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Abstract

This thesis presents research that was carried out on the topic of electromagnetic wave scattering
by randomly rough surfaces and plasmonic surfaces. The manuscript is based both on published
and unpublished results in the form of an extensive monograph intended to present a coherent
and self sufficient overview of the theoretical framework of the reduced Rayleigh equations, the
numerical techniques used to solve them and their applications to the study of light scattering
from randomly rough surfaces and plasmonic systems. The published papers represent the core
scientific contribution of this thesis, but the unpublished results, in particular those related to
the numerical analysis of the presented methods, are also of non-negligible interest.

The research articles contained in this thesis can be categorized in two main topics. The four
first papers are concerned with the scattering of light from randomly rough systems, while the
two last papers deal with the characterization and optical metrology of photonic plasmonic sys-
tems.

On the topic of light scattering from randomly rough systems, the focus of the three first papers
is mainly on the understanding of the physical mechanisms involved in the scattering by weakly
rough surfaces and rough films. The first paper is a combined experimental and numerical study
of the optical Yoneda ring phenomenon. The so-called Yoneda ring is a ring of enhanced in-
tensity in the diffusely scattered light observed in the medium of highest refractive index. The
phenomenon is well-known in the x-ray community although no clear satisfactory theory seems
to have been suggested to explain it. This first paper is an experimental demonstration of the
existence of the Yoneda phenomenon at optical frequencies, and the numerical results in agree-
ment with the experimental data, give a first indication of the single scattering nature of the
effect. The second paper develops a single scattering theory to explain the physical mechanisms
behind the Yoneda phenomenon and the Brewster scattering phenomenon. The proposed theory
explains these two phenomena respectively in terms of coupled progressive-evanescent modes and
in terms of the dipole radiation from the microscopic scatterers in the materials. The theory of
the Yoneda phenomenon can be viewed as a generalization of the theory of Rayleigh anomalies
for periodic gratings. The Brewster scattering phenomenon can be viewed as a generalization of
the Brewster reflection by a planar surface. In the latter, the fundamental role of Snell-conjugate
waves is discussed and a simple and powerful geometrical interpretation is presented. Two new
phenomena are also predicted by the theory for light scattering under total internal reflection:
(i) a s-black-out phenomenon for which the diffusely scattered light is purely p-polarized in-
dependently of the scattering direction, and which occurs exactly at the critical incidence for
total internal reflection and which is associated with the alignment of the elementary oscillating
dipoles along the axis normal to the average surface plane; (ii) a linearly to circularly polarized
Brewster scattering effect for incidences beyond the total internal reflection incidence which was
shown to be caused by a regime in which dipoles in the materials are no longer oscillating but
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rotating. The third paper revisits the physics of Selényi rings, which are interference rings of
intensity in the diffusely scattered light from a rough dielectric film. A single scattering theory is
developed and an effect of rings enhancement and attenuation induced by the cross-correlation
between the two-rough surfaces of the dielectric film is demonstrated. The forth paper is rather
of computational interest and presents a technique of reduction of variance for Monte Carlo
simulations of light scattering from dielectric randomly rough surfaces.

Concerning the topic of optical characterization of plasmonic and photonic surfaces, the em-
phasis is put on applications to critical dimension metrology from optical measurements. The
first paper presents experimental measurements of angle resolved spectrocopic Mueller matrix
ellipsometry of a plasmonic photonic surface and some first results of data inversion using the
commercial software COMSOL for the retrieval of the characteristic geometrical parameters of
the sample. The second paper demonstrates a powerful technique for parameter retrieval based
on the reduced Rayleigh equations. The method was applied successfully to the plasmonic pho-
tonic surface studied in the previous paper, with a demonstrated speed-up factor of a hundred
compared with the use of COMSOL. The method based on the reduced Rayleigh equations has,
however, a limited range of validity.

Finally, let us mention non-published results presented in the numerical analysis part of this
thesis. The range of validity of the so-called Rayleigh hypothesis was explored numerically for
both perfectly conducting and dielectric sinusoidal surfaces. An extensive parametric study was
carried out and a limit of validity was found to be consistent with known analytical results
for perfectly conducting sinusoidal surfaces. In addition, an alternative mathematical analysis,
simpler than the conventional analysis based on complex analysis found in the literature, was
developed and lead to the correct range of validity for sinusoidal surface. These results can be
considered as premises to a more extensive research article on the topic.
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Sammendrag

Denne avhandlingen best̊ar av seks vitenskapelige artikler innenfor fagomr̊adet av elektro-
magnetisk bølgespredning fra rue overflater, periodiske overflater, og plasmoniske systemer.
Manuskriptet inneholder ogs̊a bakgrunnsteorien bak de reduserte Rayleigh ligningene og den
numeriske analysen av metoder som brukes til beregningen og den fysiske forklaringen av de
optiske fenomenene som vises og diskuteres i artiklene. Upubliserte resultater av numeriske
analyse ang̊aende den s̊a-kalte Rayleigh hypotesen og som begrenser metoden til overflater av
lav ruhet er av spesiell interesse.

De tre første artiklene handler om utviklingen av den fysiske forst̊aelsen av optiske fenomener
som oppst̊ar ved lysspredning fra rue dielektriske overflater eller rue dielektriske lag. I den
første artikkelen bevises eksperimentelt og numerisk at Yoneda fenomenet eksisterer for optiske
frekvenser. Yoneda fenomenet er karakterisert med en skarp ring av økende spredt lysintensitet.
Yoneda effekten har vært vel kjent for Røntgenstr̊aling spredning siden 60-tallet men den
hadde ikke vært eksperimentelt bevist for optiske frekvenser før. Teorien som forklarer de
fysiske mekanismer som st̊ar bak Yoneda og Brewster spredningseffektene utvikles i den andre
artikkelen. Det vises at Yoneda effekten er en kontinuerlig generalisering av det som kalles
Rayleigh anomalier for periodiske diffraksjonsgitter og at Brewster spredningseffekten oppst̊ar
p̊a grunn av dipolsvingning str̊aling og er en generalisering av Brewster refleksjonen for en
plan overflate. I tillegg forutser teorien to nye effekter som, til v̊ar kunnskap, var ukjente.
Ved totalrefleksjonsbetingelser vises det at lys som sprer seg n̊ar innfallsvinkelen er lik den
grensevinkelen er rent p-polarisert uavhengig av spredningsretning. Denne effekten er forklart
med å vise at dipoler i materialer svinger langs aksen som er normal den gjenomsnittlige over-
flate. For innfallsvinkler større enn grensevinkelen observeres en lineær til sirkulær polarisering
Brewster effekt. Denne effekten forklares med å vise at dipoler i materialer ikke svinger lenger
men snur i stedet og de fører til en typisk usymmetrisk sirkulær-polarisert str̊aling. Selényi
interferensringer var studerte i den tredje artikkelen. Der vises det at korrelasjoner mellom
ruhet til de to overflatene til et dielektrisk lag fører til selektiv økning eller demping av noen av
ringene avhengig av korrelasjoner. Den fjerde artikkelen handler om en metode for å redusere
det statistiske avviket til Monte Carlo simuleringer i tilfelle av lysspreding fra rue overflater.

Optisk karakterisering av plasmoniske overflater presenteres i de to siste artiklene. Der var op-
tiske m̊alinger av vinkelavhengig spektroskopisk Mueller matrise ellipsometri av en fotonik plas-
monik system brukt sammen med simuleringer til å bestemme dimensjonene til de geometriske
parameterne av systemet som, for eksempel, avstanden mellom partikler og partikkelstørrelsen.
Først var inversjon av eksperimentelle data oppn̊add med COMSOL og da var metoden forbedret
ved å bruke koden basert p̊a de reduserte Rayleigh ligningene. Den var bevist til å fungere hundre
ganger raskere enn COMSOL. Metoden basert p̊a de reduserte Rayleigh ligningene har derimot
et begrenset gyldighetsomr̊ade som vises i den numersike analyse-delen av avhandlingen.
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Notations

Quantifiers

• Conventional symbols may be used for quantifiers. ∀ for all, ∈ (resp. /∈) belongs to (resp.
does not belong to), | such that.

Common sets

• The empty set is denoted ∅.

• N, Z, Q, R and C denote respectively the sets of natural integers, relative integers, rational
numbers, real numbers and complex numbers.

• For two sets A and B, we denote by A ∪ B, A ∩ B and A \ B respectively the union,
intersection and difference of A and B.

• A numeric set to which the element 0 is removed, is denoted with a star. Examples:
N∗ ≡ N \ {0}, R∗ ≡ R \ {0}.

• The part of an ordered numeric set composed of the positive (resp. negative) elements is
denoted by a + (resp. −). Examples: R+ ≡ {x ∈ R | x ≥ 0}, R∗+ ≡ {x ∈ R | x > 0}.

Brackets

• The following brackets are used:

– to define a set {· · · };
– to define an interval of R, [a, b], [a, b[, ]a, b], ]a, b[ (where a, b ∈ R | a < b);

– as parenthesis in a formula to make factors explicit, (· · · ), [· · · ];
– to define a set of integers between n1 < n2, n1, n2 ∈ Z,

Jn1, n2K ≡ {n ∈ Z | n1 ≤ n ≤ n2};
– to denote an ensemble average over realizations of a stochastic process, or random

variable 〈·〉 (the variance and covariance are however denoted Var[·] and Cov[·, ·]);
– to denote the modulus of a complex number or the Euclidean norm of a vector, or

the length of a multi-index | · |;
– to denote a norm (except for the Euclidean norm) ‖ · ‖;
– to denote the average of a function with respect to some variables over a domain, e.g.

〈f〉φ
def
= 1

2π

∫ 2π
0 f(θ, φ) dφ;

– to denote a functional T applied on a function f , 〈T , f〉.

xix
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Common functions

• The exponential function may be denoted either exp(·) or e·.

• The real and imaginary part of a complex number z are denoted respectively Re(z) and
Im(z).

• Bessel function of first kind of order ν, Jν .

• Kronecker delta: for i, j ∈ Z, δij = 1 if i = j, 0 if i 6= j.

• Characteristic or indicator function of a subset A of E: for x ∈ E, 1A(x) = 1 if x ∈ A, 0
if x /∈ A.

• The following definition of the sinc function will be used: sincx = sinπx
πx for x 6= 0, and

extended by continuity at 0 as sinc 0 = 1.

Differential operators

• An orthonormal basis vector for a cartesian coordinate system will be denoted (ê1, ê2, ê3).

• ∇ denotes the gradient operator. For a scalar field φ (x), where x = (x1, x2, x3) ∈ R3, the
gradient is a vector and can be expressed in cartesian coordinates as ∇φ = ( ∂φ∂x1 ,

∂φ
∂x2

, ∂φ∂x3 ).

• ∇· denotes the divergence operator. For a vector field V (x), where x = (x1, x2, x3) ∈ R3,
the divergence is a scalar and can be expressed in cartesian coordinates as
∇ ·V =

∑3
i=1

∂Vi
∂xi

.

• ∇× denotes the curl operator. For a vector field V (x), where x = (x1, x2, x3) ∈ R3, the
curl is a vector and can be expressed in cartesian coordinates as
∇×V = (∂V3∂x2

− ∂V2
∂x3

, ∂V1∂x3
− ∂V3

∂x1
, ∂V2∂x1

− ∂V1
∂x2

).

• ∆ denotes both the scalar Laplace operator and the vecorial Laplace operator. For a scalar
field φ, the Laplace operator applied on φ may be expressed in a cartesian coordinate

system as ∆φ =
∑3

i=1
∂2φ
∂x2i

. For a vector field V, the Laplace operator applied on V

may be expressed in a cartesian coordinate system as ∆ V · êi = ∆Vi =
∑3

j=1
∂2Vi
∂x2j

, for

i ∈ {1, 2, 3}.

• Note that the symbol ∆ may at time be used to denote a step size or a deviation of some
quantity. We believe that no confusion with the Laplace operator should occur since the
context will make the distinction clear.

Fourier transform

Let f be a function of a spatial variable r ∈ R3 and a time variable t ∈ R. f may be a scalar or
a vector function. We define the Fourier transform of f with respect to the spatial variable as

Fr[f ](k, t) = f(k, t) =

∫

R3

f(r, t) e−ik·r d3r ,

and the Fourier transform of f with respect to the time variable as
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Ft[f ](r, ω) = f(r, ω) =

∫

R
f(r, t) eiωt dt .

Note the different signs in the definitions of the spatial and time Fourier transforms. This choice
is motivated by the physical interpretation of a plane wave of frequency ω propagating along a
wave vector k for increasing time. Also note that the Fourier transform will often be denoted
with the same symbol as the function in the direct space, when the context in non-ambiguous
and only the argument is changed. With the adopted conventions, the inverse Fourier transforms
are respectively given by

F−1
r [f ](r, t) =

∫

R3

f(k, t) eik·r
d3k

(2π)3
,

and

F−1
t [f ](r, t) =

∫

R
f(r, ω) e−iωt

dω

2π
.

Multi-index

A multi-index is a n-tuple of non-negative integers, i.e. an element α = (α1, · · · , αn) ∈ Nn. We
will use the following definitions for calculating with multi-indices. The sum of two multi-indices
α = (α1, · · · , αn) and β = (β1, · · · , βn) is

α+ β = (α1 + β1, · · · , αn + βn) .

The length of a multi-index, denoted |α| is the sum of its elements, i.e.

|α| =
n∑

i=1

αi .

The factorial of a multi-index is defined as

α! = α1!α2! · · ·αn! .

With this definition of the factorial for a multi-index, the multinomial coefficient reads

(|α|
α

)
=
|α|!
α!

,

and the binomial coefficient for two multi-indices α and β is defined as

(
α

β

)
=

n∏

i=1

(
αi
βi

)
=

α!

β!(α− β)!
.
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Introduction

”Le couloir de la cuisine était clair, vitré des deux côtés, et un soleil brillait de chaque côté,
car Colin aimait la lumière. [...] Les jeux des soleils sur les robinets produisaient des effets

féeriques. Les souris de la cuisine aimaient danser au son des chocs des rayons de soleil sur
les robinets, et couraient après les petites boules que formaient les rayons en achevant de se

pulvériser sur le sol, comme des jets de mercure jaune.”
L’Écume des jours, Boris Vian (1947).

A great number of natural phenomena that we observe, as well as numerous man-made objects
we use in our everyday life, are made possible thanks to the interactions between light and
matter. The magnificence of the multitude of colors of the sky and the clouds during a sunset,
for our greatest pleasure, is due to the scattering of light by the molecules constituting the
atmosphere, and by the droplets of water in the clouds. The photosynthesis which permits
the conversion of light energy into chemical energy, and consequently plants to live, is an
astonishing example of light-matter interaction and the mechanisms behind the efficiency of the
energy transport is still an object of active scientific research. Your eyes, which are probably
the organs you use most for sensing your environment, to admire romantic sunsets or to read
these less romantic lines, are a marvelous piece of biological engineering shaped over millions of
years of evolution. The back of your eyes is covered with cells dedicated to the conversion of
light of different frequencies into electrical signals that your brain will interpret as colors. Your
cornea is also a quite surprising part of your eyes. A mere transparent lens that focuses light
on the back of the eye would you say? At first sight, yes, but by taking a closer look at the
cornea, with a microscope, we can see that the cornea is far from being a uniform homogeneous
transparent medium. It contains a multitude of randomly arranged collagen particles which
should in principle scatter the light entering your eye and should make your cornea opaque!
In fact, the cornea can become opaque due to some diseases or complications, leading to a
so-called leukoma, a milky white patch on your cornea. The main difference, in terms of optics,
between a transparent and an opaque cornea is simply the arrangement of the collagen particles
while the density and size of the particles remain identical. This curious phenomenon is due to
the interference of light scattered by each particle which results in a transparent cornea or an
opaque one depending on the type of correlations between the position of the particles.

Your eyes, you certainly use them when watching TV, writing a message on your phone, or
browsing the Internet. The information that you send to and receive from all around the world
when using these devices is carried over long distances by light, but not the visible kind of light.
Visible light, that is what you and I simply call light in our daily life, only represents a narrow
spectrum of electromagnetic waves. Electromagnetic waves come in different frequencies or
wavelengths. From radar detection to x-ray imaging in medicine, electromagnetic waves span a
huge range of frequencies. Mastering the manipulation of these waves have been the object of

1
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2 Introduction

extensive research and development efforts leading to new technologies during the last century.
New fields of intense active research emerged such as photonics, plasmonics, biomedical imaging,
wave propagation in random media, to cite a few, promising new applications beneficial for
society. As an example, plasmonics is the field of physics that studies the resonances, excited
by light, of free electrons in metallic particles or on metallic surfaces, or in systems combining
dielectric and metallic structures [7, 8]. The broadly called plasmon resonances have been used
for centuries, or even millennium, to make colorful stained glass. The knowledge of plasmon
resonances was not available at the time, but nowadays we know that the color of stained glass
is due to plasmon resonances of metallic particles trapped inside the glass. Different sizes and
shapes of the particles lead to different resonant frequencies and hence different colors of the
reflected and transmitted light. Plasmonic surfaces are now used for optical sensing of specific
molecules in a biological sample [9]. A metallic or composite surface is designed in such a way
that it can adsorb a specific molecule, if present in your blood for example. Upon adsorption of
the molecules, the frequency of the plasmon resonance shifts compared with that of the clean
surface. This shift of resonant frequency can be measured optically very accurately to determine
the presence or absence of a molecule in your blood, and helps assessing your medical diagnosis.
Recently, the possibility of engineering thermal emission with plasmonic systems has been
shown. Contrary to the long standing belief, one can design coherent, narrow band, anisotropic,
polarized thermal emitters by shaping appropriately metallic particles, thus opening a road
for new applications ranging from low consumption gas detectors, passing to engineering heat
transfer at the nanoscale, thermal near-field imaging, to passive cooling [10, 11, 12, 13, 14].

We understand now that the study of the scattering of light of various frequencies by various
objects can be both of fundamental scientific and technological interests. This thesis deals
with the understanding of light scattering by surfaces. The term surface will encompass both
the interface between two homogeneous media, like the interface between the air and a glass
window, or a composite system made of a substrate on which some particles are deposited, like
a plasmonic surface for example. We will be interested in understanding how light is reflected
from and transmitted trough interfaces which are either structured or randomly rough. The
stereotypical example of a structured surface is a periodic grating. Periodic gratings are key
elements in spectrometers due to their property of scattering light of different frequencies with
different well defined angles of scattering, hence separating the spectral components of a light
signal. This is the behavior you can observe when looking at the rainbow pattern reflected
from your favorite music CDs at home for example. Typical examples of randomly rough
surfaces are the surfaces of a brushed steel, of paint, of biological tissues, or it could be the
surface of the ocean and more generally most of the naturally occurring surfaces. The level
of roughness of a surface must always be associated with the length scale at which we look
at it, or to be more accurate when it comes to wave scattering, with the wavelength of the
light. A light beam, such as that of a laser pointer, will be reflected mainly in the specular
direction from a surface where the typical size of the profile amplitudes is small compared with
the wavelength. This is what happens for example when you shine a laser pointer on a polished
mirror. The surface hence looks smooth for this wavelength. However, if the wavelength of the
light is reduced to be of the same order as the size of the corrugations, or equivalently if the
corrugation of the surface is made larger, light will be scattered significantly in all directions,
creating a diffuse speckle pattern (if coherent light is used). To observe this, you can shine
your laser pointer on a sheet of aluminium foil you may find in your kitchen and try the two
sides of it. You will observe a striking difference between the resulting reflected intensity
patterns. The highly reflecting side will reflect the laser beam by broadening it only in a
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Introduction 3

(a) Highly reflecting side. (b) Poorly reflecting side.

Figure 1: Laser scattering experiment in the kitchen. Snapshot of the light of a red laser pointer
reflected from the highly (a) or poorly (b) reflecting side of a piece of aluminium foil projected
onto a white paper screen.

certain direction (see Fig. 1(a)), while the poorly reflecting side will broaden it more or less
isotropically (see Fig. 1(b)). These two patterns are characteristic of the microscopic structure
of the surface. The reflecting side of the aluminium foil has been polished or brushed in a
certain direction, so that we find rather straight grooves on the surface. This is the reason
why, although reflecting, you see your reflection rather deformed from the aluminium foil
compared with a well polished mirror. On the other hand, the surface of the poorly reflecting
side is made of random corrugations but not exhibiting grooves aligned in some specific direction.

Some of the questions we wish to answer then are the following. For a given surface and a given
incident wave, what fraction of the incident power goes in the different scattering directions?
How can we relate this intensity distribution to the shape of the surface profile and the property
of the materials? Can we understand some basic physical mechanisms at the origin of some
features seen in the intensity distribution of the scattered light? These are typical questions for
a so-called forward scattering problem, for which the characteristics of the scatterer and the
source are known, and we wish to predict and understand the scattering response. We can also
ask the reverse questions, or so-called inverse scattering problem. If we are given a sample and
we are allowed to make a set of scattering experiments on this sample to characterize it, how do
we recover information about the profile of the surface by only knowing its scattering response?
Another question, which is related to the previous one in practice, is that of the design of a
surface. Given a desired scattering response, how should we design the surface profile leading to
the target response, or a response as close as possible to the targeted one given some constraints?

In order to predict the scattering response of a surface, to understand the physics involved, to
characterize a surface or to design it, we need some tools. We need a theory which describes the
interaction between electromagnetic waves and matter. In most of the aforementioned applica-
tions, the light scattering phenomena can be described in terms of classical electrodynamics, i.e.
Maxwell equations together with some constitutive models for the response of a bulk material
at a given frequency. Solving Maxwell equations for the case of a wave interacting with some
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arbitrarily shaped object is a rather complicated task which can only be done with the help of
numerical simulations apart from some academic cases such as the scattering by a planar surface
or by a sphere, which can be solved analytically. There exists a whole zoo of numerical tools for
the study of light scattering which all have their advantages and drawbacks depending on the
types of systems to be studied or the types of questions to be answered. One may, for example,
discretize space and time and solve numerically Maxwell equations by propagating a light pulse
in time step by step. This is known as the finite difference time domain method (FDTD). This
may work well in practice for systems having a geometry that can be discretized easily on a
rectangular grid, to observe the time evolution of a pulse in such a system or to study at once
the response for several frequency components. However, if the structure becomes difficult to
discretize on a rectangular grid so that the detailed structure of the surface requires a very
fine grid, the computational burden will become quickly unpractical. Finite elements methods
(FEM) or methods based on volume integral representations of the solution to the scattering
problem may then be better suited since space can be discretized in small tetrahedral volumes
which are well suited to discretizing complex shapes. Nevertheless, as the size of the system
becomes large compared with the wavelength, and the fine details of the structure are smaller
or on the order of the wavelength, the mesh size, which typically requires at least to have about
ten nodes within a wavelength, may become rather dense, and the resulting linear system which
must be solved may become unpractically large. In cases where the system can be considered
as composed of a set of scatterers having homogeneous refractive indices, one can use some
integral theorems in such a way that it is sufficient to only discretize the boundaries between
these scatterers, which may yield to significant speed-up. These methods are known as surface
integral methods or boundary elements methods (BEM), and are particularly well suited for
scattering by a surface between two homogeneous media. The numerical method analyzed and
used in the present thesis can be categorized as a surface integral method. The method consists
in solving integral equations known as the reduced Rayleigh equations. The unknowns of these
integral equations are the Fourier field amplitudes of the reflected and transmitted field, the
kernels of the integral equations encodes the information about the scattering system and the
right hand side encodes the source. The reduced Rayleigh equations are not particularly new, as
they take their roots in the method developed by Lord Rayleigh in 1907 [15] for the scattering
of waves by a perfectly conducting periodic grating. The reduced Rayleigh equations can be
seen as a generalization of the Rayleigh method for penetrable media and for non-periodic
surface.

The present thesis consists of three main parts named theory, numerical analysis and appli-
cations. Part I, starts with a warming up chapter to recall basic concepts of electromagnetic
scattering, notations and vocabulary that we will need in the rest of this work (Chapter 1).
Then the derivation of the fundamental transfer equations for the fields across a single interface
from which one deduces the reduced Rayleigh equations is exposed in details in Chapter 2.
This is probably the most critical chapter since everything else depends on it. It is thus
important to spend some time on it, before going on. In Chapters 3 and 4, we present a
systematic way to derive the reduced Rayleigh equations for diverse classes of systems within
a unified framework. More specifically, Chapter 3 extends the reduced Rayleigh equations
to multilayer structures where each interface is a priori rough and Chapter 4 treats the
case of systems made of a single periodic interface first, which can be read independently of
Chapter 3, before dealing with the case of systems made of independently periodic interfaces
for which knowledge of Chapter 3 is assumed. It must be stressed that in Part I, we are only
interested in formally deriving equations, which are integral equations, whose unknowns are
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scattering amplitudes. We do not discuss how to solve these equations, apart from some remarks.

Because solving equations is often as important as to derive them, we devote Part II to
numerical methods that can be used to solve the reduced Rayleigh equations. We present in
Chapter 5 the most elementary method to solve the reduced Rayleigh equations. We have
named it the direct method and it basically boils down to solving a linear system. In addition
to explaining its implementation, we present a complexity analysis of the method and study its
convergence as the size of the system grows and this for a few different physical systems. Other
methods, grouped under the appellation of iterative methods, are presented in Chapter 6. The
reader experienced with numerical linear algebra will not be surprised to find there standard
iterative methods for solving linear systems, but may be interested in the derivation and
implementation of perturbative solutions of the reduced Rayleigh equations, and a comparative
study of the convergence rate of all methods for a few classes of physical systems. In Chapter 7,
we address the issue of the consistency of the reduced Rayleigh equations with the original
scattering problem. There we probe numerically the validity of the so-called Rayleigh hypothesis
by carrying out an extensive parametric study. Finally, Chapters 8 and 9 deal respectively with
approximation methods specifically tailored for randomly rough systems, where the average
response is considered and further mathematical details on perturbation theory for multilayer
systems and perturbed gratings are given.

The reader who is not interested in understanding the details of implementation or the numerical
analysis can skip Part II, or most of it, in a first reading and rather take a look at Part III
where applications illustrate what the methods can be used for. There, various systems such as
randomly rough systems (Chapters 10 and 11), plasmonic photonic surfaces (Chapter 12), are
studied and discussed based on more physical ground. The inverse scattering problem finally
closes this work (Chapter 12) with a concrete case study based on experimental data.



i
i

“report” — 2018/9/20 — 10:11 — page 6 — #28 i
i

i
i

i
i

6 Introduction



i
i

“report” — 2018/9/20 — 10:11 — page 7 — #29 i
i

i
i

i
i

Part I

Theory

7



i
i

“report” — 2018/9/20 — 10:11 — page 8 — #30 i
i

i
i

i
i



i
i

“report” — 2018/9/20 — 10:11 — page 9 — #31 i
i

i
i

i
i

Chapter 1

Scattering of electromagnetic waves

”Un mince rayon de lune passait par le trou du volet, et faisait briller le verre, sur ma table de
nuit. Le trou était rond, le rayon était plat. Je me promis de demander à mon père

l’explication de ce phénomène.”
La Gloire de mon père, Marcel Pagnol (1957).

In this introductory chapter we present the problem of scattering of electromagnetic waves by
an object and recall some basic notions of electromagnetism that we will use in the following
chapters. This chapter is mostly meant to set the stage, to fix some vocabulary and notations
as well as to present a few results on the resolution of the scattering problem in the academic
case of a planar interface between two media. The latter will be useful for two reasons. The first
one is to remind the different type of waves that can exist and familiarize ourselves with the
physics involved before treating more complex systems. The second reason is that these results
will enable us to verify that the approach used for the resolution of the scattering problem in
the case of a structured interface or a randomly rough surface yields the expected result in the
limit of the planar interface.

1.1 Electromagnetism in a nutshell

This first section gives elements of classical electromagnetism. We start by recalling Maxwell
equations in material medias and define the different fields involved. The response of the ma-
terials will then be discussed in terms of electric and magnetic susceptibility or equivalently
permittivity and permeability. The consequences of assumptions such as linearity, homogeneity
and isotropy on the model will be presented and related to the structure of the possible electro-
magnetic waves. The discussion in this section is greatly inspired by that of Refs. [16, 17, 18].

1.1.1 Maxwell equations

Let (r, t) ∈ R3 ×R represent a point in the Euclidean space endowed with a coordinate system
(O, ê1, ê2, ê3) at a time t. The space is filled by a material whose state at (r, t) is characterized by
distributions of free electric charge density ρ(r, t) and current density J(r, t) as well as bounded
charges and currents modeled as an equivalent polarization field P(r, t) and magnetization field

9
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10 Chapter 1. Scattering of electromagnetic waves

M(r, t). The evolution of the electromagnetic system is described by Maxwell equations:

∇ ·D = ρ (1.1a)

∇ ·B = 0 (1.1b)

∇×E = −∂B

∂t
(1.1c)

∇×H = J +
∂D

∂t
. (1.1d)

Here E and H are respectively the electric and magnetic fields, and D and B are respectively
the electric displacement and magnetic induction fields defined as

D = ε0 E + P (1.2a)

B = µ0 (H + M) , (1.2b)

where ε0 and µ0 are respectively the permittivity and permeability of vacuum and are physi-
cal constants. We recall that the speed of light in vacuum c is related to ε0 and µ0 by ε0µ0 = 1/c2.

The time evolution of the system of fields, charges and currents could in principle be solved by
solving the aforementioned system of partial differential equations (together with the equation
of motion for the charges not presented here) and given models for the polarization and mag-
netization fields P and M. In the following, we will focus on the case where the medium of
interest is somewhat bounded in space and no free charges nor free currents are present in it nor
in its vicinity, i.e. ρ = 0 and J = 0 identically, but some external incident fields are present and
we wish to study the response of the system. Of course, in order to have an external incident
field, free charges and/or currents may be present far away from the system of interest, and
the external incident field must be understood as the result of a modeling of the effect of these
sources.

1.1.2 Response of a material medium

Different materials give different responses when an electric or a magnetic field is applied on
them. The response of the material is modeled by the polarization and magnetization fields.
Also, it is observed, quite naturally, that the polarization and magnetization depend on the
applied electric and magnetic fields. An applied electric field will affect the polarization which
in turn will change the local electric field and so on. It is then clear that the problem of
determining the response of the material is coupled to the resolution of Maxwell equations.
Predicting the response of a material would in principle require to solve simultaneously Maxwell
equations and the motion of charges within the material, the latter requiring, in general,
quantum mechanics.

In practice, this is a difficult task and although some simple models such as Drude or Lorentz
models give reasonable physical explanation of the response of materials, a precise prediction
remains costly. Thus models of responses are often of semi-classical form and fitted to experi-
mental data. Here, we simply describe the consequence of a few assumptions on the response of
a material medium. For simplicity, we will base the discussion on the polarization, but similar
consideration can be said for the magnetization.
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1.1. Electromagnetism in a nutshell 11

Locality in space and non-locality in time

The polarization P(r, t) at a point r at time t is induced by the electric field E 1 but a priori it
can be induced by the electric field from another location r or from another time t′ (say earlier
time if causality should hold). This general consideration is known as non local response. A
standard assumption is to assume locality in space but non-locality in time, meaning that the
polarization at r is induced by the electric field at the same position but at a different time due
to some latency of the response. We will make this assumption in our work.

On linearity, homogeneity, time invariance, causality and anisotropy

In general the polarization depends on the electric field on a non-linear fashion. This yields a
rich variety of phenomena like frequency doubling for instance. In this work, the electric field
will be assumed to be small enough in magnitude such that only the first order in a possible
expansion of the polarization in powers of the electric field is necessary to describe the response
of the system. Taking into account locality in space and non-locality in time, the most general
form for the linear polarization reads

P(r, t) = ε0

∫

R
χ(t, t′) E(r, t′) dt′ . (1.3)

Here the response kernel χ is an order 2 tensor, i.e. that the above equation can be written in
terms of the vectors components as, for i ∈ J1, 3K,

Pi(r, t) = ε0

∫

R
χij(t, t

′) Ej(r, t
′) dt′ , (1.4)

where the Einstein summation convention is used for repeated indices. The factor ε0 is there
for later convenience. Note that another assumption has been made here. The fact that χ does
not depend on the position r shows the homogeneity of the material, i.e. that the response
is the same at any point. However, the response can be different along different directions as
the tensorial form shows, and is said to be anisotropic. By further assuming time invariance,
meaning that χ does not specifically depend on times t and t′ but on their difference, we have

P(r, t) = ε0

∫

R
χ(t− t′) E(r, t′) dt′ = ε0

∫

R
χ(τ) E(r, t− τ) dτ = ε0 χ ∗E (r, t) . (1.5)

The polarization is then the convolution product (denoted by the ∗) in time of a response kernel
χ and the electric field E. This is the most general expression for the polarization as a function
of the electric field under the assumptions of locality of the response in space, homogeneity,
linearity and time invariance. Note that the integration in the convolution product can be
restricted to τ ∈ R+, or equivalently χ vanishes identically for negative arguments, if causal-
ity holds, i.e. that the response at time t only depends on the electric field at times earlier than t.

In the case of a so-called isotropic material, i.e. that the response is independent of the direction,
the order 2 tensor χ becomes a scalar χ.

Susceptibility and permittivity

Equation (1.5) can be expressed as a point-wise product in Fourier reciprocal space. Indeed, by
taking the Fourier transform with respect to the time variable in Eq. (1.5), we obtain

Pi(r, ω) = ε0 χij(ω) Ej (r, ω) , (1.6)

1and can a priori also be induced by the magnetic field but we drop this for simplicity.
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12 Chapter 1. Scattering of electromagnetic waves

where we define the electric susceptibility χij(ω) as the Fourier transform of the response kernel
χij(t), for i, j ∈ J1, 3K,

χij(ω) =

∫

R
χij(t) e

iωt dt . (1.7)

Note that we chose not to change notations for a function and its Fourier transform but simply
change the symbol in the argument. Knowing if one deals with a direct quantity or its Fourier
transform will implicitly be clear from the context and the argument.

Under the aforementioned assumptions, the Fourier transform of Eq. (1.2a) with respect to the
time variable yields

D(r, ω) = ε0 E(r, ω) + P(r, ω) = ε0 ε(ω) E(r, ω) , (1.8)

where we have used Eq. (1.6) and defined the relative permittivity tensor, also called dielectric
tensor, ε as

ε(ω) = I3 + χ(ω) , (1.9)

or equivalently in index notations, for i, j ∈ J1, 3K

εij(ω) = δij + χij(ω) , (1.10)

where δij is the Kronecker delta. Note that as the susceptibility, the permittivity takes complex
values and is frequency dependent. In the case of an isotropic medium the permittivity tensor
reduces to a scalar ε(ω).

Drude and Lorentz models

We present now the simplest frequency dependent model for a material response to an external
electric field, namely the Drude model [19]. We assume that the response is mainly due to a
free electron gas subjected to the Lorentz force −eE, where −e is the elementary charge of the
electron, and scattering from immobile ions modeled as a friction force −me γ v, where me is
the electron mass, γ is a characteristic collision frequency and v is the electron velocity. To the
collision frequency γ is associated a characteristic time between consecutive collisions τ = 1/γ.
To simplify the discussion we restrict the modeling to one dimension. The equation of motion
according the Newtonian mechanics reads

dv

dt
= − e

me
E − γ v . (1.11)

By taking the Fourier transform with respect to time of the above equation we obtain

v(ω) = − e

me (γ − iω)
E(ω) . (1.12)

The associated current density is then given by

J = −e nev =
σ0

1− iωτ E (1.13)

where ne is the electron density and we define the dc (direct current) electric conductivity σ0 as

σ0 =
nee

2

meγ
. (1.14)

Equation (1.13) has the form of Ohm’s law where σ(ω) = σ0
1−iωτ is a frequency dependent
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Figure 1.1: Real part (a) and imaginary part (b) of the dielectric function of gold as a function
of photon energy ~ω. The data points extracted from Ref. [20] are shown as open circles and
a Drude model fitted to the data at low energy is shown as the solid red line. The parameter
found for the fit were ε∞ = 10.03, ~ωp = 9.02 eV, and ~γ = 0.08 eV.

conductivity. Note that when ω → 0, i.e. the direct current limit, we obtain σ(ω) → σ0

which justifies the denomination of dc conductivity for σ0. Recalling that for general linear
non-magnetic media the electric susceptibility tensor is related to the conductivity tensor by
(see e.g. [16])

χij(ω) =
iσij(ω)

ωε0
, (1.15)

(since we have J(ω) = −iωP(ω) for non-magnetic media) the relative permittivity for the Drude
model then reads

ε(ω) = 1− ω2
p

ω2 + iγω
= 1− ω2

p

ω2 + γ2
+ i

ω2
pγ

ω (ω2 + γ2)
, (1.16)

where we have defined the electron plasma frequency ωp as ω2
p = ne e2

me ε0
. The physical picture

associated with the electron plasma frequency is that of a cloud of electrons initially displaced
from its equilibrium around positive ions by an external constant electric field and then left
to oscillate due to the electric field induced by the polarization of charges. The frequency of
the oscillation is then defined as the electron plasma frequency. In the absence of dissipative
processes, γ = 0, the relative permittivity is real and reads

ε(ω) = 1− ω2
p

ω2
. (1.17)

We can remark that in the above equation, the plasma frequency ωp acts as a threshold between
positive and negative values of the permittivity. Indeed, ε > 0 for ω > ωp, ε < 0 for ω < ωp,
and ε vanishes for ω = ωp. We will discuss the physical interpretation of these three regimes
with respect to electromagnetic waves in the next subsection.
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14 Chapter 1. Scattering of electromagnetic waves

A direct comparison between the dielectric function given by the Drude model fitted to experi-
mental data and the experimental data itself shows that a satisfactory agreement may be found
only at low photon energies ~ω (or equivalently large wavelengths). Figure 1.1 presents the real
and imaginary parts of the dielectric function of gold as measured by Johnson and Christy [20]
and the corresponding fit using a Drude model. A satisfactory agreement is found at low photon
energies, but large discrepancies occur from around 2 eV and above, which is a signature of elec-
tron interband transitions. The effect of these interband transitions may be modeled by adding
terms corresponding to elastically bound electrons with resonant frequency ωj in Eq. (1.11), i.e.
that it becomes

d2xj
dt2

+ γj
dxj
dt

+ ω2
jxj = − e

me
E (1.18)

where we now denote by xj the displacement of such a bound electron from its equilibrium
position. Such a model, when added up to the free electron model (Drude) yields the so-called
Drude-Lorentz model

ε(ω) = ε∞ −
ω2
p

ω2 + iγω
+
∑

j

Aj
ω2
j − ω2 − iγjω

, (1.19)

where the coefficients ε∞, ω2
p, γ, ωj , γj , and Aj are to be fitted to experimental data. Values

for these coefficients have been reported for different metals for example in Refs. [21, 22]. In the
rest of this manuscript, the Drude model may be used to get qualitative physical insight due
to its simplicity and physical interpretation, but when dealing with quantitative comparisons
of simulation with real experiments, the dielectric functions will be taken directly from fits to
experiments (see in particular Chapter 12).

1.1.3 Structure of electromagnetic waves in unbounded media

In the previous sub-section we have discussed some aspects of the modeling of the response of
a material medium. In particular, we have introduced the notion of relative permittivity. We
will now discuss different types of waves that can be present under certain conditions on the
permittivity. We consider here the case of a non magnetic (M = 0) material medium filling
the whole Euclidian space. In addition, we assume the absence of free sources. Under these
hypotheses, we can derive the wave equation for electromagnetic waves by taking the curl of
Eq. (1.1c) and by using Eq. (1.1d). We obtain

∆ E−∇(∇ ·E)− 1

c2
∂2 E

∂t2
= µ0

∂2 P

∂t2
. (1.20)

Here we have used the identity ∇×∇×E = ∇(∇ ·E)−∆ E where ∆ E denotes the vectorial
Laplace operator, in the sense of a vector whose components are the Laplacians of the respective
components of E. We have also used the definitions of the magnetic induction and electric
displacement. If we make the assumptions that the response of the medium obeys to the locality
in space, homogeneity, and linearity, the above equation can be simplified after taking the Fourier
transform with respect to time as

∆ E−∇(∇ ·E) +
ω2

c2
ε E = 0 . (1.21)

Where we have used Eq. (1.6) and the definition of the relative permittivity Eq. (1.9). Note
that the permittivity is frequency dependent.
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Isotropic media

In the case of an isotropic medium, we have 0 = ∇·D = ε0ε∇·E, hence for non zero permittivity,
∇ ·E = 0 and we obtain the so-called Helmholtz equation

∆ E +
ω2

c2
ε E = 0 . (1.22)

By taking the Fourier transform of Eq. (1.22) with respect to the spatial variables, we obtain

(
ε
ω2

c2
− k2

)
E = 0 . (1.23)

Thus the Helmholtz equation admits non-trivial solutions if and only if the dispersion relation

ε
ω2

c2
− k2 = 0 (1.24)

is satisfied. In other words, in the Fourier expansion of the field only plane wave components
with a wave vector lying on a sphere of radius

√
ε ωc can be present. In addition, the relation

∇·E = 0 translates to k·E = 0 in Fourier space, which means that the electric field is necessarily
orthogonal to its wave vector. This type of wave is known as a transverse wave. However, this
is only true for non-zero permittivity. Indeed, for zero permittivity there is no condition on
∇ · E anymore and the electric field can possess a component along its wave vector. A wave
whose electric field is along the wave vector is called a longitudinal wave. This type of wave
is associated with the oscillation of charges within the material. This can be understood by
considering the Drude model. We have seen that the zero of the permittivity occurs at the
plasma frequency, whose physical interpretation is a collective oscillation of electrons.

Anisotropic media

Anisotropic media are characterized by a susceptibility tensor, or dielectric tensor, which does
not reduce to a scalar. The first consequence of the anisotropy is that ∇ · E = 0 does not
necessary hold anymore. In particular, E and D are not necessarily colinear, and the wave
vector, which is orthogonal to D and the Poynting’s vector which is orthogonal to E are no
longer colinear. This means that the direction of propagation is not orthogonal to the planes
of constant phase anymore. Such a wave is known as an extraordinary wave by opposition to
an ordinary wave whose properties resemble that of a wave in an isotropic medium. It can be
shown that the dielectric tensor is symmetric and is therefore diagonalizable. Assuming the
tensor to be represented in a basis in which it is diagonal, the Fourier transform of Eq. (1.21)
yields for i ∈ J1, 3K

3∑

j=1

[(
εj
ω2

c2
− k2

)
δij + ki kj

]
Ej = 0 , (1.25)

where the εj are the dielectric constants along the principal axis of the medium. The homo-
geneous system of linear equations, Eq. (1.25), admits non-trivial solutions if and only if the
determinant vanishes, which yields after some algebra to the dispersion relation [18]

3∑

i=1

k2
i

k2

εi
− ω2

c2

=
3∑

i=1

k̂2
i

1
εi
− 1

ε(k)

= 0 . (1.26)

In the last equation we have defined k̂ = k /|k | and the effective dielectric constant ε(k) seen by

the wave vector k defined as |k | def
=
√
ε(k)ω/c. By multiplying Eq. (1.26) by

∏3
i=1(1/εi − 1/ε)



i
i

“report” — 2018/9/20 — 10:11 — page 16 — #38 i
i

i
i

i
i

16 Chapter 1. Scattering of electromagnetic waves

we obtain a polynomial equation of degree two in 1/ε which admits two solutions. The two
solutions describe two surfaces in ε-space, or equivalently in the index space n2 = ε, as k̂ sweeps
over the unit sphere. In the case of a uniaxial anisotropic material, ε1 = ε2 6= ε3, it can be
shown that one of the index surface is a sphere, and hence correspond to the aforementioned
ordinary waves while the second surface is an ellipsoid, corresponding to the aforementioned
extraordinary waves.

In this work, only systems made of optically isotropic material will be considered. This does
not mean, however, that we will obtain isotropic behavior as the systems of interest may be
composed of structured surfaces or of particles supported on a substrate which, as composite
systems, are anisotropic. The anisotropy considered in this work is then a structural anisotropy
rather than an anisotropy associated with the bulk response of the constituents of the system.

1.2 Scattering of electromagnetic waves

We formulate now the problem that we will deal with in the rest of this work, namely that
of the scattering of electromagnetic waves by arbitrary surfaces or composite systems. Let us
first precise that we will deal exclusively with time harmonic problems, i.e. that we consider
a stationary regime where the time contribution to the electromagnetic field enters only via a
phase factor exp(−iωt), where ω is the angular frequency of the excitation. Second, we will only
consider isotropic media separated by arbitrary interfaces. The prototypical system will be that
of two semi-infinite media separated by an arbitrary interface, but we will also consider stack of
layers with distinct optical properties separated by arbitrary interfaces and special, or limiting
cases resulting in particles supported by a substrate or embedded in a layer. We formulate
in the following the problem for a system made of two semi-infinite media separated by an
arbitrary interface, as sketched in Fig. 1.2(a), but the reader will extend it without difficulty to
the remaining systems.

ê1,2

ê3

(a)

Ω1, ǫ1

Ω2, ǫ2

F(r, ω) = Finc
 (r, ω) + Fscat

 (r, ω)

F(r, ω) = Fscat
 (r, ω)

ê1,2

ê3

(b)

s

s+ η n̂(s)

s − η n̂(s)

Figure 1.2: (a) A side view illustration of the scattering system, (b) a close up for the points
involved in the boundary conditions.

1.2.1 Boundary and radiation conditions

We will denote by Ω1 (resp. Ω2) the open half-space situated above (resp. below) the interface
∂Ω, as sketch in Fig. 1.2(a) and hosting a material of dielectric function ε1 (resp. ε2). Given an
incident electromagnetic field (Einc,Hinc), the scattering problem is a boundary value problem
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1.2. Scattering of electromagnetic waves 17

and reads: find (Escat,Hscat) such that





∆ F(r, ω) + ω2

c2 ε1(ω) F(r, ω) = 0 , ∀ r ∈ Ω1 ,∀ ω > 0 ,

∆ F(r, ω) + ω2

c2 ε2(ω) F(r, ω) = 0 , ∀ r ∈ Ω2 ,∀ ω > 0 ,

n̂(s)× lim
η→0

[F(s + η n̂(s), ω)− F(s− η n̂(s), ω)] = 0 , ∀ s ∈ ∂Ω ,∀ ω > 0 .

(1.27)

Here F is either the total electric field E or magnetic field H, s is a point on the interface ∂Ω, η
is a positive real number and n̂(s) is the surface normal oriented from medium 2 to medium 1 at
the point s. The last equation, is the condition of continuity of the tangential component of the
electric and magnetic fields at the boundary. In practice, the incident field will be an incident
wave incoming from infinity in the first medium. The total field hence reads

F(r, ω) =





Finc
1 (r, ω) + Fscat

1 (r, ω) , ∀ r ∈ Ω1 ,∀ ω > 0 ,

Fscat
2 (r, ω) , ∀ r ∈ Ω2 ,∀ ω > 0 ,

(1.28)

and in the case of an incident plane wave, the electric field will be of the form Einc
1 (r, ω) =

E0 exp(ik · r − iωt), where k is a wave vector satisfying the dispersion relation in medium 1
and directed downward. In addition to the boundary condition at the interface between the two
media, we need a radiation condition at infinity. For large r = | r |, and for loss-less dielectric
media, the scattered field must satisfy the Silver-Müller2 radiation condition [23]

∣∣∣∣
∂ Fscat

j

∂r
− ikj Fscat

∣∣∣∣ ≤
M

r2
, (1.29)

where M is some positive constant and kj = ε
1/2
j ω/c (for j ∈ {1, 2}) is the wave number in

medium j. This radiation condition together with the boundary conditions ensures a unique
solution to the scattering problem. In addition, we have the following behavior as | r | → ∞ [23]

|Fscat | ≤ M

r
. (1.30)

This can also be restated by saying that the radiated flux decays as 1/r2. For absorbing me-
dia, the field decays exponentially at infinity. An interpretation of the Silver-Müller radiation
condition, Eq. (1.29), is that for large r, the field behaves as an outgoing polarized spherical
wave. Another way of phrasing this is that r times the field in 1/r behaves as a plane wave.
This claim will be made clearer when we will derive the far-field expansion from the expansion
in plane waves of the scattered field in Section 1.2.3.

Remark 1.1. Note that an outgoing plane wave does not satisfy the Silver-Müller radiation
condition. In the case of an incident plane wave on an infinite surface, we will see that the
Silver-Müller radiation condition may not be appropriate. Indeed, it suffices to consider the
case of reflection by a planar surface to foresee an issue. For reflection by a planar surface, it is
well known that the incident plane wave will be reflected as a plane wave, which is outgoing with
respect to the interface but does not satisfy the Silver-Müller radiation condition Eq. (1.29). The
source of the problem is that the integrated flux received by the scatterer is infinite, or in other
words, the plane wave is not a wave of finite energy (e.g. not normalizable in L2(R3)). In such a
case, the Silver-Müller radiation condition should be relaxed in some sense to allow for solutions
containing outgoing plane waves. From a physical point of view, this means that we consider

2The name of Sommerfeld radiation condition is also used although it seems to be more associated to the
problem of scattering of scalar waves.
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18 Chapter 1. Scattering of electromagnetic waves

Figure 1.3: Sketch of the scattering system and the definitions of the angles of incidence (θ0, φ0)
and scattering (θr, θt, φ), together with the relevant wave vectors. The vector p0 (resp. p) is the
projection of the wave vector of the incident wave k−1 (p0) (reps. reflected or transmitted wave
k+

1 (p) or k−2 (p)) in the vector plane (ê1, ê2).

the scattering of an incident plane wave as a tool to further compute more physically relevant
cases such as the scattering of a finite size beam (and normalizable) which can be constructed
as a linear superposition of plane waves (Fourier representation). The response being linear, the
scattered wave will hence be the superposition of the response for each individual plane wave
leading to an overall scattered field which satisfies the Silver-Müller radiation condition.

1.2.2 Reflection and transmission amplitudes

It will be convenient, in our work, to expand in plane waves the fields in each medium. Indeed,
plane waves satisfy by construction the Helmholtz equation and solving the scattering problem
will hence reduce to finding the set of amplitudes of the field expansions via the use of the
boundary conditions. The expansion in plane waves of the electric field in medium j reads

Ej(r, ω) =
∑

a=±

∫

R2

[
Eaj,p(q, ω) êap,j (q) + Eaj,s(q, ω) ês (q)

]
exp

(
i kaj (q) ·r− iωt

) d2q

(2π)2
, (1.31)

where we define

k±j (q)
def
= q± αj (q) ê3 , (1.32a)

αj (q)
def
=

√
εj

(ω
c

)2

− q2, Re (αj), Im (αj) ≥ 0 , (1.32b)

ês (q)
def
=

ê3 × k±j (q)

|ê3 × k±j (q) | = ê3 × q̂ , (1.32c)

ê±p,j (q)
def
=

ês × k±j (q)

|ês × k±j (q) | =
c
√
εjω

(±αj (q) q̂− |q| ê3) . (1.32d)

In other words, the wave vector k±j (q) of an elementary plane wave is decomposed into its
projection q in the lateral vector plane (ê1, ê2) and the component ±αj (q) along ê3 (see
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1.2. Scattering of electromagnetic waves 19

Fig. 1.3). The sum for a = ± takes into account both upwards and downwards propagating
and evanescent (and possibly growing) waves. The field amplitude is decomposed in the local
polarization basis (êap,j (q), ês (q)), hence Eaj,α (q) denotes the component of the field amplitude
in the polarization state α of the mode characterized by a and q. In this basis, the directions
given by ê±p,j (q), and ês (q) are respectively the directions of the p- and s-polarization of the

electric field amplitude. From Eq. (1.32) it is clear that the vectors (k̂
±
j (q), ê±p,j (q), ês (q))

(with k̂
±
j (q) = k±j (q) /|k±j (q) |) define a direct orthonormal basis of the three dimensional

Euclidean space.

Assume now that the incident excitation consists solely of a monochromatic plane wave in
medium 1 defined as

E0(r, ω) = exp
(
ik−1 (p0) · r− iωt

) [
E0,p ê−p,1(p0) + E0,s ês(p0)

]
, (1.33)

where p0 is the projection of the incident wave’s wave vector in the (ê1, ê2) plane, with the
property |p0 | ≤

√
ε1 ω/c, i.e. that we consider an incident wave which propagates (also called

progressive). The fact that this is the only incident wave considered together with an outgoing
wave radiation condition gives that, apart from the incident field, the only elementary waves al-
lowed in the scattered field are those with wave vectors of the form k+

1 (p) and k−2 (p) respectively
in media 1 and 2. This is summarized in the following equations for the field amplitudes

E−1 (q) = (2π)2 δ(q−p0) E0 , (1.34a)

E+
2 (q) = 0 , (1.34b)

where we have denoted Ej = (Ej,p, Ej,s)T the vector of p- and s- components. Next, we assume
that the scattered field amplitudes are linearly related to the incident field amplitude E0 via the
reflection and transmission amplitudes, R(q | p0) and T(q | p0), defined as

E+
1 (q) = R(q |p0) E0 , (1.35a)

E−2 (q) = T(q |p0) E0 . (1.35b)

The reflection and transmission amplitudes are therefore described by 2×2 matrices with com-
plex entries of the form

X =


Xpp Xps

Xsp Xss


 , (1.36)

for X = R or T. From a physical point of view, the coefficient Rαβ(q |p0) (resp. Tαβ(q |p0))
for α, β ∈ {p, s} is the field amplitude reflected (resp. transmitted) with lateral wave vector
q in the polarization state α from a unit incident field with lateral wave vector p0 in the
polarization state β. The reflection and transmission amplitudes are then the unknowns in our
scattering problem. The aim of the next chapter will be to derive integral equations satisfied
by the reflection and transmission amplitudes.

Remark 1.2. In subsequent chapters, when the discussion is made general for either the reflec-
tion or transmission amplitudes, we may simply refer to them as scattering amplitudes.
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20 Chapter 1. Scattering of electromagnetic waves

1.2.3 Far-field

In a scattering experiment, one can often only observe the intensity scattered far way from
the scatterer. Before defining in details the different observables of interest for a scattering
experiment, which we will do in the next section, we need to define what is meant by far-field.
Intuitively, the name speaks for itself, it is the field far way from the scatterer, say many wave-
lengths away, so in a region where λ = 2πc/

√
εω � r, where r is the distance between the point

of observation and the scatterer, and ε denotes the dielectric constant in the medium of obser-
vation. In such a region, we can derive an asymptotic expression for the field that proves to be
very useful for defining far-field observables based on the reflection and transmission amplitudes.

Consider the scattered field E+
1 (r) which we assume to be square integrable and can be expanded

in plane waves as

E+
1 (r) =

∫

R2

E+
1 (q) exp

(
i k+

1 (q) ·r
) d2q

(2π)2
, (1.37)

where we drop the time dependence that only contributes by an overall phase factor, and
E+

1 (q) = E+
1,p(q, ω) ê+

p,1 (q) + E+
1,s(q, ω) ês (q) as compared to the definition of the plane wave

expansion in Eq. (1.31). Since we are interested in an observation point r far away from the
scatterer, we can restrict the domain of integration to {q ∈ R2 | |q | < √ε1ω/c} since for in-
plane wave vector outside this disk the wave components are evanescent, decay exponentially
away from the surface and do not contribute to the far-field. Let p denote the in-plane wave
vector constructed in such a way that k+

1 (p) is colinear with the observation point r. In other
words, k+

1 (p) =
√
ε1ω/c êr, with êr = r /| r | which we may write as

êr = sin θr cosφr ê1 + sin θr sinφr ê2 + cos θr ê3 . (1.38)

The polar angle θr and the azimuthal angle φr then parametrize the direction of observation.
Equation (1.37) can be written as

E+
1 (r) =

k2

(2π)2

∫

| q̃ |<1

E+
1 (q) exp

(
ikr k̂

+

1 (q) ·êr
)

d2q̃ , (1.39)

where we have introduced the wave number k =
√
ε1ω/c, r = | r | and k̂

+
1 = k+

1 /k. In addition,
we have made a change of variable, q = k q̃. The scalar product in the exponential reads in
terms of the angles of observation, also called angles of reflection, as

k̂
+

1 (q) · êr = q̃1 sin θr cosφr + q̃2 sin θr sinφr + (1− q̃2
1 − q̃2

2)1/2 cos θr . (1.40)

The form of the right-hand side in the above equation invites us to make a first change of variable
to cylindrical coordinates q̃ = q̃(cosφ ê1 + sinφ ê2) so that

k̂
+

1 (q) · êr = q̃ sin θr (cosφ cosφr + sinφ sinφr) + (1− q̃2)1/2 cos θr ,

= q̃ sin θr cos(φ− φr) + (1− q̃2)1/2 cos θr , (1.41)

and then a second change of variable q̃ = sin θ to finally obtain

k̂
+

1 (q) · êr = sin θ sin θr cos(φ− φr) + cos θ cos θr . (1.42)

Note that for the angle φ = φr, cos(φ − φr) becomes unity and the scalar product hence reads
cos(θ − θr), which is unity for θ = θr. In other words, the scalar product is unity when q = p.
This is a clear indication that the observation angles φr and θr play roles of angles of reference,
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and that the wave component E+
1 (q = p) is likely to contribute the most to the integral. After

the aforementioned changes of variables, the field expansion reads

E+
1 (r) =

k2

(2π)2

∫ π/2

0

eikr cos θ cos θr

∫ 2π

0

E+
1 (q(θ, φ)) eikr sin θ sin θr cos(φ−φr) dφ sin θ cos θ dθ . (1.43)

It is now time to use the fact that the point of observation is far away from the surface, so
that 1� kr, and use the method of stationary phase to approximate the integrals [24]. For an
integral of the type

I(x) =

∫ b

a

f(t) exp (ixψ(t)) dt , (1.44)

where f and ψ are real valued, continuously differentiable functions on [a, b], and if in addition
ψ′ vanishes at only one point τ ∈]a, b[ with ψ′′(τ) < 0, then as x→∞, we have

I(x) =

(
2π

−xψ′′(τ)

)1/2

f(τ) exp
(
ixψ(τ)− iπ

4

)
+O(1/x) . (1.45)

Applying this result first to the integral over φ in Eq. (1.43) with x = kr, f(φ) = E+
1 (q(θ, φ))

and ψ(φ) = sin θ sin θr cos(φ − φr), we find that: ψ′(φ) = − sin θ sin θr sin(φ − φr) vanishes at
φ = φr and ψ′′(φr) = − sin θ sin θr < 0, hence

∫ 2π

0

E+
1 (q(θ, φ)) eikr sin θ sin θr cos(φ−φr) dφ

=

(
2π

kr sin θ sin θr

)1/2

E+
1 (q(θ, φr)) exp

(
ikr sin θ sin θr − i

π

4

)
+O(1/kr) . (1.46)

Substituting the above result into Eq. (1.43) yields after some simplifications

E+
1 (r) =

k3/2

(2π)3/2r1/2

∫ π/2

0

E+
1 (q(θ, φr)) e

ikr cos(θ−θr)−iπ/4 sin1/2 θ cos θ

sin1/2 θr
dθ +O

(
(kr)−3/2

)
. (1.47)

Repeating the stationary phase method for the integral over θ for
f(θ) = E+

1 (q(θ, φr))e
−iπ/4 sin1/2 θ cos θ/ sin1/2 θr and ψ(θ) = cos(θ − θr), we find that: ψ′(θ) =

− sin(θ − θr) vanishes at θ = θr and ψ′′(θr) = −1 < 0, hence after simplifications

E+
1 (r) = −i k

2πr
exp (ikr) cos θr E+

1 (p) +O
(
(kr)−3/2

)
, (1.48)

where we remind the reader that k =
√
ε1ω/c. Equation (1.48) is a well known asymptotic

expansion of the far-field that can be found in the literature (see e.g. [25, 26]).

Remark 1.3. The reader will easily verify that the far-field given in Eq. (1.48) satisfies the
Silver-Müller radiation condition Eq. (1.29), and as claimed in Section 1.2.1, that the far-field
times r behaves as a plane wave, or in other words the far field behaves locally as a spherical
wave.

We are now ready to define far-field observables for scattering experiments.
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22 Chapter 1. Scattering of electromagnetic waves

1.2.4 Observables

The reflection and transmission amplitudes are complex valued and do not correspond to physical
quantities that can be measured experimentally3. An important role that one expects from a
theory is to make prediction that can be tested experimentally. Therefore, we need to define
now what we will call observables, or physical quantities that can be experimentally measured.
These will be defined theoretically through the scattering amplitudes but they can be obtained
experimentally by measuring the intensity of the scattered light within some solid angles around
some specific scattering directions. By placing a polarizer between the source and the system,
and by placing an analyzer in front of the detector, the different quantities for co- or cross-
polarized states can be obtained.

Differential scattering coefficients

Assuming we have obtained the reflection amplitudesRαβ(p | p0), we can now proceed to express
the differential reflection coefficient4 (DRC) defined as the time-averaged flux radiated around
a given scattering direction (θr, φr) per unit solid angle and per unit incident flux and denoted

∂R/∂Ωr(p | p0). Let a virtual hemisphere of radius r � λ1 (λ1 = 2πc/(ε
1/2
1 ω)) lie on the

plane x3 = 0 on top of the scattering system. The support of this hemisphere is a disk of area
S = πr2. We consider the scattering from a truncated version of the scattering system in which
the surface profile is set to be flat outside the disk support. Consequently, the field amplitudes
we will manipulate are not strictly speaking those of the full system of interest but will converge
to them as r →∞. For this reason we denote the reflection amplitudes for the truncated system

R
(S)
αβ , where the super-script indicates that only the disk of area S supports the non-planar part

of the surface. The time-averaged flux incident on this disk is given by

ê1,2

ê3

ǫ1

ǫ2 r

dσ
θr êr

full system truncated system

Figure 1.4: A side view illustration of the geometry considered for the determination of the
differential reflection coefficient. The truncated profile is represented as a solid line, while the
full profile is sketched as a dashed line; they coincide within the disk support of radius r.

3We exclude the use of interferometry.
4The differential reflection coefficient is also known as bidirectional reflectance distribution function (BRDF).
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1.2. Scattering of electromagnetic waves 23

Pinc/S = −ε0c
2

2ω
Re

∫

S

[
E∗0(p0)×

(
k−1 (p0)×E0(p0)

)]
· ê3 exp

[
−i(k−∗1 (p0)− k−1 (p0)) · x

]
dx

= −ε0c
2

2ω
Re

∫

S

[
|E0(p0)|2 k−1 (p0)−

(
E∗0(p0) · k−1 (p0)

)
E0(p0)

]
· ê3 dx

= S
ε0c

2

2ω
α1(p0) |E0(p0)|2 = S

ε0c

2
cos θ0

(
| E0,p |2 + | E0,s |2

)
. (1.49)

Here, the ∗ denotes the complex conjugate, the incident field amplitude is given by E0(p0) =
E0,p ê−p (p0) + E0,s ês(p0) as defined in Eq. (1.33). Moreover, the vector identity a × (b × c) =

(a ·c)b−(a ·b)c and the orthogonality between the field and the wave vector E∗0(p0) ·k−1 (p0) = 0
have been used. Note that the flux incident on the disk is proportional to the disk area. Let
us now consider the outgoing flux crossing an elementary surface dσ = r2 sin θrdθrdφr = r2dΩr

around a point r = r (sin θr cosφr ê1 + sin θr sinφr ê2 + cos θr ê3) = r êr. The flux crossing this
elementary surface is given by

Pdσ =
1

2µ0
Re
[
E+∗

1 (r)×B+
1 (r)

]
· êr dσ . (1.50)

We then use the asymptotic expansion of the field in the far-field region given by Eq. (1.48) (see
also [25, 26])

E+
1 (r) ∼ −i ε1/21

ω

2π c
cos θr

exp(iε
1/2
1

ω
c r)

r
E+

1 (p) , (1.51a)

B+
1 (r) ∼ −i ε1

ω

2π c2
cos θr

exp(iε
1/2
1

ω
c r)

r
êr ×E+

1 (p) , (1.51b)

where p =
√
ε1
ω
c (sin θr cosφr ê1 + sin θr sinφr ê2). This asymptotic approximation will become

more and more accurate as we let r →∞. Plugging Eq. (1.51) into Eq. (1.50) we obtain

Pdσ =
ε0c

2
ε
3/2
1

( ω

2π c

)2

cos2 θr |E+
1 (p)|2 dΩr

=
ε0c

2
ε
3/2
1

( ω

2π c

)2

cos2 θr
(
| E+

1,p(p)|2 + | E+
1,s(p)|2

)
dΩr . (1.52)

(Note: 1/(µ0c) = ε0c). The total differential reflection coefficient is then given by

∂R

∂Ωr
(p | p0) = lim

r→∞
Pdσ

Pinc/S dΩr
= lim
r→∞

ε1
(
ω

2π c

)2
cos2 θr

S cos θ0

| E+
1,p(p)|2 + | E+

1,s(p)|2
| E0,p |2 + | E0,s |2

. (1.53)

From the total differential reflection coefficient given by Eq. (1.53), we deduce the differential
reflection coefficient when an incident plane wave of polarization β, with in-plane wave vector
p0 is reflected into a plane wave of polarization α with in-plane wave vector p given as

∂Rαβ
∂Ωr

(p | p0) = lim
r→∞

ε1
(
ω

2π c

)2
cos2 θr

S cos θ0
|R(S)
αβ (p | p0)|2 = lim

r→∞

∂R
(S)
αβ

∂Ωr
(p | p0) . (1.54)

Here we have defined

∂R
(S)
αβ

∂Ωr
(p | p0) =

ε1
(
ω

2π c

)2
cos2 θr

S cos θ0
|R(S)
αβ (p | p0)|2 . (1.55)
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A similar analysis for the differential transmission coefficients5 (DTC) yields

∂Tαβ
∂Ωt

(p | p0) = lim
r→∞

∂T
(S)
αβ

∂Ωt
(p | p0) . (1.56)

Here we have defined

∂T
(S)
αβ

∂Ωt
(p | p0) =

ε
3/2
2

(
ω

2π c

)2
cos2 θt

S ε
1/2
1 cos θ0

|T (S)
αβ (p | p0)|2 , (1.57)

where now p =
√
ε2
ω
c (sin θt cosφt ê1 + sin θt sinφt ê2) and θt is defined as the angle between êr

and − ê3 (i.e. θt = π − θr).

Diffraction efficiencies

Can we still define differential scattering coefficients in the case of the scattering of a plane
wave by a planar interface or a grating? We will see that in such cases, the field amplitude, say
E+

1 (p), concentrates all its mass on discrete wave vectors and is not a function as was implicitly
assumed in the previous section. Take the case of a planar interface for example. The reflected
field amplitude would take the form E+

1 (p) = Er(p0) δ(p−p0). If no care is taken, we may try
to plug this expression into the far-field expansion and get

E+
1 (r) ∼ −i ε1/21

ω

2π c
cos θr

exp(iε
1/2
1

ω
c r)

r
Er(p0) δ(p−p0) , (1.58)

which we may interpret as saying that the far-field in zero for every direction but that given by
k+

1 (p0), which would be a wrong interpretation. Indeed, the reflected plane wave fills the whole
space above the surface and therefore takes non-zero values everywhere (up to the nodes due to
time oscillation of course). This simply means that the far-field expansion is not valid. In fact,
we do not need to make any approximation to obtain the far-field in this case since it is given
by the expression of the plane wave itself. Assume that the reflected field is a discrete sum of
plane waves, typically produced by the scattering of a plane wave by a periodic grating, and let
us analyze what one would obtain as the differential reflection if we consider one wave at a time.
One such wave may be written as

E+
n (r) = En(p0) exp(ik+

1 (pn) · r) , (1.59)

where the index n simply denotes that we picked one such wave whose in-plane wave vector is
some pn. We do not need to worry for now what pn may be nor how to compute the amplitude
En(p0) of such a wave (this will be the aim of the rest of this thesis). Let us use the electric
field expressed in Eq. (1.59) and the corresponding magnetic field in Eq, (1.50) to get the flux
crossing the elementary surface dσ. We obtain in a straightforward manner

Pdσ =
ε0c

2
ε
1/2
1 |En(p0)|2 k̂

+

1 (pn) · êr r2dΩr , (1.60)

under the constraint that the field is not evanescent. It is clear from Eq. (1.60) that the flux is

proportional to k̂
+
1 (pn) · êr , which means that the flux is maximal in the direction of the wave

vector. However, note that this flux does not vanish at other directions (unless k̂
+
1 (pn) · êr = 0).

The total differential reflection coefficient is then given by

∂R

∂Ωr
(p | p0) = lim

r→∞
Pdσ

Pinc/S dΩr
=
|En(p0)|2
|E0 |2

k̂
+

1 (pn) · êr
π cos θ0

. (1.61)

5Also known as bidirectional transmittance distribution function (BTDF).
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Note that the ratio is actually independent of S. In such cases, one is rather more interested in
the total flux fraction taken away by each reflected wave, and this independently of the direction.
We are thus interested in the quantity

e(R,n) def
=

∫ 2π

0

∫ π/2

0

∂R

∂Ωr
(p | p0) dΩr , (1.62)

known as diffraction efficiency of the reflected wave n. Let us now express the dot product in
Eq. (1.61) with the help of polar and azimuthal angles,

k̂
+

1 (pn) · êr = sin θn sin θr cos(φn − φr) + cos θn cos θr , (1.63)

where the angles θr and φr have been defined previously and θn and φn, associated with the

wave vector k̂
+
1 (pn), are defined in an obvious way, similar to what we already did for deriving

the far-field in Section 1.2.3. The diffraction efficiency hence reads

e(R,n) =
|En(p0)|2
|E0 |2

∫ 2π

0

∫ π/2

0

sin θn sin θr cos(φn − φr) + cos θn cos θr
π cos θ0

sin θrdθrdφr . (1.64)

The integration does not require much efforts after some simple trigonometric simplifications
and yields

e(R,n) =
cos θn|En(p0)|2

cos θ0|E0 |2
. (1.65)

If we had treated the case of a transmitted wave then the final expression for the efficiency would
read

e(T,n) =
ε
1/2
2 cos θn|En(p0)|2

ε
1/2
1 cos θ0|E0 |2

, (1.66)

hence in general we can simply write

e(X,n) =
αjX (pn)|En(p0)|2
α1(p0)|E0 |2

, (1.67)

where the superscript is X = R or T to denote reflection or transmission, and the corresponding
medium is indexed by jX is 1 or 2 respectively. In a similar fashion as what was done for the
differential reflection and transmission coefficients, we can separate the contribution from the
different polarization and define

e
(X,n)
αβ (p0) =

αjX (pn)

α1(p0)
|X(n)

αβ (p0)|2, (1.68)

where (X
(n)
αβ (p0))αβ∈{p,s} δ(pn−p0) are the reflection or transmission amplitudes of the wave n

(see more precision in Section 1.5) and the efficiency hence corresponds to the fraction of the
incident flux carried away by the plane wave indexed by n, polarized in the state α given that
the incident plane wave had a unit field, and an in-plane wave vector p0 and was polarized in
the state β.

Stokes vectors and Mueller matrices

The polarization state of a transverse monochromatic plane wave can be characterized by its
Stokes vector S ∈ R4. If an orthonormal basis (êx, êy, k̂) is attached to the wave vector k of the
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wave, the Stokes vector is defined as

S =




S1

S2

S3

S4




def
=

ε0c

2
ε
1/2
j cos θ(k)




|Ex|2 + |Ey|2

|Ex|2 − |Ey|2

|Ex′ |2 − |Ey′ |2

|Eσ+ |2 − |Eσ− |2



, (1.69)

where Ex, Ey are the components of the complex amplitude of the electric field expressed in
the basis (êx, êy), Ex′ , Ey′ are the components of the complex amplitude of the electric field
expressed in the basis (êx′ , êy′) which is the image of the basis (êx, êy) rotated by π/4 radians

around k̂ and Eσ+ , Eσ− are the components of the complex amplitude of the electric field
expressed in the basis (êσ+ , êσ−), i.e. that Eσ+ , Eσ− correspond to the left and right circularly
polarized components of the electric field respectively. The equations for change of basis are
given by


Ex′
Ey′


 =

√
2

2


 1 1

−1 1




Ex
Ey


 (1.70a)


Eσ+

Eσ−


 =

√
2

2


1 i

1 −i




Ex
Ey


 . (1.70b)

The factor ε0c ε
1/2
j cos θ(k)/2, where θ(k) is the angle between the wave vector and a fixed x3-

axis, is a matter of definition which we adopt here as it is convenient for the study of scattering
by surfaces and is reminiscent of the flux per unit area when we derived the efficiencies of the
diffracted modes. The interpretation of the elements of the Stokes vector is then that of the total
flux per unit area for the first element and differences of fluxes per unit area for the component
along two ortonormal polarization states for the remaining elements. With the above definitions,
the Stokes vector can be expressed solely in terms of Ex and Ey as

S =
ε0c

2
ε
1/2
j cos θ(k)




|Ex|2 + |Ey|2

|Ex|2 − |Ey|2

2Re(ExE
∗
y)

2Im(ExE
∗
y)



. (1.71)

Note, however, that in an experimental measurement, one cannot measure directly the complex
amplitudes Ex and Ey but only intensities. It is therefore the definition, Eq. (1.69), which is
used in practice, since it requires the measurement of the total (i.e. all polarizations) intensity
and of differences of intensity when the wave is analyzed after passing through different
analyzers (which are polarizers). From a computational point of view, it is rather convenient
to work directly with the complex amplitudes.

Now that we have explained how to characterize the polarization state of a plane wave, we
can characterize a sample by the way it influences the polarization state of an incident wave
reflected from or transmitted through it. Let an incident plane wave, whose in-plane wave vector
in the (ê1, ê2)-plane is p0 be scattered by a periodic surface whose average plane is x3 = 0. The
Stokes vector characterizing the incident plane wave is given by S(inc). Let S(X,n)(p0) be the
Stokes vector characterizing the polarization state of the plane wave scattered by the periodic
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surface in reflection (X = R) or transmission (X = T ) whose in-plane wave vector is pn.

Using the notation from the previous subsection, the scattering amplitudes X
(n)
αβ (p0) yields that

for an arbitrary polarized incident field decomposed into its p- and s-polarization component
E0(p0) = E0,s ês(p0) + E0,p ê−p,1(p0), the field amplitude components of the nth diffractive mode
are given by

E(n)
j,p (p0) = X(n)

pp (p0) E0,p(p0) +X(n)
ps (p0) E0,s(p0) (1.72a)

E(n)
j,s (p0) = X(n)

sp (p0) E0,p(p0) +X(n)
ss (p0) E0,s(p0) , (1.72b)

where j = 1 or 2 and X = R or T correspondingly. According to our definition of the local p-
and s-polarization vectors, they correspond to the local (êx, êy) basis used in the definition of
the Stokes vector. Using Eq. (1.71) for the Stokes vector of the diffractive mode and plugging
Eq. (1.72) we obtain for example

2ω

ε0c2 αjX (pn)
S

(X,n)
1 = | E(n)

j,p |2 + | E(n)
j,s |2

= |X(n)
pp E0,p +X(n)

ps E0,s |2 + |X(n)
sp E0,p +X(n)

ss E0,s |2

=
(
|X(n)

pp |2 + |X(n)
sp |2

)
| E0,p |2 +

(
|X(n)

ps |2 + |X(n)
ss |2

)
| E0,s |2

+ Re
[(
X(n)
pp X

(n)∗
ps +X(n)

sp X
(n)∗
ss

)
E0,p E∗0,s

]

=
1

2

[
|X(n)

pp |2 + |X(n)
sp |2 + |X(n)

ps |2 + |X(n)
ss |2

]
(| E0,p |2 + | E0,s |2)

+
1

2

[
|X(n)

pp |2 + |X(n)
sp |2 − |X(n)

ps |2 − |X(n)
ss |2

]
(| E0,p |2 − | E0,s |2)

+ 2Re
[
X(n)
pp X

(n)∗
ps +X(n)

sp X
(n)∗
ss

]
Re
[
E0,p E∗0,s

]

+ 2Im
[
X(n)
pp X

(n)∗
ps +X(n)

sp X
(n)∗
ss

]
Im
[
E0,p E∗0,s

]

hence we can write the Stokes element S
(X,n)
1 as a linear combination of the Stokes elements of

the incident wave as

S
(X,n)
1 = M

(X,n)
11 S

(inc)
1 +M

(X,n)
12 S

(inc)
2 +M

(X,n)
13 S

(inc)
3 +M

(X,n)
14 S

(inc)
3 .

In the above derivation, we have used that Re(zz′) = Re(z)Re(z′)− Im(z)Im(z′) and the useful
identity ax + by = (a + b)(x + y)/2 + (a − b)(x − y)/2. We see in the above equation that the
first element of the Stokes vector for the diffractive mode can be written as a linear combination
of the components of the Stokes vector of the incident wave. Similarly to what we have done
above, we can express the Stokes vector of the diffracted wave as the product of a 4 by 4 real
matrix, known as the Mueller matrix, and the Stokes vector of the incident wave:

S(X,n)(p0) = M(X,n)(p0) S(inc)(p0) , (1.73)
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where the elements of the Mueller matrix are given by

α1(p0)

αjX (pn)
M

(X,n)
11 =

1

2

[
|X(n)

pp |2 + |X(n)
sp |2 + |X(n)

ps |2 + |X(n)
ss |2

]
(1.74a)

α1(p0)

αjX (pn)
M

(X,n)
12 =

1

2

[
|X(n)

pp |2 + |X(n)
sp |2 − |X(n)

ps |2 + |X(n)
ss |2

]
(1.74b)

α1(p0)

αjX (pn)
M

(X,n)
13 = Re

[
X(n)
pp X

(n)∗
ps +X(n)

sp X
(n)∗
ss

]
(1.74c)

α1(p0)

αjX (pn)
M

(X,n)
14 = Im

[
X(n)
pp X

(n)∗
ps +X(n)

sp X
(n)∗
ss

]
(1.74d)

α1(p0)

αjX (pn)
M

(X,n)
21 =

1

2

[
|X(n)

pp |2 − |X(n)
sp |2 + |X(n)

ps |2 − |X(n)
ss |2

]
(1.74e)

α1(p0)

αjX (pn)
M

(X,n)
22 =

1

2

[
|X(n)

pp |2 − |X(n)
sp |2 − |X(n)

ps |2 + |X(n)
ss |2

]
(1.74f)

α1(p0)

αjX (pn)
M

(X,n)
23 = Re

[
X(n)
pp X

(n)∗
ps −X(n)

sp X
(n)∗
ss

]
(1.74g)

α1(p0)

αjX (pn)
M

(X,n)
24 = Im

[
X(n)
pp X

(n)∗
ps −X(n)

sp X
(n)∗
ss

]
(1.74h)

α1(p0)

αjX (pn)
M

(X,n)
31 = Re

[
X(n)
pp X

(n)∗
sp +X(n)

ps Xss

]
(1.74i)

α1(p0)

αjX (pn)
M

(X,n)
32 = Re

[
X(n)
pp X

(n)∗
sp −X(n)

ps X
(n)∗
ss

]
(1.74j)

α1(p0)

αjX (pn)
M

(X,n)
33 = Re

[
X(n)
pp X

(n)∗
ss +X(n)

ps X
(n)∗
sp

]
(1.74k)

α1(p0)

αjX (pn)
M

(X,n)
34 = Im

[
X(n)
pp X

(n)∗
ss −X(n)

ps X
(n)∗
sp

]
(1.74l)

α1(p0)

αjX (pn)
M

(X,n)
41 = −Im

[
X(n)
pp X

(n)∗
sp +X(n)

ps X
(n)∗
ss

]
(1.74m)

α1(p0)

αjX (pn)
M

(X,n)
42 = −Im

[
X(n)
pp X

(n)∗
sp −X(n)

ps X
(n)∗
ss

]
(1.74n)

α1(p0)

αjX (pn)
M

(X,n)
43 = −Im

[
X(n)
pp X

(n)∗
ss +X(n)

ps X
(n)∗
sp

]
(1.74o)

α1(p0)

αjX (pn)
M

(X,n)
44 = Re

[
X(n)
pp X

(n)∗
ss −X(n)

ps X
(n)∗
sp

]
. (1.74p)

We can thus define a Mueller matrix for each reflected and transmitted diffractive order. The
entries of the Mueller matrix depend of the sample and on the way the sample is oriented with
respect to the incident wave. Indeed, the reflection and transmission amplitudes are dependent
on the angles of incidence and so are the Mueller matrices. More generally, we can define two
Mueller matrices which are functions of the in-plane wave vector of the outgoing elementary wave
reflected or transmitted by a sample. The definition is then analogous to the one presented here
and we have

S(X)(p |p0) = M(X)(p |p0) S(inc)(p0) , (1.75)

and the pre-factor is adapted to αjX (p)/α1(p0) instead of αjX (pn)/α1(p0).
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1.3 Radiation of oscillating and rotating dipoles

The present section is devoted to revisiting some useful results about the polarization properties
of dipole radiation in free space. Why do we need to know about dipole radiation when the aim
of this work is to study scattering from surfaces? The answer is: understanding dipole radiation
is crucial for understanding the physics of the scattering from a surface. The knowledgeable
reader may have in mind the dipolar resonance that occurs in metallic particle for example,
hence justifying the present section, as we will study in Chapter 12 the optical response of
metallic particles deposited on a substrate for example. However, we will see in Chapter 10,
that dipole radiation is crucial for understanding the scattering from a simple rough dielectric
surface. The reason is quite simple. A dielectric medium can microscopically be described by a
dense array of scatterers (the atoms) which respond to an electromagnetic excitation in a dipolar
way. This elementary dipole feature of the scatterers will leave a clear signature in the light
scattered from a dielectric system.

1.3.1 Polarization of an oscillating dipole radiation in free space with respect
to the local (êp, ês) basis

We consider here the radiation emitted by a single oscillating dipole in free space. The dipole
of dipole moment D(ϑ) = d(sinϑ ê1 + cosϑ ê3) = d êϑ is chosen to lie in the (O, ê1, ê3)-plane
and is allowed to be tilted from the x3-axis by an angle ϑ ∈ [0, π/2] radians, as is illustrated in
Fig. 1.5(a). The dipole is placed in free space at the origin of the coordinate system, oscillates
with angular frequency ω and radiates in the far-filed the electric field [17]

Edip(r, t) = − ω2

4πε0c2
êr ×[êr ×D(ϑ)]

r
e−iω(t−r/c) , (1.76)

where r = r êr = r(sin θ cosφ ê1 + sin θ sinφ ê2 + cos θ ê3) is the point of observation, and r =
| r |. A well known result is that no power is radiated along the axis of oscillation of the dipole as
can be seen from Eq. (1.76) since êr ×D(ϑ) vanishes in when êr ‖ êϑ. In addition, the radiation
is polarized as can be seen from the cross products in Eq. (1.76). Indeed, the electric field is
polarized along the vector êθ

′ which is the basis vector tangent to a meridian in a spherical
coordinate system (r, θ′, φ′) attached to the direction of the dipole moment. Here we are rather
interested in analyzing the polarization of the dipole radiation with respect to a local polarization
basis (êp, ês) which mimics that defined in Eq. (1.32), and which is defined with respect to the
propagation direction of the radiation and the plane x3 = 0. These polarization vectors are
defined as ês =

ê3× êr
| ê3× êr | and êp = ês× êr

| ês× êr | are defined with respect to êr in order to mimic the

local s- and p- polarization vectors attached to a scattering direction along êr.

Remark 1.4. Note that we have

êp = êθ =
d êr
dθ

= cos θ cosφ ê1 + cos θ sinφ ê2− sin θ ê3 (1.77a)

ês = êφ =
1

sin θ

d êr
dφ

= − sinφ ê1 + cosφ ê2 , (1.77b)

which are nothing but the conventional basis vector in spherical coordinates.

The angular dependence of the polarization components of the radiation emitted by the oscil-
lating dipole are then entirely controlled by the following dot products: êr ×[êr × êϑ] · ês and
êr ×[êr × êϑ]·êp. First, it is worth noting that êr ×[êr × êϑ]·ês and êr ×[êr × êϑ]·êp are invariant
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x1

x2

x3

ϑ

(a) Oscillating dipole

x1

x2

x3

0 < ϑ < π/4

(b) Rotating dipole

Figure 1.5: Illustrations of (a) an oscillating and (b) a rotating dipole in the (O, ê1, ê3)-plane.
The dipole moment of the oscillating dipole is aligned with a direction making an angle ϑ with
the x3-axis. The dipole moment of the rotating dipole describes an ellipse in the (O, ê1, ê3)-
plane with its long axis being aligned with x3-axis for 0 < ϑ < π/4 and along the x1-axis for
π/4 < ϑ < π/2 according to the definition Eq. (1.83). The special case ϑ = π/4 corresponds to
a circular motion. In all cases, the ellipse is swept clockwise when viewed from x2 > 0 (i.e. ê2

pointing towards the observer).

under the transformation êr 7→ − êr, hence the p- and s-polarization dependence of the dipole
radiation are symmetric with respect to the origin as êr runs over the unit sphere. Second, for
ϑ ∈]0, π/2] radians, the vector identity a×[b× c] = (a · c) b−(a ·b) c yields

êr ×[êr × êϑ] = (êr · êϑ) êr − êϑ , (1.78)

hence the s-polarization dependence of the dipole radiation reads

êr ×[êr × êϑ] · ês = − êϑ · êφ = − sinϑ sinφ . (1.79)

Direct consequences of Eq. (1.79) is that êr ×[êr × êϑ] · ês does not depend on the polar angle θ
and that it vanishes for all êr in the (ê1, ê3)-plane [see Fig. 1.6(d)]. The p-polarization component
reads

êr ×[êr × êϑ] · êp = − êϑ · êθ , (1.80)

which is a quantity that depends on ϑ, θ, and φ. In the particular case where êθ belongs to
the (ê1, ê3)-plane, there are two directions, êr = ± êϑ, which make the dot product in Eq.(1.80)
vanish. They correspond to the two intersection of the dipole moment direction with the unit
sphere [see Figs. 1.6(a-c)]. We simply recover the known fact that no power is emitted along the
direction of oscillation of the dipole, and this independently of the polarization. More interesting
are cases for which êθ, and hence êr, do not belong to the (ê1, ê3)-plane. By expanding the dot
product in Eq. (1.80) in terms of the angles ϑ, θ, and φ, we obtain the following implicit
equation for the set of point on the unit sphere for which the p-polarization component of the
dipole radiation vanishes

sinϑ cos θ cosφ− cosϑ sin θ = 0 , (1.81)
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Figure 1.6: (a-c) P-polarization dependence of the radiation of a tilted dipole in free space,
| êr ×[êr × êϑ] · êp |, as êr runs over the unit sphere for different tilting angles ϑ ∈ {0◦, 45◦, 90◦}.
(d) S-polarization dependence of the radiation of a tilted oscillating dipole for ϑ = 45◦. The
black line in panels (a-d) indicates the direction of the dipole moment. (e-f) σ+-polarization de-
pendence of the radiation of a rotating dipole parametrized by ϑ = 45◦ and ϑ = 30◦ respectively
(note the orientation of the coordinate system). Figure taken from Paper [2].

or equivalently for non-pathologic cases

tanϑ

tan θ
=

1

cosφ
. (1.82)

We verify that for the cases φ = 0 and φ = π radians, we recover that θ = ϑ and θ = π−ϑ, i.e. the
points of intersection of the dipole moment direction and the unit sphere. For φ ∈]− π/2, π/2[,
we have 0 < cosφ < 1. The first inequality implies that tan θ > 0 (recall that 0 < ϑ < π/2 hence
tanϑ > 0), and the second implies that tanϑ > tan θ. By the monotony of the tangent function
in the interval [0, π[, and the continuity of Eq. (1.82) with respect to the variables θ and φ, we
deduce that when φ varies in ]−π/2, π/2[ the set of the points of zero traces a curve on the unit
sphere and this curve is latitude-bounded by θ < ϑ. By using the aforementioned symmetry of
the polarization dependence of the dipole radiation with respect to the origin (invariance under
the mapping êr 7→ − êr), we immediately deduce that when φ varies in ]π/2, 3π/2[ the set of the
points of zero traces a curve on the unit sphere which is latitude-bounded by θ > π − ϑ. This
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is well illustrated in Fig. 1.6(b) where | êr ×[êr × êϑ] · êp | is shown as the color map on the unit
sphere. For ϑ = 45◦, one can appreciate the curve of zero p-polarized emission which passes
through the north pole of the unit sphere and the intersection point of the dipole moment
direction with the north hemisphere. The degenerate cases ϑ = 0◦ and ϑ = 90◦ are also
illustrated in Figs. 1.6(a) and (c). For ϑ = 0◦ the curves of zero polarization emission reduces to
two points (the poles). For ϑ = 90◦ the curves merge to become union of the equator (θ = π/2)
and meridians φ = ±π/2. This can be understood from Eq. (1.82) since θ must go to zero when
ϑ → 0 as tanϑ vanishes, and, either φ must go towards ±π/2 or θ must go towards π/2 when
ϑ→ π/2 as tanϑ diverges.

1.3.2 Polarization of a rotating dipole radiation in free space with respect to
the local (êσ+ , êσ−) basis

We consider now the radiation of a rotating dipole lying in the (O, ê1, ê3)-plane. We assume
that Eq. (1.76) still holds but we need to modify the dipole moment. The dipole moment can
be expressed in complex form as

D(ϑ) = d (sinϑ ê1 +i cosϑ ê3) = d ε̂ϑ . (1.83)

The real vector Re[ε̂ϑ exp(−iωt)] hence describes an ellipse in the (ê1, ê3)-plane whose excentric-
ity is parametrized by ϑ. In the limit cases ϑ = 0 and ϑ = π/2 radians we obtain an oscillating
dipole along ê3 and ê1 respectively. For ϑ = π/4, we obtain a circularly rotating dipole. For
0 < ϑ < π/4 (resp. π/4 < ϑ < π/2) the long axis of the ellipse is aligned with the x3-axis (resp.
the x1-axis). We wish to study the polarization of the radiation from such an elliptically rotating
dipole with respect the local left and right circularly polarized basis êσ+ and êσ− defined as

êσ± =
1√
2

(êp±i ês) . (1.84)

The σ+-polarization component of the rotating dipole radiation is then measured by

êr ×[êr ×ε̂ϑ] · êσ+ = −ε̂ϑ · êσ+ , (1.85)

which can be expressed in terms of the angles as6

êr ×[êr ×ε̂ϑ] · êσ+ = − 1√
2

sinϑ cos θ cosφ− i√
2

(cosϑ sin θ − sinϑ sinφ) . (1.86)

The modulus square of Eq. (1.86) hence reads

| êr ×[êr ×ε̂ϑ] · êσ+ |2 =
1

2
sin2 ϑ cos2 θ cos2 φ+

1

2
(cosϑ sin θ − sinϑ sinφ)2 . (1.87)

The directions of zero σ+-polarized light emission are then obtained if and only if both terms in
the right-hand side of Eq. (1.87) are zero. By setting the first term in Eq. (1.87) to zero, there
are three cases to be analyzed. We need to distinguish whether sinϑ, cos θ or sinφ vanishes.
First if ϑ = 0, then the second term is zero if and only if the condition sin θ = 0 is satisfied.
Such a case corresponds to a dipole oscillating along the x3-axis and its zeros of emission are
the poles of the unit sphere. The cases for which ϑ 6= 0 are more interesting. If ϑ 6= 0, then
either θ = π/2 (recall θ ∈ [0, π]) or φ = ±π/2. Let us first assume that φ = ±π/2. The second
term in Eq. (1.87) vanishes if and only if

sin θ = ± tanϑ . (1.88)

6The dot product here must be taken as the Hermitian inner product for complex vectors a · b =
∑
j a
∗
j bj .
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Since sin θ < 1, this last condition imposes a constraint on ϑ which must then lie between 0 and
π/4 in order for tanϑ (and hence sin θ) to be less than unity. Since θ ∈ [0, π], sin θ > 0, and
only the case φ = π/2 yields two solutions, θ1 and θ2 symmetric with respect to θ = π/2. This
is well illustrated in Fig. 1.6(f). Assuming now that θ = π/2, the second term in Eq. (1.87)
vanishes if and only if

sinφ = cotanϑ . (1.89)

The above condition can only be satisfied if ϑ ∈]π/4, π/2[ for sinφ to be less than unity. Then
there are two solutions lying between 0 and π (since sinφ > 0 for ϑ ∈]π/4, π/2[), and symmetric
with respect to π/2. In fact, it can be shown that the polarization of the radiation of the rotating
dipole for ϑ ∈]π/4, π/2[ corresponds to that of a rotating dipole for which ϑ′ = π/2 − ϑ (e.g.
that from Fig. 1.6(f)) but rotated by 90◦ with respect to the x2-axis. Indeed, it is clear from
Eq. (1.83) that the mapping ϑ 7→ π/2 − ϑ rotates the ellipse by 90◦ around the x2-axis. The
above analysis allows for a very intuitive geometrical interpretation. For ϑ < π/4, the rotating
dipole describes an ellipse whose long axis is along the x3-axis. The two directions of zero σ+-
polarized emission correspond to the two directions from which the ellipse is seen as a circle and
with the orientation of the dipole rotation seen as opposite to that of the measured polarization.
In fact, these two directions correspond to pure σ−-polarized emission. This explains why the
zeros of emission are found on the meridian φ = π/2 in that case. For ϑ > π/4 the ellipse’s long
axis is along the x1-direction, which explains the fact that zeros are found on the equator. By
symmetry, the zero scattering direction of the σ−-polarized emission are symmetric to those of
the σ+-polarized emission with respect to the (ê1, ê3)-plane. In the degenerate case ϑ = π/4, the
two solutions merge into one, (θ, φ) = (π/2, π/2) i.e. that êr = ê2, as illustrated in Fig. 1.6(e).

