Zhou et al., 2014) on the Place Database
(Zhou et al., 2014). The scene recognition classifier allows extraction of important fea-
tures missing in benchmark datasets like ImageNet. The two types of features are then fed
to a separately trained multi-label classifier consisting of two fully connected layers and a
sigmoid cross entropy layer, where hashtag probabilities are sorted and selected.

For evaluation, each model is first tested separately, then combined at the task of
hashtag recommendation. Note that hashtag recommendation as described by the authors
equates to tag prediction and Social Media-angled image annotation tasks in the research
field. Hashtags are recommended for each image in the dataset, and precision@1, re-
call@5 and accuracy@5 measures are computed for the whole corpus. Precision@1 means
the fraction of times their highest probable tag is among image user-tags. Recall@5 is the
fraction of matches of top 5 predictions among image user-tags, and accuracy@5 is the
fraction of times there is atleast 1 overlap between top 5 predictions and image user-tags.
Results show that object recognition better spans user concepts than scene recognition
when recommending or predicting user-generated tags. They also show that combining
the two increases precision by 6.17%, recall by 2.57% and accuracy by 3.46% compared
to object recognition alone. The authors report a precision@1 of 30.16%, recall@5 of
21.38% and accuracy@5 of 52.52%. Since they evaluate on a novel dataset which in turn
is gathered from Instagram (Flickr is more commonly used), the distribution of user-tags
may differ from other datasets, and affect the results to an unknown degree.

Park et al. conclude that their model performs well at short, descriptive tags, but is
unable to suggest inferential tags and fine-grained classes. They call for further attempts
using object detection and suggest combining with NLP techniques to increase contextual
understanding as possible improvement options.

Automatic Image Annotation using Deep Learning Representations

Murthy et al. (2015) propose models for image annotation using CNN features and word
embedding models, with the goal of achieving reliable automatic image annotation to bet-
ter search and retrieval of images and videos. Murthy et al. also seek to demonstrate via-
bility of CNN-extracted visual features over handcrafted, which are bottlenecks in regards
to designing scalable real-time systems. They use three variations of canonical correlation
analysis (CCA), and attempt a linear regression-based CNN model. They evaluate their
models on three seperate datasets, and compare their performance to other approaches in
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the research field. This work is interesting to this thesis in the way that they employ word
embedding models as a tool in their approach, although used differently.

The authors use the pre-trained VGG-16 model to extract the 4096-dimensional vi-
sual feature vectors from each image. For representing each tag of the vocabulary, they
utilize the word embedding model Word2vec (Mikolov et al., 2013a), resulting in a 300-
dimensional vector for each tag. Then they apply three variations of CCA, which produces
projections of the two vectors onto a plane with dimensionality less than or equal to the
vector with the smallest dimensionality, while maximizing the correlation between them.
Since standard CCA can only model linear relationships, kernel CCA is performed to
include non-linear relationships. When a new image is tested, its visual feature vector
is extracted and projected to the plane, and tags most closely associated with the clos-
est matching visual feature are then selected. The third CCA variation is with k-nearest
neighbors clustering, choosing k samples from each cluster, calculating their probability
and ranking them accordingly. In addition, Murthy et al. train a regression-based CNN
model where the last layer of the model is replaced by a projection layer, and the predic-
tions are word embedding vectors.

For evaluation, Murthy et al. test their models on the Corel-5K (Duygulu et al.,
2002), ESP Game (von Ahn and Dabbish, 2004) and IAPRTC-12 (Grubinger et al., 2006)
datasets. For each dataset, precision@5, recall@5 and F-score are computed over the
whole corpus, also including N+ (number of non-zero recall). Their results demonstrate
that CCA is an effective approach to image annotation, achieving comparable measures
on IAPRTC-12 and outperforming state-of-the-art on Corel-5K and ESP Game. The au-
thors also show that using word embedding vectors over binary vectors gives a significant
boost for all measures by including a version of their best performing model using binary
vectors.

Murthy et al. conclude that CNN-extracted visual features perform comparably or bet-
ter than handcrafted ones that limit scalability and use computationally expensive metric
learning. In addition, they demonstrate the usefulness of utilizing word embedding models
in image annotation tasks.

User Conditional Hashtag Prediction for Images

Denton et al. (2015) introduce a novel approach of predicting tags with the use of a CNN
and user modeling. Unlike other works, their aim is to demonstrate that utilizing user
metadata is an effective method of improving performance of tag prediction. Using CNN
visual features and user metadata, two techniques for combining them to a learning are
explored. In evaluation of their framework the authors perform tag prediction on a dataset
consisting of de-identified posts from Facebook.

Users tag content differently, and mappings from real-world concepts to tags are end-
less. Denton et al. mention continuous change in user interests, feelings and bias toward
specific tags as examples of this type of noise in tags. The authors’ approach to this prob-
lem is exploiting the large amount of available user metadata to model each user. For
representation Denton et al. propose a model for embedding images and tags to a joint
space as in Weston et al. (2011). For images, visual features (image descriptors) are first
extracted from a CNN trained on approximately 1 million Facebook-images and 1000 cat-
egories. Then the descriptor is used in the embedding process, where the authors describe
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three methods. A simple linear mapping of an image descriptor without any user informa-
tion (bilinear), an additive which adds a user dependent bias on top of the image descriptor
(user-biased bilinear) and a multiplicative where the image descriptor is gated through the
user descriptor (user-multiplicative tensor), so that each user feature vector produces a
unique image embedding.

Denton et al. train and test their models on a large Facebook-gathered dataset of 20
million public images by an approximate 10.4 million de-identified users. They limit tag
vocabulary to the 10K most frequently used in one version. However, they point out that
the natural distribution of tag use inhibit prediction ability of less frequent tags, and thus
create a second balanced version of the dataset. In this version the frequency of the top 500
tags are downsampled to that of the 501st. In the dataset, users are described by 4 metadata:
age, gender, country and city, which are broken down to form 10-dimensional user feature
vectors. The authors select a subset of 100,000 images for testing. Performance measures
precision, recall and accuracy are computed for each image (@1, @10, @10 respectively).

Although performance measure results are fairly low, they show that the models ap-
plying user metadata significantly outperforms the frequency baseline and bilinear mod-
els. The two user metadata models achieve comparable results on the naturally distributed
dataset, but the multiplicative performs better on the balanced. A too high value of dimen-
sions for embedding negatively impacts performance. Denton et al. also demonstrate the
qualitative performance of their predictions, showing that predicted tags are often relevant
to the content if not equal to ground truth. The models trained on the balanced dataset also
prove much more capable of predicting less frequent tags. To give better understanding of
their results, the authors explore and provides some insight to which types of tags are most
dependent on user information to be accurately predicted.

Denton et al. conclude that user metadata can be effectively used to better image tag
predictions, and show that downsampling the most frequent tags in a dataset and creating
a more balanced distribution may produce more varied predictions.

2.1.2 Other Works

Zero-shot Image Tagging by Hierarchical Semantic Embedding

Li et al. (2015) present their system HierSE for zero-shot image tagging. Zero-shot learn-
ing is a form of supervised learning where the goal is to classify labels not previously seen.
Zero-shot image tagging therefore focus on being able to tag images with new concepts
even though it was not included in training. Even though this work does not detail tag pre-
diction per se, it arguably has the most resemblance to the work of this thesis. The main
difference is that zero-shot image tagging try to label a single objective ground truth with
as high accuracy as possible, while tag prediction is a multi-label problem. The approach
is different as well, as the authors embed both images and labels to a semantic space. They
project images onto the space by using a pre-trained image classification model, obtain-
ing prediction labels of highest probability. A semantic embedding model subsequently
assigns vectors in the space for the labels. If multiple labels are chosen, the vector for an
image is a convex combination of each of the label vectors. The classifier then selects the
vector with the highest cosine similarity to the image vector. Then Li et al. improve their
system by eliminating the problem of missing concepts in word embedding models and
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ambiguous labels (which normally produce the same vector regardless of meaning). As
the image classifier is trained on labels from WordNet, a lexical database for the english
language, they assume each predicted label has a node in the WordNet hierarchy. For this
reason they should be able to trace the ancestors of the label. Vectors are then generated
as a combination of the node and its parents, with close relatives having more influence.

Li et al. evaluate their models on the ImageNet (Deng et al., 2009) dataset, and include
1,548 unseen labels which are parent nodes and children of the 1,000 training labels. As
some labels of the WordNet hierarchy are phrases, the authors decide to allow partial
matches. This means splitting the labels that are phrases to single words before embedding
them, and look for single-word-matches. Two word embedding models are trained using
different sources of text. The latest Wikipedia dump of 2.2 million words for one, and user-
generated tags from 4 million Flickr images for the other. In addition, they experiment
with the pre-trained Google News model (Mikolov et al., 2013a). They choose accuracy
percentage at 1, 2, 5 and 10 guesses as a performance measure. All their hierarchical
models outperform previous works by a fair percentage, their best performing one using
the Flickr-trained embedding model achieve close to double accuracy at 1 guess.

The authors conclude the effectiveness of including the WordNet hierarchy to their se-
mantic embedding framework, and their two good practices of introducing partial match-
ing and training of word embedding models on the user-generated tags from Flickr images.

