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Problem Description
Compression of data in wireless systems is not a well-defined problem. Each application of
compression needs to address different data types. This wide variety has made a single, efficient,
compression technique hard to find. The only way to approach compression for this type of
problem is to involve hybrid techniques or adapt different compression methods for different
applications.

Today, most SoC solutions have an embedded microprocessor to handle complex control tasks,
and Texas Instruments Norway has developed the NanoRisc microprocessor for this purpose.
Texas Instruments Norway wishes to explore the NanoRiscs ability to process lossless data
compression algorithms, and examine enhancements to improve its performance on these tasks.

The thesis should include an analysis of the NanoRiscs current ability to process different lossless
data compression algorithms, and examine and implement area efficient enhancements to the
NanoRisc core.
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Abstract 
This thesis explores the ability of the proprietary Texas Instruments embedded 16 bits RISC 
microprocessor, NanoRisc, to process common lossless compression algorithms, and propose 
extensions in order to increase its performance on this task.  
 
In order to measure performance of the NanoRisc microprocessor, the existing software tool 
chain was enhanced for profiling and simulating the improvements, and three fundamentally 
different adaptive data compression algorithms with different supporting data structures were 
implemented in the NanoRisc assembly language. On the background of profiling results, 
some enhancements were proposed: 
 

• Bit field instructions. 
• New load and store instructions for table data structures. 
• An instruction improving read and writes of variable length codewords from memory. 
• An instruction improving CRC-16 checksum calculation. 
• Non-blocking load behavior. 

 
These new enhancements improved throughput of the three implemented algorithms by 
between 18% and 103%, and the code sizes decreased between 6% and 31%. The bit field 
instructions also reduced RAM access by up to 53%. The enhancements were implemented in 
the NanoRisc VHDL model and synthesized. Synthesis reports showed an increase in gate 
count of 30%, but the whole NanoRisc core is still below 7k gates. Power consumption per 
MIPS increased by 7%, however reduced clock cycle count and memory access decreased the 
net power consumption of all tested algorithms. It is also shown that data compression with 
the NanoRisc prior to transmission in a low power RF transceiver may increase battery 
lifetime 4 times.  
 
Future work should include a comprehensive study of the effect of the proposed 
enhancements to more common applications for the NanoRisc microprocessor.  
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List of Acronyms and Abbreviations 
 
A list of acronyms and abbreviations that are not explicitly explained in the text. 
 
ASCII: American Standard Code for Information Interchange. Standard 8 bits code used in 

data communications. 
ASIC: Application Specific Integrated Circuit. 
CCITT: Consultative Committee on International Telephony and Telegraphy. The 

international standards-setting organization for telephony and data 
communications. 

CCSDS: Consultative Committee for Space Data Systems. 
CPU: Central Processing Unit. Programmable logic device that performs all the 

instruction, logic, and mathematical processing in a computer. 
CRC: Cyclic Redundancy Check. An error checking technique used to ensure the 

accuracy of transmitting digital data. 
DCT: Discrete Cosine Transform. Mathematical transform used to convert signals from 

time domain to frequency domain. 
DEMUX: De-Multiplexer. Splits a signal to pass over multiple signal paths.  
DSP: Digital Signal Processor. 
GUI: Graphical User Interface. A computer terminal interface, such as Windows, that is 

based on graphics instead of text. 
HW: Hard Ware. 
I/O: InOut 
IP: Internet Protocol. Used for communications across a packet-switced network. 
JPEG: Joint Photographic Experts Group. JPEG is a standards committee that designed a 

lossy image compression format. 
JPEG-LS: A lossless image compression format. 
LAN: Local Area Network. 
lsb:  Least Significant Bit. 
LSB: Least Significant Byte 
MPEG: Motion Picture Expert Group. Group defining the framework for a wide range of 

video and audio compression standards. 
MS: Microsoft. Software company. 
msb:  Most Significant Bit 
MSB: Most Significant Byte 
MUX: Multiplexer. Allows two or more signals to pass over one signal path. 
NASA: National Aeronautics and Space Administration. US agency which administer the 

American space program. 
OPS: Operations per Second. 
PC: Personal Computer. 
RAM: Random Access Memory. Volatile memory used for data storage during operation. 
RISC: Reduced Instruction Set Computing. Processor architectures where a low amount 

of instructions are needed to perform necessary tasks.   
ROM: Read Only Memory. Nonvolatile memory often used as program memory. 
RTL: Register Transfer Level. Describes logical operation in digital circuits. 
SCSI: Small Computer System Interface. Parallel interface standard used by Apple 

Macintosh computers, PCs, and many UNIX systems for attaching peripheral 
devices to computers. 

SoC:  System on Chip. A chip which constitutes an entire system or major subsystem. 
VHDL: A hardware modeling language. Commonly used for RTL modeling and synthesis. 
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Introduction 
Lossless data compression has become a standard feature in most high-speed communications 
networks. Data compression chipsets have been important for this development, and the 
significance of the V.42bis compression standard in modems is an example of this. The 
question is if data compression will play the same role for small wireless networks. If data 
compression can double or triple network throughput or significantly increase battery lifetime 
without harmful side effects, then the added complexity is worthwhile. 
 
Not all data types are compressible and there are potential dangers such as data expansion, 
error propagation and incompatible standards. However, most commonly transmitted data is 
highly compressible. The aim of data compression for radio transmission is to save power or 
reduce bandwidth. Bandwidth is a precious commodity, and it is closely related to the bit rate 
(R = bps). For ordinary binary-phase shift keying the null-to-null bandwidth is given by 1.0R. 
Thus, if the number of data bits were reduced by half, then one would need only half the 
bandwidth. With the increase in use of wireless technology, it becomes more and more 
important that the bandwidth must be used efficiently. However, power can be saved by 
keeping the bandwidth and reduce airtime. Wireless transmission of one bit typically requires 
over 1000 times more energy than a single 16 bits computation. It is therefore justifiable to 
perform significant computation to reduce the number of bits transmitted, but limitations such 
as memory requirements, area constraints and throughput must be considered. 
 
Today, most SoC transceiver solutions have an embedded microprocessor to handle complex 
control tasks, and Texas Instruments Norway has developed the NanoRisc microprocessor for 
this purpose. This thesis will explore the NanoRiscs current ability to process lossless data 
compression algorithms, and examine enhancements to improve its performance on this task. 
The work and this report have been divided into five main stages: 
 

• A study of lossless compression algorithms, related works and the NanoRisc 
microprocessor. 

• Implantation of three lossless compression algorithms in the NanoRisc assembly 
language. 

• Enhancements of existing tools in order to measure performance of the NanoRisc and 
simulate improvements. 

• Profile resource use when processing the implemented compression methods and 
propose improvements based on these results. 

• Implement the proposed improvements in the NanoRisc microprocessor core, and 
synthesize the core in order to estimate changes in area, timing and power due to the 
implemented improvements.      

  
The scope of this thesis does not include finding suitable data compression methods for 
wireless data. Only computational requirements have been considered when choosing 
algorithms for evaluating the NanoRiscs performance on different compression algorithms. 
Lossy compression methods have also not been considered. The thesis will cover some 
fundamental information theory, but the reader should be familiar with data compression and 
integrated circuit design.  
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1 Theory 
This chapter will first describe some fundamental measures and terms before entropy coding 
is briefly explained and three compression algorithms are chosen for evaluating the NanoRisc 
current ability to process compression algorithms.  
 

1.1 Measures 
The field of mathematics concerned with data communications and storage is named 
information theory, and is generally considered to have been founded in 1948 by Claude E. 
Shannon [1]. He defined the information of a symbol xn from the alphabet X to be: 
 
Eq. 1  )(log)( 2 nxPxi −=         ;[1] 
 
Where )(xP  is the probability of the symbol occurring in the data stream. This could be 
described as how much knowledge is gained due to the observation of the symbol nxX = . 
The logarithmic function can have any base, but by choosing 2 the measure can be translated 
to bits. An estimation of the average information gained from observing a sequence of 
symbols xn from the alphabet X is called the Shannon entropy (or just entropy): 
 
Eq. 2  [ ] ∑

∈

−=Ε=
Xx

nn xPxPXiXH )(log)()()( 2         ;[1] 

 
This is an important measure when it comes to compression. For a lossless compression 
method, the Shannon entropy is the fundamental limit. This means that it is possible to 
compress the source in a lossless manner down to H(X)*n, where n is the number of symbols 
in the data stream.  It is mathematically impossible to do better than H(X)*n. Equation 2 
shows the first order model of the entropy. If there are statistical dependencies between 
symbols, higher order models can be used [1]. 
 
The redundancy of symbol nx  is: 
 

Eq. 3  
)(

1log)()( 2
n

n xP
xlx −=ρ         ;[1] 

 
Where )( nxl is the length of the symbol xn in bits. The expected redundancy of alphabet X in 
the data stream is: 
 
Eq. 4  [ ] [ ] )()()()()( XHXlExxPXE

Xx

−== ∑
∈

ρρ      ;[1] 

 
There are several quantities used for compression performance. The quantity used in this 
thesis is the Compression Ratio: 
 

Eq. 5  %100*1 







−=

InputSize
OutputSizeRatioComression  
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When possible enhancements of the original NanoRisc processor are examined, some 
measures are needed in order to estimate the expected overall improvement. Amdahl’s law [2] 
may be used for just that. This law is named after computer architect Gene Amdahl, and it is 
used to find the expected improvement to an overall system when only parts of the system are 
improved. It is often used in parallel computing to predict the theoretical maximum speedup 
using multiple processors. More technically, the law is concerned with the speedup achievable 
from an improvement to a computation that affects a proportion P of that computation where 
the improvement has a speedup of S. Ahmdal’s law states that the overall speedup of applying 
the improvement will be: 
 

Eq. 6  
( )

S
PP

S system

+−
=

1

1         ;[2]  

If the result is e.g. 1.4, the improvement will make the system go 1.4 times faster. 
 

1.2 Entropy Coding 
Three compression algorithms are chosen to evaluate the NanoRisc processor. This section 
will give a short theoretical introduction to entropy coding and the coding schemes chosen. 
The details of the implementations are explained in chapter 4. 
 
There are many known methods of data compression. Often they are suitable for different 
types of data, and produce different results. Any compression method is based on representing 
data in a way that reduces the redundancy as much as possible. To achieve this they exploit 
the statistical properties or the redundancy of the source data. The actual decrease of size is 
done by representing symbol values in a different way. A symbol that occurs often is encoded 
with a shorter codeword than a symbol that occurs rarely. Compression is only possible 
because data is normally represented in a format that is longer than necessary. Samples from a 
converter or instructions in a computer program often have a fixed length. This is done to 
make it easier to process data, since processing data is more common than compressing data. 
 
Some compression methods are lossy. They achieve compression by removing non-vital 
information from the source. Pictures and audio are often compressed with a lossy 
compression method, since the human eye or ear is still capable of interpreting the 
information with a reduction of quality. In contrast, a computer program cannot be 
compressed in a lossy way because the computer will not be able to understand instructions if 
something are missing. When loosing information is not acceptable, the data must be 
compressed with a lossless compression method. A lossless compression method will 
completely recover the original data from the compressed data. Entropy coding is defined as a 
coding scheme that assigns variable length codes to symbols so the code lengths match their 
probability. Lossless data compression methods are hence often called entropy coders. 
Entropy coding is often used as the last stage in lossy compression methods. After non-vital 
information is removed and complex methods have exposed statistical dependencies, entropy 
coding will make sure this is encoded in the shortest possible way (as close as possible to the 
entropy).      
 
The process of entropy coding can often be split into modeling and coding. Modeling is a 
statistical analysis of the input data stream, and coding creates codewords from the statistics. 
These statistics may be frequencies of occurrence for different symbols, the existence of 
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repetitive sequences of symbols, dependencies in the frequency contents, etc. Modeling may 
be either static or adaptive. In static modeling, the same statistics is used every time coding is 
performed. Static modeling may be a good option if the source is well known and rigid. 
Adaptive modeling performs a statistical analysis every time coding is carried out. The 
method may be one-pass or two-pass. One-pass methods gather statistical information as the 
coding process goes forward and require thus only one pass of the input data stream. Two 
pass methods do one pass to gather statistical information, and another pass to do the coding. 
It is therefore necessary that the encoder in a two-pass method must pass the statistical 
information to the decoder. As established in Shannon’s source coding theorem, there exists a 
relationship between the symbols probability and its shortest corresponding bit sequence. 
Since the statistical analysis is responsible for the evaluation of each symbols probability, 
modeling is one of the most important tasks in data compression. It is also important that the 
coding scheme is able to produce the shortest total output stream from the probability 
distribution found in the modeling. 
 

1.2.1 Entropy Coding Schemes Used for Evaluation 
Three fundamentally different entropy coding schemes are chosen to evaluate the NanoRisc 
processors current ability to process data compression algorithms:  
 

• Rice Coding makes codewords directly from a value. These codewords are optimal if 
the input data stream is modeled to fit a geometrical probability distribution.  

• Huffman Coding generates codes from a codebook and may fit any probability 
distribution. The codebook is usually held in a binary tree called a Huffman tree. 

• LZ77 detects patterns in the input stream and code lengths and pointers to where in 
the stream these patterns are found. (The actual algorithm implemented is called 
Deflate, and is a version of the LZ77 coding scheme.)    

 
These three algorithms are chosen because they are fundamentally different from each other. 
Huffman and Rice coding are examples of statistical coding methods. They are heavily 
dependent on the quality of the modeling process or a precise static model. Even though 
Huffman and Rice are part of the same family of coding methods, they use very different 
methods. Huffman uses a codebook built on symbol probability in the data stream, while Rice 
produces codewords according to symbol value. It is important that the modeling stage 
produce low symbol values for the Rice encoder, while in Huffman only probabilities matter. 
The LZ77 coding method is a dictionary method. Dictionary methods utilize repetitive 
sequences of consecutive symbols in the input data stream. They build dictionaries of these 
sequences and encode where to find them. If the input stream consists of long and highly 
repetitive sequences, good compression ratios are achieved.   
 

1.2.1.1 Rice Coding 
Rice coding is a selection of those Golomb codes that are easiest to produce in hardware. 
Golomb codes is a range of codes with a parameter m which encodes a positive integer n by 
encoding (n mod m) in binary followed by encoding (n div m) in unary. When the parameter 
m is a power of two, the code is extremely efficient for use in computers since the division 
operation becomes a bitshift operation, and the remainder operation becomes a bitmask 
operation. This selection of Golomb codes is referred to as Rice codes. The disadvantage of 
the Rice coding is of course the restricted value of m, and therefore the compression may be 
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less effective than that of Golomb codes. In Rice coding the term k-value is often used, where 
m = 2k. An example of Rice codes with a k-value of 2 are shown in Table 1. 
 

Symbol 
Values 

4-bit 
Binary Quotient Remainder Code 

0 0000 0 0 1 00 
1 0001 0 1 1 01 
2 0010 0 2 1 10 
3 0011 0 3 1 11 
4 0100 1 0 0 1 00 
5 0101 1 1 0 1 01 
6 0110 1 2 0 1 10 
7 0111 1 3 0 1 11 
8 1000 2 0 00 1 00 
9 1001 2 1 00 1 01 

10 1010 2 2 00 1 10 
11 1011 2 3 00 1 11 
12 1100 3 0 000 1 00 
13 1101 3 1 000 1 01 
14 1110 3 2 000 1 10 
15 1111 3 3 000 1 11 

Table 1,  Rice codes (k = 2) 
 
When the entropy increases, it is usually the lsbs that becomes more and more random. To 
deal with this the Rice code just cuts off the lsbs and passes them through without coding, but 
the msbs that may be less random are coded. It is clear from the table that the Rice code 
achieves the best compression for an input stream of symbols that have a geometric 
probability distribution. Rice coding is a widely used technique for entropy coding in image 
and sound compression methods. 
 

1.2.1.2 Huffman Coding 
Most variable-sized codes assume a given probability distribution of the symbols in the input 
data stream. The Huffman code is more general because it does not assume anything about the 
input symbol distribution, only that all probabilities are non-zero. Huffman was the first to 
develop an optimal algorithm for arbitrary probability distributions. This is achieved in the 
way the algorithm builds its codebook. Huffman first described this algorithm in a paper in 
1952 [3]. The codebook is built in a binary tree structure (all nodes have only two children), 
and the algorithm follows these steps: 
 

1. Consider all symbols as individual leaves with their probability as weight. 
2. Find the two leaves with the lowest weight. 
3. Make a new leaf with the weight of the two probabilities added together, and make the 

two found leaves children of the new leaf. 
4. Repeat from step 2 as long as there are more than one leaf left. 

 
The following example will show the building of a Huffman tree. If the alphabet X consists of 
the symbols A,B,C,D and E, with a probability distribution P(A)=0,42, P(B)=0,3, P(C)=0,12, 
P(D)=0,09 and P(E)=0,07, the Huffman tree would be built as shown in Figure 1. 
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Figure 1, building of a Huffman tree. 

 
When a symbol is read from the input stream, the code is created by traversing the tree from 
the leaf representing the code and to the root. By traversing right or left, the codeword is 
created with 1’s or 0’s. Decoding is done in similar matter, only the tree is traversed from the 
root to the leaf according to the code read. In the example from Figure 1, the codeword for E 
would be 0101. 
 

1.2.1.3 LZ77 
This method uses previously observed input data as a dictionary. During encoding, the input 
stream encoded so far is called the search buffer. New symbols ready to be encoded is called 
the look-ahead buffer. The search buffer and the look-ahead buffer are often referred to as a 
window. When new symbols are to be encoded, the method tries to find matches in the search 
buffer for the pattern of symbols on the input. The window may have finite length, and the 
method is often called a sliding window (as data is being encoded, the window slide over the 
data stream). The LZ77 is part of a family of coding methods that is called dictionary 
methods. One may think of the search buffer as a dictionary of words (where pattern of 
symbols make up words) and the look-ahead buffer as words needed to be looked up in the 
dictionary. The method will always try to find the longest match, and when this is found a 
pointer to the beginning of the match in the search buffer and the length of the match is made. 
This pair, the pointer and length, is called an index. When encoding, this index together with 
the first symbol in the input stream that did not match is encoded. Encoding of an incoming 
data stream, Table 2 , is shown in Table 3. 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2, Incomming symbols (LZ77 Example)                              Table 3, Encoding steps (LZ77 Example)                                
 

Pos Symbol 
1 A 
2 A 
3 B 
4 C 
5 B 
6 B 
7 A 
8 B 
9 C 

Pos Match Symbol Output 
1 None A (0,0) + A 
2 A B (1,1) + B 
4 None C (0,0) + C 
5 B B (2,1) + B 
7 AB C (5,2) + C 
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During decoding, the decoder will build up the same search buffer as the encoder. When the 
decoder reads a new index, it finds the beginning of the match in the search buffer and outputs 
the sequence according to its length. After that, it outputs the symbol following the index. The 
search buffer in the decoder consists of symbols decoded so far. It is evident from this 
description that looking up indexes (decoding) is much faster than searching for them 
(encoding), thus the LZ77 is an asymmetrical coding method.    
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2 Related Works 
Since the original computer systems where designed for text processing and scientific 
applications, but not tasks such as audio and video compression, many enhancements of 
original computer systems have been towards multimedia applications. One of the most 
common solutions has been to include instructions that are optimized for typical multimedia 
applications. Almost all major processor manufacturers have developed their own set of 
media instructions. Examples include Motorola’s AltiVec extensions to the PowerPC 
instruction set, and Intel’s MMX, SSE, and SSE2 extensions to the x86 instruction set. The 
extensions differ in data path width, number and type of registers provided, as well as the 
availability of specific operations. Motorola’s AltiVec and Intels SSE and SSE2 have 128 bits 
datapaths, floating point arithmetic, and they support in the region of over 100 instructions. 
The kinds of extensions these examples represent are of course farfetched for the 
enhancement of the NanoRisc processor, but the basic idea of adding special instructions and 
behavior in order to increase processing power for specific tasks is applicable.  
 
Programs that manipulate data at subword level (bit fields smaller than the bit width of the 
processor core) are common for many embedded applications, e.g. media and network 
processing. In fact in many cases the input or output of embedded applications consists of 
packed data, and these applications spend a significant amount of time packing and unpacking 
narrow width data into memory words. A paper [4] by Bengu Li and Rajiv Gupta at the 
university of Arizona, showed that by adding a bit section instruction set extension to an 
ARM processor reduced the instructions executed at runtime between 5% and 28%, while the 
code size was reduced by between 2% and 21%. These results were gathered from testing the 
extensions with various benchmark suits from network, media and control applications.    
They also showed that by adding the extension the register pressure decreased. Before the 
extension was added the applications needed registers and memory locations to hold values in 
packed and unpacked form, but with the new bit field extension, this was not necessary. Thus, 
memory requirements and cache activity decreased as a result of more efficient register use. 
 
Media extensions to microprocessors are also heavily studied. In 1994, a study at Hewlett-
Packard by Ruby B. Lee [5] showed that by introducing a small set of new instructions to a 
PA-RISC microprocessor, enabled for the first time an entry-level workstation to achieve 
MPEG video decompression and playback at real-time rates. Since this, digital audio and 
video have made progress and is now the future in all major media broadcast systems. 
However, the compression methods used require a large amount of processing power. For 
example, National Television Systems Committee (NTSC) resolution MPEG-2 decoding 
requires more than 400 MOPS, and 30 GOPS are required for encoding [6]. To meet this task, 
many microprocessor manufacturers have made special processor cores in order to target real-
time processing of multimedia.  
 
Almost every audio and video compression standard has a lossless entropy coding stage. A 
typical video codec system is shown in Figure 2. The lossy source coder performs filtering, 
transformation (DCT), subband decomposition, quantization, etc. (these tasks are not covered 
by this thesis). The output from the source coder still exhibits redundancy, and the lossless 
entropy coder removes this. The rest of this chapter will describe briefly two popular 
embedded microprocessor cores for media processing, and how their features may speed up 
the entropy coder stage.  
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Figure 2, video codec. 

 

2.1 Phillips Trimedia 
TriMedia/CPU [7] is a VLIW (Very Long Instruction Word) core, and it is optimized for 
multimedia applications. VLIW means that the core issues one long instruction every clock 
cycle, and each instruction consists of several operations. Each operation is comparable to a 
RISC machine instruction. In order to process such instructions, the architecture has five 
parallel data paths (Figure 3).   
 

 
Figure 3, phillips trimedia architecture [7]. 

 
The instruction set includes some custom operations that may increase throughput for entropy 
coders. Among these are 7 instructions for packing, merging and selecting bits. This is an 
important feature when dealing with variable length codes. Another feature is the VLD 



Processing Core for Compressing Wireless Data 

 
 
 

10

(Variable Length Decoder) which is a coprocessor. This coprocessor is made especially to 
take care of the Huffman decoding in MPEG1 and MPEG2. The VLD receives as input a 
pointer to an MPEG1 or MPEG2 bit stream and some configuration information. After the 
initialization, the TriMedia controls the VLD by a set of five commands: 
 

- Shift bit stream by some number of bits 
- Search for the next start of the code 
- Reset the VLD 
- Flush output fifos 

 
The VLD produces as output a data structure that contains all of the information necessary to 
complete the video decoding process. This coprocessor is especially developed as a solution 
to the serial nature of the entropy coder stage in MPEG1 and MPEG2. Even though the 
encoder stage is not the most complex task in these compression methods, it tends to be a 
bottleneck because the algorithm makes it difficult to exploit the parallel features of most 
media processors.  
 
When coprocessors are used, they may do their task in parallel to the main processor, and 
hence introduce parallelism on an algorithmic level when parallelism on an instruction level is 
difficult. This is a much used approach, and is often called HW acceleration. When these HW 
accelerators are used, they are design to do a large part of a task, like the VLD coprocessor. 
However, the cost is often increased gate count and power consumption. If a HW accelerator 
is implemented the resulting speed up should be considerable. A big HW accelerator will also 
make the design closer to an ASIC. Since it takes on a large portion of a certain task, it may 
become useless in other applications. This is the case for the VLD unit, which is designed 
especially for the MPEG1 and MPEG2 standard.     
 

2.2 ARM  
The ARM (Acorn RISC Machine) is a 32 bits RISC processor architecture that is widely used 
in a number of embedded designs; in fact the ARM family accounts for over 75% of all 32 
bits embedded CPU’s. The ARM DSP [8] is developed to meet applications that require a 
DSP-oriented processor because of their high signal processing content, in addition to handle 
complex control tasks. The ARM development team claims that the feature of having a 
microcontroller supporting both control and signal processing has many advantages over 
traditional solutions based on a separate DSP and control processors. This reasoning also 
applies for the enhancement of the NanoRisc. If data compression is to be performed in a 
transceiver SoC, it has many advantages if the data compression algorithm could be processed 
in the embedded microcontroller. The advantages could be saving power, area, design time, 
etc. Figure 4 shows the datapath in an ARM DSP microprocessor.  
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Figure 4, ARM9E datapath [8]. 

   
The new modules added to support the DSP enhanced extensions is a 32x16 multiplier, a CLZ 
(Count Leading Zeroes) module, and two saturation modules. The new arithmetic modules are 
of little interest to most entropy coders, but the CLZ module may be useful for some 
algorithms. It is controlled by the “clz” instruction, and it counts the number of leading zeroes 
in one register and writes the answer to another. ARM has also made additional extensions 
toward multimedia applications called NEON [8]. This extension uses SIMD instructions 
(Single Instruction Multiple Data) which include bit field operation such as: 
 

- Bit Field Clear 
- Bit Field Insert 
- Signed Bit Field Extract 
- Unsigned Bit Field Extract    

 
ARM has also developed the Cortex-M3 core [8] that is a powerful processor with some 
interesting features. In addition to the count leading zero and bit field instructions, its memory 
map includes something called bit-band regions. These bit-band regions map each word in an 
alias region of the memory to a bit in a bit-band region of memory, i.e. it can address the 
memory at bit level in the bit-band regions. The Cortex-M3 core has two bit-bands at the 
lowest 1MB of the SRAM and peripheral memory regions respectively.  
 
The features mentioned for the different ARM cores and extensions may be very helpful when 
processing compression algorithms. Bit field operations are important when dealing with 
variable length codes because they make it possible to access packed codewords within a 
register. The bit-band regions will ease reading and writing a stream of variable length 
codewords to or from memory, and the count leading zero instruction should be very useful 
when decoding Rice-like codewords.        
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3 The NanoRisc Processor 
The NanoRisc processor was developed as part of a thesis by Peder Rand [9] for Chipcon AS 
(now Texas Instruments Norway). Chipcon desired an on-chip firmware processor in order to 
cope with the increasing complexity of their SoC products. This processor is designed to 
manage internal control and data processing tasks. It is a compact and effective 
microcontroller core that can control complex processes and move and process data. The 
processor features 13 general 16 bits registers, a full 16 bits ALU, an 8x8 multiplier, a 16 bits 
barrel shifter, and a load/store module with auto increment/decrement. It has up to 32 bit-
addressable I/O ports and interrupt handling, which contributes to its easy integration into any 
design. It is controlled by a compact and comprehensive set of 16 bits instructions, but is still 
capable of immediate 16 bits memory addressing without the use of paging. This chapter will 
describe shortly the features of the NanoRisc processor and tools. The interested reader is 
referred to [9]. 
 

