
SDFT based PMU prototype

Isidora Radevic

Wind Energy

Supervisor: Olav B Fosso, IEL

Department of Electric Power Engineering

Submission date: September 2018

Norwegian University of Science and Technology



 



SDFT based
PMU prototype

by

Isidora Radević
to obtain the degree of Master of Science in Electrical Engineering

at the Delft University of Technology,
to be defended publicly on Wednesday July 18, 2018 at 14:00.

Student number: 4615905
Project duration: December 1, 2017 – July 18, 2018
Thesis committee: Dr. ir. M. Popov, TU Delft, supervisor

Prof. dr. P. Palensky, TU Delft, professor
Prof. dr. O. Fosso, NTNU, co-supervisor
Dr. ir. O. Mansour, Smart State Technology, company supervisor
Dr.ir. D.J.A. Bijwaard, Smart State Technology, company supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Contents

List of Figures v
1 Introduction 1

1.1 Motivation and objectives of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Organization of The Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Contribution of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory andDefinitions 5
2.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Definition of the Phasor, Frequency and ROCOF . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Definition of the Synchrophasor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Discrete Fourier Series and Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 Fourier series representation of discrete-time periodic signals . . . . . . . . . . . . . . . 7
2.4.2 Fourier transform representation of discrete-time periodic signals . . . . . . . . . . . . 7

2.5 Performance and Limitations of DFT Technique . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5.1 Phasor Estimation of the Input at Nominal Frequency . . . . . . . . . . . . . . . . . . . 8
2.5.2 Phasor Estimation of the Input at Off-Nominal Frequency . . . . . . . . . . . . . . . . . 9

2.6 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 PhasorMeasurement Units 13
3.1 Architecture of PMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Data Acquisition Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Synchronization Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Phasor Data Concentrator and Communication . . . . . . . . . . . . . . . . . . . . . . 15

4 IEEE Standard C37.118 Compliance 17
4.1 Synchrophasor Measurement Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Synchrophasor Frequency and ROCOF Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Measurement Reporting Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Measurement Reporting Latency Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 Performance classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.6 Steady-State Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.7 Dynamic Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.7.1 Frequency Ramp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.7.2 Measurement Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.7.3 Step changes in Phase and Magnitude . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Synchrophasor Estimation Based on Smart Discrete Fourier Transform (SDFT) 23
5.1 SDFT Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Simulations and IEEE Std.C37.118 Compliance Tests . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.1 Simulations under the steady-state conditions. . . . . . . . . . . . . . . . . . . . . . . 25
5.2.2 Simulations under the dynamic state - frequency ramp . . . . . . . . . . . . . . . . . . 27
5.2.3 Simulations under the dynamic-state conditions - measurement bandwidth . . . . . . . 28
5.2.4 Simulations under the dynamic-state conditions - step changes in phase and amplitude . 31

6 LVSensors - low voltage and currentmeasurement sensors 33
6.1 System Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.1.1 Time beacon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1.2 LV Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1.3 DSP framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iii



iv Contents

7 Integration of the SDFT algorithm in embedded platform 39
7.1 The calibration of the sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 Electromagnetic Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.3 PyPMU module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.4 The results of the real-time implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.4.1 Testing under the nominal frequency conditions . . . . . . . . . . . . . . . . . . . . . 47
7.4.2 Testing under the off-nominal frequency conditions. . . . . . . . . . . . . . . . . . . . 49
7.4.3 The results of the synchrophasor estimation algorithm under the dynamic condition of

the frequency ramp from 48Hz to 52Hz . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.4.4 The results of the synchrophasor estimation algorithm under the dinamic conditions -

modulated input signal magnitude and phase . . . . . . . . . . . . . . . . . . . . . . . 52
7.4.5 The results of the synchrophasor estimation algorithm under the step in magnitude of

the input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8 Conclusion 55
A A 57

A.0.1 Code in the script pmu_ rtd.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A.0.2 Code in the script Window.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.0.3 Code in the script SDFTWindow.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.0.4 Code in the script rtd_pyPMU.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



List of Figures

2.1 Phasor representation in complex plain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Two signals at different frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 DFT spectrum under nominal and off-nominal frequencies [8] . . . . . . . . . . . . . . . . . . . . 10
2.4 Rectangular window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Hanning window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Variable window size technique [9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 The technique of variable sampling frequency [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8 Interpolated-iterative DFT technique for finding a correction δ[8] . . . . . . . . . . . . . . . . . . 12

3.1 Architecture of PMU [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Data Acquisition disciplined with 1 PPS [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Free-running approach for data acquisition[13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Frame transmission order [16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Steady-state synchrophasor measurement requirements with the harmonic distortion [6] . . . . 18
4.2 Steady-state synchrophasor measurement requirements [6] . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Steady-state frequency and ROCOF requirements [6] . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Synchrophasor performance requirements under frequency ramp tests [6] . . . . . . . . . . . . . 19
4.5 Frequency and ROCOF performance requirements under frequency ramp tests[6] . . . . . . . . 20
4.6 Synchrophasor performance requirements under amplitude and/or phase modulation tests [6] 20
4.7 Frequency and ROCOF performance requirements under amplitude and/or phase modulation

tests [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.8 Synchrophasor performance requirements under input step change [6] . . . . . . . . . . . . . . . 21

5.1 Input test signal at frequency of 50Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 The algorithm performance during the steady-state conditions at 50Hz . . . . . . . . . . . . . . . 26
5.3 The algorithm performance during the steady-state conditions at 52Hz . . . . . . . . . . . . . . . 26
5.4 The algorithm performance during the steady-state conditions at 48Hz . . . . . . . . . . . . . . . 27
5.5 The algorithm performance during the frequency ramp change from 50Hz to 52Hz . . . . . . . . 27
5.6 Input test signal at frequency of 50Hz with amplitude modulation at 5Hz . . . . . . . . . . . . . . 28
5.7 The algorithm performance during the amplitude modulation at 5Hz . . . . . . . . . . . . . . . . 28
5.8 The algorithm performance during the amplitude modulation at 2Hz . . . . . . . . . . . . . . . . 29
5.9 The algorithm performance during the phase modulation at 5Hz . . . . . . . . . . . . . . . . . . 29
5.10 The algorithm performance during the phase modulation at 2Hz . . . . . . . . . . . . . . . . . . 30
5.11 The algorithm performance during the amplitude and phase modulation at 5Hz . . . . . . . . . 30
5.12 The algorithm performance during the amplitude and phase modulation at 2Hz . . . . . . . . . 31
5.13 The input signal with the amplitude step of 10% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.14 The algorithm performance during the amplitude step of 10% . . . . . . . . . . . . . . . . . . . . 32
5.15 The algorithm performance during the phase step of +π/18 . . . . . . . . . . . . . . . . . . . . . . 32

6.1 LVSensors as a distributed grid monitoring solution . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 LVSensors system architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Sensor architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.4 Prototype of the time beacon with embedded GPS module and 5.8GHz transmitter . . . . . . . . 35
6.5 LVSensors, current sensor on the left and voltage sensor on the right . . . . . . . . . . . . . . . . . 36
6.6 Example of a dsp chain for implementation of complex power, running on two separate sensors

and an aggregation unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.1 The instruments used for calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

v



vi List of Figures

7.2 The sensor connections with Omicron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.3 The correction of SDFT phasors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.4 The calibration points for three channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.5 Distortion of the input sine wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.6 Adapter and battery power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.7 The input sine wave after replacing the adapter with the battery supply . . . . . . . . . . . . . . . 45
7.8 PMU Connection Tester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.9 The algorithm performance during the steady-state conditions at 50Hz . . . . . . . . . . . . . . . 47
7.10 The enhanced algorithm performance during the steady-state conditions at 50Hz . . . . . . . . 47
7.11 The phase estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.12 The comparison of the frequency estimation of the input signal at 50Hz . . . . . . . . . . . . . . 48
7.13 The comparison of the frequency estimation of the input signal at 52Hz . . . . . . . . . . . . . . 49
7.14 The comparison in magnitude estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.15 Counter-clockwise phase rotation at frequency ∆ f =0.1 Hz . . . . . . . . . . . . . . . . . . . . . . 50
7.16 The phase estimation of the input signal at the frequency of 52 Hz . . . . . . . . . . . . . . . . . . 50
7.17 The performance of the basic algorithm in frequency ramp estimation . . . . . . . . . . . . . . . 51
7.18 The performance of the enhanced algorithm in frequency ramp estimation . . . . . . . . . . . . 51
7.19 Magnitude estimation under the frequency ramp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.20 The magnitude estimation of the input signal with 10% modulation in magnitude . . . . . . . . 52
7.21 The frequency estimation of the input signal with 10% modulation in magnitude . . . . . . . . . 53
7.22 The phase estimation of the input signal with 10% modulation in phase . . . . . . . . . . . . . . 53
7.23 The frequency estimation of the input signal with 10% modulation in phase . . . . . . . . . . . . 54
7.24 The magnitude estimation of the input signal with 10% step in magnitude . . . . . . . . . . . . . 54



1
Introduction

Electrical power system is going through the period of significant transformation, due to the increasing role
of renewable and decentralized energy sources. There is a need for improved reliability and security of en-
ergy production, transmission and distribution, especially in power networks with a high level of operational
uncertainties, in order to reduce the number of catastrophic blackouts. In the past, it was common that
the power grids are operated in a load-driven mode, meaning that the load is statistically predictable and
generation scheduled accordingly. The caused deviations in power balance are then compensated in run-
time. However, this approach is possible only if the generation is fully controllable, what it is hardly achiev-
able due to the intermittent nature of the power generation. Consequently, the power systems are becoming
generation-driven, where a generation leads and the rest of the system adjusts. In order to maintain power
stability in such system, new electrical (e.g. advanced wide-area control, protection and monitoring solu-
tions (WAMPAC)), chemical (e.g. batteries and hydrogen) and thermal technologies (e.g. combined heat and
power stations) have to be deployed. The focus of this thesis is in electrical solutions, particularly in advanced
synchronized measurement technologies (SMT), that is important element and enabler of WAMPAC systems.
Currently, phasor measurement units (PMUs) are the most advanced time-synchronized technology in small
number present mostly in transmission systems. The advantage of PMUs over traditional digital measure-
ment units is that besides rms value of the measured electrical quantity (current or voltage), PMUs provide
the information about the phase and hence the frequency of the input signal. Moreover, the measurements
are accompanied with the time-quality information ( the timestamp) defining the instant of time the mea-
surement is valid for. The phase is estimated with the reference to a global time reference, which is selected to
be reliant on Global Positioning System (GPS), that gives a reliable information about the time everywhere. As
a result of the synchronized measurements, with the multiple PMUs covering one area of the power grid, the
detailed snapshot of the system can be obtained 10, 25 or 50 times per second. It increases the observability
of the grid and in that way, proper control and protection actions can be taken in a timely manner and avoid
that the disturbances cause the cascade of the system, separation of the grid into unplanned islands or in the
worst scenario the complete collapse of the system. The significant improvements can be achieved in many
power system areas, such as [1]:

• real-time visualization of the power system

• design of an advanced early warning system

• post mortem analysis of the causes of the system blackouts

• validation of the system models

• enhanced performance of the state estimation technique

• the congestion management in real-time

• real time voltage and frequency stability

• improvements in damping of inter-area oscillations

• design of adaptive protection and control systems

1



2 1. Introduction

1.1. Motivation and objectives of the thesis
There are a few companies operating in the domain of electrical power, electrical equipment and automation
technology areas, that are providing their solutions for advanced synchronized measurement technologies,
particularly phasor measurement units. All solutions have something similar, that is the algorithm for syn-
chrophasor estimation and the hardware platform that runs the algorithm. That is the triggering point for all
researchers that tried to make they own PMU prototype by using optimized algorithms that can be supported
by the low-cost hardware. By searching for some of the realized projects, interesting examples are found. The
first one is the development of the PMU prototype based on the i-IpDFT (iterative - interpolated Discrete
Fourier Transform) technique in the FPGA (Field Programmable Gate Arrays) hardware platform, realised in
EPFL University in Lausanne [2]. The second example is OpenPMU project that provides the tools to help
researchers to create new synchronised measurement technologies. The project was originally founded at
Queen’s University Belfast, UK, and subsequently joined by the SmarTS Lab at KTH Stockholm, Sweden [3].
The idea behind this thesis was that the department for Inteligent Electrical Power Grids (IEPG) of TU Delft
gives its own contribution to the advanced synchronized monitoring solutions.

The objectives of the thesis are:

• Verification of the performance of existing, computationally efficient, Smart Discrete Fourier Transform
(SDFT) algorithm for synchrophasor estimation proposed in the literature.

• Implementation of the algorithm into the embedded platform. The algorithm adaptation with respect
to the hardware capacity and limitations.

• Testing the performance of the PMU prototype with respect to the requirements of IEEE C37.118 stan-
dard for Synchrophasor Measurements in Power Systems.

1.2. Organization of The Thesis
The introduction about the mathematical definitions behind the synchrophasor estimation techniques are
given in the first part of the thesis report. The focus is given to the definition of the synchrophasor and
the theory about Discrete Fourier Transform. Following that, the limitations and performance of the DFT
Technique are highlighted. The Literature Review concludes the Chapter - Theory and Definitions, by giving
the overview and comparison of different synchrophasor estimation methods and stating the reason why it
is decided that the SDFT algorithm is the best candidate for the real-time implementation. The following
Chapter - Phasor Measurement Units introduces the structure of the PMU device by explaining what are
the building blocks that form one synchronized measurement devise. The PMU performance requirements
set by IEEE C37.118 are presented in Chapter 4. The Chapter 5 explains the mathematical derivation of the
SDFT algorithm and verification of the algorithm under different test conditions. The embedded system
architecture is presented in Chapter 6 - LVSensors - low voltage and current measurement sensors. Finally,
the taken steps and faced challenges during the real-time implementation of the algorithm in the voltage
embedded sensor as well as the performance of the PMU prototype are presented in the Chapter 7. The
developed Python codes are attached in the Appendix.

1.3. Methodology
The verification of the algorithm is done in the MATLAB enviroment. First of all, the SDFT algorithm is trans-
ferred from the raw mathematical equations in the paper to the code in MATLAB. Following that, the test
scripts are written in order to check the performance of the algorithm for different testing conditions mod-
elled by changing the parameters of the input signal. The real-time implementation of the algorithm is per-
formed by using Python programming language. It was a challenging task since the data coming from the
A/D converted should be processed through the algorithm as soon as they arrive. Otherwise, the data start to
accumulate in the query and the implementation is not in the real-time anymore. The communication mod-
ule of the PMU prototype is realized by using pyPMU module that formats the measurement output stream
according to the IEEE standard for Data Transfer. The testing of the PMU prototype is realized by using the
Real Time Digital Simulator(RTDC), RSCAD software interfacing the RTDS and Omicron amplifier.
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1.4. Contribution of the Thesis
The main contribution of the thesis is the development of the SDFT based Phasor Measurement Unit - a
synchronized device that accurately estimates the power grid values (voltages, currents and frequency) in
real-time. The main focus of the thesis is in finding the way how to obtain the best performance of the PMU
prototype, by optimizing SDFT based computationally efficient algorithm for synchrophasor estimation to
the low-cost embedded hardware platform. Since, the present PMU solutions are not massively deployed
in the grid due to the high expenses, the thesis contributes in providing a low-cost solution with the high
estimation accuracy. Large-scale integration of SDFT based PMUs into the power system would significantly
increase observability of the distribution grid and enable more efficient control and protection actions.





2
Theory and Definitions

2.1. Signal Model
In traditional electrical power systems, during normal operating and steady state conditions, current and
voltage waveforms are usually modelled as sinusoidal signals with constant parameters:

x(t ) = A0 ∗ cos(2π f0t +φ0) (2.1)

where A0 represents the amplitude, φ0 phase, and f0 frequency of the signal. However, electrical power grid
is rarely in steady state and signal parameters vary with the time. The most evident dynamic state condition
is frequency variation from its nominal value, due to the generation/load imbalance. Similarly, due to the
transient phenomena, waveform signal and phase can be also affected. There are different types of transients
that appear in the grid and they can be classified as following:

1. Harmonics, namely components of the signal at frequency that is integer multiple of the fundamental
frequency. These components are usually generated by power electronic devices in transmission sys-
tems, such as Flexible AC Transmission Systems or HVDC connections, or by converters connected to
distributed generation units in distribution grids.

2. Inter-harmonics, components with frequencies between two consecutive harmonics or those compo-
nents whose frequencies are not integer multiples of the fundamental power frequency.

3. Sub-harmonics, a special subset of inter-harmonics that have frequency values that are less than that
of the fundamental frequency.

4. aperiodic components with DC offset, that usually appear during the disturbances in the grid caused
by short-circuit faults or inrush currents of the transformers and induction motors.

5. noise, added by the measurement equipment and the grid itself.

Consequently, the model of the AC grid signal shown in equation 2.1 is not general representation that covers
all expected signals coming from the grid. Hence, the formula can be expanded in following way[4]:

x(t ) = A(t )∗ cos(2π f (t )t +φ0)+
H∑

h=1
cos(2πh ∗ f0(t )t +φh)+ ADC ∗e−t/τ+εn (2.2)

where, the first term represents the dominant tone of the spectrum, the second term sums inter- and sub-
harmonics, the third term includes aperiodic DC component and the last term adds the white noise.