2.2 Summary
Through this chapter, a few important works on tag prediction and image annotation has
been discussed. There are other works which could be included as well, but given the con-
stant developments of new technology used by current state-of-the-art approaches it was
decided to focus on works from recent years. As the review shows there are many different
approaches to the two tasks. Most of the successful approaches combine the use of convo-
lutional neural networks (often using pre-trained models) with other disciplines. Common
for all however is that performance measures indicate there are still much room for im-
provements, both in terms of developing more lightweight architectures and increasing
prediction ability. Another insight is that there seems to be some difficulty in comparing
the performance measures of works. Reasons for this may be:

• Classifiers use different architectures to fit the need and scope of the application.

• There is a high variety of datasets being used, both for training and testing, which
may have oscillating effects on results.

• Performance measures are computed differently.

This may all indicate the need for a new and clearly defined baseline for tag predic-
tion approaches. The effects of dataset variety however will be hard to remove from the
equation, as they greatly enhance performance toward specific domains and facilitate real-
world deployment.

Among the reviewed works are some insights and discoveries especially interesting to
the work of this thesis. Since there are large semantic gaps between benchmark datasets
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like ImageNet (Deng et al., 2009) and user concepts in Social Media, Izadinia et al. (2015)
and Garrigues et al. (2016) demonstrate the performance increase of training the image
classifier on user-generated tags for tag prediction purposes. Li et al. (2015) showed that
vectors produced from training a word embedding model on user-generated tags from
Flickr images are semantically closer to tag prediction labels than other, larger models
with text from the Web. This particular insight is highly relevant to training well perform-
ing word embedding models for tag prediction. The technique of partial matching also
highlighted by Li et al. will be useful when dealing with phrases. It is noted that statistical
modeling shows good results as well, but is beyond the scope of this thesis. Table 2.1
shows a brief summary of the main ideas from each reviewed work.
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Author(s) Main ideas

Garrigues
et al. (2016)

Design a lightweight CNN architecture which they
train on user-generated tags for the purpose of
making reliable lightweight, consumer-applicable
image annotators for personal photo search.

Izadinia et al.
(2015)

Perform an analysis on the Yahoo Flickr Creative
Commons dataset to understand the span of user
concepts and usage of wild (user-generated) tags.
They train an image classifier on wild tags which
they use together with robust logistic regression
for tag prediction and image annotation.

Park et al.
(2016)

Introduce a new benchmark dataset, HARRISON,
for hashtag recommendation. They then train an
image classifier on datasets for object and scene
recognition, and perform hashtag recommenda-
tion on their dataset.

Murthy et al.
(2015)

Perform image annotation using a pre-trained
image classifier, and uses statistical modeling
(canonical correlation analysis) to maximize cor-
relation of image features and tags as they are em-
bedded to a joint space.

Denton et al.
(2015)

Propose a method of tag prediction utilizing the
large amounts of available user metadata. They
use an image classifier to obtain an image de-
scriptor, and perform embedding of image de-
scriptors and tags to a joint space. User data is
used to produce a user descriptor which is paired
with the image descriptor in the embedding pro-
cess.

Li et al.
(2015)

Perform zero-shot image annotation and intro-
duce the hierarchical structure of WordNet in se-
mantic embedding of images and tags to tackle
novel labels. Experiment with word embedding
models trained on different data sources.

Table 2.1: Table summarizing the main ideas of reviewed works
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Chapter 3
Theory

In this Chapter some theory is provided on tag prediction and the technologies used in
this approach. This will give a better understanding of the most central topics discussed
throughout the thesis. 3.1 begins with an introduction on computer vision, and its best
performing technologies to date. In 3.2 is a brief discussion on what natural language
processing (NLP) is and the subdiscipline of word embedding, which is used in this ap-
proach. The chapter ends with 3.3, where some of the challenges of tag prediction are
discussed, including those induced by the technologies.

3.1 Computer Vision
As humans, most of us are gifted with a powerful tool. Together our brains and eyes
are able to distinguish and classify real world objects in tens of thousands of categories
without thinking twice. Vision in itself and using our brain to interpret what our eyes take
in may be something of a triviality to us, but is an important and complex problem to
solve for computers. Computer vision is the research field of making a computer see and
interpret like humans, in order to gain high-level information from images and video. The
goal is ultimately for systems to be able to perform the same visual tasks humans do in
an automated fashion, which proves a difficult task for a number of reasons. First of all,
vision seems to be about knowledge as much as the eye itself, and the understanding is
made by using both deductive and inductive reasoning. Even though computers can easily
be equipped with enough sensors to perceptively surpass humans, inductive reasoning
and also understanding the context of what is seen is proving difficult to replicate for
computers. Another obstacle is simply the vast number of categories and concepts related
to the real world. Although the study of computer vision emerged in the 1950s, it would
take quite some time before it made serious progress. Like in many other areas of early
computer science, the task was greatly underestimated. For example, in 1966 Marvin
Minsky (co-founder of MITs AI Lab) assigned a pair of students over the summer to link
a camera to the computer and have it describe what it sees. The time table proved to be a
a litte too small.
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Great progress has however been made the past decade in regards to computer vision
performance, much attributed to advances in hardware and machine learning. The in-
troduction of the graphics processing unit (GPU) in particular unlocked the potential of
applying neural networks to problem solving. A type of neural network named convolu-
tional neural networks (CNNs) (Lecun et al., 1998), which we discuss in Section 3.1.2,
have proved excellent for computer vision applications. CNNs have been applied to these
tasks for a while now, performing a variety of them such as recognizing house digits (Ser-
manet et al., 2012) and traffic signs (Sermanet and LeCun, 2011). Even though earlier per-
formances were decent, the introduction of the much larger and better annotated ImageNet
(Deng et al., 2009) dataset made for great advances on state-of-the-art accuracy on image
classification and object recognition tasks (Krizhevsky et al., 2012). Google’s own CNN
model Inception-v3 (Szegedy et al., 2015) reports a 3.5% top-5 error and 17.3% top-1 er-
ror on the validation dataset of the 2012 ILSVRC (Russakovsky et al., 2015) competition,
where the task is to categorize a subset of the ImageNet dataset into 1000 categories. This
pre-trained model will be used to perform image classification, retrieve information from
the visual content and form the basis for the predicted tags. Since this system directly uses
the predictions produced by the classification, it means the accuracy of the system will de-
pend largely on whether it could detect an object or more from these 1000 categories in the
photo. There are several other models which we could also use (e.g. AlexNet, VGG-16),
but as of now Inception-v3 is the most balanced in terms of accuracy versus computational
cost, and is made easily available.

Though the performance of computer vision on classification and object recognition
tasks are generally good, training of the models is a computationally complex process and
takes a significant amount of time. Therefore, given the thesis’ limitations in terms of time
and resources (mainly hardware) it is decided to use the pre-trained Inception-v3 model
rather than training one from scratch. In the further work Section 7.1.1 some improvement
suggestions for the model are made. In addition, the model training requires a substantial
number of training samples to avoid overfitting. The ability to train accurate models relies
on the availability of large annotated datasets, and the existing benchmark ones arguably
make for insufficient models when applied to specific domains, i.e. Social Media platforms
as Izadinia et al. (2015) discuss. ImageNet for example is often restricted to single-object
images, which means they cannot properly span the width of user concepts in regards to
predicting image tags. These datasets are gathered from various Social Media platforms or
the Web, then manually annotated. As this is a highly time demanding and labor-intensive
process, expanding a dataset is difficult.

3.1.1 Artificial Neural Networks
As an introduction to artificial neural networks, a brief timeline of milestones in the field is
provided. In 1943 McCulloch and Pitts (McCulloch and Pitts, 1943) introduced a compu-
tational model for neural networking, marking the beginning of the research on the subject
in regards to artificial intelligence. Other important milestones in the field of neural net-
working include:

• Rosenblatt’s perceptron (Rosenblatt, 1958) - a pattern recognition algorithm

• Paul Werbos backpropagation algorithm (Werbos, 1974)
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Figure 3.1: Example of an artificial neural network

• The introduction of convolutional neural networks (Lecun et al., 1998)

• Deep belief networks (Hinton et al., 2006)

Artificial Neural Networks, or ANNs, are biologically inspired computation systems
consisting of layers of nodes, where the thought originally was to mimic the way our
brains learn by forming strong connections. The first and last layer are input and output
layers respectively, while the ones in between are called hidden layers. In Figure 3.11

a 3-layer network is depicted. The nodes connect to each other across layers, and each
has an activation function similar to biological neurons. This function takes the sum of
weighted input signals from the previous layer and computes what output signal is to be
forwarded to nodes in the next layer. Figure 3.22 displays what is considered the modern
anatomy of an artificial neuron. The way the networks learn is by being fed huge numbers
of examples and correct answers, each time backpropagating errors through the layers of
nodes. The backpropagation process adjusts weights at every node to gradually produce a
more correct output.

