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Abstract

We have been given a two-dimensional image of a geological structure. This structure is

used to construct a three-dimensional statistical model, to be used as prior knowledge in

the analysis of seismic data. We consider two classes of discrete lattice models for which

efficient simulation is possible; sequential Markov random field (sMRF) and Markov

mesh random field (MMRF). We first explore models from these two classes in two

dimensions, using the maximum likelihood estimator (MLE). The results indicate that a

larger neighbourhood should be considered for all the models. We also develop a second

estimator, which is designed to match the model with the observation with respect to a

set of specified functions. This estimator is only considered for the sMRF model, since

that model proved to be flexible enough to give satisfying results. Due to time limitation

of this thesis, we could not wait for the optimization of the estimator to converge. Thus,

we can not evaluate this estimator. Finally, we extract useful information from the

two-dimensional models and specify a sMRF model in three dimensions. Parameter

estimation for this model needs approximative techniques, since we only have given

observations in two dimensions. Such techniques have not been investigated in this

report, however, we have adjusted the parameters manually and observed that the model

is very flexible and might give very satisfying results.
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1 Introduction

Analysis of seismic data provides knowledge about the geological subsea structures.

However, such data is affected by “noise” making them hard to interpret. To strengthen

the accuracy of the interpretation, it might be of help to use prior knowledge of the

geological structures. Geologists have found areas, above the sea level, with geological

structures they think are similar to the subsea structures. In Figure 1 we have given

such a structure in the form of a two-dimensional image. The white fields are shale and

the black fields are sandstone. Our aim is to construct a three-dimensional statistical

model reproducing similar structures, that in a larger context is to be used as a prior

distribution in a Bayesian framework, where we condition on given seismic data.

Figure 1: A two dimensional slice of a geological structure where the white fields are shale
and the black fields are sandstone. The resolution of the image is 145× 271

Since we are dealing with two-colored images, the class of binary discrete lattice

models is an appropriate class to work with. The Markov random field (MRF) models

are a subclass of the discrete lattice models and are widely used in this area. However, to

simulate and estimate the parameters of a MRF model generally require approximative

techniques, and for large images such techniques are very time-consuming, and conver-

gence is not guaranteed. We want to find a model that besides being able to reproduce

geological structures with the same features as the one in Figure 1, is efficient both when

it comes to simulation and parameter estimation.

In this text we explore two alternative classes of models to the MRF, where ap-

proximative techniques are not required for simulation and parameter estimation. The
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first one is the sequential Markov random field (sMRF), also known as multidimensional

Markov chain model in Qian and Titterington (1991). The second class is called Markov

Mesh random field (MMRF)(Abend et al., 1965; Gray et al., 1994). We will first focus

on models in two dimensions, and use what we learn from these models when we specify

a model in three dimensions. Both sMRF and MMRF have been studied in two dimen-

sions for the same purpose in Eriksen (2005). Also in Stien (2005) a two-dimensional

sMRF model has been specified and explored, where the maximum likelihood estimator

(MLE) has been used for the parameter estimation. We will further explore the same

parametrized model by applying a second method of parameter estimation based on

matching a set of specified functions. In addition to investigation of these two classes in

two dimensions, we also study a three-dimensional sMRF model.

The models will be evaluated on how well they fit the geological structure in Figure

1, both visually and by comparing the correlation function for the realizations with the

empirical correlation.

Regarding the organization of the text, we first establish the notation and theory

needed to fully understand the models and how we simulate from them, followed by

a review of the methods of parameter estimation. The result part is divided into two

parts, one for the models in two dimensions and one for the three-dimensional model.

Discussions of the results will be given immediately after each of these parts.

2 Discrete lattice models

The sMRF and the MMRF are subclasses of the MRF, which again is a subclass of

random fields. In this section we work our way through the different classes one by

one starting with random fields, where we also introduce definitions and notation. For

simplicity reasons we choose to work with a general notation, and make it more specific

once we specify the models.

2.1 Random fields and definitions

A lattice is a countable collection of sites i ∈ I for i = 1, ..., n, where each site i has a

variable that takes different values, xi. We let χ be the set of possible values taken by

the xi’s. These values can either be discrete or continuous, and if they are assumed to be

random they will be associated with a probability, π(xi). We use xi as both a random

variable and the realization of the variable, the interpretation will be clear from the

context. A lattice of random variables is called a random field, and this field is denoted
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by x, where x = (x1, ..., xn). The probability of a given realization of the random field is

π(x), and is the joint probability of the xi’s. The conditional probability at site i given

the rest is written as π(xi|x−i).

In this report we view our data as a finite collection of binary random variables, i.e.

xi ∈ χ = {0, 1} where 0 and 1 represent black and white, respectively. The numbering i

of the sites determines the ordering of the variables. This ordering is essential for certain

classes of models, where it also determines the order of simulation.

To efficiently simulate a random field, a sequential sampling scheme must be obtained.

We can always factorize a random field x according to the multiplication rule which

states that any proper probability distribution can be factorized into the product of the

conditionals, i.e.

π(x) = π(xn, xn−1, xn−2, ..., x2, x1) = π(xn|xn−1, xn−2, ..., x2, x1)

×π(xn−1|xn−2, ..., x2, x1) × ...× π(x2|x1) × π(x1). (1)

If we have expressions for each of the conditionals in (1), the field x can be sampled

sequentially by first sampling x1, then x2|x1, and continue sampling the conditional

distributions all the way to xn|xn−1, xn−2, ..., x2, x1, resulting in a sample from π(x).

2.2 Markov random fields

For a thorough introduction to the MRFs we refer to Hurn et al. (2003). A MRF is a

random field in which the spatial dependency between the sites is local, i.e. the field

has a Markov property. The scope of this dependency is determined by specifying a

neighbourhood. By neighbourhood we usually mean a set of sites close to each other.

If site i is a neighbour of site j, we write i ∼ j. The neighbour relation for a MRF is

symmetric, i.e. if i is a neighbour of j then j has to be a neighbour of i. Figure 2 shows

two examples of neighbourhoods for a two-dimensional MRF on a regular lattice, where

the gray square is the site for which the white squares are neighbours. In (a) only the

closest neighbours are included, and we have a first order neighbourhood. In (b) we have

a second order neigbourhood which also includes the sites that are second closest. The

Markov property allows us to write the conditional probability at site i given the rest as

π(xi|x−i) = π(xi|xδi
) (2)

where δi is the set of neighbours to site i, i.e. δi = {j : j ∼ i}.

A clique is a set of variables which either consists of a single site, or where every pair
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(a) (b)

Figure 2: Examples of neigbourhoods for a two-dimensional MRF on a regular lattice.
The gray square is the site for which the white squares are neigbours. (a) first order neigh-
bourhood. (b) second order neighbourhood.

(a) (b)

Figure 3: The set of possible cliques for the first order neighbourhood in Figure 2(a). (a)
c1 (b) c2.

of sites in the set are neighbours. We let C denote the set of all cliques, and ck is a clique

in C containing k sites. For the first order neighbourhood in Figure 2(a) the clique can

be of size 1 or 2, where c2 contains the largest possible number of sites, see Figure 3 for

a visualization of the cliques. Each clique configuration in a field have a potential given

by a potential function. A potential function, V (·), is a function that takes arguments

associated with the sites in a clique.

Given the Markov assumption in (2) and a positivity condition, π(x) > 0 for all

possible x, it follows from the Hammersley-Clifford theorem (Hurn et al., 2003) that we

have a unique joint distribution π(x) if it is on the form

π(x) = K × exp

{

−
∑

c∈C

V (xc)

}

, (3)

where xc are the elements in x that belong to clique c and K is a normalizing constant,

1

K
=
∑

x

exp

{

−
∑

c∈C

V (xc)

}

<∞. (4)

As an example we consider a one-dimensional MRF. The neighbourhood is chosen such

that the largest clique is of size l, cl, and without loss of generality we set the potential
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for the rest of the possible cliques equal to zero. Then the joint probability is

π(x) = K × exp

{

−

n−l+1
∑

i=1

V (xi, xi+1, ..., xi+l−1)

}

. (5)

Markov chain Monte Carlo (MCMC) methods are generally required for simulation

of MRF models in more than one dimension. As the name indicates, MCMC methods

involve a construction of a Markov chain that has the desired probability distribution as

its limiting probability distribution. However, there are many approaches for specifying

a MRF. As long as the joint probability fulfills the requirements of the Hammersley-

Clifford, there are lots of possibilities. For instance, we can specify the field in terms

of the conditionals, π(xi|xi−1, ..., x1), and directly obtain a sequential sampling scheme.

The MMRFs have this property.

2.3 Sequential Markov random fields

A similar deduction of this class is given in Qian and Titterington (1991). The sMRF

consists of MRFs in one dimension, which are linked together as a first or higher order

Markov chain (MC). With the property of a MC, we can specify the sMRF in terms

of the conditional probabilities for the one-dimensional MRFs given a subset of their

preceding MRFs. The number of fields in the subset determines the order of the chain.

Note that we do not specify the conditional probabilities at each site, however, we are

still able to sample the sites sequentially by using a recursive algorithm which will be

introduced later.