5



6 2. Theory and Definitions

2.2. Definition of the Phasor, Frequency and ROCOF
Signal x(t ) in Equation 2.1 can be represented as a phasor X with magnitude X /

p
2 with initial phase φ0

rotating in the complex plane with angular frequency ω= 2π f in radians/s, shown in figure 2.1:

Figure 2.1: Phasor representation in complex plain

Equation 2.1 can be written as [5]:

x(t ) = Re(A0e(ωt+φ0)) = Re(e jωt A0e jφ0 ) (2.3)

Now, the phasor representation can be extracted as:

X = (A0/
p

2)e jφ0 (2.4)

where A0/
p

2 is the root mean square (RMS) value of the input signal.
The phasor presentation is only possible for pure sinusoidal signals. So, in cases when the signal is distorted
with other signals at different frequencies, it becomes necessary to extract main tone spectral component
and then represent it by a phasor. It can be obtained by a technique called Fourier transform, explained in
the section 2.4. Besides a phasor, there are two important parameters more that indicate the grid behaviour:
frequency and rate of change of frequency(ROCOF). Frequency can be represented as rate of change of angle:

f = ∂ψ

∂t
(2.5)

where ψ= 2π f0t +φ0, whereas, ROFOC can be calculated as:

ROCOF = ∂2ψ

∂2t
= ∂ f

∂t
(2.6)

2.3. Definition of the Synchrophasor
As stated in previous section, the phasor representation is valid only in sinusoidal steady state conditions.
However, even when the power system is in dynamic state, the variations in state variables are slow and it
can be treated as series of steady state conditions (quasi-steady state), so the phasor representation can be
still in use. But this time, in order to compare the phasors obtained from remote sites, it is necessary that
the phasors are referenced to a common time reference. For this reason, the term phasor is extended to the
synchrophasor defined in the IEEE Standard for Synchrophasor Measurements [6] as:
[...] The s ynchr ophasor representation of the signal x(t) in is the value X where φ is the instantaneous
phase angle relative to a cosine function at the nominal system frequency synchronized to UTC (Coordinated
Universal Time) [...]
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2.4. Discrete Fourier Series and Transform
2.4.1. Fourier series representation of discrete-time periodic signals
The Fourier series theory states that a discrete-time periodic signal can be represented as a linear combi-
nation of harmonically related complex exponentials. Consider a discrete-time periodic signal x[n] with the
period N:

x[n] = x[n +N ] (2.7)

The Fourier series representation of the discrete-time signal is:

x[n] =
N−1∑
k=1

ak e j k(2π/N )n (2.8)

where:

• 2π
N is the frequency of the discrete-time signal

• ak are referred to as Fourier series coefficients, the weighing coefficients for different frequency com-
ponents existing in the discrete-time signal.

• k is a factor taking values from 0 to N-1 only. The reason for a limited range is that exponential term
e j k(2π/N )n repeats after N successive values of k.

After few steps of derivation, ak can be extracted and calculated as:

ak = 1

N

N−1∑
n=1

x[n]e− j k(2π/N )n (2.9)

Since, the PMUs report the phasor of a main tone of the spectrum, only one value of k will be considered (k=1,
if only one cycle of the signal is used for a phasor estimation).

2.4.2. Fourier transform representation of discrete-time periodic signals
Fourier series coefficients ak represent the samples of an envelope function. As number N increases, samples
are more closely spaced. If N approaches infinity, samples are forming envelope function following expres-
sion:

X (e− jω) =
+∞∑

n=−∞
x[n]e− jω (2.10)

X (e− jω) is referred to as Discrete-time Fourier transform.
Coefficients ak are proportional to samples of X (e− jω):

ak =
+∞∑

n=−∞
x[n]e− j kω0 = 1

N
X (e− jω0 ) (2.11)

where w0 = 2π
N is spacing of the samples in the frequency domain. Now, the input signal x[n] can be repre-

sented as:

x[n] =
N∑

k=1

1

N
X (e− jω0 )e− j kω0n (2.12)

As ω0 = 2π/N , the function can be further modified to:

x[n] = 1

2π

N∑
k=1

X (e− jω0 )e− j kω0nω0 (2.13)

As N increases, ω0 decreases, and as N−→∞, equation 2.13 passes to an integral:

x[n] = 1

2π

∫
2π

X (e− jω0 )e− jωndω (2.14)

Equation 2.10 as s ynthesi s equation and equation 2.14 as anal y si s equation are referred to as discrete-time
Fourier transform pair [7].
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2.5. Performance and Limitations of DFT Technique
Discrete-time Fourier transform is a powerful technique for signal spectrum analysis. However, in order to
use DFT for AC signals in power systems, we should be aware of some limitations of the technique. Following
two sections explain DFT accuracy for phasor estimation in case of nominal and off-nominal state conditions.

2.5.1. Phasor Estimation of the Input at Nominal Frequency
Since only fundamental frequency component will be taken in consideration, in following sections it will
be assumed that factor k takes value 1. After calculating Fourier series coefficients, the phasor Xk can be
estimated as:

Xk = 1p
2

(2∗Re(ak )+ j 2∗ Im(ak )) =p
2(Re(ak )+ j Im(ak )) (2.15)

Considering that the phasor estimation is a continuous process, it is necessary to deploy an algorithm that
will update the phasor estimation as new data samples are obtained. There are two methods: recursive and
non-recursive. Both of them are relaying on a sliding window N samples long that moves through the signal
by one sample step. However, non-recursive method repeats DFT calculation in each window, whereas re-
cursive method only updates the phasor estimated in previous window. By using non-recursive method, two
consecutive phasors X N−1 and X N can be obtained in following way [5]:

X N−1 =
p

2

N

N−1∑
n=0

xne− j nθ (2.16)

X N =
p

2

N

N−1∑
n=0

xn+1e− j nθ (2.17)

where θ = 2π
N and xn part of the input signal x[n] considered by the window. As a consequence of this ap-

proach, the estimated phasor will have constant magnitude and will rotate by angle θ as the data window
advances by one sample (assuming that the input signal amplitude does not vary). However, produced angle
degradation can be easily suppressed. Non-recursive methods are numericaly stable, but they require redun-
dant computation effort, since the DFT is repeated for each window. On the other hand, recursive method
is computationally efficient, but can experience numerical problems. If r is the first sample in data window,
and hence r+N the last sample, the recursive phasor estimate is given by:

X N+r = X N+r−1 +
p

2

N
(xN+r −xr )e− j rθ (2.18)

In case if there is no difference between two consecutive phasors, the update
p

2
N (xN+r − xr )e− j rθ is zero.

Otherwise, the update is added to previous value. However, the disadvantage of this method appears if the
previously estimated phasors are erroneous, because the estimation error accumulates and leads to numeri-
cally unstable estimation.
Based on phasor estimation, frequency and ROCOF can be obtained by using equations 2.5 and 2.6. So, any
error accumulated in estimated phasor will directly influence accuracy of frequency and ROCOF estimates.
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2.5.2. Phasor Estimation of the Input at Off-Nominal Frequency
By assuming that the input signal at 50 Hz is sampled at 2kHz, one rectangular window covering one full
signal cycle, consists of 40 samples. The discrete-time signal is shown in blue color in figure 2.2. Now, let’s
consider the same input signal but at frequency of 48 Hz (in red). This time the same window length is not
enough to cover complete cycle of the signal. Consequently, the DFT estimated phasors calculated for the
samples in the window will not be accurate.

Figure 2.2: Two signals at different frequencies

In other words, the process of windowing consists of multiplying the infinite sequence of samples x(n)
by the rectangular function wr (t ). If the input signal x(t ) is sinusoidal wave at nominal frequency of 50 Hz
(equation 2.19), its corresponding Fourier Transform is X ( f ) (equation 2.21):

x(t ) = Acos(2π f0t ) (2.19)

X ( f ) = A

2
[δ( f − f0)+δ( f + f0)] (2.20)

Since the multiplication in time domain is equivalent to convolution in frequency domain, the windowing
operation can be modeled as:

xs,w (t ) = wr (t ) · xs (t ) = wr (t ) · [x(t ) · s(t )] = [wr (t ) · x(t )] · s(t )ℑ−→[Wr ( f )∗X ( f )]∗S( f ) = Xs,w ( f ) (2.21)

where xs (t ) is sampled sinusoidal input function, and s(t)=
∑∞

n=−∞δ(t −nTs) So, the spectrum of the func-
tion xs,w (Xs,w ) is composed of Fourier transform of sampled input signal convolved by Fourier transform of
windowing function (Xs,w ) shifted by multiples of the sampling rate 1

Ts and then superimposed. Since the

windowing function is rectangular Wr ( f ) is a sinc function si nc( f T ) = si n(π f t )
π f t , DFT spectrum for the inputs

signal at nominal frequency and spectrum under off-nominal frequency conditions are shown in figure 2.3
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Figure 2.3: DFT spectrum under nominal and off-nominal frequencies [8]

During the nominal conditions, the frequency spectrum consists of two sinc functions centered around
+/− f0, having the non-zero value only at nominal frequencies. However, in case of the conditions when
the frequency vary from the nominal value, bins at other frequencies experience a non-zero values. This is
called spectral leakage effect that deteriorate accuracy of the DFT algorithm. Additionally, main lobe and
side lobes of the windowing function contributes reduced accuracy of the DFT method. Namely, the main
lobe width can cause difficulties in identifying main tone of the spectrum, while side lobes can generate so-
called spectral interference between nearby tones. Other windowing functions are recommended in order
to enhance the DFT accuracy. One of them is Hanning, shown in figure 2.5. As it can be seen, compared to
rectangular window (2.4), Hanning window has attenuated side lobes.

Figure 2.4: Rectangular window
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Figure 2.5: Hanning window

2.6. Literature Review
As explained in the previous section, off-nominal grid conditions can significantly influence accuracy of pha-
sor estimation technique. In order to minimize an error, different methods are recommended in the litera-
ture, such as:

• variable window length (figure 2.6), namely by adapting the window length to the frequency of the
signal, the leakage effect can be minimized. However, since the sampling period is fixed, the possible
fundamental frequencies are discrete and in the most of the cases small leakage effect will remain [9].

Figure 2.6: Variable window size technique [9]

• variable sampling rate (figure 2.7), namely by adapting the sampling rate to be the integer multiple
of the signal frequency, it can be achieved that fixed window always captures complete cycle. Only
disadvantage of this technique are stability issues in the hardware part, since adjustments are done in
A/D converter by using advanced control loops [10].

Figure 2.7: The technique of variable sampling frequency [10]



12 2. Theory and Definitions

• Interpolated-iterative DFT technique, based on an interpolation method for finding the correction term
δ that better approximates the exact location of the main spectrum tone [8]. The drawback of the such
approach is that A/D converter with high sampling rate is required, as well as high performance pro-
cessor to deal with the huge amount of data and run demanding iterative algorithm.

Figure 2.8: Interpolated-iterative DFT technique for finding a correction δ[8]

• Smart Discrete Fourier Transform (SDFT) technique, that relies on accurately estimated system fre-
quency in order to estimate the magnitude and the phase of the input signal [11]. The SDFT algorithm
appears to be a better alternative for the commonly used standard DFT algorithm to estimate phasors
in the presence of off-nominal frequencies, noise and harmonics. The algorithm requires additional
computational steps compared to the standard DFT, but the benefits of reduced filtering requirements
can compensate the additional computational requirements. This algorithm is further extended for
synchrophasor estimation and implemented in the PMU model of the Real-Time Digital Simulator [12].
For stated reasons, SDFT technique is chosen, further modified and deployed in PMU prototype. It is
explained more in details in chapter 7.



3
Phasor Measurement Units

3.1. Architecture of PMU
In this chapter, the architecture of PMU will be discussed in details. The block scheme of the main compo-
nents of PMU is illustrated in figure 3.1. Specific information about the purpose of each component and its
connection with others is given in following sections.

Figure 3.1: Architecture of PMU [13]

3.1.1. Data Acquisition Module
The Data Acquisition Module (DAQ) is the front-end of the Phasor Measurement Unit. It consists of the ana-
log signal conditioning and the analogue-to-digital converter (ADC). The signal conditioning considers the
adapting the voltage and current values to the digital acquisition circuits by the Voltage and Current Trans-
formers [14]. The most important purpose of the conditioning system for synchrophasor measurements is to
avoid significant modifications of the signal around the fundamental system frequency. That can be achieved
by low pass anti-aliasing filter intended to reduce the band of the electrical signals before analog-to-digital
conversion. Its cut-off frequency depends on what is the relevant information for the computational module.
In a basic PMU approach, it is around the fundamental system frequency. Attenuation or phase distortion
have direct impact on the measurement, while delays can affect synchronization of the measurements and
measurement reporting latency. Flat response of the low-pass filter in the pass-band around 50 Hz and at-
tenuated phase distortion are necessary to reduce phasor estimation errors. The ADC produces the digital
signal to be elaborated by the computational unit that runs the estimation algorithm. Its sampling frequency
is precisely connected to the anti-aliasing filter frequency response and its input range is set by considering
the voltage or frequency range considered for input signals. There are at least six channels, corresponding to
the three-phase voltages and currents.
It is important to understand how the acquired samples can be accurately referred to their time reference, so

13
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that the following phasor estimation can be time-aligned to the reporting instants and correctly time-tagged.
The following section will explain how the synchronization is achieved and what are the available synchro-
nization sources.

3.1.2. Synchronization Module
A clock is a system of circuits consisting of two main parts: an oscillating device providing a reference time
interval and a counter device that by counting the intervals indicates time. There are different types of os-
cillators such as mechanical, as pendulum or balance wheel, or electronic, as Quartz-crystal oscillators. The
electronic oscillators are today the most widely used due to the low price and low power consumption. The
best stability and accuracy can be obtained with atomic clocks, that use an electron transition frequency in
the microwave, optical, or ultraviolet region of the electromagnetic spectrum of atoms as a frequency stan-
dard for its time-indicating element. [15] Counters are structured in a cascade array that sums up the accurate
oscillations from the reference device. Seconds, minutes and hours are generated in the way that each level
is triggered by different number of oscillations. Due to environmental changes such as a temperature or
mechanical stress the oscillation frequency of the reference device can be affected, that will cause a limited
stability. As a consequence, periodic clock synchronization is required to keep the time within a certain time
offset with respect to a reference time. There are different time-scales that are in use in different fields. The
most utilized and based on the measurements produced by atomic clocks are:

• International Atomic Time (TAI), epoch is 1st of January, 1958.

• Coordinated Universal Time (UTC), epoch is 1st of January, 1970

• Global Positioning System (GPS), 1st of January, 1980

There are two ways for achieving the synchronized acquisition:

• acquisition controlled by synchronization source clock

• free-running acquisition clock

The synchronization source provides the accurate time synchronization (around hundreds of nanoseconds).
The output of the synchronization source is a square TTL-level digital signal that generates the pulse-per-
second (PPS), namely the accurate information about when the UTC second starts. Transistor–transistor
logic (TTL) is a logic family built from bipolar junction transistors.

Figure 3.2: Data Acquisition disciplined with 1 PPS [13]

Local clock is the time reference dissemination inside the PMU and that time source is used for the control
of the acquisition process. PPS triggers the local clock of the PMU and the measurement process starts at a
precise time instant. The local clock has to be locked to the PPS, so that both the alignment and the pace of
the acquisition are correlated to the UTC, as it can be seen from the figure 3.2. After the locking is obtained,
the samples are acquired on known time instants.
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Figure 3.3: Free-running approach for data acquisition[13]

In case when the local clock for the DAQ is not accessible or it is not tuneable from external synchronization
sources the only possible solution for the acquisition is less accurate free-running approach (3.3).

In this case local clock is not locked to PPS, causing the offset between the reference time of the measure-
ment and the nearest sample.

3.1.3. Phasor Data Concentrator and Communication
The PDC correlates synchrophasor measurements by the time tag to create a system wide set of measure-
ments. Following that, the set is fed out as a single stream to the higher level PDCs and applications such
as EMS and SCADA. Synchrophasor message format for real-time data transmission is specified by the IEEE
standard for synchrophasor data transfer. Message frameworks consists of four message types: data, config-
uration, header, and command.

• Data messages are the phasor quantity estimates obtained from a PMU.

• Configuration message is a machine-readable message describing the data types and calibration fac-
tors.

• Header information is human readable descriptive information sent from the PMU/PDC.

• Commands are machine-readable codes for control or configuration.

The frame starts with SYNC, FRAMESIZE, IDCODE, SOC and FRACSEC, and terminates with a CHK as shown
in figure 3.4. Since the synchrophasor measurements are tagged with the UTC time corresponding to the time
of measurement, the message consisting the information about the time-tag consists a second-of-century
(SOC) count and a fraction-of-second (FRACSEC) count. The reporting times shall be evenly spaced through
each second with the time of the first frame coincident with the 1PPS. The word SYNC provides synchroniza-
tion and frame identification, whereas word IDCODE directly identifies the source of a data, header, configu-
ration message and the destination of a command message. All frames ends with the check word (CHK) which
is a redundancy check assuring data integrity. The frame starts with SYNC, FRAMESIZE, IDCODE, SOC and
FRACSEC, and terminates with a CHK as shown in figure 3.4. A configuration frame is a machine-readable set

Figure 3.4: Frame transmission order [16]

of the data that contains information and processing parameters for a synchrophasor measurement stream.





