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Abstract

In modern society, we rely on safely working software systems. This is the final
report in a masters degree project to reveal key issues in the science field of
computer software architecture and design of safety-critical software systems.

A pre-study of a navigation system implied that functionality related problems
and safety-critical problems do not stack one to one, but rather is a case of solving
these aspects in different layers. This means that changes in software systems
functionality do not necessary mean that change in safety-critical modules has to
be done as well, and visa versa.

To further support the findings in the pre-study, an experiment was created
to investigate these matters. A group of twenty-three computer science students
from the Norwegian University of Science and Technology (NTNU) participated
as subjects in the experiment. They were asked to make two functional additions
and two safety-critical additions to a software robot emulator.

A dynamic web tool was created to present information to the subjects, and
they could here answer surveys and upload their task solutions.

The results of the experiment shows that there were not found any evidence
that the quality attributes got affected by the design approaches. This means
that the findings of this study suggest that there is difficult to create safety-
critical versions of software architectural design patterns, because all design
patterns have a set of additions and concequences to a system, and all sides
of the implications of the design pattern should be discussed by the system
architects before used in a safety-critical system.

Keywords: Software, design patterns, architecture, safety-critical, experi-
ment.
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Chapter 1

Introduction

This chapter will present the research, covering the motivation of the research,
the problem definition, the scope, related research, and how the report is outlined.

1.1 Motivation

In modern society, we are greatly dependent upon safely working software sys-
tems. These systems can be anything from control systems in trains, ships, and
airplanes to industrial chemical or nuclear plants.

For a developer of these types of systems, it is crucial to know how safety-
critical additions may influence the system. These additions to a system can
make it become more robust, more usable, more reliable, and more available and
so forth, but there is always a possibility that an addition to a system can make
one or more quality attributes suffer when others are improved.

A prestudy made by the researcher in [Ljo05] suggested that when adding new
safety-critical requirements, the functionality aspects of a software system do not
get much influenced by these adjustments. A case study of a navigation system
illustrated how safety implementations got added on top of the functionality
related classes.

To investigate this research further, there was suggested that a controlled
experiment could supply the former research. The experiment should test how
quality attributes such as differences in effort of making changes, or the cor-
rectness of the different implementations, got affected by a set of safety-critical
additions.

1.2 Problem Definition

The goal of the study was to plan and execute a controlled experiment to in-
vestigate how safety-critical design pattern get affected by functionality related
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problems, and visa versa. A set of quality attributes was selected as measurement
of the experiment.

The objective deriving from the goal is:

“Design and execute a controlled experiment where a set of safety-critical
design pattern get tested against functionality related problems.”

The research questions arising from the above objective is as follows:

R1. How are quality attributes affected when functionality problems are added
to a set of safety-critical design?

R2. How are quality attributes affected when safety-critical design pattern get
added to a system that has already a set of added functionality?

R3. How can we create a controlled experiment that can test research questions
1. and 2.?

1.3 Scope

Because the study is a part of a masters degree project in computer science, the
time limit and the budget of the study is tight.

The experiment planning, execution, analysis and presentation had a time
schedule from the 20.january 2006 to 16.june 2006.

Because of the tight schedule, the experiment execution could only be less
than a days work for the participants, and only a couple of light-weight safety-
critical design patterns can be tested in such a small-size system.

The low budget of the experiment made the subject selection by using Conve-
nience sampling [WRH+00, p.52], meaning that the nearest and most convenient
persons are selected as subjects.

1.4 Related Research

There has been several research made with the use of experimentation in software
engineering. A research made by [AS03] was testing how the effect of delegated
versus centralized control style effected the maintainability of object-oriented
software. The experiment is related in the test methods and subject population,
only the research by [AS03] also includes professional software developers.

The prestudy made by [Ljo05] are focusing on the same problem definition,
but uses a navigation case study to discover the effects of the safety-critical
implementations.



4 Introduction

This study used the results and findings of the [Ljo05] research and create
a controlled experiment similar to the [AS03] experiment, only with a smaller
budget.

1.5 Report Outline

The following chapter, Chapter 2, will describe the methodology of empirical
studies and experimentation in software engineering related the research. Chapter
3 describes the theory of design patterns and how they can be used in software
architecture, and why they are used in this research. Chapter 4 describes the
design of the controlled experiment, and Chapter 5 describes the Experiment
Web Tool. In Chapter 6, the results of the experiment are presented, followed
by a discussion of the threats to the validity of the research in Chapter 7, and
the discussion of the research as a whole in Chapter 8. Chapter 9 sums up the
research, concludes and suggests further research that can be made.



Chapter 2

Research Method

This chapter presents the research method of the project, which is the methodol-
ogy of experimentation in computer science. The first section will present general
usage of experimentation in Software Engineering, while the following section will
present the statistical models used in the data analysis.

2.1 Experimentation in Software Engineering

To justify the use of experimentation in software engineering research, we need
to give a reasoning of the importance of empirical studies in this discipline. This
section will give a brief introduction to the use of experimentation as an empirical
study in the research area of software engineering.

2.1.1 The Background

As computer science evolved during the late 60s and the term “software engineer-
ing” was created to describe the engineering focus of developing software systems,
empirical studies fitted into the software engineering context because of the need
for systematic, disciplined and quantifiable approach of developing, operate and
maintenance of software [WRH+00, p.15].

For the software engineering to be a science, we need a well organized way to
do research. With the use of the empirical studies, hypothesis that the software
engineers have can be tested, and the more results of an empirical study that
support the hypothesis, the stronger the hypothesis can be accepted as a scientific
theory.

By doing scientific research in software engineering, the whole computer in-
dustry benefits it. As an example, if we have a hypothesis that object-oriented
programming is more effective than functional programming, and do empirical
studies that support this theory, the software industry can take this into consid-
eration when choosing programming style in a software project.
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Figure 2.1: The phases of experimentation (taken from [JM01, p.49])

There are two types of approaches in empirical studies, the Qualitative re-
search, and the Quantitative research [WRH+00, p.7]. The qualitative approach
is concerned with studying objects in their natural environment. As an example
if the subject is a person, the data is collected by talking to the person and trying
to understand his situation.

The quantitative approach is tying to quantify a relationship between groups
to identify cause-effect relationships. The experiment is a type of empirical study
that uses the quantitative approach when testing effects of a treatment, while a
qualitative study will try to give an understanding why the results are as they
are. That is why the two approaches are considered as complementary.

2.1.2 Experimentation Overview

The experiment is an empirical study with a high level of control. It is
normally done in a laboratory environment, where subjects are assigned different
treatments. When manipulating some variables and holding others at a fixed
level, one can measure and analyse the effect of the manipulation with statistical
models. The strength of an experiment is that it can investigate in which
situations the claims are true and they can provide a context in which certain
standards, methods and tools are recommended for use [WRH+00, p.15].

[JM01, p.49] identifies four phases of experimentation:

1. Definition of the objectives of the experimentation

2. Design of the experiments

3. Execution of the experiments

4. Analysis of the results/data collected from the experiments.

The definition of objectives is a phase where the general hypothesis are trans-
formed into formal hypothesis and formulated in terms of the phenomenon under
examination. The plan of how to control the experiment environment, and how
to measure the variables to make the hypothesis test possible, is determined in
the design phase. In the execution phase, the experiment is run according to
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the experiment plan and the latter analysis phase use statistical models on the
recorded data to either support or reject the defined hypothesis.

2.1.3 Hypothesis Statements

In the experiment definition phase, we try to formalize the research questions into
hypothesis. The hypothesis are formulated in two parts, where the null hypothesis
(H0) states that there is no real underlying trends or patterns to the experiment
setting. This means that there is only coincidental that some observations are
different.

The alternative hypothesis (Ha, H1, etc), is the hypothesis in favour of which
the null hypothesis got rejected. The alternative hypothesis might as an example
claim that one the effect of a treatment are less on one of the groups tested.

The conclusions from a hypothesis test can be validated with a significance
level, where the errors are classified into two types, the Type-I-error and the
Type-II-error [WRH+00, p.50].

The Type-I-error occurs when statistical tests indicates a pattern when there
really is no pattern. The probability of committing a type-I-error is expresses as:

P(Type-I-error) = P(reject H0 | H0 true)

The Type-II-error occurs when a statistical test indicates no patterns or rela-
tionship when there really is one. The probability of committing a Type-II-error
is expressed as:

P(Type-II-error) = P(not reject H0 | H0 false).

2.1.4 Threats to Experiments Validity

Before making any conclusions, one needs to carefully look at the threats to the
validity of the experiment. [WRH+00, p.63-65] make following classifiction of
threats to validity of the experiment results:

1. Conclusion validity. The validity concerned with the relationship between
the treatment and the outcome. We want to make sure that there is a
statistical relationship, i.e. with a given significance.

2. Internal validity. If a relationship is observed between the treatment and
the outcome, we must make sure that it is causal relationship, and that it
is not a result of a factor of which we have no control or have not measured.
In other words, that the treatment causes the outcome (the effect).
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Figure 2.2: Experiment design and validity (taken from [WRH+00, p.64])

3. Construct validity. This validity is concerned with the relation between
theory and observation. If the relationship between cause and effect is real,
we must ensure two things: 1) that the treatment reflects the construct of
the cause well (left part of Figure 2.2) and 2) that the outcome reflects the
construct of the effect well (right part of Figure 2.2).

4. External validity. The external validity is concerned with generalization. If
there is a causal relationship between the construct of the cause, and the
effect, can the result of the study be generalized outside the scope of our
study? Is there a relation between the treatment and the outcome?

Figure 2.2 show how [WRH+00] presents the important concepts of the valid-
ity classification.

