
June 2006
Einar Johan Aas, IET
Tor Audun Ramstad, IET
Robin Osa Hoel, Chipcon AS

Master of Science in Electronics
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

Processing Core for Compressing
Wireless Data
The Enhancement of a RISC Microprocessor

Eskil Viksand Olufsen

Problem Description
Compression of data in wireless systems is not a well-defined problem. Each application of
compression needs to address different data types. This wide variety has made a single, efficient,
compression technique hard to find. The only way to approach compression for this type of
problem is to involve hybrid techniques or adapt different compression methods for different
applications.

Today, most SoC solutions have an embedded microprocessor to handle complex control tasks,
and Texas Instruments Norway has developed the NanoRisc microprocessor for this purpose.
Texas Instruments Norway wishes to explore the NanoRiscs ability to process lossless data
compression algorithms, and examine enhancements to improve its performance on these tasks.

The thesis should include an analysis of the NanoRiscs current ability to process different lossless
data compression algorithms, and examine and implement area efficient enhancements to the
NanoRisc core.

Assignment given: 16. January 2006
Supervisor: Einar Johan Aas, IET

Abstract
This thesis explores the ability of the proprietary Texas Instruments embedded 16 bits RISC
microprocessor, NanoRisc, to process common lossless compression algorithms, and propose
extensions in order to increase its performance on this task.

In order to measure performance of the NanoRisc microprocessor, the existing software tool
chain was enhanced for profiling and simulating the improvements, and three fundamentally
different adaptive data compression algorithms with different supporting data structures were
implemented in the NanoRisc assembly language. On the background of profiling results,
some enhancements were proposed:

• Bit field instructions.
• New load and store instructions for table data structures.
• An instruction improving read and writes of variable length codewords from memory.
• An instruction improving CRC-16 checksum calculation.
• Non-blocking load behavior.

These new enhancements improved throughput of the three implemented algorithms by
between 18% and 103%, and the code sizes decreased between 6% and 31%. The bit field
instructions also reduced RAM access by up to 53%. The enhancements were implemented in
the NanoRisc VHDL model and synthesized. Synthesis reports showed an increase in gate
count of 30%, but the whole NanoRisc core is still below 7k gates. Power consumption per
MIPS increased by 7%, however reduced clock cycle count and memory access decreased the
net power consumption of all tested algorithms. It is also shown that data compression with
the NanoRisc prior to transmission in a low power RF transceiver may increase battery
lifetime 4 times.

Future work should include a comprehensive study of the effect of the proposed
enhancements to more common applications for the NanoRisc microprocessor.

Acknowledgements
I want to express my gratitude to Texas Instruments Norway for giving me the opportunity to
write this thesis and providing me with a work place.

Special thanks goes to my supervisor Robin Hoel for his guidance, advices and encouraging
comments.

Thanks also to Peder Rand for patient guidance when helping me understand the tools and
behavior of the NanoRisc core.

I also want to thank the employees at Texas Instrument Norway for a pleasant and educational
working environment.

Table of Contents

INTRODUCTION .. 1
1 THEORY ... 2

1.1 MEASURES.. 2
1.2 ENTROPY CODING ... 3

1.2.1 Entropy Coding Schemes Used for Evaluation .. 4
1.2.1.1 Rice Coding .. 4
1.2.1.2 Huffman Coding.. 5
1.2.1.3 LZ77... 6

2 RELATED WORKS.. 8
2.1 PHILLIPS TRIMEDIA ... 9
2.2 ARM.. 10

3 THE NANORISC PROCESSOR .. 12
3.1 ARCHITECTURE ... 12
3.2 INSTRUCTION SET.. 14
3.3 TOOLS .. 16

3.3.1 Assembler .. 16
3.3.2 Simulator ... 17

4 IMPLEMENTATION OF THE COMPRESSION ALGORITHMS.. 18
4.1 IMPLEMENTATION OF RICE CODING ... 18

4.1.1 Calculating the K-value.. 19
4.1.2 Modeling Stage .. 20

4.2 IMPLEMENTATION OF HUFFMAN CODING ... 22
4.2.1 Updating the Huffman tree ... 22
4.2.2 Implementing the Tree Data Structure .. 24

4.3 IMPLEMENTATION OF LZ77 ... 25
4.3.1 Simplified Deflate... 25
4.3.2 Searching for Matches.. 26
4.3.3 The Dictionary Data Structure ... 27

5 ENHANCEMENTS OF EXISTING TOOLS.. 29
5.1 PROFILING .. 29

5.1.1 Profiling With the Assembler.. 29
5.1.1.1 Implementation ... 30

5.1.2 Profiling In the Simulator... 30
5.1.2.1 Implementation ... 32

5.2 ADDING NEW INSTRUCTIONS ... 33
5.2.1 Adding New Instructions to the Assembler .. 33
5.2.2 Altering the Behavior of the Simulator.. 33

6 FINDING ENHANCEMENTS FOR THE NANORISC PROCESSOR... 34
6.1 INSTRUCTION LEVEL PROFILING .. 35

6.1.1 Profiling Rice... 36
6.1.2 Profiling Huffman .. 37
6.1.3 Profiling Deflate .. 38

6.2 PROPOSALS FROM INSTRUCTION LEVEL PROFILING... 39
6.2.1 Instruction Level Enhancements ... 39
6.2.2 Adding Non-Blocking Load Behavior.. 41
6.2.3 Estimating Speedup.. 42

6.3 ALGORITHMIC LEVEL PROFILING ... 43
6.3.1 Profiling Rice... 43
6.3.2 Profiling Huffman .. 44
6.3.3 Profiling Deflate .. 45

6.4 PROPOSALS FROM ALGORITHMIC LEVEL PROFILING ... 46

6.4.1 The Stream Function.. 46
6.4.2 The Hash Function... 48

6.5 PROPOSED ENHANCEMENTS FOR THE NANORISC .. 48
6.6 RESULTS OBTAINED FROM THE PROPOSED ENHANCEMENTS ... 50

7 THE ENHANCED NANORISC PROCESSOR.. 51
7.1 IMPLEMENTATION ... 51

7.1.1 Non-Blocking Load Behavior ... 52
7.1.2 Bit Field Instructions.. 53
7.1.3 Clz Module .. 55
7.1.4 Crc Module.. 56
7.1.5 The Str Instruction ... 57

7.2 SYNTHESIS.. 58
7.2.1 Timing ... 58
7.2.2 Area... 59
7.2.3 Power .. 61

7.3 PERFORMANCE.. 62
7.3.1 Energy Savings .. 62
7.3.2 Benchmarks ... 64

8 DISCUSSION .. 66
8.1 ENHANCEMENTS ... 66
8.2 POWER.. 67
8.3 TIMING AND THROUGHPUT .. 67
8.4 ASSEMBLY SOURCE CODE ... 68
8.5 AREA.. 68
8.6 A COMPARISON .. 69
8.7 FUTURE WORK.. 70

8.7.1 Processor Core .. 70
8.7.2 Testing... 70
8.7.3 Tools.. 71

CONCLUSION... 72
REFERENCES ... 73
APPENDIX ... 74

A. NEW INSTRUCTIONS ... 75
B. SYMBOL DISTRIBUTIONS... 86
C. INSTRUCTION LEVEL PROFILING ... 89
D. ALGORITHMIC LEVEL PROFILING .. 109
E. ZIP-FILE ... 129

List of Figures

Figure 1, building of a Huffman tree...6
Figure 2, video codec..9
Figure 3, phillips trimedia architecture [7]. ...9
Figure 4, ARM9E datapath [8]..11
Figure 5, simple overwiev of the NanoRisc architecture [reference 8]...................................12
Figure 6, memory set up. ..13
Figure 7, NanoRisc data flow diagram. ...14
Figure 8, Assembler command line syntax..16
Figure 9, NanoRisc ISS screenshot. ..17
Figure 10, the Rice algorithm flowchart..19
Figure 11, calculation of the k-value using equation 6, the JPEG-LS method and the
alternative approach. (symbol count is 16) [14]...20
Figure 12, the Huffman algorithm flowchart. ..22
Figure 13, Huffman tree showing the sibling property. ...23
Figure 14, updated Huffman tree. ...23
Figure 15, node memory structure. ...24
Figure 16, initial Huffman tree..24
Figure 17, the simplified Deflate flow chart. ...26
Figure 18, hash table with linked lists ...28
Figure 19, profile labels syntax. ..29
Figure 20, enhanced NanoRisc ISS GUI. ..31
Figure 21, Profile window ..32
Figure 22, new ISA dialog window...33
Figure 23, example insertion of a bit field (6 clock cycles)..35
Figure 24, example addition on a bit field (3 clock cycles)..35
Figure 25, example shift add operation for index storage (3 clock cycles).35
Figure 26, timing diagram during load operation. ...42
Figure 27, old stream function for decoding algorithms. ...46
Figure 28, new stream function for decoding algorithms...48
Figure 29, the enhanced NanoRisc data flow diagram. ..52
Figure 30, state machine during load instructions..53
Figure 31, data flow in the bit field example. ..54
Figure 32, CLZ data flow diagram. ...56
Figure 33, CRC16-CCITT calculation with LFSR. ...57
Figure 34, shift operation during the str instruction...58
Figure 35, clock cycles used to decode, switch nodes and inserting nodes during Huffman
decoding...65

List of Tables

Table 1, Rice codes (k = 2) ..5
Table 2, Encoding steps (LZ77 Example) ...6
Table 3, Incomming symbols (LZ77 Example) ...6
Table 4, original instruction encoding. ..15
Table 5, “pre” types and their encoding. ...16
Table 6, Table example for the implementation of the sorting method21
Table 7, indicators for simplified Deflate..25
Table 8, instruction level profiling results from the Rice algorithm.36
Table 9, instruction level profiling results from the Huffman algorithm.37
Table 10, instruction level profiling results from the simple Deflate algorithm......................38
Table 11, undefined space in the original ISA...39
Table 12, encoding of new instructions. ..39
Table 13, default “pre” values...41
Table 14, operations that may be affected by the enhancements...43
Table 15, estimated speedup from new instructions and NBL behavior.43
Table 16, algorithmic profiling from the Rice decoding algorithm with exponential distributed
input stream..44
Table 17, algorithmic profiling from the Huffman decoding algorithm with poisson
distributed input stream. ...44
Table 18, algorithmic profiling from the Deflate decoding algorithm with text input stream. 45
Table 19, algorithmic profiling from the Deflate encoding algorithm with text input stream. 45
Table 20, profiling results from the stream label when decoding the text stream.47
Table 21, encoding of the str instruction. ...47
Table 22, profiling results from the stream label when decoding the text stream and using the
new str instruction. ...47
Table 23, encoding of the crc instruction. ...48
Table 24, new Instructions. ...49
Table 25, new “pre” types...49
Table 26, increase in throughput. ..50
Table 27, RAM access reduction. ...50
Table 28, reduction in code size due to new instructions. ..50
Table 29, compression ratios. ...50
Table 30, Register contents in bit field example. ..54
Table 31, gate count for the original NanoRisc. ..59
Table 32, contributions from each stage and module to the gate count at 25 MHz.................60
Table 33, contributions from each stage and module to the gate count at 62.5MHz.60
Table 34, estimated power consumption at 25 MHz [mW]..61
Table 35, estimated power consumption at 62.5 MHz [mW]...61
Table 36, power consumption for 512x16 bits ROM and 2048x16 bits RAM [mW] (global
voltage 1.62, 25Mhz operation) ..61
Table 37, power and energy consumption at 25 MHz..63
Table 38, energy consumption per bit for the enhanced NanoRisc.63
Table 39, energy reduction per bit for the enhanced NanoRisc. ...63
Table 40, reduction in energy consumption due to compression with the enhanced NanoRisc.
...63
Table 41, summary of results from ”Energy Aware Lossless Data Compression” [25]69
Table 42, results from the implemented algorithms in the enhanced NanoRisc at 25 MHz. ...69

List of Acronyms and Abbreviations

A list of acronyms and abbreviations that are not explicitly explained in the text.

ASCII: American Standard Code for Information Interchange. Standard 8 bits code used in

data communications.
ASIC: Application Specific Integrated Circuit.
CCITT: Consultative Committee on International Telephony and Telegraphy. The

international standards-setting organization for telephony and data
communications.

CCSDS: Consultative Committee for Space Data Systems.
CPU: Central Processing Unit. Programmable logic device that performs all the

instruction, logic, and mathematical processing in a computer.
CRC: Cyclic Redundancy Check. An error checking technique used to ensure the

accuracy of transmitting digital data.
DCT: Discrete Cosine Transform. Mathematical transform used to convert signals from

time domain to frequency domain.
DEMUX: De-Multiplexer. Splits a signal to pass over multiple signal paths.
DSP: Digital Signal Processor.
GUI: Graphical User Interface. A computer terminal interface, such as Windows, that is

based on graphics instead of text.
HW: Hard Ware.
I/O: InOut
IP: Internet Protocol. Used for communications across a packet-switced network.
JPEG: Joint Photographic Experts Group. JPEG is a standards committee that designed a

lossy image compression format.
JPEG-LS: A lossless image compression format.
LAN: Local Area Network.
lsb: Least Significant Bit.
LSB: Least Significant Byte
MPEG: Motion Picture Expert Group. Group defining the framework for a wide range of

video and audio compression standards.
MS: Microsoft. Software company.
msb: Most Significant Bit
MSB: Most Significant Byte
MUX: Multiplexer. Allows two or more signals to pass over one signal path.
NASA: National Aeronautics and Space Administration. US agency which administer the

American space program.
OPS: Operations per Second.
PC: Personal Computer.
RAM: Random Access Memory. Volatile memory used for data storage during operation.
RISC: Reduced Instruction Set Computing. Processor architectures where a low amount

of instructions are needed to perform necessary tasks.
ROM: Read Only Memory. Nonvolatile memory often used as program memory.
RTL: Register Transfer Level. Describes logical operation in digital circuits.
SCSI: Small Computer System Interface. Parallel interface standard used by Apple

Macintosh computers, PCs, and many UNIX systems for attaching peripheral
devices to computers.

SoC: System on Chip. A chip which constitutes an entire system or major subsystem.
VHDL: A hardware modeling language. Commonly used for RTL modeling and synthesis.

Processing Core for Compressing Wireless Data

1

Introduction
Lossless data compression has become a standard feature in most high-speed communications
networks. Data compression chipsets have been important for this development, and the
significance of the V.42bis compression standard in modems is an example of this. The
question is if data compression will play the same role for small wireless networks. If data
compression can double or triple network throughput or significantly increase battery lifetime
without harmful side effects, then the added complexity is worthwhile.

Not all data types are compressible and there are potential dangers such as data expansion,
error propagation and incompatible standards. However, most commonly transmitted data is
highly compressible. The aim of data compression for radio transmission is to save power or
reduce bandwidth. Bandwidth is a precious commodity, and it is closely related to the bit rate
(R = bps). For ordinary binary-phase shift keying the null-to-null bandwidth is given by 1.0R.
Thus, if the number of data bits were reduced by half, then one would need only half the
bandwidth. With the increase in use of wireless technology, it becomes more and more
important that the bandwidth must be used efficiently. However, power can be saved by
keeping the bandwidth and reduce airtime. Wireless transmission of one bit typically requires
over 1000 times more energy than a single 16 bits computation. It is therefore justifiable to
perform significant computation to reduce the number of bits transmitted, but limitations such
as memory requirements, area constraints and throughput must be considered.

Today, most SoC transceiver solutions have an embedded microprocessor to handle complex
control tasks, and Texas Instruments Norway has developed the NanoRisc microprocessor for
this purpose. This thesis will explore the NanoRiscs current ability to process lossless data
compression algorithms, and examine enhancements to improve its performance on this task.
The work and this report have been divided into five main stages:

• A study of lossless compression algorithms, related works and the NanoRisc
microprocessor.

• Implantation of three lossless compression algorithms in the NanoRisc assembly
language.

• Enhancements of existing tools in order to measure performance of the NanoRisc and
simulate improvements.

• Profile resource use when processing the implemented compression methods and
propose improvements based on these results.

• Implement the proposed improvements in the NanoRisc microprocessor core, and
synthesize the core in order to estimate changes in area, timing and power due to the
implemented improvements.

The scope of this thesis does not include finding suitable data compression methods for
wireless data. Only computational requirements have been considered when choosing
algorithms for evaluating the NanoRiscs performance on different compression algorithms.
Lossy compression methods have also not been considered. The thesis will cover some
fundamental information theory, but the reader should be familiar with data compression and
integrated circuit design.

Processing Core for Compressing Wireless Data

2

1 Theory
This chapter will first describe some fundamental measures and terms before entropy coding
is briefly explained and three compression algorithms are chosen for evaluating the NanoRisc
current ability to process compression algorithms.

1.1 Measures
The field of mathematics concerned with data communications and storage is named
information theory, and is generally considered to have been founded in 1948 by Claude E.
Shannon [1]. He defined the information of a symbol xn from the alphabet X to be:

Eq. 1)(log)(2 nxPxi −= ;[1]

Where)(xP is the probability of the symbol occurring in the data stream. This could be
described as how much knowledge is gained due to the observation of the symbol nxX = .
The logarithmic function can have any base, but by choosing 2 the measure can be translated
to bits. An estimation of the average information gained from observing a sequence of
symbols xn from the alphabet X is called the Shannon entropy (or just entropy):

Eq. 2 [] ∑

∈

−=Ε=
Xx

nn xPxPXiXH)(log)()()(2 ;[1]

This is an important measure when it comes to compression. For a lossless compression
method, the Shannon entropy is the fundamental limit. This means that it is possible to
compress the source in a lossless manner down to H(X)*n, where n is the number of symbols
in the data stream. It is mathematically impossible to do better than H(X)*n. Equation 2
shows the first order model of the entropy. If there are statistical dependencies between
symbols, higher order models can be used [1].

The redundancy of symbol nx is:

Eq. 3
)(

1log)()(2
n

n xP
xlx −=ρ ;[1]

Where)(nxl is the length of the symbol xn in bits. The expected redundancy of alphabet X in
the data stream is:

Eq. 4 [] [])()()()()(XHXlExxPXE

Xx

−== ∑
∈

ρρ ;[1]

There are several quantities used for compression performance. The quantity used in this
thesis is the Compression Ratio:

Eq. 5 %100*1

−=

InputSize
OutputSizeRatioComression

Processing Core for Compressing Wireless Data

3

When possible enhancements of the original NanoRisc processor are examined, some
measures are needed in order to estimate the expected overall improvement. Amdahl’s law [2]
may be used for just that. This law is named after computer architect Gene Amdahl, and it is
used to find the expected improvement to an overall system when only parts of the system are
improved. It is often used in parallel computing to predict the theoretical maximum speedup
using multiple processors. More technically, the law is concerned with the speedup achievable
from an improvement to a computation that affects a proportion P of that computation where
the improvement has a speedup of S. Ahmdal’s law states that the overall speedup of applying
the improvement will be:

Eq. 6
()

S
PP

S system

+−
=

1

1 ;[2]

If the result is e.g. 1.4, the improvement will make the system go 1.4 times faster.

1.2 Entropy Coding
Three compression algorithms are chosen to evaluate the NanoRisc processor. This section
will give a short theoretical introduction to entropy coding and the coding schemes chosen.
The details of the implementations are explained in chapter 4.

There are many known methods of data compression. Often they are suitable for different
types of data, and produce different results. Any compression method is based on representing
data in a way that reduces the redundancy as much as possible. To achieve this they exploit
the statistical properties or the redundancy of the source data. The actual decrease of size is
done by representing symbol values in a different way. A symbol that occurs often is encoded
with a shorter codeword than a symbol that occurs rarely. Compression is only possible
because data is normally represented in a format that is longer than necessary. Samples from a
converter or instructions in a computer program often have a fixed length. This is done to
make it easier to process data, since processing data is more common than compressing data.

Some compression methods are lossy. They achieve compression by removing non-vital
information from the source. Pictures and audio are often compressed with a lossy
compression method, since the human eye or ear is still capable of interpreting the
information with a reduction of quality. In contrast, a computer program cannot be
compressed in a lossy way because the computer will not be able to understand instructions if
something are missing. When loosing information is not acceptable, the data must be
compressed with a lossless compression method. A lossless compression method will
completely recover the original data from the compressed data. Entropy coding is defined as a
coding scheme that assigns variable length codes to symbols so the code lengths match their
probability. Lossless data compression methods are hence often called entropy coders.
Entropy coding is often used as the last stage in lossy compression methods. After non-vital
information is removed and complex methods have exposed statistical dependencies, entropy
coding will make sure this is encoded in the shortest possible way (as close as possible to the
entropy).

The process of entropy coding can often be split into modeling and coding. Modeling is a
statistical analysis of the input data stream, and coding creates codewords from the statistics.
These statistics may be frequencies of occurrence for different symbols, the existence of

Processing Core for Compressing Wireless Data

4

repetitive sequences of symbols, dependencies in the frequency contents, etc. Modeling may
be either static or adaptive. In static modeling, the same statistics is used every time coding is
performed. Static modeling may be a good option if the source is well known and rigid.
Adaptive modeling performs a statistical analysis every time coding is carried out. The
method may be one-pass or two-pass. One-pass methods gather statistical information as the
coding process goes forward and require thus only one pass of the input data stream. Two
pass methods do one pass to gather statistical information, and another pass to do the coding.
It is therefore necessary that the encoder in a two-pass method must pass the statistical
information to the decoder. As established in Shannon’s source coding theorem, there exists a
relationship between the symbols probability and its shortest corresponding bit sequence.
Since the statistical analysis is responsible for the evaluation of each symbols probability,
modeling is one of the most important tasks in data compression. It is also important that the
coding scheme is able to produce the shortest total output stream from the probability
distribution found in the modeling.

1.2.1 Entropy Coding Schemes Used for Evaluation
Three fundamentally different entropy coding schemes are chosen to evaluate the NanoRisc
processors current ability to process data compression algorithms:

• Rice Coding makes codewords directly from a value. These codewords are optimal if
the input data stream is modeled to fit a geometrical probability distribution.

• Huffman Coding generates codes from a codebook and may fit any probability
distribution. The codebook is usually held in a binary tree called a Huffman tree.

• LZ77 detects patterns in the input stream and code lengths and pointers to where in
the stream these patterns are found. (The actual algorithm implemented is called
Deflate, and is a version of the LZ77 coding scheme.)

These three algorithms are chosen because they are fundamentally different from each other.
Huffman and Rice coding are examples of statistical coding methods. They are heavily
dependent on the quality of the modeling process or a precise static model. Even though
Huffman and Rice are part of the same family of coding methods, they use very different
methods. Huffman uses a codebook built on symbol probability in the data stream, while Rice
produces codewords according to symbol value. It is important that the modeling stage
produce low symbol values for the Rice encoder, while in Huffman only probabilities matter.
The LZ77 coding method is a dictionary method. Dictionary methods utilize repetitive
sequences of consecutive symbols in the input data stream. They build dictionaries of these
sequences and encode where to find them. If the input stream consists of long and highly
repetitive sequences, good compression ratios are achieved.

1.2.1.1 Rice Coding
Rice coding is a selection of those Golomb codes that are easiest to produce in hardware.
Golomb codes is a range of codes with a parameter m which encodes a positive integer n by
encoding (n mod m) in binary followed by encoding (n div m) in unary. When the parameter
m is a power of two, the code is extremely efficient for use in computers since the division
operation becomes a bitshift operation, and the remainder operation becomes a bitmask
operation. This selection of Golomb codes is referred to as Rice codes. The disadvantage of
the Rice coding is of course the restricted value of m, and therefore the compression may be

Processing Core for Compressing Wireless Data

5

less effective than that of Golomb codes. In Rice coding the term k-value is often used, where
m = 2k. An example of Rice codes with a k-value of 2 are shown in Table 1.

Symbol
Values

4-bit
Binary Quotient Remainder Code

0 0000 0 0 1 00
1 0001 0 1 1 01
2 0010 0 2 1 10
3 0011 0 3 1 11
4 0100 1 0 0 1 00
5 0101 1 1 0 1 01
6 0110 1 2 0 1 10
7 0111 1 3 0 1 11
8 1000 2 0 00 1 00
9 1001 2 1 00 1 01

10 1010 2 2 00 1 10
11 1011 2 3 00 1 11
12 1100 3 0 000 1 00
13 1101 3 1 000 1 01
14 1110 3 2 000 1 10
15 1111 3 3 000 1 11

Table 1, Rice codes (k = 2)

When the entropy increases, it is usually the lsbs that becomes more and more random. To
deal with this the Rice code just cuts off the lsbs and passes them through without coding, but
the msbs that may be less random are coded. It is clear from the table that the Rice code
achieves the best compression for an input stream of symbols that have a geometric
probability distribution. Rice coding is a widely used technique for entropy coding in image
and sound compression methods.

1.2.1.2 Huffman Coding
Most variable-sized codes assume a given probability distribution of the symbols in the input
data stream. The Huffman code is more general because it does not assume anything about the
input symbol distribution, only that all probabilities are non-zero. Huffman was the first to
develop an optimal algorithm for arbitrary probability distributions. This is achieved in the
way the algorithm builds its codebook. Huffman first described this algorithm in a paper in
1952 [3]. The codebook is built in a binary tree structure (all nodes have only two children),
and the algorithm follows these steps:

1. Consider all symbols as individual leaves with their probability as weight.
2. Find the two leaves with the lowest weight.
3. Make a new leaf with the weight of the two probabilities added together, and make the

two found leaves children of the new leaf.
4. Repeat from step 2 as long as there are more than one leaf left.

The following example will show the building of a Huffman tree. If the alphabet X consists of
the symbols A,B,C,D and E, with a probability distribution P(A)=0,42, P(B)=0,3, P(C)=0,12,
P(D)=0,09 and P(E)=0,07, the Huffman tree would be built as shown in Figure 1.

Processing Core for Compressing Wireless Data

6

Figure 1, building of a Huffman tree.

When a symbol is read from the input stream, the code is created by traversing the tree from
the leaf representing the code and to the root. By traversing right or left, the codeword is
created with 1’s or 0’s. Decoding is done in similar matter, only the tree is traversed from the
root to the leaf according to the code read. In the example from Figure 1, the codeword for E
would be 0101.

1.2.1.3 LZ77
This method uses previously observed input data as a dictionary. During encoding, the input
stream encoded so far is called the search buffer. New symbols ready to be encoded is called
the look-ahead buffer. The search buffer and the look-ahead buffer are often referred to as a
window. When new symbols are to be encoded, the method tries to find matches in the search
buffer for the pattern of symbols on the input. The window may have finite length, and the
method is often called a sliding window (as data is being encoded, the window slide over the
data stream). The LZ77 is part of a family of coding methods that is called dictionary
methods. One may think of the search buffer as a dictionary of words (where pattern of
symbols make up words) and the look-ahead buffer as words needed to be looked up in the
dictionary. The method will always try to find the longest match, and when this is found a
pointer to the beginning of the match in the search buffer and the length of the match is made.
This pair, the pointer and length, is called an index. When encoding, this index together with
the first symbol in the input stream that did not match is encoded. Encoding of an incoming
data stream, Table 2 , is shown in Table 3.

Table 2, Incomming symbols (LZ77 Example) Table 3, Encoding steps (LZ77 Example)

Pos Symbol
1 A
2 A
3 B
4 C
5 B
6 B
7 A
8 B
9 C

Pos Match Symbol Output
1 None A (0,0) + A
2 A B (1,1) + B
4 None C (0,0) + C
5 B B (2,1) + B
7 AB C (5,2) + C

Processing Core for Compressing Wireless Data

7

During decoding, the decoder will build up the same search buffer as the encoder. When the
decoder reads a new index, it finds the beginning of the match in the search buffer and outputs
the sequence according to its length. After that, it outputs the symbol following the index. The
search buffer in the decoder consists of symbols decoded so far. It is evident from this
description that looking up indexes (decoding) is much faster than searching for them
(encoding), thus the LZ77 is an asymmetrical coding method.

Processing Core for Compressing Wireless Data

8

2 Related Works
Since the original computer systems where designed for text processing and scientific
applications, but not tasks such as audio and video compression, many enhancements of
original computer systems have been towards multimedia applications. One of the most
common solutions has been to include instructions that are optimized for typical multimedia
applications. Almost all major processor manufacturers have developed their own set of
media instructions. Examples include Motorola’s AltiVec extensions to the PowerPC
instruction set, and Intel’s MMX, SSE, and SSE2 extensions to the x86 instruction set. The
extensions differ in data path width, number and type of registers provided, as well as the
availability of specific operations. Motorola’s AltiVec and Intels SSE and SSE2 have 128 bits
datapaths, floating point arithmetic, and they support in the region of over 100 instructions.
The kinds of extensions these examples represent are of course farfetched for the
enhancement of the NanoRisc processor, but the basic idea of adding special instructions and
behavior in order to increase processing power for specific tasks is applicable.