4
IEEE Standard C37.118 Compliance

IEEE Standard for Synchrophasor Measurements for Power Systems sets the requirements for the perfor-
mance of the PMU deployed to monitor the power grid. The standard defines steady-state and dynamic state
compliance tests that evaluate accuracy of the PMU measurements under different input signals influenced
by grid conditions. The performance of PMU also depends on the presents of higher frequency components
and the noise in the input signal. However, proper filtering can reject undesirable signal components within
the limits provided by the filter attenuation. The main parameters evaluating compliance with the standard,
as well as criteria and limits proposed by standard are represented in the following sections.

4.1. Synchrophasor Measurement Evaluation
The accuracy of the estimated phase and amplitude of the phasor is evaluated by the quantity called Total
Vector Error (TVE). If Xr e f is the reference signal at the input of the PMU, and Xest is its estimated value, total
vector error can be calculated by following equation:

T V E =
√√√√ (Re[Xest ]−Re[Xr e f ])2 + (Im[Xest ]− Im[Xr e f ])2

(Re[Xr e f ])2 + (Im[Xr e f ])2 (4.1)

where Re[Xr e f ] and Im[Xr e f ] are real and imaginary part of the reference phasor, whereas Re[Xest ] and
Im[Xest ] represent real and imaginary part of the estimated phasor.

4.2. Synchrophasor Frequency and ROCOF Evaluation
Similarly to Total Vector Error, frequency and ROCOF errors can be calculated by subtracting the theoretical
and estimated values and taking the absolute value of the difference.

Frequency measurement error can be calculated as:

F E = | fr e f − fest | (4.2)

ROCOF measurement error can be calculated as:

RF E = ∂ fr e f

∂t
− ∂ fest

∂t
(4.3)

4.3. Measurement Reporting Rate
The estimated phasor, frequency and ROCOF should be reported together at constant rate defined by stan-
dard. The specified rates F s for 50 Hz systems are 10, 25 or 50 frames/s, where the frame stands for a set of
synchrophasor, frequency and ROCOF that corresponds to the same time stamp. The actual rate to be used
should be user adjustable.

17
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4.4. Measurement Reporting Latency Requirements
Latency in the measurement reporting is the time between the moment when an event occurs in the power
system and the moment when it is reported through the data. This latency includes many factors such as
the length of the observing window for DFT estimation, complexity of the phasor estimation technique, PMU
processing power, applied filtering technique and when the event occurs within the reporting interval. In the
standard for Synchrophasor Measurement, PMU reporting latency is defined as the maximum time interval
between the data report time (data time stamp) and the time when the data becomes visible at the PMU
output.

4.5. Performance classes
Compliance with the standard requirements is evaluated depending on the class of the performances. This
standard defines two classes of the performances: M class and P class. M class in intended for applications
that do not require the fastest reporting speed. However, since the letter M stands for monitoring and analytic
measurements, this class requires greater precision in phasor estimation.
P class in intended for protection applications requiring fast response and minimal filtering.
A PMU has to meet all the requirements specified for a particular class, in order to be considered as compliant
with the standard for that class. If both classes are provided, these should be user selective.

4.6. Steady-State Compliance
In order to test the performance of the PMU during the steady-state condition in electrical grid, amplitude A,
frequency f and phase φ0 of the test signal are fixed for the period of a measurement. This includes nominal
and off-nominal frequencies(quasi steady-state). The compliance requirements depends on the performance
class the application needs and on the purity of the test signal. Requirements for M class and P class with and
without harmonic distortion present in the signal are shown in the figures 4.1 and 4.2.

Figure 4.1: Steady-state synchrophasor measurement requirements with the harmonic distortion [6]

Figure 4.2: Steady-state synchrophasor measurement requirements [6]

It can be seen that maximum allowed TVE is 1 % for both pure and distorted signal.
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On the other hand, when it comes to allowed frequency and ROCOF errors the limits are set as per follow-
ing table:

Figure 4.3: Steady-state frequency and ROCOF requirements [6]

4.7. Dynamic Compliance
Due to the increased intermittent generation and difficulties to maintain the balance with the consumption,
power system is rarely in steady-state. Consequently, in order to test PMU performance under the dynamic
conditions, the parameters of the test signal will be changed and varied accordingly. In the next three sections
different test conditions will be explained.

4.7.1. Frequency Ramp
Measurement performance during the change in frequency is tested with linear ramp of the system frequency
applied as balanced three-phase input signals. Following equations represents the mathematical test formu-
lation:

Xa = Xmcos[ωt +πR f t 2] (4.4)

Xb = Xmcos[ωt −2π/3+πR f t 2] (4.5)

Xc = Xmcos[ωt +2π/3+πR f t 2] (4.6)

where R f defines the change in frequency d f
d t and its value is specified to be 1Hz/s with the ramp range of

+/- 2Hz. Estimated frequency and ROCOF error and TVE limits during the testing under these conditions are
shown in following tables:

Figure 4.4: Synchrophasor performance requirements under frequency ramp tests [6]
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Figure 4.5: Frequency and ROCOF performance requirements under frequency ramp tests[6]

4.7.2. Measurement Bandwidth
By sweeping the input with sinusoidal amplitude and phase modulation dynamic compliance for a mea-
surement bandwidth can be determined. The mathematical representation of the input test signal for three
phases can be represented as following:

Xa = Xm[1+kx cos(ωt )]× cos[ω0t +ka cos(ωt −π)] (4.7)

Xb = Xm[1+kx cos(ωt )]× cos[ω0t −2π/3+ka cos(ωt −π)] (4.8)

Xc = Xm[1+kx cos(ωt )]× cos[ω0t +2π/3+ka cos(ωt −π)] (4.9)

where ω0 represents nominal angular frequency, ω modulation frequency, whereas kx and ka are amplitude
and phase modulation factors respectively. Estimated frequency and ROCOF error and TVE limits during
the testing the PMU performance under the condition of amplitude and phase modulation are shown in
following tables:

Figure 4.6: Synchrophasor performance requirements under amplitude and/or phase modulation tests [6]

Figure 4.7: Frequency and ROCOF performance requirements under amplitude and/or phase modulation tests [6]
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4.7.3. Step changes in Phase and Magnitude
Performance under step changes in phase and magnitude can be checked by applying balanced three-phase
step changes to balanced three-phase input signals. It can be modeled with the equations stated below:

Xa = Xm[1+kx f1(t )]× cos[ω0t +ka f1(t )] (4.10)

Xb = Xm[1+kx f1(t )]× cos[ω0t +ka f1(t )] (4.11)

Xc = Xm[1+kx f1(t )]× cos[ω0t +ka f1(t )] (4.12)

where Xm is the amplitude of the input signal, ω0 is nominal frequency, kx and ka are amplitude and phase
step size respectively, f1(t ) is a unit step function. This test represents a transition from one steady state to
another and can be used to determine response time, delay time and overshoot in the measurements. [1]

The values of all test input signal parameters and performance requirements for synchrophasor, fre-
quency and ROCOF estimation are shown in following tables:

Figure 4.8: Synchrophasor performance requirements under input step change [6]





5
Synchrophasor Estimation Based on Smart

Discrete Fourier Transform (SDFT)

In this chapter, synchrophasor estimation technique called Smart Discrete Fourier Transform is mathemati-
cally explained and verified with the set of test conditions performed in programming environment MATLAB.

5.1. SDFT Technique
SDFT method for phasor estimation is based on mathematical approach, that efficiently solves limitations of
basic DFT method. Namely, the method relies on frequency estimation obtained from three consecutive DFT
fundamental components. By using estimated frequency, one SDFT phasor is obtained, having significantly
higher accuracy then previously estimated DFT phasors. The SDFT algorithm requires additional compu-
tational steps compared to the standard DFT, but the benefits of reduced filtering requirements outweigh
additional processing expenses.
The proposed algorithm [12] starts with a deployment of a basic DFT method on a discrete sinusoidal signal
x(k) in order to extract its fundamental frequency component x̂r . Following equations illustrate that:

x(k) = Xmcos(
2π f k

N f0
+φ) (5.1)

being: x(k) a pure sinusoidal signal sampled at discrete instants, Xm the input signal amplitude, f the signal
frequency, φ the initial phase angle, f0 the nominal signal frequency and N the sampling rate in samples/cy-
cle.
This representation can be further modified to:

x(k) = 1

2
(Xme

2π f k
N f0

+φ+Xme
−( 2π f k

N f0
+φ)

) = 1

2
(x̄e

2π f k
N f0 + x̄∗e

−( 2π f k
N f0

)
) (5.2)

where x̄ = Xme jφ and x̄∗ are complex conjugate pair.
The main frequency component in DFT spectrum of x(k), evaluated at the r th sample is given as:

x̂r = 2

N

N−1∑
k=0

x(k + r )e− j 2πk
N (5.3)

If we consider the system frequency deviation to be ∆ f :

f = f0 +∆ f (5.4)

After substituting 5.2 into 5.3 and performing some algebraic manipulations, following relations can be de-
rived:

x̂r = Ar +Br (5.5)

being:
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Ar = x̂

N
e

j
2π( f0+∆ f )r

N f0 e
j π(N−1)∆ f

N f0

sin(π∆ f
f0

)

sin π∆ f
N f0

(5.6)

Br = x̂∗

N
e

j
2π( f0+∆ f )r

N f0 e
j π(N−1)( f +∆ f )

N f0

sin(π( f0+∆ f )
f0

)

sin π( f0+∆ f )
N f0

(5.7)

If we replace the exponential kernel in 5.6 and 5.7 with parameter a as:

a = e
j

2π( f0+∆ f )r
N f0 (5.8)

the following relations can be obtained:

w = a +a−1 = 2cos
2π( f0 +∆ f )

N f0
(5.9)

So, the frequency deviation ∆ f can be derived as:

∆ f = N f0

2π
cos−1 (

w

2
)− f0 (5.10)

The phasor can be estimated by rearranging 5.6 as:

Ar = Xm

N

sin π∆ f
f0

sin π∆ f
N f0

e
( j

2π( f0+∆ f )r
N f0

+ j π(N−1)∆ f
N f0

+φ)
(5.11)

Now, amplitude Xm and phase φ can be extracted:

Xm = |Ar |
N sin π∆ f

N f0

sin π∆ f
f0

(5.12)

φ= ang l e(Ar )− π(N −1)∆ f

N f0
(5.13)

However, since the phasor rotates when the data window moves by one sample, the phasor angle estimate
should be corrected to obtain a stationary phasor:

φ= ang l e(Ar )− π(N −1)∆ f

N f0
− 2π

N
m (5.14)

being m a counter varies from 0 to (N-1).
In order to find the value of w and hence the unknown ∆ f , three consecutive DFT fundamental components
x̂r , ˆxr−1, ˆxr−2 are considered:

x̂r = Ar +Br (5.15)

ˆxr+1 = Ar+1 +Br+1 = a Ar +a−1Br (5.16)

ˆxr+2 = Ar+2 +Br+2 = a2 Ar +a−2Br (5.17)

After the algebraic manipulations with the equations 5.15, 5.16, 5.17 and 5.9 and expression for w can be
derived as:

w = x̂r + ˆxr+2

ˆxr+1
(5.18)

From 5.15, 5.16 and 5.17, parameter Ar can be calculated as:

Ar = a ˆxr+1 − x̂r

a2 −1
(5.19)

Finally, after estimating the values of Ar and ∆ f , SDFT phasor can be obtained.



5.2. Simulations and IEEE Std.C37.118 Compliance Tests 25

5.2. Simulations and IEEE Std.C37.118 Compliance Tests
The performance of proposed SDFT algorithm is verified in MATLAB environment. In the later stage of the
thesis, the same algorithm is written in programming language Python, adapted for real-time implementa-
tion with respect to limitations of the embedded platform. Following pseudo-code, shows the flow of the
algorithm implemented in MATLAB:

procedure: SDFT-based synchrophasor estimation algorithm

1. run sliding DFT algorithm for a complete duration of the input signal

2. by taking three consecutive DFT fundamental components estimated in the previous step, run SDFT
algoritm for complete duration of the input signal

3. calculation of TVE and errors in estimated frequency and ROCOF

end procedure
The simulations are performed by using a single-phase sine wave input. All conclusions obtained for one

phase can be referred to other two phases in the balanced system.

5.2.1. Simulations under the steady-state conditions
The (quasi)steady-state conditions are modeled with the input signal with fixed frequency of 48Hz, 50Hz and
52 Hz separately. Mathematical representation of the signal is:

x(t ) = Xmcos(2π f +φ) (5.20)

Amplitude of the signal is set to be 1V, phase equal to 0 rad and frequency will take three different values
specified above. The plot of the input signal is printed as figure 5.1
The sampling rate is chosen to be 4kHz. That means that one cycle of the input signal is represented with
80 discrete values. Finally, in duration of 1 s, there are 4000 samples of the input signal. After specifying the
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Figure 5.1: Input test signal at frequency of 50Hz

signal parameters, DFT and SDFT part of the code are performed. The results of the simulation are shown in
figure 5.2. There are four plots important for evaluation: total vector error, estimated frequency, phase and
amplitude calculation for each sliding window. On each plot estimated value is compared with a respective
reference or limit. As it can be seen from the figure, the accuracy of the estimation is high, indicated with a
low TVE error, approximated to 0%.
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Figure 5.2: The algorithm performance during the steady-state conditions at 50Hz

Similar performance is found under the quasi- steady state conditions when during the 1 s, the frequency
has off-nominal value. The results of the simulations are shown on figure 5.3 and figure 5.4.
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Figure 5.3: The algorithm performance during the steady-state conditions at 52Hz
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Figure 5.4: The algorithm performance during the steady-state conditions at 48Hz

5.2.2. Simulations under the dynamic state - frequency ramp
An imbalance between available generation and load requirements affects the change in frequency to off-
nominal values. The frequency change can be modeled by using a linear function having positive or negative
ramp. Since the standard requires compliance under the ramp of +/- 1Hz/s, following input signal is used for
estimation algorithm.

x(t ) = Xmcos(2π f +φ+πR f t 2) (5.21)

where R f represents the ramp in frequency from its nominal value f=50 Hz The results after applying the
positive ramp will be reported. By setting the duration of the input signal to 2 s, the frequency is changed
from 50 to 52 Hz with the step of 0.0025. The results of the simulation are shown in figure 5.5.
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Figure 5.5: The algorithm performance during the frequency ramp change from 50Hz to 52Hz

Even though the frequency vary significantly, the TVE is still within the limits proposed by standard.
Namely, the maximum TVE is 0.321% and the minimum TVE is 0.0115%. However, maximum and minimum
frequency estimation error is 0.0117 Hz and 0.0085 respectively. Recalling from chapter 4, the maximum al-
lowed frequency error is only 0.005Hz. So the results are not compliant with the standard with respect to the
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frequency estimation. In the later stage of the thesis, this problem is solved by introducing the mean filter.

5.2.3. Simulations under the dynamic-state conditions - measurement bandwidth
The measurement bandwidth test demonstrates oscillations in the electrical power system. This test includes
two tests: amplitude and phase angle modulation. In the magnitude modulation test, 10% modulation signal
is added to the signal amplitude and modulation frequency is varied over the range of 0.1 to 5 Hz. The phase
angle modulation test is analogue, as 10% modulation signal is applied to the phase angle.