To determine the spatial dependency between the MRFs, we must first determine

their ordering. We let the r one-dimensional MRFs in the sMRF be denoted by φi for

i = 1, 2, ..., r, where each φi contains ni sites, giving a total number of
∑r

i=1 ni = n sites

in the field. An arbitrary MRF, φi, in the MC depends only on a subset of the MRFs

with a lower ordering number, i.e. a subset of {φj |j < i}. For the sMRF we have the

following ordering

φ1 = (x1, x2, ..., xn1
)

φ2 = (xn1+1, xn1+2, ..., xn1+n2
)

...

φr = (xn1+...+nr−1+1, ..., xn1+...+nr). (6)

See Figure 4 for an illustration of the sMRF on a two-dimensional regular lattice, where
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Figure 4: Illustration of a sMRF on a two-dimensional regular lattice, where the MRFs
are linked together by a first order MC. The arrows visualize the order of simulation.

the MRFs are linked together as a first order MC. The arrows visualize the order of

simulation, the MRFs must be simulated according to their ascending ordering. If the

arrows in the illustration were pointing in both directions the whole field would be a

MRF.

We factorize the field x with respect to the MRFs

π(x) = π(φr, φr−1, φr−2, ..., φ1) = π(φr|φr−1, φr−2, ..., φ1)

×π(φr−1|φr−2, φr−3, ..., φ1) × ...× π(φ2|φ1) × π(φ1). (7)

Each φi is only dependent of a few of the preceding fields, and we denote the set of these

fields by φDi
for all i’s. Thus, (7) simplifies to

π(x) = π(φr|φDr) × π(φr−1|φDr−1
) × ...× π(φE), (8)

where φE is the set of φi’s that do not have the same set of dependent preceding fields,

φDi
, as the rest. The conditional probability π(φi|φDi

) will have the distribution of a

one-dimensional MRF, and by using the same assumptions as for the expression in (5)

we get

π(φi|φDi
) = K(φDi

)

× exp







−

ni−l+1
∑

j=1

V (xNi+j, xNi+j+1, ..., xNi+j+l−1|φDi
)







, (9)
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where K(φDi
) is the normalizing constant for field φi given φDi

, and Ni =
∑i−1

k=1 nk

ensures a correct numbering of the sites. By combining (8) and (9) the probability

distribution for the whole field x becomes

π(x) = π(φE)
∏

i/∈E

π(φi|φDi
) = π(φE)

×
∏

i/∈E

K(φDi
) exp







−

ni−l+1
∑

j=1

V (xNi+j , xNi+j+1, ..., xNi+j+l−1|φDi
)







, (10)

where π(φE) is the probability for the MRFs in φE .

Only a limited number of sites from the preceding fields φDi
influence the value at

site xNi+j. We denote the set of these sites together with the sites in the clique by

xSNi+j
, where the number of sites in the set is nS. We can then write (10) as

π(x) = π(φE)
∏

i/∈E

K(φDi
) exp







−

ni−l+1
∑

j=1

V (xSNi+j
)







. (11)

We will specify the potential function such that we consider all possible interactions

between its arguments, rather than restricting ourselves to lower order interactions.

Since we are considering binary data the number of configurations of the sites in xSNi+j

is 2nS . We define a function γ(·), which takes arguments associated with the sites in

xSNi+j
. This function returns a positive integer t for t = 1, 2, ..., s, where s ≤ 2nS . In

relation to the γ(·)-function we introduce a set of s parameters,

θγ(xSNi+j
) = V (xSNi+j

). (12)

We let I(γ(xSNi+j
) = t) be an indicator function,

I(γ(xSNi+j
) = t) =

{

1 if γ(xSNi+j
) = t,

0 otherwise,
(13)

and replace the potential function with the set of parameters in (12). This yields

π(x) = π(φE)
∏

i/∈E

K(φDi
) exp







−

ni−l+1
∑

j=1

s
∑

t=1

I(γ(xSNi+j
) = t)θt







. (14)

This can be further simplified by defining ni
t, which denotes the number of times the
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value of the γ(·)-function is t in φi, i.e.

ni
t =

ni−l+1
∑

j=1

I(γ(xSNi+j
) = t). (15)

We can now remove one of the summations in the exponential factor and get

π(x) = π(φE)
∏

i/∈E

K(φDi
) exp

{

−

s
∑

t=1

ni
tθt

}

. (16)

Recall that the sites included in the potential function are sites forming the clique and

sites from the conditioned MRFs. When the configuration of the conditioned variables

is known, we assign a potential to each clique configuration. The potential is identical to

the corresponding parameter, θt. The relative relation between the different potentials

can be linked to the probabilities of occurrence for the cliques. For instance, if a specific

clique configuration has a high potential compared to the other clique configurations,

this implies a low probability of occurrence, and vice versa. However, in some situations

this interpretation must be modified. An extreme case can be where a configuration

with a relatively low potential occurs only as a consequence of the occurrence of a

configuration with a relatively high potential. Then the low potential configuration will

have a small probability of occurrence, since it is shaded by a configuration that has a

small probability of occurrence.

Finally, we will discuss how to simulate the sMRFs. First of all, we let the sites in

E be independent and identically distributed with equal probability for both black and

white. Then the expression in (16) becomes

π(x) =

(

1

2

)nE
∏

i/∈E

K(φDi
) exp

{

−
s
∑

t=1

ni
tθt

}

, (17)

where nE is the number of sites inE. We first sample the sites in E, and then sequentially

sample the rest of the φi’s according to their ascending ordering number. For the sites

within each of the φi’s we must, as mentioned earlier, use a recursive algorithm to obtain

a sequential sampling scheme, and this is presented in the following section.

2.3.1 Efficient simulation of Markov random fields in one dimension

For MRFs in more than one dimension it requires a high amount of CPU time to calculate

each of the conditionals in the multiplication rule in (1). However, for one-dimensional
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MRFs there exists a so called forward-backward algorithm which takes advantage of the

Markov property, and recursively finds exact expressions for the conditional probabilities.

We choose to demonstrate the forward-backward algorithm with a general notation to

avoid using the extensive labelling introduced for the sMRF. Thus, each φi is denoted

by z where z = (z1, z2, ..., zp), and from (9) we get

π(φi|φDi
) = π(z|φDi

) = K(φDi
) exp







−

p−l+1
∑

j=1

V (zj , zj+1, ..., zj+l−1|φDi
)







. (18)

The forward-backward algorithm works as follows. We use the summation formula

∑

zp,zp−1,...,zq+1

π(z|φDi
) = π(zq, zq−1, ..., z1|φDi

), (19)

which states that if you sum over all the possible outcomes of the variables zp, zp−1, ...,

zq+1 you will be left with the (conditional) joint probability of zq, zq−1, ..., z1. This

summation is valid for 0 < q < p− 1, which makes it possible to find the (conditional)

marginal distribution for the first variable z1. During the summation process in (19) we

gather numerical information in recursive g(·)-functions, defined by

gq−l+1,...,q−1(zq−l+1, ..., zq−1)

=
∑

zq

gq−l+2,...,q(zq−l+2, ..., zq) exp {−V (zq−l+1, ..., zq |φDi
)} . (20)

The connection between the g(·)-functions and the probabilities is

π(z1, ..., zq |φDi
) = gq−l+2,...,q(zq−l+2, ..., zq)

×K(φDi
) exp







−

q−l+1
∑

j=1

V (zj , zj+1, ..., zj+l−1|φDi
)







, (21)

where the exponential term vanishes when q is less than the clique size l. For the first

site, q = 1, we get

π(z1|φDi
) = K(φDi

)
∑

z2

g1,2(z1, z2|φDi
) = K(φDi

)g1(z1). (22)

To be a valid distribution the marginal probability for z1 has to sum to 1 when summing
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over the possible outcomes of z1, i.e.

∑

z1

π(z1|φDi
) = K(φDi

)
∑

z1

g1(z1) = 1, (23)

and with this relation it is possible to compute the normalizing constant K(φDi
),

K(φDi
) =

[

∑

z1

g1(z1)

]−1

. (24)

The conditional probabilities π(zq|zq−1, ..., z1, φDi
) are given by the relation

π(zq|zq−1, ..., z1, φDi
) =

π(zq, ..., z1|φDi
)

π(zq−1, ..., z1|φDi
)
, (25)

where we after the summation process have expressions for both the nominator and

denominator in the fraction. Thus, we have obtained complete expressions for all the

conditionals in the factorization in (1), and the field can be sampled in one scan.

The forward-backward algorithm is efficient since, due to the Markov property, the

g(·)-functions only take a small number of arguments. The number of these arguments

corresponds to the order of the neigbourhood in the MRF. For MRFs in higher dimen-

sions than one, the g(·)-functions can no longer take advantage of the Markov property

and the number of arguments is considerably larger. For a more detailed discussion

on the forward-backward algorithm, we refer to the project work in Stien (2005) where

slightly different and more specific notations have been used.

2.4 Markov mesh random fields

In the literature we refer to Abend et al. (1965) and Gray et al. (1994). The MMRF is a

generalization of a MC to two or higher dimensions. We specify the field in terms of the

conditional probabilities, π(xi|xi−1, ..., x1), for each site, and directly obtain a sequential

sampling scheme.