1.4 Reflection and refraction at a planar interface

1.4.1 Reflection and transmission amplitudes

In the case of a planar interface the scattering problem for an incident monochromatic plane
wave reads: find (Escat,Hscat) such that





∆ F(r) + ω2

c2 ε1 F(r) = 0 ∀ r ∈ R2 × R∗+ ,

∆ F(r) + ω2

c2 ε2 F(r) = 0 ∀ r ∈ R2 × R∗− ,

ê3 × lim
η→0

[F(x + η ê3)− F(x− η ê3)] = 0 ∀ x ∈ R2 × {0} .
(1.90a)

Here F is either the total electric field E or magnetic field H, the notation x ∈ R2×{0} must be
understood as x a point in the plane x3 = 0 and η is a positive real number. The last equation,
is the condition of continuity of the tangential component of the electric and magnetic fields at
the boundary. Note that we have dropped the frequency dependence as we study the scattering
of a monochromatic plane wave in the linear regime. To be more accurate, as explained in the
previous subsection, the solution of Eq. (1.90) is not unique. Indeed, we have not yet explicitly
stated the incident field. The incident electric field is described by a monochromatic plane wave
incident from medium 1 (x3 > 0) and given by Eq. (1.33), which we recall here omitting the
time dependence

E0(r) = exp
(
ik−1 (p0) · r

) [
E0,p ê−p,1(p0) + E0,s ês(p0)

]
.
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We introduce F1,2 the restriction of F respectively in the domain R2×R∗+ and R2×R∗−. It can
be shown that the reflected field and the refracted field consist each of a plane wave and read

Escat,1(r) = exp
(
ik+

1 (p0) · r
) [
ρp(p0) E0,p ê+

p,1(p0) + ρs(p0) E0,s ês(p0)
]

(1.91a)

Escat,2(r) = exp
(
ik−2 (p0) · r

) [
τp(p0) E0,p ê−p,2(p0) + τs(p0) E0,s ês(p0)

]
. (1.91b)

Remark 1.5. Equation (1.91) contains a few results worth mentioning. First, in view of the
wave vectors of the reflected and refracted wave, k+

1 (p0) and k−2 (p0) respectively, we note that
their projection onto the (ê1, ê2)-plane are identical to the projection of the wave vector of the
incident wave, namely p0. In other words, the projection of the wave vector onto the plane of the
interface is conserved under reflection and refraction. This is the well-known, Snell-Descartes
law. Second, the amplitudes for the p- and s-polarization components are proportional to the
amplitudes of the p- and s-polarization components of the incident wave respectively. In other
words, the p and s components of the scattering are decoupled (i.e. Rsp = Rps = Tsp = Tps = 0,
compare Eq. (1.91) with Eq. (1.35)). These properties can be summarized in terms of the
reflection and transmission amplitudes (i.e. in Fourier space, see Eq. (1.35)) as

R(p |p0) = (2π)2 δ(p−p0)


ρp(p0) 0

0 ρs(p0)


 , (1.92a)

T(p |p0) = (2π)2 δ(p−p0)


τp(p0) 0

0 τs(p0)


 . (1.92b)

The complex amplitudes ρα and τα are known as the Fresnel amplitudes and are given by [17]

ρs(p0) =
α1(p0)− α2(p0)

α1(p0) + α2(p0)
(1.93a)

ρp(p0) =
ε2α1(p0)− ε1α2(p0)

ε2α1(p0) + ε1α2(p0)
(1.93b)

τs(p0) =
2α1(p0)

α1(p0) + α2(p0)
(1.93c)

τp(p0) =
2
√
ε1ε2 α1(p0)

ε2α1(p0) + ε1α2(p0)
. (1.93d)

For loss-less media (ε ∈ R), we can verify that the sum of the efficiencies of the reflected and
refracted wave is unity, i.e. that the electromagnetic energy is conserved, that is

Rα + Tα = 1 , (1.94)

where here we have denoted by Rα and Tα the efficiencies of the reflected and transmitted wave
(see Eq. (1.68) for the definition of the efficiency), which are also known as reflectivity and
transmittivity in this context, and read

Rα(p0) = |ρα(p0)|2 (1.95a)

Tα(p0) =
α2(p0)

α1(p0)
|τα(p0)|2 . (1.95b)
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Figure 1.7: Reflectivity and transmissivity for the scattering of a p- and s-polarized plane wave
by a planar interface between two dielectric media as a function of the angle of incidence θ0.

For dissipative media (Im ε > 0) the sum of efficiencies is smaller than unity, as electromagnetic
energy is absorbed in the dissipative medium and eventually converted into heat. We illustrate
in Fig. 1.7 the variation of the reflectivity and transmittivity for p- and s-polarized waves as
functions of the angle of incidence θ0 for dielectric media, both in the case where the excitation
is incident in the optically less dense medium (ε1 < ε2, Fig. 1.7(a)) and in the case where the
excitation is incident in the optically denser medium (ε1 > ε2, Fig. 1.7(b)). Two well-known
phenomena are illustrated in Fig. 1.7. First, the phenomenon of total internal reflection can be
observed in Fig. 1.7(b) in the case of reflection in the optically denser medium. There exists, in
this case, a critical angle of incidence, θ0 = θc = arcsin(n2/n1), above which the power incident
on the surface is entirely reflected. This does not mean, however, that no wave is present in
medium 2. The wave in medium 2 is evanescent as the norm of its in-plane wave vector is
larger than n2 ω/c, which translates the fact that the phase velocity of the wave is larger than
that allowed in medium 2. The wave is hence bounded to the surface. The presence of the
evanescent wave can be revealed for example with the phenomenon of frustrated total internal
reflection in which a third medium, say with ε3 = ε1, is placed in the vicinity of the interface
between media 1 and 2. The power of the incident wave is hence redistributed between the
reflected wave and the one transmitted in medium 3, as photons are allowed to tunnel through
the thin gap between media 1 and 2 with appreciable probability; the thinner the gap, the
larger the probability (we take here a quantum mechanical picture for simplicity). The second
phenomenon of interest which is present in both configurations considered in Fig. 1.7 is the
so-called Brewster or polarizing angle. For p-polarized light, there exists an angle of incidence
θ0 = θB = arctan(n2/n1), known as Brewster’s angle, for which the reflected wave disappears.
Contrarily to the phenomenon of total internal reflection, it is really the reflected wave which
disappears in the sense that the reflection amplitude vanishes, and not even an evanescent
wave is present. At the Brewster angle of incidence, unpolarized light is then reflected with a
purely s-polarized state, hence the denomination of polarizing angle. This phenomenon can
be interpreted at different level of depths of understanding. One way of understanding the
Brewster effect is to first acknowledge the zero of the reflection amplitude for p-polarized light
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and to ask ourselves how were the Fresnel coefficients derived and what is the fundamental
difference between p- and s-polarized light. The Fresnel coefficients are usually derived by
assuming the presence of three plane waves of same linear polarization (p or s): the incident,
the reflected, and refracted waves. What determines the precise expression of the Fresnel
coefficient for s- or p- polarized light is directly linked to the boundary conditions. In both
cases, the problem of vector wave scattering reduces to a scalar problem but the boundary
conditions at the interface are different. The zero of reflection amplitude for p-polarized light
at the Brewster angle can then be interpreted as a situation of impedance matching, i.e. a
configuration in which the refracted wave only is necessary to satisfy the boundary conditions
together with the incident wave. This picture can be taken even further by claiming that the
incident wave and the refracted wave, seen as one unified mode, is in some sense a not bounded
eigenmode of the system, similar to a surface plasmon polariton which is a eigenmode bounded
to the surface on both side of the interface (see next section). Such an interesting picture is
motivated and well illustrated in [7]. Although these considerations give a somewhat clarified
mathematical intuition of the phenomenon, the underlying physical mechanism remains rather
obscure. It is thus time for the next questions: where do the different boundary conditions come
from, and what do they physically mean? The boundary conditions across an interface between
two media are encoded in the Maxwell equations, Eq. (1.1), taken in the sense of distribution,
equations which we have deliberately taken for granted. In fact, these equations are the result
of a modeling of the response of a medium, composed of atoms, from a microscopic picture
to a macroscopic picture averaged over many atoms. The details of such a modeling would
take us too far beyond the scope of this work, and we only need here to make one simple
but important remark. An atom is composed a positively charged nucleus and negatively
charged electrons. Hence, from the point of view of its interaction with light, an atom can be
modeled at the simplest level of sophistication as a dipole. It is thus expected that appropriate
macroscopic description of continuous media should retain the fundamental dipole character of
the underlying discrete constituents of the medium. This is well hidden in Maxwell equations,
but it is there. We can hence hope for a microscopic picture of the Brewster phenomenon
in terms of dipole radiation. The commonly accepted picture for explaining the Brewster
phenomenon in the case of a plane wave incident on a vacuum/dielectric interface is that the
dipoles in the dielectric medium oscillate along the electric field of the refracted wave. Since
an oscillating dipole does not radiate any power along the direction of oscillation, a vanishing
reflected wave is observed when the direction of propagation of the reflected wave (which is
produced by the response of the dielectric medium, i.e. the sum of all dipoles radiation) is
colinear to the direction of oscillation of the dipoles in the dielectric medium. In other words,
the Brewster phenomenon is observed when the wave vectors of the reflected and refracted waves
are orthogonal. Although the above picture is somewhat satisfactory, it must be complemented
with some remarks and a more subtle analysis. In the case of internal reflection, the Brewster
phenomenon also occurs even though no dipole is present in the vacuum. This seems to indicate
that the reflected wave, which is still produced by the response of the dielectrics but as the
medium of incidence this time, vanishes although the dipoles supposedly oscillating now along
the direction of the electric field of the incident wave are not oriented along the wave vector
of the reflected wave. This issue has been clarified, to the best of our knowledge, by Doyle
in 1985 [27] based on the concept of the Ewald wave-triad introduced by Ewald back in 1916
[28] when deriving the Ewald-Oseen extinction theorem based on principles of microscopic optics.

We would like to stress here that we have chosen to take the above discussion at a very conceptual
level without motivating our claims with too much mathematical details. The reason for this
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choice is that we only want to prepare the reader to a more in-depth analysis and generalization
of this discussion in the case of light scattering by a weakly rough interface in Chapter 10. In
particular, the Fresnel coefficients will be revisited in details using a scalar-polarization factoriza-
tion which follows very naturally from the reduced Rayleigh equations and which were discussed
by Doyle in [27]. Such a factorization of the Fresnel coefficients is fruitful for understanding the
physics from a microscopic picture and will be analyzed in details in Chapter 10.

1.4.2 Surface plasmon polariton

So far we have been paying attention to waves reflected from and refracted through a planar
interface assuming that the incident wave was propagating, as coming from infinity. We have
seen that in the case of total internal reflection the refracted wave is evanescent in the optically
less dense medium while the reflected wave propagates away from the surface. We are now
asking ourselves whether evanescent waves, bound to the surface from the two sides can exist.
The answer is yes, but under some conditions. In particular, we are looking for non-trivial
solutions of the homogeneous problem in which no sources are present. In other words, we are
looking for surface waves that are propagating freely along the surface without coupling out
to modes propagating away from the surface nor from incoming propagating waves. Assuming
loss-less non-magnetic isotropic media, it can be shown that such a mode can exist if (i) the
dielectric constants of the two media are of opposite sign, and (ii) that the wave is p-polarized.
In addition, a specific condition is required for the wave vector of the wave as we will soon see.
Assuming ε1 > 0 and ε2 < 0, all these conditions can be derived by assuming a field taking the
form of a plane wave evanescent on both side of the surface as

E1(r) = exp
(
ik+

1 (p) · r
)
A1 (1.96a)

E2(r) = exp
(
ik−2 (p) · r

)
A2 (1.96b)

|p | > √ε1
ω

c
, (1.96c)

where A1 and A2 are constant amplitudes. We then can infer the required conditions for
satisfying the boundary conditions (see e.g. [8]). In order to avoid a lengthy derivation which
can be found in textbooks on plasmonics [8], we simply take a short cut which makes use of
the Fresnel coefficients and which we motivate by an analogy with the response of a harmonic
oscillator. For a harmonic oscillator, it is known that when excited at an eigen-frequency with
an external force, the response of the system is resonant and the oscillation becomes unbounded.
The idea is then to look for conditions which would make the Fresnel coefficients diverge. It is
clear from Eq. (1.93) that the denominator for s-polarized light, α1 +α2, never vanishes however
the dielectric constant and incident wave vector is chosen, which hints at the fact that there
does not exist any s-polarized eigen-mode. However, the denominator for p-polarized light,
ε2α1 + ε1α2, may vanish if ε1 and ε2 have opposite signs. In addition, the corresponding in-plane
wave vector, pSPP, is thus such that

ε2α1(pSPP) + ε1α2(pSPP) = 0 . (1.97)

Together with the dispersion relations in both media, |k±j (pSPP)|2 = εjω
2/c2, we can solve for

the in-plane wave vector as a function of the dielectric constants to obtain

|pSPP | =
(

ε1ε2
ε1 + ε2

)1/2
ω

c
. (1.98)
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Figure 1.8: Dispersion curve for a surface plasmon polariton propagating along a planar surface
between vacuum ε1 = 1 and a loss-less Drude metal ε2 = 1−ω2

p/ω
2. The dashed lines indicate the

light line, i.e. the dispersion curve for a grazing wave propagating in vacuum and the asymptotic
line of the SPP dispersion curve.

Equation (1.98) is the dispersion relation for a surface plasmon polariton propagating along a
planar surface between a dielectric and a metal. Note that due to the rotational invariance of
the system, no privileged direction can be inferred which is the reason for only knowing the
norm of the in-plane vector. However, when excited, the excitation may break the symmetry
and lead to a specific direction for pSPP. It is instructive to consider the dispersion curve of a
surface plasmon polariton on a planar interface between vacuum and a metal whose frequency
dependent dielectric function is modeled by a Drude model (see Eq. (1.17)). The dispersion
curve is illustrated in Fig. 1.8. From the dispersion curve in Fig. 1.8, it is clear that the norm of
the in-plane wave vector of a SPP is larger than that of a grazing wave propagating in vacuum,
as the dispersion curve lies to the right of the so-called light line. This would also occur if we
had a dielectric with ε1 > 1 as medium 1 and the dispersion curve would lie to the right of the
line of equation |p | = √ε1ω/c. Consequently, a SPP on a planar interface cannot be excited by
an incident progressive (propagating) wave. There exists essentially two ways to excite a SPP
with electromagnetic waves. The first idea is to excite a SPP by the use of an evanescent field
decaying away from another object which when taken close to the surface excites a SPP as the
evanescent field may couple to a SPP. Examples of such a set up are the Otto and Kretschmann
configurations [8]. The Otto configuration consists in approaching a prism close to the metallic
surface and in shining light in such a way that the light reflected inside the prism would undergo
total internal reflection in the absence of the metal. The evanescent field on the side of the
prism facing the metallic surface leaks the metal and may excite a SPP at the vacuum/metal
interface. Alternatively, a prism can be placed directly on top of a thin metallic film and a SPP
may be excited on the metal/vacuum interface; this is the Kretschmann configuration. A second
idea to excite a SPP is to consider a corrugated interface instead of a planar one. As will be
discussed in the next section, a periodic grating diffracts an incident plane wave into a set of
plane waves which propagate with specific wave vectors given by the grating formula, as well
as a set of evanescent waves. In the case where such an evanescent mode has a in-plane wave
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vector close to that of a SPP, a resonance may occur. More generally, SPP may be excited by
corrugations or defects on a metallic surface.

Remark 1.6. We would like here to precise a terminology that may at time lead to confusion.
We talk of an evanescent wave for a wave whose intensity decays exponentially in the direction
orthogonal to the average plane of the interface. The term of superficial wave or bounded wave
may also be found in the literature. These are not necessarily resonant modes such as the ones
described above like a surface plasmon polariton which is special type of evanescent wave being
solution of the homogeneous problem. The term of surface wave may be found in the literature
to designate such specific resonant waves.

1.5 Scattering by a periodic surface

1.5.1 Diffractive orders and the grating formula

In the case of the scattering of a monochromatic plane wave by a periodic surface, or grating, it
can be shown that only a discrete set of wave components are allowed in the scattered field. The
in-plane wave vectors of the scattered waves are given by the grating formula, stating that the
difference between the in-plane wave vector of a scattered wave and the in-plane wave vector of
the incident wave must lie on the reciprocal lattice of the surface (see Fig. 1.9). Mathematically,
for a surface whose periodicity is characterized by the two primitive lattice vectors a1 and a2,
the scattered field may be written as

E
(scat)
l (r) =

∑

`∈Z2

E
(`)
l (p0)eik

±
l (p`)·r =

∫

R2

(2π)2

(∑

`∈Z2

E
(`)
l (p0) δ(p−p`)

)
eik

±
l (p)·r d2p

(2π)2
, (1.99)

where the in-plane wave vectors (p`)`∈Z2 are given by

p` = p0 + G(`) , (1.100)

and where p0 denotes the incident in-plane wave vector and G(`) is a reciprocal lattice vector
defined by

G(`) = `1 b1 + `2 b2 . (1.101)

Here b1 and b2 are the primitive reciprocal lattice vector defined by the relation

ai ·bj = 2π δij for i, j ∈ {1, 2} . (1.102)

Based on Eq. (1.99), the reflection and transmission amplitudes are then of the form

X (p |p) = (2π)2
∑

`∈Z2

δ(p−p`) X(`)(p0) , (1.103)

where X = R or T. In addition, by using the dispersion relation |k±l (p`)|2 = εl ω
2/c2, the

only waves that have an in-plane wave vector smaller than
√
εl ω/c can propagate in medium l

while the remaining are evanescent waves. For the propagating waves, the polar and azimuthal



i
i

“report” — 2018/9/20 — 10:11 — page 40 — #62 i
i

i
i

i
i

40 Chapter 1. Scattering of electromagnetic waves

b1

b2

p1

p2

|p | = √
ǫl

ω
c

p

p(-,-)

p(,-)

Figure 1.9: Illustration of the grating formula for a square grating. The in-plane wave vectors
allowed in the scattered field expansion differs from the incident in-plane wave vector p0 by a
reciprocal lattice vector. The wave components, or modes, whose in-plane wave vector lies inside
the blue disk of radius

√
εl ω/c are the only modes allowed to propagate in medium l, while the

modes with in-plane wave vector outside the disk are evanescent in medium l.

angles of scattering, θ
(`)
l and φ

(`)
l , between the normal to the average plane of the surface and

the diffracted wave vector k±l (p`) are then given by

√
εl
ω

c
sin θ

(`)
l = |p` | (1.104a)

cosφ
(`)
l =

p` · ê1

|p` |
(1.104b)

sinφ
(`)
l =

p` · ê2

|p` |
. (1.104c)

For a one dimensional grating illuminated under non-conical incidence (i.e. with the plane of
incidence perpendicular to the principal direction of the corrugations) the grating formula for
the scattered angles takes the well-known expression

nl sin θ
(`)
l = n1 sin θ0 + `1

λ

a
. (1.105)

1.5.2 Rayleigh and Wood anomalies

In a reflectivity measurement of a periodic grating, when the light intensity reflected specularly
from the grating is recorded as one varies the angle of incidence or the wavelength of the
source, the recorded intensity may experience sudden variations when crossing specific angles
of incidence or specific wavelengths. Depending on the incident polarization and whether the
material composing the grating is a metal or a dielectric, one may observe two types of such
anomalies. Some occur as sharp changes of intensity, making edges in the intensity spectrum,
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and can be observed regardless of polarization and the material constituting the grating. Other
occur as broader variations over a spectral or angular range only for metallic grating illuminated
under p-polarization. These two types of anomalies are known as Rayleigh (or Rayleigh-Wood)
and Wood anomalies respectively. The next paragraph gives a brief historical development
for the understanding of these two types of anomaly based on a more complete and excellent
review written by Maystre in chapters 1 and 2 of Ref. [7] and the references therein. Then the
physical interpretation of these phenomena will be illustrated in some more details.

The so-called Wood anomalies were observed by Wood in 1902 while studying the reflection of a
spectrally continuous source of light by a metallic grating which he named ”singular anomalies”
and he made the crucial remark that they could only be observed for p-polarization [29]. Lord
Rayleigh attempted to give an explanation of these anomalies using arguments based on the
apparition or disappearance of propagating diffracted modes at grazing emergence and could
predict within a few percent accuracy the spectral positions of the anomalies based on the grating
formula [30, 15]. The small deviation between Lord Rayleigh’s calculation and the positions of
the anomalies observed by Wood were believed to be due to poor knowledge of the precise value of
the grating period. Only thirty years later, did Strong [31] complement Rayleigh’s conjecture by
distinguishing two types of anomalies as he studied experimentally the light reflected by gratings
with identical period but made of different materials and different profiles. Strong concluded
from his study that on the one hand ”the dark band [anomaly] has a sharp edge which falls
at the wave-length predicted by Rayleigh’s relation at a position which is independent of the
nature of the film which develops the band” and on the other hand ”the bright band is displaced
from the dark band an amount which depends on the nature of the metal film” [31]. In other
words, Rayleigh’s conjecture only explains the sharp anomaly which only depends on the period
of the grating and angle of incidence while the anomalies observed by Wood seemed to be
rather of the second type described by Strong, and cannot be explained purely on geometrical
consideration, such as the grating formula, since the positions of the anomalies depend on the
material. Considering these new insights, Fano gave the first modern theoretical explanation of
the Wood anomalies based on the excitation of surface plasmon polariton, although the term of
surface plasmon polariton and its condensed matter interpretation appeared later. The terms
used by Fano was ”forced resonance” of ”superficial stationary waves” and ”quasi-stationary
waves” (”superficial wave” must be read as a synonym of evanescent wave and ”quasi-stationary”
refers to damped SPP), but apart from the terminology, Fano’s interpretation and calculations
correspond to that of the excitation of a SPP [32]. As pointed out by Strong, Fano made the
distinction between the Rayleigh anomaly, edge in the intensity spectrum, from the broad or
”diffuse” Wood anomaly which starts from the Rayleigh edge and consists of a dark band followed
by bright band red-shifted from the Rayleigh edge. Fano derived, based on a perturbative
solution of the Rayleigh method to second order in the surface amplitude, that (i) the diffraction
amplitudes of all modes should exhibit a step at the passing off of a grazing diffracted order (and
it was also noted that the jump may or may not be significant depending on the parameters of
the system), and (ii) that the Wood anomaly occurs as an evanescent diffracted mode has an in-
plane wave vector approaching that of the SPP which was predicted to be always slightly larger
than the wave number in vacuum hence explaining the red-shift with respect to the Rayleigh
edge, and (iii) the broad nature of the Wood anomaly is analogous to that of the resonant
amplitude of a damped oscillator. The theoretical and phenomenological understanding of the
Wood anomalies were then subsequently developed through experimental and theoretical studies
(see e.g. [33]).
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Rayleigh anomalies

A Rayleigh anomaly may be observed as an edge in the efficiency of diffracted modes in either
the medium of incidence (reflected mode) or in the medium of transmission (transmitted
mode) as one varies the angle of incidence or the wavelength of the incident light. As an
illustrative example, let us consider the situation depicted in Fig. 1.10. A one-dimensional
grating is illuminated under non-conical incidence by a plane wave with a wavelength larger
than the lattice constant and such that for not too large angles of incidence only the zero order
reflected and transmitted modes are allowed to propagate (Fig. 1.10(a)). For such a small angle
of incidence, the discrete modes with in-plane wave vectors p` for ` 6= (0, 0) lie outside the
propagation disk both in the medium of incidence and the medium of transmission, and hence
are evanescent modes in both media, as represented by the red fins in Fig. 1.10(a). Now, by
increasing the angle of incidence, their will be a certain angle at which the mode p(−1,0) will lie

exactly on the boundary of the propagation disk in the transmitted medium (assuming here
dielectric media with ε1 < ε2). In other words, for an angle of incidence just below this critical
angle the mode given by p(−1,0) is evanescent in medium 2, while for an angle of incidence just
above this critical angle this mode propagates in medium 2 with grazing angle of scattering.
This transition from an evanescent to a propagating mode is associated with the opening of
an additional channel in which the radiated power can be transported. Consequently, we
may observe a re-distribution of the scattered power shared between zero order reflected and
refracted modes and the transmitted mode characterized by ` = (−1, 0), hence featuring
a sudden variation in the reflectivity and transmissivity measurements (for which only the
power radiated by the zero orders is recorded). Note that during this transition, the reflected
mode ` = (−1, 0) is still evanescent. By further increasing the angle of incidence, we may
reach other critical angles for which consecutive transitions from evanescent to propagating
modes in either media can occur. Note that if we had started with a wavelength smaller
than the lattice constant, some propagating diffractive order would already be present at
normal incidence. By increasing the angle of incidence, some transitions from evanescent to
propagating modes may occur, as previously illustrated, but also transitions from propagating
to evanescent modes can occur as well. The reader may consider for instance the mode ` = (1, 0).

We have considered in the previous discussion the evanescent-propagating transitions when
varying the angle of incidence and fixed wavelength. We may be interested by fixing an angle
of incidence, and then varying the wavelength instead. In this case, the disk of propagation will
have varying radius. Therefore, we way observe evanescent-propagating transitions at discrete
wavelengths (or equivalently photon energies) when an in-plane wave vector p` is crossed by
the varying boundary of the propagating disk.

Now extending the discussion to the more general case of a two-dimensional lattice, we may ask
the following question. What is the set of points in the parameter space (θ0, φ0, λ), or equivalently
(θ0, φ0, ~ω), that are associated with an evanescent-propagating transition of a given mode ` in
a given medium? Such a set of points may in general draw a surface in the (θ0, φ0, λ) space,
and we will refer to such surfaces as Rayleigh surfaces. If one fixes one of the parameters, say
λ, we may refer as Rayleigh lines the subset of a Rayleigh surface intersected by the plane
characterizing the fixed parameter (e.g. λ = constant). To obtain the equation of a Rayleigh
surface, it suffices to take the square modulus of the grating formula and set |p` |2 = εl ω

2/c2 to
translate the fact that p` must lie on the boundary of the propagation disk for the medium l at
the transition. We then obtain the equation of the Rayleigh surface for the mode ` in medium
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Figure 1.10: Illustration of a Rayleigh anomaly. Dielectric grating with period a < λ, illuminated
at an angle θ0 such that: (a) only the zero reflected and transmitted diffractive orders are
allowed to propagate by the dispersion relation, (b) the transmitted diffractive order ` = (−1, 0)
is allowed to propagate with grazing direction. By increasing the angle of incidence from (a)
to (b), the evanescent wave characterized by the order ` = (−1, 0) in the substrate becomes a
propagating wave.

l as

|p0 + G` |2 = εl
ω2

c2
(1.106)

|√ε1
ω

c
(sin θ0 cosφ0 ê1 + sin θ0 sinφ0 ê2) + G` |2 = εl

ω2

c2
. (1.107)

It can also be written as

(√
ε1 sin θ0 cosφ0 + G` · ê1

λ

2π

)2

+

(√
ε1 sin θ0 sinφ0 + G` · ê2

λ

2π

)2

= εl . (1.108)

In the special case of rectangular lattices, of lattice constants a1 and a2 along the x1- and x2-axis
respectively, we have simply

(√
ε1 sin θ0 cosφ0 + `1

λ

a1

)2

+

(√
ε1 sin θ0 sinφ0 + `2

λ

a2

)2

= εl . (1.109)

Note that in general, for a skewed lattice `1, `2, the norms a1, a2 of the primitive lattice vectors
and the angle between them, ϑ, may contribute in both terms of Eq. (1.108). For a skewed
lattice defined by the primitive lattice vectors

a1 = a1 ê1 (1.110a)

a2 = a2 (cosϑ ê1 + sinϑ ê2) , (1.110b)

and the corresponding primitive reciprocal lattice vectors read

b1 =
2π

a1

(
ê1 −

1

tanϑ
ê2

)
(1.111a)

b2 =
2π

a2 sinϑ
ê2 . (1.111b)
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Figure 1.11: (a) Illustration of a Wood anomaly. Metallic grating illuminated at an angle θ0 such
that one of the evanescent diffracted mode excites a surface plasmon polariton as p` ≈ pSPP. (b)
Total efficiency and efficiencies of the zero and -1 orders reflected from a silver one-dimensional
sinusoidal grating as a function of the angle of incidence for p-polarized light. The wavelength
is equal to λ = 476 nm, the period is equal to a = 1210 nm and the amplitude of the sinusoid is
H = 95 nm (i.e. that the peak to dip height is 2H = 190 nm. The vertical dashed lines shows the
expected positions of the Rayleigh anomalies according to Eq. (1.109). The results were obtained
from computer simulation based on the reduced Rayleigh equations, a method which will be
presented in the remaining of this work. The presented system was considered experimentally
and numerically respectively by Hutley and Bird [34], and McPhedran and Maystre [35].

Hence the equation for the Rayleigh surface reads

(√
ε1 sin θ0 cosφ0 + `1

λ

a1

)2

+

(√
ε1 sin θ0 sinφ0 + `2

λ

a2 sinϑ
− `1

λ

a1 tanϑ

)2

= εl . (1.112)

Remark 1.7. There is a Rayleigh surface associated with each choice of mode ` = (`1, `2) and
medium.

Remark 1.8. The media may be dispersive, hence ε1 = ε1(λ) and ε2 = ε2(λ), which indicates
that finding the Rayleigh surfaces, or Rayleigh lines, may require solving Eq. (1.108) numerically.
If the media are non-dispersive, solving Eq. (1.108) reduces to finding roots of a polynomial of
degree two.

Wood anomalies

Let us consider a metallic periodic grating as depicted in Fig. 1.11(a). Consider first that one
starts by setting an angle of incidence such that the ` = (1, 0) mode propagates in medium
1, and then we increase the angle of incidence. For a certain angle of incidence, given by
Eq. (1.112) for a fixed wavelength and azimuthal angle, the order ` = (1, 0) turns evanescent
and we obtain a Rayleigh anomaly as described in the previous paragraph and one observes a
sharp edge in the efficiency as a function of the angle of incidence. At the Rayleigh anomaly
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the norm of the in-plane wave vector for the mode ` = (1, 0) is by definition equal to
√
ε1ω/c.

By increasing further the angle of incidence, the norm of the in-plane wave vector increases to
be larger than

√
ε1ω/c and approaches the resonant in-plane wave vector for a surface plasmon

polariton, pSPP. Recall from Section 1.4.2 that we have derived that the norm of the in-plane
wave vector for a SPP is larger than

√
ε1ω/c for a planar interface. This fact remains valid for a

slightly corrugated grating where the corresponding resonant wave vector can be expected to be
only slightly perturbed from that of a planar surface, or in other words, the dispersion curves
for the SPP in each case would be rather close. In an analogous way to a harmonic oscillator,
a divergence may be obtain in the scattering amplitudes at p` = pSPP for a loss-less metal.
In practice, metal are dissipative and it is rather the behavior of a damped oscillator which
is observed, characterized by a broad variation of the scattering amplitudes, or of efficiencies
for the modes which propagates. Indeed, for dissipative metals, the resonant in-plane wave
vector has complex valued components and cannot be reached by p` which has real valued
components, hence the broad and bounded nature of the response as p` ≈ pSPP.

Figure 1.11(b) illustrates the above discussion in the case of a one-dimensional sinusoidal grating
made of silver. The total efficiency (sum of efficiencies of all propagating modes) as well as the
efficiency of the zero and -1 orders are shown as a function of the angle of incidence θ0 for
non-conical incidence. The sharp Rayleigh anomalies are visible in all curves at the passing
on and off of various diffracted mode whose positions predicted from Eq. (1.112) are indicated
by the vertical dashed lines. Furthermore, broader variations in the efficiencies are observed as
the various evanescently diffracted modes excite a SPP. The results shown in Fig. 1.11(b) are
computer simulations obtained based on the reduced Rayleigh equations, which is the method
which will be discussed at length in the remaining of this work. This example can be considered
as a first non-trivial benchmark test for the method since the obtained results are in excellent
agreement with those obtained numerically by McPhedran and Maystre in Ref. [35] and the
experimental measurements made by Hutley and Bird in Ref. [34] for the grating described in
the figure caption. The reader is invited to compare the results provided in Fig. 1.11(b) with
those obtained in the aforementioned references.

1.6 Scattering by a randomly rough surface

When an optically coherent source of light, such as a laser beam, is scattered from a randomly
rough surface, we have all experienced that the intensity of the light scattered in all directions
can be described, roughly speaking, as the sum of two components. One that corresponds to a
strong specularly scattered peak, and one that is a diffusely scattered background of speckles.
We need to precise what is meant by diffuse and to introduce some related jargon that is
often encountered in the literature and that, unfortunately, may be source of confusion when
describing some physical phenomena. In the following sections, we will first explain how random
surfaces following the same statistical laws are described mathematically so that we have a better
understanding of the type of system considered. Then some vocabulary will be introduced related
to the scattering of light from randomly rough surfaces as well as the definition of the mean
differential scattering coefficients, which will be the observables of interest when studying the
scattering from randomly rough surfaces in this thesis.
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1.6.1 Mathematical description of a random surface

In this thesis, devoted to the theory of the reduced Rayleigh equations, all the considered
surfaces may be described by an equation x3 = ζ(x1, x2) = ζ(x), where x = x1 ê1 +x2 ê2

represents a point in the plane (O, ê1, ê2). The surface is then characterized by a function ζ
of the two in-plane variables (x1, x2) (see illustration in Fig. 1.3). To define random surfaces,
we need a probability space (Ω,F ,P) where Ω is a sample space, F is a σ-algebra on Ω
and P a probability measure on (Ω,F). Let the plane R2 be an index space, a stochastic
process, {Zx}x∈R2 , is a family of random variables Zx defined on (Ω,F ,P) and indexed
by x ∈ R2. A realization of the stochastic process is then the set of values, indexed by
R2, taken by the random variables Zx(ω) for an outcome ω, i.e. that a realization of a
stochastic process can be viewed as a function defined by ζω : x ∈ R2 7→ ζω(x) = Zx(ω).
It is the latter notation which we will adopt, by rather having ω as an index and x as an
argument of the realization function since we find it closer to the intuition that ”for each
outcome ω, one has a realization of the function ζ”. It is merely a reshuffling of notations
suiting better the physical intuition rather than the probabilistic one. What is important
to remind is that for each outcome of the sampling space ω ∈ Ω, one obtains a function ζω.
The values taken by ζω at a given point x ∈ R2 describes a random variable when viewed
as a function of ω, i.e. precisely Zx. Hence we will denote the corresponding random vari-
able simply by ζ(x) instead of Zx, and it has to be understood as ζ(x) : ω ∈ Ω 7→ ζω(x) = Zx(ω).

We will now make some assumptions on the properties we want a stochastic process to have.
First, we want the realizations of the stochastic process to be continuous with respect to x, i.e.
that the realizations ζω are continuous. This is indeed a rather natural property one may expect
from a physical surface. Moreover, one may wish the realization functions to be differentiable.
Second, we will assume that all the random variables (remember indexed by x) ζ(x) follow the
same law of probability, i.e. that the law of probability is independent on the point x. For
example , the random variable ζ(x) could follow a Gaussian law of probability, i.e. that the
cumulative probability for ζ(x) would of the form

P(ζ(x) < z) =
1√
2πσ

∫ z

−∞
exp

(
− (z′ − µ)2

2σ2

)
dz′ . (1.113)

In particular, this implies that all the random variables have same average and variance. By a
arbitrary choice of the origin of the coordinate system the average can be chosen to be zero and
we have the following properties

〈ζ(x)〉 = 0 , (1.114)
〈
ζ(x)2

〉
= σ2 , (1.115)

where the angle bracket denotes an ensemble average over realizations of the stochastic process.
The constant σ > 0 hence denote the standard deviation of surface height with respect to the
average plane x3 = 0, and is often called rms roughness in the literature.

Remark 1.9. Note that in principle one may define a stochastic process such that the average
〈ζ(x)〉 may depend on x as well as the higher moments of the random variable. We discard this
possibility for simplicity.

For a Gaussian height distribution, it is enough to give the two first moments to define completely
the law of probability. We have now described how the probability measure of surface height
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(a) Surface profile, a = λ (b) Surface profile, a = λ/4
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(d) Auto-correlation functions.

Figure 1.12: (a, b) Two dimensional portion of a computer generated realization of a random
surface with Gaussian height probability density with zero mean and rms roughness σ = λ/10
with Gaussian auto-correlation function characterized by a correlation length equal to (a) a = λ
and (b) a = λ/4. (c) One dimensional cuts of the surfaces in (a) and (b) along a plan x2 =
constant. (d) Graphs of the auto-correlation functions.

at a given point x may be defined. However, it remains an additional degree of freedom, which
is the lateral correlation between two points on the surface. In terms of random variables, we
must define the covariance between two random variables ζ(x) and ζ(x′) indexed by two points
x and x′. This defines the so-called auto-correlation function W : (x,x′) ∈ R2 × R2 7→ R as

〈ζ(x)ζ(x′)〉 = σ2 W (x,x′) . (1.116)

Note that with this definition, we have W (x,x) = 1. In practice, the auto-correlation may
only depend on the difference of positions, i.e. that the auto-corralation can be of the form
W (x − x′) which means that the absolute position on the surface does not matter, the surface
looks homogeneous in terms of correlation, but it may still be anisotropic. If in addition the auto-
correlation is anisotropic, the auto-correlation function only depends on the distance between
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two positions, i.e. that the auto-correlation function can be of the form W (|x− x′|). Typically,
the auto-correlation will be a decaying function of the distance between two points. Physically,
the heights at two points on a surface are expected to be more correlated if they are close than if
they are distant. The characteristic decay length of the auto-correlation is called the correlation
length. Examples of an isotropic Gaussian and an exponential auto-correlation functions are
given in Eq. (1.117). The correlation length is denoted a > 0.

WGauss(x,x
′) = exp

(
−|x− x′|2

a2

)
, (1.117a)

Wexp(x,x′) = exp

(
−|x− x′|

a

)
. (1.117b)

Moreover, a quantity of interest when the auto-correlation function only depends on x − x′ is
the so-called power spectrum g, defined as the Fourier transform of the auto-correlation function

g(p) =

∫
W (x) exp (−ip · x) d2x (1.118)

For example the power spectrum for the Gaussian auto-correlation function defined in
Eq. (1.117a) is given by

g(p) = πa2 exp

(
−|p|

2a2

4

)
. (1.119)

The power spectrum is particularly useful numerically to generate realizations of a stochastic
process with a specific auto-correlation function. A method known as the Fourier filtering
method, and which we have used in the work presented in this thesis for generating randomly
rough surfaces, is detailed for example in Ref. [36].

To sum up, the statistical properties of random surfaces can be determined essentially by two
types of data: (i) the probability distribution of heights and (ii) the auto-correlation function.
We illustrate in Fig. 1.12 examples of computer generated realizations of random surfaces for two
stochastic processes characterized by a Gaussian height probability density with zero mean and
rms roughness σ = λ/10 and different isotropic Gaussian auto-correlation functions characterized
by a correlation length a = λ and a = λ/4 whose graphs are plotted in Fig. 1.12(d). Note that
we express all lengths normalized by the light wavelength, which is a rather natural way to set
the physical scale of the problem. Although the two surfaces share the same height probability
density and have heights amplitudes which would roughly varies by a few σ around the plane
x3 = 0, the surface for which the correlation length is shortest oscillates more rapidly than that
for which the correlation length is largest, as can be seen in Figs. 1.12(a-c). It is then expected
that the characteristic slopes of profiles with short correlation length will be larger than those
of profiles with large correlation length. In terms of light scattering it seems natural to expect
that surface profiles with short correlation length will scatter light more broadly than surface
profiles with long correlation length. Such an intuitive behavior will be made more precise in
later chapters.

1.6.2 Some vocabulary

Focusing on the reflection of light by a surface7, a commonly accepted definition for diffuse
reflection is the reflection of light from a surface such that an incident coherent ray is reflected

7to fix the idea but transmission can be treated similarly
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at many angles rather than at just one angle as in the case of specular reflection. This definition
sounds intuitively simple and legit. Note that this suggests though that the reflection from a
grating (for which the lattice constant is larger than the wavelength) is a case of diffuse reflection.
Do we really want to consider such a case as ”diffuse”? Maybe, maybe not, that is a matter of
opinion. Nevertheless, we feel that we might want to have different terms when talking about
the scattering from a grating and that from a randomly rough surface. Indeed, in the first case
light is scattered on a well defined discrete set of angles while, in the latter, light is scattered
(on average) smoothly over all angles. So let us keep our simple (and maybe naive) definition of
diffuse scattering and try to make sub-categories. What is the difference between a grating and a
randomly rough surface from an optical point of view? In the first case, the diffraction peaks are
the result of an interference phenomenon, only path scattered on specific directions will interfere
constructively and the intensity diffracted on the remaining directions will vanish (for an infinite
grating). So we have the feeling that optical coherence is a key point here. On the other side, on
average, for a randomly rough surface, the phase of each path scattered in a given direction will
be random and there will be no overall strong constructive or destructive interference. So all
direction are somewhat equivalent and we observe this background of scattered light. It seems
that this observation, interpreted as a loss of coherence, lead some authors to call it incoherent
scattering as opposition to the coherent scattering of a grating. We will see that this appellation
still is ambiguous. Indeed, what about the strong specular reflection we observe for weakly
rough surface? What if we had a perturbed grating? We would expect still some peaks but with
a background added to it. So both may happen for a given surface. The trick is to decompose
the overall scattering in two pieces, a coherent and an incoherent component. If we look at
the scattering from one single rough interface with a laser, we actually do not see a smooth
intensity pattern, we see speckles. By changing surfaces, the speckle pattern will change, some
bright spot may become dark and vice versa. However, the specular peak still remains bright.
So this seems to indicate that for different surfaces, the field off-specular fluctuates between
positive and negative values, so the average field may very well be zero, but the intensity being
the absolute square of the field will oscillate between 0 and some positive value, so in average,
the intensity will be strictly positive. For the specular direction, the same happens with the
difference that the field itself rather oscillates around a non zero average, since we always see it
bright whatever the surface realization. This gives our decomposition: the coherent component
of the average intensity is the intensity of the average field, and the incohorent component of the
average intensity is the average intensity minus the intensity of the average field.

1.6.3 Mean differential scattering coefficients

Based on the above discussion, and the definition of the differential scattering coefficients given
in Section 1.2.4, we can decompose the mean differential scattering coefficients into a sum of a
coherent and an incoherent component. Let us consider the following ensemble average for the
differential reflection coefficient of the truncated system

〈
∂R

(S)
αβ

∂Ωr
(p | p0)

〉
=
ε1
(
ω

2π c

)2
cos2 θr

S cos θ0

〈
|R(S)

αβ (p | p0)|2
〉
. (1.120)

By decomposing the reflection amplitudes as the sum of the mean and fluctuation (deviation
from the mean)

R
(S)
αβ (p | p0) =

〈
R

(S)
αβ (p | p0)

〉
+
[
R

(S)
αβ (p | p0)−

〈
R

(S)
αβ (p | p0)

〉]
, (1.121)
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we can decompose the mean differential reflection coefficient as the sum of a coherent component
and an incoherent component as

〈
∂R

(S)
αβ

∂Ωr
(p | p0)

〉
=

〈
∂R

(S)
αβ

∂Ωr
(p | p0)

〉

coh

+

〈
∂R

(S)
αβ

∂Ωr
(p | p0)

〉

incoh

, (1.122)

where
〈
∂R

(S)
αβ

∂Ωr
(p | p0)

〉

coh

=
ε1
(
ω

2π c

)2
cos2 θr

S cos θ0

∣∣∣
〈
R

(S)
αβ (p | p0)

〉∣∣∣
2

(1.123a)

〈
∂R

(S)
αβ

∂Ωr
(p | p0)

〉

incoh

=
ε1
(
ω

2π c

)2
cos2 θr

S cos θ0

[〈
|R(S)

αβ (p | p0)|2
〉
−
∣∣∣
〈
R

(S)
αβ (p | p0)

〉∣∣∣
2
]
. (1.123b)

Similar expression are easily found for the differential transmission coefficients. The mean dif-
ferential scattering coefficients will be our primary observables for the study of light scattering
by randomly rough systems in Chapter 10. Note that in principle one should still take the limit
of the above expressions as the surface S covers the entire plane. Numerically, however, it is
clear that only finite surfaces can be studied. Equations (1.123a) and (1.123b) are then used
as such for a finite S and it is understood that the surface area considered numerically is large
enough so that Eqs. (1.123a) and (1.123b) yield a good approximation of the limit. When closed
form approximation of the reflection and transmission amplitudes are known, and the differen-
tial scattering coefficient may be averaged analytically, the limit can also be taken analytically.
These technical issues are detailed in Chapter 8 devoted to the simulation and approximations
of the average optical response of randomly rough surfaces.

Remark 1.10. Are the words ”coherent” and ”incoherent” well chosen? If we come back to
our speckle patterns that we used to construct the definition of the incoherent component of the
intensity, we may ask the following question: Why are there speckles? Well, precisely because
for one surface, the scattering is optically coherent and yields interference effects. So ”incoherent
scattering” is ”coherent scattering” that washes out when you average over surfaces ... do you
see the confusion coming? Even worse, for the scattering from a film, we will see in Chapter 10
that interference fringes, which is an optically coherent effect, can be observed in the incoherent
component of the intensity. Our conclusion, is that the terms coherent and incoherent compo-
nents of the intensity are sources of confusion, because they refer here to statistical properties
and not optical properties. Nevertheless, we will use these terms to be consistent with the ter-
minology found in the literature. Maybe, statistically coherent and incoherent components of
the intensity may be better choice. At least, the reader is now warned.

1.7 Summary

Let us summarize the useful pieces of information discussed in the present chapter. First, we
have recalled some basics of the electromagnetic theory of homogeneous media, and posed
the problem of electromagnetic wave scattering by an interface between two media. We have
introduced the Fourier representation of the fields and the notion of reflection and transmission
amplitudes. Then typical scattering observables in the cases of periodic and randomly rough
surfaces, which will be quantities of interest in later chapters, have been defined based on the
scattering amplitudes. Some results, such as the scattering of a plane wave by a planar interface
and the radiation of oscillating and rotating dipoles have been revisited and phenomenological
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descriptions of Rayleigh and Wood anomalies have been presented as they will serve as basis
bricks in further understanding of the phenomena observed in the scattering of more complex
systems.

Now that the stage is set, we are ready to embark in the theory of the reduced Rayleigh equations,
which aims at determining the unknown reflection and transmission amplitudes for the scattering
problem.
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Chapter 2

The reduced Rayleigh equations for
a single rough surface

In this chapter, we present the derivation of what we will call the transfer equations and
the reduced Rayleigh equations for harmonic electromagnetic waves satisfying the Helmholtz
equation on both side of an arbitrary interface1 between to homogeneous media. The transfer
equations are integral relations between the amplitudes of the plane wave expansion of the
fields in both media. The transfer equations are derived without specifying an incident
field, and they hold for the total field. The reduced Rayleigh equations are decoupled
inhomogeneous integral equations for the reflection and transmission amplitudes given an
incident wave. The reflection and transmission amplitudes are related to the amplitudes of the
plane wave expansion of the scattered field reflected from and transmitted through the interface.

The method based on the reduced Rayleigh equations can be considered as a generalization to
penetrable media separated by an arbitrary interface of the Rayleigh method for periodic per-
fectly conducting grating suggested by Rayleigh in 1907 [15]. The reduced Rayleigh equations
were first derived by Toigo et al. [37] and Brown et al. [38, 39, 40] and then used (among other)
extensively by Maradudin and co-workers for the study of a light scattering from one- and two-
dimensional perfectly conducting surfaces [41, 42], metallic [41, 43, 44] and dielectric surfaces
[41, 43, 45, 46, 1], rough films supported by a metallic substrate [47] as well as for the study
of the dispersion of surface plasmon polariton in polaritonic crystals [48] and the scattering
of surface plasmon polaritons from surface defects [49, 50, 51]. The derivation of the reduced
Rayleigh equations given in [39] is based on the extinction theorem while the derivation found in
subsequent works is often closer to Rayleigh’s original idea of expanding the field in plane wave
and finding the unknown amplitudes by requiring the satisfaction of the boundary conditions.
Such an approach was taken by Maradudin and co-worker. Here we present a derivation given
by Soubret et al. in [52, 53] for the transfer equations. The derivation is similar to that of
Maradudin and co-workers with the only difference that no specific form of the incident field is
required. Hence the transfer equations allow one to derive the reduced Rayleigh equations in
one line for any incident field. Moreover, the transfer equations are well suited to the general-
ization of the method to multilayer systems with arbitrary interfaces as we will see in Chapter 3.

The notations adopted here are somewhat inspired from that of Soubret and Maradudin and

1By ”arbitrary” here we mean an interface which is planar in average whose profile can be described by a
bounded regular function of the in-plane coordinate.
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54 Chapter 2. The reduced Rayleigh equations for a single rough surface

co-workers. The notation framework constructed during the derivation, especially the set of
sub- and superscripts, will prove to be powerful in Chapter 3 to generalize the reduced Rayleigh
equations to multi-layer systems in a few lines and will give us a composition rule for the
computation of the appropriate multi-interface transfer kernels from single-interface kernels. It
is therefore beneficial to spend some time to get used to these notations.

Even though the derivation is written in a very formal way (what one may call the physicist
way), we will at time make a number of remarks that aim at emphasizing some limitations of the
method, and pointing out some potential mathematical issues or difficulties. These are meant
to warn the reader that the theory of the reduced Rayleigh equations have some open problems
which, to the author’s knowledge, are still unsolved. The reader need not worry at a first reading
since some of these issues will be discussed and illustrated numerically in more details in Part II.

As a complement, the transfer equations and the reduced Rayleigh equations for scalar waves
will also be presented briefly. The derivation of the transfer equations for scalar waves is simpler
than that for electromagnetic waves but relies on the same steps. The derivation will then be
kept short and the details left to the reader. The equations for scalar waves are of interest
by themselves to treat problems of scattering of acoustic waves or of quantum matter waves.
Including the results for scalar waves in this thesis is not merely due to our taste of completeness.
We will see in Chapter 10 that it is beneficial to compare the equations for scalar waves and
electromagnetic waves to get a deeper insight about the mechanisms at play for explaining
phenomena observed for electromagnetic waves. Some of the phenomena will be identified as
due to mechanisms that only require a scalar picture of the waves while other phenomena will
require to take into account the polarization nature of electromagnetic waves.

2.1 Derivation of the transfer equations and the reduced
Rayleigh equations

The system under consideration is composed of two media, of respective dielectric constant
ε1 and ε2, separated by a rough interface. The Cartesian system of coordinates, defined
by the orthonormal basis (ê1, ê2, ê3), is chosen in such a way that the (O, ê1, ê2)-plane is
parallel to the average plane of the rough interface. The origin, O, is arbitrarily chosen. It
is assumed that the surface profile, ∂Ω, can be described by a bounded real valued differ-
entiable function in that coordinated system, the equation of the surface being defined by
x3 = ζ(x1, x2) = ζ (x), where in the following x = x1 ê1 + x2 ê2. The media denoted 1 (resp. 2),
occupies the upper (resp. lower) region defined by Ω1 = {(x1, x2, x3) ∈ R3 | x3 > ζ(x1, x2)}
(resp. Ω2 = {(x1, x2, x3) ∈ R3 | x3 < ζ(x1, x2)}).

Remark 2.1. The assumption that the surface can be represented by a function ζ with the
aforementioned properties already gives a set of restrictions for the range of application of the
reduced Rayleigh equations. The surface must have an average plane, and cannot have over-
hangs. Concerning the regularity of ζ, it will be assumed in the following that ζ is differentiable
and bounded. Nevertheless, we will in the applications make use of the reduced Rayleigh equa-
tions in cases where the surface is only differentiable almost everywhere. Our belief, based on
comparison between simulations and experimental data, is that such a practice can yield a good
approximation of the solution of the scattering problem if the amplitude of the surface is not
too large. This issue will be explored in more details in Part II.
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ê1,2

ê3

x3 = ζ(x)

Ω1, ǫ1

Ω2, ǫ2

k−
1 (q) k+

1 (q)

k+
2 (q) k−

2 (q)

Figure 2.1: Scattering system composed of two half space separated by an arbitrary interface.
The arrows are examples of wave vectors sharing the same in-plane projection q.

We consider the presence of an electromagnetic field (E,H) in the whole space. The restriction
of the fields in the region Ωj , j ∈ {1, 2}, will be denoted by a subscript j. For instance, the
electric field evaluated at a point r ∈ Ω1 at time t is denoted E1(r, t). The Maxwell equations,
together with linear constitutive relations (in the frequency domain), result in the fact that the
electric field satisfies the Helmholtz equation in each region. Namely for j ∈ {1, 2}, we have

∆Ej + εj
ω

c
Ej = 0 . (2.1)

In the following, we drop the time, or frequency dependence, to lighten notation. In order to
make the present chapter self-sufficient, we repeat here the definitions introduced in Chapter 1
concerning the expansion in plane waves of the fields. We assume that a solution of the Helmholtz
equation can be written as a linear combination of plane waves, Eq. (1.31), i.e. for j ∈ {1, 2}
and for all r ∈ Ωj ,

Ej (r) =
∑

a=±

∫

R2

Ea
j (q) exp

(
i kaj (q) ·r

) dq

(π)
, (2.2)

where we define

Ea
j (q)

def
= Eaj,p(q, ω) êap,j (q) + Eaj,s(q, ω) ês (q) , (2.3)

and we recall that we have the following definitions for the wave vectors and polarization vectors
from Eq. (1.32)

k±j (q)
def
= q± αj (q) ê3 , (2.4a)

αj (q)
def
=

√
εj

(ω
c

)2

− q2, Re (αj), Im (αj) ≥ 0 , (2.4b)

ês (q)
def
=

ê3 × k±j (q)

|ê3 × k±j (q) | = ê3 × q̂ , (2.4c)

ê±p,j (q)
def
=

ês × k±j (q)

|ês × k±j (q) | =
c
√
εjω

(±αj (q) q̂− |q| ê3) . (2.4d)

Then the wave vector k±j (q) of an elementary plane wave, satisfying the dispersion relation in
medium j, is decomposed in the component q in the vector plane (ê1, ê2) and the component
±αj (q) along ê3. In the following we will lighten notation by writing

∫
↔
∫
R2 if not precised

otherwise.
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Remark 2.2. The plane wave expansion, Eq. (2.2), contains both progressive, evanescent and
possibly exponentially growing waves. Later, the field will be split into an incident field which
typically will be a plane wave propagating from infinity towards the interface and a scattered
field which will be imposed to contain only outgoing elementary plane waves (i.e. progressive
or evanescent away from the interface). In other words, the scattered field in medium 1 will
contain only modes with wave vector of the form k+

1 (q) and the scattered field in medium 2 will
contain only modes with wave vector of the form k−2 (q), i.e. that E−1 and E+

2 will be set to
zero identically for the scattered field, which means that only the incident field will contribute
to these modes. Therefore, the scattered field may be written

E
(scat)
1 (r) =

∫
E+

1 (q) exp
(
i k+

1 (q) ·r
) dq

(π)
(2.5)

E
(scat)
2 (r) =

∫
E−2 (q) exp

(
i k−2 (q) ·r

) dq

(π)
. (2.6)

It is commonly admitted that the plane wave expansion is valid away from the interface re-
gion, say for x3 > max ζ and x3 < min ζ. Whether the expansion is valid also within the
grooves depends in general on the surface profile. Indeed, considering a point above the sur-
face but below the plane x3 = 0, evanescent modes of the form E+

1 (q) exp
(
i k+

1 (q) ·r
)

=
E+

1 (q) exp (i q ·x) exp (−β1(q)x3), with α1(q) = iβ1(q) with β1 > 0. Since for such a point
x3 < 0, the x3-dependent exponential factor grows with increasing modulus of the in-plane
wave vector, |q |. Hence only fields for which the corresponding amplitude |E+

1 (q)| decays fast
enough with |q | → ∞ may be represented in the whole space above the surface (and similarly
below the interface). As a rule of thumb we may expect that

E+
1 (q) = O

[
exp (−β1(q) min ζ)

]
(2.7a)

E−2 (q) = O
[

exp (β2(q) max ζ)
]

(2.7b)

for the field to be representable by Eq. (2.2). Naturally, the field amplitudes E+
1 (q) and E−2 (q)

depend on the surface. In the following, we will make the assumption that such a plane wave
expansion is valid also within the grooves: this is known as the Rayleigh hypothesis or Rayleigh
assumption. The validity of the Rayleigh hypothesis has been the topic of numerous papers in
the literature and still is a somewhat debated topic. A particularly relevant proof for the range
of validity of the Rayleigh hypothesis in the case of diffraction by a one-dimensional perfectly
conducting sinusoidal surface was given by Millar in [54, 55]. This issue will be discussed in
details in Chapter 7.

The boundary conditions for Maxwell’s equation across the interface read

n (x)×
[

E1(s (x))−E2(s (x))
]

= 0 (2.8a)

n (x) ·
[
ε1 E1(s (x))− ε2 E2(s (x))

]
= 0 (2.8b)

n (x)×
[

H1(s (x))−H2(s (x))
]

= 0 (2.8c)

where n (x) is a vector normal to the surface at point s (x) = x + ζ (x) ê3 given by

n (x) = ê3 − ∂1ζ (x) ê1 − ∂2ζ (x) ê2 . (2.9)
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Here, ∂k denotes the partial derivative with respect to the direction êk. By inserting the plane
wave expansion, Eq. (2.2), into the boundary conditions, one gets

∑

a=±

∫
n (x)×Ea

1 (q) ei k
a
1 (q) ·s (x) dq

(π)
=
∑

a=±

∫
n (x)×Ea

2 (q) ei k
a
2 (q) ·s (x) dq

(π)
(2.10a)

ε1
ε2

∑

a=±

∫
n (x) ·Ea

1 (q) ei k
a
1 (q) ·s (x) dq

(π)
=
∑

a=±

∫
n (x) ·Ea

2 (q) ei k
a
2 (q) ·s (x) dq

(π)
(2.10b)

∑

a=±

∫
n (x)× [ka1 (q)×Ea

1 (q)] ei k
a
1 (q) ·s (x) dq

(π)
=
∑

a=±

∫
n (x)× [ka2 (q)×Ea

2 (q)] ei k
a
2 (q) ·s (x) dq

(π)

(2.10c)
∑

a=±

∫
ka1 (q) ·Ea

1 (q) ei k
a
1 (q) ·s (x) dq

(π)
=
∑

a=±

∫
ka2 (q) ·Ea

2 (q) ei k
a
2 (q) ·s (x) dq

(π)
(2.10d)

Notice that the last equation does not come from the boundary conditions but is the trivial
equation∇·E1 = ∇·E2 = 0 that proves to be useful to rewrite some equations in a more compact
way as we will see later. In order to eliminate E±2 , consider the following linear combination:

∫
e−i k

b
2 (p) ·s (x)

(
kb2 (p)× [Eq. (2.10a)] + [Eq. (2.10c)]− [Eq. (2.10b)] kb2 (p)− [Eq. (2.10d)] n (x)

)
dx

(2.11)

where p = p1 ê1 +p2 ê2 is an arbitrary vector of the vector plane (ê1, ê2), and b = ±1 may be
arbitrarily chose. We recall that by definition we have kb2 (p) = p + b α2 (p) ê3. The integrand
on the right hand side of the considered linear combination, Eq. (2.11), is proportional to

kb2 (p)× [n (x)×Ea
2 (q)]︸ ︷︷ ︸

kb2 (p) ·Ea2 (q) n (x)−kb2 (p) ·n (x) Ea2 (q)

+ n (x)× [ka2 (q)×Ea
2 (q)]︸ ︷︷ ︸

n (x) ·Ea2 (q) ka2 (q)−n (x) ·ka2 (q) Ea2 (q)

− n (x) ·Ea
2 (q) kb2 (p)− ka2 (q) ·Ea

2 (q) n (x)

= −(kb2 (p) + ka2 (q)) · n (x) Ea
2 (q) + (kb2 (p)−ka2 (q)) ·Ea

2 (q) n (x)− n (x) ·Ea
2 (q)(kb2 (p)−ka2 (q))︸ ︷︷ ︸

Ea2 (q)×(n (x)×(kb2 (p)−ka2 (q)))

= −(kb2 (p) + ka2 (q)) · n (x) Ea
2 (q) + Ea

2 (q)×
(
n (x)×(kb2 (p)−ka2 (q))

)

Where we have used the vector identity a× (b× c) = (a · c)b− (a · b)c. This is equivalent to
Eq. (26) in Ref. [53] but in a slightly more compact form though. The right hand side of the
linear combination Eq. (2.11) then reads

RHS =
∑

a=±

∫∫ [
−(kb2 (p) + ka2 (q)) · n (x) Ea

2 (q) + Ea
2 (q)×

(
n (x)×(kb2 (p)−ka2 (q))

)]

× exp
[
−i
(
kb2 (p)−ka2 (q)

)
· s (x)

] d2x d2q

(2π)2
(2.12)

We will have to evaluate two terms, by writing RHS = RHS1 + RHS2 with

RHS1 = −
∑

a=±

∫∫
e−i(k

b
2 (p)−ka2 (q))·s (x)(kb2 (p) + ka2 (q)) · n (x) Ea

2 (q) dx
dq

(π)
, (2.13a)

RHS2 =
∑

a=±

∫∫
e−i(k

b
2 (p)−ka2 (q))·s (x) Ea

2 (q)×
[
n (x)×

(
kb2 (p)−ka2 (q)

)]
dx

dq

(π)
. (2.13b)
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Similarly, the left hand side of Eq. (2.11) can be expressed as

LHS =
∑

a=±

∫∫ [
− (kb2 (p) + ka1 (q)) · n (x) Ea

1 (q) +(kb2 (p)−ka1 (q)) ·Ea
1 (q) n (x)

− n (x) ·Ea
1 (q)

(
ε1
ε2

kb2 (p)−ka1 (q)

)]
e−i(k

b
2 (p)−ka1 (q))·s (x) dx

dq

(π)
. (2.14)

In Eq. (2.14), we cannot directly use the identity a× (b× c) = (a · c)b− (a · b)c to group the
two last terms of the integrand because of the ε1

ε2
factor. We can group part of it though, by

writing ε1
ε2

= ε1−ε2
ε2

+ 1. Hence

LHS =
∑

a=±

∫∫ [
−
(
kb2 (p) + ka1 (q)

)
· n (x) Ea

1 (q) + Ea
1 (q)×

(
n (x)×(kb2 (p)−ka1 (q))

)

− ε1 − ε2
ε2

n (x) ·Ea
1 (q) kb2 (p)

]
e−i(k

b
2 (p)−ka1 (q))·s (x) dx

dq

(π)
. (2.15)

We will have to evaluate three terms, by writing LHS = LHS1 + LHS2 + LHS3 with

LHS1 = −
∑

a=±

∫∫
e−i(k

b
2 (p)−ka1 (q))·s (x)

(
kb2 (p) + ka1 (q)

)
· n (x) Ea

1 (q) dx
dq

(π)
, (2.16a)

LHS2 =
∑

a=±

∫∫
e−i(k

b
2 (p)−ka1 (q))·s (x) Ea

1 (q)×
(
n (x)×

(
kb2 (p)−ka1 (q)

))
dx

dq

(π)
, (2.16b)

LHS3 = −ε1 − ε2
ε2

∑

a=±

∫∫
e−i(k

b
2 (p)−ka1 (q))·s (x) n (x) ·Ea

1 (q) kb2 (p) dx
dq

(π)
. (2.16c)

We carry out first the integration with respect to x to recast Eqs. (2.13) and (2.16) as

RHS1 = −
∑

a=±

∫
(kb2 (p) + ka2 (q)) · wb,a

2,2 (p |q) Ea
2 (q)

dq

(π)
, (2.17a)

RHS2 =
∑

a=±

∫
Ea

2 (q)×
(
wb,a

2,2 (p |q)×(kb2 (p)−ka2 (q))
) dq

(π)
, (2.17b)

LHS1 = −
∑

a=±

∫
(kb2 (p) + ka1 (q)) ·wb,a

2,1 (p |q) Ea
1 (q)

dq

(π)
, (2.17c)

LHS2 =
∑

a=±

∫
Ea

1 (q)×
(
wb,a

2,1 (p |q)×(kb2 (p)−ka1 (q))
) dq

(π)
, (2.17d)

LHS3 =
ε2 − ε1
ε2

∑

a=±

∫
wb,a

2,1 (p |q) ·Ea
1 (q) kb2 (p)

dq

(π)
, (2.17e)

where we have defined, for l,m ∈ {1, 2}, b, a ∈ {±1} and p,q in the vector plane (ê1, ê2)

wb,a
l,m (p |q) =

∫
exp

[
−i(kbl (p)−kam (q)) · s (x)

]
n (x) dx . (2.18)

Remark 2.3. The notation (·|·) for the arguments of functions that depend on two wave-vectors
is used in the physics literature on the reduced Rayleigh equations while a priori the notation
(·, ·) may be better suited. It must not be confused with a scalar product. One may like to
think of ”p given q” although a probabilistic interpretation would be premature at this stage.
We just use here the notation without giving to much importance to its interpretation. We just
mean a function of p and q.
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Remark 2.4. Under the assumption that the Rayleigh hypothesis is valid for the considered
surface profile, it is not a priori obvious to know whether the point-wise boundary conditions
Eq. (2.10) and Eq. (2.11) are equivalent. The point-wise boundary conditions implies the inte-
grated boundary conditions Eq. (2.11): if the boundary conditions hold for every point on the

surface, then Eq. (2.11) holds for every plane wave test function of the form φ (x) = e−i k
b
2 (p) ·s (x).

The reciprocal statement is a priori not necessarily true. Hence solving the scattering problem
with Eq. (2.11) as a boundary condition may not be equivalent to the initial problem. We are
not sure whether the reciprocal statement is true and how to prove it.

2.1.1 Analysis of wb,a
l,m

Now we need to evaluate wb,a
l,m (p |q), or to be more accurate, we need to know how to integrate

against it. We have n (x) = ê3 −∇ζ (x), hence

wb,a
l,m (p |q) =

∫
e−i(k

b
l (p)−kam (q))·s (x)

(
ê3 −∇ζ (x)

)
dx

=

∫
e−i(k

b
l (p)−kam (q))·s (x) ê3 dx−

∫
e−i(k

b
l (p)−kam (q))·s (x) ∇ζ (x) dx

=

∫
e−i(k

b
l (p)−kam (q))·s (x) ê3 dx

−
∫
∇ζ (x) e−i[bαl (p)−aαm (q)]·ζ (x) e−i(p−q)·x dx . (2.19)

We can make an integration by parts under the condition bαl (p)−aαm (q) 6= 0. In that case,
the second term Eq. (2.19) becomes2

• If bαl (p)−aαm (q) 6= 0 then

wb,a
l,m (p |q) =

∫
e−i(k

b
l (p)−kam (q))·s (x) ê3 dx+

∫
p− q

bαl (p)−aαm (q)
e−i(k

b
l (p)−kam (q))·s (x) dx

=

∫
e−i(k

b
l (p)−kam (q))·s (x) kbl (p)−kam (q)

bαl (p)−aαm (q)
dx

= J b,al,m (p |q)
(
kbl (p)−kam (q)

)
, (2.20)

where we define

J b,al,m (p |q)
def
= (bαl (p)−aαm (q))

−1
∫

exp
[
−i(kbl (p)−kam (q)) · s (x)

]
dx . (2.21)

• If bαl (p)−aαm (q) = 0 then wb,a
l,m (p |q) coincides with the Fourier transform of n and

Eq. (2.19) reads

wb,a
l,m (p |q) =

∫
e−i(p−q)·x ê3 dx−

∫
∇ζ (x) e−i(p−q)·x dx

= (2π)2δ(p− q) ê3 − iζ̂(p− q) (p− q) . (2.22)

2We use formally the integration by part in the sense of distribution although we are not entirely sure what
mathematically rigorous sense to give the ”integral” wb,a

l,m(p |q).
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60 Chapter 2. The reduced Rayleigh equations for a single rough surface

Here, we see that the Dirac δ appears naturally as the Fourier transform of 1 and ζ̂ denotes
the Fourier transform of the surface profile.

Equation (2.22) can also be obtained from Eq. (2.20) by a Taylor expansion of
exp[−i(bαl (p)−aαm (q))ζ] around bαl (p)−aαm (q) = 0. Indeed, we have

J b,al,m (p |q) = (bαl (p)−aαm (q))−1

∫
exp

[
−i(kbl (p)−kam (q)) · s (x)

]
dx

= (bαl (p)−aαm (q))−1

∫
exp [−i(p−q) · x] exp [−i(bαl (p)−aαm (q))ζ(x)] dx

=

∞∑

k=0

(−i)k
k!

(bαl (p)−aαm (q))k−1 ζ̂(k)(p−q)

=
(2π)2 δ(p−q)

bαl (p)−aαm (q)
− iζ̂(p−q) +

∞∑

k=2

(−i)k
k!

(bαl (p)−aαm (q))k−1 ζ̂(k)(p−q) . (2.23)

Here we have defined the kth-Fourier moment of the surface profile function, ζ̂(k), as

ζ̂(k)(q)
def
=

∫
exp [−i(p−q) · x] ζk(x) dx . (2.24)

Thus

J b,al,m (p |q)
(
kbl (p)−kam (q)

)
=
[

p−q +(bαl (p)−aαm (q)) ê3

]

×
[

(2π)2 δ(p−q)

bαl (p)−aαm (q)
− iζ̂(p−q) +

∞∑

k=2

(−i)k
k!

(bαl (p)−aαm (q))k−1 ζ̂(k)(p−q)

]
(2.25)

= (2π)2 δ(p−q) ê3 +
[

p−q +(bαl (p)−aαm (q)) ê3

]

×
[
−iζ̂(p−q) +

∞∑

k=2

(−i)k
k!

(bαl (p)−aαm (q))k−1 ζ̂(k)(p−q)

]

def
= (2π)2 δ(p−q) ê3 +

[
kbl (p)−kam (q)

]
Lb,al,m(p |q) (2.26)

∼ (2π)2 δ(p−q) ê3−iζ̂(p−q) (p−q) , (2.27)

where the asymptotic expression, Eq. (2.27), is to be understood as bαl (p)−aαm (q)→ 0. Equa-
tion (2.20) will then be considered as the ”general” expression and in particular Eq. (2.26) will

be particularly useful for carefully carrying out integrations against wb,a
l,m. Note that Eq. (2.26)

is a defining equation for Lb,al,m which, under sufficient regularity of ζ, is a function.

2.1.2 The right hand side

By plugging Eq. (2.20) in the form given by Eq. (2.26) into Eqs. (2.17a) we obtain

RHS1 =−
∑

a=±

∫ (
kb2 (p) + ka2 (q)

)
· J b,a22 (p |q)

(
kb2 (p)−ka2 (q)

)
Ea

2 (q)
dq

(π)

=−
∑

a=±

∫ (
kb2 (p) + ka2 (q)

)
·
[
(2π)2 δ(p−q) ê3 +

[
kb2 (p)−ka2 (q)

]
Lb,a22 (p |q)

]
Ea

2 (q)
dq

(π)

=−
∑

a=±

(
bα2(p) + aα2(p)

)
Ea

2 (p)−
∑

a=±

∫
Lb,a22 (p |q)

[
[kb2 (p)]2 − [ka2 (q)]2︸ ︷︷ ︸

0

]
Ea

2 (q)
dq

(π)

=− 2 b α2(p) Eb
2 (p) . (2.28)
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2.1. Derivation of the transfer equations and the reduced Rayleigh equations 61

Here we have used, in the last step, that both wave vectors kb2 (p) and ka2 (q) have same norm
since they both satisfy the dispersion relation in the same medium (medium 2). Similarly, we
have for RHS2,

RHS2 =
∑

a=±

∫
Ea

2 (q)×
[(

(2π)2 δ(p−q) ê3 +
(
kb2 (p)−ka2 (q)

)
Lb,a22 (p |q)

)
×
(
kb2 (p)−ka2 (q)

)] dq

(π)

=
∑

a=±

∫
Ea

2 (q)×
[
(2π)2 δ(p−q) ê3×

(
p−q

)

+
(
kb2 (p)−ka2 (q)

)
×
(
kb2 (p)−ka2 (q)

)
︸ ︷︷ ︸

0

Lb,a22 (p |q)
] dq

(π)

= 0 . (2.29)

Finally, summing Eqs. (2.28) and (2.29), we obtain the full right hand side

RHS = −2 b α2 (p) Eb
2 (p) . (2.30)

Remark 2.5. In the second step in the above evaluation of RHS1 and RHS2 (Eqs. (2.28) and
(2.29)), the term coming from the integration against the Dirac mass implicitly assumes that
the field amplitude Ea

2 (q) is continuous at q = p. We will for now make this assumption. This
may not always be true, and one should analyze this term more carefully in that case.

2.1.3 The left hand side

The left-hand-side can be treated in a similar fashion as the right-hand-side. In particular,
within the same hypothesis for the regularity of Ea

1 as that used for Ea
2 (see Remark 2.5), we

show easily that LHS2 vanishes. Indeed, by plugging Eq. (2.26) into Eq. (2.17d) we obtain

LHS2 =
∑

a=±

∫
Ea

1 (q)×
[(

(2π)2 δ(p−q) ê3 +
(
kb2 (p)−ka1 (q)

)
Lb,a21 (p |q)

)
×
(
kb2 (p)−ka1 (q)

)] dq

(π)

=
∑

a=±

∫
Ea

1 (q)×
[
(2π)2 δ(p−q) ê3×

(
p−q

)

+
(
kb2 (p)−ka1 (q)

)
×
(
kb2 (p)−ka1 (q)

)
︸ ︷︷ ︸

0

Lb,a21 (p |q)
] dq

(π)

= 0 . (2.31)

There is no particularly interesting simplification that occurs in LHS1 and LHS3 by plugging
Eq. (2.26) into Eqs. (2.17c) and (2.17e). Using Eq. (2.26) into Eq. (2.17c) we get

LHS1 =−
∑

a=±

∫ (
kb2 (p) + ka1 (q)

)
·
(
J b,a21 (p |q)

(
kb2 (p)−ka1 (q)

))
Ea

1 (q)
dq

(π)

=−
∑

a=±

∫
J b,a21 (p |q)

(
|kb2 (p) |2 − |ka1 (q) |2

)
Ea

1 (q)
dq

(π)

=− (ε2 − ε1)
ω2

c2

∑

a=±

∫
J b,a21 (p |q) Ea

1 (q)
dq

(π)
. (2.32)
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62 Chapter 2. The reduced Rayleigh equations for a single rough surface

Here we have used the dispersion relation satisfied by the wave vector in media 1 and 2, |k±j |2 =

εj ω
2/c2. Using Eq. (2.26) into Eq. (2.17e) we simply get

LHS3 =
ε2 − ε1
ε2

∑

a=±

∫
J b,a21 (p |q)

(
kb2 (p)−ka1 (q)

)
·Ea

1 (q) kb2 (p)
dq

(π)
. (2.33)

After summing Eqs. (2.32), (2.31) and (2.33), the full left hand side reads

LHS = −(ε2 − ε1)
∑

a=±

∫
J b,a21 (p |q)

(
ω2

c2
Ea

1 (q)− (kb2 (p)−ka1 (q)) ·Ea
1 (q)

ε2
kb2 (p)

)
dq

(π)
. (2.34)

2.1.4 Transfer equations

Finally, following Eqs. (2.30) and (2.34), the resulting linear combination Eq. (2.11) is found to
be

∑

a=±

∫
J b,a2,1 (p |q)

(
ω2

c2
Ea

1 (q)− (kb2 (p)−ka1 (q)) ·Ea
1 (q)

ε2
kb2 (p)

)
dq

(π)
=

2 b α2 (p)

ε2 − ε1
Eb

2 (p) . (2.35)

Using the fact that ka1 (q) ·Ea
1 (q) = 0 and multiplying Eq. (2.35) by ε2, we recognize the identity

a× (b× c) = (a · c)b− (a · b)c in the integrand on the left hand side. Hence

∑

a=±

∫
J b,a2,1 (p |q) kb2 (p)×

[
kb2 (p)×Ea

1 (q)
] dq

(π)
= −2 b ε2 α2 (p)

ε2 − ε1
Eb

2 (p) (2.36)

We introduce the endomorphism Kb
2,p, equivalent to the operation kb2 (p)×.3, defined in the

basis (ê1, ê2, ê3) by the matrix

Kb
2,p =




0 −κ3 κ2

κ3 0 −κ1

−κ2 κ1 0




(ê1,ê2,ê3)

, (2.37)

where we have used a shorthand notation κj = kb2 (p) · êj , for j ∈ J1, 3K. Equation (2.36)
becomes

∑

a=±

∫
J b,a2,1 (p |q)

[
Kb

2,p

]2
Ea

1 (q)
dq

(π)
= −2 b ε2 α2 (p)

ε2 − ε1
Eb

2 (p) , (2.38)

with

[
Kb

2,p

]2
=




−κ2
2 − κ2

3 κ1κ2 κ1κ3

κ2κ1 −κ2
1 − κ2

3 κ2κ3

κ3κ1 κ3κ2 −κ2
1 − κ2

2




(ê1,ê2,ê3)

. (2.39)

Let us now use the orthonormal polarization basis associated with the wave vector k±j (q),

namely (k̂±j (q), ê±p,j (q), ês (q)), and defined in Eq. (2.4). In this basis, the directions given by

ê±p,j (q), ês (q) are respectively the directions of the p- and s-polarization of the electric field

3i.e. ∀X ∈ R3, Kb
2,pX = kb2 (p)×X
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E±j (q). It is convenient to express Eq. (2.38) in the basis (k̂b1 (q), êbp,1 (q), ês (q)), since in this

basis the
[
K1b

p

]2
operator reduces to

[
Kb

2,p

]2
= −|kb2 (p) |2




0 0 0

0 1 0

0 0 1




(k̂b2 (q),êbp,2 (q),ês (q))

. (2.40)

Moreover Eb
2 (p) ·kb2 (p) = 0, so in this basis, the first line of the integral system Eq. (2.38) is

trivial since we have

Eb
2 (p) =

(
0, Eb2,p(q), Eb2,s(q)

)T
(k̂b2 (q),êbp,2 (q),ês (q))

. (2.41)

Therefore we can reduce the system to the plane (êbp,1 (p), ês (p)). Similarly, it is convenient to
write Ea

1 (q) in the basis (êap,1 (q), ês (q)), by using the matrix

Pb,a
l,m (p |q) =


êbp,l (p) · êap,m (q) êbp,l (p) · ês (q)

ês (p) · êap,m (q) ês (p) · ês (q)


 (2.42)

to change from (êbp,l (p), ês (p)) to (êap,m (q), ês (q)). By expanding Eq. (2.42) by using Eq. (1.32),
and plugging it into Eq. (2.38), one gets the forward transfer equation

∑

a=±

∫ (
ε2 − ε1

) ω2

c2
J b,a2,1 (p |q) Pb,a

2,1 (p |q) Ea1 (q)
dq

(π)
= 2 b α2 (p) Eb2 (p) , (2.43)

with E±j (q) = (E±j,p(q), E±j,s(q))T. By multiplying both sides of Eq. (2.43) by
√
ε1ε2, the transfer

equation can also be written as

∑

a=±

∫
J b,a2,1 (p |q) Mb,a

2,1 (p |q) Ea1 (q)
dq

(π)
=

2 b
√
ε1ε2 α2 (p)

ε2 − ε1
Eb2 (p) , (2.44)

where

Mb,a
l,m (p |q)

def
=
√
ε1ε2

ω2

c2
Pb,a
l,m (p |q) (2.45)

=


|p||q|+ abαl (p)αm (q) p̂ · q̂ −b√εm ω

c αl (p)[p̂× q̂] · ê3

a
√
εl
ω
c αm (q)[p̂× q̂] · ê3

√
εlεm

ω2

c2 p̂ · q̂


 . (2.46)

Equation (2.44) is the form which is maybe encountered most in the literature. However, we
found the form of the transfer equation given by Eq. (2.43) somewhat clearer in the sense
that the matrix of change of polarization basis is emphasized. In addition, Eq. (2.43) will be
simpler to compare with the corresponding transfer equation for scalar waves (see Section 2.6).
Nevertheless, since Eq. (2.44) is the form that is used in the literature, we will use the form given
in Eq. (2.44) in the remaining of this work, and Eq. (2.43) will be used for occasional remarks.
Notice that due to the symmetry of the boundary conditions, one may also derive in the same
way the backward transfer equation

∑

a=±

∫
J b,a1,2 (p |q) Mb,a

1,2 (p |q) Ea2 (q)
dq

(π)
=

2 b
√
ε1ε2 α1 (p)

ε1 − ε2
Eb1 (p) , (2.47)
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64 Chapter 2. The reduced Rayleigh equations for a single rough surface

which ends up as interchanging the indices 1 ↔ 2 in Eq. (2.44). Equations (2.44) and (2.47)
are the so-called transfer equations. Typically, Eq. (2.44) is appropriate to solve the problem of
reflection whereas Eq. (2.47) is appropriate to solve the problem transmission, as we will see in
the next subsection.

2.2 Reduced Rayleigh equations

Consider now that we are interested in evaluating the angular distribution of light reflected
(resp. transmitted) by (resp. through) a single interface separating two semi-infinite media,
knowing that a plane wave is incident on it. The incident wave can be expressed as

E−1 (q) = (2π)2δ(q− p0)
[
E0,p ê−p,1(p0) + E0,s ês(p0)

]
. (2.48)

We assume that this is the only contribution of the electric field propagating towards the inter-
face. We introduce the reflection (resp. transmission) amplitudes R (resp. T) defined as

E+
1 (q) = R (q |p)E0 , (2.49)

E−2 (q) = T (q |p)E0 , (2.50)

where we have defined E0 = (E0,p, E0,s)
T. The 2×2 complex valued matrix R (q |p) (resp.

T (q |p)) is then the operator that describes how the upwards (resp. downwards) plane waves
components of the reflected (resp. transmitted) field are distributed knowing the incident field.
It is closely related to the angular distribution of the reflected (resp. transmitted) power as we
will see later on, and is the naturally the unknown of the problem. By plugging Eqs. (2.48)
and (2.49) (resp. Eqs. (2.48) and (2.50)) in Eq. (2.44) (resp. Eq. (2.47)) and choosing b = +1
(resp. b = −1), we obtain an integral equation satisfied by the reflection (resp. transmission)
amplitudes

∫
J +,+

2,1 (p |q) M+,+
2,1 (p |q) R (q |p)

dq

(π)
= −J +,−

2,1 (p |p) M+,−
2,1 (p |p) , (2.51)

∫
J−,−1,2 (p |q) M−,−

1,2 (p |q) T (q |p)
dq

(π)
=

2
√
ε1ε2 α1(p0)

ε2 − ε1
(2π)2 δ(p− p0) I2 . (2.52)

Here, the fundamental property of the Dirac delta has been used and E0(p0) has been simplified
on both side of the equation, and I2 is the identity matrix.

Finite size beam

Equations (2.51) and (2.52) are the reduced Rayleigh equations obtained by assuming that the
incident excitation is a monochromatic plane wave. The optical response obtained for an inci-
dent plane wave can in certain cases model within reasonable accuracy real life experiments. In
other cases, modeling the incident excitation as a finite size beam may be more realistic and
appropriate. For a monochromatic incident finite size beam two options may be considered
for modeling the scattering response. One may solve the scattering response from a sample of
independent incident plane waves impinging with different wave vectors and then sum the corre-
sponding responses weighted according to the weights of the Fourier components corresponding
to the elementary plane waves contained in the finite size beam. This method is valid thanks to
the linearity of the problem. An advantage of this method is that once all the elementary scat-
tering problems have been solved (those for each incident plane waves) and stored, one deduces
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immediately the solution for any finite size beam by linear superposition. Alternatively, if one
is interested in the scattering response of a very specific finite size beam, one can simply solve a
single scattering problem directly for the considered finite size beam. Indeed, an incident finite
size beam may be written as a superposition of downward propagating plane wave as

E
(inc)
1 (r) =

∫
E−1 (q) exp(ik−1 (q) · r)

dq

(π)
, (2.53)

where E−1 (q) = E−1,p(q) ê−p,1(q) + E−1,s(q) ês(q) now represents an amplitude defining the finite

size beam. The forward transfer equation, Eq. (2.44), applied for b = + (with Eb2 = 0) then
gives the following integral equation for the scattered field amplitude in medium 1, E+

1 ,

∫
J +,+

2,1 (p |q) M+,+
2,1 (p |q) E+

1 (q)
dq

(π)
= −

∫
J +,−

2,1 (p |q) M+,−
2,1 (p |q) E−1 (q)

dq

(π)
. (2.54)

Similarly, the backward transfer equation applied for b = − yields the following integral equation
for the scattered field amplitude in medium 2, E−2 ,

∫
J−,−1,2 (p |q) M+,+

1,2 (p |q) E−2 (q)
dq

(π)
= −2

√
ε1ε2 α1(p)

ε1 − ε2
E−1 (p) . (2.55)

2.3 Fresnel coefficients for a planar interface

An instructive case to consider is that of a flat interface for which the reflection and transmission
amplitudes are well known, namely the Fresnel coefficients. We will verify that the integral
equations (2.51) and (2.52) can be solved exactly in that case and yields the Fresnel coefficients.
For a flat interface, the surface profile is simply a constant, i.e. x3 = ζ (x) = H. For simplicity
we will choose the origin of coordinate on the surface, which gives H = 0 (this choice is arbitrary
and one could choose to do have a non-zero height which will simply result in a phase factor).
Thus we have

J b,al,m (p |q) =

∫
e−i(p−q)·x d2x

bαl(p)− aαm(q)
=

(2π)2

bαl(p)− aαm(p)
δ(q− p) . (2.56)

By plugging Eq. (2.56) in Eqs. (2.51,2.52), the integration becomes straightforward thanks to
to the Dirac delta and we can invert for the reflection and transmission amplitudes:

R (p |p) =
α1(p0)− α2(p0)

α1(p0) + α2(p0)

[
M+,+

2,1 (p |p)
]−1

M+,−
2,1 (p |p) (2π)2 δ(p−p0) , (2.57)

T (p |p) =
2
√
ε1ε2 (α2(p0)− α1(p0))α1(p0)

ε2 − ε1
[
M−,−

1,2 (p |p)
]−1

(2π)2 δ(p−p0) . (2.58)

Using the definition of the matrices Mb,a
l,m, Eq. (2.46), we realize that only diagonal terms remain

and we finally get

R (p |p) =



α1(p0)−α2(p0)
α1(p0)+α2(p0)

|p0 |2−α2(p0)α1(p0)
|p0 |2+α2(p0)α1(p0) 0

0
α1(p0)−α2(p0)
α1(p0)+α2(p0)


 (2π)2 δ(p−p0) , (2.59)

T (p |p) =




2
√
ε1ε2 α1(p0)
ε2−ε1

(α2(p0)−α1(p0))
|p0 |2+α2(p0)α1(p0) 0

0
2 (α2(p0)−α1(p0))α1(p0)

ω2

c3
(ε2−ε1)


 (2π)2 δ(p−p0) . (2.60)
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We can simplify the expression using in the reflection amplitude that

[α1(p0)± α2(p0)]
[
|p0 |2 ± α2(p0)α1(p0)

]

= [α1(p0)± α2(p0)] |p0 |2 ± α2(p0)α2
1(p0) + α1(p0)α2

2(p0)

= [α1(p0)± α2(p0)] |p0 |2 ± α2(p0)

[
ε1
ω2

c2
− |p0 |2

]
+ α1(p0)

[
ε2
ω2

c2
− |p0 |2

]

= [ε2α1(p0)± ε1α2(p0)]
ω2

c2
,

and by making appear a factor
α1(p0)+α2(p0)
α1(p0)+α2(p0) in the transmission amplitude we can write

R (p |p) =



ε2α1(p0)−ε1α2(p0)
ε2α1(p0)+ε1α2(p0) 0

0
α1(p0)−α2(p0)
α1(p0)+α2(p0)


 (2π)2 δ(p−p0) , (2.61)

T (p |p) =




2
√
ε1ε2 α1(p0)

ε2α1(p0)+ε1α2(p0) 0

0 2 α1(p0)
α1(p0)+α2(p0)


 (2π)2 δ(p−p0) . (2.62)

We notice that we recover all the well known results for a single flat interface scattering of an
incident plane wave. The Dirac delta indicates that scattering occurs only in the specular direc-
tion, and gives Snell-Descartes’ law, namely that the component of the wave vector parallel to
the surface must be conserved. The off-diagonal terms are zero indicates that cross-polarization
scattering is forbidden and last but not least we recognize that the diagonal terms are the well
known Fresnel reflection and transmission amplitudes for each p− and s− polarized light.

2.4 Coupled Rayleigh equations

It seems that in the literature the denomination of reduced Rayleigh equations for Eqs. (2.51) and
(2.52) refers to the fact that the two equations are uncoupled. In other words, one can choose
to solve the scattering problem only for the reflection or transmission amplitudes separately. It
is worth noticing that one could choose to keep the system of equations for the reflection and
transmission amplitudes coupled. Indeed, instead of taking b = +1 (resp. b = −1) in Eq. (2.44)
(resp. Eq. (2.47)), one could take the opposite sign and end up with the following set of coupled
integral equations for the reflection and transmission amplitudes

∫
J−,+2,1 (p |q) M−,+

2,1 (p |q) R (q |p) +J−,−2,1 (p |p) M−,−
2,1 (p |p)

dq

(π)
= −2

√
ε1ε2 α2(p)

ε2 − ε1
T (p |p) ,

∫
J +,−

1,2 (p |q) M+,−
1,2 (p |q) T (q |p)

dq

(π)
=

2
√
ε1ε2 α1(p)

ε1 − ε2
R (p |p) ,

which can be written as

T (p |p) =
ε1 − ε2

2
√
ε1ε2 α2(p)

(∫
J−,+2,1 (p |q) M−,+

2,1 (p |q) R (q |p)
dq

(π)
+J−,−2,1 (p |p) M−,−

2,1 (p |p)
)
,

(2.63a)

R (p |p) =
ε1 − ε2

2
√
ε1ε2 α1(p)

∫
J +,−

1,2 (p |q) M+,−
1,2 (p |q) T (q |p)

dq

(π)
. (2.63b)
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Why would one choose to work with a coupled set of equations when a decoupled one is available?
At first sight, it seems indeed like a not so clever idea to solve the coupled system instead of the
decoupled one. We will see in the chapter devoted to numerical methods for solving the Rayleigh
equations that a direct method consists in discretizing the integral equations and solving the
resulting linear system. Using the coupled equations would result in a system size twice as
big as each of the system for the separate decoupled equations. Since solving a linear with
direct methods typically scales as the cube of the system size, using the coupled set of equations
would be 8 times more costly to solve than one of the decoupled equations, so a factor 4 in the
end, if both reflection and transmission amplitudes are needed. However there are two a priori
interesting points to make about the coupled Rayleigh equations:

• The unknown in the right-hand side integral, is only either R or T. In other words, R is
given as a function of T only and vice versa.

• Equations (2.63a) and (2.63b) can be interpreted as a fixed point problem of the form
X = f(X), where X = (R,T).

A practical application of the first point is that if one knows R or T, for example after solving
one of the reduced Rayleigh equations, then it suffices to plug the known amplitudes into the
appropriate equation of Eqs. (2.63a) and (2.63b) to get the remaining amplitudes. Numerically,
this translates into a matrix-vector multiplication whose number of operations is of the order of
the square of the system size, which is considerably cheaper than solving the remaining reduced
Rayleigh equation.

The interpretation of the coupled Rayleigh equations as a fixed point problem invites us to
consider an iterative way of solving the system. One starts with a guess for R and T, for
example Fresnel coefficients for a flat surface, and then plug these amplitudes in the right-hand
side of Eqs. (2.63a) and (2.63b) to obtain a new guess and so on. One must be careful though,
since this method is not guaranteed to converge if f (which we have not explicitly written) is
not contractant for example. Another problem, purely numerical this time, is the amplification
of round-off errors by successive iterations (matrix-vector operation numerically). We will see
later that this is a serious issue which is related to the ill-conditioning of the iteration matrices.

2.5 Reduced Rayleigh equations of the second kind

2.5.1 Derivation of the RRE of the second kind

The reduced Rayleigh equations (2.51) and (2.52) take the form of Fredholm integral equations

of the first kind. By splitting the scalar kernel factor J b,al,m as a sum of a term proportional to a
Dirac mass and a remainder, we can recast the reduced Rayleigh equations as Fredholm integral
equations of the second kind instead. Such a splitting was suggested for example by Maradudin
in Ref. [56] for the study of surface plasmon polariton on a one-dimensional grating as an more
appropriate alternative to small amplitude perturbation theory (see Chapter 6). We can write

J b,al,m(p |q) = (bαl (p)−aαm (q))−1 (2π)2δ(p−q) +Kb,al,m(p |q) , (2.64)
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which defines

Kb,al,m(p |q)
def
=

∫
exp[−i(bαl(p)− aαm(q))ζ(x)]− 1

bαl (p)−aαm (q)
exp[−i(p−q) · x] dx (2.65)

=

∞∑

n=1

(−i)n
n!