3.1 Architecture 
The NanoRisc is a simple RISC processor [10]. It is a load/store architecture which means 
that operations can only be performed on data stored in the registers. It features single cycle 
execution of all instructions that do not read from memory. A simple overview of the 
architecture is shown in Figure 5.  
 

Registers

PC

Instruction Fetch

Load/Store

src

Executing 
UnitsI/O

Control

Next PC calculation

 
Figure 5, simple overwiev of the NanoRisc architecture [reference 8]. 
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There are three different memory spaces in the NanoRisc. There are 16 addressable registers 
(13 general registers, one 16 bits stack pointer, one 7 bits status register, and a 15 bits 
program counter), 32 bit-addressable I/O ports (16 input ports and 16 output ports), and a 
combined 16 bits program and data memory space. The 13 16 bits general registers are 
without any dedicated role, and can be used in any operation where a source and/or a 
destination register are required. The stack pointer (SP), status register (SR) and program 
counter (PC) have dedicated roles. The SP and SR can be used in all operations where a 
source and/or a destination register are required. The I/O ports allow the NanoRisc processor 
to connect to peripherals or other NanoRisc processors. These ports are accessed and 
controlled by dedicated instructions. The program and data memory of the NanoRisc share 
address space, but they have a separate memory bus going out of the NanoRisc. In this thesis, 
a separate ROM is assumed for the program memory, and a synchronous RAM for the data 
memory. This setup is shown in Figure 6.  
 

 
Figure 6, memory set up. 

 
The implementation of the NanoRisc is based on a centralized principle where the instruction 
is decoded and all control signals are set in the processor control unit (PCU) module. The 
multiplexers and registers that implement a module are implemented in their respective 
modules. Figure 7 shows the NanoRisc data flow.  
 
Short description of the modules in Figure 7: 
 

• PCU, Processor Control Unit (PCU) decodes instructions and set control signals to the 
other modules. 

• ALU, Arithmetic Logical Module has two 16bit operand inputs, and consist of a 16 
bits carry propagate adder and “xor”, “and”, “or” and an inverter unit. 

• FETCH, generates the address of the next instruction to be executed. How this is done 
depends on the current instruction. 

• I/O, interface peripheral modules. 
• MEM, controls the reading and writing of data memory. 
• MUL, 8x8 bit multiplication module. It is generated by the infix VHDL operator ‘*’ 

which produces a multiplier from the Synopsys DesignWare library at synthesis. 
• REG, register bank which holds the special and general registers. The module has two 

read ports and one write port.  
• SHIFT, barrel shifter with one signal path for left shifting and one signal path for 

right shifting. The value shifted in may be a carry from the status register or the carry 
from the shift operation (which is done when rotating). 

• SRC, multiplexer that chooses the source operand for several of the functional 
modules. 
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Figure 7, NanoRisc data flow diagram. 

  
 

3.2 Instruction Set 
The machine code instruction set of the NanoRisc consists of 55 16 bits instructions. A 
summary of the instruction encoding, how many cycles for execution and a short description 
is given in Table 4. A NanoRisc assembly language is made from this instruction set. The 
default program flow is to execute the next instruction located after the current instruction in 
the program memory. This default flow can be overridden by either acknowledging an 
interrupt or changing the flow by a branch, call or return instruction, where the interrupt takes 
priority.  
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Table 4, original instruction encoding. 

 
For the NanoRisc to able to interpret 16 bits immediate values and instructions with 3 
operands, a “pre” instruction is used. This instruction will precede the actual instruction, and 
it is loaded into a dedicated register in the instruction decoder. The “pre” instruction may also 
hold additional information about the execution of the instruction. An instruction which may 
use a “pre” instruction will determine how it is interpreted if it is present. Any such 
instruction will also clear the dedicated “pre” register. There are currently 5 ways of 
interpreting the “pre” instruction, and the way they are encoded is referred to as types. This is 
shown in Table 5. 
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Table 5, “pre” types and their encoding. 

     

3.3 Tools 
There exist two important tools for the NanoRisc processor; an assembler and a simulator. 
The assembler encodes the NanoRisc assembly language into machine code. The simulator is 
PC software for a windows platform, and it simulates the behavior of the NanoRisc at a cycle 
accurate level. It is important to understand how the assembler and simulator are made in 
order to modify or enhance them. This section will give a short introduction to the existing 
tools.  
 

3.3.1 Assembler 
The NanoRisc assembly language is based on the NanoRisc instruction set (Table 4). Each 
assembly instruction consists of a mnemonic followed by a possible empty list of arguments, 
and enables the user to produce all possible machine code instructions from the instruction 
set. To ease the use of instructions that may need “pre” instructions, the assembler will 
automatically insert “pre” instructions whenever this is needed. 
 
The GNU Assembly Preprocessor GASP [11] should be used on source code before the 
NanoRisc assembler is used. This preprocessor includes support for macros with conditional 
statements, loops, variables, inclusion of files and all other wanted preprocessor functionality. 
The NanoRisc assembler is implemented as a Windows command-line executable with syntax 
as seen in Figure 8. 
 
nr_asm input_file [output_file] 
Figure 8, Assembler command line syntax. 
 
Currently, the only supported output of the assembler is a simple dump of the instruction 
words in ASCII hex format followed by the word address of the instruction, the originating 
filename and line number. 
 
The assembler is written in MS Visual C++ using the lexer generator FLEX [12] and parser 
generator Bison [13] to generate the lexer and parser. The lexer reads the input stream 
searching for sequences of characters matching the patterns accepted in the programming 
language it is reading. The Lexer must therefore recognize all instruction mnemonics, 
directives, register names, alias identifiers, constant values and operators used in the 
NanoRisc assembly language. When the Lexer is called, it returns a token with corresponding 
value, an error or end of file. The parser uses a description of the syntax of the programming 
language to identify constructs of the language that give meaning, and it sees the program as 
sequence of program lines that can be an instruction, a label definition or a directive. When 
one of these program line types is identified, the parser expects a list of arguments of the 
correct type. 
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3.3.2 Simulator 
The NanoRisc instruction set simulator (ISS) simulates the behavior of the NanoRisc 
processor at a cycle accurate level. This means that after execution of one clock cycle of a 
program, its status is the same as for a processor running with the same input. The NanoRisc 
ISS is written in MS Visual C++ using the Microsoft Foundation Class (MFC) library for 
window handling.  
 
The simulator has a graphical user interface (GUI) that provides a simple way to supervise 
and control the simulation. The most important features of the ISS are listed below, and a 
screenshot is shown in Figure 9. 
 

• Memory view for viewing specified addresses in memory. 
• Possibility to load data memory contents. 
• Reload button to quickly restart simulation. 
• I/O view of specified I/O ports with hexadecimal and graphical representation.  
• Register overview. 
• Cycle counter, program counter and current instruction word clearly displayed 
• Full disassembler 
• Code view showing instruction word, program address, filename, line number, 

assembly code and the number of times it has been executed for each instruction in the 
program. 

• Highlighting of current instruction and color coding of most visited instructions 
• “Run”, “Step” and “Run to cursor” modes with possibility to break execution at any 

point.  
• Unlimited number of user defined breakpoints. 

 
      

 
Figure 9, NanoRisc ISS screenshot. 
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4 Implementation of the Compression Algorithms 
To identify possible improvements of the NanoRisc processor, three different compression 
algorithms are implemented with the current instruction set and HW capabilities. A short 
theoretical introduction to the three algorithms is represented in section 1.2.1. In that section it 
is also a short discussion of why these compression algorithms where chosen for 
implementation. The main argument was their fundamentally different methods of encoding 
and decoding the data stream. In the actual implementation, other important differences 
become more visible, and may in fact dominate. Since all three methods are heavily 
dependent on the modeling stage, they require large supporting data structures for this task. 
To explore the capabilities of the NanoRisc microprocessor different data structures are 
chosen, and all algorithms are implemented with adaptive one-pass modeling stages. A short 
summary will be given in here, but the differences will become more evident in the next 
sections where the implementations are explained in detail.  
 

• Rice coding is implemented with sorted tables that gives each symbol a code value 
according to its index. 

• Huffman coding is implemented with a binary tree data structure. The tree consists of 
linked nodes. 

• LZ77 is implemented with a hash table and linked lists. The hash value is made from a 
CRC hash function. 

 
The algorithms are written in the NanoRisc assembly language, and the enhanced NanoRisc 
assembler makes the instruction words. All assembly source codes are found in appendix E. 
 

4.1 Implementation of Rice Coding  
From section 1.2.1.1 it is evident that the most demanding task of Rice coding is making a 
good modeling stage and the calculation of the k-value. The encoding stage is just bit shifts 
and bit masking, and decoding is counting zeroes and bit masking. The implemented k-value 
calculation is developed by the author [14], and the modeling stage uses tables to sort the data 
stream according to frequency counts. The tables will assign low code values to high-sorted 
symbols. A simple flowchart of the implementation is shown in Figure 10. The k-value 
calculation and the modeling stage will be described in detail in the next subsections.    
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Figure 10, the Rice algorithm flowchart. 

 

4.1.1 Calculating the K-value 
From the description in section 1.2.1.1 it is clear that the optimal k-value is dependent on the 
entropy of the input stream. A mathematical analysis regarding the k-value was established by 
Dr. Penshu Yeh, R. F. Rice, and W. Miller at the NASA’s Goddard Space Flight Center 
(GSFC) in 1993 [15]. The analysis showed that Rice codes with different k-values basically 
were Huffman codes for different input streams with different geometrical probability 
distributions. From this reasoning, it was shown that the optimal k-value could be found using 
this equation: 
 
Eq. 6  )(log2 nk =          ;[15] 
 
Where n is the average coded symbol value.  
 
Many different methods have been developed to approach this equation. The equation by 
itself is not complex, but any hardware realization usually requires approximations. One 
method recommended by the CCSDS sub panel as the standard encoding method for lossless 
data compression in space applications, avoids any calculation of the optimal k-value by 
encoding the input stream in parallel with different k-values [16]. After encoding, the shortest 
encoded output stream is chosen for transmission. However, the parallel nature of this method 
is difficult to implement efficiently with one NanoRisc microprocessor. An approach to the 
actual equation is used in the JPEG-LS standard for image compression [17]. The method 
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calculates the k-value adaptively as it encodes the input data stream. From equation 6 it is 
clear that the most exhaustive part is averaging over a large amount of symbols. A way to 
compensate for the large averaging is calculating k for a given number of past symbols. The 
method used in JPEG-LS is shown by equation 7.  
   
Eq 7  { }ANkk k ≥= '2|'min        ;[17] 
 
Where N is the count of symbols used for averaging, and A is the accumulated sum of values 
to be encoded.  
 
Even though equation 7 is more hardware friendly than the original equation, it still requires a 
bit-shift, a comparison and an accumulation in every iteration. Equation 7 is also a bit more 
optimistic when calculating the k-value than the original equation (Figure 11). The method 
used to adaptively calculate the k-value in the implementation is an approach developed by 
the author [14]. This approach is a sort of middle course between the CCSDS 
recommendation and the JPEG-LS method. The method uses a fixed symbol count for 
averaging which can be described by 2b, where b is a positive integer. An approximated 
averaging of the accumulated symbol values is then made by b right shifts. The k-value is 
further approximated by finding the position of the msb in the shifted value. Figure 11 shows 
the calculated k-value using the original equation, the JPEG-LS method and the alternative 
approach. The calculations are done using a symbol count of 16, and accumulated symbol 
values from 0 to 240 (16*15). In the implementation, the k-value is calculated for every 16 
symbol and the initial value is 2.  
 

 
Figure 11, calculation of the k-value using equation 6, the JPEG-LS method and the alternative approach. 

(symbol count is 16) [14]. 
 

4.1.2 Modeling Stage 
Since Rice coding makes codewords directly from the value to encode, it is usually 
implemented together with a prediction stage. A prediction stage may be described as a digital 
high pass filter. This method does not require a large supporting data structure, but it requires 
a source that produces samples that results in small values after the prediction stage. This is 
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typical for e.g. audio and sensor data. However, in order to make the modeling more general, 
sorted tables are used.  
The table is sorted with descending frequency count. When a symbol has been encoded or 
decoded, it gets its frequency count incremented. If another symbol value with lower 
frequency count is placed higher in the table, they will swap places. The symbols placement 
in the table (index) becomes the code value that is Rice coded. If e.g. symbol 6 is found in 
index 4, the encoder will encode the value 4. When this code value is decoded, and the 
decoder has sorted its table in the same way as the encoder, the decoder will find symbol 6 in 
index 4.  
 
There are many ways of implementing this method, but careful considerations of memory use 
and run time should be made. The most straightforward approach is to implement one table 
with symbol values and their frequency count. This implementation is memory efficient, but 
exhaustive searches for symbol values and frequency counts would result in long runtime. 
The implemented method use two tables; the “symbol index table” and the “code index table”. 
An example of these two tables is shown in Table 6.  The “symbol index table” is sorted on 
descending symbol value, while the “code index table” is sorted in descending frequency 
count. When encoding, the code value is found by using the symbol value as index to the 
“symbol index table”. After encoding the code value is used as index to the sorted “code 
index table”, and the frequency count for the encoded symbol is incremented in both tables. 
Sorting is then performed by comparing frequency counts in the ”code index table”. Since 
frequency counts are only incremented and the table is sorted for each symbol encoded, the 
average search for higher frequency counts tends to be short. The search is stopped when a 
higher or equal frequency count is found, and a swap is performed with the previous index. A 
swap is of course not needed if the previous index belongs to the current incremented symbol. 
If a swap is needed, the two rows in the code entry table and the code values in the symbol 
entry table are swapped.     
 

 Symbol Index Table Code Index Table 
Index Frequency Count Code Value Frequency Count Symbol Value 

0 13 3 32 5 
1 13 4 25 3 
2 19 2 19 2 
3 25 1 13 0 
4 13 5 13 1 
5 32 0 13 4 
6 4 7 10 8 
7 2 8 4 6 
8 10 6 2 7 

Table 6, Table example for the implementation of the sorting method 
        
If e.g. symbol 4 is incremented to 14 in Table 6, the code value in index 4 is used as index to 
the “code index table”. In this table, the search will begin at index 5 and stop at index 2. From 
index 3, symbol 0 is found. The swap will hence be performed on symbol 4 and 0. First the 
row at index 5 and 3 in the “code index table” are swapped, and then the code value in index 4 
and 0 in the “symbol index table” are swapped.  The symbol size in the implementation is 8 
bits and frequency counts are also 8 bits. Total memory use becomes 2*28*8 = 8192 bits for 
the two tables. 
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4.2 Implementation of Huffman Coding 
Many implementations of Huffman coding use a static Huffman tree in the encoder and 
decoder. This is because it requires significant processor power to build and maintain an 
adaptive Huffman tree. However, to explore the capabilities of the NanoRisc processor, an 
adaptive Huffman algorithm is chosen for implementation. Figure 12 shows the flowchart of 
the implemented method. The next subsections will describe the adaptive tree structure and 
how this is implemented. 
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Figure 12, the Huffman algorithm flowchart. 

 

4.2.1 Updating the Huffman tree 
Effective algorithms for constructing Huffman trees are usually fairly simple (section 1.2.1.2), 
but it is not something that should be done after each symbol has been encoded or decoded. 
This would slow down the process significantly. Because of this, a method to take an existing 
Huffman tree and adaptively modify it to account for every symbol in the input stream must 
be used. A Huffman tree is a binary tree that has a weight assigned to every node, whether an 
internal node or a leaf node. Each node (except for the root) has a sibling that shares the nodes 
parent. In order to be a Huffman tree, the tree structure must exhibit something called the 
sibling property. A tree exhibits sibling property if the nodes can be listed in order of 
increasing weight, and if every node appears adjacent to its sibling in the list. Figure 13 shows 
a Huffman tree where every node have a weight W and a number # indicating the nodes order 
in a sorted list. This arrangement shows that the tree exhibits the sibling property because 
every node is adjacent to its sibling in a sorted list.         
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Figure 13, Huffman tree showing the sibling property. 

 
Updating of a Huffman tree is done by incrementing the weight of every node when 
traversing the tree from the root node representing the current symbol to the root. Maintaining 
the sibling property when a tree is updated ensures that it is a Huffman tree. Since the tree is 
incremented for every symbol the parent nodes will always have the accumulated weight of 
its children.  
 
The increment operation may result in a violation in the sibling property. When this happens, 
the tree must be rearranged. If a violation occurs, the node being incremented must swap 
place with a node higher in the sorted list. Swapping an internal node will affect the whole 
branch. If symbol A is encoded or decoded in the Huffman tree in Figure 13, leaf node A will 
first be incremented to W=3. This increment will violate the sibling property since other nodes 
higher in the list have less weight. The first swap must be between node #1 and #4 in the list. 
After the nodes have been swapped, the increment operation must continue with node #6 and 
#7. When node #7 is incremented it must be swapped with node #8. The resulting Huffman 
tree with updated weights and order is shown in Figure 14.   
  

 
Figure 14, updated Huffman tree. 
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4.2.2 Implementing the Tree Data Structure 
The tree is implemented with nodes that each has pointers to its parent and/or children. The 
use of pointers enables the nodes in the tree to be ordered in a sorted list, since they do not 
have pre defined memory locations. Traversing the tree is done through pointers, and 
searching for higher sorted nodes is done by calculating indexes in the sorted list. When 
choosing this data structure in an environment with strict memory requirements, it is 
important to hold the memory occupied by a node as small as possible. If the input stream 
consists of an alphabet of k symbols, a full Huffman tree requires k-1 internal nodes and k leaf 
nodes. For 8 bits symbols, a full Huffman tree will thus require 511 nodes. If any node should 
be able to have a pointer to any other node in the Huffman tree, the pointer must be at least 9 
bits. An internal node must therefore have 3*9bits reserved for pointers, and a leaf node must 
have one 9bits pointer to its parent. A leaf node must also have 8 bits for its symbol value. In 
addition, all nodes must have bits for weight and an indicator telling what kind of node it is 
(internal, leaf, left or right child).  
 

 
Figure 15, node memory structure. 

           
Figure 15 shows how the node data structure is allocated in the memory. The weight is 
restricted to 14 bits which makes the maximum number of symbols encoded or decoded 
before truncating 16384. All nodes allocate 3 fields of 16bits in the memory. When a node in 
memory location has its first field at memory address a, the next higher sorted node is at 
memory address a+3. Since there is no way of telling where in the memory a leaf node is 
situated, the encoder must also have a table of memory addresses to every leaf node. Thus, the 
static memory allocation required for the encoder is 3578 bytes, while the decoder requires 
3066 bytes.   
 
There are three main ways of initiating the Huffman tree when encoding and decoding. The 
first method is starting with a fully balanced Huffman tree with all symbols, the second is 
using a predefined weighted Huffman tree. The third and implemented method starts with a 
Huffman tree of two leaf nodes and the parent (root) node. Figure 16 shows how this tree 
looks like. When a never before seen symbol is encountered in the input stream at the 
encoder, it transmits the code found by traversing the tree from the root to the NS (New 
Symbol) leaf node. After this, it can send the new symbol without encoding it. The new 
symbol must then be inserted as a new leaf node in the Huffman tree. The EOS (End Of 
Stream) leaf is used at the end of the stream. By applying this method, the tree will not 
occupy more memory than needed and symbols may acquire short codewords earlier in the 
encoding process. Since the incrementing operation is proportional to the average code length, 
this method will in most cases require less processing power in the beginning of the stream.          
 

 
Figure 16, initial Huffman tree. 
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4.3 Implementation of LZ77 
The LZ77 compression method was first described in 1977, and during the 1980s and 1990s it 
was improved several times. Much effort was put into minimizing search time and coding 
indexes with variable length codes. One of the improved methods is Deflate. This has become 
a popular compression method that was originally used in the well-known Zip and Gzip 
software. The method has since been adopted by many applications such as the HTTP 
protocol, the PNG graphics file format, and Adobe’s PDF (Portable Document File). The 
compression method implemented in the NanoRisc processor is a very simplified version of 
Deflate developed by the author. This section will first describe the simplified Deflate 
compression method before describing details of the implemented data structure. 
 

4.3.1 Simplified Deflate 
The Deflate compression method is described in detail in [18]. Deflate is a variant of the 
LZ77 compression method combined with Huffman codes. The original LZ77 method outputs 
an index to a match and the next symbol in the look-ahead buffer that did not match. By 
always outputting two components (index and next symbol), the performance of LZ77 is 
reduced. The Deflate variant eliminates one of the components. If a match was found it 
outputs the index, or if a match was not found it outputs the next symbol in the look-ahead 
buffer. Thus, the output stream consists of two types of entities; symbols and indexes. In order 
to separate these two entities, they are Huffman coded using a static code table. The 
codewords are prefix codes such that the decoder knows when it reads a symbol or length. If 
it reads a length, it assumes that a distance will follow.  
 
The reason for making a simplified version of Deflate is mainly to ease memory requirements 
by not storing large Huffman code tables, and utilizing the fact that most wireless 
transmission is based on small data packets. The minimum length of a match in Deflate is 3, 
and the maximum is 257. The maximum distance is 32768. It is evident that a distance of 
32768 is not needed in most wireless applications, and a length of 257 would span over most 
packet lengths. The ZigBeeTM standard uses a maximum packet size of 128 byte with 104 
bytes of payload [19], and the Bluetooth® standard use a maximum packet size of 359bytes 
with about 340bytes of payload [19]. In the simplified implementation of Deflate, the 
maximum length is 150 and the minimum length is 3. The search buffer should cover a 
number of packets to achieve high compression ratios, but it requires memory to store used 
packets. A maximum search buffer of 1279 is used in the implemented version. Instead of 
having prefix Huffman codes, a fixed 3 bits prefix of what to follow in the data stream is 
used. Each prefix is listed in Table 7. A prefix precedes every symbol or index, except for the 
EOS prefix that follows the last symbol or index in the encoded data stream.       
 

Indicator Meaning 
000 EOS (End of Stream) 
001 8bits symbol 
010 2bits length,  8bits distance (length:3-6, distance:0-255) 
011 4bits length,  8bits distance (length:7-22, distance:0-255)  
100 7bits length,  8bits distance (length:23-150, distance:0-255) 
101 2bits length, 10bits distance (length:3-6, distance:256-1279) 
110 4bits length, 10bits distance (length:7-22, distance:256-1279)  
111 7bits length, 10bits distance (length:23-150, distance:256-1279) 

Table 7, indicators for simplified Deflate 
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Figure 17 shows a flowchart of the simplified Deflate compression algorithm. The encoding 
and decoding is like described above. The next subsections will describe how the encoder 
search for matches and how different data structures make this process as efficient as possible.   
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Figure 17, the simplified Deflate flow chart. 

 

4.3.2 Searching for Matches 
The most time consuming task in the LZ77 coding method is searching for the longest match. 
This can be shown from the theoretical description of LZ77 in section 1.2.1.3. A 
straightforward approach could be to exhaustively search for a match by reading the whole 
search buffer for every new symbol in the input data stream. This approach would require 
very little memory allocation, but it would have extensive memory access and long run time. 
This is a common problem for dictionary methods, and is mainly the reason for their highly 
asymmetrical behavioral. Repetitive sequences of symbols must be replaced by a codeword, 
and if this is to be done efficiently, sequences must be found through some sort of dictionary 
data structure. A dictionary data structure, from now on also referred to as the dictionary, 
helps finding an index for a match in the search buffer for the next sequence to be encoded in 
the look-ahead buffer. There are many ways of implementing dictionaries, and the throughput 
and memory usage of dictionary methods are very much dependent on how this is done. 
 
An often used dictionary is the trie data structure. A trie is essentially a tree where each edge 
is labeled with a symbol, and sibling edges have different symbols. Thus, every sequence in 
the search buffer can be found by traversing the trie from the root to a leaf. Even though tries 
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are often used to hold dictionaries, this kind of data structures is not used in the simplified 
Deflate implementation. The main reason is the heavy use of a tree data structure in the 
implementation of the adaptive Huffman compression method (section 4.2). Another method 
of holding the dictionary is therefore preferred.  
 
Hash tables are also used to help the search for sequences in dictionary compression methods, 
and this is the method chosen for implementation. Hashing is performed by a hash function, 
and is usually used to associate keys with values. The most common use is hash tables where 
the hash function transforms a key into an index in a hash table. The hash table is then used to 
locate the desired value. A good hash functions main features is to produce a hash value of 
fixed length from an input key, and where two different keys are unlikely to produce the same 
hash value. If two hash values are different, the two input keys must have been different in 
some way. This property is a consequence of hash functions being deterministic, 
mathematical functions. Nevertheless, the feature of producing values of fixed length from a 
key of arbitrary length implies that different keys may produce the same hash value.  
 
There are many types of hash functions available, and it is important to spend some time 
choosing a hash function. A good hash function has evenly distributed hash values, and it may 
be considered as a random number generator. A good hash function will thus minimize the 
probability of different symbol values generating equal hash values (this is often referred to as 
collisions). In [20] different hash functions are compared. This paper concludes that 
checksums generated from standard CRC polynomials provided an excellent hash function. 
CRC hash values are the remainder of a division based on polynomial arithmetics in a finite 
field [21]. This hash function is commonly used in packet network traffic or data files to 
detect errors after transmission or storage. Normally, the result of a CRC hash function is 
referred to as a checksum, but this is not an accurate term since a checksum would be 
calculated through addition and not through division, as is the case for a CRC hash function. 
In this thesis, the result of the CRC function will be referred to as a hash value.  
 

4.3.3 The Dictionary Data Structure 
The hash function implemented is based on the CRC8 CCITT standard polynomial [22]. 
There are several ways of implementing this hash function. The simplest method uses bit 
shifts and “xor” operations in a Linear Feedback Shift Register (LFSR). This method is 
simple and easy to implement, but it requires one calculation for every bit. To speed up this 
process, the implemented method uses look up tables for calculating the hash value for every 
byte. The look up table contains pre calculated hash values for every byte value, and must be 
stored in memory. Each pre calculated hash value is 8 bits, so the table requires 256 bytes of 
memory. 
 
To speed up the search process in the encoding algorithm, every three consecutive symbols in 
the stream are hased to an 8 bits value. The 8 bits hash value is used as an index to a hash 
table. In every index there is a pointer to a linked list. The linked lists contain the pointer to 
every three-symbol sequence in the search buffer that produced the same hash value. The 
search is then restricted to finding the longest match starting from any of these pointers. 
Figure 18 shows how the linked lists are linked to the hash table and how they expand.   
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Figure 18, hash table with linked lists 

  
The implemented linked list data structure does not have a limit for its expansion. This is not 
advised for large search buffers or when dealing with strict memory requirements. A sort of 
maintenance function should be considered for other implementations. If this is not 
implemented, the search for matches will be very time consuming in a data stream with many 
collisions. The memory use for this method is the look up table used in the hash function, the 
hash table and the linked list. The hash table is 256*1byte, and the hash table with the linked 
list could potentially grow as large as 256*2bytes + 1000*4bytes = 4512 bytes without a 
maintenance function. This is in most cases unacceptable for embedded solutions.       
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5 Enhancements of Existing Tools 
To measure the current capabilities of the NanoRisc microprocessor and the effect of 
improvements made, it was necessary to add some functionality to the existing software tools. 
This section will describe how the profiling tool is added, and how the assembler and ISS are 
altered in order to simulate the proposed HW enhancements. Both the enhanced NanoRisc 
assembler and ISS are found as executables in appendix E. 
 