2.2 Statistical Model

The experiment in this project is performed with the use of a completely random-
ized design. The design setup uses the same objects for both the treatments, and
assigns subjects randomly to the two treatments. The design is called balanced
if the same number of subjects is set to the treatments.

Table 2.1 show an example of assigning treatments to a randomized design.

The statistical model for an experiment using a parametric, one factor, two
treatments, and completely randomized design is the t-test.
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Subject Treatment 1 Treatment 2
1 X
2 X
3 X
4 X
5 X
6 X

Table 2.1: Example of assigning treatments to a randomized design (adopted
from [WRH+00, p.55]).

2.2.1 T-test

The t-test is a parametric test that compares two sample means. The t-test steps
are described in [WRH+00, p.99] as follows:

1. Input - two independent samples: x1, x2, .., xn and y1, y2, .., ym.

2. H0 - µx = µy, i.e. the expected mean values are the same.

3. Calculate t0 = x̄−ȳ

Sp

√
1
n

+ 1
m

, where Sp =

√
(n−1)S2

x+(m−1)S2
y

n+m−2
, and S2

x and S2
y are

the individual sample variances.

4. (a) Two-sided (H1: µx 6= µy): reject H0 if |t0| > tα/2,n+m−2.

(b) One-sided (H1: µx > µy): reject H0 if |t0| > tα,n+m−2.

This test can automatically be done by most spreadsheet programs. Mi-
crosofts Excel is used as statistical tool in this project.



Chapter 3

The use of Design Patterns in
Software Architecture

Design patterns are commonly found in the field of Software Architecture. This
chapter will give an introduction to what a design pattern is, and why it is
important to the experiment. The first section gives a general overview of the
role of design patterns in software engineering. The following sections presents
software patterns in safety-critical systems, and the description of two design
patterns used in the experiment.

3.1 Overview

A design pattern are described by [Dou03] as “a generalized solution to a com-
monly occurring problem”. So, instead of inventing new solutions all the time
when a problem occurs, we can use a generalized solution that is defined to meet
one or more of quality attributes like: performance, predictability, scheduleabil-
ity, throughput, reliability, safety, reusability, distributability, portability, main-
tainability, scalability, complexity, resource usage, energy consumption, recurring
cost and development effort.

Software design patterns have arisen from a concept of the traditional archi-
tecture industry. In 1977, Christopher Alexander wrote the book “A Pattern
Language: Towns, Buildings, Construction” [Ale77], where he describes practi-
cal, safe and attractive design implementations of all levels of detail in a building
plan. He describes the design in a general language with pictures and example
calculations.

[BC87] adopted the idea of a genuine architectural design language for describ-
ing software related problems in the same way as for the traditional architecture
discipline. They presented the results of theire work at the OOPSLA-87 1 work-

1Object-Oriented Programming, Systems, Languages & Applications (OOPSLA): An annual
conference by The Association for Computing Machinery (ACM).
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shop on the Specification and Design for Object-Oriented Programming.
The use of design patterns has increased during the latest years, and the fa-

mous “Gang of Four (GoF)” in computer science, Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides, published the book “Design Patterns: Ele-
ments of Reusable Object-Oriented Software” in 1994 [GHJV94]. The book set
a standard to the use of design patterns in the computer industry, and is still
popular reading among software architects.

[GHJV94, p.3-4] presents four essential elements of a design pattern:

1. The pattern name. The name of a pattern is describing the pattern solution,
and helps increasing the science vocabulary, helping software architects un-
derstanding the pattern in an unambiguous way.

2. The problem. This describes the problem, its context, and when to apply
the pattern. It might describe classes, structures or a list of conditions that
must be met before it makes sense to apply the pattern.

3. The solution. This is the elements that make up the design, their relation-
ship, responsibilities and collaborations. The solution is a template to use,
not a specific design implementation, because it can be applied in many
different situations. The pattern provides an abstract description of the
design problem, and a general way of arranging elements, such as classes
and objects, to solve the problem.

4. The consequences. By applying the pattern there is a set of trade-offs
and risks. The consequences of applying the pattern should be carefully
discussed and evaluated by the system designers, and the pattern should
only be implemented if the benefits of it are greater than the cost. A design
pattern might, as an example, benefit system flexibility, while on the other
hand lower the systems performance.

Software design patterns are under continuous evolution, and in annual con-
ferences the current design patterns are revised and new patterns are added to
the pattern catalogue if found appropriate.

3.2 Safety-critical Design Patterns

As for any other software, safety-critical systems are also dependent on correctly
working design patterns. The design patterns for safety-critical software systems
are often focused on quality attributes such as robustness, reliability, and safety.

Two safety-critical design patterns are used in the experiment, the Protected
Single Channel and the Watchdog design patterns. These patterns are taken
from [Dou03], and are two commonly used patterns in embedded systems. Bruce
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Powel Douglass, the writer of [Dou03] and [Dou99], is in the Advisory Board of
the Embedded Systems Conference 2, and a co chair of the Real-Time Analysis
and Design Working Group (RTAD) 3 within the Object Management Group
(OMG) 4, and consults a number of companies and organisations including NASA.

According to [Dou03, p.79-80], the safety and reliability architecture is con-
cerned with correct functioning in the presence of faults and errors. The reliability
attribute are a measure of availability of a system (to the user), and can be es-
timated by for instance the formula A = uptime

totaltime
or MTTF

MTTF+MTR
, where A is the

availability, MTTF is the mean time to failure, and MTR is the mean time to
restore. Redundancy is one design approach that increases availability because if
one component fails, another takes its place.

A safe system is a system that decreases a systems danger to people or equip-
ment. A risk is the product of the severity of the incident and its probability.
Take as an example flying in an aeroplane: The impact of a crash can be fatal,
but the probability of a crash is so small, it makes the risk tolerable. Another
example is the risk of getting electric shock when changing a battery in a camera
or MP3 player; it is very likely to happen, but the consequences are so small that
the risk is tolerable.

3.2.1 Protected Single Channel Pattern

The Protected Single Channel pattern is a lightweight design pattern for systems
that needs some safety and reliability, but cannot afford total redundancy. It
uses a single channel to handle sensing and actuation. Key points in the channel
enhance safety and reliability trough checks where transient faults can be found
and then threat.

Figure 3.1 show how the pattern structure in an open loop version, as used
in one of the experiment tasks. The channel consist of input and output process-
ing, internal data transformation and data integrity checks. The actuator is the
hardware that performs the actions of the channel.

The pattern provides some level of safety and reliability against either system-
atic or random faults, such as corrupted data or data beyond the value bounds. In
systems that should be able to operate in the presence of permanent fault, more
heavy weight patterns such as Homogenous Redundancy [Dou03, p.415-421] or
Heterogeneous Redundancy [Dou03, p.426-431] patterns should be used.

3.2.2 Watchdog Pattern

A dog that watches over hens in a chicken run, only concerns whether something
is obviously wrong or not. The dog does not actually go into the henhouse and

2The Embedded Systems Conference, Home Page - http://www.esconline.com
3RTAD, Home Page - http://realtime.omg.org
4Object Management Group, Home Page - http://www.omg.org
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Figure 3.1: Protected Single Channel Pattern (taken from [Dou03, p.411])

check if the hens are laying eggs or not. This is how the software pattern got
its name; because it watches over the processes in the system, but it does not
actually checks that the internal computation processing is correct. This makes
the Watchdog pattern a lightweight pattern that can add additional safety to a
safety-critical system, and are often combined with other, usually more heavier-
weight patterns.

The Watchdog pattern structure is shown in Figure 3.2. The actuator channel
operates pretty much independently of the watchdog, sending a liveness message
to the watchdog every so often. This is called stroking the watchdog. The watch-
dog uses the timelines of the stroking to determine whether a fault has occurred,
i.e. if a new stoke has not come within a defined time limit, the watchdog alerts
the system, where further actions can be made.

Figure 3.2: The Wathcdog Design Pattern (taken from [Dou03, p.445])

If the watchdog is to provide protection from timebase faults, a separate elec-
tric circuit must supply an independent measure of the flow time. The watchdog
might also be used to improve deadlock detection, where strokes can be keyed
or contains data to identify strokes from different computational steps, making
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it possible to identify in which step the fault occurred. This is called a Keyed
Watchdog or a Sequential Watchdog [Dou03, p.448].

The design patterns presented in this chapter are used as basis for the exper-
iment tasks, presented in the following chapter.



Chapter 4

Experiment Design

This chapter explains how the experiment was performed. The first section gives a
formal experiment definition, and is followed by research goals in Section 4.1, and
hypothesis formulations in Section 4.2. The last section presents the experiment
tasks, and some practical information about the experiment conditions.

4.1 Experiment Definition

The formal experiment goal definition is set up from a goal definition template by
[WRH+00, p.42]. The goals are then further explained in the latter subsections.

4.1.1 Goal Definition

Analyse source code, test results and survey answers

for the purpose of evaluate design approaches

with respect to correctness, effort and difficulty level of making changes

from the point of view of the researcher

in the context of M.Sc. students solving functionality and safety-critical
tasks in a Khepera Robot Simulator Software System, and answering post and
pre-task surveys. The study is conducted as a blocked subject-object study.

4.1.2 Objects of Study

The objects studied are safety-critical and functionality tasks implemented in a
robot emulator. The objects are source code, test results and survey answers. The
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source code is written by the experiment subjects, and uploaded to the experiment
file server. The subjects will also answer a survey about their experience levels
and skills in programming and design pattern knowledge. After each task, the
subjects are given a post-task survey, where they answer how much time they
spent on solving the task, how the effort of solving the task was, and how difficult
they thought the task was.