(bαl (p)−aαm (q))n−1 ζ̂(n)(p−q) . (2.66)

In the last equation, we have expanded the exponential term at the numerator in a power series
and obtained an expansion of Kb,al,m(p |q) in Fourier transform of the powers of the surface profile
function, or in short Fourier moments, defined as

ζ̂(n)(p) =

∫
ζn(x) exp[−ip ·x] dx . (2.67)

Note that if the surface profile function vanishes identically (i.e. the surface is planar) then

Kb,al,m(p |q) = 0 and the term proportional to the Dirac mass in Eq. (2.64) corresponds to the

scalar kernel factor J b,al,m associated with a scattering system whose interface is planar. The term

Kb,al,m thus represents deviation of the scalar kernel factor J b,al,m from that of a planar interface.
Let us now insert Eq. (2.64) into the reduced Rayleigh equation Eq. (2.51) for the reflection
amplitudes. We obtain

(α2(p)− α1(p))−1 M++
21 (p | p) R(p | p0) +

∫
K++

21 (p | q) M++
21 (p | q) R(q | p0)

dq

(π)

= −(α2(p0) + α1(p0))−1 M+−
21 (p0 | p0) (2π)2δ(p−p0)−K+−

21 (p | p0) M+−
21 (p | p0) . (2.68)

Equation (2.68) can be interpreted as an integral equation of the second kind. This invites us
to compute successive approximations of R(p | p0) by iterations. First, instead of working with
the unknown R(p | p0), we make the following change of variable

∆ R(p | p0) = R(p | p0)− α1(p0)− α2(p0)

α2(p0) + α1(p0)

[
M+,+

2,1 (p |p)
]−1

M+,−
2,1 (p |p) (2π)2 δ(p−p0)

= R(p | p0)− (2π)2 δ(p−p0) ρ(0)(p0) (2.69)

which expresses the fact that we are looking for the deviation of the reflection amplitude from
the corresponding amplitude for a similar system but whose interface is planar. Plugging the
above equation in Eq. (2.68) we obtain an equation for ∆ R(p | p0)

(α2(p)− α1(p))−1 M++
21 (p | p) ∆ R(p | p0) +

∫
K++

21 (p | q) M++
21 (p | q) ∆ R(q | p0)

dq

(π)

= −K++
21 (p | p0) M++

21 (p | p0) ρ(0)(p0)−K+−
21 (p | p0) M+−

21 (p | p0) . (2.70)

Note that the Dirac mass disappears as it cancels with the reflection amplitude of the flat system,
which was in fact what motivated the change of variable. The above equation can be interpreted
as a fixed point problem and solved by successive iterations in the following way.

Initialize ∆ R(p | p0) = 0.

Loop until a desired precision, or a maximum number of iterations is reached

∆ R(k+1)(p | p0) = (α1(p)− α2(p))
[
M++

21 (p | p)
]−1

(∫
K++

21 (p | q) M++
21 (p | q) ∆ R(k)(q | p0)

dq

(π)

+K++
21 (p | p0) M++

21 (p | p0) ρ(0)(p0) +K+−
21 (p | p0) M+−

21 (p | p0)
)

End of the loop.
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The corresponding integral equation of the second kind for the transmission amplitudes reads

(−α1(p) + α2(p))−1 M−,−
1,2 (p | p) T(p | p0) +

∫
K−,−12 (p | q) M−,−

1,2 (p | q) T(q | p0)
dq

(π)

=
2
√
ε1ε2α1(p0)

ε2 − ε1
(2π)2δ(p−p0) , (2.71)

and by making the change of variable

∆ T(p | p0) = T(p | p0)− 2
√
ε1ε2α1(p0)

ε2 − ε1
(α2(p0)− α1(p0))

[
M−,−

1,2 (p |p)
]−1

(2π)2 δ(p−p0)

= T(p | p0)− (2π)2 δ(p−p0) τ (0)(p0) , (2.72)

we obtain the equation for ∆ T(p | p0)

(α2(p)− α1(p))−1 M−,−
12 (p | p) ∆ T(p | p0) +

∫
K−,−12 (p | q) M−,−

12 (p | q) ∆ T(q | p0)
dq

(π)

= −K−,−12 (p | p0) M−,−
12 (p | p0) τ (0)(p0) . (2.73)

Depending on the context we may refer to Eqs. (2.68) and (2.71) or equivalently Eqs. (2.70) and
(2.73) to the reduced Rayleigh equations of the second kind. The associated fixed point algorithm
will prove to be a powerful numerical tool (see Chapters 6 and 8).

2.5.2 Solution and physical interpretation

We now briefly comment on the physical interpretation of the solution one would obtain by
iterating infinitely many times the aforementioned algorithm. For the reflection amplitude, the
first iterate reads

∆ R(1)(p | p0) =(α1(p)− α2(p))
[
M++

21 (p | p)
]−1

(
K++

21 (p | p0) M++
21 (p | p0) ρ(0)(p0) +K+−

21 (p | p0) M+−
21 (p | p0)

)
, (2.74)

and the following iterates can be recast as

∆ R(k+1)(p | p0) = ∆ R(1)(p | p0) +

∫
D++

21 (p | q) ∆ R(k)(q | p0)
dq

(π)
, (2.75)

where we defined the reflection scattering kernel

D++
21 (p | q) = (α1(p)− α2(p))

[
M++

21 (p | p)
]−1K++

21 (p | q) M++
21 (p | q) . (2.76)

Let us now expand the first few iterates and express them as a function of ∆ R(1)(p | p0) only.
We have

∆ R(2)(p | p0) = ∆ R(1)(p | p0) +

∫
D++

21 (p | q) ∆ R(1)(q | p0)
dq

(π)
, (2.77a)

∆ R(3)(p | p0) = ∆ R(1)(p | p0) +

∫
D++

21 (p | q) ∆ R(1)(q | p0)
dq

(π)

+

∫ ∫
D++

21 (p | q) D++
21 (q | q′) ∆ R(1)(q′ | p0)

dq′

(π)
dq

(π)
. (2.77b)



i
i

“report” — 2018/9/20 — 10:11 — page 70 — #92 i
i

i
i

i
i

70 Chapter 2. The reduced Rayleigh equations for a single rough surface

p1

p2

p0

p

(a)

p1

p2

p0

pq

(b)

(p0, β)

(q, p)

(q, s)

(p, α)

∆R
(1)
pβ

∆R
(1)
sβ

D++
21,αp

D++
21,αs

(c)

Figure 2.2: Sketches of (a) a single scattering leap from p0 to p, (b) a two-scattering event
diagram showing a first leap from p0 to an intermediate in-plane wave vector q and a second
leap from q to p. (c) Illustration of elementary transitions of probability amplitudes between
the modes involved in the scattering events illustrated in (b).

We now start to see that by recursion we can show that as k → ∞ the solution of the reduced
Rayleigh equation for the deviation ∆ R can be written as

∆ R(p | p0) =
∞∑

k=0

〈
D++,k

21 (p),∆ R(1)(· | p0)
〉
, (2.78)

where the angle bracket denote the action of the linear functional D++,k
21 (p) parametrized by p

and which is the kth power, in the sense of composition, of the functional D++
21 (p) defined by

the kernel D++
21 . Explicitly, we have for any 2× 2 matrix valued function F : q ∈ R2 7→ F(q) ∈

M2(C) ,

〈
D++,k

21 (p),F
〉

def
=

∫
· · ·
∫

D++
21 (p | pk) D++

21 (pk | pk−1) · · ·D++
21 (p2 | p1) F(p1)

d2p1

(2π)2
· · · d2pk

(2π)2
.

(2.79)

By convention we set D++,0
21 (p) to be the Dirac mass centered at p, i.e.

〈
D++,0

21 (p),F
〉

def
= F(p).

Remark 2.6. We have obtained in Eq. (2.79) what is known in the theory of integral equations
as the Liouville-Neumann, or simply Neumann series expansion [57] of the solution of the Fred-
holm integral equation of the second kind Eq. (2.70). Physicists will certainly recognize what
they call a Born series.

The physical interpretation of Eq. (2.78) is that the first iterate (Born approximation) corre-
sponds to the reflection amplitude obtained by summing all possible single scattering path since
Eq. (2.74) only involves the incident in-plane wave vector p0 and the outgoing in-plane wave
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vector p. This could be represented by a diagram where the in-plane wave vector is incoming
with value p0 and makes a single leap to p. Then the second iterate for ∆ R, which reads

∆ R(2)(p | p0) = ∆ R(1)(p | p0) +

∫
D++

21 (p | q) ∆ R(1)(q | p0)
dq

(π)
, (2.80)

is the sum of the single scattering diagram and a diagram representing the sum of all possible
two-scattering events path starting from the in-plane wave vector p0 and outgoing with p but
with any intermediate in-plane wave vector q as suggested by the integral over q. The remarkable
point here is that the two-scattering events term is constructed as applying the scattering kernel
to the single scattering term. The scattering kernel can be interpreted as a transition probability
amplitude for scattering from q to p (and for corresponding polarization coupling involved)
and this independently of the prior history of the path. To be more precise, given an incident
polarization state β with in-plane wave vector p0 and for a fixed outgoing polarization state
α ∈ {p, s} with in-plane wave vector p, the integrand in Eq. (2.80) reads

D++
21,αp(p | q)∆R

(1)
pβ (q | p0) +D++

21,αs(p | q)∆R
(1)
sβ (q | p0) ,

which can be interpreted as an elementary flow of probability amplitude coming from states
(q, p) and (q, s) into state (p, α). Indeed, for higher multiple scattering events, each term in
Eq. (2.78) is of the form given by Eq. (2.79) which reminds of a Chapman-Kolmogorov equation
with transition probabilities for Markovian processes [58]. Whether this is a general property
of the scattering of light by any surfaces or if it is only a property of the reduced Rayleigh
equations, we must keep in mind that the solution given in Eq. (2.78) is only valid under the
assumption of convergence of the series of scattering diagrams. The analysis of the condition
for the convergence of this series, probably requiring tools from functional analysis and would
essentially analyze under which conditions the linear functional defined by the scattering kernel
is contractant, would be an important result both theoretically and numerically. Indeed, such
a result would decide whether the algorithm built around Eq. (2.70) would converge and how
fast, if it does. The convergence of the series Eq. (2.78) will be studied in details for sinusoidal
surfaces as a function of physical parameters such as the wavelength, the lattice constant
and the surface profile amplitude in Chapter 6. The convergence of the method will also
be illustrated in Chapter 8 for weakly rough dielectric surfaces. We will refer to the above
method, based on the iteration of Eq. (2.70), as the method of Fixed point Iterates of the
reduced Rayleigh Equation of the Second kind, or in short, method of FIRES. We have chosen
this denomination in order to stress what the method does and that the starting point is the
reduced Rayleigh equations of the second kind. In particular, we make this distinction so that
no confusion is made with the conventional Born approximation applied directly on the volume
integral representation, and to make a distinction with the similar method but starting from
the coupled Rayleigh equations (see Section 2.4).

For the transmission amplitude, the first iterate (starting from ∆ T(0)(p | p0) = 0) reads

∆ T(1)(p | p0) = (α1(p)− α2(p))
[
M−,−

12 (p | p)
]−1
K−,−12 (p | p0) M−,−

12 (p | p0) τ (0)(p0)

= K−,−12 (p | p0) τ (p |p) . (2.81)

The transmission scattering kernel reads

D−,−12 (p | q) = (α1(p)− α2(p))
[
M−,−

12 (p | p)
]−1
K−,−12 (p | q) M−,−

12 (p | q) , (2.82)
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and the solution for ∆ T(p | p0) as a series of multiple scattering diagrams reads

∆ T(p | p0) =

∞∑

k=0

〈
D−,−,k12 (p),∆ T(1)(· | p0)

〉
, (2.83)

with the obvious conventions analogous to the case of reflection.

2.6 Reduced Rayleigh equations for scalar waves

2.6.1 Motivation and context

In this section, we derive the reduced Rayleigh equations for scalar waves. The derivation of
the reduced Rayleigh equations in this case is significantly simpler than that of electromagnetic
waves but, apart from the technical issues related to polarization, the derivation is essentially
identical. Why do we consider scalar waves now that we have the equations for electromagnetic
waves? The motivation is two-fold. First, even though the equations for scalar waves do not
fully represent the physics of electromagnetic waves, they give useful approximations and physical
insights. In particular, the comparison between phenomena (or absence of phenomena) observed
when studying scalar waves and electromagnetic waves can give important clues on the types of
phenomena which fundamentally arise as a consequence of the polarization of electromagnetic
waves or if they can be explained based on simpler scalar considerations. Such a distinction
will be necessary when studying the Yoneda and Brewster scattering effect in Chapter 10 for
example. Second, we would like to extend the framework to other types of waves that may be
described by the Helmholtz equation, such as acoustic waves and quantum matter waves for
example, within some assumptions. To fix the idea, consider the case of the scattering of a
quantum particle of mass m, represented by a wave function ψ : (r, t) ∈ R3 × R 7→ ψ(r, t) ∈ C,
by a surface separating two regions of constant and distinct potentials V1 and V2. We know that
for a time independent Hamiltonian, the solution of the Schrödinger equation

i~
∂ψ

∂t
=

[
− ~2

2m
∆ + V

]
ψ , (2.84)

with initial condition ψ(r, 0) = ψ0(r), is given by

ψ(r, t) =
∑

α

〈ψα, ψ0〉 exp

(
−iEαt

~

)
ψα(r) , (2.85)

where 〈f, g〉 def
=
∫
R3 f

∗(r)g(r)d3r is an inner-product in L2(R3;C), and the (Eα, ψα) are solutions
of the eigenvalue problem (counted with their degeneracy)

[
− ~2

2m
∆ + V

]
ψα = Eαψα . (2.86)

Note that the sum over α may be discrete or continuous depending on the problem. The above
problem is then solved by diagonalizing the Hamiltonian (i.e. solving Eq. (2.86)) which, under
the assumption that we are looking for unbounded modes, or scattering modes, for which we
have a continuous spectrum for Eα > V1 and Eα > V2, can be re-written as a Helmholtz equation

∆ψ + ε
ω2

eff

c2
ψ = 0 , (2.87)

where we now drop the index α and define ω2
eff/c

2 = 2mE/~2, and ε = 1− V/E.
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Remark 2.7. Here we have simply made an arbitrary identification between the energy E and
the effective angular frequency ωeff . It should not be confused with the usual relation E = ~ω
of a de Broglie wave for example. Indeed, it was expected that one should not get a linear
relation between the effective frequency of the Helmholtz equation and the energy because the
Schrödinger equation is a partial differential equation of order one in time while the classical
wave equation is of order two in time. It is here only a mathematically convenient definition
which helps us recover a familiar Helmholtz equation. In fact, we could have chosen another
convention, for example ω2

eff/c
2 = 2m(E − Vmin)/~2, and ε = 1 − (V − Vmin)/(E − Vmin), with

Vmin = min(V1, V2), so that the effective dielectric constant is unity in the region of lowest
potential for example. However, note that the consequence of such a definition for the effective
angular frequency which is not consistent with a linear frequency-energy relation implies that a
plane wave of frequency ωeff is not a de Broglie wave with energy E = ~ωeff . One should then
be careful about the physical interpretation and always go back to expressions with the energy
in the end.

2.6.2 RRE for scalar waves

For the scattering of a quantum particle, the boundary conditions at the potential interface
are given by the continuity of the wave function and its normal derivative with respect to the
interface

lim
η→0

[ψ(s(x) + η n(x))− ψ(s(x)− η n(x))] = 0 (2.88a)

lim
η→0

n(x) · [∇ψ(s(x) + η n(x))−∇ψ(s(x)− η n(x))] = 0 . (2.88b)

Similarly to what was done in the case of electromagnetic wave the wave function ψ may be
written as a sum of plane waves in each region of constant potential as

ψj(r) =
∑

a=±

∫

R2

ψaj (q) exp(ikaj (q) · r)
dq

(π)
(2.89)

Assuming that Eq. (2.89) is valid close to the interface of the step of potential, the continuity
of the field and its normal derivative with respect to the interface yields

∑

a=±

∫
ψa1 (q) exp(ika1(q) · s(x))

dq

(π)
=
∑

a=±

∫
ψa2 (q) exp(ika2(q) · s(x))

dq

(π)
(2.90a)

∑

a=±

∫
ψa1 (q) exp(ika1(q) · s(x)) n(x) · ka1(q)

dq

(π)

=
∑

a=±

∫
ψa2 (q) exp(ika2(q) · s(x)) n(x) · ka2(q)

dq

(π)
(2.90b)

By multiplying Eq. (2.90a) by n(x) ·kb2(p) exp(−ikb2(p) ·s(x)) and Eq. (2.90b) by exp(−ikb2(p) ·
s(x)), where p = p1 ê1 +p2 ê2 is an arbitrary in-plane wave vector and b ∈ {±} is arbitrarily
chosen, and finally summing the two resulting equations and integrating over x we obtain

∑

a=±

∫
ψa1 (q) wba

21(p | q) · [kb2(p) + ka1(q)]
dq

(π)
=
∑

a=±

∫
ψa2 (q) wba

22(p | q) · [kb2(p) + ka2(q)]
dq

(π)
.

(2.91)
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The definition of wba
lm was given in Eq. (2.18) in the derivation of the reduced Rayleigh equations

in the case of electromagnetic waves. Following the same steps as in the derivation of the transfer
equations in the case of electromagnetic waves, we find without difficulty the transfer equations
for scalar waves subjected to the continuity of the field and its normal derivative with respect
to the interface

∑

a=±

∫ (
ε2 − ε1

) ω2

c2
J b,a2,1 (p |q) ψa1 (q)

dq

(π)
= 2 b α2 (p) ψb2 (p) , (2.92a)

∑

a=±

∫ (
ε1 − ε2

) ω2

c2
J b,a1,2 (p |q) ψa2 (q)

dq

(π)
= 2 b α1 (p) ψb1 (p) . (2.92b)

Here the definition of J b,al,m was given in Eq. (2.21). The transfer equations for the scalar waves
subjected to the aforementioned boundary conditions are similar to the transfer equations for
electromagnetic waves but replacing the matrix of change of polarization basis Pb,a

l,m by the scalar
1 (compare e.g. Eqs. (2.43) and (2.92a)).

Remark 2.8. We would like to stress that the above transfer equations for scalar wave are
only valid for the boundary conditions imposing the continuity of the field and its normal
derivative when crossing the interface. Such boundary conditions are relevant for the scattering
of a quantum particle by a potential, for example. However, one must keep in mind that
for the problem of scattering of acoustic waves, the boundary conditions would be different.
Consequently, for a problem of scattering of scalar wave with different boundary conditions
than the one chosen above, the corresponding transfer equations would read in general as

∑

a=±

∫
J b,a2,1 (p |q) F b,a2,1 (p | q) ψa1 (q)

dq

(π)
= 2 b α2 (p) ψb2 (p) , (2.93a)

∑

a=±

∫
J b,a1,2 (p |q) F b,a1,2 (p | q) ψa2 (q)

dq

(π)
= 2 b α1 (p) ψb1 (p) , (2.93b)

where F balm is a scalar function which depends on the boundary conditions. In the concrete
example of the acoustic scattering problem from and through a penetrable interface, the problem
is modeled by the following equations4,

∂ v

∂t
+

1

ρj
∇ψ = 0 (2.94a)

∂ψ

∂t
+ c2jρj ∇ · v = 0 , (2.94b)

where v, ψ, are respectively the velocity field and pressure variation of the fluid, and the
constants ρj , cj are respectively the average density and speed of sound in medium j. By taking
the time derivative of Eq. (2.94b) and substituting Eq. (2.94a) into it, we obtain the wave
equation

∂2ψ

∂t2
− c2j ∆ψ = 0 . (2.95)

4The system of equations, Eq. (2.94), is obtained from a linearization of Euler’s equations.
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It is common to assume the continuity of the pressure and the continuity of the normal velocity
across the interface, i.e.

lim
η→0

[ψ(s(x) + η n(x))− ψ(s(x)− η n(x))] = 0 (2.96a)

lim
η→0

n(x) ·
[

1

ρ1
∇ψ(s(x) + η n(x))− 1

ρ2
∇ψ(s(x)− η n(x))

]
= 0 . (2.96b)

In such a case, we leave to the reader to show that for acoustic waves we have

F balm(p |q) = ρ2

[
kb2(p)− ka1(q)

]
·
[
ρ−1

2 kb2(p)− ρ−1
1 ka1(q)

]

= ρ2

(
ε2
ρ2
− ε1
ρ1

)
ω2

c2
+

(
1− ρ2

ρ1

)
kb2(p) · ka1(q) , (2.97)

where we have set an arbitrary reference speed c > 0 and defined a effective dielectric constant
εj = c2/c2

j . Other types of boundary conditions are of course possible and the factor F balm must
be adapted accordingly by re-deriving the reduced Rayleigh equations each time. Note that in
the limit case ρ2 = ρ1 the boundary conditions are those of continuity of the field and its normal
derivative with respect to the surface and that we indeed recover the corresponding transfer
equations derived in Eqs. (2.92a) and (2.92b) since

F balm(p |q)
∣∣
ρ2=ρ1

=
(
ε2 − ε1

) ω2

c2
. (2.98)

Considering now the scattering of an plane wave incident in the potential region 1, ψ0(r) =
Ψ0 exp(ik−1 (p0) · r), and assuming that the only waves allowed to be scattered are those of with
wave vector directed upward (a = +) in the potential region 1 and downward (a = −) in the
potential region 2, we can write

ψ−1 (q) = Ψ0 (2π)2δ(q−p0) (2.99a)

ψ+
2 (q) = 0 (2.99b)

ψ+
1 (q) = R(q | p0) Ψ0 (2.99c)

ψ−2 (q) = T (q | p0) Ψ0 . (2.99d)

Plugging the above equations in Eqs. (2.92a) and ( 2.92b) respectively applied for b = + and
b = −, we obtain the following reduced Rayleigh equations

∫
J +,+

2,1 (p |q) R(q | p0)
dq

(π)
= −J +,−

2,1 (p |p) , (2.100a)

∫
J−,−1,2 (p |q) T (q | p0)

dq

(π)
=

2α1 (p) c2

(ε1 − ε2)ω2
(2π)2δ(p−p0) . (2.100b)

The corresponding equations in the case of other types of boundary conditions are immediately
obtained in view of Remark 2.8.

Remark 2.9. In the rest of this work, when deriving approximate solutions of the reduced
Rayleigh equations, we will always treat the case of electromagnetic waves. In order to obtain
the corresponding approximate solutions for scalar waves it will suffices to replace the matrices
Mb,a

l,m by the scalar factor for the chosen boundary conditions, which may simply reduce to a
constant for the case of scattering by a quantum particle.
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76 Chapter 2. The reduced Rayleigh equations for a single rough surface

2.7 Summary

It is time to summarize what has be done is the present chapter. We have derived the theory of
the reduced Rayleigh equations for electromagnetic waves as well as for scalar waves subjected to
different types of boundary conditions in a unified framework. The reduced Rayleigh equations
are decoupled integral equations for the reflection and transmission amplitudes in which the
right-hand side, or source term, encodes the incident field. Maybe more fundamental than the
reduced Rayleigh equations are what we have called the transfer equations which are integral
relations linking the Fourier amplitudes of the fields below and above the interfaces. The transfer
equations will be particularly important to generalize the framework to multilayer systems.
Furthermore, by considering the deviation of the solution of the reduced Rayleigh equations from
the solution for a planar surface, we have obtained Fredholm integral equations of the second
type, which we have named the reduced Rayleigh equations of the second type. The latter
equations allow for a Born series expansion of the solution to the reduced Rayleigh equations in
terms of multiple scattering events diagrams. We will see later that the iterative procedure for
obtaining the series expansion will lead to a powerful numerical scheme for solving the reduced
Rayleigh equations.
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Chapter 3

Multilayer systems

In this chapter, we will generalize the formalism of the reduced Rayleigh equations to multilayer
systems. The transfer equations Eqs. (2.44) and (2.47) derived in Chapter 2 will serve as
building blocks to derive in a systematic way the reduced Rayleigh equations for a stack of
arbitrary many rough layers. The system of sub- and superscripts introduced in Chapter 2,
which might seem more pedantic than useful so far, will reveal here their power in composition
rules.

We will derive transfer equations between any two layers in the stack which relate the field
amplitudes in each of the two chosen layers without explicitly using the field amplitudes in
intermediate layers. In particular, by applying the transfer equations to the whole stack, we
will deduce the integral equations satisfied by the reflection and transmission amplitudes for
the scattering by the whole system, namely the reduced Rayleigh equations. The transfer
equations keep the same integral equation structure as for the case of a single interface but the
corresponding multi-interface transfer kernel is now defined via multiple integral composition
of intermediate single-interface transfer kernels.

Although the derivation of the reduced Rayleigh equations for a multilayer system is rather
straightforward, two types of numerical issues are to be expected when it comes to solving
them. First, it is quite common to encounter numerical instabilities for film systems if no care
is taken. Indeed, we expect from a physical point of view the existence of exponentially growing
modes inside the film. These modes should not, in theory, represent any problem since there are
modes which are growing but are bounded within the film. Nevertheless, exponentially growing
modes are known to lead to instabilities when it comes to numerics. Second, the composition
rule to obtain the multi-interface transfer kernels significantly increases the complexity for
setting up the numerical linear system associated with the reduced Rayleigh equations. We will
see that already for a system containing two rough interfaces the computation of the transfer
kernel represents a challenge in itself.

Taking the example of a system containing two interfaces, we will show that the complexity
associated with a system where only one of the interface is rough and the other planar is
essentially the same as a system made of a single rough interface. In such a case, we will
also explain in details how the equations can be recast in a form which is numerically stable.
Unfortunately, constructing a robust and low complexity algorithm for the general case where,
for example, two interfaces are rough has not yet been achieved, and is an ongoing research topic.
We will suggest potential tracks, based on the reduced Rayleigh equations of the second kind,

77
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78 Chapter 3. Multilayer systems

and the probability interpretation associated with it, which may cure the curse of dimensionality.

3.1 The system

We consider a system composed of n+1 layers separated by n interfaces (n ∈ N∗). The media are
indexed from 1 to n+ 1, where the first and n+ 1th media are semi-infinite in the x3-direction.
We assume that each interface admits an average plane parallel to (ê1, ê2) and are bounded in
the ê3-direction. The ith interface (i ∈ J1, nK), separating the media i and i + 1, admits an
equation of the form

x3 = ζi (x) , (3.1)

for x in the (ê1, ê2) plane. We also assume that all interfaces are disjoint and ordered, i.e.
∀ i ∈ J1, n− 1K, ζi+1 < ζi, as shown in Fig. 3.1.

We are interested in finding integral equations satisfied by the reflection and transmission am-
plitudes, R (p |p) and T(p |p0), after interaction with the whole system. If we come back
to Eq. (2.44), that we may write for the fields on both sides of the first interface for example,
we now need to know the upwards propagating field in the first slab, which does not vanish
anymore since a set of subsequent interfaces also scatter back the transmitted light. The idea is
to successively eliminate all the fields in the intermediate interfaces and reach the last medium
(which is assumed semi-infinite).

ê1,2

ê3

x3 = ζ1(x)

x3 = ζ2(x)

x3 = ζi(x)

x3 = ζn(x)

ǫ1

ǫ2

...

...

ǫn+1

Figure 3.1: Illustration of a multilayer system and indexation of the media and the surface
profiles.

3.2 The transfer equations

We assume that the derivation of the transfer equations carried out in Chapter 2 is still valid
for each interface, i.e. we assume that the electric field in each layer may be expanded in plane
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waves. For each interface we can write Eq. (2.44), which reads for i ∈ J1, nK,

∑

ai=±

∫
J ai+1,ai
i+1,i (pi+ |pi) M

ai+1,ai
i+1,i (pi+ |pi) Eaii (pi)

d2pi
(2π)2

=
2
√
εiεi+1 ai+1 αi+1(pi+1)

εi+1 − εi
Eai+1

i+1 (pi+1) . (3.2)

The reason for indexing ai, ai+1 and pi, pi+1 in Eq. (3.2) will become clear in a few lines. We

recall that ai+1 and pi+1 can be arbitrarily chosen. Moreover, the definition of J b,ai+1,i must be
precised. In Eq. (2.21), the profile function is now naturally replaced by the one of the interface

i. More generally, the kernel scalar factor J b,al,m(p |q) for l,m ∈ {i, i+ 1} and l 6= m is defined as

J b,al,m(p |q) = (bαl (p)−aαm (q))
−1
∫

exp
[
−i(kbl (p)−kam (q)) · (x +ζi(x) ê3)

]
dx . (3.3)

One may argue that we do not strictly need two indices for J b,ai+1,i, since it only appears for
successive layers, and it is not defined for non-successive layers. However, we keep the two
indices because we will interchange them when we deal with the backward relation later on, so
the order of the indices is important. Furthermore, it will be convenient to define the single
interface kernels Θb,a

l,m defined for successive media, i.e. l,m ∈ J1, n+ 1K such that |l −m| = 1,
a, b ∈ {±}, and p,q in the vector plane (ê1, ê2) by

Θb,a
l,m (p |q) = α−1

l (p)J b,al,m (p |q) Mb,a
l,m (p |q) . (3.4)

The transfer kernel is qualified as forward if l > m and backward otherwise. In order to compact

further notations, we define ηi+1,i =
2
√
εiεi+1

εi+1−εi . With these new notations, Eq. (3.2) reads

∑

ai=±

∫
Θ
ai+1,ai
i+1,i (pi+ |pi) Eaii (pi)

d2pi
(2π)2

= ai+1 ηi+1,i Eai+1

i+1 (pi+1) . (3.5)

By multiplying to the left both sides of Eq. (3.5) by ai+1 Θ
ai+2,ai+1

i+2,i+1 (pi+ |pi+), where ai+2 = ±
and pi+2 can be arbitrarily chosen, and summing over ai+1 = ± and pi+1, one obtains

∑

ai+1=±
ai+1

∑

ai=±

∫ ∫
Θ
ai+2,ai+1

i+2,i+1 (pi+ |pi+) Θ
ai+1,ai
i+1,i (pi+ |pi) Eaii (pi)

d2pi
(2π)2

d2pi+
(2π)2

= ηi+1,i

∑

ai+1=±

∫
Θ
ai+2,ai+1

i+2,i+1 (pi+ |pi+)Eai+1

i+1 (pi+1)
d2pi+
(2π)2

. (3.6)

On the right hand side of the above equation, we recognize the left hand side of Eq. (3.5) taken
at interface i+ 2, hence

∑

ai+1=±
ai+1

∑

ai=±

∫ ∫
Θ
ai+2,ai+1

i+2,i+1 (pi+ |pi+) Θ
ai+1,ai
i+1,i (pi+ |pi) Eaii (pi)

d2pi
(2π)2

d2pi+
(2π)2

= ai+2 ηi+2,i+1 ηi+1,i Eai+2

i+2 (pi+2) . (3.7)

By interchanging the order of the integrals we obtain

∑

ai=±

∫
Θ
ai+2,ai
i+2,i (pi+ |pi) Eaii (pi)

d2pi
(2π)2

= ai+2 ηi+2,i Eai+2

i+2 (pi+2) . (3.8)
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80 Chapter 3. Multilayer systems

The above integral equation has the same structure as the forward transfer equation for a single
interface, Eq. (2.44), and relates the field amplitudes in media i and i + 2 without explicitly
referring to the field amplitudes in medium i+ 1. This comes with a cost since the new transfer
kernel Θ

ai+2,ai
i+2,i , which will be called the forward two-interfaces transfer kernel between media i

and i+ 2, is defined by the following transfer kernels composition rule

Θ
ai+2,ai
i+2,i (p |q) =

∑

ai+1=±
ai+1

∫
Θ
ai+2,ai+1

i+2,i+1 (p |p′) Θ
ai+1,ai
i+1,i (p′ |q)

d2p′

(2π)2
. (3.9)

In addition, we have defined in Eq. (3.8) the right-hand side factor

ηi+2,i = ηi+2,i+1 ηi+1,i . (3.10)

By iterating the process, we can successively eliminate intermediate fields between any two
arbitrary layers i and i + j, j ∈ J2, n + 1 − iK, and we obtain the following forward transfer
equation

∑

ai=±

∫
Θ
ai+j ,ai
i+j,i (pi+j |pi) Eaii (pi)

d2pi
(2π)2

= ai+j ηi+j,i Eai+ji+j (pi+j) , (3.11)

where the j-interfaces forward transfer kernel from i to i + j is defined from the composition
rule for k ∈ J2, jK

Θ
ai+k,ai
i+k,i (pi+k |pi)

=
∑

ai+k−1=±
ai+k−1

∫
Θ
ai+k,ai+k−1

i+k,i+k−1 (pi+k |pi+k-) Θ
ai+k−1,ai
i+k−1,i (pi+k- |pi)

d2pi+k-

(2π)2
, (3.12)

and initialized for k = 1 with the single-interface transfer kernel Θ
ai+1,ai
i+1,i (pi+ |pi). Equivalently

one may prefer the following expression expanded in single-interfaces transfer kernels

Θ
ai+j ,ai
i+j,i (pi+j |pi) =

∑

ai+j−1=±
ai+j−1

∫
· · ·

∑

ai+1=±
ai+1

∫
Θ
ai+j ,ai+j−1

i+j,i+j−1 (pi+j |pi+j-) · · · Θai+1,ai
i+1,i (pi+ |pi)

d2pi+
(2π)2

· · · d
2pi+j-
(2π)2

.

(3.13)

In addition, the right-hand side factor ηi+j,i is also defined by recurrence and reads

ηi+j,i =

j∏

k=1

ηi+k,i+k−1 . (3.14)

Similarly, we can derive the backward transfer equation:

∑

ai=±

∫
Θ
ai−j ,ai
i−j,i (pi-j |pi) Eaii (pi)

d2pi
(2π)2

= ai−j ηi−j,i Eai−ji−j (pi−j) , (3.15)

where j-interfaces backward transfer kernel from i to i− j is defined from the composition rule
for k ∈ J2, jK

Θ
ai−k,ai
i−k,i (pi-k |pi)

=
∑

ai−k+1=±
ai−k+1

∫
Θ
ai−k,ai−k+1

i−k,i−k+1 (pi-k |pi-k+) Θ
ai−k+1,ai
i−k+1,i (pi-k+ |pi)

d2pi-k+

(2π)2
. (3.16)
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initialized for k = 1 with the single-interface transfer kernel Θ
ai−1,ai
i−1,i (pi- |pi). Equivalently one

may prefer the following expression expanded in single-interfaces transfer kernels

Θ
ai−j ,ai
i−j,i (pi-j |pi) =

∑

ai−j+1=±
ai−j+1

∫
· · ·

∑

ai−1=±
ai−1

∫
Θ
ai−j ,ai−j+1

i−j,i−j+1 (pi-j |pi-j+) · · · Θai−1,ai
i−1,i (pi- |pi)

d2pi-
(2π)2

· · · d
2pi-j+
(2π)2

.

(3.17)

In addition, the right-hand side factor ηi−j,i is also defined by recurrence and reads

ηi−j,i =

j∏

k=1

ηi−k,i−k+1 . (3.18)

We have finally obtained the transfer equations generalized to any two slabs in a stack. These
equations can be applied to the whole set of slabs to obtain the integral equations for the total
reflection and transmission amplitudes as shown in the following section.

3.3 Reflection and transmission by a multilayer system

Assuming that we consider the reflection and transmission of an incident plane wave incoming
in medium 1, whose amplitude is given by Eq. (2.48), and according to the definition of the
reflection and transmission amplitudes Eqs. (2.49) and (2.50), and knowing that for an+1 = +
we have E+

n+1(p) = 0 (i.e. no upwards propagating wave in the last medium), we have

E−1 (q) = (2π)2 δ(q−p0) E0 , (3.19a)

E+
1 (q) = R(q |p0)E0, (3.19b)

E+
n+1(q) = 0 , (3.19c)

E−n+1(q) = T(q |p0)E0 . (3.19d)

By applying the transfer equation, Eq. (3.11), for an+1 = +, between the first and last media
(i.e. i = 1 and j = n), and inserting Eqs. (3.19a), (3.19c) and (3.19b), we obtain the following
integral equation for the reflection amplitude

∫
Θ+,+
n+1,1 (p |q) R (q |p)

d2q

(2π)2
= −Θ+,−

n+1,1 (p |p) , (3.20)

By applying the transfer equation, Eq. (3.15), for a1 = −, between the first and last media (i.e.
i = n+1 and j = n), inserting Eqs. (3.19a), (3.19c) and (3.19d), we obtain the following integral
equation for the transmission amplitude

∫
Θ−,−1,n+1 (p |q) T (q |p)

d2q

(2π)2
= −η1,n+1 (2π)2δ(p−p0) I2 , (3.21)

Remark 3.1. These equations have the same structure as in the single interface case. The only
difference resides in the transfer kernel which is defined as multiple (integral) compositions of
single interface transfer kernels.
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3.4 Stack of flat interfaces – Fabry-Perot interferometer

When all interfaces are planar the profile equation of the jth interface is given by,

x3 = ζj (x) = −Hj . (3.22)

where Hj > 0. For convenience we choose the origin on the first interface, hence H1 = 0.
Similarly to what we did in section 2.3, it is immediate to show that J aj+1,aj

j+1,j for a planar
interface reads

J aj+1,aj
j+1,j (pj+ |pj) =

ei(aj+1αj+1(pj+1)−ajαj(pj))Hj

aj+1αj+1(pj+1)− ajαj(pj)
(2π)2 δ(pj+1−pj) , (3.23)

thus, all integrals in the multi-interface transfer kernels become trivial due to the Dirac masses
and we are left with

Θ
an+1,a1
n+1,1 (p |q) = Θ̄

an+1,a1
n+1,1 (p) (2π)2δ(p−q) , (3.24)

where we defined

Θ̄
an+1,a1
n+1,1 (p) =

∑

an=±
...

a2=±

an · · · a2

αn(p) · · ·α2(p)

n∏

j=1

ei(aj+1αj+1(p)−ajαj(p))Hj

aj+1αj+1(p)− ajαj(p)
M

aj+1,aj
j+1,j (p |p) . (3.25)

By inserting Eq. (3.24) into Eq. (3.20), we can solve for the reflection amplitude:

R(p |p0) = −
[
Θ̄

+,+
n+1,1(p0)

]−1

Θ̄
+,−
n+1,1(p0) (2π)2δ(p−p0) . (3.26)

Remark 3.2. As expected from a system consisting of planar parallel interfaces, only the specu-
lar mode is present as indicated by the Dirac mass. Moreover, from the definition of Θ̄

an+1,a1
n+1,1 (p),

given by Eq. (3.25), it is clear that it is a diagonal matrix, and so is its inverse. Indeed, all
factors M

aj+1,aj
j+1,j (p |p) are diagonal by definition of the M

aj+1,aj
j+1,j matrix when evaluated at a

pair of identical in-plane wave-vectors. Hence, R(p |p0) is diagonal, which means that there is
no polarization coupling.

Similarly, for the transmission amplitude we obtain:

T(p |p0) = −η1,n+1

[
Θ̄
−,−
1,n+1(p0)

]−1

(2π)2δ(p−p0) , (3.27)

with

Θ̄
a1,an+1

1,n+1 (p) =
∑

a2=±
...

an=±

a2 · · · an
α2(p) · · ·αn(p)

n∏

j=1

ei(ajαj(p)−aj+1αj+1(p))Hj+1

ajαj(p)− aj+1αj+1(p)
M

aj ,aj+1

j,j+1 (p |p) . (3.28)

We may verify that the expression given by Eq. (3.26) corresponds to a well known expression
for the reflection amplitudes of a Fabry-Perot interferometer for the case of a system made of



i
i

“report” — 2018/9/20 — 10:11 — page 83 — #105 i
i

i
i

i
i

3.5. Numerical challenges 83

three media separated by n = 2 interfaces. Denoting by d the thickness of the film (second
medium), Eq. (3.26) yields for s-polarized wave Rss(p |p0) = rss(p0) (2π)2δ(p−p0) with

rss = −e
id(α2+α1)(α3 − α2)−1(α2 + α1)−1 − eid(−α2+α1)(α3 + α2)−1(−α2 + α1)−1

eid(α2−α1)(α3 − α2)−1(α2 − α1)−1 − eid(−α2−α1)(α3 + α2)−1(−α2 − α1)−1

= e2idα1
eidα2(α3 − α2)−1(α2 + α1)−1 − e−idα2(α3 + α2)−1(α1 − α2)−1

eidα2(α3 − α2)−1(α1 − α2)−1 − e−idα2(α3 + α2)−1(α2 + α1)−1

= e2idα1

α1−α2

α2+α1
+ e−2idα2 α2−α3

α3+α2

1 + e−2idα2 α1−α2

α2+α1

α2−α3

α3+α2

= e2idα1
r

(1,2)
ss + r

(2,3)
ss e−2idα2

1 + r
(1,2)
ss r

(2,3)
ss e−2idα2

, (3.29)

where r
(1,2)
ss and r

(2,3)
ss are the Fresnel coefficients for s-polarized reflection for a single planar

interface separating media 1 and 2, and 2 and 3 respectively. Equation (3.29) is a well known
expression for the reflection amplitude of the Fabry-Perot interferometer for s-polarized light up
to the phase factor e2idα1 and the sign in the exponential factor e−2idα2 which depend respectively
of the choice of origin and the orientation of the x3-axis (see e.g. [59]). The derivation of the
Fabry-Perot amplitudes for the reflected p-polarized wave and for the case of transmission is
similar and is left to the reader. The reduced Rayleigh equations for multilayer system are then
consistent with well known results in the limit case where the interfaces are planar.

3.5 Numerical challenges

This section can be read superficially at first and we recommend the interested reader to read it
in more depths after reading Part II.

In this last section, we anticipate on some numerical issues and challenges for the resolution of
the reduced Rayleigh equations. The aim is not to discuss the details of the numerical resolution,
which will be the object of Part II, but rather point at some properties of the equations which
are likely to make the numerical resolution delicate. For the sake of clarity, we will restrict
ourselves to the case of a system made of three media separated by two arbitrary interfaces. The
corresponding reduced Rayleigh equations satisfied by the reflection and transmission amplitudes
are respectively given by

∫
Θ++

31 (p |q) R(q |p0)
dq

(π)
= −Θ+−

31 (p |p0) (3.30a)

∫
Θ−−13 (p |q) T(q |p0)

dq

(π)
= −η13 (2π)2 δ(p−p0) . (3.30b)

As a small digression, let us mention that these equations will be at the basis of the study of
Selényi rings in Chapter 10 and in one of the model of the plasmonic photonic surface studied
in Chapter 12.

3.5.1 Numerical stability and exponentially growing modes

The first issue we will be concerned with is that of the stability of the numerical scheme.
Numerically, the integral equations (3.30) are discretized to obtain linear systems, and only
certain finite set of discrete modes are taken into account. These modes may be propagating,
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evanescent or even exponentially growing modes inside the film (medium 2). If the norm in-plane
wave vector associated with such a evanescent or growing mode is large, the exponential decay
or growth rate may become large. Physically, such rapid growth or decay will be attenuated by
a corresponding amplitude which is expected to be weak. Due to numerical precision, making a
small (and inevitable) error on the amplitudes of such modes may yield to dramatic instability.
As a rule of thumb, the decay or growth rate is controlled by |α2(p)| d. It is then expected that
the thicker the film or the larger the dielectric constant of the film, the more likely instability
are to occur for a given set of modes. In other words, troubles are expected when the film
becomes of the order of a few wavelengths thick. One may naively think that the modes in the
film should not be an issue since we are not evaluating them by virtue of the transfer equations.
However, the fact that the amplitudes of the modes in the film do not explicitly appear does not
mean that they do not contribute, quite on the contrary. Their contribution is encoded in the
transfer kernel. It is therefore expected that the source of the trouble will be found in analyzing
the transfer kernels. By definition the transfer kernel Θ++

31 (p |q) in Eq. (3.30) is given

Θ++
31 (p |q) =

∑

a2=±
a2

∫
Θ+a2

32 (p |p′) Θa2+
21 (p′|q)

dp′

(2π)2
. (3.31)

Cases where one of the interfaces is planar.

Let us assume first that the second surface is planar and we set the origin of the coordinate system
on the second surface, hence ζ2(x) = 0 and the surface profile function of the first interface can
be written as ζ1(x) = d + ζ(x), where d is the average film thickness and

∫
ζ(x) dx = 0. The

scalar kernel factor J a3,a232 associated with the second interface thus reduces to

J a3,a232 (p |q) = [a3α3(p)− a2α2(p)]−1 (2π)2 δ(p−q) , (3.32)

and the scalar kernel factor J a2,a121 associated with the first interface can be factorized as

J a2,a121 (p |q) =
exp[−i(a2α2(p)− a1α1(q))d]

a2α2(p)− a1α1(q)

∫
exp [−i(ka22 (p)− ka11 (q)) · (x +ζ(x) ê3)] dx

def
= exp[−i(a2α2(p)− a1α1(q))d] Ĵ a2,a121 (p |q) . (3.33)

The last equality is a defining equality for Ĵ a2,a121 (p |q). Note that the profile function in the
definition of Ĵ a2,a121 (p |q) is ζ and not ζ1, thus Ĵ a2,a121 (p |q) represents the scalar kernel factor
one would get if the origin was chosen to lie on the average plane associated with the first
interface, hence the phase factor in the right-hand side of Eq. (3.33). Expansion of Eq. (3.31)
thus reads

Θ++
31 (p |q) =

[
e−iα2(p)d M++

32 (p |p) Ĵ ++

21 (p |q) M++
21 (p |q)

α3(p)− α2(p)

−eiα2(p)d M+−
32 (p |p) Ĵ−+

21 (p |q) M−+
21 (p |q)

α3(p) + α2(p)

]
α−1

3 (p)α−1
2 (p) eiα1(q)d . (3.34)

Let us now analyze the behaviour of the exponential factors as |p | or |q | becomes large.
For |q | > n1ω/c, α1(q) = iβ1(q), where β1(q) = (q2−ε1ω2/c2)1/2 > 0. Hence eiα1(q)d =
e−β1(q)d → 0 as |q | → ∞. This term is therefore not troublesome. Similarly, for |p | > n2ω/c,
α2(p) = iβ2(p), where β2(p) = (p2−ε2ω2/c2)1/2 > 0. The exponential factor in the first term
of the square bracket in Eq. (3.34) thus becomes e−iα2(p)d = eβ2(p)d → ∞ as |p | → ∞ while
the exponential factor in the second term becomes eiα2(p)d = e−β2(p)d → 0 as |p | → ∞. It
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is therefore recommended to take care of the factor e−iα2(p)d. Let us factorize it out so that
Eq. (3.34) reads

Θ++
31 (p |q) =

[
M++

32 (p |p) Ĵ ++

21 (p |q) M++
21 (p |q)

α3(p)− α2(p)

− e2iα2(p)d M+−
32 (p |p) Ĵ−+

21 (p |q) M−+
21 (p |q)

α3(p) + α2(p)

]
α−1

3 (p)α−1
2 (p) eiα1(q)d e−iα2(p)d

def
= M(p |q)α−1

3 (p)α−1
2 (p) e−iα2(p)d , (3.35)

where the last equality defines M(p |q). So far we have only analyzed the kernel Θ++
31 of the

integral equation (3.30a). Consider now the right-hand side of Eq. (3.30a). Following the same
steps as the one executed for expanding the kernel Θ++

31 , we obtain that

Θ+−
31 (p |p0) =

[
M++

32 (p |p) Ĵ +−
21 (p |p0) M+−

21 (p |p0)

α3(p)− α2(p)

− e2iα2(p)d M+−
32 (p |p) Ĵ−−21 (p |p0) M−−

21 (p |p0)

α3(p) + α2(p)

]
α−1

3 (p)α−1
2 (p) e−iα1(p0)d e−iα2(p)d

def
= N(p |p0)α−1

3 (p)α−1
2 (p) e−iα2(p)d , (3.36)

where the last equality defines N(p |p0). The exponential factor e−iα2(p)d can then be also fac-
torized out of the right-hand side of Eq. (3.30a). Since this factor only depends on the variable
p, it can be taken out of the integral in Eq. (3.30a) and simplified on both side of the equa-
tion (and so can the factor α−1

3 (p)α−1
2 (p)). Consequently, we have removed the exponentially

growing terms on both side of the equation, and we obtain a new formulation of Eq. (3.30a)

∫
M(p |q) R(q |p0)

dq

(π)
= −N(p |p0) , (3.37)

where the new kernel and right-hand side were defined above. Mathematically speaking
Eq. (3.37) is equivalent to Eq. (3.30a), however, from a numerical point of view, we have
experienced that Eq. (3.37) leads to a numerical scheme which seems stable for film of several
wavelengths thick while a numerical scheme directly based on Eq. (3.30a) leads to instability
for a film thickness of the order of the wavelength.

Let us now consider the case where the first interface is planar and the second is arbitrary
instead. In contrast to the previous case, we will see that the present one contains an additional
difficulty. In that case, we make the choice of origin on the the planar interface, i.e. that we
have ζ1 = 0 and ζ2 = ζ − d with d > 0 still denotes the film thickness. Thus we have

J a2,a121 (p |q) = [a2α2(p)− a1α1(p)]−1 (2π)2 δ(p−q) , (3.38)

and

J a3,a232 (p |q) =
exp[i(a3α3(p)− a2α2(q))d]

a3α3(p)− a2α2(q)

∫
exp [−i(ka33 (p)− ka22 (q)) · (x +ζ(x) ê3)] dx

def
= exp[i(a3α3(p)− a2α2(q))d] Ĵ a3,a232 (p |q) . (3.39)
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Following the same steps as in the previous case we obtain

Θ++
31 (p |q) =

[
e−iα2(q)d Ĵ

++

32 (p |q) M++
32 (p |q) M++

21 (q |q)

α2(q)− α1(q)

+eiα2(q)d Ĵ
+−
32 (p |q) M+−

32 (p |q) M−+
21 (q |q)

α2(q) + α1(q)

]
α−1

3 (p)α−1
2 (q) eiα3(p)d . (3.40)

As in the previous case the troublesome factor is identified to be e−iα2(q)d which we factorize
out

Θ++
31 (p |q) =

[ Ĵ ++

32 (p |q) M++
32 (p |q) M++

21 (q |q)

α2(q)− α1(q)

+ e2iα2(q)d Ĵ
+−
32 (p |q) M+−

32 (p |q) M−+
21 (q |q)

α2(q) + α1(q)

]
α−1

3 (p)α−1
2 (q) eiα3(p)d e−iα2(q)d

def
= M(p |q)α−1

3 (p) eiα3(p)d e−iα2(q)d . (3.41)

Note that here we re-use the same notation as before for what will be become the new transfer
kernel for simplicity, although the definition differs. Similarly, the right-hand side can be recast
as

Θ+−
31 (p |p0) =

[ Ĵ ++

32 (p |p0) M++
32 (p |p0) M+−

21 (p0 |p0)

α2(p0) + α1(p0)

+ e2iα2(p0)d Ĵ
+−
32 (p |p0) M+−

32 (p |p0) M−−
21 (p0 |p0)

α2(p0)− α1(p0)

]
α−1

3 (p)α−1
2 (p0) eiα3(p)d e−iα2(p0)d

def
= N(p |p0)α−1

3 (p) eiα3(p)d e−iα2(p0)d . (3.42)

Note that here we do not need to factorized by e−iα2(p0)d since it is a constant, but we have done
so for the sake of keeping some symmetry in the equations. The factor α−1

3 (p) eiα3(p)d can be
taken out of the integral in Eq. (3.30a) and be simplified on both side of the equation. However,
this factor is not the troublesome one. Indeed, the exponentially growing factor e−iα2(q)d remains
inside the integral in Eq. (3.30a) and cannot be simplified. We need a more subtle manipulation
here, namely a change of unknown. We let the factor e−iα2(q)d to be ”absorbed” by the unknown
by defining

R̃(q |p0) = e−i(α2(q)−α2(p0))d R(q |p0) . (3.43)

The resulting integral equation reads
∫

M(p |q) R̃(q |p0)
dq

(π)
= −N(p |p0) . (3.44)

Equation (3.44) was experienced to lead to a more stable numerical scheme than that obtained
from Eq. (3.30a) used as it reads. The strategy in that case is then to solve Eq. (3.44) for R̃
and then deduce R from Eq. (3.43) by a simple point-wise multiplication by ei(α2(q)−α2(p0))d.

Remark 3.3. We could choose to keep the origin on the average plane of the second interface
instead and obtain slightly different expressions, Nevertheless, this choice would lead to the same
issue with a factor e−iα2(q)d which cannot be factorized out of the integral.
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Similar consideration are valid for the reduced Rayleigh equation for the transmission amplitude.
The only difference is that the case involving a change of unknown is that where the first interface
is arbitrary and the second is planar instead. We summarize below our recommendations for
all the cases. We will commonly denote by M, N and X respectively the kernel of the integral
equation, its right-hand side and the unknown, i.e. we have

∫
M(p |q) X(q |p0)

dq

(π)
= −N(p |p0) . (3.45)

The expressions of M, N and X for the different cases are given below.

Reflection rough-planar (ζ1 = d+ ζ, ζ2 = 0)

M(p |q) =

[
M++

32 (p |p) Ĵ ++

21 (p |q) M++
21 (p |q)

α3(p)− α2(p)
− e2iα2(p)d M+−

32 (p |p) Ĵ−+

21 (p |q) M−+
21 (p |q)

α3(p) + α2(p)

]

N(p |p0) =

[
M++

32 (p |p) Ĵ +−
21 (p |p0) M+−

21 (p |p0)

α3(p)− α2(p)
− e2iα2(p)d M+−

32 (p |p) Ĵ−−21 (p |p0) M−−
21 (p |p0)

α3(p) + α2(p)

]

X(q |p0) = exp [i(α1(q) + α1(p0))d] R(q |p0) .

Reflection planar-rough (ζ1 = 0, ζ2 = ζ − d)

M(p |q) =

[ Ĵ ++

32 (p |q) M++
32 (p |q) M++

21 (q |q)

α2(q)[α2(q)− α1(q)]
+ e2iα2(q)d Ĵ

+−
32 (p |q) M+−

32 (p |q) M−+
21 (q |q)

α2(q)[α2(q) + α1(q)]

]

N(p |p0) =

[ Ĵ ++

32 (p |p0) M++
32 (p |p0) M+−

21 (p0 |p0)

α2(p0)[α2(p0) + α1(p0)]
+ e2iα2(p0)d Ĵ

+−
32 (p |p0) M+−

32 (p |p0) M−−
21 (p0 |p0)

α2(p0)[α2(p0)− α1(p0)]

]

X(q |p0) = exp [−i(α2(q)− α2(p0))d] R(q |p0) .

Transmission rough-planar (ζ1 = d+ ζ, ζ2 = 0)

M(p |q) =

[
e2iα2(q)d Ĵ

−+

12 (p |q) M−+
12 (p |q) M+−

23 (q |q)

α2(q)[α2(q) + α3(q)]
− Ĵ

−−
12 (p |q) M−−

12 (p |q) M−−
23 (q |q)

α2(q)[−α2(q) + α3(q)]

]

N(p |p0) =
4
√
ε3ε22ε1

(ε1 − ε2)(ε2 − ε3)
α1(p0) exp [−iα1(p0)d] (2π)2 δ(p−p0)

X(q |p0) = exp [−iα2(q)d] T(q |p0) .

Transmission planar-rough (ζ1 = 0, ζ2 = ζ − d)

M(p |q) =

[
e2iα2(p)d M−+

12 (p |p) Ĵ +−
23 (p |q) M+−

23 (p |q)

α2(p) + α3(q)
− M−−

12 (p |p) Ĵ−−23 (p |q) M−−
23 (p |q)

−α2(p) + α3(q)

]

N(p |p0) =
4
√
ε3ε22ε1

(ε1 − ε2)(ε2 − ε3)
α1(p0)α2(p0) exp [iα2(p0)d] (2π)2 δ(p−p0)

X(q |p0) = exp [iα3(q)d] T(q |p0) .
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Remark 3.4. In the above expressions, we have chosen to always make a change of unknown
even in cases where it is not strictly necessary in regards to the stability of the numerical scheme.
This is simply an aesthetic choice, in order to keep some kind of symmetry on the expressions.
Only for the cases presenting a factor exp[−iα2(q)d] in the change of unknown is the change of
unknown indispensable.

Case of two arbitrary interfaces.

The case where two interfaces are both rough remains a challenge to be taken. Stabilizing
the reduced Rayleigh equations in this case has not been achieved in this work unfortunately.
We believe, nevertheless that this should be possible, and that inspiration can be drawn from
methods dealing with stacks of planar interfaces. In addition, the sub-cases treated above when
only one of the interfaces is rough may give good hints on what the general treatment should
be, as one may expect it to yield the aforementioned particular cases in the limit when one of
the interfaces is set to be planar.

3.5.2 Complexity of the transfer kernel

In addition to the stability issue, there is an issue of increasing complexity as the number of
layer increases. To illustrate this issue, let us compare the reduced Rayleigh equations for the
reflection amplitudes associated with a system having a single rough interface and a system
having two rough interfaces. In both cases, we have seen that the reduced Rayleigh equation
can be written in the form

∫
M(p |q) R(q |p0)

dq

(π)
= −N(p |p0) .

The difference resides, of course, in the kernel and right-hand side. Let us focus on the kernel
M(p |q). For a single interface, the kernel reads

M(p |q) = Θ++
21 (p |q) = α−1

2 (p)J ++
21 (p |q) M++

21 (p |q) ,

while for two interfaces it reads

Θ++
31 (p |q) =

∑

a2=±
a2

∫
Θ+a2

32 (p |p′) Θa2+
21 (p′|q)

dp′

(2π)2
.

We will see in Chapter 5 that numerically, an integral equation such as the reduced Rayleigh
equation can be discretized into a linear system of the form

M R = −N ,

where here M is a square matrix and R and N are column vectors (technically two columns-
matrices, one for each incident p and s-polarization, cf. Chapter 5). For a set number of
discretized points (or modes) N , solving the resulting linear with a so-called direct method take
of the order of N3 operations. This is independent of the kernel and right-hand side. However,
there is an additional complexity that must be taken into account, namely, that of setting up the
linear system. Roughly speaking, for a single interface, the number of operation for setting the
matrix M can be written as νN2 assuming that each of the N2 elements of the matrix requires
ν operations for their computation. For two rough interfaces, the kernel leads to a matrix of the
form

M = M1 M2−M3 M4 ,
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where M1, M2, M3, and M4 all have the same complexity as the matrix M associated with
the kernel of a single interface problem. Setting up the matrix M for a two-interface problem
thus requires first to set up four matrices of the same complexity as that of the single interface
problem, so 4νN2 which is not a big problem, but more problematic are the two matrix prod-
ucts which require of the order of N3 operations each. Therefore for two-rough interfaces, the
numerical bottleneck becomes setting up the matrix of the linear system, not solving it. This
will be illustrated in more details in Chapter 5. The reader will convince oneself that the power
in the complexity scaling increases by one each time one interface is added to the system. We
are facing the so-called curse of dimensionality.

3.5.3 Reduction of the complexity with the RRE of the second kind

But there is hope. Intuitively, one would expect that the complexity of a scattering problem
should scale linearly with the number of interfaces, and not increase the power of the asymptotic
scaling each time an interface is introduced. Why is that? If we think of methods such as
boundary elements methods, the interfaces are discretized and the numerical problem scales
with the number of discrete points. Thus, the scaling of the complexity is linear with the number
of interfaces. Can we solve the reduced Rayleigh equations numerically with a complexity
which is linear with the number of interfaces? The answer is yes, in principle.

The main idea is the following. Since setting up the transfer kernel is costly, let us avoid
setting it up. Of course, we still need to keep the whole information about the system, and
we should expect to still have to set up single interface transfer kernels but we can avoid the
costly matrix-matrix multiplications associated with the multi-interface transfer kernel.

Instead of the reduced Rayleigh equation for the reflection amplitude, let us consider the reduced
Rayleigh equation of the second kind instead (see Section 2.5). Following the same step as in
Section 2.5 we can derive the reduced Rayleigh equation of the second kind for a multi-layer
system. The starting point is the reduced Rayleigh equation

∫
Θ++

31 (p |q) R(q |p0)
dq

(π)
= −Θ+−

31 (p |p0) , (3.46)

where the transfer kernel and right-hand side are defined by

Θa3a1
31 (p |q) =

∑

a2=±
a2

∫
Θa3a2

32 (p |p′) Θa2a1
21 (p′ |q)

d2p′

(2π)2
(3.47a)

Θa3a2
32 (p |p′) = α−1

3 (p)J a3a232 (p |p′) Ma3a2
32 (p |p′)

=

[
(2π)2 δ(p−p′)

a3α3(p)− a2α2(p′)
+Ka3a232 (p |p′)

]
α−1

3 (p) Ma3a2
32 (p |p′) (3.47b)

Θa2a1
21 (p′ |q) = α−1

2 (p′)J a2a121 (p′ |q) Ma2a1
21 (p′ |q)

=

[
(2π)2 δ(p′−q)

a2α2(p′)− a1α1(q)
+Ka2a121 (p′ |q)

]
α−1

2 (p′) e−i(a2α2(p′)−a1α1(q))d Ma2a1
21 (p′ |q) .

(3.47c)

Here we have chosen to place the origin of the coordinate system on the average of the second
surface so that we can write ζ1 = d+h1 and ζ2 = h2 where d is the average thickness of the film
and h1 and h2 are function with zero average. The hi are then replacing the ζi in the definition
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of the Kbalm. Thanks to the delta-K splitting, the two-interface transfer kernel can be written as

Θa3a1
31 (p |q) = (2π)2 δ(p−q) Ka3a1

1 (p) + Ka3a1
2 (p |q) + Ka3a1

3 (p |q) + Ka3a1
4 (p |q) , (3.48)

where we have defined

Ka3a1
1 (p)

def
=
∑

a2=±
a2

e−i(a2α2(p)−a1α1(p))d Ma3a2
32 (p |p) Ma2a1

21 (p |p)

α3(p)α2(p)(a3α3(p)− a2α2(p))(a2α2(p)− a1α1(p))
(3.49a)

Ka3a1
2 (p |q)

def
=
∑

a2=±
a2
e−i(a2α2(p)−a1α1(q))d Ka2a121 (p |q) Ma3a2

32 (p |p) Ma2a1
21 (p |q)

α3(p)α2(p)(a3α3(p)− a2α2(p))
(3.49b)

Ka3a1
3 (p |q)

def
=
∑

a2=±
a2
e−i(a2α2(q)−a1α1(q))d Ka3a232 (p |q) Ma3a2

32 (p |q) Ma2a1
21 (q |q)

α3(p)α2(q)(a2α2(q)− a1α1(q))
(3.49c)

Ka3a1
4 (p |q)

def
=
∑

a2=±
a2

∫
e−i(a2α2(p′)−a1α1(q))d

α3(p)α2(p′)
Ka3a232 (p |p′) Ma3a2

32 (p |p′)

×Ka2a121 (p′ |q) Ma2a1
21 (p′ |q)

d2p′

(2π)2
. (3.49d)

By plugging Eq. (3.48) into Eq. (3.46) we obtain

K++
1 (p) R(p |p0) +

∫ 4∑

j=2

K++
j (p |q) R(q |p0)

dq

(π)

= −(2π)2δ(p−p0) K+−
1 (p0)−

4∑

j=2

K+−
j (p |p0) . (3.50)

By setting the change of unknown

∆ R(p |p0)
def
= R(p |p0)− ρ(0)(p0) (2π)2 δ(p−p0) , (3.51)

where ρ(0)(p0) is the amplitude of the associated Fabry-Perot system (i.e. the response for the
similar system but with planar interfaces hj = 0) given by

ρ(0)(p0)
def
=
[
K++

1 (p0)
]−1

K+−
1 (p0) , (3.52)

we get the reduced Rayleigh equation of the second kind for ∆ R(p |p0)

K++
1 (p) ∆ R(p |p0) +

∫ 4∑

j=2

K++
j (p |q) ∆ R(q |p0)

dq

(π)

= −
4∑

j=2

K+−
j (p |p0)−

4∑

j=2

K++
j (p |p0)ρ(0)(p0) . (3.53)

So what have we gained? The reader may argue that we still have matrix-matrix products to be
evaluated in the discretized version Eq. (3.53) if we want to solve it. This seems clear from the
terms in Ka3a1

4 since Ka3a1
4 is a integral composition of two modified single-interface transfer

kernels, similar to Θa3a1
31 . This would indeed be the case if one would use a direct solver, but

the power of the reduced Rayleigh equation of the second kind resides in its iterative resolution.
Indeed, starting with the initial guess ∆ R(0) = 0 and then taking successive iterates, no
matrix-matrix multiplication is necessary any longer but only matrix-vector multiplications.
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Indeed numerically there will be terms of the form A B ∆R(k), where A and B are square
matrices, which can be evaluated by computing first Y = B ∆R(k) and then A Y, i.e. using
only matrix-vector multiplications. This is a significant reduction of complexity, under the
assumption that the fixed point iterative method converges quickly.

We have shown here a promising idea for reducing the complexity of associated with solving the
reduced Rayleigh equations for multi-layer system with rough interfaces. This method, however,
does not cure the inherent unstable feature of the reduced Rayleigh equations as given in their
”usual” form as discussed earlier. The main challenge for future research will be to find a form
of the reduced Rayleigh equation of the second kind which is numerically stable.

3.6 Summary

In the present chapter the reduced Rayleigh equations have been generalized to systems of
stacks of homogeneous layers separated by arbitrary interfaces. The derivation is based on
the composition of the elementary transfer equations derived in Chapter 2 for each successive
pair of layer and yields transfer equations for the resulting system. The increase in complexity
associated with the addition of layers with rough interfaces has been discussed and was shown
to represent a computational challenge. A possible solution for this issue, based on the reduced
Rayleigh equations of the second kind, have been suggested to avoid setting up the costly multi-
layer transfer kernel. In addition, the numerical stability of the obtained reduced Rayleigh
equations have been analyzed and numerically stable expressions have been suggested in the
case of systems possessing one rough and one planar interface. Finding stable expressions to
implement in the case where two rough interfaces are present still remains to be achieved.
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Chapter 4

Periodic structures

The present chapter is devoted to the analysis of the consequence of the periodicity of the
interfaces in the reduced Rayleigh equations. First, from the reduced Rayleigh equations
derived in Chapter 2 in the case of a single interface separating two media, we will recover
the grating formula or the Bloch-Floquet theorem. This result states that the only diffracted
modes allowed in this system are the ones with an in-plane wave-vector that differs from the
in-plane wave vector of the incident wave by a reciprocal lattice of the surface. Consequently,
the integral equations for the reflection and transmission amplitudes will reduce to an in-
finite but countable set of linear equations. Therefore, from a numerical point of view, no
discretization in the in-plane wave vector space is needed compared to the case of an arbitrary
surface, as the unknown is the discrete set of reflection and transmission amplitudes and
the resolution parameter of numerical method is simply a cut-off in the in-plane wave-vector
space, or equivalently in the set of diffractive orders. We will make use of this result in Chapter 5.

Then, based on the theoretical framework developed in Chapter 3, we will consider the case of
a system made of a stack of layers where all interfaces are periodic but may or may not share
the same basis lattice vectors. We will restrict our analysis to the case of a system having two
interfaces for the sake of clarity and illustrate that care must be taken when treating such systems
by distinguishing degenerate and non-degenerate cases regarding the summation of reciprocal
lattice vectors.

ê1,2

ê3

x3 = ζ(x)

ǫ1

ǫ2

Figure 4.1: A system of two half spaces separated by a periodic interface.
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4.1 Single periodic interface

We consider a single interface separating two media of dielectric constants ε1 and ε2 and whose
profile is periodic, i.e. there exist a1,a2 ∈ R2, such that for all ` ∈ Z2 and for all x ∈ R2, we
have

ζ(x + a(`)) = ζ (x) , (4.1)

where a(`) = `1a1 + `2a2 is a lattice vector. In particular, we will assume in the following that
a1,a2 are vectors forming the primitive lattice cell ac. Hence the profile at any point can be
constructed from the profile in the unit cell. In mathematical terms, this means that for all
x ∈ R2, there exists ` ∈ Z2, and xc ∈ ac, such that

x = xc + a(`) , (4.2)

and consequently,

ζ (x) = ζ(xc) . (4.3)

We recall that in the reduced Rayleigh equations for the reflection and transmission amplitudes
Eqs. (2.51) and (2.52), the information about the interface is entirely encoded in the scalar

kernel (and right-hand-side) factor J b,al,m. Let us analyze the consequences of the periodicity on

this factor. We recall that for p and q ∈ R2,

J b,al,m (p |q) =





Ib,al,m (p |q) , q /∈ Rb,al,m (p)

−i ζ̂(p− q), q ∈ Rb,al,m (p)
(4.3)

For q /∈ Rb,al,m (p), we have

Ib,al,m (p |q) = (bαl (p)−aαm (q))−1

∫
e−i(k

b
l (p)−kam (q))·s(x) dx . (4.4)

The integral becomes

∫
e−i(k

b
l (p)−kam (q))·s(x) dx =

∫

R2

e−i(p−q)·x e−i(bαl (p)−aαm (q))ζ (x) dx

=
∑

`∈Z2

∫

ac

e−i(p−q)·(xc+a(`)) e−i(bαl (p)−aαm (q))ζ(xc) dxc

=
∑

`∈Z2

e−i(p−q)·a(`)

∫

ac

e−i(p−q)·xc e−i(bαl (p)−aαm (q))ζ(xc) dxc . (4.5)

Now using Poisson summation, we get

∑

`∈Z2

e−i(p−q)·a(`)

=
(2π)2

ac

∑

`∈Z2

δ(p− q−G(`)) , (4.6)

where G(`) is a reciprocal lattice vector defined as

G(`) = `1b1 + `2b2 , (4.7)

where the basis reciprocal lattice vector are defined, for i, j ∈ {1, 2}, by

ai · bj = 2π δij . (4.8)
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Thus we obtain

Ib,al,m (p |q) = (2π)2
∑

`∈Z2

δ(p− q−G(`)) Ĩb,al,m(p |q) , (4.9)

where we have introduced

Ĩb,al,m(p |q)
def
= (bαl (p)−aαm (q))−1 1

ac

∫

ac

e−i(k
b
l (p)−kam (q))·s(x) dx . (4.10)

For q ∈ Rb,al,m (p), we have to consider

ζ̂(p− q) =

∫
ζ(x) e−i(p−q)·x dx

=
∑

`∈Z2

∫

ac

ζ(xc) e
−i(p−q)·(xc + a(l)) dxc

=
∑

`∈Z2

e−i(p−q)·a(l)

ac ζ̂ac(p− q)

= (2π)2
∑

`∈Z2

δ(p− q−G(`)) ζ̂ac(G
(`)) , (4.11)

where we have introduced

ζ̂ac(q)
def
=

1

ac

∫

ac

ζ(x) e−iq ·x dx . (4.12)

To sum up, we have

J b,al,m (p |q) = (2π)2
∑

`∈Z2

δ(p− q−G(`)) J̃ b,al,m (p |q) , (4.13)

with

J̃ b,al,m (p |q)
def
=





Ĩb,al,m(p |q), q /∈ Rb,al,m (p)

−i ζ̂ac(p− q), q ∈ Rb,al,m (p) .
(4.14)

4.1.1 Reflection of a plane wave by a periodic surface

By plugging the expression of J b,al,m in Eq. (4.13) into the reduced Rayleigh equation for the
reflection amplitude, Eq. (2.51), we obtain

∑

`∈Z2

J̃ +,+
2,1 (p |p−G(`)) M+,+

2,1 (p |p−G(`)) R(p−G(`) |p0)

= −(2π)2
∑

`∈Z2

δ(p−p0−G(`)) J̃ +,−
2,1 (p0 + G(`) |p0) M+,−

2,1 (p0 + G(`) |p0) , (4.15)

where we have performed the integration on the left hand side using the fundamental property
of the Dirac delta. The distribution on the right hand side being a Dirac comb, it is clear from
the theory of distribution that a solution R must be itself a Dirac comb, with the same support
as the Dirac masses on the right hand side. In other words, there exists a sequence of reflection
amplitude matrices (R(m)(p0))m∈Z2 , such that

R(p |p0) = (2π)2
∑

m∈Z2

δ(p−pm) R(m)(p0) , (4.16)
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with pm
def
= p0 + G(m). From a physical point of view, this means that the only waves allowed

to be reflected are the ones having a transverse wave vector lying on the reciprocal lattice up
to the incident transverse wave vector p0 (see Fig. 1.9 in Chapter 1). In other words, we have
just shown that the reduced Rayleigh equation is consistent with the grating formula. Inserting
Eq. (4.16) into Eq. (4.15) we get

∑

`∈Z2

∑

m∈Z2

δ(p−pm+`) J̃ +,+
2,1 (pm+` |pm) M+,+

2,1 (pm+` |pm) R(m)(p0)

= −
∑

`∈Z2

δ(p−p`) J̃ +,−
2,1 (p` |p0) M+,−

2,1 (p` |p0) . (4.17)

We now change the summation index `↔ `+m in the left hand side to obtain

∑

`∈Z2

δ(p−p`)
∑

m∈Z2

J̃ +,+
2,1 (p` |pm) M+,+

2,1 (p` |pm) R(m)(p0)

= −
∑

`∈Z2

δ(p−p`) J̃ +,−
2,1 (p` |p0) M+,−

2,1 (p` |p0) . (4.18)

Now by integration against a smooth test function ϕ having a compact support included in a
disc of radius min(|b1 |, |b2 |)/2 centered on p` and such that ϕ(p`) = 1, it follows that the
coefficients of the Dirac delta centered on p` on the left and right hand side must be equal, and
this for all `. We obtain the following infinite linear system, namely that for all ` ∈ Z2,

∑

m∈Z2

J̃ +,+
2,1 (p` |pm) M+,+

2,1 (p` |pm) R(m)(p0) = −J̃ +,−
2,1 (p` |p0) M+,−

2,1 (p` |p0) . (4.19)

4.1.2 Transmission of a plane wave through a periodic surface

Similarly to the reasoning applied in the previous section, by plugging Eq. (4.13) into the reduced
Rayleigh equation for the transmission amplitude, Eq. (2.52), we obtain

∑

`∈Z2

J̃−,−1,2 (p |p−G(`)) M−,−
1,2 (p |p−G(`))T(p−G(`) |p0) =

2
√
ε1ε2 α1(p0)

ε2 − ε1
(2π)2 δ(p−p0) I2 , (4.20)

where we have performed the integration on the left hand side using the fundamental property of
the Dirac delta. The distribution on the right hand side is now only a single Dirac delta. Since
the transmission amplitude is taken at different point on a lattice p−G(`), the same argument
as before applies and a solution T must be itself a Dirac comb. In other words, there exists a
sequence of transmission amplitude matrices (T(m)(p0))m∈Z2 such that,

T(p |p0) = (2π)2
∑

m∈Z2

δ(p−pm) T(m)(p0) . (4.21)

Inserting the above equation into Eq. (4.20) we get

∑

`∈Z2

∑

m∈Z2

δ(p−pm+`) J̃−,−1,2 (pm+` |pm) M−,−
1,2 (pm+` |pm) T(m)(p0)

=
2
√
ε1ε2 α1(p0)

ε2 − ε1
δ(p− p0) I2 . (4.22)
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We now change the summation index `↔ `+m on the left hand side to obtain

∑

`∈Z2

δ(p−p`)
∑

m∈Z2

J̃−,−1,2 (p` |pm) M−,−
1,2 (p` |pm) T(m)(p0) =

2
√
ε1ε2 α1(p0)

ε2 − ε1
δ(p− p0) I2 . (4.22)

Now by integration against a smooth test function ϕ having a compact support included in a
disc of radius min(|b1 |, |b2 |)/2 centered on p` and such that ϕ(p`) = 1, it follows that for all
` ∈ Z2,

∑

m∈Z2

J̃−,−1,2 (p` |pm) M−,−
1,2 (p` |pm) T(m)(p0) =

2
√
ε1ε2 α1(p0)

ε2 − ε1
δ` I2 . (4.23)

Here δ`
def
= δ`1,0 δ`2,0 denotes a Kronecker delta, i.e. δ` = 1 if ` = 0 and 0 otherwise.

The reduced Rayleigh equations which were integral equations in the case of an arbitrary inter-
face reduce, in the case of a periodic interface, to a infinite dimensional countable linear system
of equations as can be seen from Eqs. (4.19) and (4.23).

4.2 Multilayer with periodic interfaces

In this section we combine what has been done in the previous section and in Chapter 3 to
derive the reduced Rayleigh equations for the problem of scattering by a multilayer system
whose interfaces are periodic. To stay as general as possible we treat the case where each
surface has a priori a period and a profile in the unit cell different from each other.

ê1,2

ê3

x3 = ζ1(x)

x3 = ζ2(x)

x3 = ζi(x)

x3 = ζn(x)

ǫ1

ǫ2

...

...

ǫn+1

Figure 4.2: Multilayer system with periodic interfaces.
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4.3 The system

The system under consideration is described by a stack of n+ 1 layers separated by n periodic
interfaces, i.e. for all i ∈ J1, nK, there exist ai,1,ai,2 ∈ R2, such that for all ` ∈ Z2 we have

ζi(x + a
(`)
i ) = ζi (x) . (4.24)

As in the previous section, we define a
(`)
i

def
= `1 ai,1 +`2 ai,2, and we take ai,1,ai,2 as the primitive

basis vectors of the unit cell of the ith interface. Following section 4.1, each factor J ai+1,ai
i+1,i in

the transfer kernel Θ
an+1,a1
n+1,1 , can be written as

J ai+1,ai
i+1,i (pi+1 |pi) = (2π)2

∑

`∈Z2

δ(pi+1−pi−G
(`)
i ) J̃ ai+1,ai

i+1,i (pi+1 |pi+1−G
(`)
i ) . (4.25)

Here we recall that the interface between media i, and i + 1 is indexed as i, and ac,i, G
(`)
i are

respectively the area of the unit cell and a reciprocal lattice vector of the considered interface.
In particular, we recall that the reciprocal lattice vectors are such that,

G
(`)
i = `1 bi,1 +`2 bi,2 (4.26)

where the primitive vectors of the reciprocal lattice bi,1, bi,2 are defined by

ai,j ·bi,k = 2π δjk . (4.27)

Consequently, the forward transfer kernel reads

Θ
an+1,a1
n+1,1 (p |q) = (2π)2

∑

an=±
...

a2=±

∑

`n∈Z2

...
`1∈Z2

an · · · a2 δ

(
p−q−

n∑

i=1

G
(`i)
i

)

× Θ̃
an+1,an
n+1,n

(
q +

n∑

i=1

G
(`i)
i |q +

n−1∑

i=1

G
(`i)
i

)
· · · Θ̃a2,a1

2,1

(
q + G

(`1)
1 |q

)
(4.28)

Here we have introduced

Θ̃
b,a

l,m (p |q)
def
= α−1

l (p) J̃ b,al,m (p |q) Mb,a
l,m (p |q) . (4.29)

4.4 Reflection and transmission

From now on, we treat the case of two interfaces, n = 2, for the sake of clarity as we are going
to illustrate a fundamental difference between the case for a single interface and the case for
several interfaces. As can already be seen in Eq. (4.28), sums of reciprocal lattice vectors of the
two lattices are involved in the transfer kernel. We define as a reciprocal lattice sum the set of

all vectors of the form G =
∑n

i=1 G
(`i)
i with `i ∈ Z2 for all i ∈ J1, nK (we restrict ourselves to

n = 2 hereafter). The lattice sum leads to two sub-cases to be considered: the case where the
two reciprocal lattices differs only by a rational scaling factor, which leads to a problem similar
to that of the case for a single interface; and the case where the two reciprocal lattices do not
only differ by a rational scaling factor which leads to a different problem. The two cases will
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be referred to respectively as degenerate and non-degenerate. In all cases, Eq. (4.28) yields the
following equation when plugged into the reduced Rayleigh equation

∑

`1,`2∈Z2

∑

a2=±
a2 Θ̃

+a2
32

(
p |p−G

(`2)
2

)
Θ̃
a2+

21

(
p−G

(`2)
2 |p−G

(`2)
2 −G

(`1)
1

)
R
(
p−G

(`2)
2 −G

(`1)
1 |p0

)

= −
∑

`1,`2∈Z2

∑

a2=±
a2 Θ̃

+a2
32

(
p |p0 + G

(`1)
1

)
Θ̃
a2−
21

(
p0 + G

(`1)
1 |p0

)
(2π)2δ

(
p−p0−G

(`2)
2 −G

(`1)
1

)
.

(4.30)

Note that here that compared to Eq. (4.28) we have chosen to use the Dirac delta to re-write
some arguments of the single-interface transfer kernels in an equivalent way in the right-hand
side for later convenience.

4.4.1 Degenerate case: rational lattice sum

We start by treating the degenerate case which corresponds to a system for which there exists a
common lattice for two interfaces. In other words, there exists a unit cell, a priori bigger than
that of the unit cells of each interface, which allows one to deduce the whole set of interfaces
by translation of the two profiles. Taking the simplified case of a one-dimensional lattice, this
corresponds to the case where the two lattice constants a1 and a2, for the first and second
interface respectively, are such that

a2 =
p

q
a1 , (4.31)

with p, q ∈ N and we assume that the fraction p
q is irreducible. Let us assume without loss of

generality that a1 < a2. For such lattices, it is clear that the set of the two interfaces is itself
periodic of period a = p a1 = q a2. The corresponding reciprocal lattice constants are then given
by bj = 2π/aj and we can define the reciprocal lattice constant for the overall lattice constant,
a, as b = 2π/a. We have directly from Eq. (4.31) that

b1 = p b (4.32a)

b2 = q b . (4.32b)

A vector of the reciprocal lattice sum hence reads

G = `1b1 + `2b2 = (`1p+ `2q)b . (4.33)

It is now clear that the reciprocal lattice sum is nothing but the reciprocal lattice of the latticed
defined based on the lattice constant a. Indeed, G is an integer multiple of b = 2π/a since p and
q are integers and the smallest non-zero reciprocal lattice sum point is indeed b. To see this, it
suffices to choose `1 = q and `2 = 1− p which leads to

G = (qp+ (1− p)q)b = b . (4.34)

Up to some geometrical technicalities the same ideas can be generalized for two-dimensional
lattices (this does not pose any problem for aligned rectangular lattices for example). The only
thing to be taken from the previous analysis is that when there exists a common cell for both
lattices which serves as a unit cell for the whole system, then the corresponding lattice vectors

a
(s)
1 and a

(s)
2 (the subscript denoting the two independent directions and the superscript the
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b2

b1

b

First reciprocal lattice

Second reciprocal lattice

Reciprocal super lattice

(a) Degenerate case: rational scaling factor.

b2

b1

First reciprocal lattice

Second reciprocal lattice

Dense reciprocal super lattice

(b) Non-degenerate case: irrational scaling factor.

Figure 4.3: Illustration of reciprocal lattice sums for (a) the degenerate case when the two lattices
differs by a rational scaling factor (b2/b1 = 2/3 on the illustration) and (b) the non-degenerate
case when the scaling factor is irrational (b2/b1 = 1/

√
2 on the illustration). Different colors

in (b) correspond to different fixed value of `1 ∈ J0, 5K (black, red, magenta, violet, blue, cyan)
with open circles indicating negative values of `1 and filled circles indicating positive values of
`1.

fact that there are primitive lattice vector of the whole system), can be used to construct the

reciprocal lattice vectors of the lattice sum, namely b
(s)
1 and b

(s)
2 such that

a
(s)
i ·b

(s)
j = 2πδij . (4.35)

The corresponding lattice, defined by the set {G(`)
s = `1 b

(s)
1 +`2 b

(s)
2 | ` = (`1, `2) ∈ Z2} thus

corresponds to reciprocal lattice sum. An illustration of the above considerations is given in
Fig. 4.3(a).

What have we learned from this analysis? We have learned that the sums over `1 and `2 in
Eq. (4.30), i.e. sums over the two individual reciprocal lattices, can in fact be re-written as a
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single sum over the super reciprocal lattice as follows

∑

`∈Z2

∑

`2∈Z2

∑

a2=±
a2 Θ̃

+a2
32

(
p |p−G

(`2)
2

)
Θ̃
a2+

21

(
p−G

(`2)
2 |p−G(`)

s

)
R
(
p−G(`)

s |p0

)

= −
∑

`∈Z2

(2π)2δ
(
p−p0−G(`)

s

) ∑

`1∈Z2

∑

a2=±
a2 Θ̃

+a2
32

(
p0 + G(`)

s |p0 + G
(`1)
1

)
Θ̃
a2−
21

(
p0 + G

(`1)
1 |p0

)
,

(4.36)

which we recast as

∑

`∈Z2

K
(r)
L (p |p−G(`)

s ) R
(
p−G(`)

s |p0

)
= −(2π)2

∑

`∈Z2

δ (p−p`) K
(r)
R (p` |p0) , (4.37)

with

p`
def
= p0 + G(`)

s (4.38a)

K
(r)
L (p |q)

def
=

∑

`2∈Z2

∑

a2=±
a2 Θ̃

+a2
32

(
p |p−G

(`2)
2

)
Θ̃
a2+

21

(
p−G

(`2)
2 |q

)
(4.38b)

K
(r)
R (p |q)

def
=

∑

`1∈Z2

∑

a2=±
a2 Θ̃

+a2
32

(
p |q + G

(`1)
1

)
Θ̃
a2−
21

(
q + G

(`1)
1 |q

)
. (4.38c)

In other words, we group terms such that G
(`1)
1 + G

(`2)
2 is constant, equal to some G

(`)
s . We

can now repeat the arguments used in the case of a single interface. The term in the right-hand

side is a Dirac comb on the lattice of the p`
def
= p0 + G

(`)
s which imposes that R itself must be of

the form Eq. (4.16). In other words, only plane waves with in-plane wave vectors differing by a
super reciprocal lattice vector from the incident wave vector are allowed to exist in the system.
Plugging Eq. (4.16) into Eq. (4.37) we obtain

∑

`∈Z2

∑

m∈Z2

δ
(
p−p`+m

)
K

(r)
L (p`+m |pm) R(m) (p0) = −

∑

`∈Z2

δ (p−p`) K
(r)
R (p` |p0) , (4.39)

which after the change of summation index `+m ↔ ` and integration against a smooth test

function ϕ having a compact support included in a disc of radius min(|b(s)
1 |, |b

(s)
2 |)/2 centered

on p` and such that ϕ(p`) = 1, yields the infinite countable linear system

∑

m∈Z2

K
(r)
L (p` |pm) R(m) (p0) = −K

(r)
R (p` |p0) , (4.40)

for ` ∈ Z2.

Remark 4.1. The reduced Rayleigh equation (4.40) for the case of two periodic surfaces in the
degenerate case takes the same form as the reduced Rayleigh equation for the case of a single
periodic surface. The main difference resides in the complexity of the kernel of the linear system,
which as can be seen in Eq. (4.38) is a discrete composition of periodic single-interface transfer
kernels. In particular, such a composition is nothing but a matrix-matrix product (the sum of
matrix-matrix products to be accurate taking into account the sum over a2 = ±) as will be
clear in Part II. It is then expected that solving the reduced Rayleigh equation for the case of
two periodic interfaces in the degenerate case should not be different from the single interface
case. However, we have foreseen in Chapter 3 some difficulties concerning the complexity of the
kernel and on the stability of film system which are still present independently of whether the
system is periodic or not.
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The case of transmission is handled in a similar fashion without difficulty and we obtain the
following reduced Rayleigh equation in the degenerate case

∑

m∈Z2

K
(t)
L (p` |pm) T(m) (p0) = η13 δ` I2 , (4.41)

where K
(t)
L now is defined as

K
(t)
L (p |q)

def
=

∑

`1∈Z2

∑

a2=±
a2 Θ̃

−a2
12

(
p |p−G

(`1)
1

)
Θ̃
a2−
23

(
p−G

(`1)
1 |q

)
. (4.42)

4.4.2 Non-degenerate case: irrational (dense) lattice sum

Let us now consider, what will be referred to as the non-degenerate case, for which each interface
is periodic but the system as a whole is not periodic. In this case, we do not expect the Bloch-
Floquet theorem to hold and therefore the scattering of an incident plane wave is not expected
to yield a scattered field that can be written as a sum of plane waves whose wave vector obeys
the grating formula. The system thus may simply be described as any arbitrary system without
taking into account the fact that each surface is periodic. There is nevertheless something of
interest to investigate to try to take advantage of the periodicity of each surface. Starting back
to Eq. (4.30), which we have derived without making other assumptions than the two interfaces
being periodic with different period, and when considering a non-degenerate system, we observe
something which is both interesting mathematically (or strange depending on the opinion) and
quite natural from a physics point of view. We would like of course to take the same steps
as in the degenerate case, but we now cannot find a common super lattice to both lattices.
As a consequence, we loses the grating formula as expected from physical consideration about
the overall non-periodicity of the system. The presence of the Dirac deltas on the right-hand
side nevertheless hints at the fact that the allowed wave vectors still may form a discrete, or
countable set. Indeed, the set of the sum of elements of two countable sets is still a countable
set. But this does not mean that each elements can be well separated from another, in other
words, we may have to deal with a set of in-plane wave vector which is countable but dense in
R2. Let us illustrate this idea by considering again a one-dimensional system where the lattice
constants are related by a irrational scaling factor, say

√
2 for the sake of the example

a2 =
√

2 a1 . (4.43)

The reciprocal lattice constants are then given by

b1 =
2π

a1
(4.44a)

b2 =
2π

a2
=

b1√
2
, (4.44b)

and the sum of a reciprocal lattice vector of the first lattice and a reciprocal lattice vector of
the second lattice hence reads

G = `1 b1 + `2 b2 =

(
`1 +

`2√
2

)
b1 . (4.45)

The set of points of the form Eq. (4.45) is illustrated in Fig. 4.3(b). The different colors for
the points indicate the corresponding fixed value of `1 and varying value of `2. In contrast
to Fig. 4.3(a), Fig. 4.3(b) illustrates the absence of an overall lattice and the densification of
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the set of points on the real line when varying `1 and `2. It is clear that not all the points on
the real line will be reached since, we have already indicated that the set of reciprocal points
is countable. In particular, another way to see this, is that no rational number other than
the integers are reachable. As a consequence of the countable property of the set, not all the
irrational numbers are reachable either. In short, the set of points given by Eq. (4.45) has
properties similar to Q with respect to R, it is countable and dense.

This seems to make sense intuitively. Now, let us come back to the term on the right-hand side
of Eq. (4.30). Taking a one-dimensional analogue for the sake of simplicity, the right-hand side
is of the form

RHS =
∑

G∈S
aG δ(p−G) , (4.46)

where S denotes some countable dense subset of R, like our aforementioned lattice sum, and
the aG are some coefficients indexed by G ∈ S (which we can do without trouble since S is
countable). Now comes the puzzling mathematical question. What does the above equation
actually mean? We would like to attempt our good old definition of the Dirac delta and try to
test it against a smooth test function with compact support ϕ, which would lead to

∫

R

∑

G∈S
aG δ(p−G)ϕ(p) dp =

∑

G∈S ∩ suppϕ

aG ϕ(G) . (4.47)

The right-hand side in Eq. (4.47) would diverge if nothing is specified about the aG. Indeed,
taking aG = 1 for all G ∈ S would lead to

∑
G∈S ∩ suppϕ ϕ(G) =∞ for a positive test function,

since we would sum an infinite number of terms of the same order. Intuitively, its seems that
the coefficients aG must then have a fast enough decay rate when ordered with decreasing
modulus for the right-hand side of Eq. (4.47) to be defined. Coming back to the picture drawn
in Fig. 4.3(b), we could expect that the weight aG associated with somewhat increasing `1 and
ell2 decays as the set of points becomes denser and denser so that when summed with the
corresponding weight, a finite result may be obtained.

We have done our best here to discuss intuitively the meaning of the Eq. (4.30) but it is clear
that a rigorous treatment would require elements of measure theory and distribution theory.
We are physicist after all, so let us be satisfied with the intuition for this work. What does it
bring us then with respect to solving such a problem with a computer? As already mentioned,
one way of dealing with the non-degenerate case could be to treat it as an arbitrary system
without specific symmetry. One would somehow average the response over a volume of wave
vectors to discretize the problem. Another way, which is similar to what would be expose in
the next chapter for solving the reduced Rayleigh equation for a single periodic interface, is to
assume that we approximate the system by a periodic system with a big period and treat it as
if it were a degenerate case. For example, this would be the same as approximating the scaling
factor

√
2 by a rational number in Eq. (4.45) and we would be back to the degenerate case.

Of course, the closer the approximation the denser the number of reciprocal points, and the
heavier the simulation. Nevertheless, we may expect that as the approximation of the scaling
constant becomes better and better, the optical response would converge. One may hope then
that a not too close approximation of the scaling constant is needed before obtaining a decent
approximation of the optical response. Such systems are unfortunately not studied further in
this work, but we hope that the above discussion will be the starting point of further research.
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4.5 Summary

The present chapter has been devoted to analyzing the consequences of the periodicity of the
interfaces for the reduced Rayleigh equations. First, we have seen that for a system containing
a single periodic interface, the fields can be written as a discrete sum of plane waves with
wave vectors satisfying the grating equation. The reduced Rayleigh equations hence become
infinite countable linear systems of equations for the discrete set of reflection and transmission
amplitudes. Then the cases of periodic multi-layer systems were analyzed in a similar way. We
have seen that similar arguments as those used for a single periodic interface apply but with a
distinction to be made between systems whose the periods of the different interfaces are rational
multiples of one another or not. The difficulty to treat numerical the latter case was discussed
with suggested solutions.
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Chapter 5

Solving the reduced Rayleigh
equations; direct method

”If my calculations are correct, when this baby hits 88 miles per hour...
you’re gonna see some serious shit.” – Dr. Emmett Brown

Back to the Future (1985).

In Part I, we have derived the reduced Rayleigh equations for a single arbitrary interface (Chap-
ter 2) and presented a framework which allows us to generalize the reduced Rayleigh equations
to multilayer system (Chapter 3). Also we have applied these equations in the case of periodic
interfaces and recover the well known grating formula (Chapters 4). We have seen that for arbi-
trary rough interfaces the reduced Rayleigh equations yield a set of decoupled (but one can also
consider their coupled counterpart) integral equations for the reflection and transmission am-
plitudes. We have shown that in the case of periodic interfaces, these integral equations become
infinite countable linear systems of equations for the discrete propagative and evanescent modes.

In the present chapter, we present what will be called the direct method for solving the reduced
Rayleigh equations we have encountered in Part I. We will see that arbitrary and periodic
surfaces are numerically handled in a similar fashion in the sense that they lead numerically
to solving linear systems. Indeed, on a digital computer, one may represent a surface only by
a finite number of parameters, which usually translates into finite system size, discretization
points, or a number of Fourier components. The transfer kernels in the reduced Rayleigh
equations will be expanded in sums of Fourier moments of the surfaces profile. For this reason,
we will start by describing the numerical procedures for a periodic system, and then explain
how arbitrary surfaces eventually fall into the same procedures.