The first test is performed by applying amplitude factor kx from equation 4.7 equal to 0.1, and modulation
frequency fm of 5Hz. The input signal obtained in this way is shown in figure 5.6.
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Figure 5.6: Input test signal at frequency of 50Hz with amplitude modulation at 5Hz

Figure 5.7 indicates the estimation accuracy of the algorithm after applying the input signal. Starting
from the last plot, it noticeable that the amplitude modulation is well estimated by the algorithm. However,
the oscillations in frequency estimation affects the phase calculations. Namely, the frequency estimated by
SDFT varies around 50Hz. There is a clearly visible mean value in fes with the amplitude of 50.02 Hz, and
oscillations around reaching values over 50.04 Hz. Maximum frequency error occurred is 0.0554 Hz. TVE has
the maximal and minimal value equal to 0.663 % and 0.1332 % respectively.
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Figure 5.7: The algorithm performance during the amplitude modulation at 5Hz

The simulation is repeated with one difference in initialization, the modulation frequency is reduced to
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2 Hz. In this case, better accuracy is obtained. Maximum TVE is 0.2146 %, whereas the maximum frequency
error is 0.0088Hz. The plots can be seen in figure 5.8.
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Figure 5.8: The algorithm performance during the amplitude modulation at 2Hz

Following two tests are related to the phase modulation. By using equation 4.7, phase modulation factor
is set to 10% and modulation frequency to 5Hz and 2Hz respectively. The figure 5.9 shows the results after
applying the sinusoidal change in phase at frequency of 5Hz and 2 Hz respectively. It can be seen that the
TVE is below the critical limit of 3%. Maximum value of TVE is 0.4977 % while the minimum value is equal to
0.0016 %. Maximum frequency error is 0.4920 Hz.
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Figure 5.9: The algorithm performance during the phase modulation at 5Hz

When the modulation frequency is reduced to 2 Hz, more accurate estimates are obtained (figure 5.10).
Maximum total vector error is 0.008 %, while the maximum frequency error is 0.1995 Hz.
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Figure 5.10: The algorithm performance during the phase modulation at 2Hz

The final two cases are referred to as the compliance tests during the amplitude and phase modulation.
So, both modulation factors, kx and ka are equal to 0.01. The figures 5.11 and 5.12 are showing the results
for modulation frequency of 5Hz and 2 Hz respectively. Since both quantities, amplitude and phase vary, the
estimation accuracy is slightly lower then in previous cases when only one quantity has been varied, keeping
another one constant. If we compare TVE on figure 5.7 and TVE on figure 5.11, the error has been increased
from 0.663% to 1.977 %. Likewise, the frequency error has been increased from 0.0554 Hz to 0.4961 Hz, since
the phase modulation is also applied. Similar observations are coming from the figure 5.12. Maximal value of
TVE is 0.7789 %, while the maximum frequency error is 0.2006 Hz.
In both cases TVE is within the standard limits, whereas the value of frequency error of 0.4951 Hz violates the
limit of maximum 0.3Hz.
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Figure 5.11: The algorithm performance during the amplitude and phase modulation at 5Hz
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Figure 5.12: The algorithm performance during the amplitude and phase modulation at 2Hz

5.2.4. Simulations under the dynamic-state conditions - step changes in phase and am-
plitude

The step response tests simulate the power system switching events. There is a magnitude step test, when
±10% step is applied to the signal magnitude, and a phase step test during which ±10 degrees step is applied
to the signal phase angle.
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Figure 5.13: The input signal with the amplitude step of 10%

The figure 5.14 shows the results of a magnitude step test. The amplitude value of 1V is increased to 1.1 V
at t=0.5 s. Time of half of the second is equivalent to the instant when the 2000th sample is analyzed. At that
moment, TVE has been steeply increased to approximately 6 %. A huge overshoot is present in all estimated
values around the instant of time when the step occurs. The reason is the length of the observation window
of 80 samples in our case. The smaller the length, more accurate estimation during the transients can be
achieved.
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Figure 5.14: The algorithm performance during the amplitude step of 10%

Similar results are obtained during the step in the phase angle. The step of ±10 degrees is equivalent to
±π/18 rad. The phase angle is increased from 0 to 0.174 rad at t=0.5s. The maximum TVE overshoot is around
10 %, while estimated frequency error is up to 1.5 Hz.
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Figure 5.15: The algorithm performance during the phase step of +π/18



6
LVSensors - low voltage and current

measurement sensors

In order to deploy the SDFT algorithm in real-time application, the Master project is merged with the Smart
State Technology (SST), the company that develops low voltage measurement devices (LVSensors), as the
means for conducting research on Smart Grids. The context of this chapter about the hardware used in the
thesis is provided by the engineers in the company, Dr.ir. Omar Mansour and Dr. ir. Dennis Bijwaard.
The idea of the SST is to measure voltages and currents highly synchronized, and at the same time pro-
vide high accuracy and resolution. This enables capturing and monitoring grid phenomena and high speed
events. The sensors can be easily installed on any location in the distribution grid or in houses after the meter
and as such they form a distributed grid monitoring solution.

Figure 6.1: LVSensors as a distributed grid monitoring solution

Besides the measurement capability of the sensors, there was the need for users to directly use the real-
time measurements in their applications. Using the LVSensors as an open platform gives researchers real
access to grid data and real-time measurements. To enable this open platform, SST chose Armbian Linux as
an operating system and developed a real-time DSP framework that utilizes the open source messaging sys-
tem ZeroMQ [17] combined with the structured binary format CBOR[18]. The resulting open platform offers
computer-language and operating system independent chaining of DSP algorithms and grid applications.

33
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Sensor measurements are highly synchronized (nanosecond resolution, GPS based time lock) with measure-
ment accuracies of metering grade equipment and high sampling rate capabilities of upto 128 Khz.

This allows for developments in the following SmartGrid domains:

• Remote monitoring (RTU)

• Advanced protection (synchrophasor and state estimation based protection)

• (Distributed) Power quality

• (Dynamic) State estimation

• Congestion detection and Management

• Data analytic

• Control

6.1. System Architecture
In a simple form the system architecture would consist of a time beacon, voltage sensors, current sensors
and data aggregation units (which could be a software module installed on one or more sensors or a separate
physical module). The aggregated information can be converted to other/standard protocols and sent to a
control center.

Figure 6.2: LVSensors system architecture
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Figure 6.3: Sensor architecture

6.1.1. Time beacon
Time beacon is connected to a modern GPS unit which provides an accurate time pulse (called PPS) signal.
The PPS signal is conditioned by the Time-beacon module (figure 6.4) and transmitted wirelessly using a 5.8
GHz analogue video transmitter.

Figure 6.4: Prototype of the time beacon with embedded GPS module and 5.8GHz transmitter

The analogue video transmitter has a constant latency in the order of few hundred nanoseconds and has
a range of 1500 meters in open space. In buildings and houses the 5.8 GHz signal range is reduced and less
reliable due to obstructions and multi-path effects. In order to circumvent multy-path effects, circular po-
larized cloverleaf antennas are used [19] in combination with an intelligent estimator at the signal reception
side of the sensors.
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6.1.2. LV Sensors
The LVSensors come in 2 main flavors, (1) voltage sensors and (2) current sensors. Internally both sensors
contain a Raspberry-PI Arm single board computer (SBC) with a shield that contains an advanced multi chan-
nel ADC (with simultaneous sampling capability up/to 128KHz), a digitally programmable clock oscillator, a
micro-controller and the PPS transceiver circuitry (see fig 6.3). Only the voltage and current transducers of
the sensors differ. The voltage sensors have a measurement range of 600V (230V nominal) and make use of
signal transformers, while the current sensors make use of split-core CT’s and have a measurement range
up/to 600A depending on the type of split-core CT used. Rogowski measurement senors are also envisaged
and will be added to the LVSensors family in near future.

The micro-controller controls a digital clock oscillator which provides the clock signal for the ADC (which
is also the clock of the micro-controller itself) in a feedback loop. It runs an intelligent phase locked loop
estimation algorithm to ensure that the acquired samples have high time synchronization to the received
GPS-PPS signal. Since the system can not continuously rely on the GPS-PPS signal, the estimation algorithm
combines both the PPS signal and a nanosecond accurate time pulse from the SBC, in order to maintain
phase and frequency lock in the event of disruption or loss of PPS signal.
Within the SBC, SST has implemented a Linux kernel driver (based on the Industrial-IO framework) for re-
ceiving the ADC samples. The default sampling rate of the system is 4KHz (which is sufficient for most grid
algorithms and applications). In the case of advanced algorithms that require dedicated sampling, the ADC
can be reconfigured for other sampling rates.
The driver will receive the obtained samples from the ADC (via an SPI interface) and makes them available to
the user space environment of the Linux system.

Figure 6.5: LVSensors, current sensor on the left and voltage sensor on the right
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6.1.3. DSP framework
A major part of the LVSensors-OpenPlatform concept of is the DSP-framework. The DSP framework ensures
that data, measurements and signal events can easily be exchanged between various sensors and aggregation
units on distributed locations (on the grid) as well as between various algorithms (in different programming
languages) running on a single sensor or different threads running within a single process; all in a uniform
programming fashion.

Figure 6.6: Example of a dsp chain for implementation of complex power, running on two separate sensors and an aggregation unit

In the example in fig 6.6, we see how we can use the sensors in a distributed fashion to calculate (for
example) the complex power phasors. We use 2 sensors (192.168.0.100 and 192.168.0.102) to calculate the
voltage and current phasors. Those phasor signals will be transmitted with a frequency of 50 Hz over IP to an
aggregation unit (192.168.0.145) which will essentially calculate and display their complex product.





7
Integration of the SDFT algorithm in

embedded platform

In the previous chapter, the performance of the SDFT method has been verified in MATLAB. The following
step is the adaptation of the algorithm and and its real-time implementation in embedded sensor. For that
purpose, the Python programming language has been chosen.
The code has been split in three main scripts run by sensor:

• pmu_rtd.py

• Window.py

• SDFTWindow.py

and r td_pyP MU .py script run by computer. The main script, pmu_rtd.py, defines set of important meth-
ods for different purposes such as updating the input with new samples (method upd ateInput , line 62 in
Appendix), sending the data to the output ( send_out put , line 57), TCP and IP configuration for a commu-
nication link between the sensor and laptop (d sp_r eal t i me, line 226). Since the sampling frequency of the
ADC converter in 4kHz, there are 4000 samples/channel that arrives in period of 1 s. However, the data is re-
ported to sensor in batches of 40 samples, introducing the delay of 10 ms. The data is stored in queue, and by
calling the method upd ateInput , the received message can be read and data used for further calculations.
The header of each message consists of following elements:

• tag - name of the sensor as specified in rtd.properties file

• rtdidMain - id of the port input stream is received from

• rtd_items - number of aggregated samples in message

• rtd_len - number of channels within a sample

• seq - sequence number of the first sample in aggregated series

• ts - timestamp of fetching the first sample in the aggregated series

• interval - time between two samples

while the tail of the message carries the samples for each channel (four channels in total). File rtd.properties
represents the list of IP adresses and TCP ports needed to enable the communication between the sensor
and laptop. Current real-time implementation of the code relies on the sensor for sampling and running the
code, while laptop receives the estimates with the script r td_pyP MU .py and sends the measurements to
PMU Connection Tester. At this point, it is good to clarify the relationship between the scripts pmu_r td .py
and r td_pyP MU .py . Namely, they are the scripts with the same methods used for different purposes. The
script r td_pyP MU .py is using a method upd ateInput to receive the estimates sent from the sensor. This
script is merged with pyP MU implementation of the IEEE C37.118 standard for Data Transfer [20], that sends

39
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the data further from the computer to the main PDC (PMU Utility in RSCAD). More details about the commu-
nication part will be referred later in the text. In order to perform the DFT and SDFT calculations in real time,
it was challenging to find the most appropriate and optimal way to store the available samples. This part is
realized by method add_samples in script Window.py (in Appendix, line 111). There are arrays of 160 length
each, storing samples, corresponding sequence and timestamp respectively in batches of 40. The method
new_test defines the flow of the DFT and SDFT calculations. The parameter wi ndow_posi t i on indicates
the end of the data window. Its initial value is 80, since there are 80 samples within one data window covering
one cycle of the input signal. In order to perform the sliding DFT, the wi ndow_posi t i on is increasing by
1 with each loop. Another important variable is sample_count indicating the position of the last updated
sample in the array. The condition for running the first DFT calculation is that the sample_count is greater
than wi ndow_posi t i on. That means that there is enough data for one DFT calculation (80 samples). In
the early stage of the implementation, phasor estimation, within the each window, was obtained by using
non-recursive DFT, meaning that many redundant calculations were being performed. Consequently, the
CPU utilization was significantly increased affecting the performance of the sampling module. In order to
prevent the lost of the samples, the optimization of the algorithm was performed. Many different ways for
minimizing required processing power were considered such as decreased precision in the calculations and
decreased number of redundant calculations by using constants. However, the most contributing way was in-
troduction of recursive DFT method. Namely, new parameter named MAX_RECURSIONS was introduced to
define the number of recursive DFT calculations performed after one non-recursive. By increasing the value
of MAX_RECURSIONS, the computational efficiency of the algorithm was increased. As it is generally known,
the recursive approach causes the numerical instabilities, due to the accumulated error from previous esti-
mations. The drawback of that approach is solved by repeating non-recursive DFT after number of recursive
estimates. In that way the error is suppressed by resetting the calculations with each non-recursive DFT.
SDFT algorithm is realized in the script SDFTWindow.py. In order to decrease CPU load caused by running
SDFT calculation, the number of r unSDF T executions is reduced to 10, 25 or 50 times per second, depend-
ing of the reporting rate. So, once the SDFT estimates(phasors and frequency) are obtained they are directly
reported to the output. Together with the estimates, corresponding timestamp is sent. Since the value of the
estimated phasor is valid for the time instant equal to the time corresponding to the middle of the window,
the timestamp is calculated in that way. Explained process is being performed for each phase separately. For
practical reasons, that is realized by using the Class named W i ndow and SDF T W i ndow . By calling three
different instances of the class Window ph1,ph2,ph3 (pmu_rtd.py, lin 44-46) all methods are associated to
three different phases.
After performing the set of testing experiments on the algorithm explained above, it has been noticed that
the recursive DFT calculation causes numerical oscillations in case of off-nominal input signal frequencies.
Additionally, due to the low accuracy of phasor and frequency estimations, the use of the mean filter is con-
sidered. The solution for the first issue has been found in reducing the window length from 80 to 20 samples.
By doing that, each 4th input sample is consider in calculations, what is equivalent to the reduction of the
sampling rate from 4kH to 1kHz. In that way, CPU load is decreased, enabling that the number of NON-
recursive DFTs can be increased. On the other hand, in order to increase the accuracy of estimations, the
mean filter, proposed in [12], is introduced. The filter with 1.5N order is applied to the frequency estimates,
since the magnitude and phase estimations are directly based on calculated frequency. In order to apply the
filter, the frequency should be estimated for each sample. Since it was previously estimated only in the report-
ing instances ( 10, 25 or 50 times per second), following modifications in the code are done. First of all, SDFT
code is split in two methods: filtered frequency estimation and SDFT phasor estimation. The first method
(frequency estimation) is being executed for each sample, while SDFT phasor estimation only at reporting
instants. The filtering is performed on (2.5N +1) frequency estimates. The time tag was set at the middle
of the data window, causing the measurement delay of only 1.25N samples. Once the filtered value of the
frequency is obtained, and its time tag corresponds to the reporting rate, SDFT phasors are calculated and
reported. The compared results for both, basic (b-SDFT) and enhanced (e-SDFT) version of the algorithm
are presented in the section 7.4.
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7.1. The calibration of the sensor
Due to the limited sampling accuracy of the ADC, the erroneous raw samples contribute the total vector error
caused by the synchrophasor estimation technique. That is the reason why the calibration of the sensor has
to be performed. In order to reduce the CPU load, the calibration module calibrates the estimated phasors at
50 Hz instead the raw samples at frequency of 4kHz. The calibration process expects the phasors in Cartesian
complex form:

cx = ax + j bx (7.1)

where ax and bx are real and imaginary part of the estimated complex phasor respectively.

Following that, the calibration module takes the RMS value of the estimated phasor zx =
√

a2
x +b2

x and per-
forms correction on it. The calibration procedure involves searching for corresponding calibration points in
the table (figure 7.4) and performing the linear interpolation on their equivalent RMS values. The calibra-
tion points are obtained in the RTDS laboratory at TU Delft by using Omicron Amplifier and True RMS Digital
Multimeter Fluke shown in figure 7.1. The sensor is connected to the Omicron via coaxial cable, decreasing in
that way electomagnetic interference (EMI) coming from the surrounding equipment (7.2). By using RSCAD,
the software that interfaces the RTDS, the set of different voltage levels, from 0 to 250 Vrms, with the step of
10 V, is applied to the output of Omicron. For each voltage value, the calibration module is run in order to
obtain the corresponding correction point. That value is then memorized in the calibration table, shown in
figure 7.4. The same step is repeated for all applied rms voltage values.

Figure 7.1: The instruments used for calibration
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Figure 7.2: The sensor connections with Omicron

In the figure 7.3, the position of the calibration module with respect to other existing modules is shown.
Namely, after raw samples are received from ADC and SDFT algorithm is performed, the estimated phasors
are sent to the calibration module. The calibrated values are then routed towards communication module
(section 7.3) that prepares the measurements for the transfer in the format compliant with the IEEE standard.

Figure 7.3: The correction of SDFT phasors
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Figure 7.4: The calibration points for three channels
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7.2. Electromagnetic Interference
After connecting the sensor to the function generator (source of the pure sine waves), it has been noticed that
the input signal is significantly distorted for the voltage levels below 50 Vrms (7.5), while the sensor sensitivity
increases as it reaches its nominal value of 230 Vrms.

Figure 7.5: Distortion of the input sine wave

Figure 7.6: Adapter and battery power supply

The cause for the distortions has been found in conducted electromagnetic interference. Namely, the
sensor is powered by using the power plug adapter that has insufficient filtering for the highly inductive con-
ditions in the laboratory. The permanent solution for this issue could be adding extra EMI power supply filters
in the new design of printed circuit board. However, in this project as a temporary solution, the adapter is
replaced with the battery power supply and distortions are filtered out (figure 7.7). The adapter and battery
supply of the sensor are shown in the figure 7.6
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Figure 7.7: The input sine wave after replacing the adapter with the battery supply

7.3. PyPMU module
PyPMU synchrophasor module represents implementation of IEEE C37.118.2 standard for Data Transfer [20].
That is a communication protocol realization that enables the transfer of the estimated values from PMU to
PDC. Due to the sensor processing power limitations, the pyPMU is run by the computer. The estimated
frequency, phasors and corresponding timestamps are sent from sensor to the laptop via Ethernet port. Sub-
sequently, the data frame with associated configuration frame is sent from pyPMU is sent to the PMU Con-
nection Tester, the application used to validate, test and troubleshoot connections and data streams from
phasor measurement units and graphically visualize the synchophasor estimates in real-time [21]. The data
and configuration frame are shown in the following code. With the method send_d at a, the data frame is
sent to specified IP address, while the configuration frame is defined by the configuration frame. The esti-
mated values are sent from the sensor to the laptop by using the available TCP ports.Since one port carries
information about the phasors, and another one about the frequency, they have to be synchronized, so that
the correct pair of the frequency and corresponding phasor estimation are forwarded together to the pyPMU
module. In the following code the method send_d at a is called with the estimated phasors, frequency and
the timestamp as the arguments.