4.1.3 Purpose

The purpose is to evaluate the approaches of adding safety-critical requirements
to a software system versus adding new functionality to a system. The experiment
will try to see if the safety patterns easily can be added as a layer on top of the
existing software, or if safety patterns are most beneficial to be added as early in
the design phase as possible.

4.1.4 Quality Focus

The quality focus is to find differences in correctness, effort and difficulty. This
focus represents both quantity and quality measures, and will make it possible
to make evaluations that treat the purpose of the experiment.

4.1.5 Perspective

The perspective is from the researchers point of view, meaning that the experi-
ment will try to answer computer science research questions, where the goal is a
better understanding of software architecture and the use of design patterns in
safety-critical environments.

4.1.6 Context

The experiment is set up using M.Sc. students as subjects. It will be conducted
in a computer lab at the NTNU campus. Surveys and tasks will be presented in
a web-based environment, where the experiment output and test results can be
logged and saved to a common database.

4.1.7 Research Goals

The research goals are presented in a Goal, Question, Metrics (GQM) approach
[WRH+00, p.23]:

• G.1. Discover if there are any differences in robustness, safety or reliabil-
ity in software systems where safety-critical modules are added on top of
functionality requirements, or if the opposite is more beneficial.
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– Q.1.1. Are there any difference in correctness of source code?

– Q.1.2. Are there more failures when using one of the approaches?

• G.2. Discover whether it is more difficult to modify functionality modules to
meet safety-critical requirements, versus modifying safety-critical modules
to meet functionality demands in a software system.

– Q.2.1. Are there any differences in the effort used by the subjects
between the two approaches?

– Q.2.2. Which of the approaches do the subjects find it easier to un-
derstand and modify?

Goal G.1 G.2
Question / Metrics Q.1.1 Q.1.2 Q.2.1 Q.2.2
Numbers of code er-
rors in a code in-
spection check-list

X

Number of failures
during execution of
test sets

X

Time measure of
modification

X

Survey answers X

Table 4.1: Goal, Question and Metrics (GQM)

4.2 Hypothesis

This section will define the hypothesis of the experiment. As the subjects are
divided into two groups, where the first group add safety-critical modules to a
system, then solves functionality problems, and the second group solve the func-
tionality problems first, then adds safety-critical modules, one would expect that
the first group would have a more robust system from the beginning, thus score
better on correctness when solving the functionality problems. This reasoning is
represented by the H1 hypothesis.

The H2 hypothesis suggests that there should be less effort of changing func-
tionality to a software system, when safety-critical modules are implemented, be-
cause of a more robust software system. In addition, the H3 hypothesis suggests
that the effort of adding safety-critical modules to a software system that has
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already been added functionality solutions should be greater then in a situation
where no functionality has been added.

The difficulty of changing safety-critical aspects to a software system should
rise as more functionality is added to the system. The H4 hypothesis will represent
this situation.

The null-hypothesis is thereby defined as follows:

H01 The Effect of Design Approach on Correctness: The number of
correct solutions from a code inspection checklist of the two design approaches
are equal.

H02 The Effect of Design Approach on Change Effort of Function-
ality: The effort of making changes to functionality in the software system are
equal for both approaches.

H03 The Effect of Design Approach on Change Effort of Safety-
Critical Design: The effort of making changes to safety-critical design in the
software system are equal for both approaches.

H04 The Effect of Design Approach on Degree of Difficulty: The
subjects find the difficulty level of the tasks given equal for both approaches.

4.3 Experiment Tasks

The experiment consist of five programming tasks; a pre-task, two tasks where
functionality problems are to be solved, and two tasks where safety-critical mod-
ules are implemented to the software system. The software system is The WSU
Khepera Simulator Suite (WSU KSuite) 1, created by the Wright State Univer-
sity. The WSU KSuite is a collection of Java programs that let users create and
simulate controllers for the Khepera 2 robot.

The full listing of the task tekst are shown in Appendix B.

4.3.1 Pre-test / Trainig Task

In the pre-test task, the subjects were asked to implement a robot that follows a
wall, as shown in Figure 4.1. The purpose of this task was to provide a common
baseline for comparing the subjects programming skills, and to let the subjects
get an introduction exercise for learning how the robot emulator works. The

1Khepera Simulator Home Page - http://carl.cs.wright.edu/reg//ksim/ksim/ksim.html
2Khepera Team Home Page - http://www.k-team.com/kteam/
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subjects had to learn how to navigate with the use of distance sensors in order
to solve the task.

Figure 4.1: Pre-test: Wall Follower

4.3.2 Functional Solving Task 1 (FST1)

This is the first of the tasks where system functionality is implemented to the
system. The subjects were asked to create a robot controller that walk around
randomly and avoid any of the lights that was placed around the emulation map,
as shown in Figure 4.2. The subjects had to learn to navigate with the use of
light sensors in order to solve the task.

4.3.3 Functional Solving Task 2 (FST2)

The second task of solving functionality problems was to implement a robot
controller that find its way through three light gates, pick up a ball, and returns
to its home base. The task is illustrated on Figure 4.3. The subjects had to
use the sensors for light detection from the previous task and the ball-picking
function from the introduction exercise in order to complete this task.
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Figure 4.2: Functionality Solving Task 1 (FST1)

4.3.4 Safety-critical Task 1 (SCT1)

The SCT1 are the first of the two tasks for adding safety-critical modules to
the software system. The subjects were given information and UML design of
a Protected Single Channel design pattern to better validate the input from
the robot sensors. The task was to implement this design pattern to the robot
controller.

Figure 4.4 shows the UML design of the Protected Single Channel pattern.
The Protected Single Channel Pattern is described further in Section 3.2.1.

4.3.5 Safety-critical Task 2 (SCT2)

In the last of the safety-critical task, the subjects were asked to implement a
Watchdog pattern. The pattern are described in Section 3.2.2, and is added to
the robot controller to detect that the processes are running, and the robot isn’t
stuck in a wall or any other obstacles. As Figure 4.5 shows, the subjects had
to implement the Watchdog pattern with the Data Transformation process from
the Channel class in the last safety-critical task.

When the Watchdog pattern has been fully implemented, the robot should
detect when it’s stuck, and run a routine that tries to free the robot from the
obstacle.

In both the safety-critical tasks, the subjects were asked to test the imple-
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Figure 4.3: Functionality Solving Task 2 (FST2)

Figure 4.4: Safety-critical Task 1 (SCT1)

mentations in the robot controller that they used to solve the previous task.

4.4 Experiment Conditions

The experiment was conducted at the Norwegian University of Science and Tech-
nology (NTNU) in Trondheim, Norway. Because of the limits to economy and
time in the experiment, the final number of subjects that participated in the
experiment was twenty-three. The subjects were third year computer-science
students that were saving money to a educational trip, and got paid 500 NOK
each for participating in the experiment.

To make the experiment as realistic as possible, it was conducted at the
students normal computer labs, where they used their usual Java development
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Figure 4.5: Safety-critical Task 2 (SCT2)

environment.
The subjects were divided randomly into two groups were the first group, the

Type 1 group, had to implement the functional solving tasks first, then latter the
safety-critical, and the second group, the Type 2 group, got the tasks the other
way around.

To make the experiment run as easy as possible for the subjects, a web tool
was created that could present information and tasks to the subjects. They could
also use the web tool to upload their task solutions and survey answers.

Screenshots of the Experiment Web Tool are found in Appendix G, and the
tool are presented in more details in the next chapter.
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Experiment Web Tool

A web tool was created to get an easy end effective experiment execution. This
chapter will describe how the web-tool works and how it was built.

5.1 Web Tool Overview

The experiment was executed at a computer lab, with the subjects doing program-
ming tasks and answering surveys. To make this process effective, a web-based
tool seemed to be the best way of presenting information and helping the subjects
upload their programs and survey answers to a common experiment database or
fileserver.

Figure 5.1 shows how the communication between the subjects computers,
the common database and file server, and the experiment researcher takes place.
As shown in the figure, the subjects used computers at a computer lab with the
use of a web browser as an interface to the experiment setup. Survey answers,
login information and task answers were stored in the server MySQL1 database.
The source code from the programming tasks was uploaded to the file server,
and could be accessed trough a File Transfer Protocol (FTP) connection by the
researcher. The database could easily be exported to a spreadsheet that could
be analysed with statistical tools.

5.2 Database Design

The experiment database was created to store necessary information about the
subjects, their solutions to the programming tasks, and answers to surveys.

Figure 5.2 show the Entity Relationship (ER) diagram of the database. As
one can see from the figure, the information about the subjects are username,
password and an identification number. The passwords are stored encrypted

1An open source database system - official homepage: http://www.mysql.com
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Figure 5.1: Web Tool Communication

with the use of MD5 algorithm. The answers from the pre-survey are stored in
the Survey entity, where the subjects identification number connects the survey
answer to the subject. The experiment entity have three attributes, a type field
to store whether the experiment is done with a Type 1 or Type 2 group, an
identification field, and a field that connects an experiment to a subject. The
Task entity represent the answers of the post-task test, where the information
stored are filename to the source code, start and stop time of task, and the other
questionnaire answers. The experiment identification field connects the task to a
specified experiment.

The database was built and implemented at the web server by the database
administration tool called phpMyAdmin 2. A complete copy of the database can
be found in the digital appendix.

5.3 Web Interface

This section describes the web interface to the experiment tool. The web tool
was written in the PHP3 scripting language, which easily integrates database
technology and html to make dynamical web pages.

2phpMyAdmin Home Page - http://www.phpmyadmin.net
3PHP: Hypertext Preprocessor - http://www.php.net
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Figure 5.2: Experiment database ER diagram

5.3.1 Login

To identify each subject and to know the relation between the subject, tasks
and survey answers, each subject got a username and password. They could use
this username and password to log on to the experiment tool. A PHP session
that stores their identification number during the experiment process get created
automatically on login.