The present chapter has essentially two goals. First, the procedure to go from the reduced
Rayleigh equations to an implementable numerical scheme will be described in details, and
a complexity analysis will be made. Second, due to the finite size of the linear systems that
can be handled numerically, the questions of truncation and convergence will arise naturally.
A significant part of the chapter will be devoted to a numerical study of convergence with
the number of modes kept in the truncation of the linear system. In particular, we will look
for convergence criteria and study the convergence rate as a function of reduced physical
parameters. It must be noted that these results have not been published yet as they must
be complemented by further case studies and proper mathematical analysis. The results
nevertheless illustrate clearly the main behaviors to be expected for the convergence of the

107
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108 Chapter 5. Solving the reduced Rayleigh equations; direct method

approximated solutions with respect to the physical parameters which, to our knowledge,
have never been published before in the case of two-dimensional penetrable media and hence
constitute a significant contribution of the present work in this area.

Note that in this chapter, our only goal is to solve numerically the reduced Rayleigh equations
for given transfer kernels and to give a preliminary numerical study of convergence. There are
two important points that are not discussed in this chapter. (i) We assume the knowledge of

the transfer kernels, i.e. that we assume the existence of an algorithm to evaluate J b,al,m or its
expansion in Fourier moments. This is not a trivial task and an entire appendix is devoted to it
(Appendix A). (ii) Assuming now that we obtain a solution to the reduced Rayleigh equations,
i.e. that we obtain a Fourier expansion of the electric field in terms of reflection and transmission
amplitudes. Is this a solution of the scattering problem given by the Helmholtz equation and the
set of boundary conditions? We are facing the issue of the consistency of the reduced Rayleigh
equations with respect to the initial scattering problem. This question will be addressed in
Chapter 7 on the Rayleigh hypothesis and on consistency analysis.

5.1 Reduced units

Consider the reduced Rayleigh equation for the reflection amplitude Eq. (2.51)

∫
J +,+

2,1 (p |q) M+,+
2,1 (p |q) R (q |p)

dq

(π)
= −J +,−

2,1 (p |p) M+,−
2,1 (p |p) ,

for a plane wave with in-plane wave vector p0 incident on the interface between medium 1
characterized by the dielectric constant ε1 and medium 2 characterized by the dielectric constant
ε2. The wavelength in vacuum of the incident plane wave is given by λ0 = 2π c/ω, where ω is
the angular frequency and c the speed of light in vacuum. If we assume medium 1 to have
a real and positive dielectric constant, which is a rather general case if we wish the incident
wave to propagate without being absorbed, we can choose that the wavelength in medium 1,
λ1 = λ0/

√
ε1, will play the role of a length scale of reference. Hence all lengths may be expressed

in unit of λ1/(2π). Equivalently, all wave numbers may be expressed in unit of k1 =
√
ε1ω/c.

We introduce the following reduced quantities denoted with a bar ·̄ :

x
def
=

λ1

2π
x̄ (5.1a)

ζ(x)
def
=

λ1

2π
ζ̄(x̄) (5.1b)

z =

√
ε2
ε1

(5.1c)

p
def
=
√
ε1
ω

c
p̄ (5.1d)

α1(p) =

(
ε1
ω2

c2
− 2

p

)1/2

=
√
ε1
ω

c

(
1−

2
p̄

)1/2
def
=
√
ε1
ω

c
ᾱ1(p̄) (5.1e)

α2(p) =

(
ε2
ω2

c2
− 2

p

)1/2

=
√
ε1
ω

c

(
z2 −

2
p̄

)1/2
def
=
√
ε1
ω

c
ᾱz(p̄) (5.1f)

R(p | p0)
def
=

(
ε1
ω2

c2

)−1

R̄(p̄ | p̄0) . (5.1g)
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Using the definitions in Eq. (5.1) for the reduced parameters in the reduced Rayleigh equation
we can express the polarization coupling matrix as

Mb,a
2,1 (p |q) =


|p||q|+ abα2 (p)α1 (q) p̂ · q̂ −b√ε1 ω

c α2 (p)[p̂× q̂] · ê3

a
√
ε2

ω
c α1 (q)[p̂× q̂] · ê3

√
ε2ε1

ω2

c2 p̂ · q̂




= ε1
ω2

c2


|p̄||q̄|+ ab ᾱz (p̄) ᾱ1 (q̄) p̂ · q̂ −b ᾱz (p̄)[p̂× q̂] · ê3

a z ᾱ1 (q̄) [p̂× q̂] · ê3 z p̂ · q̂




def
= ε1

ω2

c2
M̄

b,a
z,1 (p̄ | q̄) , (5.2)

and

J b,a2,1 (p | q) = (bα2(p)− aα1(q))
−1
∫

exp (−i(p−q) · x) exp (−i(bα2(p)− aα1(q))ζ(x)) dx

=
(√

ε1
ω

c

)−1

(bᾱz(p̄)− aᾱ1(q̄))
−1
∫

exp

(
−i(p̄− q̄) ·

√
ε1ω x

c

)

exp

(
−i(bᾱz(p̄)− aᾱ1(q̄))

√
ε1ω ζ(x)

c

)
dx

=
(√

ε1
ω

c

)−3

(bᾱz(p̄)− aᾱ1(q̄))
−1
∫

exp (−i(p̄− q̄) · x̄)

exp
(
−i(bᾱz(p̄)− aᾱ1(q̄)) ζ̄(x̄)

)
d2x̄

def
=
(√

ε1
ω

c

)−3

J̄ b,az,1(p̄ | q̄) . (5.3)

By substituting Eqs. (5.2) and (5.3) into the reduced Rayleigh equation (2.51), making a change
of variable q =

√
ε1
ω
c q̄ and using the definition of the reduced reflection amplitudes Eq. (5.1g),

we obtain the reduced Rayleigh equation in reduced units, or dimensionless reduced Rayleigh
equations

∫
J̄ +,+
z,1 (p̄ | q̄) M̄

+,+
z,1 (p̄ | q̄) R̄ (q̄ | p̄)

d2q̄

(2π)2
= −J̄ +,−

z,1 (p̄ | p̄) M̄
+,−
z,1 (p̄ | p̄) . (5.4)

What do we learn from the reduction of units procedure? By inspection of the dimensionless

reduced Rayleigh equations and the definition of M̄
b,a
z,1 (p̄ | q̄) and J̄ b,az,1(p̄ | q̄), Eqs. (5.2) and

(5.3), we clearly see that the solution of the dimensionless reduced Rayleigh equation only
depends on the impedance parameter z, and the function ζ̄. Physically, this means on the one
hand that for a given surface profile and wavelength, the scattering of a plane wave will be
equivalent for any choice of media as long as the impedance is kept constant. By equivalent,
we mean that the reflection amplitudes would stay the same up to an overall scaling factor
(ε1ω

2/c2)−1 as can be seen from Eq. (5.1g). Alternatively, for a given choice of media, or fixed
z, changing simultaneously the wavelength of the incident light by a factor β and scaling the
surface profile by the same factor in the three directions would result in equivalent reflection
amplitudes. To summarize, what matter are the dielectric contrast, or impedance, and the
relative length scale between the wavelength of the incident light and the characteristic lengths
of the surface profile.

Let us apply further the dimensionless reduced Rayleigh equation in the case of a periodic in-
terface. We have seen in Chapter 4 that in the case of a periodic interface, the reduced Rayleigh
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equation becomes a infinite dimensional (countable) linear system and that the reflection am-
plitudes is a sum of weighted Dirac masses on the lattice (p`)`∈Z2 , Eqs. (4.19) and (4.16)

R(p |p0) = (2π)2
∑

m∈Z2

δ(p−pm) R(m)(p0)

and the reduced Rayeigh equation reads

∑

m∈Z2

J̃ +,+
2,1 (p` |pm) M+,+

2,1 (p` |pm) R(m)(p0) = −J̃ +,−
2,1 (p` |p0) M+,−

2,1 (p` |p0) .

Following the reduction of unit procedure, we obtain

R̄(p̄ |p̄0) = (2π)2
∑

m∈Z2

δ(p̄− p̄m) R̄
(m)

(p̄0) (5.5)

and

∑

m∈Z2

˜̄J
+,+

z,1 (p̄` | p̄m) M̄
+,+
z,1 (p̄` | p̄m) R̄

(m)
(p̄0) = − ˜̄J

+,−
z,1 (p̄` | p̄0) M̄

+,−
z,1 (p̄` |p̄0) , (5.6)

where the reduced quantities read

p̄` = p̄0 + Ḡ
(`) def

= p̄0 +
(√

ε1
ω

c

)−1

G(`) (5.7a)

R̄
(m)

(p̄0)
def
= R(m)(p0) (5.7b)

J̃ b,a2,1(p` | pm)
def
=
(√

ε1
ω

c

)−3
˜̄J
b,a

z,1(p̄` | p̄m) . (5.7c)

In particular, this is equivalent to introducing the reduced lattice basis vector (for i ∈ {1, 2})

āi =
2π

λ1
ai, (5.8)

whose reciprocal basis vectors are given by

b̄i =
λ1

2π
bi =

(√
ε1
ω

c

)−1

bi , (5.9)

so that the reciprocal lattice vectors read

Ḡ
(`)

= `1 b̄1 +`2 b̄2 . (5.10)

In the case of a periodic system, and for a given normalized profile within the reduced unit cell,
the solution of the dimensionless reduced Rayleigh equation only depends on four independent
parameters: the impedance z, the reduced profile amplitude 2πH/λ1 (where H denotes a
characteristic amplitude of the profile, e.g. max |ζ|), and the reduced lattice constants 2πai/λ1.
This means that when we will study the convergence and consistency properties of the numerical
schemes for solving the reduced Rayleigh equations in subsequent section and chapters, we will
only need to consider how these properties behave as functions of these four free parameters
and possibly for different normalized profiles.

For randomly rough surfaces, the surface profile is generally specified by a distribution of
height characterized by a rms-roughness σ and an auto-correlation function characterized by
a correlation length a. In that case, for given normalized probability density of height and
normalized auto-correlation function, the free dimensionless parameters to consider are the
impedance, the reduced rms-roughness 2πσ/λ1 and reduced correlation length 2πa/λ1.
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Remark 5.1. We have illustrated the procedure of unit reduction in the case of the reduced
Rayleigh equation for the reflection amplitudes but the same procedure applies for the trans-
mission amplitudes and is left to the reader. Similarly, the procedure can be generalized easily
to multilayer systems.

In the following, in order to keep the notations as light as possible, we will illustrate the im-
plementation of the numerical schemes for solving the reduced Rayleigh equations in full units.
The reader will have no difficulty in implementing the schemes for corresponding dimensionless
equations following the procedure illustrated above. However, when dealing with the numerical
analysis, we will come back to reduced units for the discussion since the scaling of quantities such
as the convergence rate will involve only the few identified independent reduced parameters.

5.2 Periodic systems

We first start by presenting the direct method for solving numerically the reduced Rayleigh
equations in the case of a periodic system made of a single interface as a prototypical system.
The procedure can be easily extended to periodic (degenerate) multilayer system and we will
briefly illustrate the increase in complexity from a single periodic interface to two periodic
interfaces.

5.2.1 Implementation

Let us consider a reduced Rayleigh equation in the case of a system of periodic interfaces such
that the transfer equation takes the form of an infinite countable liner system, such as for all
` ∈ Z2,

∑

m∈Z2

M(p` | pm) X(m)(p0) = N(p` | p0) . (5.11)

Here M(p` | pm) and N(p` | p0) are respectively a given transfer kernel and right hand side
corresponding to the system of interest and X(m)(p0) can denote either the reflection or trans-
mission amplitude matrix of the mode indexed by m ∈ Z2 for a given incident wave vector
characterized by its projection p0 in the (ê1, ê2) plane (see previous chapters). The transfer
kernel and the right hand side are of course different whether we consider the reflection or
transmission amplitudes. In the following, X(m)(p0) will be referred to as scattering amplitudes,
the term scattering needing to be understood as a general term for reflection or transmission

depending on the context. We recall that X(m)(p0) = (X
(m)
α,β (p0))αβ∈{p,s} is a two by two com-

plex matrix containing the scattering amplitude from incident polarized state β to an outgoing
polarization state α of the mode m. Consequently, Eq. (5.11), for a given `, contains four scalar
equations which can be written in index form as

∑

m∈Z2

∑

γ∈{p,s}
Mαγ(p` | pm)X

(m)
γβ (p0) = Nαβ(p` | p0) , (5.12)

for a given ` ∈ Z2 and α, β ∈ {p, s}.

Remark 5.2. It is worth noting that the index β in Eq. (5.12) does not appear in the kernel term.

This implies that Eq. (5.12) can be solved independently for (X
(m)
· p )m∈Z2 and for (X

(m)
· s )m∈Z2 .

Physically, this expresses the fact that one can measure independently the response from either
a p- or s-polarized incident state, but the reciprocal statement is not true. It is a priori not
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possible, to measure the separate contribution of the p and s- components of a mixed incident
state on the response with a single measurement. The interesting fact from a numerical point
of view though, is that the kernel stays the same for the two incident states, and only the right
hand side changes. We will see that this allows for the simultaneous solution of the independent

equations for (X
(m)
· p )m∈Z2 and (X

(m)
· s )m∈Z2 .

Now that the remark on the separation of the problem into p and s incident states has been
made, we need to introduce a cut off in the `-plane. Indeed, only a finite number of scalar
unknowns can be handled with a digital computer. Only a finite subset of modes indexed in
Z2 can be handled, and a common (but not unique) way to choose this subset is to pick terms
within a disc of a certain radius in the `-plane or equivalently in the p-plane of transverse wave
vectors. We define such a disc for an index radius Nc ≥ 0 by DNc = {m ∈ Z2 | m2

1 +m2
2 ≤ N2

c }.
This has for consequences that (i) an approximate numerical solution can be computed only for
(X(m)(p0))m∈DNc and (ii) that a truncation error is introduced in the sum in Eq. (5.11). The
approximate numerical problem then satisfies, for all ` ∈ DNc ,

∑

m∈DNc

M(p` | pm) X
(m)
Nc

(p0) = N(p` | p0) . (5.13)

Here we have stressed that the solution of Eq. (5.13) is an approximation of that of Eq. (5.11)
as indicated by subscript Nc. It is intuitively expected that, provided stability, the approximate

solution (X
(m)
Nc

(p0))m∈DNc converges in some sense to the exact solution (X(m)(p0))m∈Z2 of

Eq. (5.11) as Nc → ∞. This question will be addressed in more details when discussing the
convergence rate in a later subsection. We will drop the subscript Nc to lighten notations if the
context is not ambiguous.

The approximate numerical problem Eq. (5.13) is a finite linear system, or to be more accurate,
two independent linear systems with the same kernel matrix but a different right hand side
for the incident p or s-polarization state. In order to handle it numerically, it is convenient to
re-write these systems in the conventional way in which the kernel matrix is a two dimensional
array and the unknowns and right hand sides take the form of one dimensional arrays. So far,

the unknown elements (X
(m)
· p (p0))m∈DNc and (X

(m)
· s (p0))m∈DNc are indexed by three indices, α,

m1 and m2. We re-order the elements in the following way. First, with use a bijective mapping
from DNc to J1, DK, where D = card(DNc) denotes the cardinal of DNc , i.e. the number of
distinct elements in the set DNc . In other words, we associate a single integer n from 1 to D
to each element m = (m1,m2) ∈ DNc . There are several such bijections (D! to be exact) but it
is convenient1 to choose a bijection such that the elements of DNc are ordered with increasing
value of m2

1 + m2
2, i.e. that |mn+1| ≥ |mn|. For an illustration of the mode indexing mapping

see Fig. 5.1. Then, the elements of (X
(m)
·β (p0))m∈DNc (for β ∈ {p, s}) are ordered in a column

vector Xβ(p0) in such a way that the D first elements are of the form X
(mn)
pβ (p0) with increasing

values of n and the D remaining elements are of the form X
(mn)
sβ (p0) with increasing values of

n, i.e. that we write

Xβ(p0) =
(
X

(m1)
pβ (p0), · · · , X(mD)

pβ (p0), X
(m1)
sβ (p0), · · · , X(mD)

sβ (p0)
)T

. (5.14)

Consistently, the kernel is re-ordered in a matrix M(p0) and the right hand side in a column

1Convenient but not necessary.
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Figure 5.1: Vertices of the reciprocal lattice of a square lattice. The basis vectors (bi)i∈{1,2} are
the primitive reciprocal lattice vectors. The domain DNc is delimited by the dashed circle. Here
the index cutoff radius Nc = 2 and cardDNc = 13. A possible indexing is suggested indicated
as integers associated with each vertex in the domain delimited by the dashed circle. Integers
indices printed in the same color indicates that their associated reciprocal lattice vectors share
the same norm.

vector Nβ(p0) such that for (i, j) ∈ J1, DK2,

Mij(p0) =Mpp(p`i | pmj
) (5.15)

MD+i,j(p0) =Msp(p`i | pmj
) (5.16)

Mi,D+j(p0) =Mps(p`i | pmj
) (5.17)

MD+i,D+j(p0) =Mss(p`i | pmj
) , (5.18)

and

Nβ(p0) =
(
Npβ(p`1 | p0), · · · , Npβ(p`D | p0), Nsβ(p`1 | p0), · · · , Nsβ(p`D | p0)

)T
. (5.19)

This re-ordering yields a linear system appropriate for numerical implementation of the form
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M X = N which when expanded reads




Mpp(pm1
| pm1

) · · · Mpp(pm1
| pmD

) Mps(pm1
| pm1

) · · · Mps(pm1
| pmD

)
...

. . .
...

...
. . .

...

Mpp(pmD
| pm1

) · · · Mpp(pmD
| pmD

) Mps(pmD
| pm1

) · · · Mps(pmD
| pmD

)

Msp(pm1
| pm1

) · · · Msp(pm1
| pmD

) Mss(pm1
| pm1

) · · · Mss(pm1
| pmD

)
...

. . .
...

...
. . .

...

Msp(pmD
| pm1

) · · · Msp(pmD
| pmD

) Mss(pmD
| pm1

) · · · Mss(pmD
| pmD

)







X
(m1)
pp (p0) X

(m1)
ps (p0)

...
...

X
(mD)
pp (p0) X

(mD)
ps (p0)

X
(m1)
sp (p0) X

(m1)
ss (p0)

...
...

X
(mD)
sp (p0) X

(mD)
ss (p0)




=




Npp(pm1
| p0) Nps(pm1

| p0)
...

...

Npp(pmD
| p0) Nps(pmD

| p0)

Nsp(pm1
| p0) Nss(pm1

| p0)
...

...

Nsp(pmD
| p0) Nss(pmD

| p0)




.

Remark 5.3. The size of each numerical linear system is 2D where we recall thatD = card(DNc)
which physically corresponds to the numerical number of modes included in the expansion of
the electric field. The cardinal of DNc increases with the index cut off radius Nc in a quadratic
fashion. A rough estimate for D for large enough index cut off Nc is given by D ∼ bπN2

c c. Thus
the size of the linear systems scales roughly as 2πN2

c . The exact number of modes for a few
integer values of Nc are reported in Table 5.1 for a square lattice.

Nc D bπN2
c c Nc D bπN2

c c Nc D bπN2
c c Nc D bπN2

c c
0 1 0 6 113 113 12 441 452 18 1009 1017

1 5 3 7 149 153 13 529 530 19 1129 1134

2 13 12 8 197 201 14 613 615 20 1257 1256

3 29 28 9 253 254 15 709 706 21 1373 1385

4 49 50 10 317 314 16 797 804 22 1517 1520

5 81 78 11 377 380 17 901 907 23 1653 1661

Table 5.1: Number of modes D = card(DNc) for some values of the index cut off radius Nc for
a square lattice. The rough estimate D ∼ bπN2

c c is also given.

5.2.2 Complexity analysis

Now that the truncation and re-ordering procedures have been described, it is clear that the
resolution of a reduced Rayleigh equation consists in two main parts: (i) setting up the linear
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system, and (ii) solving it. We analyze in the following the complexity associated with these two
steps. We will see that solving the linear system, for a given number of modes D, always requires
the same number of operations (if a direct solver is used) and this independently of the apparent
complexity of the physical system, e.g. a system with a single interface compared to a system
containing several interfaces. However nothing can be said on the number of modes required to
achieve a good approximate solution. Indeed, if a system containing a single interface requires
D modes for the solution to be approximated to some prescribed precision, it is not necessarily
true that the same number of modes D will be sufficient if a second interface is added and hence
an additional medium (say with a similar dielectric constant as the two original ones). We will
rather focus on the complexity associated with setting up the linear system, i.e. in computing
the elements of the kernel matrix M and the right hand side N for a given fixed number of
modes D.

Solving the system

Assume the linear system is set up and that it is left to solve it. There are basically two
classes of solvers for linear systems: the direct methods that follow an algorithm that gives
the exact2 solution in a finite number of operations, and iterative methods that give successive
approximate solutions of the system. We will deal with iterative methods in a separate
chapter, and focus on the LU decomposition method as a direct method. The reason for
choosing specifically the LU decomposition here as a prototypical direct solver, rather than
the Gauss elimination method for example, is that we found it to be practical since the
linear system needs to be solved for two right hand sides. Indeed, once the LU factorization is
achieved, solving for multiple right hand sides does not significantly increase the complexity [60].

The LU method consists in two steps: the LU factorization, which requires (2D−1)2D(2D+1)/3
operations and a back substitution step that requires 2D(2D + 1)/2 operations per right hand
side [60]. The total number of operations for solving the linear system (for the two right hand
sides) through LU factorization is then

Nop,LU =
(2D − 1)2D(2D + 1)

3
+ 2D(2D + 1) =

2D(2D + 1)(2D + 2)

3
∼ (2D)3

3
. (5.20)

Setting up the system

We have seen that for a given number of modes D the size of the linear system is 2D. This
means that they are (2D)2 elements to compute to set up the matrix and 4D elements for the
right hand sides corresponding to the p and s incident polarization states. Note that the matrix
elements need only to be computed once for the two subsystems. At first sight, it seems that if
an algorithm computing a single element requires K operations, then the number of operations
needed to set up the whole system would be Nop = K((2D)2 + 4D) = 4KD(D + 1). This
clearly shows that setting up the matrix system requires a number of operations that scales
quadratically with the number of modes and linearly with the number of operations needed to
compute a single element of the system entries. Let us analyze more in details the elements of
M and N to see how expensive they are to compute, i.e. give an estimate of K and see whether
some computation can be spared.

2Exact under the assumption that the entries are known exactly and exact arithmetic is used, which is never
the case numerically due to round off errors.



i
i

“report” — 2018/9/20 — 10:11 — page 116 — #138 i
i

i
i

i
i

116 Chapter 5. Solving the reduced Rayleigh equations; direct method

Case 1: a single interface
Let us start by considering the case of a single periodic interface. In this case the kernel is of
the form

M (p |q) = J̃ b,al,m (p |q) Mb,a
l,m (p |q) , (5.21)

where it is reminded that J̃ b,al,m is essentially

J̃ b,al,m (p |q) =
1

ac

∫
ac
e−i(k

b
l (p)−kam (q))·s(x) dx

bαl (p)−aαm (q)
,

and

Mb,a
l,m (p |q) =


|p||q|+ abαl (p)αm (q) p̂ · q̂ −b√εmω

c αl (p)[p̂× q̂]3

a
√
εl
ω
c αm (q)[p̂× q̂]3

√
εlεm

ω2

c2 p̂ · q̂


 .

The right hand side has a similar form for the equation for the reflection amplitude and a
rather simpler form for that of the transmission amplitude (see Chapter 4). We thus focus
on the kernel terms. According to our numerically convenient re-ordering, setting up the M
matrix, which is of size 2D× 2D, consists in computing D2 2× 2 sub-matrices of the form given
in Eq. (5.21) evaluated at different pairs of in-plane wave-vectors. Then each element of the
sub-matrices can be placed in M according to (i) the polarization coupling and (ii) the pair
of wave-vectors or equivalently mode indices. The pair of polarization indices gives in which
quadrant they must be placed, and the pair of mode index set the position within the quadrant.

Remark 5.4. A remarkable property of Eq. (5.21) is that the factor J̃ b,al,m (p |q) does not depend
on the polarization indices, which means that it needs to be computed only once for each pair
of mode indices.

The previous remark is of great interest as the factor J̃ b,al,m (p |q) is the one that requires most of
the computational power for setting up the matrix and the remark spares us roughly a factor 4
in computational time compared to a naive element by element evaluation of the matrix. To be
more specific, let us now count the number of operations κ needed to set up a set of four elements
associated with a pair of wave-vectors. Hence, the number of operations needed to set up the
whole matrix M will be D2κ. Assume that there exists an algorithm that gives an accurate
evaluation of J̃ b,al,m (p |q) in J number of operations. From the definition of Mb,a

l,m (p |q) one
needs about 4 evaluations of square roots, 20 multiplications and 6 additions (we have assumed
that terms that do not depend on the wave vector are computed once and for all and are
not counted). As it is usual to only keep multiplications when counting operations but taking
into account that square roots are a bit more expensive than multiplications, let us simply say
that they are roughly 26 operations then, i.e. κ ≈ 30 + J . How large can J be? This depends
greatly on the method to evaluate J̃ b,al,m (p |q). Some surface profiles, like sinusoidal profiles, give

closed form expressions for J̃ b,al,m (p |q) in terms of a Bessel function (see Chapter A). Efficient
algorithm for evaluating Bessel functions can then be used. However it is in general not possible
to obtain closed form expression for arbitrary profiles. One method that we have used consists
in expanding J̃ b,al,m (p |q) is a power series in the following way. Let us define

ξ(m)(γ) =
1

ac

∫

ac

e−iG
(m) ·x e−iγζ(x) d2x . (5.22)
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With this definition we have

J̃ b,al,m (p
(`)
0 | p(m)

0 ) =
ξ(`−m)

(
bαl(p

(`)
0 )− aαm(p

(m)
0 )

)

bαl(p
(`)
0 )− aαm(p

(m)
0 )

. (5.23)

We then focusing on evaluating ξ(m)(γ). By expanding the exponential factor e−iγζ(x) in the
integrand in Eq. (5.22) we obtain an expression for ξ(m)(γ) as a power series

ξ(m)(γ) =
∞∑

n=0

(−iγ)n

n!
ζ̂(n)
ac (G(m)) =

∞∑

n=0

a(m)
n (−iγ)n , (5.24)

where we define the Fourier moment of order n of the surface profile ζ as

ζ̂(n)
ac (G(m)) =

1

ac

∫

ac

e−iG
(m) ·x ζn(x) d2x . (5.25)

Appendix A is devoted to the computation of ξ(m)(γ) and the Fourier moments for a collection of

surface profiles. Here it is enough to notice that the coefficients (a
(m)
n )n∈N of the power series are

independent of γ. The coefficients can therefore be pre-computed for a given set of mode indices.

Remark 5.5. One may be doubtful about the gain of pre-computed these coefficients before
setting up the linear system as they still depend on mode indices and hence are different for
the different elements of the linear system. Even though there may be indeed little gain if one
is only interested to study the scattering from a given surface and for a given specific incident
wave vector and wavelength, there is a significant gain if one is interested to loop over the
parameters defining the incident excitation. Indeed, for a given surface profile, the coefficients

(a
(m)
n )n∈N only depend on the surface parameters and can be re-used if either the wavelength,

the dielectric properties of the media, and/or the incident wave-vector are changed. We will
therefore disregard here the complexity associated with the computation of these coefficients.

By truncating the series so that only the Ns + 1 first terms are kept, we then need to evaluate
a polynomial of degree Ns. The naive approach consisting in summing term by term leads to
Ns(Ns + 1)/2 multiplications. This can however be improved by the use of the Hörner method
[61, 62] for the evaluation of polynomials which applied to our example reads as follow

Hörner’s algorithm:

Initialize ξ(m)(γ)← a
(m)
Ns

.

Loop for n = Ns to 1

ξ(m)(γ)← a
(m)
n−1 + (−iγ) ξ(m)(γ)

End of the loop.

Hence only Ns multiplications are needed, which gives a significant speed up compared to the
naive approach when Ns becomes large. Hence J ≈ Ns.

The next question now is the following. How many terms must be kept in the power series to
ensure an accurate evaluation of ξ(m)(γ)? This is a delicate question that depends on both the
surface profile parameters and the argument γ. Indeed, the convergence rate of the sequence of

partial sums depends both on γ and on how fast the coefficients (a
(m)
n )n∈N vanish when n→∞.
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Moreover, since the argument γ depends in practice of pairs of in-plane wave-vectors p
(`)
0 and

p
(m)
0 , the number of terms to achieved a prescribed accuracy can changed from matrix element

to matrix element. In practice, either a fixed large enough number of terms Ns is imposed
based on experience and then the accuracy is verified a posteriori, or an adaptive scheme can be
used in which Ns is gradually increased and the outcomes for the approximation of ξ(m)(γ) for
successive values of Ns are compared until the desired accuracy is reached. Thus, assuming that
Ns is fixed for all elements in the linear system, the number of operations to set up the linear
system is estimated to be

Nop,set ≈ (Ns + 30)D(D + 1) , (5.26)

which yields the follows asymptotic scaling in terms of the index radius cutoff Nc

Nop,set ∼





4(Ns + 30)N2
c , for 1D systems

π2(Ns + 30)N4
c , for 2D systems

. (5.27)

Here we recall that Ns is the number of terms kept in the truncation of ξ(m)(γ), and we have
used the rough scaling D ∼ πN2

c for the number of modes D for two-dimensional surfaces and
D = 2Nc + 1 for one-dimensional surfaces. In the case of a two-dimensional surface, the number
of operations for setting up the linear system associated with a truncation index Nc scales as
the fourth power of Nc. Note that the scaling coefficient is non-negligible. Indeed, a lower
bound would be about 300 if Ns = 0, but in practice, Ns ≤ 120, which gives an upper scaling
constant around 1500.

The total number of operations associated with setting and solving the matrix system, for a
two-dimensional surface, is then

Nop,tot ∼ π2(Ns + 30)N4
c +

(2π)3

3
N6
c . (5.28)

Here we voluntarily keep both the contribution from the setting and solving steps in the asymp-
totic scaling, which is cumbersome but helps illustrating that there will be two regimes of
dominant complexity depending on Nc. For small values of Nc the computational burden will
essentially resides in setting up the linear system due to the rather large scaling coefficient
π2(Ns + 30) whereas for large values of Nc the term associated with solving the linear systems
dominates due to its larger exponent compared to that of the term associated with setting up
the linear systems. This effect is illustrated in Fig. (5.2) where the CPU time spent to set up
and solve the system is reported as a function of Nc in the cases of a two-dimensional sinusoidal
surface and of a supported hemiellipsoidal profile. In the case of the sinusoidal surface, a stan-
dard algorithm is used to evaluated Bessel functions [63, 64] whereas a power series expansion
has been used in the case of the hemiellipsoidal profile with Ns = 120 (see Appendix A). In
both cases the LAPACK solver GESV is used3. The two regimes are clearly visible, with the
setting-up dominated regime for low values of Nc where the total time in black is essentially that
spent in setting the system in red, and the solving dominated regime where the total time is es-
sentially spent in the linear solver in blue. Note that the time spent in the solver is independent
of the surface profile and that the critical values Nc for which equal time is spent for setting up
and solving the linear system varies slightly with the surface profile as two different methods
are chosen for computing ξ(m)(γ). For the sinusoidal surface this critical values is found to be
around Nc = 16 and for the hemiellipsoidal profile it is found around Nc = 11.

3This general solver uses the LU decomposition, see http://www.netlib.org/lapack/
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Figure 5.2: CPU time required for setting up the linear system and solving it as a function of
the mode index cut off Nc. The dashed lines correspond to fit in O(N4

c ) and O(N6
c ) to the set up

time and solving time respectively. (a) Two-dimensional sinusoidal surface. (b) Hemiellipsoidal
profile.

Case 2: several interfaces

We have seen in Section 4.4.1 that for a periodic multi-layer system consisting of two interfaces
periodic interfaces (in the degenerate case), the transfer kernel for the equation for the reflection
amplitudes is of the of the form (see Eqs. (4.40) and (4.38))

K
(r)
L (p` |pm) =

∑

`2∈Z2

∑

a2=±
a2 Θ̃

+a2
32

(
p` |p`−G

(`2)
2

)
Θ̃
a2+

21

(
p`−G

(`2)
2 |pm

)
. (5.29)

Once truncated, the sum over `2 will run over DNc instead of Z2 and it is clear that after the re-
indexing procedure is applied, the kernel matrix can be written as a sum of two matrix products
of the form

K
(r)
L = M1 M2−M3 M4 , (5.30)

where the matrices (Mi)1≤i≤4 are readily obtained from the truncated versions the single inter-
face kernels present in Eq. (5.29). As in the case for a single interface, setting up each matrix
Mi takes about π2(Ns + 30)N4

c operations4, so about 4π2(Ns + 30)N4
c in total. But this is not

the problematic part. What costs even more, when Nc becomes large, is simply to perform
the matrix-matrix multiplications, which consists in (2D)3 = (2π)3N6

c scalar multiplications for

4Some computation can be saved by setting the matrices simultaneously, but this is not important for the
overall scaling.
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Figure 5.3: CPU time required for setting up the linear system and solving it as a function of
the mode index cut off Nc. The dashed lines correspond to fits in O(N6

c ) to the set up time and
solving time respectively. (a) Three layers system with two two-dimensional sinusoidal surfaces.
(b) Three layers system with two hemiellipsoidal profiles.

each product. The total operation count for setting up the kernel matrix K
(r)
L is then

Nop,set ≈ 24π3N6
c + 4π2(Ns + 30)N4

c . (5.31)

This is larger than the number of operations required to solve the system (∼ (2π)3N6
c /3),

although of the same power scale with Nc, and hence always dominates the complexity of the
whole algorithm. Figure 5.3 illustrate this fact very clearly. It shows that the total CPU time
used to solve the scattering problem (black circles) is essentially the same as the CPU time used
to set up the system. One can also appreciate the same power law scaling in N6

c both for the set
up time and the solving time. We believe Fig. 5.3 comes as a clear illustration for the need for
alternative ways to solve the problem of scattering in the case of two and more rough interfaces,
hence justifying the discussions in Sections 3.5.2 and 3.5.3.

5.2.3 Truncation error and convergence

We now turn to the question of truncation error and the rate of convergence at which an

approximate solution, XNc
(p0) = (X

(m)
Nc

(p0))m∈Z2 , converges to the exact solution, X(p0) =

(X(m)(p0))m∈Z2 of the reduced Rayleigh equation. First, we need to define the sense to be given
to convergence, or in other words we need to define a distance between the two solutions. The
solutions will be viewed as elements in CN, i.e. as a sequence of complex numbers. Indeed,
as already mentioned, a re-ordering can be made so that the four indices required to identify
a component of a solution (two indices for polarization coupling and two for the mode index)
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only become one index in N. We will see, that it is not necessary to explicitly give the bijection
between {p, s}2×Z2 and N to make calculations, but we wanted to point out that such a bijection
exists and that everything works as if we compared sequences of complex numbers due to the
countable property of the set of elements required to describe a solution in the case of periodic
systems. Thus we will use standard distances between two complex sequences associated with
the conventional `p-norms, namely the distance between XNc

(p0) and X(p0), that we will refer
to as truncation error, associated with the `p-norm reads

∥∥XNc −X
∥∥
p

=






 ∑

m∈Z2

∑

α,β∈{p,s}

∣∣∣X(m)
αβ,Nc

−X(m)
αβ

∣∣∣
p




1/p

, p ∈ [1,∞[

sup
m ∈ Z2

α,β∈{p,s}

∣∣∣X(m)
αβ,Nc

−X(m)
αβ

∣∣∣ , p =∞
. (5.32)

Here we have dropped the dependence on p0 to lighten notations. We would like to remind

the reader, that X
(m)
αβ,Nc

(p0) = 0 for all polarization coupling and all mode index m such that
|m| > Nc. We then say that the approximate solution converges to the exact solution, in the
sense of the `p-norm, if

∥∥XNc
−X

∥∥
p
→ 0 as Nc → ∞. In practice, we will restrict ourselves to

the norms corresponding to p = 1, 2 and ∞.

In fact, since the exact solution is usually not known, we will rather compare numerically
consecutive approximate solutions, say XNc

and XNc+1, hence the sum over m ∈ Z2 reduces to
a sum over m ∈ DNc+1. Furthermore, in order to remove the sensitivity of the distance with
respect to the overall scale of the full solution, we normalize the distance and define a relative
distance, εNc,p, as

εNc,p =

∥∥XNc+1−XNc

∥∥
p∥∥XNc

∥∥
p

. (5.33)

If XNc
converges to X 6= 0 with respect to the `p-norm then εNc,p converges to 0, but the recip-

rocal statement is not true in general. In fact, we should rather verify that
∥∥XNc+m

−XNc

∥∥
p

goes to zero as Nc →∞ for any integer m > 0, in order to show that XNc
is a Cauchy sequence

in `p(C). Nevertheless, for the sake of simplicity and because we are primarily interested
in searching numerically some conjectures, we will abusively call εNc,p a relative truncation
error, and say that the method converges (with respect to a given norm) if εNc,p → 0 as Nc

is increased. We will specifically be interested in the speed at which εNc,p → 0 and study how
the convergence rate scales with reduced physical parameters identified earlier such as 2πai/λ1,
2πmax |ζ|/λ1, and z =

√
ε2/ε1.

Convergence rate

We now give some vocabulary and a definition of the convergence rate that we have mentioned
previously as a quantity measuring how fast the sequence of numerically approximated solutions
converges (given that it does). For clarity here the index denoting the norm used for the
definition of the error will be dropped. When the approximate solution converges to the exact
solution in the sense given above, i.e. limNc→∞ εNc = 0, we say that the approximate solution
converges linearly if there exists a constant η ∈ [0, 1[ such that for all index cutoff Nc large
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enough, Nc > κ ≥ 0, we have

εNc+1 ≤ η εNc . (5.34)

We say that the convergence is superlinear of order q > 1 if there exists a constant C such that
for all index cutoff large enough, Nc > κ ≥ 0, we have

εNc+1 ≤ C εqNc . (5.35)

We may say that the convergence is quadratic if q = 2, cubic if q = 3, etc ... In the case of
linear convergence, if we assume that εNc > 0 and define ηNc = εNc+1/εNc , linear convergence
states that the sequence (ηNc)Nc∈N is bounded by a constant smaller than 1 after a large enough
value of Nc. Since by definition ηNc > 0, the sequence (ηNc)Nc∈N is a bounded sequence of real
numbers in the case of linear (and also superlinear) convergence, and we can therefore extract
a converging subsequence (Bolzano-Weierstrass theorem). Moreover, and more relevant for our
definition of the convergence rate, the sequence (ηNc)Nc∈N admits both a lim inf and a lim sup.
We may define the two following convergence rates as

ηinf = lim inf
Nc→∞

ηNc , (5.36)

ηsup = lim sup
Nc→∞

ηNc . (5.37)

Intuitively, we could say that ηinf represents asymptotically the best improvement from one
iteration to the next one can expect, whereas ηsup rather represents the worst. Asymptotically
the actual improvement from an iterate to the next lies in between ηinf and ηsup. In practice, we
will numerically take the average of the computed ηNc after the first few approximated solutions
(e.g. Nc ≤ κ ≈ 3) if a clear linear convergence is observed, i.e.

η =
1

Nmax
c + 1− κ

Nmax
c∑

Nc=κ

ηNc , (5.38)

where κ is some arbitrarily chosen threshold and Nmax
c is the largest index cutoff for which a

simulation is achieved.

Linear convergence is also known in the literature as exponential convergence although the
denomination may sound overselling. What is meant by the term exponential is the following.
Assume that for Nc large enough the ratio εNc+1/εNc is constant equal to some 0 < η < 1. Then
we can write by taking the logarithm of εNc+1/εNc that

ln εNc+1 = ln η + ln εNc , (5.39)

which can be iterated to yield

ln εNc = Nc ln η + ln ε0 . (5.40)

or equivalently, by defining the decay rate β = − ln η > 0

εNc = ε0 exp(−βNc) . (5.41)

We have thus shown that linear convergence yields a model of the form of an exponential decay
for the error with a decay rate β = − ln η > 0, hence the term exponential convergence. We will
see that this trend is indeed what is observed for the convergence of the numerical solution of
the reduced Raleigh equations as the number of modes is increased, and we will pay particular
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attention to the variation of the convergence rate η, or equivalently the decay rate β , with the
reduced parameters identified in Section 5.1.

Dependence of the convergence rate with characteristic lengths

We start our numerical analysis of the convergence properties of the numerical solution of the
reduced Rayleigh equations with respect to the number of modes, or rather the index cutoff Nc,
with some numerical experiments. We insist here that our aim is not to give mathematically
solid proofs but rather search some conjectures for convergence criterion and scaling of the
convergence rates. The numerical conjectures may then be considered as a starting point for
further rigorous mathematical analysis.

Our first step consists in studying how the convergence is affected with the different regimes of
lengths scales one may encounter. The reduction of units in Section 5.1 hinted at the fact that
there are essentially two types of length parameters which are expected to play a role in the
physics of wave scattering by a surface; these are the characteristic transverse and out-of-plane
lengths of the surface with respect to the wavelength. For a periodic surface, these are the lattice
constants and the typical amplitude of the surface profile. To fix the ideas, we consider a two-
dimensional sinusoidal profile with equal lattice constants along the two orthogonal directions
(a1 = a2 = a), i.e. the surface profile is given by

ζ (x) =
H

2

[
sin

(
2π

a
x1

)
+ sin

(
2π

a
x2

)]
, (5.42)

where a denotes the lattice constant and H the amplitude. As mentioned previously in the
present chapter, the ξ(m)(γ) integral associated with the above sinusoidal surface can be de-
termined analytically in terms of Bessel functions of the first kind (see Appendix A) for which
efficient and accurate numerical algorithms can be used [63, 64]. We also fix the dielectric con-
stant of the media to ε1 = 1 and ε2 = 2.25 for now, i.e. that we fix the reduced parameter
z =

√
ε2/ε1 = 1.5, so that only the influence of the length scales are investigated. We will allow

the dielectric contrast to vary in a second step later.

Figures 5.4(a) and 5.4(b) show the relative truncation error, using the euclidean norm, as
a function of the index cutoff Nc for different values of the reduced lattice constant 2πa/λ1

respectively for a small reduced amplitude 2πH/λ1 = 0.01 (Fig. 5.4(a)) and a larger one
2πH/λ1 = 0.5 (Fig. 5.4(b)). The colors indicate different values of the reduced lattice constant
2πa/λ1 increasing from blue to red, i.e. blue represents a regime where a � λ1 (a/λ1 = 0.02)
and red a regime where a � λ1 (a/λ1 = 100). We would like to mention, that all numerical
experiments in Figs. 5.4(a) and 5.4(b) are achieved for normal incidence for simplicity. In
particular, due to the obvious symmetry of the problem, we will not distinguish between the
incident p- and s-polarized excitation for the error, since the solutions are the same up to
rotation. It is clear from Fig. 5.4(a) that the numerical solution converges as the index cutoff
Nc is increased for all the considered values of the reduced lattice constant. As indicated by the
logarithmic scale for the relative truncation error, the decay of the error for each value of the
reduced lattice constant is exponential in the sense given above, as points follow a straight line.
The convergence can hence be characterized as linear and we can estimate the corresponding
convergence rate η (or equivalently the corresponding decay rate β). This seems to be true
for all the tested values of the reduced lattice constant but with different convergence rate.
Indeed, Fig. 5.4(a) shows that the convergence is faster for larger values of the reduced lattice
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(a) Fixed 2πH/λ1 = 0.01 and variable a/λ1 (loga-
rithmic scale) between 0.02 and 100.
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(b) Fixed 2πH/λ1 = 0.5 and variable a/λ1 (loga-
rithmic scale) between 0.02 and 100.

Figure 5.4: Relative truncation error using the euclidean norm as a function of the index cutoff
Nc. The considered system is made of vacuum and glass (ε1 = 1, ε2 = 2.25 hence z = 1.5)
separated by a two-dimensional sinusoidal surface. Each color represents a different value of the
reduced lattice constant 2πa/λ1 (increasing value from blue to red). The reduced amplitude
of the sinusoidal profile is fixed to 2πH/λ1 = 0.01 in (a) and to 2πH/λ1 = 0.5 in (b). The
numerical experiments are achieved for normal incidence.

constant. The convergence rate hence depends on this parameter. Figure 5.4(b) illustrates the
same conclusion as Fig. 5.4(a) but complement it with two important observations. First, for
the same values of the reduced lattice constant as the ones from Fig. 5.4(a) the convergence
rate differs if one increases the reduced amplitude 2πH/λ1. In other words, the convergence
is slower the larger the reduced amplitude for a given reduced lattice constant. Second,
convergence is not always guaranteed. Indeed, for small enough reduced lattice constants,
the numerical solution are found to be unbounded which can be seen in Fig. 5.4(b) with the
cluster of points oscillating around an error of one. Note that due to our definition of the
relative truncation error, if the norm of the solution grows without bound, the relative error
may stay bounded due to the normalization. We have indeed verified that the solutions grows
without bound for the values of the reduced lattice constant which do not exhibit convergence
in Fig. 5.4(b). These two new pieces of information tell us that: (i) there probably exist some
conditions on the reduced lattice constant and the reduced amplitude to ensure convergence of
the numerical solution; (ii) given that the numerical solution converges, the linear convergence
rate η depends both on the reduced lattice constant and the reduced amplitude. In particular,
we have observed that the larger the amplitude and the smaller the lattice constant, the slower
the convergence. Could it be that convergence is controlled by a typical slope?

We show in Fig. 5.5 a graph of the convergence rate η as a function of s =
√

2πH/a which
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Figure 5.5: Convergence rate η as a function of the maximum slope s of the sinusoidal profile.
(a) Two-dimensional sinusoidal profile (maximum slope equal to s =

√
2πH/a), i.e. same

system studied in Fig. 5.4. (b) One-dimensional sinusoidal profile (maximum slope equal to
2πH/a). The different data sets are obtained for different values of the reduced amplitudes
s = 2πH/λ1 ∈ {0.01, 0.12, 0.24, 0.37, 0.50, 0.63}. The dashed line is the line of equation η = s as
a guide for the eyes.

is the maximum slope found on the profile. For a two-dimensional profile, we understand
the term slope as a slope for a one dimensional cut of the surface along an arbitrary di-
rection. Figure 5.5 is made by evaluating the convergence rate in similar simulations as
the ones illustrated in Fig. 5.4 for different values of the reduced amplitude linearly space
(2πH/λ1 ∈ {0.01, 0.12, 0.25, 0.38, 0.50, 0.63}) as indicated by the different colors in the legend.
For a given reduced amplitude (a given color), the points are determined by scanning over the
reduced lattice constant (i.e. similar to the different curves in Fig. 5.4). Recall that given that
convergence is guaranteed, the linear convergence rate η is between 0 and 1, and the smaller
η the faster the convergence. Figure 5.5(a) reveals two interesting features of the convergence
rate. First, for small enough surface slopes, the convergence rate is nearly constant, the value
being essentially given by the reduced amplitude. Second, for large enough surface slopes, all
the data points collapse on the same line (in a loglog plot) and the convergence rate η only
depends on the characteristic slope s and not on the individual values of the reduced amplitude
and lattice constant. In other words, Fig. 5.5(a) reveals two regimes of convergence rate which
we can qualify as the amplitude dominated regime and the slope dominated regime. In the am-
plitude dominated regime the convergence rate η only depends on the reduced amplitude, while
in the slope dominated regime the convergence rate η only depends on the surface slope in a
power law fashion. We can see that η is roughly linear with s in the slope dominated regime
although there could be some deviation as the data points do not follow exactly the dashed line
in Fig. 5.5(a). The discrepancy may be caused either by some uncertainty in determining η
and/or the behavior of η as a function of s may truly be non-linear. Only a finer mathematical
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Figure 5.6: Convergence rate η as a function of the reduced amplitude H/λ1 for a two-
dimensional sinusoidal profile and fixed maximum slope s = 10−4. Open circle correspond
to a dielectric contrast of z2 = 2.25 and stars correspond to a dielectric contrast of z2 = 20.

analysis will resolve the issue. Figure 5.5(b) shows similar results as Fig. 5.5(a) but for a one
dimensional sinusoidal profile of equation

ζ(x) = H sin

(
2π

a
x1

)
, (5.43)

for which the maximum slope is s = 2πH/a. The one and two-dimensional cases exhibit very
similar behaviors when it comes to the convergence rate. In addition, it is quite remarkable that
Fig. 5.5 also provides us with a simple convergence criterion, namely that we must have

s < C ≈ 1 (5.44)

where C is some constant close to unity, to guarantee convergence. But is it enough? What
would happen if we continued to increase further the reduced amplitude while keeping the
slope constant? How does the convergence rate scale with 2πH/λ1 in the amplitude dominated
regime? Figure 5.6 shows the dependence of the convergence rate η on the normalized
amplitude5 H/λ1 in the amplitude dominated regime for a fixed value of the maximum slope
s = 10−4 and this for two rather different values of the dielectric contrast z2 = 2.25 and
z2 = 20. Focusing on the dielectric contrast z2 = 2.25, which corresponds to the value fixed
in our previous numerical experiments, we can see that in the amplitude dominated regime
η ≈ H/λ1 as long as H/λ1 is smaller than a value close to unity. In addition, changing the
dielectric contrast seems to have no effect on the convergence rate in this regime.

To sum up, there seems to be two criterion to be satisfied to guarantee convergence. There is an
amplitude criterion which roughly reads as H/λ1 < 1 and a slope criterion which reads s < 1.
The value of unity in the inequalities is not to be taken as exact as we have not found exactly
unity in our simulations but rather some values close to unity. In the slope dominated regime,
the convergence rate is roughly linear with the slope while in the amplitude dominated regime
the convergence rate is roughly linear with the normalized amplitude. All these features are well

5The reason for removing the 2π is that we have found that η ≈ H/λ1 in this regime.
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Figure 5.7: Contour diagram of log η in the (2πa/λ1, 2πH/λ1)-plane for a two-dimensional
sinusoidal surface separating two dielectrics of dielectric contrast z = 1.5. For divergent results,
η is forced to be saturated to unity for clarity.

captured by Fig. 5.7, which shows a contour diagram of the convergence rate (in a logarithmic
scale) in the (2πa/λ1, 2πH/λ1)-plane. The diagram illustrates the zone of divergence where η
has been forced to be saturated to 1, the slope dominated zone where lines of constant η are
oblique straight lines of constant maximum slope s and the amplitude dominated regime where
the lines of constant η are horizontal line of constant amplitude. Furthermore, as noted from
Fig. 5.6, it seems that the dielectric contrast z does not influence significantly the convergence
rate. However, we will see now that it somewhat influences the starting point in the sequence
of relative error (εNc)Nc>0.

Influence of the dielectric contrast on the convergence

Figure 5.8(a) shows the relative truncation error as a function of the index cutoff Nc for different
values of the dielectric contrast z varying fro 0.01 (blue) to 100 (red) and for fixed values of
the reduced lattice constant (a/λ1 = 1) and amplitudes (H/λ1 = 0.1). We can observe that
for small enough values of z the decay rate of the error seems to be independent of z as all the
data points asymptotically form parallel lines, i.e. after large enough values of Nc. The main
difference between different values of z seems to reside in the starting point, ε1. We can observe,
roughly, that for small values of z the starting point ε1 is independent of z while when z becomes
large enough the starting point lifts towards larger values of the error. This means that there
can be significant difference in the consecutive solutions for small values of Nc. In particular, the
relative error can be so large as to somewhat saturate the definition due to the normalization
as mentioned previously, and can as can be seen from the cluster of points around an error
of unity in Fig. 5.8(a) for large values of z. Then after enough modes have been taken into
account the error decays with a decay rate independent of z. These features are well illustrated
in Figs. 5.9(a) and (b) in the case of a dielectric-dielectric system (red circles). Figure 5.9(a)
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Figure 5.8: Relative truncation error using the euclidean norm as a function of the index cutoff
Nc. The considered system is made of vacuum (ε1 = 1) and a dielectric for different values of
the dielectric constant (z varies on a logarithmic scale between 0.01 (blue) and 100 (red)). The
surface profile is a two-dimensional sinusoidal surface characterized by a/λ1 = 1 and H/λ1 = 0.1.
The numerical experiments are achieved for normal incidence.

shows the convergence rate η measured for a two-dimensional sinusoidal profile characterized
by the aforementioned values of the reduced lattice constant and amplitude, as a function of z.
The fact that η is independent of z is then readily observed until some rather extreme value of
the dielectric contrast z ≈ 10 where the convergence rate varies wildly. We argue that these
variations are not significantly due to true dependence of the decay rate on the dielectric contrast
but rather an growing inaccuracy and even impossibility of determining the decay rate as the
simulation were probably not pushed far enough in Nc to observe a clear enough convergence (or
to not observe convergence at all within the range of Nc considered here, see the red data points
in Fig. 5.9(a)). Figure 5.9(b) shows the behavior of the starting relative error as a function z for
the same parameters used in Fig. 5.9(a). It is interesting to notice to regimes. First for dielectric
contrasts z smaller than unity (i.e. medium of incidence optically denser that the medium of
transmission) the starting relative error is constant with z. Then, for z > 1, the starting relative
error increases linearly with z. The plateau for z > 10 corresponds to a case where the error
is saturated due to the normalization and may not represent the true behavior of the absolute
error as function of z. We speculate that the absolute error still increases linearly with z then.

Metallic systems

We have considered so far dielectric systems, and we are now exploring the convergence of the
method for metallic systems. Fixing a dielectric contrast of z2 = −2.25 and repeating the
same numerical experiments as to obtain Fig. 5.7, we obtain the convergence diagram shown in
Fig. 5.10(a). We can see that the convergence diagram for a dielectric-metallic system is overall
very similar to that of a dielectric-dielectric system. The main feature that differs is now the
presence of an island of divergence or slow convergence roughly between the slope dominated
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Figure 5.9: (a) Convergence rate η and (b) starting error ε0 as a functions of the modulus of
the dielectric contrast |z| = |

√
ε2/ε1| for a sinusoidal profile characterized by a/λ1 = 1 and

H/λ1 = 0.1. The red open circles are results for dielectric-dielectric systems (z2 > 0) while
the blue stars are results for dielectric-metallic systems (z2 < 0). The dashed line is the line of
equation η = z as a guide for the eyes.

regime and the amplitude dominated regime. Although a deeper investigation is needed to
understand this feature, we believe this is due to the excitation of surface plasmon polaritons.
Such resonances are expected to yield poorly convergent results, if not divergent. Figures 5.9(a)
and 5.9(b) show the dependence of η and ε1 on the absolute dielectric contrast in the amplitude
dominated regime. It can be observed that, as for dielectric-dielectric systems, η is constant as a
function of |z| in the regime, as it can also be observed in Fig. 5.10, but signatures of a potential
effect of resonances seems to be present in ε1. A deeper and more detailed study should be
carried out in future research on the topic. If we now consider a metal with loss by adding
a small imaginary part to the dielectric constant, z2 = −2.25 + 0.1 i, the island of divergence
vanishes as can be seen in Fig. 5.10(b). The imaginary part of the dielectric constant for the
metal seems to damp the resonance and hence helps the method to converge. We also believe
that the smaller the imaginary part of the dielectric constant, the slower the convergence will
be in the region near a resonance.

5.3 Randomly rough systems

We will now explain briefly how to handle arbitrary, i.e. non-periodic, surfaces. First, we must
keep in mind some characteristic length scales of the physical system in order to introduce as few
artifacts as possible. What are the length scales at play in the case of scattering by a randomly
rough interface? For a periodic interface, these were the wavelength of the incident light, the
lattice constants and the characteristic amplitude of the profile. For a randomly rough surface,
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Figure 5.10: Contour diagram of log η in the (2πa/λ1, 2πH/λ1)-plane for a two-dimensional
sinusoidal surface separating a dielectric medium and a metallic medium with dielectric contrast
(a) z2 = −2.25 and (b) z2 = −2.25 + 0.1 i. For divergent results, η is forced to be saturated to
unity for clarity.

the so-called correlation lengths and the rms-roughness of the surface will be the characteristic
lengths of interest together with the wavelength. Indeed, we have seen in Section 1.6.1 that
the statistical properties of random surfaces, which are realizations of a stochastic process are
essentially determined by the probability density of heights and the auto-correlation function.
Two characteristic length scales associated with these two data, are the rms roughness and
the correlation length. Since its is not possible to represent random surfaces of infinite size
on a computer, only a certain portion of it will be represented (in a sense that will be made
clear soon). Intuitively, it is natural to require that the portion of surface which is represented
should have a characteristic size which is both larger than the wavelength and larger than the
correlation length. Indeed, having for example a size of the surface smaller than the correlation
length may induce a undesired correlation due to the truncation of the surface. In the following,
we illustrate two methods one may apply to treat the case of random surfaces.

5.3.1 Method 1 - Periodizing the system

The first method we suggest here consists in periodizing the surface. Assume that a portion
of the surface, say a square of size L × L, is large enough to encode the statistical properties
of the surface. In practice, this means that the length of the truncated surface is much larger
that the typical correlation length, L � a. Then one can hope to sample densely enough
the continuous diffusely scattered light, or to be more accurate the reflection and transmission
amplitudes, Xαβ(p |p0), if one also choose L � λ and repeat the same surface periodically in
both directions. Indeed, we can now view the system as a periodic surface with a period much
larger than the wavelength of the incident light such that, in virtue of the grating theorem, the
in-plane wave vectors of diffracted modes (p`)`∈Z2 are densely packed and effectively sample the
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continuous response of the infinite system. Then intuitively, the larger the lattice constant L,
the better the approximation will be. In practice, this means that from a numerical point of
view, it suffices to use what has been done for a periodic system in the previous sections of the
present chapter. The continuous scattering amplitude can then be estimated at the sampling
points, p`, roughly as

Xαβ(p |p0) ≈ X(`)
αβ (p0) ∆p−2 , (5.45)

by assuming that the scattering amplitude does not vary much in a small box
[p` · ê1−∆p/2,p` · ê1 +∆p/2] × [p` · ê2−∆p/2,p` · ê2 +∆p/2], where ∆p = 2π/L is the step
between two reciprocal lattice vectors.

5.3.2 Method 2 - Finite size system and numerical quadrature

A second method for solving the reduced Rayleigh equations numerically, or more generally,
Fredholms integral equation of the first kind, consists in the following approximation steps
leading to a finite size linear system. Consider a typical reduced Rayleigh equation of the form

∫
M(p |q) X(q |p0)

dq

(π)
= −N(p |p0) . (5.46)

The first step consists in approximating the unknown solution by its projection onto some finite
dimensional functional space, say a space of function defined by a basis (φj)1≤j≤N . This basis can
be arbitrarily chosen, and can be for example a truncated Fourier basis, Lagrange interpolation
polynomials, or whatever family of functions one may believe suited to approximate the unknown
solution with as few terms as possible as

X(q |p0) ≈
N∑

j=1

Xj(p0) φj(q) . (5.47)

The (matrix valued) coefficients (Xj(p0))1≤j≤N are then the new unknown of the problem. By
substitution of Eq. (5.47) into Eq. (5.46) we obtain

N∑

j=1

∫
M(p |q)φj(q)

dq

(π)
Xj(p0) ≈ −N(p |p0) . (5.48)

The next step consists in choosing a numerical quadrature to approximate the integral. Such a
quadrature can generally be written as

∫
f(q)

dq

(π)
≈

κ∑

k=1

wk f(qk) , (5.49)

where κ weight coefficients, (wk)1≤k≤κ, and sampling points, (qk)1≤k≤κ, are defined by the
quadrature. The sampling points may be evenly spaced (Newton-Cotes quadratures) or unevenly
spaced (Gauss quadratures) [61]. By approximation of the integral in Eq. (5.48) we obtain

N∑

j=1

κ∑

k=1

M(p |qk)wk φj(qk) Xj(p0) ≈ −N(p |p0) , (5.50)

which we recast as

N∑

j=1

Kj(p) Xj(p0) ≈ −N(p |p0) , (5.51)
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with the definition

Kj(p)
def
=

κ∑

k=1

wk φj(qk) M(p |qk) . (5.52)

Equation (5.51) resemble an algebraic linear system of equations with finitely many unknowns,
(Xj(p0))1≤j≤N , but we now have infinitely many equations, namely one for each value of p. We
can now choose a set of N sample points, (pi)1≤i≤N , which may or may not be identical to the
sampled q-points, to obtain the following finite dimensional linear system

N∑

j=1

Kij Xj(p0) = −Ni(p0) , (5.53)

with

Kij
def
= Kj(pi) =

κ∑

k=1

wk φj(qk) M(pi |qk) (5.54)

Ni(p0)
def
= N(pi |p0) . (5.55)

5.4 Summary

Let us summarize the main results from the present chapter. First we have shown in details
how to solve numerically the reduced Rayleigh equations for periodic systems. For a periodic
system, the reduced Rayleigh equations reduce to infinite countable linear systems of equations
for the unknown scattering amplitudes for the set of discrete modes. A finite linear system
was then obtained by truncation of the set of discrete modes kept in the system and the
resulting linear system of equations was solved numerically by using direct methods such as
Gauss elimination or LU factorization. Then we have explored the convergence property of the
numerical solution with increasing number of modes kept in the linear system. We have found
that the convergence rate depends mainly on surface parameters such as the typical slope of
the surface and the maximum amplitude of the surface in unit of wavelength. In particular, two
regimes have been identified depending on the ratio of the lattice constant and the wavelength.
For lattice constants smaller than the wavelength, the convergence rate is determined by the
characteristic slope of the surface profile, while for lattice constants larger than the wavelength,
the convergence rate is determined by the characteristic amplitude of the surface normalized by
the wavelength. Finally, some techniques for treating numerically non-periodic surfaces have
been briefly illustrated.

The next two chapters will be devoted to the studies of iterative methods and of the consistency
of the reduced Rayleigh equations method. In particular, we will study how the convergence rate
of the iterative methods is affected by the surface parameters and how to quantify the quality of
the numerical solutions. We will see that the two identified regimes of convergence rate found in
the present chapter will again be present in these two studies. We would like to note in passing
that previous study assessing the accuracy of approximate methods [65] and the validity of the
reduced Rayleigh equations based on a conservation of energy criterion [66] have also reported
similar diagrams of accuracy showing the slope and amplitude dominated regimes.
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Chapter 6

Solving the reduced Rayleigh
equations; iterative methods

”Pourquoi faire des Mathématiques ? Parce que les Mathématiques, ça sert à faire de la
Physique. La Physique, ça sert à faire des frigidaires. Les frigidaires, ça sert à y mettre des

langoustes, et les langoustes, ça sert aux mathématiciens, qui les mangent et sont alors dans de
bonnes dispositions pour faire des Mathématiques, qui servent à la Physique, qui sert à faire

des frigidaires qui ...”.
Laurent Schwartz.

In Chapter 5, we have presented how the reduced Rayleigh equations can be solved numerically,
and that the two major steps in this process are (i) the construction of a linear system that
represents a truncated approximation of a reduced Rayleigh equation, and (ii) solving the
obtained linear system. In particular, we have seen that independently of the physical system
considered, solving the linear system with so-called direct methods, such as Gauss elimination
or LU factorization, always requires a number of operations that scales as the cube of the
number of modes kept in the truncation of the reduced Rayleigh equation. Moreover in the
cases of layered systems in which only one of the interface is rough and the others are flat,
the complexity associated with solving the system will take over that of setting up the linear
system for large enough number of modes kept in the truncation. It is then of interest to
consider iterative methods to solve the system in order to decrease the complexity associated
with it. It must be kept in mind though that for layered systems involving more than two rough
interfaces, the complexity resides essentially in constructing the linear system, and improving
the solving step would not help to significantly speed up the computer program. A potential
alternative way, based on the reduced Rayleigh equations of the second kind has been discussed
in Chapter 3 already to tackle this issue for layered system with more than one rough interface.
Nevertheless, systems involving only one rough interface cover a non-negligible class of physical
systems of interest from an application point of view, and it is the prior aim of this chapter
to present iterative methods to give reasonably good numerical approximated solutions of the
truncated reduced Rayleigh equations in these cases.

We will first present standard textbook iterative solvers such Jacobi, Gauss-Seidel, and
successive over-relaxation (SOR) methods before dealing with iterative methods specifically
designed for solving the reduced Rayleigh equations. We will then present the so-called small
amplitude perturbation theory (SAPT) which consists in expanding the solution in powers of
the surface profile function, in a sense that will be made clear soon, and approximating the

133
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solution by computing each order of the expansion by the use of a recursive formula. We will
see that this method can be viewed as an iterative method using several iteration matrices.
The derivation of the small amplitude perturbation theory will be given first here for a system
involving a single interface to fix the ideas, and then generalized to a stack of layers with
arbitrarily many interfaces in Chapter 9. Finally, the fixed point method based on the reduced
Rayleigh equation of the second kind will prove to be a powerful method which can be viewed
as a more efficient perturbation method than small amplitude perturbation theory. Finally, we
will consider a fixed point algorithm based on the coupled Rayleigh equations, and discuss its
practicality or rather impracticality, due to stability issues.

The different methods will be compared with respect to their complexity, their convergence and
stability for different class of physical systems, and their convergence rate towards the solution
given by the direct method. Note that here we do not consider whether the truncation error is
small enough or not, which is an issue that has already been discussed in Chapter 5 and that is a
sole property of the truncated linear system, and is therefore independent of the method chosen
for solving it (provided that the method manages to give the solution). We rather analyze the
convergence of the iterated approximated solutions of the truncated linear system towards the
solution given by a direct method that will serve as a reference.

6.1 Simple iterative methods

We consider here simple iterative methods to solve the linear system M X = N of size 2D
associated with a truncation of a reduced Rayleigh equation that we assumed has already been
set as explained in Chapter 5, and M is assumed non-singular. The term simple refers to the
fact that these methods are found in most textbooks on numerical linear algebra but also to the
fact that the construction of the sequence of approximate solutions, denoted (Xk)k∈N, consists
in applying operations on the current approximate solution. In other words, the computation of
an approximate solution Xk+1 only requires the knowledge of the approximate solution Xk and
not that of any other prior approximate solutions. The following is adapted from Ref. [60] where
more details can be found. Here we only give the minimum required for practical implementation,
but the interested reader will consult Ref. [60] for more analysis.

6.1.1 Implementation

We first define the splitting of the matrix M as a pair of matrices (M1,M2) such that

M = M1−M2 , (6.1)

with M1 constrained to be non-singular. The iterative method associated with the splitting
(M1,M2) is then given by

Initialize X0 .

Loop until a desired precision, or a maximum number of iterations is reached

M1 Xk+1 = M2 Xk + N (6.2)

End of the loop.

Remark 6.1. Note that if the sequence (Xk)k∈N converges to some limit X then by plugging
the limit into Eq. (6.2), we find that the limit is necessarily the solution of the linear system
M X = N. However, nothing guarantees a priori that such a sequence converges in general.
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6.1. Simple iterative methods 135

The above iterative method thus requires to solve a linear system at each iteration, and is
therefore advantageous only if M1 is somewhat easier to invert than M. Systems which are
easily invertible are typically diagonal or triangular. It is thus natural to consider splittings
that yield such matrices for M1.

Jacobi’s splitting

The so-called Jacobi iterative method is that associated with the splitting

M1 = diag (M) and M2 = diag (M)−M , (6.2)

where diag (M) denotes the matrix that consists in the diagonal of the matrix M. Note that
in order to invert the system in Eq. (6.2) with this splitting, M must have all its diagonal
elements nonzero.

Remark 6.2. To invert Eq. (6.2) it is only needed to divide each row in the right hand side by
the corresponding diagonal element of M.

Gauss-Seidel’s splitting

Let us denote by Tup and Tlow the strictly (i.e. without the diagonal) upper and lower triangular
part of M respectively. Namely, for i, j ∈ J1, 2DK,

Tup,ij = Mij if j > i, and 0 otherwise.

Tlow,ij = Mij if j < i, and 0 otherwise.

The splitting associated with the Gauss-Seidel method is given by

M1 = diag (M) + Tlow and M2 = −Tup . (6.2)

Note that similarly to the Jacobi method, M1 = diag (M) + Tlow must be non-singular, which
is equivalent to M having all its diagonal elements nonzero, since M1 is a triangular matrix.

Remark 6.3. Equation (6.2) is easy to solve because M1 is triangular, and it is only necessary
to apply a forward substitution.

Successive over-relaxation (SOR)

The splitting associated with the SOR method is given by

M1 =
1

ω
diag (M) + Tlow and M2 =

1− ω
ω

diag (M)−Tup , (6.2)

where ω ∈ R∗+ is a relaxation parameter. Here again the matrix M1 being lower triangular,
Eq. (6.2) can be inverted by forward substitution. The SOR method can be viewed as the
extrapolated Gauss-Seidel method, as it yields the Gauss-Seidel method for ω = 1. For ω < 1
one talks about under-relaxation and for ω > 1 one talks about over-relaxation. In practice, the
relaxation parameter must be optimized to yields the best convergence rate.
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6.1.2 Complexity analysis

In Chapter 5, we have seen that solving the linear system associated with a truncated
reduced Rayleigh equation containing D modes (i.e. system of size 2D) by using the LU
factorization method yields an operation counts of Nop,LU = 2D(2D+ 1)(2D+ 2)/3 ∼ (2D)3/3.
Let us analyze the number of operations required for each of the aforementioned iterative
method. It is clear, almost by definition of the iterative method, that the total number of
operations will depend on the convergence rate (under the assumption that convergence is
given). The faster the convergence, the fewer the number of iterations needed to reach a
desired accuracy to the solution and the fewer the number of operations. The convergence
rate depends in general on the physical system (see Section 6.5). Therefore we focus here
on the number of operations per iteration, Nop/iter, and if, after analysis of the convergence
rate, it is found that k iterations are needed to reach a desired accuracy, the complexity
will be kNop/iter. In order to conclude whether an iterative method is worth using compared
to a direct method, one needs to analyze (i) whether the iterative method converges, and
(ii) if it converges fast enough so that k remains small. We will see that the number of op-
erations per iteration scales as 8D2, therefore the iterative method will be beneficial if k � D/3.

Jacobi: For the Jacobi method, one iteration requires (i) two1 matrix-vector multiplications
by an a priori full matrix M2 with 0 on the diagonal, (ii) two vector additions that we neglect,
and (iii) two matrix-vector multiplication but by the diagonal matrix diag(M)−1. This makes
a total of Nop/iter = 8D2 scalar multiplications.

Gauss-Seidel and SOR: For the Gauss-Seidel method, one iteration requires (i) two matrix-
vector multiplications by strictly upper triangular matrix M2, (ii) two vector additions that we
neglect, and (iii) two forward substitution with a lower triangular matrix M1. This makes a
total of Nop/iter = 8D2 scalar multiplications, i.e exactly the same as for the Jacobi method.
For the SOR method we need to add step multiplying the diagonal elements of M1 and M2

respectively by ω−1 and (1 − ω)/ω which add 4D scalar multiplications, which is insignificant
for the asymptotic scaling.

6.2 Small amplitude perturbation theory

The theory of perturbation refers to a set of mathematical methods which aim at solving ap-
proximately and iteratively a problem which can be considered close (in some sense) to a simpler
problem which can be solve more easily. The full problem being a perturbed problem of the
simpler one, where the perturbation is parametrized by a small parameter. The technique was
introduced first by astronomers, in particular Laplace and Lagrange in the 18th century in the
context of the study of planetary motions and developed further by Poincaré in the 19th century
and before leading to the theory KAM (Kolmogorov, Arnold, Moser) for the stability of systems
of Hamiltonian mechanics subject to small perturbations in the half of the 20th century. The
theory perturbation has quickly spreads in all fields of physics, in particular in quantum me-
chanics. Electromagnetic scattering is no exception, and Rayleigh himself solved approximately
the problem scattering by a sinusoidal perfectly conducting surface by the use of a perturbative
treatment to lowest non-trivial order in 1907. Fano used a perturbative solution up to second
order in the surface profile to explain the origin of the Wood anomalies in 1940. We present here

1Remember that Xk contains two column vectors.
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the derivation of what is known as small amplitude perturbation theory (SAPT), or simply small
perturbation theory, in the literature on wave scattering. In the context of the reduced Rayleigh
equation, this pertubative technique was used already by Toigo et al. in Ref. [37] where the
two first order were computed. It was then developed, among other, by Maradudin and Greffet
[56, 67, 68] as a relatively practical numerical iterative technique to solve the reduced Rayleigh
equations. The first few terms in a perturbative expansion may often lead important insights on
the mechanism involved in some scattering phenomena. The Wood anomaly is an example of a
phenomenon which was explained in this way by identifying the excitation of a surface plasmon
polariton. In the context of this thesis, we will see in Chapter 10 that the approximation to first
order in the surface profile will lead to the physical understanding of some phenomena such as
the Yoneda and Brewster scattering phenomena. In the present chapter, we are only interested
in using the perturbative method as an iterative method which can numerically be implemented
to any desired order.

6.2.1 Derivation

The basic principle of this method is to expand the kernel factor J b,al,m in a series of Fourier
transforms of the power of the surface profile function ζ and also to expand the unknown
reflection or transmission amplitude in a similar series and matching terms of the same order.
The expansions read as follows

J b,al,m (p |q) = (bαl (p)−aαm (q))−1

∫
e−i(p−q)·x e−i(bαl (p)−aαm (q)) ζ (x) dx

=

∞∑

n=0

(−i)n
n!

(bαl (p)−aαm (q))n−1

∫
e−i(p−q)·x ζn (x) dx

=

∞∑

n=0

(−i)n
n!

(bαl (p)−aαm (q))n−1 ζ̂(n)(p−q) (6.3a)

R (q |p) =
∞∑

j=0

(−i)j
j!

R(j) (q |p) (6.3b)

T (q |p) =
∞∑

j=0

(−i)j
j!

T(j) (q |p) . (6.3c)

Here we have defined the Fourier transform of the nth power of ζ, or nth Fourier moment of the
surface profile, as

ζ̂(n)(q) =

∫
e−iq ·x ζn (x) dx . (6.4)

We are now ready to proceed with the perturbative method.

Reflection

We start by substituting Eqs. (6.3a) and (6.3b) into Eq. (2.51) and get

∞∑

n=0

∞∑

j=0

(−i)n+j

n! j!

∫
(α2 (p)−α1 (q))n−1 ζ̂(n)(p−q) M+,+

2,1 (p |q) R(j) (q |p)
dq

(π)

= −
∞∑

m=0

(−i)m
m!

(α2 (p) +α1(p0))m−1 ζ̂(m)(p−p0) M+,−
2,1 (p |p) . (6.5)
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(0, 0) j

n

n+ j = 1

n+ j = 2

n+ j = 3

n+ j = 4

Figure 6.1: Illustration of the change of indices m = n + j. Summing over (j, n) ∈ N2 is
equivalent to summing over sub-sets with elements of constant value n+ j = m.

As illustrated in Fig. 6.1, summing over all (n, j) ∈ N2 is equivalent to summing over subsets
Sm = {(n, j) ∈ N2 | n + j = m} of pairs of constant sum m = n + j, i.e. that we have∑∞

n,j=0 ≡
∑∞

m=0

∑
(n,j)∈Sm , therefore the previous equation can be re-written as

∞∑

m=0

(−i)m
m!

m∑

n=0

(
m

n

) ∫
(α2 (p)−α1 (q))n−1 ζ̂(n)(p−q) M+,+

2,1 (p |q) R(m−n) (q |p)
dq

(π)

= −
∞∑

m=0

(−i)m
m!

(α2 (p) +α1(p0))m−1 ζ̂(m)(p−p0) M+,−
2,1 (p |p) . (6.6)

Also note that we used that 1
n! (m−n)! = 1

m!

(
m
n

)
by definition of the binomial coefficients. The

procedure consists in matching terms of the same order on both sides of the equation. The zero
order only consists of one term n = m = 0 and gives

∫
(α2 (p)−α1 (q))−1 ζ̂(0)(p−q) M+,+

2,1 (p |q) R(0) (q |p)
dq

(π)

= −(α2 (p) +α1(p0))−1 ζ̂(0)(p−p0) M+,−
2,1 (p |p) . (6.7)

By using that ζ̂(0)(p−q) = (2π)2 δ(p−q), we finally obtain the zero order reflection amplitude

R(0) (p |p) =
α1(p0)− α2(p0)

α2(p0) + α1(p0)

[
M+,+

2,1 (p |p)
]−1

M+,−
2,1 (p |p) (2π)2 δ(p−p0)

def
= (2π)2 δ(p−p0) ρ(0)(p0) , (6.8)

where the last equation is a defining equation for ρ(0)(p0).
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Remark 6.4. We have just obtained that the zero order of the reflection amplitude corresponds
exactly to the reflection amplitude for a flat surface we have derived in the Section 2.3. This was
to be expected in the sense that the zero order of the surface profile corresponds to its average
plane.

For orders m ≥ 1, we have

m∑

n=0

(
m

n

) ∫
(α2 (p)−α1 (q))n−1 ζ̂(n)(p−q) M+,+

2,1 (p |q) R(m−n) (q |p)
dq

(π)

= −(α2 (p) +α1(p0))m−1 ζ̂(m)(p−p0) M+,−
2,1 (p |p) , (6.9)

which by isolating the term of interest, n = 0, gives

− (α2 (p) +α1(p0))m−1 ζ̂(m)(p−p0) M+,−
2,1 (p |p)

−
m∑

n=1

(
m

n

) ∫
(α2 (p)−α1 (q))n−1 ζ̂(n)(p−q) M+,+

2,1 (p |q) R(m−n) (q |p)
dq

(π)

=

∫
(α2 (p)−α1 (q))−1 ζ̂(0)(p−q) M+,+

2,1 (p |q) R(m) (q |p)
dq

(π)

=

∫
(α2 (p)−α1 (q))−1 (2π)2δ(p−q) M+,+

2,1 (p |q) R(m) (q |p)
dq

(π)

= (α2 (p)−α1 (p))−1 M+,+
2,1 (p |p) R(m) (p |p) . (6.10)

Thus one can express R(m) as a function of R(m−1) · · ·R(0), in other words we have a recursive
relation for determining all orders,

R(m) (p |p) = (α1 (p)−α2 (p))
[
M+,+

2,1 (p |p)
]−1

[
(α2 (p) +α1(p0))m−1 ζ̂(m)(p−p0) M+,−

2,1 (p |p)

+
m∑

n=1

(
m

n

) ∫
(α2 (p)−α1 (q))n−1 ζ̂(n)(p−q) M+,+

2,1 (p |q) R(m−n) (q |p)
dq

(π)

]
. (6.11)

Note that in general, high orders require the evaluation of as many integrals as the order to be
determined and can become costly. For the first order, only one such integral is to be evaluated
and is straightforward to perform thanks to the fact that R(0)(q |p0) ∝ δ(q−p0). Indeed,
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applying the above equation for m = 1 gives

R(1) (p |p) = (α1 (p)−α2 (p))
[
M+,+

2,1 (p |p)
]−1

[
ζ̂(1)(p−p0) M+,−

2,1 (p |p)

+

∫
ζ̂(1)(p−q) M+,+

2,1 (p |q) R(0) (q |p)
dq

(π)

]

= (α1 (p)−α2 (p))
[
M+,+

2,1 (p |p)
]−1

[
ζ̂(1)(p−p0) M+,−

2,1 (p |p)

+
α1(p0)− α2(p0)

α2(p0) + α1(p0)
ζ̂(1)(p−p0) M+,+

2,1 (p |p)
[
M+,+

2,1 (p |p)
]−1

M+,−
2,1 (p |p)

]

= (α1 (p)−α2 (p)) ζ̂(1)(p−p0)
[
M+,+

2,1 (p |p)
]−1

[
M+,−

2,1 (p |p)

+
α1(p0)− α2(p0)

α1(p0) + α2(p0)
M+,+

2,1 (p |p)
[
M+,+

2,1 (p |p)
]−1

M+,−
2,1 (p |p)

]

def
= ζ̂(1)(p−p0) ρ(1) (p |p) def

= (α1 (p)−α2 (p)) ζ̂(1)(p−p0) ρ̂(1) (p |p) . (6.12)

Here we have given two alternative way to write R(1) (p |p) introducing either the amplitude
ρ(1) (p |p) or ρ̂(1) (p |p) that only differs by a factor (α1 (p)−α2 (p)). The reason for in-
troducing these definitions will become clear in Chapter 10 when we will give a clear physical
interpretation of the first order reflection amplitude. For now, what matters is to convince
oneself that it is relatively simple to compute R(1) (p |p).

Transmission

Repeating the reasoning for the transmission amplitudes, we start by substituting Eqs. (6.3a)
and (6.3c) into Eq. (2.52) and get

∞∑

n=0

∞∑

j=0

(−i)n+j

n! j!

∫
(−α1 (p) +α2 (q))n−1 ζ̂(n)(p−q) M−,−

1,2 (p |q) T(j) (q |p)
dq

(π)

=
2
√
ε1ε2 α1(p0)

ε2 − ε1
(2π)2 δ(p− p0) I2 . (6.13)

By using the same re-summation argument as in the case of the reflection amplitude, the previous
equation thus becomes

∞∑

m=0

m∑

n=0

(−i)m
m!

(
m

n

) ∫
(−α1 (p) +α2 (q))n−1 ζ̂(n)(p−q) M−,−

1,2 (p |q) T(m−n) (q |p)
dq

(π)

=
2
√
ε1ε2 α1(p0)

ε2 − ε1
(2π)2 δ(p− p0) I2 . (6.14)

Next we match the zero order to the right hand side and the other orders to zero. The zero
order only consists of one term, n = m = 0, and gives

T(0) (p |p) =
2
√
ε1ε2α1(p0)

ε2 − ε1
(2π)2 δ(p− p0) (α2(p0)− α1(p0))

[
M−,−

1,2 (p |p)
]−1

def
= (2π)2 δ(p− p0) τ (0)(p0) (6.15)
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Here we have used that ζ̂(0)(p−q) = (2π)2 δ(p−q) and the last equation defines τ (0)(p0).

Remark 6.5. As observed for the reflection amplitudes, we have just obtained that the zero
order of the transmission amplitudes corresponds exactly to the transmission amplitudes for a
planar surface derived in the Section 2.3.

For orders m ≥ 1, we have

m∑

n=0

(
m

n

) ∫
(α2 (q)−α1 (p))n−1 ζ̂(n)(p−q) M−,−

1,2 (p |q) T(m−n) (q |p)
dq

(π)
= 0 , (6.16)

which by isolating the term of interest, n = 0, gives

−
m∑

n=1

(
m

n

) ∫
(α2 (q)−α1 (p))n−1 ζ̂(n)(p−q) M−,−

1,2 (p |q) T(m−n) (q |p)
dq

(π)

=

∫
(α2 (q)−α1 (p))−1 ζ̂(0)(p−q) M−,−

1,2 (p |q) T(m) (q |p)
dq

(π)

=

∫
(α2 (q)−α1 (p))−1 (2π)2δ(p−q) M−,−

1,2 (p |q) T(m) (q |p)
dq

(π)

= (α2 (p)−α1 (p))−1 M−,−
1,2 (p |p) T(m) (p |p) . (6.17)

Thus one can express T(m) as a function of T(m−1) · · ·T(0). We thus have a recursive relation
for determining all orders,

T(m) (p |p) = (α1 (p)−α2 (p))
[
M−,−

1,2 (p |p)
]−1

×
m∑

n=1

(
m

n

) ∫
(α2 (q)−α1 (p))n−1 ζ̂(n)(p−q) M−,−

1,2 (p |q) T(m−n) (q |p)
dq

(π)
. (6.18)

Note that in general, high orders require the evaluation of as many integrals as the order to
be determined and can become costly. For the first order we take advantage of the fact that
T(0) (q |p) ∝ δ(q−p0). Applying the above equation for m = 1 gives

T(1) (p |p) =
2
√
ε1ε2 α1(p0)

ε2 − ε1
(α2(p0)− α1(p0))(α1 (p)−α2 (p))

× ζ̂(1)(p−p0)
[
M−,−

1,2 (p |p)
]−1

M−,−
1,2 (p |p)

[
M−,−

1,2 (p |p)
]−1

def
= ζ̂(1)(p−p0) τ (1) (p |p) def

= (α1 (p)−α2 (p)) ζ̂(1)(p−p0) τ̂ (1) (p |p) . (6.19)

Here the last equation defines the amplitudes ρ(1) (p |p) and ρ̂(1) (p |p), which will be of
particular interest in Chapter 10 when discussing the physical interpretation of the first order
transmission amplitude.
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Periodic surfaces

We apply the method presented above for a periodic surface. In that case, the expansions read

J̃ b,al,m(p |q) =
∞∑

n=0

(−i)n
n!

(bαl (p)−aαm (q))n−1 ζ̂(n)
ac (p−q) (6.20a)

R(m)(p0) =

∞∑

j=0

(−i)j
j!

R(j)
m (p0) (6.20b)

T(m)(p0) =
∞∑

j=0

(−i)j
j!

T(j)
m (p0) . (6.20c)

Here we have defined the nth Fourier moment as

ζ̂(n)
ac (q) =

1

ac

∫

ac

e−iq ·x ζn (x) dx . (6.21)

Note that we have expanded the component of each diffractive order m, which we already know

form a countable set, and R
(j)
m (p0) (resp. T

(j)
m (p0)) must be understood as the jth order in the

power of the surface profile for the mth diffractive order of the reflection (resp. transmission)
amplitude. Then following the same derivation as in the general case, we obtain that the terms
of the expansion of the reflection amplitudes are given by

R
(0)
` (p0) =

α1(p0)− α2(p0)

α2(p0) + α1(p0)

[
M+,+

2,1 (p0 |p0)
]−1

M+,−
2,1 (p0 |p0) δ`,0 , (6.22a)

R
(k)
` (p0) = (α1(p`)− α2(p`))

[
M+,+

2,1 (p` |p`)
]−1

[
(α2(p`) + α1(p0))

k−1
ζ̂(k)
ac (G(`)) M+,−

2,1 (p` |p0)

+
k∑

n=1

(
k

n

) ∑

m∈Z2

(α2(p`)− α1(pm))
n−1

ζ̂(n)
ac (G(`−m)) M+,+

2,1 (p` |pm) R(k−n)
m (p0)

]
, (6.22b)

for k > 0 and that of the transmission amplitudes are given by

T
(0)
` (p0) =

2
√
ε1ε2α1(p0)

ε2 − ε1
(α2(p0)− α1(p0))

[
M−,−

1,2 (p0 |p0)
]−1

δ`,0 , (6.23a)

T
(k)
` (p0) = (α1(p`)− α2(p`))

[
M−,−

1,2 (p` |p`)
]−1

×
k∑

n=1

(
k

n

) ∑

m∈Z2

(−α1(p`) + α2(pm))n−1 ζ̂(n)
ac (G(`−m)) M−,−

1,2 (p` |pm) T(k−n)
m (p0) . (6.23b)

We recall in passing the notation p`
def
= p0 + G(`) with G(`) a reciprocal lattice vector. Note

that here we have chosen to denote the perturbation order k instead of m, used previously in
the general case, in order to avoid confusion with the mode indices m for the diffractive orders.

Remark 6.6. These expressions can be found either by following the same derivation as that
described in the general case and starting from the reduced Rayleigh equations for a periodic
surface derived Chapter 4, or equivalently applying the reasoning from Chapter 4 to the SAPT
results obtained in the general case.
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6.2.2 Implementation

We can see from Eqs. (6.22) and (6.23) that the recursive relation giving X
(k)
` , where X = R or

T can be written in the form, for k > 1

X
(k)
` (p0) = Y

(k)
` (p0) +

k∑

n=1

(
k

n

) ∑

m∈Z2

M
(n)
`,m(p0) X(k−n)

m (p0) . (6.24)

Indeed, we have in the case of the reflection amplitudes

Y
(k)
` (p0)

def
= ζ̂(k)

ac (G(`)) (α1(p`)− α2(p`))
[
M+,+

2,1 (p` |p`)
]−1

× (α2(p`) + α1(p0))
k−1

M+,−
2,1 (p` |p0) (6.25a)

M
(n)
`,m(p0)

def
= ζ̂(n)

ac (G(`−m)) (α1(p`)− α2(p`))
[
M+,+

2,1 (p` |p`)
]−1

× (α2(p`)− α1(pm))
n−1

M+,+
2,1 (p` |pm) , (6.25b)

and for the transmission amplitudes

Y
(k)
` (p0)

def
= 0 (6.26a)

M
(n)
`,m(p0)

def
= ζ̂(n)

ac (G(`−m)) (α1(p`)− α2(p`))
[
M−,−

1,2 (p` |p`)
]−1

× (−α1(p`) + α2(pm))
n−1

M−,−
1,2 (p` |pm) , (6.26b)

This means that for the truncated system, when applying the re-indexing described in Sec-
tion 5.2.1, Eq. (6.24) yields

X
(k)
β (p0) = Y

(k)
β (p0) +

k∑

n=1

(
k

n

)
M(n)(p0) X

(k−n)
β (p0) , (6.27)

where

X
(k)
β (p0) =

(
X

(k)
m1,pβ

(p0), · · · , X(k)
mD,pβ

(p0), X
(k)
m1,sβ

(p0), · · · , X(k)
mD,sβ

(p0)
)T

, (6.28)

and for (i, j) ∈ J1, DK2,

M
(n)
ij (p0) =M

(n)
`i,mj ,pp

(p0) (6.29a)

M
(n)
D+i,j(p0) =M

(n)
`i,mj ,sp

(p0) (6.29b)

M
(n)
i,D+j(p0) =M

(n)
`i,mj ,ps

(p0) (6.29c)

M
(n)
D+i,D+j(p0) =M

(n)
`i,mj ,ss

(p0) , (6.29d)

and

Y
(k)
β (p0) =

(
Y

(k)
m1,pβ

(p0), · · · , Y (k)
mD,pβ

(p0), Y
(k)
m1,sβ

(p0), · · · , Y (k)
mD,sβ

(p0)
)T

. (6.30)

In order to compute the terms in the expansion of the reflection, or transmission amplitudes,
up to order k, it is thus necessary to set up k matrices (M(n))1≤n≤k and 2k vectors (k for each

incident polarization) (Y
(n)
β )1≤n≤k. These matrices and vectors are then used and re-used to

successively compute the (X
(n)
β )1≤n≤k.
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6.2.3 Complexity analysis

Setting up matrices

Let us count the number of operations required to set up the matrices (M(n))1≤n≤k and
(Y(n))1≤n≤k. To fix the ideas we will consider the case of the reflection amplitudes and we
assume that the Fourier moments have already computed and are available for use. Consider
the following algorithm to set up all the (M(n))1≤n≤k and (Y(n))1≤n≤k simultaneously.

• Loop over the set of modes i ∈ J1, DK

1 Compute α1(p`i
) and α2(p`i

) (≈ 10 op.).

2 Set A← α1(p`i
) + α2(p`i

) (1 op.) and B ← 1.

3 Compute M+,−
2,1 (p`i

|p0) (≈ 20 op.).

4 Compute M+,+
2,1 (p`i

|p`i
) (note diagonal matrix ≈ 5 op.).

5 Compute Ỹ ← (α1(p`i
)− α2(p`i

))
[
M+,+

2,1 (p`i
|p`i

)
]−1

M+,−
2,1 (p`i

|p0) (7 op.).

* Setting up the Y
(n)
β (p0)-vectors.

6 Loop over perturbative order n ∈ J1, kK

6.1 Get ζ̂
(n)
ac (G(`i)) (0 op.).

6.2 Set C ← B × ζ̂(n)
ac (G(`i)) (1 op.).

6.3 Compute C × Ỹ (4 op.) and set Y
(n)
`i,αβ

(p0) ← Ỹαβ in the Y
(n)
β (p0)-vectors

(β ∈ {p, s}).
6.4 Increment power B ← B ×A (1 op.).

* Setting up the M(n)-matrices.

7 Loop over the set modes j ∈ J1, DK

7.1 Compute α1(pmj
) (≈ 5 op.).

7.2 Compute M+,+
2,1 (p`i

|p`j
) (≈ 20 op.).

7.3 Compute M̃ ← (α1(p`i
)−α2(p`i

))
[
M+,+

2,1 (p`i
|p`i

)
]−1

M+,+
2,1 (p`i

|pmj
) (7 op.).

7.4 Set A′ ← α2(p`i
)− α1(p`j

) and B′ ← 1 (1 op.).

7.5 Loop over perturbative order n ∈ J1, kK

7.5.1 Get ζ̂
(n)
ac (G(`i)−G(mj)) (0 op.).

7.5.2 Set C ′ ← B′ × ζ̂(n)
ac (G(`i)−G(mj)) (1 op.).

7.5.3 Compute C ′ × M̃ (4 op.) and set M
(n)
`i,mj ,α,β

(p0) ← M̃αβ according to

Eq. (6.29).

7.5.4 Increment power B′ ← B′ ×A′ (1 op.).

The number of operations indicated are rough estimates which may vary if one consider that
some constants such as

√
εj , ω

2/c2 and their products are tabulated before hand or not, and we
have treated equally multiplications, additions and square roots, which in practice should not
really be. Nevertheless, we just aim at a rough estimation, since it is the scaling with the number
of modes D and maximum perturbative order k which is of particular interest. Following the
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algorithm, the total number of operations for setting up the Y
(n)
β -vectors and M(n)-matrices is

roughly

NSAPT
op,setup ≈ 43D + 6kD + (33 + 6k)D2 (6k + κ)D2 , (6.31)

where the assymptotic scaling is taken for large D and κ is a constant which may vary depending
on the details of the implementation, in our case we have estimated κ = 33. What is important
is that the cost associated with setting up the iteration matrices scales quadratically with the
number modes and linearly with the number of perturbative order kept in the expansion k.