These networks can be applied to almost all kinds of problems, but as mentioned they
require a huge number of training samples in order to learn. Overfitting is a trait that can
arise if the training samples are too few or in some way flawed. Overfitting is when the
training data results in poor generalization knowledge for the network, ultimately yielding
poor performance on untrained data. Common applications today are image classification,
driverless vehicles, robots, face and speech recognition, artificial intelligence for games
and more.

1http://www.texample.net/tikz/examples/neural-network/
2https://becominghuman.ai/artificial-neuron-networks-basics-introduction-to-neural-networks-3082f1dcca8c
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Figure 3.2: The anatomy of an artificial neuron

3.1.2 Convolutional Neural Networks

In their paper, Lecun et al. (1998) introduce convolutional neural networks (CNNs), which
are large, complex variations of ANNs that work especially well on computer vision tasks
because of their structure. The networks use multiple replications of the same neuron,
and are often deep, meaning they have multiple hidden layers. For computer vision tasks,
images are represented as a matrix of pixel values. In the convolution layer, the CNNs use
smaller 3 × 3 matrices called filters to slide (also denoted a stride) over a small part of
the image matrix. Element-wise multiplication is performed, resulting in a 3 × 3 feature
map matrix of higher level features. This computation process is called a convolution,
and is how the network performs feature extraction. This computation happens in the
convolution layer, together with an operation where the negative values of the feature
map are replaced by zeros to add non-linearity to the network. The operation is called
rectified linear unit (ReLU), and is implemented due to the fact that most real-world data
is non-linear. Another type of layer is max pooling, where dimensionality of feature maps
are reduced while retaining the most important information. A sliding operation similar
to the convolution is performed, but instead of a multiplication, the maximum values of
each stride are retained. Finally, data is fed to a fully connected layer, before the output
labels are inferred from extracted image features using a classification algorithm. Figure
3.33 demonstrates how a deep 2-dimensional CNN may look like. Xn,m represent inputs,
which are fed into a convolutional layer of A-neurons. Next is a max pooling layer, before
another convolutional layer of B-neurons. F is the fully connected layer where outputs are
computed.

Performance on object detection tasks and image recognition really started to soar after
the introduction of the ImageNet (Deng et al., 2009) dataset. A well annotated dataset
finally provided the networks with sufficient examples. Groundbreaking accuracy was
first achieved by Krizhevsky et al. (2012) with their CNN architecture AlexNet, leading to
a period of continous improvement on the ILSVRC challenges, eventually surpassing even
human accuracy (around 5% top-5 error).

Since CNNs hold the best results on computer vision challenges, improvements in the
field are primarily related to making these networks better. One of the drawbacks of these

3http://colah.github.io/posts/2014-07-Conv-Nets-Modular/
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Figure 3.3: A deep two-dimensional CNN with max pooling layers. Xn,m represent inputs. A and
B are convolutional layers, and max are max pooling layers.

deep networks is that they become quite large in size and demanding of computational
power, which limit their portability to smaller devices and embedded systems. Given
these premises, improvement focus has been on making the networks smaller and reducing
computational complexity, ideally without any significant sacrifice in accuracy. Han et al.
(2015) for example show that it is possible to considerably reduce size and complexity
of networks using their 3-step pruning method, while fully retaining accuracy. They first
study the network to discover what connections are important, before pruning them and
retraining the weights of the remaining network. Their method reduces parameters in
AlexNet and VGG-16 by a respective 9 and 13 times. Another important example is
Rastegari et al. (2016) who show that using binary filters and binary input to convolutional
layers can make convolution operations in networks up to 58 times faster, and use 32 times
less memory, also without losing accuracy.

3.2 Natural Language Processing

Natural language processing (NLP) is an interdisciplinary field within artificial intelligence
where the goal is to have computers understand, analyze, process and manipulate human
language. Computers already understand a language of their own, which has its own set
of syntactical rules. To be understood the computer instructions have to be correct to
the letter. Their meanings are unambiguous and straight-forward, unlike human language
which can carry rich underlying semantic descriptions in a single word. While desired
action can be provided for all combinations of a computer instruction set, its vocabulary is
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miniscule compared to ours. Sentences can be combined in an almost infinite number of
ways, and carry hidden semantic meanings like sentiment, humor and sarcasm. Therefore
we attempt to make computer models which can make some sense of what we are saying
and how we are saying it.

Analyzing sentences by decomposing them to determine structure and each word’s
category in part of speech (POS) were considered important areas of focus in earlier re-
search, but efficient part-of-speech tagging was difficult to attain due to the ambiguity
of words in our language. Research up until the 1980s mostly consisted of generating
complex hand-written rule-sets, before machine learning algorithms started to get trac-
tion. The first algorithms employed techniques like decision trees ultimately resembling
the practice of using hand-written features, but the introduction of statistical modeling to
the field marked a revolution and much better performance. Machine learning approaches
using probabilistic modeling greatly helped alleviate the problem of word ambiguousness,
and increased robustness, especially when encountering new or misspelled words. Hidden
Markov models are examples of successful statistical introductions and are still used to
date.

Language models are probability distributions over sentences, assigning a probability
to each word in a sentence which allows comparison of relative likelihood of sentences.
It also gives words a sense of context in the text. The unigram model is the simplest way
of generating these, assigning each word with its own probability of occurence in the text.
N-grams estimates the probability of a word based on the probability of preceding words;
its context. Skip-gram is used by the word embedding models employed in this thesis, and
tries to predict its context (preceding and succeeding words) from the word itself. The
models have proven useful for query likelihood models and machine learning approaches
to NLP problems, but are affected by the curse of dimensionality. In this case meaning that
the number of possible sentences from combinations of words grows exponentially when
vocabulary increases.

The success of artificial neural networks the past years on detecting patterns in large
amounts of information and the proliferation of big data has sparked interest in deep learn-
ing approaches to NLP problems. Among these are neural language models, who avoid
the curse of dimensionality by using a distributed representation of words as vectors in a
continuous space and training an artificial neural network to predict the context of a target
word. The process of vectorizing words is called word embedding and is discussed in the
next section.

3.2.1 Word Embedding
Word embedding is a set of NLP techniques for mapping words into vectors consisting
of real numbers. These are called word vectors, the mapping is performed in such a way
that similar words have similar representations, so that semantically similar words end
up in close proximity of each other in the semantic vector space. Techniques to perform
word embedding are roughly divided into two groups; count-based methods and predic-
tive methods. A simplified explanation is that the count-based method use word count
statistics to look at co-occurences between words, and use them in the vector generation
process. The predictive methods frame the process as a supervised task where the goal
is to train an ANN to adjust the weights such that it maximizes probability of outputting
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Figure 3.4: Words as points in a semantic vector space. Lines between them display relationships.

the correct context of the word as it was observed in the text. These predictive methods
are also called neural probabilistic language models and were introduced by Bengio et al.
(2003). The count-based embedding first generate vectors of a high dimension, then use
dimensionality reduction techniques afterwards. The predictive methods represent words
as vectors of word features which are actually the weights of the hidden layer in the ANN.
Using this continuous distributed representation generates vectors of far fewer dimensions
than preceding techniques, often in the tens or hundreds. Baroni et al. (2014) demonstrate
the computational superiority of these approaches in their paper, justifying the hype of
these models the past few years.

Word2vec

In 2013, then a researcher at Google, Tomas Mikolov together with his team introduced
a set of models for word embedding known as Word2vec (Mikolov et al., 2013a). While
several techniques of predictive word embeddings had been around for a while, these mod-
els were revolutionary in terms of computational efficiency, and opened opportunities for
commercial use. Word2vec made it possible to train embedding models in a swift manner
from huge corpora of unlabeled text with a great number of dimensions. In addition to
their group of models, Mikolov et al. conducts an analysis on the properties of generated
vectors, discovering that they were able to capture both syntactic and semantic relation-
ships between words to such a degree that vectors can be used for logic reasoning. In their
paper, examples of these relationships are illustrated by algebraic operations. For example,
vector(Uncle) − vector(Man) + vector(Woman) will produce a vector very close to
vector(Aunt). Figure 3.44 shows a number of words as points in a space, and the lines
between them display the relationships between them.

Word2vec’s architectures are three-layer shallow neural networks consisting of an in-

4http://www.samyzaf.com/ML/nlp/nlp.html
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Figure 3.5: Continuous Bag-of-Words and Skip-gram where w(t) denotes the target word, and
w(t± n) denotes the n words to each side of the target word.

put layer, a hidden layer (also called a projection layer) and an output layer. When iterating
over sequences of text, Word2vec make use of a context window of a chosen size. The con-
text window signifies the number of words to each side of the target word. Then, there are
two different architectures which decide how Word2vec uses the words from the context
window in the process of learning representations. The two are named continuous bag-
of-words (CBOW), and continuous skip-gram which in all essence is the inverted version
of CBOW. The CBOW approach utilizes all words from the context window, calculates
their average and learns to predict the target word from them. Skip-gram on the other
hand learns to predict the context words when given the target words as input. Figure 3.5
depicts an intuitive illustration of these architectures. While CBOW is a fair bit quicker to
train and has higher accuracy for frequent words, it is not so good at predicting infrequent
words. What is different about skip-gram is that it treats each target-context pair as a new
observation, which ultimately works better for infrequent words. Another advantage that
comes with treating each target-context pair as a new observation is that it works well even
with relatively small amounts of training data, since it generates more training instances.
Word2vec also has two separate training algorithms. The hierarchical softmax algorithm
works best for infrequent words, while negative sampling is best suited for lower dimen-
sional vectors and works best for frequent words.