Programs that manipulate data at subword level (bit fields smaller than the bit width of the
processor core) are common for many embedded applications, e.g. media and network
processing. In fact in many cases the input or output of embedded applications consists of
packed data, and these applications spend a significant amount of time packing and unpacking
narrow width data into memory words. A paper [4] by Bengu Li and Rajiv Gupta at the
university of Arizona, showed that by adding a bit section instruction set extension to an
ARM processor reduced the instructions executed at runtime between 5% and 28%, while the
code size was reduced by between 2% and 21%. These results were gathered from testing the
extensions with various benchmark suits from network, media and control applications.
They also showed that by adding the extension the register pressure decreased. Before the
extension was added the applications needed registers and memory locations to hold values in
packed and unpacked form, but with the new bit field extension, this was not necessary. Thus,
memory requirements and cache activity decreased as a result of more efficient register use.

Media extensions to microprocessors are also heavily studied. In 1994, a study at Hewlett-
Packard by Ruby B. Lee [5] showed that by introducing a small set of new instructions to a
PA-RISC microprocessor, enabled for the first time an entry-level workstation to achieve
MPEG video decompression and playback at real-time rates. Since this, digital audio and
video have made progress and is now the future in all major media broadcast systems.
However, the compression methods used require a large amount of processing power. For
example, National Television Systems Committee (NTSC) resolution MPEG-2 decoding
requires more than 400 MOPS, and 30 GOPS are required for encoding [6]. To meet this task,
many microprocessor manufacturers have made special processor cores in order to target real-
time processing of multimedia.

Almost every audio and video compression standard has a lossless entropy coding stage. A
typical video codec system is shown in Figure 2. The lossy source coder performs filtering,
transformation (DCT), subband decomposition, quantization, etc. (these tasks are not covered
by this thesis). The output from the source coder still exhibits redundancy, and the lossless
entropy coder removes this. The rest of this chapter will describe briefly two popular
embedded microprocessor cores for media processing, and how their features may speed up
the entropy coder stage.

Processing Core for Compressing Wireless Data

9

Lossy Source
Coder

Lossless
Entropy Coder

Lossy Source
Coder

Lossless
Entropy Coder

Encoder

Decoder

Channel
Digital

Media In

Digital
Media Out

Figure 2, video codec.

2.1 Phillips Trimedia
TriMedia/CPU [7] is a VLIW (Very Long Instruction Word) core, and it is optimized for
multimedia applications. VLIW means that the core issues one long instruction every clock
cycle, and each instruction consists of several operations. Each operation is comparable to a
RISC machine instruction. In order to process such instructions, the architecture has five
parallel data paths (Figure 3).

Figure 3, phillips trimedia architecture [7].

The instruction set includes some custom operations that may increase throughput for entropy
coders. Among these are 7 instructions for packing, merging and selecting bits. This is an
important feature when dealing with variable length codes. Another feature is the VLD

Processing Core for Compressing Wireless Data

10

(Variable Length Decoder) which is a coprocessor. This coprocessor is made especially to
take care of the Huffman decoding in MPEG1 and MPEG2. The VLD receives as input a
pointer to an MPEG1 or MPEG2 bit stream and some configuration information. After the
initialization, the TriMedia controls the VLD by a set of five commands:

- Shift bit stream by some number of bits
- Search for the next start of the code
- Reset the VLD
- Flush output fifos

The VLD produces as output a data structure that contains all of the information necessary to
complete the video decoding process. This coprocessor is especially developed as a solution
to the serial nature of the entropy coder stage in MPEG1 and MPEG2. Even though the
encoder stage is not the most complex task in these compression methods, it tends to be a
bottleneck because the algorithm makes it difficult to exploit the parallel features of most
media processors.

When coprocessors are used, they may do their task in parallel to the main processor, and
hence introduce parallelism on an algorithmic level when parallelism on an instruction level is
difficult. This is a much used approach, and is often called HW acceleration. When these HW
accelerators are used, they are design to do a large part of a task, like the VLD coprocessor.
However, the cost is often increased gate count and power consumption. If a HW accelerator
is implemented the resulting speed up should be considerable. A big HW accelerator will also
make the design closer to an ASIC. Since it takes on a large portion of a certain task, it may
become useless in other applications. This is the case for the VLD unit, which is designed
especially for the MPEG1 and MPEG2 standard.

2.2 ARM
The ARM (Acorn RISC Machine) is a 32 bits RISC processor architecture that is widely used
in a number of embedded designs; in fact the ARM family accounts for over 75% of all 32
bits embedded CPU’s. The ARM DSP [8] is developed to meet applications that require a
DSP-oriented processor because of their high signal processing content, in addition to handle
complex control tasks. The ARM development team claims that the feature of having a
microcontroller supporting both control and signal processing has many advantages over
traditional solutions based on a separate DSP and control processors. This reasoning also
applies for the enhancement of the NanoRisc. If data compression is to be performed in a
transceiver SoC, it has many advantages if the data compression algorithm could be processed
in the embedded microcontroller. The advantages could be saving power, area, design time,
etc. Figure 4 shows the datapath in an ARM DSP microprocessor.

Processing Core for Compressing Wireless Data

11

Figure 4, ARM9E datapath [8].

The new modules added to support the DSP enhanced extensions is a 32x16 multiplier, a CLZ
(Count Leading Zeroes) module, and two saturation modules. The new arithmetic modules are
of little interest to most entropy coders, but the CLZ module may be useful for some
algorithms. It is controlled by the “clz” instruction, and it counts the number of leading zeroes
in one register and writes the answer to another. ARM has also made additional extensions
toward multimedia applications called NEON [8]. This extension uses SIMD instructions
(Single Instruction Multiple Data) which include bit field operation such as:

- Bit Field Clear
- Bit Field Insert
- Signed Bit Field Extract
- Unsigned Bit Field Extract

ARM has also developed the Cortex-M3 core [8] that is a powerful processor with some
interesting features. In addition to the count leading zero and bit field instructions, its memory
map includes something called bit-band regions. These bit-band regions map each word in an
alias region of the memory to a bit in a bit-band region of memory, i.e. it can address the
memory at bit level in the bit-band regions. The Cortex-M3 core has two bit-bands at the
lowest 1MB of the SRAM and peripheral memory regions respectively.

The features mentioned for the different ARM cores and extensions may be very helpful when
processing compression algorithms. Bit field operations are important when dealing with
variable length codes because they make it possible to access packed codewords within a
register. The bit-band regions will ease reading and writing a stream of variable length
codewords to or from memory, and the count leading zero instruction should be very useful
when decoding Rice-like codewords.

Processing Core for Compressing Wireless Data

12

3 The NanoRisc Processor
The NanoRisc processor was developed as part of a thesis by Peder Rand [9] for Chipcon AS
(now Texas Instruments Norway). Chipcon desired an on-chip firmware processor in order to
cope with the increasing complexity of their SoC products. This processor is designed to
manage internal control and data processing tasks. It is a compact and effective
microcontroller core that can control complex processes and move and process data. The
processor features 13 general 16 bits registers, a full 16 bits ALU, an 8x8 multiplier, a 16 bits
barrel shifter, and a load/store module with auto increment/decrement. It has up to 32 bit-
addressable I/O ports and interrupt handling, which contributes to its easy integration into any
design. It is controlled by a compact and comprehensive set of 16 bits instructions, but is still
capable of immediate 16 bits memory addressing without the use of paging. This chapter will
describe shortly the features of the NanoRisc processor and tools. The interested reader is
referred to [9].

3.1 Architecture
The NanoRisc is a simple RISC processor [10]. It is a load/store architecture which means
that operations can only be performed on data stored in the registers. It features single cycle
execution of all instructions that do not read from memory. A simple overview of the
architecture is shown in Figure 5.

Registers

PC

Instruction Fetch

Load/Store

src

Executing
UnitsI/O

Control

Next PC calculation

Figure 5, simple overwiev of the NanoRisc architecture [reference 8].

Processing Core for Compressing Wireless Data

13

There are three different memory spaces in the NanoRisc. There are 16 addressable registers
(13 general registers, one 16 bits stack pointer, one 7 bits status register, and a 15 bits
program counter), 32 bit-addressable I/O ports (16 input ports and 16 output ports), and a
combined 16 bits program and data memory space. The 13 16 bits general registers are
without any dedicated role, and can be used in any operation where a source and/or a
destination register are required. The stack pointer (SP), status register (SR) and program
counter (PC) have dedicated roles. The SP and SR can be used in all operations where a
source and/or a destination register are required. The I/O ports allow the NanoRisc processor
to connect to peripherals or other NanoRisc processors. These ports are accessed and
controlled by dedicated instructions. The program and data memory of the NanoRisc share
address space, but they have a separate memory bus going out of the NanoRisc. In this thesis,
a separate ROM is assumed for the program memory, and a synchronous RAM for the data
memory. This setup is shown in Figure 6.

Figure 6, memory set up.

The implementation of the NanoRisc is based on a centralized principle where the instruction
is decoded and all control signals are set in the processor control unit (PCU) module. The
multiplexers and registers that implement a module are implemented in their respective
modules. Figure 7 shows the NanoRisc data flow.

Short description of the modules in Figure 7:

• PCU, Processor Control Unit (PCU) decodes instructions and set control signals to the
other modules.

• ALU, Arithmetic Logical Module has two 16bit operand inputs, and consist of a 16
bits carry propagate adder and “xor”, “and”, “or” and an inverter unit.

• FETCH, generates the address of the next instruction to be executed. How this is done
depends on the current instruction.

• I/O, interface peripheral modules.
• MEM, controls the reading and writing of data memory.
• MUL, 8x8 bit multiplication module. It is generated by the infix VHDL operator ‘*’

which produces a multiplier from the Synopsys DesignWare library at synthesis.
• REG, register bank which holds the special and general registers. The module has two

read ports and one write port.
• SHIFT, barrel shifter with one signal path for left shifting and one signal path for

right shifting. The value shifted in may be a carry from the status register or the carry
from the shift operation (which is done when rotating).

• SRC, multiplexer that chooses the source operand for several of the functional
modules.

Processing Core for Compressing Wireless Data

14

REG

REG

MULSHIFTIO

SRC

MEM ALU

REG

PCU

FETCH

Registers

PC

ALU

Rs2

src

reg_m
ux

Instruction Fetch

Load/Store

Status Reg

src

K16

Shifter

Rs2Rs2

I/O

src_mux

Rs

imm

PC

alu_mux_
1

PREimm

Concat

Multiplier

Rs2

mem_d_m
ux

mem_a
_mux

b0

Sign Ext

Control

IW

sr_mux

alu_mux_
0

src

+ +/-

Rs2Rs2

io_d_
mux

Rs

shift_mux

0x0001

adder

bra_imm_
mux

bra_pc_
mux

0x
00

01

pc_next_
mux

pc_next

src

Int_vector

st_imm

Figure 7, NanoRisc data flow diagram.

3.2 Instruction Set
The machine code instruction set of the NanoRisc consists of 55 16 bits instructions. A
summary of the instruction encoding, how many cycles for execution and a short description
is given in Table 4. A NanoRisc assembly language is made from this instruction set. The
default program flow is to execute the next instruction located after the current instruction in
the program memory. This default flow can be overridden by either acknowledging an
interrupt or changing the flow by a branch, call or return instruction, where the interrupt takes
priority.

Processing Core for Compressing Wireless Data

15

Table 4, original instruction encoding.

For the NanoRisc to able to interpret 16 bits immediate values and instructions with 3
operands, a “pre” instruction is used. This instruction will precede the actual instruction, and
it is loaded into a dedicated register in the instruction decoder. The “pre” instruction may also
hold additional information about the execution of the instruction. An instruction which may
use a “pre” instruction will determine how it is interpreted if it is present. Any such
instruction will also clear the dedicated “pre” register. There are currently 5 ways of
interpreting the “pre” instruction, and the way they are encoded is referred to as types. This is
shown in Table 5.

Processing Core for Compressing Wireless Data

16

Table 5, “pre” types and their encoding.

3.3 Tools
There exist two important tools for the NanoRisc processor; an assembler and a simulator.
The assembler encodes the NanoRisc assembly language into machine code. The simulator is
PC software for a windows platform, and it simulates the behavior of the NanoRisc at a cycle
accurate level. It is important to understand how the assembler and simulator are made in
order to modify or enhance them. This section will give a short introduction to the existing
tools.

3.3.1 Assembler
The NanoRisc assembly language is based on the NanoRisc instruction set (Table 4). Each
assembly instruction consists of a mnemonic followed by a possible empty list of arguments,
and enables the user to produce all possible machine code instructions from the instruction
set. To ease the use of instructions that may need “pre” instructions, the assembler will
automatically insert “pre” instructions whenever this is needed.

The GNU Assembly Preprocessor GASP [11] should be used on source code before the
NanoRisc assembler is used. This preprocessor includes support for macros with conditional
statements, loops, variables, inclusion of files and all other wanted preprocessor functionality.
The NanoRisc assembler is implemented as a Windows command-line executable with syntax
as seen in Figure 8.

nr_asm input_file [output_file]
Figure 8, Assembler command line syntax.

Currently, the only supported output of the assembler is a simple dump of the instruction
words in ASCII hex format followed by the word address of the instruction, the originating
filename and line number.

The assembler is written in MS Visual C++ using the lexer generator FLEX [12] and parser
generator Bison [13] to generate the lexer and parser. The lexer reads the input stream
searching for sequences of characters matching the patterns accepted in the programming
language it is reading. The Lexer must therefore recognize all instruction mnemonics,
directives, register names, alias identifiers, constant values and operators used in the
NanoRisc assembly language. When the Lexer is called, it returns a token with corresponding
value, an error or end of file. The parser uses a description of the syntax of the programming
language to identify constructs of the language that give meaning, and it sees the program as
sequence of program lines that can be an instruction, a label definition or a directive. When
one of these program line types is identified, the parser expects a list of arguments of the
correct type.

Processing Core for Compressing Wireless Data

17

3.3.2 Simulator
The NanoRisc instruction set simulator (ISS) simulates the behavior of the NanoRisc
processor at a cycle accurate level. This means that after execution of one clock cycle of a
program, its status is the same as for a processor running with the same input. The NanoRisc
ISS is written in MS Visual C++ using the Microsoft Foundation Class (MFC) library for
window handling.

The simulator has a graphical user interface (GUI) that provides a simple way to supervise
and control the simulation. The most important features of the ISS are listed below, and a
screenshot is shown in Figure 9.

• Memory view for viewing specified addresses in memory.
• Possibility to load data memory contents.
• Reload button to quickly restart simulation.
• I/O view of specified I/O ports with hexadecimal and graphical representation.
• Register overview.
• Cycle counter, program counter and current instruction word clearly displayed
• Full disassembler
• Code view showing instruction word, program address, filename, line number,

assembly code and the number of times it has been executed for each instruction in the
program.

• Highlighting of current instruction and color coding of most visited instructions
• “Run”, “Step” and “Run to cursor” modes with possibility to break execution at any

point.
• Unlimited number of user defined breakpoints.

Figure 9, NanoRisc ISS screenshot.

Processing Core for Compressing Wireless Data

18

4 Implementation of the Compression Algorithms
To identify possible improvements of the NanoRisc processor, three different compression
algorithms are implemented with the current instruction set and HW capabilities. A short
theoretical introduction to the three algorithms is represented in section 1.2.1. In that section it
is also a short discussion of why these compression algorithms where chosen for
implementation. The main argument was their fundamentally different methods of encoding
and decoding the data stream. In the actual implementation, other important differences
become more visible, and may in fact dominate. Since all three methods are heavily
dependent on the modeling stage, they require large supporting data structures for this task.
To explore the capabilities of the NanoRisc microprocessor different data structures are
chosen, and all algorithms are implemented with adaptive one-pass modeling stages. A short
summary will be given in here, but the differences will become more evident in the next
sections where the implementations are explained in detail.

• Rice coding is implemented with sorted tables that gives each symbol a code value
according to its index.

• Huffman coding is implemented with a binary tree data structure. The tree consists of
linked nodes.

• LZ77 is implemented with a hash table and linked lists. The hash value is made from a
CRC hash function.

The algorithms are written in the NanoRisc assembly language, and the enhanced NanoRisc
assembler makes the instruction words. All assembly source codes are found in appendix E.

4.1 Implementation of Rice Coding
From section 1.2.1.1 it is evident that the most demanding task of Rice coding is making a
good modeling stage and the calculation of the k-value. The encoding stage is just bit shifts
and bit masking, and decoding is counting zeroes and bit masking. The implemented k-value
calculation is developed by the author [14], and the modeling stage uses tables to sort the data
stream according to frequency counts. The tables will assign low code values to high-sorted
symbols. A simple flowchart of the implementation is shown in Figure 10. The k-value
calculation and the modeling stage will be described in detail in the next subsections.

Processing Core for Compressing Wireless Data

19

Uncoded
symbols

Get next symbol
and find code

value from table

Find code value
from table and

Encode

Last symbol?

Increment count
and update tables Maintain tables

codeword

If overflow

No

Finish

yes

Coded Input
stream

Get next codeword
from input stream

and decode

Find symbol from
table

Last symbol?

Increment count
and update tables Maintain tables

symbol

If overflow

No

Finish

yes

Calculate new k
value

Every 16
symbols

Calculate new k
value

Every 16
symbols

Encode Decode

Output
stream

Decoded
symbols

Figure 10, the Rice algorithm flowchart.

4.1.1 Calculating the K-value
From the description in section 1.2.1.1 it is clear that the optimal k-value is dependent on the
entropy of the input stream. A mathematical analysis regarding the k-value was established by
Dr. Penshu Yeh, R. F. Rice, and W. Miller at the NASA’s Goddard Space Flight Center
(GSFC) in 1993 [15]. The analysis showed that Rice codes with different k-values basically
were Huffman codes for different input streams with different geometrical probability
distributions. From this reasoning, it was shown that the optimal k-value could be found using
this equation:

Eq. 6)(log2 nk = ;[15]

Where n is the average coded symbol value.

Many different methods have been developed to approach this equation. The equation by
itself is not complex, but any hardware realization usually requires approximations. One
method recommended by the CCSDS sub panel as the standard encoding method for lossless
data compression in space applications, avoids any calculation of the optimal k-value by
encoding the input stream in parallel with different k-values [16]. After encoding, the shortest
encoded output stream is chosen for transmission. However, the parallel nature of this method
is difficult to implement efficiently with one NanoRisc microprocessor. An approach to the
actual equation is used in the JPEG-LS standard for image compression [17]. The method

Processing Core for Compressing Wireless Data

20

calculates the k-value adaptively as it encodes the input data stream. From equation 6 it is
clear that the most exhaustive part is averaging over a large amount of symbols. A way to
compensate for the large averaging is calculating k for a given number of past symbols. The
method used in JPEG-LS is shown by equation 7.

Eq 7 { }ANkk k ≥= '2|'min ;[17]

Where N is the count of symbols used for averaging, and A is the accumulated sum of values
to be encoded.

Even though equation 7 is more hardware friendly than the original equation, it still requires a
bit-shift, a comparison and an accumulation in every iteration. Equation 7 is also a bit more
optimistic when calculating the k-value than the original equation (Figure 11). The method
used to adaptively calculate the k-value in the implementation is an approach developed by
the author [14]. This approach is a sort of middle course between the CCSDS
recommendation and the JPEG-LS method. The method uses a fixed symbol count for
averaging which can be described by 2b, where b is a positive integer. An approximated
averaging of the accumulated symbol values is then made by b right shifts. The k-value is
further approximated by finding the position of the msb in the shifted value. Figure 11 shows
the calculated k-value using the original equation, the JPEG-LS method and the alternative
approach. The calculations are done using a symbol count of 16, and accumulated symbol
values from 0 to 240 (16*15). In the implementation, the k-value is calculated for every 16
symbol and the initial value is 2.

Figure 11, calculation of the k-value using equation 6, the JPEG-LS method and the alternative approach.

(symbol count is 16) [14].

4.1.2 Modeling Stage
Since Rice coding makes codewords directly from the value to encode, it is usually
implemented together with a prediction stage. A prediction stage may be described as a digital
high pass filter. This method does not require a large supporting data structure, but it requires
a source that produces samples that results in small values after the prediction stage. This is

Processing Core for Compressing Wireless Data

21

typical for e.g. audio and sensor data. However, in order to make the modeling more general,
sorted tables are used.
The table is sorted with descending frequency count. When a symbol has been encoded or
decoded, it gets its frequency count incremented. If another symbol value with lower
frequency count is placed higher in the table, they will swap places. The symbols placement
in the table (index) becomes the code value that is Rice coded. If e.g. symbol 6 is found in
index 4, the encoder will encode the value 4. When this code value is decoded, and the
decoder has sorted its table in the same way as the encoder, the decoder will find symbol 6 in
index 4.

There are many ways of implementing this method, but careful considerations of memory use
and run time should be made. The most straightforward approach is to implement one table
with symbol values and their frequency count. This implementation is memory efficient, but
exhaustive searches for symbol values and frequency counts would result in long runtime.
The implemented method use two tables; the “symbol index table” and the “code index table”.
An example of these two tables is shown in Table 6. The “symbol index table” is sorted on
descending symbol value, while the “code index table” is sorted in descending frequency
count. When encoding, the code value is found by using the symbol value as index to the
“symbol index table”. After encoding the code value is used as index to the sorted “code
index table”, and the frequency count for the encoded symbol is incremented in both tables.
Sorting is then performed by comparing frequency counts in the ”code index table”. Since
frequency counts are only incremented and the table is sorted for each symbol encoded, the
average search for higher frequency counts tends to be short. The search is stopped when a
higher or equal frequency count is found, and a swap is performed with the previous index. A
swap is of course not needed if the previous index belongs to the current incremented symbol.
If a swap is needed, the two rows in the code entry table and the code values in the symbol
entry table are swapped.

 Symbol Index Table Code Index Table
Index Frequency Count Code Value Frequency Count Symbol Value

0 13 3 32 5
1 13 4 25 3
2 19 2 19 2
3 25 1 13 0
4 13 5 13 1
5 32 0 13 4
6 4 7 10 8
7 2 8 4 6
8 10 6 2 7

Table 6, Table example for the implementation of the sorting method

If e.g. symbol 4 is incremented to 14 in Table 6, the code value in index 4 is used as index to
the “code index table”. In this table, the search will begin at index 5 and stop at index 2. From
index 3, symbol 0 is found. The swap will hence be performed on symbol 4 and 0. First the
row at index 5 and 3 in the “code index table” are swapped, and then the code value in index 4
and 0 in the “symbol index table” are swapped. The symbol size in the implementation is 8
bits and frequency counts are also 8 bits. Total memory use becomes 2*28*8 = 8192 bits for
the two tables.

Processing Core for Compressing Wireless Data

22

4.2 Implementation of Huffman Coding
Many implementations of Huffman coding use a static Huffman tree in the encoder and
decoder. This is because it requires significant processor power to build and maintain an
adaptive Huffman tree. However, to explore the capabilities of the NanoRisc processor, an
adaptive Huffman algorithm is chosen for implementation. Figure 12 shows the flowchart of
the implemented method. The next subsections will describe the adaptive tree structure and
how this is implemented.

Uncoded
symbols

Get next symbol

Encode

Last symbol?

Increment and sort
tree

No

Encode EOS

yes

Encode

Add symbol to treeIf new
symbol

codeword

Coded Input
stream

Get next codeword
from input stream

Decode

Increment and sort
tree

Finish

Decode

Add symbol to tree

Symbol

If new
Symbol

If EOSOutput
stream

Decoded
symbols

Figure 12, the Huffman algorithm flowchart.

4.2.1 Updating the Huffman tree
Effective algorithms for constructing Huffman trees are usually fairly simple (section 1.2.1.2),
but it is not something that should be done after each symbol has been encoded or decoded.
This would slow down the process significantly. Because of this, a method to take an existing
Huffman tree and adaptively modify it to account for every symbol in the input stream must
be used. A Huffman tree is a binary tree that has a weight assigned to every node, whether an
internal node or a leaf node. Each node (except for the root) has a sibling that shares the nodes
parent. In order to be a Huffman tree, the tree structure must exhibit something called the
sibling property. A tree exhibits sibling property if the nodes can be listed in order of
increasing weight, and if every node appears adjacent to its sibling in the list. Figure 13 shows
a Huffman tree where every node have a weight W and a number # indicating the nodes order
in a sorted list. This arrangement shows that the tree exhibits the sibling property because
every node is adjacent to its sibling in a sorted list.

Processing Core for Compressing Wireless Data

23

Figure 13, Huffman tree showing the sibling property.

Updating of a Huffman tree is done by incrementing the weight of every node when
traversing the tree from the root node representing the current symbol to the root. Maintaining
the sibling property when a tree is updated ensures that it is a Huffman tree. Since the tree is
incremented for every symbol the parent nodes will always have the accumulated weight of
its children.

The increment operation may result in a violation in the sibling property. When this happens,
the tree must be rearranged. If a violation occurs, the node being incremented must swap
place with a node higher in the sorted list. Swapping an internal node will affect the whole
branch. If symbol A is encoded or decoded in the Huffman tree in Figure 13, leaf node A will
first be incremented to W=3. This increment will violate the sibling property since other nodes
higher in the list have less weight. The first swap must be between node #1 and #4 in the list.
After the nodes have been swapped, the increment operation must continue with node #6 and
#7. When node #7 is incremented it must be swapped with node #8. The resulting Huffman
tree with updated weights and order is shown in Figure 14.

Figure 14, updated Huffman tree.

Processing Core for Compressing Wireless Data

24

4.2.2 Implementing the Tree Data Structure
The tree is implemented with nodes that each has pointers to its parent and/or children. The
use of pointers enables the nodes in the tree to be ordered in a sorted list, since they do not
have pre defined memory locations. Traversing the tree is done through pointers, and
searching for higher sorted nodes is done by calculating indexes in the sorted list. When
choosing this data structure in an environment with strict memory requirements, it is
important to hold the memory occupied by a node as small as possible. If the input stream
consists of an alphabet of k symbols, a full Huffman tree requires k-1 internal nodes and k leaf
nodes. For 8 bits symbols, a full Huffman tree will thus require 511 nodes. If any node should
be able to have a pointer to any other node in the Huffman tree, the pointer must be at least 9
bits. An internal node must therefore have 3*9bits reserved for pointers, and a leaf node must
have one 9bits pointer to its parent. A leaf node must also have 8 bits for its symbol value. In
addition, all nodes must have bits for weight and an indicator telling what kind of node it is
(internal, leaf, left or right child).

Figure 15, node memory structure.

Figure 15 shows how the node data structure is allocated in the memory. The weight is
restricted to 14 bits which makes the maximum number of symbols encoded or decoded
before truncating 16384. All nodes allocate 3 fields of 16bits in the memory. When a node in
memory location has its first field at memory address a, the next higher sorted node is at
memory address a+3. Since there is no way of telling where in the memory a leaf node is
situated, the encoder must also have a table of memory addresses to every leaf node. Thus, the
static memory allocation required for the encoder is 3578 bytes, while the decoder requires
3066 bytes.

There are three main ways of initiating the Huffman tree when encoding and decoding. The
first method is starting with a fully balanced Huffman tree with all symbols, the second is
using a predefined weighted Huffman tree. The third and implemented method starts with a
Huffman tree of two leaf nodes and the parent (root) node. Figure 16 shows how this tree
looks like. When a never before seen symbol is encountered in the input stream at the
encoder, it transmits the code found by traversing the tree from the root to the NS (New
Symbol) leaf node. After this, it can send the new symbol without encoding it. The new
symbol must then be inserted as a new leaf node in the Huffman tree. The EOS (End Of
Stream) leaf is used at the end of the stream. By applying this method, the tree will not
occupy more memory than needed and symbols may acquire short codewords earlier in the
encoding process. Since the incrementing operation is proportional to the average code length,
this method will in most cases require less processing power in the beginning of the stream.

Figure 16, initial Huffman tree.