Iterations

Now that the matrices are set up, it is time to successively determine each order of the scattering
amplitudes. Let us count the number of operations required for each iteration for a fixed incident

polarization β. Neglecting the number of operations that is required to set up X
(0)
β

2 the first

iteration requires one matrix vector multiplication and a vector addition, giving (2D)2 scalar
multiplications and (2D)(2D − 1) + n = (2D)2 scalar additions, the second iteration requires
two matrix vector multiplications and two vector additions (let’s neglect multiplying by the
binomial coefficient), giving 2(2D)2 scalar multiplications and 2(2D)(2D−1) + 2(2D) = 2(2D)2

scalar additions, ... , and the kth iteration requires k matrix vector multiplications and k vector
additions, giving k(2D)2 scalar multiplications and k(2D)2 scalar additions. In total, to compute
the k first terms in the scattering amplitude expansions requires (2D)2 +2(2D)2 +· · ·+k(2D)2 =
k(k + 1)(2D)2/2 multiplications and as many additions. In addition, once we have the k + 1
first terms of the expansion, we need to sum them up. Hence we roughly need

NSAPT
op,iter ≈ k2(2D)2 (6.32)

operations to compute the scattering amplitudes approximated to kth order in power of the
surface profile function, given the iteration matrices and vectors.

The total operation cost associated with this method is then

NSAPT
op,tot = NSAPT

op,setup +NSAPT
op,iter ∼ (6k + κ)D2 + k2(2D)2 . (6.33)

In conclusion, the complexity associated with solving a reduced Rayleigh equation with SAPT
as an iterative method scales quadratically with the number of modes and quadratically with the
perturbation order k. Note that the other iterative methods studied in this chapter all scales
linearly with the iteration number, and are simpler to implement. The iterative method based
on SAPT may or may not be worth its slightly higher complexity depending on whether its
convergence rate is advantageous. This will be explored in Section 6.5.

6.3 Fixed point iterates of the RRE of the second kind

6.3.1 Implementation

In Section 2.5, we have seen that reduced Rayleigh equations can be recast as integral equations
of the second kind. It was suggested in Section 2.5 that one may solve the reduced Rayleigh
equations of the second kind by interpreting it as a fixed point problem. We will refer to the
following algorithm as the method of Fixed point Iterates of the reduced Rayleigh Equations of

2which contains only one non-zero element, that corresponding to the co-polarized zero diffractive order, being
a Fresnel amplitude
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the Second kind, or shorten with acronym FIRES. For a periodic system, the reduced Rayleigh
equations of the second kind Eqs. (2.70, 2.73) read, for ` ∈ Z2,

(α2(p`)− α1(p`))
−1 M++

21 (p` | p`) ∆ R(`)(p0) +
∑

m∈Z2

K̃++

21 (p` | pm) M++
21 (p` | pm) ∆ R(m)(p0)

= −K̃++

21 (p` | p0) M++
21 (p` | p0) ρ(0)(p0)− K̃+−

21 (p` | p0) M+−
21 (p` | p0) . (6.34)

and

(α2(p`)− α1(p`))
−1 M−,−

12 (p` | p`) ∆ T(`)(p0) +
∑

m∈Z2

K̃−,−12 (p` | pm) M−,−
12 (p` | pm) ∆ T(m)(p0)

= −K̃−,−12 (p` | p0) M−,−
12 (p` | p0) τ (0)(p0) , (6.35)

with

K̃b,al,m(p |q)
def
=

1

ac

∫

ac

exp[−i(bαl(p)− aαm(q))ζ(x)]− 1

bαl (p)−aαm (q)
exp[−i(p−q) · x] dx , (6.36)

∆ R(`)(p0)
def
= R(`)(p0)− ρ(0)(p0) , (6.37)

∆ T(`)(p0)
def
= T(`)(p0)− τ (0)(p0) . (6.38)

Equations (6.34) and (6.35) yield the following recursive scheme

∆ X
(0)
` (p0) = 0 (6.39a)

∆ X
(k+1)
` (p0) = Y`(p0) +

∑

m∈Z2

M`,m(p0) ∆ X(k)
m (p0) for k ∈ N , (6.39b)

where we denote by ∆ X
(k)
` the kth iterate approximation of ∆ R(`)(p0) or ∆ T(`)(p0) and the

iteration matrices M`,m(p0) and Y`(p0) are given by

Y`(p0)
def
= (α1(p`)− α2(p`))

[
M++

21 (p` | p`)
]−1

×
[
K̃++

21 (p` | p0) M++
21 (p` | p0) ρ(0)(p0) + K̃+−

21 (p` | p0) M+−
21 (p` | p0)

]
(6.40a)

M`,m(p0)
def
= (α1(p`)− α2(p`))

[
M++

21 (p` | p`)
]−1 K̃++

21 (p` | pm) M++
21 (p` | pm) , (6.40b)

for the equation for the reflection amplitudes and by

Y`(p0)
def
= (α1(p`)− α2(p`))

[
M−,−

12 (p` | p`)
]−1 K̃−,−12 (p` | p0) M−,−

12 (p` | p0) τ (0)(p0) (6.41a)

M`,m(p0)
def
= (α1(p`)− α2(p`))

[
M−,−

12 (p` | p`)
]−1 K̃−,−12 (p` | pm) M−,−

12 (p` | pm) , (6.41b)

for the equation of for the transmission amplitudes. This means that for the truncated system,
when applying the re-indexing described in Section 5.2.1, Eq. (6.39) yields

X
(0)
β (p0) = 0 (6.42a)

X
(k+1)
β (p0) = Yβ(p0) + M(p0) X

(k)
β (p0) , (6.42b)
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where

∆ X
(k)
β (p0) =

(
∆X

(k)
m1,pβ

(p0), · · · ,∆X(k)
mD,pβ

(p0),∆X
(k)
m1,sβ

(p0), · · · ,∆X(k)
mD,sβ

(p0)
)T

, (6.43)

and for (i, j) ∈ J1, DK2,

Mij(p0) =M`i,mj ,pp(p0) (6.44)

MD+i,j(p0) =M`i,mj ,sp(p0) (6.45)

Mi,D+j(p0) =M`i,mj ,ps(p0) (6.46)

MD+i,D+j(p0) =M`i,mj ,ss(p0) , (6.47)

and

Yβ(p0) =
(
Ym1,pβ(p0), · · · , YmD,pβ(p0), Ym1,sβ(p0), · · · , YmD,sβ(p0)

)T
. (6.48)

6.3.2 Complexity analysis

The complexity associated with setting up the iteration matrix M(p0) and the two column
vectors Yβ(p0) is essentially the same as that associated with setting the linear system for the
direct method. Then, each iteration requires, two matrix-vector multiplications and two vector
additions (one per incident polarization state β), i.e. 8D2 scalar multiplications and 4D2 scalar
additions. The complexity is essentially that of the simple iterative methods, such as the Jacobi
method.

6.4 Fixed point iterates of the coupled Rayleigh equations

In Section 2.4, we have shown that one could obtain coupled integral equations for the reflec-
tion and transmission amplitudes, which we have called the coupled Rayleigh equations. It was
suggested, based on the form of the equations, that one may gather the reflection and transmis-
sion amplitudes as one unknown and interpret the coupled Rayleigh equations as a fixed point
problem.

6.4.1 Implementation

The implementation of the algorithm for obtaining the successive iterates for the reflection and
transmission amplitudes is similar to that of the methods presented previously. We need to
keep track simultaneously of the successive iterates of both the vector of reflection amplitudes,

R
(k)
β (p0), and of the transmission amplitudes, T

(k)
β (p0), for which the indexing has been

explained in details for the previous methods. The iterative scheme hence reads as follows.

• Initialize R
(0)
β (p0) and T

(0)
β (p0), for example with the Fresnel amplitudes.

• Loop until a desired accuracy or a set number of iteration is reached

R
(k+1)
β (p0) = M1(p0) T

(k)
β (p0) (6.49a)

T
(k+1)
β (p0) = M2(p0) R

(k)
β (p0) + Yβ(p0) . (6.49b)
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The iteration matrices M1(p0), M2(p0), and the vector Yβ(p0) are readily obtained from
Eqs. (2.63a) and (2.63b), and read for a periodic surface, in terms of the `,m indices,

M1,`,m(p0)
def
=

ε1 − ε2
2
√
ε1ε2 α1(p`)

J̃ +,−
12 (p` | pm) M+,−

12 (p` | pm) (6.50a)

M2,`,m(p0)
def
=

ε1 − ε2
2
√
ε1ε2 α2(p`)

J̃−,+21 (p` | pm) M−,+
21 (p` | pm) (6.50b)

Y`(p0)
def
=

ε1 − ε2
2
√
ε1ε2 α1(p`)

J̃−,−21 (p` | p0) M−,−
21 (p` | p0) (6.50c)

The re-indexing procedure is the same as for the other methods.

Remark 6.7. In the algorithm described above we construct in fact two sequences of solutions
in parallel. One may instead jump between the two sequences and obtain a factor two speed up.

Indeed, one may, for example, use the freshly computed R
(k+1)
β (p0) from Eq. (6.49a) directly in

Eq. (6.49b), and so on, in such a way that the R
(k)
β (p0) are only computed for odd k and the

T
(k)
β (p0) for even k. One may also start the other way around and compute only R

(k)
β (p0) for

even k and the T
(k)
β (p0) for odd k. For the study of the convergence rate, we will for convention

use the naive algorithm (Eqs.(6.49a) and (6.49b)) where all terms are computed.

6.4.2 Complexity analysis

The complexity analysis is rather straightforward here. It consists essentially in twice that of
the direct method3 for setting up the iteration matrices plus a couple of matrix-vector for each
full R-T -iteration for a given incident polarization state β. The complexity is hence twice that
of the method of FIRES for example.

6.5 Comparison of the methods

We now proceed with some numerical comparison of the aforementioned methods. We have
already analyzed the methods complexity and discussed iteration thresholds for a speed-up
of the iterative methods compared to the direct method. It remains to study whether these
methods are stable and estimate their rate of convergence towards the solution given by the
direct method. We will see that the rate of convergence depends on the system parameters in a
similar fashion as the convergence rate depended on the system parameters for the direct method
when the convergence was studied as a function of the number of modes in Chapter 5. We will
fix the index cutoff radius Nc of the reciprocal lattice to be large enough (Nc = 20) to obtain a
a priori small enough truncation error with the direct method (see Chapter 5). Consequently,
we remind that this fixes a set of scattered wave vectors, both for propagating and evanescent
modes. For simplicity, we will only consider a two-dimensional sinusoidal surface between two
dielectric, where the periods in the two orthogonal directions are equal a1 = a2 = a and the
only consider normal incidence. Thus we places ourselves in a similar framework as in Chapter 5.

The notion of convergence used in the present chapter is similar to that used in Chapter 5 and
the vocabulary will remain essentially the same. There is, however, an important difference that
we want to stress. Since, for a given set of parameters, the scattering problem can be solved

3Some computation can, however, be saved by setting up both M1 and M2 at once.
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with the direct method, we can use its solution as a reference. The relative error will hence
measure the distance between an approximate solution obtained for a given number of iteration
k of an iterative method and the reference solution given by the direct method. If we denote

the solution given by the direct method by Xd =
(
X

(m)
d (p0, ω)

)
m∈DNc

and the solution given

by an indirect method after k iterations by Xi,k =
(
X

(m)
i,k (p0, ω)

)
m∈DNc

(X = R or, T), then

we define the relative error in the Euclidean norm εk as

εk =
|Xi,k −Xd|
|Xd|

. (6.51)

Here, we define |X| as

|X| =


 ∑

m∈DNc

∑

α,β∈{p,s}
|x(m)
α,β (p0, ω)|2




1/2

, (6.52)

where we remind that the notation α, β ∈ {p, s} denotes pairs of polarization states. Other
norms could be used but we restrict ourselves to the Euclidean norm for the sake of simplicity.

We are now interested in studying how quickly the relative error ε decays (if it does) with the
number of iterations of iterative methods and also how the corresponding convergence rate scales
with the reduced parameters. The linear convergence rate determined numerically is defined in
a similar fashion as in Chapter 5,

η =
1

K + 1− κ
K∑

k=κ

ηk , (6.53)

where K is the maximum number of iterations considered before reaching machine precision and
with

ηk =
εk+1

εk
. (6.54)

6.5.1 Convergence rates

Consider the relative error ε as a function of the iteration number k obtained for the different
methods, SAPT, Jacobi, Gauss-Seidel, and FIRES in Fig, 6.2 for a fixed reduced lattice
constant (a/λ1 = 0.95)4 and for a set of reduced amplitudes. Moreover, the dielectric contrast
is held fixed to z = 1.5.

First, it is clear that for each method taken separately, the convergence is slower for larger values
of the reduced amplitude. It seems that the convergence is linear and the linear convergence
rate, η, hence increases with the reduced amplitude. Furthermore, comparing now the methods
for a fixed reduced amplitude, we can rank them with respect to their convergence rate from
slowest to fastest: ηSAPT > ηJacobi ≈ ηFIRES > ηGauss−Seidel. The reader will notice that the
Jacobi method and the method of FIRES yield very similar results. They are not identical
even though the difference cannot be appreciated from Figs. 6.2(b) and 6.2(d). The reason for
this similarity can be explained quite simply. The method of FIRES consists in splitting the

4There is nothing special about the value of 0.95. It was arbitrary chosen as the closest to 1 in a bigger set of
simulations, and for which the results illustrate well our discussion.
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Figure 6.2: Error ε in the euclidean norm for the methods of SAPT (a), Jacobi (b), Gauss-Seidel
(c) and FIRES (d) as a function of the iteration number k for two-dimensional sinusoidal surface
characterized by a/λ1 = 0.95 and for different amplitudes. The dielectric contrast is fixed to
z = 1.5.

solution as a sum of the planar contribution and the roughness contribution of the surface,
i.e. Fresnel plus scattering roughly speaking. This idea is very close to the splitting used in
the Jacobi method, where the matrix of the linear system is split as its diagonal and what
remains. One may hence expect similar results for the two methods for cases where the Fresnel
contribution dominates in the diagonal.
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Figure 6.3: Diagram of the convergence rate log η in the (2πa/λ1, 2πH/λ1)-plane for the methods
of (a) SAPT, (b) Jacobi, (c) Gauss-Seidel, and (d) FIRES. The results were obtained for a two-
dimensional sinusoidal surface and the dielectric contrast is fixed to z = 1.5.

In a similar fashion as what was done in Chapter 5, Fig. 6.3 present diagrams of convergence
rate in the (2πa/λ1, 2πH/λ1) parameter space. The overall map of contour levels of constant
convergence rate are reminiscent of that obtained in Chapter 5, see Fig. 5.7. This similarity
indicates that solving the reduced Rayleigh equations using the presented methods will also be
more and more challenging, in terms of computations, near the boundary of the convergence
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Figure 6.4: Diagram of the convergence rate log η in the (2πa/λ1, 2πH/λ1)-plane for the methods
of (a) SAPT, (b) Jacobi, (c) Gauss-Seidel, and (d) FIRES. The results were obtained for a two-
dimensional sinusoidal surface and the dielectric contrast is fixed to z2 = −2.25.

domain identified in Chapter 5, as k will be required to be large. From Fig. 6.3, it also apparent
that the Gauss-Seidel method overall performs best since it overall has smaller values of log η
compared to the other methods. Moreover, SAPT seems to suffer from slow convergence in
the slope dominate regime while it is comparable to the Jacobi and FIRES methods in the
amplitude dominated regime.
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(a) a/λ1 = 100
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Figure 6.5: Error ε in the euclidean norm for the method of Fixed Point Iterates of the Cou-
pled Rayleigh Equations (FICRE) as a function of the iteration number k for two-dimensional
sinusoidal surface characterized by (a) a/λ1 = 100 and (b) a/λ1 = 4.5 and different amplitudes.
The dielectric contrast is fixed to z = 1.5.

Figure 6.4 presents the same study as for Fig. 6.3 but for a metallic system (z2 = −2.25). We can
see that all the iterative methods are affected by resonances. The Jacobi and FIRES method,
which again are very similar are the most affected by the metallic nature of the substrate. It
seems that the overall convergence diagram is shifted to lower critical values of the reduced
amplitudes in addition to the resonances causing problem (see Figs. 6.4(b) and 6.4(d)). The
Gauss-Seidel method performs best away from resonances (Fig. 6.4(c)) and SAPT seems to be
less affected than the Jacobi and FIRES methods away from resonances (Fig. 6.4(a)).

6.5.2 The case of the FICRE

The attentive reader has probably already noticed that we have left aside the method of
fixed point iterates of the coupled Rayleigh equations (FICRE) detailed in Section 6.4. The
reason for this choice is that we devote here a specific discussion due to its peculiar stability
property. Figures 6.5(a) and 6.5(b) show respectively the relative error ε as a function of the
iteration number k for the FICRE method for a/λ1 = 100 and a/λ1 = 4.5, and a set of reduced
amplitudes in each case. By observing Fig. 6.5(a), for which the lattice constant is much larger
than the wavelength, convergence seems guaranteed for all the considered reduced amplitudes.
What is particularly striking, however, is that the convergence rate is independent of the chosen
amplitude. The initial error point of course increases with increasing amplitude, since the
starting guess of the iterative scheme is chosen to be the Fresnel solution which is expected to
deviate more and more from the true solution when the amplitude is increased. Nevertheless,
the slope of the line of decay of ε in the semilog-plot in Fig. 6.5(a) has the same slope for all
the reduced amplitudes. This is a quite remarkable feature. The second remarkable feature is
that the scheme becomes unstable if the reduced lattice constant is decreased. This is readily
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Figure 6.6: Modulus of the reflection amplitudes R
(`1,0)
pp as a function of `1 for different values

of the iteration number k obtained with the method of FICRE for two-dimensional sinusoidal
surface characterized by a/λ1 = 1 and H/λ1 = 1/2. The dielectric contrast is fixed to z = 1.5.

seen in Fig. 6.5(b) where for each the considered reduced amplitudes there exists a critical
iteration number kc for which the error starts to increase even though it has been decaying for
k < kc. The larger is the reduced amplitude, the smaller is the critical iteration number kc.
This behavior seems to indicate that the scheme may either be fundamentally unstable and
that kc decreases with increasing surface slope. The use of the FICRE method may then be
guided by a trade off between fast enough convergence before the instability takes over.

Figure 6.6 illustrates well the instability of the numerical scheme. It shows the modulus of the

reflection amplitudes of the co-polarized p→ p diffracted modes, |R(`1,0)
pp | scattered in the plane

of incidence (i.e. `2 = 0 in our configuration). As the iterations go, the initially, seemingly,
reasonable distribution with decaying amplitudes for larger values of |`1|, starts to lift up from
the larger values of |`1| and progressively pollute the whole solution.

Remark 6.8. The convergence rate associated with the method of FICRE may seem advanta-
geous compared to the other presented methods in some region of the parameter space, although
it seems at first sight not so attractive. One must keep in mind that the results presented here
were obtained with the naive version of the method of FICRE (see Remark 6.7). Using the
algorithm described in Remark 6.7, the convergence rate η is then halved.

6.6 Summary

In the present chapter, a few iterative methods have been analyzed in terms of complexity and
convergence rate with respect to the number of iterations. Standard linear algebra iterative
methods such as the Jacobi and Gauss-Seidel methods have been compared with the iterative
methods issued from small amplitude perturbation theory, the method of fixed point iterates of
the reduced Rayleigh equations of the second kind and the fixed point iterates of the coupled
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Rayleigh equations. We have observed that for all methods, the convergence rate with the
number of iterations follows a similar behavior as the convergence rate with respect to the
number of modes found in Chapter 5 as a function of the surface profile parameters. The slope
dominated regime and the amplitude dominated regime are also present for the convergence
rate of iterative methods. We have found that the Gauss-Seidel method converges fastest
in the convergence region of the parameter space and that the other methods have similar
convergence rate. Small amplitude perturbation theory has a rather poor convergence rate
compared with other methods in the slope dominated regime. The Jacobi method and the
method of fixed point iterates of the reduced Rayleigh equations of the second kind have a
very similar convergence rate, which can be explained by their very close resemble in terms
of implementation. The method of fixed point iterates of the coupled Rayleigh equations was
treated as special case since it was found to be unstable. The instability develops quicker for
small values of a/λ1 than for larger ones. The overall conclusion to be drawn from this study
is that simple linear algebra methods such as the Jacobi and Gauss-Seidel may be used in
practice to yield a significant speed-up for solving the reduced Rayleigh equations for dielectric
systems. In terms of complexity, the method based on small amplitude perturbation theory
is not advantageous, as it is rather cumbersome to implement, has an additional increasing
complexity with the number of iterations as compared with the other methods and does not
yield a particularly larger speed-up. The method of fixed point iterates of the reduced Rayleigh
equations of the second kind is particularly interesting in terms of convergence and simplicity
of implementation.

Now that we have filled up our tool box for solving numerically the reduced Rayleigh equations,
an important question remains to be addressed. How good is the obtained numerical solution?
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Chapter 7

On the Rayleigh hypothesis and the
validity of the RRE

”That’s all well and good in practice, but how does it work in theory?”
Shmuel Weinberger.

7.1 The Rayleigh hypothesis

In 1907, Lord Rayleigh proposed a theory for the scattering of a plane wave by an impenetrable
periodic grating in which he assumed that the scattered field could be decomposed as a sum
of out-going plane waves1 [15]. The unknown amplitudes of the expansion of the scattered
field were then determined by the boundary conditions. In addition, Rayleigh also derived an
approximate solution in the case of a sinusoidal perfectly conducting surface whose amplitude
is small compared with the wavelength. The assumption on the representation of the scattered
field was left unchallenged for almost half a century, until Lippmann noted that such a
representation of the scattered field seemed, at first sight, not physical [69]. Based on a
physical intuition, Lippmann suggested that the scattered field inside the grooves should not
only contain out-going plane waves but also waves propagating towards the surface. Indeed,
it seems reasonable to assume that the incoming wave excites secondary sources at points
situated near the maxima of the surface profile which radiate as spherical waves in view of the
Huygens-Fresnel principle, and therefore, points well inside the grooves should receive these
downwards propagating secondary waves. Lippmann’s note started further numerical and
mathematical developments which aimed at justifying or delimiting the range of validity of
the now so-called Rayleigh hypothesis. This has lead, quite surprisingly, to diverging opinions
and conclusions while, as we will see, all the results obtained by the different authors were
consistent between themselves. Only their interpretation has lead to confusion. We can identify,
essentially two school of thought. On one side, some authors took as a criterion for correct
results the conservation of energy, and claimed that the Rayleigh hypothesis is valid for a
relatively wide range of surface parameters, in the sense that the reflection amplitudes converge
(as more and more modes are kept in the system) and the energy is conserved. On the other
side, others considered the conservation of energy as a necessary condition for the correctness of
the result but not a sufficient one. Since the Rayleigh plane wave expansion of the field satisfies
the Helmholtz equation, and an out-going wave radiation condition by construction, once the

1The terms ”out-going plane waves” will implicitly refer to both progressive out-going waves and evanescent
waves decaying exponentially away from the surface.

157
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reflection amplitudes are determined, one should verify whether the boundary conditions are
satisfied in order to conclude whether the field is indeed solution of the scattering problem. The
latter approach yields a more restricted range of validity of the Rayleigh hypothesis. It is mainly
the difference of what is to be considered as a correct solution which was the source of vivid
discussions. We briefly summarize in the following paragraphs the main results and conclusions
obtained by a few authors who, we believe, have contributed most to the discussion on the range
of validity of the Rayleigh hypothesis without the intention of being exhaustive. We would
like to stress, however, that the point here is not to judge whether some authors are right or
wrong, but rather clarify certain confusion and point out the interest of the different approaches.

The first, and maybe one of the most important result concerning the range of validity of
the Rayleigh hypothesis was obtained by Petit and Cadilhac in 1966 [70]. They considered
the scattering of a scalar plane wave by a one-dimensional sinusoidal surface, of equation
x3 = H sin

(
2πx1/a

)
, subjected to the Dirichlet boundary condition on the surface. The

problem being a two-dimensional one in the (x1, x3)-plane, they could use tools of complex
analysis to show that: if the characteristic slope 2πH/a > 0.448, the expansion in out-going
plane waves for the scattered field, valid above the highest point on the surface (i.e. for
x3 > H), admits an analytic continuation with singularities located above the lowest point on
the surface (i.e. x3 < −H). Consequently, the Rayleigh hypothesis which states the validity of
the out-going plane wave expansion of the scattered field inside the grooves breaks down, for
the considered problem, for slopes 2πH/a > 0.448. But does it means that it holds for slopes
2πH/a < 0.448?

Millar completed the analysis of Petit and Cadilhac in 1969 and 1971 [54, 55], by showing,
also using tools of complex analysis, that the Rayleigh hypothesis is valid if and only if the
characteristic slope 2πH/a < 0.448, or stated in another way that the analytic continuation
of the field has no singularity above the lowest point of the surface under this condition. It
must be noted that Millar’s criterion for a sinusoidal surface has been obtained as a special
case of a derivation valid for any type of one-dimensional surface profile provided it is periodic
and represent an analytic arch in the complex plane. Millar showed in [54] that, for a general
periodic analytic profile ζ, there always exists a constant γ such that for

2π‖ζ‖∞/a < γ , (7.1)

the Rayleigh hypothesis holds. However, Millar noted that the derivation for obtaining the
existence of such a threshold γ is of little practical importance since determining its value or a
lower bound is in general a difficult task. Nevertheless, the value2 of γ ≈ 0.448 could be proved
for the sinusoidal surface [55].

Despite Millar’s proof, a number of publications claimed the validity of the Rayleigh hy-
pothesis well above the 2πH/a = 0.448 threshold based on numerical work including (see
e.g. [71, 72, 73]). Before following the discussion, it must be mentioned, as correctly pointed
out by Wirgin [72] already in 1982 and more recently by Wauer and Rother [74], that there
exists a whole family of numerical methods based on the Rayleigh expansion which differ by
the sense given to the boundary conditions, and hence, may yield different results in terms
of convergence. In the following, we restrict ourselves to those that seem numerically closer
to satisfying the boundary conditions at every points of the surface, specifically the point

20.448 is an approximation of the solution of the equation argsh(1/x) = x+ (1 + x2)1/2, solution which, is the
exact value of the threshold.
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matching method and the Rayleigh-Fourier method (which is exactly a version of the reduced
Rayleigh equation for a perfectly conducting surface). The former discretizes the surface and
directly writes the point-wise condition for each discretized point on the surface while the latter
considered projections of the field onto the set of plane waves (see derivation of the RRE).
When such procedures are applied, it is often shown numerically that convergent results (with
increasing number of modes kept in the truncated expansion) are obtained for values of 2πH/a
beyond 0.448 and that the energy balance can satisfied with very good accuracy. The authors
usually then conclude by claiming the apparent numerical validity of the Rayleigh hypothesis
beyond its analytical range of validity. To our knowledge, the first clear numerical answer to
such numerical studies was given by van den Berg [75] (see also the interesting answers [76] to
the equally interesting comments by Wirgin [72]). In Ref. [75], van den Berg considered the
behavior of both the energy balance and the integrated mismatch of the boundary conditions
along the surface as a function of the number of modes kept in the simulation, and this for
different values of 2πH/a. It was shown quite clearly that the error in the satisfaction of the
boundary conditions decays with increasing number of modes for roughly 2πH/a < 0.448 while
it increases for 2πH/a > 0.448. However, the deviation to the energy balance decays with
increasing number of modes for parameters 2πH/a > 0.448. The analytical limit of validity
of the Rayleigh hypothesis was then illustrated numerically, and the distinction between a
condition on satisfaction of the boundary conditions and of the energy balanced clearly made.
If a field does not satisfy the boundary conditions, one should strictly speaking accept that the
obtained field is not a solution of the scattering problem, and that the Rayleigh hypothesis
used to represent the solution was an erroneous assumption. Note, however, that if one relaxes
the boundary conditions (say that it should be satisfied in a least square sense instead of point
wise), the apparently incorrect solution might become correct for the new relaxed problem. This
has yield to modified methods for which the boundary conditions are required to be satisfied
in a least square fashion for example (see e.g. [75, 72] and references therein). Moreover, the
fact that for 2πH/a > 0.448 some convergent results satisfying the conservation of energy are
obtained may be of practical interest even though the solution does not satisfies the boundary
conditions. Such results should of course be discarded for near-field studies. Nevertheless, the
obtained solution could be a good approximation of the exact solution in the far-field. This
resonates with what is known for asymptotic techniques for which the solutions are adequate
only in the far-field, for example, and of limit use (or completely unphysical) in the near-field.

Finally, we would like to mention that the anaylis of Millar for the two-dimensional problem has
later been generealized by van den Berg and Fokkema for the three-dimensional case [77, 78]. We
are not aware, however, of a generalization for penetrable media. In the following sections, we
will, inspired by the work of van den Berg, define the figures of merit to assess the quality of the
numerical solutions. These will be the unitarity (conservation of energy) and consistency errors
defined as some measures of the deviation to the satisfaction of the boundary conditions by the
field. Using these tools, we will carry out numerically a parameter study of the validity of the
Rayleigh hypothesis, or more safely, that of the reduced Rayleigh equations, first in the case of
perfectly conducting sinusoidal surfaces and in the case of dielectric media. We will provide some
analyitcal arguments to explain the observed behavior, and we will show that one may recover
analytically Millar’s threshold based on very simple notions, almost physically intuitive, which do
not require the elaborate theory based on complex analysis developed by Petit, Millar, van den
Berg and co-workers. The present work hence represents both a generalization of the numerical
results of van den Berg’s paper [75] for two-dimensional surfaces and penetrable surfaces, and
suggests a new analytical path towards the derivation of simple criteria for assessing the validity
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of the reduced Rayleigh equations for any surface.

7.2 Conservation of energy

Perhaps the simplest and the most commonly used a posteriori check for assessing the quality
of a wave scattering simulation is that of the conservation of energy, or unitarity. Assuming, for
the sake of simplicity, the case of the scattering of a monochromatic β-polarized plane wave by
a periodic interface between two loss-less media, unitarity is expected to hold, i.e. that the sum
of the efficiencies of all the reflected and transmitted propagating modes should equal unity,

Uβ(p0)
def
=

∑

`∈Z2

α∈{p,s}

e
(R,`)
αβ (p0) +

∑

`∈Z2

α∈{p,s}

e
(T,`)
αβ (p0) = 1 . (7.2)

We recall that by definition of the efficiencies, the sums are finite, since the efficiency for reflected
(resp. transmitted) modes such that |p` | > n1 ω/c (resp. |p` | > n2 ω/c) vanish. For reflection
on a loss-less metallic surface, only the reflected modes would contribute. We must keep in
mind, however, that unitarity, although it is a necessary condition for the correctness of the
results, is not a sufficient one. Moreover, what does it mean numerically to satisfy the unitarity
condition? What deviation from unity is acceptable? Are a few digits meaningful? Can we
expect to go down to machine precision? In the literature, it is a common practice to verify that
unitarity is satisfied within a few digits to assess the relative accuracy of the efficiencies. This
is indeed a very reasonable thing to do when one is interested to compare with experimental
results for which the accuracy is also limited by the instruments. Here, however, we will see that
unitarity can be obtained up to machine precision, and can give in most cases a good assessment
of the validity and accuracy of the results. One must nevertheless be careful with checking the
convergence with the number of modes before assessing the validity or non validity of the results
based solely on the unitarity. Verifying other conditions such as reciprocity can comfort ones
opinion on the results but maybe the best verification is to check to which extent the fields
satisfy the initial problem, that is the Helmholtz equation and the boundary conditions.

7.3 Consistency

We have seen in Section 2.3 that the resolution of the reduced Rayleigh equations in the limit
case of a planar interface yields the correct Fresnel amplitudes. This is to be expected since a key
hypothesis used to derive the integral equations for the reflection and transmission amplitudes
is the so-called Rayleigh hypothesis, which states that the expression of the fields given by
Eq. (1.31) can be taken down to the surface. It is not a priori obvious to know, for a given
surface, whether the representation of the fields as a sum of plane waves described by Eq. (1.31)
is valid in the whole space, included within the groves of the profile. In the case of a planar
interface this hypothesis is verified but for an arbitrary rough surface, it is a priori not obvious
to predict whether this hypothesis is valid or not, and if not, what is the error made by the
method. To this end, we introduce the notion of consistency errors.

7.3.1 Definitions

The consistency errors are defined as deviation from the satisfaction of the boundary conditions
by the fields obtained after resolution of the reduced Rayleigh equations. Indeed, since the plane
wave expansion Eq. (1.31) satisfies the Helmholtz equation by construction, it is left to show
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that the boundary conditions are satisfied. The local consistency errors associated with the
electric and magnetic fields at a surface point s(x) = x + ζ (x) ê3 are defined as,

εcon,F (x) =
∣∣∣n (x)×

[
F̃1(s(x))− F̃2(s(x))

]∣∣∣ , (7.3)

where the field F = E or H and we recall that | · | denotes the Euclidean norm. Here the

tilde denote fields normalized by the norm of the incident field amplitude, i.e. Ẽ
def
= E /E0 and

H̃
def
= H /H0. In other words, the local consistency errors, defined as Eq. (7.3), read as deviation

from the boundary conditions being satisfied in the sense that a vanishing error corresponds
to the boundary condition being satisfied locally. Although it will be of interest to analyze
locally where the local consistency errors are strongest on the surface, we will study integrated
consistency errors defined as,

‖εcon,F‖p =





(∫

R2

|εcon,F (x) |p d2x

)1/p

, p ∈ [1,∞[

sup
x ∈ R2

|εcon,F (x) |, p =∞
, (7.4)

i.e. the Lp-norm of the function εcon,F. In practice, we will use p = 1, 2 or ∞. Also, since we
will only consider the case of a periodic surface for our numerical study, it will be enough to
concentrate on the unit cell and the more appropriate definition is then

‖εcon,F‖p =





(
1

ac

∫

ac

|εcon,F (x) |p d2x

)1/p

, p ∈ [1,∞[

sup
x ∈ ac

|εcon,F (x) |, p =∞
, (7.5)

where ac denotes both the unit cell of the periodic lattice and its area.

As it stands now, the definition of the integrated consistency errors is somewhat of an absolute
measure that is not bounded hence making the interpretation of its value and comparison for
different surfaces or simulation parameters difficult. For example, we could be in a situation
where the field is locally enhanced in a small region of the surface and for a fixed relative
deviation of the boundary conditions the region where the field is enhanced would contribute
more to the integrated consistency errors than a region of low field. We will therefore work with
the relative integrated consistency errors defined as

‖εcon,F‖p,r =
‖εcon,F‖p

‖|n× F̃1 |‖p + ‖|n× F̃2 |‖p
=

‖|n× F̃1−n× F̃2 |‖p
‖|n× F̃1 |‖p + ‖|n× F̃2 |‖p

, p ∈ [1,∞] . (7.6)

With this definition, the triangular inequality for the Lp-norm ensures unity as an upper bound
for the relative integrated consistency errors, hence

0 ≤ ‖εcon,F‖p,r ≤ 1 . (7.7)

A particularity of this definition, which can be seen both as a drawback or an advantage, is
the non-linearity of the scaling of the relative integrated consistency errors. On the one hand,
one may not appreciate well enough that values close to unity corresponds essentially to huge
errors. One the other hand, as surface parameters are varied, it will therefore be of interest to
see how the relative integrated consistency error undergoes a transition from values close to 0
to values close to 1 within a small region of parameter space. We may expect sharp step-like
variations around critical values of the surface parameters, which may be helpful to conjecture
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criteria for the validity of the reduced Rayleigh equations.

Note that this definition for the relative integrated consistency errors has an obvious practical
limitation when dealing with scattering from a perfect electric conductor. Indeed, in that case,
the electric field inside the perfect conductor vanishes identically and so does the correspond-
ing contribution ‖|n× Ẽ2 |‖p. Consequently, the previous definition of the relative integrated
consistency errors becomes useless in the sense that any error profile would be normalized by
itself hence giving a unit relative integrated error. In order to avoid this issue, we modify our
definition as

‖εcon,E‖p,r =
‖|n× Ẽ1 |‖p
‖|n× Ẽ1 |‖p + 1

, p ∈ [1,∞], for a perfect conductor. (7.8)

The interpretation of this definition is a shift of all electric fields by 1 (meaning an overall shift
by the amplitude of the incident field since E1 is normalized by the incident field) both above
and below the surface and then the use of the aforementioned definition. The error is thus given
with respect to a reference uniform error having the incident field amplitude. In other words,
when the absolute error is small compared to the incident field, ‖|n× Ẽ1 |‖p � 1, the relative
error is small, ‖εcon,E‖p,r � 1, whereas for an absolute error much larger than the incident field,
‖|n× Ẽ1 |‖p � 1, the relative error is close to unity, i.e. ‖εcon,E‖p,r ≈ 1. The relative error
‖εcon,E‖p,r = 1/2 corresponds to the threshold ‖|n× Ẽ1 |‖p = 1, which means that the absolute
error is of the order of the incident field amplitude in the sense of the Lp-norm.

Remark 7.1. Note that contrarily to what the notation may suggest, ‖ · ‖p,r is not a norm.
Indeed, the axiom of homogeneity is obviously not satisfied.

Remark 7.2. The consistency errors could in principle depend on the incident field, both on
the angle of incidence and polarization. In the following, we will only consider normal incidence
for the sake of simplicity and the consistency errors for incidence p or s incident polarization

will be indicated by a superscript, e.g. ε
(p)
con,F or ε

(s)
con,F.

7.3.2 Near-field

The estimation of the consistency errors requires the knowledge of the near-field, or to be more
accurate, the knowledge of the surface limit of the electromagnetic field on both sides of the
interface. The near-field it-self will also be of interest for applications other than computing
the consistency errors. We thus expose here how the near-field can be computed from the
reflection and transmission amplitudes, R (p |p) and T (p |p). For this, it suffices to recall
the field expansion Eq. (2.2) taken at the surface and substitute the definition of the reflection
and transmission amplitudes Eqs. (2.49) and (2.50). The fields are then evaluated along the
surface.

Remark 7.3. Numerically the expansion Eq. (1.31) will be replace by a numerical integral
where the wave vectors are sampled for an arbitrary rough interface or a finite sum for a periodic
interface where the set of the wave vectors is countable (see Chapter 4) but cut off. The resolution
or cut off in the wave vector space will induce an error by-itself compared to what the exact
solution of the reduced Rayleigh equations would be. Thus the computed consistency errors will
contain both an error term due to the numerical approximations and the theoretical consistency
error. Therefore one has to be careful with the interpretation of the consistency errors, and
to first study how the error evolves by increasing the resolution parameters of the numerical
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method so that when this error stabilizes (if it converges to a constant error) one can reasonably
assume that one is left with the pure consistency error. In other words, one should first verify
the the numerical solution has converged with respect to the number of mode (see Chapter 5).

7.4 Probing numerically the validity of the RRE

7.4.1 Perfect electric conductor

We start our numerical investigation into the validity of the reduced Rayleigh equations by
treating the case of a perfect electric conductor. Although we have chosen in the remaining
of this thesis to only discuss the scattering by systems made of penetrable media (dielectrics,
metals) there exists an equation which is the sister of the reduced Rayleigh equations we have
studied so far for penetrable media, which is often called simply the Rayleigh equation and
reads [42]

∫
J +(p |q) M(p |q) R(q |p0)

dq

(π)
= −J−(p |p0) M(p |p0) (7.9a)

J±(p |q)
def
=

1

α(q)

∫
exp

[
− i(p−q) · x∓iα(q)ζ(x)

]
dx (7.9b)

M(p |q)
def
=


|p ||q | −

ω2

c2 p̂ · q̂ ω
c α(q) [p̂× q̂] · ê3

ω2

c2 [p̂× q̂] · ê3
ω
c α(q) p̂ · q̂


 . (7.9c)

The term reduced is omitted for perfect electric conductor since there is no transmitted field, so
there is no distinction to be made between coupled and decoupled equations. Note that vacuum
is assumed here as the medium is incidence. Adjusting for a dielectric medium is straightforward
by using similar scaling laws as derived in Section 5.1.

Remark 7.4. An interesting feature of this equation, is that it is rather simple to derive from
scratch (see e.g. [42]) but it seems to be a rather difficult task to obtain it as a limit of the
reduced Rayleigh equations as ε2 → −∞. This would be a interesting analysis problem to
resolve, which to our knowledge has not been achieved yet.

The reason for studying the case of a perfect electric conductor here is that there exists a
mathematical theorem which validates the Rayleigh hypothesis in the case of a one-dimensional
sinusoidal surface whose maximum slope does not exceed a certain threshold. This is Millar’s
theorem [54, 55] that we have already discussed in Section 7.1. We will see that we can recover
reasonably well Millar’s theorem numerically and that some nuances should be made when it
comes to interpreting the boundary conditions, as already suggested by Millar himself in [55]
and that one should always remember that the hypotheses of a theorem are as important as its
implications.

We will thus begin by studying the case of a one dimensional sinusoidal surface,
x3 = H sin(2πx1/a) and discuss the results in light of Millar’s theorem before treating
the case of a two-dimensional sinusoidal surface x3 = H[sin(2πx1/a) + sin(2πx2/a)]/2, and
finally we will consider the case of a non-differential profile (a saw-tooth profile).

One-dimensional sinusoidal surface
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Figure 7.1: Diagram of the deviation from unitarity, |1 − Us| as a function of the maximum
slope 2πH/a of a one-dimensional sinusoidal perfect electric conducting surface and for different
values of the reduced lattice constant. The index cutoff is (a) Nc = 5, (b) Nc = 10, (c) Nc = 15,
and (d) Nc = 20. The red dashed line is the line of equation 2πH/a = 0.448.

On unitarity – Consider the deviation from unity of Us obtained for a set of one-dimensional
surfaces with various amplitudes and periods. Figure 7.1 shows the deviation from unity of Us,
|1 − Us|, as a function of the maximum slope of the surface s = 2πH/a, and this for different
reduced period. The subfigures Figs. 7.1(a)-(d) correspond to different values of the cutoff
index Nc chosen for the simulation, in order to illustrate how the unitarity converges as Nc

is increased. Focusing on Fig. 7.1(a), the first observation one can make is that for surfaces
having a small enough slope, unitarity can be satisfied to machine precision with a rather
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low value of the cutoff index. This is not surprising since in the limit of a planar surface
Nc = 0 would suffice to give the exact result. As the slope is increased, the curves for the
different reduced periods are well separated for a/λ1 large enough, typically a/λ1 � 1, while
for a/λ1 � 1 the curves overlap. Moreover, there seems to be a slope threshold for each value
of a/λ1 above which |1 − Us| increases monotonically with the slope in a power law fashion.
These observations can be interpreted as follows. First, in the long wavelength regime, only
one propagating mode is allowed and hence carries away the totality of the power. This means
that the other modes taken into account in the simulation are evanescent and thus, a small
cutoff in index space | ` | ≤ Nc, may correspond to a large cutoff in k-space. In other words,
one could expect a faster convergence in the long wavelength regime a/λ1 � 1 than in the
short wavelength regime a/λ1 � 1. When Nc is increased, the slope threshold corresponding
to the different values of a/λ1 in the short wavelength regime shift towards larger slope values
but the deviation of |1 − Us| above the threshold increases more and more rapidly with Nc

(see Figs. 7.1)(a-d)). This change of increasing rate also occurs in the long wavelength regime,
although the threshold slope remains stable. In the limit for Nc → ∞, we can conjecture that
all cases of a/λ1 collapse to a unique curve as can be observed for Nc = 20 in Fig. 7.1(d).
The value of a/λ1 essentially dictates how far one must go with Nc before reaching this curve.
Consequently, when convergence is obtained, there exists a slope threshold, independent of
the wavelength, below which unitarity is satisfied (here up to machine precision), and above
which the deviation from unitarity increases very quickly. This sharp transition seems to occur
close to the Millar’s threshold for the validity of the Rayleigh hypothesis for a one-dimensional
perfectly conducting sinusoidal surface as indicated by the red vertical dashed lines in Fig. 7.1.
The logarithmic scale is not ideal to appreciate whether the transition occurs at Millar’s slope
s = 0.448 or at a slightly larger value. We have found that for the values a/λ1 � 1, the
threshold seems to rather be at s ≈ 0.8. Whether this threshold will move towards s = 0.448 by
further increasing Nc is still an open question, but it does not seem to be the case by looking
at simulations we have achieved for the largest value of Nc.

Under the assumption that the slope threshold obtained numerically here is indeed larger than
that obtained by Millar, how should this result be interpreted. One may say, Millar’s theorem
must be questioned, the numerical experiment proves it wrong and we can in fact obtain correct
results for slopes larger than 0.448. However, one must keep in mind that, a theorem is a
theorem, hence it is mathematically true if its proof is irrefutable. To the author’s knowledge,
no-one has ever questioned Millar’s proof, which should be taken as an indication of its validity.
Is the numerical experiment incorrect then? No, not necessarily. The answer we suggest here
to resolve this apparent paradox is the following: both Millar’s theorem and the numerical
experiment are correct, they are simply not answering the same questions. First of all, we have
solely measured the deviation of Us from unity. Unitarity being satisfied does not necessary
mean that the result is correct in the sense that the fields solve the scattering problem. Second,
even if the efficiencies are assumed to be corrected, this only means that the far-field is correct
and nothing can be said about the near-field a priori. Millar’s theorem deals with the validity of
the Rayleigh hypothesis in the sense that the plane wave expansion is valid not only away from
the surface but also in the grooves. This second observation raises a particularly interesting
question. Could a method obtain a correct far-field with a wrong near-field? Third, it must
be recalled that a key working hypothesis in Millar’s theorem is that the boundary conditions
should be satisfied point-wise at all points of the surface. As briefly mentioned in the derivation
of the reduced Rayleigh equations in Chapter 2, the reduced Rayleigh equations do not assume
that the boundary conditions should be satisfied point-wise but rather weakly, i.e. that we
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consider the boundary condition as tested against plane waves by integration over the surface.
Relaxing the boundary conditions may be the source of this apparent enhancement of validity
of the Rayleigh hypothesis. Millar himself pointed out that this could in principle be the case
if one considered that the boundary conditions should be satisfied for the L2-norm for example
instead of point-wise. This last point then even question the previous question: what is meant
by a wrong near-field then? What type of boundary condition should the near-field satisfy to
be physical?

Remark 7.5. We have presented results for an incident s-polarized wave but similar results are
observed for an incident p-polarized wave. This can be seen in the diagrams of |1 − Uβ| in the
(2πH/λ1, 2πa/λ1)-plane in Fig. 7.2 for Nc = 5 and for Nc = 20. We can observe the two different
regimes of convergence for a/λ1 being either larger or lower than unity. This is reminiscent of
the slope vs amplitude dominated regimes described in Chapter 5 for the convergence rate. By
comparing the diagrams of Fig. 7.2 for Nc = 5 and Nc = 20, we understand the importance
of verifying first the convergence before studying the unitarity. Indeed, assuming one contents
oneself with Nc = 5, one would be tempted to accept a solution as correct in the upper left
corner (i.e. large amplitude and small period) where |1 − Uβ| is relatively low and discard a
solution in the upper right corner (i.e. large amplitude and large period) where |1 − Uβ| is
large. Such a practice would lead to conclusion in complete contradiction to what one would
obtain by considering larger values of Nc as can be seen for Nc = 20. This observation raises an
interesting question: Knowing that a solution obtained in the upper left corner of the diagram
will diverge with increasing Nc, but which satisfies reasonably well the condition of unitarity
for small values of Nc, can the solution obtained for a low truncation cutoff be considered as a
good approximation of the exact solution for the far-field? This resemble a typical behavior of
divergent asymptotic series which, although they are divergent, can yield good approximation
to a function when limited to a small finite number of terms. If this is the case, how do we find
a criterion for finding the optimal value of the index cutoff Nc? These are questions that may
be partly answered by studying the consistency errors in the next section, but a more detailed
study with a comparison with other methods should be encouraged.

On consistency and boundary conditions – It is now time to study the relative integrated con-
sistency error, which for short we will simply designate as consistency error when the context
is clear. We repeat the numerical experiment which we have exposed for the deviation from
unitarity, with the same set of parameters but we now measure the consistency error. Fig-
ures 7.3(a) and (b) show the consistency error in the L∞-norm for an incident s-polarized wave,

‖ε(s)
con,E‖∞, r, as a function of the maximum slope of the profile s = 2πH/a. Several values of

the reduced period are considered and the results were obtained with either a rather low index
cutoff, Nc = 5 (a), or a relative large one Nc = 20 (b). Comparing Figs. 7.3(a) and (b), one
can observe, as already pointed out during the study of unitarity, that more modes are required
before obtaining reasonably well converged results in the regime a/λ1 > 1 than in the regime
a/λ1 < 1. All the s-shaped curves exhibit a sharp variation from negligible error to maximal
error around a critical slope s. As Nc is increased, all the error curves collapse to a single char-
acteristic curve for which the transition occurs around, if not exactly at, the slope s = 0.448,
i.e. Millar’s threshold (see Fig. 7.3(b) and Millar’s critical slope indicated by the vertical red
dashed line). This is an interesting feature. This numerical experiment based on the consis-
tency error that we have defined in this work seems to be a convincing illustration of Millar’s
result. Note that, as pointed out earlier, the fact that one obtains Millar’s threshold here was
not necessarily to be expected since it is not obvious whether the weak boundary condition of
the Rayleigh equation would be equivalent to the point-wise boundary condition. Nevertheless,
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Figure 7.2: Diagram of deviation from unitarity, log |1− Uβ| in the (2πa/λ1, 2πH/λ1)-plane for
a one-dimensional perfectly conducting sinusoidal surface obtained with Nc = 5 and Nc = 20.
The red (resp. cyan) dashed line is the line of equation 2πH/a = 0.448 (resp. 2πH/a = 0.8).
The white vertical dashed line is the line of equation a/λ1 = 1. Note: Uβ is saturated to 2 for
clarity.

the numerical experiment seems to indicate that Millar’s result holds for the Rayleigh equation,
and this sheds some light on some of the questions raised after our study of the unitarity. We
have demonstrated numerically here that the satisfaction of unitarity does not necessarily mean
the satisfaction of the boundary conditions. We have indeed seen previously that unitarity holds
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Figure 7.3: (a,b) Relative integrated consistency error, ‖ε(s)
con,E‖∞, r, as a function of the maxi-

mum slope s = 2πH/a for different values of a/λ1 obtained for (a) Nc = 5 and (b) Nc = 20. (c,d)

Diagrams of relative integrated consistency error, ‖ε(β)
con,E‖∞, r, in the (2πa/λ1, 2πH/λ1)-plane

for a one-dimensional perfectly conducting sinusoidal surface obtained with Nc = 20. The red
dashed line is the line of equation 2πH/a = 0.448. The white vertical dashed line is the line of
equation a/λ1 = 1.

for slopes up to about twice Millar’s critical slope while the boundary conditions would not be
satisfied according to our calculations. To our knowledge, this is a new result which illustrates
well the necessity for having better check than unitarity to assess the quality of a simulation.
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Furthermore, we would like to point out a detail which we have not resolved yet. The attentive
reader may have noticed that the transition region, at the left of the threshold in Fig. 7.3(b),
is not an abrupt one. There is a smooth increase of error before the sharp jump. This is par-
ticularly visible for p-polarized incident waves as illustrated in the consistency error diagram in
Fig. 7.3(d) compared to s-polarized light in Fig. 7.3(c). This smooth slow transition occurs in
the long wavelength regime, a/λ1 < 1, and we can see that a residual error is present even below
Millar’s threshold. The residual error vanishes when the reduced amplitude tends to zero but we
have experienced that it does not seem to vanish when more modes are taken into account. We
do not understand at this stage the origin of this residual error. Note that the largest residual
error occurs for a/λ1 ≈ 1 (see cyan curve in Fig. 7.3(b)). This means that the first diffracted
modes `1 = ±1 are at the limit of propagation and evanescence. We have seen in Section 1.4.2
for a metallic surface, that the in-plane component of the wave vector of a surface plasmon
polariton has a slightly larger norm than

√
ε1 ω/c. In the limit ε2 → −∞, |pSPP |, given by

Eq. (1.98), approaches
√
ε1 ω/c. This observation could indicate that the Rayleigh equation has

issues representing correctly surface plasmon polariton or modes which would resemble surface
plasmon polariton for a perfectly conducting surface. This is, however, only a speculation and
we would like to stress that we are not certain at this stage what is the origin of the residual
error.

Two-dimensional sinusoidal surface

We now repeat our numerical experiment for a two-dimensional perfectly conducting sinusoidal
surface of equation

x3 =
H

2

[
sin

(
2πx1

a

)
+ sin

(
2πx2

a

)]
. (7.10)

Since the results are very similar to those obtained for a one-dimensional surface, we skip
the discussion about the convergence with Nc and consider only the case Nc = 20, i.e. large
enough for our purpose. Note that the maximum slope for this two-dimensional surface is
s =
√

2πH/a and not 2πH/a as for the one-dimensional surface, and that due to the symmetry
of the problem the incident s and p-polarized wave will yield the same results (at normal
incidence). The unitarity and consistency error are hence the same for s and p-polarized waves
and the corresponding subscript or superscript will then be denoted p, s here. As can be seen
from Fig. 7.4, all the observations made for the one-dimensional sinusoidal surface holds for
the two-dimensional one. In particular, it is remarkable that the slope threshold s = 0.448 still
holds for the consistency error and that the threshold slope of the unitarity is still higher than
the one for the consistency error. The fact that Millar’s slope threshold holds independently
of the dimension is not an obvious feature one may a priori expect, but it seems true. Not
that for the two-dimensional surface, both consistency errors for s and p incident wave exhibit
a significant residual error for a/λ1 < 1. Indeed, now s and p polarizations have symmetric
role at normal incidence. It is worth noting that the residual error is somewhat larger in the
two-dimensional case than in the one-dimensional case as can be seen from Fig. 7.4(b) for
a/λ1 ≈ 1.

7.4.2 Penetrable systems

Now that we are familiar with the case of a perfect electric conductor, let us consider the
case of an interface between two dielectric media. We repeat similar numerical experiments
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Figure 7.4: (a) Deviation from unitarity, |1 − Up,s|, and (b) relative integrated consistency

error, ‖ε(p,s)
con,E‖∞, r, as a function of the maximum slope s =

√
2πH/a for different values of

a/λ1. Diagrams of (c) log |1 − Up,s|, and (d) relative integrated consistency error, ‖ε(p,s)
con,E‖∞, r,

in the (2πa/λ1, 2πH/λ1)-plane. All results presented in these figures were obtained for a two-
dimensional perfectly conducting sinusoidal surface obtained with Nc = 20. The red (resp.
cyan) dashed line is the line of equation

√
2πH/a = 0.448, (resp.

√
2πH/a = 0.8). The white

vertical dashed line is the line of equation a/λ1 = 1. Note that both p and s-polarized light give
the same results here due to the symmetry of the system.
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Figure 7.5: (a) Deviation from unitarity |1 − Up| and (b) relative integrated consistency error

‖ε(p)
con,E‖∞, r as functions of the maximum slope of a one-dimensional sinusoidal surface 2πH/a

for different reduced lattice constants. The dielectric contrast was held fixed at z2 = 2.25 and
the index radius cutoff was Nc = 20.

as the one achieved for a perfect electric conductor in the previous section but for a dielectric
contrast z2 = 2.25. Figures 7.5 and 7.6 present the deviation from unitarity, |1 − Up|, and

the relative consistency error, ‖ε(p)
con,E‖∞, r, for a one- and two-dimensional sinusoidal profiles

as a function of the maximum slope, and this for several values of a/λ1. It is remarkable to
observe that the Millar’s slope threshold still seems to hold for penetrable sinusoidal profile (see
Figs. 7.5(b) and 7.6(b)). It is not a priori obvious that the exact same threshold s = 0.448
should hold independently of the dielectric contrast. Indeed, Millar’s criterion was derived
under the assumption of a one-dimensional sinusoidal perfectly conducting profile. We now
see that that this criterion can be extended to two-dimensional profiles too and for dielectric
systems. At least this is what we conclude from the numerical experiments. The deviation from
unitarity, Figs. 7.5(a) and Figs. 7.6(a), seems to also roughly have the same slope threshold as
the consistency error in contrast to the case of a perfect electric conductor. By closer inspection,
we estimate this threshold to be rather between s = 0.448 and s ≈ 0.66.

7.4.3 Local consistency error and asymptotic amplitude decay

Surface map of local consistency error – We have studied in previous sections the integrated
consistency error as a function of the geometrical parameters of the surface. It is instructive to
have a closer look at the local consistency error in order to get insights into what may be at
the origin of the non-satisfaction of the boundary conditions for some parameters. To fix the
ideas, we will only consider a two-dimensional sinusoidal surface between two dielectric media
here, with contrast z2 = 2.25. Consider first the three cases depicted in Fig. 7.7. Figure 7.7(a)
is a contour plot of the height of the surface within a unit cell. Note that the length scales are
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Figure 7.6: (a) Deviation from unitarity |1 − Up| and (b) relative integrated consistency error

‖ε(p)
con,E‖∞, r as functions of the maximum slope of a two-dimensional sinusoidal surface

√
2πH/a

for different reduced lattice constants. The dielectric contrast was held fixed at z2 = 2.25 and
the index radius cutoff was Nc = 20.

given in units of the period a. The maximum slope of the surface is fixed to be
√

2πH/a = 0.1,
in such a way that we are below Millar’s slope threshold. Figures 7.7(b)-(d) show the local

consistency error, ε
(p)
con,E, for three regimes of a/λ1, namely, a/λ1 = 0.1, a/λ1 = 1, and a/λ1 = 10

respectively. Figures 7.7(b) and 7.7(c) present similar local error maps, with maximum values
of the order of 10−2 and we observe that the maxima of the local error occur both at the highest
and lowest point on the surface. Figure 7.7(d), however, is very different from Figs. 7.7(b) and
7.7(c). The local error is insignificant, of the order of 10−13, although it also has a tendency to
be highest near the extrema of the surface profile. Note the high spatial frequency pattern of the
local error in Fig. 7.7(d) compared to Fig. 7.7(b) and 7.7(c). The fact that the case presented
in Fig. 7.7(b) and 7.7(c) have a non-negligible error is reminiscent of what we have observed for
the integrated consistency error in the regime a/λ1 < 1. We have seen that in this regime, there
seems to exist a residual error. It seems that this residual error is due to a component of the
field of a rather low spatial frequency which, for a reason which remains unclear to the author, is
not compensated for by higher spatial frequency terms. In the regime a/λ1 > 1, however, as one
add more and more modes, i.e. terms of higher and higher spatial frequency in the plane wave
expansion, the local error becomes smaller and smaller. At a finite mode cutoff, the error is then
of the order of the amplitudes of the last few terms kept in the expansion. This interpretation
is supported by the fact that the local error pattern observed in Fig. 7.7(d) is of high spatial
frequency. We have now illustrated the difference between the long and short wavelength regimes
when the maximum slope of the surface is below the critical threshold. How does the local error
looks like beyond the threshold? From the study of the integrated consistency error as the cutoff
index, Nc, is increased, we expect that the error probably grows without bound since the relative
integrated consistency error goes towards unity. Let us observe this phenomenon locally as the
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index cutoff increased. We consider a system characterized by a/λ1 = 5 and
√

2πH/a = 0.5, i.e.
just beyond Millar’s threshold. Note that for a/λ1 = 5, if the slope would be less than Millar’s
slope, the local error would converge to 0, i.e. without residual error, and this uniformly as
illustrated in Fig. 7.7(d). Figures 7.8 (a)-(c) present the map within the unit cell of the local
consistency error in a logarithmic scale respectively for Nc = 10, Nc = 20 and Nc = 30. For
Nc = 10, we can see that the local error is concentrated around the surface extrema and reach

a value of about 40 (log ε
(p)
con,E ≈ 1.6, see Fig. 7.8 (a)). As Nc is increased to Nc = 20 and

Nc = 30, the local error seems to increase exponentially with Nc, as log ε
(p)
con,E(Nc = 20) ≈ 3.7

(ε
(p)
con,E ≈ 4.5 × 103) and log ε

(p)
con,E(Nc = 30) ≈ 5.3 (ε

(p)
con,E ≈ 2.1 × 105). The error blow-up

is then unambiguous. Furthermore, note that as Nc is increased the local error pattern is of
higher and higher spatial frequency. This seems to indicate that the mismatch of the boundary
conditions is due to components of the field on at least one side of the surface which are of high
spatial frequency.

Remark 7.6. For the simulations achieved in Fig. 7.8, we have observed that the unitarity con-
verges to 1 as Nc increases and this to machine precision, even though the boundary conditions
are clearly violated.

Let us explain the behaviors observed in Fig. 7.8 from a more mathematical point of view.

Consider an evanescent mode of the form E
(`)
1 (p0) exp(ik+

1 (p`) · r) which is defined above the
interface. Without loss of generality, let us assume for simplicity that p0 = 0, and that we
consider ` = (`1, 0) so that we have p` = G(`1,0) = 2π`1

a ê1. The mode then reduces to

E
(`)
1 (p0) exp(ik+

1 (p`) · r) = E
(`1,0)
1 (p0) exp(2πi`1x1/a) exp

[
−2π|`1|

(
1− a2

λ2
1`

2
1

)1/2

x3/a

]
(7.11)

∼ E
(`1,0)
1 (p0) exp(2πi`1 x1/a) exp(−2π|`1|x3/a) (7.12)

where we have used that for an evanescent mode

α1(G(`1,0)) = i

√
|G(`1,0) |2 − ε1

ω2

c2
= i

2π|`1|
a

√
1− a2

λ2
1`

2
1

∼ i2π|`1|
a

(7.13)

when |`1| → ∞. Similarly a similar evanescent mode below the interface reads

E
(`)
2 (p0) exp(ik−2 (p`) · r) ∼ E

(`1,0)
2 (p0) exp(2πi`1 x1/a) exp(2π|`1|x3/a) . (7.14)

We verify that both modes, indeed decays exponentially respectively when x3 → ±∞. Let us
analyze now what happens near an extremum of the surface profile, say at a minimum for which

ζ = −H when |`1| increases. As |`1| increases, the x3-dependent factor for the mode E
(`)
1 (p0)

increases exponentially inside the groove as exp(2π|`1|H/a), whereas the x3-dependent factor

for the mode E
(`)
2 (p0) decreases exponentially as exp(−2π|`1|H/a). In other words, as more

and more evanescent modes are added, the x3-factor of each added mode becomes larger than
the preceding in medium 1 near the surface minimum while, the x3-factor of each added term
becomes smaller than the preceding in medium 2. The opposite effect is of course valid near
a maximum of the surface. How can then the field on both sides of the interface satisfy the
boundary conditions? The only way to obtain finite fields near the surface as more modes are
summed up, is by ensuring that the amplitude of the modes decay sufficiently fast. As a rule
of thumb, they should decay with |`1| at least as fast as the x3-dependent factor taken at an
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Figure 7.7: (a) A unit cell of the two-dimensional sinusoidal surface profile in units of a, char-

acterized by a maximum slope of
√

2πH/a = 0.1. Surface maps of local consistency error ε
(p)
con,E

for (b) a/λ1 = 0.1, (c) a/λ1 = 1 and (d) a/λ1 = 10. The results were obtained for a dielectric
contrast fixed to z2 = 2.25. Note the scale of error between (b,c) and (d).

extrema of the surface grows. We then must have a criterion for the decay of the amplitude
which reads

E
(`)
j (p0) = O

(
exp(−κ |`1|)

)
(7.15)

as |`1| → ∞, with κ = 2π‖ζ‖∞/a being a critical decay rate for the amplitude.

Asymptotic decay of the reflection and transmission amplitude – Based on the above local
analysis, we now understand why in Fig. 7.8 (i) the local error was localized near the extrema
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Figure 7.8: Surface maps of local consistency error log ε
(p)
con,E for a/λ1 = 5, obtained for (a)

Nc = 10, (b) Nc = 20 and (c) Nc = 30. The results were obtained for two-dimensional surface
characterized by a maximum slope of

√
2πH/a = 0.5 and the dielectric contrast is fixed to

z2 = 2.25.

of the surface, (ii) why the local error grows exponentially with Nc since mode with larger | ` |
are taken into account, and (iii) why the pattern of error becomes contains more and more
high spatial frequency in the (x1, x2)-plane since the modes which dominates are the one for
| ` | = Nc and then the x1-dependence of the modes read exp(2πi`1x1/a) which oscillates more
and more rapidly as |`1| is increased and similarly for x2. Consequently, the fundamental
difference between convergence and divergence of the near field resides in the decay rate the
reflection and transmission amplitudes for large mode index. If the amplitudes decay fast
enough (i.e. according to Eq. (7.15)) the near-field is likely to converge, whereas if they
do not decay fast enough, the near-field will necessarily blow up. Let us verify this claim
by plotting, in Fig. 7.9, the modulus of the reflection amplitudes as a function of `1 in the
cases where the maximum slope of the surface is below Millar’s threshold (Fig. 7.9(a)), at
Millar’s threshold (Fig. 7.9(b)) and above it (Fig. 7.9(c)), and compare the decay scaling with
Eq. (7.15). Figures 7.9 (a) to (c) indeed confirm what was intuited from the local analysis. For√

2πH/a < 0.448 the decay of the reflection amplitude is faster than exp(−κ|`1|) (Fig. 7.9(a)),
equally fast to exp(−κ|`1|) for

√
2πH/a = 0.448 (Fig. 7.9(b)) and slower than exp(−κ|`1|) for√

2πH/a > 0.448 (Fig. 7.9(c)). Figure 7.9 hence validate the local analysis which gives a rather
physical or at least mathematical understanding of the issue of convergence of the near-field.

What decides then the decay rate of the amplitudes? The amplitudes are solutions of the
reduced Rayleigh equations for a given surface profile. So the surface profile dictates the decay
of the amplitudes obtained from the reduced Rayleigh equations, via the scalar kernel factor
J balm. Since we are interested in the scaling of amplitudes for large | ` | it seems reasonable to
think that this scaling is related to that of J balm(p` |pm) for somewhat large | ` | and/or |m|. In
other words, the questions are the following. How does the scaling of J balm(p` |pm) at infinity
influences that of R(`)(p0) at infinity (i.e. for large | ` |)? Is there a simple link between the
behavior of J balm(p` |pm) at infinity and geometrical parameters of the surface profile? Can we
deduce a simple criterion on the surface profile for ensuring the convergence of the near-field
and hence the validity of the reduced Rayleigh equations?
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Figure 7.9: Modulus of the normalized reflection amplitude |R(`1,0)
pp |/|R(0,0)

pp | as a function of `1
for a maximum slope of (a)

√
2πH/a = 0.3, (b)

√
2πH/a = 0.448, and (c)

√
2πH/a = 0.5. The

red dashed line is proportional to exp(−κ|`1|), with κ = 2πH/a, and such that it coincides with
the last data point at `1 = 30 for a clear comparison of the decay rates. The dielectric contrast
is fixed to z2 = 2.25 and a/λ1 = 5.

7.4.4 Towards a rigorous mathematical analysis?

Let us summarize the conclusions we have drawn from our numerical experiments and the local
analysis for sinusoidal surfaces:

• There is a maximal surface slope threshold under which the solution of the reduced
Rayleigh equations satisfies the boundary conditions.

• The value of the slope threshold is independent of whether a perfect electrical conductor or
a dielectric system is considered and is equal to 0.448, value which is predicted by Millar’s
theorem for a one-dimensional sinusoidal perfectly conducting surface.

• Millar’s threshold holds both for one- and two-dimensional surfaces.

• The local analysis relates the satisfaction of the boundary conditions with the decay rate of
the amplitudes, namely for a one-dimensional surface, the amplitudes should decay faster
than exp(−2πH|`1|/a) as |`1| → ∞.

• The decay rate of the amplitude is necessarily linked to the scalar kernel (and right-hand
side) factor J balm(p` |pm), most probably its behavior at infinity. Hence by finding the link
between the behavior of J balm(p` |pm) at infinity and that of the amplitudes, one may hope
to find a simple geometrical criterion for the validity of the reduced Rayleigh equations.
This criterion should lead to 2πH/a < 0.448 for a one-dimensional sinusoidal surface.

We will now give the ideas for a mathematical proof of these conjectures. We believe that a
general rigorous mathematical proof may be rather technical in terms of analysis. Therefore we
content ourselves with the case of a one-dimensional sinusoidal surface between two dielectrics
and we will make some rough assumptions to keep what we believe are the key elements in
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understanding Millar’s threshold without requiring complex analysis but only very simple ideas.

Scalar wave approximation – Instead of working with electromagnetic waves, we simplify the
analysis by considering scalar waves. This simplification is unlikely to change the end result for
a simple reason. We know that to go from electromagnetic wave to scalar wave, it is sufficient
to replace the polarization coupling matrices Mba

lm by some scalar factor, which is a constant in
the case of scalar wave subjected to the continuity of the field and its normal derivative at the
boundary. Since the matrices Mba

lm are essentially matrices of change of basis, the norm of this
matrix can be bounded from above with some constant, so it does not play a role in the scaling.
Alternatively, if one is uncomfortable with the scalar wave assumption, then one may regard our
analysis as being that of an incident s-polarized wave. Thus we consider the following reduced
Rayleigh equation for the scalar amplitude

∑

m∈Z2

J̃ ++

21 (p` |pm)R(m)(p0) = −J̃ +−
21 (p` |p0) . (7.16)

For the sake of simplicity, we will choose to work for normal incidence p0 = 0 and since we
consider a one-dimensional sinusoidal surface, only the modes of the form ` = (`1, 0) remain. So
the above equation reduces to

∑

m1∈Z
J̃ ++

21 (p`1 |pm1
)R(m1)(p0) = −J̃ +−

21 (p`1 |p0) , (7.17)

where we have simplified the notations to keep only the first mode index.

Diagonal approximation – Now comes an approximation which may be hard to justify, or may

be not be valid at all. We assume that for `1 large enough the diagonal element J̃ ++
21 (p`1 |p`1)

dominates with respect to all the other row elements J̃ ++
21 (p`1 |pm1

). In other word, we as-

sume that the matrix (J̃ ++
21 (p`1 |pm1

))`1,m1∈N is roughly diagonal after a certain row index |`1|.
Within this assumption, for a large enough value of |`1| we have simply

R(`1)(p0) ≈ − J̃
+−
21 (p`1 |p0)

J̃ ++

21 (p`1 |p`1)
. (7.18)

So under this assumption, we can now see the link between the scaling of R(`1)(p0) and the

scaling of J̃ ba21 as |`1| → ∞. So, according to the local analysis, a general criterion for the
validity of the reduced Rayleigh equations for a scalar one-dimensional periodic surface under
non-conical incidence may read

∣∣∣∣∣
J̃ +−

21 (p`1 |p0)

J̃ ++

21 (p`1 |p`1)

∣∣∣∣∣ = o
(

exp(−κ|`1|)
)
, (7.19)

as |`1| → ∞ where we recall that κ = 2π‖ζ‖∞/a. Let us further expand the criterion in the case
of a sinusoidal surface under normal incidence. In this case we have (see Eq. (A.21))

∣∣∣∣∣
J̃ +−

21 (p`1 |0)

J̃ ++

21 (p`1 |p`1)

∣∣∣∣∣ =

∣∣∣∣∣
α2(p`1)− α1(p`1)

α2(p`1) + α1(0)

∣∣∣∣∣

∣∣∣∣∣∣

J`1

[(
α2(p`1) + α1(0)

)
H
]

J0

[(
α2(p`1)− α1(p`1)

)
H
]

∣∣∣∣∣∣
, (7.20)
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Figure 7.10: Ratio |J`(iκ|`|)/ exp(−κ|`|)| as a function of ` for different values of κ. (a) The
values of κ are taken evenly spaced between 0.4 (blue lower curve) to 0.5 (red upper curve) in
steps of ∆κ ≈ 0.005. (b) Values of κ in the vicinity of κ? = 0.448.

where Jν is the Bessel function of the first kind of order ν. When |`1| → ∞ we have the following
expansion of α1(p`1) and α2(p`1),

α1(p`1) = i
2π|`1|
a

(
1− a2

λ2
1`

2
1

)1/2

= i
2π|`1|
a

(
1− a2

2λ2
1`

2
1

+ o(`−2
1 )

)
(7.21a)

α2(p`1) = i
2π|`1|
a

(
1− z2a2

λ2
1`

2
1

)1/2

= i
2π|`1|
a

(
1− z2a2

2λ2
1`

2
1

+ o(`−2
1 )

)
. (7.21b)

Hence we have

α2(p`1)− α1(p`1) = i
πa (1− z2)

λ2
1|`1|

+ o(`−1
1 ) −−−−−→

|`1|→∞
0 (7.22a)

α2(p`1) + α1(0) =
2π

λ1
+ i

2π

a
|`1|+ o(`−1

1 ) . (7.22b)

Consequently the first factor in the right-hand side of Eq. (7.20) decays to zero as |`1|−2 and it is
therefore not this factor which controls the expect exponential decay of the reflection amplitude.
We have to analyze the ratio of Bessel functions. The denominator of the ratio of Bessel functions
in the right-hand side of Eq. (7.20) reads

J0

[(
α2(p`1)− α1(p`1)

)
H
]

= J0

[
i
πaH (1− z2)

λ2
1|`1|

+ o(`−1
1 )
]
−−−−−→
|`1|→∞

1 . (7.23)

The denominator hence tends to unity when |`1| tends to infinity. It then remains to analyze
the numerator.

J`1

[(
α2(p`1) + α1(0)

)
H
]

= J`1

[
2πH

λ1
+ i

2πH

a
|`1|+ o(`−1

1 )

]
. (7.24)
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How does the above term behave as |`1| → ∞? This is not a quite simple question to answer for
two reasons. First the argument of the Bessel function is complex, and second the imaginary part
of the argument is proportional to |`1|, which up to a sign, is also the order of the Bessel function.
For large enough |`1|, the argument will essentially be ∼ i|`1|2πH/a. So it is sufficient for our
purpose to study J`1(iκ|`1|) (note that κ = 2πH/a for a sinusoidal surface with our definition of

H) and in particular for which values of κ is J`1(iκ|`1|) = o
(

exp(−κ|`1|)
)

. Instead of doing the

analysis analytically, which would be tedious, we content ourselves by studying numerically the
ratio |J`1(iκ|`1|)/ exp(−κ|`1|)| for different values κ, and estimate the threshold value κ? below
which |J`1(iκ|`1|)/ exp(−κ|`1|)| → 0 for large `1 and above which |J`1(iκ|`1|)/ exp(−κ|`1|)| → ∞.
Figures 7.10 illustrate this ratio as a function `1 for `1 > 0 for different values of κ. We recover
indeed that κ? = 0.448, i.e. Millar’s threshold. We believe that this illustrate well the relevance
of the presented analysis and we hope it will lead to a rigorous proof in a near future.

Remark 7.7. We would like to make a remark which we believe to be of particular interest. We
have seen repeatedly in Chapters 5, 6, that there seemed to be two regimes of convergence rate
when solving the reduced Rayleigh equations. The amplitude dominate regime and the slope
dominate regime. Equation (7.24) gives us a remarkably clear expression of this fact. Indeed, the
argument in the Bessel function essential contains the sum of two terms, 2πH/λ1 and i|`1|2πH/a,
i.e. the sum of the reduced amplitude and a term proportional to the characteristic slope of the
surface. The two terms are exactly the parameters which we have identified numerically as being
the one relevant for the study of the convergence rate. We believe that the fact that these two
parameters appear so clearly in our analysis is no coincidence. Depending on the relative values

of 2πH/λ1 and 2πH/a, the behaviors of J`1

[(
α2(p`1) + α1(0)

)
H
]

for somewhat intermediate

|`1| will be different. Indeed, if 2πH/λ1 � 2πH/a i.e. a/λ1 � 1 (which we recognized also

as a threshold between two regimes of consistency errors previously), J`1

[(
α2(p`1) + α1(0)

)
H
]

behaves roughly as J`1

[
2πH
λ1

]
. On the contrary if a/λ1 � 1, J`1

[(
α2(p`1) + α1(0)

)
H
]

behaves

roughly as J`1 [i|`1|2πH/a]. There are two fundamental difference here between the two cases.
In the first case, the argument of the Bessel function is real and independent of `1, while in the
second case it is imaginary and proportional to |`1|. Whether the argument is real or imagi-
nary can be dramatically different behavior for a Bessel function, changing from an oscillating,
converging function to 0, to quickly converging or diverging one. We will not analyze this more
in detail, but we believe such a careful analysis could lead to understanding unambiguously the
different regimes of convergence identified previously.

7.4.5 Non-sinusoidal profile

So far we have based our numerical study and analysis on the case of sinusoidal profiles. The
choice of a sinusoidal profile was motivated by the fact that theoretical results such as Millar’s
theorem are known and the condition for the validity of the Rayleigh hypothesis takes a simple
form, namely a threshold for the maximum slope on the surface. In addition, the analytical
expression of the J -integral in terms of Bessel functions makes the analysis relatively simple.
The next steps in this study would be to consider other types of surface profiles, in particular non-
differentiable profiles. According to Millar’s theorem, the Rayleigh hypothesis should not hold for
non-differentiable profiles due to the fact that the profile function is not analytic. Nevertheless,
the problem considered by Millar was that of a field satisfying the boundary conditions on every
points on the surface. For weaker types of boundary conditions, it would be interesting to see
whether the Rayleigh hypothesis yields satisfactory results also for non-differentiable profiles.
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We have some preliminary numerical results partly answering this question but we choose not
to expose them here as more analysis remains to be done. These results may become part of
a future research article on the numerical analysis of the reduced Rayleigh equations. More
than the purely theoretical aspect of the question of the use of the reduced Rayleigh equations,
its application side is important. Indeed, one may be interested in simulated the response of
a surface profile which as been triangulated, or of surfaces which physically exhibits pyramidal
shapes for examples.

7.5 Summary

The present chapter may be considered as one of the most crucial in this thesis. It aims at
answering the delicate question of the range of validity of the reduced Rayleigh equations, which
is intrinsically related to the so-called Rayleigh hypothesis on which the method is built on.
We have first given an historical review of the different results known concerning the range of
validity of the Rayleigh hypothesis by stressing the different conclusions drawn by the different
authors and trying to resolve the seemingly contradictory claims. Then we have demonstrated
numerically, with an exhaustive parameter study, for the case of a sinusoidal perfectly conducting
surface and for dielectric surfaces, that: (i) convergent results may be obtained with satisfaction
of energy conservation for a characteristic slope larger than that given by Millar’s theorem, (ii)
within the convergent results only those under Millar’s threshold indeed satisfy the boundary
conditions and this to machine precision3. These results resolve the contradictions between
the different claims in the literature. In fact, the results obtained by the different authors are
all consistent; only their interpretation was subjected to the confusion between a convergent
solution and a consistent or correct solution. As a theoretical backup of our numerical analysis,
these results were supported by a simple asymptotic analysis of the near-field where we have
recovered exactly Millar’s criterion analytically by looking for the condition on the asymptotic
scaling of the scattering amplitudes for large in-plane wave vectors which leads to a finite field
everywhere inside the grooves. We believe our analysis clarifies most of the confusion one may
get by reading the literature on the Rayleigh hypothesis and gives elements for assessing the
validity of the hypothesis for any type of surface. The results presented in this chapter will form
the basis of a devoted paper not included in this thesis.

3Apart from the region of parameter space where a residual error was observed which do not yet understand.
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Chapter 8

Approximation methods for
randomly rough surfaces

”Never tell me the odds!” – Han Solo
Star Wars, The Empire Strikes Back (1980).

In this chapter, the focus will be on developing a few approximation methods for obtaining
solutions to the problem of scattering by randomly rough surfaces, or to be more accurate,
to ensemble averaged observables of such scattering experiments. Indeed, for randomly rough
surfaces, one is often primarily interested in the statistical properties of the light scattered
by a set of randomly drawn surface realizations sharing common statistical properties before
studying the speckle pattern from the scattering by a single surface realization. We want to
precise though, that we do not claim that the study of speckle patterns is of little interest.
In fact, the analysis of speckle patterns from a single surface can also be of great interest
and reveal information about the surface, especially via the analysis of speckle correlation (see
e.g. [79, 80]). The study of the probability density of speckle intensity for scattering by a
disordered medium is also known to follow a Rayleigh probability distribution for unpolarized
light and a modified Rayleigh distribution under some assumptions (see e.g. [81, 82]). Recently,
a theoretical study supported by extensive numerical simulation has revealed the correlation or
mutual information between the reflected and transmitted speckle intensities in the case of waves
scattered in a disordered medium in a multiple scattering regimes [83]. Here, we simply choose
to limit ourselves to some observables. To be more specific, we will be interested in the coherent
and incoherent components of the mean differential reflection and transmission coefficients as
defined in Eqs. (1.123a) and (1.123b). We recall that, the coherent and incoherent components
of the mean differential reflection coefficient are given as a limit when the surface covered by
the randomly rough surface goes to infinity of

〈
∂R

(S)
αβ

∂Ωr
(p | p0)

〉

coh

=
ε1
(
ω

2π c

)2
cos2 θr

S cos θ0

∣∣∣
〈
R

(S)
αβ (p | p0)

〉∣∣∣
2

〈
∂R

(S)
αβ

∂Ωr
(p | p0)

〉

incoh

=
ε1
(
ω

2π c

)2
cos2 θr

S cos θ0

[〈
|R(S)

αβ (p | p0)|2
〉
−
∣∣∣
〈
R

(S)
αβ (p | p0)

〉∣∣∣
2
]
,

and with similar definitions for the mean differential transmission coefficient. To fix the nota-
tions, we are interested in surface profiles that are realizations of a continuous, differentiable,

181
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stationary stochastic process. If not otherwise specified, we assume in this chapter that the
system under consideration is composed of two media separated by a single randomly rough in-
terface. The stochastic process will then be assumed to have a zero mean, i.e. that the average
surface is the plane x3 = 0. Furthermore, to fully specify the process we need to define a height
probability density and an auto-correlation function. For simplicity, all the examples treated
hereafter will have a Gaussian height probability density. The important properties that we will
then need are summarized by

〈ζ(x)〉 = 0 , (8.2a)
〈
ζ(x)ζ(x′)

〉
= σ2 W (x,x′) , (8.2b)

where σ > 0 denotes the rms-roughness of the surface profile and W is the two-point auto-
correlation function.

8.1 Direct Monte Carlo method

From the definition of the coherent and incoherent components of the mean differential scattering
coefficients, it is clear that one needs to estimate the average of the scattering amplitudes and the
average of its modulus squared. The most straightforward strategy that should come to mind
would be (i) to generate realizations of the stochastic process with specified properties given
by Eq. (8.2) over a surface area S, (ii) solve the reduced Rayleigh equations for each generated
surface, and (iii) to gather statistics on the scattering amplitudes. If the characteristic length
L of the surface is large enough compared to both the wavelength of the incident light and the
characteristic correlation length of the surface profile, and that the number of generated surfaces
Nsurf is large enough, we can assume that Eqs. (1.123a) and (1.123b) give good estimates of
the coherent and incoherent components of the mean differential scattering coefficients. To be
more accurate, if we index the surface realizations (ζw)1≤w≤Nsurf

, and denote by Rαβ(p | p0, ζw)
the reflection amplitudes obtained by the direct method at the sample in-plane wave vector p
for a given in-plane incident wave vector p0 and surface realization ζw, then the averages in
Eqs. (1.123a) and (1.123b) are estimated by

〈Rαβ(p | p0)〉 ≈ 1

Nsurf

Nsurf∑

w=1

Rαβ(p | p0, ζw) (8.3a)

〈
|Rαβ(p | p0)|2

〉
≈ 1

Nsurf

Nsurf∑

w=1

|Rαβ(p | p0, ζw)|2 . (8.3b)

This approach that we will refer to as the direct Monte Carlo method, and that can be
considered as a brute force method, has been used in numerous works to explore the scattering
from randomly rough surfaces on dielectrics, metals, or perfect conductors, or even systems
containing a film deposited on a substrate with either a single randomly rough interface or
two [41, 43, 45, 1, 46]. This method is tractable with a desktop computer for one-dimensional
surfaces but becomes rather demanding in terms of memory and speed for two-dimensional
surfaces and super-computers may be preferred for the task. Generally, the characteristic length
of the numerical surface is about twenty wavelength and the number of surface realizations is
about a few thousands to ensure a rather small statistical noise to signal ratio. More details
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about this method can be found in the aforementioned references.

Even though the results obtained by the direct Monte Carlo method are of fundamental impor-
tance for understanding and exploring the physics of light scattering by systems with randomly
rough interfaces, the demanding computational power required by the method makes it unprac-
tical for applications such as online characterization or for designing surfaces with specific optical
properties. For these purposes, we are then after fast and accurate approximate methods, and
we will present some in details hereafter. In the following, the direct Monte Carlo method will
be beneficial for us in order to assess the accuracy of the approximate methods.

8.2 Iterative Monte Carlo methods

A first strategy that should come to mind to reduce the computational cost of the direct Monte
Carlo method is to solve each scattering problem faster by using iterative methods. Indeed,
for light scattering by a single randomly rough surface the computational cost associated with
solving the linear system resulting from the discretization of the reduced Rayleigh equations,
is significantly larger than that to set up the system (since Nc is large enough for the total
complexity to be dominated by the solving part see Section 5.2.2) and we have seen in Chapter 6
that, in some cases, iterative methods may yield a significant speed up for solving the linear
system. We have also seen that the perturbative method (SAPT) has a total complexity that may
be advantageous if only a few orders are needed to get a good approximation of the solution,
so typically for rather weakly rough surfaces. Therefore, one may simply replace the direct
method by iterative methods and keep averaging the observables over surface realizations. This
is expected to work well in practice if the surfaces are weakly rough, but the speed up will
obviously depend on the tolerance set on the solution (in practice it is enough that the tolerance
set on each solution is smaller than that set for the statistical noise to signal ratio) and the
convergence rate of the iterative method, which is system dependent. Moreover, even though
using an iterative method may yield a significant speed up, there is absolutely no gain in the
statistical noise to signal ratio, and we still need to gather statistics over as many surface
realizations as were necessary with the direct method. The second idea is then to look for
approximate solutions in closed form that may be easy to average analytically.

8.3 Isserlis-Wick theorem

Before embarking on the discussion of approximation techniques for computing directly the
mean differential scattering coefficients, for which we wish to avoid solving the reduced Rayleigh
equation for a large number of surface realizations and then average the differential scattering
coefficients, we make a mathematical detour in the realm of probability. The approximation
techniques we will present in subsequent sections are based on a expansion of the kernel of the
reduced Rayleigh equation in Fourier moments of the surface profile. This has already been
encountered when we presented the small amplitude perturbation theory in Chapter 6. We
will see that such an expansion, together with ensemble averaging of the differential scattering
coefficients leads to the evaluation of covariances of the form 〈ζn(x + u)ζm(x)〉, where n and m
are two non-negative integers.

We restrict ourselves to the case where the surface profile is a realization of a stochastic process
with Gaussian height distribution, zero average, and the auto-correlation is homogeneous. These
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properties are summarized as

〈ζ(x)〉 = 0 (8.4a)

〈ζ(x)ζ(x′)〉 = σ2 W (x−x′) , (8.4b)

where σ is the rms-roughness and W is the auto-correlation function normalized such that
W (0) = 1.

Isserlis-Wick theorem

The Isserlis-Wick theorem gives us exactly a way to compute the covariance 〈ζn(x + u)ζm(x)〉
we are after. This theorem from probability theory was proved by Isserlis in 1916-18 and re-
discovered by Wick in the field of particle physics in 1950 [84, 85, 86]. This theorem is valid
for a set of n identically distributed, with zero average, Gaussian random variables that we
may denote abstractly as (X1, · · · , Xn). The theorem gives the average of the product of the
(Xi)1≤i≤n, namely

〈X1 · · ·Xn〉 =





0 if n is odd
∑∏ 〈XiXj〉 if n is even

. (8.5)

Here the notation
∑∏

denotes a sum over all possible distinct ways of partitioning the n
variables in n/2 pairs of variables Xi and Xj . Each term in the sum is the product of the n/2
covariances of the pairs of the associated partitioning. As an example, for four random variables
Eq. (8.5) reads

〈X1X2X3X4〉 = 〈X1X2〉 〈X3X4〉+ 〈X1X3〉 〈X2X4〉+ 〈X1X4〉 〈X2X3〉 . (8.6)

As a first example of application of the Isserlis-Wick theorem, let X1 = · · · = Xn = ζ(x), we
obtain

〈ζn(x)〉 =





0 if n is odd
∑∏〈

ζ2(x)
〉

=
∑∏

σ2 if n is even
. (8.7)

Following our example, for n = 4, this yields
〈
ζ4(x)

〉
= 3σ4. Higher order moments can thus be

generated simply by counting the number of terms in the Isserlis-Wick sum which can be shown
to be equal to

∑∏
1 =

(2k)!

2k k!
, (8.8)

for n = 2k (see proof in Appendix B).

More generally, let us now consider covariances of the form 〈ζn(x + u)ζm(x)〉. By considering
the following n + m random variables: X1 = · · · = Xn = ζ(u + x) and Xn+1 = · · · = Xn+m =
ζ(x), we obtain, according to the Isserlis-Wick theorem, that if n + m is odd the covariance
〈ζn(u + x)ζm(x)〉 vanishes and if n + m is even it equals the sum of products of all possible
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pairing of the random variables. The covariance of each pair can only take the following two
possible values

〈XiXj〉 =





σ2 if i, j < n+ 1/2, or i, j > n+ 1/2

σ2W (u) if i < n+ 1/2, j > n+ 1/2, or i > n+ 1/2, j < n+ 1/2
. (8.9a)

Indeed, on the one hand, if both i and j are on the same side from the index threshold n+ 1/2,
then Xi and Xj are either both equal to ζ(u + x) or are both equal to ζ(x) and hence 〈XiXj〉 =
σ2. On the other hand, if i and j are on different sides of index threshold n+ 1/2, then Xi and
Xj are distinct and are equal to either ζ(u + x) or ζ(x) and hence 〈XiXj〉 = 〈ζ(u + x)ζ(x)〉 =
σ2W (u) by definition of the auto-correlation function. Consequently, the sum of products
of covariances in the Isserlis-Wick formula together with the aforementioned fact imply that
〈ζn(u + x)ζm(x)〉 is a polynomial in W (u) of degree at most (n+m)/2, i.e.

〈ζn(u + x)ζm(x)〉 = σn+m

(n+m)/2∑

k=0

p(k)
n,mW k(u) = σn+m Pn,m(W (u)) , (8.10)

where Pn,m is a polynomial with integer coefficients (p
(k)
n,m)0≤k≤(n+m)/2 that depend on n and

m.

Example: as an illustrative example, let us compute
〈
ζ2(u + x)ζ2(x)

〉
and

〈
ζ3(u + x)ζ1(x)

〉

that are both of order n + m = 4. For n = m = 2, according to the Isserlis-Wick theorem,
Eq. (8.6) with X1 = X2 = ζ(u + x) and X3 = X4 = ζ(x) gives

〈
ζ2(u + x)ζ2(x)

〉
= 〈ζ(u + x)ζ(u + x)〉 〈ζ(x)ζ(x)〉

+ 〈ζ(u + x)ζ(x)〉 〈ζ(u + x)ζ(x)〉
+ 〈ζ(u + x)ζ(x)〉 〈ζ(u + x)ζ(x)〉

= σ4
[
1 + 2W 2(u)

]
. (8.11)

In addition, for n = 3 and m = 1, according to Isserlis-Wick theorem, Eq. (8.6) with X1 = X2 =
X3 = ζ(u + x) and X4 = ζ(x) gives

〈
ζ3(u + x)ζ(x)

〉
= 〈ζ(u + x)ζ(u + x)〉 〈ζ(u + x)ζ(x)〉

+ 〈ζ(u + x)ζ(u + x)〉 〈ζ(u + x)ζ(x)〉
+ 〈ζ(u + x)ζ(x)〉 〈ζ(u + x)ζ(u + x)〉

= 3σ4W (u) . (8.12)

Note the parity of the polynomials P2,2 and P3,1. We leave to the reader to show that P1,3 = P3,1

and that the extreme (and trivial) cases P4,0 = P0,4 = 3. We can summarize our finding in the
following table for the coefficients of the polynomial Pn,m for n+m = 4.

Remark 8.1. One can show that the polynomial Pn,m is even if n and m are both even, and
Pn,m is odd if n and m are both odd. In addition, since each term in the Isserlis-Wick sum

contributes to one unit for a single coefficient p
(k)
n,m, it is clear that the coefficients are all natural

integers and that the sum of all coefficients equals the number of terms in the Isserlis-Wick sum.
Hence we have

(n+m)/2∑

k=0

p(k)
n,m =

∑∏
1 =

(n+m)!

2(n+m)/2 [(n+m)/2]!
. (8.13)
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(n,m) p
(0)
n,m p

(1)
n,m p

(2)
n,m

(4, 0), (0, 4) 3 0 0

(3, 1), (1, 3) 0 3 0

(2, 2) 1 0 2

Table 8.1: Coefficients of the polynomials Pn,m for n+m = 4.

We have now shown that the problem of computing 〈ζn(u + x)ζm(x)〉 reduces to counting terms
in the Isserlis-Wick sum that contribute to each monome in W (u). It is clear from Eq. (8.13)
that this combinatorial problem will grow in complexity rather quickly with n+m. The number
of terms in the Isserlis-Wick sum is 3 for n+m = 4, 15 for n+m = 6, and 105 for n+m = 8.

Although it may be instructive to determine by hand the coefficients p
(k)
n,m for n+m = 6 as an

exercise, it seems tedious to do it for larger orders, and this is where an algorithm must take

over. We present such an algorithm in Appendix B capable of computing the coefficients p
(k)
n,m.