These Word2vec models display excellent results, and the authors express excitement
towards using them to help solve difficult NLP tasks like machine translation. They also
mention the possibility of providing automatic extension for knowledge bases. For this
thesis, we will utilize prediction tokens from the image classifier and retrieve word vectors
of closest cosine similarity. The idea is to exploit the semantic and syntactic relationships
that the models are able to capture, hopefully to increase the prediction accuracy. A weak-
ness to Word2vec worth noting that is relevant to this work, is that any word not in the
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vocabulary of a model will return an empty set of nearest words. Other word embedding
models exist which also show great results on these tasks (e.g. GloVe5), but given the ram-
ifications of this thesis, software compatibility and availability of pre-trained models, the
decision fell on Word2vec.

3.3 Tag Prediction - Challenges
Images have become an increasing part of UGC the past years, and as a result, interest
in tag prediction and automatic image annotation is greater than ever. The large online
photo collections can only reach their full potential if they can be searched and retrieved,
which calls for effective categorization methods. Given the increase in performance of
recommendation systems and the inviting marketing prospects that user modeling offers,
predicting tags from user content is also in high demand. However, there are multiple
challenges to consider when trying to achieve accurate tag prediction. As the literature
survey of Chapter 2 shows, the two main difficulties on the subject are tag noise and the
semantic gap between objective and subjective.

3.3.1 Noise
In most Social Media environments the users themselves are responsible for tagging con-
tent. The act of tagging one’s content should be self-encouraging in itself, as it allows for
easier retrieval at a later point in time, but this is not always the case. A big problem of
tasking users with the responsibility of tagging content is that they often simply refrain
from tagging their content at all. Although user-generated tags may not always be accu-
rate or make sense, the presence of tags are always favored to an absence. Garrigues et al.
(2016) comment on this in their paper, with their own analyses showing that missing tags
are the most common type of noise. So what motivates users to tag content? The tagging
behavior of users is linked to several things. According to Strohmaier et al. (2010), tagging
motivation can at least be divided into categorization and description. Users motivated by
categorization practice high-level feature tagging for making retrieval at a later point in
time as easy as possible, while those motivated by description try to most accurately de-
scribe the content. Those motivated by the latter often use a higher number of tags as
well, which makes sense since the level of description should increase with the amount.
Another study on content tagging by Nov et al. (2008) looks at what motivates photo tag-
ging activity on Flickr. They divide motivations into organization and communication in
a similar fashion to Strohmaier et al. (2010), with "communication" corresponding to "de-
scription" in Strohmaier et al. (2010). They put these motivations in context of audience
(self, family & friends, public), finding that having a public audience correlates positively
to level of tagging, and that "communication" is the strongest motivator of the two cat-
egories. The "self" also displays a correlation, although not as strong as the "public".
"Family & friends" did not show any significant correlation, which might be explained
from the fact that "communication" is the strongest motivator. It is reasonable to think
that the describing of content to family and friends is carried out verbally or through chat
rather than image tags.

5https://nlp.stanford.edu/projects/glove/
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Figure 3.6: im46 from the MIRFLICKR dataset and its belonging tags.

In addition to missing tags, incorrect tags are a commonly encountered noise type.
As users are tasked with the tagging, cases where personal associations to image content
ultimately results in tags that have neither categoric nor descriptive sense are inevitable.
A person may be biased toward a certain group of tags. Some users belong to specific
communities which practice systematic tagging of photos using a sort of tagging profile
which reflects on their environment, almost similar to branding. The fitness community
on Instagram is an example of such a community, with images often dominated by tags
such as "wod" (workout of the day), "fitness", "beastmode", "nopainnogain" (no pain no
gain) which are not necessarily categorically or descriptively related to image content.
Influencers and inspirational figures may also cause this type of tagging behavior.

It is apparent that the span of user concepts is enormous, and that their tagging vocab-
ulary is consequently of equal proportions. Not only might personal associations dictate
tagging behavior, tags also map to several different real-world concepts, making them
highly ambiguous. A simple example is "break", which has over 70 different meanings6.
Figure 3.6 illustrates the noise in user tags. Even though the photo only contains a pair of
feet and slippers, it includes tags like "toronto", "50mm" and "explore". The difficulty in
predicting these types of tags is not hard to understand.

So how does one deal with this noise? Some research works attempt to model the noise.
Xiao et al. (2015) for example introduce a probabilistic model which explicitly infers
non-noisy tags from noisy when training the CNN. An option is to disregard the noisy
tags, but since they are of such numbers, the training data would be largely incomplete.
Another interesting and rather successful approach has been to train classifiers on these
user-generated tags. Garrigues et al. (2016), Izadinia et al. (2015) and Park et al. (2016)
which were included in the literature survey are pronounced examples. An additional
obstacle to consider with this approach is deciding on a vocabulary. The amount of unique
tags in datasets with user-generated tags could potentially give vocabularies in the tens of
thousands, and training classifiers of that dimension is not easily feasible. Finding what
subset of these tags are most relevant is clearly the solution, but a difficult one to achieve.

6https://muse.dillfrog.com/meaning/word/break
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3.3.2 Dataset Gap
Since image classification, tag prediction and image annotation methods rely on ImageNet
training, Izadinia et al. (2015) conducts an analysis on the Yahoo Flickr Creative Commons
(YFCC) and ImageNet datasets, and do some comparisons. What quickly became clear is
that there is a large semantic gap between user concepts and those included in ImageNet.
YFCC is gathered from the photo sharing site Flickr, and the analysis revealed that almost
half of the most commonly used Flickr tags are missing from ImageNet. Even some of
those included are poorly represented and would make poor training data. This clearly
demonstrates that even if ImageNet gives excellent results for objective image classifica-
tion and object recognition tasks, it makes for poor deployments to user platforms like
Social Media. Missing concepts are from categories like activities, places, emotions, art
and culture, scene types and so forth. Some of these missing categories are included in
style (Murray et al., 2012; Karayev et al., 2013) and scene recognition (Xiao et al., 2010;
Zhou et al., 2014) works.

A possible remedy to this conceptual gap is to augment or generate new datasets which
make better models for consumer deployment. This is as earlier discussed a costly oper-
ation in terms of time and labor, and other solutions have yet to appear. This thesis’
approach to the problem is to use a word embedding model to attempt to bridge the con-
ceptual gap to some degree.
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Chapter 4
Approach

This chapter walks the reader through the approach of this thesis, detailing each part of
the process of performing tag prediction. The frameworks used for the implementation are
briefly discussed in the first section. Section 4.2 entails the image classification part where
visual features are extracted from image content, and some technical details about the
pre-trained model. Section 4.3 explains some technical details about the word embedding
models and how they are utilized. The final section demonstrates how the tag prediction
itself is performed.

4.1 Frameworks

4.1.1 TensorFlow

TensorFlow1 (Abadi et al., 2015) is an open source software library for numerical compu-
tations founded by Google. It can run on multiple platforms and both central and graphics
processing units (CPUs and GPUs), either distributed or non-distributed. The manner of
which TensorFlow executes computations helps in making machine learning and compu-
tation in deep neural networks more comprehensible. Code is written to create a compu-
tational graph, a data structure for describing computations and then executing it. These
graphs make saving, loading and executing models an easy task.

For this thesis TensorFlow is used to load the Inception-v3 model as a graph, and
execute Tensors on it. The Tensors are a data type and TensorFlow’s own generalization
of n-dimensional arrays. Images are read as bytes and created into Tensors. A small
drawback of using TensorFlow is that utilizing the graphics processing unit (GPU) is not
currently supported for Java when running on a Windows 10 operating system. Inferral on
the Inception-v3 graph can be performed about three times as fast with a GPU instead of
a central processing unit (CPU).

1https://www.tensorflow.org/

29



Chapter 4. Approach

4.1.2 Deep Learning for Java
Deep Learning for Java2 (DL4J) is a Java toolkit for deep learning, which supports a large
number of algorithms. It relies on the computing library ND4J which is an equivalent to
the numpy library for Python. It can be used for developing and training neural networks,
and perform various computations and clustering. For this thesis DL4Js Word2vec models
are used to train, load and interact with word embedding models.

4.1.3 Apache Maven
Apache Maven3 is a project management tool which can handle project builds, and the
import of libraries and their models simply by adding a few lines of text. Maven uses
an XML file called project object model (POM) for managing dependencies and project
configurations. New libraries are downloaded from the Maven Central Repository after
they are added to the as dependencies in the POM.

4.2 Image Classification
One of the objectives of this thesis is to predict tags from image visual content. Image
classification using convolutional neural networks (CNNs) is currently the state-of-the-art
technology for extracting visual features and classifying them to labels readable for hu-
mans, and therefore the choice of this thesis. This section entails the architecture and
technical details of the chosen pre-trained model Inception-v3, and the classification pro-
cess in detail from image input to label output and result storage.