The ordering of the sites in a MMRF is crucial, and the sites must be sampled

according to the ascending ordering. For instance, for a two-dimensional MMRF on a

regular grid where we wish to sample from left to right and from top to bottom, the
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field must have the underlying ordering













1 2 ... k

k + 1 k + 2 ... 2k
...

...
. . .

...

(l − 1)k + 1 (l − 1)k + 2 ... n













, (26)

where k and l give the horizontal and vertical extension of the field, respectively. Another

possible ordering of the sites can be if we wish to simulate from left to right and from

right to left for every other row, and from top to bottom. For the whole field this yields



















1 2 ... k

2k 2k − 1 ... k + 1
...

...
. . .

...

(l − 2)k + 1 (l − 2)k + 2 ... (l − 1)k

n n− 1 ... (l − 1)k + 1



















. (27)

The predecessors of a site are the set of sites in x with an ordering number less than

the ordering number of the site they proceed. We let ηi be the set of predecessors for site

i, then this set is given by ηi = {1, 2, ..., i − 1}. The predecessors for an arbitrary site,

with the ordering in (26), are illustrated in Figure 5. The black sites are the predecessors

of the gray site. This illustration is also valid for the ordering in (27), by ensuring an

odd row number. For a MMRF, the factorization of the field x can be expressed by

π(x) = π(xn|xηn) × π(xn−1|xηn−1
) × . . .× π(x2|xη2

) × π(x1). (28)

A site is only affected by a limited number of sites in its set of predecessors. These

sites constitute the sequential neighbourhood. We denote the set of sequential neigh-

bours to site xi by xpδi
, where the number of sites in xpδi

is npδ, with 2npδ possible

configurations. Those sites that do not have the same sequential neighbourhood relation

as the rest are denoted by xE , and the number of these sites depends on the choice of

the sequential neighbourhood. Figure 6 shows three examples of sequential neighbour-

hoods on a regular two-dimensional lattice, where the white squares are the sequential

neigbours of the gray square. In (a) and (b) there are sequential neighbourhoods valid

for both orderings (26) and (27), and in (c) the sequential neighbourhood is only valid

for the ordering in (27) for even row numbers.
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Figure 5: Illustration of the predecessor of an arbitrary site for the ordering in (26). The
black sites are the predecessors of the gray site. Notice that for odd row numbers, this
illustration is also valid for the ordering in (27).

(a) (b) (c)

Figure 6: Examples of sequential neighbourhoods for the Markov mesh random fields. (a)
npδ = 2 (b)npδ = 3 (c) npδ = 3. The neighbourhood in (c) is not valid for the ordering in
(26).

The conditional probabilities π(xi|xηi
) can now be written

π(xi|xηi
) = π(xi|xpδi

). (29)

We combine (28) and (29) and obtain the joint probability

π(x) = π(xE)
∏

i/∈E

π(xi|xpδi
), (30)

where π(xE) is the probability for the sites in E. To get a complete expression for the

joint probability, it remains to specify the conditional probabilities π(xi|xpδi
) and the

probability π(xE).

We will specify the models such that we do not consider lower order interactions

between the sites in the sequential neighbourhood. Similarly as we did for the sMRF, we

define a function γ(·), which takes arguments associated with the sites in the sequential

neighbourhood, γ(xpδi
). This function returns a positive integer t for t = 1, ..., s, where

s ≤ 2npδ . In addition, we introduce a set of parameters such that the conditional

probability π(xi = 0|xpδi
) = θγ(xpδi

) is the probability of site i being black given the
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values of the sequential neighbourhood. Since there are only two possible outcomes, the

conditional probability of the site being white is simply π(xi = 1|xpδi
) = 1 − θγ(xpδi

).

This yields the joint expression

π(xi|xpδi
) = θ1−xi

γ(xpδi
)(1 − θγ(xpδi

))
xi . (31)

So for our MMRF model the parameters represent probabilities, making their interpre-

tation very simple.

We use the indicator function from (13) and replace the form of the conditional

probabilities in (31) with the ones in (30), and get

π(x) = π(xE)
∏

i/∈E

l
∑

t=1

I(γ(xpδi
) = t)θ1−xi

t (1 − θt)
xi . (32)

We let n0
t denote the number of times γ(xpδi

) equals t and the value at i is zero when

going through the field, and the same for n1
t where the value at i is one, i.e

n0
t =

∑

i/∈E

I(γ(xpδi
) = t)(1 − xi) (33)

n1
t =

∑

i/∈E

I(γ(xpδi
) = t)xi. (34)

Thus, rather than taking the product of the conditionals for each site, we collect the

conditional factors with the same parameter, and take the product over the different

parameters

π(x) = π(xE)

s
∏

t=1

θ
n0

t
t (1 − θt)

n1
t . (35)

Finally, when the γ(·)-function is specified we can start sampling. This is done by

first sampling the sites in E. Then we sample sequentially site by site according to the

ascending ordering number. As for the sMRF, we let the nE sites in E be independent

and identically distributed with probability 1/2, and get

π(x) =

(

1

2

)nE s
∏

t=1

θ
n0

t
t (1 − θt)

n1
t . (36)
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3 Parameter estimation

In this section we introduce two methods of parameter estimation. The first one is the

MLE and the second is a method designed to minimize the square distance between the

model and the observation with respect to a set of specified functions.

3.1 Maximum likelihood estimation

The likelihood function has the same form as the probability function except that the x

values are known and the parameters are unknown, i.e.

L(θ|x) = π(x|θ). (37)

Maximum likelihood parameter estimation is a method that determines the parameters

which maximize the likelihood function,

θ̂ = arg max
θ
L(θ|x). (38)

3.1.1 Sequential Markov random field

From the probability distribution in (14) we get a likelihood on the form

L(θ|x) = π(x|θ) = π(φE |θ)
∏

i/∈E

K(φDi
) exp

{

−

s
∑

t=1

ni
tθt

}

. (39)

If π(φE |θ) is unspecified, we can not compute the exact likelihood. This results in a

slightly less informative likelihood function, the conditional likelihood

Lc(θ|x) =
π(x|θ)

π(φE |θ)
= π(φ−E |φE , θ)

=
∏

i/∈E

K(φDi
) exp

{

−

s
∑

t=1

ni
tθt

}

, (40)

where φ−E are those sites that are not in φE .

To compute the likelihood we need the normalizing constant, and this can easily be

computed by using the forward-backward algorithm. However, numerical problems may

arise in the computations. We often get some very high and very low values which result

in unstable computations. This problem is solved by working with the logarithm of the

likelihood instead of the likelihood. The parameter values that optimize the likelihood
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function will also optimize the logarithm of the likelihood function.

It is not possible to optimize the parameters analytically, so we have to use iterative

procedures. For that purpose we use a Non-Linear Minimization algorithm in R. This

function carries out a minimization of the negative logarithm of the likelihood using a

Newton-type algorithm (R Development Core Team, 2005).

3.1.2 Markov mesh random field

For the MMRF we have the probability distribution from (36), giving a likelihood func-

tion on the form

L(θ|x) = π(x|θ) = π(xE |θ)
s
∏

t=1

θ
n0

t
t (1 − θt)

n1
t . (41)

With the same reasoning as for the sMRF we must work with the conditional likelihood

function

Lc(θ|x) =

s
∏

t=1

θ
n0

t
t (1 − θt)

n1
t . (42)

By partial differentiation we can obtain the estimates in (38). Differentiating the

logarithm of the likelihood function is much easier than differentiating the likelihood

function itself, and the estimates are the same. The logarithm of the likelihood is

logLc(θ|x) =
s
∑

t=1

(n0
t log θt + n1

t log(1 − θt)). (43)

All the partial derivatives of logLc(θ|x) with respect to θt is on the same form, namely

∂

∂θt
logLc(θ|x) =

n0
t

θt
−

n1
t

1 − θt
, for t = 1, 2, ..., s. (44)

When the partial derivatives are all equal to zero, the likelihood function is either at

its maximum or minimum. Taking the double derivative proves that we have a maximum

point. So when we solve the following set of equations

n0
t

θt
−

n1
t

1 − θt
= 0, for t = 1, 2, ..., s, (45)

we obtain the MLE for θ, and these are

θ̂t =
n0

t

n0
t + n1

t

, for t = 1, 2, ..., s. (46)
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3.2 Matching specified functions

This estimation procedure is based on matching the model with the observation using

a set of optional specified functions. That is, we minimize the square distance, g(θ),

between the expected value for the model π(x|θ) and the empirical value, with respect

to these functions. We define a set with p functions, h1(·), h2(·), ..., hp(·), and get a

distance function given by

g(θ) =

p
∑

k=1

(Eθ[hk(x)] − µ̂hk
)2 , (47)

where µ̂hk
are the empirical function values, and x is simulated from the model parametrized

by θ. The parameter estimate is the argument minimizing g(θ)

θ̂ = arg min
θ

g(θ) = arg min
θ

p
∑

k=1

(Eθ[hk(x)] − µ̂hk
)2 . (48)

The expectation values in (48) can not be computed analytically for either of our models

and must be estimated. For this purpose we use the Monte Carlo approach, which

estimates the expectation by taking averages over a large number of samples from the

model. Our fields are efficient to sample from, making the Monte Carlo method an easy

task. We get the following estimate for the expectation

̂Eθ[hk(x)] =
1

N

N
∑

i=1

hk(xi), (49)

where the realizations, xi for i = 1, 2, ..., N , are sampled from the model π(x|θ). The

number of realization is N , and the higher this number is the more accurate the estimate

will be. The estimate for the distance function, ĝ(θ), becomes

ĝ(θ) = arg min
θ

p
∑

k=1

(

̂E[hk(x)|θ] − µ̂hk

)2
(50)

In order to minimize the estimate ĝ(θ), we must use a minimization algorithm. Our

minimization algorithm will be based on comparing pairs of ĝ(θ)-functions, each with a

separate parameter value. For instance, we wish to test if the parameter value θ gives a

better fit than θ0, and measure the difference d̂ = ĝ(θ0)− ĝ(θ). If d̂ is positive, θ is better.