5.1 Profiling 
After the compression algorithms are implemented in the NanoRisc assembly language, it is 
necessary to profile the resource use when the source code is processed by a NanoRisc 
microprocessor. A good profiling tool is vital for exploring where processing power is 
consumed in the algorithms. Estimations are always possible to do from studying technical 
descriptions or source code, but the real picture is shown through profiling with realistic input 
data. Since all compression algorithms are heavily dependent on the source data, profiling 
could visualize unexpected bottlenecks and show where the best improvement potential is. 
Nevertheless, estimations must be done to evaluate where in the algorithm attention and 
profiling should be focused.  
 
When these elements are found, there must be some way of telling the ISS where in the code 
profiling is wanted. The easiest way to implement this feature would be to use the GUI. The 
user could mark areas of code for profiling in the source code window of the ISS, but since 
the code in this window may originate from multiple included files and do not show labels 
and aliases, this approach would not be easy to use. The best way for the user would be to 
specify areas for profiling in the original assembly source code. This implies that 
enhancements of both the NanoRisc assembler and the NanoRisc ISS are necessary.       
 

5.1.1 Profiling With the Assembler 
The profile enhancement of the assembler enables the user to specify which areas of the 
source code that profiling is wanted. Profile labels define the areas, and the syntax is shown in 
Figure 19.  
 
.start_profile identifier [category] 

.end_profile identifier 
Figure 19, profile labels syntax. 
 
The “.start_profile” label indicates that the start of a profile area begins at next instruction 
line, and the “.end_profile” label indicates that the end of a profile area is at the prior 
instruction line. A pair of “.start_profile” and “.end_profile” labels with the same unique 
identifier defines a specific profile area. Several profile areas may overlap, as long as they 
don’t start or end at the same instruction line. When an instruction line is being executed, the 
resource usage is credited to the profile area that is defined for that instruction line. If profile 
areas overlap, the same resource usage will be credited to all overlapping areas. Every call or 
branch within a profile area will be credited, and this makes placing “.end_profile” labels 
critical. A branch or call inside a profile area could result in undesirable effects such as 
making the end of the profile area unreachable.  
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The category part of the “.start_profile” label is optional. If a category is specified for a 
profile area, all resource use credited the profile area is also added to the category. Multiple 
profile areas may use the same category, and the category will hold the sum of the resources 
used by the profile areas. This is convenient when elements of the same kind are situated in 
different locations in the source code.  
 

5.1.1.1 Implementation 
The enhanced assembler is made by altering or adding to the original source code. The lexer 
is altered to recognize the “.start_profile” and “.end_profile” tokens, and the parser is altered 
to identify profile labels with identifier and category arguments. Every time the assembly 
program reads a profile label, it will create a profile object and link it to the correct instruction 
line. The profile objects are made from a profile class, and a linked list data structure is made 
to organize these objects. Both the profile class and data structure is added to the original C++ 
source code. It is a separate linked list data structure for “.end_profile” objects and 
“.start_profile” objects. When the assembler has read the assembly source code, it resolves 
these two data structures to ensure that every “.start_profile” object has a corresponding 
“.end_profile” object. The output from the original assembler is a line for every instruction 
word in ASCII hex format followed by the word address of the instruction, the originating 
filename and line number. The new profile enhancement will output three additional 
information fields for every instruction line; a number indicating if the instruction is the start 
or end of a profile area, the identifier of the profile area and the category.   
   

5.1.2 Profiling In the Simulator 
As mentioned, the ISS simulates the behavior of the NanoRisc at a cycle accurate level, it is 
therefore convenient to profile by measuring the amount of clock cycles used within the 
profiling areas defined in the source code. Another important measure is the amount of 
memory access, and this is also feasible by enhancing the original ISS. The new GUI of the 
enhanced ISS is shown in Figure 20. From the figure, one can see the resemblance from the 
original GUI in Figure 9. Altering the original GUI as little as possible will help users of the 
original ISS using the new profiling tool. The only profile information visible in the new GUI 
is the “Profile” button, the “Prof. Identifier” column in the program window, and the count of 
memory load and store operations. It will only show RAM access since the NanoRisc will 
fetch a new instruction from the ROM almost every clock cycle. 
 
To do profiling in the enhanced NanoRisc ISS, it must be loaded with a file containing the 
output from the enhanced NanoRisc assembler described in section 5.1.1. If the source code is 
made with profiling labels, their identifier will be shown in the “Prof. Identifier” column on 
the correct instruction line. Instruction lines that correspond to a “.start_profile” label will 
have the prefix “S” before its identifier, and instruction lines corresponding to an 
“.end_profile” label will have “E” as prefix. The two counters showing memory load and 
store operations will update for every step in the simulation. They will not show the amount 
of clock cycles used for load and store operations, but the amount of times the memory is 
accessed during the simulation. In other words, the load and store counters profile the 
memory access at an instruction accurate level.  
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Figure 20, enhanced NanoRisc ISS GUI. 

   
The profile window shown in Figure 21 will appear if the “Profile” button is pushed. Profile 
areas defined in the assembly source code are shown in two tables, and the categories are 
shown in the third. This window can be shown by pushing the “Profile” button any time 
during the simulation, and it will show the profile information gathered so far. Profile areas 
listed in the “Active Identifiers” table are areas that embraced the instruction line executed at 
the time the “Profile” button was pushed. The “Passive Identifiers” table show profile areas 
that are not affected by the current instruction line. Both the “Active Identifiers” table and the 
“Passive Identifiers” table have four columns; “Identifier” is of course the name of the profile 
area, “Cycles” is the amount of cycles credited the profile area, “Calls” is the amount of times 
the instruction line with the profile areas “.start_profile” label have been executed, and “Per” 
is the percentage of the total amount of clock cycles which are credited that profile area.      
 
The “Categories” table show profile information for the categories defined in the assembly 
source code. It is not visible in the profile window which profile areas belong to which 
category, so profile areas should be defined with identifiers that give a hint of which category 
they belong to. If the profile area is not defined with a category, a category with the same 
identifier as the profile area is listed in the table. All tables are ordered by descending cycle 
count.  
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Figure 21, Profile window 

     

5.1.2.1 Implementation 
The enhanced NanoRisc ISS is made by altering or adding to the original source code. When 
the ISS is loaded with a file made from the enhanced NanoRisc assembler, it will look for 
indicators at every instruction line that tells if the line is the start of a profile area, the end of a 
profile area, or neither. If the instruction line is the start of a profile area, the simulator will 
create a profile object. Profile objects are made from a profile class, and are held in a linked 
list data structure. If the profile area is defined with a category, a category object will be 
created from a category class if it is not already created by earlier profile areas. If the profile 
area is not defined with a category, a category object will be created with the profile areas 
identifier as name. All profile objects are linked to their category objects.  
 
The profile objects are organized in two separate linked list data structures during simulation. 
One linked list holds the profile objects affected by the current instruction line executed in the 
simulation, and the other list holds the profile objects not being affected. These lists are called 
the active and passive list. If the instruction line currently being executed is the start of a 
profile area, the profile object corresponding to that profile area will be removed from the 
passive list and added to the active list. When an object is moved in this direction, it will also 
have its “call” count incremented. If the instruction line is the end of a profile area, the 
corresponding object is moved from the active list back to the passive list. For every clock 
cycle of the simulation, all profile objects in the active list will have their clock cycle count 
incremented. And every time a profile object is incremented, it will also increment the clock 
cycle count of its linked category object. So if e.g. a category has two overlapping profile 
areas, it will be incremented twice when both profile areas are “active”.  
 
When the “Profile” button is pushed, the linked list data structures holding the active, passive 
and category objects are passed to the profile GUI object. The profile GUI class is added to 
the original C++ source code. Before the data is shown, all objects in their respective lists are 
sorted with descending cycle count.     
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5.2 Adding New Instructions 
In addition to making changes in the hardware module, it is vital that the assembler is able to 
make code words for the added instructions. This makes it simpler to verify the correct 
behavior by using actual source code as input to the test bench. To profile and control the 
behavior, the simulator is also altered in order to simulate the behavior of the NanoRisc 
according to the changes made.  
 

5.2.1 Adding New Instructions to the Assembler 
The lexer is altered to recognize the new instruction mnemonics and their operators. The code 
words bit pattern must also be defined, and the code generator function must be able to insert 
parameters in the defined fields. In addition, it must be able to detect when the new 
instructions need “pre” instructions and insert these. The operation of adding new instructions 
to the assembler is straightforward for readers who are familiar with lexer and parser 
generators [12, 13]. 
    

5.2.2 Altering the Behavior of the Simulator 
In order to simulate the algorithms with added instructions, the behavior of the simulator must 
be altered. The simulator must recognize the code words and be able to interpret these into the 
desired behavior. The first task is to alter the disassembler that interprets the instruction into 
more human readable assembly language. In order to do this it must be able to retrieve 
parameters from the instruction itself or the “pre” instruction. After this, new functions must 
be added in order to simulate the behavior and show the correct response to the user in the 
GUI. The new instructions and behavior is added as options to the original simulator. A new 
button (“NewISA”) is added so the user may turn on or off these changes. When this button is 
clicked, a new dialog window appears so the user can choose the preferred collection of new 
behavior. Figure 22 shows this dialog window. This is done in order to do controlled 
simulation with the desired behavior. It is also useful if some of the enhancements are 
rejected, or if it is desirable to implement different versions of the NanoRisc with only a 
collection of the enhancements.     
 

 
Figure 22, new ISA dialog window. 
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6 Finding Enhancements for the NanoRisc Processor 
This chapter will explore the capabilities of the NanoRisc microprocessor when processing 
the implemented algorithms. Based on these profiling results, new instructions and behavior 
are proposed and implemented in the simulator. Finding improvements are done in two stages, 
and after each stage proposals are made to increase performance. In the first stage, blocks of 
codes that emulate possible new instructions are identified and profiled. This is referred to as 
instruction level profiling. Instruction level profiling is difficult. Small blocks of instructions 
that may increase performance by replacing them with new instructions must be identified. In 
the second stage, the blocks of codes are replaced by proposed instructions, and the source 
codes are profiled once again to find improvements on an algorithmic level. Algorithmic level 
profiling is profiling major parts of the compression algorithms, e.g. decoding, encoding, 
updating data structures, etc. These are easy to identify and is often implemented as functions.  
 
All algorithms are tested on four different data streams. A software program is developed to 
make three of the data streams. This program creates random numbers from different 
probability distributions. The source code for this program is found in appendix E. The last 
stream is made from a section of text in this thesis. The streams generated from the software 
program have Gamma, Poission and exponential probability distributions. All data streams are 
1000 byte, and their symbol distributions are found in appendix B.  
     
Improving throughput of the algorithms may be done in different ways, e.g. parallelization, 
pipelining, instruction level accelerations, hardware accelerators etc. Parallelization of the 
NanoRisc would require a redefinition of the NanoRisc architecture and behaviour. The 
compact original NanoRisc instruction set is not big enough to handle parallel processes, and 
a VLIW type instruction set must be considered. A parallelization of the NanoRisc will not be 
considered since this will alter the basic principles of the processor, and it would be hard to 
support programs made with the original instruction set. Pipelining will improve instructions 
that use several clock cycles, but since the only instructions that use more than one clock 
cycle in the original instruction set are load operations, it will have minimal effect on the 
processing power of NanoRisc. The two main enhancements considered are instruction level 
acceleration and hardware accelerators.  
 
Instruction level acceleration is about finding ways to add instructions and architectural 
features that is beneficial for the algorithms, and hopefully also beneficial to other tasks that 
the processor might be doing. This kind of acceleration is tied very close to the processor 
core, but it is less intrusive than parallelization and pipelining. Instructions and architectural 
changes may be added while old programs are still supported. Hardware accelerators are 
dedicated HW that is designed to do a large portion of a specific task. They are usually 
detached from the processor core, but still tied closely through memory or buses for low 
latency communication. Since HW accelerators often do a large portion of a specific task and 
are heavily optimized, they are usually not very useful for other tasks that the processor might 
deal with. Other considerations when it comes to HW accelerators are power and area. When 
accelerators take on a big portion of the total load, it is usually exposed in the power and area 
consumed. Adding all too specific accelerators will also make the design closer to an ASIC.            
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6.1 Instruction Level Profiling 
Since all of the implemented algorithms use variable sized codes to achieve compression, 
instructions that are able to do bit field operations are something that may increase 
performance. Bit field operations are operations that use variable or a fixed sized part of a 
register as input. Operations may be anything from moving or inserting bit fields to arithmetic 
or logical operations. Examples of blocks of instructions from the source codes that do bit 
field operations are found in Figure 23 and Figure 24.  
 

 
Figure 23, example insertion of a bit field (6 clock cycles). 
 

 
Figure 24, example addition on a bit field (3 clock cycles). 
 
Since many of these blocks use several clock cycles when processed, one can expect that new 
instructions may be implemented to reduce the amount of clock cycles. Many existing 
processors have bit field instructions. As mentioned in chapter 2, both Phillips TriMedia and 
ARM – DSP have bit field instructions for extracting, inserting and bit-packing. In addition to 
saving clock cycles, bit field operations may also save RAM access. When instructions are 
able to work with bit fields instead of whole registers, the information held in the general-
purpose registers in the processor can be packed more efficiently and RAM usage may 
decrease. In addition to bit field operations there are also other instructions that may help 
increase processing power. Such instructions may be shift-add instructions, detection of the 
position of the most or least significant bit in a register, instructions for making bit masks, etc. 
Shift-add instructions are common in most digital signal processor. Since the NanoRisc 
processor can address the memory at byte level, loading and storing words must be done with 
even memory addresses. Most shift-add operations are hence used to make memory addresses 
for table indexes, an example is shown in Figure 25. Intel 80x86, Motorola 680x0 and many 
ARM cores (to name a few) have instructions for finding leading or trailing ones or zeroes. 
Such an instruction is especially useful for the decoding stage in the Rice algorithm.  
 

 
Figure 25, example shift add operation for index storage (3 clock cycles). 
 
The new potential instructions identified in the assembly source code are gathered in three 
main categories; Bit Field Operations, Shift-Add Operations and Count Leading Zeroes. The 
rest of this section will show the result from profiling these operations. Detailed profiling 
results are found in appendix C.  
 
 
 
 
 
 



Processing Core for Compressing Wireless Data 

 
 
 

36

6.1.1 Profiling Rice 
Table 8 shows the results from the Rice algorithm. The table shows the total amount of cycles 
used by the operations per total amount of cycles used by the algorithm. In addition to the Bit 
Field, Shift-Add operations and the Count Leading Zeroes (CLZ) operation, the RAM access 
is shown as load/store operations. The cycles/call column shows how many clock cycles the 
profiling area use on average every time it is moved to the active list. Even though the basic 
algorithm is symmetrical, the decoding use more clock cycles than the encoding. This is 
mostly because the use of the CLZ operation in the decoder. The CLZ operation is used when 
the zeroes in the rice codeword is counted. This is done through shifting the codeword until a 
one is detected. The operation could be done more effectively by a more recursive operation 
or by using look up tables, but this would increase the program size and use more memory. 
The CLZ operation is also used when calculating the k-value.        
 

 Encode Decode 
  Cycles/Tot.Cycles Cycles/Call Cycles/Tot.Cycles Cycles/Call
Distribution: Poisson (Tot. Cycles: 93275) Poisson (Tot. Cycles: 112490) 
Bit Field Operations 9.60% 4.50 8.50% 4.47
ShiftAdd Operations 9.70% 3.00 6.60% 3.47
Count Leading Zeroes 3.40% 51.68 15.60% 16.56
Store Operations 8.60% 1.00 7.90% 1.00
Load Operations 8.90% 2.00 8.10% 2.00
Distribution: Gamma (Tot. Cycles: 91322) Gamma(Tot.Cycles: 110930) 
Bit Field Operations 9.80% 4.50 8.50% 4.48
ShiftAdd Operations 9.60% 3.00 6.60% 3.48
Count Leading Zeroes 3.60% 52.84 16.20% 16.95
Store Operations 8.60% 1.00 7.80% 1.00
Load Operations 8.90% 2.00 8.10% 2.00
Distribution: Exponential (Tot.Cycles: 78729) Exponential (Tot.Cycles: 97912) 
Bit Field Operations 11.50% 4.50 9.30% 4.49
ShiftAdd Operations 9.20% 3.00 7.30% 3.54
Count Leading Zeroes 0.60% 7.00 13.50% 12.48
Store Operations 9.20% 1.00 8.30% 1.00
Load Operations 9.50% 2.00 8.40% 2.00
Distribution: Text (Tot. Cycles: 121546) Text (Tot. Cycles: 141604) 
Bit Field Operations 7.40% 4.50 7.00% 4.45
ShiftAdd Operations 7.60% 3.00 5.40% 3.45
Count Leading Zeroes 2.50% 49.45 12.70% 16.75
Store Operations 7.00% 1.00 6.70% 1.00
Load Operations 9.30% 2.00 7.50% 2.00

Table 8, instruction level profiling results from the Rice algorithm. 
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6.1.2 Profiling Huffman 
The profiling results from the Huffman algorithm are found in Table 9. Since the adaptive 
Huffman algorithm is a symmetric compression algorithm, similar results are found for the 
encoding and decoding algorithm. It is clear from the results that there is much to gain from 
bit field operations, in addition to the possible reduction of load/store operations. Shift-Add 
operations are mostly used when the encoder must find the address to a leaf node from a table 
(the symbol value is shifted left once before it is added to the base address of the table). The 
total clock cycle count shows that the implementation is slightly asymmetric. The reason for 
this is that the decoder spends more clock cycles in the decoding function.  
 

 Encode Decode 
  Cycles/Tot.Cycles Cycles/Call Cycles/Tot.Cycles Cycles/Call 
Distribution: Poisson (Tot. Cycles: 450780) Poisson (Tot. Cycles: 459299) 
Bit Field Operations 26.30% 3.37 22.50% 3.29
ShiftAdd Operations 1.20% 3.70 0.30% 3.04
Store Operations 8.20% 1.00 8.20% 1.00
Load Operations 14.90% 2.00 15.10% 2.00
Distribution: Gamma (Tot. Cycles: 411086) Gamma(Tot.Cycles: 418697) 
Bit Field Operations 26.30% 3.38 22.50% 3.30
ShiftAdd Operations 1.20% 3.78 0.20% 3.06
Store Operations 8.20% 1.00 8.20% 1.00
Load Operations 14.90% 2.00 15.00% 2.00
Distribution: Exponential (Tot.Cycles: 195059) Exponential (Tot.Cycles: 199180) 
Bit Field Operations 23.50% 3.49 20.30% 3.41
ShiftAdd Operations 2.20% 3.95 0.10% 3.11
Store Operations 8.70% 1.00 9.10% 1.00
Load Operations 14.50% 2.00 14.40% 2.00
Distribution: Text (Tot. Cycles: 539648) Text (Tot. Cycles: 550573) 
Bit Field Operations 25.90% 3.36 25.40% 3.36
ShiftAdd Operations 1.10% 3.61 1.10% 3.61
Store Operations 8.20% 1.00 8.10% 1.00
Load Operations 15.10% 2.00 15.20% 2.00

Table 9, instruction level profiling results from the Huffman algorithm. 
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6.1.3 Profiling Deflate 
The profiling results from the simple Deflate algorithm are found in Table 10. The table 
clearly shows how the encoder and decoder are asymmetric. It is also interesting to see how 
the total amount of used clock cycles increase when the encoder algorithm finds many 
matches in the exponential distributed input stream. It is evident that the encoding algorithm 
will have limited gain from bit field and shift-add operations. The decoding algorithm is very 
simple, and only a small increase in throughput is expected.      
 

 Encode Decode 
  Cycles/Tot.Cycles Cycles/Call Cycles/Tot.Cycles Cycles/Call
Distribution: Poisson (Tot. Cycles: 138101) Poisson (Tot. Cycles: 33516) 
Bit Field Operations 0.20% 2.00 13.90% 3.39
ShiftAdd Operations 3.70% 3.00 0.00% 0.00
Store Operations 7.20% 1.00 7.50% 1.00
Load Operations 15.20% 2.00 7.40% 2.00
Distribution: Gamma (Tot. Cycles: 137268) Gamma(Tot.Cycles: 31946) 
Bit Field Operations 0.30% 2.00 12.80% 3.35
ShiftAdd Operations 3.50% 3.00 0.00% 0.00
Store Operations 7.00% 1.00 7.50% 1.00
Load Operations 15.10% 2.00 7.60% 2.00
Distribution: Exponential (Tot.Cycles: 515066) Exponential (Tot.Cycles: 30513) 
Bit Field Operations 0.10% 2.00 7.20% 3.12
ShiftAdd Operations 0.70% 3.00 0.00% 0.00
Store Operations 2.30% 1.00 5.20% 1.00
Load Operations 13.50% 2.00 5.60% 2.00
Distribution: Text (Tot. Cycles: 140460) Text (Tot. Cycles: 30513) 
Bit Field Operations 0.20% 2.00 13.90% 3.41
ShiftAdd Operations 3.50% 3.00 0.00% 0.00
Store Operations 6.90% 1.00 7.70% 1.00
Load Operations 15.30% 2.00 7.50% 2.00

Table 10, instruction level profiling results from the simple Deflate algorithm. 
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6.2 Proposals from Instruction Level Profiling 
The results from the profiling show that it is possible to increase the throughput of the original 
algorithms by finding new instructions. Bit field operations may be needed for moving bit 
fields between registers or performing arithmetic or logical operations on bit fields in a 
register. The most common bit field operations in the source codes involve moving, inserting 
and adding bit fields. Clock cycles used in the blocks of instructions that perform bit field 
operations range from 3 to 6. Shift-Add operations are mostly used when finding memory 
addresses for table look-ups. The Count Leading Zeroes operation will also result in savings 
for the Rice algorithm. Before finding new instructions, the original instruction set (Table 4) 
must be analyzed to find space for the new instructions. The undefined space in the 
instruction set is shown in Table 11. From this, it is possible to make 16 two-register 
instructions. New “pre” types may also be defined. It is important to keep in mind the 
limitations in the NanoRisc architecture. The register bank has one write port and two read 
ports, and adding more ports to the register bank will increase the gate count considerably.  
 

 
Table 11, undefined space in the original ISA. 

 

6.2.1 Instruction Level Enhancements 
Even though there is undefined space in the original instruction set for 16 two-register 
instructions, it is not preferable to use more space than necessary. An argument for this 
limitation is the gate cost when adding more instructions than strictly necessary. Adding 
instructions will also block future enhancements. If an instruction turn out to be less useful 
than anticipated, it still is hard to remove it from the instructions set. The removal of an 
instruction could result in rewriting of a number of programs. The encoding of the new 
proposed instructions is shown in Table 12. These are found by detailed examination of the 
source codes and profiling results.  
 

 
Table 12, encoding of new instructions. 
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A more detailed description of these instructions is found in appendix A, while a short 
explanation will be given here. There are five bit field instructions: 
 

• insbfi – takes a bit field from the source register (Rs) and inserts it in to the contents of 
the destinations register (Rd). All parameters (positions and length) are defined by 
immediate values in the new “pre” type 6 instruction. 

• movbfi – has the same immediate parameters given by the new “pre” type 6 instruction 
as the “insbfi” instruction, but the bit field overwrites the contents of the destination 
register. 

• movbf – has the same functionality as the “movbfi” instruction, but it uses a variable 
length given by a register (Rlen) in the new “pre” type 7 instruction and the bit field is 
moved to the lsbs of the destination register. 

• Addbfli –  adds an immediate value given in the new “pre” type 8 instruction to the 
lsbs of the source register given by the length parameter 

• Addbfhi – adds an immediate value given in the new “pre” type 8 instruction to the 
msbs given by the length parameter. 

 
An instruction that inserted a variable sized bit field may in many situations be preferable, but 
this would require one more read port than available in the architecture. Since the bit field in 
the “movbf” instruction is not inserted, the instruction needs only two read ports. A side effect 
from the new bit field instructions is that it becomes easier to pack information in the 
registers.  This may reduce RAM access and hence contribute further to an increase in 
throughput. Apart from the bit field instructions there are three more instructions: 
 

• clz – will write the amount of leading zeroes in the source register to the destination 
register. This instruction does not need a “pre” instruction.  

• ldin – will load the contents of the memory of the address made when the Ra register 
is shifted left and added to the immediate value in the new “pre” type 8 instruction. 
The instruction will always load 16 bits.  

• stin – stores a 16 bits value in the memory address made in the same way as for the 
“ldin” instruction.   

 
From the descriptions of the new instructions above there are defined three new “pre” type 
instructions: 
 

• Type 6 – has three parameters; the length of the bit field, the position of the start bit of 
the bit field in the source register, and the position of the start bit in the destination 
register where the bit field is inserted.  

• Type 7 – also has three parameters; the register address holding the length of the 
bitfield, the position of the start bit of the bit field in the source register, and the 
position of the start bit in the destination register where the bit field is inserted.  

• Type 8 – gives a12 bit immediate value. 
 
Since there is little space in the original instruction set, there is an extensive use of “pre” 
instructions in the proposed instructions. This is a major disadvantage. A “pre” instruction 
will add one clock cycle of processing for every instruction that needs one. The original 
instruction set also has instructions that use “pre” instructions when the immediate values are 
big, or when three operands are used. However, the assembler will limit the use of “pre” 
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instructions by inserting them only when it is necessary. Because of limited space in the 
original instruction set, it is not possible to have small immediate values or other information 
within the new instructions. Another way of limit the use of “pre” instructions is therefore 
necessary. Since the instruction itself cannot hold the required information for the operation, 
default values may be the solution. All instructions in the proposed instructions, except “clz”, 
requires a “pre” instruction, this can be exploited by using default values in the instruction 
decoder if the instruction processed is not preceded with a “pre” instruction. The default 
values are chosen by examining the source code, and the result is shown in Table 13.  
 

Instruction Default values 
Insbfi Len = 8, PosRs = 7, PosRd = 7 
Movbfi Len = 8, PosRs = 7, PosRd = 7 
Movbf None 
Clz None 
Addbfli Imm = 1 
Addbfhi Imm = 1 
Ldin Imm = 0 
Stin Imm = 0 

Table 13, default “pre” values. 
 