4.2.1 Inception-v3
Inception-v3 was presented in Szegedy et al. (2015), and is a deep CNN. The first version
of Inception got its name from introducing a "network within a network" style implemen-
tation in the architecture. What this means is that in a layer of nodes, each node is itself
a smaller neural network. The Inception architectures are iteratively developed, and what
is new for Inception-v3 are a few discoveries on how to scale up deep CNNs without
causing too much increase in computational complexity. In an iterative process, Szegedy
et al. discover the usefulness of replacing larger convolutional filters with a network of
smaller ones. An example is a filter of size 5 × 5 = 25 computations, can be replaced by
a mini-network of two layers of 3× 3 filters, ultimately yielding only 3× 3 + 3× 3 = 18
computations. Eventually it was discovered that any m ×m feature can be replaced by a
multi-layer network of asymmetric n × 1 filters. In practice, this works best for medium
sized filters with m between 12 and 20, and dramatically reduces computational complex-
ity. The resulting proposed architecture is a 42 layer deep network combining the various
principles new to Inception-v3 and demonstrates 3.5% top-5 error and 17.3% top-1 error
on the ILSVRC 2012 (Russakovsky et al., 2015) classification. The network was trained
on the ImageNet dataset using the stochastic gradient descent (SGD) training algorithm.

2https://deeplearning4j.org/
3https://maven.apache.org/
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Figure 4.1: A screenshot of the table from Szegedy et al. (2015) detailing the Inception-v3 archi-
tecture outline.

Figure 4.1 shows the layer distribution of the proposed architecture. The next-to-last layer
is a feature vector of 2048 dimensions, which is classified into 1000 categories using a
softmax function. The softmax function is a generalization of binary logistic regression
that allows a probability distribution over multiple classes.

Despite that many commonly tagged concepts are missing from the 1000 ImageNet
categories, the precision to computational cost ratio of Inception-v3 makes it an ideal fit,
especially considering the limitations of this thesis which inhibits training of a new model.

4.2.2 Classification

Here the method of obtaining the image classification predictions is detailed. The clas-
sification process starts with loading the pre-trained Inception-v3 model to a TensorFlow
Graph object. Images are then converted to Tensors and executed on the graph one at a
time. The images are processed through the network, and probabilities are distributed by
the softmax function. The probabilities are sorted and the desired top n predictions are
extracted. For practicality and simplicity this thesis will adopt partial matching in the
evaluation stage as introduced by Li et al. (2015). This means that phrases are split up and
treated as single words. Several of the categories in ImageNet are phrases, and therefore
some light pre-processing has to be performed on the predictions. Hyphens and apostro-
phes are the only two signs occuring among the 1000 categories, and are simply replaced
by white spaces. This preserves the semantic meaning of the words. For example, "lady’s
slipper" becomes "lady s slipper", and "table-tennis" becomes "table tennis". The single
characters left by replacing apostrophes with white spaces are unproblematic, as they are
disregarded by the preceding system components. After the light pre-processing, predic-
tions are written to a file in local storage. In Figure 4.2 the reader can see a classified
image along with its top 5 predictions. In Figure 4.3 is a diagram illustrating the image
classification component.

Since this work does not deal with real-time processing, there are no specific require-
ments of computational speed. However, classifying an image using even a low budget
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Figure 4.2: im1083 from MIRFLICKR with the top 5 predicted tags. "Electric guitar" is split into
separate words.

Intel Core i5-5200U laptop CPU takes little more than half a second (even faster with an
equal quality GPU). On Flickr, an average of 1.63 million photos were uploaded each day
in 2017. This roughly equates to 19 every second. Thus, the classification speed equals
around 10% of the photo stream even using a low budget laptop setup, which should be
satisfying enough for real-time applications.

4.3 Word Embedding

As previously discussed in Chapter 2 and Chapter 3, there are two major challenges when
predicting tags for user-generated content. Users’ personal associations, incorrect tagging
and the high degree of tag ambiguity lead to a high degree of noise. The other problem is
the large conceptual gap between today’s benchmark dataset ImageNet and users’ wide in-
terest span. As Izadinia et al. (2015) points out in their analysis almost half the most com-
monly used Flickr tags are indeed missing from the 1000 categories ImageNet vocabulary.
This thesis will try to bridge some of this conceptual gap by utilizing word embedding
models to expand the initial predictions from the classifier. Hopefully this method will
help us predict tags and concepts far beyond the initial 1000 categories. Another advan-
tage of using word embedding models in this way, is that when a tag correctly predicted
from the classifier is used to extract word neighbors, chances are that all are semantically
relevant if not an exact match. Training image classifiers of thousands of categories is
close to impossible with poor computational setups, but the efficiency of Word2vec en-
ables training of high-dimensional word embedding models from large amounts of text
even on low budget hardware. This section details the word embedding models used for
this approach, how they are trained, their strengths and possible weaknesses.
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Figure 4.3: The image classification component.

4.3.1 Models

To help alleviate the problem of missing concepts, three different models are utilized in
our approach. The first described is a pre-trained model, while the two others are trained
for this thesis.

GoogleNews-SLIM

GoogleNews-vectors-negative300-SLIM4, referred to as GoogleNews-SLIM in this thesis,
is a narrowed down version of the enormous GoogleNews model trained by Mikolov et al.
(2013b). The original GoogleNews model was trained on around 3 billion and had a
vocabulary of 3 million words, making it 1.6 gigabytes (GB) in size. In models as large as
these, loading and lookup times are slow. This is inconvenient for the work in this thesis,
since a lookup has to be performed for each prediction token. The GoogleNews-SLIM
however is downsized by crossing it with dictionaries; several english and one urban. The
resulting 300-dimensional model has a vocabulary of 299,567 words in a 270 megabytes
(MB) compressed Word2vec format, providing much faster loading and lookups. This
model has a vastly rich vocabulary, to the point that it can almost serve as a dictionary.
Because of this, retrieved neighboring words will almost always be semantically related
to the input word, and will rarely contain nonsense. An example of this can be viewed
in Table 4.2, where 8 of the 10 retrievals are indeed variations of the noun itself. This
attribute can be both a strength and a weakness. On one hand the words will almost always
be related. On the other, the number of categories (given the large vocabulary) may cause

4https://github.com/eyaler/word2vec-slim
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it to be too specific and thus limit the span of concepts that can be reached when expanding
predictions.

Flickr25K

To experiment, two models are trained for this thesis. The first is Flickr25K, a model
trained on tags from the entire MIRFLICKR dataset. The tag files were iterated through
to produce one large corpus of text, with the tags of each image treated as one sequence or
sentence. The idea is that the model should be able to capture the relationships between
tags, and learning what tags are used in concert. This way the model will hopefully find
tags that are likely to appear together with the input word. The resulting text corpus con-
sists of 220,872 words, with 63,779 of them unique. Training was accomplished using the
skip-gram algorithm, as it perfectly matches the idea of predicting contextual tags. Min-
imum word frequency was set as 3 (words occuring less than 3 times are disgarded from
vocabulary). A variety of configurations were tested for training and can be viewed in
Table 4.1. The context window is denoted by CW in the table, while epochs are iterations
over the whole corpus. Iter is the number of iterations over each sequence. Learning rate
was set to 0.05 and the number of dimensions to 300 for all configurations.

Config CW Epochs Iter
1 5 30 1
2 5 50 1
3 5 30 3
4 5 50 3
5 8 30 1
6 8 50 1
7 8 30 3
8 8 50 3

Table 4.1: Training configurations

The various models were evaluated on a small subset of MIRFLICKR not used in the
final evaluation. The model using configuration 5 proved the most accurate, and was used
for training the final model. Vocabulary of final model is 11,707 words, and with a size of
only 62 MB. A 500-dimensional model was also attempted, but gave worse results and was
discarded. Given the small size, both loading the model and queries are done extremely
fast. Loading only takes 3-4 seconds, and queries can be done in 15 ms. In contrast,
loading GoogleNews-SLIM takes about 25 seconds, and queries as much as 300 ms.

There are advantages to training the semantic space on text from a specific domain.
Since Word2vec is great at learning context, the model may discover the syntactic rela-
tionship that tags have in the domain, which can be quite different from words in a normal
text or news articles as the pre-trained model is trained on. That being said, the training
data is made up of user-generated tags. The noise present in these are high because of am-
biguities, individual associations, and incorrect tagging as discussed in Chapter 3. A few
of the most irrational tags will be excluded given the minimum word frequency, but other
are eventually encountered. The large variety and strange contexts of user tags is evident
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in Table 4.2. An example is for the not-so-common word "seashore" which GoogleNews
returns words like "coastline", "beachfront" and "boardwalk", while Flickr25K returns
"hackspot", "wideaspect" and "seaside".

As this model was trained on tags from the validation dataset it is somewhat biased
towards the data. However, note that fitting the model this way is actually highly compa-
rable to training a model on for example recent data to discover and better predict trends.
Therefore this bias should not in any way be discrediting towards the results.