Processing Core for Compressing Wireless Data

25

4.3 Implementation of LZ77
The LZ77 compression method was first described in 1977, and during the 1980s and 1990s it
was improved several times. Much effort was put into minimizing search time and coding
indexes with variable length codes. One of the improved methods is Deflate. This has become
a popular compression method that was originally used in the well-known Zip and Gzip
software. The method has since been adopted by many applications such as the HTTP
protocol, the PNG graphics file format, and Adobe’s PDF (Portable Document File). The
compression method implemented in the NanoRisc processor is a very simplified version of
Deflate developed by the author. This section will first describe the simplified Deflate
compression method before describing details of the implemented data structure.

4.3.1 Simplified Deflate
The Deflate compression method is described in detail in [18]. Deflate is a variant of the
LZ77 compression method combined with Huffman codes. The original LZ77 method outputs
an index to a match and the next symbol in the look-ahead buffer that did not match. By
always outputting two components (index and next symbol), the performance of LZ77 is
reduced. The Deflate variant eliminates one of the components. If a match was found it
outputs the index, or if a match was not found it outputs the next symbol in the look-ahead
buffer. Thus, the output stream consists of two types of entities; symbols and indexes. In order
to separate these two entities, they are Huffman coded using a static code table. The
codewords are prefix codes such that the decoder knows when it reads a symbol or length. If
it reads a length, it assumes that a distance will follow.

The reason for making a simplified version of Deflate is mainly to ease memory requirements
by not storing large Huffman code tables, and utilizing the fact that most wireless
transmission is based on small data packets. The minimum length of a match in Deflate is 3,
and the maximum is 257. The maximum distance is 32768. It is evident that a distance of
32768 is not needed in most wireless applications, and a length of 257 would span over most
packet lengths. The ZigBeeTM standard uses a maximum packet size of 128 byte with 104
bytes of payload [19], and the Bluetooth® standard use a maximum packet size of 359bytes
with about 340bytes of payload [19]. In the simplified implementation of Deflate, the
maximum length is 150 and the minimum length is 3. The search buffer should cover a
number of packets to achieve high compression ratios, but it requires memory to store used
packets. A maximum search buffer of 1279 is used in the implemented version. Instead of
having prefix Huffman codes, a fixed 3 bits prefix of what to follow in the data stream is
used. Each prefix is listed in Table 7. A prefix precedes every symbol or index, except for the
EOS prefix that follows the last symbol or index in the encoded data stream.

Indicator Meaning
000 EOS (End of Stream)
001 8bits symbol
010 2bits length, 8bits distance (length:3-6, distance:0-255)
011 4bits length, 8bits distance (length:7-22, distance:0-255)
100 7bits length, 8bits distance (length:23-150, distance:0-255)
101 2bits length, 10bits distance (length:3-6, distance:256-1279)
110 4bits length, 10bits distance (length:7-22, distance:256-1279)
111 7bits length, 10bits distance (length:23-150, distance:256-1279)

Table 7, indicators for simplified Deflate

Processing Core for Compressing Wireless Data

26

Figure 17 shows a flowchart of the simplified Deflate compression algorithm. The encoding
and decoding is like described above. The next subsections will describe how the encoder
search for matches and how different data structures make this process as efficient as possible.

Uncoded
symbols

Make hash value
of the next three

symbols.

Search the linked
list for the longest

match. Add current
index to the list

Last symbol?

Find prefix and
encode index

No

Encode EOS

yes

Encode

Output
stream

Find prefix and
append symbol

If no matches
found

codeword

codeword

Coded input
stream

Find next prefix

Find symbols from
decoded output

Decoded
Symbols

Get symbol from
input stream

If
index

If symbol

Finish

If EOS

symbolsymbols

Decode

Figure 17, the simplified Deflate flow chart.

4.3.2 Searching for Matches
The most time consuming task in the LZ77 coding method is searching for the longest match.
This can be shown from the theoretical description of LZ77 in section 1.2.1.3. A
straightforward approach could be to exhaustively search for a match by reading the whole
search buffer for every new symbol in the input data stream. This approach would require
very little memory allocation, but it would have extensive memory access and long run time.
This is a common problem for dictionary methods, and is mainly the reason for their highly
asymmetrical behavioral. Repetitive sequences of symbols must be replaced by a codeword,
and if this is to be done efficiently, sequences must be found through some sort of dictionary
data structure. A dictionary data structure, from now on also referred to as the dictionary,
helps finding an index for a match in the search buffer for the next sequence to be encoded in
the look-ahead buffer. There are many ways of implementing dictionaries, and the throughput
and memory usage of dictionary methods are very much dependent on how this is done.

An often used dictionary is the trie data structure. A trie is essentially a tree where each edge
is labeled with a symbol, and sibling edges have different symbols. Thus, every sequence in
the search buffer can be found by traversing the trie from the root to a leaf. Even though tries

Processing Core for Compressing Wireless Data

27

are often used to hold dictionaries, this kind of data structures is not used in the simplified
Deflate implementation. The main reason is the heavy use of a tree data structure in the
implementation of the adaptive Huffman compression method (section 4.2). Another method
of holding the dictionary is therefore preferred.

Hash tables are also used to help the search for sequences in dictionary compression methods,
and this is the method chosen for implementation. Hashing is performed by a hash function,
and is usually used to associate keys with values. The most common use is hash tables where
the hash function transforms a key into an index in a hash table. The hash table is then used to
locate the desired value. A good hash functions main features is to produce a hash value of
fixed length from an input key, and where two different keys are unlikely to produce the same
hash value. If two hash values are different, the two input keys must have been different in
some way. This property is a consequence of hash functions being deterministic,
mathematical functions. Nevertheless, the feature of producing values of fixed length from a
key of arbitrary length implies that different keys may produce the same hash value.

There are many types of hash functions available, and it is important to spend some time
choosing a hash function. A good hash function has evenly distributed hash values, and it may
be considered as a random number generator. A good hash function will thus minimize the
probability of different symbol values generating equal hash values (this is often referred to as
collisions). In [20] different hash functions are compared. This paper concludes that
checksums generated from standard CRC polynomials provided an excellent hash function.
CRC hash values are the remainder of a division based on polynomial arithmetics in a finite
field [21]. This hash function is commonly used in packet network traffic or data files to
detect errors after transmission or storage. Normally, the result of a CRC hash function is
referred to as a checksum, but this is not an accurate term since a checksum would be
calculated through addition and not through division, as is the case for a CRC hash function.
In this thesis, the result of the CRC function will be referred to as a hash value.

4.3.3 The Dictionary Data Structure
The hash function implemented is based on the CRC8 CCITT standard polynomial [22].
There are several ways of implementing this hash function. The simplest method uses bit
shifts and “xor” operations in a Linear Feedback Shift Register (LFSR). This method is
simple and easy to implement, but it requires one calculation for every bit. To speed up this
process, the implemented method uses look up tables for calculating the hash value for every
byte. The look up table contains pre calculated hash values for every byte value, and must be
stored in memory. Each pre calculated hash value is 8 bits, so the table requires 256 bytes of
memory.

To speed up the search process in the encoding algorithm, every three consecutive symbols in
the stream are hased to an 8 bits value. The 8 bits hash value is used as an index to a hash
table. In every index there is a pointer to a linked list. The linked lists contain the pointer to
every three-symbol sequence in the search buffer that produced the same hash value. The
search is then restricted to finding the longest match starting from any of these pointers.
Figure 18 shows how the linked lists are linked to the hash table and how they expand.

Processing Core for Compressing Wireless Data

28

Figure 18, hash table with linked lists

The implemented linked list data structure does not have a limit for its expansion. This is not
advised for large search buffers or when dealing with strict memory requirements. A sort of
maintenance function should be considered for other implementations. If this is not
implemented, the search for matches will be very time consuming in a data stream with many
collisions. The memory use for this method is the look up table used in the hash function, the
hash table and the linked list. The hash table is 256*1byte, and the hash table with the linked
list could potentially grow as large as 256*2bytes + 1000*4bytes = 4512 bytes without a
maintenance function. This is in most cases unacceptable for embedded solutions.

Processing Core for Compressing Wireless Data

29

5 Enhancements of Existing Tools
To measure the current capabilities of the NanoRisc microprocessor and the effect of
improvements made, it was necessary to add some functionality to the existing software tools.
This section will describe how the profiling tool is added, and how the assembler and ISS are
altered in order to simulate the proposed HW enhancements. Both the enhanced NanoRisc
assembler and ISS are found as executables in appendix E.

5.1 Profiling
After the compression algorithms are implemented in the NanoRisc assembly language, it is
necessary to profile the resource use when the source code is processed by a NanoRisc
microprocessor. A good profiling tool is vital for exploring where processing power is
consumed in the algorithms. Estimations are always possible to do from studying technical
descriptions or source code, but the real picture is shown through profiling with realistic input
data. Since all compression algorithms are heavily dependent on the source data, profiling
could visualize unexpected bottlenecks and show where the best improvement potential is.
Nevertheless, estimations must be done to evaluate where in the algorithm attention and
profiling should be focused.

When these elements are found, there must be some way of telling the ISS where in the code
profiling is wanted. The easiest way to implement this feature would be to use the GUI. The
user could mark areas of code for profiling in the source code window of the ISS, but since
the code in this window may originate from multiple included files and do not show labels
and aliases, this approach would not be easy to use. The best way for the user would be to
specify areas for profiling in the original assembly source code. This implies that
enhancements of both the NanoRisc assembler and the NanoRisc ISS are necessary.

5.1.1 Profiling With the Assembler
The profile enhancement of the assembler enables the user to specify which areas of the
source code that profiling is wanted. Profile labels define the areas, and the syntax is shown in
Figure 19.

.start_profile identifier [category]

.end_profile identifier
Figure 19, profile labels syntax.

The “.start_profile” label indicates that the start of a profile area begins at next instruction
line, and the “.end_profile” label indicates that the end of a profile area is at the prior
instruction line. A pair of “.start_profile” and “.end_profile” labels with the same unique
identifier defines a specific profile area. Several profile areas may overlap, as long as they
don’t start or end at the same instruction line. When an instruction line is being executed, the
resource usage is credited to the profile area that is defined for that instruction line. If profile
areas overlap, the same resource usage will be credited to all overlapping areas. Every call or
branch within a profile area will be credited, and this makes placing “.end_profile” labels
critical. A branch or call inside a profile area could result in undesirable effects such as
making the end of the profile area unreachable.

Processing Core for Compressing Wireless Data

30

The category part of the “.start_profile” label is optional. If a category is specified for a
profile area, all resource use credited the profile area is also added to the category. Multiple
profile areas may use the same category, and the category will hold the sum of the resources
used by the profile areas. This is convenient when elements of the same kind are situated in
different locations in the source code.

5.1.1.1 Implementation
The enhanced assembler is made by altering or adding to the original source code. The lexer
is altered to recognize the “.start_profile” and “.end_profile” tokens, and the parser is altered
to identify profile labels with identifier and category arguments. Every time the assembly
program reads a profile label, it will create a profile object and link it to the correct instruction
line. The profile objects are made from a profile class, and a linked list data structure is made
to organize these objects. Both the profile class and data structure is added to the original C++
source code. It is a separate linked list data structure for “.end_profile” objects and
“.start_profile” objects. When the assembler has read the assembly source code, it resolves
these two data structures to ensure that every “.start_profile” object has a corresponding
“.end_profile” object. The output from the original assembler is a line for every instruction
word in ASCII hex format followed by the word address of the instruction, the originating
filename and line number. The new profile enhancement will output three additional
information fields for every instruction line; a number indicating if the instruction is the start
or end of a profile area, the identifier of the profile area and the category.

5.1.2 Profiling In the Simulator
As mentioned, the ISS simulates the behavior of the NanoRisc at a cycle accurate level, it is
therefore convenient to profile by measuring the amount of clock cycles used within the
profiling areas defined in the source code. Another important measure is the amount of
memory access, and this is also feasible by enhancing the original ISS. The new GUI of the
enhanced ISS is shown in Figure 20. From the figure, one can see the resemblance from the
original GUI in Figure 9. Altering the original GUI as little as possible will help users of the
original ISS using the new profiling tool. The only profile information visible in the new GUI
is the “Profile” button, the “Prof. Identifier” column in the program window, and the count of
memory load and store operations. It will only show RAM access since the NanoRisc will
fetch a new instruction from the ROM almost every clock cycle.

To do profiling in the enhanced NanoRisc ISS, it must be loaded with a file containing the
output from the enhanced NanoRisc assembler described in section 5.1.1. If the source code is
made with profiling labels, their identifier will be shown in the “Prof. Identifier” column on
the correct instruction line. Instruction lines that correspond to a “.start_profile” label will
have the prefix “S” before its identifier, and instruction lines corresponding to an
“.end_profile” label will have “E” as prefix. The two counters showing memory load and
store operations will update for every step in the simulation. They will not show the amount
of clock cycles used for load and store operations, but the amount of times the memory is
accessed during the simulation. In other words, the load and store counters profile the
memory access at an instruction accurate level.

Processing Core for Compressing Wireless Data

31

Figure 20, enhanced NanoRisc ISS GUI.

The profile window shown in Figure 21 will appear if the “Profile” button is pushed. Profile
areas defined in the assembly source code are shown in two tables, and the categories are
shown in the third. This window can be shown by pushing the “Profile” button any time
during the simulation, and it will show the profile information gathered so far. Profile areas
listed in the “Active Identifiers” table are areas that embraced the instruction line executed at
the time the “Profile” button was pushed. The “Passive Identifiers” table show profile areas
that are not affected by the current instruction line. Both the “Active Identifiers” table and the
“Passive Identifiers” table have four columns; “Identifier” is of course the name of the profile
area, “Cycles” is the amount of cycles credited the profile area, “Calls” is the amount of times
the instruction line with the profile areas “.start_profile” label have been executed, and “Per”
is the percentage of the total amount of clock cycles which are credited that profile area.

The “Categories” table show profile information for the categories defined in the assembly
source code. It is not visible in the profile window which profile areas belong to which
category, so profile areas should be defined with identifiers that give a hint of which category
they belong to. If the profile area is not defined with a category, a category with the same
identifier as the profile area is listed in the table. All tables are ordered by descending cycle
count.

Processing Core for Compressing Wireless Data

32

Figure 21, Profile window

5.1.2.1 Implementation
The enhanced NanoRisc ISS is made by altering or adding to the original source code. When
the ISS is loaded with a file made from the enhanced NanoRisc assembler, it will look for
indicators at every instruction line that tells if the line is the start of a profile area, the end of a
profile area, or neither. If the instruction line is the start of a profile area, the simulator will
create a profile object. Profile objects are made from a profile class, and are held in a linked
list data structure. If the profile area is defined with a category, a category object will be
created from a category class if it is not already created by earlier profile areas. If the profile
area is not defined with a category, a category object will be created with the profile areas
identifier as name. All profile objects are linked to their category objects.

The profile objects are organized in two separate linked list data structures during simulation.
One linked list holds the profile objects affected by the current instruction line executed in the
simulation, and the other list holds the profile objects not being affected. These lists are called
the active and passive list. If the instruction line currently being executed is the start of a
profile area, the profile object corresponding to that profile area will be removed from the
passive list and added to the active list. When an object is moved in this direction, it will also
have its “call” count incremented. If the instruction line is the end of a profile area, the
corresponding object is moved from the active list back to the passive list. For every clock
cycle of the simulation, all profile objects in the active list will have their clock cycle count
incremented. And every time a profile object is incremented, it will also increment the clock
cycle count of its linked category object. So if e.g. a category has two overlapping profile
areas, it will be incremented twice when both profile areas are “active”.

When the “Profile” button is pushed, the linked list data structures holding the active, passive
and category objects are passed to the profile GUI object. The profile GUI class is added to
the original C++ source code. Before the data is shown, all objects in their respective lists are
sorted with descending cycle count.

Processing Core for Compressing Wireless Data

33

5.2 Adding New Instructions
In addition to making changes in the hardware module, it is vital that the assembler is able to
make code words for the added instructions. This makes it simpler to verify the correct
behavior by using actual source code as input to the test bench. To profile and control the
behavior, the simulator is also altered in order to simulate the behavior of the NanoRisc
according to the changes made.

5.2.1 Adding New Instructions to the Assembler
The lexer is altered to recognize the new instruction mnemonics and their operators. The code
words bit pattern must also be defined, and the code generator function must be able to insert
parameters in the defined fields. In addition, it must be able to detect when the new
instructions need “pre” instructions and insert these. The operation of adding new instructions
to the assembler is straightforward for readers who are familiar with lexer and parser
generators [12, 13].

5.2.2 Altering the Behavior of the Simulator
In order to simulate the algorithms with added instructions, the behavior of the simulator must
be altered. The simulator must recognize the code words and be able to interpret these into the
desired behavior. The first task is to alter the disassembler that interprets the instruction into
more human readable assembly language. In order to do this it must be able to retrieve
parameters from the instruction itself or the “pre” instruction. After this, new functions must
be added in order to simulate the behavior and show the correct response to the user in the
GUI. The new instructions and behavior is added as options to the original simulator. A new
button (“NewISA”) is added so the user may turn on or off these changes. When this button is
clicked, a new dialog window appears so the user can choose the preferred collection of new
behavior. Figure 22 shows this dialog window. This is done in order to do controlled
simulation with the desired behavior. It is also useful if some of the enhancements are
rejected, or if it is desirable to implement different versions of the NanoRisc with only a
collection of the enhancements.

Figure 22, new ISA dialog window.

Processing Core for Compressing Wireless Data

34

6 Finding Enhancements for the NanoRisc Processor
This chapter will explore the capabilities of the NanoRisc microprocessor when processing
the implemented algorithms. Based on these profiling results, new instructions and behavior
are proposed and implemented in the simulator. Finding improvements are done in two stages,
and after each stage proposals are made to increase performance. In the first stage, blocks of
codes that emulate possible new instructions are identified and profiled. This is referred to as
instruction level profiling. Instruction level profiling is difficult. Small blocks of instructions
that may increase performance by replacing them with new instructions must be identified. In
the second stage, the blocks of codes are replaced by proposed instructions, and the source
codes are profiled once again to find improvements on an algorithmic level. Algorithmic level
profiling is profiling major parts of the compression algorithms, e.g. decoding, encoding,
updating data structures, etc. These are easy to identify and is often implemented as functions.

All algorithms are tested on four different data streams. A software program is developed to
make three of the data streams. This program creates random numbers from different
probability distributions. The source code for this program is found in appendix E. The last
stream is made from a section of text in this thesis. The streams generated from the software
program have Gamma, Poission and exponential probability distributions. All data streams are
1000 byte, and their symbol distributions are found in appendix B.

Improving throughput of the algorithms may be done in different ways, e.g. parallelization,
pipelining, instruction level accelerations, hardware accelerators etc. Parallelization of the
NanoRisc would require a redefinition of the NanoRisc architecture and behaviour. The
compact original NanoRisc instruction set is not big enough to handle parallel processes, and
a VLIW type instruction set must be considered. A parallelization of the NanoRisc will not be
considered since this will alter the basic principles of the processor, and it would be hard to
support programs made with the original instruction set. Pipelining will improve instructions
that use several clock cycles, but since the only instructions that use more than one clock
cycle in the original instruction set are load operations, it will have minimal effect on the
processing power of NanoRisc. The two main enhancements considered are instruction level
acceleration and hardware accelerators.

Instruction level acceleration is about finding ways to add instructions and architectural
features that is beneficial for the algorithms, and hopefully also beneficial to other tasks that
the processor might be doing. This kind of acceleration is tied very close to the processor
core, but it is less intrusive than parallelization and pipelining. Instructions and architectural
changes may be added while old programs are still supported. Hardware accelerators are
dedicated HW that is designed to do a large portion of a specific task. They are usually
detached from the processor core, but still tied closely through memory or buses for low
latency communication. Since HW accelerators often do a large portion of a specific task and
are heavily optimized, they are usually not very useful for other tasks that the processor might
deal with. Other considerations when it comes to HW accelerators are power and area. When
accelerators take on a big portion of the total load, it is usually exposed in the power and area
consumed. Adding all too specific accelerators will also make the design closer to an ASIC.

Processing Core for Compressing Wireless Data

35

6.1 Instruction Level Profiling
Since all of the implemented algorithms use variable sized codes to achieve compression,
instructions that are able to do bit field operations are something that may increase
performance. Bit field operations are operations that use variable or a fixed sized part of a
register as input. Operations may be anything from moving or inserting bit fields to arithmetic
or logical operations. Examples of blocks of instructions from the source codes that do bit
field operations are found in Figure 23 and Figure 24.

Figure 23, example insertion of a bit field (6 clock cycles).

Figure 24, example addition on a bit field (3 clock cycles).

Since many of these blocks use several clock cycles when processed, one can expect that new
instructions may be implemented to reduce the amount of clock cycles. Many existing
processors have bit field instructions. As mentioned in chapter 2, both Phillips TriMedia and
ARM – DSP have bit field instructions for extracting, inserting and bit-packing. In addition to
saving clock cycles, bit field operations may also save RAM access. When instructions are
able to work with bit fields instead of whole registers, the information held in the general-
purpose registers in the processor can be packed more efficiently and RAM usage may
decrease. In addition to bit field operations there are also other instructions that may help
increase processing power. Such instructions may be shift-add instructions, detection of the
position of the most or least significant bit in a register, instructions for making bit masks, etc.
Shift-add instructions are common in most digital signal processor. Since the NanoRisc
processor can address the memory at byte level, loading and storing words must be done with
even memory addresses. Most shift-add operations are hence used to make memory addresses
for table indexes, an example is shown in Figure 25. Intel 80x86, Motorola 680x0 and many
ARM cores (to name a few) have instructions for finding leading or trailing ones or zeroes.
Such an instruction is especially useful for the decoding stage in the Rice algorithm.

Figure 25, example shift add operation for index storage (3 clock cycles).

The new potential instructions identified in the assembly source code are gathered in three
main categories; Bit Field Operations, Shift-Add Operations and Count Leading Zeroes. The
rest of this section will show the result from profiling these operations. Detailed profiling
results are found in appendix C.

Processing Core for Compressing Wireless Data

36

6.1.1 Profiling Rice
Table 8 shows the results from the Rice algorithm. The table shows the total amount of cycles
used by the operations per total amount of cycles used by the algorithm. In addition to the Bit
Field, Shift-Add operations and the Count Leading Zeroes (CLZ) operation, the RAM access
is shown as load/store operations. The cycles/call column shows how many clock cycles the
profiling area use on average every time it is moved to the active list. Even though the basic
algorithm is symmetrical, the decoding use more clock cycles than the encoding. This is
mostly because the use of the CLZ operation in the decoder. The CLZ operation is used when
the zeroes in the rice codeword is counted. This is done through shifting the codeword until a
one is detected. The operation could be done more effectively by a more recursive operation
or by using look up tables, but this would increase the program size and use more memory.
The CLZ operation is also used when calculating the k-value.

 Encode Decode
 Cycles/Tot.Cycles Cycles/Call Cycles/Tot.Cycles Cycles/Call
Distribution: Poisson (Tot. Cycles: 93275) Poisson (Tot. Cycles: 112490)
Bit Field Operations 9.60% 4.50 8.50% 4.47
ShiftAdd Operations 9.70% 3.00 6.60% 3.47
Count Leading Zeroes 3.40% 51.68 15.60% 16.56
Store Operations 8.60% 1.00 7.90% 1.00
Load Operations 8.90% 2.00 8.10% 2.00
Distribution: Gamma (Tot. Cycles: 91322) Gamma(Tot.Cycles: 110930)
Bit Field Operations 9.80% 4.50 8.50% 4.48
ShiftAdd Operations 9.60% 3.00 6.60% 3.48
Count Leading Zeroes 3.60% 52.84 16.20% 16.95
Store Operations 8.60% 1.00 7.80% 1.00
Load Operations 8.90% 2.00 8.10% 2.00
Distribution: Exponential (Tot.Cycles: 78729) Exponential (Tot.Cycles: 97912)
Bit Field Operations 11.50% 4.50 9.30% 4.49
ShiftAdd Operations 9.20% 3.00 7.30% 3.54
Count Leading Zeroes 0.60% 7.00 13.50% 12.48
Store Operations 9.20% 1.00 8.30% 1.00
Load Operations 9.50% 2.00 8.40% 2.00
Distribution: Text (Tot. Cycles: 121546) Text (Tot. Cycles: 141604)
Bit Field Operations 7.40% 4.50 7.00% 4.45
ShiftAdd Operations 7.60% 3.00 5.40% 3.45
Count Leading Zeroes 2.50% 49.45 12.70% 16.75
Store Operations 7.00% 1.00 6.70% 1.00
Load Operations 9.30% 2.00 7.50% 2.00

Table 8, instruction level profiling results from the Rice algorithm.

Processing Core for Compressing Wireless Data

37

6.1.2 Profiling Huffman
The profiling results from the Huffman algorithm are found in Table 9. Since the adaptive
Huffman algorithm is a symmetric compression algorithm, similar results are found for the
encoding and decoding algorithm. It is clear from the results that there is much to gain from
bit field operations, in addition to the possible reduction of load/store operations. Shift-Add
operations are mostly used when the encoder must find the address to a leaf node from a table
(the symbol value is shifted left once before it is added to the base address of the table). The
total clock cycle count shows that the implementation is slightly asymmetric. The reason for
this is that the decoder spends more clock cycles in the decoding function.

 Encode Decode
 Cycles/Tot.Cycles Cycles/Call Cycles/Tot.Cycles Cycles/Call
Distribution: Poisson (Tot. Cycles: 450780) Poisson (Tot. Cycles: 459299)
Bit Field Operations 26.30% 3.37 22.50% 3.29
ShiftAdd Operations 1.20% 3.70 0.30% 3.04
Store Operations 8.20% 1.00 8.20% 1.00
Load Operations 14.90% 2.00 15.10% 2.00
Distribution: Gamma (Tot. Cycles: 411086) Gamma(Tot.Cycles: 418697)
Bit Field Operations 26.30% 3.38 22.50% 3.30
ShiftAdd Operations 1.20% 3.78 0.20% 3.06
Store Operations 8.20% 1.00 8.20% 1.00
Load Operations 14.90% 2.00 15.00% 2.00
Distribution: Exponential (Tot.Cycles: 195059) Exponential (Tot.Cycles: 199180)
Bit Field Operations 23.50% 3.49 20.30% 3.41
ShiftAdd Operations 2.20% 3.95 0.10% 3.11
Store Operations 8.70% 1.00 9.10% 1.00
Load Operations 14.50% 2.00 14.40% 2.00
Distribution: Text (Tot. Cycles: 539648) Text (Tot. Cycles: 550573)
Bit Field Operations 25.90% 3.36 25.40% 3.36
ShiftAdd Operations 1.10% 3.61 1.10% 3.61
Store Operations 8.20% 1.00 8.10% 1.00
Load Operations 15.10% 2.00 15.20% 2.00

Table 9, instruction level profiling results from the Huffman algorithm.

Processing Core for Compressing Wireless Data

38

6.1.3 Profiling Deflate
The profiling results from the simple Deflate algorithm are found in Table 10. The table
clearly shows how the encoder and decoder are asymmetric. It is also interesting to see how
the total amount of used clock cycles increase when the encoder algorithm finds many
matches in the exponential distributed input stream. It is evident that the encoding algorithm
will have limited gain from bit field and shift-add operations. The decoding algorithm is very
simple, and only a small increase in throughput is expected.

 Encode Decode
 Cycles/Tot.Cycles Cycles/Call Cycles/Tot.Cycles Cycles/Call
Distribution: Poisson (Tot. Cycles: 138101) Poisson (Tot. Cycles: 33516)
Bit Field Operations 0.20% 2.00 13.90% 3.39
ShiftAdd Operations 3.70% 3.00 0.00% 0.00
Store Operations 7.20% 1.00 7.50% 1.00
Load Operations 15.20% 2.00 7.40% 2.00
Distribution: Gamma (Tot. Cycles: 137268) Gamma(Tot.Cycles: 31946)
Bit Field Operations 0.30% 2.00 12.80% 3.35
ShiftAdd Operations 3.50% 3.00 0.00% 0.00
Store Operations 7.00% 1.00 7.50% 1.00
Load Operations 15.10% 2.00 7.60% 2.00
Distribution: Exponential (Tot.Cycles: 515066) Exponential (Tot.Cycles: 30513)
Bit Field Operations 0.10% 2.00 7.20% 3.12
ShiftAdd Operations 0.70% 3.00 0.00% 0.00
Store Operations 2.30% 1.00 5.20% 1.00
Load Operations 13.50% 2.00 5.60% 2.00
Distribution: Text (Tot. Cycles: 140460) Text (Tot. Cycles: 30513)
Bit Field Operations 0.20% 2.00 13.90% 3.41
ShiftAdd Operations 3.50% 3.00 0.00% 0.00
Store Operations 6.90% 1.00 7.70% 1.00
Load Operations 15.30% 2.00 7.50% 2.00

Table 10, instruction level profiling results from the simple Deflate algorithm.