6.2.2 Adding Non-Blocking Load Behavior 
In addition to new instructions and HW accelerators, other enhancements of the NanoRisc 
processor could also increase the throughput of the algorithms. The RAM access during load 
operations will halt the processor until the result is retrieved from the RAM. This is shown in 
the timing diagram in Figure 26. When the processor is given access to the memory it will use 
two clock cycles until the retrieved data is in the register bank and can be used by other 
instructions. The first clock cycle is used for memory address calculation and set up, and in 
the second the result is written to the register and a new instruction is loaded. This is 
implemented in the instruction decoder as a 1-bit state machine. A way to avoid this extra 
clock cycle every load operation is to add a non-blocking behavior, from now on also referred 
to as NBL, to the load instructions. This means that the load instruction will not halt the 
processor until the data is retrieved, but go on processing the next instruction. However, the 
return operation from a function will still use two clock cycles when the instruction pointer is 
loaded from the stack pointer. Further enhancement could be to add NBL when the memory is 
busy and more clock cycles are wasted awaiting access to the memory, but this may be costly 
in terms of gates in the instruction decoder. Extra registers must be added in order to hold the 
load instruction and a possible “pre” instruction over several clock cycles. It would also in 
many cases save a limited amount of clock cycles, because loaded information is often used 
as quickly as possible to save register space.   
 
Since the data from the memory is written to the register bank when another instruction is 
processed, it must have a separate write port. This will be costly in terms of gates. When this 
is implemented, it is important that the instruction after a load instruction is not dependent on 
the data retrieved from the memory, or that it does not cause a write conflict. This may be 
ensured by the programmer, the assembler software or in hardware. The best way of utilizing 
the NBL is that the programmer is aware of this, and avoids instructions dependent on a load 
operation to be processed immediately after the actual load operation. This may in many cases 
be tedious and result in difficult debugging if the programmer does not keep this in mind. A 
way of preventing such cases could be to enhance the assembler either by inserting “nop” 
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instructions where needed, or issue warnings or error messages where problems may occur. 
This would require no extra hardware except for the dedicated write port. The disadvantage of 
this method is that the program size grows when “nop” instructions are inserted, or in cases 
where it is difficult to do other tasks while awaiting the retrieved memory data. Such a 
method would also increase the complexity of the assembler, and may prevent others from 
enhancing or making their own assembler tools. The method chosen is to stall the processor in 
hardware when the Rs or Rd field of an instruction is equal to the Rd field of the proceeding 
load instruction. The extra cost in gate count in the instruction decoder will be small, and it is 
more user friendly. 
 

 
Figure 26, timing diagram during load operation. 

 

6.2.3 Estimating Speedup 
From the profiling results, Ahmdahl’s law (Eq. 6) may be applied to estimate how the new 
enhancements may affect the total speedup. The calculation is done by summing all 
operations that may be affected by the new instructions and the NBL, and estimating a general 
2 times speedup for all. An example of this is shown in Table 8 where operations from the 
Huffman encoding algorithm are summed. The estimation of a general speedup of 2 is a ball 
park estimate from the profiling result. If all profiled operations are replaced by a “pre” 
instruction in addition to the new instruction, a speedup of 2 may seem a bit optimistic. 
However, taken into consideration a possible decrease in RAM access due to new bit field 
instructions, and that some of the operations will not need “pre” instructions due to default 
values, it may be a reasonable approximation. 
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Poisson 
Operation Cycles/Tot.Cycles
Bit Field Operations 0.263
ShiftAdd Operations 0.012
Load Operations 0.149
Sum: 0.424

Table 14,  operations that may be affected by the enhancements 
 
Table 15 shows the estimated speedup when applying the considerations explained above and 
Ahmdal’s law. The results vary greatly from about 10% increase up to 25%.    
 

 Rice Huffman Deflate 
Ditribution Decode Encode Decode Encode Decode Encode 
Poisson 1.240 1.188 1.234 1.269 1.119 1.106
Gamma 1.245 1.190 1.233 1.269 1.113 1.104
Exponential 1.238 1.182 1.211 1.251 1.068 1.077
Text 1.195 1.154 1.264 1.267 1.120 1.104

Table 15, estimated speedup from new instructions and NBL behavior. 
   

6.3 Algorithmic Level Profiling 
In section 6.1, the profiling areas contained blocks of instructions that could be replaced by 
new instructions. This section will show how the performance is increased when using the 
new enhancements proposed in section 6.2. The profiling areas from the instruction level 
profiling are hence replaced by new instructions and it would make little sense to use the 
same profiling areas. This section will describe the enhancements by defining new profiling 
areas that shows how clock cycles are used on an algorithmic level. As mentioned, 
algorithmic level profiling is profiling major parts of the compression algorithms, e.g. 
decoding, encoding, updating data structures, etc. It is therefore important that the reader keep 
in mind the description of the implementations of the different algorithms in chapter 4. Only a 
selection of the profiling results is shown in this section, but all profiling results are found in 
appendix D.       

6.3.1 Profiling Rice 
From Table 8 in section 6.1.1 it was evident that the decoder algorithm had much to gain from 
the new “clz” instruction. Both the encoder and decoder had limited use of bit field and shift-
add instructions. Table 16 shows the results of the algorithmic profiling with the NanoRisc 
processor using the exponentially distributed data stream. Only the decoding algorithm is 
shown due to the symmetrical behavior of the Rice compression method. The label column 
shows the label name of the different profiling areas. The resources used by the different 
profiling areas are shown as clock cycles used in the profiling area, and cycles used in the 
profile area divided by the total amount of cycles. The total number of cycles shown in the 
table is not a sum of the clock cycles used in the profile areas, but is the total clock cycles 
used by the algorithm. The “streams” label shows the resource used when reading variable 
length codewords from RAM. This operation is used in decoding, and is therefore sorted 
under the “decode” label in the table. The clock cycles used by the “decode” label thus 
includes the clock cycles used in the “streams” label. The RAM access is given in operations 
because it is measured at an instruction accurate level. In most cases, load operations will only 
use one clock cycle every operations due to the NBL, but function returns will still use two 
clock cycles. 
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  Original Enhanced 

Label 
Cycles Cycles/Tot. 

Cycles 
Cycles Cycles/Tot. 

Cycles 
Speed Up

Decode 41790 42.68% 25116 36.97%           1.66 
Streams 25050 25.58% 23158 34.09%             1.08 

Calc K 930 0.95% 434 0.64%           2.14 
Maintain Tables 346 0.35% 238 0.35%           1.45 
Update Table 7934 8.10% 7818 11.51%           1.01 
Total Number of Cycles 97912 100.00% 67941 100.00%           1.44 
     
       
Memory Access [operations] 14758 8612 

Store Operations 8156 5069 
Load Operations 6602 3543 
Table 16, algorithmic profiling from the Rice decoding algorithm with exponential distributed input 

stream. 
 
Table 16 shows results from the profiling when the new instructions and the non-blocking 
load behavior are implemented. The “decode” label has reduced its resource use considerably, 
and it is the main contributor to the total speed up. Another contribution to the increased 
throughput is the decrease in RAM access due to more effective register usage. The 
throughput is increased by 44%.  

6.3.2 Profiling Huffman 
The profiling results from the original Huffman algorithm showed that bit field instructions 
and a non-blocking load behavior should increase the throughput considerably. Table 17 
shows how the different algorithmic elements consume processing power with the NanoRisc 
processor. The “Sort Tree” and “Switch Node” are called from the “Increment Tree”, and the 
recourses used by the “Increment Tree” include these two functions. Results found in the table 
are retrieved from decoding the data stream with a Poisson distribution. Only the decoding 
algorithm is shown due to the symmetric behavior of the Huffman compression method. 
 
  Original Enhanced 

Label 
Cycles Cycles/Tot. 

Cycles 
Cycles Cycles/Tot. 

Cycles 
Speed Up

Increment Tree 345777 75.28% 189617 65.01%           1.82 
Sort Tree 174197 37.93% 101965 34.96%             1.71 

Switch Nodes 15840 3.45% 10982 3.77%             1.44 
Insert Node 1040 0.23% 880 0.30%           1.18 
Decode 100900 21.97% 86629 29.70%           1.16 
Streams 14924 3.25% 14148 4.85%           1.05 
Total Number of Cycles 459299 100.00% 291673 100.00%           1.58 
       
       
Memory Access [operations] 107116 62811 

Store Operations 37888 19307 
Load Operations 69228 43504 
Table 17, algorithmic profiling from the Huffman decoding algorithm with poisson distributed input 

stream. 
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It is clear from the table that updating the Huffman tree is the most time consuming task. The 
throughput is increased when the new instructions and the non-blocking load behaviour is 
implemented. Most of the savings are found in the “Increment Tree” label. This is mostly 
because of the implemented data structure (Figure 15). The throughput is increased by 58%. 
Another important reason for the increase in throughput is the decrease in RAM access.  
 

6.3.3 Profiling Deflate 
Section 6.1.3 showed that only a limited increase in throughput because of the enhancements 
is expected. The main contributor should be the new non-blocking load behavior.  
 
  Original Enhanced 

Label 
Cycles Cycles/Tot. 

Cycles 
Cycles Cycles/Tot. 

Cycles 
Speed Up

Decode 29258 95.89% 27238 95.60%           1.07 
streams 13747 45.05% 13462 47.25%             1.02 

Total Number of Cycles 30513 100.00% 28491 100.00%           1.07 
           
           
Memory Access [operations] 4654 4654 

Store Operations 2357 2357 
Load Operations 2297 2297 

Table 18, algorithmic profiling from the Deflate decoding algorithm with text input stream. 
 
Table 18 shows the profiling results from the Deflate decoding algorithm, and Table 19 shows 
the result from the original Deflate encoding algorithm. The enhanced Deflate decoding 
algorithm source code shows a small increase in the throughput, about 7%. Because the 
decoding algorithm has limited use of bit field instructions, the RAM access is not reduced. 
From Table 19 it is evident that the two most time consuming tasks in the encoding algorithm 
is making the hash value and controlling matches. There is some gained from the non-
blocking load behavior in the hash and control match labels, but since these function is 
already implemented in tight loops, it is difficult to take full advantage of this behavior. The 
increase in throughput is 16%. 
 
  Original Enhanced 

Label 
Cycles Cycles/Tot. 

Cycles 
Cycles Cycles/Tot. 

Cycles 
Speed Up

Encode 21828 15.54% 19859 16.41%           1.10 
streams 11452 8.15% 10102 8.35%             1.13 

Add Match 10000 7.12% 8000 6.61%           1.25 
Control Match 40604 28.91% 36418 30.09%           1.11 
CRC 32000 22.78% 26000 21.48%           1.23 
Total Number of Cycles 140460 100.00% 121038 100.00%           1.16 
           
           
Memory Access [ops.] 31169 30907 

Store Operations 9685 9423 
Load Operations 21484 21484 

Table 19, algorithmic profiling from the Deflate encoding algorithm with text input stream. 
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6.4 Proposals from Algorithmic Level Profiling 
Profiling on an algorithmic level showed that some parts of the algorithms could be further 
improved by adding enhancements that are more complex. This section will show how the 
stream functions and the hash function is speeded up.  
 

6.4.1 The Stream Function 
Common for all variable length coding algorithms is the task of reading or writing a stream of 
variable codes to or from RAM. From section 2.1, it was described how the Phillips TriMedia 
core used a coprocessor to deal with this task. A viable alternative for further improvement of 
the implemented algorithms could therefore be a hardware accelerator. It would speed up all 
of the implemented algorithms, and could be useful for other applications as well, but the gate 
cost will be considerable. For maximum speed up, the hardware accelerator must access 
memory, calculate memory addresses and length of the current stream, do shift operations, 
and have registers in order to hold initialization parameters, memory addresses, and parts of 
the stream. This sum up to a 16 bits adder, a 32 bits barrel shifter, memory interface, at least 4 
registers and additional control logic. The gate count would be in the area of 1500 gates. This 
is rather expensive. Another approach described in section 2.2 is the bit-band regions used by 
the Atmel Cortex core. The bit-band regions enable the load and store operations in the 
Cortex core to address a stream of variable length codewords on a bit level. However, if this 
shall reduce the amount of clock cycles it must be able to address bit fields that expand over 
two memory addresses. In the NanoRisc core, this will require a state machine in the memory 
access module, and hence making these load and store operations require several clock cycles.  
 

 
Figure 27, old stream function for decoding algorithms. 

 
Figure 27 show the assembly code for the stream function in decoding algorithms, using the 
new instructions proposed in section 6.2. The function uses two registers to hold a part of the 
stream. The R_Istr must always hold 16 bits from the stream in order to simplify the decoding 
process. To reduce memory access, the R_Res holds a reservoir of bits to be shifted in to 
R_Istr. When R_Res is empty, the next 16 bits of the stream is loaded from RAM.  R_Count is 
the register that holds the amount of bits left in the R_Res register. When calling this function, 
the amount of bits to be shifted into the stream is held in R8. The memory address for the 
input stream is held by register R_IStr_Addr. When the reservoir stream has enough bits for 
the operation, it will use 11 clock cycles, but if not it will use 23 clock cycles. Table 20 shows 
data from the stream profiling label when decoding the text stream. The Rice and Deflate 
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decoding algorithms have much to gain from enhancements affecting the stream function, but 
the Huffman decoding algorithm will not see that much improvement compared to the total 
clock cycle use.  
 

 Calls Cycles/Call Cycles/Tot.Cycles 
Rice 2010 12.87 23.37% 
Huffman 1037 14.31 3.96% 
Deflate 734 18.34 44.67% 

Table 20, profiling results from the stream label when decoding the text stream. 
 
A stream instruction is proposed for speeding up the streaming function. This instruction will 
shift in bits from a register into the register holding the stream according to a register holding 
the length. The instruction needs three read ports from the register bank, but the NanoRisc 
processor has only two. An extra read port will be expensive in terms of gates. To avoid this, 
a dedicated register is chosen to hold the bits to be shifted in. The dedicated register is one of 
the general registers, so it may still be used as a general register for all other instructions. This 
implies that when the instruction is executed, the bits intended to be shifted in must have been 
written to the dedicated register. The dedicated register must be chosen before synthesis. The 
encoding of the new instruction is shown in Table 21. 
 

 
Table 21, encoding of the  str instruction. 

 
When using this instruction in the stream function, we get the profiling results in Table 22. 
The table shows that the amount of clock cycles used by the function has been reduced, but it 
is still a major contributor to the total cycle count in the Rice and Deflate decoding algorithm. 
 
 

 Calls Cycles/Call Cycles/Tot.Cycles 
Rice 2010 8.25 17.70% 
Huffman 1037 9.21 2.78% 
Deflate 734 11.89 36.65% 

Table 22, profiling results from the stream label when decoding the text stream and using the new str 
instruction. 

 
The resulting assembly code when the “str” instruction is used is shown in Figure 23. The 
“str” instruction will only use one clock cycle because it needs no “pre” instruction. Table 22 
and Figure 28 clearly show that it is still room for improvements in the stream function, but at 
a fairly high implementation cost as explained in the beginning of this section. The “str” 
instruction will be cheap in terms of gate count and easy to implement. 
 



Processing Core for Compressing Wireless Data 

 
 
 

48

 
Figure 28, new stream function for decoding algorithms. 

  

6.4.2 The Hash Function 
Even though the hash function in the Deflate encoding algorithm is implemented with the use 
of look up tables, it contributes greatly to the overall clock cycle use. A solution to this is to 
implement the hash function in hardware. This may be done through a separate hardware 
accelerator. Another method is to add a hash module in the NanoRisc architecture and use it 
with a new instruction. The latter method is chosen, and a new “crc” instruction is introduced.  
 
The implemented hash function in the assembly source code is based on the 8 bits CRC8-
CCITT standard. If a hash function is implemented in hardware, a simpler method could be 
used to reduce the gate cost. The drawback of a simpler hash function could be that the 
probability of collisions will increase. This will again decrease the throughput of the encoding 
algorithm because more potential matches would have to be checked out. Another 
consideration when deciding the hash function for a hardware implementation is the 
portability for other applications. Since the NanoRisc is likely to be implemented in a 
transceiver SoC, some sort of error detection is often implemented. One of the most 
frequently used error detection method is the CRC16-CCITT. This method will cost more 
gates than a simple hash function or the CRC8-CCITT. A way to decrease the gate cost is to 
limit the amount of bits used in the CRC calculation every clock cycle. By not using the 
whole 16 bits register as input, but still only calculating the hash value for 8 bits at a time (as 
for the old LUT-version), the gate count will be halved. The CRC16-CCITT will produce 16 
bits hash values, but the table has only 256 entries. In [20] it is shown that all bits in a hash 
value from a CRC function have high information content. Thus, it does not matter which of 
the bits in the hash value that are chosen for the final 8 bits table index. The lower byte is 
used. When the “crc” instruction is implemented, the amount of clock cycles in the CRC 
function is halved, and the increase in throughput is now 31%. The 256 bytes look up table is 
made obsolete and removed. The CRC module is used with the instruction encoding in Table 
23.  
 

 
Table 23, encoding of the crc instruction. 

   

6.5 Proposed Enhancements for the NanoRisc 
From the last sections, it is evident that the new instructions and the non-blocking load 
behavior have shown promise by increasing the throughput for all algorithms. Two new 
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instructions where identified through the algorithmic profiling, “str” and “crc”. The “str” 
instruction improves throughput for all algorithms, especially for the decoding algorithms. Its 
contribution is mainly through the stream function, but it has been useful in other parts of the 
algorithms as well. In the Deflate encoding algorithm, a new “crc” instruction was identified. 
The “crc” instruction has limited use in the implemented algorithms, except for the Deflate 
encoding algorithm, but for other programs it may increase processing power. Especially 
when taking into account that the NanoRisc is most likely to be used in a transceiver SoC. It 
will provide an effective instruction for error detection, generating pseudo random sequences, 
or for making hash values.  
 
The enhancements chosen for implementation is adding the new instructions in Table 24, and 
implementing the non-blocking behavior. The new instructions are encoded as shown in Table 
12, Table 21 and Table 23. The default values from Table 13 (section 6.2) are used to 
decrease the amount of “pre” instructions. The new “pre” types are shown in table Table 25. 
A more detailed description of the proposed instructions is found in appendix A. 
 

 
Table 24, new Instructions. 

 
The most costly enhancements in terms of gates will be the non-blocking load behavior and 
the bit field instructions. The non-blocking load behavior will require an additional write port 
in the register bank, and the bit field instructions will require additional shifters and mask 
operations. Both the “clz” and “crc” instruction will also require additional modules, but the 
cost of these modules is moderate. The “stin” and “ldin” instructions will only require 
architectural changes by adding a path from the barrel shifter to the ALU. This will change 
the critical path, and may in turn increase the gate count in order to meet timing constraints.     
    

 
Table 25, new “pre” types. 
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6.6 Results Obtained From the Proposed Enhancements 
Due to the new instruction introduced in section 6.4, the throughput has increased further 
compared to the profiling results in section 6.3. A summary of the increase in throughput for 
all algorithms when all enhancements are included are shown in Table 26. When comparing 
the results with the estimated speedup in Table 15 (section 6.2.3), it is evident that an 
approximate general speedup of 2 gave conservative results, even when taking into account 
that these estimation was made without considering the “str” and “crc” instruction. While the 
estimated speedup varied between 10% and 25%, the real speedup is between 18% and 103%.   
 

 Rice Huffman Deflate 
 Decode Encode Decode Encode Decode Encode 
Poisson 63% 36% 60% 62% 29% 28% 
Gamma 65% 36% 60% 61% 28% 24% 
Exponential 64% 32% 56% 52% 103% 18% 
Text 51% 30% 60% 62% 28% 31% 

Table 26, increase in throughput. 
 
Another effect, especially due to the bit field instructions, is that RAM access has been 
reduced. Table 27 show how much the RAM access has decreased in all algorithms. The only 
algorithm that shows no reduction is the Deflate decoding algorithm. This is because of its 
limited use of bit field instructions. 
 
 Rice Huffman Deflate 
 Decode Encode Decode Encode Decode Encode 
 Load Store Load Store Load Store Load Store Load Store Load Store
Poisson -30% -30% -37% -40% -37% -49% -37% -47% 0% 0% -13% -1% 
Gamma -40% -38% -38% -41% -37% -49% -37% -47% 0% 0% -11% -1% 
Exponential -53% -43% -41% -42% -35% -42% -31% -39% 0% 0% -5% -5% 
Text -27% -35% -27% -39% -37% -48% -37% -47% 0% 0% -15% -3% 

Table 27, RAM access reduction. 
 
In addition to the increased throughput and reduced memory access, the code size for all 
algorithms has been reduced because new instructions have replaced blocks of old 
instructions. Table 28 shows the code size and the reduction.  
 

 Decode Encode 

 
Original 
[byte] 

Enhanced 
[byte] 

Reduction Original 
[byte] 

Enhanced 
[byte] 

Reduction 

Rice 358 246 -31% 336 246 -27% 
Huffman 686 540 -21% 684 556 -19% 
Deflate 172 156 -9% 360 340 -6% 

Table 28, reduction in code size due to new instructions. 
 
The compression ratios achieved by the profiled compression methods and the different input 
streams are found in Table 29. The streams symbol distributions are found in appendix B. 
 

 Poisson Gamma Exp Text 
Rice 51.30% 54.70% 79.80% 37.20% 
Huffman 51.40% 55.20% 79.40% 43.00% 
Deflate 0.20% 10.20% 64.30% 10.20% 

Table 29, compression ratios. 
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7 The Enhanced NanoRisc Processor 
In order to make the original NanoRisc capable of behaving according to the new instructions 
found in chapter 6, new modules and signal paths are added while some of the original 
modules are altered. This chapter will describe how this is implemented in HW. First a quick 
overview of the changes in the data flow is given. In the following sections, some of the 
changes are described in detail. In the end, synthesis results concerning area, timing and 
power are described. 
 

7.1 Implementation 
The simple overview of the architecture in chapter 3 is still valid, but the data flow diagram 
has changed. New modules and data paths are added in order to support the new instructions 
and the non-blocking load behavior. Figure 29 shows the new data flow diagram where new 
modules are filled blue and new signal paths are marked red. As mentioned, a more detailed 
description of the most important new modules and implementation is given in the next 
sections, while a quick description will be given here: 
 

• Sign Extm, has the same function as the original Sign Ext module. This new module 
is needed since the non-blocking load behavior needs a dedicated write port in the 
register bank. 

• Mask produces two bit masks. A length indicator tells the module the amount of ones 
that it shall append to the two bit masks. One bit mask append ones from the msb, 
while the other appends them from the msb. 

• Extr uses one of the bit masks produced by the Mask module to extract a bit field. It 
can extract a bit field from the shifter module or SRC MUX output. The bit field is 
used by the BFU or ALU module. 

• BFU shifts and if necessary inserts the bit field from the Extr module to a given 
porsition. 

• CLZ gives the amount of leading zeroes in the input. 
• CRC calculates the new CRC value from the LSB of the input. It uses the standard 

CRC16-CCITT polynomial. 
 
Some of the original modules are altered. Those altered have new signal lines to or from 
them, and in all cases, except for the register module and shifter module, it is only the MUX 
units inside the modules that are altered because of the new signals. The shifter module is also 
moved in front of the ALU module. This is done in order to do addition on shifted values for 
the new “ldin” and “stin” instructions. The VHDL source code for the CLZ, CRC, BFU, Extr 
and Mask modules are found in appendix E. 
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Figure 29, the enhanced NanoRisc data flow diagram. 

 

7.1.1 Non-Blocking Load Behavior 
As described in section 6.2.2, the original load instructions uses two clock cycles. This can be 
described by the 1-bit state machine in Figure 30. This state machine is controlled in the PCU, 
and it is reused when the new non-blocking behavior (NBL) is implemented. Both the NBL 
and the original state machine stall the next instruction fetch in the idle state if the memory is 
not ready for access. When the memory is ready, the idle state will set up the address on the 
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memory address bus before making the transition to the load state in the next clock cycle. 
When making this transition, the original idle state will stall the next instruction fetch while 
the new NBL idle state will not. The load states purpose is to load the data on the memory 
data bus into the register bank. Since the original idle state stalled the instruction fetch, the 
original load state will not have a new instruction to decode, but the new NBL load state will. 
However, if the source or destination register in the new instruction is the same as the 
destination register in the load instruction, it will decode a “nop” instruction and stall the next 
instruction fetch. The new instruction is then decoded in the next clock cycle instead. If the 
source or destination register is not the same as the destination register in the load instruction, 
the new instruction will be decoded in the same clock cycle as the data is loaded from the 
memory data bus into the register bank. 
 

Idle Load 
state

memory ready 

!memory ready

 
Figure 30, state machine during load instructions. 

 
In order to fetch a new instruction in the idle state, a register is needed to hold the load 
instruction. Fortunately, this can be done through an extended use of a register already present 
in the PCU. The PCU has a dedicated register witch holds the last instruction word in cases 
where a new instruction fetch is not performed. The use of this register is now extended to 
decode the load instruction during the load state. The changes in the PCU should not 
contribute much to the increase in gate count caused by the NBL behavior. The main 
contributor is expected to be the new dedicated write port in the register bank. This will add a 
DEMUX in order to be able to write all registers. Additional MUXes are also added by the 
synthesis tool since both write ports have access to the same registers. However, since the 
load state will decode a “nop” instruction in cases where the new instruction has the same 
source or destination register as the destination register in the load instruction, there can be no 
write conflicts.  
 

7.1.2 Bit Field Instructions 
The modules implemented for the bit field instructions are best explained through an example. 
The example will show the data flow when the “insbfi” instruction is decoded with these 
parameters: 
 
Len = 5 
PosRs = 12 
PosRd =  9 
 
The content of the source register (Rs), the original destination register before the instruction, 
(Rd) and the new contents written to the destination register after the instruction (New Rd) are 
shown in Table 30. The bit field inserted from Rs to the new Rd is marked by a red outline.   
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Table 30,  Register contents in bit field example. 

 
Figure 31 shows the data flow in the example. First, the contents of the Rs register is fed to 
the shift register. The shift registers control lines are set to left shift by the amount given by 
the inverted PosRs. This will shift the bit field to the msbs. The length is given to the Mask 
module, and it produces a bit mask with ones in the 5 msbs (zeroes in the rest). The result 
from the shifter and mask module is then given to the Extr module that simply do a bit-wise 
“and” operation on them. The BFU will take the results from the Mask and Extr module and 
right shift them according to the inverted PosRd. When this is done, both the bit mask and bit 
field is positioned correctly according to the insert position. In order to remove the bits in Rd 
which is to be replaced, the shifted bit mask is inverted and a bitwise “and” operation is 
performed on the inverted mask and Rd. A bitwise “or” operation between this result and the 
shifted bit field is then enough to insert the bit field.    
 

 
Figure 31, data flow in the bit field example. 
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In the “movbfi” and “movbf” instructions, the contents of the Rd register are not read since no 
insertion is needed. The “movbf” instruction will use the inverted Len as the amount of right 
shifts. Both the shift operations in the Shifter module and in the BFU module use inverted 
values for the amount of shifts. Because of this, the PosRs is inverted in the assembler. Thus 
no additional inverter is needed in the original Shifter module. The shift right operation in the 
BFU module will interpret the amount of right shift as an inverted value, so no inverter is 
needed in this case either. The inverters in Figure 31 are only illustrative. The “addbfli” and 
“addbfhi” instruction do not use the BFU module. For both instructions, the mask module will 
produce a mask with ones in the lsbs according to Len. The content of the destination register 
in the “addbfli” instruction is just fed to the Extr module together with the bit mask, and the 
result from this module is sent to the ALU. In the case of the “addbfhi” instruction, the 
content of the destination register is rotated left in the Shifter module according to Len before 
the same procedure is performed.  
 