Flickr368K

The second model, Flickr368K, is trained on a subset of the Flickr tags used by Li et al.
(2015) for their word embedding training. With the whole corpus being a little too large
for this thesis, a subset containing the first 368,575 sequences were chosen for training. As
in the corpus used to train the first model, each sequence corresponds to the tags belonging
to an image. The text contains 2,861,692 words and vocabulary size of the final model is
104,995 words. The same training configuration was used for this model, with 30 epochs,
8 word context window and a single iteration for each sequence. While this model is also
trained on user-generated tags, the training corpus is much larger than Flickr25K and pro-
vides a vocabulary of almost 9 times the size. This increased number of categories should
make it more specific than Flickr25K, still keeping the advantage of better representing
user concepts than GoogleNews-SLIM. Loading the model takes around 15-20 seconds,
and queries take approximately 100 ms.

Example Queries

To demonstrate the difference in vocabularies, Table 4.2 displays the retrieval of the 10
closest neighbors of 3 word queries for each of the word embedding models. "Coffee" and
especially "sun" are commonly used words. "Seashore" however is relatively infrequent,
something that becomes apparent in the retrievals.

4.3.2 Neighbor Vector Extraction

After loading a pre-trained model, several functions become available. The one of most
interest to this thesis is for retrieving the n most similar words. Similarity of the vectors
is computed by cosine similarity, meaning the cosine value of the angle between them
in the semantic space. Cosine of 0◦ is 1, so words that are exactly alike will have cosine
similarity of 1. This component of the system extracts the desired number of nearest words
from each prediction generated by the image classification process. Predictions for each
image is iterated over, and the word embedding model is queried with each prediction for
finding the nearest words. Classification predictions of length 1 and 2 are ignored, since
predicting tags of this length is of no particular interest. When querying models trained on
huge corpora that is not user-generated, the nearest word is sometimes the word itself only
with a capital first letter. These duplicates are removed. The predictions and n nearest
words for each image are then merged and written to a new file in local storage. Figure 4.4
shows a diagram of the process.
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Figure 4.4: Nearest words extraction process.

Figure 4.5: Illustration of the process of discovering predicted tags. Words highlighted in green
indicate matches.

4.4 Tag Prediction Matching
The final process of the system is matching the augmented predictions and nearest words
against the tags of the images they were generated from. As tags for every image are in
separate files, the files are read from storage and written to a new file, with the tags of an
image per line. Note that the tag files and image files are read from storage in the same
order, and therefore get corresponding line numbers. Both the merged predictions file and
the tag file are then read. Each word per line in the merged predictions file is evaluated
against the line of tags to detect matching words. The resulting number of matches are
successfully predicted tags. Figure 4.5 depicts the process.
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Tag Model 10 nearest words

coffee
GoogleNews-SLIM

coffees, Coffee, cappuccino,
espresso, java, decaf, latte, Star-
bucks, expresso, smoothie

Flickr25K
latte, breakfast, espresso, cof-
feecup, caffeine, coffeehouse, mac-
chiato, nutella, latteart, cup

Flickr368K
espresso, latte, cappucino, cafe,
coffeeart, caffeine, coffeeshop, lat-
teart, coffeecup, mocha

sun
GoogleNews-SLIM

sunlight, sunshine, rays, sunbeams,
sunny, shade, suns, starlight, moon-
light, sunburn

Flickr25K
sunset, soleil, sol, sunrise, trees,
clouds, sunbeam, silhouette, la-
keerie, efsmmfusm

Flickr368K
sunshine, sky, sunset, clouds,
sunny, sunlight, cloud, sand, beach,
shadow

seashore
GoogleNews-SLIM

beach, beaches, seashores, coast-
line, shoreline, beachfront, dunes,
Seashore, coastal, boardwalk

Flickr25K
hackspot, fadzly, wideaspect, fad-
zlymubin, shutterhack, seaside, fa-
cial, unprocessed, orang, beach

Flickr368K

wildsingapore, shore, raffleslight-
house, betingbronok, intertidal,
coastal, marinelife, echinodermata,
bywydgwylltcymru, bydnatur

Table 4.2: Example queries of "coffee", "sun" and "seashore" showing 10 nearest words from each
model.
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Chapter 5
Experiments

This chapter describes the experiments of this thesis, meaning the details of how the pro-
posed approach is evaluated. The dataset chosen for evaluating the tag prediction ability
is discussed in the first half of the chapter. The second half entails details surrounding the
automated evaluation, and describes the chosen performance measures.

5.1 Dataset
To perform evaluation of tag prediction or image annotation systems, access to a dataset
is needed. If time is of an abundance, one can choose to gather sufficient amounts of
data. This can sometimes be difficult, especially in regards to user-generated content.
This content is often protected by strict licenses, and Social Media platforms such as In-
stagram have substantially limited the amount of data available through their application
programming interface (API). Pre-made datasets can be found on the Web, although ac-
cess to these may also be restricted and hard to gain. The dataset chosen for this thesis is
MIRFLICKR250001 Huiskes and Lew (2008), partly because of its availability. It can be
downloaded without any specific permission or access from their website.

MIRFLICKR comes in two sizes; 25000 and 1 million (1M). For this thesis, the MIR-
FLICKR25000 is best suited. It consists of 25000 images gathered from the Social Media
platform Flickr, all under the Creative Commons license which is one of several public
copyright licences that allows free distribution of contents. The set comes with several
additions. As well as the user-generated tags, images are manually annotated according
to concrete visual concepts. The last is exchangable image file format (EXIF) metadata,
which describes things like camera information and settings, image information, time and
location.

The creators have three special focuses in mind in regards to MIRFLICKR. The first is
that it should be open and easily available. This they accomplish by having easy download
access to both metadata and image files. They also want the dataset to be interesting. With

1http://press.liacs.nl/mirflickr/

39



Chapter 5. Experiments

this goal in mind, all images that are selected have a high rating of interestingness. Inter-
estingness is a constantly changing metric used on Flickr for how interesting something is,
and is composed by emphasizing on who (what users) comments, clicks and favorites the
content. Practicality is the final characteristic they strive for, and is achieved by making
metadata available in intuitively structured easy-to-access text files. Although primarily
aimed at the image retrieval research community, these are very beneficial attributes for
this thesis as well.

For the images of the dataset, the average number of tags is 8.94. This is a fair amount,
and greater than the dataset used in Denton et al. (2015) (2.7), but fewer than in Park et al.
(2016) (15.5). Denton et al. (2015) also restrict their evaluation subsets to include only im-
ages posted by English speaking countries, which should yield an increase in performance
measures. No such restrictions will be enforced on the evaluation subset for this thesis.
Most of the tags included are english, but there is a good amount of foreign as well. This
will naturally cause a decrease in our performance measures to an unknown degree. Even
though the average number of tags per image is decent for MIRFLICKR, the problem of
the conceptual gap between ImageNet and user tags is evident here. Table 5.1 shows the
distribution of the 20 most common tags in MIRFLICKR25000.

Tag Frequency
explore 1483

sky 845
nikon 805
2007 794
blue 761
bw 737

canon 686
water 641
red 623

portrait 623
night 621
nature 596
sunset 585
green 569
clouds 558
macro 547
light 516

flower 510
abigfave 469

white 431

Table 5.1: The distribution of the 20 most common tags in MIRFLICKR25000.

Among these, none are represented as classification categories in ImageNet. The hope
is still that the semantic and syntactic relationships learned by the word embedding models
from this domain will enable us to predict some of these categories. Although none of the
20 most common tags are present, a number of subcategories are. For example, "flower"
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itself is not a classification category, but "sunflower", "wallflower", "strawflower", "corn-
flower", "daisy" and more specific flower types are included.

User-generated tags are included in two forms in the dataset. One is a set of raw tags,
and the other is "cleaned up" slightly by a pre-processing mechanism utilized by Flickr.
In the pre-processing, the raw tags are converted to lower case, and phrases are joined
together as one tag by removing white spaces. When matching predictions and tags, this
thesis utilizes the pre-processed tags. Although phrases are likely to provide a few more
matches, the amount is considered too insignificant in regards to the convenience of using
the "cleaned up" tags.

5.2 Evaluation
Evaluating the art of tag prediction is both straightforward and difficult, depending on the
context. The strict presence of accurately predicted tags can be easily measured and used
to compute counting-based ratios. However, imagine the case of predicting tags for tag-
based user profiling. Even if a prediction is not a perfect match for a tag, it may very well
be semantically similar and still considered relevant. For example, it might belong to the
same parent category. If the degree of relevance is high enough, it could be highly usable in
applications such as content recommendation. With this thought in consideration, a short
qualitative evaluation of the degree of relevance of predicted tags is performed in addition
to the quantitative performance measures. This also adds a new dimension to evaluating
the performance of the word embedding models. In the research field of user-generated
tag prediction, performance measures are generally quite low, reinforcing the difficulty of
the task.

The evaluation of the system of this thesis will be conducted on a subset consisting of
1000 MIRFLICKR images. This is considered a large enough amount to generate repre-
sentative results.

5.2.1 Performance Measures
For quantitative evalution, performance measures common to the research field of tag
prediction and image annotation are chosen. Precision, recall, F-measure and accuracy is
computed for the whole evaluation subset.