Figure 5.3 show the login screen. For test purposes, the login username “test1”
with the password “test1” can be used to log in as a Type 1 experiment, while
the username “test2” with the password “test2” can be used to log in as a Type
2 experiment.
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Figure 5.3: Login web page
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Figure 5.4: Survey web page

5.3.2 Surveys

When the subjects are identified, a survey can be made and the results are stored
in the experiment database. The advantage of a web tool compared to pen and
paper is that first of all, the results stored in the database can be exported to
a spread sheet and analysed directly without any manual operations. Secondly,
the web tool can check the integrity of the data, preventing any subjects from
mistyping, as an example typing “6” to an answer where the range is “1” to “5”.

Figure 5.4 shows how the subject experience survey is presented in the web
tool.

5.3.3 Tasks

Each subject belongs to either a Type 1 experiment or a Type 2 experiment.
The web tool must query the database for the subjects experiment type before
the correct task is presented. If the subject is in the Type 1 group, the first two
functionality solving problems are presented before the safety-critical tasks, and
visa versa for the Type 2 group.
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Figure 5.5 shows how the pre-task is presented in the web tool. As the figure
shows, there is actually more to the presentation of the task than just information.
There is also a start and stop timer, and a task upload functionality implemented
in the page. The start timer stores the time when the subject are ready to start
solving the task in the experiment database. The stop timer saves the time when
the subject has completed the task. This makes it possible to know how much
effort, measured in working minutes, each subject has used to solve the tasks.
When the subject has correctly has stopped the task timer, the stored value is
shown in green.

The upload function makes it possible for the subjects to select a file that can
be uploaded to the experiment file server. When they have completed the task,
they can upload their task solution. The green typing shows the stored filename
of the task, as shown on the figure.

After the subject has completed the task, they are presented a post-task
survey. This survey is shown in Figure 5.6. The survey answers are stored in the
experiment database in the task entity.
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Figure 5.5: Task web page
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Figure 5.6: Post-task survey web page



Chapter 6

Results

This chapter examines the results from the experiment. The first section gives
some descriptive data of the subjects who participated in the experiment. This
data are taken from survey answers. The following section formally tests the
hypothesis outlined in Section 4.2, using the statistical model from Section 2.2.
The final section sums up the results from the descriptive data and hypothesis
tests, and interprets the results in the experiment context.

6.1 Descriptive data

The descriptive data give us some basic information about the subjects; their
background in software engineering such as programming and design skills, uni-
versity credits and working experience.

The subjects answered a survey at the first step of the experiment, as outlined
in Section 4.1. Figure 6.1 show the results from this survey. The figure divides
the subjects in two groups, the Type 1 group were the subjects that got the
functionally tasks presented first, and the safety-critical tasks subsequently, and
the Type 2 group that got the tasks in the reversed order. By showing some
descriptive data about the two groups, we can see if there are some differences in
skill level and experience between them.

We can see from the figure that there is not much difference in skill and expe-
rience between the two groups. This is as expected since both groups consist of
third year computer-science students. The graph is explained as follows: The CS
Cred column is the number of student points that the subject have in computer
science courses, and the Total Cred column is the total number of students points
that the subject has completed (30 points per term in the Norwegian university
system). Work Exp is the number of years that the subjects have worked in
a computer science or engineering related job. The table result shows that the
students have little work experience (two subjects had one year each of work
experience), as one can expect by the student population. Figure 6.2 shows some
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Figure 6.1: Descriptive data of working experience and university credits

descriptive data about the subjects programming and software architecture skills.
The columns Gen Skill and Java Skill corresponds to what the subjects consid-
ered to be their own skill in the Java programming language, and more general
programming skill. The students could also list up a few other programming
languages, but these results where considered insignificant and the General skill
column should be representative for these programming languages. As the sub-
jects where supposed to rate their skill from one (Novice) to five (Expert), the
table shows that both the groups have what would be considered as an average
good programming experience (Mean value 3.27 in the Java programming lan-
guage and 2.91 in general programming skill for the Type 1 group, and mean
values 3.0 in Java and general programming skills for the Type 2 group).

As the tasks also involved adding safety-critical design pattern implementa-
tions, the subjects where asked to rate their skill in UML modelling language
skill and their general knowledge of using architectural design patterns in soft-
ware engineering. The result figure show that the subjects skill in these fields are
less than the average skill in programming (Mean values 2.45 in UML skill and
2.45 in design pattern knowledge for the Type 1 group, and mean values 2.58 in
UML skill and 2.16 in design pattern knowledge for the Type 2 group).

One noticeable result is that the number of software projects that the subjects
have attended varies. One subject with experience from ten software projects
draws the mean value of the Type 1 group up a bit.

There is no significant differences between the groups level of experience and
programming skills. This are supported by t-tests, and can be found in Appendix
D.
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Figure 6.2: Descriptive data about programming and software architecture skills

6.2 Task Results

The experiment consisted of five programming tasks as described in Section 5.3.3.
This section will give some statistical information about the results of the task
in form of change effort, correctness and the subjects opinions on the post-task
surveys.

6.2.1 Pre-task / training task

The pre-task had two purposes; to determine the subjects skill level in program-
ming, and to be a training exercise for the robot emulator and the software
development environment.

Figure 6.3 show the comparison between the Type 1 group and the Type 2
group on the time spent solving the task (column Time, measured in minutes),
the effort to understand the task (column Ef und, measured in percentages), the
effort to code the task solution (column Ef code, measured in percentages), the
effort to test the solution (column Ef test, measured in percentages), the subjects
rating of how confident they are that their solution do not containing any serious
faults (column Fault, measured from 1 - Very unsure to 5 - Very confident), and
the last column showing how difficult the subjects found it to solve the task
(measured from 1 - Very easy to 5 - Very difficult).

As one can see by the figure, the Type 2 group has a slightly less mean time to
solve the task. They also have the fastest solution time, 15 minutes, in contrast to
a subject in the Type 1 group that used the maximum time of 124 minutes. This
shows that there is some differences in the skill level between the students. Both
of the groups rated the difficulty of solving the task at a medium level (mean
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Figure 6.3: Pre-task descriptive data

values 3.0 and 3.1).
Figure 6.4 shows the correctness of the solutions. The first columns represent

the correctness in form of whether the correct functionality was implemented or
not. When the solutions were evaluated, a one-value would represent a correct
working solution, and a zero-value represents an incorrect or incomplete solution.
Two subjects did not upload their solution to the experiment file server, and
thereby got a zero score on the functionality test and did not get counted in the
Overall correctness evaluation. This is further discussed in Section 7.2.2.

The Overall correctness column on the table shows how the subjects score on
a Java code-inspection check list found in Appendix A. The t-test results, found
in Appendix D, support that there is no significant differences in the time spent
of solving the task, and the correctness of the source code.

Comments given by the subjects imply that they found it most difficult to
understand how the robot emulator worked, with the use of sensors, controllers
and debugging. Example of comments are (translated from Norwegian): “It took
a long time to understand how to solve the task, and I had a hard time setting
up the environment with the compiling/moving of files”, “It was difficult to find
good (sensor) measurements”, “It was unclear to me where to make the changes,
but all in all, it went pretty ok”, and “..it was difficult to understand how the
sensor values vary to find the right solution.”

6.2.2 Functionality Solving Task 1

In this task, as described in Section 4.3.2, the subjects had to implement a robot
controller that avoids lights. The Type 1 group where given this task straight
after the pre-task, while the Type 2 group got this task after they had been given
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Figure 6.4: Pre-task correctness

two tasks of implementing safety-critical software patterns to the robot controller.
Figure 6.5 shows some statistical information of how much time the subjects

spent on solving the task; how they used their effort on in solving it, how confident
they are that their solution does not contain any serious faults, and how difficult
they thought it was to solve the task. Column explanations are the same as for
Figure 6.3 in the previous subchapter.

The figure shows that the Type 2 group uses slightly less time on solving the
task (Mean value 65.8 minutes for Type 1, versus 38.4 minutes for Type 2). The
Type 2 group also used slightly more effort to understand the task than the Type
1 group, hence less effort of coding and testing.

Figure 6.6 shows how many subjects that had a correct implementation of
the functionality given in the task, found from the code inspection check-list. In
the Type 1 group, one person did not upload the source code to the experiment
file server, and for the Type 2 group this number raised to five. The reason for
this is most likely that the Type 2 group did this task as task number four in the
experiment, and some subjects did not get time enough to completely finish this
task. However, nine of the twelve subjects from the Type 2 group answered the
post-task survey, meaning that three of these subjects had this task completely
blank.

The results from the correctness show that there is some difference between
the two groups. The Type 1 group has slightly less correct implementations of
functionality (70% for the Type 1 group versus 86% for the Type 2 group), but
the standard deviation on 15% is too high to draw quick conclusions.

The t-test listed in Appendix D support the statement that there is no sig-
nificant difference between the two groups in the correctness of the source code,
but the test show a significant difference in the time used to solve the task. This
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Figure 6.5: FST1 descriptive data

is further discussed in Section 6.3.2.
Comments given by the subjects imply that this task was difficult for them

mostly because the emulation of the light sensors is variable and unreliable. There
were also some difficulties in the logic programming of a robot walking randomly
around the room. Examples of comments are (translated from Norwegian): “I
think this was a difficult task. I could not solve it completely. I am still unsure
of how the sensors work”, “It was difficult to adjust to the light”, “The light
(sensors) does not work very well. The standard value is set to 500, but there is
not much difference between far and close to light..”, and “Random walking is
more difficult than it might appear.”