However, as for every stochastic variable, there is variance present in the calculations,
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and the variance of d̂ is

Var[d̂] = Var[ĝ(θ0)] + Var[ĝ(θ)] − 2Cov[ĝ(θ0), ĝ(θ)], (51)

where the covariance between the two ĝ(·)-functions is zero since they are computed

from independent realizations of the model. If the variance of the variable d̂ is large,

the optimization may prove to be difficult. We wish to reduce the variance, and use a

variance reduction technique called importance sampling. In importance sampling we

construct a case where the covariance between the two estimates is positive. We want

to calculate

̂Eθ[hk(x)] =
1

N

N
∑

i=1

hk(xi), (52)

which can be re-written

̂Eθ[hk(x)] =
1

N

N
∑

i=1

hk(xi)
π(xi|θ)

π(xi|θ0)
= ̂Eθ0

[ψk(xi)], (53)

where ψk(xi) = hk(xi)
π(xi|θ)
π(xi|θ0)

. Hence, we sample from the same distribution, π(x|θ0)

for both the estimates ĝ(θ0) and ĝ(θ). They are no longer independent, resulting in a

positive covariance. With a positive covariance between the two ĝ(·)-functions, the total

variance of d̂ is reduced. In Tjelmeland (1996) an equivalent procedure was carried out

to estimate the normalizing constant in a MRF, in order to make MLE possible.

With this new formulation, we also need new estimates. We let g̃(θ) denote the

estimate for the distance function, and similarly we let θ̃ be the parameter estimate

minimizing g̃(θ), i.e.

θ̃ = arg min
θ

g̃(θ) = arg min
θ

p
∑

k=1

(

1

N

N
∑

i=1

hk(xi)
π(xi|θ)

π(xi|θ0)
− µ̂hk

)2

. (54)

The fraction π(xi|θ)
π(xi|θ0)

are weights, wi, with values in the range (0,∞). These weights

determine the influence each sample have on the estimate. If the two models π(x|θ0)

and π(x|θ) are approximately equal all the weights will have a value around 1, and we

get a good estimate. However, when the models have most of their mass located in

different areas the majority of the weights will equal zero and the estimate will be less

accurate. Thus, in order for the models to be sufficiently close, the distance between the

parameters, θ and θ0, must be chosen carefully.

Our routine for minimizing g̃(θ) goes as follows. We start with a set of initial pa-
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rameter values, θ0 = (θ01, ..., θ0s), and both increase and decrease each of the elements

in θ0 one at a time by a small value ε. For each of the s steps we get three sets of

parameters. For instance, step t yields the parameters θ0, θ1 = (θ01, ..., θ0t + ε, ..., θ0s)

and θ3 = (θ01, ..., θ0t − ε, ..., θ0s), with corresponding function estimates g̃(θ0), g̃(θ1) and

g̃(θ3). The θ value giving the smallest value of the g̃(·)-function is chosen as the new θ0.

This procedure is repeated until convergence. The algorithm is more formally written

down in Algorithm 1.

Algorithm 1 Pseudo code for the optimization routine minimizing g̃(θ).

Initialize θ0
while not at minima do

for j=1,...,s do

Set θ1 = θ2 = θ0
Set θ1(j) = θ1(j) + ε and θ2(j) = θ2(j) − ε

Calculate the three estimates g̃(θ0), g̃(θ1) and g̃(θ2)
Find the smallest estimate and set θ0 equal to the corresponding parameter

end for

end while

We primarily focus on finding an appropriate estimator for our models. Therefore, we

have constructed a simple minimization routine and disregarded the fact that it is very

inefficient. To increase efficiency it would be a good idea to approximate the gradient of

g̃(θ), which always finds the direction in which the function decreases the most.

It now remains to find appropriate h(·)-functions that give good parameter esti-

mates. The MLE is a special case of g(θ), where the h(·)-functions are equivalent to the

parametrization of the model. In Eriksen (2005) the covariance function was used as an

h(·)-function for estimation of the parameters in a slightly differently specified sMRF

model. However, there was a problem with the convergence. We will specify a set of our

own functions, and these will be introduced later on when this estimator is applied to

one of our models.

4 Models in two dimensions

In this section we will study one model from the sMRF class and two models from

the MMRF class. This involves model specification, estimation of the parameters, and

evaluation of the simulation results. The work of specifying a model from the sMRF class

has previously been done in Stien (2005). Here we give a short review of the modelling

process and the results. For the MMRF we look at two slightly differently specified
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models, denoted by MMRF model1 and MMRF model2. In Eriksen (2005) a similar

study of the MMRF is performed, and we take these results into consideration in our

study. The MLE is used for estimation of the parameters for all three models, and in

addition we also specify a set of functions for the second estimator, to match the sMRF

model with the observation.

First, we change to a more specific and convenient notation. Since an image is

being analyzed, the sites in the lattice correspond to pixels in the image. The image is

two-dimensional with m pixels in the vertical direction and n pixels in the horizontal

direction, so it becomes natural to express the lattice by anm×n-matrix. The sites in the

lattice are the row and column indices in the matrix, I = {(i, j)| i = 1, 2, ....,m and j =

1, 2, ...., n}. We let xij be the variable in row i and column j of the matrix, xi? =

(xi1, ..., xin) are the variables in row i and x?j = (x1j , ..., xmj) are the variables in column

j.

4.1 Evaluation of the models

For evaluation of our models we compare the correlation function for the simulated

images with the empirical correlation function for the observation in Figure 1. The

correlation function is given by

ρ(xij , xi+k,j+l) =
Cov(xij , xi+k,j+l)

√

Var(xij)Var(xi+k,j+l)

=
E [(xij −E[xij ])(xi+k,j+l −E[xi+k,j+l])]

√

(E[x2
ij ] −E[xij ]2)(E[x2

i+k,j+l] −E[xi+k,j+l]2)
, (55)

where the integers k and l are lags in the vertical and horizontal direction, respectively.

The correlation function can not be calculated analytically, and must be estimated.

We assume that our fields are weakly stationary. Firstly, this means that the expec-

tation values are constant and do not depend on i and j, i.e.

E[xij ] = E[xi+k,j+l] = µ. (56)

Secondly, ρ(xij , xi+k,j+l) only depends on the difference ((i + k, j + l) − (i, j)) = (k, l)

between the sites, so we can write

ρ(xij , xi+k,j+l) = ρ(k, l). (57)

It is also worth noticing that for binary weakly stationary fields all the moments are the
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Figure 7: Contour plot of the empirical correlation function for the observation in Figure
1. The center of the elliptic contour lines has the highest correlation value equal to 1, and
it decreases with distance from the center.

same, i.e. µ = E[xij ] = E[x2
ij ] = E[x3

ij ] = ..., and the expression for the variance can be

written on the simple form

Var[xij ] = µ− µ2 = µ(1 − µ). (58)

The assumption of stationarity also results in the equality ρ(k, l) = ρ(−k,−l), which can

easily be verified by swapping the two factors in the nominator in (55). The fields are

not assumed to be isotropic, and we therefore have to calculate the correlation function

for positive vertical direction and both positive and negative horizontal direction. A

natural unbiased estimator for µ is the mean µ̂ = 1
nm

∑

i,j xij , and together with the

above assumptions the estimate for the correlation function is

ρ̂(k, l) =

1
(m−|k|)(n−l)

∑min{m,m−k}
i=max{1,−k}

∑n−l
j=1(xij − µ̂)(xi+k,j+l − µ̂)

µ̂(1 − µ̂)
. (59)

Figure 7 shows a contour plot of the estimated empirical correlation function. The

closer the distance between the contour lines, the faster the correlation function de-

creases. If the contour lines are shaped like half circles we have equal properties in all

directions, and asymmetry will therefore indicate an anisotropic field. For the observa-

tion the half circles have a more elliptic shape, where the longest axis is in the vertical

direction. This does not necessarily indicate that the white objects are longer in the

vertical direction than in the horizontal. Within each object the vertical extensions are

approximately constant, and the horizontal extensions are very fluctuating. Thus, even

though the white objects are horizontally longer, their irregular shape result in many

low correlated areas in the horizontal direction, which explains the behaviour of the
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correlation function.

4.2 SMRF model

To specify our sMRF model, we start with determining the neighbourhood, cliques and

the set of conditioned variables we wish to include in the potential function. This will

give us the arguments for the γ(·)-function, and we can determine its return values.

In the model we let the rows in the image matrix be the one-dimensional MRFs,

where the first row corresponds to the first field, φ1. For each row we have a second

order neighbourhood, i.e. the two nearest pixels both to the left and right of a site is a

neighbour. The coordinates of the neighbours to pixel xij are shown in Figure 8.