1
2 pmu. send_data ( phasors = [ ( s e l f . package [msg [ 2 ] ] [ 0 ] [ 7 ] , s e l f . package [msg [ 2 ] ] [ 0 ] [ 8 ] ) ,
3 ( s e l f . package [msg [ 2 ] ] [ 0 ] [ 9 ] , s e l f . package [msg [ 2 ] ] [ 0 ] [ 1 0 ] ) ,
4 ( s e l f . package [msg [ 2 ] ] [ 0 ] [ 1 1 ] , s e l f . package [msg [ 2 ] ] [ 0 ] [ 1 2 ] ) ] ,
5 analog = [ 9 . 9 1 ] ,
6 d i g i t a l =[0 x0001 ] ,
7 freq= s e l f . package [msg[ 2 ] ] [ 1 ] [ 8 ] −5 0 ,
8 dfreq =5 ,
9 s t a t =("ok " , True , "timestamp " , False , False , False , 0 , " <10" , 0 ) ,

10 soc= i n t ( timestamp ) ,
11 frasec =( i n t )((20000 * ( ( s e l f . package [msg[ 2 ] ] [ 0 ] [ 4 ] ) / 8 0 ) ) % 1 0 0 0 0 0 0 )
12 )

In order to ensure that the forwarded values are sent with the original values and at the right time, the
scaling factors, data format and rate of the phasor data transmission are set in the configuration frame.
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In the figure 7.8 the PMU Connection Tester is shown. As an example, the estimated values are sent at
the reporting rate of 10 frames/second. The PMU CT window is graphically showing the estimated frequency
deviation and the phase estimation, as well as the numerical results of the magnitude estimation and the
corresponding timestamp.

Figure 7.8: PMU Connection Tester

The data transfer in the IEEE format is successfully established and verified on PMU Connection Tester
running in the same computer where the sensor estimates were extracted to. However, the issues appeared
while sending the data to the central computer in the laboratory. The data were being sent for a short pe-
riod of time before the connection was interrupted. Each data frame was not of the same size, carrying the
different number of messages. Consequently, the receiver was not able to sort out the messages and the
connection failed. The problem was reported to the developers of the pyPMU. The investigation about the
possible solutions is still going on.
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7.4. The results of the real-time implementation
The testing of the PMU prototype is performed in RTDS laboratory at TU Delft. The testing conditions are
obtained by using RSCAD and PMU Test Utility Tool for RTDS. Due to the communication issues between the
sensor and the central computer (PDC) in the laboratory, complete Hardware-In-The-Loop is not realized
and the results are collected directly from the sensor and saved in a .txt file. The file is imported to MATLAB
in order to obtain the precise graphical representation.

7.4.1. Testing under the nominal frequency conditions
The testing of the real-time implementation of the SDFT algorithm has been started with applying a pure
sine wave at 50Hz, with the magnitude of 100Vrms and phase of 0 radians. On the figure 7.9, the estimated
magnitudes for all three phases are shown. It can be seen that the estimated values differ for each phase, and
that the most precise estimate has been obtained for phase1, while phase2 and phase3 experience the offset
of maximum 0.5 Vrms from the nominal value. The estimates are obtained by running the basic (b-SDFT)
algorithm in the duration of 7s. The time in x-axes is given in UNIX format.
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Figure 7.9: The algorithm performance during the steady-state conditions at 50Hz

After introducing the enhancements in the algorithm, by decreasing the number of recursive DFTs and
introducing the mean filter, the accuracy of estimated magnitudes is improved. The maximum error is de-
creased to 0.05 Vrms, particularly present in the phase3 (7.10). The estimates are obtained for the time period
of 12s. For the sake of simplicity, the time notation is changed from UNIX to human readable format.
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Figure 7.10: The enhanced algorithm performance during the steady-state conditions at 50Hz
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On the figure 7.11, the estimated phases obtained with e-SDFT algorithm are plotted. As it can be seen,
the phases are shifted by 120 degrees (by knowing that 120 degrees are equivalent to 2.0944 radians). The
estimated phase depends on the moment when the DFT algorithm runs with the respect to the sampling of
the signal. However, by choosing the phase1 as a reference with the initial phase 0, two other phases would
get the values equal to -120 and -240 (120 degrees) respectively. The accuracy of phase estimation is not
significantly changed by introducing the modifications in the algorithm.
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Figure 7.11: The phase estimation

The result of frequency estimation is given in the figure 7.12. Noticeably, enhanced algorithm has drasti-
cally improved the frequency estimation. The errors of almost 0.03 Hz caused by a basic algorithm are well
suppressed by introducing the mean filter.
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Figure 7.12: The comparison of the frequency estimation of the input signal at 50Hz
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7.4.2. Testing under the off-nominal frequency conditions
Now, the testing conditions have been changed. The input signal frequency is increased from 50 Hz to 52 Hz.
As a result of the frequency estimation based on a b-SDFT algorithm, the accuracy is decreased compared to
the previous case at nominal frequency. The estimation experience the oscillations around 52 Hz, with the
greatest deviation of 0.5 Hz (7.13). However, with the enhanced SDFT algorithm, the accuracy is improved
and the deviations are attenuated. The maximum error occurring is only 0.03 Hz.
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Figure 7.13: The comparison of the frequency estimation of the input signal at 52Hz

As a consequence of off-nominal input frequency, the magnitude estimation based on b-SDFT, experi-
ences the numerical oscillations. As it can be seen from the figure 7.14, the values vary significantly from the
reference value of 100 Vrms. As it was already mentioned, the oscillations are caused by unstable performance
of recursive DFTs. By reducing the sampling rate to 1 kHz, it was ensured that CPU can handle NON-recursive
DFT calculations. In that way, the numerical oscillations are avoided and accurate magnitude estimates ob-
tained. The existing error is reduced from 8 Vrms to 0.3 Vrms.
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Figure 7.14: The comparison in magnitude estimation

As a result of the increased input signal frequency, the estimated phasors are rotating in the complex
plane with the frequency equal to the deviation from the nominal value. For instance, the result of the phasor
estimation of the input signal at 50.1 Hz is illustrated in the figure 7.15. Three phases with 120 degrees phase
shift are rotating together at frequency of 0.1 Hz in counter-clockwise direction.
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Figure 7.16: The phase estimation of the input signal at the frequency of 52 Hz

The results of the phase estimation for input signal at frequency of 52 is shown in the figure 7.16. Since
the frequency is higher that nominal, the phase estimation has a positive slope. The figure shows the results
of both algorithms. The slight improvement is obtained by running the enhanced version of SDFT.
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7.4.3. The results of the synchrophasor estimation algorithm under the dynamic condi-
tion of the frequency ramp from 48Hz to 52Hz

The figures 7.17 and 7.18 show the results of the frequency estimation in case if the input signal frequency
linearly varies from 48 Hz to 52 Hz for 4 s, for basic (b-SDFT) and enhanced algorithm (e-SDFT) respectively.
As it can be seen, more accurate estimation is obtained by using the mean filter introduced with e-SDFT
algorithm. The improvements are noticeable for all three parts of the signal at different frequencies: nominal
start frequency, the frequency ramp and off-nominal stop frequency.
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Figure 7.17: The performance of the basic algorithm in frequency ramp estimation
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Figure 7.18: The performance of the enhanced algorithm in frequency ramp estimation
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On the figure 7.19, the estimated magnitude during the frequency ramp is presented. Clearly, the accuracy
is deteriorated during the transition period of 4 s. The deviations from nominal value vary from 0.05 to 0.5
Vrms.
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Figure 7.19: Magnitude estimation under the frequency ramp

7.4.4. The results of the synchrophasor estimation algorithm under the dinamic condi-
tions - modulated input signal magnitude and phase

As it was already mentioned that the basic SDFT algorithm introduces the erroneous results in form of os-
cillations, the rest of the testing is performed only on the enhanced SDFT algorithm. In order to check the
performance of the algorithm for the case when the input signal has a modulated magnitude, the magnitude
is adjusted to vary with the modulation index of +/- 10% at frequency of 2 Hz. The result of the magnitude
modulation in shown in the figure 7.24. During the period of 1 s, two magnitude cycles are occurring and
magnitude value is varying from 90 to 110 Vrms.
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Figure 7.20: The magnitude estimation of the input signal with 10% modulation in magnitude
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When it comes to the frequency estimation under the aforementioned conditions, the figure 7.21 indi-
cates the presence of sinusoidal oscillations around the referent value of 50 Hz. The deviations are small with
the maximum value of only 0.005 Hz.
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Figure 7.21: The frequency estimation of the input signal with 10% modulation in magnitude

After injecting the input signal with a modulated magnitude, the next test is aimed to check the perfor-
mance of the e-SDFT algorithm under the dynamic condition caused by modulated input signal phase. The
first plot 7.22 shows the results of the phase estimation. The phase is varying sinusoidally around 0 rad, with
a slight deviation in magnitude.
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Figure 7.22: The phase estimation of the input signal with 10% modulation in phase

Similarly as for the frequency estimation during the magnitude modulation, the frequency estimation
during the phase modulation experiences the oscillations around the reference value of 50 Hz. However, this
time, the oscillations are more significant, reaching maximum value of 0.2 Hz (figure 7.23)
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Figure 7.23: The frequency estimation of the input signal with 10% modulation in phase

7.4.5. The results of the synchrophasor estimation algorithm under the step in magni-
tude of the input signal

The final test represents the step in the magnitude of the input signal. The test starts with applying the mag-
nitude step of 10 % and tracking the algorithm response. The figure 7.24 shows the result of estimation. The
maximum error occurs at around 11:54:28, when the magnitude error reaches 0.9 Vrms.
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Figure 7.24: The magnitude estimation of the input signal with 10% step in magnitude
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Conclusion

The thesis contributes in the development of the low-cost SDFT based Phasor Measurement Unit, that ac-
curately estimates the magnitude, phase and frequency of the voltage waveforms coming from the electrical
power grid. Throughout the thesis, the focus was on the optimized deployment of the computationally ef-
ficient algorithm for synchrophasor estimation to the low-cost voltage embedded sensor. The chosen algo-
rithm is based on Smart Discrete Fourier Transform, due to the better accuracy that can be obtained under
the off-nominal frequency conditions, the presence of higher harmonics and noise compared to the basic
Discrete Fourier Transform. After the verification of the performance of SDFT technique in MATLAB environ-
ment, the code is developed for real-time applications in Python programming language. Implementation of
the algorithm is optimized with respect to the hardware processing power. As a result of the optimization
steps, two main versions of the code are obtained: b-SDFT (basic version) and e-SDFT (enhanced version).
b-SDFT relies on 4kHz sampling rate, recursive DFTs and SDFT calculated at the reporting instants and it
efficiently runs on sensor processing unit. On the other hand, more accurate e-SDFT is obtained by reducing
the number of samples considered by one window, use of NON-recursive DFTs, sliding SDFTs and mean fil-
tering of frequency estimates. Consequently, the main disadvantage of the recursive approach, the presence
of numerical oscillation is avoided. Additionally, by increasing the number of SDFT calculations, the imple-
mentation of the mean filter is enabled. In that way, the accuracy of the estimation is significantly improved.
Since the e-SDFT was computationally demanding for sensor, the processing power of the laptop is involved
in estimation. In the latest stage, the e-SDFT is further optimized for sensor by decreasing the sampling rate
of the ADC from 4kHz to 1 kHz. The testing of the prototype is performed with Real-Time Digital Simulator
(RTDS). The test conditions are obtained by using PMU Utility in RSCAD, the software interfacing the RTDS.
Due to the communications issues with PyPMU module for Data Transfer, the Hardware-in-the-Loop is not
completely enabled and total vector error and measurement reporting latency are not calculated. With the
further research, the reliable communication for data transfer and complete testing of the device is required.
Currently, enhanced SDFT algorithm is being processed by low voltage sensor. The next step is implementa-
tion of the algorithm in the low current sensor. In that way, we will have two distributed synchronized sensors
that are estimating current and voltage values separately. By sending estimates over IP to the aggregation hub,
the power values will be calculated. Due to the low cost, the sensors could be massively deployed in distri-
bution grid. The first application of SDFT Based PMUs will be power consumption monitoring at Technical
University of Delft. The PMUs will be connected to the low voltage grid, and estimated measurements will
be sent from the sensor to the monitoring unit that will display the values of voltage, current and frequency
occurring in the grid in real-time.
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A.0.1. Code in the script pmu_ rtd.py

1 # ! / usr / bin / env python3
2 # Copyright ( c ) 2016−2018 Dennis Bijwaard ( dennis@smartstatetechnology . nl )
3 # ! / usr / bin / env python3
4 #from __future__ import print_function
5 import logging
6 import time
7 import json
8 import cbor
9 import DMN

10 import math
11 import s ignal
12 import sys
13 from os import path
14 #from Sample import Sample
15 from Window import Window
16 # Implement the default mpl key bindings
17 try :
18 from configparser import ConfigParser
19 except :
20 from ConfigParser import ConfigParser
21 from decimal import *
22 getcontext ( ) . prec = 4
23
24 from random import randint
25 i f sys . version_info [ 0 ] < 3 :
26 import Queue as queue # f o r python2
27 else :
28 import queue # f o r python>=3
29
30 class RTD_DSP ( ) :
31 ’DSP for calcu lat ing output from RTD values ’
32 def _ _ i n i t _ _ ( s e l f , name ) :
33 s e l f . inputStarted=False
34 s e l f .dmn=None
35 s e l f . x=dict ( )
36 s e l f . y=dict ( )
37 s e l f . lastt ime=time . time ( )
38 s e l f . index=0

57
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39 s e l f . minFixTime=0
40 s e l f . delay =.001
41 s e l f . useTime=False
42 s e l f . running=True
43 s e l f . outputIDs = [ ]
44 s e l f . ph1 = Window(name = ’ Phase−1 ’ , id = 1)
45 s e l f . ph2 = Window(name = ’ Phase−2 ’ , id = 2)
46 s e l f . ph3 = Window(name = ’ Phase−3 ’ , id = 3)
47
48 def scheduleQuit ( s e l f ) :
49 logging . info ( "Stopping a f t e r closing window" )
50 s e l f . running=False
51
52 def add_output ( s e l f , rtdid , binding , outputIndex = 0 ) :
53 logging . info ( "Adding output with outputIndex=%d"%outputIndex )
54 s e l f . outputIDs . append( rtdid )
55 s e l f .dmn. add_output ( binding , outputIndex )
56
57 def send_output ( s e l f , seq , ts , values , outputIndex = 0 ) :
58 i f len ( s e l f . outputIDs) >outputIndex :
59 logger . debug ( "Sending to outputID[%d]=%d"%(outputIndex , s e l f . outputIDs [ outputIndex ] ) )
60 s e l f .dmn. sendOutput ( s e l f . outputIDs [ outputIndex ] , seq , ts , values , outputIndex )
61
62 def updateInput ( s e l f , q ) :
63 s e l f . sampling_frequency=1000
64 try : #Try to check i f there i s data in the queue
65 try :
66 msg=q . get ( timeout= s e l f . delay )
67 [ tag , rtdidMain , rtd_items , rtd_len , seq , ts , i n t e r v a l ]=msg[ 0 : 7 ]
68 # print ( " q { } | { } | { } " . format ( len (msg) , q . q s i z e ( ) , t s ) )
69 # s e l f . ph1 . add_sample (msg [ 7 : : 4 ] )
70 # s e l f . ph2 . add_sample (msg [ 8 : : 4 ] )
71 # s e l f . ph3 . add_sample (msg [ 9 : : 4 ] )
72
73
74 itemRange=range ( 0 , rtd_items )
75 x l i s t =[ seq+ j for j in itemRange ]
76 # s e l f . ph1 . add_seq ( x l i s t )
77 # s e l f . ph2 . add_seq ( x l i s t )
78 # s e l f . ph3 . add_seq ( x l i s t )
79 i f seq ==0:
80 t s = int ( t s +0.5)
81
82 # print ( " Time : " , t s )
83 # ts_gps= int ( t s ) + ( seq ) / s e l f . sampling_frequency
84 # Sts_gps= int ( t s )
85
86
87 t l i s t =[ t s + i n t e r v a l * j for j in itemRange ]
88
89 # s e l f . ph1 . add_time ( t l i s t )
90 # s e l f . ph2 . add_time ( t l i s t )
91 # s e l f . ph3 . add_time ( t l i s t )
92 s e l f . ph1 . add_sample (msg [ 7 : : 4 ] [ 0 : : 4 ] , x l i s t [ 0 : : 4 ] , t l i s t [ 0 : : 4 ] )
93 s e l f . ph2 . add_sample (msg [ 8 : : 4 ] [ 0 : : 4 ] , x l i s t [ 0 : : 4 ] , t l i s t [ 0 : : 4 ] )
94 s e l f . ph3 . add_sample (msg [ 9 : : 4 ] [ 0 : : 4 ] , x l i s t [ 0 : : 4 ] , t l i s t [ 0 : : 4 ] )
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95
96 except Exception as e :
97 # print ( " i am in exception . . . yaay ! ! qdepth { } " . format ( q . q s i z e ( ) ) )
98 return s e l f . running
99