To establish a result baseline, the first experiment is predicting tags using only the
top five image classification predictions. However, a classification prediction is discarded
from the five if the probability is below 1%. The reason for not using more than five of the
image classification predictions is that the probability of it being correct heavily decreases
after the first five. Several other configuration setups are chosen for the experiments. Given
the novelty and difference of our approach, performance measures are not looked at for a
specific number of tags like other similar works. This is not a problem, since nearly all
works test compute their performances differently, and evaluate on different datasets. Most
works produce a baseline which they compare their results to, and seem to emphasize these
as much as those of other works. Because experiments and results in the research field
vary this much, results in comparison to the chosen baseline are just as interesting as those
of other works. This thesis evaluates combinations of top predictions and neighboring
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words of different numbers. This will help determine what number of image classification
predictions should be utilized in the nearest word extraction, and the amount of nearest
words to retrieve per prediction. The following setups are used in the experiments:

• Top 1 prediction + 10 nearest words

• Top 2 predictions + 2 nearest words

• Top 2 predictions + 5 nearest words

• Top 3 predictions + 2 nearest words

• Top 3 predictions + 5 nearest words

• Top 5 predictions + 2 nearest words

• Top 5 predictions + 5 nearest words

The experiments are performed for each of the three word embedding models, and
performance measures are computed for every setup. Measures are only computed for
images with a non-zero set of tags.

Precision, or the positive predictive value, is the fraction of the number of true positives
over the number of true positives and false positives. This metric can be said to signify
the degree of quality of results. In the case of this thesis, precision equates to the number
of correctly predicted tags over the total number of predicted tags. Let Predictions(xi)
denote the set of predictions and nearest words predicted for the ith image x. Tags(xi) is
the set of tags belonging to the ith image x. Let N denote the number of evaluation images
with a non-zero set of tags. For the whole evaluation subset of N images this becomes:

Precision =
1

N

N∑
i=1

|Predictions(xi) ∩ Tags(xi)|
|Predictions(xi)|

Recall is the fraction of true positives over true positives and false negatives among the
images, and signifies completeness of results. For this thesis this equates to the number of
correctly predicted tags over the number of tags belonging to the image, and is indicative
of the ability to span the width of concepts in user-generated tags. For the whole evaluation
subset of N images this becomes:

Recall =
1

N

N∑
i=1

|Predictions(xi) ∩ Tags(xi)|
|Tags(xi)|

F-score is the harmonic mean of precision and recall, and the trade-off between the
two. F-score over the whole evaluation subset of N images is:

F =
1

N

N∑
i=1

2(Precision(xi)×Recall(xi))

Precision(xi) +Recall(xi)

Accuracy is the final metric computed, and is in this case defined as the fraction of
images where at least one tag is correctly predicted. In contrast to precision, recall and F-
score, accuracy is especially interesting since it is not affected by how many tags an image
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has. For this reason, and that it indicates the number of matches achieved, it is arguably
the most relevant measure to this thesis along with. Accuracy for an image xi is given by:

Accuracy(xi) =

{
1 if Predictions(xi) ∩ Tags(xi) 6= ∅
0 otherwise

Average accuracy over the whole evaluation subset is:

AverageAccuracy =

N∑
i=1

Accuracy(xi)

N

Together these performance measures will be a help to better interpret results. Instead
of focusing on a single metric, this combination allows better understanding of how the
different setups affect the produced results.

43



Chapter 5. Experiments

44



Chapter 6
Results and Discussion

This chapter contains results from the experiments described in the previous chapter. They
are presented in easy-to-read tables, and discussed in the preceding section. In the final
section, a recapitulation is performed to give a better overview of key results.

6.1 Results

Since three separate word embedding models are evaluated in such a number of experi-
ments, results for each model are presented separately. The results considered most sig-
nificant are highlighted and summarized in the final section of the chapter.

6.1.1 GoogleNews-SLIM

Table 6.1 shows results of the pre-trained GoogleNews-SLIM word embedding model for
the various configurations described.

Experiment Precision Recall F-score Accuracy
Baseline 5.291 1.720 2.596 12.93%

Top 1 + 10 nearest 1.927 2.331 2.110 14.96%
Top 2 + 2 nearest 3.064 1.876 2.327 14.28%
Top 2 + 5 nearest 2.095 2.338 2.209 16.53%
Top 3 + 2 nearest 2.797 2.031 2.353 15.41%
Top 3 + 5 nearest 1.916 2.465 2.156 17.32%
Top 5 + 2 nearest 2.643 2.249 2.430 17.09%
Top 5 + 5 nearest 1.824 2.745 2.192 19.57%

Table 6.1: Results for GoogleNews-SLIM in comparison to baseline.
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6.1.2 Flickr25K
These are the results of the Flickr25K word embedding model trained for this thesis on
the tags from the 25,000 images of MIRFLICKR. The following table shows the results in
comparison to the baseline.

Experiment Precision Recall F-score Accuracy
Baseline 5.291 1.720 2.596 12.93%

Top 1 + 10 nearest 3.005 2.756 2.876 16.42%
Top 2 + 2 nearest 3.510 1.828 2.404 12.14%
Top 2 + 5 nearest 2.628 2.365 2.489 14.28%
Top 3 + 2 nearest 3.489 2.089 2.613 13.83%
Top 3 + 5 nearest 2.609 2.709 2.658 16.08%
Top 5 + 2 nearest 3.379 2.254 2.705 15.29%
Top 5 + 5 nearest 2.534 2.961 2.731 18.33%

Table 6.2: Results for Flickr25K in comparison to baseline.

6.1.3 Flickr368K
The Flickr368K results can be seen in Table 6.3, the word embedding model trained for
this thesis on a subset of the tags used by Li et al. (2015) in their word embedding training.
The subset consisted of tags from approximately 368,000 Flickr images.

Experiment Precision Recall F-score Accuracy
Baseline 5.291 1.720 2.596 12.93%

Top 1 + 10 nearest 2.547 2.966 2.741 17.43%
Top 2 + 2 nearest 3.895 2.479 3.030 16.64%
Top 2 + 5 nearest 2.638 3.126 2.861 18.78%
Top 3 + 2 nearest 3.668 2.718 3.122 18.33%
Top 3 + 5 nearest 2.482 3.448 2.886 20.92%
Top 5 + 2 nearest 3.509 3.008 3.239 20.80%
Top 5 + 5 nearest 2.347 3.830 2.911 24.07%

Table 6.3: Results for Flickr368K in comparison to baseline.

6.2 Discussion

6.2.1 Performance Measures
As mentioned in Section 5.1, the significant number of common tags in the dataset missing
from ImageNet produces fairly low valued results in the baseline. Despite this, the preci-
sion of the baseline is the highest among the experiments, and surprisingly not that much
lower than in Izadinia et al. (2015) (5.291 vs. 8.0), although they both train and evaluate
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Figure 6.1: A graph displaying F-score to Accuracy. The F-score is displayed on the x-axis, and
accuracy on the y-axis.

their CNN classifier on user-generated tags. The high precision in the baseline is caused
by the low number of predictions (five) for that setup. The precision of the baseline would
also likely drop drastically using an increased number of image classification predictions,
since that 85% of the tags predicted by top five classifications are also predicted by the
top one. The baseline also has a very low recall value, and confirms that the ImageNet
categories are poorly represented in the common user concepts. The combination of high
precision and very low recall results in a reasonable F-score, but taking the low accuracy
into consideration as well diminishes its significance.

The distribution of the results are lower than some of the other works in the field.
There are several reasons for this. In Park et al. (2016), the evaluation dataset include
nearly two times the amount of average tags per image. This will make recall values
slightly lower, but precision and especially accuracy increases. The most important reason
for the differences however, is that Izadinia et al. (2015) and Garrigues et al. (2016) both
train their classifiers on user-generated tags. Not only that, but they are trained on the
most common tags as well, and restrict themselves to a lower number of categories unlike
this approach. Results in Denton et al. (2015) are much more comparable to this thesis’,
but also restricts the number of prediction categories. What also becomes apparent by the
results is that all setups except one (Top 2 + 2 nearest in Table 6.2) significantly increases
accuracy of the tag prediction.
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In Figure 6.1 is a two-dimensional graph displaying the results to provide a better vi-
sualization. What this graph and the results tell us is that the word embedding models
all increase tag prediction ability. Of the three word embedding models, the pre-trained
GoogleNews-SLIM performs the poorest. Although it has slightly higher and compara-
ble accuracy to Flickr25K, the F-scores are notably lower. A reason for this could be
that it is too specific, as discussed in Section 4.3.1. Another is that since it is not trained
on words from the Flickr domain, it produces less relevant neighbors when a match is
made for an image compared to the other two models. Flickr25K gives similar accuracy
to GoogleNews-SLIM, but since it is trained on the domain, it seems to produce more
relevant nearest words. This is even more evident by the results of the Flickr368K model.
It provides the biggest increase in tag prediction ability, both in terms of F-score and ac-
curacy. The most apparent reason to why this model performs better than Flickr25K is
the size of the training data. While using the tags from 25,000 images in training results
in a very small and tremendously fast model, it is unable to fully capture the semantics
and syntax of the domain. The lesser amount of training data also increases risk of en-
countering out-of-vocabulary words, which results in an empty set of nearest words when
the model is queried. Flickr368K is clearly the best performing model. It has the highest
F-scores, and produces relevant nearest words to such a degree that it nearly doubles ac-
curacy in the best performing setup, yielding an increase of just above 86%. Its precision
is slightly higher than Flickr25K, but the recall values are on a different level and the main
cause of the substantial increase in F-scores. In practice, this means that when matches are
actually made, a bigger fraction of the set of tags belonging to the image is correctly pre-
dicted. The large increase in recall reveals that using a word embedding model trained on
user-generated tags greatly helps in spanning the width of user concepts that were missing
from the categories in the baseline. That this model is the best performer demonstrates
the advantage to training on domain-specific text. It also shows that a sufficient amount of
training data is necessary to properly capture syntactic and semantic relationships.