(i, j − 2) (i, j − 1) (i, j) (i, j + 1) (i, j + 2)

Figure 8: The coordinates of the neighbours to the pixel in (i, j).

As a consequence of the choice of neighbourhood, there are three types of cliques c1,

c2 and c3. Without loss of generality, we set the potential for the two first cliques, c1

and c2, equal to zero.

We let the set of dependent fields include the two previous fields, i.e. Di = {i−1, i−

2}. With the neighbourhood and the cliques defined above, the potential function is a

function of three clique variables conditioned on variables from the two preceding rows.

We include six conditioned variables, and get the set xsNi
+j = {xij , xi,j+1, xi,j+2, xi−1,j,

xi−1,j+1, xi−1,j+2, xi−2,j , xi−2,j+1, xi−2,j+2} of variables in the potential function. Figure

9 shows the coordinates of the nine variables included in the potential function.

(i− 2, j) (i− 2, j + 1) (i− 2, j + 2)

(i− 1, j) (i− 1, j + 1) (i− 1, j + 2)

(i, j) (i, j + 1) (i, j + 2)

Figure 9: The coordinates of the pixels included in the potential function.

The clique variables and the conditioned variables will together have 29 = 512 differ-

ent configurations. The γ(·)-function could be given a separate value for each of these

configurations, but that would give 512 parameters to estimate. To reduce the number

of parameters, the configurations are placed in 13 different groups, i.e. γ(xSNi
+j) = t
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θ1 θ2 θ3 θ4 θ5 θ6 θ7
−2.57 −2.70 −3.51 −3.13 −1.05 −0.89 −1.23

θ8 θ9 θ10 θ11 θ12 θ13
−1.69 −1.64 −1.19 −1.34 −1.17 0.00

Table 1: MLE parameters for the sMRF model. The last parameter, θ13, is fixed to zero.

for t = 1, 2, ..., 13. The model is then given by

π(x) = π(φ1, φ2)

m
∏

i=3

K(φi−1, φi−2) × exp

{

−

13
∑

t=1

ni
tθt

}

, (60)

where π(φ1, φ2) is the probability for the two first rows.

We will not discuss the details of the grouping scheme, but instead give a short

explanation of the idea behind it. We consider the conditioned variables together with

the clique variables as pieces of a puzzle, and select those pieces that seem to appear

most frequently in the observation and place them into 9 different groups. This way we

can control the potential of the clique for the most important pieces. The rest of the

pieces are placed in four separate groups, called rest groups, according to the number

of horizontal changes between black and white within the clique. Figure 10 shows the

pieces included in the 13 groups. We have groups of homogeneous pieces, corners (black

and white), edges (vertical, horizontal and inclined) and rest groups. The gray color

indicates that the pixels can take any value, except for values resulting in any of the

configurations from the other groups.

4.2.1 Maximum likelihood estimation

The nonlinear minimization function nlm() in R has no difficulty in finding the values

of the parameters that minimize the negative logarithm of the likelihood function. Two

realizations from the model are visualized in Figure 11 using the MLE parameter values

in Table 1. To avoid the randomness effect for the first rows, we have simulated larger

images and visualize only a subsample of them. The resolution of the images is the same

as for the observation, 145 × 271.

The MLE results are not satisfying. The realizations in Figure 11 contain a vertical

pattern, and the estimator does not capture the fact that there should be white objects

on a black background. The correlation function for the realizations in Figure 12 also
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θ5
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θ9

θ10

θ11 θ12 θ13

Figure 10: A visualization of the parametrization of the sMRF model. The gray color
emphasize that the pixels can be either black or white as long as it does not result in any
of the configurations from the other groups.
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Figure 11: Realizations from the sMRF model with the MLE parameter values given in
Table 1.
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Figure 12: The correlation function for realizations from the sMRF model, using the MLE
parameters in Table 1.

implies that the white objects are more correlated vertically compared to the observation.

Horizontally, there is more resemblance with the empirical correlation.

The parameters, θi, can here be interpreted as probabilities. The parameters θ3 and

θ4 can with low potentials create homogeneous areas, by giving two vertical changes

between black and white within the configurations a low probability to occur. The

vertical continuation of these homogeneous areas are decided by the potential for the first

to parameters, θ1 and θ2. Since the observation consists mostly of homogeneous areas,

these four first parameters have, as expected, the lowest potentials. The fixed parameter,

θ13, has the highest potential. This is reasonable since the parameter represents the set of

configurations where the clique is non-homogeneous, i.e. there are two changes between

black and white within the clique.

It is also worth noticing that the potentials for the three first rest groups, θ10, θ11 and

θ12, are approximately equal to the potentials for the groups of edges and corners, θ6, θ7,

θ8 and θ9, when we in fact would like them to be higher. The reason for this can be that
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21474 518 349 846 480 4 289 307

352 302 8 468 869 300 428 11886

Figure 13: The 16 possible configurations used to match the sMRF model with the observa-
tion. Their corresponding frequencies in the observation are listed under each configuration.

the rest groups contain configurations that also can be considered as corners or edges.

If the potentials for the corner and edges were lower, the homogeneous configurations

would not be quite that dominant and the white objects would not extend so much

vertically.

4.2.2 Matching specified functions

For this procedure we consider squares of four pixels. These squares will have 24 = 16

different configurations, where each configuration is denoted by ζk for k = 1, 2, ..., 16.

For instance, if all the pixels in the square are black we get ζk = {0, 0, 0, 0}. First, we

define an indicator function

I({xij , xi,j−1, xi−1,j , xi−1,j−1} = ζk) =

{

1 if {xij , xi,j−1, xi−1,j, xi−1,j−1} = ζk,

0 otherwise,
(61)

for k = 1, ..., 16. Next we define 16 h(·)-functions, denoted by hk(·) for k = 1, 2, ..., 16.

Each hk(·) function measures the average number of times configuration ζk is repeated

in realization x, i.e.

hk(x) =
1

(m− 1)(n− 1)

m
∑

i=2

n
∑

j=2

I({xij , xi,j−1, xi−1,j , xi−1,j−1} = ζk), (62)

where (m − 1)(n − 1) is the number of times a square configuration of four pixels can

possibly be repeated in the image. These are the functions used in the estimate g̃(θ).

In Figure 13, the 16 different configurations are visualized, together with the number of

times they are repeated in the observation.

The minimization algorithm for g̃(θ), Algorithm 1, has iterated 945 times and run

for 215 hours. Time limitation of this thesis made us interrupt the process before con-
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Figure 14: A plot showing how the estimate g̃(θ) moves as a function of the iteration
number. The initial values for θ are the zero vector.

vergence was obtained. Our results are therefore incomplete and we are not in a place

where we can draw conclusions about the estimator. However, we will show our tempo-

rary results and discuss them. Figure 14 shows how the function estimate, g̃(θ), moves

with respect to the iteration number. The initial values of θ are the zero vector, the step

length is set equal to ε = 0.01, and the number of realizations in the estimate is N = 500.

We have experimented with different step lengths, focusing on the weights, wi, being

sufficiently close to one. Optimization of the exact function g(θ) would be monotone,

because we in the algorithm always move in the direction of a smaller value. However,

optimization of the estimate g̃(θ), which is stochastic, might not be perfectly monotone,

but should follow a downward trend. In Figure 14 we can see that g̃(θ) exhibits an

upward trend for the last iterations. The reason for this trend is unclear. It might be

because the estimate is biased, but this will not be investigated further in this thesis.

The temporary results from the estimation are tabulated in Table 2, and two real-

izations can be seen in Figure 15. From these realizations, it is not possible to extract

information about the estimator’s ability to reproduce the geological structure. Recall

that the parameter θ3 represents a configuration which creates white homogenous areas,

whereas θ1 represents the vertical continuation of these areas. If θ3 continues to decrease,

we might see the effect of the low potential for θ1 and the white noise in the realizations

will become white objects.

The frequencies of the different square configurations in the realizations, are listed in

Figure 16. These frequencies are very different from the frequencies in the observation.
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θ1 θ2 θ3 θ4 θ5 θ6 θ7
−1.30 −1.53 −0.81 −2.10 −1.09 −1.20 −0.86

θ8 θ9 θ10 θ11 θ12 θ13
−0.21 −1.18 0.14 −0.79 −1.41 0.00

Table 2: Temporary parameter values for the sMRF model, estimated by the optimization
routine matching the h(·)-functions in (62).

Figure 15: Temporary simulation results from the sMRF model with the parameters in
Table 2 estimated by matching the h(·)-functions in (62).

33022 970 978 868 957 21 25 33

960 19 17 34 916 16 12 32

Figure 16: The 16 configurations used to match the sMRF model with the observation.
The frequencies are measured from realizations of the model with the temporary parameter
values in Table 2.
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Figure 17: Realizations as a result of manually adjustment of the parameters, to show how
flexible the sMRF model is.

The frequency of the black configuration is more than 10 000 higher than it should be,

and opposite for the white configuration. Hopefully, this will even out if we let the

optimization routine continue to run. However, it might be that the algorithm only

finds a local minimum, and never obtain resemblance with the observation.