Processing Core for Compressing Wireless Data

39

6.2 Proposals from Instruction Level Profiling
The results from the profiling show that it is possible to increase the throughput of the original
algorithms by finding new instructions. Bit field operations may be needed for moving bit
fields between registers or performing arithmetic or logical operations on bit fields in a
register. The most common bit field operations in the source codes involve moving, inserting
and adding bit fields. Clock cycles used in the blocks of instructions that perform bit field
operations range from 3 to 6. Shift-Add operations are mostly used when finding memory
addresses for table look-ups. The Count Leading Zeroes operation will also result in savings
for the Rice algorithm. Before finding new instructions, the original instruction set (Table 4)
must be analyzed to find space for the new instructions. The undefined space in the
instruction set is shown in Table 11. From this, it is possible to make 16 two-register
instructions. New “pre” types may also be defined. It is important to keep in mind the
limitations in the NanoRisc architecture. The register bank has one write port and two read
ports, and adding more ports to the register bank will increase the gate count considerably.

Table 11, undefined space in the original ISA.

6.2.1 Instruction Level Enhancements
Even though there is undefined space in the original instruction set for 16 two-register
instructions, it is not preferable to use more space than necessary. An argument for this
limitation is the gate cost when adding more instructions than strictly necessary. Adding
instructions will also block future enhancements. If an instruction turn out to be less useful
than anticipated, it still is hard to remove it from the instructions set. The removal of an
instruction could result in rewriting of a number of programs. The encoding of the new
proposed instructions is shown in Table 12. These are found by detailed examination of the
source codes and profiling results.

Table 12, encoding of new instructions.

Processing Core for Compressing Wireless Data

40

A more detailed description of these instructions is found in appendix A, while a short
explanation will be given here. There are five bit field instructions:

• insbfi – takes a bit field from the source register (Rs) and inserts it in to the contents of
the destinations register (Rd). All parameters (positions and length) are defined by
immediate values in the new “pre” type 6 instruction.

• movbfi – has the same immediate parameters given by the new “pre” type 6 instruction
as the “insbfi” instruction, but the bit field overwrites the contents of the destination
register.

• movbf – has the same functionality as the “movbfi” instruction, but it uses a variable
length given by a register (Rlen) in the new “pre” type 7 instruction and the bit field is
moved to the lsbs of the destination register.

• Addbfli – adds an immediate value given in the new “pre” type 8 instruction to the
lsbs of the source register given by the length parameter

• Addbfhi – adds an immediate value given in the new “pre” type 8 instruction to the
msbs given by the length parameter.

An instruction that inserted a variable sized bit field may in many situations be preferable, but
this would require one more read port than available in the architecture. Since the bit field in
the “movbf” instruction is not inserted, the instruction needs only two read ports. A side effect
from the new bit field instructions is that it becomes easier to pack information in the
registers. This may reduce RAM access and hence contribute further to an increase in
throughput. Apart from the bit field instructions there are three more instructions:

• clz – will write the amount of leading zeroes in the source register to the destination
register. This instruction does not need a “pre” instruction.

• ldin – will load the contents of the memory of the address made when the Ra register
is shifted left and added to the immediate value in the new “pre” type 8 instruction.
The instruction will always load 16 bits.

• stin – stores a 16 bits value in the memory address made in the same way as for the
“ldin” instruction.

From the descriptions of the new instructions above there are defined three new “pre” type
instructions:

• Type 6 – has three parameters; the length of the bit field, the position of the start bit of
the bit field in the source register, and the position of the start bit in the destination
register where the bit field is inserted.

• Type 7 – also has three parameters; the register address holding the length of the
bitfield, the position of the start bit of the bit field in the source register, and the
position of the start bit in the destination register where the bit field is inserted.

• Type 8 – gives a12 bit immediate value.

Since there is little space in the original instruction set, there is an extensive use of “pre”
instructions in the proposed instructions. This is a major disadvantage. A “pre” instruction
will add one clock cycle of processing for every instruction that needs one. The original
instruction set also has instructions that use “pre” instructions when the immediate values are
big, or when three operands are used. However, the assembler will limit the use of “pre”

Processing Core for Compressing Wireless Data

41

instructions by inserting them only when it is necessary. Because of limited space in the
original instruction set, it is not possible to have small immediate values or other information
within the new instructions. Another way of limit the use of “pre” instructions is therefore
necessary. Since the instruction itself cannot hold the required information for the operation,
default values may be the solution. All instructions in the proposed instructions, except “clz”,
requires a “pre” instruction, this can be exploited by using default values in the instruction
decoder if the instruction processed is not preceded with a “pre” instruction. The default
values are chosen by examining the source code, and the result is shown in Table 13.

Instruction Default values
Insbfi Len = 8, PosRs = 7, PosRd = 7
Movbfi Len = 8, PosRs = 7, PosRd = 7
Movbf None
Clz None
Addbfli Imm = 1
Addbfhi Imm = 1
Ldin Imm = 0
Stin Imm = 0

Table 13, default “pre” values.

6.2.2 Adding Non-Blocking Load Behavior
In addition to new instructions and HW accelerators, other enhancements of the NanoRisc
processor could also increase the throughput of the algorithms. The RAM access during load
operations will halt the processor until the result is retrieved from the RAM. This is shown in
the timing diagram in Figure 26. When the processor is given access to the memory it will use
two clock cycles until the retrieved data is in the register bank and can be used by other
instructions. The first clock cycle is used for memory address calculation and set up, and in
the second the result is written to the register and a new instruction is loaded. This is
implemented in the instruction decoder as a 1-bit state machine. A way to avoid this extra
clock cycle every load operation is to add a non-blocking behavior, from now on also referred
to as NBL, to the load instructions. This means that the load instruction will not halt the
processor until the data is retrieved, but go on processing the next instruction. However, the
return operation from a function will still use two clock cycles when the instruction pointer is
loaded from the stack pointer. Further enhancement could be to add NBL when the memory is
busy and more clock cycles are wasted awaiting access to the memory, but this may be costly
in terms of gates in the instruction decoder. Extra registers must be added in order to hold the
load instruction and a possible “pre” instruction over several clock cycles. It would also in
many cases save a limited amount of clock cycles, because loaded information is often used
as quickly as possible to save register space.

Since the data from the memory is written to the register bank when another instruction is
processed, it must have a separate write port. This will be costly in terms of gates. When this
is implemented, it is important that the instruction after a load instruction is not dependent on
the data retrieved from the memory, or that it does not cause a write conflict. This may be
ensured by the programmer, the assembler software or in hardware. The best way of utilizing
the NBL is that the programmer is aware of this, and avoids instructions dependent on a load
operation to be processed immediately after the actual load operation. This may in many cases
be tedious and result in difficult debugging if the programmer does not keep this in mind. A
way of preventing such cases could be to enhance the assembler either by inserting “nop”

Processing Core for Compressing Wireless Data

42

instructions where needed, or issue warnings or error messages where problems may occur.
This would require no extra hardware except for the dedicated write port. The disadvantage of
this method is that the program size grows when “nop” instructions are inserted, or in cases
where it is difficult to do other tasks while awaiting the retrieved memory data. Such a
method would also increase the complexity of the assembler, and may prevent others from
enhancing or making their own assembler tools. The method chosen is to stall the processor in
hardware when the Rs or Rd field of an instruction is equal to the Rd field of the proceeding
load instruction. The extra cost in gate count in the instruction decoder will be small, and it is
more user friendly.

Figure 26, timing diagram during load operation.

6.2.3 Estimating Speedup
From the profiling results, Ahmdahl’s law (Eq. 6) may be applied to estimate how the new
enhancements may affect the total speedup. The calculation is done by summing all
operations that may be affected by the new instructions and the NBL, and estimating a general
2 times speedup for all. An example of this is shown in Table 8 where operations from the
Huffman encoding algorithm are summed. The estimation of a general speedup of 2 is a ball
park estimate from the profiling result. If all profiled operations are replaced by a “pre”
instruction in addition to the new instruction, a speedup of 2 may seem a bit optimistic.
However, taken into consideration a possible decrease in RAM access due to new bit field
instructions, and that some of the operations will not need “pre” instructions due to default
values, it may be a reasonable approximation.

Processing Core for Compressing Wireless Data

43

Poisson
Operation Cycles/Tot.Cycles
Bit Field Operations 0.263
ShiftAdd Operations 0.012
Load Operations 0.149
Sum: 0.424

Table 14, operations that may be affected by the enhancements

Table 15 shows the estimated speedup when applying the considerations explained above and
Ahmdal’s law. The results vary greatly from about 10% increase up to 25%.

 Rice Huffman Deflate
Ditribution Decode Encode Decode Encode Decode Encode
Poisson 1.240 1.188 1.234 1.269 1.119 1.106
Gamma 1.245 1.190 1.233 1.269 1.113 1.104
Exponential 1.238 1.182 1.211 1.251 1.068 1.077
Text 1.195 1.154 1.264 1.267 1.120 1.104

Table 15, estimated speedup from new instructions and NBL behavior.

6.3 Algorithmic Level Profiling
In section 6.1, the profiling areas contained blocks of instructions that could be replaced by
new instructions. This section will show how the performance is increased when using the
new enhancements proposed in section 6.2. The profiling areas from the instruction level
profiling are hence replaced by new instructions and it would make little sense to use the
same profiling areas. This section will describe the enhancements by defining new profiling
areas that shows how clock cycles are used on an algorithmic level. As mentioned,
algorithmic level profiling is profiling major parts of the compression algorithms, e.g.
decoding, encoding, updating data structures, etc. It is therefore important that the reader keep
in mind the description of the implementations of the different algorithms in chapter 4. Only a
selection of the profiling results is shown in this section, but all profiling results are found in
appendix D.

6.3.1 Profiling Rice
From Table 8 in section 6.1.1 it was evident that the decoder algorithm had much to gain from
the new “clz” instruction. Both the encoder and decoder had limited use of bit field and shift-
add instructions. Table 16 shows the results of the algorithmic profiling with the NanoRisc
processor using the exponentially distributed data stream. Only the decoding algorithm is
shown due to the symmetrical behavior of the Rice compression method. The label column
shows the label name of the different profiling areas. The resources used by the different
profiling areas are shown as clock cycles used in the profiling area, and cycles used in the
profile area divided by the total amount of cycles. The total number of cycles shown in the
table is not a sum of the clock cycles used in the profile areas, but is the total clock cycles
used by the algorithm. The “streams” label shows the resource used when reading variable
length codewords from RAM. This operation is used in decoding, and is therefore sorted
under the “decode” label in the table. The clock cycles used by the “decode” label thus
includes the clock cycles used in the “streams” label. The RAM access is given in operations
because it is measured at an instruction accurate level. In most cases, load operations will only
use one clock cycle every operations due to the NBL, but function returns will still use two
clock cycles.

Processing Core for Compressing Wireless Data

44

 Original Enhanced

Label
Cycles Cycles/Tot.

Cycles
Cycles Cycles/Tot.

Cycles
Speed Up

Decode 41790 42.68% 25116 36.97% 1.66
Streams 25050 25.58% 23158 34.09% 1.08

Calc K 930 0.95% 434 0.64% 2.14
Maintain Tables 346 0.35% 238 0.35% 1.45
Update Table 7934 8.10% 7818 11.51% 1.01
Total Number of Cycles 97912 100.00% 67941 100.00% 1.44

Memory Access [operations] 14758 8612

Store Operations 8156 5069
Load Operations 6602 3543
Table 16, algorithmic profiling from the Rice decoding algorithm with exponential distributed input

stream.

Table 16 shows results from the profiling when the new instructions and the non-blocking
load behavior are implemented. The “decode” label has reduced its resource use considerably,
and it is the main contributor to the total speed up. Another contribution to the increased
throughput is the decrease in RAM access due to more effective register usage. The
throughput is increased by 44%.

6.3.2 Profiling Huffman
The profiling results from the original Huffman algorithm showed that bit field instructions
and a non-blocking load behavior should increase the throughput considerably. Table 17
shows how the different algorithmic elements consume processing power with the NanoRisc
processor. The “Sort Tree” and “Switch Node” are called from the “Increment Tree”, and the
recourses used by the “Increment Tree” include these two functions. Results found in the table
are retrieved from decoding the data stream with a Poisson distribution. Only the decoding
algorithm is shown due to the symmetric behavior of the Huffman compression method.

 Original Enhanced

Label
Cycles Cycles/Tot.

Cycles
Cycles Cycles/Tot.

Cycles
Speed Up

Increment Tree 345777 75.28% 189617 65.01% 1.82
Sort Tree 174197 37.93% 101965 34.96% 1.71

Switch Nodes 15840 3.45% 10982 3.77% 1.44
Insert Node 1040 0.23% 880 0.30% 1.18
Decode 100900 21.97% 86629 29.70% 1.16
Streams 14924 3.25% 14148 4.85% 1.05
Total Number of Cycles 459299 100.00% 291673 100.00% 1.58

Memory Access [operations] 107116 62811

Store Operations 37888 19307
Load Operations 69228 43504
Table 17, algorithmic profiling from the Huffman decoding algorithm with poisson distributed input

stream.

Processing Core for Compressing Wireless Data

45

It is clear from the table that updating the Huffman tree is the most time consuming task. The
throughput is increased when the new instructions and the non-blocking load behaviour is
implemented. Most of the savings are found in the “Increment Tree” label. This is mostly
because of the implemented data structure (Figure 15). The throughput is increased by 58%.
Another important reason for the increase in throughput is the decrease in RAM access.

6.3.3 Profiling Deflate
Section 6.1.3 showed that only a limited increase in throughput because of the enhancements
is expected. The main contributor should be the new non-blocking load behavior.

 Original Enhanced

Label
Cycles Cycles/Tot.

Cycles
Cycles Cycles/Tot.

Cycles
Speed Up

Decode 29258 95.89% 27238 95.60% 1.07
streams 13747 45.05% 13462 47.25% 1.02

Total Number of Cycles 30513 100.00% 28491 100.00% 1.07

Memory Access [operations] 4654 4654

Store Operations 2357 2357
Load Operations 2297 2297

Table 18, algorithmic profiling from the Deflate decoding algorithm with text input stream.

Table 18 shows the profiling results from the Deflate decoding algorithm, and Table 19 shows
the result from the original Deflate encoding algorithm. The enhanced Deflate decoding
algorithm source code shows a small increase in the throughput, about 7%. Because the
decoding algorithm has limited use of bit field instructions, the RAM access is not reduced.
From Table 19 it is evident that the two most time consuming tasks in the encoding algorithm
is making the hash value and controlling matches. There is some gained from the non-
blocking load behavior in the hash and control match labels, but since these function is
already implemented in tight loops, it is difficult to take full advantage of this behavior. The
increase in throughput is 16%.

 Original Enhanced

Label
Cycles Cycles/Tot.

Cycles
Cycles Cycles/Tot.

Cycles
Speed Up

Encode 21828 15.54% 19859 16.41% 1.10
streams 11452 8.15% 10102 8.35% 1.13

Add Match 10000 7.12% 8000 6.61% 1.25
Control Match 40604 28.91% 36418 30.09% 1.11
CRC 32000 22.78% 26000 21.48% 1.23
Total Number of Cycles 140460 100.00% 121038 100.00% 1.16

Memory Access [ops.] 31169 30907

Store Operations 9685 9423
Load Operations 21484 21484

Table 19, algorithmic profiling from the Deflate encoding algorithm with text input stream.

Processing Core for Compressing Wireless Data

46

6.4 Proposals from Algorithmic Level Profiling
Profiling on an algorithmic level showed that some parts of the algorithms could be further
improved by adding enhancements that are more complex. This section will show how the
stream functions and the hash function is speeded up.

6.4.1 The Stream Function
Common for all variable length coding algorithms is the task of reading or writing a stream of
variable codes to or from RAM. From section 2.1, it was described how the Phillips TriMedia
core used a coprocessor to deal with this task. A viable alternative for further improvement of
the implemented algorithms could therefore be a hardware accelerator. It would speed up all
of the implemented algorithms, and could be useful for other applications as well, but the gate
cost will be considerable. For maximum speed up, the hardware accelerator must access
memory, calculate memory addresses and length of the current stream, do shift operations,
and have registers in order to hold initialization parameters, memory addresses, and parts of
the stream. This sum up to a 16 bits adder, a 32 bits barrel shifter, memory interface, at least 4
registers and additional control logic. The gate count would be in the area of 1500 gates. This
is rather expensive. Another approach described in section 2.2 is the bit-band regions used by
the Atmel Cortex core. The bit-band regions enable the load and store operations in the
Cortex core to address a stream of variable length codewords on a bit level. However, if this
shall reduce the amount of clock cycles it must be able to address bit fields that expand over
two memory addresses. In the NanoRisc core, this will require a state machine in the memory
access module, and hence making these load and store operations require several clock cycles.

Figure 27, old stream function for decoding algorithms.

Figure 27 show the assembly code for the stream function in decoding algorithms, using the
new instructions proposed in section 6.2. The function uses two registers to hold a part of the
stream. The R_Istr must always hold 16 bits from the stream in order to simplify the decoding
process. To reduce memory access, the R_Res holds a reservoir of bits to be shifted in to
R_Istr. When R_Res is empty, the next 16 bits of the stream is loaded from RAM. R_Count is
the register that holds the amount of bits left in the R_Res register. When calling this function,
the amount of bits to be shifted into the stream is held in R8. The memory address for the
input stream is held by register R_IStr_Addr. When the reservoir stream has enough bits for
the operation, it will use 11 clock cycles, but if not it will use 23 clock cycles. Table 20 shows
data from the stream profiling label when decoding the text stream. The Rice and Deflate

Processing Core for Compressing Wireless Data

47

decoding algorithms have much to gain from enhancements affecting the stream function, but
the Huffman decoding algorithm will not see that much improvement compared to the total
clock cycle use.

 Calls Cycles/Call Cycles/Tot.Cycles
Rice 2010 12.87 23.37%
Huffman 1037 14.31 3.96%
Deflate 734 18.34 44.67%

Table 20, profiling results from the stream label when decoding the text stream.

A stream instruction is proposed for speeding up the streaming function. This instruction will
shift in bits from a register into the register holding the stream according to a register holding
the length. The instruction needs three read ports from the register bank, but the NanoRisc
processor has only two. An extra read port will be expensive in terms of gates. To avoid this,
a dedicated register is chosen to hold the bits to be shifted in. The dedicated register is one of
the general registers, so it may still be used as a general register for all other instructions. This
implies that when the instruction is executed, the bits intended to be shifted in must have been
written to the dedicated register. The dedicated register must be chosen before synthesis. The
encoding of the new instruction is shown in Table 21.

Table 21, encoding of the str instruction.

When using this instruction in the stream function, we get the profiling results in Table 22.
The table shows that the amount of clock cycles used by the function has been reduced, but it
is still a major contributor to the total cycle count in the Rice and Deflate decoding algorithm.

 Calls Cycles/Call Cycles/Tot.Cycles
Rice 2010 8.25 17.70%
Huffman 1037 9.21 2.78%
Deflate 734 11.89 36.65%

Table 22, profiling results from the stream label when decoding the text stream and using the new str
instruction.

The resulting assembly code when the “str” instruction is used is shown in Figure 23. The
“str” instruction will only use one clock cycle because it needs no “pre” instruction. Table 22
and Figure 28 clearly show that it is still room for improvements in the stream function, but at
a fairly high implementation cost as explained in the beginning of this section. The “str”
instruction will be cheap in terms of gate count and easy to implement.

Processing Core for Compressing Wireless Data

48

Figure 28, new stream function for decoding algorithms.

6.4.2 The Hash Function
Even though the hash function in the Deflate encoding algorithm is implemented with the use
of look up tables, it contributes greatly to the overall clock cycle use. A solution to this is to
implement the hash function in hardware. This may be done through a separate hardware
accelerator. Another method is to add a hash module in the NanoRisc architecture and use it
with a new instruction. The latter method is chosen, and a new “crc” instruction is introduced.

The implemented hash function in the assembly source code is based on the 8 bits CRC8-
CCITT standard. If a hash function is implemented in hardware, a simpler method could be
used to reduce the gate cost. The drawback of a simpler hash function could be that the
probability of collisions will increase. This will again decrease the throughput of the encoding
algorithm because more potential matches would have to be checked out. Another
consideration when deciding the hash function for a hardware implementation is the
portability for other applications. Since the NanoRisc is likely to be implemented in a
transceiver SoC, some sort of error detection is often implemented. One of the most
frequently used error detection method is the CRC16-CCITT. This method will cost more
gates than a simple hash function or the CRC8-CCITT. A way to decrease the gate cost is to
limit the amount of bits used in the CRC calculation every clock cycle. By not using the
whole 16 bits register as input, but still only calculating the hash value for 8 bits at a time (as
for the old LUT-version), the gate count will be halved. The CRC16-CCITT will produce 16
bits hash values, but the table has only 256 entries. In [20] it is shown that all bits in a hash
value from a CRC function have high information content. Thus, it does not matter which of
the bits in the hash value that are chosen for the final 8 bits table index. The lower byte is
used. When the “crc” instruction is implemented, the amount of clock cycles in the CRC
function is halved, and the increase in throughput is now 31%. The 256 bytes look up table is
made obsolete and removed. The CRC module is used with the instruction encoding in Table
23.

Table 23, encoding of the crc instruction.

6.5 Proposed Enhancements for the NanoRisc
From the last sections, it is evident that the new instructions and the non-blocking load
behavior have shown promise by increasing the throughput for all algorithms. Two new

Processing Core for Compressing Wireless Data

49

instructions where identified through the algorithmic profiling, “str” and “crc”. The “str”
instruction improves throughput for all algorithms, especially for the decoding algorithms. Its
contribution is mainly through the stream function, but it has been useful in other parts of the
algorithms as well. In the Deflate encoding algorithm, a new “crc” instruction was identified.
The “crc” instruction has limited use in the implemented algorithms, except for the Deflate
encoding algorithm, but for other programs it may increase processing power. Especially
when taking into account that the NanoRisc is most likely to be used in a transceiver SoC. It
will provide an effective instruction for error detection, generating pseudo random sequences,
or for making hash values.

The enhancements chosen for implementation is adding the new instructions in Table 24, and
implementing the non-blocking behavior. The new instructions are encoded as shown in Table
12, Table 21 and Table 23. The default values from Table 13 (section 6.2) are used to
decrease the amount of “pre” instructions. The new “pre” types are shown in table Table 25.
A more detailed description of the proposed instructions is found in appendix A.

Table 24, new Instructions.

The most costly enhancements in terms of gates will be the non-blocking load behavior and
the bit field instructions. The non-blocking load behavior will require an additional write port
in the register bank, and the bit field instructions will require additional shifters and mask
operations. Both the “clz” and “crc” instruction will also require additional modules, but the
cost of these modules is moderate. The “stin” and “ldin” instructions will only require
architectural changes by adding a path from the barrel shifter to the ALU. This will change
the critical path, and may in turn increase the gate count in order to meet timing constraints.

Table 25, new “pre” types.

Processing Core for Compressing Wireless Data

50

6.6 Results Obtained From the Proposed Enhancements
Due to the new instruction introduced in section 6.4, the throughput has increased further
compared to the profiling results in section 6.3. A summary of the increase in throughput for
all algorithms when all enhancements are included are shown in Table 26. When comparing
the results with the estimated speedup in Table 15 (section 6.2.3), it is evident that an
approximate general speedup of 2 gave conservative results, even when taking into account
that these estimation was made without considering the “str” and “crc” instruction. While the
estimated speedup varied between 10% and 25%, the real speedup is between 18% and 103%.

 Rice Huffman Deflate
 Decode Encode Decode Encode Decode Encode
Poisson 63% 36% 60% 62% 29% 28%
Gamma 65% 36% 60% 61% 28% 24%
Exponential 64% 32% 56% 52% 103% 18%
Text 51% 30% 60% 62% 28% 31%

Table 26, increase in throughput.

Another effect, especially due to the bit field instructions, is that RAM access has been
reduced. Table 27 show how much the RAM access has decreased in all algorithms. The only
algorithm that shows no reduction is the Deflate decoding algorithm. This is because of its
limited use of bit field instructions.

 Rice Huffman Deflate
 Decode Encode Decode Encode Decode Encode
 Load Store Load Store Load Store Load Store Load Store Load Store
Poisson -30% -30% -37% -40% -37% -49% -37% -47% 0% 0% -13% -1%
Gamma -40% -38% -38% -41% -37% -49% -37% -47% 0% 0% -11% -1%
Exponential -53% -43% -41% -42% -35% -42% -31% -39% 0% 0% -5% -5%
Text -27% -35% -27% -39% -37% -48% -37% -47% 0% 0% -15% -3%

Table 27, RAM access reduction.

In addition to the increased throughput and reduced memory access, the code size for all
algorithms has been reduced because new instructions have replaced blocks of old
instructions. Table 28 shows the code size and the reduction.

 Decode Encode

Original
[byte]

Enhanced
[byte]

Reduction Original
[byte]

Enhanced
[byte]

Reduction

Rice 358 246 -31% 336 246 -27%
Huffman 686 540 -21% 684 556 -19%
Deflate 172 156 -9% 360 340 -6%

Table 28, reduction in code size due to new instructions.

The compression ratios achieved by the profiled compression methods and the different input
streams are found in Table 29. The streams symbol distributions are found in appendix B.

 Poisson Gamma Exp Text
Rice 51.30% 54.70% 79.80% 37.20%
Huffman 51.40% 55.20% 79.40% 43.00%
Deflate 0.20% 10.20% 64.30% 10.20%

Table 29, compression ratios.

Processing Core for Compressing Wireless Data

51

7 The Enhanced NanoRisc Processor
In order to make the original NanoRisc capable of behaving according to the new instructions
found in chapter 6, new modules and signal paths are added while some of the original
modules are altered. This chapter will describe how this is implemented in HW. First a quick
overview of the changes in the data flow is given. In the following sections, some of the
changes are described in detail. In the end, synthesis results concerning area, timing and
power are described.

7.1 Implementation
The simple overview of the architecture in chapter 3 is still valid, but the data flow diagram
has changed. New modules and data paths are added in order to support the new instructions
and the non-blocking load behavior. Figure 29 shows the new data flow diagram where new
modules are filled blue and new signal paths are marked red. As mentioned, a more detailed
description of the most important new modules and implementation is given in the next
sections, while a quick description will be given here:

• Sign Extm, has the same function as the original Sign Ext module. This new module
is needed since the non-blocking load behavior needs a dedicated write port in the
register bank.

• Mask produces two bit masks. A length indicator tells the module the amount of ones
that it shall append to the two bit masks. One bit mask append ones from the msb,
while the other appends them from the msb.

• Extr uses one of the bit masks produced by the Mask module to extract a bit field. It
can extract a bit field from the shifter module or SRC MUX output. The bit field is
used by the BFU or ALU module.

• BFU shifts and if necessary inserts the bit field from the Extr module to a given
porsition.

• CLZ gives the amount of leading zeroes in the input.
• CRC calculates the new CRC value from the LSB of the input. It uses the standard

CRC16-CCITT polynomial.

Some of the original modules are altered. Those altered have new signal lines to or from
them, and in all cases, except for the register module and shifter module, it is only the MUX
units inside the modules that are altered because of the new signals. The shifter module is also
moved in front of the ALU module. This is done in order to do addition on shifted values for
the new “ldin” and “stin” instructions. The VHDL source code for the CLZ, CRC, BFU, Extr
and Mask modules are found in appendix E.

Processing Core for Compressing Wireless Data

52

REG

REG

MUL

SHIFT

IO

SRC

MEM ALU

REG

PCU

FETCH

Registers

PC

ALU

Rs2

src
reg_m

ux

Instruction Fetch

Load/Store

Status Reg

src

K16

Shifter

Rs2
Rs2

I/O

src_mux

imm
PC

alu_mux_
1

PREimm

Concat

Multiplier

Rs2

mem_d_m
ux

mem_a
_mux

b0

Sign
Ext

Control

IW

sr_mux

alu_mux_
0

src

+ +/-

Rs2
Rs2

io_d_
mux

Rs

shift_mux

0x0001

adder

bra_imm_
mux

bra_pc_
mux

0x
00

01

pc_next_
mux

pc_next

src

Int_vector

st_imm

Sign
Extm

CLZ

Clz

BFU

BFU

CRC

CRC

MASK

mask

EXTR

extr

Figure 29, the enhanced NanoRisc data flow diagram.