8.4 Small amplitude perturbation theory

We will now derive a closed form approximation of the mean differential scattering coefficient
based on the small amplitude perturbative expansion of the reflection and transmission am-
plitudes to first order in the surface profile function. If we now use the expression found in
Section 6.2 for the reflection amplitudes to first order in the product of surface profile function,

R (p |p) ≈ R(0) (p |p)−iR(1) (p |p) , (8.14)

where R(0) (p |p) is the response from the corresponding system with a planar interface (i.e.
the Fresnel amplitudes), Eq. (6.8), and R(1) (p |p) is given in Eq. (6.12), we obtain that the
average amplitude (approximated to first order) is given by

〈R (p |p)〉 = (2π)2δ(p−p0) ρ(0)(p0)− i
〈
ζ̂(p−p0)

〉
ρ(1) (p |p)

= (2π)2δ(p−p0) ρ(0)(p0). (8.15)

The above equation simply states that to first order in the surface profile function, the average
field corresponds to that reflected by the flat interface. Since the average amplitude is propor-
tional to a Dirac mass, the average field is a plane wave. Hence the coherent component of the
mean differential reflection coefficient cannot be defined by Eq. (1.123a) but we must use the
definition of the efficiency instead, i.e. Eq. (1.62), in order to evaluate the energy carried away
by the averaged field. The incoherent component of the mean differential reflection coefficient
is of greater interest. By using the small amplitude perturbation expansion to first order in the
surface profile function, the factor in the square bracket in Eq. (1.123b) reads

〈
|Rαβ(p | p0)|2

〉
− |〈Rαβ(p | p0)〉|2 =

〈
|R(1)

αβ(p | p0)|2
〉

=
〈
|ζ̂S(p−p0)|2

〉
|ρ(1)
αβ (p |p) |2 . (8.16)
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We remind the reader that here we are dealing with a scattering system whose surface profiles
are flat outside the disk of radius r, hence the subscript S (see Section 1.2.4). For the statistical
properties attributed to the surface profiles in Eq. (8.2), we have

〈
ζ̂S(q)ζ̂∗S(q)

〉
=

〈∫

S

∫

S
ζ(x)ζ(x′) exp(iq ·(x−x′)) d2x d2x′

〉

=

∫

S

∫

S

〈
ζ(x)ζ(x′)

〉
exp(iq ·(x−x′)) d2x d2x′

=

∫

S

∫

S
σ2 W (x−x′) exp(iq ·(x−x′)) d2x d2x′ . (8.17)

Here we have used the definition of the Fourier transform, and the fact that the ensemble average
commutes with the integration of the surfaces and the definition of the auto-correlation function.
Via the change of variable u = x−x′ we obtain

〈
ζ̂S(q)ζ̂∗S(q)

〉
= S σ2

∫

S
W (u) exp(iq ·u) d2u = S σ2 gS(q) . (8.18)

Thus we have

〈
|Rαβ(p | p0)|2

〉
− |〈Rαβ(p | p0)〉|2 =S gS(p−p0)σ2 |ρ(1)

αβ (p |p) |2 . (8.19)

Finally, by plugging the above equation into Eq. (1.123b), the surface area S cancels and letting
r →∞, gS → g (where we remind the reader that g is the power spectrum of the surface profiles)
and we finally obtain the expression for the incoherent component of the mean differential
reflection coefficient for the entire (infinite) system under the first order approximation of the
reflected amplitudes in the surface profile

〈
∂R

(SAPT1)
αβ

∂Ωr
(p |p0)

〉

incoh

= ε1

( ω

2πc

)2 cos2 θr
cos θ0

g(p−p0) σ2 |ρ(1)
αβ (p |p) |2 . (8.20)

Applying the same reasoning to the transmitted light we obtain that the averaged transmitted
field corresponds to that refracted by the planar interface and the incoherent component of the
mean differential transmission coefficient is given by

〈
∂T

(SAPT1)
αβ

∂Ωt
(p |p0)

〉

incoh

=
( ω

2πc

)2 ε
3/2
2 cos2 θt

ε
1/2
1 cos θ0

g(p−p0) σ2 |τ (1)
αβ (p |p) |2 . (8.21)

Let us make a few comments on the obtained results. We have found that, to second order in
the surface profile1 the diffusely scattered intensity is proportional to the square of the rms-
roughness, proportional to the power spectrum shifted by p0 and inversely proportional to the
square of the wavelength. The presence of the power spectrum can be interpreted physically as
a generalization of the grating formula. Taking the picture of single scattering, the probability
that an elementary plane wave is scattered with a change of in-plane wave vector p−p0 is
proportional to g(p−p0). Hence if the power spectrum has its weight concentrate around the
origin, most of the light will be scattered around the specular direction, while the broader the
power spectrum the broader is the intensity scattered diffusely. How does it relates to the actual

1second order for the intensity but first order for the amplitude
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geometry of the surface? A narrow power spectrum corresponds to a broad, slowly varying auto-
correlation function. In other words, the correlation length is large compared to the wavelength.
This indicates that the surface is rather smooth and can be well approximated by a planar
interface, hence the observed weakly diffusely scattered light. On the contrary, for a correlation
function concentrated within a fraction of the wavelength, the surface would look rougher and
hence we would observe a more broadly scattered diffused light. For example, one can consider
a Gaussian auto-correlation function defined by

W (x) = exp

(
−|x |

2

a2

)
, (8.22)

then the power spectrum is given by

g(p) = πa2 exp

(
−|p |

2a2

4

)
. (8.23)

It is then clear, and this is a general property of the Fourier transform, that the width of the
auto-correlation function and the power spectrum vary inversely proportionally with respect to
one anther. Note that if we denote by a the correlation length of the surface profile, the power
spectrum is proportional to a2, but its width is of the order a, so that the integral of the power
spectrum is unity. Thus, according to Eqs. (8.20) and (8.21), we can give the following simple
scaling law of the integrated intensity that is diffusely scattered by a weakly rough surface

∫ 〈
∂Xαβ

∂Ω
(p |p0)

〉

incoh

dΩ = C
σ2

λ2
, (8.24)

where C is some constant that depends of the materials, the angle of incidence and the precise
shape of the power spectrum, and whether the reflected or transmitted light is considered.

Remark 8.2. One should be careful in interpreting the formulas for the coherent and incoherent
components of the mean differential scattering coefficients from an energetic point of view.
Indeed, if one sums the efficiencies associated with the average reflected and transmitted wave,
we obtain unity (for loss-less material) since these two waves correspond to that reflected and
refracted by the corresponding system with a planar interface. Hence if we were to sum on top
of that the incoherent component of the mean differential reflection and transmission coefficients
integrated over all scattering angles, we will necessarily obtain a total value that is larger than
unity. One would expect instead that even on average, the sum of the effeciencies of the coherent
components of the reflected and transmitted light be less than unity as power is on average also
scattered away. The way to resolve this apparent paradox is to remember that the above results
are approximations to first order in the surface profile for the amplitudes and that higher orders
have been neglected. In particular, one can show that the second order will contain a correction
to the coherent component.

8.4.1 Higher orders

The derivation of the mean differential scattering coefficients in closed form when higher or-
der terms are taken into account becomes quickly cumbersome. To our knowledge, such an
expression obtained with small amplitude perturbation theory have been obtained up to order
three in the scattering amplitude, resulting in expression of the incoherent component of the
mean differential scattering coefficients derived consistently to order four. This was achieved by
Soubret et al. in Ref. [53] and used to study the phenomenon of enhanced backscattering, which
is a multiple scattering phenomenon.
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8.5 Fixed point iterates of the RRE of the second kind

We have seen in Section 6.3 that the reduced Rayleigh equations of the second kind can be
solved by successive iterations yielding what we called the method of fixed point iterates of
the reduced Rayleigh equations of the second kind (FIRES). When studying randomly rough
surfaces, one is often interested in the incoherent component of the mean differential reflection
coefficient averaged over realizations of the surface profile. Therefore, we focus our attention
now on the approximation given by the first iterate of the algorithm of FIRES which read

∆ R(1)(p | p0) = (α1(p)− α2(p))
[
M++

21 (p | p)
]−1

(
K++

21 (p | p0) M++
21 (p | p0) ρ(0)(p0)

+K+−
21 (p | p0) M+−

21 (p | p0)
)

def
= K++

21 (p | p0)ρ+ (p |p) +K+−
21 (p | p0)ρ− (p |p) , (8.25a)

∆ T(1)(p | p0) = (α1(p)− α2(p))
[
M−,−

12 (p | p)
]−1 K−,−12 (p | p0) M−,−

12 (p | p0) τ (0)(p0)

def
= K−,−12 (p | p0) τ (p |p) . (8.25b)

Remark 8.3. Note that by approximating Kba21 to the first term in its series expansion, one
recovers exactly the first order correction R(1) given by small amplitude perturbation theory
(and similarly for the transmission amplitudes). Hence the first iterate of the method of FIRES
gives a distinct approximation from small amplitude perturbation theory to first order and can
possibly be more accurate as it takes into account higher order Fourier moments of the surface
profile. The physical interpretation is that the first iterate of the method of FIRES gives a single
scattering approximation similar to the first order of SAPT, but taking into account the detail
of the surface more accurately than SAPT does. It should not be interpreted as taking into
account multiple scattering since this would involve integrals over intermediary in-plane wave
vectors, which is not the case for the first iterate.

Before we proceed with the computation of the incoherent component of the mean differential
reflection and transmission coefficients we analyze the following ensemble averages

〈
Kbalm(p | q)

〉
=

∞∑

n=1

(−i)n
n!

(bαl(p)− aαm(q))n−1
〈
ζ̂(n)(p−q)

〉
(8.26)

〈
Kbalm(p | q)Kb′a′lm (p | q)∗

〉
=

∞∑

n=1

∞∑

m=1

(−i)nim
n!m!

(bαl(p)− aαm(q))n−1 (b′αl(p)∗ − a′αm(q)∗)m−1

〈
ζ̂(n)(p−q)ζ̂(m)(p−q)∗

〉
, (8.27)

where the ∗ denotes the complex conjugate. It is clear that the difficulty in evaluating these
expressions resides in the averages of the Fourier moments of the surface profile (or their
products). In practice, two strategies may be considered: the first consists in evaluating
numerically these averages by taking averages over realization of the stochastic process (i.e.
the surface), the second consists in computing them analytically. In general, these averages
of Fourier moments do not let themselves express easily in closed form for general stochastic
processes. There is, however, a non-trivial specific case for which this can be done, namely the
case where the height distribution is Gaussian thanks to the Isserlis-Wick theorem.

Let us consider the average of the nth Fourier moment

〈
ζ̂(n)(p−q)

〉
=

∫
e−i(p−q)·x 〈ζn(x)〉 dx . (8.28)
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For n = 0, we easily obtain
〈
ζ̂(0)(p−q)

〉
= (2π)2δ(p−q), for n = 1, we obtain

〈
ζ̂(1)(p−q)

〉
=

0 due to Eq. (8.4a), and for n = 2, we get
〈
ζ̂(2)(p−q)

〉
= σ2 (2π)2δ(p−q) due to Eq. (8.4b)

with x = x′. Then higher order moments are given by Isserlis-Wick theorem (see Eq. (8.8)):

〈
ζ̂(n)(p−q)

〉
=





0 if n is odd

n!
2n/2 (n/2)!

σn (2π)2δ(p−q) if n is even
. (8.29)

Remark 8.4. Equation (8.29) shows that only even terms in Eq. (8.26) remain and that all
terms are proportional to the Dirac mass δ(p−q). We will see that these constitute correction
to the coherent component of the mean differential coefficient.

Let us now consider covariances of Fourier moments of the form:

〈
ζ̂

(n)
S (p−q)ζ̂

(m)
S (p−q)∗

〉
=

∫

S

∫

S

e−i(p−q)·(x−x′) 〈ζn(x)ζm(x′)〉 dxdx′ . (8.30)

Here S denote the part of the surface of the disk of radius r > 0 where the random profile is
found for the truncated copy, ζS = 1S ζ, of the full randomly rough surface. This will be needed
in order to take the limit when r → ∞ in the definition of the mean differential scattering
coefficients (see Section 1.2.4). By doing the change of variable u = x−x′ we obtain

〈
ζ̂

(n)
S (p−q)ζ̂

(m)
S (p−q)∗

〉
=

∫

S

∫

S

e−i(p−q)·u 〈ζn(u + x)ζm(x)〉 d2udx . (8.31)

According to the discussion from Section 8.3, and more specifically Eq. (8.10), we know that
〈ζn(u + x)ζm(x)〉 either vanishes if n + m is odd or can be expressed as a polynomial in the
auto-correlation function. Hence

〈
ζ̂

(n)
S (p−q)ζ̂

(m)
S (p−q)∗

〉
= S σn+m

(n+m)/2∑

k=0

p(k)
n,m

∫

S

e−i(p−q)·u W k(u) d2u

def
= S σn+m

(n+m)/2∑

k=0

p(k)
n,m g

(k)
S (p−q) . (8.32)

Here we have defined g
(k)
S as the Fourier transform of 1S W

k.

Based on Eqs.(8.25a, 8.25b, 8.29) and (8.32) we can deduce that the average amplitudes of the
first iterate of the method of FIRES are given by
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〈
R(FIRES1)(p | p0)

〉
= R(0)(p | p0) +

〈
∆ R(1)(p | p0)

〉

=
[
ρ(0)(p0) +

∞∑

k=1

(−1)kσ2k

2kk!

(
ρ+,(2k)(p | p0) + ρ−,(2k)(p | p0)

) ]
(2π)2δ(p−p0) (8.33a)

〈
T(FIRES1)(p | p0)

〉
= T(0)(p | p0) +

〈
∆ T(1)(p | p0)

〉

=

[
τ (0)(p0) +

∞∑

k=1

(−1)kσ2k

2kk!
τ (2k)(p | p0)

]
(2π)2δ(p−p0) (8.33b)

ρ+,(k)(p | p0)
def
= (α2(p)− α1(p0))k−1ρ+(p | p0) (8.33c)

ρ−,(k)(p | p0)
def
= (α2(p) + α1(p0))k−1ρ−(p | p0) (8.33d)

τ (k)(p | p0)
def
= (α1(p0)− α2(p))k−1τ (p | p0) (8.33e)

for which the efficiencies are easy to compute, and the incoherent component of the mean
differential scattering coefficients are given by

〈
∂R

(FIRES1)
αβ

∂Ωr
(p | p0)

〉

incoh

= ε1

( ω

2πc

)2 cos2 θr
cos θ0

∞∑

n=1
m=1

n+m even

ψn,m(p | p0)

×
(
ρ

+,(n)
αβ (p | p0) + ρ

−,(n)
αβ (p | p0)

)(
ρ

+,(m)
αβ (p | p0) + ρ

−,(m)
αβ (p | p0)

)∗
(8.34a)

〈
∂T

(FIRES1)
αβ

∂Ωt
(p | p0)

〉

incoh

=
( ω

2πc

)2 ε
3/2
2 cos2 θt

ε
1/2
1 cos θ0

∞∑

n=1
m=1

n+m even

ψn,m(p | p0)

× τ (n)
αβ (p | p0)τ

(m)∗
αβ (p | p0) (8.34b)

ψn,m(p | p0)
def
=

(−i)nimσn+m

n!m!

(n+m)/2∑

k=0

p(k)
n,m g

(k)(p−p0) . (8.34c)

Here we have defined g(k) as the Fourier transform for the kth power of the auto-correlation
function W .

Remark 8.5. We decided here to show the expressions of the mean differential scattering
coefficients in an expanded form to illustrate what goes into them. However, it is not necessary,
nor advisable, to implement them in a computer program in such expanded forms. In practice,
we first use a fast Fourier transform algorithm to compute the g(k) on a grid (or we can also
compute the g(k) analytically in the case of a Gaussian correlation function) and compute the

Isserlis coefficients p
(k)
n,m thanks to a dedicated algorithm detailed in Appendix B. Then we

compute the
〈
Kbalm(p | p0)Kb′a′lm (p | p0)∗

〉
according to Eqs.(8.27) and (8.32) that we use in

evaluating
〈
|∆R(1)

αβ |2
〉

. Such an algorithm is rather simple to implement and computationally

efficient (assuming fast convergence with the order (n+m)/2 for truncating the sum over (n,m)).
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8.5.1 Higher order iterates

As in the case of small amplitude perturbation theory, more accurate expressions for the mean
differential scattering coefficients could in principle be obtained by considering the amplitudes
obtained with higher order iterates. Such an approach becomes quickly cumbersome.

8.6 Method comparison

The comparison of the performance of small amplitude perturbation theory and the method of
FIRES have been extensively documented in Chapter 6 for sinusoidal surfaces. In particular,
we have seen that the method of FIRES is less complex and converges faster than SAPT. These
characteristics holds for randomly rough surfaces. As an additional illustration of the perfor-
mance of the different methods, now in the case of randomly rough surfaces, with respect to
convergence with the number of iterations or perturbative order, we will fix a system made of
two semi-infinite dielectric media of respective dielectric constant ε1 and ε2 separated by a ran-
domly rough surface with Gaussian height distribution and Gaussian auto-correlation function
characterized by a rms-roughness of σ = λ/20 and a correlation length of a = λ/3. The dielectric
constant are chosen to take values in {1, 2.64}, i.e. that we will consider the cases where the
medium of incidence is either the optical denser or less dense medium. This set-up corresponds
exactly to that studied by Hetland et al. in Ref. [45] whose data have generously been provided
to us by the authors. This set of data was obtained by using what we described as the direct
method where the ensemble average was performed over a set of 4500 surface realizations. The
data from Ref. [45] will serve as a reference for the presented approximation methods.

Analytically averaged first order SAPT and FIRES approximations

We start by investigating how accurate are the closed form expressions for the incoherent com-
ponent of the mean differential reflection coefficient as given by Eq. (8.20) in the case of small
amplitude perturbation theory to lowest non-trivial order and Eq. (8.34a) for the first iterate of
the method of FIRES. Figure 8.1 shows the incoherent component of the mean differential reflec-
tion coefficient as a function of the polar angle of scattering for in-plane co-polarized scattering,
obtained by the direct Monte Carlo method, Eq. (8.20) and Eq. (8.34a).

Monte Carlo based on iterative methods

We now turn to Monte Carlo simulations based on the iterative methods given by the recursive
equation Eq. (6.11) from small amplitude perturbation theory, and Eq. (6.39) from the method
of FIRES, that we have already presented in Chapter 6. Instead of making a full study of
convergence for all the iterative schemes, as we did in Chapter 6, we restrict ourselves here
to SAPT and the method of FIRES, and only inspect visually how the successive iterates
approach the reference solution in the case where the rms-roughness is equal to σ = λ/20,
and the dielectric constants are ε1 = 2.64 and ε2 = 1. The specific choice of σ = λ/20 is
simply guided by the fact that we have seen that the first order analytically averaged SAPT
and FIRES approximation yield a significant deviation from the reference solution for such a
roughness parameter. Moreover, we chose the case of reflection in the denser medium simply
because it exhibits more features, in particular that of the Yoneda phenomenon which will be
described in details in Chapter 10.
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Figure 8.1: In-plane co-polarized incoherent mean differential reflection coefficient as a function
of the polar scattering angle θs, for normal incidence. System composed of: (a) vacuum in
medium 1 and a dielectric (ε2 = 2.64) in medium 2, (b) vacuum in medium 2 and a dielectric
(ε1 = 2.64) in medium 1. Wavelength λ = 632.8 nm, rms-roughness σ = λ/20, correlation length
a = λ/4. Solid lines: results obtained from the direct method and an ensemble average over
4500 realizations of the surface profile (courtesy of Øyvind Hetland [45]); dotted lines: results
obtained by using small amplitude perturbation theory to order one in the surface profile of the
reflection amplitude; dashed lines: results obtained by the first iterate of the method of FIRES.
Blue: p-polarized light; red: s-polarized light. Figure taken from Paper [4].

We start by studying the convergence behaviour of the small amplitude perturbation expansion.
Figure 8.2 shows the solutions obtained for the incoherent component of the mean differential
reflection coefficient, averaged over 4500 realizations and for Nc = 50, when the perturbative
expansion for the reflection amplitude is truncated at the kth order (included) for k ∈ J1, 6K. We
can see in Fig. 8.2(a) that for k = 1 we recover rather closely the analytically averaged result,
which deviates significantly from the reference solution. For k = 2 (Fig. 8.2(b)) the perturbative
solution deviates even more from the reference solution than did that for k = 1. This is a good
illustration that one should not necessarily always trust a higher order approximation without
having an idea of the error bounds, or hints of convergence. The perturbation method may
often start by deviating more and more from the exact solution before starting to converge.
Here the convergence seems to be re-established already for k = 3 (Fig. 8.2(c)), and continues
to approach the exact solution by oscillating around it as k increases (Fig. 8.2(d-f)).

Concerning the successive iterates of the method of FIRES, the first iterate is closer to the
reference solution as already illustrated by the analytically averaged solution (Fig. 8.3(a)). As
for SAPT, the second iterates seems to deviate more than the first iterate but not significantly
(Fig. 8.3(b)). Then the third and following iterates, shown in Figs. 8.3(c-f), are almost not
distinguishable from the reference solution and the deviation lies within the statistical noise.
Based on these illustrations of the convergence of SAPT and the method of FIRES, the latter
one would be recommended in practice. We can also mention that the simple iterative methods
such as the Jacobi method or the successive over-relaxation also perform similarly well. An
advantage of SAPT or the method of FIRES over the standard iterative methods for solving
linear systems, is that they yield closed form approximations which may be interpreted on
physical ground as we will see in Chapter 10.
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Figure 8.2: Incoherent component of the mean differential reflection coefficient for in-plane co-
polarized scattering as a function of the polar scattering angle θs, for normal incidence. In all
panels, the solid lines show results obtained from the direct method and an ensemble average
over 4500 realizations of the surface profile (courtesy of Øyvind Hetland [45]); (a) dotted lines:
results obtained by using SAPT to order one in the surface profile of the reflection amplitude
analytically averaged (An-SAPT-1); (a-f) dashed lines: results obtained by the Monte Carlo
SAPT method (MC-SAPT-k) to order k = 1 to 6 (resp. for panels (a) to (f)). Blue: p-polarized
light; red: s-polarized light. The physical parameters are the same as the one from Fig. 8.1(b).
Figure taken from Paper [4].
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Figure 8.3: Incoherent component of the mean differential reflection coefficient for in-plane co-
polarized scattering as a function of the polar scattering angle θs, for normal incidence. In all
panels, the solid lines show results obtained from the direct method and an ensemble average over
4500 realizations of the surface profile (courtesy of Øyvind Hetland [45]); (a) dotted lines: results
obtained by using the first iterate of the method of FIRES analytically averaged (An-FIRES-
1); (a-f) dashed lines: results obtained by the Monte Carlo FIRES method (MC-FIRES-k) for
iterates from 1 to 6 (resp. for panels (a) to (f)). Blue: p-polarized light; red: s-polarized light.
The physical parameters are the same as the one from Fig. 8.1(b). Figure taken from Paper [4].
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8.7 Reduction of variance

We have seen in the previous sections essentially three strategies to estimate the coherent
and incoherent components of the mean differential scattering coefficients. The first one, the
brute force Monte Carlo method consisted in solving the scattering problem for each surface
realization by the use of the direct method and then in averaging observables over realizations
of the surface profile function. The advantage of this method is that no approximation
is made, apart from the truncation in wave-space and discretization of the surface and in
wave-space. The two main inconvenients are that each scattering problem takes significant
computational resources since we need to set up and solve a large linear system for each surface
realization and that many realizations are needed to obtain a satisfactory small variance for
the observables compared to their estimated averages. We have also seen that solving the
linear system with iterative methods can considerably reduce the computational cost associated
with solving each scattering problem, which is of great practical interest. Nevertheless, for
each surface realization, the solution will be the same (within some set tolerance) whether the
linear system is solved iteratively or not. The statistical noise hence remains identical, and
we still need to average the observables over many realizations. Alternatively, we have seen
that some approximation methods like small amplitude perturbation theory and the method of
FIRES not only can be used as iterative methods but allow for simple closed form analytically
averaged observables, but such expressions are simple only for the lowest order. They can
provide important physical insights, and have an almost free computational cost, but when the
roughness parameters of the surface become too large, the quantitative deviation to the exact
solution increases.

In this section, we present an original method that makes use of the analytically approximated
observables to reduce the variance of the observables estimated by the naive Monte Carlo method.
The technique is known as reduction of variance by the use of a control variable [87, 88].

Control variable based on an analytically averaged approximation

The idea of reduction of variance by the use of a control variable is the following. Let X be a
random variable of expected value 〈X〉 and variance Var[X] =

〈
X2
〉
−〈X〉2. Let x = (xw)1≤w≤N

be N > 2 realizations of the random variable X. We can estimate the expected value and the
variance of X by

〈X〉 ≈ 1

N

N∑

w=1

xw
def
= E(x) (8.35a)

Var[X] ≈ 1

N − 1

N∑

w=1

(xw − E(x))2 def
= V(x) . (8.35b)

The uncertainty associated with the estimated expected value can be measured by

Var [E(x)− 〈X〉] =
Var[x]

N
≈ V(x)

N
. (8.36)

This last estimate tells something simple, that we have already experienced earlier, namely
that the more realizations of the random variable we have, the more certain we are about its
average estimated by Eq. (8.35a). In addition, for a set tolerance on our estimate of the average,
a random variable with small variance will require fewer realizations than one with a large
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variance to reach the tolerance. The goal of reduction of variance techniques, is to construct
a random variable Z that has the same expected value as X, which is easy to compute, and
with smaller variance than that of X. Hence instead of simulating X, it is more advantageous
to simulate Z instead since fewer realizations will be necessary to reach an accurate estimation
of the expected value. The method of the control variable is one method for doing exactly
this. Consider any random variable Y whose expected value is zero. Then the random variable
Z = X − Y has the property that 〈Z〉 = 〈X〉. However, the variance of Z is a priori different
from that of X. Indeed, we have

Var[Z] = Var[X] + Var[Y ]− 2Cov[X,Y ] , (8.37)

with Cov[X,Y ]
def
= 〈(X − 〈X〉)(Y − 〈Y 〉)〉. The question now is following: How do we construct

a random variable Y , called a control variable, such that the variance of Z is minimized, and is
hopefully smaller than that of X? A first observation shows that any choice of control variable
will not reduce the variance. Indeed, if X and Y are not correlated then the variance of Z
will clearly be larger than that of X. Then it is expected that X and Y should be strongly
correlated. Let us now ask the following question. If we knew exactly 〈X〉, what would be the
best, ideal, choice for Y ? Well, it does not require much effort to see that if we knew 〈X〉, then
the ideal candidate for Y is Y = X − 〈X〉. Indeed, in that case we have

Var[Z] = Var[X] + Var[X]− 2Var[X] = 0 .

What this means is simply that if we knew 〈X〉, then Y = X − 〈X〉 is the fluctuation of
X around its average and Z is X to which the fluctuation is removed, that is precisely
〈X〉. Of course, this is not of any practical interest because if we could remove exactly the
fluctuation of X to X, that means that we already know 〈X〉. However, this trivial example
illustrates very well what is the essence of the method. We want to construct a control
variable Y that behaves similarly to the fluctuations of X. Thus, finding a good control
variable Y will depend in general on the problem, and what the random variable X is ac-
tually modeling, and requires us to understand or to be able to approximate the fluctuation of X.

It is now time to quit the beautiful abstract world of mathematics and come back to our con-
crete scattering problem. In our case, the role of the random variable X would typically be
X = Rαβ(p | p0) or X = |Rαβ(p | p0)|2 (remember what needs to be estimated to compute the
incoherent component of the mean differential reflection coefficient for example). Each realiza-
tion of X, say xw = Rαβ(p | p0, ζw), is simulated by either the direct or an iterative method up
to a set tolerance for each surface realization ζw. Now what should we choose for the control
variable Y ? We want to construct of a control variable that resembles the fluctuation of X and
is easy (cheap) to compute. What if we used the deviation from a realization of the solution
given by an approximate method such as, small amplitude perturbation theory or the method of
FIRES to lowest order, from its analytical average? Indeed, if we had to bet on a good control
variable that resembles the fluctuation of the rigorous method, why not bet on the fluctuation
of an approximate method, fluctuation which, can be extracted exactly since we already know
the average in closed form? Physically, this means that we bet that for a given surface realiza-
tion, the speckle pattern obtained by the approximation method would be somewhat close to
that obtain with the rigorous method, precisely because the two methods try to solve the same
scattering problem for the same surface. Of course, there is no guarantee that the two speckle
patterns will fully match, in fact they most probably will not. However, it seems intuitive to
think that the two speckle patterns, produced by the two methods, will be correlated, and cor-

relation is all we ask for. So this is our bet! If we now denote by x
(rig)
w (= Rαβ(p | p0, ζw) or
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|Rαβ(p | p0, ζw)|2, etc) the solution obtained by the rigorous method for the realization of the

surface profile function ζw and by x
(app)
w the corresponding solution for the same realization of

the surface profile function computed with an approximation method (for which the average is
known in closed form), and finally by

〈
X(app)

〉
the exact average, analytically evaluated, then

the corresponding realization of the control variable reads

yw = x(app)
w −

〈
X(app)

〉
, (8.38)

and the true average of X is estimated by

〈X〉 ≈ 1

Nsurf

Nsurf∑

w=1

zw =
1

Nsurf

Nsurf∑

w=1

x(rig)
w − yw . (8.39)

Concretely, if X = |Rαβ(p | p0)|2 we have

〈
|Rαβ(p | p0)|2

〉
≈ 1

Nsurf

Nsurf∑

w=1

[
|R(rig)
αβ (p | p0, ζw)|2 − |R(app)

αβ (p | p0, ζw)|2 +
〈
|R(app)
αβ (p | p0)|2

〉]
.

(8.40)

Let us once again stress what this means. Each term of the sum is composed of a solution

realization computed with the rigorous simulation |R(rig)
αβ (p | p0, ζw)|2 to which we subtract the

deviation of the approximate solution from its exactly known average |R(app)
αβ (p | p0, ζw)|2 −〈

|R(app)
αβ (p | p0)|2

〉
. The hope is that if the fluctuations of the approximate solution are similar

to that of the exact one, then we effectively partly remove the fluctuation in the rigorous method
and the variance is reduced.

Remark 8.6. Note that even if we make a poor choice of control variable, say it ends up to be
uncorrelated from the fluctuations of X, then the expected value remains unchanged since the
expected value of the control variable is zero. So in the worst case scenario, we simply have not
managed to reduce the variance and still need many realizations to reach an accurate estimate
of the expected value. Therefore there is no risk of getting a convergence to a wrong expected
value.

Remark 8.7. The chosen control variable here was arbitrary but motivated by the idea that
the approximate solution should be somewhat close to the rigorous one. However, we know
that there will be deviation between the averages of the two methods (see for example the
comparisons in the previous section). So we may expect that the fluctuations produced by the
approximation method are indeed correlated to those produced by the rigorous method but
may have a somewhat stronger or weaker scaling. This means that the control variable can,
in principle, be optimized further. Indeed, we can multiply the control variable Y by a scaling
factor η and optimize η to minimize the resulting variance of Z(η) = X − ηY ,

Var[Z(η)] = Var[X]− 2ηCov[X,Y ] + η2Var[Y ] . (8.41)

Var[Z(η)] is a convex quadratic function of η and hence has a unique minimum at

ηopt =
Cov[X,Y ]

Var[Y ]
. (8.42)

At the optimum, the variance of Z thus reads

Var[Z(ηopt)] = Var[X]

(
1− Cov[X,Y ]2

Var[X]Var[Y ]

)
= Var[X]

(
1− ρ2

X,Y

)
, (8.43)
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(a) - No reduction of variance (b) - SAPT-1 control variable (c) - FIRES-1 control variable

Figure 8.4: Incoherent component of the mean differential reflection coefficient for in-plane co-
polarized scattering as a function of the polar scattering angle θs, for normal incidence. (a)
Simulation without reduction of variance, (b) simulation with reduction of variance based on
a SAPT control variable and η = ηopt, (c) simulation with reduction of variance based on a
FIRES control variable and η = ηopt. All simulation results were obtained by averaging over
100 realizations of the surface profile function. Blue: p-polarized light; red: s-polarized light.
Physical parameters: ε1 = 2.64, ε2 = 1, a = λ/4, σ = λ/40. Figure taken from Paper [4].

where it is now explicitly clear from the second term in the parenthesis that the closer to one
the correlation ρX,Y , between X and Y is, the more significant the variance reduction. It is then
convenient to define the variance reduction factor vrf defined as

vrf
def
=

Var[Z]

Var[X]
, (8.44)

which in the case of the optimum control variable Z(ηopt) reads

vrf = 1− ρ2
X,Y . (8.45)

Note that in practice, we only have access to estimates of the variances of X and Y and the
covariance of X and Y . The optimum scaling parameter ηopt must be replaced by its estimated
value given by replacing Var[Y ] and Cov[X,Y ] by their respective estimates in Eq. (8.42). One
way of doing this is to use the n first realizations to estimate ηopt and the Nsurf − n remaining
realizations to apply the control variable. Alternatively, we can update the estimate of ηopt for
each realization as we gather statistics.

Example

It is now time to verify whether our bet was a good one. In the following, we present a set of
three simulation results obtained on the basis of the iterative Monte Carlo method using the
Jacobi method (see Chapter 6) since it is faster than the direct method for each realization
and give accurate results. The first set of results is obtained without applying the method of
reduction of variance and will serve as a reference. The second and third sets of results are
obtained by applying the method of reduction of variance presented above, based on a control
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Figure 8.5: Same as Fig. 8.4, but for σ = λ/20. Figure taken from Paper [4].

variable constructed either from the first iterate of the method of FIRES or small amplitude
perturbation theory to first order in the surface profile (for the reflection amplitude). The
control variables are optimized, i.e. η = ηopt as previously explained. All the simulations
are run with the following parameters, similar to those used previously: ε1 = 2.64, ε2 = 1,
σ ∈ {λ/40, λ/20}, a = λ/4, Nc = 50, Nsurf = 100. For the computation of the optimal value of
η, we simply store the results obtained for all the simulations, and we estimate ηopt according
to Eq. (8.42). We focus here on the method applied to the incoherent component of the
mean differential coefficient. Note that we obtain a value ηopt for each sampled p given an
incident in-plane wave vector p0, or equivalently for each scattering angles (θs, φs), and for each
polarization coupling, hence ηopt = ηopt,αβ(p | p0). We will restrict ourselves to co-polarized
scattering in the plane of incidence for simplicity.

Figure 8.4 shows the incoherent component of the mean differential reflection coefficient for
co-polarized scattering in the plane of incidence as a function of the polar scattering angle for
the aforementioned three sets of simulations and assuming σ = λ/40. By visual comparison of
the sets of data, it seems clear that the method of reduction of variance by the use of a control
variable works well. Indeed, the statistical noise seems to be lower in the plots presented in
Figs. 8.4(b) and 8.4(c) than in the plot presented in Fig. 8.4(a). The aim of reducing the
variance is then achieved. Still by visual inspection of Figs. 8.4(b) and 8.4(c), it seems clear
that the statistical noise is smaller when the FIRES control variable is used as compared with
the SAPT control variable. The control variable based on FIRES is then more efficient than
that based on SAPT for reducing the variance. This is understandable since we have seen
previously that the approximation based on the method of FIRES is generally more accurate
than SAPT. Thus we expect higher correlation between the approximate speckle pattern and
the exact speckle pattern for FIRES than for SAPT. Repeating the numerical experiment for a
rougher surface, σ = λ/20, we can see in Fig. 8.5 that the reduction of variance is still working
relatively well but the statistical noise seems not to be reduced as much as in the case of the
weakly rough surface (σ = λ/40, compare Fig. 8.5 with Fig. 8.4). This can be understood by
the fact that for higher rms-roughness the approximate solutions deviate significantly from the
exact solution and the speckle correlations between the approximate solutions and the exact
one decrease, and consequently, the reduction of variance becomes less efficient.
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Figure 8.6: (a) Optimal scaling parameter ηopt,αα and (b) corresponding variance reduction
factor vrfαα as a function of the polar scattering angle. The solid lines correspond to the case
where the control variable is based on the first iterate of the method of FIRES and the dashed
lines correspond to the case where the control variable is based on small amplitude perturbation
theory to first order (for the reflection amplitude). All simulation results were obtained by
averaging over 500 realizations of the surface profile function in order to obtain satisfactory
averages. Blue: p-polarized light; red: s-polarized light. The physical parameters are the same
as the one from Fig. 8.1(b). Figure taken from Paper [4].

Figure 8.6(a) shows the value of the optimal scaling parameter ηopt as a function of the polar
scattering angle in the case of the rougher surface σ = λ/20. It can be seen that the optimal
value roughly oscillates around 0.8 for FIRES and 0.5 for SAPT in average over scattering
angle and explodes for p-polarized light at the critical angle (due to the zero of the scattering
intensity at the critical angle). The optimal scaling factor is smaller for SAPT than for FIRES
since it has to compensate for a large deviation of the approximation which, in both cases,
overestimates the exact solution (see Fig. 8.1(b)). Figure 8.6(b) shows the variance reduction
factor in the case where the scaling parameter η is optimized. The variance reduction factor
reaches an average value (over scattering angles) around 0.2 fro FIRES. Therefore one would
need about five times fewer realizations to reach a desired variance on the estimated average
as compared to what would one need without applying the method of reduction of variance.
Concerning the control variable based on small amplitude perturbation theory, the control
variable does not reduce the variance as much as that based on the method of FIRES, even
when optimized, as can be seen from Fig. 8.6(b). The variance is reduced only by about 50% in
average over the scattering angle. This is due to the fact that the perturbation approximation
is not as good as the FIRES approximation, thus the correlation between the fluctuations of
the exact solution and that of the approximation is smaller.

The method of reduction of variance is then expected to work best with decreasing level of
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Figure 8.7: (a) Optimal scaling parameter ηopt and (b) variance reduction factor vrf as a function
of the polar scattering angle. The solid lines correspond to the case where the control variable
is based on the first iterate of the method of FIRES and the dashed lines correspond to the case
where the control variable is based on small amplitude perturbation theory to first order (for the
reflection amplitude). All simulation results were obtained by averaging over 500 realizations
of the surface profile function. Blue: p-polarized light; red: s-polarized light. The physical
parameters are the same as the one from Fig. 8.1(b). Figure taken from Paper [4].

roughness since the approximations then become more accurate. To illustrate this fact, let
us now quantify the variance reduction factor averaged over scattering angles as a function
of the rms-roughness. Figure 8.7 shows how the optimal scaling factor (Fig. 8.7(a)) and the
corresponding variance reduction factor (Fig. 8.7(b)) averaged over scattering angles evolve as a
function of the rms-roughness (other parameters such as the correlation length and the dielectric
constants are kept fixed). The average optimal scaling factor 〈ηopt,ss〉θs,φs decays monotonically
from unity for σ → 0 to values around 0.8 and 0.6 for the FIRES and SAPT control variables
respectively for σ = 0.05λ, as shown in Fig. 8.7(a). Such a behavior is consistent with our
previous observations in Figs. 8.1 and 8.6. On the one hand, as the rms-roughness is decreased,
the agreement between the approximations and the exact solution becomes better and no
scaling is need, hence ηopt → 1 when σ → 0. On the other hand, the approximations deviate
more and more from the exact solution for increasing σ, over-estimating it for the considered
system (see e.g. Fig. 8.1(b)), hence the decay of the scaling factor. In particular, since SAPT
deviates faster than FIRES from the exact solution with increasing σ, the corresponding scaling
factor decays faster. In the case of p-polarized light, the angle-averaged scaling factor starts
to decrease for small values of the rms-roughness before increasing for larger rms-roughness
(for roughly σ/λ > 2%). The increasing behavior is an artifact due to the divergence of the
scaling factor at the Brewster scattering angle. By excluding the Brewster scattering directions
from the angle-average, the scaling factor can be shown to decay in a similar way as for
s-polarized light. Now turning to the variance reduction factor, we observe, as expected, that
the angle-averaged vrf increases with the rms-roughness as illustrated in Fig. 8.7(b). In other
words, the reduction of variance becomes less and less efficient with increasing roughness as
the approximations become poorer and poorer. Not surprisingly, the variance reduction factor
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for the control variable based on the method of FIRES is always smaller than that based on
SAPT. We note that as the rms-roughness goes to zero the vrf goes to zero, which is consistent
with the fact that both approximations converge towards the exact solution in the limit of the
planar surface. Figure 8.7(b) shows that 〈vrfαα〉θs,φs is consistently greater for p-polarized light
than for s-polarized light which can partly be explained due to the Brewster scattering artifact.

The presented method of reduction of variance does not require any significant additional com-
putational burden and can be considered as free compared to solving the reduced Rayleigh
equation for a given surface realization, even when using an iterative method. The presented
method hence has a rather interesting computational cost to variance reduction ratio, and we
would recommend it in practice, in particular with the use of a control variable based on the
FIRES approximation. As illustrated in Fig. 8.7(b), the reduction of variance is significantly
reduced for very weakly rough surfaces, and only a few realizations would be needed to ob-
tain a trustful average. However, for such very weakly rough surfaces, it may be argued that
the analytically averaged approximations already represent excellent solutions and there is no
real need for the Monte Carlo simulation. The real interest of the application of reduction of
variance techniques lies in the intermediate roughness regime for which analytically averaged
approximations deviate significantly from the exact solution, but not too much as to have the
potential of yielding a significant reduction of variance. In the case of rougher surfaces, more
accurate approximations should be developed in order to increase the correlation between the
speckles obtained by the approximate and the exact solution. Such approximations could be
made by attempting to average observables based on higher orders of SAPT (see e.g. Soubret
et al. [53]) or higher iterates of the method of FIRES although such a process becomes cumber-
some. Finally, when the surface becomes too rough, it should be kept in mind that the reduced
Rayleigh equations are expected to fail to model the problem of scattering as was illustrated in
Chapter 7. Other approaches must then be considered.

8.8 Summary

The main results obtained in the present chapter are the following. In complement to the study
of the convergence of iterative methods for sinusoidal surfaces in Chapter 6, some illustrative
examples of the use of iterative methods have been given in the case of randomly rough surfaces.
The use of iterative methods was shown to yield a significant speed up for solving each scattering
problem involved in the Monte Carlo simulation of the average intensity diffusely scattered by
random surfaces. Moreover, we have derived closed form approximations for the mean differential
scattering coefficients obtained from the scattering amplitudes given by SAPT and the method
of FIRES to order one. These expressions are accurate for weakly rough surfaces and have an
insignificant computational cost. Finally, we have exposed a technique of reduction of variance
based on control variables built from the aforementioned approximations, and we have shown
that the variance of the averaged observables can indeed be reduced on a few examples. The
variance reduction factor was also quantified as a function of the rms-roughness. It was shown
to increase (i.e. become worse) as the rms-roughness is increased which intrinsically is linked to
the fact that the approximations become poorer with increasing rms-roughness hence degrading
the correlations between the approximate speckle pattern and the exact one.
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Chapter 9

More on perturbation theory

”There are two great rules of life: 1) never tell everything at once.”
Ken Venturi.

In the present chapter, we develop the framework of small amplitude perturbation theory on
two fronts. First, we extend the derivation of SAPT which was presented in Section 6.2 to
the case of a multi-layer system for which the reduced Rayleigh equations were derived in
Chapter 3. As for the case of a single interface, we will obtain recursive expressions to determine
iteratively the successive orders of the expansion for the reflection and transmission amplitudes.
In particular, special emphasis will be given to the amplitudes expanded to first order and the
corresponding incoherent component of mean differential reflection and transmission coefficients.
Within the first order approximation for the amplitudes, we will show that: (i) In the case of
non-cross correlated interfaces, the overall incoherent component of mean differential reflection
(resp. transmission) coefficient is the sum of the mean differential reflection (resp. transmission)
coefficient for the corresponding systems for which only one of the interface is rough at a time
and the remaining are planar; (ii) In the case of cross-correlated interfaces, cross terms induced
by the interface-cross-correlations must be taken into account in addition to the uncorrelated
case. This results will be at the basis of the study of Selényi rings and their interface-cross-
correlation induced enhancement and attenuation which will be studied in Chapter 10. The
second development of SAPT which is suggested in this chapter is to consider perturbation of a
structured surface, like a periodic grating for example. So far we have considered a surface profile
to be a perturbation of a planar surface. Instead of considering that the reference interface is
planar, we will assume that the reference system is a structured surface, for which we assume
that the reduced Rayleigh equations can be solved, and then we study small perturbations of
the reference structure. A typical example of interest would be the study of the influence of
small defects, or roughness, on top of a clean periodic grating. The hope of the presented
method is that it may yield within a first order of the perturbation more accurate results than
SAPT applied directly to the whole surface seen as a perturbation of the planar interface for
somewhat higher order. Indeed, proceeding by perturbation of the structured surface, the zero
order corresponds to the exact solution of the structured unperturbed surface, which would take
a priori infinitely many orders to represent if it were considered itself as a perturbation of a
planar surface. In other words, the reference unperturbed system would contain all the multiple
scattering events and the perturbed system, whose amplitude is expanded, say, to order one,
would yield a single scattering correction to the unperturbed solution for the structured system.

205
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9.1 Generalization of SAPT to layered systems

We have seen in Chapter 6 how to compute the perturbative solution to any given order for a
system composed of two media separated by a single randomly rough or periodic interface. What
about generalizing this calculus to a layered system such as the one presented in Chapter 3? To
this end, let us consider the system composed of a stack of n+1 media separated by n interfaces
from Chapter 3. By using the notations introduced there, we know that the reduced Rayleigh
equations for the reflection amplitude is given by Eq. (3.20)

∫
Θ+,+
n+1,1 (p |q) R (q |p)

d2q

(2π)2
= −Θ+,−

n+1,1 (p |p) , (9.0)

where we recall that the forward n-interface transfer kernel is defined as

Θ
an+1,a1
n+1,1 (pn+ |p) =

∑

an=±
an

∫
· · ·

∑

a2=±
a2

∫
Θ
an+1,an
n+1,n (pn+ |pn) · · · Θa2,a1

2,1 (p |p)
d2p
(2π)2

· · · d2pn
(2π)2

,

(9.1)

with the single-interface kernels Θb,a
l,m defined for successive media, i.e. l,m ∈ J1, n + 1K such

that |l −m| = 1, a, b ∈ {±}, by Eq. (3.4) as

Θb,a
l,m (p |q) = α−1

l (p)J b,al,m (p |q) Mb,a
l,m (p |q) . (9.2)

The perturbative method consists in expanding each single-interface kernel in a series of Fourier
moments as we have done in the previous section. However, in order to avoid unnecessary lengthy
expansions, we first introduce some notations that will allow us to keep a compact derivation
and that can further be useful for numerical implementation. We define

Θ̃
an+1,a1,(m)

n+1,1 (pn+ |pn | · · · |p |p) def
=

∑

an=±
an α

−1
n+1(pn+1)

[
an+1αn+1(pn+1)− anαn(pn)

]mn−1
e−i[an+1αn+1(pn+1)−anαn(pn)]dn M

an+1,an
n+1,n (pn+ |pn) · · ·

∑

a2=±
a2 α

−1
2 (p2)

[
a2α2(p2)− a1α1(p1)

]m1−1
e−i[a2α2(p2)−a1α1(p1)]d1 Ma2,a1

2,1 (p |p) , (9.3)

where m = (m1, · · · ,mn) ∈ Nn is a multi-index. Here we have made the choice of factorizing

the phase factor e−i(aj+1αj+1(pj+1)−ajαj(pj))dj , with dj = 〈ζj〉 being the offset height of the jth

interface, from each factor J aj+1,aj
j+1,j (pj+ |pj) for later convenience. Given this definition, an

expansion of the n-interface kernel in Fourier moments is given by

Θ
an+1,a1
n+1,1 (pn+ |p) =

∞∑

m=0

(−i)|m|
m!

∫
· · ·
∫
ĥ(mn)
n (pn+1−pn) · · · ĥ(m1)

1 (p2−p1)

Θ̃
an+1,a1,(m)

n+1,1 (pn+ |pn | · · · |p |p)
d2p
(2π)2

· · · d2pn
(2π)2

def
=

∞∑

m=0

(−i)|m|
m!

Z
an+1,a1,(m)
n+1,1 (pn+ |p) , (9.4)

where
∑∞

m=0
def
=
∑∞

m1=0 · · ·
∑∞

mn=0, |m| = ∑n
j=1mj is the length of the multi-index, and m! =

m1! · · ·mn!, and for all j ∈ J1, nK,

ĥ
(mj)
j (q) =

∫
e−iq ·x (ζj − dj)mj (x) dx , (9.5)
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is the Fourier moment of hj
def
= ζj − dj of order mj . It is then clear that Z

an+1,a1,(m)
n+1,1 (pn+ |p),

defines by Eq. (9.4), is a term of order |m| in products of surface profiles. As before, the
reflection amplitude can be expanded as in Eq. (6.3b). We are now ready to start the derivation
of perturbative expansion. By plugging Eqs. (9.4) and (6.3b) into Eq. (3.20) we obtain

∞∑

m′=0
j=0

(−i)|m′|+j
m′! j!

∫
Z

+,+,(m′)
n+1,1 (p |q) R(j) (q |p)

d2q

(2π)2
= −

∞∑

m=0

(−i)|m|
m!

Z
+,−,(m)
n+1,1 (p |p) . (9.6)

Summing over all multi-index m is equivalent to summing over subsets Sm = {m ∈ Nn | |m| =
m} of multi-index of constant length m, i.e. that we have

∑∞
m=0 ≡

∑∞
m=0

∑
m∈Sm , therefore

the previous equation can be re-written as

∞∑

m′=0
j=0

∑

m′∈S
m′

(−i)m′+j
m′! j!

∫
Z

+,+,(m′)
n+1,1 (p |q) R(j) (q |p)

d2q

(2π)2
= −

∞∑

m=0

∑

m∈Sm

(−i)m
m!

Z
+,−,(m)
n+1,1 (p |p) .

(9.7)

We then use the definition of the multinomial coefficient in multi-index form as |m|!/m! =
(|m|
m

)

to obtain

∞∑

m′=0
j=0

(−i)m′+j
m′! j!

∑

m′∈S
m′

(
m′

m′

)∫
Z

+,+,(m′)
n+1,1 (p |q) R(j) (q |p)

d2q

(2π)2

= −
∞∑

m=0

(−i)m
m!

∑

m∈Sm

(
m

m

)
Z

+,−,(m)
n+1,1 (p |p) .

We now make a change of summation index j ↔ m − m′ on the left hand side of the above
equation. This makes clearly appear terms of order m in product of surface profiles. We obtain

∞∑

m=0

m∑

m′=0

(−i)m
m′! (m−m′)!

∑

m′∈S
m′

(
m′

m′

)∫
Z

+,+,(m′)
n+1,1 (p |q) R(m−m′) (q |p)

d2q

(2π)2

= −
∞∑

m=0

(−i)m
m!

∑

m∈Sm

(
m

m

)
Z

+,−,(m)
n+1,1 (p |p) ,

which can be re-written with the use of the definition of the binomial coefficient
(
m
m′
)

as

∞∑

m=0

(−i)m
m!

m∑

m′=0

(
m

m′

) ∑

m′∈S
m′

(
m′

m′

)∫
Z

+,+,(m′)
n+1,1 (p |q) R(m−m′) (q |p)

d2q

(2π)2

= −
∞∑

m=0

(−i)m
m!

∑

m∈Sm

(
m

m

)
Z

+,−,(m)
n+1,1 (p |p) .

It is now time to identify terms of same orders in the left and right hand sides. For m = 0,
only the term for m′ = (0, · · · , 0) remains in the left hand side, only the term m = (0, · · · , 0)
remains in the right hand side and we have

∫
Z

+,+,(0)
n+1,1 (p |q) R(0) (q |p)

d2q

(2π)2
= −Z

+,−,(0)
n+1,1 (p |p) , (9.5)
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which, when expanded, reads

∫ ∫
· · ·
∫
ĥ(0)
n (p−pn) · · · ĥ(0)

1 (p2−q) Θ̃
+,+,(0)

n+1,1 (p |pn | · · · |p |q) R(0) (q |p)
d2p
(2π)2

· · · d2pn
(2π)2

d2q

(2π)2

= −
∫
· · ·
∫
ĥ(0)
n (p−pn) · · · ĥ(0)

1 (p2−p0) Θ̃
+,−,(0)

n+1,1 (p |pn | · · · |p |p)
d2p
(2π)2

· · · d2pn
(2π)2

.

From the definition of the zero order Fourier moment, we have ĥ
(0)
j (q) = (2π)2 δ(q), which yields

Θ̃
+,+,(0)

n+1,1 (p |p | · · · |p |p) R(0) (p |p) = −(2π)2 Θ̃
+,−,(0)

n+1,1 (p |p | · · · |p |p) δ(p−p0) . (9.5)

Here we recognize the result obtained in Chapter 3 for a stack of flat interfaces

R(0)(p |p0) = −
[
Θ̄

+,+
n+1,1(p0)

]−1

Θ̄
+,−
n+1,1(p0) (2π)2δ(p−p0)

def
= ρ

(0)
n+1,1(p0) (2π)2δ(p−p0) , (9.6)

where Θ̃
+,+,(0)
n+1,1 (p |p | · · · |p |p) = Θ̄

+,+
n+1,1(p0) and Θ̃

+,−,(0)
n+1,1 (p |p | · · · |p |p) =

Θ̄
+,−
n+1,1(p0) as can been seen from the definitions in Eqs. (3.25) and (9.3). This result must be

understood as a generalization of the similar result obtained for a single interface. Indeed, for
a single interface, we have shown that the order zero of the perturbative expansion corresponds
to the Fresnel amplitudes for the corresponding planar interface.

For orders m ≥ 1, we have

m∑

m′=0

(
m

m′

) ∑

m′∈S
m′

(
m′

m′

)∫
Z

+,+,(m′)
n+1,1 (p |q) R(m−m′) (q |p)

d2q

(2π)2
= −

∑

m∈Sm

(
m

m

)
Z

+,−,(m)
n+1,1 (p |p) .

(9.7)

By isolating the term corresponding to m′ = 0, hence m′ = (0, · · · , 0) and using that for all

j ∈ J1, nK we have ĥ
(0)
j (q) = (2π)2 δ(q), we obtain

Θ̃
+,+,(0)

n+1,1 (p |p | · · · |p |p) R(m) (p |p) = −
∑

m∈Sm

(
m

m

)
Z

+,−,(m)
n+1,1 (p |p)

−
m∑

m′=1

(
m

m′

) ∑

m′∈S
m′

(
m′

m′

)∫
Z

+,+,(m′)
n+1,1 (p |q) R(m−m′) (q |p)

d2q

(2π)2
,

which yields

R(m) (p |p) =−
[
Θ̄

+,+
n+1,1(p)

]−1


 ∑

m∈Sm

(
m

m

)
Z

+,−,(m)
n+1,1 (p |p)

+
m∑

m′=1

(
m

m′

) ∑

m′∈S
m′

(
m′

m′

)∫
Z

+,+,(m′)
n+1,1 (p |q) R(m−m′) (q |p)

d2q

(2π)2


 . (9.7)

We have finally obtained a recursive expression giving the mth order term in the reflection
amplitude expansion as a function of terms of lower order terms. Note that Eq. (9.7) has the
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same structure as Eq. (6.11), with the major difference lying in the complexity of the kernel
containing product of Fourier moments of the surface profiles. One can verify that one recovers
Eq. (6.11) by applying Eq. (9.7) in the case n = 1.

Remark 9.1. We have treated the case of reflection for fixing the ideas, but the same method
applies for transmission. We will avoid going through yet another detailed similar derivation,
and simply give key steps here. We recall that, with the notations from Chapter 3, the reduced
Rayleigh equation for transmission through a stack of n+ 1 media is given by Eq. (3.21)

∫
Θ−,−1,n+1 (p |q) T (q |p)

d2q

(2π)2
= −η1,n+1 (2π)2 δ(p−p0) I2 , (9.7)

where we recall that the backward n-interface transfer kernel is defined as

Θ
a1,an+1

1,n+1 (p |pn+) =
∑

a2=±
a2

∫
· · ·

∑

an=±
an

∫
Θa1,a2

1,2 (p |p) · · · Θan,an+1

n,n+1 (pn |pn+)
d2pn
(2π)2

d2p
(2π)2

.

(9.8)

We define

Θ̃
a1,an+1,(m)

1,n+1 (p |p | · · · |pn |pn+) =
∑

a2=±
a2 α

−1
1 (p1)(a1α1(p1)− a2α2(p2))m1−1 e−i(a1α1(p1)−a2α2(p2))d1 Ma1,a2

1,2 (p |p) · · ·
∑

an=±
an α

−1
n (pn)(anαn(pn)− an+1αn+1(pn+1))mn−1 e−i(anαn(pn)−an+1αn+1(pn+1))dn M

an,an+1

n,n+1 (pn |pn+) ,

(9.9)

and the expansion of the kernel in series of Fourier moments is given by

Θ
a1,an+1

1,n+1 (p |pn+) =
∞∑

m=0

(−i)|m|
m!

∫
· · ·
∫
ĥ

(m1)
1 (p1−p2) · · · ĥ(mn)

n (pn−pn+1)

Θ̃
a1,an+1,(m)

1,n+1 (p |p | · · · |pn |pn+)
d2pn
(2π)2

d2p
(2π)2

=

∞∑

m=0

(−i)|m|
m!

Z
a1,an+1,(m)
1,n+1 (p |pn+) . (9.10)

After expanding the reduced Rayleigh equation and identifying orders, we obtain that the zero
order satisfies

∫
Z
−,−,(0)
1,n+1 (p |q) T(0) (q |p)

d2q

(2π)2
= −η1,n+1 (2π)2 δ(p−p0) I2 , (9.11)

which yields

T(0)(p |p0) = −η1,n+1

[
Θ̄
−,−
1,n+1(p0)

]−1

(2π)2δ(p−p0)
def
= τ

(0)
n+1,1(p0) (2π)2δ(p−p0) , (9.12)

where Θ̃
−,−,(0)
1,n+1 (p |p | · · · |p |p) = Θ̄

−,−
1,n+1(p0). For orders m ≥ 1, we have

m∑

m′=0

(
m

m′

) ∑

m′∈S
m′

(
m′

m′

)∫
Z
−,−,(m′)
1,n+1 (p |q) T(m−m′) (q |p)

d2q

(2π)2
= 0 , (9.13)
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which yields

Θ̃
−,−,(0)

1,n+1 (p |p | · · · |p |p) T(m) (p |p)

= −
m∑

m′=1

(
m

m′

) ∑

m′∈S
m′

(
m′

m′

)∫
Z
−,−,(m′)
1,n+1 (p |q) T(m−m′) (q |p)

d2q

(2π)2
,

and finally, the recursive formula for successive orders reads

T(m) (p |p) = −
[
Θ̄
−,−
1,n+1(p)

]−1 m∑

m′=1

(
m

m′

) ∑

m′∈S
m′

(
m′

m′

)∫
Z
−,−,(m′)
1,n+1 (p |q) T(m−m′) (q |p)

d2q

(2π)2
.

(9.13)

First order and mean differential scattering coefficients

In the same way we obtained simple closed form expressions for the mean differential scattering
coefficients when restricting ourselves to the first order amplitudes in the surface profile function
in Chapter 8 in the case of a single interface, we can obtain similar expressions when considering
the first order amplitudes in product of the surface profile functions in the case of a multilayer
system. Applying Eq.(9.7) for m = 1 we obtain

R(1) (p |p) =−
[
Θ̄

+,+
n+1,1(p)

]−1 ∑

m∈S1

[
Z

+,−,(m)
n+1,1 (p |p) +

∫
Z

+,+,(m)
n+1,1 (p |q) R(0) (q |p)

d2q

(2π)2

]

=−
[
Θ̄

+,+
n+1,1(p)

]−1 ∑

m∈S1

[
Z

+,−,(m)
n+1,1 (p |p) + Z

+,+,(m)
n+1,1 (p |p) ρ(0)

n+1,1(p0)
]
. (9.14)

Here we have used the previously obtained expression for R(0) (q |p) in Eq. (9.6), and in

particular the fundamental property of the Dirac delta. From the definition of Z
an+1,a1,(m)
n+1,1

[Eq. (9.4)] it is clear that for m = (1, 0, · · · , 0), (0, · · · , 0, 1, 0, · · · , 0) (with a 1 in position j) or
(0, · · · , 0, 1) the integration reduces to

Z
an+1,a1,(1,0,··· ,0)
n+1,1 (p |p) = ĥ

(1)
1 (p−p0) Θ̃

an+1,a1,(1,0··· ,0)

n+1,1 (p | · · · | p | p0) (9.15a)

Z
an+1,a1,(0,··· ,0,1,0,··· ,0)
n+1,1 (p |p) = ĥ

(1)
j (p−p0) Θ̃

an+1,a1,(0,··· ,0,1,0,··· ,0)

n+1,1 (p | · · · | p | p0 | · · · | p0︸ ︷︷ ︸
j times

) (9.15b)

Z
an+1,a1,(0,··· ,0,1)
n+1,1 (p |p) = ĥ(1)

n (p−p0) Θ̃
an+1,a1,(0,··· ,0,1)

n+1,1 (p | p0 | · · · | p0). (9.15c)

It is convenient to group terms with common factor ĥj ≡ ĥ(1)
j in Eq. (9.14), which leads to

R(1) (p |p) =
n∑

j=1

ĥj(p−p0)ρ
(1)
j (p |p) , (9.16)
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with

ρ
(1)
j (p |p) =−

[
Θ̄

+,+
n+1,1(p)

]−1


Θ̃

+,−,(0,··· ,0,1,0,··· ,0)

n+1,1 (p | · · · | p | p0 | · · · | p0︸ ︷︷ ︸
j times

)

+ Θ̃
+,+,(0,··· ,0,1,0,··· ,0)

n+1,1 (p | · · · | p | p0 | · · · | p0︸ ︷︷ ︸
j times

)ρ
(0)
n+1,1(p0)


 . (9.17)

Similarly, the transmission amplitude to first order in products of surface profiles reads

T(1) (p |p) =
n∑

j=1

ĥj(p−p0) τ
(1)
j (p |p) , (9.18)

with

τ
(1)
j (p |p) =−

[
Θ̄
−,−
1,n+1(p)

]−1

Θ̃
−,−,(0,··· ,0,1,0,··· ,0)

1,n+1 (p | · · · | p︸ ︷︷ ︸
j times

| p0 | · · · | p0) τ
(0)
n+1,1(p0) . (9.19)

The corresponding incoherent component of the mean differential scattering coefficient are then
easily expressed as

〈
∂Rαβ
∂Ωr

(p |p0)

〉

incoh

=
( ω

2πc

)2 ε1 cos2 θr
cos θ0

n∑

j=1

n∑

k=1

Gjk(p−p0)ρ
(1)
j,αβ (p |p) ρ(1)∗

k,αβ (p |p) (9.20a)

〈
∂Tαβ
∂Ωt

(p |p0)

〉

incoh

=
( ω

2πc

)2 ε
3/2
n+1 cos2 θt

ε
1/2
1 cos θ0

n∑

j=1

n∑

k=1

Gjk(p−p0)τ
(1)
j,αβ (p |p) τ (1)∗

k,αβ (p |p) (9.20b)

Gjk(p−p0)
def
=
〈
ĥj(p−p0)ĥ∗k(p−p0)

〉
. (9.20c)

We can give an intuitive physical interpretation of the above expressions. The term Gjk is the
Fourier transform of the covariance of the fluctuations hj and hk of the surface profiles ζj and
ζk. It is then expected to be proportional to σjσk where the (σj)1≤j≤n are the rms-roughness
parameters the respective interfaces. Consequently, if assume all the interfaces but the `th one
to be planar, all the covariance terms but that for which j = ` and k = ` vanish which leads to

〈
∂R

(`)
αβ

∂Ωr
(p |p0)

〉

incoh

=
( ω

2πc

)2 ε1 cos2 θr
cos θ0

σ2
` g`(p−p0)|ρ(1)

`,αβ (p |p) |2 (9.21a)

〈
∂T

(`)
αβ

∂Ωt
(p |p0)

〉

incoh

=
( ω

2πc

)2 ε
3/2
n+1 cos2 θt

ε
1/2
1 cos θ0

σ2
` g`(p−p0)|τ (1)

`,αβ (p |p) |2 . (9.21b)

Here we have denoted by gk the power spectrum of the kth interface. The resulting expressions
correspond to the diffusely scattered intensity scattered by a system for which all interfaces but
the `th are planar under the single scattering approximation. This means that, for this system,
we can picture the overall scattering amplitude to be a sum of probability amplitudes over all
possible optical paths for which one single scattering event is allowed on the rough surface, but
allowing any arbitrary number of specular reflections and refractions within the layers prior



i
i

“report” — 2018/9/20 — 10:11 — page 212 — #234 i
i

i
i

i
i

212 Chapter 9. More on perturbation theory

to and posterior to the scattering event. In particular, the above formula takes into account
interference effects due to the phase differences underwent by different paths within the layers,

and is encoded in the amplitudes ρ
(1)
`,αβ (p |p) and τ

(1)
`,αβ (p |p). Now let us imagine that the

system is made of layers whose all interfaces are rough, but for which no pairs of interfaces are
cross-correlated, i.e. that Gjk = δjk σ

2
j gj for all j, k ∈ J1, nK. Then the incoherent component of

the mean differential scattering coefficients reads

〈
∂R

(uncorr)
αβ

∂Ωr
(p |p0)

〉

incoh

=
n∑

j=1

〈
∂R

(j)
αβ

∂Ωr
(p |p0)

〉

incoh

(9.22a)

〈
∂T

(uncorr)
αβ

∂Ωt
(p |p0)

〉

incoh

=
n∑

j=1

〈
∂T

(j)
αβ

∂Ωt
(p |p0)

〉

incoh

. (9.22b)

This means that the intensity of the diffusely scattered light for a system with un-cross-correlated
interfaces is, within the single scattering approximation, the sum of the intensity one would
obtain for the corresponding system where only one of the interfaces is rough at a time. This
indicates that, on average, we would not observe interference effects resulting from a path which
experienced a scattering event on a surface j with a path which experienced a scattering event
on a surface k. This is due to the fact that the interfaces are not cross-correlated, therefore
from one realization of the stochastic process to the next the phase difference between two such
paths would be an uncorrelated random variable hence resulting in optical incoherence. Note
however, that paths experiencing a scattering event on the same interface still have correlated
phase differences and may lead to interference effects (as one would observe if one only of the
interface were rough). In the most general case where the interfaces may be uncorrelated,
two paths experiencing a scattering event on different interface may interfere constructively
or destructively, hence modifying the interference pattern one would obtain by summing the
interference patterns of the corresponding systems where only one of the interfaces is rough.
Indeed, we can re-write Eq.(9.20) as

〈
∂Rαβ
∂Ωr

(p |p0)

〉

incoh

=

〈
∂R

(uncorr)
αβ

∂Ωr
(p |p0)

〉

incoh

+ 2
( ω

2πc

)2 ε1 cos2 θr
cos θ0

Re


∑

j<k

Gjk(p−p0)ρ
(1)
j,αβ (p |p) ρ(1)∗

k,αβ (p |p)


 (9.23a)

〈
∂Tαβ
∂Ωt

(p |p0)

〉

incoh

=

〈
∂T

(uncorr)
αβ

∂Ωt
(p |p0)

〉

incoh

+ 2
( ω

2πc

)2 ε
3/2
n+1 cos2 θt

ε
1/2
1 cos θ0

Re


∑

j<k

Gjk(p−p0)τ
(1)
j,αβ (p |p) τ (1)∗

k,αβ (p |p)


 ,

(9.23b)

where it should now be clear that the cross terms which can take both positive and negative
values may yield interference enhancement or attenuation. Note that the non-negativity of
the intensity is preserved since we always have 2Re(zz′) ≤ |z|2 + |z′|2 for any two complex
number z and z′. Such an interference phenomena induced by the cross-correlation between the
interfaces was studied in Paper [3] demonstrating the mechanism of selective enhancement and
attenuation of the Selényi rings in the case of a system with two cross-correlated interfaces. In
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Chapter 10, we will explain in more details the analysis based on optical paths experiencing
a single scattering event by constructing a dedicated deductive model which we will show to
be numerically indistinguishable from the small amplitude perturbation results exposed here,
hence justifying the described physical picture, and how this analysis is used to interpret the
phenomenon of selective enhancement and attenuation of interference rings in the intensity of
the diffusely scattered light.

9.2 Perturbation of a structured surface

We have seen previously how to construct approximate solutions of the reduced Rayleigh
equations by considering the surface profile as a perturbed planar interface. Indeed, we
have shown that the zero order term in the power series expansion corresponds to Fresnel
scattering amplitudes. This approach is found to be widely used in the literature for studying
the scattering of light by randomly weakly rough surfaces, where the average surface is
planar. It could also be of interest to study the effect of random deviation from a structured
surface. For example, a manufacturer of gratings may wish to asses how random small1

scale defects affect the optical diffraction response. In particular, one may expect that if the
random deviations of the grating profile are two large in some sense, the diffraction peaks
would smear out and thus lower its angular resolution. Another case of interest, in radar
detection, could be the study of electromagnetic wave scattering by the ocean. Water waves
at the surface of the ocean can be described by the superposition of waves of different spatial
scales. Typically, this could be a long range tide wave and smaller wavelets induced by the
wind. Therefore, the surface encountered from the electromagnetic wave can be seen as a
perturbation of the long range waves. In these cases, it seems more appropriate to consider
perturbation of the grating profile, or the long range water wave, rather than perturbation of
the planar interface. To illustrate the method we will consider the case of single interface system.

ê1,2

ê3

x3 = ζ0(x)ǫ1

ǫ2

Ideal system

ê1,2

ê3

ǫ1

ǫ2

Perturbed system

x3 = ζ0(x) + ε(x)ǫ1

ǫ2

(a)

ê1,2

ê3

x3 = ζ0(x)ǫ1

ǫ2

Ideal system

ê1,2

ê3

ǫ1

ǫ2

Perturbed system

x3 = ζ0(x) + ε(x)ǫ1

ǫ2

(b)

Figure 9.1: Illustration of an ideal system defined by a surface profile ζ0 (a) to which a pertur-
bation ε is added (b).

Let the surface profile ζ be defined as the sum of two terms, a large scale component ζ0 that
may be thought of as an ideal grating profile, and a small scale component ε that corresponds

1small compared with the grating parameters
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to a perturbation. The kernel scalar factor J b,al,m is now expanded as follow

J b,al,m (p |q) = (bαl (p)−aαm (q))−1

∫
e−i(p−q)·x e−i(bαl (p)−aαm (q)) (ζ0 (x) +ε (x)) dx

=

∞∑

n=0

(−i)n
n!

(bαl (p)−aαm (q))n−1

∫
e−i(p−q)·x e−i(bαl (p)−aαm (q)) ζ0 (x) εn (x) dx

=
∞∑

n=0

(−i)n
n!

(bαl (p)−aαm (q))n−1 ε
b,a,(n)
l,m (p |q) (9.24)

Here, we have defined the following integral transform of the nth power of ε as

ε
b,a,(n)
l,m (p |q) =

∫
e−i(p−q)·x e−i(bαl (p)−aαm (q)) ζ0 (x) εn (x) dx . (9.25)

Remark 9.2. Note that the zero order term in Eq. (9.24), or equivalently Eq. (9.24) in the limit

ε → 0, corresponds to J b,al,m for the unperturbed system that we will specifically denote
◦
J b,al,m in

this case. We will denote similarly all quantities relative to the unperturbed system.

In a similar fashion as what we have seen in previous sections, we obtain that the reflection
expansion amplitudes satisfy

∞∑

m=0

(−i)m
m!

m∑

m′=0

(
m

m′

)∫
ε

+,+,(m′)
2,1 (p |q) Θ̃

+,+,(m′)
2,1 (p |q) r(m−m′) (q |p)

d2q

(2π)2

= −
∞∑

m=0

(−i)m
m!

ε
+,−,(m)
2,1 (p |p) Θ̃

+,−,(m)

2,1 (p |p) .

Identifying orders yields for m = 0,

∫
◦
Θ

+,+

2,1 (p |q) r(0) (q |p)
d2q

(2π)2
= −

◦
Θ

+,−
2,1 (p |p) , (9.25)

and for m ≥ 1,

∫
◦
Θ

+,+

2,1 (p |q) r(m) (q |p)
d2q

(2π)2
= − ε+,−,(m)

2,1 (p |p) Θ̃
+,−,(m)

2,1 (p |p)

−
m∑

m′=1

(
m

m′

)∫
ε

+,+,(m′)
2,1 (p |q) Θ̃

+,+,(m′)
2,1 (p |q) r(m−m′) (q |p)

d2q

(2π)2
. (9.26)

We observe that Eq. (9.25) is nothing but the reduced Rayleigh equations for the unperturbed
system and does not depend on the perturbation ε. Hence the zero order term in the reflection
amplitudes expansion is solution of the unperturbed problem. The higher order terms can be
computed recursively as can be seen in Eq. (9.26). However, a significant difference compared
to the method of perturbation of a flat surface is that one must solve an integral equation for
each order. Nevertheless, this should not a problem. Indeed, as we saw in the case of the direct
method, Chapter 5, solving a reduced Rayleigh equation translates numerically to solving a
linear system. In fact, if one is able to solve for the zero order term, solving for higher order
terms is almost free if the right hand side is given. Indeed, the kernel stays the same at all orders
and is identical to that of the unperturbed system. A good numerical strategy then consists
in making a LU factorization of the unperturbed kernel for the zero order and then re-use this
factorization for each order. In fact, the challenging part of this method is to compute efficiently

the factors ε
b,a,(n)
l,m (p |q).
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9.2.1 Perturbed grating

Let us know analyze the case where the unperturbed profile ζ0 is periodic. In this case, we know

from Chapter 4 that the unperturbed scalar factor
◦
J +,+

2,1 in the kernel and the unperturbed

solution r(0) read

◦
J

+,+

2,1 (p |q) = (2π)2
∑

`∈Z2

δ(p(`)−q)
◦

J̃
+,+

2,1 (p |q) , (9.27)

r(0) (q |p) ≡ ◦
r (q |p) = (2π)2

∑

m∈Z2

δ(q−p
(m)
0 )

◦
r

(m)
(p0) . (9.28)

with the short hand notation p(`) = p−G(`) and p
(m)
0 = p0 + G(m) and G(·) are reciprocal

lattice vectors. Plugging Eqs. (9.27) and (9.28) into Eq. (9.26) for m = 1 we obtain

∑

`∈Z2

◦

Θ̃
+,+

2,1 (p | p(`)) r(1)(p(`) | p0) = − ε+,−,(1)
2,1 (p |p) Θ̃

+,−,(1)

2,1 (p |p)

−
∑

m∈Z2

ε
+,+,(1)
2,1 (p | p(m)

0 ) Θ̃
+,+,(1)

2,1 (p | p(m)
0 )

◦
r

(m)
(p0) . (9.29)

Remark 9.3. Compared with the ideal periodic case, Eq. (9.29) requires to sample p. This
is to be expected since the unperturbed grating is a priori not periodic. If the perturbation

ε is periodic with the same period as the ideal profile, then factors ε
b,a,(1)
2,1 can be expressed

as a sum of Dirac deltas, similarly as
◦
J +,+

2,1 . In that case, r(1)(p | p0) will also necessarily be

expressed as a sum of Dirac deltas as is r(0) (p |p), and the linear system will not require to
sample p similarly to what we have seen in Chapter 4. To be more specific, in that case, it is
straightforward to show, following the method from Chapter 4, that the first order correction
satisfies

r(1) (q |p) = (2π)2
∑

m∈Z2

δ(q−p
(m)
0 ) r(1,m)(p0) , (9.30)

and for all ` ∈ Z2,

∑

m∈Z2

◦

Θ̃
+,+

2,1 (p
(`)
0 | p(m)

0 ) r(1,m)(p0) = − ε̃+,−,(1)
2,1 (p

(`)
0 | p0) Θ̃

+,−,(1)

2,1 (p
(`)
0 | p0)

−
∑

m∈Z2

ε̃
+,+,(1)
2,1 (p

(`)
0 | p(m)

0 ) Θ̃
+,+,(1)

2,1 (p
(`)
0 | p(m)

0 )
◦
r

(m)
(p0) , (9.31)

with

ε̃
b,a,(n)
l,m (p |q) =

1

ac

∫

ac

e−i(p−q)·x e−i(bαl (p)−aαm (q)) ζ0 (x) εn (x) dx . (9.32)

It is clear that by induction, the same can be said for Eq. (9.26) for m > 1.

But what if the perturbation is not periodic? In this case, r(1)(p | p0) has no reason to have
weight on a discrete set of points anymore and we would in fact rather expect it to be a density
from a physical point of view. Indeed, it is known from experiment that random defects on
grating have a tendency to smear out the discrete diffraction peaks. Therefore, we understand
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that it is quite natural to obtain an equation that requires us to sample the in-plane wave-
vector space, or p-plane. However, we notice that it is not necessary to sample the whole
p-plane. Indeed, for a given p, solving Eq. (9.29) gives r(1)(p | p0) evaluated a the set of points
{p−G(`) | ` ∈ Z2}. Therefore, solving Eq. (9.29) for a set of p spanning the primitive reciprocal
lattice cell will yield knowledge of the solution (to first order) in the whole plane.

9.2.2 First order coherence matrix for a randomly perturbed grating

We are know assuming that the perturbation is a stochastic process with the following properties

〈ε(x)〉 = 0 , (9.33a)

〈ε(x) ε(x′)〉 = σ2 W (x,x′) . (9.33b)

Where W known as the auto-correlation function. Here the angle brackets denote an ensemble
average over realizations of the stochastic process.

For a given realization of ε, we consider Eq. (9.29) for incident polarization β, i.e. we con-
sider incoming p- and s-polarization separately. Equation (9.29) multiplied to the right by its
Hermitian conjugate yields

∑

`∈Z2

∑

`′∈Z2

◦

Θ̃
+,+

2,1 (p | p(`)) r
(1)
·β (p(`) | p0) r

(1)
·β (p(`′) | p0)†

◦

Θ̃
+,+

2,1 (p | p(`′))†

= |ε+,−,(1)
2,1 (p |p) |2 Θ̃

+,−,(1)

2,1,·β (p |p) Θ̃
+,−,(1)

2,1,·β (p |p)†

+
∑

m∈Z2

ε
+,−,(1)
2,1 (p |p) ε+,+,(1)

2,1 (p | p(m)
0 )∗ Θ̃

+,−,(1)

2,1,·β (p |p) ◦r(m)
·β (p0)† Θ̃

+,+,(1)

2,1 (p | p(m)
0 )†

+
∑

m∈Z2

ε
+,+,(1)
2,1 (p | p(m)

0 ) ε
+,−,(1)
2,1 (p |p)∗ Θ̃

+,+,(1)

2,1 (p | p(m)
0 )

◦
r

(m)
·β (p0) Θ̃

+,−,(1)

2,1,·β (p |p)†

+
∑

m∈Z2

∑

m′∈Z2

ε
+,+,(1)
2,1 (p | p(m)

0 ) ε
+,+,(1)
2,1 (p | p(m′)

0 )∗

× Θ̃
+,+,(1)

2,1 (p | p(m)
0 )

◦
r

(m)
·β (p0)

◦
r

(m′)
·β (p0)† Θ̃

+,+,(1)

2,1 (p | p(m′)
0 )† . (9.34)

Now taking the ensemble average of the above equation yields

∑

`∈Z2

∑

`′∈Z2

◦

Θ̃
+,+

2,1 (p | p(`))
〈
r

(1)
·β (p(`) | p0) r

(1)
·β (p(`′) | p0)†

〉 ◦
Θ̃

+,+

2,1 (p | p(`′))†

=
〈
|ε+,−,(1)

2,1 (p |p) |2
〉

Θ̃
+,−,(1)

2,1,·β (p |p) Θ̃
+,−,(1)

2,1,·β (p |p)†

+
∑

m∈Z2

〈
ε

+,−,(1)
2,1 (p |p) ε+,+,(1)

2,1 (p | p(m)
0 )∗

〉
Θ̃

+,−,(1)

2,1,·β (p |p) ◦r(m)
·β (p0)† Θ̃

+,+,(1)

2,1 (p | p(m)
0 )†

+
∑

m∈Z2

〈
ε

+,+,(1)
2,1 (p | p(m)

0 ) ε
+,−,(1)
2,1 (p |p)∗

〉
Θ̃

+,+,(1)

2,1 (p | p(m)
0 )

◦
r

(m)
·β (p0) Θ̃

+,−,(1)

2,1,·β (p |p)†

+
∑

m∈Z2

∑

m′∈Z2

〈
ε

+,+,(1)
2,1 (p | p(m)

0 ) ε
+,+,(1)
2,1 (p | p(m′)

0 )∗
〉

× Θ̃
+,+,(1)

2,1 (p | p(m)
0 )

◦
r

(m)
·β (p0)

◦
r

(m′)
·β (p0)† Θ̃

+,+,(1)

2,1 (p | p(m′)
0 )† . (9.35)
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Equation (9.35) is an equation for the so-called first order coherence matrix
(〈

r
(1)
·β (p(`) | p0) r

(1)
·β (p(`′) | p0)†

〉)
`,`′∈Z2

. (9.35)

The elements of the coherence matrix contain covariances of the random first order reflection
amplitude perturbations in the directions p(`) and p(`′) for incoming β polarized light. In other
words, it contains information about speckle correlations.

Remark 9.4. The diagonal of the coherence matrix are proportional to the first order incoherent
mean differential reflection coefficient.

In order to solve Eq. (9.35), we need to first set up its right hand side, which contains factors

of the form
〈
ε
b,a,(1)
2,1 (p | q) ε

b′,a′,(1)
2,1 (p | q′)∗

〉
. Let us analyze such factors in more details. By

definition of ε
b,a,(1)
2,1 , Eq. (9.25), and interchanging integrals and ensemble average, we obtain

〈
ε
b,a,(1)
2,1 (p | q) ε

b′,a′,(1)
2,1 (p | q′)∗

〉

=

∫ ∫
e−i(p−q)·x+i(p−q′)·x′ e−i(bαl (p)−aαm (q)) ζ0 (x) +i(b′αl(p)−a′αm(q′))∗ ζ0(x′) 〈ε(x)ε(x′)〉dx′ dx ,

=

∫ ∫
e−i(p−q)·x+i(p−q′)·x′ e−i(bαl (p)−aαm (q)) ζ0 (x) +i(b′αl(p)−a′αm(q′))∗ ζ0(x′) σ2W (x,x′) dx′ dx .

(9.36)

Homogeneous pertubation
In the case where the perturbations have an isotropic homogeneous auto-correlation function
we can write that the auto-correlation function is a function only of the difference between two
points, i.e. 〈ε (x) ε(x′)〉 = σ2 W (x−x′). In this case, we can write

〈
ε
b,a,(1)
2,1 (p | q) ε

b′,a′,(1)
2,1 (p | q′)∗

〉

=

∫ ∫
e−i(p−q)·x+i(p−q′)·x′ e−i(bαl (p)−aαm (q)) ζ0 (x) +i(b′αl (p)−a′αm(q′))∗ ζ0(x′) σ2W (x− x′) dx′ dx

=

∫ ∫
e−ip ·(x−x

′)e−i(q
′ ·x′−q ·x) e−iγ

b,a
l,m(p |q) ζ0 (x) +iγb

′,a′
l,m (p |q′)∗ ζ0(x′) σ2W (x− x′) dx′ dx . (9.37)

Here we have introduced the shorthand notation γb,al,m(p |q) = bαl (p)−aαm (q). Via a change
of variable u = x−x′, we obtain

〈
ε
b,a,(1)
2,1 (p | q) ε

b′,a′,(1)
2,1 (p | q′)∗

〉

= σ2

∫
e−ip ·u W (u)

∫
e−i(q

′ ·(x−u)−q ·x) e−iγ
b,a
l,m(p |q) ζ0 (x) +iγb

′,a′
l,m (p |q′)∗ ζ0(x−u) dx d2u

= σ2

∫
e−ip ·u W (u)

(
f b,al,m[p |q] ∗ f b

′,a′

l,m [p |q′]∗
)

(u) d2u . (9.38)

In the last step, the inner-most integral has been written as a convolution product of the functions

f b,al,m[p |q] and f b
′,a′
l,m [p |q′]∗ defined as

f b,al,m[p |q](x) = eiq ·xe−iγ
b,a
l,m(p |q) ζ0 (x) . (9.39)

The square bracket [p |q] simply serves to stress a dependence on p and q which play the role
of parameters here. The right hand side in Eq. (9.38) reads as the Fourier transform of the

product of the functions W and f b,al,m[p |q] ∗ f b′,a′l,m [p |q′]∗, which, by the use of the convolution
theorem, can be written as the convolution product of the Fourier transform of
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How do we solve it?

Equation (9.35) may seem rather complicated to solve at first sight. It looks complicated for
several reasons. First, we need several lines to write it down, but the brave reader who made
it here should not have any difficulty to identify each term and convince oneself that each
term can be computed separately using techniques we have seen previously. Second, Eq. (9.35)
looks like the linear systems we have been used to so far in this work, but not quite. On
one hand, the ”rows” of the linear system are indexed by a continuous variable p, and on the
other the unknown is a matrix sandwiched between two other matrices. The fact that the
rows are indexed by a continuous variable p is rather natural from a physical point of view
as already mentioned in a previous remark. It suffices indeed numerically to sample p on a
discrete set of points within the unit reciprocal cell of the grating. Concerning the matrix-
sandwiched form of the linear system, we will expose now how some appropriate re-indexing can
be used to recover a good old matrix-vector form. To this end, it suffices to consider the term
◦
Θ̃

+,+

2,1 (p | p(`))
〈
r

(1)
·β (p(`) | p0) r

(1)
·β (p(`′)† | p0)

〉 ◦
Θ̃

+,+

2,1 (p | p(`′))† for a given p, ` and `′, and

abstract it to a product of three 2×2 matrices A X B for clarity. Now let us compute explicitly
the product

C = A X B =


a11 a12

a21 a22




x11 x12

x21 x22




b11 b12

b21 b22




=


a11b11x11 + a11b12x12 + a12b11x21 + a12b12x22 a11b21x11 + a11b22x12 + a12b21x21 + a12b22x22

a21b11x11 + a21b12x12 + a22b11x21 + a22b12x22 a21b21x11 + a21b22x12 + a22b21x21 + a22b22x22


 .

Now, instead of seeing C = (cij)1≤i,j≤2 as a 2×2 matrix, let us rather see it as a four component
vector, and similarly for X. To be more precise, we construct the isomorphism ψ between
M2,2(C) and C4 defined as

C′ = ψ(C) =




c11

c12

c21

c22



, X′ = ψ(X) =




x11

x12

x21

x22



. (9.40)

Then the equality C = A X B in the space of 2×2 matrices is equivalent in the space for four
component vectors to the equality




c11

c12

c21

c22




=




a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22







x11

x12

x21

x22



, (9.41)

which we can write as

C′ = A⊗B X′ , (9.42)

where A⊗B denotes the Kronecker product of the matrices A and B (and is defined by
Eq. (9.41)).
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9.3 Summary

In this last chapter of Part II, we have presented the detailed derivation of small amplitude per-
turbation theory applied in the case of multilayer systems and a derivation of small perturbation
theory for a structured surface. We have shown that in the case of the multilayer system, for
which the reduced Rayleigh equations have been derived in Chapter 3, a perturbative expansion
of the scattering amplitudes is obtained in a very similar fashion as in the case of a single inter-
face system with the difference that the expansion must be taken in order of products of surface
profiles. In addition, we have derived closed form expressions for the mean differential scattering
coefficients obtained when the amplitudes were approximated to order one in product of surface
profiles. We have shown that the diffuse intensity can be expressed as the sum of the diffuse
intensity of the associated systems where only one of the interface is rough at a time and the
remaining are planar in the case where all the interfaces are uncorrelated, and that additional
cross terms encoding the interference induced by the correlations between the surface profiles
must be taken into account when the surface profiles are correlated. We have then explored how
the perturbative method may be adapted to structured surface. The idea is that the surface
profile may have two scale components; a large scale component representing an ideal struc-
tured profile and a small scale perturbation added to it. Instead of treating the whole profile
as a perturbation of a planar surface, which is expected to yield poor results if the large scale
component as a significant amplitude, we have chosen to adapt the technique to perturb from
the structured surface with the hope of obtaining more accurate approximations. Indeed, the
response of the ideal structured can be computed exactly once and then the correction due to
the small scale component remains to be computed approximately. Focusing on the first order,
we have obtained a linear system for the average coherency matrix and we have briefly explained
how the problem could be solved numerically. The latter method could be of particular interest
for applications ranging from the design and quality control of optical grating to the scattering
of electromagnetic wave from the ocean.
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Chapter 10

Single randomly rough interface

”Oh, la belle obscurité. [...] On ne sait plus ce que c’est que l’obscurité.
A force de vouloir faire la lumière sur tout, on ne distingue plus rien ![...]

Regardez, regardez ce coin sombre ! Tout à l’heure à la lumière il passait inaperçu.”
Les ombres d’antan, Raymond Devos (1973).

In this chapter, we present numerical calculations and a theoretical analysis of the scattering
response of systems made of two media separated by a randomly rough interface. We will
limit ourselves to a regime of weakly rough surfaces, for which approximations based on first
order small amplitude perturbation theory are sufficient to accurately describe the scattering
response. In fact, we will start by considering the case of a system made of two dielectric media
separated by a randomly weakly rough surface for which one can observe phenomena associated
with physical mechanism which have been identified only recently Paper [2]: the optical Yoneda
effect and the Brewster scattering effect. The solution given by small amplitude perturbation
theory, which we have treated simply as a particular iterative method up to this point, will
prove to be a powerful tool which can lead to the understanding of the underlying physics of
the observed phenomena. This is the reason why, we will first revisit the solution given by the
first order perturbation theory and re-write it in a form which intimately relates to physical
mechanisms. The discussion is adapted from Paper [2]. Finally, effects due to higher order
scattering events for metallic surfaces will be mentioned briefly.

10.1 Scattering by a dielectric interface

The present section is devoted to the study of the scattering of light by a randomly rough surface
separating two dielectric media. Numerical simulations based on Monte Carlo simulations (see
Chapter 8 for details about the methods) of the reduced Rayleigh equations and the solution
given by small amplitude perturbation theory (SAPT) to first order (for the scattering ampli-
tude) in the surface profile will be used for our exploration. The Monte Carlo simulation will
essentially be used to justify the use of the pertubative solution or stress deviations which then
may be explored further by analyzing higher order terms. In the following, the dielectric con-
stants of the media are denoted ε1 and ε2, the smallest and largest of the two dielectric constants
are denoted respectively εmin and εmax, σ and a denote the rms-roughness and the correlation
length of the surface with Gaussian height distribution and Gaussian auto-correlation function
respectively (unless otherwise specified).

223
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224 Chapter 10. Single randomly rough interface

10.1.1 Physical interpretation of SAPT to first order

Let us start by revisiting the solution of the reduced Rayleigh equations given by SAPT to first
order in the surface profile function. The aim here is to use the approximate solution to shed
some light on the physical interpretation.

Order zero - Revisiting the Fresnel amplitudes
Consider first the zero order reflection amplitudes given by Eq. (6.8), and which are nothing else

but the Fresnel amplitudes, and hence can be written as (see Section 2.3 for derivation)

ρ(0)
ss (p0) =

α1(p0)− α2(p0)

α1(p0) + α2(p0)
(10.1a)

ρ(0)
pp (p0) =

ε2α1(p0)− ε1α2(p0)

ε2α1(p0) + ε1α2(p0)
. (10.1b)

The Fresnel amplitudes as written above, in terms of components of the wave vectors along
ê3, are common expressions. They can be recast to make appear the angle of incidence and
the angle of reflection if we so wished. The form of the Fresnel amplitudes given in Eq. (10.1)
is rather compact but hides the microscopic physical mechanisms underlying the macroscopic
response. The reflection amplitudes can be re-written in a different manner, which are obtained
directly from Eq. (6.8) together with the definition of the Mb,a

l,m matrix in terms of the change
of local basis between polarization vectors, Eq. (2.45), and read

ρ(0)
ss (p0) = ρ(0)(p0)

ês(p0) · ês(p0)

ês(p0) · ês(p0)
(10.2a)

ρ(0)
pp (p0) = ρ(0)(p0)

ê+
p,2(p0) · ê−p,1(p0)

ê+
p,2(p0) · ê+

p,1(p0)
(10.2b)

ρ(0)(p0) =
α1(p0)− α2(p0)

α1(p0) + α2(p0)
. (10.2c)

Here we have defined the scalar reflection amplitude ρ(0)(p0), which corresponds to the reflection
amplitude for a scalar wave reflected by a planar interface subjected to the continuity of the
field and its normal derivative with respect to the surface (see Section 2.6). The factorization in
Eqs. (10.2a) and (10.2b) is elementary, but nevertheless interesting when it comes to the phys-
ical interpretation of the Fresnel amplitudes. Indeed, the rather unusual factorized form of the
Fresnel amplitudes expressed in Eqs. (10.2a) and (10.2b) reveals that the reflection amplitude of
the zero order field is the product of the reflection amplitude of the corresponding scalar problem
ρ(0)(p0) (which is independent of polarization) and a factor which is dependent on the polariza-
tion state. We have chosen on purpose not to simplify the dot products (all equal to unity) for
s-polarized light in Eq. (10.2a) to show the similarity with the second factor in Eq. (10.2b), and
that both are related to the dipolar nature of the radiation emitted by the elementary scatterers
in the media (atoms, molecules). The factorization can be interpreted microscopically in the
following way. The amplitude of the reflected wave is given by the contribution of arrays of
scatterers emitting coherently, or in phase, after being excited by the incident wave as viewed
as propagating in vacuum between the scatterers. The superposition of the elementary wavelets
emitted by each scatterer forms the reflected and transmitted waves. The resultant waves can
be described by the superposition of spherical waves and their amplitudes are encoded by the
term ρ(0)(p0) for the reflected wave and τ (0)(p0) for the transmitted wave (see Eq. (10.3)). This
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result is what one would get for the reflection of a scalar wave based on the Huygens principle.
However, the polarization of the incident field excites the elementary dipole associated with each
scatterer along different directions depending on the polarization state of the incident wave. For
a s-polarized wave incident in the (ê1, ê3)-plane each dipole is excited along ê2. Knowing that
the radiation of a dipole is isotropic in the plane orthogonal to the direction of oscillation (see
Section 1.3), the dipolar polarization projection reduces to unity independently of the angle
of incidence in Eq. (10.2a). This is the reason why the reflection amplitude for a s-polarized
wave reduces to that of the scalar wave in Eq. (10.2a). For a p-polarized wave incident in the
(ê1, ê3)-plane each dipole is excited along a direction in the (ê1, ê3)-plane. This direction is a
priori different in the different media and depends of all the waves viewed by the scatterers in
the stationary regime, and is a priori not straightforward to determine based on a microscopic
theory. Nevertheless, for obvious symmetry reason, the oscillations are always in the plane of
incidence and result in a modulation of the scalar reflection amplitude due to the dipole radia-
tion pattern in the plane of incidence. This is precisely the nature of the modulation obtained
in the second factor of Eq. (10.2b). This factorization and its microscopic interpretation was
suggested by W. T. Doyle in Ref. [27] with the aim of providing a solid physical interpretation
of Brewster’s law. The detailed analysis and physical interpretation given by Doyle was based
on the Ewald-Oseen extinction theorem, in particular, the original derivation given by Ewald
based on microscopic optics [28]. Similarly the transmission amplitudes are given by

τ (0)
ss (p0) =

τ (0)(p0)

ês(p0) · ês(p0)
(10.3a)

τ (0)
pp (p0) =

τ (0)(p0)

ê−p,1(p0) · ê−p,2(p0)
(10.3b)

τ (0)(p0) =
c2

ω2

2α1(p0)

(ε1 − ε2)
(α1(p0)− α2(p0)) , (10.3c)

where we also make explicit the scalar-polarization factorization.