Even if the estimator finds a global minimum we might still end up with the same

problem as for the MLE. That is, the frequencies of the 16 configurations are preserved,

however, their distribution in the realizations do not resemble the observation. There are

an infinite number of ways to specify the h(·)-functions, and we have only explored one

option. The model is very flexible, meaning that by adjusting the parameter values we

can get a wide range of different quantitative and qualitative features in the realizations.

Figure 17 shows examples of two realizations which better resemble the observation.

Thus, if our specifications are not satisfying, it is still possible that other h(·)-functions

will improve the estimator.

4.3 MMRF model1

To specify a MMRF model we must first determine the ordering of the pixels and which

pixels that should be included in the sequential neighbourhood. Once this is done, we

will specify the γ(·)-function.

We choose the ordering where we sequentially sample the rows from top to bottom.

Within each row we sample the sites sequentially from left to right. This ordering is also

given in (26). In Eriksen (2005) the same ordering was considered, and it was concluded

that the sequential neighbourhood was not large enough. The MLE results gave a highly

directional pattern. We will therefore try to expand this neighbourhood to improve the

results.
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Eriksen (2005) considered two different sequential neighbourhoods, xpδi
= {xi,j−1,

xi−1,j} and xpδi
= {xi,j−1, xi−1,j+1, xi−1,j , xi−1,j−1}, and assigned a separate parame-

ter for each configuration. For instance, for the largest sequential neighbourhood, the

γ(·)-function was defined as γ(xpδi
) = k for k = 1, ..., 24. For larger sequential neigh-

bourhoods, some of the configurations may not occur in the data set, and we can not

estimate the corresponding parameters. By assigning several configurations to the same

parameter, we can use a larger sequential neighbourhood without getting too many

parameters.

We consider a sequential neighbourhood of 6 sites, npδ = 6, where xpδij
= {xi,j−1,

xi,j−2, xi−1,j+1, xi−1,j , xi−1,j−1, xi−2,j}. With 6 sites in a sequential neighbourhood, we

get a total number of 26 = 64 different configurations of the neighbourhood. The fre-

quencies of the 64 different configurations in the observation have been counted, ranging

from 0 to 10198. In Figure 18, the 12 most frequently configurations are visualized. We

assign a separate parameter for each of these configurations, and the rest of the con-

figurations are placed in 8 different groups according to the configuration of the three

nearest pixels, see Figure 19. The dark gray pixel will be black with a probability given

by the corresponding parameter value, and the light gray color emphasize that the pixels

can take any value except values resulting in any of the 12 configurations in Figure 18.

The expression for the parameterized model is

π(x) = π(x1?, x2?, x?1, x?2)

m
∏

i=3

n
∏

j=3

20
∑

t=1

I(γ(xpδij
) = t)θ

xij

t (1 − θt)
1−xij

∝

20
∏

t=1

θ
n0

t
t (1 − θt)

n1
t , (63)

where π(x1?, x2?, x?1, x?2) is the probability for the two first columns and rows.

4.3.1 Maximum likelihood estimation

The MLEs of the 20 parameters, θ1, θ2, ..., θ20, are listed in Table 3. Two realizations

with these parameters can be seen in Figure 20. The estimates generate realizations

with different characteristics than what we see in the observation. Not only is it unclear

whether there are white objects on a black background or vice versa, but their shape

are also oriented vertically and slightly diagonally. The correlation function for the

realizations can be seen in Figure 21. The function is not symmetric, which confirms

the slightly diagonal direction of the pattern. Furthermore, the function decreases too

rapidly in the horizontal direction and too slowly in the vertical direction, meaning that
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θ1 θ2 θ3 θ4

θ5 θ6 θ7 θ8

θ9 θ10 θ11 θ12

Figure 18: The 12 sequential neighbourhood configurations that appear most frequently
in the observation, each assigned a separate parameter value. The dark gray color represent
the pixels that are black with a probability given by the corresponding parameter value.

θ13 θ14 θ15 θ16

θ17 θ18 θ19 θ20

Figure 19: The 8 groups of the remaining configurations, grouped according to the config-
urations of the three nearest pixels. The light gray color emphasize that the pixels can take
any value, except for values resulting in any of the configurations in Figure 18.

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10
0.99 0.01 0.98 0.02 0.75 0.32 0.74 0.25 0.67 0.34

θ11 θ12 θ13 θ14 θ15 θ16 θ17 θ18 θ19 θ20
1.00 0.01 0.84 0.34 0.99 0.72 0.27 0.01 0.71 0.13

Table 3: MLE parameters for the MMRF model1.
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Figure 20: Realizations from the MMRF model1 with the MLE parameter values in Table
3.
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Figure 21: The correlation function for the realizations from the MMRF model 1, using
the MLE parameter values in Table 3.

the white areas extend too much vertically and too little horizontally.

Recall that the parameter θt is the probability that a pixel is black, given the corre-

sponding configuration of its sequential neighbourhood. For instance, θ1 = 0.99 means

that the probability that a pixel is black when all the pixels in the sequential neighour-

hood are black, is 0.99. We notice that the probability for a black pixel is high where

it represents a black homogeneous area, i.e. the values of θ1 and θ13 are high. The

parameters θ3, θ11 and θ15 are also reasonable high. A low value of these parameters

would result in many non-homogeneous areas. The opposite applies for the white areas.

The rest of the parameters represent the three kinds of edges, vertical, horizontal and

inclined. These have values more in the mid-range between zero and one.

We have further explored the model by adjusting the parameters manually and visu-

ally observed the changes. See Figure 22 for two examples of realizations that resemble

the observation slightly better, as a result of manual adjustments. We could not find a

set of parameters that gave us vertically shorter and horizontally longer white objects as
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Figure 22: Realizations as a result of manually adjusting the parameters of the MMRF
model2.

well as a non-diagonal pattern. Thus, we do not believe that it is the parameter values

that causes the pattern to be oriented, but rather the ordering of the sites.

4.4 MMRF model2

We wish to improve the results obtained for the MMRF model1 by changing the order

of simulation. The new model is denoted as MMRF model2. Rather than simulating

every row from left to right, we change the direction for every other row, i.e. each row

is simulated in the opposite direction as the one above. The ordering is given in (27).

We use the same sequential neighbourhood and parametrization as for the previous

model, however, some modifications must be made. We are now dealing with two sep-

arate sequential neighbourhoods, one for the left to right simulation and one for the

right to left simulation. Thus we get two different sets of pixels for the γ(·)-function,

denoted by xodd
pδij

= {xi,j−1, xi,j−2, xi−1,j+1, xi−1,j , xi−1,j−1, xi−2,j} and xeven
pδij

= {xi,j+1,

xi,j+2, xi−1,j+1, xi−1,j , xi−1,j−1, xi−2,j}. So far only the left to right sequential neighbour-

hood is specified, i.e. the γ(·)-function is only specified for the set xodd
pδij

. The specification

of the γ(·)-function for xeven
pδij

is equivalent. If a configuration of xodd
pδij

assigned a param-

eter θt is reflected with respect to column i, we get a configuration of xeven
pδij

. This will

be assigned the same parameter. So we have again restricted ourselves to a model of

20 parameters. See Figure 23 for an example of two separate sequential neighbourhoods

with the same parameter value. In (a) we have a sequential neighbourhood for simulat-

ing from left to right and in (b) a sequential neighbourhood for simulating from right to

left. The expression for the model is
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(a) θ1 (b) θ1

Figure 23: An illustration of how the sequential neighbourhood in reflected and assigned
the same parameter value. (a) neighbourhood when simulating from left to right. (b) the
same neighbourhood simulating from right to left.

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10
0.99 0.01 0.98 0.02 0.70 0.34 0.79 0.22 0.70 0.33

θ11 θ12 θ13 θ14 θ15 θ16 θ17 θ18 θ19 θ20
1.00 0.01 0.91 0.38 0.99 0.63 0.30 0.01 0.66 0.10

Table 4: MLE parameter values for the MMRF model2.

π(x) = π(x1?, x2?, x?1, x?2, x?,n−1, x?n)
∏

i odd

n
∏

j=3

20
∑

t=1

I(γ(xodd
pδij

) = t)θ
xij

t (1 − θt)
1−xij

×
∏

i even

1
∏

j=n−2

20
∑

t=1

I(γ(xeven
pδij

) = t)θ
xij

t (1 − θt)
1−xij , (64)

where π(x1?, x2?, x?1, x?2, x?,n−1, x?n) is the probability for the two first rows, and the

two first and last columns.

4.4.1 Maximum likelihood estimation

The MLEs of the 20 parameters, θ1, θ2, ..., θ20, are listed in Table 4 with two correspond-

ing realizations visualized in Figure 24. The realizations, again, do not give satisfying

results, although the diagonal structure has been removed. They still exhibit a vertical

structure. The plot of the correlation function in Figure 25, confirms our visual conclu-

sions. The contour lines are now symmetric, however, the correlation function decreases

too slowly vertically and too rapidly horizontally. The parameter values are reasonable

and we refer to the interpretation for the MMRF model1.

Manual adjustments of the parameters have given better resemblance with the ob-

servation, see Figure 26. However, a difficulty arises with the shape of the white objects,

they have a larger vertical extension than horizontal and we have not been able to find
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Figure 24: Realizations from the MMRF model2 with the MLE parameter values in Table
4.
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Figure 25: The correlation function for realizations from the MMRF model2, using the
MLE parameter values in Table 4.