7.1.1 Non-Blocking Load Behavior
As described in section 6.2.2, the original load instructions uses two clock cycles. This can be
described by the 1-bit state machine in Figure 30. This state machine is controlled in the PCU,
and it is reused when the new non-blocking behavior (NBL) is implemented. Both the NBL
and the original state machine stall the next instruction fetch in the idle state if the memory is
not ready for access. When the memory is ready, the idle state will set up the address on the

Processing Core for Compressing Wireless Data

53

memory address bus before making the transition to the load state in the next clock cycle.
When making this transition, the original idle state will stall the next instruction fetch while
the new NBL idle state will not. The load states purpose is to load the data on the memory
data bus into the register bank. Since the original idle state stalled the instruction fetch, the
original load state will not have a new instruction to decode, but the new NBL load state will.
However, if the source or destination register in the new instruction is the same as the
destination register in the load instruction, it will decode a “nop” instruction and stall the next
instruction fetch. The new instruction is then decoded in the next clock cycle instead. If the
source or destination register is not the same as the destination register in the load instruction,
the new instruction will be decoded in the same clock cycle as the data is loaded from the
memory data bus into the register bank.

Idle Load
state

memory ready

!memory ready

Figure 30, state machine during load instructions.

In order to fetch a new instruction in the idle state, a register is needed to hold the load
instruction. Fortunately, this can be done through an extended use of a register already present
in the PCU. The PCU has a dedicated register witch holds the last instruction word in cases
where a new instruction fetch is not performed. The use of this register is now extended to
decode the load instruction during the load state. The changes in the PCU should not
contribute much to the increase in gate count caused by the NBL behavior. The main
contributor is expected to be the new dedicated write port in the register bank. This will add a
DEMUX in order to be able to write all registers. Additional MUXes are also added by the
synthesis tool since both write ports have access to the same registers. However, since the
load state will decode a “nop” instruction in cases where the new instruction has the same
source or destination register as the destination register in the load instruction, there can be no
write conflicts.

7.1.2 Bit Field Instructions
The modules implemented for the bit field instructions are best explained through an example.
The example will show the data flow when the “insbfi” instruction is decoded with these
parameters:

Len = 5
PosRs = 12
PosRd = 9

The content of the source register (Rs), the original destination register before the instruction,
(Rd) and the new contents written to the destination register after the instruction (New Rd) are
shown in Table 30. The bit field inserted from Rs to the new Rd is marked by a red outline.

Processing Core for Compressing Wireless Data

54

Table 30, Register contents in bit field example.

Figure 31 shows the data flow in the example. First, the contents of the Rs register is fed to
the shift register. The shift registers control lines are set to left shift by the amount given by
the inverted PosRs. This will shift the bit field to the msbs. The length is given to the Mask
module, and it produces a bit mask with ones in the 5 msbs (zeroes in the rest). The result
from the shifter and mask module is then given to the Extr module that simply do a bit-wise
“and” operation on them. The BFU will take the results from the Mask and Extr module and
right shift them according to the inverted PosRd. When this is done, both the bit mask and bit
field is positioned correctly according to the insert position. In order to remove the bits in Rd
which is to be replaced, the shifted bit mask is inverted and a bitwise “and” operation is
performed on the inverted mask and Rd. A bitwise “or” operation between this result and the
shifted bit field is then enough to insert the bit field.

Figure 31, data flow in the bit field example.

Processing Core for Compressing Wireless Data

55

In the “movbfi” and “movbf” instructions, the contents of the Rd register are not read since no
insertion is needed. The “movbf” instruction will use the inverted Len as the amount of right
shifts. Both the shift operations in the Shifter module and in the BFU module use inverted
values for the amount of shifts. Because of this, the PosRs is inverted in the assembler. Thus
no additional inverter is needed in the original Shifter module. The shift right operation in the
BFU module will interpret the amount of right shift as an inverted value, so no inverter is
needed in this case either. The inverters in Figure 31 are only illustrative. The “addbfli” and
“addbfhi” instruction do not use the BFU module. For both instructions, the mask module will
produce a mask with ones in the lsbs according to Len. The content of the destination register
in the “addbfli” instruction is just fed to the Extr module together with the bit mask, and the
result from this module is sent to the ALU. In the case of the “addbfhi” instruction, the
content of the destination register is rotated left in the Shifter module according to Len before
the same procedure is performed.

The most expensive part of this implementation is the Shift right operation in the BFU
module. Since this operation must shift an arbitrary value in less than one clock cycle, it is
implemented as a barrel shifter. The original Shifter module is also a barrel shifter and is
implemented at the cost of 430 gates. This module has some additional features that are not
used in the BFU, such as shift left and rotate operations. The gate count of the BFU module
should be slightly less than that of the Shifter. However, the cost of the Mask and Extr
modules also adds to the total costs of implementing bit field instructions. Taken this into
account, the total cost will probably pass the gate count of the Shifter module.

7.1.3 Clz Module
There are several possibilities for implementing the “clz” function in HW. One method could
be to add more logic to the shifter such that it could output information on the amount of
leading zeroes. However, since the shifter is part of the most critical path after moving it in
front of the ALU, adding more logic could further increase area to meet timing constraints. A
separate CLZ module is therefore implemented.

The method used in the module can be described as a simple recursive function. In the first
stage, the 16 bits input bits are divided in to the most and least significant byte. If the bits in
the most significant byte are all zeroes, one is appended to the result and the least significant
byte is multiplexed to the next stage. In each stage, the result from the last stage is divided
into the most and least significant halves. As described for the first stage; if the most
significant halves of bits being considered are all zeroes, one is appended to the result and the
least significant bits are multiplexed to the next stage. If they are not all zeroes, zero is
appended to the result and the most significant bits are multiplexed to the next stage. This is
repeated until just a single bit remains.

Processing Core for Compressing Wireless Data

56

Figure 32, CLZ data flow diagram.

Figure 32 shows the data flow in this method. Lz is the result. The flow in the figure limits the
result to 15, but an additional comparator not shown sets the result to 16 if all bits in the input
are zero. If the result is 16 the zero flag in the status register is set, if the result is zero the
negative flag in the status register is set. The module in itself should be synthesized to a small
amount of gates. An estimate would be in the area of 50 gates.

7.1.4 Crc Module
As explained in section 4.3.2, all CRCs are binary polynomials that are divided with the data.
In general, division of large numbers is hard to implement in HW efficiently. Therefore it is
more convenient to convert the binary information into a more appropriate form. The string of
bits to be verified is represented as the coefficient of a large polynomial, rather than as a large
binary number. The conversion of the CRC16-CCITT polynomial will be as follow:

G = 10001000000100001 = x16+x12+x5+1

The CRC hash value is based on polynomial arithmetic. More accurate, the hash value is the
remainder of dividing the polynomial in a Galois field with two elements (GF(2)). A
polynomial in GF(2) is a polynomial in a single variable x whose coefficients are 0 or 1.
Addition and subtraction are done modulo 2, i.e. both operations are the same as the exclusive
or operator (“xor”). Partial sums in division and multiplication are “xor’ed”. Using this kind
of arithmetic, any remainder of a polynomial of n bits is no more than n-1 bits long. n is
referred to as the order of the polynomial. Another term often used is that the CRC hash value
is the remainder of a binary division with no carry. As mentioned in section 4.3.2, CRC
calculations are often implemented as liner feedback shift registers (LFSR). Figure 33
illustrates CRC16-CCITT calculation with an LFSR. The flip-flops are shift registers which
store the remainder after every clock cycle. When the whole message has been shifted
through, the LFSR will hold the final CRC hash value.

Processing Core for Compressing Wireless Data

57

Q

QSET

CLR

D

x0 x1

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

z

Figure 33, CRC16-CCITT calculation with LFSR.

In many systems where CRC is used for error detection, data is transferred as a serial bit
stream. This is true for floppy disks, hard disks, modems, and as well as for newer optical
disks. When the data stream is serial, the LFSR is trivial to implement and can operate at high
speed. However, for this application (the “crc” instruction) it must operate at the clock speed
used in the NanoRisc processor. The LFSR method is therefore too slow, and will not save
many clock cycles in the compression algorithm. A method of calculating the hash value from
more than one bit each clock cycle is necessary. Fortunately, there are many other
applications that benefit from parallel CRC calculation (e.g. RAM disks and SCSI devises)
and many methods have been developed to meet their need. One method has already been
presented and implemented in this thesis; parallel CRC calculation with look up tables. This
method is mostly used in software applications, and was proven too slow. The implemented
HW method uses a “xor” network. The “xor” network express the contents of the shift register
after 8 shifts as a function of the initial contents of the shift register and the 8 data bits shifted
in. The resulting “xor” network using the CRC16-CCITT standard polynomial is shown
below. The bits in the byte shifted in are denoted z0 through z7.

128400 xxzzx ⊕⊕⊕= 139511 xxzzx ⊕⊕⊕=

1410622 xxzzx ⊕⊕⊕= 1511733 xxzzx ⊕⊕⊕=

1244 xzx ⊕= 131285405 xxxzzzx ⊕⊕⊕⊕⊕=

141396516 xxxzzzx ⊕⊕⊕⊕⊕= 1514107627 xxxzzzx ⊕⊕⊕⊕⊕=

15113708 xxzzxx ⊕⊕⊕⊕= 12419 xzxx ⊕⊕=

135210 xzxx ⊕⊕= 146311 xzxx ⊕⊕=

15128740412 xxxzzzxx ⊕⊕⊕⊕⊕⊕= 13951513 xxzzxx ⊕⊕⊕⊕=

141026614 xxzzxx ⊕⊕⊕⊕= 151173715 xxzzxx ⊕⊕⊕⊕=

These “xor” operations are then simply implemented in VHDL. The CRC module uses the
standard CRC16-CCITT polynomial. This makes the module useless when other polynomials
are required, but it limits the gate count considerably. A module with an optional polynomial
will have the same complexity as a division module (600-700 gates), while this module with
one fixed polynomial will have less than100 gates.

7.1.5 The Str Instruction
Since the “str” instruction need three registers (a register that holds the stream, a register that
holds the length to shift the stream and a register that holds the bits to be shifted into the
stream) an extra read port in the register bank is needed. This is discussed in section 6.4.1. To
avoid an extra read port a dedicated register is chosen to hold the bits to be shifted into the
stream. This register must be chosen from one of the general-purpose registers before
synthesizing, and it will not be possible change it during operation. The chosen register may

Processing Core for Compressing Wireless Data

58

still be used as a general-purpose register, but when processing the “str” instruction it must
hold the bits to be shifted in.

The original shifter module is enhanced in order to shift in bits to the stream register. The
contents of the dedicated register are shifted left as many times as the destination register, and
the bits falling off the dedicated register are shifted in to the destination register. The “str”
instruction is only able to do left shifts. Hence, the original shifter is extended with one input
port that is shifted equal amounts of times to the left as the other input port. This is a small
operation, and the total cost in gates should be below 100. Figure 34 shows how the bits are
shifted in to the stream register from the dedicated register. The amount of bits shifted in is
given by the 4 lsbs of the length register.

Left shift

Bits shifted in

15

15

0

0

Dedicated RegisterDestination Register

Bits Shifted Out Left shift
15 0

Bits Shifted Out

Figure 34, shift operation during the str instruction.

7.2 Synthesis
The synthesis of the design was done using the Synopsys Design Compiler with the Virage
Logic TSMC 0.18um FSG DUS Standard Cell Library. The synthesis was done at two clock
speeds: 25MHz for low power applications and 62.5 MHz for high performance applications.
The synthesis was performed by scripts.

Since the NanoRisc microprocessor has no internal instruction register, the timing of the
arrival from the program ROM is crucial. The timing data used to model this is taken from a
high-speed single-port synchronous diffusion ROM made with the Artisan Rom generator for
the TSMC 0.18um process. In a typical process with typical conditions, it has an address
setup time of 0.31 ns and an access time of 1.29 ns. The address setup is the time the
instruction address has to be stable on the address lines, and access time is the time from the
rising clock to the instruction is stable on the data lines. These two constraints where given to
the synthesis tool by using the “set_output_delay” and “set_input_delay” statements. The
enhancements are added to the original NanoRisc processor core in six stages:

1. Non-Blocking Load Behavior (NBL).
2. The Count Leading Zeroes instruction.
3. Bit field instructions.
4. Load Index and Store Index instructions.
5. The CRC instruction.
6. The Stream instruction.

The stages are cumulative, so e.g. in stage number 6 all enhancements are added.

7.2.1 Timing
Timing reports show the estimated propagation delay through different paths in the circuit.
The difference between this propagation delay and the timing constraint is called slack. If the
slack is positive, the timing constraints are met, if it is negative, the timing constraints are not
met. The synthesis tool will always try to meet the timing constraints by increasing drive

Processing Core for Compressing Wireless Data

59

strength, insert clock buffers or inverter chains until the slack is zero. The path with least
slack is often referred to as the critical path.

At 25 MHz the slack of the original NanoRisc is 20.54 ns, while after all enhancements are
implemented (stage 6), the slack is 17.51 ns. This is a fairly large slack at 25 MHz, and the
clock frequency may be increased by a factor of two without making noticeable changes in
drive strength. The critical path in the original NanoRisc is from the program data lines,
through the PCU, through the MUL module, and to the register bank. In stage 3, the shifter
module and the Extr module is moved in front of the ALU, and this changes the critical path.
The critical path after stage 3 is from the program data lines, through the PCU, trough the
shifter, through the Extr module, through the ALU and to the register bank.

At about 62.5 MHz, the synthesis tool starts to insert buffers and inverter chains to reduce fan
out. The slack is zero for the original NanoRisc and all enhancement stages. The critical path
changes much more between the stages depending on the choices the synthesis tool makes
when trying to meet timing constraints. The original NanoRisc, stage 1, 4 and 5 has the same
critical path as before (at 25 MHz), while stage 2 has a new critical path going from the
program data lines, through the PCU, through the I/O module, through the ALU, and to the
register bank. Stage 3 and 6 has the same critical path as the original NanoRisc and stage 1.

7.2.2 Area
The area of a circuit will often grow larger at higher speed. This is because of timing
constraints that need to be met by the synthesis tool. Drive strength of components have to be
increased to reduce propagation delay, and a unit with greater drive strength use more area.
The synthesis tool may also insert buffers and inverter chains in order to meet timing
constraints, and this will also add to the total gate count. Table 31 shows the gate count when
the original NanoRisc is synthesized at 25 MHz and 62.5MHz. The difference in gate count is
323 gates.

 25 MHz 62.5 MHz
nb_alu 429.00 455.50
nb_const_gen 28.00 28.00
nb_fetch 252.50 252.50
nb_int 6.25 6.25
nb_io 170.00 195.25
nb_mem 218.50 218.50
nb_mul 408.50 425.75
nb_pcu 862.25 980.25
nb_reg 2299.27 2424.01
nb_shift 426.75 426.75
nb_src 69.00 80.25
Total 5170.02 5493.01
Table 31, gate count for the original NanoRisc.

As mentioned in section 7.2.1, the slack at 25 MHz was high. This implies that the gate count
reported at 25 MHz should be near the minimum for the circuit. Table 32 shows how much
each stage and module contributes to the total increase in gate count at 25 MHz. The extra
cost in gates when implementing all enhancements is 1565 gates, making the total cost of the

Processing Core for Compressing Wireless Data

60

enhanced NanoRisc 6735 gates at 25 MHz. The two major contributors to the total gate cost
of the enhancements are the NBL and the modules needed for bit field instructions.

Module Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Total increase
nb_alu 0.50 -0.50 26.00 -0.50 0.00 -0.50 25.00
nb_const_gen 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nb_fetch 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nb_int 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nb_io 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nb_mem 0.00 0.00 0.00 0.25 -0.25 0.00 0.00
nb_mul 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nb_pcu 59.75 13.25 125.75 40.00 6.25 6.00 251.00
nb_reg 573.03 19.50 20.50 2.50 41.00 -0.50 656.03
nb_shift -0.50 0.50 0.00 -0.50 0.50 57.00 57.00
nb_src 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nb_clz 0.00 39.75 0.00 0.00 0.00 0.00 39.75
nb_extr 0.00 0.00 48.00 0.00 0.00 0.00 48.00
nb_mask 0.00 0.00 67.00 0.00 0.00 0.00 67.00
nb_bfu 0.00 0.00 357.75 0.00 0.50 0.00 358.25
nb_crc 0.00 0.00 0.00 0.00 63.50 0.00 63.50
Total increase 632.78 72.50 645.00 41.75 111.50 62.00 1565.53

Table 32, contributions from each stage and module to the gate count at 25 MHz.

Table 33 shows how much each stage and module contributes to the increased gate count at
62.5 MHz. The penalty of moving the shifter in front of the ALU, and thereby changing the
critical path, is clearly shown from stage 3 in the table. The resulting increase in gate count is
more than double the increase from the non-blocking load in stage 1. The cost in gates for all
enhancements is 1868, making the total cost of the enhanced NanoRisc 7361 at 62.5 MHz.

Module Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Total increase
Sum buffers -4.00 8.75 42.00 -26.25 -5.00 32.00 47.50
nb_alu 0.25 5.25 118.25 -16.25 5.00 0.00 112.50
nb_const_gen 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nb_fetch 0.00 0.00 -1.50 3.50 -3.50 0.00 -1.50
nb_int 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nb_io -21.75 1.00 -4.50 0.00 0.00 0.00 -25.25
nb_mem 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nb_mul -4.00 12.50 -9.00 -0.50 -3.50 4.25 -0.25
nb_pcu 44.50 -3.75 288.50 122.50 -142.50 81.75 391.00
nb_reg 472.29 11.25 134.26 -17.50 -4.25 26.50 622.55
nb_shift 0.00 0.00 111.75 -36.00 19.00 48.00 142.75
nb_src -7.50 3.00 5.00 -4.00 0.25 -2.25 -5.50
nb_clz 0.00 39.50 0.00 0.00 0.00 0.00 39.50
nb_extr 0.00 0.00 48.00 0.00 0.25 -0.25 48.00
nb_mask 0.00 0.00 78.75 2.50 -1.75 -4.75 74.75
nb_bfu 0.00 0.00 358.75 -0.50 0.50 -0.50 358.25
nb_crc 0.00 0.00 0.00 0.00 64.00 -0.50 63.50
Total increase 479.79 77.50 1170.26 27.50 -71.50 184.25 1867.80

Table 33, contributions from each stage and module to the gate count at 62.5MHz.

Processing Core for Compressing Wireless Data

61

An interesting effect is shown in stage 5 when the CRC module is introduced; the gate count
is reduced. Because of the heavy timing constraints, the synthesis tool is forced to make
decisions that may result in an area that is not optimal. By introducing the CRC module, it
chooses a different approach to meet the timing constraints, and the result is reduced gate
count.

7.2.3 Power
The power consumption was calculated in running mode without memories. The calculation
was done by Synopsys Power Compiler. To estimate switching activity, the VHDL files are
analyzed and elaborated in Design Compiler before creating a SAIF (Switching Activity
Interchange Format) forward annotation file. This file tells the simulation tool which ports to
log switching activity during simulation. ModelSim is used for simulation with the SAIF file,
and it creates a SAIF back annotation file with the measured switching activity during
simulation. This file contains average switching activity for all modules on RTL level, and is
included in the synthesis before the design is compiled in Design Compiler. Power Compiler
is then used to estimate power consumption. The global operating voltage is 1.62 V.

 Switch Power Int Power Leak Power Total Power
Original [mW] 0.362 0.561 6.79E-03 0.929
Enhanced [mW] 0.427 0.632 8.61E-03 1.068

Table 34, estimated power consumption at 25 MHz [mW].

Table 34 show the estimated power at 25 MHz, while Table 35 show estimated power at 62.5
MHz. Both tables show values in mW. The total power consumption of the enhanced
NanoRisc is 1.068 mW at 25 MHz, while at 62.5 MHz it is 2.816 mW. When the processor is
in halted mode, no signals are toggling and the only power consumption should be leakage
power.

 Switch Power Int Power Leak Power Total Power
Original [mW] 0.928 1.433 7.19E-03 2.369
Enhanced [mW] 1.117 1.689 9.38E-03 2.816

Table 35, estimated power consumption at 62.5 MHz [mW].

The increase in power consumption for the enhanced NanoRisc is 15% at 25 MHz, and 19%
at 62.5 MHz. However, these power estimations do not include the power consumption for
ROM and RAM access. To investigate this, a 512x16 bits diffusion ROM and a 2048x16 bits
single port synchronous SRAM is generated in an Artisan ROM and RAM generator. These
generators use a TSMC 0.18um process. The results are found in Table 36.

Module Read Power Write Power Standby Power
ROM 3.323 x 0.006
RAM 2.561 3.041 0.024

Table 36, power consumption for 512x16 bits ROM and 2048x16 bits RAM [mW] (global voltage 1.62,
25Mhz operation)

The power consumption for the ROM should be fairly accurate since the NanoRisc fetches a
new instruction every clock cycle, but the power consumption in the RAM is too much since
the access rate will be far less than 25 MHz.

Processing Core for Compressing Wireless Data

62

7.3 Performance
Choosing measurements for comparison of the performance of processors are difficult. Many
x86 based PC manufacturers tend to use clock frequency as a measure, but this is inaccurate
when processors have different architectures and instruction sets. MIPS (Millions of
Instructions per Second) is another measure that is frequently used among microcontroller
manufacturers, but this may again be very misleading because of different instruction sets and
architectures. Some instructions may be processed in one clock cycle in one microprocessor
core, while two or three may be spent in another.

Eq. 8 610*imeExecutionT
nCountInstructioMIPS =

A more comparable measure is CPI (Cycles per Instruction). It measures how effective the
cycles in a processor core are.

Eq. 9
nCountInstructio

sClockCycleCPI =

Even though the NanoRisc is a RISC processor, the CPI deviates from 1 because of RAM
reads may need more than one clock cycles and “pre” instructions do not count as an
instruction. CPI can be calculated by running a program in the simulator and using the cycle
and instruction count. When weighing the results from all input streams and algorithms
equally, the CPI becomes 1.44 for the original NanoRisc and 1.37 with all enhancements. The
difference would have been greater if only the non-blocking load behavior had been
implemented, but since the new instructions are heavy users of “pre” instructions, the
difference becomes smaller. Calculating MIPS at 25 MHz, the original NanoRisc get a value
of 17.36 while the enhanced NanoRisc gets 18.25.

However, the NanoRisc processor is likely to be implemented in a transceiver SoC where the
performance is much more than speed. A more appropriate measurement in this setting is a
function of speed, size and power consumption. These factors should be weighted according
to the application. Another measurement is speed compared with power consumption. From
the power synthesis report, the power consumption in the original NanoRisc was 0.929 mW,
while the enhancements increased it to 1.068 mW at 25 MHz. The original NanoRisc will
hence consume approximately 0.054 mW per MIPS, while the enhanced NanoRisc will
consume approximately 0.059 mW per MIPS. This is an increase of 7% in power
consumption per MIPS. However, considering the reduction in number of clock cycles used to
process the compression algorithms and the reduced RAM access, the net power consumption
for the algorithms will be decreased. As shown in section 7.2.3, memory access costs more
power than computations. From Table 27 in section 6.6 it is shown that all algorithms, except
the Deflate decoding algorithm, have less RAM access due to the enhancements.

7.3.1 Energy Savings
Section 7.2.3 showed the power consumption in the original NanoRisc, and the NanoRisc
with all enhancements. A RAM and ROM module was also generated using the Artisan RAM
and ROM generator. These modules were generated in a similar process as used when
synthesizing the NanoRisc. A summary of these power estimations and the resulting energy
consumption per clock cycle at 25 MHz are found in Table 37.

Processing Core for Compressing Wireless Data

63

Module Power Consumption [mW] Energy per clock cycle [pJ]
Original NanoRisc 0.929 Average 37 Average
Enhanced NanoRisc 1.068 Average 42 Average
1 kB ROM 3.320 Read 132 Read
2 kB RAM 2.560 Read, 3.040 Write 102 Read, 121 Write

Table 37, power and energy consumption at 25 MHz.

From the profiling results presented in chapter 5 and found in appendix C and D, the energy
consumed per bit for all algorithms can be calculated. The results for enhanced NanoRisc with
the RAM and ROM module in Table 37 are shown in Table 38.

 Poisson [nJ] Gamma [nJ] Exponential [nJ] Text [nJ]
 Encode Decode Encode Decode Encode Decode Encode Decode
Rice 1.65 1.66 1.61 1.61 1.43 1.43 2.23 2.25
Huffman 9.69 7.14 6.36 6.51 3.23 3.20 8.32 8.57
Deflate 2.76 0.64 2.81 0.61 10.60 0.38 2.72 0.59

Table 38, energy consumption per bit for the enhanced NanoRisc.

The original NanoRisc consumes less power, but uses more clock cycles and memory access
than the enhanced. This results in total savings in energy for all algorithms. Reduced energy
consumption for the enhanced NanoRisc compared to the original is shown in Table 39.

 Poisson Gamma Exponential Text
 Encode Decode Encode Decode Encode Decode Encode Decode
Rice -20% -33% -21% -34% -18% -35% -16% -28%
Huffman -30% -29% -29% -29% -25% -27% -30% -29%
Deflate -8% -13% -6% -13% -2% -44% -11% -13%

Table 39, energy reduction per bit for the enhanced NanoRisc.

All calculations for the enhanced NanoRisc assume ROM access every clock cycle. This is
because of the NBL behavior. In the original NanoRisc ROM, access is not performed during
the first clock cycle in the load operation. Because of this and the fact that energy consumed
in the NanoRisc core is small compared to ROM and RAM access, makes reduced RAM
access the main contributor to the reduced energy.

All the implemented algorithms achieved bit compression. Thus, if the NanoRisc processor
was implemented in a SoC to process compression algorithms, energy may be saved because
fewer bits must be transmitted or received. For comparison, the CC2400 2.4 GHz low power
transceiver [23] consumes 34.2 mW during transmission with a transmit power of 0dBm,
while receiving it consumes 41.4 mW. The highest data rate is 1 Mbps. The energy consumed
per bit when transmitting or receiving at this rate is hence 32 nJ and 41 nJ. Compared with the
energy consumed in the NanoRisc per clock cycle the difference is a factor of 1000.

 Poisson Gamma Exponential Text
 Encode Decode Encode Decode Encode Decode Encode Decode
Rice -46% -47% -50% -51% -75% -76% -30% -32%
Huffman -30% -34% -35% -39% -69% -72% -17% -22%
Deflate 8% 1% -1% -9% -31% -63% -2% -9%

Table 40, reduction in energy consumption due to compression with the enhanced NanoRisc.

Processing Core for Compressing Wireless Data

64

Table 40 show the reduction in energy consumption due to compression with the enhanced
NanoRisc. Encoding is assumed in the transmitter and decoding is assumed in the receiver.
All algorithms except Deflate show energy reduction for all input streams. This is because of
its poor compression ratios. For the poisson distributed input stream, the Deflate encode
algorithm only removes 16 bits while using 108090 clock cycles and 28152 memory accesses.
Still, the excess energy consumption is only 8.

The implemented algorithms are adaptive and they are therefore quite demanding when it
comes to processing power. If the source is known and tend to have a rigid probability
distribution, a static model may achieve good compression ratios. This is true for Rice and
Huffman, but the Deflate algorithm must in all cases be adaptive. A static model will reduce
clock cycle count and reduce RAM access significantly.

7.3.2 Benchmarks
The test of time is important for all instruction sets. The instruction set is one of the most
important design issues for microprocessor core designers. If the core is to be widespread and
used in many embedded solutions, a rigid and comprehensive instruction set is important for
embedded software developers. Often it is the case that microprocessor core designers feel
that some instructions are important, while in real life they are seldom used. Adding
instructions may limit future expandability, especially for cores that are widespread. If an
instruction proves to be less useful than anticipated, a removal may result in rewriting a
number of programs.