100 # logging . debug (msg)
101
102 except Exception as e :
103 logging . error ( " Error using input msg : %s "%(s t r ( e ) ) )
104 return False
105 return s e l f . running
106
107 def quit ( s e l f ) :
108 s e l f .dmn. quit ( )
109
110 class rtd_dmn (DMN.DMN) :
111 ’ Listening to a multitude of RTDs ’
112 def _ _ i n i t _ _ ( s e l f , name, bindingRep ) :
113 s e l f . inputStarted=True
114 s e l f . l a s t _ t s =dict ( )
115
116 super ( rtd_dmn , s e l f ) . _ _ i n i t _ _ (name, bindingRep )
117
118 def handle_command( s e l f , req ) :
119 ’ ’ ’
120 default command handler , should be overriden in subclass
121 @req request in json form
122 ’ ’ ’
123 i f req [ ’command ’ ]== " startDSP " :
124 resp="DSP started "
125 else :
126 logging . info ( " Received unknown command %s "%req )
127 resp="unknown DSP command"
128 return resp
129
130 def handle_message ( s e l f , tag , msg ) :
131 ’ ’ ’
132 default message handler , should be overriden in subclass
133 @tag name of t h i s input
134 @msg received message from publisher
135 ’ ’ ’
136 global q
137
138 i f not s e l f . inputStarted :
139 logging . warning ( "incoming message when not yet started " )
140 return
141
142 length=len (msg)
143 i f length >=4:
144 ( rtdid , timing , rtd_items , rtd_len )=msg[ 0 : 4 ]
145 else :
146 logging . warning ( "not enough f i e l d s=%d in message" , length )
147 return
148 r t d _ s i z e =rtd_items * rtd_len
149
150 tagid="%s%d"%(tag , rtdid )
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151
152 i f isinstance ( timing , int ) : # old behavior
153 e x t r a F i e l d s =length−5
154 i f timing <=0:
155 usec=0
156 seq=−timing
157 else :
158 usec=seq
159 seq=None
160 i f extraFields >0:
161 sec=msg[ 5 ]
162 else :
163 sec=None
164 i f extraFields >1:
165 usec=msg[ 6 ]
166 else : # timing array
167 seq=None
168 sec=None
169 usec=0
170 try : # t r y s e t t i n g unti l exception , (u) sec may not be available
171 seq=timing [ 0 ]
172 sec=timing [ 1 ]
173 usec=timing [ 2 ]
174 except :
175 pass
176
177 i f seq !=None :
178 i n t e r v a l =1 # default to 1 sequence number i n t e r v a l
179 i f rtd_items >1:
180 seq=seq−rtd_items+1
181 i f sec !=None :
182 t s =sec+usec/1000000 # use timestamp
183 d e f a u l t _ i n t e r v a l =.0001 # default to low i n t e r v a l unti l l a s t _ t s i s available
184 i n t e r v a l = d e f a u l t _ i n t e r v a l
185 i f rtd_items >1:
186 # logging . debug ( " rtdid=%d , msg t s=%f , items=%d " , rtdid , ts , rtd_items )
187 try :
188 l a s t _ t s = s e l f . l a s t _ t s [ tagid ]
189 i n t e r v a l =( ts−l a s t _ t s )/ rtd_items
190 i f i nt e r v a l >1: # probably missed a bunch of samples
191 i n t e r v a l = d e f a u l t _ i n t e r v a l
192 l a s t _ t s =ts−i n t e r v a l * rtd_items
193 else :
194 i f i nt e r v a l <0: # time goes backwards
195 logging . warn( " rtdid=%s , msg t s=%f , i n t e r v a l=%f " , tagid , ts , i n t e r v a l )
196 i n t e r v a l = d e f a u l t _ i n t e r v a l
197 except KeyError : # l a s t _ t s i s not y e t available
198 l a s t _ t s =ts−i n t e r v a l * rtd_items
199 s e l f . l a s t _ t s [ tagid ]= t s
200 t s = l a s t _ t s + i n t e r v a l
201 else :
202 t s =None
203
204 value=msg[ 4 ]
205 i f isinstance ( value , l i s t ) :
206 q . put ( [ tag , rtdid , rtd_items , rtd_len , seq , ts , i n t e r v a l ]+ value )
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207 else :
208 q . put ( [ tag , rtdid , rtd_items , rtd_len , seq , ts , i n te r v a l , value ] )
209
210 def sendOutput ( s e l f , rtdid , seq , ts , values , outputIndex = 0 ) :
211 ’ ’ ’
212 send values as DSP output (non−aggregated , rtd_items =1)
213 @param seq the seqence number f o r the r e s u l t , or None when sequence i s not known
214 @param t s the timestamp f o r the r e s u l t
215 @param values an array of values , or s i n g l e value containing the r e s u l t
216 @param outputIndex the index of the output
217 ’ ’ ’
218 sec= int ( t s )
219 usec= int ( ( ts−sec )*1000000)
220 msg=[ rtdid , [ seq , sec , usec ] , 1 , len ( values ) , values ]
221 s e l f . send_output (msg, outputIndex )
222
223 def quit ( s e l f ) :
224 s e l f . msgr . send_command( s e l f . bindingReq , ’ { "command" : " stop " } ’ )
225
226 def dsp_realtime (dsp_name ) :
227 #dsp=RTD_DSP(dsp_name , " ipc : / / / tmp / dsp%d"%(randint ( 0 , 1 0 0 ) ) )
228 dsp=RTD_DSP(dsp_name)
229 variant=" sdf "
230 # read configuration
231 c o n f i g f i l e =path . join ( path . dirname ( path . realpath ( _ _ f i l e _ _ ) ) , " rtd . properties " )
232 defaults ={ " sensors " : [ " sensor1 " ] , " outputs " : [ ] }
233 config=ConfigParser ( defaults )
234 config . read ( c o n f i g f i l e )
235 dsp .dmn=rtd_dmn (dsp_name , " inproc : / /tmp/%s "%(dsp_name ) )
236
237 sensors=json . loads ( config . get ( " defaults " , " sensors " ) )
238 # l i s t e n to realtime data
239 for sensor in sensors :
240 ports=json . loads ( config . get ( sensor , variant+" _ports " ) )
241 host=config . get ( sensor , " tcp_host " )
242 try :
243 tag=config . get ( sensor , " tag " )
244 except Exception as e :
245 logging . error ( " Error config msg : %s "%(s t r ( e ) ) )
246 tag=host
247 for port in ports :
248 dsp .dmn. add_subscription ( tag , " tcp ://% s:%d"%(host , port ) )
249
250 outputs=json . loads ( config . get ( " defaults " , " outputs " ) )
251 outputIndex=0
252 for output in outputs :
253 binding=config . get ( output , variant+" _binding " )
254 rtdid=config . get ( output , variant+" _rtdid " )
255 i f isinstance ( rtdid , s t r ) :
256 rtdid= int ( r tdid )
257 logging . info ( "Adding binding %s to output with rtdid %d"%(binding , rtdid ) )
258 dsp . add_output ( rtdid , binding , outputIndex )
259 outputIndex+=1
260
261 return dsp
262
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263 def dsp_all ( ) :
264 global q , running , stopping
265 stopping=False
266 signal . s ignal ( s ignal . SIGINT , signal_handler )
267 q = queue . Queue ( )
268 dsp=dsp_realtime ( ’MyDSP ’ )
269 running=True
270 thread = False
271 i f ( thread ) :
272 dsp . ph1 . s t a r t ( )
273 time . sleep ( 0 . 1 )
274 dsp . ph2 . s t a r t ( )
275 time . sleep ( 0 . 1 )
276 dsp . ph3 . s t a r t ( )
277 time . sleep ( 0 . 1 )
278
279 #running=dsp . updateInput ( q )
280 #running=dsp . updateInput ( q )
281 while ( running ) :
282 running=dsp . updateInput (q)
283 # print ( "TIME : " , dsp . ph1 . input_time )
284 # print ( "SEQ : " , dsp . ph1 . input_seq )
285 # print ( "PHASE 1 : " , dsp . ph1 . input_sample )
286
287 # # s t a r t = time . time ( )
288 i f ( not thread ) :
289 for i in range ( 0 , 1 0 ) :
290 sending =dsp . ph1 . new_test ( )
291 sending =dsp . ph2 . new_test ( )
292 sending =dsp . ph3 . new_test ( )
293 i f ( sending and dsp . ph1 . sdft_window . input_sample_seq [25]%(80)==0):
294 #seq , ts , values , outputIndex=0
295 # print ( " sending " )
296 dsp . ph1 . sdft_window . calculateResult ( 1 )
297 dsp . ph2 . sdft_window . calculateResult ( 2 )
298 dsp . ph3 . sdft_window . calculateResult ( 3 )
299 temp= dsp . ph2 . sdft_window . r e s u l t + [ 1 . 0 , 1 . 0 ]
300 print ( "Sending Values : { } , { } , { } " . format (
301 dsp . ph1 . sdft_window . input_sample_time [ 2 5 ] ,
302 dsp . ph1 . sdft_window . input_sample_seq [ 2 5 ] , temp ) )
303 print ( "Sending Freq : { } , { } , { } " . format (
304 dsp . ph1 . sdft_window . input_sample_time [ 2 5 ] ,
305 dsp . ph1 . sdft_window . input_sample_seq [ 2 5 ] ,
306 dsp . ph1 . sdft_window . freq ) )
307
308 # print ( " " . format ( ) )
309 dsp . send_output ( t s = dsp . ph1 . sdft_window . input_sample_time [ 2 5 ] ,
310 seq = dsp . ph1 . sdft_window . input_sample_seq [ 2 5 ] ,
311 values = temp , outputIndex = 0)
312 dsp . send_output ( t s = dsp . ph1 . sdft_window . input_sample_time [ 2 5 ] ,
313 seq = dsp . ph1 . sdft_window . input_sample_seq [ 2 5 ] ,
314 values = dsp . ph1 . sdft_window . freq , outputIndex = 1)
315
316
317 #dsp . ph1 . t e s t _ r e c u r s i v e ( )
318
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319 #dsp . ph2 . t e s t ( )
320 #dsp . ph3 . t e s t ( )
321 #end = time . time ( )
322 # print ( " Time passed : " , end − s t a r t )
323 # print ( dsp . window . input_sample )
324 #time . s l e e p ( 1 )
325 i f stopping :
326 logger . debug ( ’ Trying to stop a f t e r CTRL−C! ’ )
327 Window. e x i t = True
328 running=False
329
330 logger . debug ( ’ Trying to quit a f t e r CTRL−C! ’ )
331 dsp . quit ( )
332 logger . debug ( ’ Quited a f t e r CTRL−C! ’ )
333
334 def signal_handler ( signal , frame ) :
335 global stopping
336 logger . info ( ’You pressed C t r l +C! ’ )
337 stopping=True
338
339 i f __name__ == "__main__" :
340 l o g f i l e = ’ session−dsp . log ’
341 logger = logging . getLogger ( ’ rtd_dsp ’ )
342 logging . basicConfig ( l e v e l =logging . INFO,
343 format= ’%(asctime ) s .%(msecs)03d %(levelname)−8s %(message ) s ’ ,
344 datefmt= ’%Y−%m−%d,%H:%M:%S ’ ,
345 filename= l o g f i l e ,
346 filemode= ’w’ )
347 stderrLogger=logging . StreamHandler ( )
348 stderrLogger . setLevel ( logging . INFO)
349 stderrLogger . setFormatter ( logging . Formatter ( logging .BASIC_FORMAT) )
350 logger . addHandler ( stderrLogger )
351
352 dsp_all ( )
353
354 logging . info ( "Stopped , running=%d"%(running ) )

A.0.2. Code in the script Window.py

1 import numpy as np
2 from SDFTWindow import SDFTWindow
3 import time
4 import threading
5 from decimal import *
6
7
8
9 class Window( threading . Thread ) :

10 " " "
11 Constants d e f i n i t i o n
12 " " "
13 WINDOW_LENGTH = 20
14 MAX_RECURSION =0
15 MAX_LEN =40
16 sampling_frequency=1000
17 n=range ( 0 ,WINDOW_LENGTH)
18 Factor_re =(1/WINDOW_LENGTH) *np . cos (np . multiply ((−2*np . pi ) /WINDOW_LENGTH, n ) )
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19 Factor_im =(1/WINDOW_LENGTH) *np . sin (np . multiply ((−2*np . pi ) /WINDOW_LENGTH, n ) )
20
21
22 m=range ( 0 ,MAX_RECURSION)
23 Factor_re_rec=np . sqrt ( 2 ) * ( 1 /WINDOW_LENGTH) *np . cos (np . multiply ((−2*np . pi ) /WINDOW_LENGTH,m) )
24 Factor_im_rec=np . sqrt ( 2 ) * ( 1 /WINDOW_LENGTH) *np . sin (np . multiply ((−2*np . pi ) /WINDOW_LENGTH,m) )
25 Factor_rec=Factor_re_rec+np . multiply (1 j , Factor_im_rec )
26 e x i t = False
27 c1=2*np . pi /WINDOW_LENGTH
28 c2=np . sqrt ( 2 ) * ( 1 /WINDOW_LENGTH) ;
29 Factor_1 =(np . cos ( c1)+1 j *np . sin ( c1 ) )
30
31 def _ _ i n i t _ _ ( s e l f , window_position = 0 , input_sample = [ ] , input_time = [ ] ,
32 input_seq = [ ] , window_length = 20 , max_len = 40 , block = 1 ,
33 block_t =1 , block_s =1 , name = ’ Phase ’ , id = 0 ) :
34 threading . Thread . _ _ i n i t _ _ ( s e l f )
35 s e l f .name = name
36 s e l f . recursive_count = 0
37 s e l f . id = id
38 s e l f . window_position = 20
39 s e l f . input_sample = input_sample
40 s e l f . input_time = input_time
41 s e l f . input_seq = input_seq
42 s e l f . sample_count= 0
43 s e l f . sample_count_t= 0
44 s e l f . sample_count_s= 0
45 s e l f . block = block
46 s e l f . block_t=block_t
47 s e l f . block_s=block_s
48 s e l f . sdft_window = SDFTWindow( )
49 s e l f .doDFT = False
50 s e l f . runSDFT= False
51 s e l f . r eset = 0
52 s e l f . non_recursive_count=0
53 s e l f . dft_count=0
54 s e l f . input_sample =[−1 , −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
55 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
56 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
57 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
58 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
59 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
60 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
61 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1]
62 s e l f . input_sample = s e l f . input_sample [ 0 : 4 0 ]
63 s e l f . input_time =[−1 , −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
64 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
65 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
66 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
67 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
68 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
69 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
70 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1]
71 s e l f . input_time = s e l f . input_time [ 0 : 4 0 ]
72 s e l f . input_seq =[−1 , −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
73 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
74 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
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75 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
76 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
77 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
78 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
79 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1]
80 s e l f . input_seq = s e l f . input_seq [ 0 : 4 0 ]
81
82 def new_test ( s e l f ) :
83 sending = False ;
84 i f ( ( ( s e l f . r eset * s e l f .MAX_LEN) + s e l f . sample_count ) > s e l f . window_position ) :
85
86 i f ( s e l f . recursive_count == 0 ) :
87
88 s e l f . runDFT ( )
89 s e l f . dft_count+=1
90 else :
91 s e l f . runDFT_recursive ( )
92 s e l f . dft_count+=1
93 # print ( " d f t count : { } f o r { } " . format ( s e l f . dft_count , s e l f .name) )
94 # i f ( s e l f . input_seq [ s e l f . window_position−10]%( s e l f .WINDOW_LENGTH) = = 0 ) :
95 # print ( " { } window { } phase " . format ( s e l f . window_position , s e l f . idA
96 s e l f . sdft_window . runSDFT( s e l f . id )
97 # print ( s e l f . input_seq [ s e l f . window_position−40])
98
99 i f ( s e l f . id == 3 ) :