Figure 26: Realizations as a result of manually adjusting the parameters for the MMRF
model2
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a set of parameters where this is not the case. We suspect that the sequential neigh-

bourhood is not large enough.

4.5 Discussion of the results in two dimensions

We are now able to draw some conclusions based on the study of our models in two

dimensions. First of all, by looking at the realizations from the various models it is

easy to tell the order in which they have been simulated. This lack of symmetry in the

realizations is a result of how the model classes are defined. However, there are ways

to specify models where the non-symmetric effect will be much less evident or even not

evident at all.

First we start with the MLE results for the sMRF model. The homogenous configu-

rations dominate, and combined with the small neighbourhood we consider it is natural

that the pattern follows the downward direction of simulation. Vertically, we consider

only three pixels simultaneously in the simulation, which might not be enough to con-

trol the vertical extension of the white objects. Horizontally we have symmetry in the

simulation, and achieve more resemblance with the observation since we consider five

pixels simultaneously.

The second estimator based on matching the h(·)-functions did not give us any final

results, since the optimization routine did not converge in time. There exists an infinite

number of possibilities of specifying this estimator and we have only explored a very

simple one. One suggestion could be to specify functions that measure vertical and

horizontal extensions as well as how the edges are distributed around the white objects.

It is, however, important that the estimator not only coincide with the data but also with

the model. The model has proved to be very flexible, but it might not be flexible enough.

Another possibility is of course to find a model with a larger neighbourhood that will

coincide with the MLE. This is the simplest estimator of the two and also more efficient,

but we should remember that larger neighbourhoods result in more complications with

the parametrization.

None of the two MMRF models we have studied have been able to reproduce the

characteristics of the white objects. The MMRF model1 gave slightly diagonal realiza-

tions, which we managed to remove by changing the order of simulation. Also here, our

results indicate that larger neighbourhoods might improve the results. When we sample

the MMRF models we consider only three pixels both vertically and horizontally, and

this might not be enough to control the extension of the white objects.

Since the MMRF models proved not to be rich enough to give satisfying realizations
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for any set of parameters, we did no try the second estimator. However, this class of

models is the simplest and most efficient of the two classes considered in this report,

and a larger sequential neighbourhood with an appropriate parametrization should be

further investigated.

5 Models in three dimensions

In this section we specify a model from the sMRF where we consider a three-dimensional

regular lattice. The observed data is only available in two dimensions, which complicates

the parameter estimation. Due to lack of time, we do not investigate the parameter

estimation any further. Instead we adjust the parameters manually by visual measures

in order to find a satisfying set of parameters. Then, finally, we test the MLE on a data

set originating from the specified model, given the set of parameters.

The notation we will use in three dimensions is similar to the one in two dimensions,

except that we express the lattice by a three-dimensional matrix, an m× n× p-matrix.

The pixels are now volume elements or voxels. We refer to the illustration in Figure 27

where the volume is visualized together with the following notation. Each voxel is given

a location (i, j, k) in the matrix, for i = 1, 2, ....,m, j = 1, 2, ..., n and k = 1, 2, ..., p. We

let xijk be the voxel in row i, column j and layer k of the matrix. The one-dimensional

MRFs are still the rows in the image, however, they also have a layer location. Thus, we

denote their location by φik, and the ordering of the MRFs is therefore not immediately

clear. To determine the ordering we define an order function, Ω(i, k), taking i and k

as arguments. The set φi? = {φi1, ..., φip} contains the MRFs with row number i and

φ?k = {φ1k, ..., φmk} are the MRFs in layer k. The set of preceding dependent fields is

denoted by Dik.

To be able to extract visual information from the realizations, we have to view them

through cross-sections. The three most natural are the cross-sections (i, j), (i, k) and

(j, k). Also when we visualize parts in the parametrization, we use cross-sections.

5.1 Model specification

The sMRF in three dimensions can be regarded as a MMRF in two dimensions, where

each site in the MMRF is a one-dimensional MRF. This is illustrated in Figure 28. For

the MMRFs we must determine the ordering of the sites, which in three dimensions
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Figure 27: Illustration of a sMRF on a regular grid in three dimensions. Each row in the
cross-sections (i, j) and (j, k) are one-dimensional MRFs.

Figure 28: Illustration of the three-dimensional sMRF, viewed as a two-dimensional MMRF
where each site is a one-dimensional MRF.
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(i, j − 2, k) (i, j − 1, k) (i, j, k) (i, j + 1, k) (i, j + 2, k)

Figure 29: The coordinates of the neighbours to the voxel with coordinates (i, j, k) in φik .

means that we must determine the ordering of the one-dimensional MRFs. For the

MMRF models we studied in two dimensions, we obtained best results when changing

the order of simulation for every other row. Thus, we will change the order of simulation

for every other layer, resulting in the ordering

Ω(i, k) =

{

m(k − 1) + i if k is odd

mk − i+ 1 if k is even
(65)

for each MRF, and for the whole field the ordering is



















1 2 ... m

2m 2m− 1 ... m+ 1
...

...
. . .

...

(p− 2)m+ 1 (p− 2)m+ 2 ... (p− 1)m

mo mo− 1 ... (p− 1)m+ 1



















. (66)

With this ordering we sample each layer k as a sMRF with a direction opposite to the

layer above, and the layers are sampled sequentially from top to bottom.

Even though the field is explained through MMRF we are still considering a three-

dimensional sMRF. The MMRF is only used for determination of the ordering of the

one-dimensional MRFs. Thus, as for the two-dimensional sMRF, we have to determine

the set of voxels to be included in the potential function.

We let each MRF in the field have a second order neighbourhood, and use cliques

of size three, c3. Figure 29 shows the coordinates of the neighbours to voxel xijk in φik.

With the ordering of the MRFs given in (66), we have to specify two sets of preceding

dependent fields, φDik
, one for odd layers and one for even layers. For odd k’s we

let Dodd
ik = {(i − 1, k), (i − 2, k), (i, k − 1), (i, k − 2)} and for even k’s we let Deven

ik =

{(i+ 1, k), (i+ 2, k), (i, k − 1), (i, k − 2)}. In the potential function we include one voxel

from each of these fields, the voxels with column index j. Thus, the sets of voxels in the

potential function are xSodd
ijk

= {xi,j−1,k, xijk, xi,j+1,k, xi−1,j,k, xi−2,j,k, xi,j,k−1, xi,j,k−1}

and xeven
Sijk

= {xi,j−1,k, xijk, xi,j+1,k, xi+1,j,k, xi+2,j,k, xi,j,k−1, xi,j,k−1}. Figure 30 shows

the set preceding dependent MRFs for both odd and even layer number, k. This is the

cross-section (i, k). For odd layer numbers we also visualize the two other cross-sections
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(a) (b)

Figure 30: Cross-sections visualizing the set of dependent MRFs included in the potential
function. (a) valid for odd layer numbers (b) valid for even layer numbers.

(i,j−1,k)

(i−2,j,k)

(i−1,j,k)

(i,j+1,k)(i,j,k)

(i,j,k−1)

(i,j+1,k)(i,j,k)(i,j−1,k)

(i,j,k−2)

(a) (b)

Figure 31: Cross-sections visualizing the coordinates of the voxels included in the potential
function for odd layer numbers. (a) cross-section (i, j) (b) cross-section (j, k).

to show the coordinates of the set of voxels from Dodd
ik that are included in the potential

function, see Figure 31. We can now write the probability distribution as

π(x) = π(φE) ×
∏

k odd

m
∏

i=3

K(φDodd
ik

) exp







−

n−2
∑

j=1

V (xodd
Sijk

)







×
∏

k even

1
∏

i=m−2

K(φDeven
ik

) exp







−

n−2
∑

j=1

V (xeven
Sijk

)







, (67)

where φE = {φ?1, φ?2, φ1?, φ2?, φm−1?, φm?} are the MRFs at the edges, and their prob-

ability is π(φE).

The number of voxels included in the potential function is at all times equal to 7, and

that gives a total number of 27 = 128 possible configuration of the sites in the function.

With two separate sets of voxels, xodd
xijk

and xeven
xijk

, we get 128 × 2 = 256 parameters to

estimate. To reduce the number of parameters, we divide the set of voxels into three

separate groups and define a separate potential function for each of these, i.e. we let the
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2

(i,j+1,k)(i,j,k)(i,j−1,k)
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xs
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(a) (b)

Figure 32: A visualization of how the 7 voxels in the potential function are divided into
three sets of voxels, where each set are assigned a separate parameter value for every of its
8 possible configurations.

potential function, V (·), be a sum of three potential functions, V1(·), V2(·) and V3(·),

each taking three arguments. The sets of voxels are denoted by xodd
S1

ijk

, xodd
S2

ijk

and xodd
S3

ijk

for

odd k’s, and xeven
S1

ijk

, xeven
S2

ijk

and xeven
S3

ijk

for even k’s. Thus, we get the following potential

functions

V (xodd
Sijk

) = V1(x
odd
S1

ijk
) + V2(x

odd
S2

ijk
) + V3(x

odd
S3

ijk
) (68)

V (xeven
Sijk

) = V1(x
even
S1

ijk
) + V2(x

even
S2

ijk
) + V3(x

even
S3

ijk
). (69)

If we consider odd k’s, the three sets are xodd
S1

ijk

= {xijk, xi,j+1,k, xi,j+2,k}, x
odd
S2

ijk

= {xi,j+1,k,

xi−1,j+1,k, xi−2,j+1,k} and xodd
S3

ijk

= {xi,j+1,k, xi,j+1,k−1, xi,j+1,k−2}. These three sets are

also visualized in Figure 32. We notice that voxel xijk is included in all three groups.