The most expensive part of this implementation is the Shift right operation in the BFU 
module. Since this operation must shift an arbitrary value in less than one clock cycle, it is 
implemented as a barrel shifter. The original Shifter module is also a barrel shifter and is 
implemented at the cost of 430 gates. This module has some additional features that are not 
used in the BFU, such as shift left and rotate operations. The gate count of the BFU module 
should be slightly less than that of the Shifter. However, the cost of the Mask and Extr 
modules also adds to the total costs of implementing bit field instructions. Taken this into 
account, the total cost will probably pass the gate count of the Shifter module.     
 

7.1.3 Clz Module 
There are several possibilities for implementing the “clz” function in HW. One method could 
be to add more logic to the shifter such that it could output information on the amount of 
leading zeroes. However, since the shifter is part of the most critical path after moving it in 
front of the ALU, adding more logic could further increase area to meet timing constraints. A 
separate CLZ module is therefore implemented.  
 
The method used in the module can be described as a simple recursive function. In the first 
stage, the 16 bits input bits are divided in to the most and least significant byte. If the bits in 
the most significant byte are all zeroes, one is appended to the result and the least significant 
byte is multiplexed to the next stage. In each stage, the result from the last stage is divided 
into the most and least significant halves. As described for the first stage; if the most 
significant halves of bits being considered are all zeroes, one is appended to the result and the 
least significant bits are multiplexed to the next stage. If they are not all zeroes, zero is 
appended to the result and the most significant bits are multiplexed to the next stage. This is 
repeated until just a single bit remains.  
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Figure 32, CLZ data flow diagram. 
 
Figure 32 shows the data flow in this method. Lz is the result. The flow in the figure limits the 
result to 15, but an additional comparator not shown sets the result to 16 if all bits in the input 
are zero. If the result is 16 the zero flag in the status register is set, if the result is zero the 
negative flag in the status register is set. The module in itself should be synthesized to a small 
amount of gates. An estimate would be in the area of 50 gates. 
 

7.1.4 Crc Module 
As explained in section 4.3.2, all CRCs are binary polynomials that are divided with the data. 
In general, division of large numbers is hard to implement in HW efficiently. Therefore it is 
more convenient to convert the binary information into a more appropriate form. The string of 
bits to be verified is represented as the coefficient of a large polynomial, rather than as a large 
binary number. The conversion of the CRC16-CCITT polynomial will be as follow: 
 
G = 10001000000100001 = x16+x12+x5+1 
 
The CRC hash value is based on polynomial arithmetic. More accurate, the hash value is the 
remainder of dividing the polynomial in a Galois field with two elements (GF(2)). A 
polynomial in GF(2) is a polynomial in a single variable x whose coefficients are 0 or 1. 
Addition and subtraction are done modulo 2, i.e. both operations are the same as the exclusive 
or operator (“xor”). Partial sums in division and multiplication are “xor’ed”. Using this kind 
of arithmetic, any remainder of a polynomial of n bits is no more than n-1 bits long. n is 
referred to as the order of the polynomial. Another term often used is that the CRC hash value 
is the remainder of a binary division with no carry. As mentioned in section 4.3.2, CRC 
calculations are often implemented as liner feedback shift registers (LFSR). Figure 33 
illustrates CRC16-CCITT calculation with an LFSR. The flip-flops are shift registers which 
store the remainder after every clock cycle. When the whole message has been shifted 
through, the LFSR will hold the final CRC hash value. 
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Figure 33, CRC16-CCITT calculation with LFSR. 
 
In many systems where CRC is used for error detection, data is transferred as a serial bit 
stream. This is true for floppy disks, hard disks, modems, and as well as for newer optical 
disks. When the data stream is serial, the LFSR is trivial to implement and can operate at high 
speed. However, for this application (the “crc” instruction) it must operate at the clock speed 
used in the NanoRisc processor. The LFSR method is therefore too slow, and will not save 
many clock cycles in the compression algorithm. A method of calculating the hash value from 
more than one bit each clock cycle is necessary. Fortunately, there are many other 
applications that benefit from parallel CRC calculation (e.g. RAM disks and SCSI devises) 
and many methods have been developed to meet their need. One method has already been 
presented and implemented in this thesis; parallel CRC calculation with look up tables. This 
method is mostly used in software applications, and was proven too slow. The implemented 
HW method uses a “xor” network. The “xor” network express the contents of the shift register 
after 8 shifts as a function of the initial contents of the shift register and the 8 data bits shifted 
in. The resulting “xor” network using the CRC16-CCITT standard polynomial is shown 
below. The bits in the byte shifted in are denoted z0 through z7. 
 

128400 xxzzx ⊕⊕⊕=     139511 xxzzx ⊕⊕⊕=  

1410622 xxzzx ⊕⊕⊕=     1511733 xxzzx ⊕⊕⊕=  

1244 xzx ⊕=       131285405 xxxzzzx ⊕⊕⊕⊕⊕=  

141396516 xxxzzzx ⊕⊕⊕⊕⊕=    1514107627 xxxzzzx ⊕⊕⊕⊕⊕=  

15113708 xxzzxx ⊕⊕⊕⊕=    12419 xzxx ⊕⊕=  

135210 xzxx ⊕⊕=      146311 xzxx ⊕⊕=  

15128740412 xxxzzzxx ⊕⊕⊕⊕⊕⊕=   13951513 xxzzxx ⊕⊕⊕⊕=  

141026614 xxzzxx ⊕⊕⊕⊕=    151173715 xxzzxx ⊕⊕⊕⊕=  
 
These “xor” operations are then simply implemented in VHDL. The CRC module uses the 
standard CRC16-CCITT polynomial. This makes the module useless when other polynomials 
are required, but it limits the gate count considerably. A module with an optional polynomial 
will have the same complexity as a division module (600-700 gates), while this module with 
one fixed polynomial will have less than100 gates.   
 

7.1.5 The Str Instruction 
Since the “str” instruction need three registers (a register that holds the stream, a register that 
holds the length to shift the stream and a register that holds the bits to be shifted into the 
stream) an extra read port in the register bank is needed. This is discussed in section 6.4.1. To 
avoid an extra read port a dedicated register is chosen to hold the bits to be shifted into the 
stream. This register must be chosen from one of the general-purpose registers before 
synthesizing, and it will not be possible change it during operation. The chosen register may 
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still be used as a general-purpose register, but when processing the “str” instruction it must 
hold the bits to be shifted in.  
 
The original shifter module is enhanced in order to shift in bits to the stream register. The 
contents of the dedicated register are shifted left as many times as the destination register, and 
the bits falling off the dedicated register are shifted in to the destination register. The “str” 
instruction is only able to do left shifts. Hence, the original shifter is extended with one input 
port that is shifted equal amounts of times to the left as the other input port. This is a small 
operation, and the total cost in gates should be below 100. Figure 34 shows how the bits are 
shifted in to the stream register from the dedicated register. The amount of bits shifted in is 
given by the 4 lsbs of the length register.  
 

Left shift

Bits shifted in

15

15

0

0

Dedicated RegisterDestination Register

Bits Shifted Out Left shift
15 0

Bits Shifted Out

 
Figure 34, shift operation during the str instruction. 

7.2 Synthesis 
The synthesis of the design was done using the Synopsys Design Compiler with the Virage 
Logic TSMC 0.18um FSG DUS Standard Cell Library. The synthesis was done at two clock 
speeds: 25MHz for low power applications and 62.5 MHz for high performance applications. 
The synthesis was performed by scripts. 
 
Since the NanoRisc microprocessor has no internal instruction register, the timing of the 
arrival from the program ROM is crucial. The timing data used to model this is taken from a 
high-speed single-port synchronous diffusion ROM made with the Artisan Rom generator for 
the TSMC 0.18um process. In a typical process with typical conditions, it has an address 
setup time of 0.31 ns and an access time of 1.29 ns. The address setup is the time the 
instruction address has to be stable on the address lines, and access time is the time from the 
rising clock to the instruction is stable on the data lines. These two constraints where given to 
the synthesis tool by using the “set_output_delay” and “set_input_delay” statements. The 
enhancements are added to the original NanoRisc processor core in six stages: 
 

1. Non-Blocking Load Behavior (NBL). 
2. The Count Leading Zeroes instruction. 
3. Bit field instructions. 
4. Load Index and Store Index instructions. 
5. The CRC instruction. 
6. The Stream instruction. 

 
The stages are cumulative, so e.g. in stage number 6 all enhancements are added.   
 

7.2.1 Timing 
Timing reports show the estimated propagation delay through different paths in the circuit. 
The difference between this propagation delay and the timing constraint is called slack. If the 
slack is positive, the timing constraints are met, if it is negative, the timing constraints are not 
met. The synthesis tool will always try to meet the timing constraints by increasing drive 
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strength, insert clock buffers or inverter chains until the slack is zero. The path with least 
slack is often referred to as the critical path.  
 
At 25 MHz the slack of the original NanoRisc is 20.54 ns, while after all enhancements are 
implemented (stage 6), the slack is 17.51 ns. This is a fairly large slack at 25 MHz, and the 
clock frequency may be increased by a factor of two without making noticeable changes in 
drive strength. The critical path in the original NanoRisc is from the program data lines, 
through the PCU, through the MUL module, and to the register bank. In stage 3, the shifter 
module and the Extr module is moved in front of the ALU, and this changes the critical path. 
The critical path after stage 3 is from the program data lines, through the PCU, trough the 
shifter, through the Extr module, through the ALU and to the register bank. 
 
At about 62.5 MHz, the synthesis tool starts to insert buffers and inverter chains to reduce fan 
out. The slack is zero for the original NanoRisc and all enhancement stages. The critical path 
changes much more between the stages depending on the choices the synthesis tool makes 
when trying to meet timing constraints. The original NanoRisc, stage 1, 4 and 5 has the same 
critical path as before (at 25 MHz), while stage 2 has a new critical path going from the 
program data lines, through the PCU, through the I/O module, through the ALU, and to the 
register bank. Stage 3 and 6 has the same critical path as the original NanoRisc and stage 1.        
 

7.2.2 Area 
The area of a circuit will often grow larger at higher speed. This is because of timing 
constraints that need to be met by the synthesis tool. Drive strength of components have to be 
increased to reduce propagation delay, and a unit with greater drive strength use more area. 
The synthesis tool may also insert buffers and inverter chains in order to meet timing 
constraints, and this will also add to the total gate count. Table 31 shows the gate count when 
the original NanoRisc is synthesized at 25 MHz and 62.5MHz. The difference in gate count is 
323 gates.   
 

  25 MHz 62.5 MHz 
nb_alu 429.00 455.50
nb_const_gen 28.00 28.00
nb_fetch 252.50 252.50
nb_int 6.25 6.25
nb_io 170.00 195.25
nb_mem 218.50 218.50
nb_mul 408.50 425.75
nb_pcu 862.25 980.25
nb_reg 2299.27 2424.01
nb_shift 426.75 426.75
nb_src 69.00 80.25
Total 5170.02 5493.01
Table 31, gate count for the original NanoRisc. 

 
 
As mentioned in section 7.2.1, the slack at 25 MHz was high. This implies that the gate count 
reported at 25 MHz should be near the minimum for the circuit. Table 32 shows how much 
each stage and module contributes to the total increase in gate count at 25 MHz. The extra 
cost in gates when implementing all enhancements is 1565 gates, making the total cost of the 
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enhanced NanoRisc 6735 gates at 25 MHz. The two major contributors to the total gate cost 
of the enhancements are the NBL and the modules needed for bit field instructions.     
 

Module Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Total increase 
nb_alu 0.50 -0.50 26.00 -0.50 0.00 -0.50 25.00
nb_const_gen 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nb_fetch 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nb_int 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nb_io 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nb_mem 0.00 0.00 0.00 0.25 -0.25 0.00 0.00
nb_mul 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nb_pcu 59.75 13.25 125.75 40.00 6.25 6.00 251.00
nb_reg 573.03 19.50 20.50 2.50 41.00 -0.50 656.03
nb_shift -0.50 0.50 0.00 -0.50 0.50 57.00 57.00
nb_src 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nb_clz 0.00 39.75 0.00 0.00 0.00 0.00 39.75
nb_extr 0.00 0.00 48.00 0.00 0.00 0.00 48.00
nb_mask 0.00 0.00 67.00 0.00 0.00 0.00 67.00
nb_bfu 0.00 0.00 357.75 0.00 0.50 0.00 358.25
nb_crc 0.00 0.00 0.00 0.00 63.50 0.00 63.50
Total increase 632.78 72.50 645.00 41.75 111.50 62.00 1565.53

Table 32, contributions from each stage and module to the gate count at 25 MHz. 
 
Table 33 shows how much each stage and module contributes to the increased gate count at 
62.5 MHz. The penalty of moving the shifter in front of the ALU, and thereby changing the 
critical path, is clearly shown from stage 3 in the table. The resulting increase in gate count is 
more than double the increase from the non-blocking load in stage 1. The cost in gates for all 
enhancements is 1868, making the total cost of the enhanced NanoRisc 7361 at 62.5 MHz.  
 

Module Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Total increase 
Sum buffers -4.00 8.75 42.00 -26.25 -5.00 32.00 47.50
nb_alu 0.25 5.25 118.25 -16.25 5.00 0.00 112.50
nb_const_gen 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nb_fetch 0.00 0.00 -1.50 3.50 -3.50 0.00 -1.50
nb_int 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nb_io -21.75 1.00 -4.50 0.00 0.00 0.00 -25.25
nb_mem 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nb_mul -4.00 12.50 -9.00 -0.50 -3.50 4.25 -0.25
nb_pcu 44.50 -3.75 288.50 122.50 -142.50 81.75 391.00
nb_reg 472.29 11.25 134.26 -17.50 -4.25 26.50 622.55
nb_shift 0.00 0.00 111.75 -36.00 19.00 48.00 142.75
nb_src -7.50 3.00 5.00 -4.00 0.25 -2.25 -5.50
nb_clz 0.00 39.50 0.00 0.00 0.00 0.00 39.50
nb_extr 0.00 0.00 48.00 0.00 0.25 -0.25 48.00
nb_mask 0.00 0.00 78.75 2.50 -1.75 -4.75 74.75
nb_bfu 0.00 0.00 358.75 -0.50 0.50 -0.50 358.25
nb_crc 0.00 0.00 0.00 0.00 64.00 -0.50 63.50
Total increase 479.79 77.50 1170.26 27.50 -71.50 184.25 1867.80

Table 33, contributions from each stage and module to the gate count at 62.5MHz. 
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An interesting effect is shown in stage 5 when the CRC module is introduced; the gate count 
is reduced. Because of the heavy timing constraints, the synthesis tool is forced to make 
decisions that may result in an area that is not optimal. By introducing the CRC module, it 
chooses a different approach to meet the timing constraints, and the result is reduced gate 
count. 
  

7.2.3 Power 
The power consumption was calculated in running mode without memories. The calculation 
was done by Synopsys Power Compiler. To estimate switching activity, the VHDL files are 
analyzed and elaborated in Design Compiler before creating a SAIF (Switching Activity 
Interchange Format) forward annotation file. This file tells the simulation tool which ports to 
log switching activity during simulation. ModelSim is used for simulation with the SAIF file, 
and it creates a SAIF back annotation file with the measured switching activity during 
simulation. This file contains average switching activity for all modules on RTL level, and is 
included in the synthesis before the design is compiled in Design Compiler. Power Compiler 
is then used to estimate power consumption. The global operating voltage is 1.62 V.   
 

 Switch Power Int Power Leak Power Total Power 
Original [mW] 0.362 0.561 6.79E-03 0.929
Enhanced [mW] 0.427 0.632 8.61E-03 1.068

Table 34, estimated power consumption at 25 MHz [mW]. 
 
Table 34 show the estimated power at 25 MHz, while Table 35 show estimated power at 62.5 
MHz. Both tables show values in mW. The total power consumption of the enhanced 
NanoRisc is 1.068 mW at 25 MHz, while at 62.5 MHz it is 2.816 mW. When the processor is 
in halted mode, no signals are toggling and the only power consumption should be leakage 
power. 
 

 Switch Power Int Power Leak Power Total Power 
Original [mW] 0.928 1.433 7.19E-03 2.369
Enhanced [mW] 1.117 1.689 9.38E-03 2.816

Table 35, estimated power consumption at 62.5 MHz [mW]. 
 
The increase in power consumption for the enhanced NanoRisc is 15% at 25 MHz, and 19% 
at 62.5 MHz. However, these power estimations do not include the power consumption for 
ROM and RAM access. To investigate this, a 512x16 bits diffusion ROM and a 2048x16 bits 
single port synchronous SRAM is generated in an Artisan ROM and RAM generator. These 
generators use a TSMC 0.18um process. The results are found in Table 36. 
 

Module Read Power Write Power Standby Power 
ROM 3.323 x 0.006 
RAM 2.561 3.041 0.024 

Table 36, power consumption for 512x16 bits ROM and 2048x16 bits RAM [mW] (global voltage 1.62, 
25Mhz operation) 

 
The power consumption for the ROM should be fairly accurate since the NanoRisc fetches a 
new instruction every clock cycle, but the power consumption in the RAM is too much since 
the access rate will be far less than 25 MHz.  
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7.3 Performance 
Choosing measurements for comparison of the performance of processors are difficult. Many 
x86 based PC manufacturers tend to use clock frequency as a measure, but this is inaccurate 
when processors have different architectures and instruction sets. MIPS (Millions of 
Instructions per Second) is another measure that is frequently used among microcontroller 
manufacturers, but this may again be very misleading because of different instruction sets and 
architectures. Some instructions may be processed in one clock cycle in one microprocessor 
core, while two or three may be spent in another.  
 

Eq. 8   610*imeExecutionT
nCountInstructioMIPS =            

 
A more comparable measure is CPI (Cycles per Instruction). It measures how effective the 
cycles in a processor core are.  
 

Eq. 9   
nCountInstructio

sClockCycleCPI =  

 
Even though the NanoRisc is a RISC processor, the CPI deviates from 1 because of RAM 
reads may need more than one clock cycles and “pre” instructions do not count as an 
instruction. CPI can be calculated by running a program in the simulator and using the cycle 
and instruction count. When weighing the results from all input streams and algorithms 
equally, the CPI becomes 1.44 for the original NanoRisc and 1.37 with all enhancements. The 
difference would have been greater if only the non-blocking load behavior had been 
implemented, but since the new instructions are heavy users of “pre” instructions, the 
difference becomes smaller. Calculating MIPS at 25 MHz, the original NanoRisc get a value 
of 17.36 while the enhanced NanoRisc gets 18.25.  
 
However, the NanoRisc processor is likely to be implemented in a transceiver SoC where the 
performance is much more than speed. A more appropriate measurement in this setting is a 
function of speed, size and power consumption. These factors should be weighted according 
to the application. Another measurement is speed compared with power consumption. From 
the power synthesis report, the power consumption in the original NanoRisc was 0.929 mW, 
while the enhancements increased it to 1.068 mW at 25 MHz. The original NanoRisc will 
hence consume approximately 0.054 mW per MIPS, while the enhanced NanoRisc will 
consume approximately 0.059 mW per MIPS. This is an increase of 7% in power 
consumption per MIPS. However, considering the reduction in number of clock cycles used to 
process the compression algorithms and the reduced RAM access, the net power consumption 
for the algorithms will be decreased. As shown in section 7.2.3, memory access costs more 
power than computations. From Table 27 in section 6.6 it is shown that all algorithms, except 
the Deflate decoding algorithm, have less RAM access due to the enhancements.  

7.3.1 Energy Savings 
Section 7.2.3 showed the power consumption in the original NanoRisc, and the NanoRisc 
with all enhancements. A RAM and ROM module was also generated using the Artisan RAM 
and ROM generator. These modules were generated in a similar process as used when 
synthesizing the NanoRisc. A summary of these power estimations and the resulting energy 
consumption per clock cycle at 25 MHz are found in Table 37. 
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Module Power Consumption [mW] Energy per clock cycle [pJ] 
Original NanoRisc 0.929 Average 37 Average 
Enhanced NanoRisc 1.068 Average 42 Average 
1 kB ROM 3.320 Read 132 Read 
2 kB RAM 2.560 Read, 3.040 Write 102 Read, 121 Write 

Table 37, power and energy consumption at 25 MHz. 
 
From the profiling results presented in chapter 5 and found in appendix C and D, the energy 
consumed per bit for all algorithms can be calculated. The results for enhanced NanoRisc with 
the RAM and ROM module in Table 37 are shown in Table 38.    
 
 Poisson [nJ] Gamma [nJ] Exponential [nJ] Text [nJ] 
 Encode Decode Encode Decode Encode Decode Encode Decode 
Rice 1.65 1.66 1.61 1.61 1.43 1.43 2.23 2.25
Huffman 9.69 7.14 6.36 6.51 3.23 3.20 8.32 8.57
Deflate 2.76 0.64 2.81 0.61 10.60 0.38 2.72 0.59

Table 38, energy consumption per bit for the enhanced NanoRisc. 
    
The original NanoRisc consumes less power, but uses more clock cycles and memory access 
than the enhanced. This results in total savings in energy for all algorithms. Reduced energy 
consumption for the enhanced NanoRisc compared to the original is shown in Table 39. 
 

 Poisson Gamma Exponential Text 
 Encode Decode Encode Decode Encode Decode Encode Decode 
Rice -20% -33% -21% -34% -18% -35% -16% -28%
Huffman -30% -29% -29% -29% -25% -27% -30% -29%
Deflate -8% -13% -6% -13% -2% -44% -11% -13%

Table 39, energy reduction per bit for the enhanced NanoRisc. 
 
All calculations for the enhanced NanoRisc assume ROM access every clock cycle. This is 
because of the NBL behavior. In the original NanoRisc ROM, access is not performed during 
the first clock cycle in the load operation. Because of this and the fact that energy consumed 
in the NanoRisc core is small compared to ROM and RAM access, makes reduced RAM 
access the main contributor to the reduced energy.  
 
All the implemented algorithms achieved bit compression. Thus, if the NanoRisc processor 
was implemented in a SoC to process compression algorithms, energy may be saved because 
fewer bits must be transmitted or received. For comparison, the CC2400 2.4 GHz low power 
transceiver [23] consumes 34.2 mW during transmission with a transmit power of 0dBm, 
while receiving it consumes 41.4 mW. The highest data rate is 1 Mbps. The energy consumed 
per bit when transmitting or receiving at this rate is hence 32 nJ and 41 nJ. Compared with the 
energy consumed in the NanoRisc per clock cycle the difference is a factor of 1000.  
 
 Poisson Gamma Exponential Text 
 Encode Decode Encode Decode Encode Decode Encode Decode 
Rice -46% -47% -50% -51% -75% -76% -30% -32%
Huffman -30% -34% -35% -39% -69% -72% -17% -22%
Deflate 8% 1% -1% -9% -31% -63% -2% -9%

Table 40, reduction in energy consumption due to compression with the enhanced NanoRisc. 
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Table 40 show the reduction in energy consumption due to compression with the enhanced 
NanoRisc. Encoding is assumed in the transmitter and decoding is assumed in the receiver. 
All algorithms except Deflate show energy reduction for all input streams. This is because of 
its poor compression ratios. For the poisson distributed input stream, the Deflate encode 
algorithm only removes 16 bits while using 108090 clock cycles and 28152 memory accesses. 
Still, the excess energy consumption is only 8.  
 
The implemented algorithms are adaptive and they are therefore quite demanding when it 
comes to processing power. If the source is known and tend to have a rigid probability 
distribution, a static model may achieve good compression ratios. This is true for Rice and 
Huffman, but the Deflate algorithm must in all cases be adaptive. A static model will reduce 
clock cycle count and reduce RAM access significantly.  
 

7.3.2 Benchmarks 
The test of time is important for all instruction sets. The instruction set is one of the most 
important design issues for microprocessor core designers. If the core is to be widespread and 
used in many embedded solutions, a rigid and comprehensive instruction set is important for 
embedded software developers. Often it is the case that microprocessor core designers feel 
that some instructions are important, while in real life they are seldom used. Adding 
instructions may limit future expandability, especially for cores that are widespread. If an 
instruction proves to be less useful than anticipated, a removal may result in rewriting a 
number of programs.  
 
A way to measure the effect of the improvements added to the NanoRisc for other types of 
tasks than data compression, is by using benchmarks. Benchmarks are important for 
embedded microprocessors in order to compare different microprocessors with different 
architectures and instruction sets. The Embedded Microprocessor Benchmark Consortium 
(EEMBC) is a non-profit group formed in 1997 to develop meaningful performance 
benchmarks for the hardware and software used in embedded systems. Their benchmarks 
have become an industry standard for evaluating the capabilities of embedded processors. The 
EEMBC benchmarks reflect real world applications and they are available as different suites 
targeting telecommunication, networking, network storage, digital entertainment, Java, 
automotive, industrial, consumer and office equipment products. Among these, the network 
benchmark suite is the most relevant since the NanoRisc is likely to be embedded in a 
transceiver SoC. Unfortunately the EEMBC benchmark suites are licensed, but earlier work 
[24] describes a benchmark, called NetBench, that is similar to the EEMBC network 
benchmark suite. NetBench is used for evaluating and designing network processors. A short 
summary of the programs used in the benchmark suite: 
 

• CRC – Calculates the CRC-32 CCITT checksum. 
• TL – A table lookup routine using a radix-tree routing table. 
• DRR – Deficit-round robin scheduling 
• NAT – Network Address Translation for IP address simplification and conservation.  
• IPCHAINS – A firewall application that checks the IP source of incoming packets. 
• URL – Implements URL-based switching. 
• DH – Diffie-Hellman public key encryption. 
• MD5 – Message Digest Algorithm creates a cryptographically signature for outgoing 

packets. 
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The deficit-round robin routine and the encryption algorithms will probably not gain much 
from the added instructions. However, for some of the other functions it is possible to 
estimate or show effects of the new improvements. The radix-tree routing table is very similar 
to Huffman Trees. A radix-tree is a tree with leafs representing keys, and each key can be 
found by traversing the path from the root to the leaf. This is in fact the decode routine in the 
implemented Huffman algorithm. Other important features of a radix-tree are switching 
nodes, inserting nodes and removing nodes. All except the remove nodes are implemented in 
the Huffman algorithm. Figure 35 shows the clock cycles used during these operations in the 
Huffman decoding algorithm. All input distributions show about 20% savings with the new 
extensions.   
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Figure 35, clock cycles used to decode, switch nodes and inserting nodes during Huffman decoding. 

 
A CRC-32 calculation will be difficult since the NanoRisc has 16 bits data width. However, if 
the CRC-16 CCITT polynomial is used, it will of course gain from the “crc” instruction. This 
is shown in the Deflate encoding algorithm where the “crc” instruction halved the clock 
cycles used in the hash function and saved 256 bytes of memory. The other programs include 
some sort of fragmentation of the IP packet. Packet fragmentation is very typical for network 
processors or transceivers. When data packets are sent over a transmission medium, it is 
desirable that each data item in the packet is expressed in its natural size and not expanded to 
e.g. a 16 bits entity for convenience. This is to make the best use of the communication 
bandwidth. When packets are received or sent, they must be fragmented or assembled. It is 
not hard to think that such operations may benefit heavily from bit field operations.  
 