Total internal reflection – We have seen in Chapter 1 that the phenomenon of total internal
reflection occurs under the condition that light is reflected in the optically denser medium
(ε1 > ε2). We have seen that the critical angle of incidence θ0 = θc = arcsin(n2/n1) for total
internal reflection corresponds to the transition at which the transmitted wave goes from being
progressive for θ0 < θc to being evanescent for θ0 > θc. Equivalently, this condition may be
written for a critical norm of the in-plane wave vector pc = n2 ω/c, such that for all in-plane
wave vectors where |p0 | > pc, the incident power is entirely reflected. The phenomenon of total
internal reflection is controlled by the factor ρ(0)(p0) which is present for both polarizations.
This observation indicates that the phenomenon can be analyzed from a scalar wave picture
decoupled from polarization effects. In a few words, total internal reflection occurs whenever the
refracted wave is evanescent in the medium of transmission, and therefore it cannot transport
energy away from the surface. Let us analyze in some details the behavior of the reflection
amplitude ρ(0)(p0) as one varies the incident in-plane wave vector p0 and in particular across
the threshold |p0 | = pc. At normal incidence, p0 = 0, and ρ(0)(0) = (n1 − n2)/(n1 + n2) > 0
which lies on the real line. For |p0 | < pc, both α1(p0) and α2(p0) are real and hence so is
ρ(0)(p0). As |p0 | → pc, ρ

(0)(p0) increases on the real line towards the value 1 when α2 vanishes,
and α1(p0) =

√
ε1 − ε2 ω/c for |p0 | = pc. When |p0 | > pc, α2(p0) = i

√
p2

0−ε2 ω2/c2 turns
pure imaginary and ρ(0)(p0) draws a circular arc in the lower half of the complex plane (negative
imaginary part) with unit modulus. It is immediate to see that |ρ(0)(p0)| = 1 for |p0 | > pc since
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in this case, ρ(0)(p0) is of the form z∗/z = exp(−2iϕ) where z = r exp(iϕ) is a non-zero complex
number. As |p0 | → n1ω/c, the reflected wave (as well as the incident wave) reaches the limit of
propagation in the first medium and α1(p0)→ 0 which makes the reflection amplitude real and
negative, equal to −1. To sum up, as |p0 | goes from the critical point pc to grazing incidence
n1ω/c, the reflection amplitude traces a half circle in the complex plane with unit modulus.
The argument of the complex reflection amplitude, hence varies from 0 to −π rad. This gradual
change of phase with the angle of incidence in the regime of total internal reflection is known
as the Goos-Hänchen phase shift [17, 59]. It can be interpreted as follows: If we regard the
reflected and refracted waves as two pieces of a single mode, then as the wave enters the second
medium, in which it is evanescent, it oscillates while propagating along the surface before it
eventually goes back into the first medium where it can continue to propagate to infinity. As
the wave propagates along the surface, it acquires a temporal delay which depends on its wave
vector. This delay is translated into a phase shift with respect to the incident wave.

Remark 10.1. Note the presence of the factor α1(p0)− α2(p0) in the transmission amplitude
of the scalar wave in Eq. (10.3c) which is identical to the numerator of the reflection amplitude
in Eq. (10.2c). The analysis of this term on total internal reflection hence leads to a similar
behavior for the transmission amplitude, in the sense that τ (0)(p0) leaves the real line and
traces a path in the complex plane when total internal reflection occurs. This fact illustrates
the coupling between the reflected and the transmitted waves, which may be interpreted as two
components of the same mode.

Brewster’s law, Ewald triad and dipole radiation – For non-magnetic media, the Brewster
phenomenon for reflection by a planar surface can only be observed for p-polarized waves. We
have seen in Chapter 1 that the so-called Brewster angle of incidence for which the reflection
amplitude for a p-polarized wave vanishes was found to be equal to θ0 = θB = arctan(n2/n1).
Moreover it was observed that the Brewster phenomenon occurs when the geometrical condition
of orthogonality between the wave vector of the (non)reflected wave and the wave vector of the
transmitted wave is satisfied. It is often argued in textbooks that the physical mechanism at the
origin of the Brewster phenomenon is the fact that the dipoles in the medium of transmission
oscillate along the electric field of the transmitted wave and consequently, since dipoles do not
radiate energy along the axis of oscillation, no energy can be radiated in the direction given
by the wave vector of the reflected wave under the aforementioned condition. However, this
explanation, although attractive, cannot be complete. Indeed, as was pointed out by P. Lorrain
and D. R. Corson in Ref. [89], the Brewster phenomenon can also be observed when the incident
wave is incident in a dielectric medium and impinges on the surface between this dielectric and
vacuum. In such a case, there is no dipole oscillating in the vacuum. Doyle resolved this issue
in Ref. [27] by careful examination of the so-called Ewald wave triads in each medium based on
the original microscopic derivation of the extinction theorem by Ewald [28]. Let us analyze the
Brewster’s law in the light of Eq. (10.2b) following Doyle’s reasoning.

From Eq. (10.2b), it is clear that the Fresnel amplitude for p-polarized light is proportional to
ê+
p,2(p0) · ê−p,1(p0). In other words, the Fresnel amplitude is proportional to the component of the

unit incident electric field (given by ê−p,1(p0)) along the direction given by ê+
p,2(p0). What does

ê+
p,2(p0) correspond to? The direction given by ê+

p,2(p0) corresponds to the local p-polarization

direction for a wave whose wave vector is given by k+
2 (p0), i.e. a wave which propagates

upwards as if it were propagating in medium 2. Therefore, it seems that the reflected amplitude
for p-polarized light depends on a projection of the incident field along the polarization vector of
a seemingly nonexisting or virtual wave, propagating along the wave vector k+

2 (p0). The virtual
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wave does, in fact, have a physical interpretation which was provided by Doyle [27] based on
the concept of wave triads introduced by Ewald [28]. The physical system considered by Ewald
is made of a dense array of dipole scatterers, constituting the dielectric medium, occupying a
half space. This array of dipole scatterers is excited by an incident plane wave incident from
the vacuum half-space and which is present in the whole space, including the space in between
the scatterers. Ewald argued that, in a stationary regime, the dipole scatterers would respond
to the excitation and to their mutual interactions, via the waves scattered by each elementary
dipole, in such a way that there exist planes of scatterers of coherent response. This means
that all dipoles within such a plane oscillate in phase. Consequently and due to the fact that
the array of scatterers is bounded within a half space by a planar interface, Ewald showed that
the superposition of the elementary waves emitted by each individual scatterer results in the
propagation of three plane waves: two waves named vacuum waves propagating with a phase
velocity equal to c and one wave propagating with phase velocity c/n named the polarization
wave, where n corresponds to the refractive medium made of scatterers within the macroscopic
picture. The polarization wave, which propagates with phase velocity c/n, corresponds to
the transmitted wave in the macroscopic picture, while one of the waves propagating with
phase velocity c serves to exactly cancel the incident wave within the dielectric medium. The
remaining wave propagating with phase velocity c exits the medium and corresponds to the
reflected wave. The wave vectors of the different waves are, as expected, given by Snell’s law,
and Ewald’s derivation can be regarded as a microscopic validation of Snell’s law.

Ewald’s result can be generalized to the case of two half-spaces filled with dipoles of different
dipole moments and separated by a planar interface. The main difference being that the
superposition of the waves emitted by the scatterers on both sides of the interface must be
taken into account. According to Doyle [27], this yields three wave triads: one triad for the
incident wave, one for the reflected wave and one for the refracted wave. To be more accurate,
it can be shown that to the incident polarization wave in medium 1, propagating with phase
velocity c/n1 and wave vector k−1 (p0) is associated two waves propagating with phase velocity
c/n2 with wave vectors k±2 (p0). Similarly, to the reflected (resp. refracted) polarization wave,
whose wave vector is given by k+

1 (p0) (resp. k−2 (p0)), is associated two waves propagating with
phase velocity c/n2 (resp. c/n1) and wave vectors k±2 (p0) (resp. k±1 (p0)). The amplitudes of
the waves in the triads are linked by the so-called dynamical conditions [27]. The amplitudes
of the different waves are such that (i) the wave associated with the refracted polarization
wave and propagating along k−1 (p0) in medium 2 cancels the incident wave and (ii) that
the superposition of waves associated with the incident and reflected polarization waves and
propagating along k+

2 (p0) vanishes (more details can be found in Refs. [27, 28]).

In our analysis of Brewster’s law and, more generally, in the analysis of the Brewster scattering
effect in the case of the diffusely scattered light, it is convenient to introduce the concept of
Snell-conjugate wave vectors, or in a more abusive language Snell-conjugate waves. The wave
vectors ka1(p) and ka2(p), i.e. wave vectors satisfying the dispersion relation respectively in
medium 1 and 2, sharing the same projection in the (ê1, ê2)-plane and pointing either both
upward or downward, will be referred to as Snell-conjugate wave vectors.

Let us come back now to the polarization dependence of the reflection amplitudes for p-polarized

light in Eq. (10.2b). We readily observe that ρ
(0)
pp (p0) is proportional to ê+

p,2(p0) · ê−p,1(p0)
which indicates that the amplitude of the reflected wave is controlled by the component of the
incident field along the p-polarization vector associated with the Snell-conjugate wave vector
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of the wave vector of the reflected wave. This is a clear indication that the direction of the
dipole oscillation is intimately linked to waves in the Ewald triad. How can Brewster’s law be
rephrased in view of Eq. (10.2b) and with the concept of Snell-conjugate waves in mind? In
the case of a planar interface between two dielectrics, the Brewster phenomenon is commonly
defined as the extinction of the p-polarized reflected wave, that is when the right-hand side in
Eq. (10.2b) vanishes. It is clear that, assuming ε1 6= ε2, the Fresnel amplitude vanishes if and
only if ê+

p,2(p0) · ê−p,1(p0) = 0. In other words, the condition for Brewster’s law can be rephrased
as the orthogonality between the polarization vector of the incident wave and the polarization
vector of the Snell-conjugate wave associated with the reflected wave. This slightly different way
of stating Brewster’s law is of course equivalent to the common result from textbooks. Indeed,
if ê−p,1(p0) · ê+

p,2(p0) = 0 it is immediate that k+
1 (p0) · k−2 (p0) = 0, i.e. that the angle between

the (non)reflected wave and the transmitted wave reaches 90◦. However, we will see below that
the new geometrical criterion proposed above holds when applied to a Snell-conjugate wave
vector associated with a non-specularly scattered wave.

Concerning the transmitted wave now, Eq. (10.3) shows that neither the s- nor p-polarized
zero order transmitted wave vanishes in general. No Brewster angle is known for transmission
through a planar interface. This fact does not, however, prevent the existence of Brewster
scattering angles in the diffusely transmitted light as we will see when analyzing the first order
term of SAPT.

First order

Scalar waves – We analyze now the first order amplitude given by SAPT. Let us consider first
the case of a scalar wave subjected to the continuity of the field and its normal derivative with
respect to the surface (see Section 2.6). According to Section 2.6, it suffices to replace the Mba

lm

matrices by k1k2 ω
2/c2 and the identity matrix by 1 in Eqs. (6.12) and (6.19) to obtain the first

order reflection and transmission amplitudes for the scalar problem. This yields

R(1)(p |p0) = (α1(p)− α2(p)) ζ̂(p−p0) [1 + ρ(0)(p0)] (10.4a)

T (1)(p |p0) = (α1(p)− α2(p)) ζ̂(p−p0) τ (0)(p0) . (10.4b)

The first point to notice in Eqs. (10.4a) and (10.4b) is that both the reflection and transmission
amplitudes are proportional to (α1(p)− α2(p)) ζ̂(p−p0). Second, this common factor encodes
to whole p-dependence of the amplitudes. Indeed, the remaining factors 1+ρ(0)(p0) and τ (0)(p0)
respectively, only depend on the incident in-plane wave vector p0. How should we interpret
such a factorization? Since the reflection and transmission amplitudes vary in the same way
with p, we can say that both the elementary reflected wave with in-plane wave vector p and the
elementary transmitted wave with the same wave vector p are coupled. They can be viewed as
two pieces of a single scattered mode. In fact, for scalar waves, we have 1 + ρ(0)(p0) = τ (0)(p0),
which gives R(1)(p |p0) = T (1)(p |p0); the first order reflection and transmission amplitudes are
equal! This strengthen the coupled mode interpretation. Furthermore, since there is no summa-
tion over intermediate wave vectors q, we can consider that a scattered mode characterized by
a wave vector p is decoupled from a scattered mode characterized by a wave vector q 6= p. The
scattered modes are, however, coupled to the incident wave which acts as a source. It is also
fruitful to go back to the derivation of SAPT to get a intuitive understanding of the meaning of
the factor (α1(p) − α2(p)) ζ̂(p−p0). This factor originates from the Taylor expansion of the
exponential factor exp[−i(bα2(·) − α1(·))ζ(·)] in the definition of the J balm-integral. What the
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J balm-integral encodes is intuitively a sum of complex amplitudes along the surface where each
scattered path will experience different phase shift depending on their scattering event along the
surface. The factor exp[−i(bα2(·) − α1(·))ζ(·)] can be thought as a phase factor varying along
the surface. The factor (α1(p) − α2(p)) ζ̂(p−p0) originates from the linear approximation of
this phase factor. Thus it corresponds to the approximation of the interference pattern resulting
from single scattering events with phases linearly approximated. In other words, it gives the
speckle pattern. Taking one step further in our interpretation, (α1(p) − α2(p)) ζ̂(p−p0) can
then be roughly said to be a probability amplitude for a change of in-plane wave vector (or
momentum) from p0 to p. This is not the entire reflection nor transmission amplitude yet.
We still have to give an interpretation to the remaining factors in Eq. (10.4). The factor
1 + ρ(0)(p0) is the sum of the incident unit field and the corresponding reflected zero order
field, hence it describes the total zero order field in medium 1. Similarly, τ (0)(p0) is the zero
order transmitted amplitude and it describes the total zero order field in medium 2. Thus the
first order reflected and transmitted amplitudes are proportional, respectively, to the total zero
order field in the medium of reflection and transmission. In other words, we can say that it
is not only the incident wave that acts as a source for the first order waves, but the sum of
the incident and scattered zero order field. We can summarize our overall interpretation as
follows: the first order reflection and transmission amplitudes are the product of the total zero
order field which characterizes a zero order state and a common probability amplitude for a sin-
gle change of in-plane momentum from p0 to p given a zero order state characterized only by p0.

Electromagnetic waves – Now that we have given a physical interpretation to the first order
amplitudes for scalar waves, let us consider the case of electromagnetic waves. The first order
amplitudes for electromagnetic waves are given by Eqs. (6.12) and (6.19). We have seen when
discussing the Fresnel amplitudes that, in view of a physical interpretation, it was beneficial to
express the Mba

lm matrices in terms of the polarization vectors according to Eq. (2.45). Following
the same idea, we express the first order amplitudes as a function of the polarization vectors as

R(1)(p |p0) = (α1(p)− α2(p)) ζ̂(p−p0) ρ̂(1)(p |p0) (10.5a)

T(1)(p |p0) = (α1(p)− α2(p)) ζ̂(p−p0) τ̂ (1)(p |p0) (10.5b)

with

ρ̂(1)
ss (p |p0) =

ês(p) · ês(p0) + ρ
(0)
ss (p0) ês(p) · ês(p0)

ês(p) · ês(p)
=

ês(p) ·E(0)
1,s(p0)

ês(p) · ês(p)
(10.6a)

ρ̂(1)
ps (p |p0) =

ê+
p,2(p) · ês(p0) + ρ

(0)
ss (p0) ê+

p,2(p) · ês(p0)

ê+
p,2(p) · ê+

p,1(p)
=

ê+
p,2(p) ·E(0)

1,s(p0)

ê+
p,2(p) · ê+

p,1(p)
(10.6b)

ρ̂(1)
sp (p |p0) =

ês(p) · ê−p,1(p0) + ês(p) · ê+
p,1(p0)ρ

(0)
pp (p0)

ês(p) · ês(p)
=

ês(p) ·E(0)
1,p(p0)

ês(p) · ês(p)
(10.6c)

ρ̂(1)
pp (p |p0) =

ê+
p,2(p) · ê−p,1(p0) + ê+

p,2(p) · ê+
p,1(p0)ρ

(0)
pp (p0)

ê+
p,2(p) · ê+

p,1(p)
=

ê+
p,2(p) ·E(0)

1,p(p0)

ê+
p,2(p) · ê+

p,1(p)
(10.6d)

for the reflection amplitudes and

τ̂ (1)
ss (p |p0) = τ (0)

ss (p0)
ês(p) · ês(p0)

ês(p) · ês(p)
=

ês(p) ·E(0)
2,s(p0)

ês(p) · ês(p)
(10.7a)

τ̂ (1)
ps (p |p0) = τ (0)

ss (p0)
ê−p,1(p) · ês(p0)

ê−p,1(p) · ê−p,2(p)
=

ê−p,1(p) ·E(0)
2,s(p0)

ê−p,1(p) · ê−p,2(p)
(10.7b)
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τ̂ (1)
sp (p |p0) = τ (0)

pp (p0)
ês(p) · ê−p,2(p0)

ês(p) · ês(p)
=

ês(p) ·E(0)
2,p(p0)

ês(p) · ês(p)
(10.7c)

τ̂ (1)
pp (p |p0) = τ (0)

pp (p0)
ê−p,1(p) · ê−p,2(p0)

ê−p,1(p) · ê−p,2(p)
=

ê−p,1(p) ·E(0)
2,p(p0)

ê−p,1(p) · ê−p,2(p)
(10.7d)

for the transmission amplitudes. Here we have defined the total zero order field amplitudes in
media 1 and 2, for s- and p-polarized incident light, as

E
(0)
1,s(p0) =

[
1 + ρ(0)

ss (p0)
]

ês(p0) (10.8a)

E
(0)
1,p(p0) = ê−p,1(p0) + ρ(0)

pp (p0) ê+
p,1(p0) (10.8b)

E
(0)
2,s(p0) = τ (0)

ss (p0) ês(p0) (10.8c)

E
(0)
2,p(p0) = τ (0)

pp (p0) ê−p,2(p0) . (10.8d)

The factorization suggested by Eq. (10.5) is very similar to that given by Eq. (10.4) for scalar
waves. We have already discussed the factor (α1(p)− α2(p)) ζ̂(p−p0) for scalar waves and it
keeps its interpretation for electromagnetic waves. The difference between electromagnetic and
scalar waves reside in the last factor, ρ̂(1)(p |p0) and τ̂ (1)(p |p0) respectively for the reflection
and transmission amplitude. In the case of scalar waves, the last factor encoded the state of
the scalar zero order field. The factors ρ̂(1)(p |p0) and τ̂ (1)(p |p0) also encodes the state of the

electromagnetic zero order field. Indeed this is readily seen from Eq. (10.8) where E
(0)
j,β(p0) is the

sum of the β-polarized unit incident (if j = 1) field amplitude and the corresponding zero order

scattered field. We will hence call E
(0)
j,β(p0) the total zero order field amplitude. What is even

more interesting now, compared to the case of scalar waves, is that the amplitudes ρ̂(1)(p |p0)
and τ̂ (1)(p |p0) also depend on p and not only on p0. By a close inspection of the expressions
given in Eqs. (10.6) and (10.7), we note that all these amplitudes can be written as

x̂
(1)
αβ(p |p0) =

êax
α,j̄x

(p) ·E(0)
jx,β

(p0)

êax
α,j̄x

(p) · êaxα,jx(p)
(10.9)

with x = ρ or τ , jx = 1 or 2, and ax = ± respectively for x = ρ and x = τ , and j̄x = 1 if jx = 2
and j̄x = 2 if jx = 1. We also adopt the convention that êas,j(p) = ês(p) independently of j
and a. Stated in a sentence, the amplitude is given by the the total zero order field amplitude
projected on the Snell-conjugate polarization vector of the measured polarization normalized by
the similar projection as if the total zero order field were replaced by the measured polarization
vector. The normalization can be puzzling at first, so let us start by interpreting the numerator

in some particular cases. In the case of s→ s reflection we have that ρ̂
(1)
ss (p |p0) is proportional

to ês(p) ·E(0)
1,s(p0). This seems quite intuitive, since it means that the probability of scattering

to a s-polarized wave with wave vector p is proportional to the projection of the zero order
field along the outgoing polarization state vector. Consider now the first order reflection

amplitude ρ̂
(1)
pp (p |p0). It is proportional to ê+

p,2(p) ·E(0)
1,p(p0), which means that the probability

for scattering to a p-polarized wave with wave vector p is proportional to the projection of the
zero order field along the polarization vector of the Snell-conjugate wave (ê+

p,2(p)) associated

with the outgoing polarization vector (ê+
p,1(p)). This is slightly less intuitive than the s → s

case. What this means is that, in virtue of Ewald’s interpretation discussed for the Fresnel
amplitudes, it is the Snell-conjugate wave that controls the polarization coupling. This fact is
the analogue of what we found for the reflection of a p-polarized wave at a planar interface,
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Eq. (10.2b). For s-polarized waves, this interpretation still holds since Snell-conjugate pairs
always have the same s polarization vector.

Let us attempt to summarize the overall interpretation of the first order amplitudes for
electromagnetic waves as we did for scalar waves in a few sentences. The first order reflection
and transmission amplitudes for polarized waves are the product of a common probability
amplitude for a single change of in-plane momentum from p0 to p, which is of a scalar nature,
with a probability amplitude for a polarization coupling between the outgoing wave and the
zero order state. The latter probability amplitude for polarization coupling, i.e. to scatter to a
α-polarized wave with in-plane wave vector p from an incident β-polarized wave with in-plane

wave vector p0, is proportional to the projection coefficient of the total zero order field E
(0)
jx,β

(p0)
along the polarization vector of the Snell-conjugate wave associated with the measured wave.

The following subsections aim at analyzing the consequences of the aforementioned amplitudes.
We explain the physics of the Yoneda ring phenomenon which is of a scalar nature and is easily
explained in terms of coupled modes. We will also analyze in detail the Brewster scattering
phenomenon which is a generalization of the Brewster phenomenon for a planar interface, by
giving a simple geometrical interpretation and a clear intuitive picture in terms of oscillating
dipole radiation. Finally, we will predict a new effect, that of a circularly polarized Brewster
scattering which occurs when the zero order wave undergoes total internal reflection. The
physical mechanism will be clearly identified as linked to the radiation of rotating dipoles. The
discussion on the radiation of an oscillating and of a rotating dipole in free space given in
Section 1.3 will be particularly helpful.

10.1.2 Yoneda ring

The first phenomenon to be studied in terms of the first order reflection and transmission
amplitudes is the so-called Yoneda ring phenomenon. A Yoneda ring is a ring of enhanced
intensity for the diffusely scattered light which is observed when the light is observed in the
denser medium. One also find the terms Yoneda peaks when one consider a cut of the intensity
of the diffusely scattered light in the plane of incidence. The peaks or ring, are named after
Y. Yoneda who first observed an ”anomalous surface reflection” (abbreviated A.S.R) in the
scattering of X-rays on different types of samples with refractive index less than unity1 [90]. The
experimental investigation carried out by Yoneda was remarkably complete on many aspects.
Despite the beliefs of the time that only a specular reflection of X-rays could be observed, Yoneda
managed, with an improved setup compared to those used at the time, to demonstrate that an
off-specular peak is also present at large scattering angles (i.e. nearly grazing). Yoneda then
studied thoroughly, (i) the wavelength of the anomalous peak signal, (ii) the angular position
of the peak and its relative intensity as the angle of incidence is varied, (iii) the position of the
anomalous peak as the wavelength is varied, and (iv) this for different materials. In addition,
(v) the influence of surface roughness on the intensity of the specular and anomalous peak was
studied. This extensive study, which is summarized in a paper of barely five pages, shows the will
of the author to understand the origin of the phenomenon as well summarized by the sentence
”the ultimate solution of this problem involves the intrinsic mechanisms of A.S.R., which are
not known at present.”, as written by Yoneda [90]. The experimental study, in fact, gave all
the characteristic features of the anomalous peak and all the keys to understand the underlying
mechanism. Let us summarize some of the key points observed by Yoneda:

1This is of importance here since it means that the medium of reflection is the denser one.
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i The wavelength of the anomalous peak is the same as the wavelength of the incident beam.

ii As the angle of incidence is varied, the angle of reflection of the specular peak varies
accordingly (Snell’s law) but the angular position of the anomalous peak is unchanged.
Only the relative intensity is varied. The closer the specular peak is to the anomalous
peak the larger the intensity of the anomalous peak.

iii The angular position of the anomalous peak depends on the wavelength.

iv The angular position of the anomalous peak depends on the material.

v As the surface is deteriorated by etching, the intensity of the specular intensity decreases
while the intensity of the anomalous peak increases.

Yoneda also identified that there may be a link between the position of the anomalous peak
and the type of atoms constituting the material, and made a remark on the potential role
of valence electrons. Let us comment each of the result obtained by Yoneda in a somewhat
detective fashion and in light of the theory developed in this thesis. The first observation made
by Yoneda is that the wavelength of the anomalous peak is the same as the wavelength of the
incident beam (i). This strongly suggests that the effect is linear, and can be understood from
a linear theory of the response of the material (which is what we are using in this thesis).
On the angular position of the anomalous peak, we know that it is independent of the angle
of incidence and characterized by the wavelength and material (ii-iv). Here we would like to
note that it may not be obvious from Yoneda’s experiment that the wavelength dependence is
decoupled from the material dependence. Indeed, the bulk response of a material in principle
depends on the wavelength. Hence, we can assume that the position depends on the dielectric
function (which is frequency dependent) but not necessarily on the wavelength itself. Finally,
and of crucial importance, the intensity of the anomalous peak is increased as the surface
becomes rougher (v) which indicates that the underlying mechanism can be looked for in terms
of scattering by the surface.

The Yoneda anomalous surface reflection have been investigated in subsequent works for X-rays
scattering from metallic [90, 91, 92, 93, 94, 95] and non-metallic [96, 97, 98, 99] surfaces.
The scattering of neutrons from a rough surface was also investigated theoretically by Sinha
et al [92]. The possibility of the existence of the Yoneda phenomenon at optical frequency
was first described in a paper by Nieto-Vesperinas and Sánchez-Gil [100], who observed
numerically the presence of “sidelobes” in the angular intensity distributions of light scattered
by a one-dimensional dielectric surface. Such side lobes were also shown to be present in
the numerical investigation of light scattering from two-dimensional dielectric surfaces carried
out by Kawanishi et al. [101] and was qualified as ”quasi-anomalous scattering peaks ”. In
particular, Kawanishi et al. showed that the Yoneda peaks could be observed both in reflection
and transmission depending on whether the light was incoming from the optically denser or
less dense medium. They also observed what they called, the Brewster scattering phenomenon,
which is a zero, or near zero of intensity in the diffusely scattered light for p-polarization. The
explanation suggested by the authors was that the effects could be related to the excitation
of resonant surface waves, hence implicitly requiring a multiple scattering picture. Paper [1]
gives, to the best of our knowledge, the first experimental demonstration of the existence of the
Yoneda ring at optical frequency, corroborated with numerical simulations based on the reduced
Rayleigh equations and small amplitude perturbation theory expanded to first order in the
surface profile [1, 45, 46]. The fact that a single scattering theory, such as SAPT to first order,
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θi = 30°                                             θi = 41°                                                      θi = 44°

Figure 10.1: Snapshots of a red laser beam (λ = 632.8 nm) reflected diffusely in glass from a
rough interface and projected onto a screen for different angles of incidence θ0 ∈ {30◦, 41◦, 44◦}.
The specular direction is given by the bright spot and the Yoneda ring is well visible at an angle
of reflection around 41◦. The experimental set-up is similar to the one used in Paper [1] but for
a sample with estimated rms-roughness σ ≈ 20 nm and correlation length a ≈ 7 µm. Courtesy
of A. K. González-Alcalde and E. R. Méndez.

catches the Yoneda phenomenon consequently questioned the speculated explanation based on
the excitation of resonant surface waves. Paper [2] aims at giving a clear physical explanation
of the Yoneda phenomenon within a single scattering picture, and shows the intrinsically scalar
wave essence of the mechanism (i.e. that polarization is not required to explain it). We expose
this theory in the following.

First, as an illustration of the Yoneda phenomenon in optics, Fig. 10.1 shows snapshots of a
scattering experiment generously provided by A. K. González-Alcalde and E. R. Méndez. The
set-up is similar to the one used in Paper [1]. A thin rough dielectric film is deposited on a
glass sample to which is attached a hemispherical glass cap. The laser beam is incident on the
cap, normally to the surface of the hemisphere, but making an angle of incidence with the rough
interface. The cap is necessary to keep the angular distribution of the reflected light from the
rough surface as it is inside the glass when it is finally exiting the cap. Without the cap, the
light scattered above the critical angle for total internal reflection inside the glass cannot escape
the sample and the Yoneda phenomena is not observable. We can clearly observe in Fig. 10.1
that the scattered light projected onto a screen exhibits a fixed ring, defined by a constant polar
angle of scattering independent of the angle of incidence and above which the intensity of the
diffusely scattered light is enhanced. This is the Yoneda phenomenon. Let us now turn to some
theoretical curves. When the diffusely scattered intensity is measured as a function of the angle
of scattering in the plane of incidence the Yoneda effect is identified as two peaks symmetrically
positioned from the normal to the average plane (i.e. it is a cut of the two-dimensional ring in
the full angular distribution of the MDRC or MDTC). A characteristic property of the Yoneda
ring, is that the polar angle of scattering at which it is observed is independent of the angle
of incidence, but only depends on the dielectric constants of the media. The top panels of the
subfigures in Figs. 10.2–10.4 show the diffuse component of the MDRC and MDTC as a function
of the in-plane wave vector and as a function of the angle of scattering (double axis) for different
angles of incidence and in both cases where the incident wave is impinging from the vacuum
side or the glass side. Focusing our attention on s-co-polarized scattering, we can observe that
when the incident wave impinges from the vacuum side, sharp peaks are observed in the MDTC
at p1 = ±ω/c for normal incidence in Fig. 10.2(d), and that these peaks remain at the same
positions as the angle of incidence is increased, although the overall weight of the distribution
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is shifted towards higher angles of scattering (see Figs. 10.2(e) and 10.2(f)). A similar behavior
is observed for the reflected light in the case of reflection in the denser medium as can be
readily seen in Figs. 10.3(a-c) and 10.4(a-c). A point worth noticing from Figs. 10.2–10.4 is that
the positions of the peaks for the light scattered in the dense medium always corresponds to
|p1| = nmin ω/c (nmin = 1 in our examples), i.e. the value of the in-plane wave vector above
which a wave scattered with |p | > nmin ω/c becomes evanescent in the less dense medium. This
can be readily seen from the fact that the MDRC or MDTC becomes identically zero beyond
this threshold. Turning now to p-polarized light, the same observation can be made, up to
one small difference. At normal incidence, a zero of intensity is observed instead of a peak
at p1 = ±nminω/c. As the angle of incidence is progressively increased, the zero of intensity
shifts position and the Yoneda peaks can also be observed for p-polarized light. This zero of
intensity for p-polarized light is known as the Brewster scattering effect and will be studied in
details in Section 10.1.3. This effect is characteristic of polarized waves while the Yoneda effect
is fundamentally of a scalar nature, and the effects are decoupled from each other. The fact that
the Brewster scattering angle coincides with the critical angle of the Yoneda phenomenon for
normal incidence can be taken as a simple coincidence for the time being and will be clarified
later.

Let us analyze in more detail the behavior of the first order reflection and transmission ampli-
tudes as the in-plane wave vector of scattering p is progressively increased. As an illustration
of the discussion, the reader may find helpful to follow at the same time the different subfigures
in Fig. 10.5 which illustrate the different configurations for the scattered mode as p is increased
(Figs. 10.5(a-c)) together with the behavior of the factor (α1 − α2)c/ω in the complex plane
(Fig. 10.5(d)). The scalar reflection and transmission amplitudes are given by Eq. (10.4) and
we have already mentioned that the whole p-dependence is encoded in the linear approximation
of the phase factor (α1(p) − α2(p)) ζ̂(p−p0). Since the intensity ring is observed on average
over realizations of the surface profile, it is more precisely the factor (α1(p) − α2(p)) which
is of interest. Hence we can assume for the sake of simplicity that |ζ̂| varies slowly. First for
|p | < pc, both the elementary reflected and transmitted waves propagate away from the surface
(see Fig. 10.5(a)), and we have that both α1(p) and α2(p) are real. As |p | → pc from below,
αmin(p) → 0 and α1(p) − α2(p) → ±αc, with αc =

√
εmax − εmin ω/c being a critical out-of-

plane component of the wave vector of scattering in the medium of propagation for a critical
mode characterized by |p | = pc (see the segments on the real line in Fig. 10.5(d) corresponding
to 0 < |p | < pc). By writing p = |p | = pc − ∆p, with ∆p > 0 being a small variation of
in-plane wave vector, we can make an asymptotic analysis of |α1(p) − α2(p)| as p → pc from
below (∆p→ 0). In this way, we obtain

|α1(p)− α2(p)| c
ω

= [αmax(p)− αmin(p)]
c

ω

= [εmax − (p̃c −∆p̃)2]1/2 − [εmin − (p̃c −∆p̃)2]1/2

= [εmax − εmin + 2ε
1/2
min∆p̃−∆p̃2]1/2 − [2ε

1/2
min∆p̃−∆p̃2]1/2

= αc
c

ω
− [2ε

1/2
min∆p̃]1/2 + o(∆p̃1/2) . (10.10)

We have chosen here to work with unit-less quantities and denoted p̃ = p c/ω for conciseness.
It follows from Eq. (10.10) that, as ∆p → 0, |α1(p) − α2(p)| increases towards αc in an
inner-neighborhood of the circle p = pc. Furthermore, the asymptotic expansion reveals that
the critical point will be reached with a sharp edge (infinite slope) for p < pc as can be
deduced from the square root behavior in ∆p. This is indeed what can be observed in the
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Figure 10.2: The diffuse component of the MDRC (top row) and MDTC (bottom row) for light
incident from vacuum (ε1 = 1.0) onto a randomly rough interface with glass (ε = 2.25) as a
function of the in-plane wave vector and the angle of scattering for co-polarized scattering in the
plane of incidence (top panel). The polar angle of incidence is indicated on top of each subfigure.
The corresponding average phase of the reflection and transmission amplitudes is indicated in
the middle panel, while the modulus of the amplitudes is given in the bottom panel. Note
that evanescent modes are also represented. We adopt the convention θr,t > 0 for an azimuthal
angle of scattering φ = 0◦ (forward scattering) and θr,t < 0 for an azimuthal angle of scattering
φ = 180◦ (back scattering). Figure taken from Paper [2].

panels corresponding to |ρ(1)
αα| and |τ (1)

αα | in Figs. 10.2-10.4. Note that this behavior is the
same both for the reflection and transmission amplitudes independently of which medium is
denser. This illustrates the fact that the two waves are part of the same mode. However, as
the wave propagating in the less dense medium becomes a grazing wave, the corresponding
differential scattering coefficient is forced to vanish due to the angular dependence in cos2 θs
(θs = θr or θt depending on the context). The modulus of the complex amplitude is nevertheless
enhanced for both the reflected and transmitted wave. This is illustrated for example in
Figs. 10.2(a) and 10.2(d), which corresponds to a case for which the medium of incidence is
vacuum. From the results presented in these figures, we can see that while the incoherent
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Figure 10.3: Same as Fig. 10.2, but for light incident from glass (ε1 = 2.25) onto a randomly
rough interface with vacuum (ε = 1.0). Figure taken from Paper [2].

component of the MDRC is forced to go to zero when p1 → pc = ω/c, the surface-independent

factor of the reflection amplitude ρ
(1)
ss exhibits a sharp increase in modulus. Simultaneously,

the surface-independent factor of the transmission amplitude τ
(1)
ss also exhibits a similar sharp

increase in modulus as p1 approaches pc. Consequently, since the wave can propagate away
from the surface in the second medium (which consists of glass in this specific case), the
corresponding incoherent component of the MDTC exhibits a similar increase. A physically
intuitive picture for the enhancement of intensity in the denser medium is the following: We
can imagine that there is a certain amount of power allocated to the mode characterized by
the in-plane wave vector p. When both the reflected and transmitted wave may propagate to
infinity, they can share the total power allocated to the mode and transport their share of the
power away from the surface. As the wave component of this mode in the less dense medium
becomes evanescent, it is the role of the wave that can propagate in the denser medium to
radiate away the whole power allocated to the mode. Note that both the phases associated

with ρ
(1)
ss and τ

(1)
ss remain constant and equal to 0 for p1 < pc for all θ0 in Fig. 10.2, since

the complex amplitude stays on the real line in the case where ε1 < ε2 independent of the
angle of incidence. Figures 10.3 and 10.4 support the same conclusion but by interchanging

the role of the media. The only difference worth noting is that the phases φ
r,(1)
ss and φ

t,(1)
ss
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Figure 10.4: Same as Fig. 10.3, but for additional polar angles of incidence θ0. Figure taken
from Paper [2].

have a constant plateau for p1 < pc which is equal to 0 only for θ0 < θc. The plateau is
offset for θ0 > θc. This overall phase offset is due to the Goos-Hänchen phase shift associated
with total internal reflection of the zero order wave (see the corresponding discussion in
the previous section). Indeed, recall that the first order amplitudes are proportional to the
total zero order field amplitudes (see Eq. 10.4). Therefore, if the zero order waves exhibit a
phase shift, it will affect the first order amplitudes in the form of a constant phase offset for all p.

When |p | > pc, αmin becomes pure imaginary and α1(p) − α2(p) thus moves off the real line.
For pc < |p | < nmaxω/c, the wave in the less dense medium is evanescent and the wave in the
denser medium is progressive (see Fig. 10.5(b)). In this regime, α1(p)−α2(p) keeps a constant
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Figure 10.5: Illustration of the nature of the scattered couple mode in blue as the in-plane wave
vector of scattering p = p ê1 is progressively increased and exhibit the Yoneda peak transition.
In the figure, ε1 < ε2 is assumed. (a) In-plane wave vector of scattering below the Yoneda
threshold, p < pc, the reflected and transmitted components of the coupled mode propagate
away from the surface. (b) In-plane wave vector of scattering equal to the Yoneda threshold,
p = pc, the reflected component of the coupled mode becomes evanescent and the transmitted
component propagates away from the surface. (c) In-plane wave vector of scattering above
the propagation threshold in both media p > nmax ω/c, both the reflected and transmitted
components of the coupled mode are evanescent. (d) Path taken by (α1(p) − α2(p))c/ω as p
goes from 0 to ∞.

modulus equal to αc. Indeed, by writing αmin(p) = iβmin(p) we have

|α1(p)− α2(p)| = |αmax(p)− iβmin(p)|

=
[
α2

max(p) + β2
min(p)

]1/2

=
[
εmax − | p̃ |2 + | p̃ |2 − εmin

]1/2 ω

c
= αc . (10.11)

The complex number α1(p) − α2(p) thus traces a circular arc of radius αc in the complex
plane (see corresponding circular arcs in Fig. 10.5(d)). Finally, when |p | > nmax ω/c, both
the reflected and transmitted waves are evanescent, αmax becomes pure imaginary and hence
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Figure 10.6: Diffraction efficiency of the reflected and transmitted (1, 0) order for p- and s-
polarized waves for a set of one-dimensional sinusoidal gratings with small amplitude and with
varying lattice constant (ε1 = 2.25, ε2 = 1). The efficiencies are plotted as a function of the
angle of reflection of the θ(1,0) of the first diffracted order which is parametrized by the lattice
constant.

α1(p)−α2(p) moves along the imaginary axis (see corresponding segments on the imaginary line

in Fig. 10.5(d)). The constant value of |ρ(1)
ss | and |τ (1)

ss | in the regime nmin ω/c < p < nmax ω/c
can be appreciated for all angles of incidence illustrated in Figs. 10.2 – 10.4, while the phases
exhibit a smooth variation from their plateau value and decay by a total amount of −π/2 when
reaching p1 = nmax ω/c. Once the threshold of nmax ω/c has been passed, the phases remain
constant and the modulii decay towards zero which can easily be deduced from the fact that
α1(p) − α2(p) ∼ i(εmax − εmin)ω2/(2 c2p) as p → ∞ (see Fig. 10.5(d)). The phase change
associated with the transition from the real line to the imaginary line in the complex plane is
therefore −π/2. This gradual phase change is similar to that of the Goos-Hänchen phase shift
discussed for the reflection by a planar surface. The difference of absolute total phase change,
of π for the case of the Fresnel amplitude and π/2 in the case of the scattered waves, comes
mathematically from the fact that in the former case the amplitude is written as the ratio of
a complex number and its complex conjugate, while in the latter case there is no such ratio.
The phase consequently turns twice as fast in the former case than in the latter. A physical
interpretation of this difference is that for the Fresnel amplitude both the incident and outgoing
wave vector must vary simultaneously (since they are the same), while in the case of a scattered
wave the incident wave vector is fixed while only the outgoing wave vector is allowed to vary. In
fact, we have only analyzed the phase associated with the factor α1(p) − α2(p) in Eq. (10.4).
The phase of the overall complex amplitude will be the sum of the aforementioned phase, that
given by the argument of ζ̂(p−p0), and the phase given by the argument of the total zero order
amplitude [1 + ρ(0)(p0)] or τ (0)(p0). In particular, if the angle of incidence is such that total
internal reflection occurs for the zero order field, the overall phase of the scattered amplitude will
contain a signature of the Goos-Hänchen phase shift associated with the total internal reflection
of the zero order field in addition to the corresponding Goos-Hänchen phase shift associated with
the Yoneda effect. Note that when averaged over surface realizations, the phase contribution
coming from ζ̂ averages to zero. This supports our choice of limiting the detailed investigation
to the surface-independent factors in Eq. (10.4).
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Remark 10.2. The Yoneda phenomenon for weakly rough surfaces originates from the same
physical mechanism as the Rayleigh anamolies for periodic dielectric gratings. The continuous
set of scattered wave vectors in the case of a randomly rough surface can be viewed as probing
a diffracted order scattered from a periodic surface with continuously changing lattice constant.
It is easy to show numerically and with SAPT to first order, that the behavior of the efficiency
of a given diffractive order as the lattice constant is changed exhibits the same characteristic
peak as the Yoneda peak when its counter part in the less dense medium becomes evanescent.
This is well illustrated in Fig. 10.6 in which the diffraction efficiencies of the first reflected and
transmitted orders are plotted as functions of the angle of reflection as the lattice constant is
varied. The perturbative analysis in the case of a periodic grating is exactly the same as in the
case of a randomly rough surface with the only difference being that p must be replaced by
the in-plane wave vector of the diffractive order of interest and make the lattice constant vary
instead.

10.1.3 Brewster scattering

We can see in Figs. 10.2 – 10.4 that for co-polarized scattering in the plane of incidence, the
diffusely scattered p-polarized light may exhibit a zero of intensity in reflection or transmission
(see the panels corresponding to the MDRC and MDTC in Figs. 10.2 – 10.4) for a wide range of
angles of incidence while s-polarized light has a strictly positive intensity for all angles of scat-
tering. The phenomenon of vanishing of the intensity for p-polarized light is known as Brewster
scattering phenomenon by analogy with the Brewster angle for a planar interface. There are
three points already worth mentioning here based on Figs. 10.2 – 10.4. First, the Brewster scat-
tering angle depends on the angle of incidence. Second, the Brewster scattering phenomenon
may occur both for reflection and transmission. In addition, for a given angle of incidence,
we generally observe that if a Brewster scattering occurs in reflection in the forward scattering
direction, then a Brewster scattering occurs in transmission in the backward scattering direc-
tion (see e.g. Figs. 10.2(c) and 10.2(f)). Third, by considering the reflection and transmission
amplitudes instead of solely considering the intensity, one finds that a zero of amplitude may

be found for evanescently scattered waves (see e.g. |ρ(1)
pp | in Figs. 10.2(a-c)). This suggests to

generalize the concept of Brewster scattering to evanescent waves. Furthermore, we will see later
that, Brewster scattering may also be generalized to other polarizations when the full angular
distribution is considered. The present section aims at explaining all these features based on
the physical interpretation of SAPT to first order in the surface profile given in Section 10.1.1
and to build a physical intuition of the observations based on elementary concepts of oscillating
and rotating dipole radiations presented in Section 1.3, which are the mechanisms at play here.

Scattering in the plane of incidence

We first analyze the case of co-polarized scattering in the plane of incidence.

s-polarized waves – Why does s→ s scattering yield a non-vanishing intensity? We have seen in
Section 10.1.1 that, to first order in the surface profile, the scattering amplitude is proportional
to the projection of the total zero order field amplitude projected on the Snell-conjugate
polarization vector of the measured polarization. In the case of s → s scattering in the

plane of incidence, the reflection amplitude ρ̂
(1)
ss (p | p0) is proportional to ês(p) · E(0)

s,1(p0) (see
Eq. (10.6a)). Since the scattering is in the plane of incidence, we have ês(p) = ês(p0) and
therefore the first order reflection amplitude reduces to that of the scalar wave Eq. (10.4a).
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Consequently, there is no extinction for s→ s scattering in the plane of incidence for any angle
of incidence. The same analysis and conclusion hold for the transmitted s-polarized wave.

p-polarized waves – For p-polarized waves, the first order reflection amplitude is proportional

to ê+
p,2(p) · E(0)

1,p(p0), where we recall that E
(0)
1,p(p0) is the total zero order field amplitude for

an incident p-polarized wave (see Eq. (10.6d)). This is very similar to what was found for the
Fresnel amplitude for p-polarized light in Eq. (10.2b). Indeed, ê+

p,2(p) plays now the role of

ê+
p,2(p0) as the Snell-conjugate polarization vector of the measured wave and E

(0)
1,p(p0) plays the

role of ê−p,1(p0) as the source. Equation (10.6d) thus gives us a simple geometrical criterion for
Brewster scattering within first order perturbation theory:

ê+
p,2(pB) ·E(0)

p,1(p0) = 0 , (10.12)

where pB is an in-plane wave vector that satisfies Eq. (10.12) and hence defines a direction
k+

1 (pB) along which the reflection amplitude vanishes. Stated in a sentence, the criterion reads
as follows.

Criterion of p→ p Brewster scattering in medium 1: The set of lateral wave vectors pB

of the elementary Brewster scattered waves, for which the reflection amplitude for a p-polarized
reflected wave vanishes given a p-polarized incident wave with lateral wave vector p0 are given by
the condition of orthogonality between the p-polarization vector of the Snell-conjugate scattered
waves and the total zero order field in medium 1.

Remark 10.3. Note that there may a priori be several solutions to Eq. (10.12) as we will soon
see. Also, the criterion, Eq. (10.12), for p → p scattering is not restricted to scattering in the
plane of incidence, but is valid for all scattering direction as well as evanescent waves.

A direct consequence of Eq. (10.12) is that for co-polarized scattering in the plane of incidence,
the geometrical condition can be re-stated as a requirement on the colinearity between the
Snell-conjugate wave vector and the total zero order field, which is exactly the same geometrical
criterion found in the case of reflection from a planar interface. A second corollary for scattering
in the plane of incidence is a fixed point property of the function that maps the angle of
incidence to the Brewster scattering angle ΘB : θ0 7→ ΘB(θ0). We find that the Brewster
scattering angle is equal to the Brewster angle for a planar interface when the angle of incidence
is equal to the Brewster angle for a planar interface, θ0 = θB, i.e. ΘB(θB) = θB, where we recall
that θB = arctan(n2/n1). This property is readily understood from the geometrical criterion
expressed by Eq. (10.12). At Brewster incidence, θ0 = θB, the zero order reflected wave
vanishes (by definition of Brewster incidence). Thus the total zero field amplitude is simply

the incident field amplitude, E
(0)
p,1(p0) = ê−p,1(p0), and consequently, the Brewster scatter-

ing angle is necessarily equal to θB since the criterion reduces then to that of the planar interface.

How does the Brewster scattering direction varies with the angle of incidence? We will answer
this question by using the criterion Eq. (10.12) and pure geometrical constructions. Consider
first the case of a wave incident from the less dense medium, for example in vacuum ε1 = 1 and is
reflected after interaction with a glass substrate ε2 = 2.25. Figure 10.7 presents a set of sketches
illustrating the geometrical construction leading to the Brewster direction for different angles
of incidence θ0. The dispersion relations (|k±j | = kj = nj ω/c) giving the set of wave vectors
for progressive waves in the two media are represented as dashed circles. The wave vectors of
the incident and reflected zero order wave, k−1 (p0) and k+

1 (p0), are drawn in black respectively
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Figure 10.7: Illustration of the geometrical criterion for in-plane Brewster scattering for different
polar angles of incidence (a-d). The dashed circles represent the norm of the full wave vectors,
given by the dispersion relations, in vacuum (ε1 = 1 inner circle) and glass (ε2 = 2.25 outer
circle). The black arrows represent respectively the incident wave vector k−1 (p0), which is drawn
as pointing towards the origin for clarity, and the wave vector of the reflected zero order wave,
k+

1 (p0). The blue arrow represents the wave vector of the virtual wave, k+
2 (pB), from which

the in-plane wave vector of the Brewster wave, pB, is deduced by projection along ê1. From
pB, the full wave vector for the Brewster wave, k+

1 (pB), can be drawn (provided propagation
in medium 1) as a red arrow. Note that if the Brewster wave is evanescent, only pB is draw in
red as the out-of-plane component of k+

1 (pB) is purely imaginary. The red dashed line indicate
the Brewster angle for a planar surface approximately equal to 56.3◦ in this case. Figure taken
from Paper [2].

pointing towards the origin and pointing outwards. Finally, with the intention of illustrating
the fixed point property of the Brewster angle at θ0 = θB, the direction corresponding to the
wave vector of the zero order non-reflected wave under Brewster incidence is indicated as the
red dashed line. The construction steps leading to the Brewster direction in Fig. 10.7 are the
following:

1 The wave vectors of the incident and the reflected zero order waves are drawn in black.

2 The direction of the total zero order field given by Eq. (10.8b) is determined (not repre-
sented) and the wave vector of the virtual wave colinear to the total zero order field, is
drawn as the blue wave vector k+

2 (pB). Note that the direction of the total zero order field
may be constructed geometrically as explained in details in Ref. [102], but we skip these
steps for simplicity.

3 The wave vector k+
2 (pB) lies on the circle of radius n2ω/c. Its projection along ê1 gives

the Brewster lateral wave vector pB from which we deduce k+
1 (pB) in red. Or equivalently,

we project k+
2 (pB) on the circle of radius n1ω/c along ê3. Note that the reflected wave

associated with k+
1 (pB) may be evanescent, and in that case we simply represent its lateral

component pB as its component along ê3 is pure imaginary.

For normal incidence, the total zero order electric field, and consequently k+
2 (pB), is aligned

with the ê1 direction as illustrated in Fig. 10.7(a). This particular case yields a degeneracy
for the in-plane Brewster wave vector pB. Indeed, for k+

2 (pB) along ê1 there are two solutions
to the Brewster criterion in the plane of incidence given by p1 = ±n2 ω/c. Only the one
pointing to the right is represented in Fig. 10.7(a) for clarity. Since n1 < n2, it follows that
|pB | > n1 ω/c and the corresponding Brewster (non-) reflected wave is evanescent. This is of



i
i

“report” — 2018/9/20 — 10:11 — page 243 — #265 i
i

i
i

i
i

10.1. Scattering by a dielectric interface 243

-1.5 -1 -0.5 0 0.5 1 1.5

p1[ω/c]

-1.5

-1

-0.5

0

0.5

1

1.5

k
3
[ω
/
c
]

(a) θ0 = 0
◦

-1.5 -1 -0.5 0 0.5 1 1.5

p1[ω/c]

-1.5

-1

-0.5

0

0.5

1

1.5

(b) θ0 = 35
◦

-1.5 -1 -0.5 0 0.5 1 1.5

p1[ω/c]

-1.5

-1

-0.5

0

0.5

1

1.5

(c) θ0 = 41.81
◦

k−

1
(p0)

k±

1
(p0) k+

1
(pB)

k+

1
(p0)

k+

2
(pB)

k−

1
(p0)

k+

1
(pB) k

+

2
(pB)

k+

1
(p0)

Figure 10.8: Illustration of the geometrical criterion for in-plane Brewster scattering for different
polar angles of incidence (a-c). The dashed circles represent the norm of the full wave vectors,
given by the dispersion relations, in glass (ε1 = 2.25 inner circle) and vacuum (ε2 = 1 outer
circle). The black arrows represent respectively the incident wave vector k−1 (p0), which is drawn
as pointing towards the origin for clarity, and the wave vector of the reflected zero order wave,
k+

1 (p0). The blue arrow represents the wave vector of the virtual wave, k+
2 (pB), from which

the in-plane wave vector of the Brewster wave, pB, is deduced by projection along ê1. From
pB, the full wave vector for the Brewster wave, k+

1 (pB), can be drawn (provided propagation in
medium 1) as a red arrow. Note that if the Brewster wave is evanescent, only pB is drawn in
red as the out-of-plane component of k+

1 (pB) is purely imaginary. The red dashed line indicates
the Brewster angle for a planar surface, approximately equal to 33.7◦ in this case. Figure taken
from Paper [2].

course not visible when considering the incoherent component of mean differential reflection

coefficient but it can be seen by inspection of the modulus of the amplitude, ρ
(1)
pp , in Fig. 10.2(a).

There, we can readily observe that ρ
(1)
pp vanishes at p1 = ±n2 ω/c. Correspondingly, the phase

φ
r,(1)
pp exhibits a jump which is characteristic of the Brewster effect. In this degenerate case,

the phase jump is equal to π/2, while in general (non degenerate case) a π phase jump is
observed. The π/2 phase jump seems to occur only in the degenerate case, which as far as we
could see, only occur at normal incidence for this system. As the polar angle of incidence is
progressively increased, the direction of the total zero order field varies, and so does the wave
vector of the Brewster Snell-conjugate wave which is now found to be unique for scattering
in the plane of incidence. Figure 10.7(b) illustrates the case where θ0 = 35◦, where we notice
that the projection of k+

2 (pB) along ê1 still leads to an evanescent Brewster wave. The lateral
wave vector is nevertheless closer to the propagation limit in medium 1. The corresponding

reflection amplitude is plotted in Fig. 10.2(b), where we can observe that ρ
(1)
pp vanishes for p1

just above n1 ω/c, and that the phase exhibits a π jump. By further increasing the polar angle
of incidence the Brewster wave is found in the propagating region as |pB | < n1 ω/c. Its full
wave vector, k+

1 (pB), can now be represented as following the inner dashed circle as illustrated
in Fig. 10.7(c) for θ0 = 50◦. When the polar angle of incidence approaches the Brewster angle
of incidence, θ0 → θB, the wave vector associated with the reflected zero order wave, k+

1 (p0),
and the wave vector of the Brewster scattered wave, k+

1 (pB), respectively drawn in black and
red in Fig. 10.7(c), approach the red dashed line from either sides. At the Brewster incidence,
θ0 = θB, the two wave vectors are equal, k+

1 (pB) = k+
1 (p0), and are aligned with the red dashed

line as explained previously. Figure 10.7(c) shows the case where θ0 = 50◦ at a slightly lower
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angle than the Brewster angle of incidence (approximately equal to 56.3◦), i.e. just before
the cross-over. By increasing further θ0, the lateral component of the Brewster wave vector
continuously decreases. The case for θ0 = 70◦ is illustrated in Fig. 10.7(d). The Brewster wave

is well inside the propagating region as can be seen both from ρ
(1)
pp and the extinction of the

incoherent component of the MDRC in Fig. 10.2(c). Also observe the π jump in the phase.
Eventually, as the polar angle of incidence approaches 90◦, the wave vector k+

2 (pB), does not
approach the vertical direction as one might naively expect. One must remember that the total
zero order field does not become oriented along ê3 but along the direction given by the critical
angle for total internal reflection.

Consider now the configuration in which the incident wave approaches the surface in the optically
denser medium (e.g. ε1 = 2.25 and ε2 = 1). As for the previous configuration, the total zero
order field is along ê1 for normal incidence. Hence the existence of two Brewster waves in
the plane of incidence. However, the norm of the Snell-conjugate wave vectors are now such
that k2 < k1 and the corresponding wave vectors are situated on the inner circle (ε2 = 1).
Consequently, in virtue of the geometry imposed by the dispersion relations, the wave vectors
k+

1 (±pB) correspond to propagating waves in glass, and coincide with the Yoneda threshold.
This situation is shown in Fig. 10.8(a) and Fig. 10.3(a). The coincidence of the Yoneda critical
angle and the Brewster scattering angle for reflection in the optically denser medium for normal
incidence is now explained. Although the two effects are of different nature and decoupled,
they occur simultaneously in this case as a simple consequence of the geometry imposed by the
dispersion relations. Our analysis rules out the speculated explanation involving the excitation
of a resonant surface wave found in the literature [101]. By increasing the angle of incidence,
only one Brewster wave remains with a shrinking lateral wave vector (see Fig. 10.8(b) and
Fig. 10.3(b)). As in the previous configuration, the wave vectors of the reflected zero order
wave, k+

1 (p0), and of the Brewster wave, k+
1 (pB), cross each other at the Brewster angle of

incidence (≈ 33.7◦). We now discover an interesting effect which was not present when the
wave was incident from the less dense medium. As the polar angle of incidence approaches the
critical angle of total internal reflection of the zero order reflected wave, θ0 = θc, both the Snell-
conjugate wave vector and the Brewster wave vector approach the vertical direction and reach
it for θ0 = θc. This situation is illustrated in Fig. 10.3(c). When θ0 is increased beyond θc a
sudden transition occurs. Let us come back to Fig. 10.4(a), where the reflection amplitudes and
incoherent component of the MDRC are shown for an angle of incidence just above the critical
angle. It seems that the Brewster scattering angle is nowhere to be found, and comparing with
Fig. 10.3(c), the curve of the modulus of the reflection amplitude seems to detach from the
abscissa axis. The Brewster scattering angle, however, comes back from the backscattering side,
visible in the evanescent region of Fig. 10.4(c) where the polar angle of incidence is 70◦. Let us
explain this curious behavior. The overall behavior of the phase in Figs. 10.4(a)–(c) gives us a
good hint. We have mentioned earlier that for s-polarized light, when the zero order reflected
wave undergoes total internal reflection, the phase must undergo a Goos-Hänchen shift with θ0.
This also holds for the p-polarized zero order reflected wave, and consequently the two terms
in Eq. (10.8b) are not any longer in phase. In the configuration where ε1 < ε2, the arguments
of the two complex amplitudes in Eq. (10.8b) are always either in phase or are separated by a
phase difference of π. Therefore, as time progresses, the real part of the total zero order field
keeps a fixed direction. In the configuration where ε1 > ε2, the Goos-Hänchen phase shift makes
the real part of the total zero order field change direction and turn in the plane of incidence as
time progresses (it describes an ellipse). This indicates that the corresponding dipole radiation
associated with the microscopic scatterers is not expected to be that of an oscillating dipole
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anymore but that of a rotating dipole. Equivalently, we can say that the reflection amplitude of

the zero order wave, ρ
(0)
pp , draws a lower half circle in the complex plane from 1 to −1 as the angle

of incidence is varied from the critical angle to 90◦ for the configuration ε1 > ε2, while it stays

on the real line for ε1 < ε2. It follows that E
(0)
p,1(p0) has a complex amplitude with a non-zero

imaginary part. Therefore, a propagating Snell-conjugate wave cannot satisfy the requirement
of Eq. (10.12) since its p-polarization vector would be real. In order to satisfy Eq. (10.12) the
polarization vector ê+

p,2(pB) must itself be complex (with a non-zero imaginary part), and the
Snell-conjugate wave is naturally to be expected in the evanescent region of medium 2. This
is the reason why the lateral wave vector of the Brewster scattering wave seems to disappear
at the transition θ0 = θc + ∆θ0 and then comes back from the negative p1 side as the angle of
incidence is increased, revealing that the Snell-conjugate wave is evanescent.

Remark 10.4. Note that according to the definition of a polarization vector for a p-polarized
wave, ê±p,j(p), given in Eq. (1.32d), the corresponding wave takes an interesting structure when
it is evanescent. For an evanescent wave, αj(p) is pure imaginary and the polarization vector
ê±p,j(p) hence has a real component along ê3 and a pure imaginary component along p. The
wave is then transverse in the sense of the complex vectors, but not in terms of their real parts.
Indeed, the corresponding real electric field is then the sum of a wave polarized along ê3 and
a longitudinal wave (longitudinal with respect to the lateral wave vector i.e. the real part of
the wave vector) dephased by π/2 radians with respect to the first wave. The resulting field
therefore describes an ellipse in the (ê3, p̂)-plane.

In-plane transmission — The analysis for the Brewster scattering effect for the transmitted
waves is similar to that for the reflected waves. The analysis is left to the reader. One difference
worth mentioning, however, is that the Brewster scattering direction is generally found in the
backscattering region when the corresponding Brewster scattering for reflection is found in the
forward scattering direction. Intuitively, this effect can be related to the emission of an oscillating
dipole which yields zero emitted power along the direction of oscillation, hence producing two
antipodal zero intensity points when the intensity is mapped onto a sphere (for a free dipole see
e.g. Fig. 1.6(a)). The dipolar nature of the radiation will be clearly apparent when considering
the full angular scattering distribution in the next section.

Scattering in all directions

p-polarized Brewster scattering — The full angular distributions of the diffuse component of
the MDRC and MDTC, for normal incidence and the parameters assumed in Figs. 10.2(a) and
10.2(d), are presented in Fig. 10.9. The lower left 2 × 2 panels in each collection of panels
in Fig. 10.9 exhibit a pattern which is reminiscent of the polarization pattern of the dipole
radiation in free space discussed in Section 1.3 in the case when the dipole oscillates in the
(ê1, ê2)-plane (see Fig. 1.6(c)). Indeed, for normal incidence, the zero order waves and the
incident wave have an oscillating electric field either along ê1 for p polarization or along ê2 for
s polarization. Consequently, the dipoles in the media also oscillate along the direction of the
incident field. In the case of an s-polarized wave (field along ê2) we have seen in Section 1.3
that the dipole radiation in free space yields zero s-polarized emission in the (ê2, ê3)-plane and
an overall | sin(φ − π/2)| intensity, which is consistent with what is observed in Fig. 10.9(f).
In fact, for a fixed polar angle of reflection θr, the variation along the azimuthal angle φ of
the incoherent component of the MDRC to lowest non-zero order in the surface roughness for

s→ s polarized scattering is exactly proportional to | sin(φ− π/2)| since ρ
(1)
ss is proportional to

ês(p) · ês(p0), as can be seen from Eq. (10.6a), and this is the only φ dependence for normal
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Figure 10.9: The full angular distribution of the incoherent component of the MDRC/MDTC,
〈∂Xαβ/∂Ωx〉incoh for X = R or T , in the p-plane of the light that is scattered from a rough
interface where the angle of incidence θ0 = 0◦. The positions of the specular directions in
reflection and transmission are indicated by white dots. The physical parameters were identical
to those assumed in obtaining the results of Fig. 10.2. The sub-figures in Figs. 10.9(a)–(i) and
10.9(j)–(r) are both organized in the same manner and show how incident β-polarized light is
scattered into α-polarized light (α, β ∈ {p, s}) and denoted β → α. Moreover, the notation
◦ → ? is taken to mean that the incident light was unpolarized while the polarization of the
scattered light was not recorded. For instance, this means that the data shown in Fig. 10.9(a)
are obtained by adding the data sets presented in Figs. 10.9(b)–(c); similarly, the data shown in
Fig. 10.9(g) result from the addition and division by a factor two of the the data sets presented
in Figs. 10.9(a) and 10.9(d); etc. Finally, the intensity variations in the plane of incidence
(p = p1 ê1) from Figs. 10.9(b, f) and 10.9(k, o) are the curves depicted in Figs. 10.2(a) and
Figs. 10.2(d), respectively. Figure taken from Paper [2].

incidence. For normal incidence, this observation holds for all the polarization couplings up to
an azimuthal rotation by π/2 for cross-polarization.

A similar dipole radiation pattern can be observed for the transmitted light (see Fig. 10.9(j-r)).
Moreover, we also observe the Yoneda phenomenon. This is the enhancement of the diffuse
contribution to the MDTC intensity above the critical lateral wave vector for the scattered
waves with |p | > pc, as discussed extensively in Section 10.1.2. This is particularly visible
for out-going s-polarized light, especially in Figs. 10.9(p)–(r). For out-going p-polarized light,
we observe a dark ring of zero scattering intensity along the circle |p | = pc. This is the two-
dimensional generalization of our discussion for scattering in the plane of incidence, where we
found two Brewster waves with pB = ±pc ê1 for normal incidence. Now we see that in the
two-dimensional p-space the solutions to Eq. (10.12) are in fact given by |p | = pc. This set
of solutions corresponds to the vanishing radiation of p-polarized light in the equatorial plane
for the case ϑ = 90◦ as illustrated in Fig. 1.6(c) for dipole radiation in free space. To be more
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Figure 10.10: Same as Fig. 10.9, but now for the angle of incidence θ0 = 70◦. Figure taken from
Paper [2].

accurate we must add all the in-plane of wave vectors of the form p = p2 ê2 to the previous
set to obtain all the solutions of the criterion Eq. (10.12). We thus understand clearly the link
between the criterion Eq. (10.12) and the radiation of the elementary dipoles in the media by
comparison with what have been discussed in Section 1.3.

Remark 10.5. If we had plotted the modulus of the reflection amplitude in the p-plane instead
of the incoherent component of the MDRC, a ring of zero amplitude for out-going p-polarized
would also be seen, but of course in the evanescent regime.

Consider now a larger angle of incidence, θ0 = 70◦, for which the diffuse contributions to the
MDRC and MDTC for incidence in vacuum are shown in Fig. 10.10. First, we observe in
Fig. 10.10(b) that for p→ p reflection, there exists a closed curve of zero intensity in the forward
scattering direction. Similarly, we observe in Fig. 10.10(m) a closed curve of zero intensity for
p → p transmission but in the backscattering region. These features are analogous to those
observed in the case of the p polarization component of the dipole radiation in free space
studied in Section 1.3 in the case where the dipole tilting angle is such that 0◦ < ϑ < 90◦ (see
Fig. 1.6(b) for ϑ = 45◦). The curves of zero intensity for p→ p scattering in Fig. 10.10 can then
be interpreted as the signature of an overall dipole radiation whose dipole moment is tilted from
the x3-axis by some angle ϑ. The polarization of the reflected (resp. transmitted) light would
then derive from the northern (resp. southern) hemisphere of the radiation polarization pattern.

Let us now make this statement more precise by interpreting geometrically the criterion for
vanishing p → p scattering, Eq. (10.12), for the case of reflection and θ0 = 70◦. The following
construction is a generalization of the one presented previously for scattering in the plane of
incidence. The main steps of the geometrical construction of the set of directions of zero p→ p
reflection are illustrated in Fig. 10.11. The steps go as follows:
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Figure 10.11: Illustration of the construction steps leading to the set of directions of zero p→ p
reflection for an angle of incidence of θ0 = 70◦. (a) Sketch of the average surface, the plane of
incidence and the considered wave vectors of the incident and reflected zero order waves (k−1 (p0)

and k−1 (p0)). (b) Construction of the total zero order field amplitude E
(0)
p,1(p0) and the plane

orthogonal to it. Note that the incident wave vector does not in general belong in this plane
as illustrated with the dashed indigo line indicating the intersection of the plane of incidence

and the plane E
(0)
p,1(p0)⊥. (c) Unit vectors belonging to the lower half E

(0)
p,1(p0)⊥-plane. They

correspond to the possible polarization vectors ê+
p,2(p) of Eq. (10.12). The wave vectors k+

2 (p)

associated with the polarization vectors ê+
p,2(p) are then constructed according to Eqs. (1.32).

Note that they lie on a sphere of radius |k | = n2 ω/c. The color associated with the vectors
ê+
p,2(p) and k+

2 (p) helps us to identify the k+
2 (p) associated with each ê+

p,2(p) (they share the

same color). (d) The wave vectors k+
2 (p) are projected on the sphere of radius |k | = n1 ω/c

following the x3-direction, hence giving the wave vectors k+
1 (p) of zero p→ p reflection. (e) The

incoherent component of the mean differential reflection coefficient is shown on the scattering
sphere together with the set of wave vectors k+

1 (p) obtained in (d). (f) Projection of (e) in the
(ê1, ê2)-plane. We verify in (e) and (f) that the constructed wave vectors indeed follow the curve
of zero scattering of the incoherent component of the MDRC. Figure taken from Paper [2].

1 The wave vectors of incidence k−1 (p0) and of the reflected zero order wave k+
1 (p0) are

drawn in black (see Fig. 10.11(a)).

2 The direction of the total zero order field amplitude E
(0)
p,1(p0) is determined2. Note that

this direction lies in the plane of incidence (see Fig. 10.11(b)).

3 Based on E
(0)
p,1(p0), this determines the vector plane orthogonal to it, E

(0)
p,1(p0)⊥ (see

2We recall that the steps to geometrically construct the total zero order field have been treated in detail in
Ref. [102], and we do not show these here.
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Fig. 10.11(b)). Note that in general this plane does not contain the incident wave vector
as made clear by the dashed line, showing the intersection of the plane of incidence with

the plane E
(0)
p,1(p0)⊥ in Fig. 10.11(b).

4 Eq. (10.12) states that each polarization vector ê+
p,2(p) contained in the plane E

(0)
p,1(p0)⊥

lead to a solution of the Brewster scattering criterion. Since the ê+
p,2(p) vectors are nor-

malized they are distributed on a circle of unit radius on the plane E
(0)
p,1(p0)⊥. The set of

all ê+
p,2(p) vectors satisfying Eq. (10.12) therefore spans a half circle in the plane E

(0)
p,1(p0)⊥

as shown in Fig. 10.11(c), where a sample of polarization vectors are represented. The
fact that only the lower half circle is needed comes from the definition3 of a polarization
vector ê+

p,2(p).

5 For each polarization vector satisfying Eq. (10.12), we can construct its corresponding
wave vector k+

2 (p). This is done for example by using that its direction is given by
ê+
p,2(p) × [ê+

p,2(p) × ê3] and that k+
2 (p) lies on the northern hemisphere of the sphere of

radius k2 = n2ω/c. We thus obtain the cone of all wave vectors k+
2 (p) whose corresponding

p polarization vector satisfies Eq. (10.12). A sample of such vectors are represented for
ê+
p,2(p) and k+

2 (p) in Fig. 10.11(c).

6 The last step consists in projecting the vectors k+
2 (p) along ê3 onto the sphere of radius

|k | = n1 ω/c to obtain the wave vectors k+
1 (p) of zero p → p reflection as illustrated in

Fig. 10.11(d)).

The sampled wave vectors k+
1 (p) together with the diffuse contribution to the MDRC,

mapped to the hemisphere and its projection in the (ê1, ê2)-plane constructed following the
aforementioned steps are respectively shown in Fig. 10.11(e) and 10.11(f). We verify that the
set of constructed wave vectors correspond to the observed curve of zero intensity for p → p
reflection.

s → p Brewster scattering — Figure 10.10(n) shows that the s → p transmitted light exhibits
a circle of zero intensity, for |p | = n1 ω/c similar to what was observed for normal incidence
in Fig. 10.9(n). This feature is also present in reflection but in the evanescent region, and
is observed by considering the complex amplitude instead of the MDRC. The invariance of the
circle of zero intensity with the angle of incidence for the s→ p scattering is simple to understand
in terms of the dipole radiation in free space. For s-polarized incident light the dipoles in the
media are all oriented along ê2, independent of the angle of incidence. When measuring the
p-polarized component of the radiated light, we thus expect to obtain an underlying pattern of
zero intensity consistent with that obtained in the case of the oscillating dipole in free space as
illustrated in Fig. 1.6(c).

S-black-out and circularly polarized Brewster scattering under TIR

In order to appreciate the behavior of the amplitudes of the waves scattered in the evanescent
region as well as the ones scattered in the propagating region, it is instructive to study the
modulus square of the amplitudes instead of the MDRC and MDTC. In this section, we analyze
what is to our knowledge a new phenomenon and which can be considered as a generalization of

3One may extend the construction to all vectors on the circle defined as the intersection of the unit sphere and
the plane E

(0)
p,1(p0)⊥, but it would result in constructing twice the same set of wave vectors of zero scattering.
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the Brewster scattering effect for light scattered from linearly to circularly polarized light. To

this end, we show in Figs. 10.12-10.15, |ρ(1)
αβ |2 in the p-plane for different polar angles of incidence.

Let β ∈ {p, s, ◦} and α ∈ {p, s, σ+, σ−} denote respectively the polarization of the incident wave
and of the scattered wave. Here ◦ indicates unpolarized light. The states σ± denote respectively
left and right circular polarization states and the corresponding reflection amplitudes are deduced
from the p and s polarization amplitudes by

ρ
(1)
σ±β =

1√
2

[
ρ

(1)
pβ ± iρ

(1)
sβ

]
, (10.13)

and similarly for the transmission amplitudes.

We consider here the case for which the medium of incidence is the optically denser one
(ε1 > ε2), as an intersting transition occurs for the linearly to circularly polarized Brewster
scattering effect only when the reflected zero order wave undergoes total internal reflection.
Even though we treat only the reflected light as an illustration, the effect can be observed both
for the reflected and the transmitted scattered light. When studying the Brewster scattering
phenomenon in the configuration ε1 > ε2 restricted to scattering in the plane of incidence, we
have seen that the Brewster scattering effect exhibits a sudden transition when the reflected zero
order wave undergoes total internal reflection. First, the direction of zero p-polarized reflected
intensity goes towards the x3-direction as the polar angle of incidence approaches the critical
angle for total internal reflection. As the polar angle of incidence goes beyond the critical
angle for total internal reflection, the direction of zero scattering suddenly disappears from the
propagating region. We have argued that this sudden transition is attributed to a transition
of the dipolar response of the media, going from an oscillating behavior to a rotating be-
havior due to the phase shift between the incident excitation and the scattered zero order waves.

Let us now follow this transition in the full p-plane with particular attention on the scattered
circularly polarized light. Indeed, it was shown in Section 1.3 that the radiation emitted by a
rotating dipole in free space exhibits characteristic signatures in the emitted circularly-polarized
light out of the plane of incidence (see Figs. 1.6(e) and 1.6(f)). According to our understanding
of the response in terms of dipole radiation, such signatures should then also be observed for
the scattering by a rough interface under total internal reflection.

For polar angles of incidence smaller than the critical angle, θ0 < θc, the amplitudes ρ
(1)
pβ and

ρ
(1)
sβ are both real valued for scattering angles smaller than the Yoneda threshold. In that case,

the circularly polarized amplitudes vanish if and only if both ρ
(1)
pβ and ρ

(1)
sβ vanish simultaneously

according to Eq. (10.13). For an incident p-polarized wave (i.e. β = p) this occurs only where
the curve of zero p→ p scattering (cf. previous subsection) intersects with the plane of incidence
in which p → s scattering is identically zero. This fact is illustrated for normal incidence in

Figs. 10.12(a) and (d) showing |ρ(1)
pp |2 and |ρ(1)

sp |2 in the p-plane. There we recognize the curves
of zero scattering for the p- and s-polarized light discussed in previous sections. Accordingly,

Figs. 10.12(g) and (j) show |ρ(1)
σ±p|2 where two directions of zero p→ σ± scattering are present,

namely at p = ±pc ê1, although they are hardly visible on this figure. The effect is clearer for
oblique incidence, as shown in Figs. 10.13(g) and (j) (θ0 = 35◦), where a clear unique direction
of zero intensity in p→ σ± scattering in the plane of incidence can be distinguished. This effect
is also observed in the configuration ε1 < ε2 (not shown here). When the angle of incidence
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Figure 10.12: The full angular distribution of |ρ(1)
αβ |2 for normal incidence, θ0 = 0◦, ε1 = 2.25,

ε2 = 1, for incident polarization β ∈ {p, s} or unpolarized (◦) and outgoing polarization α ∈
{p, s, σ+, σ−}. Figure taken from Paper [2].

Figure 10.13: Same as Fig. 10.12 but for the angle of incidence θ0 = 35◦. Figure taken from
Paper [2].

reaches the critical angle of incidence, θ0 = θc, the direction of zero intensity in p → σ±

scattering reaches the x3-direction, as illustrated in Figs. 10.14(g) and (j). Note that p → p
scattering also has a zero of intensity along the x3-direction as explained earlier. Furthermore,

we note that the distribution of |ρ(1)
pp |2 and |ρ(1)

σ±p|2 are cylindrically symmetric as shown in

Fig. 10.14(a), (g) and (j). The cylindrical symmetry can be understood based on the radiation
of an oscillating dipole aligned with the x3-axis. Indeed, we have seen in Section 1.3 that the
p-polarized radiation from a dipole oscillating along the x3-axis is cylindrically symmetric with
vanishing emission at the poles of the unit sphere (see Fig. 1.6(a)). The radiation from such a
dipole is also purely p-polarized, which has two consequences: (i) the s-polarized scattered light
vanishes identically for all p, a phenomena that we like to refer as s-black-out (see Fig. 10.14(d));
(ii) the radiation can be decomposed into σ+ and σ− components of equal intensity, as can be
observed in Figs. 10.14(g) and (j).

Remark 10.6. Our interpretation of these observations is based on the radiation of an oscillat-
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Figure 10.14: Same as Fig. 10.12 but for the angle of incidence equal to the critical angle for
total internal reflection, θ0 = θc = 41.81◦. Figure taken from Paper [2].

Figure 10.15: Same as Fig. 10.12 but for the angle of incidence θ0 = 43◦. Figure taken from
Paper [2].

ing dipole in free space for the sake of simplicity, and because we believe it illustrates well the
fundamental mechanism behind the observed features. However, it is relatively simple to verify
these assertions based on the expressions of the amplitudes given in Eq. (10.6). For example, it

is clear that for θ0 = θc, the total zero order field E
(0)
1,p(p0) is along ê3 and the dot product in

Eq. (10.6c) vanishes for all p.

For angles of incidence larger than the critical angle (θ0 > θc), it is convenient to expand the
right-hand side in Eq. (10.13) by inserting Eq. (10.6) for the reflections amplitudes. The reduced

first order reflection amplitude, ρ̂
(1)
σ±p, for σ±-polarized light scattered from incident p-polarized

light is then given by

ρ̂
(1)
σ±p(p |p0) =

1√
2

[γ(p) ê+
p,2(p)± i ês(p)] ·E(0)

1,p(p0) . (10.14)

where we have used the short-hand notation γ(p) = (ê+
p,2(p) · ê+

p,1(p))−1. For θ0 > θc, the total

zero order field amplitude E
(0)
1,p(p0) is complex with non-zero imaginary part. Thus neither ρ

(1)
pp
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nor ρ
(1)
sp can be zero for propagating waves. We have seen nevertheless that a vanishing p → p

scattering amplitude point can be found in the evanescent region since ê+
p,2(p) becomes complex

(and non real). However, a zero point of intensity in p → σ± scattering may be found in the
propagating region. Indeed, the square bracket in Eq. (10.14) is complex even for purely real

values of ê+
p,2(p) and ês(p) may compensate for the fact that E

(0)
1,p(p0) is complex (and non

real) and make the dot product in Eq. (10.14) vanish. Note the similarity with Eq. (1.85) for
the case of the radiation emitted by a rotating dipole, with the important difference that the

p polarization vector is that of the Snell-conjugate wave. Since E
(0)
1,p(p0) represents a state of

polarization of the media in which the dipole rotates in the plane of incidence, we expect to find
a zero in the σ± scattering intensity on each side (φ = ±π/2) of the plane of incidence. This is

indeed what we observe in Figs. 10.15(a) and (d) in the |ρ(1)
σ±p|2 distribution of p→ σ± scattering

for θ0 = 43◦. Finally, let us comment on s → σ± scattering. From Figs. 10.12-10.15 it can be

noticed that the distribution for |ρ(1)
σ±s|2 stays identical, up to an overall scaling factor, as the

angle of incidence varies. This can also be understood from the dipole picture. For a s-polarized
incident wave, the incident and zero order waves are s-polarized, so the dipoles oscillate along
the x2-direction independently of the angle of incidence. For scattering in the plane of incidence
the first order waves are purely s-polarized and the two σ± components have equal intensity.
For scattering at azimuthal angles φ=±π/2, the first order waves are purely p-polarized and the
two σ± components have again have equal intensity. We obtain the largest contrast between σ+

and σ− for φ being a multiple of 45◦ since then the p- and s-polarized components have similar
amplitudes.

10.2 Multiple scattering

We have discussed the physics of the scattering of light from a rough interface in terms of a
single scattering picture, and we have interpreted the observed polarization features based on
dipole radiation. What would happen if higher order scattering events were taken into account?
When multiple scattering events are taken into account, one does not observe a strict zero for
the Brewster scattering direction but a local minimum. In fact, the Brewster effect for the
coherent component of the intensity, i.e. the intensity associated with the average field does not
yield a zero anymore, like for the Fresnel amplitude, but also a local minimum. The angle of
incidence associated with the minimum of reflection intensity is in general shown to be shifted
compared with the Brewster angle of incidence for a planar interface due to multiple scattering.
An intuitive picture for understanding the fact that one does not find a strict zero of intensity
anymore is the following. The zero and first order fields acts as a source for the second order
field and so on. Hence the light being scattered several times may in principle be redistributed
into the directions of Brewster scattering. But why should not this redistribution keep the
directions of zero scattering? The first order field had the zero order field as a source, and it
was the fact that the zero order polarization induced by the incident and zero order reflected
and refracted fields behaved as a planar interface response that yielded to an overall well defined
dipole radiation pattern. The first order field may be seen as a probe, thanks to the scattering
from the surface, for the zero order response in all the directions. Note that this is the reason why
the directions of the zero scattering are independent of the surface profile parameters. When the
second order is taken into account, the first order field gives a random contribution to the dipole
polarization on top of the zero order polarization. These randomly perturbed dipoles hence do
not all oscillate (and/or rotate) in the same direction anymore thus leading to a redistribution of
power, overall in all the directions. The quantitative estimates of the resulting intensity at the



i
i

“report” — 2018/9/20 — 10:11 — page 254 — #276 i
i

i
i

i
i

254 Chapter 10. Single randomly rough interface

Brewster minimum and corresponding angular shift require some more detailed analysis of the
higher order terms in the perturbative expansion of the field, and depends on the parameters of
the surface profile such as the correlation length and rms-roughness. We refer here to the work
of Saillard and Maystre [103], Nieto-Vesperinas et al [104] and Greffet [105] for the shift of the
angular position of the Brewster angle for the coherent field.

10.3 Scattering by a metallic surface

The single scattering theory presented previously and illustrated for dielectric extends naturally
to metallic surfaces. However, for metallic surfaces, one expects to find phenomena associated
with the excitation of surface plasmon polaritons (see Section 1.4.2). As shown for periodic
metallic gratings, where Wood anomalies can be observed, surface plasmon polaritons may be
excited as the incoming wave can be scattered with, a priori, any change of in-plane momentum.
The degree of coupling will hence depend on a combination of frequency, dielectric function, an-
gle of incidence and on the power spectrum of the surface profile. The excited surface plasmon
polaritons will, however, scatter or couple back to radiative, or progressive, modes due to mul-
tiple scattering events. When averaged over realizations of the surface profile, it was shown
that certain multiple scattering paths exhibit a robust coherent effect upon averaging. They
yield so-called enhanced forward [106] and backscattering [107, 108, 109, 110]. The enhanced
backscattering peak can be observed in the light scattered in the retro-direction, i.e. back from
where the incident wave came from. The common explanation is that this phenomenon is due
to the constructive interference of two reciprocal paths: one scattering into a surface plasmon
polariton at some point A on the surface and scattering into a radiative mode in the retro-
direction at some other point B, and one scattering into a surface plasmon polariton at point B
and scattering into a radiative mode in the retro-direction at point A. Such scattering paths and
their reciprocal of course exists for all possible angle of scattering. But it can be shown that the
backscattering direction gives paths that are phase coherent while when the angle of scattering
moves away from this specific direction a loss of coherence is observed. This explanation holds
for not too rough surfaces in a sense. For very rough surfaces and even for volume random
media, the effect can also be observed also surface plasmon polariton may not be present as a
mediator, but simply ”regular” scattering events [36, 111, 112, 113].

10.4 Summary

This first chapter of Part III was focused on the physical understanding of a few phenomena
observed in the scattering from a single dielectric or metallic interface.

For dielectric surfaces, the phenomena of the Yoneda ring, which is a ring of enhanced intensity
in the diffuse light scattered in the optically denser medium, and of the Brewster scattering
directions, which are directions of zero or local minima in the diffuse intensity, have been
explained based on small amplitude perturbation theory to lowest non-trivial order. By a
careful analysis of the reflection and transmission amplitudes, we were able to recast the
expressions given by small amplitude perturbation theory to interpret the amplitudes in terms
of the product of a scalar wave behavior and the signature of the polarization state of the
media. Clear physical interpretations of the Yoneda phenomenon, which is intrinsically a scalar
wave behavior and of the Brewster scattering phenomenon, which is microscopically linked to
the dipolar nature of the radiation of the elementary constituents of the media, have then been
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given. In order to quantitatively understand the Brewster phenomenon, the concept of Snell
conjugate waves has been introduced as a generalization for scattering from a rough interface
between two dielectric media of the Ewald wave triad for the reflection and refraction of a
plane wave at the interface between two homogeneous media made of dipole arrays. We have
also observed two new phenomena, the s-black-out and the Brewster scattering phenomena for
linearly to circularly polarized light for a configuration of internal reflection under total internal
reflection incidence for the zero order wave. The s-black-out was explained physically by the
oscillation of dipoles aligned perpendicularly to the average plane of the interface, the scattered
light hence being entirely p-polarized for all directions. The Brewster scattering angle for linear
to circular polarization was explained in terms of rotating dipoles. The phenomena and related
physical mechanisms are expected to hold for weakly rough surfaces and all require solely a
single scattering picture.

For metallic surfaces, we have briefly discussed the phenomenon of enhanced backscattering and
its multiple scattering nature and gave references for further readings.
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Chapter 11

Multilayer with randomly rough
interfaces

We are now familiar with the physics of scattering by a single rough interface between two
dielectric media within a single scattering approximation. The aim of the present chapter is
to take one step further and to consider a multilayer system whose interfaces are rough. The
reduced Rayleigh equations for such systems were derived in Chapter 3 and the corresponding
small amplitude perturbation theory developed in Chapter 9. For the sake of simplicity, we will
study the case of a dielectric film deposited on a dielectric substrate, hence limiting the number
of interfaces to two. The discussion can of course be generalized to several layers. Moreover,
we will study the case where the two interfaces may be rough, but the rms-roughness will be
assumed to be small enough so that small amplitude perturbation theory to first order in the
product of the surface profiles can be applied within reasonable accuracy. Such a regime allows
for interesting phenomena which can be explained in terms of a single scattering picture, which
means that optical paths may be allowed to exhibit a single scattering event either on the top
or bottom interface in a sense which will be precised in Section 11.1.

After recalling the expressions of, and giving a physical interpretation to, the scattering ampli-
tudes given by SAPT to first order and the corresponding expressions for the mean differential
scattering coefficients, we will explain the physics of Selényi rings. Selényi rings, named after
the Hungarian physicist Pál Selényi, are rings of interference observed in the diffusely scattered
light [114, 115, 116, 117]. We will explain the origin of the interference pattern (Section 11.2.1),
and how the ring contrast is affected depending on which interface is rough (under the assump-
tion that only one is rough at a time, Section 11.2.2). We will also explore the influence of
the Brewster and Yoneda effects, studied in great detail in Chapter 10, on the Selényi rings
and show that Selényi rings may be used to experimentally verify the phase jump and phase
shift associated respectively with the Brewster scattering and Yoneda effects (Section 11.2.3).
Furthermore, we will show that an additional degree of coherence can be present when consid-
ering interface-cross-correlation by demonstrating that cross-correlated interfaces may lead to
significant enhancement and attenuation of some of the rings (Section 11.3). Finally, the chapter
will close with a discussion about what may be observed for rougher interfaces, hence requiring
a multiple scattering picture.

257
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11.1 Interpretation of SAPT, single scattering picture

Definition of the scattering system – Consider a system made of three dielectric media
of dielectric constants εj (j ∈ {1, 2, 3}) separated by two interfaces described by the equations
x3 = ζj(x) = dj + hj(x) with dj = 〈ζj〉 being the offset of the average jth interface with respect
to the origin and hj is a realization of a continuous, differentiable, stationary, isotropic, Gaussian
stochastic process. We will denote the average film thickness by d = d1 − d2. The statistical
properties of the stochastic processes are given by

〈hj(x)〉 = 0 (11.1)

〈hi(x)hj(x
′)〉 =

[
δij + γ(1− δij)

]
σiσjW (x−x′) (11.2)

for i, j ∈ {1, 2}, where σj denotes the rms-roughness of the jth interface, W is an auto-
correlation function which we choose to be identical for both surfaces, and γ ∈ [−1, 1] is an
interface-cross-correlation coupling parameter. Hence we have 〈hj(x)hj(x

′)〉 = σ2
j W (x−x′)

and 〈h1(x)h2(x′)〉 = γ σ1σ2W (x−x′). For γ > 0 the interfaces are positively correlated (the
extreme case γ = 1 corresponding to h2 = c h1 for each realization of the system and c = σ2/σ1),
for γ < 0 the interfaces are negatively correlated (the extreme case γ = −1 corresponding to
h2 = −c h1 for each realization of the system) and the interfaces are uncorrelated for γ = 0 (re-
alizations of h1 and h2 are picked independently). The auto-correlation function will be taken
to be Gaussian with auto-correlation length a,

W (x) = exp

(
−
∣∣x
∣∣2

a2

)
,

for which we recall that the power spectrum is given by

g(p) = πa2 exp

(
−
∣∣p
∣∣2a2

4

)
.

First order SAPT – With the aforementioned definitions and notations for the description
of the scattering system, the first order terms in the reflection and transmission amplitudes
expanded in products of surface profiles are given, according to Eqs. (9.16) and (9.18) for n = 2,
by

R(1) (p |p) = ĥ1(p−p0)ρ1 (p |p) + ĥ2(p−p0)ρ2 (p |p) , (11.3a)

T(1) (p |p) = ĥ1(p−p0) τ 1 (p |p) + ĥ2(p−p0) τ 2 (p |p) , (11.3b)

where ĥj is the Fourier transform of hj and the amplitudes ρj and τ j are defined by (see
Eqs. (9.17) and (9.19))

ρ1 (p |p) =
[
Θ̄

+,+
3,1 (p)

]−1 [
Θ̃

+,+,(1,0)

3,1 (p |p |p0)ρ0(p0)− Θ̃
+,−,(1,0)

3,1 (p |p |p0)
]
, (11.4a)

ρ2 (p |p) =
[
Θ̄

+,+
3,1 (p)

]−1 [
Θ̃

+,+,(0,1)

3,1 (p |p0 |p0)ρ0(p0)− Θ̃
+,−,(0,1)

3,1 (p |p0 |p0)
]
, (11.4b)

τ 1 (p |p) = −
[
Θ̄
−,−
1,3 (p)

]−1

Θ̃
−,−,(1,0)

1,3 (p |p0 |p0) τ 0(p0) , (11.4c)

τ 2 (p |p) = −
[
Θ̄
−,−
1,3 (p)

]−1

Θ̃
−,−,(0,1)

1,3 (p |p |p0) τ 0(p0) , (11.4d)
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where the definitions of the various matrices involved here were defined in Section 9.1. Note that
we omit the superscript (1) for clarity since there will be no ambiguity due to our restriction to
work only with the first order amplitudes and that ρ0(p0) and τ 0(p0) correspond respectively to
the reflection and transmission amplitudes for the corresponding system with planar interfaces
(Fabry-Perot amplitudes). Remembering the details of the amplitudes ρj (p |p) and τ j (p |p)
will not be so important in the following since we will soon give a simpler, physically intuitive,
equivalent formulation. There are only a few important observations to note in Eq. (11.3),
which were already mentioned in Section 9.1, and which we believe are worth recalling here.

First, in the special case where only one of the interfaces is rough, say for j = `, and the other
interface is planar (hj = 0 for j 6= `), only the term corresponding to j = ` remains in the
right-hand side of Eq. (11.3), i.e.

R(1) (p |p) = ĥ`(p−p0)ρ` (p |p) ,
T(1) (p |p) = ĥ`(p−p0) τ ` (p |p) .