100 # s e l f . sdft_window . p r i n t _ r e s u l t ( )
101 sending = True
102
103 s e l f . dft_count%=s e l f .MAX_RECURSION+1
104 s e l f . recursive_count += 1
105 s e l f . recursive_count %= s e l f .MAX_RECURSION+1
106 s e l f . window_position += 1
107 i f ( s e l f . window_position == s e l f .MAX_LEN) :
108 s e l f . window_position = 0 # s e l f . window_position %= s e l f .MAX_LEN
109 s e l f . r eset = 0
110 return sending
111 def add_sample ( s e l f , arr , arr1 , arr2 ) :
112
113 i f ( s e l f . block == 1 ) :
114 # print ( " hello1 "+ s t r ( arr ) )
115 s e l f . input_sample = arr + s e l f . input_sample [ 10: s e l f .MAX_LEN]
116 s e l f . input_seq = arr1 + s e l f . input_seq [ 10: s e l f .MAX_LEN]
117 s e l f . input_time = arr2 + s e l f . input_time [ 10: s e l f .MAX_LEN]
118
119 s e l f . block = 2
120 s e l f . sample_count += 10
121
122 e l i f ( s e l f . block == 2 ) :
123 # print ( " hello2 "+ s t r ( arr ) )
124 s e l f . block = 3
125 s e l f . input_sample = s e l f . input_sample [ 0 : 1 0 ] + arr + s e l f . input_sample [ 2 0 : s e l f .MAX_LEN]
126 s e l f . input_seq = s e l f . input_seq [ 0 : 1 0 ] + arr1 + s e l f . input_seq [ 2 0 : s e l f .MAX_LEN]
127 s e l f . input_time = s e l f . input_time [ 0 : 1 0 ] + arr2 + s e l f . input_time [ 2 0 : s e l f .MAX_LEN]
128
129 s e l f . sample_count += 10
130
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131 e l i f ( s e l f . block == 3 ) :
132 # print ( " hello3 "+ s t r ( arr ) )
133 s e l f . block = 4
134 s e l f . input_sample = s e l f . input_sample [ 0 : 2 0 ] + arr +
135 s e l f . input_sample [ 3 0 : s e l f .MAX_LEN]
136 s e l f . input_seq = s e l f . input_seq [ 0 : 2 0 ] + arr1 +
137 s e l f . input_seq [ 3 0 : s e l f .MAX_LEN]
138 s e l f . input_time = s e l f . input_time [ 0 : 2 0 ] + arr2 +
139 s e l f . input_time [ 3 0 : s e l f .MAX_LEN]
140
141 s e l f . sample_count += 10
142
143 e l i f ( s e l f . block == 4 ) :
144 # print ( " hello3 "+ s t r ( arr ) )
145 s e l f . block = 1
146 s e l f . input_sample = s e l f . input_sample [ 0 : 3 0 ] + arr
147 s e l f . input_seq = s e l f . input_seq [ 0 : 3 0 ] + arr1
148 s e l f . input_time = s e l f . input_time [ 0 : 3 0 ] + arr2
149
150 s e l f . reset = 1
151 s e l f . sample_count = 0
152
153 else :
154 print ( " Error " )
155 def runDFT( s e l f ) :
156
157 # print ( " running d f t " )
158 bin_1_phase_re = 0
159 bin_1_phase_im = 0
160 for i in range ( 0 , 2 0 ) :
161
162
163 bin_1_phase_re = bin_1_phase_re +
164 ( s e l f . input_sample [ ( s e l f . window_position − 20 + i )% s e l f .MAX_LEN ]
165 * ( s e l f . Factor_re [ i ] ) ) bin_1_phase_im = bin_1_phase_im +
166 ( s e l f . input_sample [ ( s e l f . window_position − 20 + i )% s e l f .MAX_LEN ]
167 * ( s e l f . Factor_im [ i ] ) )
168
169 X_k_phase_re= 1.414 * bin_1_phase_re
170 X_k_phase_im= 1.414 * bin_1_phase_im
171
172
173 X_k_phase=X_k_phase_re+1 j *X_k_phase_im
174 s e l f . sdft_window . input_sample= s e l f . sdft_window . input_sample [ 1 : 5 0 ] + [ X_k_phase ]
175
176
177 time_stamp= s e l f . input_time [ s e l f . window_position − 10]
178 s e l f . sdft_window . input_sample_time= s e l f . sdft_window . input_sample_time [ 1 : 5 0 ]
179 +[ time_stamp ]
180 middle_seq= s e l f . input_seq [ s e l f . window_position − 10]
181 s e l f . sdft_window . input_sample_seq= s e l f . sdft_window . input_sample_seq [ 1 : 5 0 ] +
182 [ middle_seq ]
183
184 def runDFT_recursive ( s e l f ) :
185
186 X_new=( s e l f . sdft_window . input_sample [−1] +



67

187 s e l f . c2 * ( s e l f . input_sample [ ( s e l f . window_position)% s e l f .MAX_LEN]−
188 s e l f . input_sample [ s e l f . window_position −20]))* s e l f . Factor_1
189 s e l f . sdft_window . input_sample= s e l f . sdft_window . input_sample [ 1 : 5 0 ] + [X_new]
190
191
192 time_stamp= s e l f . input_time [ s e l f . window_position − 10]
193 s e l f . sdft_window . input_sample_time= s e l f . sdft_window . input_sample_time [ 1 : 5 0 ] +[ time_stamp ]
194 middle_seq= s e l f . input_seq [ s e l f . window_position − 10]
195 s e l f . sdft_window . input_sample_seq= s e l f . sdft_window . input_sample_seq [ 1 : 5 0 ] +[ middle_seq ]
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A.0.3. Code in the script SDFTWindow.py

1 # ! / usr / bin / env python3
2 # −*− coding : utf−8 −*−
3 " " "
4 Created on Tue May 8 20:44:22 2018
5
6 @author : i s i d o r a
7 " " "
8
9 # −*− coding : utf−8 −*−

10 " " "
11 Created on Mon Apr 23 11:40:54 2018
12
13 @author : i s i d o r a
14 " " "
15
16 import numpy as np
17 #import time
18
19 class SDFTWindow( object ) :
20 " " "
21 Constants d e f i n i t i o n
22 " " "
23 WINDOW_LENGTH = 3
24 MAX_LEN = 3
25 Fs=1000
26 f =50
27 N=20
28 c1=Fs /(2*np . pi )
29 c2 =(np . pi ) / Fs
30 c3=np . e
31 r e s u l t =[−1,−1,−1,−1,−1,−1]
32 freq = [−1,−1,−1]
33
34
35 def _ _ i n i t _ _ ( s e l f , window_position = 0 , input_sample = [ ] , window_length = 3 ,
36 max_len = 3 , n_phase = 3 , r e s u l t = [ ] , input_sample_time = [ ] , input_sample_seq = [ ] ) :
37 s e l f . window_position = window_position
38 s e l f . freq_filter_window = [ ] ;
39 # s e l f . input_sample_re = [−1,−1,−1]
40 # s e l f . input_sample_im = [−1,−1,−1]
41 # s e l f . r e s u l t = r e s u l t
42 s e l f . i = 2
43 s e l f . input_sample = [−1,−1, −1, −1, −1,−1, −1, −1, −1, −1, −1, −1, −1,
44 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
45 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
46 −1, −1]
47 s e l f . input_sample_time=[−1,−1, −1, −1, −1,−1, −1, −1, −1, −1, −1, −1, −1,
48 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
49 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1]
50 s e l f . input_sample_seq=[−1,−1, −1, −1, −1,−1, −1, −1, −1, −1, −1, −1, −1, −1,
51 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1,
52 −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1]
53
54 # s e l f . r e s u l t = [−1]
55
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56 def getAverage ( s e l f , arr ) :
57 sum =0;
58 for i in range ( 0 , len ( arr ) ) :
59 sum += arr [ i ] ;
60
61 return sum/( len ( arr ) )
62
63 def runSDFT( s e l f , id ) :
64
65 # i f ( s e l f . i >0):
66 # s e l f . i −= 1
67 # return
68 X_k_arr= s e l f . input_sample [ len ( s e l f . input_sample)−3 : len ( s e l f . input_sample ) ]
69 w=( X_k_arr [0]+ X_k_arr [ 2 ] ) / X_k_arr [ 1 ]
70 s e l f . freq_filter_window = [ ( s e l f . c1 ) *np . arccos (np . r e a l (w/ 2 ) ) ]
71 + s e l f . freq_filter_window [ 0 : 5 0 ]
72
73
74
75
76 def calculateResult ( s e l f , id = 0 ) :
77 f_es = s e l f . getAverage ( s e l f . freq_filter_window )
78 X_k_arr= s e l f . input_sample [ 2 5 : 2 8 ]
79 f _ d e l t a =f_es−s e l f . f
80 a1=np . cos (2* s e l f . c2 * ( s e l f . f + f _ d e l t a ))+1 j *np . sin (2* s e l f . c2 * ( s e l f . f + f _ d e l t a ) )
81 #Ar = ( ( a1*a1 ) * X_k_arr [0]−a1* X_k_arr [ 1 ] ) / ( a1*a1−1)
82 Ar =( X_k_arr [ 1 ] * a1−X_k_arr [ 0 ] ) / ( a1 *a1−1)
83 X_est =(abs ( Ar ) ) * ( ( s e l f .N*np . sin ( s e l f . c2 * f _ d e l t a ) ) / ( np . sin ( s e l f .N* s e l f . c2 * f _ d e l t a ) ) )
84 phi_es=np . angle ( Ar)−( s e l f . c2 * ( s e l f .N−1)* f _ d e l t a )
85
86 X_meas=X_est *pow( s e l f . c3 , 1 j * phi_es )
87 s e l f . r e s u l t [ 2 * ( id −1)] = np . r e a l (X_meas ) . t o l i s t ( )
88 s e l f . r e s u l t [ 2 * ( id−1)+1] = np . imag (X_meas ) . t o l i s t ( )
89 s e l f . freq [ id−1] = f_es
90
91 # s e l f . r e s u l t = s e l f . r e s u l t 1 . t o l i s t ( )
92
93
94 #end = time . time ( )
95 # print ( "SDFT time { } " . format ( end − s t a r t ) )
96
97 def p r i n t _ r e s u l t ( s e l f ) :
98 # print ( "SDFT phasors are : " , s e l f . r e s u l t )
99 # print ( " estimated frequency i s : " , s e l f . f r e q )

100 # print ( " { } stamp " . format ( s e l f . input_sample_time [ 2 ] ) )
101 # print ( " Time stamp : " , s e l f . input_sample_time [ 2 ] )
102 # print ( " Sequence : " , s e l f . input_sample_seq [ 2 ] )
103 # print ( " Magnitude : " , abs ( s e l f . r e s u l t [0]+1 j * s e l f . r e s u l t [ 1 ] ) )
104 print ( "Output : { } | { } | { } | { } | { } | { } " . format ( s e l f . input_sample_time [ 2 5 ] ,
105 s e l f . input_sample_seq [ 2 5 ] , s e l f . freq [ 0 ] , abs ( s e l f . r e s u l t [0]+1 j * s e l f . r e s u l t [ 1 ] ) ,
106 abs ( s e l f . r e s u l t [2]+1 j * s e l f . r e s u l t [ 3 ] ) , abs ( s e l f . r e s u l t [4]+1 j * s e l f . r e s u l t [ 5 ] ) ) )

A.0.4. Code in the script rtd_pyPMU.py

1 # ! / usr / bin / env python3
2 # Copyright ( c ) 2016−2018 Dennis Bijwaard ( dennis@smartstatetechnology . nl )
3 # Distributed under the Boost Software License , Version 1 . 0 .
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4 # ( See https : / /www. boost . org / LICENSE_1_0 . t x t )
5 #from __future__ import print_function
6 from synchrophasor . frame import ConfigFrame2
7 from synchrophasor . frame import CommonFrame
8 from synchrophasor .pmu import Pmu
9 from time import time

10 from time import sleep
11 import logging
12 import time
13 import json
14 import cbor
15 import DMN
16 import math
17 import s ignal
18 import sys
19 from os import path
20 import t imeit
21 # Implement the default mpl key bindings
22 try :
23 from configparser import ConfigParser
24 except :
25 from ConfigParser import ConfigParser
26
27 from random import randint
28 i f sys . version_info [ 0 ] < 3 :
29 import Queue as queue # f o r python2
30 else :
31 import queue # f o r python>=3
32
33 class RTD_DSP ( ) :
34 ’DSP for calculat ing output from RTD values ’
35 def _ _ i n i t _ _ ( s e l f , name ) :
36 s e l f . inputStarted=False
37 s e l f .dmn=None
38 s e l f . x=dict ( )
39 s e l f . y=dict ( )
40 s e l f . lastt ime=time . time ( )
41 s e l f . index=0
42 s e l f . minFixTime=0
43 s e l f . delay =.001
44 s e l f . useTime=False
45 s e l f . running=True
46 s e l f . outputIDs = [ ]
47 s e l f . package = [ ]
48 for i in range ( 0 , 4 0 0 0 ) :
49 s e l f . package . append ( [ [ ] , [ ] , 0 ] )
50
51 def scheduleQuit ( s e l f ) :
52 logging . info ( "Stopping a f t e r closing window" )
53 s e l f . running=False
54
55 def add_output ( s e l f , rtdid , binding , outputIndex = 0 ) :
56 logging . info ( "Adding output with outputIndex=%d"%outputIndex )
57 s e l f . outputIDs . append( rtdid )
58 s e l f .dmn. add_output ( binding , outputIndex )
59
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60 def send_output ( s e l f , seq , ts , values , outputIndex = 0 ) :
61 i f len ( s e l f . outputIDs) >outputIndex :
62 logger . debug ( "Sending to outputID[%d]=%d"%(outputIndex , s e l f . outputIDs [ outputIndex ] ) )
63 s e l f .dmn. sendOutput ( s e l f . outputIDs [ outputIndex ] , seq , ts , values , outputIndex )
64 # def updateInput ( s e l f , q ,pmu) :
65 def updateInput ( s e l f , q ,pmu) :
66 s e l f . sampling_frequency=1000
67 try : #Try to check i f there i s data in the queue
68 try :
69 msg=q . get ( timeout= s e l f . delay )
70 except Exception as e :
71 return s e l f . running
72 [ tag , rtdidMain , rtd_items , rtd_len , seq , ts , i n t e r v a l ]=msg[ 0 : 7 ]
73 #msg= [ tag , rtdidMain , rtd_items , rtd_len , seq , int ( t s + . 5 ) + ( seq )*0.00025 , i n t e r v a l ]
74 # ts_gps= int ( t s + . 5 ) + ( seq )*0.00025
75 # print ( "TIME STAMP: " , ts_gps )
76 # print ( " hello1 " )
77 # print (msg)
78 # print ( "msg : " , msg [ 1 ] )
79 # logging . debug (msg)
80 i f (msg[ 1 ] == 1014):
81 # print ( ’ 1 0 0 3 : { } ’ . format ( s e l f . package [msg [ 2 ] ] [ 2 ] ) )
82 s e l f . package [msg [ 2 ] ] [ 0 ] = msg
83 s e l f . package [msg[ 2 ] ] [ 2 ] + = 1
84 else :
85 # print ( ’ 2 0 0 1 : { } ’ . format ( s e l f . package [msg [ 2 ] ] [ 2 ] ) )
86 s e l f . package [msg [ 2 ] ] [ 1 ] = msg
87 s e l f . package [msg[ 2 ] ] [ 2 ] + = 1
88
89 i f ( s e l f . package [msg [ 2 ] ] [ 2 ] == 2 ) :
90 s e l f . package [msg[ 2 ] ] [ 2 ] = 0 ;
91
92 i f pmu. c l i e n t s :
93 # s l e e p ( 1 / 1 0 0 )
94 #timestamp=( int ) ( ( ( dsp . ph1 . sdft_window . input_sample_seq [ 1 ] + 1 ) ) / 8 0 ) * 2 0
95 # i f s e l f . package [msg [ 2 ] ] [ 0 ] [ 4 ] ==0:
96 # timestamp= int ( s e l f . package [msg [ 2 ] ] [ 0 ] [ 5 ] + 0 . 5 )
97 # e l s e :
98 # timestamp= int ( s e l f . package [msg [ 2 ] ] [ 0 ] [ 5 ] )
99