From these estimations, it is probable that network applications would benefit from the 
improvements added to the original NanoRisc. The non-blocking load behavior will improve 
performance for applications that load information from RAM. Bit field instructions and the 
“ldin” and “stin” instructions will improve packet fragmentation and radix-tree routing. If the 
CRC-16 CCITT polynomial is used for error control, the “crc” instruction will also be a 
useful addition. In addition, as shown in this thesis, the “crc” instruction will provide a high 
quality hash function.   
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8 Discussion 
In this chapter, some of the most interesting problems encountered in the thesis will be 
discussed. Also, a comparison is made in order to discuss the performance of the enhanced 
NanoRisc and the implemented algorithms. The last section will cover some of the future 
work that could be done.      
 

8.1 Enhancements 
All enhancements except the non-blocking load behavior has been instruction level 
enhancements. Instruction level enhancements are more intrusive to the processor core than 
HW accelerators. When instructions and modules are added to the core, it is important that 
these improvements are beneficial for a wide range of applications. In this thesis, only lossless 
compression algorithms are considered, while in a SoC the embedded microcontroller will 
handle a wide variety of tasks. This reasoning makes HW accelerators seem more suitable 
because they are easier to change/add between designs. As an example, the “crc” instruction 
is used to make hash values or checksums for error control, and it uses a fixed polynomial 
according to the CRC16-CCITT standard. If this function is implemented as a HW accelerator 
controlled by I/O ports, it will be easier to change polynomials or type of hash function 
between designs. The tradeoffs in such a HW accelerator would be speed and area. However, 
the “crc” instruction calculates a new CRC16-CCITT hash value from 8 bits in one clock 
cycle. If the accelerator where to compete with the implemented instruction in speed, it must 
have its own memory access module in addition to the hash function. This will increase the 
area considerably compared with the implemented CRC module, but it will enable the HW 
accelerator to work in parallel to the NanoRisc. 
 
If the transceiver SoC is specified to transfer large amounts of data, data compression 
algorithms and the throughput of these may become vital. However, if the transceiver is 
specified to transfer a small amount of data, data compression is less vital and throughput 
requirements may be easier to meet. Adding or changing HW accelerators are more flexible 
between designs, but when implemented they tend to be more rigid (depending on how the 
module is specified). Another disadvantage of HW accelerators is that they do not usually 
utilize the capabilities already present in the processor core. If HW accelerators shall provide 
maximum speed up, they usually must have their own memory access module, ALU, registers 
etc. This implies a considerable increase in gate count compared to the implemented 
instructions.         
 
As mentioned in section 2.1, the Phillips Trimedia uses a coprocessor (the VLD) to decode 
Huffman code words in MPEG1 and MPEG2. It is initialized with pointer to an MPEG1 or 
MPEG2 data stream. This module is thus responsible for the whole entropy decoding task. 
Such solutions could also be considered for the NanoRisc. A specialized HW accelerator 
dedicated for a specific compression algorithm should be superior in throughput compared to 
a program processed on the NanoRisc. So if speed is a major issue and if targeting a specific 
standard, such solutions must be taken into consideration. Another solution in high speed and 
high bit rate applications could be to run several NanoRisc processors in parallel. This would 
provide full flexibility, but possibly require more power and less speed compared to a 
specialized HW accelerator. 
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Another possibility to increase the performance is by altering or redesigning the original 
instruction set. This could make more room for specialized instructions for compression 
algorithms, and thereby reducing the number of “pre” instructions needed by the added 
instructions. Instructions removed or changed could still be performed by inserting macros to 
emulate the original instructions. A simple example of instructions that could be changed to 
improve the throughput is the shift and rotate instructions. In the encoding of these 
instructions there is one bit field that holds the immediate number of shifts/rotates or the 
register containing the amount of shits/rotates. Which of the two possibilities that are valid, is 
decided by a “pre” instruction. If the shift or rotate instruction is preceded by a “pre” 
instruction, the PCU will know that the field contains a register address. When making a data 
compression program, using shift or rotate instructions with a register holding the amount of 
shifts/rotates is more probable than using immediate values. This is because data compression 
algorithms normally use variable length codes. Changing the decoding of this instruction in 
the PCU in a way that a “pre” instruction indicated an immediate value, rather than a register 
address, would be easy and probably have no effect on the gate count. However, since the 
main purpose of the NanoRisc microprocessor is to handle complex control tasks in SoC 
solutions, such enhancements are not considered. Changing or altering the original instruction 
set may have a negative affect on other applications.    
    

8.2 Power 
The executing modules in the NanoRisc architecture are implemented without enable signals. 
This implies that all these modules may get new inputs and toggle accordingly every clock 
cycle, even though their result is not used. This is done to reduce area by keeping control 
logic at a minimum. The new modules added to the NanoRisc architecture are inserted in a 
similar way. The increase in power due to the new modules is in the area of 15%. This could 
be reduced by adding enable signals to the most power consuming modules. The enable signal 
would make sure that modules not in use had stable inputs and hence not toggle 
unnecessarily.    
 

8.3 Timing and Throughput 
Through this thesis, improvements regarding throughput has been measured in clock cycles 
per processed bit of the input stream, but a more real life measurement is bits per second. This 
measure is similar to clock cycles per bit, except that clock cycles are converted to time units. 
Hence, timing becomes critical to the throughput. Considering this, improving or restructuring 
the architecture of the NanoRisc in order to increase the maximum clock frequency is a viable 
alternative to improving the functionality. This reasoning makes changing the critical path by 
moving the shifter and extr modules in front of the ALU seem like a bad choice. However, 
using the NanoRisc at very high clock speeds is not likely. In a transceiver SoC power is a 
vital measure, and this prevents very high clock speeds. The most likely clock frequency for 
an implementation with the NanoRisc microprocessor will be closer to 25 MHz than 62.5 
MHz.    
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8.4 Assembly Source Code 
The task of writing complex adaptive data compression algorithms in assembly proved to be a 
time consuming task. The author had very little experience in this before writing the test 
algorithms. The enhancements were proposed based on the profiling results from the original 
source codes. In the enhanced source codes, the changes were mostly added by replacing 
blocks of instructions that emulated the proposed instructions. Further increase of throughput 
could very well be obtained from rewriting the algorithms. This is true for both the original 
source codes and the enhanced source codes, and it could shift the effect of the enhancements 
either way. However, a total rewrite of the algorithms with full awareness of the capabilities 
in the proposed enhancements should in any case result in higher throughput. If this is not 
true, the proposed instructions are unnecessary and should be dismissed.  
 
As mentioned, large or complex programs like some of the implemented data compression 
algorithms are time consuming to write in assembly. A “C” compiler would make this task 
less tedious. “C” has become the standard for writing high-level language programs for small 
microprocessors. The original NanoRisc architecture is very “C” compiler friendly with a 
large number of general registers and stack functionality. If a “C” compiler is to be made in 
the future and the instructions proposed in this thesis become part of the design, a “C” 
compiler must be able to utilize the proposed enhancements. This will not be straightforward. 
The bit field instructions may provoke unfamiliar “C” syntax, and the “str” instruction needs a 
dedicated register.              
 

8.5 Area 
The increase in area due to the enhancements is in the area of 30% at both clock speeds. This 
is based on the gate count of the processor core. Other considerations that can be taken into 
account when measuring the increase in area is the program ROM size. In Table 28, section 
6.6 it is shown that all algorithms has reduced their program size.  
 
There are mainly three different types of ROM available for implementation with the 
NanoRisc microprocessor; Diffusion ROM, Metallic ROM and One-Time Programmable 
ROM. There is also possible to synthesize the program as a logic gate array. The diffusion 
ROM is cheapest among the ROM alternatives in terms of bit density, and is the most 
probable to be chosen for implementations. The bit density varies from 2-4 gates per byte. A 
logic gate array is even cheaper in terms of area because the synthesis tool will utilize 
redundancy in the bit pattern of the program. When a logic gate array with random bit patterns 
are synthesized with the same library used in section 7.2, the bit density is in the area of 1 
gates per byte. A logic gate array is very rigid and cannot be altered in the production stage. 
The contents of a diffusion ROM however can be altered in the production stage, but it is 
rather expensive and time consuming.  
 
If a diffusion ROM with bit density of 2 gates per byte is chosen, the equivalent gate 
reduction due to reduced program size is in the area of 300 for Huffman, 200 for Rice and 40 
for Deflate. When also taken into consideration the removal of the CRC LUT in the Deflate 
encoding algorithm, the gate count is further decreased by about 600 gates for this algorithm.       
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8.6 A Comparison 
Some studies have been done in the area of lossless data compression for energy savings in 
wireless LAN networks. At MIT Laboratory for Computer Science, a report [25] has been 
published that uses lossless data compression software programs for compressing text and 
web data before transmission. The test setup used in the report is between a stationary PC and 
a handheld computer. The compression software evaluated in the report is asymmetrical 
library methods, and they are used on the whole file before transmission. A summary of the 
most important results are found in Table 41. 
 

  bzip2 compress lzo ppmd zlib 
Compression Ratio 70 53 38 72 61 
Static memory allocation [Kbyte] 8400 500 16 10000 130 
Intructions per bit removed (comp.) 116 10 7 76 74 
Intructions per bit removed (decomp.) 31 6 2 10 5 
Throughput (comp.) [Mbps] 0.91 3.70 24.22 1.57 0.82 
Throughput (decomp.) [Mbps] 2.59 11.65 109.44 1.42 41.15 

Table 41, summary of results from ”Energy Aware Lossless Data Compression” [25] 
 
Table 42 shows the results obtained by the enhanced NanoRisc at 25 MHz. The results are 
calculated by averaging the results from all input data streams. Even though measurements 
concerning lossless data compression algorithms are very dependent on the input data stream, 
comparing the two tables will give a ball park estimate on the performance. A major 
difference between the two tables is the processing power. While the results from Table 41 
are obtained by processing algorithms on a 233 MHz 32 bits StrongARM SA-110, the 
enhanced NanoRisc is running at 25 MHz using 16 bits computations. The difference in clock 
frequency and bit width is of great importance for the throughput and instructions per bit 
removed. There is also a difference in the file size. In Table 41 a whole data file is used, while 
all data streams used when testing the NanoRisc where 1000 bytes. This has impact on 
compression ratios and instructions per bit removed. Adaptive compression algorithms tend to 
use more computing and achieve less compression ratios in the beginning of the stream. This 
is because the modeling stage must adjust the incoming probability distribution. Later in the 
stream, the modeling stage has gathered more information and uses less time updating the 
memory structure holding the statistics.          
 

  Rice Huffman Deflate 
Compression Ratio [%] 55.75 57.25 21.23 
Static memory allocation [Kbyte] 1 3.5 4.5 
Intructions per bit removed (comp.) 16 54 112 
Intructions per bit removed (decomp.) 16 55 14 
Throughput (comp.) [Mbps] 2.76 0.80 1.05 
Throughput (decomp.) [Mbps] 2.76 0.78 8.92 

Table 42, results from the implemented algorithms in the enhanced NanoRisc at 25 MHz. 
 
Considering the differences explained above, it seems like the enhanced NanoRisc is a 
powerful yet small and energy efficient alternative for data compression in small network 
applications.   
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8.7 Future Work 
As mentioned in chapter 2 a paper [4] showed that adding bit field instructions to an ARM 
processor reduced the instructions executed at runtime between 5% and 28%, while the code 
size was reduced by between 2% and 21%. These results were gathered from testing the 
extensions with various benchmark suites. In this thesis, enhancements are added to the 
NanoRisc processor. Bit field instructions are added together with shift-add memory mode, 
non-blocking load behavior, and two instructions that are beneficial for streaming variable 
sized codes and CRC-16 calculations. These enhancements increased the throughput for the 
three implemented data compression algorithms by between 18% and 103%, while the code 
size was reduced by between 6% and 31%. In section 7.3.2, it is discussed how the 
improvements may benefit programs in a network benchmark suite, but the implemented 
enhancements have only shown their effect on the tested algorithms, so testing on a wide 
variety of applications should be done before deciding if they should be part of the design.      

8.7.1 Processor Core 
Since the processor core has no enable signals to its internal modules, it consumes power 
unnecessary when a program is processed. The power consumption during operation becomes 
very dependent on the gate count in the core, and this has a very negative effect on the added 
enhancements. To minimize this negative side effect, enable signals providing stable inputs 
for modules not in use should be considered.      
 

8.7.2 Testing 
The testing of the enhancements made to the NanoRisc was limited to simulations in the ISS 
and ModelSim. These tests verified the functionality, but it would also been useful to test the 
NanoRisc in hardware. An FPGA implementation was too time consuming for this thesis, but 
it should be considered for further evaluation and verification.   
 
It is important to test the effect of the proposed instructions on other applications as well. If 
other applications seem to gain little from the enhancements, careful considerations should be 
made before deciding whether the enhancements should be part of the design. Further testing 
with a wide variety of programs should be done. It is also important to measure the effect of 
all proposed instructions individually. As mentioned, every added instruction may block 
future extensions.   
 
In general, all programs that use information stored in memory will benefit from the non-
blocking load behavior, and if they use memory, bit field operations may help them reduce 
memory access or memory allocation requirements. As shown in section 7.3.2, some 
programs in the NetBench benchmark suite will probably benefit from the new instructions, 
but a more comprehensive study should be done in order to establish their effect on common 
applications for the NanoRisc microprocessor.    
 
Some may also argue that the proposed instructions are inconsistent. The only arithmetic bit 
field instructions are “addbfhi” and “addbfli”. Further testing could reveal a need for e.g. bit 
field subtraction instructions. A major drawback in the “addbfhi” and “addbfli” instructions is 
that the immediate value is limited to 12 bits. This is an effect of the limited space in the 
original instruction set. Further testing should reveal if this limits the effect of the instructions.       
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8.7.3 Tools 
As mentioned in section 8.4 a “C” compiler should be made in order to ease the development 
of complex algorithms or control programs. In the beginning of this thesis when different data 
compression algorithms were evaluated for implementation, the complexity of the 
implementations called for an evaluation of making a “C” compiler. Writing a “C” compiler 
from scratch would not be feasible within the time limitation, but different toolsets could 
reduce the development time. One of the most widespread open source compiler framework is 
GCC [26]. However, even with the help from this toolset a report [27] estimates that 4 man-
months are needed in order to port GCC to the OpenRISC architecture [28]. Thus, even with 
the help of toolsets it would not have been feasible within the time limitations.   
 
The added profile enhancements to the existing tools measures clock cycle use within profile 
areas in the source code. As seen in section 6.6 and 7.2, there are more effects from adding 
functionality and instructions than reduced clock cycles. The bit field instructions helped 
reducing memory access, while all enhancements resulted in increased power consumption by 
the core. Power is an important measure in many SoC transceiver solutions. The profile tool 
added in this thesis could be further enhanced so it could estimate power consumption. From 
synthesis and experience power figures could be linked to instructions, memory access etc. 
This would help software developers to make power efficient programs.        
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Conclusion 
The goal of this thesis was to investigate the current capabilities of the NanoRisc 
microprocessor to process lossless compression algorithms, and find enhancements that 
improved its performance in this task. In order to measure performance, existing software 
tools are enhanced for profiling and simulating the improvements. Three fundamentally 
different data compression algorithms are implemented in the NanoRisc assembly language 
and simulated with the enhanced tools. On the background of these profiling results, some 
enhancements to the NanoRisc are proposed: 
 

• Bit field instructions. 
• New load and store instructions for table data structures. 
• An instruction improving read and writes of variable length codewords from memory. 
• An instruction improving CRC-16 checksum calculation. 
• Non-blocking load behavior. 

 
The new enhancements have improved throughput of the three implemented algorithms by 
between 18% and 103%, and the code size has decreased between 6% and 31%. Bit field 
instruction has also reduced RAM access by up to 53%. Compression ratios for the 
implemented algorithms on the tested input streams varied from 0.2% to 79.8%. Synthesis 
reports showed an increase in gate count of 30%, but the whole NanoRisc core is still below 
7k gates. Power consumption per MIPS increased by 7%, however reduced clock cycle count 
and memory access due to bit field operations decreased the net power consumption for all 
tested algorithms. When calculating the energy used to remove bits in the compression 
algorithms with the transmit and receive power of the CC2400 2.4 GHz low power RF 
transceiver, the best case resulted in 76 % energy savings while the worst case resulted in a 
8% energy increase.  
 
This thesis has shown that major improvements of throughput for lossless compression 
algorithms are possible through enhancements of the NanoRisc processor at a fairly low gate 
cost. It is also shown that data compression with the enhanced NanoRisc may increase battery 
lifetime in a CC2400 low power transceiver 4 times. However, poor compression ratios may 
increase power consumption. This makes choosing the right compression algorithm crucial, 
but even though 108090 clock cycles and 28152 memory accesses are used to remove 2 out of 
1000 bytes, the increased power consumption is no more than 8%. 
 
The next step would be to do a more comprehensive study in order to establish the proposed 
instructions effect on common applications for the NanoRisc microprocessor.     
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Appendix 
 
 
 

A. New Instructions 
B. Symbol Distributions 
C. Detailed Instrucition Level Profiling 
D. Detailed Algorithmic Level Profiling 
E. ZIP-File 
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A. New Instructions 
 
addbfhi – Add Bit Field High Immidiate 
 

 

Description The bit field in Rs given by position 15 and length Len (K1) is added 
with an immediate value Imm (K2). The immediate value is limited to 
12 bit and is given by the pre instruction. If the instruction is not 
preceded by a pre instruction it assumes a default immediate value. 
The addition is unsigned. 
  

Syntax addbf   1, Rd[K1:]   
pre: 
addbf K2, Rd[K1:] 
 

Operation Rs = 1 + Rd[15:K1] 
pre: 
Rs = K2 + Rd[15:K1] 
 

Coding 1 0 0 0 Len       Rd       1 1 1 1 
  

Program counter PC = PC + 1 
  

Status register HALT IRQ IE V N Z C 
- - - - - - - 

  
Pre Type 8 

 
Default Value Imm = 1 

 
Cycles 1 
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addbfli – Add Bit Field Low Immidiate 
 
Description The bit field in Rs given by position Len (K1)-1 and length Len (K1) 

is added with an immediate value Imm (K2). The immediate value is 
limited to 12 bit and is given by the pre instruction. If the instruction 
is not preceded by a pre instruction it assumes a default immediate 
value. The addition is unsigned. 
  

Syntax addbf   1, Rd[:K1]   
pre: 
addbf K2, Rd[:K1] 
 

Operation Rs = 1 + Rd[K1-1:K1] 
pre: 
Rs = K2 + Rd[K1-1:K1] 
 

Coding 1 0 0 0 Len       Rd       1 1 0 1 
  

Program counter PC = PC + 1 
 

Status register HALT IRQ IE V N Z C 
- - - - - - - 

  
Pre Type 8 

 
Default Value Imm = 1 

 
Cycles 1 
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clz – Count Leading Zeroes 
 
Description Rd is given the value of the number of leading zeroes in Rs. 

 
Syntax clz  Rs, Rd   

 
Operation Rd = 16 – |log2(Rs)| 

 
Coding 1 0 0 0 Rs       Rd       1 0 1 1 

  
Program counter PC = PC + 1 

 
Status register HALT IRQ IE V N Z C 

- - - 0 * * 0 
 The negatve flag (N) is set to the msb of register Rs (answer is zero), 
and the zero flag is set if the result of the instruction is 16 (all zeroes). 
 

Pre None 
 

Default Value None 
 

Cycles 1 
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crc – CRC16 
 
Description Updates the value in Rd with a CRC calculation using the LSB of Rs. 

Will always use the CRC16-CCITT standard polynomial. 
 

Syntax crc Rs, Rd 
 

Operation Rd = CRC(Rd[7:8], Rd) 
 

Coding 1 0 0 0 Rs       Rd       1 0 0 1 
  

Program counter PC = PC +1 
 

Status register HALT IRQ IE V N Z C 
- - - - - - - 

  
Pre None 

 
Default Value None 

 
Cycles 1 
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insbfi – Insert Bit Field Immidiate 
 
Description The bit field in Rs given by position PosRs (K1) and length Len (K3) 

is inserted into Rd from position PosRd (K2). Positions PosRs and 
PosRd and length Len are given the pre instruction.  If the instruction 
is not preceded by a pre instruction it assumes default values. 
 

Syntax insbf    Rs[7:8], Rd[7] 
pre: 
insbf Rs[K1:K3], Rd[K2] 
 

Operation Rd[7:8] = {Rd[15:8], Rs[7:8]} 
pre: 
Rd[K2:K3] = {Rd[15:15-K2], Rs[K1: K3], Rd[K2- K3:K2- K3+1]} 
 

Coding 1 0 0 0 Rd       Rs       0 0 0 1 
  

Program counter PC = PC + 1 
 

Status register HALT IRQ IE V N Z C 
- - - - - - - 

  
Pre Type 6 

 
Default Value Len = 8, PosRs = 7, PosRd = 7 

 
Cycles 1 
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ldin – Load index 
 
Description The contents in the memory location specified by the value in Rs 

shifted left once and added with an immediate value (offset), are 
loaded into register Rd. This memory instruction has no size 
indicator, and will always load words. The immediate offset Imm is 
given by the pre instruction, and is limited to 12 bits. If the instruction 
is not preceded with a pre instruction it assumes a default immediate 
value. 
 

Syntax ldin    [Rs*+0], Rd 
pre: 
ldin    [Rs*+K1], Rd 
 

Operation Rd = M[Rs<<1+0] 
pre: 
Rd = M[Rs<<1+K1] 
 

Coding 1 0 0 1 Ra       Rd       0 0 0 1 
  

Program counter PC = PC + 1 
 

Status register HALT IRQ IE V N Z C 
- - - - - - - 

  
Pre Type 8 

 
Default Value Imm = 0 

 
Cycles 1 
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movbf – Move Bit Field 
 
Description The bit field in Rs given by position PosRd (K1) and the length in 

register Rlen (Rl) is moved to Rd from position Rlen-1. Positions 
PosRd and the length Rlen register are given by the pre instruction.   
 

Syntax movbf    Rs[K1:Rl], Rd 
 

Operation Rd[K2:K3] = {0[15:15-Rl], Rs[K1: Rl]} 
 

Coding 1 0 0 0 Rd       Rs       0 1 1 1 
  

Program counter PC = PC + 1 
 

Status register HALT IRQ IE V N Z C 
- - - - - - - 

  
Pre Type 7 

 
Default Value None 

 
Cycles 1 
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movbfi – Move Bit Field Immidiate 
 
Description The bit field in Rs given by position PosRs (K1) and length Len (K3)is 

moved to Rd from position PosRd (K2). Positions PosRs and PosRd 
and length Len are given by the pre instruction.  If the instruction is 
not preceded by a pre instruction it assumes default values. 
 

Syntax movbf    Rs[7:8], Rd[7] 
pre: 
movbf    Rs[K1:K3], Rd[K2] 
 

Operation Rd[7:8] = {0[15:8], Rs[7:8]} 
pre: 
Rd[K2:K3] = {0[15:15-K2], Rs[K1: K3], 0[K2- K3:K2- K3+1]} 
 

Coding 1 0 0 0 Rd       Rs       0 1 0 1 
  

Program counter PC = PC + 1 
 

Status register HALT IRQ IE V N Z C 
- - - - - - - 

  
Pre Type 6 

 
Default Value PosRs = 7, PosRd = 7, Len  

 
Cycles 1 
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stin – Store Index 
 
Description The contents in Rd are stored to the memory location specified by the 

value in Rs shifted left once and added with an immediate value Imm 
(offset). This memory instruction has no size indicator, and will 
always store words. The immediate offset is given by the pre 
instruction, and is limited to 12 bits. If the instruction is not preceded 
with a pre instruction it assumes a default immediate value. 
 

Syntax stin    Rd, [Rs*+0] 
pre: 
stin    Rd, [Rs*+K1] 
 

Operation M[Rs<<1+0] = Rd 
pre: 
M[Rs<<1+K1] = Rd 
 

Coding 1 0 0 1 Ra       Rd       0 0 1 1 
  

Program counter PC = PC + 1 
 

Status register HALT IRQ IE V N Z C 
- - - - - - - 

  
Pre Type 8 

 
Default Value Imm = 0 

 
Cycles 1 
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str – Stream 
 
Description Shifts Rd and the dedicated register Rk equal amounts of times to the 

left. The Amount of shifts is the value in Rlen. The bits falling off Rk 
is shifted into Rd. 
 