6.2.3 Functionality Solving Task 2

This was the second of the two tasks for solving functionality related problems.
The task is described in Section 4.3.3, and involves creating a robot controller
that finds its way trough three light gates, pick up a ball, and return to its original
base.

Figure 6.7 shows how the subjects performed on this task. The first thing to
notice is that the average time spent on solving this task is quite similar between
the two groups (Mean value 60.3 minutes for the Type 1 group, and 62.4 minutes
for the Type 2 group). The shortest time spent on solving the task was done by
a subject from the Type 2 group that used 19 minutes.

Another thing to notice is that the subject thought this task was more difficult
than the previous functionality solving task (Mean values 2.1 and 2.0 on this task
versus 2.9 and 2.6 on the FST1 task). They are also less confident that their
solution is correct (Mean values 1.8 and 1.2 on this task versus 2.3 and 2.1 on
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Figure 6.6: FST1 correctness

Figure 6.7: FST2 descriptive data
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Figure 6.8: FST2 correctness

the FST1 task).
Since this task was the last task to solve for the Type 2 group, only five of

the twelve subjects in this group did completely solve this task. The rest of the
subjects did not have time to finish the task due to the experiment time limitation
of six hours. As Figure 6.8 indicates, none of the subject from neither the Type 1
group nor from the Type 2 group did actually fully implement the functionality
problems that was listed in the task.

Figure 6.8 also shows that for those subjects that actually did deliver a solu-
tion to the task, the Overall correctness is still high, meaning that the subjects
did not do much classical programming errors found in the code inspection check-
list, the problem was rather how to logically solve the task with the use of robot
sensors.

Comments given by the subjects support this argument, with examples like
(translated from Norwegian): “I had problems with the lights in the simulation.
It did not show much difference in light values even though the robot was right
next to a light source..”, “.. I tried to navigate relative by the light sources, but
I could not get it to work. (..) My next try was to navigate with the use of the
walls and turn when it hit the light source, but I could not get it to follow the
wall properly either, and I gave up.”, and “.. I did not know how to approach
the task.”

6.2.4 Safety-critical Task 1

As the first of the safety-critical tasks, this assignment was to implement a Single
Channel control pattern as described in Section 4.3.4.

Figure 6.9 shows some descriptive statistics about the task. The Type 1
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Figure 6.9: SCT1 descriptive data

group solved this task as task number four, thus some of the students from this
group did not upload their solution to the experiment file server because they did
not have time enough to finish the task. Two students that participated in the
post-task survey have not filled in how much time they had spent on solving the
task.

The time used of solving the task is quite equal for the two groups (Mean
value 42.5 minutes for the Type 1 group, and 40.9 minutes for the Type 2 group).
The same situation applies to the effort for understanding, coding and testing
the task. One thing to notice about this task is that, compared to the task from
the previous subsection, the subjects do now think that this task is a bit less
difficult than the last one, raising the mean rating of difficulty from 2.0 and 2.1
in the FST1 task to 3.0 and 2.83 in this task (remembering the range of 1-Very
difficult to 5-Very easy). The t-tests found in Appendix D support the statement
that there is no significant differences between the two groups.

Figure 6.10 show how the subject performed in regards of correctness. Of
the seven subjects that completed the task in the Type 1 group, only four of
these had a correct implemented solution, as shown by the figure. The Overall
correctness is still quite high, meaning that there were not much classical coding
errors. The comments from the subjects are implying that they used a great deal
of time to understand the task, but when they figured out how to solve it, it
appeared as quite simple task to solve. Some problems during the testing of the
code made the subject use a bit more time here, because the robot emulator does
not use a safe implementation of Java threads, and the simulator had a tendency
to crash after some minutes of testing.

Examples of comments written by the subjects are (translated from Norwe-
gian): “I used some time to understand the task. A lot of time also went to
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Figure 6.10: SCT1 correctness

testing the code because I had forgotten to update the distance vector.”, “It
wasn’t so difficult when I took a look of how the light values were implemented”,
“I used a lot of time to understand the task..”, “It was difficult to understand the
task. I did not know how to solve it.”, “I got a null pointer during the execution,
and I don’t know why.”, and “My solution does not contain any thread safety,
that’s why the simulator crashes after a while”.

6.2.5 Safety-critical Task 2

The second safety-critical task was to implement a Watchdog pattern as described
in Section 4.3.5. Figure 6.11 shows some descriptive statistical data for the task.
The first thing to notice is that for the Type 1 group, whitch did this task as the
last task in the experiment, only five of eleven subjects answered the sub-task
survey. Four subjects of this group registered the time used on solving the task
while only two of these uploaded their solution to the experiment file server. On
the other hand, the Type 2 group did this task as task number three, and only
one subject did not answer the post-task survey. Two subjects did not register
the time spent on solving the task, and these two did not upload their solution
as well. The result implies that there were not much time left of the experiment
when the Type 1 group came to this step in the experiment.

The figure also shows that the results of this task are varied: One subject used
15 minutes of solving this task, while the maximum time spent was 98 minutes.
One subject stated that they used 100% of the effort to understand the task,
while another clamed that he used 10% of the effort to understand the task, 50%
of solving and 40% of testing. The difficulty and assurance of correct solution is
also varied, given the fact that the minimum score on these questions was rated
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Figure 6.11: SCT2 descriptive data

one, and the maximum rate given by a subject was five (knowing that the range
of this question was 1 - very unsure / very difficult to 5 - very confident / very
easy).

As a result of the thin data, this task is pretty much useless as a comparison
between the two groups. As Figure 6.12 shows, only one of the two subjects
from the Type 1 group that uploaded their solution did actually have a correct
implementation of the task.

Comments given by the subject support the fact that there was little time left
to complete this task for the Type 1 group. The Type 2 group found this task
not so difficult, and pretty fun task to do. Examples of comments are (translated
from Norwegian): “It was pretty ok, I only messed up some, making it take a bit
longer to solve”, “I used a bit time to tune the coding from the previous tasks”,
“I’m not 100% sure that the method for getting the robot free from obstacles
really work, but it knows at least when its stuck”, “I am unsure of how to solve
this task. I was stuck at the end (of the experiment), and delivered what I had”,
“This was too difficult, I haven’t enough programming experience to solve this”,
“Not enough time”, and “This task was fun”.

6.3 Hypothesis Tests

In this section the hypothesis from Section 4.2 will be tested and evaluated. As
the results suggest that the subjects did not have enough time to solve all the
five task during the experiment time limit of six hours, the last tasks of the Type
1 group (SCT2) and the last task of the Type 2 group (FST2) are disregarded in
the hypothesis tests, because of the thin data.
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Figure 6.12: SCT2 correctness

6.3.1 H01: The Effect of Design Approach on Correctness

As the tasks were evaluated, the solutions that was correctly compiled and tested
got a one-rating on the correct functionality column, while the solutions that
had not fully or incorrect implementations got a zero-rating at this test. The null
hypothesis suggests that the mean difference between the subjects that solved the
functionality related problems first and the group that solved the safety-critical
problem first should be equal.

The t-test result from the first functionality solving task (FST1) is shown in
Table 6.1. As one can see by the table, the t-Stat absolute value of 0.75 is less
than the t Critical one-tail value of 1.75, meaning that the null hypothesis cannot
be rejected in this case. In addition, the P(T≤t) one-tail value of 0.23 suggests
that if we do reject the null hypothesis, it is a 23% possibility that we do a wrong
decision, so that is obviously too risky, and would make a high posibilty of getting
a Type-I-error.

When looking at the first of the safety-critical tasks (SCT1), we can see that
the same situation applies in this case. The t-test for this task listed in Table 6.2.
With a t-Stat value of 1.05 that is less than the t Critical one-tail value of 1.81,
the null hypothesis cannot be rejected for this task either. The P(T≤t) one-tail
of 0.16 shows that there is a 16% chance of being wrong if we do reject the null
hypothesis.

This means that we cannot reject the null hypothesis and say that the design
approach effected the correctness.
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Table 6.1: t-test of FST1 on correctness

Table 6.2: t-test of SCT1 on correctness
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Table 6.3: t-test on effort of solving FST1

6.3.2 H02: The Effect of Design Approach on Change
Effort of Functionality

The change effort was measured as time needed to complete the task. When
the subjects started on a task, they were asked to start a task timer. When
they had completed the task, and uploaded their solution to the experiment file
server, they could stop the timer. The subjects also answered a post-task survey
where they weighted their efforts to solve the task in three categories: Effort to
understand the task, effort to code the solution, and effort to test the solution.

The t-test results from the mean time effort, listed in Table 6.3, shows that
there is a significant difference in the change effort between the two groups. The
t Critical one-tail value of 1.76 is smaller than the t-Stat value of 2.39, meaning
that we can reject the null hypothesis. The P(T≤t) one-tail show that we can be
98% confident of this decision.

The Type 2 group uses significantly less time effort of making changes to the
first functionality task, than the Type 2 group.

6.3.3 H03: The Effect of Design Approach on Change
Effort of Safety-Critical Design

This hypothesis suggests that the effort of adding safety-critical modifications to
a system should be higher the more complexity and functionality that has been
added.

The results from the SCT1 are analyzed with a t-test, and are listed in Table
6.4. The table shows that the t Critical one-tail value of 1.80 is too high compared
to the t-Stat value, meaning that we cannot reject the null hypothesis. If we do
reject the null hypothesis, the P(T≤t) one-tail value is showing us that there are
43% chance that this would be a wrong decision and make a Type-I-error.