A way to measure the effect of the improvements added to the NanoRisc for other types of
tasks than data compression, is by using benchmarks. Benchmarks are important for
embedded microprocessors in order to compare different microprocessors with different
architectures and instruction sets. The Embedded Microprocessor Benchmark Consortium
(EEMBC) is a non-profit group formed in 1997 to develop meaningful performance
benchmarks for the hardware and software used in embedded systems. Their benchmarks
have become an industry standard for evaluating the capabilities of embedded processors. The
EEMBC benchmarks reflect real world applications and they are available as different suites
targeting telecommunication, networking, network storage, digital entertainment, Java,
automotive, industrial, consumer and office equipment products. Among these, the network
benchmark suite is the most relevant since the NanoRisc is likely to be embedded in a
transceiver SoC. Unfortunately the EEMBC benchmark suites are licensed, but earlier work
[24] describes a benchmark, called NetBench, that is similar to the EEMBC network
benchmark suite. NetBench is used for evaluating and designing network processors. A short
summary of the programs used in the benchmark suite:

• CRC – Calculates the CRC-32 CCITT checksum.
• TL – A table lookup routine using a radix-tree routing table.
• DRR – Deficit-round robin scheduling
• NAT – Network Address Translation for IP address simplification and conservation.
• IPCHAINS – A firewall application that checks the IP source of incoming packets.
• URL – Implements URL-based switching.
• DH – Diffie-Hellman public key encryption.
• MD5 – Message Digest Algorithm creates a cryptographically signature for outgoing

packets.

Processing Core for Compressing Wireless Data

65

The deficit-round robin routine and the encryption algorithms will probably not gain much
from the added instructions. However, for some of the other functions it is possible to
estimate or show effects of the new improvements. The radix-tree routing table is very similar
to Huffman Trees. A radix-tree is a tree with leafs representing keys, and each key can be
found by traversing the path from the root to the leaf. This is in fact the decode routine in the
implemented Huffman algorithm. Other important features of a radix-tree are switching
nodes, inserting nodes and removing nodes. All except the remove nodes are implemented in
the Huffman algorithm. Figure 35 shows the clock cycles used during these operations in the
Huffman decoding algorithm. All input distributions show about 20% savings with the new
extensions.

0
20000
40000
60000
80000

100000
120000
140000
160000

Input distribution

C
lo

ck
C

yc
le

s

Original 140548 117780 105327 60306
Extentions 112470 93559 84631 45914

text poisson gamma exp

Figure 35, clock cycles used to decode, switch nodes and inserting nodes during Huffman decoding.

A CRC-32 calculation will be difficult since the NanoRisc has 16 bits data width. However, if
the CRC-16 CCITT polynomial is used, it will of course gain from the “crc” instruction. This
is shown in the Deflate encoding algorithm where the “crc” instruction halved the clock
cycles used in the hash function and saved 256 bytes of memory. The other programs include
some sort of fragmentation of the IP packet. Packet fragmentation is very typical for network
processors or transceivers. When data packets are sent over a transmission medium, it is
desirable that each data item in the packet is expressed in its natural size and not expanded to
e.g. a 16 bits entity for convenience. This is to make the best use of the communication
bandwidth. When packets are received or sent, they must be fragmented or assembled. It is
not hard to think that such operations may benefit heavily from bit field operations.

From these estimations, it is probable that network applications would benefit from the
improvements added to the original NanoRisc. The non-blocking load behavior will improve
performance for applications that load information from RAM. Bit field instructions and the
“ldin” and “stin” instructions will improve packet fragmentation and radix-tree routing. If the
CRC-16 CCITT polynomial is used for error control, the “crc” instruction will also be a
useful addition. In addition, as shown in this thesis, the “crc” instruction will provide a high
quality hash function.

Processing Core for Compressing Wireless Data

66

8 Discussion
In this chapter, some of the most interesting problems encountered in the thesis will be
discussed. Also, a comparison is made in order to discuss the performance of the enhanced
NanoRisc and the implemented algorithms. The last section will cover some of the future
work that could be done.

8.1 Enhancements
All enhancements except the non-blocking load behavior has been instruction level
enhancements. Instruction level enhancements are more intrusive to the processor core than
HW accelerators. When instructions and modules are added to the core, it is important that
these improvements are beneficial for a wide range of applications. In this thesis, only lossless
compression algorithms are considered, while in a SoC the embedded microcontroller will
handle a wide variety of tasks. This reasoning makes HW accelerators seem more suitable
because they are easier to change/add between designs. As an example, the “crc” instruction
is used to make hash values or checksums for error control, and it uses a fixed polynomial
according to the CRC16-CCITT standard. If this function is implemented as a HW accelerator
controlled by I/O ports, it will be easier to change polynomials or type of hash function
between designs. The tradeoffs in such a HW accelerator would be speed and area. However,
the “crc” instruction calculates a new CRC16-CCITT hash value from 8 bits in one clock
cycle. If the accelerator where to compete with the implemented instruction in speed, it must
have its own memory access module in addition to the hash function. This will increase the
area considerably compared with the implemented CRC module, but it will enable the HW
accelerator to work in parallel to the NanoRisc.

If the transceiver SoC is specified to transfer large amounts of data, data compression
algorithms and the throughput of these may become vital. However, if the transceiver is
specified to transfer a small amount of data, data compression is less vital and throughput
requirements may be easier to meet. Adding or changing HW accelerators are more flexible
between designs, but when implemented they tend to be more rigid (depending on how the
module is specified). Another disadvantage of HW accelerators is that they do not usually
utilize the capabilities already present in the processor core. If HW accelerators shall provide
maximum speed up, they usually must have their own memory access module, ALU, registers
etc. This implies a considerable increase in gate count compared to the implemented
instructions.

As mentioned in section 2.1, the Phillips Trimedia uses a coprocessor (the VLD) to decode
Huffman code words in MPEG1 and MPEG2. It is initialized with pointer to an MPEG1 or
MPEG2 data stream. This module is thus responsible for the whole entropy decoding task.
Such solutions could also be considered for the NanoRisc. A specialized HW accelerator
dedicated for a specific compression algorithm should be superior in throughput compared to
a program processed on the NanoRisc. So if speed is a major issue and if targeting a specific
standard, such solutions must be taken into consideration. Another solution in high speed and
high bit rate applications could be to run several NanoRisc processors in parallel. This would
provide full flexibility, but possibly require more power and less speed compared to a
specialized HW accelerator.

Processing Core for Compressing Wireless Data

67

Another possibility to increase the performance is by altering or redesigning the original
instruction set. This could make more room for specialized instructions for compression
algorithms, and thereby reducing the number of “pre” instructions needed by the added
instructions. Instructions removed or changed could still be performed by inserting macros to
emulate the original instructions. A simple example of instructions that could be changed to
improve the throughput is the shift and rotate instructions. In the encoding of these
instructions there is one bit field that holds the immediate number of shifts/rotates or the
register containing the amount of shits/rotates. Which of the two possibilities that are valid, is
decided by a “pre” instruction. If the shift or rotate instruction is preceded by a “pre”
instruction, the PCU will know that the field contains a register address. When making a data
compression program, using shift or rotate instructions with a register holding the amount of
shifts/rotates is more probable than using immediate values. This is because data compression
algorithms normally use variable length codes. Changing the decoding of this instruction in
the PCU in a way that a “pre” instruction indicated an immediate value, rather than a register
address, would be easy and probably have no effect on the gate count. However, since the
main purpose of the NanoRisc microprocessor is to handle complex control tasks in SoC
solutions, such enhancements are not considered. Changing or altering the original instruction
set may have a negative affect on other applications.

8.2 Power
The executing modules in the NanoRisc architecture are implemented without enable signals.
This implies that all these modules may get new inputs and toggle accordingly every clock
cycle, even though their result is not used. This is done to reduce area by keeping control
logic at a minimum. The new modules added to the NanoRisc architecture are inserted in a
similar way. The increase in power due to the new modules is in the area of 15%. This could
be reduced by adding enable signals to the most power consuming modules. The enable signal
would make sure that modules not in use had stable inputs and hence not toggle
unnecessarily.

8.3 Timing and Throughput
Through this thesis, improvements regarding throughput has been measured in clock cycles
per processed bit of the input stream, but a more real life measurement is bits per second. This
measure is similar to clock cycles per bit, except that clock cycles are converted to time units.
Hence, timing becomes critical to the throughput. Considering this, improving or restructuring
the architecture of the NanoRisc in order to increase the maximum clock frequency is a viable
alternative to improving the functionality. This reasoning makes changing the critical path by
moving the shifter and extr modules in front of the ALU seem like a bad choice. However,
using the NanoRisc at very high clock speeds is not likely. In a transceiver SoC power is a
vital measure, and this prevents very high clock speeds. The most likely clock frequency for
an implementation with the NanoRisc microprocessor will be closer to 25 MHz than 62.5
MHz.

Processing Core for Compressing Wireless Data

68

8.4 Assembly Source Code
The task of writing complex adaptive data compression algorithms in assembly proved to be a
time consuming task. The author had very little experience in this before writing the test
algorithms. The enhancements were proposed based on the profiling results from the original
source codes. In the enhanced source codes, the changes were mostly added by replacing
blocks of instructions that emulated the proposed instructions. Further increase of throughput
could very well be obtained from rewriting the algorithms. This is true for both the original
source codes and the enhanced source codes, and it could shift the effect of the enhancements
either way. However, a total rewrite of the algorithms with full awareness of the capabilities
in the proposed enhancements should in any case result in higher throughput. If this is not
true, the proposed instructions are unnecessary and should be dismissed.

As mentioned, large or complex programs like some of the implemented data compression
algorithms are time consuming to write in assembly. A “C” compiler would make this task
less tedious. “C” has become the standard for writing high-level language programs for small
microprocessors. The original NanoRisc architecture is very “C” compiler friendly with a
large number of general registers and stack functionality. If a “C” compiler is to be made in
the future and the instructions proposed in this thesis become part of the design, a “C”
compiler must be able to utilize the proposed enhancements. This will not be straightforward.
The bit field instructions may provoke unfamiliar “C” syntax, and the “str” instruction needs a
dedicated register.

8.5 Area
The increase in area due to the enhancements is in the area of 30% at both clock speeds. This
is based on the gate count of the processor core. Other considerations that can be taken into
account when measuring the increase in area is the program ROM size. In Table 28, section
6.6 it is shown that all algorithms has reduced their program size.

There are mainly three different types of ROM available for implementation with the
NanoRisc microprocessor; Diffusion ROM, Metallic ROM and One-Time Programmable
ROM. There is also possible to synthesize the program as a logic gate array. The diffusion
ROM is cheapest among the ROM alternatives in terms of bit density, and is the most
probable to be chosen for implementations. The bit density varies from 2-4 gates per byte. A
logic gate array is even cheaper in terms of area because the synthesis tool will utilize
redundancy in the bit pattern of the program. When a logic gate array with random bit patterns
are synthesized with the same library used in section 7.2, the bit density is in the area of 1
gates per byte. A logic gate array is very rigid and cannot be altered in the production stage.
The contents of a diffusion ROM however can be altered in the production stage, but it is
rather expensive and time consuming.

If a diffusion ROM with bit density of 2 gates per byte is chosen, the equivalent gate
reduction due to reduced program size is in the area of 300 for Huffman, 200 for Rice and 40
for Deflate. When also taken into consideration the removal of the CRC LUT in the Deflate
encoding algorithm, the gate count is further decreased by about 600 gates for this algorithm.

Processing Core for Compressing Wireless Data

69

8.6 A Comparison
Some studies have been done in the area of lossless data compression for energy savings in
wireless LAN networks. At MIT Laboratory for Computer Science, a report [25] has been
published that uses lossless data compression software programs for compressing text and
web data before transmission. The test setup used in the report is between a stationary PC and
a handheld computer. The compression software evaluated in the report is asymmetrical
library methods, and they are used on the whole file before transmission. A summary of the
most important results are found in Table 41.

 bzip2 compress lzo ppmd zlib
Compression Ratio 70 53 38 72 61
Static memory allocation [Kbyte] 8400 500 16 10000 130
Intructions per bit removed (comp.) 116 10 7 76 74
Intructions per bit removed (decomp.) 31 6 2 10 5
Throughput (comp.) [Mbps] 0.91 3.70 24.22 1.57 0.82
Throughput (decomp.) [Mbps] 2.59 11.65 109.44 1.42 41.15

Table 41, summary of results from ”Energy Aware Lossless Data Compression” [25]

Table 42 shows the results obtained by the enhanced NanoRisc at 25 MHz. The results are
calculated by averaging the results from all input data streams. Even though measurements
concerning lossless data compression algorithms are very dependent on the input data stream,
comparing the two tables will give a ball park estimate on the performance. A major
difference between the two tables is the processing power. While the results from Table 41
are obtained by processing algorithms on a 233 MHz 32 bits StrongARM SA-110, the
enhanced NanoRisc is running at 25 MHz using 16 bits computations. The difference in clock
frequency and bit width is of great importance for the throughput and instructions per bit
removed. There is also a difference in the file size. In Table 41 a whole data file is used, while
all data streams used when testing the NanoRisc where 1000 bytes. This has impact on
compression ratios and instructions per bit removed. Adaptive compression algorithms tend to
use more computing and achieve less compression ratios in the beginning of the stream. This
is because the modeling stage must adjust the incoming probability distribution. Later in the
stream, the modeling stage has gathered more information and uses less time updating the
memory structure holding the statistics.

 Rice Huffman Deflate
Compression Ratio [%] 55.75 57.25 21.23
Static memory allocation [Kbyte] 1 3.5 4.5
Intructions per bit removed (comp.) 16 54 112
Intructions per bit removed (decomp.) 16 55 14
Throughput (comp.) [Mbps] 2.76 0.80 1.05
Throughput (decomp.) [Mbps] 2.76 0.78 8.92

Table 42, results from the implemented algorithms in the enhanced NanoRisc at 25 MHz.

Considering the differences explained above, it seems like the enhanced NanoRisc is a
powerful yet small and energy efficient alternative for data compression in small network
applications.

Processing Core for Compressing Wireless Data

70

8.7 Future Work
As mentioned in chapter 2 a paper [4] showed that adding bit field instructions to an ARM
processor reduced the instructions executed at runtime between 5% and 28%, while the code
size was reduced by between 2% and 21%. These results were gathered from testing the
extensions with various benchmark suites. In this thesis, enhancements are added to the
NanoRisc processor. Bit field instructions are added together with shift-add memory mode,
non-blocking load behavior, and two instructions that are beneficial for streaming variable
sized codes and CRC-16 calculations. These enhancements increased the throughput for the
three implemented data compression algorithms by between 18% and 103%, while the code
size was reduced by between 6% and 31%. In section 7.3.2, it is discussed how the
improvements may benefit programs in a network benchmark suite, but the implemented
enhancements have only shown their effect on the tested algorithms, so testing on a wide
variety of applications should be done before deciding if they should be part of the design.

8.7.1 Processor Core
Since the processor core has no enable signals to its internal modules, it consumes power
unnecessary when a program is processed. The power consumption during operation becomes
very dependent on the gate count in the core, and this has a very negative effect on the added
enhancements. To minimize this negative side effect, enable signals providing stable inputs
for modules not in use should be considered.

8.7.2 Testing
The testing of the enhancements made to the NanoRisc was limited to simulations in the ISS
and ModelSim. These tests verified the functionality, but it would also been useful to test the
NanoRisc in hardware. An FPGA implementation was too time consuming for this thesis, but
it should be considered for further evaluation and verification.

It is important to test the effect of the proposed instructions on other applications as well. If
other applications seem to gain little from the enhancements, careful considerations should be
made before deciding whether the enhancements should be part of the design. Further testing
with a wide variety of programs should be done. It is also important to measure the effect of
all proposed instructions individually. As mentioned, every added instruction may block
future extensions.

In general, all programs that use information stored in memory will benefit from the non-
blocking load behavior, and if they use memory, bit field operations may help them reduce
memory access or memory allocation requirements. As shown in section 7.3.2, some
programs in the NetBench benchmark suite will probably benefit from the new instructions,
but a more comprehensive study should be done in order to establish their effect on common
applications for the NanoRisc microprocessor.

Some may also argue that the proposed instructions are inconsistent. The only arithmetic bit
field instructions are “addbfhi” and “addbfli”. Further testing could reveal a need for e.g. bit
field subtraction instructions. A major drawback in the “addbfhi” and “addbfli” instructions is
that the immediate value is limited to 12 bits. This is an effect of the limited space in the
original instruction set. Further testing should reveal if this limits the effect of the instructions.

Processing Core for Compressing Wireless Data

71

8.7.3 Tools
As mentioned in section 8.4 a “C” compiler should be made in order to ease the development
of complex algorithms or control programs. In the beginning of this thesis when different data
compression algorithms were evaluated for implementation, the complexity of the
implementations called for an evaluation of making a “C” compiler. Writing a “C” compiler
from scratch would not be feasible within the time limitation, but different toolsets could
reduce the development time. One of the most widespread open source compiler framework is
GCC [26]. However, even with the help from this toolset a report [27] estimates that 4 man-
months are needed in order to port GCC to the OpenRISC architecture [28]. Thus, even with
the help of toolsets it would not have been feasible within the time limitations.

The added profile enhancements to the existing tools measures clock cycle use within profile
areas in the source code. As seen in section 6.6 and 7.2, there are more effects from adding
functionality and instructions than reduced clock cycles. The bit field instructions helped
reducing memory access, while all enhancements resulted in increased power consumption by
the core. Power is an important measure in many SoC transceiver solutions. The profile tool
added in this thesis could be further enhanced so it could estimate power consumption. From
synthesis and experience power figures could be linked to instructions, memory access etc.
This would help software developers to make power efficient programs.

Processing Core for Compressing Wireless Data

72

Conclusion
The goal of this thesis was to investigate the current capabilities of the NanoRisc
microprocessor to process lossless compression algorithms, and find enhancements that
improved its performance in this task. In order to measure performance, existing software
tools are enhanced for profiling and simulating the improvements. Three fundamentally
different data compression algorithms are implemented in the NanoRisc assembly language
and simulated with the enhanced tools. On the background of these profiling results, some
enhancements to the NanoRisc are proposed:

• Bit field instructions.
• New load and store instructions for table data structures.
• An instruction improving read and writes of variable length codewords from memory.
• An instruction improving CRC-16 checksum calculation.
• Non-blocking load behavior.

The new enhancements have improved throughput of the three implemented algorithms by
between 18% and 103%, and the code size has decreased between 6% and 31%. Bit field
instruction has also reduced RAM access by up to 53%. Compression ratios for the
implemented algorithms on the tested input streams varied from 0.2% to 79.8%. Synthesis
reports showed an increase in gate count of 30%, but the whole NanoRisc core is still below
7k gates. Power consumption per MIPS increased by 7%, however reduced clock cycle count
and memory access due to bit field operations decreased the net power consumption for all
tested algorithms. When calculating the energy used to remove bits in the compression
algorithms with the transmit and receive power of the CC2400 2.4 GHz low power RF
transceiver, the best case resulted in 76 % energy savings while the worst case resulted in a
8% energy increase.

This thesis has shown that major improvements of throughput for lossless compression
algorithms are possible through enhancements of the NanoRisc processor at a fairly low gate
cost. It is also shown that data compression with the enhanced NanoRisc may increase battery
lifetime in a CC2400 low power transceiver 4 times. However, poor compression ratios may
increase power consumption. This makes choosing the right compression algorithm crucial,
but even though 108090 clock cycles and 28152 memory accesses are used to remove 2 out of
1000 bytes, the increased power consumption is no more than 8%.

The next step would be to do a more comprehensive study in order to establish the proposed
instructions effect on common applications for the NanoRisc microprocessor.

Processing Core for Compressing Wireless Data

73

References
1. C.E. Shannon: ”A Mathematical Theory of Communications”, The Bell System

Technical Journal, pp. 379-423, 623-656, July, 1948.
2. G. Amdahl: "Validity of the Single Processor Approach to Achieving Large-Scale

Computing Capabilities", AFIPS Conference Proceedings, (30), pp. 483-485, April,
1967.

3. D.A. Huffman: “A Method for the Construction of Minimum-Redundancy Codes”,
Proceedings of the I.R.E, September 1952.

4. B. Li, R. Gupta: “Bit Section Instruction Set Extension of ARM for Embedded
Applications”, International Conference on Compilers, Architecture and Synthesis of
Embedded Systems (CASES), p.p 69-78, October 2002.

5. R.B. Lee: “Accelerating Multimedia with Enhanced Microprocessors”, IEEE Micro,
vol. 15, no. 2, pp. 22-32, April 1995.

6. I. Kuroda, T. Nishitani: “Multimedia Processors”, IEEE, vol 86, no. 6, pp. 1203-1221,
June 1998.

7. http://www.semiconductors.philips.com/products/nexperia/
8. http://www.arm.com/
9. P. Rand: “NanoRisc”, Thesis NTNU, June 2005.
10. C.H. Sequin, D.A. Patterson: “Design and Implementation of RISC I”, Advanced

Cource on VLSI Architecture, University of Bristol, July 1982.
11. R. Pesh: “GASP, an assembly preprocessor”, March 1994.
12. V. Paxson, W.L. Estes, J. Millaway: “Flex, version 2.5.31”, March 2003.
13. C. Donnelly, R. Stallman: “Bison”, September 2005.
14. E.V. Olufsen: “Data Compression for Wireless Systems”, report in course TFE4700

NTNU, December 2005.
15. P.S. Yeh, R.F. Rice, W.Miller: “On the Optimality of a Universal Noisless Code”,

AIAA Computing in Aerospace 9 Conf. San Diego, October 1993.
16. Consultative Committee for Space Data Systems (CCSDS): “Report Concerning Space

Data Systems Standards”, CCSDS 120.0-G-1, Green Book, Issue 1, May 1997.
17. M. Weinberger, G. Seroussi, G. Sapiro: “A Low-Complexity Contexed Based, Lossless

Image Compression Algorithm”, IEEE Data Compression Confrence, 1996.
18. D. Salomon: “Data Compression, 3rd Edition”, Springer – Verlag New York Inc. ISBN

0-387-40697-2
19. R.J. Gorski: “Hardware Capabilities and Protocols Availabilities”, A24073932, April

2005.
20. R. Jain: “A Comparison of Hashing Schemes for Address Lookup in Computer

Networks”, Digital Equipment Corporation, February 1989.
21. http://wikipedia.org
22. http://www.itu.int/home/index.html
23. http://www.chipcon.com/
24. G.Memik, W.H. Mangione-Smith, W. Hu: ”NetBench: A Benchmark Suite for Network

Processors”, IEEE International Confrence Computer Aided Design, November 2001.
25. K. Barr, K Asanovic: “Energy Aware Lossless Data Compression”, MIT Laboratory of

Computer Science, May 2003.
26. http://gcc.gnu.org
27. M. Bolado, J. Castillo, H. Posadas, P. Sanchez, E. Villar, C. Sanchez, P. Blasco, H.

Fouren: “Using Open Source Cores in Real Applications”, XVIII Conference on Design
of Circuits and Integrated Systems (DCIS2003), November 2003.

28. http://www.opencores.org

Processing Core for Compressing Wireless Data

74

Appendix

A. New Instructions
B. Symbol Distributions
C. Detailed Instrucition Level Profiling
D. Detailed Algorithmic Level Profiling
E. ZIP-File

Processing Core for Compressing Wireless Data

75

A. New Instructions

addbfhi – Add Bit Field High Immidiate

Description The bit field in Rs given by position 15 and length Len (K1) is added
with an immediate value Imm (K2). The immediate value is limited to
12 bit and is given by the pre instruction. If the instruction is not
preceded by a pre instruction it assumes a default immediate value.
The addition is unsigned.

Syntax addbf 1, Rd[K1:]
pre:
addbf K2, Rd[K1:]

Operation Rs = 1 + Rd[15:K1]
pre:
Rs = K2 + Rd[15:K1]

Coding 1 0 0 0 Len Rd 1 1 1 1

Program counter PC = PC + 1

Status register HALT IRQ IE V N Z C
- - - - - - -

Pre Type 8

Default Value Imm = 1

Cycles 1

Processing Core for Compressing Wireless Data

76

addbfli – Add Bit Field Low Immidiate

Description The bit field in Rs given by position Len (K1)-1 and length Len (K1)

is added with an immediate value Imm (K2). The immediate value is
limited to 12 bit and is given by the pre instruction. If the instruction
is not preceded by a pre instruction it assumes a default immediate
value. The addition is unsigned.

Syntax addbf 1, Rd[:K1]
pre:
addbf K2, Rd[:K1]

Operation Rs = 1 + Rd[K1-1:K1]
pre:
Rs = K2 + Rd[K1-1:K1]

Coding 1 0 0 0 Len Rd 1 1 0 1

Program counter PC = PC + 1

Status register HALT IRQ IE V N Z C
- - - - - - -

Pre Type 8

Default Value Imm = 1

Cycles 1

Processing Core for Compressing Wireless Data

77

clz – Count Leading Zeroes

Description Rd is given the value of the number of leading zeroes in Rs.

Syntax clz Rs, Rd

Operation Rd = 16 – |log2(Rs)|

Coding 1 0 0 0 Rs Rd 1 0 1 1

Program counter PC = PC + 1

Status register HALT IRQ IE V N Z C

- - - 0 * * 0
 The negatve flag (N) is set to the msb of register Rs (answer is zero),
and the zero flag is set if the result of the instruction is 16 (all zeroes).

Pre None

Default Value None

Cycles 1

Processing Core for Compressing Wireless Data

78

crc – CRC16

Description Updates the value in Rd with a CRC calculation using the LSB of Rs.

Will always use the CRC16-CCITT standard polynomial.

Syntax crc Rs, Rd

Operation Rd = CRC(Rd[7:8], Rd)

Coding 1 0 0 0 Rs Rd 1 0 0 1

Program counter PC = PC +1

Status register HALT IRQ IE V N Z C
- - - - - - -

Pre None

Default Value None

Cycles 1

Processing Core for Compressing Wireless Data

79

insbfi – Insert Bit Field Immidiate

Description The bit field in Rs given by position PosRs (K1) and length Len (K3)

is inserted into Rd from position PosRd (K2). Positions PosRs and
PosRd and length Len are given the pre instruction. If the instruction
is not preceded by a pre instruction it assumes default values.

Syntax insbf Rs[7:8], Rd[7]
pre:
insbf Rs[K1:K3], Rd[K2]

Operation Rd[7:8] = {Rd[15:8], Rs[7:8]}
pre:
Rd[K2:K3] = {Rd[15:15-K2], Rs[K1: K3], Rd[K2- K3:K2- K3+1]}

Coding 1 0 0 0 Rd Rs 0 0 0 1

Program counter PC = PC + 1

Status register HALT IRQ IE V N Z C
- - - - - - -

Pre Type 6

Default Value Len = 8, PosRs = 7, PosRd = 7

Cycles 1

Processing Core for Compressing Wireless Data

80

ldin – Load index

Description The contents in the memory location specified by the value in Rs

shifted left once and added with an immediate value (offset), are
loaded into register Rd. This memory instruction has no size
indicator, and will always load words. The immediate offset Imm is
given by the pre instruction, and is limited to 12 bits. If the instruction
is not preceded with a pre instruction it assumes a default immediate
value.

Syntax ldin [Rs*+0], Rd
pre:
ldin [Rs*+K1], Rd

Operation Rd = M[Rs<<1+0]
pre:
Rd = M[Rs<<1+K1]

Coding 1 0 0 1 Ra Rd 0 0 0 1

Program counter PC = PC + 1

Status register HALT IRQ IE V N Z C
- - - - - - -

Pre Type 8

Default Value Imm = 0

Cycles 1

Processing Core for Compressing Wireless Data

81

movbf – Move Bit Field

Description The bit field in Rs given by position PosRd (K1) and the length in

register Rlen (Rl) is moved to Rd from position Rlen-1. Positions
PosRd and the length Rlen register are given by the pre instruction.

Syntax movbf Rs[K1:Rl], Rd

Operation Rd[K2:K3] = {0[15:15-Rl], Rs[K1: Rl]}

Coding 1 0 0 0 Rd Rs 0 1 1 1

Program counter PC = PC + 1

Status register HALT IRQ IE V N Z C
- - - - - - -

Pre Type 7

Default Value None

Cycles 1

Processing Core for Compressing Wireless Data

82

movbfi – Move Bit Field Immidiate

Description The bit field in Rs given by position PosRs (K1) and length Len (K3)is

moved to Rd from position PosRd (K2). Positions PosRs and PosRd
and length Len are given by the pre instruction. If the instruction is
not preceded by a pre instruction it assumes default values.