The experiments show that setups using the two nearest words mostly produce higher
F-scores than the five nearest. This is due to that when the number of predictions grow,
precision decreases. The opposite is true for recall, with the highest recall value (3.830)
achieved by the top 5 + 5 nearest words setup using the Flickr368K model. An interesting
observation is that the performance increase is substantial from the inclusion of two to five
nearest words. This means that the the third, fourth and fifth nearest words are also very
capable of producing correct matches, and displays the viability of utilizing more than just
a couple of the nearest.

6.2.2 Relevance of Predicted Tags
To add a dimension to the evaluation, a few examples from the experiments are viewed
to study the relevance of the predictions. As mentioned in Section 5.2, predicted tags can
serve a purpose (e.g. content recommendation, personal photo search) despite not being an
exact match, as long as they are semantically related to image contents. A prediction could
arguably also be considered relevant if deemed as something that could be tagged in the
image. The applications of the predicted tags are not necessarily restricted to the Social
Media domain. Therefore, examples are chosen from experiments of both Flickr368K and
GoogleNews-SLIM, as GoogleNews-SLIM generates predictions relevant for applications
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Figure 6.2: im1807 from MIRFLICKR.

GoogleNews-SLIM Flickr368K
alp alp

volcano volcano
mountain mountain

tent tent
valley valley
crag alps

pyrenean berg
volcanoes erupt
eruption lava

mountains mountains
mountainside peak

tents campsite
tented tents
valleys hills

foothills

Table 6.4: Predicted tags for im1807 in Fig-
ure 6.2. Correctly predicted tags are high-
lighted.

beyond Flickr. The examples chosen are using the highest performing setup in terms of
F-score, which is the top five image classification predictions and the two nearest words
of each (top 5 + 2) in both models.

Figures 6.2, 6.3 and 6.4 show images from the evaluation subset. In Figure 6.2 the
image contains a desert-looking mountaintop, and as evident by the predictions for the
image in Table 6.4, both models produce tags that are arguably all to some degree re-
lated to the content. As often is the difference between these models, GoogleNews-SLIM
finds multiple synonyms for "mountain" since it is more specific, while Flickr368K has a
higher chance of producing another match from its nearest words. Most of the predictions
generated are objects, and confirms the observation by Park et al. (2016)

Tag predictions for images from the two other examples seen in figures 6.3 and 6.4,
have about the same degree of relevance and demonstrates that the overall quality of gen-
erated predictions are good. Nearly all tags are either conceptually related to the image
contents, or deemed as possible tags that could be applied. A few exceptions can be seen
in tables 6.5 and 6.6. "yellow" and "blue" appear in predictions for the image in Figure
6.3, and "dweeb", "gurl" and "colemonts" for the one in Figure 6.4. The latter example
also shows a rare case of GoogleNews-SLIM outperforming the Flickr-trained model. In
the few cases where this happens, the image often includes a high amount of tags that are
objectively related to the image contents.

6.3 Summary
This chapter has reviewed and discussed the results generated by the experiments in this
thesis. As the discussion contains an abundance of insights, keeping a clear overview can
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Figure 6.3: im1894 from MIRFLICKR.

GoogleNews-SLIM Flickr368K
red red

wine wine
bottle bottle
goblet goblet
yellow yellow
blue green

wines redwine
chardonnay merlot

bottles bottles
jug alcohol

goblets glass
chalice glassware

Table 6.5: Predicted tags for im1894 in Fig-
ure 6.3. Correctly predicted tags are high-
lighted.

Figure 6.4: im1606 from MIRFLICKR.

GoogleNews-SLIM Flickr368K
running running

shoe shoe
barrel barrel
loafer loafer
jean jean
sock sock
ran run

shoes runners
footwear shoes

crude sneakers
dweeb barrels
gurl winery

denim colemonts
jeans gaultier
socks knitting

Table 6.6: Predicted tags for im1606 in Fig-
ure 6.4. Correctly predicted tags are high-
lighted.
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be difficult. Therefore, a recapitulation is included to highlight the most important points.
These are presented in the following list:

1. All word embedding models provide a substantial increase in tag prediction abil-
ity from the baseline, thus proving them able to bridge part of the conceptual gap
between user concepts and benchmark datasets for visual recognition challenges.

2. The models trained on user-generated Flickr tags give a higher increase in F-score
than GoogleNews-SLIM. The domain-specific models are able to achieve a higher
number of matches per image, and show that they better span the width of user
concepts.

3. Domain-specific data serves as a better source for training when the goal is to max-
imize tag prediction ability.

4. The best performing experiment nearly doubles accuracy (12.93% vs. 24.07%)
while still providing a higher F-score (2.596 vs. 2.911).

5. Overall quality of tag predictions are good, and can be utilized for other applications.
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Chapter 7
Conclusion and Recommendations
for Further Work

The findings of this thesis in relation to the research objectives are concluded in Section
7.1. Recommendations for further work and possible improvements to the approach are
discussed in the final section.

7.1 Conclusion

Motivated by the benefits of utilizing knowledge extracted from the enormous amounts
of user-generated content generated by Social Media, the goal of this thesis was to pre-
dict tags from the visual contents of images. The main contribution is a novel approach
employing computer vision and word embedding models to perform image tag predic-
tion for Social Media images. Image classification using convolutional neural networks
was performed to extract the visual concepts and classify them to human labels, forming
the basis of the predictions. Image classification models trained on todays benchmark
datasets poorly represent the width of user concepts. To bridge this gap, word embedding
models were utilized to retrieve semantically and syntactically related words of the image
classification predictions, resulting in further predictions. The resulting model using the
augmented predictions performs tag prediction with comparable accuracy to state-of-the-
art.

In Section 1.3 a few objectives of the research were formalized as research questions:

Main RQ: How to predict image tags from image visual content?

RQ1: How to predict tags using image classification?

RQ2: How to use word embedding models to help predict tags?
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RQ3: What source of text is best for training the word embedding models?

To examine how these objectives are accomplished, they are tied together with a few
conclusions. After evaluating the approach and experiments described in this thesis, the
following conclusions can be drawn:

• By using a CNN image classification model, visual features can be extracted and
classified into labels readable by humans. This thesis showed that these labels can
be used to predict tags. (Main RQ & RQ1)

• Utilizing word embedding models to retrieve additional semantically similar predic-
tions increases tag prediction ability. (Main RQ & RQ2)

• Nearest words retrieved from word embedding models trained on domain-specific
data provides the largest increase in tag prediction ability, and helps model the noise
present in user-generated tags. (Main RQ & RQ3)

• Word embedding models can help bridge the conceptual gap between the ImageNet
categories and user concepts, especially when trained on domain-specific data.

• Using image classification and word embedding together produces tag predictions
of high relevance, and can be used in other applications.

7.1.1 Recommendations for Further Work
Although the approach of this thesis achieves its goal well, there are improvements to be
made.

Improvements

The most protruding improvement that can be made to the approach of this thesis is train-
ing the image classifier on user-generated tags. This will likely achieve a significant in-
crease in both precision and recall of image classification predictions. In addition, the
image classification predictions will as a consequence provide a much better input for re-
trieving relevant nearest words from the word embedding model, since the input will be
much more similar to the training data. Choosing a relevant subset of user concept to train
for is difficult, but the most commonly used tags are a good place to start.

Another improvement that could increase prediction ability is implementing a separate
classifier to choose a select number of tags from a set of candidate image classification
predictions and their nearest words. In such a classification, user metadata such as gen-
der, age, and friend relationships could be utilized to help select the proper tags. EXIF-
metadata such as time and location could also be beneficial. The WordNet1 hierarchy can
also be exploited to extract parent words of the predictions to generate more candidate
predictions.

1https://wordnet.princeton.edu/
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Improving the performance of the image classifier is also a possibility, either by im-
proving the architecture of the convolutional network or simply choosing a different pre-
trained model. Experiments using more data or different sources of text for training the
word embedding space might improve its performance as well.

Other applications

The approach could be used to generate tags for a personal photo collection to allow easier
search. Since the predicted tags have a such high degree of relevance, a group of "hidden"
tags could be applied to images and used for searching. This is a relevant application
for both computers and smaller devices. For applications on smaller devices, a CNN
architecture with a much lower computational cost could be employed such as MobileNet
(Howard et al., 2017).

If utilized on a photo stream, the models provide an easy method of extracting visual
information that can help determine trending topics and categories.
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