The three potential functions each have 8 possible return values, giving a total of (8 +

8 + 8) × 2 = 48 different parameters. We assign the same parameter to odd and even

sets with the same configuration. That is, when a configuration for even k’s is reflected

with respect to row i we get a configuration for odd k’s and these two configurations

have the same potential function value. This scheme reduces the number of parameters

to 24.
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We define three γ(·)-function, one for every potential function

γ1(x
odd
S1

ijk
) = γ1(x

even
S1

ijk
) = t for t = 1, ..., 8 (70)

γ2(x
odd
S2

ijk
) = γ2(x

even
S2

ijk
) = t for t = 1, ..., 8 (71)

γ3(x
odd
S3

ijk
) = γ3(x

even
S3

ijk
) = t for t = 1, ..., 8 (72)

In addition, we introduce three sets of parameters corresponding to the γ(·)-functions,

θ1
γ1(·) = V1(·), θ

2
γ2(·)

= V2(·) and θ3
γ3(·)

= V3(·). Using this we get

π(x) = π(φE)
∏

k odd

m
∏

i=3

K(φodd
Dik

) exp

{

−

8
∑

t=1

n1ik
t θ1

t + n2ik
t θ2

t + n3ik
t θ3

t

}

×
∏

k even

1
∏

i=m−2

K(φeven
Dik

) exp

{

−

8
∑

t=1

n1ik
t θ1

t + n2ik
t θ2

t + n3ik
t θ3

t

}

, (73)

where n1ik
t , n2ik

t and n3ik
t represent the number of times the functions γ1(·), γ2(·) and

γ3(·) respectively return the value t in field φik.

In Table 5 the different parameters are listed together with their corresponding

configurations. The ordering in which the elements are listed in the three different

sets corresponds to the ordering in the configurations. For instance for set xS1
ijk

=

{xi,j−1,k, xijk, xi,j+1,k} the element xi,j−1,k will be represented by the first voxel in the

configuration.

We have adjusted the parameters using visual measures and we have found a tolerable

good set of values. These values are tabulated in Table 6, and two images for each cross-

section are visualized in Figure 33. The resolution of the field is 200 × 200 × 200. In

two dimensions we sampled large fields and used only a sub-sample of the field for

visualization and other measurements. In this way we avoided the effect of the sites

in φE , i.e. the effect of the randomness at the edges. In three dimensions it is very

time-consuming and it requires a high amount of memory to sample larger fields. The

edge effect will therefore be present in the realizations from our model.

The observation we have been given represents a geological structure as we move

downwards towards the center of the earth. Therefore, we do not know the appearance

of the structure when viewed from above, in this context that would be the cross-section

(i, j). However, by focusing on making the two other cross-sections resemble the obser-

vation, we might obtain sufficiently accurate results for the (i, j) cross-section.

The realizations from cross-section (i, j) and (i, k) resemble the observation since
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Configuration xS1
ijk

xS2
ijk

xS3
ijk

θ1
1 θ2

1 θ3
1

θ1
2 θ2

2 θ3
2

θ1
3 θ2

3 θ3
3

θ1
4 θ2

4 θ3
4

θ1
5 θ2

5 θ3
5

θ1
6 θ2

6 θ3
6

θ1
7 θ2

7 θ3
7

θ1
8 θ2

8 θ3
8

Table 5: The list of parameters with their corresponding configuration. The ordering in
which each voxel in the sets are listed corresponds to the ordering in the configuration.

θ1
1 θ1

2 θ1
3 θ1

4 θ1
5 θ1

6 θ1
7 θ1

8

−1.80 −0.80 6.20 −0.80 −0.80 6.20 −0.80 −1.80

θ2
1 θ2

2 θ2
3 θ2

4 θ2
5 θ2

6 θ2
7 θ2

8

0.47 −0.33 6.17 1.17 1.20 6.20 −0.30 0.50

θ3
1 θ3

2 θ3
3 θ3

4 θ3
5 θ3

6 θ3
7 θ3

8

0.00 −1.30 6.20 1.20 1.20 6.20 −1.30 0.00

Table 6: Parameter values based on manually adjustments of the parameters using visual
measures.
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(a) (b)

(c) (d)

(e) (f)

Figure 33: Realizations for the three cross-sections using the manually adjusted parameter
values in Table 6. (a) and (b) cross-section (i, j). (c) and (d) cross-section (i, k). (e) and
(f) cross-section (j, k).
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θ1
1 θ1

2 θ1
3 θ1

4 θ1
5 θ1

6 θ1
7 θ1

8

−1.90 −0.89 5.80 −0.80 −0.92 6.31 −0.78 −1.77

θ2
1 θ2

2 θ2
3 θ2

4 θ2
5 θ2

6 θ2
7 θ2

8

0.30 −2.58 3.88 1.00 0.96 3.84 −2.62 0.26

θ3
1 θ3

2 θ3
3 θ3

4 θ3
5 θ3

6 θ3
7 θ3

8

0.06 −3.07 4.34 1.36 1.27 4.33 −3.08 0.00

Table 7: Parameter values based on MLE with a realization from the model given the
parameters in Table 6 as the observation.

we clearly have white objects on a black background, which extend more horizontally

than vertically. For cross section (i, k) the edges of the white objects have a diagonal

structure, which is not present in the observation. However, the model is very flexible

and it might be possible to find even better parameter values, and maybe values where

the shapes of the white objects are more satisfying.

The first column of parameters, θ1
1, ..., θ

1
8 , represents the potential for the cliques,

see Table 5. In Table 6, we see that the homogeneous cliques have been given the

lowest potential, and the cliques with one horizontal change between black and white

have a slightly higher potential. We do not want any of the configurations with two

changes between black and white in the clique, so the parameters for these cliques

are given a very high value. The second column of parameters in Table 5, θ2
1, ..., θ

2
8 ,

represents the horizontal dependency in the field, and by adjusting these parameters

we can determine the horizontal extension of the white and black areas, and how many

changes we want between black and white. The same interpretation goes for the third

column of parameters, but with the obvious modification that we adjust the vertical

extension.

5.2 Maximum likelihood estimation with observations in three dimen-

sions

We have used the above simulation results as an observation, and applied the MLE. The

results are tabulated in Table 7, and Figure 34 shows two realizations for each cross-

section. The realizations are very similar to the observation. We can therefore conclude

that MLE works well for three-dimensional data originating from the statistical model.
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(a) (b)

(c) (d)

(e) (f)

Figure 34: Realizations for the three cross-sections using the MLE parameter values in
Table 7. (a) and (b) cross-section (i, j) (c) and (d) cross-section (i, k) (e) and (f) cross-
section (j, k). The observed data used for the estimation is a realization from the model
using the parameter values in Table 6.
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5.3 Discussion of the results in three dimensions

The model we have specified has given us some very promising results. However, we

are not fully satisfied with the appearance of edges for the white objects in cross-section

(i, k). Maybe the model is not flexible enough to remove this diagonal effect, and other

parametrizations should be considered. It might also be a good idea to include more

voxels in the potential function, not only from the horizontal and vertical direction but

also diagonally. This should be further investigated.

Regarding the estimation of the parameters, we run into some problems. We do not

have available any three-dimensional observation, only a two-dimensional image, and

this complicates the estimation procedure. We let y be a two-dimensional field from a

cross-section of the whole field x, and x−y is the whole field except for the cross-section

y. Then, the likelihood can be written

L(θ|y) =
∑

x
−y

π(x|θ) = π(y|θ), (74)

where we sum over the possible outcomes of x−y to be left with a likelihood for two-

dimensional observations. Thus, we can replace y with our observation and maximize

the likelihood function. In practice this is of course an unattainable process, since our

fields are too large for the summation in (74) to be performed. Approximative techniques

are required, however, we do not have time to investigate such techniques any further in

this thesis.

6 Closing remarks

The aim of this thesis has been to find an appropriate statistical prior model in three

dimensions, that can reproduce geological structures. We have required the models to

be efficient when it comes to simulation and parameter estimation, and two classes of

models fulfilling these requirements are the sMRFs and MMRFs.

The observation is only available in two dimensions, which complicates the parameter

estimation. For that reason, we have first focused on reproducing the geological structure

in two dimensions to become familiar with the classes and possible estimators. The

results for the two-dimensional models have not been fully satisfying. The MLE did not

give good results for any of our models. A second estimator based on matching a set of

square configurations was considered only for the sMRF model, and did not converge in

time for us to evaluate it.
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Further research of the models and estimators in two dimensions remains. How-

ever, we have used what we have learned from the study of these models to specify a

three-dimensional sMRF model. This model proved to be very flexible and promising,

even though some modifications of the parametrization might improve the results. The

estimation of the parameters is challenging and remains to be further investigated.
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