100 timestamp= int ( s e l f . package [msg [ 2 ] ] [ 0 ] [ 5 ] )
101
102 pmu. send_data ( phasors = [ ( s e l f . package [msg [ 2 ] ] [ 0 ] [ 7 ] ,
103 s e l f . package [msg [ 2 ] ] [ 0 ] [ 8 ] ) , ( s e l f . package [msg [ 2 ] ] [ 0 ] [ 9 ] ,
104 s e l f . package [msg [ 2 ] ] [ 0 ] [ 1 0 ] ) ,
105 ( s e l f . package [msg [ 2 ] ] [ 0 ] [ 1 1 ] , s e l f . package [msg [ 2 ] ] [ 0 ] [ 1 2 ] ) ,
106 analog = [ 9 . 9 1 ] ,
107 d i g i t a l =[0 x0001 ] ,
108 freq= s e l f . package [msg[ 2 ] ] [ 1 ] [ 8 ] −5 0 ,
109 dfreq =5 ,
110 s t a t =( "ok" , True , "timestamp" , False , False , False , 0 , "<10" , 0 ) ,
111 soc= int ( timestamp ) ,
112 frasec =( int )((20000 * ( ( s e l f . package [msg[ 2 ] ] [ 0 ] [ 4 ] ) / 2 0 ) ) % 1 0 0 0 0 0 0 )
113 )
114
115 [ tag , rtdidMain , rtd_items , rtd_len , seq , ts , i n t e r v a l ]=msg[ 0 : 7 ]
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116
117 # FIXME : send f i r s t item as output
118 i f rtd_len ==4:
119 logger . debug ( "Sending to output 0" )
120 s e l f . send_output ( seq , ts , t a i l [ 0 : rtd_len ] , 0 ) # 1 s t output
121 else :
122 i f rtd_len ==8:
123 logger . debug ( "Sending to output 1" )
124 s e l f . send_output ( seq , ts , t a i l [ 0 : rtd_len ] , 1 ) # 2nd output
125
126 for j in itemRange :
127 sys . stdout . write ( "%s:%s,%d,% f "%(tag , rtdidMain , x l i s t [ j ] , t l i s t [ j ] ) )
128 for i in range ( 0 , rtd_len ) :
129 val= t a i l [ j * rtd_len+ i ]
130 i f not math . isnan ( val ) :
131 sys . stdout . write ( ",% f "%val )
132 else :
133 sys . stdout . write ( " , " )
134 sys . stdout . write ( ’ \n ’ )
135
136 except Exception as e :
137 logging . error ( " Error using input msg : %s "%(s t r ( e ) ) )
138 return False
139 return s e l f . running
140
141 def quit ( s e l f ) :
142 s e l f .dmn. quit ( )
143
144 class rtd_dmn (DMN.DMN) :
145 ’ Listening to a multitude of RTDs ’
146 def _ _ i n i t _ _ ( s e l f , name, bindingRep ) :
147 s e l f . inputStarted=True
148 s e l f . l a s t _ t s =dict ( )
149
150 super ( rtd_dmn , s e l f ) . _ _ i n i t _ _ (name, bindingRep )
151
152 def handle_command( s e l f , req ) :
153 ’ ’ ’
154 default command handler , should be overriden in subclass
155 @req request in json form
156 ’ ’ ’
157 i f req [ ’command ’ ]== " startDSP " :
158 resp="DSP started "
159 else :
160 logging . info ( " Received unknown command %s "%req )
161 resp="unknown DSP command"
162 return resp
163
164 def handle_message ( s e l f , tag , msg ) :
165 ’ ’ ’
166 default message handler , should be overriden in subclass
167 @tag name of t h i s input
168 @msg received message from publisher
169 ’ ’ ’
170 global q
171
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172 i f not s e l f . inputStarted :
173 logging . warning ( "incoming message when not yet started " )
174 return
175
176 length=len (msg)
177 i f length >=4:
178 ( rtdid , timing , rtd_items , rtd_len )=msg[ 0 : 4 ]
179 else :
180 logging . warning ( "not enough f i e l d s=%d in message" , length )
181 return
182 r t d _ s i z e =rtd_items * rtd_len
183
184 tagid="%s%d"%(tag , rtdid )
185
186 i f isinstance ( timing , int ) : # old behavior
187 e x t r a F i e l d s =length−5
188 i f timing <=0:
189 usec=0
190 seq=−timing
191 else :
192 usec=seq
193 seq=None
194 i f extraFields >0:
195 sec=msg[ 5 ]
196 else :
197 sec=None
198 i f extraFields >1:
199 usec=msg[ 6 ]
200 else : # timing array
201 seq=None
202 sec=None
203 usec=0
204 try : # t r y s e t t i n g unti l exception , (u) sec may not be available
205 seq=timing [ 0 ]
206 sec=timing [ 1 ]
207 usec=timing [ 2 ]
208 except :
209 pass
210
211 i f seq !=None :
212 i n t e r v a l =1 # default to 1 sequence number i n t e r v a l
213 i f rtd_items >1:
214 seq=seq−rtd_items+1
215 i f sec !=None :
216 t s =sec+usec/1000000 # use timestamp
217 d e f a u l t _ i n t e r v a l =.0001 # default to low i n t e r v a l unti l l a s t _ t s i s available
218 i n t e r v a l = d e f a u l t _ i n t e r v a l
219 i f rtd_items >1:
220 # logging . debug ( " rtdid=%d , msg t s=%f , items=%d " , rtdid , ts , rtd_items )
221 try :
222 l a s t _ t s = s e l f . l a s t _ t s [ tagid ]
223 i n t e r v a l =( ts−l a s t _ t s )/ rtd_items
224 i f i nt e r v a l >1: # probably missed a bunch of samples
225 i n t e r v a l = d e f a u l t _ i n t e r v a l
226 l a s t _ t s =ts−i n t e r v a l * rtd_items
227 else :



74 A. A

228 i f i nt e r v a l <0: # time goes backwards
229 logging . warn( " rtdid=%s , msg t s=%f , i n t e r v a l=%f " , tagid , ts , i n t e r v a l )
230 i n t e r v a l = d e f a u l t _ i n t e r v a l
231 except KeyError : # l a s t _ t s i s not y e t available
232 l a s t _ t s =ts−i n t e r v a l * rtd_items
233 s e l f . l a s t _ t s [ tagid ]= t s
234 t s = l a s t _ t s + i n t e r v a l
235 else :
236 t s =None
237
238 value=msg[ 4 ]
239 i f isinstance ( value , l i s t ) :
240 q . put ( [ tag , rtdid , rtd_items , rtd_len , seq , ts , i n t e r v a l ]+ value )
241 else :
242 q . put ( [ tag , rtdid , rtd_items , rtd_len , seq , ts , i n te r v a l , value ] )
243
244 def sendOutput ( s e l f , rtdid , seq , ts , values , outputIndex = 0 ) :
245 ’ ’ ’
246 send values as DSP output (non−aggregated , rtd_items =1)
247 @param seq the seqence number f o r the r e s u l t , or None when sequence i s not known
248 @param t s the timestamp f o r the r e s u l t
249 @param values an array of values , or s i n g l e value containing the r e s u l t
250 @param outputIndex the index of the output
251 ’ ’ ’
252 sec= int ( t s )
253 usec= int ( ( ts−sec )*1000000)
254 msg=[ rtdid , [ seq , sec , usec ] , 1 , len ( values ) , values ]
255 s e l f . send_output (msg, outputIndex )
256
257 def quit ( s e l f ) :
258 s e l f . msgr . send_command( s e l f . bindingReq , ’ { "command" : " stop " } ’ )
259
260 def dsp_realtime (dsp_name ) :
261 #dsp=RTD_DSP(dsp_name , " ipc : / / / tmp / dsp%d"%(randint ( 0 , 1 0 0 ) ) )
262 dsp=RTD_DSP(dsp_name)
263 variant="dsp"
264 # read configuration
265 c o n f i g f i l e =path . join ( path . dirname ( path . realpath ( _ _ f i l e _ _ ) ) , " rtd . properties " )
266 defaults ={ " sensors " : [ " sensor1 " ] , " outputs " : [ ] }
267 config=ConfigParser ( defaults )
268 config . read ( c o n f i g f i l e )
269 dsp .dmn=rtd_dmn (dsp_name , " inproc : / /tmp/%s "%(dsp_name ) )
270
271 sensors=json . loads ( config . get ( " defaults " , " sensors " ) )
272 # l i s t e n to realtime data
273 for sensor in sensors :
274 ports=json . loads ( config . get ( sensor , variant+" _ports " ) )
275 host=config . get ( sensor , " tcp_host " )
276 try :
277 tag=config . get ( sensor , " tag " )
278 except Exception as e :
279 logging . error ( " Error config msg : %s "%(s t r ( e ) ) )
280 tag=host
281 for port in ports :
282 dsp .dmn. add_subscription ( tag , " tcp ://% s:%d"%(host , port ) )
283
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284 outputs=json . loads ( config . get ( " defaults " , " outputs " ) )
285 outputIndex=0
286 for output in outputs :
287 binding=config . get ( output , variant+" _binding " )
288 rtdid=config . get ( output , variant+" _rtdid " )
289 i f isinstance ( rtdid , s t r ) :
290 rtdid= int ( r tdid )
291 logging . info ( "Adding binding %s to output with rtdid %d"%(binding , rtdid ) )
292 dsp . add_output ( rtdid , binding , outputIndex )
293 outputIndex+=1
294
295 return dsp
296
297 def dsp_all ( ) :
298 global q , running , stopping
299 stopping=False
300 signal . s ignal ( s ignal . SIGINT , signal_handler )
301 q = queue . Queue ( )
302 dsp=dsp_realtime ( ’MyDSP ’ )
303 running=True
304
305
306 pmu_id=1
307 data_rate =50
308 pmu = Pmu( ip=" 131.180.164.101 " , port =4702 , pmu_id=1 , data_rate =50 , set_timestamp=False )
309 #pmu = Pmu( ip ="131.180.164.99" , port =4701 , pmu_id=1 , data_rate =50 , set_timestamp=False )
310 pmu. logger . setLevel ( "INFO" )
311
312 cfg = ConfigFrame2 (pmu_id , # PMU_ID
313 1000000 , # TIME_BASE
314 1 , # Number of PMUs included in data frame
315 "sensorPMU" , # Station name
316 pmu_id , # Data−stream ID ( s )
317 ( False , True , True , True ) ,
318 3 , # Number of phasors
319 1 , # Number of analog values
320 1 , # Number of d i g i t a l s t a t u s words
321 [ "VA" , "VB" , "VC" , "ANALOG1" , "BREAKER 1 STATUS" ,
322 "BREAKER 2 STATUS" , "BREAKER 3 STATUS" ,
323 "BREAKER 4 STATUS" , "BREAKER 5 STATUS" ,
324 "BREAKER 6 STATUS" , "BREAKER 7 STATUS" ,
325 "BREAKER 8 STATUS" , "BREAKER 9 STATUS" ,
326 "BREAKER A STATUS" , "BREAKER B STATUS" ,
327 "BREAKER C STATUS" , "BREAKER D STATUS" ,
328 "BREAKER E STATUS" , "BREAKER F STATUS" ,
329 "BREAKER G STATUS" ] , # Channel Names
330 [ ( 1 , "v" ) , ( 1 , "v" ) , ( 1 , "v" ) ] ,
331 [ ( 1 , "pow" ) ] , # Conversion f a c t o r f o r analog channels
332 [ ( 0 x0000 , 0 x f f f f ) ] , # Mask words f o r d i g i t a l s t a t u s words
333 data_rate , # Nominal frequency
334 1 , # Configuration change count
335 50) # Rate of phasor data transmission )
336
337
338 pmu. set_configuration ( cfg )
339 pmu. set_header ( "sensorPMU here ! " )
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340
341 pmu. run ( )
342 print ( "pmu started " )
343 while ( running ) :
344 running=dsp . updateInput (q ,pmu)
345 i f stopping :
346 logger . debug ( ’ Trying to stop a f t e r CTRL−C! ’ )
347 running=False
348
349
350 logger . debug ( ’ Trying to quit a f t e r CTRL−C! ’ )
351 dsp . quit ( )
352 logger . debug ( ’ Quited a f t e r CTRL−C! ’ )
353
354 def signal_handler ( signal , frame ) :
355 global stopping
356 logger . info ( ’You pressed C t r l +C! ’ )
357 stopping=True
358
359 i f __name__ == "__main__" :
360 l o g f i l e = ’ session−dsp . log ’
361 logger = logging . getLogger ( ’ rtd_dsp ’ )
362 logging . basicConfig ( l e v e l =logging . INFO,
363 format= ’%(asctime ) s .%(msecs)03d %(levelname)−8s %(message ) s ’ ,
364 datefmt= ’%Y−%m−%d,%H:%M:%S ’ ,
365 filename= l o g f i l e ,
366 filemode= ’w’ )
367 stderrLogger=logging . StreamHandler ( )
368 stderrLogger . setLevel ( logging . INFO)
369 stderrLogger . setFormatter ( logging . Formatter ( logging .BASIC_FORMAT) )
370 logger . addHandler ( stderrLogger )
371
372 dsp_all ( )
373
374 logging . info ( "Stopped , running=%d"%(running ) )



Bibliography

[1] V. Terzija et al. “Wide-Area Monitoring, Protection, and Control of Future Electric Power Networks”.
In: Proceedings of the IEEE 99.1 (Jan. 2011), pp. 80–93. ISSN: 0018-9219. DOI: 10.1109/JPROC.2010.
2060450.

[2] EPFL Smart Grid Project EPFLSmartGrid. URL: https://smartgrid.epfl.ch/.

[3] About The Project - OpenPMU. URL: https://sites.google.com/site/openpmu/project-
definition.

[4] Paolo Romano and Mario Paolone. “DFT-based Synchrophasor Estimation Algorithms and their Inte-
gration in Advanced Phasor Measurement Units for the Real-time Monitoring of Active Distribution
Networks”. PhD thesis.

[5] A. G. Phadke and J. S. Thorp. Synchronized phasor measurements and their applications. SPRINGER
INTERNATIONAL PU, 2008.

[6] “IEEE Standard for Synchrophasor Measurements for Power Systems”. In: IEEE Std C37.118.1-2011 (Re-
vision of IEEE Std C37.118-2005) (Dec. 2011), pp. 1–61. DOI: 10.1109/IEEESTD.2011.6111219.

[7] Alan V. Oppenheim, Alan S. Willsky, and Ian T. Young. Signals and systems. Prentice-Hall, 1983.

[8] P. Romano and M. Paolone. “Enhanced Interpolated-DFT for Synchrophasor Estimation in FPGAs:
Theory, Implementation, and Validation of a PMU Prototype”. In: IEEE Transactions on Instrumenta-
tion and Measurement 63.12 (Dec. 2014), pp. 2824–2836. ISSN: 0018-9456. DOI: 10.1109/TIM.2014.
2321463.

[9] D. Hart et al. “A new frequency tracking and phasor estimation algorithm for generator protection”. In:
IEEE Transactions on Power Delivery 12.3 (July 1997), pp. 1064–1073. ISSN: 0885-8977. DOI: 10.1109/
61.636849.

[10] I. Carugati et al. “Three-phase harmonics measurement method based on mSDFT”. In: IEEE Latin
America Transactions 12.7 (Oct. 2014), pp. 1250–1257. ISSN: 1548-0992. DOI: 10.1109/TLA.2014.
6948860.

[11] Jun-Zhe Yang and Chih-Wen Liu. “A precise calculation of power system frequency”. In: IEEE Transac-
tions on Power Delivery 16.3 (July 2001), pp. 361–366. ISSN: 0885-8977. DOI: 10.1109/61.924811.

[12] Dinesh Rangana Gurusinghe, Dean Ouellette, and Athula D Rajapakse. “Implementation of Smart DFT-
based PMU Model in the Real-Time Digital Simulator”. In: (2011).

[13] P. Castello et al. “Chapter 5 - Hardware for PMU and PMU Integration”. In: Phasor Measurement Units
and Wide Area Monitoring Systems. Ed. by Antonello Monti, Carlo Muscas, and Ferdinanda Ponci. Aca-
demic Press, 2016, pp. 63–86. ISBN: 978-0-12-804569-5. DOI: https://doi.org/10.1016/B978-
0-12-804569-5.00005-7. URL: http://www.sciencedirect.com/science/article/pii/
B9780128045695000057.

[14] L. Peretto and R. Tinarelli. Sensors for PMUs. Elsevier Inc., 2016, pp. 53–62. ISBN: 9780128045695. DOI:
10.1016/B978-0-12-804569-5.00004-5. URL: http://dx.doi.org/10.1016/B978-0-12-
804569-5.00004-5.

[15] “Optical Atomic Standards”. In: Time - From Earth Rotation to Atomic Physics. Wiley-Blackwell, 2010.
Chap. 11, pp. 181–187. ISBN: 9783527627943. DOI: 10.1002/9783527627943.ch11. eprint: https:
/ / onlinelibrary . wiley . com / doi / pdf / 10 . 1002 / 9783527627943 . ch11. URL: https : / /
onlinelibrary.wiley.com/doi/abs/10.1002/9783527627943.ch11.

[16] Power System et al. IEEE Standard for Synchrophasor Data Transfer for Power Systems. Vol. 2011. De-
cember. 2011, pp. 1–53. ISBN: 9780738168135. DOI: 10.1109/IEEESTD.2011.6111222.

[17] Pieter Hintjens. ZeroMQ Messaging for Many Applications. OReilly Associates, 2012.

[18] CBOR. URL: http://cbor.io/.

77

https://doi.org/10.1109/JPROC.2010.2060450
https://doi.org/10.1109/JPROC.2010.2060450
https://smartgrid.epfl.ch/
https://sites.google.com/site/openpmu/project-definition
https://sites.google.com/site/openpmu/project-definition
https://doi.org/10.1109/IEEESTD.2011.6111219
https://doi.org/10.1109/TIM.2014.2321463
https://doi.org/10.1109/TIM.2014.2321463
https://doi.org/10.1109/61.636849
https://doi.org/10.1109/61.636849
https://doi.org/10.1109/TLA.2014.6948860
https://doi.org/10.1109/TLA.2014.6948860
https://doi.org/10.1109/61.924811
https://doi.org/https://doi.org/10.1016/B978-0-12-804569-5.00005-7
https://doi.org/https://doi.org/10.1016/B978-0-12-804569-5.00005-7
http://www.sciencedirect.com/science/article/pii/B9780128045695000057
http://www.sciencedirect.com/science/article/pii/B9780128045695000057
https://doi.org/10.1016/B978-0-12-804569-5.00004-5
http://dx.doi.org/10.1016/B978-0-12-804569-5.00004-5
http://dx.doi.org/10.1016/B978-0-12-804569-5.00004-5
https://doi.org/10.1002/9783527627943.ch11
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783527627943.ch11
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783527627943.ch11
https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527627943.ch11
https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527627943.ch11
https://doi.org/10.1109/IEEESTD.2011.6111222
http://cbor.io/


78 Bibliography

[19] Build IBCrazy’s Cloverleaf - The ultimate circularly polarized aerial antenna! URL: https : / / www .
rcgroups.com/forums/showthread.php?1388264-Build-IBCrazy-s-Cloverleaf-Theultimate-
circularly-polarized-aerial-antenna!.
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