This means that there are not found any evidence that there is differences of
change effort when solving a safety-critical task, whether additional functionality
has been implemented or not.
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Table 6.4: t-test on effort of solving SCT1

Table 6.5: t-test on difficulty of solving FST1

6.3.4 H04: The Effect of Design Approach on Degree of
Difficulty

The degree of difficulty was measured from the post-task survey answers. The
hypothesis suggests that there should be, as for the change effort and correctness,
more difficult to add safety-critical modules when a software systems complexity
has risen with the added functionality. There should also be more difficult to
solve functionality problems when the complexity of safety-critical additions has
been added.

Table 6.5 shows the t-test on the mean difference between the answers of
difficulty on the first of the functionality solving tasks. The t Critical one-tail
value of 1.73 is too high compared to the t-Stat value of 0.67, so we cannot reject
the null hypothesis in this case either.

The same situation applies for the t-test of the first of the safety-critical
change tasks, as presented in Table 6.6. The t Critical value of 1.77 is greater
than the t-Stat value of 0.30, and rejecting the null hypothesis is not possible.

The results from these t-tests show that there are not enough differences be-
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Table 6.6: t-test on difficulty of solving SCT1

tween the two groups, and we cannot reject the null hypothesis. This means that
the subjects did not feel that making functionality additions to a software system
is more difficult after the two safety-critical additions were made.

Additionally, the subjects that implemented two functionality tasks first did
not find it more difficult to add the safety-critical task than group that had not
made the changes.

6.4 Summary of Results

This section sum up the results presented in the above sections.
The descriptive data about the subject population showed that they, in their

own opinion, had a medium programming experience with a mean score of three
from a rating of one to five. Only two of the twenty-three subjects had one
year or more of working experience. This is as expected since the subjects were
third-year students.

The experiment consisted of five tasks, where one task was a pre-test task
and training task to the experiment environment, two tasks was related to func-
tionality solving, and two tasks was to improve the system with safety-critical
additions. The subjects had six hours of solving the five tasks, and this was a
little too tight time limit for some of the students. The subjects were split in
two groups, and the first group (Type 1) solved the functional related tasks first,
then the safety-critical task, and the other group (Type 2) solved the tasks in the
reverse order. In the Type 1 group, only two of the eleven subjects did actually
deliver a solution to the last task. For the Type 2 group, only five of twelve
subjects completed the last task.

In the functional solving tasks there were not much programming errors found
by using the code inspection check-list. The errors found were logic related, like
reading the correct robot sensors, and understanding of the robot controller tasks.
There were also some bugs in the robot emulator, like unstable light values and



6.4 Summary of Results 47

missing thread safety, which created some extra difficulties for the subjects.
There were four hypothesis presented in Section 4.2. The first hypothesis

suggested that the subjects that implemented the functionality solving tasks first
should have less correctness in the safety-critical implementations, due to higher
system complexity. The subjects that implemented the safety-critical additions
first and then solved functionality problems should have better performance when
solving functional problems due to better system robustness. The results showed
that the data did not support this hypothesis, and we cannot say that there were
any differences in the correctness of these tasks.

The second hypothesis suggested that the effort of changing functionality in
a system should be lower with robust safety-critical implementations. The result
data of the first functionality solving task (FST1) support this hypothesis by
stating that there are 98% certainty that the Type 2 group used less time of
solving this task than the Type 1 group.

The third hypothesis suggests that the effort of adding safety-critical imple-
mentations should rise when a systems complexity has risen with functionality
additions. The results from the first of the safety-critical tasks (SCT1) show that
there is not any significant differences in the mean effort between the two groups,
meaning that the hypothesis is not supported by the results.

The final hypothesis claims that the difficulty of making safety-critical addi-
tions to a system rise with added functionality. Also, with safety-critical addi-
tions, the difficulty of changing functionality related problems should rise. The
results from the tasks post-test answers show no significant differences between
how difficult the subjects find the tasks, meaning that the data does not support
this hypothesis either.
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Threats to Validity

When conducting experiments, it is important to identify any threats to the
validity of the experiment before making any conclusions. This chapter will
discuss the possible threats to the construct, internal, external and conclusion
validity of the experiment.

7.1 Construct Validity

The construct validity is, as mentioned in Section 2.1.4, the validity concerned
with the relationship between the treatment and the outcome.

7.1.1 Classification of the Tasks

The first threat to the construction validity is whether the treatment and the
variables in the experiment design actually was representative for the concept
studied or not. Are the functional solving tasks really only focused on solving
functionality and nothing else? Are the safety-critical tasks only concerned with
adding additional safety and not adding functionality as well?

To have some sort of realistic environment, a robot emulator was chosen to
represent the task framework of the experiment. The first functionality solving
task was to avoid light. To solve this task, the use of the robot sensors had to be
used to navigate. The second functionality task was to make the robot navigate
trough three gates, pick up a ball, and return home. Both of these tasks assume
that the values from the robot sensors are correct, and the challenge in solving
these tasks lay on the subjects logical understanding of the robot controller and
its sensors.

In the safety-critical tasks, there were no indications of what functional prob-
lems the robot had to solve, only additions that made validation checks of the
sensor readings or other safety-critical additions. The first safety-critical task was
to implement a Single Channel Pattern, and the second task was to implement
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a Watchdog Pattern, as described in Section 3.2.1 and Section 3.2.2 respectively.
The subjects were asked to test their solutions with robot controllers from previ-
ous tasks, making no implications that additional functionality should be added
to the system. These patterns were taken from [Dou03], and are considered to
be good representations of light-weight safety-critical additions.

7.1.2 Classification of Treatment Groups

To make sure that the effect of the treatment did not get affected by external
sources, the group of subjects was divided into two equally large groups. The
results from the survey answers in Section 6.1, and the pre-test results from
Section 6.2.1, show that there is no significant difference between the skill level
or experience of the two groups, and we will assume that this applies for the
whole experiment.

7.1.3 Measures of Variables

Several variables were measured in the experiment. The measure of correctness
was how well the task solutions scored on a functional test, and results from a
check-list. If the task was correctly solved the subjects got a one, otherwise they
got a zero value on the test result. The check-list is shown in Appendix A, and is
concerned with traditional code inspection checks such as all loops can be ended,
the appropriate functions are called, return values are correct, and so forth.

The effort of solving the tasks was measured as time. The subjects were
asked to start a timer when they started solving a task, and stop the timer when
the task was completed. Because the experiment lasted over several hours, the
subjects were asked to take breaks when needed, but were told to take the breaks
between two tasks if possible. A lunch was also served during the experiment.
Some subject comment that they used some extra minutes on a task because of
the lunch break, and if an exact number of minutes were provided, these were
subtracted from the stored time value.

These variables can be considered to be a good representation of typical qual-
ity attributes in a software design, and should not represent any threat to the
construct validity.

7.2 Internal Validity

The internal validity of the experiment is, as mentioned in Section 2.1.4, con-
cerned with whether the conclusions are drawn on the basis of a casual rela-
tionship and not the result of a factor that we have no control over or have not
measured.



50 Threats to Validity

7.2.1 Task Solving

The experiment was conducted in a computer lab. The researcher and an assistant
were present at the experiment to make sure that everything went according to
the plan. The subjects had personnel present to ask if they did not understand
the given information, or had other practical questions, but no help was given to
solve the actual programming tasks.

The size of the computer lab made it impossible to watch every single subject
all the time, making it possible for subjects with bad motivation to have cheated
and copied other subjects answers.

The motivation factor is important for the integrity of the task solutions. If
the subjects are not motivated, they could either copy solutions from other, or
not make an effort at all for performing normal at the experiment.

The subjects were a group of students that got 500 NOK in remuneration for
each participant. They were saving money to an educational trip to Malaysia,
and need the extra income. This would probably be a good motivation for the
subjects, backing each other up to achieve collective goods.

Another motivation factor is the fact that some of the subjects fond the ex-
periments tasks to be challenging and fun to solve. This was stated verbally
by the subjects at the experiment day, and by comments in the task comment
field in the post-task questionnaire, listed in the digital appendix. Motivation
among subjects is, however, mixed and some students performed much better
than others.

The Learning Effect could also be considered as a risk to the internal validity
of the experiment, as there are five programming tasks, and the two groups of
students get presented the tasks in different order. As of this, it might be found
that when comparing two tasks, one of the groups has already solved two or more
programming tasks, making it a possibility that they have learned the emulator
and task style better, so they would probably solve this task faster than the other
group.

7.2.2 Tools

The tools used during the experiment may affect the internal validity. To make
the experiment environment as realistic as possible, the subjects were asked to
use their own personal development tool for solving the programming tasks. The
choice of tools and the experience level in using these tools were not tested in the
experiment, making it a possible threat to the internal validity.

Another tool used during the experiment was the robot emulator. The partic-
ipants got some instructions about the emulator and an example program at the
start of the experiment. A treat to the internal validly at this stage is whether
some of the subjects have been familiar with the emulator from other projects or
attended university courses. The emulator is known to be used in a fourth year
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software architecture course, but none of the subjects have reached this stage in
the studies yet. During the experiment day, none of the student said that they
were familiar with the emulator, so there is a little risk that this might have been
a great threat to the validity.

On the other hand, a greater threat to the internal validity is the fact that
several bugs were found in the emulator during the experiment. First off all,
the light sensors was very unstable, and on the FST2 task, none of the students
got the light detection to work well. Secondly, there was some problems with
the thread management of the emulator, making the robot simulation sometimes
randomly crash during testing. These bugs made some extra effort to the students
that likely have influenced the results, making it a possible threat to the internal
validity of the experiment. As an example, how much effort in time did the
subjects use extra because of the emulator bugs, are an unknown factor to the
experiment results.