Syntax Str Rlen, Rd 
 

Operation Rd =  {Rd[15-Rlen:15-Rlen+1], Rk{15:15-Rlen+1}} 
 

Coding 1 0 0 1 Rlen     Rd       1 1 1 1 
  

Program counter PC = PC +1 
  

Status register HALT IRQ IE V N Z C 
- - - - - - - 

  
Pre None 

  
Default Value None 

 
Cycles 1 

 
 
 



Processing Core for Compressing Wireless Data 

 
 
 

85

New Prefixes 
 
Type 6 1 1 0 1 Len     Pos Rs     Pos Rd     
Type 7 1 1 0 1 Rlen     Pos Rs     x x x x 
Type 8 1 1 0 Imm                       
 
Unused Space 
 

1 0 0 0 x x x x x x x x 0 0 1 1 
1 0 0 1 x x x x x x x x 0 1 0 1 
1 0 0 1 x x x x x x x x 0 1 1 1 
1 0 0 1 x x x x x x x x 1 0 0 1 
1 0 0 1 x x x x x x x x 1 0 1 1 
1 0 0 1 x x x x x x x x 1 1 0 1 
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B. Symbol Distributions 
 
Exponential 

 
 
 
 
 
 
 
 
 
 
 
Gamma 
 
 

 
 

 
 

Value Symbols 
0 616 
1 250 
2 77 
3 44 
4 6 
5 5 
6 1 
7 1 

Value Symbols 
1 1 
2 30 
3 90 
4 121 
5 171 
6 141 
7 120 
8 107 
9 72 

10 55 
11 40 
12 21 
13 8 
14 15 
15 4 
16 1 
17 2 
18 0 
19 1 
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Possion Distributed Stream
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Value Symbols 
2 1 
3 8 
4 20 
5 39 
6 68 
7 93 
8 121 
9 137 

10 119 
11 94 
12 88 
13 80 
14 47 
15 32 
16 26 
17 11 
18 6 
19 5 
20 2 
21 3 
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Text Input Stream
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Value Symbols 
0 1 

32 165 
44 8 
45 1 
46 7 
55 2 
65 2 
72 1 
76 1 
82 1 
83 1 
84 3 
90 1 
97 61 
98 12 
99 33 
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115 54 
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C. Instruction Level Profiling 
 

Adaptive Huffman Encode (Exponential) 
Label Cycles Calls Cycles/Call Cycles/Tot.Cycles 
bfo1_insert_node1 24 8 3.0 0.0001 
bfo1_ext_count2 3384 1692 2.0 0.0171 
sum type 1 3408 1700 2.0 0.0172 
bfo2_insert_node2 24 8 3.0 0.0001 
bfo2_ext_count1 5076 1692 3.0 0.0256 
bfo2_ins_count2 4815 1605 3.0 0.0243 
sum type 2 9915 3305 3.0 0.0501 
bfo3_ins_count1 8025 1605 5.0 0.0405 
sum type 3 8025 1605 5.0 0.0405 
bfo5_switch_nodes2 48 16 3.0 0.0002 
bfo5_switch_nodes4 48 16 3.0 0.0002 
bfo5_switch_nodes6 36 12 3.0 0.0002 
bfo5_switch_nodes8 36 12 3.0 0.0002 
bfo5_ins_count3 4815 1605 3.0 0.0243 
sum type 5 4983 1661 3.0 0.0252 
bfo9_switch_nodes1 64 16 4.0 0.0003 
bfo9_switch_nodes3 64 16 4.0 0.0003 
bfo9_switch_nodes5 48 12 4.0 0.0002 
bfo9_switch_nodes7 48 12 4.0 0.0002 
bfo9_encode1 6444 1611 4.0 0.0325 
bfo9_sort_tree1 6420 1605 4.0 0.0324 
bfo9_increment_tree1 6420 1605 4.0 0.0324 
sum type 9 19508 4877 4.0 0.0985 
Sum Bit Field Operations 45839 13148 3.5 0.2315 
sa2_insert_node1 24 8 3.0 0.0001 
sa2_insert_node2 32 8 4.0 0.0002 
sa2_switch_nodes1 63 21 3.0 0.0003 
sa2_switch_nodes2 75 25 3.0 0.0004 
sum type 2 194 62 3.1 0.0010 
sa3_main1 4000 1000 4.0 0.0202 
sum type 3 4000 1000 4.0 0.0202 
Sum ShiftAdd Operations 4194 1062 3.9 0.0212 
Streams 7504 1008 7.4 0.0379 
     
     
Total Number of Cycles 198035    
     
Memory Access [ops.] 47305    

Store Operations 17955    
Load Operations 29350    
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Adaptive Huffman Decode (Exponential) 
Label Cycles Calls Cycles/Call Cycles/Tot.Cycles 
bfo1_insert_node1 24 8 3.0 0.0001 
bfo1_ext_count2 3476 1738 2.0 0.0175 
Sum type 1 3500 1746 2.0 0.0176 
bfo2_insert_node2 24 8 3.0 0.0001 
bfo2_ext_count1 5214 1738 3.0 0.0262 
bfo2_ins_count2 4932 1644 3.0 0.0248 
Sum Type 2 10170 3390 3.0 0.0511 
bfo3_ins_count1 8220 1644 5.0 0.0413 
Sum Type 3 8220 1644 5.0 0.0413 
bfo5_switch_nodes2 54 18 3.0 0.0003 
bfo5_switch_nodes4 54 18 3.0 0.0003 
bfo5_switch_nodes6 42 14 3.0 0.0002 
bfo5_switch_nodes8 42 14 3.0 0.0002 
bfo5_ins_count3 4932 1644 3.0 0.0248 
Sum type 5 5124 1708 3.0 0.0257 
bfo9_switch_nodes1 72 18 4.0 0.0004 
bfo9_switch_nodes3 72 18 4.0 0.0004 
bfo9_switch_nodes5 56 14 4.0 0.0003 
bfo9_switch_nodes7 56 14 4.0 0.0003 
bfo9_sort_tree1 6576 1644 4.0 0.0330 
bfo9_increment_tree1 6576 1644 4.0 0.0330 
Sum type 9 13408 3352 4.0 0.0673 
Sum Bit Field Operations 40422 11840 3.4 0.2029 
sa2_insert_node1 24 8 3.0 0.0001 
sa2_switch_nodes1 75 25 3.0 0.0004 
sa2_insert_node2 32 8 4.0 0.0002 
sa2_switch_nodes2 87 29 3.0 0.0004 
Sum type 2 218 70 3.1 0.0011 
Sum ShiftAdd Operations 218 70 3.1 0.0011 
Streams 12265 1008 12.2 0.0616 
     
     
     
Total Number of Cycles 199180    
     
Memory Access [ops.] 46966    

Store Operations 18205    
Load Operations 28761    
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Adaptive Huffman Encode (Gamma) 
Label Cycles Calls Cycles/Call Cycles/Tot.Cycles 
bfo1_insert_node1 54 18 3.0 0.0001 
bfo1_ext_count2 10842 5421 2.0 0.0262 
sum type 1 10896 5439 2.0 0.0263 
bfo2_insert_node2 54 18 3.0 0.0001 
bfo2_ext_count1 16263 5421 3.0 0.0393 
bfo2_ins_count2 10335 3445 3.0 0.0250 
sum type 2 26652 8884 3.0 0.0644 
bfo3_ins_count1 17225 3445 5.0 0.0416 
sum type 3 17225 3445 5.0 0.0416 
bfo5_switch_nodes2 123 41 3.0 0.0003 
bfo5_switch_nodes4 123 41 3.0 0.0003 
bfo5_switch_nodes6 222 74 3.0 0.0005 
bfo5_switch_nodes8 222 74 3.0 0.0005 
bfo5_ins_count3 10335 3445 3.0 0.0250 
sum type 5 11025 3675 3.0 0.0266 
bfo9_switch_nodes1 164 41 4.0 0.0004 
bfo9_switch_nodes3 164 41 4.0 0.0004 
bfo9_switch_nodes5 296 74 4.0 0.0007 
bfo9_switch_nodes7 296 74 4.0 0.0007 
bfo9_encode1 13880 3470 4.0 0.0335 
bfo9_sort_tree1 13780 3445 4.0 0.0333 
bfo9_increment_tree1 13780 3445 4.0 0.0333 
sum type 9 42360 10590 4.0 0.1023 
Sum Bit Field Operations 108158 32033 3.4 0.2612 
sa2_insert_node1 54 18 3.0 0.0001 
sa2_insert_node2 72 18 4.0 0.0002 
sa2_switch_nodes1 465 155 3.0 0.0011 
sa2_switch_nodes2 366 122 3.0 0.0009 
sum type 2 957 313 3.1 0.0023 
sa3_main1 4000 1000 4.0 0.0097 
sum type 3 4000 1000 4.0 0.0097 
Sum ShiftAdd Operations 4957 1313 3.8 0.0120 
Streams 9258 1037 8.9 0.0224 
     
     
Total Number of Cycles 414032    
     
Memory Access [ops.] 96823    

Store Operations 34687    
Load Operations 62136    
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Adaptive Huffman Decode (Gamma) 

Label Cycles Calls Cycles/Call Cycles/Tot.Cycles 
bfo1_insert_node1 54 18 3.0 0.0001 
bfo1_ext_count2 10850 5425 2.0 0.0259 
Sum type 1 10904 5443 2.0 0.0260 
bfo2_insert_node2 54 18 3.0 0.0001 
bfo2_ext_count1 16275 5425 3.0 0.0389 
bfo2_ins_count2 10335 3445 3.0 0.0247 
Sum Type 2 26664 8888 3.0 0.0637 
bfo3_ins_count1 17225 3445 5.0 0.0411 
Sum Type 3 17225 3445 5.0 0.0411 
bfo5_switch_nodes2 164 41 4.0 0.0004 
bfo5_switch_nodes4 123 41 3.0 0.0003 
bfo5_switch_nodes6 222 74 3.0 0.0005 
bfo5_switch_nodes8 222 74 3.0 0.0005 
bfo5_ins_count3 10335 3445 3.0 0.0247 
Sum type 5 11066 3675 3.0 0.0264 
bfo9_switch_nodes1 164 41 4.0 0.0004 
bfo9_switch_nodes3 164 41 4.0 0.0004 
bfo9_switch_nodes5 296 74 4.0 0.0007 
bfo9_switch_nodes7 296 74 4.0 0.0007 
bfo9_sort_tree1 13780 3445 4.0 0.0329 
bfo9_increment_tree1 13780 3445 4.0 0.0329 
Sum type 9 28480 7120 4.0 0.0680 
Sum Bit Field Operations 94339 28571 3.3 0.2253 
sa2_insert_node1 54 18 3.0 0.0001 
sa2_switch_nodes1 465 155 3.0 0.0011 
sa2_insert_node2 72 18 4.0 0.0002 
sa2_switch_nodes2 366 122 3.0 0.0009 
Sum type 2 957 313 3.1 0.0023 
Sum ShiftAdd Operations 957 313 3.1 0.0023 
Streams 13673 1018 13.4 0.0327 
     
     
     
Total Number of Cycles 418697    
     
Memory Access [ops.] 97328    

Store Operations 34484    
Load Operations 62844    
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Adaptive Huffman Encode (Poisson) 
Label Cycles Calls Cycles/Call Cycles/Tot.Cycles 
bfo1_insert_node1 60 20 3.0 0.0001 
bfo1_ext_count2 12070 6035 2.0 0.0266 
sum type 1 12130 6055 2.0 0.0267 
bfo2_insert_node2 60 20 3.0 0.0001 
bfo2_ext_count1 18105 6035 3.0 0.0399 
bfo2_ins_count2 11181 3727 3.0 0.0246 
sum type 2 29346 9782 3.0 0.0647 
bfo3_ins_count1 18635 3727 5.0 0.0411 
sum type 3 18635 3727 5.0 0.0411 
bfo5_switch_nodes2 213 71 3.0 0.0005 
bfo5_switch_nodes4 213 71 3.0 0.0005 
bfo5_switch_nodes6 324 108 3.0 0.0007 
bfo5_switch_nodes8 324 108 3.0 0.0007 
bfo5_ins_count3 11181 3727 3.0 0.0246 
sum type 5 12255 4085 3.0 0.0270 
bfo9_switch_nodes1 284 71 4.0 0.0006 
bfo9_switch_nodes3 284 71 4.0 0.0006 
bfo9_switch_nodes5 432 108 4.0 0.0010 
bfo9_switch_nodes7 432 108 4.0 0.0010 
bfo9_encode1 15020 3755 4.0 0.0331 
bfo9_sort_tree1 14908 3727 4.0 0.0329 
bfo9_increment_tree1 14908 3727 4.0 0.0329 
sum type 9 46268 11567 4.0 0.1020 
Sum Bit Field Operations 118634 35216 3.4 0.2615 
sa2_insert_node1 60 20 3.0 0.0001 
sa2_insert_node2 80 20 4.0 0.0002 
sa2_switch_nodes1 672 224 3.0 0.0015 
sa2_switch_nodes2 561 187 3.0 0.0012 
sum type 2 1373 451 3.0 0.0030 
sa3_main1 4000 1000 4.0 0.0088 
sum type 3 4000 1000 4.0 0.0088 
Sum ShiftAdd Operations 0 0 3.8 0.0207 
Streams 9536 1020 9.3 0.0210 
     
     
Total Number of Cycles 453720    
     
Memory Access [ops.] 106383    

Store Operations 38123    
Load Operations 68260    
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Adaptive Huffman Decode (Poisson) 
Label Cycles Calls Cycles/Call Cycles/Tot.Cycles 
bfo1_insert_node1 60 20 3.0 0.0001 
bfo1_ext_count2 12062 6031 2.0 0.0263 
Sum type 1 12122 6051 2.0 0.0264 
bfo2_insert_node2 60 20 3.0 0.0001 
bfo2_ext_count1 18093 6031 3.0 0.0394 
bfo2_ins_count2 11172 3724 3.0 0.0243 
Sum Type 2 29325 9775 3.0 0.0638 
bfo3_ins_count1 18620 3724 5.0 0.0405 
Sum Type 3 18620 3724 5.0 0.0405 
bfo5_switch_nodes2 213 71 3.0 0.0005 
bfo5_switch_nodes4 213 71 3.0 0.0005 
bfo5_switch_nodes6 324 108 3.0 0.0007 
bfo5_switch_nodes8 324 108 3.0 0.0007 
bfo5_ins_count3 11172 3724 3.0 0.0243 
Sum type 5 12246 4082 3.0 0.0267 
bfo9_switch_nodes1 284 71 4.0 0.0006 
bfo9_switch_nodes3 284 71 4.0 0.0006 
bfo9_switch_nodes5 432 108 4.0 0.0009 
bfo9_switch_nodes7 432 108 4.0 0.0009 
bfo9_sort_tree1 14896 3724 4.0 0.0324 
bfo9_increment_tree1 14896 3724 4.0 0.0324 
Sum type 9 31224 7806 4.0 0.0680 
Sum Bit Field Operations 103537 31438 3.3 0.2254 
sa2_insert_node1 60 20 3.0 0.0001 
sa2_switch_nodes1 675 225 3.0 0.0015 
sa2_insert_node2 80 20 4.0 0.0002 
sa2_switch_nodes2 564 188 3.0 0.0012 
Sum type 2 1379 453 3.0 0.0030 
Sum ShiftAdd Operations 1379 453 3.0 0.0030 
Streams 13904 1020 13.6 0.0303 
     
     
     
Total Number of Cycles 459299    
     
Memory Access [ops.] 107116    

Store Operations 37888    
Load Operations 69228    
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Adaptive Huffman Encode (Text) 
Label Cycles Calls Cycles/Call Cycles/Tot.Cycles 
bfo1_insert_node1 111 37 3.0 0.0002 
bfo1_ext_count2 14510 7255 2.0 0.0267 
sum type 1 14621 7292 2.0 0.0269 
bfo2_insert_node2 111 37 3.0 0.0002 
bfo2_ext_count1 21765 7255 3.0 0.0401 
bfo2_ins_count2 12801 4267 3.0 0.0236 
sum type 2 34677 11559 3.0 0.0639 
bfo3_ins_count1 21335 4267 5.0 0.0393 
sum type 3 21335 4267 5.0 0.0393 
bfo5_switch_nodes2 465 155 3.0 0.0009 
bfo5_switch_nodes4 465 155 3.0 0.0009 
bfo5_switch_nodes6 648 216 3.0 0.0012 
bfo5_switch_nodes8 648 216 3.0 0.0012 
bfo5_ins_count3 12801 4267 3.0 0.0236 
sum type 5 15027 5009 3.0 0.0277 
bfo9_switch_nodes1 620 155 4.0 0.0011 
bfo9_switch_nodes3 620 155 4.0 0.0011 
bfo9_switch_nodes5 864 216 4.0 0.0016 
bfo9_switch_nodes7 864 216 4.0 0.0016 
bfo9_encode1 17160 4290 4.0 0.0316 
bfo9_sort_tree1 17068 4267 4.0 0.0315 
bfo9_increment_tree1 17068 4267 4.0 0.0315 
sum type 9 54264 13566 4.0 0.1000 
Sum Bit Field Operations 139924 41693 3.4 0.2579 
sa2_insert_node1 111 37 3.0 0.0002 
sa2_insert_node2 148 37 4.0 0.0003 
sa2_switch_nodes1 1041 347 3.0 0.0019 
sa2_switch_nodes2 858 286 3.0 0.0016 
sum type 2 2158 707 3.1 0.0040 
sa3_main1 4000 1000 4.0 0.0074 
sum type 3 4000 1000 4.0 0.0074 
Sum ShiftAdd Operations 6158 1707 3.6 0.0114 
Streams 10226 1037 9.9 0.0188 
     
     
Total Number of Cycles 542537    
     
Memory Access [ops.] 127339    

Store Operations 45099    
Load Operations 82240    
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Adaptive Huffman Decode (Text) 
Label Cycles Calls Cycles/Call Cycles/Tot.Cycles 
bfo1_insert_node1 111 37 3.0 0.0002 
bfo1_ext_count2 14512 7256 2.0 0.0264 
Sum type 1 14623 7293 2.0 0.0266 
bfo2_insert_node2 111 37 3.0 0.0002 
bfo2_ext_count1 21768 7256 3.0 0.0395 
bfo2_ins_count2 12801 4267 3.0 0.0233 
Sum Type 2 34680 11560 3.0 0.0630 
bfo3_ins_count1 21335 4267 5.0 0.0388 
Sum Type 3 21335 4267 5.0 0.0388 
bfo5_switch_nodes2 465 155 3.0 0.0008 
bfo5_switch_nodes4 465 155 3.0 0.0008 
bfo5_switch_nodes6 648 216 3.0 0.0012 
bfo5_switch_nodes8 648 216 3.0 0.0012 
bfo5_ins_count3 12801 4267 3.0 0.0233 
Sum type 5 15027 5009 3.0 0.0273 
bfo9_switch_nodes1 620 155 4.0 0.0011 
bfo9_switch_nodes3 620 155 4.0 0.0011 
bfo9_switch_nodes5 864 216 4.0 0.0016 
bfo9_switch_nodes7 864 216 4.0 0.0016 
bfo9_sort_tree1 17068 4267 4.0 0.0310 
bfo9_increment_tree1 17068 4267 4.0 0.0310 
Sum type 9 37104 9276 4.0 0.0674 
Sum Bit Field Operations 122769 37405 3.3 0.2230 
sa2_insert_node1 111 37 3.0 0.0002 
sa2_switch_nodes1 1041 347 3.0 0.0019 
sa2_insert_node2 148 37 4.0 0.0003 
sa2_switch_nodes2 858 286 3.0 0.0016 
Sum type 2 2158 707 3.1 0.0039 
Sum ShiftAdd Operations 2158 707 3.1 0.0039 
Streams 14553 1037 14.0 0.0264 
     
     
     
Total Number of Cycles 550573    
     
Memory Access [ops.] 128674    

Store Operations 44851    
Load Operations 83823    
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Deflate Encode (Exponential) 
Label Cycles Calls Cycles/Calls Cycles/Tot.Cycles 
bfo1_make_code2 0 0 #DIV/0! 0 
bfo1_make_code3 236 118 2 0.0005 
bfo1_make_code4 90 45 2 0.0002 
Sum Type 1 326 163 2 0.0006 
Sum Bit Field Operations 326 163 2 0.0006 
sa3_encode1 645 215 3 0.0013 
sa3_add_match1 3000 1000 3 0.0058 
Sum type 3 3645 1215 3 0.0071 
Sum ShiftAdd Operations 3645 1215 3 0.0071 
Streams 4800 380 12.6 0.0093 
CRC 31000 1000 31.0 0.0602 
     
Total Number of Cycles 515066    
     
Memory Access [ops.] 81537    

Store Operations 11751    
Load Operations 69786    

 
 

Deflate Decode (Exponential) 
Label Cycles Calls Cycles/Calls Cycles/Tot.Cycles 
bfo4_dec_stream3 156 52 3 0.0083 
Sum Type 4 156 52 3 0.0083 
bfo10_dec_stream4 236 118 2 0.0126 
bfo10_dec_stream5 90 45 2 0.0048 
bfo10_dec_stream6 0 0 #DIV/0! 0.0000 
Sum Type 10 326 163 2 0.0173 
bfo12_dec_stream1 864 216 4 0.0460 
Sum Type 12 864 216 4 0.0460 
Sum Bit Field Operations 1346 431 3.1 0.0716 
Streams 6116 378 16.2 0.3253 
     
     
Total Number of Cycles 18802    
     
Memory Access [ops.] 3315    

Store Operations 1594    
Load Operations 1721    
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Deflate Encode (Gamma) 

Label Cycles Calls Cycles/Calls Cycles/Tot.Cycles 
bfo1_make_code2 0 0 #DIV/0! 0 
bfo1_make_code3 360 180 2 0.0026 
bfo1_make_code4 0 0 #DIV/0! 0 
Sum Type 1 360 180 2 0.0026 
Sum Bit Field Operations 360 180 2 0.0026 
sa3_encode1 1824 608 3 0.0133 
sa3_add_match1 3000 1000 3 0.0219 
Sum type 3 4824 1608 3 0.0351 
Sum ShiftAdd Operations 4824 1608 3 0.0351 
Streams 11040 790 14.0 0.0804 
CRC 31000 1000 31.0 0.2258 
     
Total Number of Cycles 137286    
     
Memory Access [ops.] 30322    

Store Operations 9564    
Load Operations 20758    

 
Deflate Decode (Gamma) 

Label Cycles Calls Cycles/Calls Cycles/Tot.Cycles 
bfo4_dec_stream3 1287 429 3 0.0403 
Sum Type 4 1287 429 3 0.0403 
bfo10_dec_stream4 360 180 2 0.0113 
bfo10_dec_stream5 0 0 #DIV/0! 0.0000 
bfo10_dec_stream6 0 0 #DIV/0! 0.0000 
Sum Type 10 360 180 2 0.0113 
bfo12_dec_stream1 2436 609 4 0.0763 
Sum Type 12 2436 609 4 0.0763 
Sum Bit Field Operations 4083 1218 3.4 0.1278 
Streams 13607 788 17.3 0.4259 
     
     
Total Number of Cycles 31946    
     
Memory Access [ops.] 4816    

Store Operations 2397    
Load Operations 2419    
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Deflate Encode (Poisson) 

Label Cycles Calls Cycles/Calls Cycles/Tot.Cycles 
bfo1_make_code2 0 0 #DIV/0! 0 
bfo1_make_code3 292 146 2 0.0021 
bfo1_make_code4 0 0 #DIV/0! 0 
Sum Type 1 292 146 2 0.0021 
Sum Bit Field Operations 292 146 2 0.0021 
sa3_encode1 2058 686 3 0.0149 
sa3_add_match1 3000 1000 3 0.0217 
Sum type 3 5058 1686 3 0.0366 
Sum ShiftAdd Operations 5058 1686 3 0.0366 
Streams 12004 834 14.4 0.0869 
CRC 31000 1000 31.0 0.2245 
     
Total Number of Cycles 138101    
     
Memory Access [ops.] 30941    

Store Operations 9898    
Load Operations 21043    

 
Deflate Decode (Poisson) 

Label Cycles Calls Cycles/Calls Cycles/Tot.Cycles 
bfo4_dec_stream3 1620 540 3 0.0483 
Sum Type 4 1620 540 3 0.0483 
bfo10_dec_stream4 292 146 2 0.0087 
bfo10_dec_stream5 0 0 #DIV/0! 0.0000 
bfo10_dec_stream6 0 0 #DIV/0! 0.0000 
Sum Type 10 292 146 2 0.0087 
bfo12_dec_stream1 2748 687 4 0.0820 
Sum Type 12 2748 687 4 0.0820 
Sum Bit Field Operations 4660 1373 3.4 0.1390 
Streams 14630 832 17.6 0.4365 
     
     
Total Number of Cycles 33516    
     
Memory Access [ops.] 4997    

Store Operations 2519    
Load Operations 2478    
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Deflate Encode (Text) 
Label Cycles Calls Cycles/Calls Cycles/Tot.Cycles 
bfo1_make_code2 0 0 #DIV/0! 0 
bfo1_make_code3 194 97 2 0.0014 
bfo1_make_code4 30 15 2 0.000213584 
Sum Type 1 224 112 2 0.0016 
Sum Bit Field Operations 224 112 2 0.0016 
sa3_encode1 1866 622 3 0.0133 
sa3_add_match1 3000 1000 3 0.0214 
Sum type 3 4866 1622 3 0.0346 
Sum ShiftAdd Operations 4866 1622 3 0.0346 
Streams 10716 736 14.6 0.0763 
CRC 31000 1000 31.0 0.2207 
     
Total Number of Cycles 140460    
     
Memory Access [ops.] 31169    

Store Operations 21484    
Load Operations 9685    

 
Deflate Decode (Text) 

Label Cycles Calls Cycles/Calls Cycles/Tot.Cycles 
bfo4_dec_stream3 1530 510 3 0.0501 
Sum Type 4 1530 510 3 0.0501 
bfo10_dec_stream4 194 97 2 0.0064 
bfo10_dec_stream5 30 15 2 0.0010 
bfo10_dec_stream6 0 0 #DIV/0! 0.0000 
Sum Type 10 224 112 2 0.0073 
bfo12_dec_stream1 2492 623 4 0.0817 
Sum Type 12 2492 623 4 0.0817 
Sum Bit Field Operations 4246 1245 3.4 0.1392 
Streams 13013 734 17.7 0.4265 
     
     
Total Number of Cycles 30513    
     
Memory Access [ops.] 4654    

Store Operations 2357    
Load Operations 2297    
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Rice Encode (Exponential) 

Label Cycles Calls Cycles/Call Cycles/Tot.Cycles 
bfo6_maintain_tables1 64 16 4.0 0.0008 
bfo6_get_byte1 3996 999 4.0 0.0508 
Sum Type 6 4060 1015 4.0 0.0516 
bfo8_encode1 4995 999 5.0 0.0634 
Sum Type 8 4995 999 5.0 0.0634 
Bit Field Operations 9055 2014 4.5 0.1150 
sa1_comp_freq1 1158 386 3.0 0.0147 
Sum Type 1 1158 386 3.0 0.0147 
sa3_get_byte1 2997 999 3.0 0.0381 
Sum Type 3 2997 999 3.0 0.0381 
sa4_encode1 2997 999 3.0 0.0381 
sa4_switch1 42 14 3.0 0.0005 
Sum Type 4 3039 1013 3.0 0.0386 
sa5_maintain_tables 42 14 3.0 0.0005 
Sum Type 5 42 14 3.0 0.0005 
Sum ShiftAdd Operations 7236 2412 3.0 0.0919 
CLZ 434 62 7.0 0.0055 
Streams 13436 1999 6.7 0.1707 
     
     
Total Number of Cycles 78729    
     
Memory Access [ops.] 14768    

Store Operations 7259    
Load Operations 7509    
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Rice Decode (Exponential) 

Label Cycles Calls Cycles/Call Cycles/Tot.Cycles 
bfo6_switch1 56 14 4.0 0.0006 
bfo6_decode_loop1 3988 997 4.0 0.0407 
bfo6_maintain_tables1 64 16 4.0 0.0007 
Sum Type 6 4108 1027 4.0 0.0420 
bfo7_decode1 4985 997 5.0 0.0509 
Sum Type 7 4985 997 5.0 0.0509 
Bit Field Operations 9093 2024 4.5 0.0929 
sa1_comp_freq1 2991 997 3.0 0.0305 
Sum Type 1 2991 997 3.0 0.0305 
sa4_switch 42 14 3.0 0.0004 
sa4_comp_freq2 3988 997 4.0 0.0407 
Sum Type 4 4030 1011 4.0 0.0412 
sa5_maintain_tables1 142 14 10.1 0.0015 
Sum Type 5 142 14 10.1 0.0015 
Shift Add Operations 7163 2022 3.5 0.0732 
clz1 12785 997 12.8 0.1306 
clz2 434 62 7.0 0.0044 
CLZ 13219 1059 12.5 0.1350 
Streams 23056 1994 11.6 0.2355 
     
     
Total Number of Cycles 97912    
     
Memory Access [ops.] 14758    

Store Operations 8156    
Load Operations 6602    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Processing Core for Compressing Wireless Data 

 
 
 

103

 
 