Syntax movbf Rs[7:8], Rd[7]
pre:
movbf Rs[K1:K3], Rd[K2]

Operation Rd[7:8] = {0[15:8], Rs[7:8]}
pre:
Rd[K2:K3] = {0[15:15-K2], Rs[K1: K3], 0[K2- K3:K2- K3+1]}

Coding 1 0 0 0 Rd Rs 0 1 0 1

Program counter PC = PC + 1

Status register HALT IRQ IE V N Z C
- - - - - - -

Pre Type 6

Default Value PosRs = 7, PosRd = 7, Len

Cycles 1

Processing Core for Compressing Wireless Data

83

stin – Store Index

Description The contents in Rd are stored to the memory location specified by the

value in Rs shifted left once and added with an immediate value Imm
(offset). This memory instruction has no size indicator, and will
always store words. The immediate offset is given by the pre
instruction, and is limited to 12 bits. If the instruction is not preceded
with a pre instruction it assumes a default immediate value.

Syntax stin Rd, [Rs*+0]
pre:
stin Rd, [Rs*+K1]

Operation M[Rs<<1+0] = Rd
pre:
M[Rs<<1+K1] = Rd

Coding 1 0 0 1 Ra Rd 0 0 1 1

Program counter PC = PC + 1

Status register HALT IRQ IE V N Z C
- - - - - - -

Pre Type 8

Default Value Imm = 0

Cycles 1

Processing Core for Compressing Wireless Data

84

str – Stream

Description Shifts Rd and the dedicated register Rk equal amounts of times to the

left. The Amount of shifts is the value in Rlen. The bits falling off Rk
is shifted into Rd.

Syntax Str Rlen, Rd

Operation Rd = {Rd[15-Rlen:15-Rlen+1], Rk{15:15-Rlen+1}}

Coding 1 0 0 1 Rlen Rd 1 1 1 1

Program counter PC = PC +1

Status register HALT IRQ IE V N Z C
- - - - - - -

Pre None

Default Value None

Cycles 1

Processing Core for Compressing Wireless Data

85

New Prefixes

Type 6 1 1 0 1 Len Pos Rs Pos Rd
Type 7 1 1 0 1 Rlen Pos Rs x x x x
Type 8 1 1 0 Imm

Unused Space

1 0 0 0 x x x x x x x x 0 0 1 1
1 0 0 1 x x x x x x x x 0 1 0 1
1 0 0 1 x x x x x x x x 0 1 1 1
1 0 0 1 x x x x x x x x 1 0 0 1
1 0 0 1 x x x x x x x x 1 0 1 1
1 0 0 1 x x x x x x x x 1 1 0 1

Processing Core for Compressing Wireless Data

86

B. Symbol Distributions

Exponential

Gamma

Value Symbols
0 616
1 250
2 77
3 44
4 6
5 5
6 1
7 1

Value Symbols
1 1
2 30
3 90
4 121
5 171
6 141
7 120
8 107
9 72

10 55
11 40
12 21
13 8
14 15
15 4
16 1
17 2
18 0
19 1

Exponential Distributed Stream

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7

Symbol Value

Sy
m

bo
ls

Gamma Distributed Stream

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Symbol Value

Sy
m

bo
ls

Processing Core for Compressing Wireless Data

87

Possion Distributed Stream

0

20

40

60

80

100

120

140

160

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Symbol Values

S
ym

bo
ls

Poisson

Value Symbols
2 1
3 8
4 20
5 39
6 68
7 93
8 121
9 137

10 119
11 94
12 88
13 80
14 47
15 32
16 26
17 11
18 6
19 5
20 2
21 3

Processing Core for Compressing Wireless Data

88

Text Input Stream

0

20

40

60

80

100

120

140

160

180

0 44 46 65 76 83 90 98 10
0

10
2

10
4

10
7

10
9

11
1

11
3

11
5

11
7

11
9

12
1

Symbol Values

Sy
m

bo
ls

Text

Value Symbols
0 1

32 165
44 8
45 1
46 7
55 2
65 2
72 1
76 1
82 1
83 1
84 3
90 1
97 61
98 12
99 33

100 35
101 103
102 31
103 8
104 42
105 61
107 2
108 18
109 29
110 56
111 61
112 10
113 6
114 54
115 54
116 63
117 29
118 6
119 5
120 4
121 23

Processing Core for Compressing Wireless Data

89

C. Instruction Level Profiling

Adaptive Huffman Encode (Exponential)
Label Cycles Calls Cycles/Call Cycles/Tot.Cycles
bfo1_insert_node1 24 8 3.0 0.0001
bfo1_ext_count2 3384 1692 2.0 0.0171
sum type 1 3408 1700 2.0 0.0172
bfo2_insert_node2 24 8 3.0 0.0001
bfo2_ext_count1 5076 1692 3.0 0.0256
bfo2_ins_count2 4815 1605 3.0 0.0243
sum type 2 9915 3305 3.0 0.0501
bfo3_ins_count1 8025 1605 5.0 0.0405
sum type 3 8025 1605 5.0 0.0405
bfo5_switch_nodes2 48 16 3.0 0.0002
bfo5_switch_nodes4 48 16 3.0 0.0002
bfo5_switch_nodes6 36 12 3.0 0.0002
bfo5_switch_nodes8 36 12 3.0 0.0002
bfo5_ins_count3 4815 1605 3.0 0.0243
sum type 5 4983 1661 3.0 0.0252
bfo9_switch_nodes1 64 16 4.0 0.0003
bfo9_switch_nodes3 64 16 4.0 0.0003
bfo9_switch_nodes5 48 12 4.0 0.0002
bfo9_switch_nodes7 48 12 4.0 0.0002
bfo9_encode1 6444 1611 4.0 0.0325
bfo9_sort_tree1 6420 1605 4.0 0.0324
bfo9_increment_tree1 6420 1605 4.0 0.0324
sum type 9 19508 4877 4.0 0.0985
Sum Bit Field Operations 45839 13148 3.5 0.2315
sa2_insert_node1 24 8 3.0 0.0001
sa2_insert_node2 32 8 4.0 0.0002
sa2_switch_nodes1 63 21 3.0 0.0003
sa2_switch_nodes2 75 25 3.0 0.0004
sum type 2 194 62 3.1 0.0010
sa3_main1 4000 1000 4.0 0.0202
sum type 3 4000 1000 4.0 0.0202
Sum ShiftAdd Operations 4194 1062 3.9 0.0212
Streams 7504 1008 7.4 0.0379

Total Number of Cycles 198035

Memory Access [ops.] 47305

Store Operations 17955
Load Operations 29350

Processing Core for Compressing Wireless Data

90

Adaptive Huffman Decode (Exponential)
Label Cycles Calls Cycles/Call Cycles/Tot.Cycles
bfo1_insert_node1 24 8 3.0 0.0001
bfo1_ext_count2 3476 1738 2.0 0.0175
Sum type 1 3500 1746 2.0 0.0176
bfo2_insert_node2 24 8 3.0 0.0001
bfo2_ext_count1 5214 1738 3.0 0.0262
bfo2_ins_count2 4932 1644 3.0 0.0248
Sum Type 2 10170 3390 3.0 0.0511
bfo3_ins_count1 8220 1644 5.0 0.0413
Sum Type 3 8220 1644 5.0 0.0413
bfo5_switch_nodes2 54 18 3.0 0.0003
bfo5_switch_nodes4 54 18 3.0 0.0003
bfo5_switch_nodes6 42 14 3.0 0.0002
bfo5_switch_nodes8 42 14 3.0 0.0002
bfo5_ins_count3 4932 1644 3.0 0.0248
Sum type 5 5124 1708 3.0 0.0257
bfo9_switch_nodes1 72 18 4.0 0.0004
bfo9_switch_nodes3 72 18 4.0 0.0004
bfo9_switch_nodes5 56 14 4.0 0.0003
bfo9_switch_nodes7 56 14 4.0 0.0003
bfo9_sort_tree1 6576 1644 4.0 0.0330
bfo9_increment_tree1 6576 1644 4.0 0.0330
Sum type 9 13408 3352 4.0 0.0673
Sum Bit Field Operations 40422 11840 3.4 0.2029
sa2_insert_node1 24 8 3.0 0.0001
sa2_switch_nodes1 75 25 3.0 0.0004
sa2_insert_node2 32 8 4.0 0.0002
sa2_switch_nodes2 87 29 3.0 0.0004
Sum type 2 218 70 3.1 0.0011
Sum ShiftAdd Operations 218 70 3.1 0.0011
Streams 12265 1008 12.2 0.0616

Total Number of Cycles 199180

Memory Access [ops.] 46966

Store Operations 18205
Load Operations 28761

Processing Core for Compressing Wireless Data

91

Adaptive Huffman Encode (Gamma)
Label Cycles Calls Cycles/Call Cycles/Tot.Cycles
bfo1_insert_node1 54 18 3.0 0.0001
bfo1_ext_count2 10842 5421 2.0 0.0262
sum type 1 10896 5439 2.0 0.0263
bfo2_insert_node2 54 18 3.0 0.0001
bfo2_ext_count1 16263 5421 3.0 0.0393
bfo2_ins_count2 10335 3445 3.0 0.0250
sum type 2 26652 8884 3.0 0.0644
bfo3_ins_count1 17225 3445 5.0 0.0416
sum type 3 17225 3445 5.0 0.0416
bfo5_switch_nodes2 123 41 3.0 0.0003
bfo5_switch_nodes4 123 41 3.0 0.0003
bfo5_switch_nodes6 222 74 3.0 0.0005
bfo5_switch_nodes8 222 74 3.0 0.0005
bfo5_ins_count3 10335 3445 3.0 0.0250
sum type 5 11025 3675 3.0 0.0266
bfo9_switch_nodes1 164 41 4.0 0.0004
bfo9_switch_nodes3 164 41 4.0 0.0004
bfo9_switch_nodes5 296 74 4.0 0.0007
bfo9_switch_nodes7 296 74 4.0 0.0007
bfo9_encode1 13880 3470 4.0 0.0335
bfo9_sort_tree1 13780 3445 4.0 0.0333
bfo9_increment_tree1 13780 3445 4.0 0.0333
sum type 9 42360 10590 4.0 0.1023
Sum Bit Field Operations 108158 32033 3.4 0.2612
sa2_insert_node1 54 18 3.0 0.0001
sa2_insert_node2 72 18 4.0 0.0002
sa2_switch_nodes1 465 155 3.0 0.0011
sa2_switch_nodes2 366 122 3.0 0.0009
sum type 2 957 313 3.1 0.0023
sa3_main1 4000 1000 4.0 0.0097
sum type 3 4000 1000 4.0 0.0097
Sum ShiftAdd Operations 4957 1313 3.8 0.0120
Streams 9258 1037 8.9 0.0224

Total Number of Cycles 414032

Memory Access [ops.] 96823

Store Operations 34687
Load Operations 62136

Processing Core for Compressing Wireless Data

92

Adaptive Huffman Decode (Gamma)

Label Cycles Calls Cycles/Call Cycles/Tot.Cycles
bfo1_insert_node1 54 18 3.0 0.0001
bfo1_ext_count2 10850 5425 2.0 0.0259
Sum type 1 10904 5443 2.0 0.0260
bfo2_insert_node2 54 18 3.0 0.0001
bfo2_ext_count1 16275 5425 3.0 0.0389
bfo2_ins_count2 10335 3445 3.0 0.0247
Sum Type 2 26664 8888 3.0 0.0637
bfo3_ins_count1 17225 3445 5.0 0.0411
Sum Type 3 17225 3445 5.0 0.0411
bfo5_switch_nodes2 164 41 4.0 0.0004
bfo5_switch_nodes4 123 41 3.0 0.0003
bfo5_switch_nodes6 222 74 3.0 0.0005
bfo5_switch_nodes8 222 74 3.0 0.0005
bfo5_ins_count3 10335 3445 3.0 0.0247
Sum type 5 11066 3675 3.0 0.0264
bfo9_switch_nodes1 164 41 4.0 0.0004
bfo9_switch_nodes3 164 41 4.0 0.0004
bfo9_switch_nodes5 296 74 4.0 0.0007
bfo9_switch_nodes7 296 74 4.0 0.0007
bfo9_sort_tree1 13780 3445 4.0 0.0329
bfo9_increment_tree1 13780 3445 4.0 0.0329
Sum type 9 28480 7120 4.0 0.0680
Sum Bit Field Operations 94339 28571 3.3 0.2253
sa2_insert_node1 54 18 3.0 0.0001
sa2_switch_nodes1 465 155 3.0 0.0011
sa2_insert_node2 72 18 4.0 0.0002
sa2_switch_nodes2 366 122 3.0 0.0009
Sum type 2 957 313 3.1 0.0023
Sum ShiftAdd Operations 957 313 3.1 0.0023
Streams 13673 1018 13.4 0.0327

Total Number of Cycles 418697

Memory Access [ops.] 97328

Store Operations 34484
Load Operations 62844

Processing Core for Compressing Wireless Data

93

Adaptive Huffman Encode (Poisson)
Label Cycles Calls Cycles/Call Cycles/Tot.Cycles
bfo1_insert_node1 60 20 3.0 0.0001
bfo1_ext_count2 12070 6035 2.0 0.0266
sum type 1 12130 6055 2.0 0.0267
bfo2_insert_node2 60 20 3.0 0.0001
bfo2_ext_count1 18105 6035 3.0 0.0399
bfo2_ins_count2 11181 3727 3.0 0.0246
sum type 2 29346 9782 3.0 0.0647
bfo3_ins_count1 18635 3727 5.0 0.0411
sum type 3 18635 3727 5.0 0.0411
bfo5_switch_nodes2 213 71 3.0 0.0005
bfo5_switch_nodes4 213 71 3.0 0.0005
bfo5_switch_nodes6 324 108 3.0 0.0007
bfo5_switch_nodes8 324 108 3.0 0.0007
bfo5_ins_count3 11181 3727 3.0 0.0246
sum type 5 12255 4085 3.0 0.0270
bfo9_switch_nodes1 284 71 4.0 0.0006
bfo9_switch_nodes3 284 71 4.0 0.0006
bfo9_switch_nodes5 432 108 4.0 0.0010
bfo9_switch_nodes7 432 108 4.0 0.0010
bfo9_encode1 15020 3755 4.0 0.0331
bfo9_sort_tree1 14908 3727 4.0 0.0329
bfo9_increment_tree1 14908 3727 4.0 0.0329
sum type 9 46268 11567 4.0 0.1020
Sum Bit Field Operations 118634 35216 3.4 0.2615
sa2_insert_node1 60 20 3.0 0.0001
sa2_insert_node2 80 20 4.0 0.0002
sa2_switch_nodes1 672 224 3.0 0.0015
sa2_switch_nodes2 561 187 3.0 0.0012
sum type 2 1373 451 3.0 0.0030
sa3_main1 4000 1000 4.0 0.0088
sum type 3 4000 1000 4.0 0.0088
Sum ShiftAdd Operations 0 0 3.8 0.0207
Streams 9536 1020 9.3 0.0210

Total Number of Cycles 453720

Memory Access [ops.] 106383

Store Operations 38123
Load Operations 68260

Processing Core for Compressing Wireless Data

94

Adaptive Huffman Decode (Poisson)
Label Cycles Calls Cycles/Call Cycles/Tot.Cycles
bfo1_insert_node1 60 20 3.0 0.0001
bfo1_ext_count2 12062 6031 2.0 0.0263
Sum type 1 12122 6051 2.0 0.0264
bfo2_insert_node2 60 20 3.0 0.0001
bfo2_ext_count1 18093 6031 3.0 0.0394
bfo2_ins_count2 11172 3724 3.0 0.0243
Sum Type 2 29325 9775 3.0 0.0638
bfo3_ins_count1 18620 3724 5.0 0.0405
Sum Type 3 18620 3724 5.0 0.0405
bfo5_switch_nodes2 213 71 3.0 0.0005
bfo5_switch_nodes4 213 71 3.0 0.0005
bfo5_switch_nodes6 324 108 3.0 0.0007
bfo5_switch_nodes8 324 108 3.0 0.0007
bfo5_ins_count3 11172 3724 3.0 0.0243
Sum type 5 12246 4082 3.0 0.0267
bfo9_switch_nodes1 284 71 4.0 0.0006
bfo9_switch_nodes3 284 71 4.0 0.0006
bfo9_switch_nodes5 432 108 4.0 0.0009
bfo9_switch_nodes7 432 108 4.0 0.0009
bfo9_sort_tree1 14896 3724 4.0 0.0324
bfo9_increment_tree1 14896 3724 4.0 0.0324
Sum type 9 31224 7806 4.0 0.0680
Sum Bit Field Operations 103537 31438 3.3 0.2254
sa2_insert_node1 60 20 3.0 0.0001
sa2_switch_nodes1 675 225 3.0 0.0015
sa2_insert_node2 80 20 4.0 0.0002
sa2_switch_nodes2 564 188 3.0 0.0012
Sum type 2 1379 453 3.0 0.0030
Sum ShiftAdd Operations 1379 453 3.0 0.0030
Streams 13904 1020 13.6 0.0303

Total Number of Cycles 459299

Memory Access [ops.] 107116

Store Operations 37888
Load Operations 69228

Processing Core for Compressing Wireless Data

95

Adaptive Huffman Encode (Text)
Label Cycles Calls Cycles/Call Cycles/Tot.Cycles
bfo1_insert_node1 111 37 3.0 0.0002
bfo1_ext_count2 14510 7255 2.0 0.0267
sum type 1 14621 7292 2.0 0.0269
bfo2_insert_node2 111 37 3.0 0.0002
bfo2_ext_count1 21765 7255 3.0 0.0401
bfo2_ins_count2 12801 4267 3.0 0.0236
sum type 2 34677 11559 3.0 0.0639
bfo3_ins_count1 21335 4267 5.0 0.0393
sum type 3 21335 4267 5.0 0.0393
bfo5_switch_nodes2 465 155 3.0 0.0009
bfo5_switch_nodes4 465 155 3.0 0.0009
bfo5_switch_nodes6 648 216 3.0 0.0012
bfo5_switch_nodes8 648 216 3.0 0.0012
bfo5_ins_count3 12801 4267 3.0 0.0236
sum type 5 15027 5009 3.0 0.0277
bfo9_switch_nodes1 620 155 4.0 0.0011
bfo9_switch_nodes3 620 155 4.0 0.0011
bfo9_switch_nodes5 864 216 4.0 0.0016
bfo9_switch_nodes7 864 216 4.0 0.0016
bfo9_encode1 17160 4290 4.0 0.0316
bfo9_sort_tree1 17068 4267 4.0 0.0315
bfo9_increment_tree1 17068 4267 4.0 0.0315
sum type 9 54264 13566 4.0 0.1000
Sum Bit Field Operations 139924 41693 3.4 0.2579
sa2_insert_node1 111 37 3.0 0.0002
sa2_insert_node2 148 37 4.0 0.0003
sa2_switch_nodes1 1041 347 3.0 0.0019
sa2_switch_nodes2 858 286 3.0 0.0016
sum type 2 2158 707 3.1 0.0040
sa3_main1 4000 1000 4.0 0.0074
sum type 3 4000 1000 4.0 0.0074
Sum ShiftAdd Operations 6158 1707 3.6 0.0114
Streams 10226 1037 9.9 0.0188

Total Number of Cycles 542537

Memory Access [ops.] 127339

Store Operations 45099
Load Operations 82240

Processing Core for Compressing Wireless Data

96

Adaptive Huffman Decode (Text)
Label Cycles Calls Cycles/Call Cycles/Tot.Cycles
bfo1_insert_node1 111 37 3.0 0.0002
bfo1_ext_count2 14512 7256 2.0 0.0264
Sum type 1 14623 7293 2.0 0.0266
bfo2_insert_node2 111 37 3.0 0.0002
bfo2_ext_count1 21768 7256 3.0 0.0395
bfo2_ins_count2 12801 4267 3.0 0.0233
Sum Type 2 34680 11560 3.0 0.0630
bfo3_ins_count1 21335 4267 5.0 0.0388
Sum Type 3 21335 4267 5.0 0.0388
bfo5_switch_nodes2 465 155 3.0 0.0008
bfo5_switch_nodes4 465 155 3.0 0.0008
bfo5_switch_nodes6 648 216 3.0 0.0012
bfo5_switch_nodes8 648 216 3.0 0.0012
bfo5_ins_count3 12801 4267 3.0 0.0233
Sum type 5 15027 5009 3.0 0.0273
bfo9_switch_nodes1 620 155 4.0 0.0011
bfo9_switch_nodes3 620 155 4.0 0.0011
bfo9_switch_nodes5 864 216 4.0 0.0016
bfo9_switch_nodes7 864 216 4.0 0.0016
bfo9_sort_tree1 17068 4267 4.0 0.0310
bfo9_increment_tree1 17068 4267 4.0 0.0310
Sum type 9 37104 9276 4.0 0.0674
Sum Bit Field Operations 122769 37405 3.3 0.2230
sa2_insert_node1 111 37 3.0 0.0002
sa2_switch_nodes1 1041 347 3.0 0.0019
sa2_insert_node2 148 37 4.0 0.0003
sa2_switch_nodes2 858 286 3.0 0.0016
Sum type 2 2158 707 3.1 0.0039
Sum ShiftAdd Operations 2158 707 3.1 0.0039
Streams 14553 1037 14.0 0.0264

Total Number of Cycles 550573

Memory Access [ops.] 128674

Store Operations 44851
Load Operations 83823

Processing Core for Compressing Wireless Data

97

Deflate Encode (Exponential)
Label Cycles Calls Cycles/Calls Cycles/Tot.Cycles
bfo1_make_code2 0 0 #DIV/0! 0
bfo1_make_code3 236 118 2 0.0005
bfo1_make_code4 90 45 2 0.0002
Sum Type 1 326 163 2 0.0006
Sum Bit Field Operations 326 163 2 0.0006
sa3_encode1 645 215 3 0.0013
sa3_add_match1 3000 1000 3 0.0058
Sum type 3 3645 1215 3 0.0071
Sum ShiftAdd Operations 3645 1215 3 0.0071
Streams 4800 380 12.6 0.0093
CRC 31000 1000 31.0 0.0602

Total Number of Cycles 515066

Memory Access [ops.] 81537

Store Operations 11751
Load Operations 69786

Deflate Decode (Exponential)
Label Cycles Calls Cycles/Calls Cycles/Tot.Cycles
bfo4_dec_stream3 156 52 3 0.0083
Sum Type 4 156 52 3 0.0083
bfo10_dec_stream4 236 118 2 0.0126
bfo10_dec_stream5 90 45 2 0.0048
bfo10_dec_stream6 0 0 #DIV/0! 0.0000
Sum Type 10 326 163 2 0.0173
bfo12_dec_stream1 864 216 4 0.0460
Sum Type 12 864 216 4 0.0460
Sum Bit Field Operations 1346 431 3.1 0.0716
Streams 6116 378 16.2 0.3253

Total Number of Cycles 18802

Memory Access [ops.] 3315

Store Operations 1594
Load Operations 1721

Processing Core for Compressing Wireless Data

98

Deflate Encode (Gamma)

Label Cycles Calls Cycles/Calls Cycles/Tot.Cycles
bfo1_make_code2 0 0 #DIV/0! 0
bfo1_make_code3 360 180 2 0.0026
bfo1_make_code4 0 0 #DIV/0! 0
Sum Type 1 360 180 2 0.0026
Sum Bit Field Operations 360 180 2 0.0026
sa3_encode1 1824 608 3 0.0133
sa3_add_match1 3000 1000 3 0.0219
Sum type 3 4824 1608 3 0.0351
Sum ShiftAdd Operations 4824 1608 3 0.0351
Streams 11040 790 14.0 0.0804
CRC 31000 1000 31.0 0.2258

Total Number of Cycles 137286

Memory Access [ops.] 30322

Store Operations 9564
Load Operations 20758

Deflate Decode (Gamma)

Label Cycles Calls Cycles/Calls Cycles/Tot.Cycles
bfo4_dec_stream3 1287 429 3 0.0403
Sum Type 4 1287 429 3 0.0403
bfo10_dec_stream4 360 180 2 0.0113
bfo10_dec_stream5 0 0 #DIV/0! 0.0000
bfo10_dec_stream6 0 0 #DIV/0! 0.0000
Sum Type 10 360 180 2 0.0113
bfo12_dec_stream1 2436 609 4 0.0763
Sum Type 12 2436 609 4 0.0763
Sum Bit Field Operations 4083 1218 3.4 0.1278
Streams 13607 788 17.3 0.4259

Total Number of Cycles 31946

Memory Access [ops.] 4816

Store Operations 2397
Load Operations 2419

Processing Core for Compressing Wireless Data

99

Deflate Encode (Poisson)

Label Cycles Calls Cycles/Calls Cycles/Tot.Cycles
bfo1_make_code2 0 0 #DIV/0! 0
bfo1_make_code3 292 146 2 0.0021
bfo1_make_code4 0 0 #DIV/0! 0
Sum Type 1 292 146 2 0.0021
Sum Bit Field Operations 292 146 2 0.0021
sa3_encode1 2058 686 3 0.0149
sa3_add_match1 3000 1000 3 0.0217
Sum type 3 5058 1686 3 0.0366
Sum ShiftAdd Operations 5058 1686 3 0.0366
Streams 12004 834 14.4 0.0869
CRC 31000 1000 31.0 0.2245

Total Number of Cycles 138101

Memory Access [ops.] 30941

Store Operations 9898
Load Operations 21043

Deflate Decode (Poisson)

Label Cycles Calls Cycles/Calls Cycles/Tot.Cycles
bfo4_dec_stream3 1620 540 3 0.0483
Sum Type 4 1620 540 3 0.0483
bfo10_dec_stream4 292 146 2 0.0087
bfo10_dec_stream5 0 0 #DIV/0! 0.0000
bfo10_dec_stream6 0 0 #DIV/0! 0.0000
Sum Type 10 292 146 2 0.0087
bfo12_dec_stream1 2748 687 4 0.0820
Sum Type 12 2748 687 4 0.0820
Sum Bit Field Operations 4660 1373 3.4 0.1390
Streams 14630 832 17.6 0.4365

Total Number of Cycles 33516

Memory Access [ops.] 4997

Store Operations 2519
Load Operations 2478

Processing Core for Compressing Wireless Data

100

Deflate Encode (Text)
Label Cycles Calls Cycles/Calls Cycles/Tot.Cycles
bfo1_make_code2 0 0 #DIV/0! 0
bfo1_make_code3 194 97 2 0.0014
bfo1_make_code4 30 15 2 0.000213584
Sum Type 1 224 112 2 0.0016
Sum Bit Field Operations 224 112 2 0.0016
sa3_encode1 1866 622 3 0.0133
sa3_add_match1 3000 1000 3 0.0214
Sum type 3 4866 1622 3 0.0346
Sum ShiftAdd Operations 4866 1622 3 0.0346
Streams 10716 736 14.6 0.0763
CRC 31000 1000 31.0 0.2207

Total Number of Cycles 140460

Memory Access [ops.] 31169

Store Operations 21484
Load Operations 9685

Deflate Decode (Text)

Label Cycles Calls Cycles/Calls Cycles/Tot.Cycles
bfo4_dec_stream3 1530 510 3 0.0501
Sum Type 4 1530 510 3 0.0501
bfo10_dec_stream4 194 97 2 0.0064
bfo10_dec_stream5 30 15 2 0.0010
bfo10_dec_stream6 0 0 #DIV/0! 0.0000
Sum Type 10 224 112 2 0.0073
bfo12_dec_stream1 2492 623 4 0.0817
Sum Type 12 2492 623 4 0.0817
Sum Bit Field Operations 4246 1245 3.4 0.1392
Streams 13013 734 17.7 0.4265

Total Number of Cycles 30513

Memory Access [ops.] 4654

Store Operations 2357
Load Operations 2297

Processing Core for Compressing Wireless Data

101

Rice Encode (Exponential)

Label Cycles Calls Cycles/Call Cycles/Tot.Cycles
bfo6_maintain_tables1 64 16 4.0 0.0008
bfo6_get_byte1 3996 999 4.0 0.0508
Sum Type 6 4060 1015 4.0 0.0516
bfo8_encode1 4995 999 5.0 0.0634
Sum Type 8 4995 999 5.0 0.0634
Bit Field Operations 9055 2014 4.5 0.1150
sa1_comp_freq1 1158 386 3.0 0.0147
Sum Type 1 1158 386 3.0 0.0147
sa3_get_byte1 2997 999 3.0 0.0381
Sum Type 3 2997 999 3.0 0.0381
sa4_encode1 2997 999 3.0 0.0381
sa4_switch1 42 14 3.0 0.0005
Sum Type 4 3039 1013 3.0 0.0386
sa5_maintain_tables 42 14 3.0 0.0005
Sum Type 5 42 14 3.0 0.0005
Sum ShiftAdd Operations 7236 2412 3.0 0.0919
CLZ 434 62 7.0 0.0055
Streams 13436 1999 6.7 0.1707