Another tool used during the experiment was the Experiment Web Tool, de-
scribed in Chapter 5. The tool was meant to make experiment execution more
user-friendly to the subjects. There is a possibility that there could be mislead-
ing information or ambiguous design that would make the students give another
answer than the one in fact was intending at some survey or questionnaire. In
some of the tasks, there were a couple of students that did not successfully upload
their solutions to the experiment file server. This might be caused by misunder-
standings of the web tool, or just sloppiness of the subjects. One might consider
making the web tool more fail-safe by denying subjects to proceed to the next ex-
periment step before the finished task is successfully uploaded. The unsuccessfull
source code upload is a possible threat to the internal validity.

All inn all, there were listed several threats to the internal validity from the
tools used in the experiment, but the issues found are constant to all of the
experiment participants, meaning that the threat is not that significant after
all. We can assume that the same issues of experiment tools apply for all the
experiment participants.

7.3 External Validity

The external validity of an experiment is concerned with whether the results can
be generalized outside this study, such as other safety-critical environments, tools
and development situations.

7.3.1 Subject Sample

An important question regarding the generalization of the experiment is if the
subjects were representative for software engineering development teams in real-
life projects. As the subjects of the experiment were third year students, there
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was not that high experience level of the population as one might expect that
developers of real-life projects have. The results from the experience survey show
an average skill level of programming and a less than average skill in UML and
design patterns. Safety-critical systems are considered as one of the most difficult
areas of software engineering [BCK03], and a high experience level is crucial for
building systems that have high quality and safety.

Another threat to the external validity is the fact that the experiment per-
formed the programming tasks individually to avoid threats to the internal va-
lidity such as copying of other subjects source code. In a real-world development
situation, there would probably be a team of developers that work together to
solve the problems.

7.3.2 Experiment Tasks

A question to raise here is if the experiment tasks are representative for a safety-
critical environment. The experiment uses a robot emulator that emulates a
quadratic map setting with walls and objects. These objects are either lights
or balls, and can be identified by the robot by using light sensors and distance
sensors. The safety-critical tasks was to implement light-weight design patterns
that improves the reliability of the sensor readings trough the Protected Single
Channel pattern, and the availability of the robot by detecting that the robot is
stuck, by the Watchdog pattern.

As the real-world systems could often be much bigger in size and complexity,
one might argue that the two tasks of the experiment would not be representative
for these kinds of systems.

But than again, the emulator has some of the basic concepts of a real-time
system, like input sensors, wheels, moving robot arms, and controllers, making
the system a miniature of a complete real-time system.

The treats to the external validity can be considered to be appreciable enough
for us not to draw the conclutions to other contexts. For large software systems
there is a great posibility that the effect of the threatments can have a much
greater impact than found in this light-weight safety-critical system.

7.4 Conclusion Validity

The conclusion validity is concerned between the treatment and the outcome.
Are there really any statistical relationship?

As the experiment uses t-test to compare the means of two samples, the
statistical significance value can be read directly from the test results, as shown
in Section 6.3.

One of the problems of getting reliable statistical results in this experiment is
possibly because due to the small sample sizes. As the experiment subjects were
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selected by convenience sampling, only 23 subjects were able to participate. The
group of subjects was split in two, meaning only two groups of 11-12 subjects
could be assigned different treatments, which makes small sample sizes for use in
statistical analysis.

The t-tests results are sufficiently enough to make the conclusions needed to
answer the research questions and hypothesis of the experiment.



Chapter 8

Discussion

This chapter will discuss the projects research questions, the experiment design
and the results of the experiment.

8.1 Comments to the Research Questions

The introduction chapter introduced a set of research questions that this project
would try to answer. The first research question (R1) was: “How are quality
attributes affected when functionality problems are added to a safety-critical
design?”

The term quality attributes represents a number of attributes that affect a
system. Examples of quality attributes are, as mentioned in Section 3.1, perfor-
mance, predictability, scheduleability, reliability, safety, reusability, maintainabil-
ity, and so forth.

As the quality attributes would be tested using a controlled experiment, men-
tioned in the third research question (R3), only a selection of the attributes was
chosen for the experiment, such as development effort and reliability. The de-
velopment effort was chosen because it is crucial to know how much effort in
time (and money) it takes for developers to develop a software system. The de-
velopment effort was measured by finding out how long it took for a subject to
complete an experiment task, and also how difficult they though the task was.
The reliability was measured as correctness of the software implementation using
a source inspection check-list and testing.

The second research question, R2, was concerned with how the quality at-
tributes were affected when safety-critical design patterns was added to a system
were functionality already was added. The same quality attributes as the first
research question was tested.
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8.2 Comments to the Experiment Design

To give different treatments to the subjects, they were split into two equally large
groups. One group, the Type 1 group, got the functional tasks presented first,
and the safety-critical second. The second group, the Type 2 group, got the
experiment tasks presented in reverse order. Both groups were asked to answer
a survey about their experience level and programming skills, and both groups
did the same pre-task test. The survey answers and the pre-task test showed
that there was no significant difference between the two groups, as presented in
Section 6.2 and Section 6.2.1. This is a good basis for further tests, knowing the
subject experience and skill levels are alike.

Because of the small scope of the experiment, only two safety-critical and two
functionality solving tasks got tested. The design patterns were selected because
of the light weight implementations, and were convenient for a small system. A
real-world project would be much more complicated, making the change effort
and correctness much more complex than they was in the experiment tasks.

To make the experiment as close to a real-world project as possible, the sub-
jects were asked to use their usual development environment to solve the pro-
gramming tasks. The task was to solve typical safety-critical problems by using
a robot emulator that consists of a robot with input sensors, arms, wheels and
control mechanisms.

The subjects were selected by convenience sampling, meaning that the nearest
and most convenient persons are selected as subjects. The subjects were third
year computer science and communication technology. They had, as presented
in Section 6.2, generally good programming skills, but had not much experience
in UML and design patterns. The subjects experience level are good enough to
justify the internal validity of the experiment, but to generalize the findings to a
real-life context, one could argue that the experience level of many developers is
higher and the results might be different for that population.

8.3 Comments to the Experiment Results

The results of the experiment were presented using statistical models showing
mean values, standard deviations and variances. The results were tested using
a parametric test that compares two sample means, the t-test. This test is well
known and commonly used in empirical studies, and can be used even with small
sample sizes. The results are presented in Chapter 6.

There were some problems reported by the subjects, as mentioned in Section
6.2.4, with software bugs in the robot emulator. As is discussed in Section 7.2.2,
these problems might have affected the internal validity of the experiment, but
are the implications so strong that we cannot use the results? As an example
with the first functional solving task, the results presented in Section 6.2.2 shows
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that 7 of 12 subjects from the Type 2 group, and 10 of 11 subjects from the Type
1 group solved the tasks, and the correctness was 70% for the Type 1 group and
86% for the Type 2 group. These results are showing that despite the emulator
problems, most of the subjects delivered a correct solution to the task. Hence,
there is no clear evidence that the emulator bugs made the internal validity suffer
significantly. We can assume that the emulator difficulties were representative for
the whole population, which also support the last statement.



Chapter 9

Conclusion and Further Work

This chapter will try to answer the research questions presented in Section 1.2,
and make an overall conclusion. The last subsection will propose further research
that can be made to extend the research done by this research project.

9.1 Answers to the Research Questions

How does the experiment contribute to answering the research questions? This
section will try to justify the choices made, and will help us conclude the findings
of the research.

9.1.1 R1: How are quality attributes affected when func-
tionality problems are added to a safety-critical de-
sign?

There are several quality attributes, and only a selection of them was chosen to
be tested in the research. These were development effort and reliability. The
development effort was measured in minutes needed to complete an experiment
task, and the reliability was measured by the number of errors found in source
code from a code inspection check-list and functional tests.

The results from the experiment presented in Section 6.3, and the discussion
of these results in Section 8.3, shows that the quality attributes does not get
much affected when additional functionality are added to a system were we have
already added safety-critical design. The result shows that only in one case did
the group that had already implemented the safety-critical design patterns use
significantly less effort in time to solve the task (mean time difference of 27
minutes). This could, however, be a result of the learning effect, discussed in
Section 7.2.1.
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This means that all in all, there was not much significant differences in how
much time the subjects of the experiment used in implementing a functionality
task, whether they had already implemented safety-critical design or not. There
were not much difference in how difficult they found it to solve the tasks either,
nor did the experiment results discover any differences in correctness of the source
code implementations.

9.1.2 R2: How are quality attributes affected when
safety-critical design patterns get added to a sys-
tem that has already a set off added functionality?

The same quality attributes that were used in R1 were also tested when adding
safety-critical design patterns.

The results presented in Section 6.3, and the discussion in Section 8.3,
suggest that neither in this case was there any significant differences on the
tested quality attributes between the two design approaches.

This means that we did not find any evidence in this study that suggest that
there is more difficult, more time consuming or give better correctness when mak-
ing safety-critical additions to a system whether extra functionality are added or
not.

9.1.3 R3: How can we create a controlled experiment that
can test research questions R1 and R2?

The experiment design in Chapter 4 presents how an experiment could be set
up to answer the research questions.

Because of limitations to economy and time for the research project, only
light-weight safety-critical design patterns could be tested, and the experiment
participants was selected with the use of convenient sampling.

Several threats to the experiment validity are discussed in Chapter 7.

There were found several sources of threats, but none of them seems to affect
the experiment results so much that the results should be rejected.

What we found most difficult is to generalize the findings of the experiment
to other contexts. This is discussed in Section 8.2. How we can investigate these
questions further is presented in Section 9.3.
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9.2 Overall Conclusion

Based on the answers from the research questions, we can sum up the research
and make some overall conclusions.

The test results from Section 6.3 shows that there is no significant difference
in the selected quality attributes between the two groups solutions. Only in one
case did one of the groups use less effort in minutes to solve a task. Despite that
the subjects did not have high experience in safety-critical software systems,
and that there were some problems with bugs in the robot emulator software,
the results clearly imply that there is not much difference in the tested quality
attributes between the two different treatment groups.