Rice Encode (Gamma) 
Label Cycles Calls Cycles/Call Cycles/Tot.Cycles 
bfo6_maintain_tables1 0 0 #DIV/0! 0.0000 
bfo6_get_byte1 3996 999 4 0.0438 
Sum Type 6 3996 999 4 0.0438 
bfo8_encode1 4995 999 5 0.0547 
Sum Type 8 4995 999 5 0.0547 
Bit Field Operations 8991 1998 4.5 0.0985 
sa1_comp_freq1 2493 831 3 0.0273 
Sum Type 1 2493 831 3 0.0273 
sa3_get_byte1 2997 999 3 0.0328 
Sum Type 3 2997 999 3 0.0328 
sa4_encode1 2997 999 3 0.0328 
sa4_switch1 321 107 3 0.0035 
Sum Type 4 3318 1106 3 0.0363 
sa5_maintain_tables 0 0 #DIV/0! 0.0000 
Sum Type 5 0 0 #DIV/0! 0.0000 
Sum ShiftAdd Operations 8808 2936 3 0.0964 
CLZ 3276 62 52.8 0.0359 
Streams 15186 1999 7.6 0.1663 
     
     
Total Number of Cycles 91322    
     
Memory Access [ops.] 15971    

Store Operations 7821    
Load Operations 8150    
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Rice Decode (Gamma) 
Label Cycles Calls Cycles/Call Cycles/Tot.Cycles 
bfo6_switch1 428 107 4.0 0.0039 
bfo6_decode_loop1 3988 997 4.0 0.0360 
bfo6_maintain_tables1 0 0 #DIV/0! 0.0000 
Sum Type 6 4416 1104 4.0 0.0398 
bfo7_decode1 4985 997 5.0 0.0449 
Sum Type 7 4985 997 5.0 0.0449 
Bit Field Operations 9401 2101 4.5 0.0847 
sa1_comp_freq1 2991 997 3.0 0.0270 
Sum Type 1 2991 997 3.0 0.0270 
sa4_switch 321 107 3.0 0.0029 
sa4_comp_freq2 3988 997 4.0 0.0360 
Sum Type 4 4309 1104 3.9 0.0388 
sa5_maintain_tables1 0 0 #DIV/0! 0.0000 
Sum Type 5 0 0 #DIV/0! 0.0000 
Shift Add Operations 7300 2101 3.5 0.0658 
clz1 14678 997 14.7 0.1323 
clz2 3276 62 52.8 0.0295 
CLZ 17954 1059 17.0 0.1618 
Streams 24420 1994 12.2 0.2201 
     
     
Total Number of Cycles 110930    
     
Memory Access [ops.] 16045    

Store Operations 8682    
Load Operations 7363    
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Rice Encode (Poisson) 
Label Cycles Calls Cycles/Call Cycles/Tot.Cycles 
bfo6_maintain_tables1 0 0 #DIV/0! 0.0000 
bfo6_get_byte1 3996 999 4 0.0428 
Sum Type 6 3996 999 4 0.0428 
bfo8_encode1 4995 999 5 0.0536 
Sum Type 8 4995 999 5 0.0536 
Bit Field Operations 8991 1998 4.5 0.0964 
sa1_comp_freq1 2619 873 3 0.0281 
Sum Type 1 2619 873 3 0.0281 
sa3_get_byte1 2997 999 3 0.0321 
Sum Type 3 2997 999 3 0.0321 
sa4_encode1 2997 999 3 0.0321 
sa4_switch1 417 139 3 0.0045 
Sum Type 4 3414 1138 3 0.0366 
sa5_maintain_tables 0 0 #DIV/0! 0.0000 
Sum Type 5 0 0 #DIV/0! 0.0000 
Sum ShiftAdd Operations 9030 3010 3 0.0968 
CLZ 3204 62 51.7 0.0344 
Streams 15424 1999 7.7 0.1654 
     
     
Total Number of Cycles 93275    
     
Memory Access [ops.] 16296    

Store Operations 7998    
Load Operations 8298    
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Rice Decode (Poisson) 

Label Cycles Calls Cycles/Call Cycles/Tot.Cycles 
bfo6_switch1 556 139 4.0 0.0049 
bfo6_decode_loop1 3988 997 4.0 0.0355 
bfo6_maintain_tables1 0 0 #DIV/0! 0.0000 
Sum Type 6 4544 1136 4.0 0.0404 
bfo7_decode1 4985 997 5.0 0.0443 
Sum Type 7 4985 997 5.0 0.0443 
Bit Field Operations 9529 2133 4.5 0.0847 
sa1_comp_freq1 2991 997 3.0 0.0266 
Sum Type 1 2991 997 3.0 0.0266 
sa4_switch 417 139 3.0 0.0037 
sa4_comp_freq2 3988 997 4.0 0.0355 
Sum Type 4 4405 1136 3.9 0.0392 
sa5_maintain_tables1 0 0 #DIV/0! 0.0000 
Sum Type 5 0 0 #DIV/0! 0.0000 
Shift Add Operations 7396 2133 3.5 0.0657 
clz1 14336 997 14.4 0.1274 
clz2 3204 62 51.7 0.0285 
CLZ 17540 1059 16.6 0.1559 
Streams 25036 1994 12.6 0.2226 
     
     
Total Number of Cycles 112490    
     
Memory Access [ops.] 16402    

Store Operations 8874    
Load Operations 7528    
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Rice Encode (Text) 

Label Cycles Calls Cycles/Call Cycles/Tot.Cycles 
bfo6_maintain_tables1 0 0 #DIV/0! 0.0000 
bfo6_get_byte1 3996 999 4 0.0329 
Sum Type 6 3996 999 4 0.0329 
bfo8_encode1 4995 999 5 0.0411 
Sum Type 8 4995 999 5 0.0411 
Bit Field Operations 8991 1998 4.5 0.0740 
sa1_comp_freq1 2520 840 3 0.0207 
Sum Type 1 2520 840 3 0.0207 
sa3_get_byte1 2997 999 3 0.0247 
Sum Type 3 2997 999 3 0.0247 
sa4_encode1 2997 999 3 0.0247 
sa4_switch1 699 233 3 0.0058 
Sum Type 4 3696 1232 3 0.0304 
sa5_maintain_tables 0 0 #DIV/0! 0.0000 
Sum Type 5 0 0 #DIV/0! 0.0000 
Sum ShiftAdd Operations 9213 3071 3 0.0758 
CLZ 3066 62 49.5 0.0252 
Streams 16514 2015 8.2 0.1359 
     
     
Total Number of Cycles 121546    
     
Memory Access [ops.] 19801    

Store Operations 8555    
Load Operations 11246    
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Rice Decode (Text) 
Label Cycles Calls Cycles/Call Cycles/Tot.Cycles 
bfo6_switch1 928 232 4.0 0.0066 
bfo6_decode_loop1 3988 997 4.0 0.0282 
bfo6_maintain_tables1 0 0 #DIV/0! 0.0000 
Sum Type 6 4916 1229 4.0 0.0347 
bfo7_decode1 4985 997 5.0 0.0352 
Sum Type 7 4985 997 5.0 0.0352 
Bit Field Operations 9901 2226 4.4 0.0699 
sa1_comp_freq1 2991 997 3.0 0.0211 
Sum Type 1 2991 997 3.0 0.0211 
sa4_switch 696 232 3.0 0.0049 
sa4_comp_freq2 3988 997 4.0 0.0282 
Sum Type 4 4684 1229 3.8 0.0331 
sa5_maintain_tables1 0 0 #DIV/0! 0.0000 
Sum Type 5 0 0 #DIV/0! 0.0000 
Shift Add Operations 7675 2226 3.4 0.0542 
clz1 14944 1013 14.8 0.1055 
clz2 3066 62 49.5 0.0217 
CLZ 18010 1075 16.8 0.1272 
Streams 25036 1994 12.6 0.1768 
     
     
Total Number of Cycles 141604    
     
Memory Access [ops.] 20025    

Store Operations 9464    
Load Operations 10561    
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D. Algorithmic Level Profiling 
 
With Original Instruction Set 
 
 

Adaptive Huffman Encode (Exponential) 
Label Cycles Cycles/Tot.Cycles 
Increment Tree 124230 63.69%

Sort Tree 47400 24.30%
Switch Nodes 2078 1.07%

Insert Node 408 0.21%
Encode 40776 20.90%
Streams 7504 3.85%
   
   
   
Total Number of Cycles 195059  
   
Memory Access [ops.] 45321  

Store Operations 16963  
Load Operations 28358  

 
Adaptive Huffman Decode (Exponential) 

Label Cycles Cycles/Tot.Cycles 
Increment Tree 128037 64.28%

Sort Tree 49413 24.81%
Switch Nodes 2402 1.21%

Insert Node 408 0.20%
Decode 57496 28.87%
Streams 12265 6.16%
   
   
Total Number of Cycles 199180  
   
Memory Access [ops.] 46966  

Store Operations 18205  
Load Operations 28761  
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Adaptive Huffman Encode (Gamma) 

Label Cycles Cycles/Tot.Cycles 
Increment Tree 309969 75.40%

Sort Tree 148499 36.12%
Switch Nodes 10208 2.48%

Insert Node 918 0.22%
Encode 68670 16.70%
Streams 9258 2.25%
   
   
   
Total Number of Cycles 411086  
   
Memory Access [ops.] 94859  

Store Operations 33705  
Load Operations 61154  

 
Adaptive Huffman Decode (Gamma) 

Label Cycles Cycles/Tot.Cycles 
Increment Tree 310020 74.04%

Sort Tree 148550 35.48%
Switch Nodes 10208 2.44%

Insert Node 918 0.22%
Decode 94201 22.50%
Streams 13673 3.27%
   
   
Total Number of Cycles 418697  
   
Memory Access [ops.] 97328  

Store Operations 34484  
Load Operations 62844  
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Adaptive Huffman Encode (Poisson) 
Label Cycles Cycles/Tot.Cycles 
Increment Tree 344957 76.52%

Sort Tree 170515 37.83%
Switch Nodes 15506 3.44%

Insert Node 1020 0.23%
Encode 72970 16.19%
Streams 9536 2.12%
   
   
   
Total Number of Cycles 450780  
   
Memory Access [ops.] 104423  

Store Operations 37143  
Load Operations 67280  

 
Adaptive Huffman Decode (Poisson) 

Label Cycles Cycles/Tot.Cycles 
Increment Tree 345777 75.28%

Sort Tree 174197 37.93%
Switch Nodes 15840 3.45%

Insert Node 1040 0.23%
Decode 100900 21.97%
Streams 14924 3.25%
     
Total Number of Cycles 459299   
     
Memory Access [ops.] 107116   

Store Operations 37888   
Load Operations 69228   

   
   
Static Memory Allocation [byte] 3578  

Huffman Tree 3066  
Symbol Address Table 512  
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Adaptive Huffman Encode (Text) 
Label Cycles Cycles/Tot.Cycles 
Increment Tree 423895 78.55%

Sort Tree 224613 41.62%
Switch Nodes 27980 5.18%

Insert Node 1887 0.35%
Encode 81122 15.03%
Streams 10226 1.89%
   
   
   
Total Number of Cycles 539648  
   
Memory Access [ops.] 125413  

Store Operations 44136  
Load Operations 81277  

 
Adaptive Huffman Decode (Text) 

Label Cycles Cycles/Tot.Cycles 
Increment Tree 423919 77.00%

Sort Tree 224637 40.80%
Switch Nodes 27980 5.08%

Insert Node 1887 0.34%
Decode 110681 20.10%
Streams 14553 2.64%
   
   
Total Number of Cycles 550573  
   
Memory Access [ops.] 128674  

Store Operations 44851  
Load Operations 83823  
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Deflate Encode (Exponential) 

Label Cycles Cycles/Tot.Cycles 
Encode 10387 0.0202

streams 4800 0.009319194
Add Match 9000 0.0175
Control Match 389452 0.7561
CRC 31000 0.0602
   
Total Number of Cycles 515066  
   
Memory Access [ops.] 81537  

Store Operations 11751  
Load Operations 69786  

 
Deflate Decode (Exponential) 

Label Cycles Cycles/Tot.Cycles 
Decode 18146 0.594697342

streams 6116 0.2004
   
Total Number of Cycles 30513  
   
Memory Access [ops.] 3315  

Store Operations 1594  
Load Operations 1721  

 
Deflate Encode (Gamma) 

Label Cycles Cycles/Tot.Cycles 
Encode 22370 0.1629

streams 11040 0.080416066
Add Match 9000 0.0656
Control Match 37051 0.2699
CRC 31000 0.2258
   
Total Number of Cycles 137286  
   
Memory Access [ops.] 30322  

Store Operations 9564  
Load Operations 20758  

 
Deflate Decode (Gamma) 

Label Cycles Cycles/Tot.Cycles 
Decode 30111 0.942559319

streams 13607 0.4259
   
Total Number of Cycles 31946  
   
Memory Access [ops.] 4816  

Store Operations 2397  
Load Operations 2419  
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Deflate Encode (Poisson) 
Label Cycles Cycles/Tot.Cycles 
Encode 23904 0.1731

streams 12004 0.086921891
Add Match 9000 0.0652
Control Match 33809 0.2448
CRC 31000 0.2245
   
Total Number of Cycles 138101  
   
Memory Access [ops.] 30941  

Store Operations 9898  
Load Operations 21043  

 
Deflate Decode (Poisson) 

Label Cycles Cycles/Tot.Cycles 
Decode 31447 0.93826829

streams 14630 0.4365
   
Total Number of Cycles 33516  
   
Memory Access [ops.] 4997  

Store Operations 2519  
Load Operations 2478  

 
Deflate Encoding (Text) 

Label Cycles Cycles/Tot.Cycles 
Encode 21828 15.54%

streams 11452 8.15%
Add Match 10000 7.12%
Control Match 40604 28.91%
CRC 32000 22.78%
    
Total Number of Cycles 140460  
   
Memory Access [ops.] 31169  

Store Operations 9685  
Load Operations 21484  

 
Deflate Decoding (Text) 

Label Cycles Cycles/Tot.Cycles 
Decode 29258 95.89%

streams 13747 45.05%
    
Total Number of Cycles 30513  
   
Memory Access [ops.] 4654  

Store Operations 2357  
Load Operations 2297  
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Rice Encode (Exponential) 

Label Cycles Cycles/Tot.Cycles 
Encode 24363 0.3095

Streams 13436 0.1707
Calc K 930 0.0118

CLZ 434 0.0055
Maintain Tables 338 0.0043
Update Tables 7934 0.1008
   
   
Total Number of Cycles 78729  
   
Memory Access [ops.] 14768  

Store Operations 7259  
Load Operations 7509  

 
Rice Decode (Exponential) 

Label Cycles Cycles/Tot.Cycles 
Decode 41790 0.4268

Streams 25050 0.2558
CLZ1 14728 0.1504

Calc K 930 0.0095
CLZ2 434 0.0044

Maintain Tables 346 0.0035
Update Table 7934 0.0810
   
Total Number of Cycles 97912  
   
Memory Access [ops.] 14758  

Store Operations 8156  
Load Operations 6602  
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Rice Encode (Gamma) 
Label Cycles Cycles/Tot.Cycles 
Encode 24909 0.2728

Streams 15186 0.1663
Calc K 3772 0.0413

CLZ 3276 0.0359
Maintain Tables 0 0.0000
Update Tables 15199 0.1664
   
   
Total Number of Cycles 91322  
   
Memory Access [ops.] 15971  

Store Operations 7821  
Load Operations 8150  

 
Rice Decode (Gamma) 

Label Cycles Cycles/Tot.Cycles 
Decode 44101 0.3976

Streams 24420 0.2201
CLZ1 14678 0.1323

Calc K 3772 0.0340
CLZ2 3276 0.0295

Maintain Tables 0 0.0000
Update Table 15199 0.1370
   
   
Total Number of Cycles 110930  
   
Memory Access [ops.] 16045  

Store Operations 8682  
Load Operations 7363  
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Rice Encode (Poisson) 
Label Cycles Cycles/Tot.Cycles 
Encode 24909 0.2670

Streams 15424 0.1654
Calc K 3700 0.0397

CLZ 3204 0.0344
Maintain Tables 0 0.0000
Update Tables 16956 0.1818
   
   
Total Number of Cycles 93275  
   
Memory Access [ops.] 16296  

Store Operations 7998  
Load Operations 8298  

 
Rice Decode (Poisson) 

Label Cycles Cycles/Tot.Cycles 
Decode 43789 0.3893

Streams 26601 0.2365
CLZ1 18629 0.1656

Calc K 3700 0.0329
CLZ2 3204 0.0285

Maintain Tables 0 0.0000
Update Table 16956 0.1507
   
Total Number of Cycles 112490  
   
Memory Access [ops.] 16402  

Store Operations 8874  
Load Operations 7528  
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Rice Encode (Text) 

Label Cycles Cycles/Tot.Cycles 
Encode 25297 0.2081

Streams 16514 0.1359
Calc K 3562 0.0293

CLZ 3066 0.0252
Maintain Tables 0 0.0000
Update Tables 44529 0.3664
   
   
Total Number of Cycles 121546  
   
Memory Access [ops.] 19801  

Store Operations 8555  
Load Operations 11246  

 
Rice Decode (Text) 

Label Cycles Cycles/Tot.Cycles 
Decode 44852 0.3167

Streams 25564 0.1805
CLZ1 14944 0.1055

Calc K 3562 0.0252
CLZ2 3066 0.0217

Maintain Tables 0 0.0000
Update Table 44529 0.3145
   
   
Total Number of Cycles 141604  
   
Memory Access [ops.] 20025  

Store Operations 9464  
Load Operations 10561  
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With All Enhancements 
 

Adaptive Huffman Encode (Exponential) 
Label Cycles Cycles/Tot.Cycles 
Increment Tree 67165 52.57%

Sort Tree 28250 22.11%
Switch Nodes 1453 1.14%

Insert Node 352 0.28%
Encode 32943 25.78%
Streams 8200 6.42%
   
   
   
Total Number of Cycles 127771  
   
Memory Access [ops.] 29921  

Store Operations 10406  
Load Operations 19515  

 
Adaptive Huffman Decode (Exponential) 

Label Cycles Cycles/Tot.Cycles 
Increment Tree 69319 52.44%

Sort Tree 29507 22.32%
Switch Nodes 1681 1.27%

Insert Node 352 0.27%
Decode 48301 36.54%
Streams 12372 9.36%
   
   
Total Number of Cycles 132183  
   
Memory Access [ops.] 29135  

Store Operations 10475  
Load Operations 18660  
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Adaptive Huffman Decode (Gamma) 

Label Cycles Cycles/Tot.Cycles 
Increment Tree 169678 63.68%

Sort Tree 88443 33.19%
Switch Nodes 7220 2.71%

Insert Node 792 0.30%
Decode 81475 30.58%
Streams 13898 5.22%
   
   
Total Number of Cycles 266454  
   
Memory Access [ops.] 56867  

Store Operations 17478  
Load Operations 39389  

 
Adaptive Huffman Encode (Gamma) 

Label Cycles Cycles/Tot.Cycles 
Increment Tree 169652 66.66%

Sort Tree 88417 34.74%
Switch Nodes 7220 2.84%

Insert Node 792 0.31%
Encode 55260 21.71%
Streams 9601 3.77%
   
   
   
Total Number of Cycles 254506  
   
Memory Access [ops.] 56410  

Store Operations 17705  
Load Operations 38705  
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Adaptive Huffman Encode (Poisson) 
Label Cycles Cycles/Tot.Cycles 
Increment Tree 189703 68.16%

Sort Tree 101982 36.64%
Switch Nodes 10953 3.94%

Insert Node 880 0.32%
Encode 58705 21.09%
Streams 9824 3.53%
   
   
   
Total Number of Cycles 278331  
   
Memory Access [ops.] 62094  

Store Operations 19553  
Load Operations 42541  

 
Adaptive Huffman Decode (Poission) 

Label Cycles Cycles/Tot.Cycles 
Increment Tree 189617 65.01%

Sort Tree 101965 34.96%
Switch Nodes 10982 3.77%

Insert Node 880 0.30%
Decode 86629 29.70%
Streams 14148 4.85%
   
Total Number of Cycles 291673  
   
Memory Access [ops.] 62811  

Store Operations 19307  
Load Operations 43504  
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Adaptive Huffman Encode (Text) 

Label Cycles Cycles/Tot.Cycles 
Increment Tree 235689 70.92%

Sort Tree 135548 40.79%
Switch Nodes 19536 5.88%

Insert Node 1628 0.49%
Encode 65252 19.63%
Streams 10405 3.13%
   
   
   
Total Number of Cycles 332346  
   
Memory Access [ops.] 74760  

Store Operations 23508  
Load Operations 51252  

 
Adaptive Huffman Decode (Text) 

Label Cycles Cycles/Tot.Cycles 
Increment Tree 235703 67.60%

Sort Tree 135562 38.88%
Switch Nodes 19536 5.60%

Insert Node 1628 0.47%
Decode 96366 27.64%
Streams 14839 4.26%
   
   
Total Number of Cycles 348687  
   
Memory Access [ops.] 76015  

Store Operations 23220  
Load Operations 52795  
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Deflate Decode (Exponential) 

Label Cycles Cycles/Tot.Cycles 
Decode 16782 0.974507868

streams 6294 0.3655
   
Total Number of Cycles 17221  
   
Memory Access [ops.] 3315  

Store Operations 1594  
Load Operations 1721  

 
Deflate Encode (Exponential) 

Label Cycles Cycles/Tot.Cycles 
Encode 9853 0.0218

streams 4640 0.010287222
Add Match 8000 0.0177
Control Match 349948 0.7759
CRC 26000 0.0576
   
Total Number of Cycles 451045  
   
Memory Access [ops.] 77320  

Store Operations 11133  
Load Operations 66187  

 
Deflate Decode (Gamma) 

Label Cycles Cycles/Tot.Cycles 
Decode 28591 0.958914677

streams 14056 0.4714
   
Total Number of Cycles 29816  
   
Memory Access [ops.] 4816  

Store Operations 2397  
Load Operations 2419  

 
Deflate Encode (Gamma) 

Label Cycles Cycles/Tot.Cycles 
Encode 21023 0.1774

streams 10480 0.088440311
Add Match 8000 0.0675
Control Match 34186 0.2885
CRC 26000 0.2194
   
Total Number of Cycles 118498  
   
Memory Access [ops.] 27964  

Store Operations 9446  
Load Operations 18518  
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Deflate Encode (Poisson) 
Label Cycles Cycles/Tot.Cycles 
Encode 22410 0.1882

streams 11338 0.095228496
Add Match 8000 0.0672
Control Match 31440 0.2641
CRC 26000 0.2184
   
Total Number of Cycles 119061  
   
Memory Access [ops.] 28152  

Store Operations 9782  
Load Operations 18370  

 
Deflate Decode (Poisson) 

Label Cycles Cycles/Tot.Cycles 
Decode 29966 0.955944748

streams 15128 0.4826
   
Total Number of Cycles 31347  
   
Memory Access [ops.] 4997  

Store Operations 2519  
Load Operations 2478  

 
Deflate Encode (Text) 

Label Cycles Cycles/Tot.Cycles 
Encode 19859 16.41%

streams 10102 8.35%
Add Match 8000 6.61%
Control Match 36418 30.09%
CRC 26000 21.48%
    
Total Number of Cycles 121038  
   
Memory Access [ops.] 27701  

Store Operations 9423  
Load Operations 18278  

 
Deflate Decode (Text) 

Label Cycles Cycles/Tot.Cycles 
Decode 27238 95.60%

streams 13462 47.25%
     
Total Number of Cycles 28491   
     
Memory Access [ops.] 4654   

Store Operations 2357   
Load Operations 2297   
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Rice Encode (Exponential) 

Label Cycles Cycles/Tot.Cycles 
Encode 30093 0.4707

Streams 15126 0.2366
Calc K 434 0.0068
Maintain Tables 238 0.0037
Update Tables 8156 0.1276
   
Total Number of Cycles 63932  
   
Memory Access [ops.] 8616  

Store Operations 4184  
Load Operations 4432  

 
Rice Decode (Exponential) 

Label Cycles Cycles/Tot.Cycles 
Decode 25116 36.97%

Streams 23158 34.09%
Calc K 434 0.64%
Maintain Tables 238 0.35%
Update Table 7818 11.51%
   
Total Number of Cycles 67941  
   
Memory Access [ops.] 8612  

Store Operations 5069  
Load Operations 3543  
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Rice Decode (Gamma) 
Label Cycles Cycles/Tot.Cycles 
Decode 25572 0.3360

Streams 24646 0.3238
Calc K 434 0.0057
Maintain Tables 0 0.0000
Update Table 15124 0.1987
   
Total Number of Cycles 76111  
   
Memory Access [ops.] 9830  

Store Operations 5413  
Load Operations 4417  

 
Rice Encode (Gamma) 

Label Cycles Cycles/Tot.Cycles 
Encode 31468 0.4393

Streams 16501 0.2303
Calc K 434 0.0061
Maintain Tables 0 0.0000
Update Tables 14724 0.2055
   
Total Number of Cycles 71637  
   
Memory Access [ops.] 9744  

Store Operations 4653  
Load Operations 5091  
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Rice Encode (Poisson) 
Label Cycles Cycles/Tot.Cycles 
Encode 31655 0.4325

Streams 16688 0.2280
Calc K 434 0.0059
Maintain Tables 0 0.0000
Update Tables 16097 0.2199
   
Total Number of Cycles 73197  
   
Memory Access [ops.] 10037  

Store Operations 4798  
Load Operations 5239  

 
Rice Decode (Poisson) 

Label Cycles Cycles/Tot.Cycles 
Decode 25572 0.3286

Streams 24850 0.3193
Calc K 434 0.0056
Maintain Tables 0 0.0000
Update Table 16625 0.2136
   
Total Number of Cycles 77817  
   
Memory Access [ops.] 10294  

Store Operations 5680  
Load Operations 4614  
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Rice Encode (Text) 
Label Cycles Cycles/Tot.Cycles 
Encode 32628 0.3335

Streams 17581 0.1797
Calc K 434 0.0044
Maintain Tables 0 0.0000
Update Tables 39763 0.4064
   
Total Number of Cycles 97836  
   
Memory Access [ops.] 13448  

Store Operations 5261  
Load Operations 8187  

 
Rice Decode (Text) 

Label Cycles Cycles/Tot.Cycles 
Decode 26024 0.2528

Streams 25878 0.2513
Calc K 434 0.0042
Maintain Tables 0 0.0000
Update Table 40644 0.3948
   
Total Number of Cycles 102960  
   
Memory Access [ops.] 13885  

Store Operations 6161  
Load Operations 7724  
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E. Zip-File 
 
This thesis has been delivered with zip-file named Appendix_E.zip. The folder structure in 
this file is shown here. 
 

Appendix_E 
  └ Assembly_Source_Code 
  └ Enhanced 
   └ Deflate 
    └ Decode 
     └ RAM 
    └ Encode 
     └ RAM 
   └ Huffman 
    └ Decode 
     └ RAM 
    └ Encode 
     └ RAM 
   └ Rice 
    └ Decode 
     └ RAM 
    └ Encode 
     └ RAM 
  └ Original 

└ Deflate 
    └ Decode 
     └ RAM 
    └ Encode 
     └ RAM 
   Huffman 
    └ Decode 
     └ RAM 
    └ Encode 
     └ RAM 
   └ Rice 
    └ Decode 
     └ RAM 
    └ Encode 
     └ RAM 
 └ NanoRisc_Assembler 
 └ NanoRisc_ISS 
 └ Stream_Builder_Source_Code 
 └ VHDL_Source_Code 
 