Total Number of Cycles 78729

Memory Access [ops.] 14768

Store Operations 7259
Load Operations 7509

Processing Core for Compressing Wireless Data

102

Rice Decode (Exponential)

Label Cycles Calls Cycles/Call Cycles/Tot.Cycles
bfo6_switch1 56 14 4.0 0.0006
bfo6_decode_loop1 3988 997 4.0 0.0407
bfo6_maintain_tables1 64 16 4.0 0.0007
Sum Type 6 4108 1027 4.0 0.0420
bfo7_decode1 4985 997 5.0 0.0509
Sum Type 7 4985 997 5.0 0.0509
Bit Field Operations 9093 2024 4.5 0.0929
sa1_comp_freq1 2991 997 3.0 0.0305
Sum Type 1 2991 997 3.0 0.0305
sa4_switch 42 14 3.0 0.0004
sa4_comp_freq2 3988 997 4.0 0.0407
Sum Type 4 4030 1011 4.0 0.0412
sa5_maintain_tables1 142 14 10.1 0.0015
Sum Type 5 142 14 10.1 0.0015
Shift Add Operations 7163 2022 3.5 0.0732
clz1 12785 997 12.8 0.1306
clz2 434 62 7.0 0.0044
CLZ 13219 1059 12.5 0.1350
Streams 23056 1994 11.6 0.2355

Total Number of Cycles 97912

Memory Access [ops.] 14758

Store Operations 8156
Load Operations 6602

Processing Core for Compressing Wireless Data

103

Rice Encode (Gamma)
Label Cycles Calls Cycles/Call Cycles/Tot.Cycles
bfo6_maintain_tables1 0 0 #DIV/0! 0.0000
bfo6_get_byte1 3996 999 4 0.0438
Sum Type 6 3996 999 4 0.0438
bfo8_encode1 4995 999 5 0.0547
Sum Type 8 4995 999 5 0.0547
Bit Field Operations 8991 1998 4.5 0.0985
sa1_comp_freq1 2493 831 3 0.0273
Sum Type 1 2493 831 3 0.0273
sa3_get_byte1 2997 999 3 0.0328
Sum Type 3 2997 999 3 0.0328
sa4_encode1 2997 999 3 0.0328
sa4_switch1 321 107 3 0.0035
Sum Type 4 3318 1106 3 0.0363
sa5_maintain_tables 0 0 #DIV/0! 0.0000
Sum Type 5 0 0 #DIV/0! 0.0000
Sum ShiftAdd Operations 8808 2936 3 0.0964
CLZ 3276 62 52.8 0.0359
Streams 15186 1999 7.6 0.1663

Total Number of Cycles 91322

Memory Access [ops.] 15971

Store Operations 7821
Load Operations 8150

Processing Core for Compressing Wireless Data

104

Rice Decode (Gamma)
Label Cycles Calls Cycles/Call Cycles/Tot.Cycles
bfo6_switch1 428 107 4.0 0.0039
bfo6_decode_loop1 3988 997 4.0 0.0360
bfo6_maintain_tables1 0 0 #DIV/0! 0.0000
Sum Type 6 4416 1104 4.0 0.0398
bfo7_decode1 4985 997 5.0 0.0449
Sum Type 7 4985 997 5.0 0.0449
Bit Field Operations 9401 2101 4.5 0.0847
sa1_comp_freq1 2991 997 3.0 0.0270
Sum Type 1 2991 997 3.0 0.0270
sa4_switch 321 107 3.0 0.0029
sa4_comp_freq2 3988 997 4.0 0.0360
Sum Type 4 4309 1104 3.9 0.0388
sa5_maintain_tables1 0 0 #DIV/0! 0.0000
Sum Type 5 0 0 #DIV/0! 0.0000
Shift Add Operations 7300 2101 3.5 0.0658
clz1 14678 997 14.7 0.1323
clz2 3276 62 52.8 0.0295
CLZ 17954 1059 17.0 0.1618
Streams 24420 1994 12.2 0.2201

Total Number of Cycles 110930

Memory Access [ops.] 16045

Store Operations 8682
Load Operations 7363

Processing Core for Compressing Wireless Data

105

Rice Encode (Poisson)
Label Cycles Calls Cycles/Call Cycles/Tot.Cycles
bfo6_maintain_tables1 0 0 #DIV/0! 0.0000
bfo6_get_byte1 3996 999 4 0.0428
Sum Type 6 3996 999 4 0.0428
bfo8_encode1 4995 999 5 0.0536
Sum Type 8 4995 999 5 0.0536
Bit Field Operations 8991 1998 4.5 0.0964
sa1_comp_freq1 2619 873 3 0.0281
Sum Type 1 2619 873 3 0.0281
sa3_get_byte1 2997 999 3 0.0321
Sum Type 3 2997 999 3 0.0321
sa4_encode1 2997 999 3 0.0321
sa4_switch1 417 139 3 0.0045
Sum Type 4 3414 1138 3 0.0366
sa5_maintain_tables 0 0 #DIV/0! 0.0000
Sum Type 5 0 0 #DIV/0! 0.0000
Sum ShiftAdd Operations 9030 3010 3 0.0968
CLZ 3204 62 51.7 0.0344
Streams 15424 1999 7.7 0.1654

Total Number of Cycles 93275

Memory Access [ops.] 16296

Store Operations 7998
Load Operations 8298

Processing Core for Compressing Wireless Data

106

Rice Decode (Poisson)

Label Cycles Calls Cycles/Call Cycles/Tot.Cycles
bfo6_switch1 556 139 4.0 0.0049
bfo6_decode_loop1 3988 997 4.0 0.0355
bfo6_maintain_tables1 0 0 #DIV/0! 0.0000
Sum Type 6 4544 1136 4.0 0.0404
bfo7_decode1 4985 997 5.0 0.0443
Sum Type 7 4985 997 5.0 0.0443
Bit Field Operations 9529 2133 4.5 0.0847
sa1_comp_freq1 2991 997 3.0 0.0266
Sum Type 1 2991 997 3.0 0.0266
sa4_switch 417 139 3.0 0.0037
sa4_comp_freq2 3988 997 4.0 0.0355
Sum Type 4 4405 1136 3.9 0.0392
sa5_maintain_tables1 0 0 #DIV/0! 0.0000
Sum Type 5 0 0 #DIV/0! 0.0000
Shift Add Operations 7396 2133 3.5 0.0657
clz1 14336 997 14.4 0.1274
clz2 3204 62 51.7 0.0285
CLZ 17540 1059 16.6 0.1559
Streams 25036 1994 12.6 0.2226

Total Number of Cycles 112490

Memory Access [ops.] 16402

Store Operations 8874
Load Operations 7528

Processing Core for Compressing Wireless Data

107

Rice Encode (Text)

Label Cycles Calls Cycles/Call Cycles/Tot.Cycles
bfo6_maintain_tables1 0 0 #DIV/0! 0.0000
bfo6_get_byte1 3996 999 4 0.0329
Sum Type 6 3996 999 4 0.0329
bfo8_encode1 4995 999 5 0.0411
Sum Type 8 4995 999 5 0.0411
Bit Field Operations 8991 1998 4.5 0.0740
sa1_comp_freq1 2520 840 3 0.0207
Sum Type 1 2520 840 3 0.0207
sa3_get_byte1 2997 999 3 0.0247
Sum Type 3 2997 999 3 0.0247
sa4_encode1 2997 999 3 0.0247
sa4_switch1 699 233 3 0.0058
Sum Type 4 3696 1232 3 0.0304
sa5_maintain_tables 0 0 #DIV/0! 0.0000
Sum Type 5 0 0 #DIV/0! 0.0000
Sum ShiftAdd Operations 9213 3071 3 0.0758
CLZ 3066 62 49.5 0.0252
Streams 16514 2015 8.2 0.1359

Total Number of Cycles 121546

Memory Access [ops.] 19801

Store Operations 8555
Load Operations 11246

Processing Core for Compressing Wireless Data

108

Rice Decode (Text)
Label Cycles Calls Cycles/Call Cycles/Tot.Cycles
bfo6_switch1 928 232 4.0 0.0066
bfo6_decode_loop1 3988 997 4.0 0.0282
bfo6_maintain_tables1 0 0 #DIV/0! 0.0000
Sum Type 6 4916 1229 4.0 0.0347
bfo7_decode1 4985 997 5.0 0.0352
Sum Type 7 4985 997 5.0 0.0352
Bit Field Operations 9901 2226 4.4 0.0699
sa1_comp_freq1 2991 997 3.0 0.0211
Sum Type 1 2991 997 3.0 0.0211
sa4_switch 696 232 3.0 0.0049
sa4_comp_freq2 3988 997 4.0 0.0282
Sum Type 4 4684 1229 3.8 0.0331
sa5_maintain_tables1 0 0 #DIV/0! 0.0000
Sum Type 5 0 0 #DIV/0! 0.0000
Shift Add Operations 7675 2226 3.4 0.0542
clz1 14944 1013 14.8 0.1055
clz2 3066 62 49.5 0.0217
CLZ 18010 1075 16.8 0.1272
Streams 25036 1994 12.6 0.1768

Total Number of Cycles 141604

Memory Access [ops.] 20025

Store Operations 9464
Load Operations 10561

Processing Core for Compressing Wireless Data

109

D. Algorithmic Level Profiling

With Original Instruction Set

Adaptive Huffman Encode (Exponential)
Label Cycles Cycles/Tot.Cycles
Increment Tree 124230 63.69%

Sort Tree 47400 24.30%
Switch Nodes 2078 1.07%

Insert Node 408 0.21%
Encode 40776 20.90%
Streams 7504 3.85%

Total Number of Cycles 195059

Memory Access [ops.] 45321

Store Operations 16963
Load Operations 28358

Adaptive Huffman Decode (Exponential)

Label Cycles Cycles/Tot.Cycles
Increment Tree 128037 64.28%

Sort Tree 49413 24.81%
Switch Nodes 2402 1.21%

Insert Node 408 0.20%
Decode 57496 28.87%
Streams 12265 6.16%

Total Number of Cycles 199180

Memory Access [ops.] 46966

Store Operations 18205
Load Operations 28761

Processing Core for Compressing Wireless Data

110

Adaptive Huffman Encode (Gamma)

Label Cycles Cycles/Tot.Cycles
Increment Tree 309969 75.40%

Sort Tree 148499 36.12%
Switch Nodes 10208 2.48%

Insert Node 918 0.22%
Encode 68670 16.70%
Streams 9258 2.25%

Total Number of Cycles 411086

Memory Access [ops.] 94859

Store Operations 33705
Load Operations 61154

Adaptive Huffman Decode (Gamma)

Label Cycles Cycles/Tot.Cycles
Increment Tree 310020 74.04%

Sort Tree 148550 35.48%
Switch Nodes 10208 2.44%

Insert Node 918 0.22%
Decode 94201 22.50%
Streams 13673 3.27%

Total Number of Cycles 418697

Memory Access [ops.] 97328

Store Operations 34484
Load Operations 62844

Processing Core for Compressing Wireless Data

111

Adaptive Huffman Encode (Poisson)
Label Cycles Cycles/Tot.Cycles
Increment Tree 344957 76.52%

Sort Tree 170515 37.83%
Switch Nodes 15506 3.44%

Insert Node 1020 0.23%
Encode 72970 16.19%
Streams 9536 2.12%

Total Number of Cycles 450780

Memory Access [ops.] 104423

Store Operations 37143
Load Operations 67280

Adaptive Huffman Decode (Poisson)

Label Cycles Cycles/Tot.Cycles
Increment Tree 345777 75.28%

Sort Tree 174197 37.93%
Switch Nodes 15840 3.45%

Insert Node 1040 0.23%
Decode 100900 21.97%
Streams 14924 3.25%

Total Number of Cycles 459299

Memory Access [ops.] 107116

Store Operations 37888
Load Operations 69228

Static Memory Allocation [byte] 3578

Huffman Tree 3066
Symbol Address Table 512

Processing Core for Compressing Wireless Data

112

Adaptive Huffman Encode (Text)
Label Cycles Cycles/Tot.Cycles
Increment Tree 423895 78.55%

Sort Tree 224613 41.62%
Switch Nodes 27980 5.18%

Insert Node 1887 0.35%
Encode 81122 15.03%
Streams 10226 1.89%

Total Number of Cycles 539648

Memory Access [ops.] 125413

Store Operations 44136
Load Operations 81277

Adaptive Huffman Decode (Text)

Label Cycles Cycles/Tot.Cycles
Increment Tree 423919 77.00%

Sort Tree 224637 40.80%
Switch Nodes 27980 5.08%

Insert Node 1887 0.34%
Decode 110681 20.10%
Streams 14553 2.64%

Total Number of Cycles 550573

Memory Access [ops.] 128674

Store Operations 44851
Load Operations 83823

Processing Core for Compressing Wireless Data

113

Deflate Encode (Exponential)

Label Cycles Cycles/Tot.Cycles
Encode 10387 0.0202

streams 4800 0.009319194
Add Match 9000 0.0175
Control Match 389452 0.7561
CRC 31000 0.0602

Total Number of Cycles 515066

Memory Access [ops.] 81537

Store Operations 11751
Load Operations 69786

Deflate Decode (Exponential)

Label Cycles Cycles/Tot.Cycles
Decode 18146 0.594697342

streams 6116 0.2004

Total Number of Cycles 30513

Memory Access [ops.] 3315

Store Operations 1594
Load Operations 1721

Deflate Encode (Gamma)

Label Cycles Cycles/Tot.Cycles
Encode 22370 0.1629

streams 11040 0.080416066
Add Match 9000 0.0656
Control Match 37051 0.2699
CRC 31000 0.2258

Total Number of Cycles 137286

Memory Access [ops.] 30322

Store Operations 9564
Load Operations 20758

Deflate Decode (Gamma)

Label Cycles Cycles/Tot.Cycles
Decode 30111 0.942559319

streams 13607 0.4259

Total Number of Cycles 31946

Memory Access [ops.] 4816

Store Operations 2397
Load Operations 2419

Processing Core for Compressing Wireless Data

114

Deflate Encode (Poisson)
Label Cycles Cycles/Tot.Cycles
Encode 23904 0.1731

streams 12004 0.086921891
Add Match 9000 0.0652
Control Match 33809 0.2448
CRC 31000 0.2245

Total Number of Cycles 138101

Memory Access [ops.] 30941

Store Operations 9898
Load Operations 21043

Deflate Decode (Poisson)

Label Cycles Cycles/Tot.Cycles
Decode 31447 0.93826829

streams 14630 0.4365

Total Number of Cycles 33516

Memory Access [ops.] 4997

Store Operations 2519
Load Operations 2478

Deflate Encoding (Text)

Label Cycles Cycles/Tot.Cycles
Encode 21828 15.54%

streams 11452 8.15%
Add Match 10000 7.12%
Control Match 40604 28.91%
CRC 32000 22.78%

Total Number of Cycles 140460

Memory Access [ops.] 31169

Store Operations 9685
Load Operations 21484

Deflate Decoding (Text)

Label Cycles Cycles/Tot.Cycles
Decode 29258 95.89%

streams 13747 45.05%

Total Number of Cycles 30513

Memory Access [ops.] 4654

Store Operations 2357
Load Operations 2297

Processing Core for Compressing Wireless Data

115

Rice Encode (Exponential)

Label Cycles Cycles/Tot.Cycles
Encode 24363 0.3095

Streams 13436 0.1707
Calc K 930 0.0118

CLZ 434 0.0055
Maintain Tables 338 0.0043
Update Tables 7934 0.1008

Total Number of Cycles 78729

Memory Access [ops.] 14768

Store Operations 7259
Load Operations 7509

Rice Decode (Exponential)

Label Cycles Cycles/Tot.Cycles
Decode 41790 0.4268

Streams 25050 0.2558
CLZ1 14728 0.1504

Calc K 930 0.0095
CLZ2 434 0.0044

Maintain Tables 346 0.0035
Update Table 7934 0.0810

Total Number of Cycles 97912

Memory Access [ops.] 14758

Store Operations 8156
Load Operations 6602

Processing Core for Compressing Wireless Data

116

Rice Encode (Gamma)
Label Cycles Cycles/Tot.Cycles
Encode 24909 0.2728

Streams 15186 0.1663
Calc K 3772 0.0413

CLZ 3276 0.0359
Maintain Tables 0 0.0000
Update Tables 15199 0.1664

Total Number of Cycles 91322

Memory Access [ops.] 15971

Store Operations 7821
Load Operations 8150

Rice Decode (Gamma)

Label Cycles Cycles/Tot.Cycles
Decode 44101 0.3976

Streams 24420 0.2201
CLZ1 14678 0.1323

Calc K 3772 0.0340
CLZ2 3276 0.0295

Maintain Tables 0 0.0000
Update Table 15199 0.1370

Total Number of Cycles 110930

Memory Access [ops.] 16045

Store Operations 8682
Load Operations 7363

Processing Core for Compressing Wireless Data

117

Rice Encode (Poisson)
Label Cycles Cycles/Tot.Cycles
Encode 24909 0.2670

Streams 15424 0.1654
Calc K 3700 0.0397

CLZ 3204 0.0344
Maintain Tables 0 0.0000
Update Tables 16956 0.1818

Total Number of Cycles 93275

Memory Access [ops.] 16296

Store Operations 7998
Load Operations 8298

Rice Decode (Poisson)

Label Cycles Cycles/Tot.Cycles
Decode 43789 0.3893

Streams 26601 0.2365
CLZ1 18629 0.1656

Calc K 3700 0.0329
CLZ2 3204 0.0285

Maintain Tables 0 0.0000
Update Table 16956 0.1507

Total Number of Cycles 112490

Memory Access [ops.] 16402

Store Operations 8874
Load Operations 7528

Processing Core for Compressing Wireless Data

118

Rice Encode (Text)

Label Cycles Cycles/Tot.Cycles
Encode 25297 0.2081

Streams 16514 0.1359
Calc K 3562 0.0293

CLZ 3066 0.0252
Maintain Tables 0 0.0000
Update Tables 44529 0.3664

Total Number of Cycles 121546

Memory Access [ops.] 19801

Store Operations 8555
Load Operations 11246

Rice Decode (Text)

Label Cycles Cycles/Tot.Cycles
Decode 44852 0.3167

Streams 25564 0.1805
CLZ1 14944 0.1055

Calc K 3562 0.0252
CLZ2 3066 0.0217

Maintain Tables 0 0.0000
Update Table 44529 0.3145

Total Number of Cycles 141604

Memory Access [ops.] 20025

Store Operations 9464
Load Operations 10561

Processing Core for Compressing Wireless Data

119

With All Enhancements

Adaptive Huffman Encode (Exponential)
Label Cycles Cycles/Tot.Cycles
Increment Tree 67165 52.57%

Sort Tree 28250 22.11%
Switch Nodes 1453 1.14%

Insert Node 352 0.28%
Encode 32943 25.78%
Streams 8200 6.42%

Total Number of Cycles 127771

Memory Access [ops.] 29921

Store Operations 10406
Load Operations 19515

Adaptive Huffman Decode (Exponential)

Label Cycles Cycles/Tot.Cycles
Increment Tree 69319 52.44%

Sort Tree 29507 22.32%
Switch Nodes 1681 1.27%

Insert Node 352 0.27%
Decode 48301 36.54%
Streams 12372 9.36%

Total Number of Cycles 132183

Memory Access [ops.] 29135

Store Operations 10475
Load Operations 18660

Processing Core for Compressing Wireless Data

120

Adaptive Huffman Decode (Gamma)

Label Cycles Cycles/Tot.Cycles
Increment Tree 169678 63.68%

Sort Tree 88443 33.19%
Switch Nodes 7220 2.71%

Insert Node 792 0.30%
Decode 81475 30.58%
Streams 13898 5.22%

Total Number of Cycles 266454

Memory Access [ops.] 56867

Store Operations 17478
Load Operations 39389

Adaptive Huffman Encode (Gamma)

Label Cycles Cycles/Tot.Cycles
Increment Tree 169652 66.66%

Sort Tree 88417 34.74%
Switch Nodes 7220 2.84%

Insert Node 792 0.31%
Encode 55260 21.71%
Streams 9601 3.77%

Total Number of Cycles 254506

Memory Access [ops.] 56410

Store Operations 17705
Load Operations 38705

Processing Core for Compressing Wireless Data

121

Adaptive Huffman Encode (Poisson)
Label Cycles Cycles/Tot.Cycles
Increment Tree 189703 68.16%

Sort Tree 101982 36.64%
Switch Nodes 10953 3.94%

Insert Node 880 0.32%
Encode 58705 21.09%
Streams 9824 3.53%

Total Number of Cycles 278331

Memory Access [ops.] 62094

Store Operations 19553
Load Operations 42541

Adaptive Huffman Decode (Poission)

Label Cycles Cycles/Tot.Cycles
Increment Tree 189617 65.01%

Sort Tree 101965 34.96%
Switch Nodes 10982 3.77%

Insert Node 880 0.30%
Decode 86629 29.70%
Streams 14148 4.85%

Total Number of Cycles 291673

Memory Access [ops.] 62811

Store Operations 19307
Load Operations 43504

Processing Core for Compressing Wireless Data

122

Adaptive Huffman Encode (Text)

Label Cycles Cycles/Tot.Cycles
Increment Tree 235689 70.92%

Sort Tree 135548 40.79%
Switch Nodes 19536 5.88%

Insert Node 1628 0.49%
Encode 65252 19.63%
Streams 10405 3.13%

Total Number of Cycles 332346

Memory Access [ops.] 74760

Store Operations 23508
Load Operations 51252

Adaptive Huffman Decode (Text)

Label Cycles Cycles/Tot.Cycles
Increment Tree 235703 67.60%

Sort Tree 135562 38.88%
Switch Nodes 19536 5.60%

Insert Node 1628 0.47%
Decode 96366 27.64%
Streams 14839 4.26%

Total Number of Cycles 348687

Memory Access [ops.] 76015

Store Operations 23220
Load Operations 52795

Processing Core for Compressing Wireless Data

123

Deflate Decode (Exponential)

Label Cycles Cycles/Tot.Cycles
Decode 16782 0.974507868

streams 6294 0.3655

Total Number of Cycles 17221

Memory Access [ops.] 3315

Store Operations 1594
Load Operations 1721

Deflate Encode (Exponential)

Label Cycles Cycles/Tot.Cycles
Encode 9853 0.0218

streams 4640 0.010287222
Add Match 8000 0.0177
Control Match 349948 0.7759
CRC 26000 0.0576

Total Number of Cycles 451045

Memory Access [ops.] 77320

Store Operations 11133
Load Operations 66187

Deflate Decode (Gamma)

Label Cycles Cycles/Tot.Cycles
Decode 28591 0.958914677

streams 14056 0.4714

Total Number of Cycles 29816

Memory Access [ops.] 4816

Store Operations 2397
Load Operations 2419

Deflate Encode (Gamma)

Label Cycles Cycles/Tot.Cycles
Encode 21023 0.1774

streams 10480 0.088440311
Add Match 8000 0.0675
Control Match 34186 0.2885
CRC 26000 0.2194

Total Number of Cycles 118498

Memory Access [ops.] 27964

Store Operations 9446
Load Operations 18518

Processing Core for Compressing Wireless Data

124

Deflate Encode (Poisson)
Label Cycles Cycles/Tot.Cycles
Encode 22410 0.1882

streams 11338 0.095228496
Add Match 8000 0.0672
Control Match 31440 0.2641
CRC 26000 0.2184

Total Number of Cycles 119061

Memory Access [ops.] 28152

Store Operations 9782
Load Operations 18370

Deflate Decode (Poisson)

Label Cycles Cycles/Tot.Cycles
Decode 29966 0.955944748

streams 15128 0.4826

Total Number of Cycles 31347

Memory Access [ops.] 4997

Store Operations 2519
Load Operations 2478

Deflate Encode (Text)

Label Cycles Cycles/Tot.Cycles
Encode 19859 16.41%

streams 10102 8.35%
Add Match 8000 6.61%
Control Match 36418 30.09%
CRC 26000 21.48%

Total Number of Cycles 121038

Memory Access [ops.] 27701

Store Operations 9423
Load Operations 18278

Deflate Decode (Text)

Label Cycles Cycles/Tot.Cycles
Decode 27238 95.60%

streams 13462 47.25%

Total Number of Cycles 28491

Memory Access [ops.] 4654

Store Operations 2357
Load Operations 2297

Processing Core for Compressing Wireless Data

125

Rice Encode (Exponential)

Label Cycles Cycles/Tot.Cycles
Encode 30093 0.4707

Streams 15126 0.2366
Calc K 434 0.0068
Maintain Tables 238 0.0037
Update Tables 8156 0.1276

Total Number of Cycles 63932

Memory Access [ops.] 8616

Store Operations 4184
Load Operations 4432

Rice Decode (Exponential)

Label Cycles Cycles/Tot.Cycles
Decode 25116 36.97%

Streams 23158 34.09%
Calc K 434 0.64%
Maintain Tables 238 0.35%
Update Table 7818 11.51%

Total Number of Cycles 67941

Memory Access [ops.] 8612

Store Operations 5069
Load Operations 3543

Processing Core for Compressing Wireless Data

126

Rice Decode (Gamma)
Label Cycles Cycles/Tot.Cycles
Decode 25572 0.3360

Streams 24646 0.3238
Calc K 434 0.0057
Maintain Tables 0 0.0000
Update Table 15124 0.1987

Total Number of Cycles 76111

Memory Access [ops.] 9830

Store Operations 5413
Load Operations 4417

Rice Encode (Gamma)

Label Cycles Cycles/Tot.Cycles
Encode 31468 0.4393

Streams 16501 0.2303
Calc K 434 0.0061
Maintain Tables 0 0.0000
Update Tables 14724 0.2055

Total Number of Cycles 71637

Memory Access [ops.] 9744

Store Operations 4653
Load Operations 5091

Processing Core for Compressing Wireless Data

127

Rice Encode (Poisson)
Label Cycles Cycles/Tot.Cycles
Encode 31655 0.4325

Streams 16688 0.2280
Calc K 434 0.0059
Maintain Tables 0 0.0000
Update Tables 16097 0.2199

Total Number of Cycles 73197

Memory Access [ops.] 10037

Store Operations 4798
Load Operations 5239

Rice Decode (Poisson)

Label Cycles Cycles/Tot.Cycles
Decode 25572 0.3286

Streams 24850 0.3193
Calc K 434 0.0056
Maintain Tables 0 0.0000
Update Table 16625 0.2136

Total Number of Cycles 77817

Memory Access [ops.] 10294

Store Operations 5680
Load Operations 4614

Processing Core for Compressing Wireless Data

128

Rice Encode (Text)
Label Cycles Cycles/Tot.Cycles
Encode 32628 0.3335

Streams 17581 0.1797
Calc K 434 0.0044
Maintain Tables 0 0.0000
Update Tables 39763 0.4064

Total Number of Cycles 97836

Memory Access [ops.] 13448

Store Operations 5261
Load Operations 8187

Rice Decode (Text)

Label Cycles Cycles/Tot.Cycles
Decode 26024 0.2528

Streams 25878 0.2513
Calc K 434 0.0042
Maintain Tables 0 0.0000
Update Table 40644 0.3948

Total Number of Cycles 102960

Memory Access [ops.] 13885

Store Operations 6161
Load Operations 7724

Processing Core for Compressing Wireless Data

129

E. Zip-File

This thesis has been delivered with zip-file named Appendix_E.zip. The folder structure in
this file is shown here.

Appendix_E
 └ Assembly_Source_Code
 └ Enhanced
 └ Deflate
 └ Decode
 └ RAM
 └ Encode
 └ RAM
 └ Huffman
 └ Decode
 └ RAM
 └ Encode
 └ RAM
 └ Rice
 └ Decode
 └ RAM
 └ Encode
 └ RAM
 └ Original

└ Deflate
 └ Decode
 └ RAM
 └ Encode
 └ RAM
 Huffman
 └ Decode
 └ RAM
 └ Encode
 └ RAM
 └ Rice
 └ Decode
 └ RAM
 └ Encode
 └ RAM
 └ NanoRisc_Assembler
 └ NanoRisc_ISS
 └ Stream_Builder_Source_Code
 └ VHDL_Source_Code