As of this, one cannot say that making functionality additions is more or
less time consuming, difficult or has better or worse correctness if safety-critical
issues have already been implemented. Hence, one cannot say that making
safety-critical additions to a system is more or less time consuming, difficult
or have better or worse correctness whether a systems functionality has been
changed or not.

This regards real-time systems that are small and have a limited complexity.
One cannot draw the conclusions further to larger systems with extensive com-
plexity and system demands. Each software system lives its own life, and should
be treated different.

Software design patterns are templates to be used when making software
solutions to a system. There are design patterns for performance enchanting as
well as for making systems with better maintainability or safety. This experiment
shows that one cannot make, as an example, a general solution to a safety-
critical implementation of a performance design pattern. The design pattern
that enchants the quality attributes can be mixed, with better or worse results
regarding of what consequences that the design pattern introduce, as mentioned
in Section 3.1. This means that a design pattern that enchants, as an example,
performance might have a consequence that the systems reliability suffers. The
system developers must consider all positive and negative effects of a design
pattern before it should be implemented to a system. This is why one cannot
make a general solution to a safety-critical version of a design pattern that, as an
example, enhances performance.

9.3 Further Work

To generalize the findings of this experiment, we must do some further research.
First of all, the experiment could be tested with more experienced system de-
velopers. This would improve the external validity of the results. Secondly, the
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subject sample size could also be increased to help making the findings more
reliable concerning the conclusion validity.

Since the experiment tested only two safety-critical design patterns in a lim-
ited size real-time system, it is difficult to claim that the findings of the experi-
ment also counts for larger and more complex systems. An experiment that test
larger and more complex systems is a good way to supply the research. Such a
large scale experiment might be too time-consuming and expensive, hence less
expensive empirical studies, such as case studies or surveys, could be used for
testing systems with larger complexity.

If the experiment should be replicated, one might consider choosing another
environment than the Khepera robot simulator until the emulator bugs mentioned
in Section 7.2.2 are eliminated. One could replicate the experiment with other
safety-critical design patterns and functionality solving tasks to supply additional
data to the research.



Appendix A

Java Code Inspection for
Safety-Critical Software

1. Specification / Design

1. 1 Is the functionality described in the specification fully implemented by
the code?

1. 2 Is only specified functionality implemented with no additional func-
tionality added?

1. 3 Does the code conform to the class coding standard?

1. 4 Is the code free of ”smells?” (Duplicate code, long methods, big classes,
breaking encapsulation, etc.)

2. Initialization and Declarations

2. 1 Are variables and class members of the correct type and appropriate
mode?

2. 2 Are variables declared in the proper scope?

2. 3 Is a constructor called when a new object is desired?

2. 4 Are all object references initialized before use?

3. Method Calls

3. 1 Are parameters presented in the correct order?

3. 2 Is the correct method being called, or should it be a different method
with a similar name?

3. 3 Are method return values used properly?

4. Arrays

4. 1 Are there no off-by-one errors in array indexing?
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4. 2 Have all array (or other collection) indexes been prevented from going
out-of-bounds?

4. 3 Is a constructor called when a new array item is desired?

5. Object Comparison

5. 1 Are all objects (including Strings) compared with ”equals” and not
”==”?

6. Computation, Comparisons and Assignments

6. 1 Check order of computation/evaluation, operator precedence and
parenthesising

6. 2 Are all denominators of a division prevented from being zero?

6. 3 Is integer arithmetic, especially division, used appropriately to avoid
causing unexpected truncation/rounding?

6. 4 Are the comparison and boolean operators correct?

6. 5 If the test is an error-check, can the error condition actually be legiti-
mate in some cases?

6. 6 Is the code free of any implicit type conversions?

7. Exceptions

7. 1 Are all relevant exceptions caught?

7. 2 Is the appropriate action taken for each catch block?

8. Flow of Control

8. 1 In a switch statement, are all cases by break or return?

8. 2 Do all switch statements have a default branch?

8. 3 Are all loops correctly formed, with the appropriate initialization, in-
crement and termination expressions?
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Task Descriptions

B.1 Pre-test / trainig task

B.1.1 Implement a WallFollower

Use the controller from the BallPicker example, or create a new controller that:

1. Start in the middle of the map.

2. Walk forward until a wall is hit.

3. Follow the wall in a selected direction until controller is halted.
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B.2 Functionality Solving Tasks

B.2.1 FST 1 - Implement a Robot that Avoid Light

Load map “lights.map.” Use the contoller from the last task, and create a robot
controller that:

1. Walks randomly around the map.

2. Avoid the lights and wall.

3. Run until controller is halted.

B.2.2 FST 2 - Gates

Load map “gates.map.” Use the controller from the last task, and create a robot
controller that:

1. Start in home base.

2. Navigates trough the light gates to the ball room.

3. Picks up the ball.

4. Return to home base.



B.3 Safety-critical Tasks 65

B.3 Safety-critical Tasks

B.3.1 SCT1 - Implement a Protected Single Channel Pat-
tern

To better validate the input from the robot sensors, your task is to implement a
Protected Single Channel Pattern.

You have to use the Channel class from the file “Channel.java.” The Channel
class has these elements:

• Input Processing: Processes input from the RobotController class. The
input are light sensors, and the methods to get these from the RobotCon-
troller is “int getLightValue(int sensorID)” and “int getDistanceValue(int
sensorID).”

• Data Transformation: The input data are stored in a input buffer with the
last five input values.
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• Data Validation: The input data are validated against a set of limits to
ensure correctness. The value limit for getDistanceValue() is as an example
>= 0 and < 1024.

• Output Processing: Instead of using the RobotCon-
troller.getDistanceValue(int sensorID), it should be possible to use a
channel.getDistanceValue(int sensorID), where the output is the mean of
the five input values stored in the buffer (if they are validated to be ok).

• Actuator: The RobotController implementation that uses the sensor values.

The Robot Controller have to initialize a new Channel as a Thread so that it
can run seperatly (Inserted into the BallPicker example):

Your task is to :

1. Implement the getDistanceValue(int sensorID) in the Channel class so that
the mean value of five sensor inputs are returned.

2. Use the robot controller from the last task, and implement the Channel class
for input handling. Confirm that the robot behavior remains the same.

B.3.2 SCT2 - Implement a Watchdog Pattern

Abstract

A watchdog, used in common computing parlance, is a component that
watches out over processing of another component. Its job is to make sure that
nothing obviously is wrong.

The Actuator Channel operates pretty much independently of the watchdog,
sening a liveness message every so often to the watchdog. This is called stroking
the watchdog.

The watchdog uses the timeliness of the stoking to determine whether a fault
has occurred.

Implementation
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A watchdog pattern that uses System.currentTimeMills() as a timebase has
been implemented in the Java class Watchdog.java.

The watchdog get initialized to a defined timelimit (in milliseconds):
To check the state of the watchdog, the getState() method returns false if a

stroke is absent within the timelimit:

Your task is to:

1. Extend the Channel class to use the Watchdog class in addition to the
RobotController.

2. Add a method in the Channel class that also checks the RobotController
getRightWheelPosition() and getLeftWheelPosition(), so that a stroke is
sent to the watchdog every time the robot wheel positions are changing.

3. Add a test in the main controller class (from the solution of your last task)
that checks the watchdog state, and if the state is false (robot is stuck), an
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attempt to get the robot free from the obstacle should be done. Define a
appropriate timelimit (example 5 seconds = 5000 ms).



Appendix C

Descriptive Statistics of the
Subjects
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T-test Results

Figure D.1: T-test of credits in computer science

Figure D.2: T-test of design pattern knowledge
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Figure D.3: T-test of UML skills

Figure D.4: T-test of general programming skills

Figure D.5: T-test of Java programming skills
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Figure D.6: T-test of involved computer science projects

Figure D.7: T-test of effort of solving pre-test / training task

Figure D.8: T-test of difficulty of solving pre-test / training task
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Figure D.9: T-test of correctness pre-test / training task



Appendix E

Post-task Questionarre

1. Enter effort to solve the task ( A + B + C = 100% ):

• A. Effort to understand how to solve the task:

• B. Effort to code your solution:

• C. Effort to evaluate / test your solution:

2. How confident are you that your solution does not contain any serious
faults? (1: Very unsure - 5: Very confident)

3. How difficult do you think the task was? (1: Very difficult - 5: Very easy)

4. Other comments about the task or your solution: (Optional. English or
Norwegian language.)
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Subject Experience Survey

F.1 Education

1. Number of credits (norwegian: “studiepoeng”) in computer science cources:

2. Number of total university / university college credits:

F.2 Work Experience

1. Number of years of work experience in Software Engineering:

F.3 Programming Skill end Experience

1. Please rate your general programming skills (1: Novice - 5:Expert):

2. Give an estimate of how many projects you have been involved in as a
software developer:

3. Please rate your skill in the Java programming language (1:Novice - 5:Ex-
pert):

4. Please list up and rate your skill in other programming languages you have
knowledge of (Max 3) (1:Novice - 5:Expert):

F.4 Design Method Knowledge

1. Please rate your skill in UML/Rose design methodology (1:Novice - 5:Ex-
pert):
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2. Please rate your knowledge of design patterns used in software engineering
(1:Novice - 5:Expert):



Appendix G

Experiment Web Tool
Screenshots

Figure G.1: Screenshot of login web page
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Figure G.2: Screenshot of information presentation
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Figure G.3: Screenshot of the subject survey
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Figure G.4: Screenshot of a experiment programming task
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Figure G.5: Screenshot of post-task survey
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