In other words, the first order amplitudes in the case of two rough interfaces can be interpreted
as the sum of the first order amplitudes of the two associated subsystems for which only one of
the interfaces is rough and the other planar. This is only true for the first order amplitudes and
it is a property of the single scattering picture. Turning now to the diffuse intensity, we have
seen in Section 9.1 that the diffuse component of the mean differential scattering coefficients
read (see Eq. (9.20) for n = 2)

〈
∂Rαβ
∂Ωr

(p |p0)

〉

incoh

=
( ω

2πc

)2 ε1 cos2 θr
cos θ0

[
G11(p−p0)|ρ1,αβ (p |p) |2 +G22(p−p0)|ρ2,αβ (p |p) |2

+ 2Re
(
G12(p−p0)ρ1,αβ (p |p) ρ∗2,αβ (p |p)

)
]
, (11.6a)

〈
∂Tαβ
∂Ωt

(p |p0)

〉

incoh

=
( ω

2πc

)2 ε
3/2
3 cos2 θt

ε
1/2
1 cos θ0

[
G11(p−p0)|τ1,αβ (p |p) |2 +G22(p−p0)|τ2,αβ (p |p) |2

+ 2Re
(
G12(p−p0)τ1,αβ (p |p) τ∗2,αβ (p |p)

)
]
, (11.6b)

Gjk(p−p0)
def
=
〈
ĥj(p−p0)ĥ∗k(p−p0)

〉
. (11.6c)

These expressions are typical intensity expressions one obtains when the field can be expressed
as the sum of two fields. The resulting intensity is the sum of intensities one would obtain with
either one field or the other plus an interference term, i.e. expressions of the form

I = |E1|2 + |E2|2 + 2Re(E1E
∗
2 ) = I1 + I2 + 2Re(E1E

∗
2 ) .

Note, however, that each of the two first terms in the right-hand side of Eq. (11.6) already
contains all the interference effects that may occur in each corresponding subsystem where only
one of the interface is rough at a time. The last ”interference” term in Eq. (11.6) corresponds
to an additional degree of coherence induced by the correlation between the interfaces. In
other words, it tells that two optical paths exhibiting a scattering event which happens on the
different interfaces will, on average, keep a certain phase coherence due to the cross-correlation
of the interfaces. In the case where the two interfaces are uncorrelated, this last term vanishes
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and the resulting intensity is the sum of intensities of the two associated subsystem for which
only one interface is rough.

In the particular case of correlations defined earlier in Eq. (11.2), Eq. (11.6) simplifies to

〈
∂Rαβ
∂Ωr

(p |p0)

〉

incoh

=
( ω

2πc

)2 ε1 cos2 θr
cos θ0

g(p−p0)

[
σ2

1 |ρ1,αβ (p |p) |2 + σ2
2 |ρ2,αβ (p |p) |2

+ 2γσ1σ2 Re
(
ρ1,αβ (p |p) ρ∗2,αβ (p |p)

)
]
, (11.7a)

〈
∂Tαβ
∂Ωt

(p |p0)

〉

incoh

=
( ω

2πc

)2 ε
3/2
3 cos2 θt

ε
1/2
1 cos θ0

g(p−p0)

[
σ2

1 |τ1,αβ (p |p) |2 + σ2
2 |τ2,αβ (p |p) |2

+ 2γσ1σ2 Re
(
τ1,αβ (p |p) τ∗2,αβ (p |p)

)
]
, (11.7b)

Gjk(p−p0) =
[
δjk + γ(1− δkj)

]
σjσk g(p−p0) . (11.7c)

Single scattering interpretation and optical paths model – We will now present a model
for the scattering amplitudes where the notions of single scattering event and optical paths
mentioned earlier takes a physically intuitive meaning. The model is based on the Fresnel am-
plitudes between two media, and the first order SAPT amplitudes between two media separated
by a rough interface, i.e. those given by Eqs. (6.12) and (6.19). We believe that the presented
model is equivalent to SAPT to first order for the whole system of three media separated by
two rough interfaces as we have observed no numerical difference between the two models. The
proof of the equivalence should be simple to derive but we have preferred a numerical illustration.

For the sake of simplicity, we focus the discussion for co-polarized reflection in the plane of
incidence and we will therefore drop the polarization indices which could be either p or s. The

model is built in the following way. Let r
(F)
ji (q) (resp. t

(F)
ji (q)) denote the Fresnel reflection

(resp. transmission) amplitude (for either p or s-polarized light depending on the considered
polarization) for an incident plane wave with in-plane wave vector q reflected by a planar
interface between media of dielectric constant εi and εj . The second index, i, denote the medium
of incidence and the index j the substrate medium. Let us denote in a similar fashion the first
order terms of the reflection (resp. transmission) amplitude given by SAPT, Eq. (6.12), (resp.
Eq. (6.19)) for an elementary wave out-going with in-plane wave vector p given an incident in-
plane wave vector p0, rji(p |p0) (resp. tji(p |p0)), with the same convention for the indices as
for the Fresnel amplitudes. An elementary scattering amplitude issued from a given elementary
optical path is given by the product of the Fresnel and SAPT amplitudes according to the Fresnel
reflection or refraction and the reflection or transmission scattering event which the path exhibits,
and the product of the corresponding phase factor associated with the propagation of the path
between two consecutive intersections. The overall reflection (resp. transmission) amplitude for
the whole system is given by the sum of all the possible optical paths where we only allow for
one single scattering event, i.e. a single SAPT reflection or transmission, and arbitrarily many
Fresnel reflections and refractions (which are not considered as ”scattering event”). Note that
the intersections are assumed to all take place on the average surfaces. As an example, the path
indicated in Fig. 11.1 leads to an elementary reflection amplitude

rex.path = t
(F)
12 (p) eiϕr r32(p |p0) eiϕ0 t

(F)
21 (p0) . (11.8)
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ê1

ê3

θ0

θ
(2)
0

⋆ θ
(2)
r

θr

Figure 11.1: Example of optical path exhibiting a Fresnel refraction (from medium 1 to 2)
through the first interface, a scattering event reflecting from the second interface and a Fresnel
refraction (from medium 2 to 1) through the first interface. The angles θ0 and θr are respectively

the angle of incidence and of reflection. The angles θ
(2)
0 and θ

(2)
r are respectively the angles

associated to θ0 and θr corresponding to Snell’s law in medium 2. The star indicates the
intersection at which the scattering event takes place.

We find it convenient to order the products from right to left following the sequence of events
encountered during the path history. The phases ϕ0 and ϕr are given by simple geometric
consideration by

ϕ0 = 2π dn2 cos θ
(2)
0 /λ (11.9a)

ϕr = 2π dn2 cos θ(2)
r /λ , (11.9b)

where λ denotes the wavelength in vacuum, n2 is the refractive index of the film, and θ
(2)
0 and

θ
(2)
r are the angles conjugate to θ0 and θr in Snell’s law.

Remark 11.1. For a given surface profile, note that when considering a path scattered at the
interface when the path is incoming with direction from j + 1 to j, the x3-axis hence becomes
reversed in the convention adopted for Eqs. (6.12) and (6.19) compared with the case where the
path is incoming from j to j + 1. Thus the involved surface profile function must then changed
to its opposite in Eqs. (6.12) and (6.19).

We are now ready to enumerate and categorize all the possible paths exhibiting a single scattering
event and construct the overall reflection and transmission amplitudes. To follow easily the
discussion, the reader may find helpful to refer oneself to Figs. 11.2(a-c) which illustrate the
different types of optical paths. We have seen in Eq. (11.3) that the overall scattering amplitude
can be written as the sum of the scattering amplitudes of the two associated subsystems where
only one of the interfaces is planar. Hence for each of these subsystems, the possible paths
exhibiting a single scattering event will be constraint to either exhibit a scattering event on
the top surface (if the top surface is rough) or on the bottom surface (if the bottom surface is
rough). We therefore analyze these two cases separately and we denote the reflection amplitude
associated with the two subsystems respectively rRP and rPR, RP and PR standing for ”rough-
planar” (the top interface is rough) and ”planar-rough” (the bottom interface is rough). Let
us first analyze the possible single scattering optical paths in the configuration RP. Following
Fig. 11.2(a), consider an optical path incoming with an angle θ0 with respect to the x3-direction.
Such a path intersects the first interface, which is rough in the RP configuration. At the first



i
i

“report” — 2018/9/20 — 10:11 — page 262 — #284 i
i

i
i

i
i

262 Chapter 11. Multilayer with randomly rough interfaces
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Figure 11.2: Sketch of the optical paths involved in the single scattering model in the case
of scattering from the top surface (a) and (b), or from the bottom interface (c). Incoherent
component of the MDRC for in-plane co-polarized scattering as a function of the polar angle
of scattering for normal incidence for p-polarization (d) to (f). Physical parameters: ε1 = 1
(vacuum), ε2 = 2.69 (photo-resist), ε3 = 15.08+0.15i (silicon substrate), λ = 632.8 nm, σ = λ/30
(rms-roughness of the rough interface), a = λ/3 (correlation length), d = 8λ (average film
thickness), θ0 = 0◦. In panels (d) and (f), the results were obtained from SAPT (circles), and
from the single scattering model Eqs. (11.13)(d) and (11.14)(e) (solid line) respectively for the
cases illustrated in (a-b) and (c). In panel (e), only the contribution of r′′ (Eq. (11.12)) to the
incoherent component of the MDRC is shown. This figure is taken from Paper [3].

intersection, the path may exhibit a scattering event by reflecting with an angle of scattering θs
1

from the first interface. This is the path denoted (0) in Fig. 11.2(a) and the elementary reflection
amplitude associated with this path is simply r21(p |p0), where p is the in-plane wave vector
associated with the scattering angle θs. Alternatively, the path may experience a scattering event
and transmits inside the film. Then since the allowed single scattering event has taken place, all
the remaining intersections with both interfaces will be of the Fresnel type, i.e. conserving the
in-plane wave vector and contributing with the respective Fresnel amplitudes, hence bouncing

with an angle θ
(2)
s . The path hence may bounce an arbitrary number of times inside the film

before exiting the film by a final Fresnel refraction2. These paths are denoted (1), (2), etc ...
in Fig. 11.2(a). The path index hence counts the number of times the path as bounced on the
bottom surface. Summing the elementary reflection amplitudes for the paths (0), (1), (2), etc ...
we obtain the contribution of this first family of paths to the overall reflection amplitude rRP,

1The angle of scattering may be denoted θr, θt or simply θs in the following.
2Note, of course, that in principle the path may also be transmitted in medium 3, but then the path contributes

to the transmission amplitude, and we are only analyzing the reflection amplitude here.
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and it reads

r(p |p0) = r21(p |p0) + t
(F)
12 (p) r

(F)
32 (p) t21(p |p0) exp(2iϕs)

∞∑

n=0

[
r

(F)
12 (p) r

(F)
32 (p) exp(2iϕs)

]n

= r21(p |p0) +
t
(F)
12 (p) r

(F)
32 (p) t21(p |p0) exp(2iϕs)

1− r(F)
12 (p) r

(F)
32 (p) exp(2iϕs)

, (11.10)

where we have recognized the sum of a geometric series. However, the attentive reader will object
that these are not the only possible paths exhibiting a single scattering in the RP configuration.
Indeed, the scattering event could occur at another intersection than the first one. Hence consider
the family of path denoted (1’), (2’), etc ... in Fig. 11.2(b). For such a path, the path experiences
first a Fresnel refraction at the first interface then may bounce an arbitrary number of Fresnel
reflections inside the film, hence conserving its in-plane wave vector p0, i.e. angle of bounce

inside the film θ
(2)
0 , before exiting the film with a final scattering event of transmission from

medium 2 to medium 1. The index of the path for the primed paths hence counts the number
of times the path experiences a Fresnel reflection on the bottom interface. The contribution to
the reflection amplitude rRP of the primed paths then reads

r′(p |p0) = t12(p |p0) r
(F)
32 (p0) t

(F)
21 (p0) exp(2iϕ0)

∞∑

n=0

[
r

(F)
12 (p0) r

(F)
32 (p0) exp(2iϕ0)

]n

=
t12(p |p0) r

(F)
32 (p0) t

(F)
21 (p0) exp(2iϕ0)

1− r(F)
12 (p0) r

(F)
32 (p0) exp(2iϕ0)

. (11.11)

There are still some paths to be enumerated. Indeed, consider now the paths denoted (1”), (2”),
etc ... in Fig. 11.2(b). Let us consider a path following the initial history of a path of type

prime, i.e. bouncing an arbitrary number of times inside the film with angle θ
(2)
0 . Instead of

experiencing a scattering event on the top surface while transmitting, like for a primed path,
a second (double primed) path experiences a scattering event while reflecting and continues to

bounce an arbitrary number of times inside the film, with angle θ
(2)
s , before exiting the film with a

final Fresnel refraction in medium 1. In this case, the path index would correspond to the number
of Fresnel reflections inside the film after the scattering event has occurred. However, this is of
little use for the calculation since such a path correspond in fact to infinitely many paths having
arbitrary number of Fresnel bounces prior to the scattering event. Nevertheless, the calculation
of the contribution of the second paths to the reflection amplitude rRP is relatively easy once we
notice that it is the concatenation of paths of type (1’), (2’), ... before the scattering event and
of paths of types (1), (2) ... after the scattering event. The corresponding reflection amplitude
associated to the sum of all the paths (1”), (2”), etc ... thus reads

r′′(p |p0) = t
(F)
21 (p0) r

(F)
32 (p0) exp(2iϕ0)

∞∑

n=0

[
r

(F)
12 (p0) r

(F)
32 (p0) exp(2iϕ0)

]n

× t(F)
12 (p) r

(F)
32 (p) r12(p |p0) exp(2iϕs)

∞∑

n′=0

[
r

(F)
12 (p) r

(F)
32 (p) exp(2iϕs)

]n′

=
t
(F)
12 (p) r

(F)
32 (p) r12(p |p0) r

(F)
32 (p0) t

(F)
21 (p0) exp(2i(ϕ0 + ϕs))[

1− r(F)
12 (p) r

(F)
32 (p) exp(2iϕs)

] [
1− r(F)

12 (p0) r
(F)
32 (p0) exp(2iϕ0)

] . (11.12)
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We have now enumerated all the possible single scattering paths whose scattering event occur on
the top surface and their associated contribution to the overall reflection amplitude. We finally
have

rRP(p |p0) = r(p |p0) + r′(p |p0) + r′′(p |p0). (11.13)

The PR configuration, i.e. the case where only the bottom interface is rough, can be analyzed in
the same way. In fact, the PR configuration is relatively simpler in the sense that there is only
one family of path to consider. Following Fig. 11.2(c) all the possible single scattering paths in
the PR configuration are of a form that resembles that of the paths (1”), (2”), and so on from
the RP configuration. To be more accurate, a single scattering path in the PR configuration
must first exhibit a Fresnel refraction to enter the film (no scattering event allowed on the top
interface) and may then undergo an arbitrary number of Fresnel bounces inside the film before
a scattering event takes place in reflection on the bottom interface and then the path may
undergo an arbitrary number of Fresnel bounces before eventually refracting into medium 1.
The corresponding reflection amplitude is then given by

rPR(p |p0) = t
(F)
21 (p0) exp(iϕ0)

∞∑

n=0

[
r

(F)
12 (p0) r

(F)
32 (p0) exp(2iϕ0)

]n

× t(F)
12 (p) r32(p |p0) exp(iϕs)

∞∑

n′=0

[
r

(F)
12 (p) r

(F)
32 (p) exp(2iϕs)

]n′

=
t
(F)
12 (p) r32(p |p0) t

(F)
21 (p0) exp(i(ϕ0 + ϕs))[

1− r(F)
12 (p) r

(F)
32 (p) exp(2iϕs)

] [
1− r(F)

12 (p0) r
(F)
32 (p0) exp(2iϕ0)

] . (11.14)

Now our claim is that rRP (p |p0) and rPR(p |p0) derived by considering all the possible single
scattering diagrams are equal respectively to the first and second term in Eq. (11.3a) (assuming
here co-polarized scattering in the plane of incidence, but this can easily be generalized to
the whole cross-polarized and angular distribution). Let us verify this claim by plotting the
different expressions. Figures 11.2(d) and (f) show the diffuse component of the mean differential
reflection coefficient as a function of the angle of scattering respectively for the RP configuration
and the PR configuration. The physical parameters considered are given in the figure caption.
The solid curves are obtained based on the amplitude given by Eqs. (11.13) and (11.14) while the
circles are obtained based on Eq. (11.3a) for the corresponding configurations. The agreement is
perfect. In conclusion of this section, we can say that the scattering amplitudes given by SAPT
to first order in the product of surface profiles correspond to the sum of the scattering amplitudes
of all the possible elementary paths for which only a single scattering event is allowed, and the
probability amplitude associated with this scattering event is given by SAPT to first order for
the relevant system made of a single interface between two media. Although the expressions
obtained with SAPT are compact, the equivalent expressions obtained by decomposing the
different types of path will be useful for a careful analysis of the physical phenomena observed
for the diffusely scattered light.

11.2 Physics of Selényi rings

We illustrate now the phenomenon of Selényi rings in the case of a photo-resist film deposited
on a silicon substrate using the results presented in Paper [3]. The physical parameters used
for the simulations were as indicated in the caption of Fig. 11.3. A point worth stressing is that
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in order to observe Selényi rings, one needs a film thickness which is a few times the wavelength
in the film medium.

θs [deg]
0

1

2

3

4

5

〈∂
R
pp
/∂

Ω
s〉 i

n
co

h

×10−3

(a)

−90 −60 −30 0 30 60 90
θs [deg]

0

1

2

3

4

5

〈∂
R
ss
/∂

Ω
s〉 i

n
co

h

(b)

θs [deg]
0.0

0.5

1.0

1.5

2.0

2.5

〈∂
R
pp
/∂

Ω
s〉 i

n
co

h

×10−2

(c)

−90 −60 −30 0 30 60 90
θs [deg]

0.0

0.5

1.0

1.5

2.0

〈∂
R
ss
/∂

Ω
s〉 i

n
co

h

(d)

Figure 11.3: Incoherent components of the mean DRCs for in-plane co-polarized scattering as
functions of the polar angle of scattering, θs (note the convention θs < 0 for φs = φ0 + 180◦).
The light of wavelength λ = 632.8 nm was incident from vacuum on the rough photoresist film
supported by a silicon substrate (ε1 = 1.0, ε2 = 2.69, ε3 = 15.08 + 0.15i). The surface-height
correlation length of the rough Gaussian correlated surface was a = λ/3, the mean film thickness
was d = 8λ, and the angles of incidence were (θ0, φ0) = (16.8◦, 0◦) in all cases. Panels (a) and
(b) correspond to cases where only the top interface was rough, while panels (c) and (d) presents
the results for a film where only the bottom interface of the film was rough. In both cases, the
rms-roughness of the rough interface was set to σ = λ/30. The results obtained on the basis of
the non-perturbative method are shown as solid lines while those obtained with the perturbative
method, Eq. (11.7), are shown as dashed lines. The position of the specular direction in reflection
is indicated by the vertical dashed lines. The vertical dash-dotted and dotted lines indicate the
angular positions of the maxima and minima predicted by Eq. (11.16), respectively. This figure
is taken from Paper [3].

Figure 11.3 shows the diffuse component of the mean differential reflection coefficient as a
function of the angle of scattering for co-polarized scattering in the plane of incidence (the
parameters are indicated in the figure caption). Figures 11.3(a-b) correspond to the RP
configuration while Figs. 11.3(c-d) correspond to the PR configuration. The solid lines were
obtained by the direct Monte Carlo method for the reduced Rayleigh equations derived for a
film system where only one of the interfaces is rough. The numerically stable formulation in each
case, RP or PR, as presented in Section 3.5.1 was used. The dashed lines are the corresponding
results obtained with SAPT, Eq. (11.7a). The comparison between the Monte Carlo simulations



i
i

“report” — 2018/9/20 — 10:11 — page 266 — #288 i
i

i
i

i
i

266 Chapter 11. Multilayer with randomly rough interfaces

Figure 11.4: The full angular distribution of the incoherent component of the mean DRC,
〈∂Rαβ/∂Ωs〉incoh, as function of the lateral wave vector q of the light that is scattered from a
rough film where either the top interface is rough (Figs. 11.4(a)–(i)) or the bottom interface is
rough (Figs. 11.4(j)–(r)) and the other interface of the film is planar. The physical parameters are
the same as those indicated in the caption of Fig. 11.3. The positions of the specular directions
in reflection are indicated by white dots. The upper halves of all panels are results from the small
amplitude perturbation method to leading order, while the lower halves show results obtained
through the non-perturbative solutions of the RRE. The sub-figures in Figs. 11.4(a)–(i) and
11.4(j)–(r) are both organized in the same manner and show how incident β-polarized light is
scattered by the one-rough-interface film geometry into α-polarized light (with α, β ∈ {p, s})
and denoted β → α. Moreover, the notation ◦ → ? is taken to mean that the incident light
was unpolarized while the polarization of the scattered light was not recorded. For instance,
this means that the data shown in Fig. 11.4(a) are obtained by adding the data sets presented
in Figs. 11.4(b)–(c); similarly, the data shown in Fig. 11.4(g) result from the addition and
division by a factor two of the data sets presented in Figs. 11.4(a) and 11.4(d); etc. Finally,
the in-plane intensity variations from Figs. 11.4(b, f) and 11.4(k, o) are the curves depicted in
Figs. 11.3(a)–(b) and Figs. 11.3(c)–(d), respectively. This figure is taken from Paper [3].

and first order SAPT shows a good quantitative agreement and the interference fringes are
overall well resolved. This justifies the use of SAPT for the considered roughness level, and
hence the use of a single scattering picture for interpreting the results. Let us now make some
comments about the similarities and differences one can draw from a comparison between the
two configurations, RP and PR. We will then explain in the following sections each of these
observations. First, concerning the overall scale of the incoherent component of the MDRC, we
can see that a larger power is scattered in the case where the rough interface is the bottom
one than where it is the top one. This can easily be understood by the fact that the bottom
interface is an interface between the photo-resist and the silicon substrate which corresponds
to the largest jump in refractive index in the system. Consequently, the scattering is stronger



i
i

“report” — 2018/9/20 — 10:11 — page 267 — #289 i
i

i
i

i
i

11.2. Physics of Selényi rings 267

Figure 11.5: Scaled incoherent component of the mean DRCs for in-plane co-polarized scattering,
100 × 〈∂Rαα/∂Ωs〉incoh, as functions of the polar angle of incidence θ0 and the polar angle of
scattering θs obtained on the basis of Eq. (11.7). The first row of sub-figures (Figs. 11.5(a)–(e))
corresponds to p-polarized light (as marked in the figure), while the second row (Figs. 11.5(f)–
(j)) corresponds to s-polarized light. Apart from the varying angle of incidence, all physical
parameters are those indicated in the caption of Fig. 11.3. The first column of sub-figures
presents contour plots of the mean DRCs for a film geometry where only the top interface of the
film is rough and the bottom interface planar. The second column shows similar results where
the top film interface is planar and the bottom film interface is rough. In the third column,
contour plots of only the cross-correlation term in Eq. (11.7) — that is, the contribution to the
mean DRC produced by the last term in the square brackets of this equation — are depicted
assuming a perfect correlation (γ = 1) between the rough top and rough bottom interface of
the film. Finally, in the forth and fifth column, contour plots of the total mean DRCs obtained
on the basis of Eq. (11.7) are presented for two-rough-interface film geometries characterized by
γ = 1 and γ = −1, respectively. This figure is taken from Paper [3].

at this interface. Second, we observe that the interference fringes are located at the same
angular positions in both configurations, and we will show in Section 11.2.1 that the positions
of the local maxima and minima can be predicted quite accurately based on simple phase
difference between optical paths arguments. Third, the contrast of the fringes is higher for the
RP configuration than for the PR configuration. At first, one may think that the poor contrast
in the PR configuration comes from the fact that the scattering event occurs on the interface
between the media exhibiting a strong jump of refractive index. We will see that this is not
really the case in Section 11.2.2, where we will discard this possible explanation by considering
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a free standing dielectric film in vacuum and show that the contrast depends essentially on the
side where the rough interface is with respect to the observed light. This curious effect will be
explained in details based on a careful analysis of the types of optical path involved in each
case. Finally, the expert eye will notice a small shift of the fringe position for p-polarized light
compared with s-polarized light at large angles of scattering in Figs. 11.3(a-b). This effect is
due to the Brewster scattering phenomenon and will be illustrated in a clearer way for a dielec-
tric system without loss and with a substrate with a smaller dielectric constant in Section 11.2.3.

Figure 11.4 shows the full angular distributions of the incoherent component of the mean
differential reflection coefficient corresponding to the simulations of Fig. 11.3. Note that the
upper half of each contour plot presents first order SAPT data while the bottom half presents
the Monte Carlo simulation in view of a visual comparison. We can appreciate that what we
have called interference fringes in the scattering in the plane of incidence are cuts of interference
rings in the full angular distribution.

Let us now study the behavior of the interference pattern as the angle of incidence is varied.
Figures 11.5(a,b,f,g) show contour plots of the incoherent component of the MDRC as a function
of the angles of incidence and scattering for co-polarized scattering in the plane of incidence
for p and s-polarized light both in the case where the first interface is rough (PR) and the
second interface is rough (RP) (see figure caption for the details). Each vertical cut in such
a contour plot hence represents a plot such as the ones presented in Fig. 11.3 for a given
angle of incidence. We can see that for s-polarized light the positions of the local maxima in
the scattering distribution are independent of the angle of incidence. In addition, the overall
scattered intensity is modulated with the angle of incidence in a similar interferential fashion.
The same can be said for p-polarized light up to the region of large angles of scattering and
angles of incidence where effects related to the Brewster scattering phenomenon must be taken
into account and will be discarded at first in our discussion. The extrema of intensity in the
scattering angular distribution are then independent of the angle of incidence, but the overall
intensity is modulated by the latter.

11.2.1 Origin of the interference pattern

It is now time to explain our observations on the angular position of the fringes, or rings. To
this end, we come back to the different types of paths found in Section 11.1 and discuss the
difference in optical path length between consecutive paths of a given family. Consider first
the RP configuration, and the family of paths denoted (n) (see Fig. 11.2(a)). The phase shift
acquired by such a path after each bounce inside the film was found to be 2ϕs. Equivalently,
this means that the difference in optical paths length between two consecutive paths (n) and
(n+ 1) can be expressed as

∆ = 2n2 d cos θ(2)
s , (11.15)

where θs in the vacuum is related to θ
(2)
s in the film by n2 sin θ

(2)
s = n1 sin θs according to Snell’s

law. The polar angles of scattering for which the diffusely scattered intensity (associated with
the paths family (n) i.e. proportional to |r(p |p0)|2) has local minima are given by

2πn2d

λ
cos θ(2)

s =
2πd

λ

(
ε2 − ε1 sin2 θs

)1/2
= (ν + 1/2)π, (11.16a)
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while the positions of the maxima are determined from the relation

2πn2d

λ
cos θ(2)

s =
2πd

λ

(
ε2 − ε1 sin2 θs

)1/2
= νπ, (11.16b)

where3 ν ∈ Z. It is then clear that a necessary condition to observe interference fringes in the
diffusely scattered light, is that the thickness of the film must be large enough to contain a few
wavelengths λ/n2 in medium 2. The angular positions of the maxima and minima predicted
by Eq. (11.16) are indicated by vertical dash-dotted and dotted vertical lines, respectively,
in Fig. 11.3. The predicted positions agree well with the maxima and minima that can be
observed in the intensity distributions. Equation (11.16) does not depend on the polar angle
of incidence θ0, which supports the observation that the positions of the maxima and minima
of the incoherent components of the mean DRC do not move with the angle of incidence for
weakly rough films. However, the modulation of the fringes with the angle of incidence cannot
be explained if we consider solely the paths of type (n). Analyzing now the paths of types (n′)
(see Fig. 11.2(b)), the phase shift acquired by the wave after each bounce inside the film is 2ϕ0,
i.e. that the difference of optical path length between two consecutive paths (n′) and (n+ 1′) is
given by

∆ = 2n2 d cos θ
(2)
0 , (11.17)

where n2 sin θ
(2)
0 = n1 sin θ0 according to Snell’s law. Hence, we again obtain a series of maxima

and minima in the mean DRC if we replace θ
(2)
s by θ

(2)
0 in Eq. (11.16), but this time the

positions of the maxima and minima are indeed a function of the polar angle of incidence
θ0. This interference phenomenon serves to modulate the intensity of the Selényi interference
patterns. Finally, the paths of type (n′′) have the characteristic that they may exhibit both a
dependence on the angle of incidence and the angle of scattering in the phase difference between
two consecutive paths, depending on how one defines two consecutive paths in this case. This
also holds for all paths involved in the PR configuration, and it is shown to exhibit the same grid
of extrema as the RP configuration in Fig. 11.5, showing the intrinsic modulation as a function
of both the angles of incidence and scattering. We will see in the next section the importance of
these last type of paths for explaining the difference of contrast between the two configurations.

11.2.2 Ring contrast

Let us now explain the difference in ring contrast observed in Figs. 11.3 and 11.4 between the
configurations for which either the top or bottom interface is rough. In order to clarify that
this effect is not particularly due to an argument related to the dielectric contrast between
the media around the rough interface, consider instead a dielectric film, of dielectric constant
ε2 = 2.25, free standing inside vacuum ε1 = ε3 = 1. The remaining physical parameters are
kept identical to those used previously in Figs. 11.3 and 11.4 and are given in the caption of
Fig. 11.6. Figure 11.6 presents the angular distribution of the diffuse component of the mean
reflection and transmission coefficients for s-co-polarized scattering in the plane of incidence for
both configurations RP (Fig. 11.6(a)) and PR (Fig. 11.6(b)). What is striking by comparing
Figs. 11.6(a) and 11.6(b), is that the behavior of the reflected intensity and transmitted intensity
are interchanged for the two configurations. In particular, when the top interface is rough, the
diffuse intensity of the reflected light exhibits a high fringe contrast while the diffuse intensity

3Of course only solutions for which the angle is real give the positions observed in the intensity.
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Figure 11.6: Incoherent component of the mean differential reflection and transmission coeffi-
cients for s-co-polarized scattering in the plane of incidence as a function of scattering angle. The
system is a free standing dielectric film in vacuum and the physical parameters are: ε1 = ε3 = 1,
ε2 = 2.25, a = λ/3, σ = λ/30, d = 8λ, θ0 = 0◦. (a) The top interface is rough and the bottom
interface is planar. (b) The top interface is planar and the bottom interface is rough.

of the transmitted light exhibits a low fringe contrast. Contrarily, when the bottom interface is
rough, it is the diffuse intensity of the transmitted light which exhibits a high fringe contrast
while the diffuse intensity of the reflected light exhibits a low fringe contrast. We can then
conjecture that the fringes will be seen with the highest contrast if they are observed for the
light scattered in the medium which is on the side of the rough interface.

Let us now explain the reason behind this curious effect. For this let us focus on reflection
and compare the type of paths involved respectively in the two configurations RP and PR.
According to Section 11.1, there were essentially three types of paths involved in the scattering
of light under the single scattering event approximation. These are depicted in Figs. 11.2(a-b)
and denoted respectively in the form (n), (n′), (n′′). We have seen that the paths of type (n) all
acquire a phase shift which is a multiple of 2ϕs as the path bounces inside the film, and we have
seen that these are essentially at the origin of the interference rings as a function of the angle
of scattering. The paths of type (n′) all acquire a phase shift which is multiple of 2ϕ0, and we
have seen that these are essentially responsible for the modulation of the overall intensity as the
angle of incidence varies. The paths of type (n′′) all acquire a phase shift which is an integer
combination of ϕ0 and ϕs. Figure 11.2(e) shows the intensity corresponding to r′′ as a function
of the angle of scattering, i.e. as if only the paths of type (n′′) where taken into account. We
observe that compared with the full result (see Fig. 11.2(d)), the contrast is lower and is very
similar to that observed for the PR configuration as seen in Fig. 11.2(f). Indeed, the paths
of type (n′′) in the RP configuration are very similar to those in the PR configuration. The
poor contrast is therefore due to the nature of the paths. Why are not the paths of type (n′′)
degrading the contrast in the RP configuration then? In fact they do, but moderately since, as
can be seen by comparing Figs.11.2(d) and 11.2(e), the contribution of r′′ is weak compared with
the other type of paths. What is the fundamental reason for the low contrast associated with
the type of paths (n′′) or those of the PR configuration? It is fundamentally the phase mixing,
resulting from the integer combination of ϕ0 and ϕs acquired during the propagation inside the
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film which causes the poor contrast. Indeed allowing for combination of several phase-shift units
has a tendency to degrade the coherence between the consecutive paths. This is similar to sum-
ming random phasors with uncorrelated phase, resulting in the absence of interference in average.

We can make the above assertion more precise in mathematical terms by deriving estimates for
the contrast obtained for the different types of paths taken separately, and show that the type
of paths involving phase mixing intrinsically leads to poorer contrast than the types of path
involving only one type of phase. Consider then, as a prototypical reflection amplitude for a
sum of paths that involves phase mixing and a sum of paths that does not (and will serve as
reference), the following expressions

rmixϕ =
r̃

[1− r0 exp(2iϕ0)] [1− rs exp(2iϕs)]
(11.18a)

rref =
r̃

1− rs exp(2iϕs)
. (11.18b)

These reflection amplitudes mimic the structures from Eqs. (11.14) and Eq. (11.10) respectively,
but we will see that the precise expressions for the numerators do not matter for the contrast, and
are hence denoted by the same symbol r̃. Note that all the reflection amplitudes in Eq. (11.18)
depend on angles of incidence and scattering, but for clarity we drop these arguments. Since we
are interested in the contrast for the fringes in the intensity, our first step consists in taking the
square modulus of Eq. (11.18)

Imixϕ =
|r̃|2

|1− r0 exp(2iϕ0)|2 |1− rs exp(2iϕs)|2
(11.19a)

Iref =
|r̃|2

|1− rs exp(2iϕs)|2
. (11.19b)

We then bound the intensity by using the triangular inequality

|r̃|2
(1 + |r0|)2 (1 + |rs|)2

≤ Imixϕ ≤ |r̃|2
(1− |r0|)2 (1− |rs|)2

(11.20a)

|r̃|2
(1 + |rs|)2

≤ Iref ≤ |r̃|2
(1− |rs|)2

. (11.20b)

It is clear from Eq. (11.20) that the intensity lies between two bounding curves. A fair estimate
for the trend, i.e. the intensity without the oscillations would be given by |r̃|2, and we thus
estimate, or rather define, the inverse contrast as

η−1
mixϕ = (1 + |r0|)2 (1 + |rs|)2 − (1− |r0|)2 (1− |rs|)2 (11.21a)

η−1
ref = (1 + |rs|)2 − (1− |rs|)2. (11.21b)

This may not be the most natural definition for the contrast, but we choose this one since it is
easier to work with and will not change the conclusion. By recasting Eq. (11.21) by the use of
straightforward algebra, we obtain

η−1
mixϕ = 4|rs|+ 4|r0|+ 4|r0||rs|+ 4|r0|2|rs| (11.22a)

η−1
ref = 4|rs|. (11.22b)
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This shows that the inverse contrast for phase mixing is larger than that of the reference, i.e.
that the contrast in the case of phase mixing is smaller than that of the reference. Indeed, the
two last terms in Eq. (11.22a) are cross-terms resulting directly from the phase mixing nature
of the paths encoded in the reflection amplitude. Note that the choice for the reference was
arbitrary and one could choose to study paths of type (1’), (2’), etc., in Fig. 11.2(b), and hence
replace rs exp(2iϕs) in Eq. (11.18) by r0 exp(2iϕ0), and the conclusion would still hold.

11.2.3 Influence of the Brewster and Yoneda effects on Selényi rings

We have seen in Chapter 10 that for the scattering of light by a rough interface between two
dielectric media, the phenomena of Brewster scattering and of the Yoneda ring come with a
phase jump at the Brewster scattering angle and a continuous phase shift above the critical
angle. We illustrate now the influence these phase behaviors have on the positions of the
Selényi rings. We restrict ourselves here to a simple illustration for co-polarized scattering in
the plane of incidence, and consider the cases where either only the top interface is rough (RP)
or only the bottom interface is rough (PR). The aim of this section is to observe these effects
and to give an intuitive explanation. A more detailed analysis could be the object of a devoted
research article.

Consider a film of dielectric constant ε2 = 3.5 deposited on a glass substrate of dielectric
constant ε3 = 2.25 (and the host medium is vacuum ε1 = 1). The film thickness is chosen
to be equal to d = 5λ, the rms-roughness and the correlation length of the rough interface
are σ = λ/30 and a = λ/3 respectively. Figure 11.7 presents the incoherent component of
the mean differential transmission coefficients as a function of the angle of scattering for the
two configurations RP and PR. For s-polarized light, we can see that the fringes seem to be
bounded by an eveloppe which exhibits a peak around the critical angle θc = arcsin(n1/n3)
as indicated by the vertical red dash-dotted line in Figs. 11.7(a) and 11.7(b). For p-polarized
light, the intensity seems to go to zero at the critical angle in the RP configuration, while it
remains positive in the PR configuration at the same angle. In the PR configuration, it is not
clear whether there is a clear zero of intensity due to the Brewster scattering effect at a higher
angle of scattering or if it is due to the interference mechanism. A more detailed analysis is
then necessary to understand the difference between the two cases.

Let us now take a closer look at the position of the peaks. First, we can see that the local
maxima of intensity for p- and s-polarized light coincide for angles of scattering smaller than the
critical angle but are shifted with respect to each other for angles of scattering larger than the
critical angle. This effect is particularly well visible in the PR configuration. We note that in this
configuration, there is almost a flip of maximum and minimum for p-polarized light around the
critical angle. We believe this to be due to the Brewster scattering phase jump (see Chapter 10).
Indeed, when crossing the Brewster scattering angle, a path may acquire an additional phase
shift compared to what would be expected with the difference of optical paths length argument,
hence the corresponding flip of maxima and minima. Furthermore, focusing our attention on
s-polarized light for clarity, we can see that the position of the local maxima agree well with the
positions predicted by Eq. (11.15)4, indicated by the vertical dashed lines, before the critical
angle, but gradually shifts from the expected positions as the angle of scattering is increased
beyond the critical angle. We believe this effect to be a signature of the continuous phase shift

4But one must change ε1 by ε3 since light is observed in transmission.
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Figure 11.7: Incoherent components of the mean differential transmission coefficients
〈∂Tαα/∂Ωt〉incoh as a function of the angle of scattering for in-plane co-polarized scattering
from a film geometry for the polar angle of incidence θ0 = 0◦. The wavelength of the incident
light was λ = 632 nm, the mean thickness of the film d = 5λ, and the dielectric constants of
the media were ε1 = 1.0, ε2 = 3.5, ε3 = 2.25. The rms-roughness of the rough interface was
σ = λ/30, and the correlation length was a = λ/3. (a) Top surface rough and bottom surface
planar (RP). (b) Top surface planar and bottom surface rough (PR). The black dashed lines
are the positions of the fringe maxima as predicted with a difference of optical paths length
argument, Eq. (11.15), with ε1 replaced by ε3. The red dash-dotted line indicate the critical
angle θc = arcsin(n1/n3).

occurring upon the Yoneda phenomena as demonstrated in Chapter 10.

We would like to stress that these results illustrate that the Brewster phase jump and Yoneda
phase shift influence the behavior of the Selényi rings. A more detailed analysis should be
carried out to explain unambiguously the full mechanisms at play by combining the knowledge
acquired both in Chapter 10 and the optical path analysis in Section 11.1. We can nevertheless
conclude that a scattering experiment on such a sample could permit to measure the phase
shifts predicted by the theory of the Brewster scattering and Yoneda phenomena based on the
fact that such a rough film system acts both as a scattering sample and an interferometer.
An experimental demonstration of these effects would be welcome as it could confirm or
complement the theory developed in this thesis.

Moreover we would like to mentioned that more effects can be observed by playing with the
dielectric constants in order to play with effects due to total internal reflection. Then effects due
to guided modes can be observed too, and some configurations of dielectric constants can lead
to intensity patterns with forbidden scattering or with regions with interference rings within a
cone and without interference rings outside a cone. We leave the thorough discussion of the
complete zoology of effects one may observe for Selényi rings to a devoted research article.
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Figure 11.8: Incoherent components of the mean differential reflection coefficients
〈∂Rαα/∂Ωs〉incoh for in-plane co-polarized scattering from a two-rough-interface film geometry
for the polar angle of incidence θ0 = 0◦ (Figs. 11.8(a)–(c)) and θ0 = 60◦ (Figs. 11.8(d)–(e)).
The wavelength of the incident light was λ = 632.8 nm, the mean thickness of the film d = 8λ,
and the dielectric constants of the media were ε1 = 1.0, ε2 = 2.69, ε3 = 15.08 + 0.15i. The
rms-roughness of the interfaces were σ1 = σ2 = λ/30, and the Gaussian correlation functions of
each of the surfaces were characterized by the correlation length a = λ/3. The cross-correlation
function between the rough top and rough bottom interface of the film had the form Eq. (11.2)
and was characterized by the parameter γ with values as indicated in each of the panels. The
vertical dash-dotted and dotted lines indicate the expected angular positions of the maxima
and minima of the scattered intensity as predicted by Eq. (11.16), respectively. For reasons of
clarity only the expected positions of the maxima of the in-plane mean DRCs are indicated in
Figs. 11.8(a) and 11.8(d). Figure taken from Paper [3]

11.3 Cross-correlation induced ring intensity enhancement and
attenuation

So far we have restricted our study to the configurations RP and PR for the sake of simplicity
and for illustrating the differences between the two configurations. It is now time to treat
the case where the two interfaces are rough. We return to the system of the photo-resist
film deposited on the silicon substrate studied previously. The two rough interfaces are then
characterized by the same auto-correlation and with equal rms-roughness σ1 = σ2 = λ/30, all
other parameters being kept identical as in the cases RP and PR studied previously.

For the case where the two interfaces are uncorrelated, i.e. when the cross-correlation parameter
is γ = 0, we have seen in Section 11.1 that the intensity of the scattered light is the sum of the
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Figure 11.9: The full angular distribution of the incoherent component of the mean DRC,
〈∂Rαβ/∂Ωs〉incoh, for incident β-polarized light that is scattered by a two-rough-interface film
geometry into α-polarized light (α, β ∈ {p, s}). When the polarization of the scattered light
is not observed, the relevant mean DRC quantity is

∑
α=p,s 〈∂Rαβ/∂Ωs〉incoh and this situation

is labeled as β → ?. The reported results were obtained on the basis of SAPT, Eq. (11.7),
and the polar angles of incidence were θ0 = 0◦ ((a)–(f)) and θ0 = 60◦ ((g)–(l)). The incident
in-plane wave vector is indicated by the white dot for non-normal incidence ((g)–(l)). The cross-
correlation function between the rough top and rough bottom interface of the film had the form
Eq. (11.2) and was characterized by the parameter γ as indicated in the figure (and constant for
each row of sub-figure). The remaining roughness parameters are identical to those assumed in
producing the results presented in Fig. 11.8. Figure adapted from Paper [3].

intensities of the two associated subsystems where only one of the interfaces is rough at a time5.
The corresponding diffuse component of the mean differential reflection coefficients are shown
for co-polarized scattering in the plane of incidence in Figs. 11.8(a) and 11.8(d) for normal
incidence and θ0 = 60◦ incidence respectively. We can see that, as the sum of two interference
patterns of intensity with the same fringe positions, the resulting pattern also exhibits fringes
at the same positions as for the two subsystems. In addition, the contrast is poor since one of
the two subsystems has a poor fringe contrast, and, in this particular case, it happens that the
subsystem with the rough interface on the substrate dominates the signal.

When now the interfaces are correlated, the last term in Eq. (11.7) may contribute either neg-
atively or positively to the intensity. Note that the resulting intensity remains non-negative in
virtue of 2Re(zz′∗) ≤ |z|2 + |z′|2. The contribution of this last term is plotted in the (θ0, θs)-
plane in Figs. 11.5(c, h), where we can appreciate that the extrema of the correlation induced

5Let us stress again that this is true only in the single scattering approximation.
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term takes positive and negative values on the same grid as the maxima of the two independent
subsystems (see Figs. 11.5(a, b, f, g)). This means that when summed to the intensities of
the two subsystems, the cross-correlation term may enhance some fringes and attenuate some
other with an efficiency that depends on the cross-correlation parameter γ. Figures 11.5(d, i)
show the resulting total intensity when γ = 1, i.e. when the two surface profiles are perfectly
positively correlated, while Figs. 11.5(e, j) show the resulting total intensity when γ = −1, i.e.
when the two surface profiles are perfectly negatively correlated. When can see that by adding
(γ = 1) or subtracting (γ = −1) the cross-correlation term to the sum of intensities of the two
subsystems RP and PR, half of the fringes disappear while the other half are enhanced. The
fringes being enhanced or attenuated depend on the sign of γ. This is illustrated for co-polarized
scattering in the plane of incidence in Figs. 11.8(b, e) for γ = 1 and Figs. 11.8(c, f) for γ = −1.
We observe that the cross-correlation induced interference selectively enhances and attenuates
every other fringe, depending on the sign of the correlation parameter. Note that this effect
also consequently enhances the contrast. Figure 11.9 shows the corresponding full angular dis-
tribution of the diffuse component of the mean differential reflection coefficients for scattering
from incident p- or s-polarized light and detecting the intensity independently of polarization.
The three cases of uncorrelated (γ = 0), positively correlated (γ = 1) and negatively correlated
(γ = −1) interfaces are shown, and we can appreciate by comparison with the uncorrelated case
the enhancement and attenuation of half of the rings, which are selectively attenuated or en-
hanced depending on the sign of γ. For intermediary values of −1 < γ < 1 the same behavior is
observed but with a weaker enhancement and attenuation efficiency. For 0 < γ < 1 the intensity
pattern will be somewhat between those for γ = 0 and γ = 1.

11.4 Quételet rings and multiple scattering effects

A natural question after such a study is the following. What happens for rougher surfaces?
When the surfaces become rougher, we expect that multiple scattering paths will contribute
significantly to the scattering amplitudes. It was shown by Lu et al. based on one-dimensional
simulations of the reflected light scattered by a dielectric film on a perfectly conducting surface,
that the intensity experiences three regimes with increasing roughness [116]. In the weakly rough
regime, Selényi fringes are observed with similar interference patterns as those presented in the
present chapter. For slightly rougher surfaces, interference fringes are also observed but with
a different behavior than the behavior of Selényi fringes with respect to the angle of incidence.
It was shown that the position of the fringes in the scattering distribution vary with the angle
of incidence. It was motivated that the relevant paths contributing to such a behavior was a
single scattering path of the form shown in the PR configuration (see Fig. 11.2(c)), and mixing
the phase ϕ0 and ϕs. Assuming only one segment down and one segment up inside the film, the
corresponding phase shift is ϕ0 + ϕs, the associated optical path length shift is

∆ = n2 d
(

cos θ
(2)
0 + cos θ(2)

s

)
. (11.23)

Such an optical path length shift could adequately describe the dependence of the fringe positions
on the angle of incidence. Such interference fringes, or rings, are known as Quételet rings
[116, 118, 119, 120]. We speculate that as the roughness is increased, the dominating single
scattering paths in the weakly rough case, are those essentially giving either a phase shift being
a multiple of ϕ0 or ϕs and the paths mixing exactly an equal amount of ϕ0 and ϕs are negligible.
When multiple scattering starts to play a role, the single scattering paths have less chance of
staying ... single scattering paths, or in other words their contribution decays. We believe that
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the paths that mixes equally ϕ0 and ϕs are less affected than other and becomes of the same
order as the single scattering paths which were the dominant ones for weakly rough surfaces, and
the Quételet rings are observed. For very rough surfaces, multiple scattering paths dominate
inducing a loss of coherence and destroying the interference due to multiple reflections inside the
film. There are no interference rings anymore. For metallic surfaces, the enhanced backscattering
phenomenon can be observed, which is due to the excitation of surface plasmon polaritons at
the dielectric metallic interface [116, 47]. Satellite peaks may also be observed in the multiple
scattering regime if the film supports one or several guided modes [121, 110, 122, 52, 47].

11.5 Summary

After dealing with the physics of scattering by a single rough interface in Chapter 10, the present
chapter was devoted to the study of the scattering by a rough dielectric film, and more precisely
to the study of Selényi rings which are interference rings in the diffuse intensity. Based on small
amplitude perturbation theory to first order, and on an equivalent picture based on optical paths
allowing for a single scattering event, we have identified the physical mechanisms at play in the
Selényi rings phenomenon. By a careful examination of the different possible single scattering
paths, we were able to explain the difference of ring contrast observed when either a rough
surface is on the side of the observed light (the remaining surface being planar) or the opposite
configuration. The difference could be explained in terms of the nature of the optical paths
involved, in particular the importance of paths with phase mixing related to both the angle of
incidence and the angle of scattering. Moreover, we have illustrated the influence of the Brewster
scattering effect and of the Yoneda effects on the positions of the rings due to additional phase
jump and phase variations associated with these two phenomena as was explained in details in
the previous chapter. In addition, a phenomenon of ring enhancement or attenuation was also
observed and explained by tuning the cross-correlation between the two rough interfaces. This
is an example of correlation induced interference.
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Chapter 12

Inverse scattering problem

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.
John Von Neumann.

Can we deduce the shape of a surface from the knowledge of its scattering response? How to
design a surface with a given scattering response? These two similar questions are admittedly
more challenging to answer than that of the forward scattering problem, and will be referred
to as the inverse scattering problem and the designer problem. In this chapter, we present
methods to solve the two aforementioned problems, in some specific cases, by interpreting them
as an optimization problem.

The aim of the present chapter is to explain and demonstrate how one can recover surface
parameters of a system composed of one or several periodic surfaces composed of elemen-
tary shapes, whose Fourier moments are known analytically, and the statistical properties
of randomly rough surfaces. This is, of course, a simpler problem than that of a general
inverse scattering problem since we assume the knowledge of the materials the system is
made of, and the shape of the surfaces but only ignore the scaling parameters that define
the geometry. We will refer to this problem as the parameter retrieval problem or as critical
dimension metrology. Nonetheless, this problem has some interesting practical applications.
Assume one is manufacturing a surface, hence one has some knowledge of what the surface
should look like but with some uncertainty. One would then be interested in verifying
and assessing the quality of the manufactured surface. This could in principle be done
at a low cost by a light scattering experiment and using the presented method to obtain
quantitative estimates of the actual parameters of the surface. A second example is that of
the designer problem. If one is able to construct some well pre-defined structures, how to
optimize the parameters of these structures to obtain an optical response which is as close
as possible to a desired optical response, given some constraints on what is practically realizable.

The basic idea for solving the aforementioned optimization problem is to construct a sequence of
surfaces, or systems, defined by a set of geometrical parameters with an algorithm that minimizes
an objective function which compares the scattering response of the simulated surfaces to a target
scattering response. The present chapter is composed of three main parts. First, we will explain
how the inverse problem is handled mathematically, viewed as a rather general optimization
problem. We will define how the parameter space defining a system is described and introduce
the concept of measurement functional which, we believe, is a rather elegant way of defining
any objective function based on the reflection and transmission amplitudes, although the reader

279
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may find it too abstract. Then we will present some classic methods for solving optimization
problems which make use of the gradient or Jacobian of the objective function, as well as some
techniques to evaluate the Jacobian numerically. Finally, the framework is applied to a concrete
example of critical dimension metrology of a plasmonic photonic surface and we show that the
method is able of retrieving geometrical parameters with great accuracy.

12.1 Position of the problem

Let a system be composed of a stack of n + 1 layers separated by n interfaces as defined in
Chapter 3. We assume that the set of surface profiles (ζi)i∈J1,nK is completely defined by a finite
set of d parameters denoted v = (v1, · · · , vd).

Example: for a stack of flat interfaces, only one parameter per interface is needed to encoded
the geometry of the system, namely the distance Hi of the ith surface from a given origin, hence
v = (H1, · · · , Hn).

Example: for a single two-dimensional sinusoidal surface given by

ζ1 (x) =
H

2

[
sin

(
2π

a1
x1

)
+ sin

(
2π

a2
x2

)]
,

three parameters are needed to define the surface, namely, the amplitude H, and the period in
each direction a1 and a2, hence v = (H, a1, a2).

Example: for a randomly rough surface having a Gaussian height probability density with
rms-roughness σ > 0 and a isotropic Gaussian auto-correlation function with correlation length
a > 0, the parameter vector defining the statistical properties of the surface (or realizations of
the surface) is then v = (σ, a). If we are studying a system having a film with randomly rough
interfaces, we have v = (σ1, σ2, a1, a2, h) where h is the height offset of the second interface
(the first being set to have zero average height) and the rms-roughness of the first and second
interface are respectively σ1 and σ2, and their correlation lengths are a1 and a2. Note that
we can also add cross-correlation between the interfaces, or consider anisotropic surfaces hence
adding extra parameters.

Remark 12.1. In this chapter, we have chosen to work with a fixed set of materials for the
different layers, and only the geometrical parameters will be part of the optimization variables.
It is of course conceivable to add the material dielectric functions as part of the optimization
parameters. We choose here to restrict ourselves to the case in which one has knowledge of
the material composition of the system and one is interested in recovering the geometrical
parameters.

The geometry of the whole system is then determined by the d-dimensional parameter vector
v = (vi)i∈J1,dK. Let R(p|p0, ω,v) and T(p|p0, ω,v) respectively denote the reflection and

transmission amplitudes of the whole system defined by v. Let R̃(p|p0, ω) and T̃(p|p0, ω)
denote the reflection and transmission amplitudes of a target system.

In practice, the reflection and transmission amplitudes of the target system are not known,
but only a finite set of physical measurements is known. By measurement, we can understand
either the outcome of an actual measurement from an experiment, or the desired outcome for
a measurement in the case of the designer problem. Thus one might know only the intensity
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scattered in a given set of directions given a set of incoming wave vectors, for a given set of photon
energies, and for a given set of polarization states. These measurements will be mathematically
described as functionals acting of the reflection or transmission amplitude distributions for a
given system R( · | · , · ,v), T( · | · , · ,v). The action of a measurement M on the scattering
amplitude X( · | · , · ,v), where X = R or T, is denoted as 〈M,X( · | · , · ,v)〉. Thus only some
(〈Mj , R̃〉)1≤j≤N and/or (〈Mj , T̃〉)1≤j≤N , which represent a set of N measurements, are known
and consequently only the corresponding measurements for the computed scattering response are
allowed to be used as part of a cost function. Therefore a cost function for the set of parameters
v, χ(v) is of the form

χ(v) = χ
(
〈M1,X1( · | · , · ,v)〉, · · · , 〈MN ,XN ( · | · , · ,v)〉, 〈M1, X̃1〉, · · · , 〈MN , X̃N 〉

)
. (12.1)

Here the Xj denote either the reflection or transmission amplitude distributions, so that we
could have mixed reflection and transmission data. A natural example of cost function that we
will use in the following is a cost function quadratic in difference of measurements

χ2(v) =
1

2

N∑

j=1

∣∣∣〈Mj ,Xj( · | · , · ,v)〉 − 〈Mj , X̃j〉
∣∣∣
2

σ2
j

. (12.2)

Here σj corresponds to an uncertainty or tolerance in the target data 〈Mj , X̃j〉, so that each
term in Eq. (12.2) is weighted with respect to the respective tolerance. A convenient feature
of the above cost function is that it is (i) positive and (ii) if a system gives the exact same
measurement outcomes as the ideal system, then the cost function vanishes.

Examples of measurement functional: as a first example of measurement functional, let us
consider a single periodic interface whose scattering amplitude distributions are Dirac combs, as
we have seen in Chapter 4 for example. In this case, only a discrete set of modes with in-plane
wave vectors, up to the incident wave vector, lying on the reciprocal lattice of the interface are
allowed. Among these modes, only those with in-plane wave vector within a disc of radius

√
ε1
ω
c

(resp.
√
ε2
ω
c ) are propagating reflected (resp. transmitted) modes. Experimentally, for a given

incident angular frequency ω, in-plane wave vector p0 and polarization state β ∈ {p, s}, one
can measure the fraction of incident power scattered in the mode ` ∈ Z2 with polarization state
α ∈ {p, s}, also known as scattering efficiency (see Chapter 1). From the scattering amplitudes

X(`)(p0, ω), one deduces the efficiency, which we will simply denote e
(X,`)
αβ (p0, ω), given by

e
(X,`)
αβ (p0, ω|v) =

〈
e

(X,`)
αβ (p0, ω),X( · | · , · ,v)

〉
=





αj(p
(`)
0 )

α1(p0)

∣∣∣x(`)
αβ(p0, ω,v)

∣∣∣
2

if |p(`)
0 |2 ≤ εj ω

2

c2

0 if |p(`)
0 |2 > εj

ω2

c2

,

(12.3)

where the subscript j denotes the medium in which the mode is scattered, i.e. j = 1 for
reflection X = R and j = 2 for transmission X = T. Note that in the following, we will only
use the functional bracket notation when dealing with the abstract procedure, but we will use
its result as a function of v when giving concrete example.

A second example of measurement functional, that will be particularly important in our
concrete application (Section 12.5), is that giving the Mueller matrix elements (see Chapter 1).

As an example of measurement functional when dealing with randomly rough surfaces, we
may consider that giving the incoherent component of the mean differential reflection and
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transmission coefficients (see Chapter 1).

To sum up, for a given set of measurements (Mj)j∈J1,NK and their corresponding outcomes for
the target, the cost function is only a function of the parameter vector v. The last ingredient
one needs to define the optimization problem is a set of constraints on the parameters. The set
of constraints is represented by some set in v-space. To fix the idea, and since all geometrical
parameters considered here are real, we can see the parameter vector v as a vector in Rd. Thus
the constraints are represented abstractly by some set C ⊂ Rd. To use the vocabulary of the
field of optimization, we will call an element v ∈ C an admissible solution and an admissible
solution which minimizes the cost function on C an optimal solution or point of minimum. With
the presented set of notations, the minimization problem reads

find v̄ ∈ C such that χ(v̄) = inf
v∈C

χ(v) . (12.4)

We will now present algorithms that minimize the cost function under a set of constraints and
yield an optimal solution.

12.2 Optimization methods based on the Jacobian

12.2.1 Conditions for a local minimum

Assuming the objective function to be twice differentiable and that C = Rd (i.e. we consider a
unconstrained problem) a necessary and sufficient condition for v̄ to be a local minimum read

∇χ(v̄) = 0, and wT H(v) w > 0 (12.5)

for all w ∈ Rd and all v in a neighborhood of v̄. Here ∇χ(v) and H(v) denote respectively
the Jacobian, (∂χ/∂vi)1≤i≤d, and the Hessian of χ, (∂2χ/∂vi∂vj)1≤i,j≤d, at the point v. This
generalizes the well known result in one dimension that a local minimum is found at a point of
vanishing slope and of positive curvature.

12.2.2 Gradient descent

The idea of the gradient descent or steepset descent method is, from an initial point in C , to
iteratively compute a sequence of points in C that converges to a local minimum or a saddle
point by taking steps along the direction along which the cost function decreases the most, i.e.
opposite to its gradient ∇χ, and this until a point where the gradient vanishes is found. Then
more analysis is needed to decide whether the point of local minimum or saddle point found is
a global point of minimum. The algorithm for the gradient decent reads

• Choose an initial point v0 ∈ C .

• While the norm of the gradient is larger than some small number do
vn+1 = vn−µn∇χ(vn)
where µn is a step size, which may be fixed or adaptive.
If vn+1 /∈ C , project vn+1 onto C .

Remark 12.2. The projection onto C is not a trivial step in general as it depends on C . In
the cases we will deal with, C will be a d-dimensional box and the projection in that case is
straightforward.
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12.2.3 Gauss-Newton and Levenberg-Marquardt methods

We consider now the specific case of an objective function of the form Eq. (12.2). In order to
lighten the notations, since each term 〈Mj ,Xj( · | · , · ,v)〉 is only a function of the parameter
vector v (all the data concerning angle of incidences, scattering, etc... are parameters of the
measurement functional) we simply write yj(v) = 〈Mj ,Xj( · | · , · ,v)〉 and the corresponding
target data ỹj = 〈Mj , X̃j〉, so that Eq. (12.2) reads

χ2(v) =
1

2

N∑

j=1

|yj(v)− ỹj |2
σ2
j

=
1

2
|ρ(v)|2 . (12.6)

Here we have introduced the N -dimensional residual vector whose components are defined by
ρj = (yj − ỹj)/σ. The main idea of Gauss-Newton methods is to approximate the objective
function by a quadratic form (which should be a reasonable thing to do near a local minimum)
and to take a leap to the stationary point (potentially a minimum) of this quadratic form. Let
a quadratic approximation of χ2 about a point vn be

χ2(v) ≈ χ2(vn) + (v−vn) · ∇χ2(vn) +
1

2
(v−vn) ·H(vn)(v−vn) , (12.7)

where ∇χ2 and H are respectively the gradient and Hessian matrix of χ2. In particular, this
yields the following approximation for the gradient ∇χ2

∇χ2(v) ≈ ∇χ2(vn) + H(vn)(v−vn) . (12.8)

We now want to take a leap to what could potentially be a local minimum of the quadratic
approximation of χ2, which means that we want to reach a point vn+1 where ∇χ2(vn+1) = 0.
Setting ∇χ2(vn+1) = 0 in Eq. (12.8) yields

H(vn)(vn+1−vn) = −∇χ2(vn) , (12.9)

which is a linear system in the leap vn+1−vn. Solving Eq. (12.9) hence gives us a new
point of approximation for the point of minimum. There are two difficulties to consider
here. First, the quadratic form approximating best the objective function at some point v
requires the computation of the Hessian matrix of χ2, which is in principle a non trivial task
since in our case the yj are non-linear in v and not known in closed form. Indeed, recall
that for evaluating yj we need to solve numerically the RRE and then apply a measurement
functional on the solution. We then need a simple way to approximate numerically the
Hessian. Second, there is no guarantee that a point where the gradient of the quadratic form
vanishes is a minimum. It could be a maximum or a saddle point too. The remedy to this
issue will be to somewhat bias the new leap towards the gradient descent if that given by
Eq. (12.9) actually increases the objective function. These considerations are at the core of the
Gauss-Newton and Levenberg-Marquardt methods [123, 124, 61] that we now describe in details.

Let us then express the gradient and the Hessian matrix of the objective function, Eq. (12.6).
The kth component of the gradient reads (k ∈ J1, dK)

∂χ2

∂vk
=

N∑

j=1

∂yj
∂vk

yj − ỹj
σ2
j

, (12.10)

or equivalently in vectorial notations using the residual vector

∇χ2 = JT ρ , (12.11)
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where J is the Jacobian matrix of the residual vector. The (k, l) element of the Hessian matrix
reads (k, l ∈ J1, dK)

∂2χ2

∂vk∂vl
=

N∑

j=1

1

σ2
j

[
∂yj
∂vk

∂yj
∂vl

+
∂2yj
∂vk∂vl

(yj − ỹj)
]
. (12.12)

The elements of the Hessian matrix requires in principle the evaluation of first and second order
derivatives of the components yj . A common approximation consists in ignoring the second
term in the square bracket in Eq. (12.12). This can be motivated by the fact that this term will
be negligible in practice compared with the first one. One way of seeing this is that near the
minimum, we expect (yj − ỹj) to be small. In fact, inclusion of the second term may lead to
unstable schemes if outlier data points may not be fitted by the model [61]. Hence the Hessian
is approximated by

∂2χ2

∂vk∂vl
≈

N∑

j=1

1

σ2
j

∂yj
∂vk

∂yj
∂vl

. (12.13)

which only requires the evaluation of first order derivatives, which we needed anyway for evalu-
ation of the gradient.

Remark 12.3. Note that this approximation will not change the solution obtained when the
iterates have converged but may only affect the speed at which the optimum is reached. Indeed,
all we actually ask for is to have a good enough local approximation of the cost function by a
quadratic form. Whether this quadratic approximation is the best one or is only close to it is
not crucial [61].

The Gauss-Newton (or quasi Gauss-Newton) method then consists in solving Eq. (12.9) with H
replaced by its estimate H̃ defined for k, l ∈ J1, dK by

H̃kl =
N∑

j=1

1

σ2
j

∂yj
∂vk

∂yj
∂vl

, (12.14)

or in vectorial notation using the residual vector

H̃ = JT J . (12.15)

In other words, a (quasi) Gauss-Newton steps consists in solving

[
JT J

]
(vn) (vn+1−vn) = −JT(vn)ρ(vn) . (12.16)

Now if such a step does not decrease the objective function, one applies a regularization step,
which consists in adding weight to the diagonal of H̃. This is done in the following way. Let µ
be a small positive scalar and set

H̃
(µ)
kl = (1 + µ δkl) H̃kl , (12.17)

and repeat the Gauss-Newton step with the new matrix H̃(µ). If the new point vn+1 still does
not decrease the objective function, repeat the regularization step by increasing the value µ, etc
... What is this actually doing? Let us first imagine that the regularization step instead reads

H̃
(µ)
kl = H̃kl + µ δkl , (12.18)
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which was Levenberg initial contribution. When µ becomes large the matrix H̃(µ) becomes
diagonally dominant and we can write that it is essentially

H̃
(µ)
kl ∼ µ δkl , (12.19)

hence solving Eq. (12.16) simply reduces to

vn+1 = vn−
1

µ
∇χ2(vn), (12.20)

which is simply a gradient descent step with step size 1/µ. Such a regularization step then
have a tendency to bias the leap towards the steepest descent for large µ. However, this may
be inefficient since the step size may become small. In addition, Marquardt realized that the
components of the gradient of the objective function may have different scales, since in fact they
may have different units. Therefore, there should be a better way to weight each component of
the gradient than by a common scaling factor, i.e. a pseudo gradient descent that would look,
component wise, like

vn+1,k = vn,k −
1

µk

∂χ2

∂vk
(vn) . (12.21)

Marquardt’s idea is that the Hessian matrix contains information about the scales for more
appropriate step size on each gradient direction. Indeed, looking at the dimensions we have
[∂χ2/∂vk] = [vk]

−1, and [∂2χ2/∂v2
k] = [vk]

−2, hence we would rather like to have a proportion-
ality constant 1/µk between vk and ∂χ2/∂vk in Eq. (12.21), to have the dimension of [vk]

2, i.e.
[µk] = [vk]

−2 which is precisely the dimensions found in the diagonal elements of the Hessian ma-
trix. Consequently, Marquardt suggested the regularization scheme we announced in Eq. (12.17).

To sum up the Levenberg-Marquardt method consists in approaching a local minimum of the
objective function by solving

[
JT J +µndiag(JT J)

]
(vn) (vn+1−vn) = −JT(vn)ρ(vn) , (12.22)

with adaptive regularization parameter µn to ensure that the objective function decreases at
each new iterate. It is clear from Eq. (12.22) that evaluating the Jacobian of the residual vector
becomes a key step in the optimization process, and we devote the next section to this task.

12.3 Methods for computing the Jacobian for the RRE

In the methods presented in the previous section, the Jacobian of the cost function, or that of
the residual vector, plays a key role. We expose now methods for computing the Jacobian of
the residual vector and discuss their advantages and drawbacks in the case of a model being the
solution of the reduced Rayleigh equations.

12.3.1 Finite difference

A rather simple way to evaluate the Jacobian of the residual vector, or that of the objective
function χ, is through the use of finite difference methods. Assume that one has implemented
a solver for the reduced Rayleigh equations giving the reflection and transmission amplitudes
for a given set of scattering parameters (angles of incidence and scattering, wavelengths) and
a given parameter vector v defining the scattering system. In addition, assume that one has
implemented a function that takes as an input this reflection and transmission amplitudes (and
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target data) and returns the residual vector. Then one can estimate the Jacobian of the residual
vector by solving d + 1 reduced Rayleigh equations, one for the current parameter vn and one

for each direction vj (recall that v ∈ Rd) in parameter space with v = vn +∆vj êj = v
(j)
n ,

where êj is a unit vector in the jth parameter. From the d + 1 computed residual vectors,

ρ0 = ρ(vn),ρ1 = ρ(v
(1)
n ), · · · ,ρd = ρ(v

(d)
n ), we can approximate the Jacobian matrix of the

residual vector by

ρ′(vn) =

(
ρ1 − ρ0

∆v1
, · · · , ρd − ρ0

∆vd

)
. (12.23)

The advantage of this technique resides in its simplicity of implementation. Although the deriva-
tives are approximated by finite differences, the method is expected to work relative well if the
residuals change smoothly with the parameters, which essentially means that the optical re-
sponse changes smoothly with the parameters. The choice of the steps ∆vj must be taken
carefully for each parameter. Indeed, note that all parameters, first, may not have all the same
physical units (usually length, angles, unit-less scaling parameters between two lengths, etc ...),
second, may vary in quite different ranges, and third, may not all have the same impact on
the optical response. The user hence must carefully study the nature of each parameter, their
expected range of admissibility and estimate their impact on the optical response to come up
with a reasonably small but relevant step size in terms of change in the optical response.

12.3.2 Differentiation of the RRE

Is there a method to compute exactly the Jacobian of the scattering amplitudes solution of
the reduced Rayleigh equations? Yes, there is. The idea is quite natural as it consists in
differentiating the reduced Rayleigh equations with respect to the parameters in order to obtain
an equation on the Jacobian of the scattering amplitudes. We will see that it is not much
more costly than doing a finite difference approximation but it requires a bit more numerical
implementation. Let us start by reminding the reader that the scattering amplitudes X (q |p)
are always given as the solution of (i) an integral equation of the form

∫
M (p |q) X (q |p)

d2q

(2π)2
= −N (p |p) , (12.24)

for arbitrary surfaces or (ii) an infinite countable linear system

∑

m∈Z2

M(p` | pm) X(m)(p0) = −N(p` | p0) , (12.25)

for periodic surfaces. We treat now the latter case since it takes a form which looks closest
to numerical implementation. The former situation can be treated in a similar fashion. An
interesting fact is that the periodic case contains an additional detail that one must pay attention
to. The lattice constants being considered as parameters, taking derivatives with respect to the
lattice constants induce extra factors due to the fact that the in-plane wave vectors of the form p`

depend directly on the lattice parameters. We thus start by considering the case of a geometrical
parameter which is not a lattice parameter.

Differentiation with respect to a non-lattice parameter
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Consider a parameter vi of the parameter vector v = (v1, · · · , vd), such that vi is not part
of a lattice parametrisation. By taking a partial derivative of the reduced Rayleigh equations
Eq. (12.25) with respect to vi we obtain

∑

m∈Z2

(
∂vi M(p` | pm) X(m)(p0) + M(p` | pm) ∂vi X(m)(p0)

)
= −∂vi N(p` | p0) . (12.26)

Here ∂vi M corresponds to a 2 × 2 matrix whose elements are (∂viMα,β)α,β∈{p,s} and similarly

for ∂vi N and ∂vi X
(m). Assuming known the solution of Eq. (12.25), we obtain a linear system

for (∂vi X
(m))m∈Z2 , namely

∑

m∈Z2

M(p` | pm) ∂vi X(m)(p0) = −∂vi N(p` | p0)−
∑

m∈Z2

∂vi M(p` | pm) X(m)(p0) . (12.27)

The computation of the Jacobian of the scattering amplitudes thus reduces to solving a linear
system similar to the one for computing the scattering amplitudes. In fact, the left-hand
side matrix stays identical to that used for solving Eq. (12.25) but the right-hand side is
composed of two terms. The first term is simply the partial derivative with respect to vi of
the right-hand side of Eq. (12.25) and the second is the product of the partial derivative of the
left-hand side matrix of Eq. (12.25) and its solution. Numerically, this means that we need to
set up the new matrix ∂vi M and vector ∂vi N, and solve a system. It is therefore, roughly,
as costly as doing a finite difference approximation. Indeed, for each partial derivative with
respect to a parameter, the finite difference approximation requires to set up M and N for
a system whose parameter vi is perturbed by an amount ∆vi and solve the corresponding system.

Differentiation with respect to a lattice parameter

In the case of differentiation with respect to a lattice parameter, the same method applies but
we have to remember that

∂vi [Mαβ(p` | pm)] = ∂viMαβ(p` | pm) + ∂vi p` ·∇p`
Mαβ(p` | pm) + ∂vi pm ·∇pm

Mαβ(p` | pm)

∂vi [Nαβ(p` | p0)] = ∂viNαβ(p` | p0) + ∂vi p` ·∇p`
Nαβ(p` | p0) .

12.4 Other optimization methods

We briefly comment in this section on the potential use of other optimization methods with
their advantages and drawbacks.

12.4.1 Genetic optimization

Genetic optimization, or more generally evolutionary algorithms, refers to a family of heuristic
optimization methods inspired from biology. The parameters defining the system is seen as a
genome and the measurements as a phenotype. The objective function then consists in having
a phenotype which fits best the objective. The basic principles of a genetic algorithm read as
follows (see e.g. [125, 126]):

1 Generate a set of systems (a generation of individuals) with randomly picked values of the
parameters (genes). Compute the corresponding value of the objective function for each
system.
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2 Create a new generation of systems until some systems are found to have reached a small
enough value of the objective function (loop). The rules for creating a new generation can
combine the following tunable steps:

2.1 Keep the first few individuals of the previous generation with the smallest value of the
objective function. This avoid loosing potentially good solutions from a generation
to the next.

2.2 Create new individuals by ”procreation”, or cross-over of the genomes of several
parents taken from the previous generations. This can be done by choosing randomly
a certain number of parents and choosing randomly a certain number of genes (values
of parameters) for each and making a new genome from them. The choice of parents
can be done randomly with a tunable probability distribution for an individual to be
picked as a parent. For example, an individual with a small value of the objective
function may have better chances to be picked than an individual with a large value
of the objective function.

2.3 Mutate some of the new individuals by randomly changing the values of some of their
genes. This ensures to explore more the parameter space and avoid that the indi-
viduals look too similar after a few generations, so that good ”unexpected” solutions
may be reached.

The above description is of course very basic and aims at giving the essential ideas behind genetic
optimization. The art of building an efficient algorithm for a given problem consist in tuning
appropriately the different steps and in particular the probability distribution for an individual
to be a parent and for mutations. Indeed, giving to much weight to the currently best solutions
may lead to an impoverishment of the genetic pool leading to similar solutions which do not
explore sufficiently the parameter space. On the contrary, given even weight for all individuals
or having too much mutations may lead to exploring too much the parameter space randomly
without using the information on which individuals were potentially close to an optimal solution.

One may consider genetic algorithms for optimizing a structure where for example different type
of particles with different shapes and sizes maybe placed on a substrate and optimized these
parameters for achieving some targeted response. Implementing such an algorithm is relatively
simple, and does not require the computation of the Jacobian of the objective function. However,
one must keep in mind the cost associated with the evaluation of the objective function for each
system, or individual. Indeed, genetic algorithms usually require that each generation contains
many individuals, say a hundred or a thousand for the sake of the example. In other words,
each generation requires to compute the response of a hundred or thousand systems, which
is costly in the case of electromagnetic wave scattering. The method based on the reduced
Rayleigh equations is relative efficient compared to other methods like Finite Elements Methods
or Rigorous Coupled Waves Analysis, but nevertheless has a cost which does not allow for
computing too many systems. In fact, the Levenberg-Marquardt used in Section 12.5 on a
concrete example with experimental data, needed around 20 to 30 iterations before leading a
trustful optimal solution which would be with the number of parameters for this problem around
a hundred systems simulated in total. Therefore, genetic algorithms may not be the preferred
optimization method in this case. A genetic algorithm may be preferred instead if the number
of parameters becomes very large and/or if fast approximation methods for the computation of
the objective function can be found.
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12.4.2 Stochastic optimization

As mentioned earlier, methods based on the Jacobian of the objective function have essentially
two drawbacks. First, such methods find local minima of the objective function, and the
local minimum found by the algorithm depends in general on the initial condition. Second,
for optimization problems involving a large number of parameters d the computation of the
Jacobian may become very costly as essentially d + 1 forward problems per iteration must be
solved (by iteration we mean a new guess of the solution of the optimization problem). In
such cases, where the parameter space is of high dimension and/or the objective function may
feature many local minima, one may prefer stochastic methods. An advantage of stochastic
optimization methods is that they usually do not require the objective function to be smooth
as the Jacobian is not used. A second advantage is that stochastic methods are, in principle,
made for finding the global minima of the objective function.

The basic ideas behind stochastic optimization methods are the following. Let us assume that
the parameter space is discretized such that we allow the parameter vector v to take only
discrete values. The number of possible discrete values of the parameter may potentially be
huge, and evaluating the objective function for each possible parameter vector is of course out
of the question. By analogy with problems of statistical physics where the state of a system is
determined by a competition between thermal fluctuations and the minimization of a potential
energy, we can define the Gibbs measure µT parametrized by an artificial temperature parameter
T as

µT (v) =
1

ZT
exp

(
−χ(v)

T

)
, (12.29)

with the partition function ZT defined such that µT is normalized, i.e.

ZT =
∑

v

exp

(
−χ(v)

T

)
. (12.30)

The objective function χ hence plays the role of a potential energy in our analogy with problems
from statistical physics. Note that the partition function cannot be evaluated in practice since
this would require to evaluate the objective function for each parameter vector. The interest
of defining the Gibbs measure as in Eq. (12.29) is that it assigns a probability to each param-
eter vector v which becomes more and more concentrated on the points of minimum as the
temperature goes towards zero. Indeed, let χ? be the minimum value of χ on the considered
discrete space of v, and assume that the minimum is reached for a set of n parameter vectors

C ? def
= {v |χ(v) = χ?} = {v?1, · · · ,v?n}. Then by multiplying and dividing the Gibbs measure by

exp
(
χ?

T

)
, it can be recast as

µT (v) =
exp

(
−χ(v)−χ?

T

)

∑

v

exp

(
−χ(v)− χ?

T

) . (12.31)

It thus becomes clear that for all points v /∈ C ?, the numerator exp
(
−χ(v)−χ?

T

)
→ 0 as

T → 0 while only the points of global minima, v?k ∈ C ?, retain a non-zero weight, since

exp
(
−χ(v?k)−χ?

T

)
= 1, which gives with the normalization factor a probability equal to 1/n for

each point of minimum, i.e. the inverse of the number of points of minimum.
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The art of stochastic algorithm is then to simulate the Gibbs measure for a decaying tempera-
ture. This is usually done by the use of Markov chains with transition probabilities based on
conditional probability constructed from the Gibbs measure (in order to avoid to refer to the
unknown partition function). Example of such techniques are the Metropolis-Hasting algorithm
or simulated annealing [127, 128, 88] , which we choose not to discuss further here as the aim
of this section is to only give a brief discussion on the basic ideas behind stochastic optimization.

More important to us is to see that stochastic optimization may be of interest for our inverse
scattering problem if the parameter space becomes of high dimension. Stochastic algorithms
usually require a relatively large number of evaluations of the objective function. Such methods
would then be kept for problems for large d. An advantage of stochastic optimization compared
with the genetic optimization is that it is not based on heuristics and is hence backed up with
a mathematical theory providing theorems which (in some sense) guarantee the convergence
of the algorithm towards a global optimum, with in some cases estimates of the convergence
rates. A difficulty, however, is the choice of the decay rate for the artificial temperature, which
intuitively should decay fast enough for the algorithm to be efficient but not to fast so that the
system does not ”freeze” in a region near a local minimum. This is an art in itself.

12.4.3 Adjoint method

We have seen previously that the methods based on the Jacobian require solving d+1 scattering
problems at each iteration, d being the dimension of the parameter space. Solving a single
reduced Rayleigh equation numerically, which consists in solving a linear system of equations,
costs O(D3) operations (assuming the use of a direct method) where D is the number of modes
(see e.g. Chapter 5). Then each iteration of the optimization scheme thus requires O(dD3)
operations, which can become very costly if both D and d are large. If there are only a few
parameters to be tuned the methods presented previously, such as the Levenberg-Marquardt,
will be satisfactory. However, what to do if we wish to design a surface where all discretized
points on the surface are left as free parameters to be optimized and d becomes significantly
large (d could be several thousands or more)?

The adjoint method [129, 130] answers exactly this question, and we will show now how to
obtain the Jacobian of the cost function in a number of operations independent of the number
of parameters d, i.e. in O(D3) operations. Assume for simplicity that we can write the cost
function as

χ(v) = F (X(v)) , (12.32)

where X(v) = (Xn(v))1≤n≤N formally represents the numerical solution of a reduced Rayleigh
equation for some parameter v, and that we denote formally in the following as the linear system

M(v) X(v) = N(v) , (12.33)

and F is a known function of X1. The Jacobian of χ at point v reads

∂viχ(v) =
N∑

n=1

∂viXn(v) ∂XnF (X(v)) = ∂vi X(v) · ∇XF (X(v)) , (12.34)

1The function F could also be a function of X and v, and the presented method would also work in a similar
fashion.
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for each parameter vi, or in matrix notations

∇vχ(v) = ∇v X(v)∇XF (X(v)) . (12.35)

Let us stress that in the above equation, ∇vχ(v) is a column vector of size d, ∇XF (X(v)) is
a column vector of size N (size of X) and ∇v X(v) is the Jacobian matrix of X and is of size
d×N . We have seen in Section 12.3.2 that the differentiation of the reduced Rayleigh equation
with respect to the parameters, or equivalently of the linear system Eq. (12.33), yields d linear
systems of equations to be solved for computing ∇v X(v), namely

M(v) ∂vi X(v) = ∂vi N(v)− ∂vi M(v) X(v) . (12.36)

for each vi. Hence we can write

∂vi X(v) = M−1(v)
[
∂vi N(v)− ∂vi M(v) X(v)

]
. (12.37)

Plugging the above equation into Eq. (12.34) we get

∂viχ(v) =
(

M−1(v)
[
∂vi N(v)− ∂vi M(v) X(v)

])T

∇XF (X(v)) (12.38)

=
[
∂vi N(v)− ∂vi M(v) X(v)

]T (
M−1,T(v)∇XF (X(v))

)
. (12.39)

Here we have written the same expression but by stressing different orders of make the matrix
products. In Eq. (12.38) the matrix multiplication M−1(v)

[
∂vi N(v)−∂vi M(v) X(v)

]
is taken

first and then the result (transposed) is multiplied by ∇XF (X(v)). According to Eq. (12.38),
the first factor thus requires to multiply a N×N matrix (M−1(v)) to d vectors (one for each vi)
of size N , resulting in the problematic complexity of O(dN3). However, Eq. (12.39) suggests to

rather take the matrix-vector product Z(v)
def
= M−1,T(v)∇XF (X(v)) only once and then take

the d dot products with the vectors ∂vi N(v) − ∂vi M(v) X(v). This reduces the asymptotic
complexity to O(N3) since then the most operation consuming step is to solve the single adjoint
linear system

MT(v) Z = ∇XF (X(v)) . (12.40)

Note that the adjoint method is particularly interesting when the function F and the matrices
M and N are known analytically and so are the corresponding gradients with respect to their
respective variables. We have thus replaced the conventional computation of the Jacobian of
the cost function, which requires solving d linear systems of equations of size N , to solving a
single adjoint linear system of equations of size N .

The adjoint method allows the use of optimization schemes based on the Jacobian with a
complexity independent of the dimension of the parameter space. This feature opens a great
path towards design of complex systems where a huge number of parameters can be taken into
account. A typical example is the case of topological optimization where the shape of different
components of a system can be optimized, i.e. that essentially each surface point is viewed
as a parameter. The adjoint method has been used in several works for the optimization of
optical components. A few examples are, the optimization of silicon photovoltaic cell front
coating [131], the maximization of band gaps in two-dimensional photonic crystals [132, 133],
the control of emission directionallity of a waveguide termination [134] or even for the design of
full optical circuits [135].
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We believe that the combination of the adjoint method together with the reduced Rayleigh
equations solver should give a very power method for the design of surfaces with desired optical
properties, and will be the topic of future research.

12.5 Critical dimension metrology of metasurfaces

We present in this section a technique for parameter retrieval, or critical dimensional metrology,
based on Mueller matrix ellipsometry measurements. Such a technique has been used success-
fully in the past in conjunction with numerical simulations, for example based on Rigorous
Coupled Waves Analysis, first for one-dimensional periodic gratings [136, 137, 138] and then
for two-dimensional periodic gratings [139, 140]. We deal here with a concrete example of
the use of the reduced Rayleigh equation for solving an inverse scattering problem for critical
dimension metrology of a plasmonic photonic crystal based on angle-resolved Mueller matrix
ellipsometry adapted from Paper [6]. Consider a sample composed of a lattice of gold hemi-
spheroidal particles deposited on a fused silica substrate. The aim of the study is to use Mueller
matrix ellipsometry measurements to assess the average size of the particles and lattice constants.

Sample – A scanning electron microscopy (SEM) image of the sample is shown in Fig. 12.1(a)
[141, 6]. The in-plane and out-of-plane radii of the particles were estimated by SEM and atomic
force microscopy (AFM) to be about r‖ = 58± 4 nm and r⊥ = 36± 5 nm, the lattice constants
were estimated based on the SEM image to be about a1 = 208 ± 2 nm and a2 = 211 ± 2 nm.
It was also observed that the particles were sitting on top of a silica mound as illustrated in
Fig. 12.1(b). This is a defect that occurred during the production process, which is due to
over-milling into the substrate. Indeed, the sample was produced by first depositing a planar
40 nm thick gold layer on the substrate and then the particles were shaped by the use of a Ga
focused ion beam (FIB). The depth of the trenches was estimated based on AFM measurements
to be about h ≈ 15± 10 nm.

1 µm

(a)

⊗
ê1

ê3

ê2
Au

SiO2

mound

(b) Side view

⊗
ê1

ê3

ê2

r‖

r⊥

h

Au

SiO2

effective layer

ê1

ê2
2r‖a1

a2

(c) Top view

(d) Side view

Figure 12.1: (a) Scanning electron microscopy image of the sample (courtesy of Thomas Brak-
stad). (b) Sketch of a side view of the sample illustrating the mound on top of which the gold
particle is sitting. Top view (c) and side view (d) of the modeled geometry. Note that the
mound is modeled as an effective layer. Figure adapted from Paper [6].



i
i

“report” — 2018/9/20 — 10:11 — page 293 — #315 i
i

i
i

i
i

12.5. Critical dimension metrology of metasurfaces 293

Experiment – The experimental normalized Mueller matrix elements measured in the reflected
specular direction, fixed at θ0 = 55◦, are plotted as functions of the photon energy and
azimuthal angle of incidence in the lower halves of each contour plot in Fig. 12.2. The photon
energies used in this experiment ranged from 0.7 eV to 5.9 eV and the azimuthal angle of
incidence ranged from 0 to 360◦ in step of 5◦. We have chosen to show only measurements
for azimuthal angles of incidence from 0 to 180◦ in Fig. 12.2 due to the symmetry of sample
and to make the comparison with the simulation easier (to be discussed soon). We can observe
that the normalized Mueller matrix elements exhibit features characteristic of (i) a localized
surface plasmon resonance around ~ω ≈ 2.1 eV and (ii) Rayleigh anomalies whose physical
interpretation have been already discussed in Section 1.5.2.

Parameter retrieval – Now let us assume that we have a partial knowledge on the sample. We
know which materials were used and that the manufacturer had intended to produce a lattice
of hemispheroidal particles. However, we do not know the precise size of the particles nor the
lattice constants. Given this information, our modeled system is thus parametrized by a priori
four parameters, namely the lattice constants a1, a2 in both directions (assuming a rectangular
lattice) and the in-plane and out-of-plane radii of the particles, r‖, r⊥ (see Fig. 12.1(c-d)). In
addition, we may suspect that over-milling may occur during the production process. We choose
to model the mound as a Bruggeman effective layer, mixing air and silica, whose thickness h
and filling fraction of air f are parameters of the model (see Fig. 12.1(d)). The parameter vector
defining the system is then v = (a1, a2, r‖, r⊥, h, f). In the following, we may choose to model the
system with or without the effective layer. The parameter vector is then implicitly to be under-
stood to be restricted to v = (a1, a2, r‖, r⊥) in the latter case. Moreover, the reduced Rayleigh
equation used in either case needs to be that involving either three or four media (see Chapter 3).

We are now ready to proceed with the parameter retrieval. The strategy consists of two main
steps. First, we will make use of our knowledge on the Rayleigh anomalies to deduce the
lattice constants without having to solve any forward scattering problem. Then, once the lattice
constants are determined, we proceed with the determination of the remaining parameters by
minimizing a cost function based on the Mueller matrix elements. For the determination of the
lattice constants, we track the position of the Rayleigh anomalies in the (φ0, ~ω)-plane observed
in the experimental data. We have experienced that tracking the anomalies associated with
the reflected diffracted orders ` = (−1, 0) and ` = (0,−1) in the data for the ellipsometric
angle ψsp is reasonably easy since it occurs as a rather sharp maximum. Note that this could
be obtained from the Mueller matrix as well. One of the advantages of tracking a Rayleigh
anomaly associated with a reflected diffractive order is that the position does not depend on
the dielectric functions of the materials composing the sample, the latter being in principle
wavelength dependent and may be known only within some accuracy. Indeed, if a Rayleigh
anomaly associated with a transmitted diffractive order were tracked, one should be careful
to correct for the possibly dispersive dielectric constant of the substrate. The experimentally
tracked Rayleigh anomalies in the (φ0, ~ω)-plane are shown as open circle in Fig. 12.3. Now we
can fit the theoretical prediction of the Rayleigh lines to these data points. We recall that the
Rayleigh anomalies occur in the (θ0, φ0, ~ω)-space whenever

|p` |2 = εj(ω)
ω2

c2
. (12.41)

is satisfied, and we remind the reader that p` = p0 + G(`) and εj is either the dielectric function
of the medium of incidence or that of the substrate. Applying this formula to the case of vacuum
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Figure 12.2: Normalized Mueller matrix elements as functions of the photon energy ~ω (radial
variable) ranging from 0.7 eV to 5.9 eV, the azimuthal angle of incidence φ0 (angular variable)
ranging from 0◦ to 180◦ and for a fixed polar angle of incidence θ0 = 55◦. The upper half of
each map shows the result of the simulation for the best fit in Table 12.1 and the second half the
experimental results. Note that the azimuthal angle positively spans from 0◦ to 180◦ in both
cases, in such a way that comparison is made symmetrically with respect to the white dashed
line. Figure adapted from Paper [6].

(εj = ε1 = 1) as the medium of incidence and assuming that we are dealing with a rectangular
lattice we have

ω2

c2
=

∣∣∣∣p0 +`1
2π

a1
ê1 + `2

2π

a2
ê2

∣∣∣∣
2

=

(
ω

c
sin θ0 cosφ0 + `1

2π

a1

)2

+

(
ω

c
sin θ0 sinφ0 + `2

2π

a2

)2

, (12.42)

which by simplifying by ω2/c2 = 2π/λ can be re-written as

(
sin θ0 cosφ0 + `1

λ

a1

)2

+

(
sin θ0 sinφ0 + `2

λ

a2

)2

= 1 . (12.43)

For a fixed polar angle of incidence θ0 and order `, this equation can be solved for φ0 and ~ω
(or equivalently λ) and fitted to the experimental data points in a least-mean square sense to
obtain the optimal lattice constants a1 and a2. This method yields the following optimal lattice
constants: aopt

1 = 205.6 nm and aopt
2 = 210.9 nm. These values agree remarkably well with the

estimates obtained from SEM images. The corresponding Rayleigh lines are shown as red solid
lines in Fig. 12.3 together with a region of uncertainty (dashed lines) defined as the Rayleigh
lines one would obtain for a variation of ±2 nm from the optimal values of the lattice constants.
The choice of ∆a = 2 nm is arbitrary but serves the purpose of illustrating that it is indeed
about the correct order of uncertainty one hopes to achieve in view of the experimental data
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Figure 12.3: Location of the Rayleigh-Wood anomalies associated with the reflected diffractive
orders ` = (−1, 0) and ` = (0,−1) in the (φ0, ~ω) plane for a fixed polar angle of incidence
of θ0 = 55◦. Open circles correspond to positions extracted from the experimental data, the
red solid lines are the predicted Rayleigh lines for the optimum parameters: a1 = 205.6 nm
and a2 = 210.9 nm, and the black dashed lines delimit an uncertainty region for the predicted

Rayleigh lines based on an uncertainty in lattice constants of ∆a = 2 nm (i.e. ai = a
(opt)
i ±∆a).

points. Note that here, the determination of the lattice constants is a fast process since it does
not require to solve any forward scattering problem.

The lattice constants are now held fixed at their optimal values. The remaining parameters are
obtained by minimizing the following objective function

χ2(v) =
1

2

∑

p0,ω

∑

i,j

[mij(p0, ω|v)− m̃ij(p0, ω)]
2
. (12.44)

Here, mij(p0, ω|v) denotes the ij-element of the normalized Mueller matrix obtained from the
model for a given set of morphological parameters v, that depends on the lateral wave vector
of incidence p0 [or angles of incidence (θ0, φ0)] and the photon energy ~ω; the corresponding
measured normalized Mueller matrix element is denoted m̃ij(p0, ω). The outer sum that appears
in Eq. (12.44) was performed over a set of 1501 values in the (φ0, ~ω)-plane since |p0 | (or θ0)
was assumed constant in the experiment. This set was constructed by selecting 19 values for
the azimuthal angle of incidence φ0 ∈ [0◦, 90◦] with a step of 5◦; and 79 photon energies chosen
uniformly distributed between 1.5 eV to 5.9 eV. In the definition of χ2(v) only the elements
(i, j) ∈ {(1, 2), (3, 3), (3, 4)} were taken into account in the inner sum of Eq. (12.44) in sets of
block-diagonal Mueller matrix elements related by symmetries [142]. Note that the off-block-
diagonal elements that show the polarization coupling were not included.

Remark 12.4. Keeping only these three terms is motivated by the following:

• First, notice that the Mueller matrix elements are normalized by the total intensity, hence
m11 = 1, and is therefore irrelevant.

• The term m22 is close to unity here and features are rather poor and noisy in the experi-
mental data. We have consequently chosen to discard this element.



i
i

“report” — 2018/9/20 — 10:11 — page 296 — #318 i
i

i
i

i
i

296 Chapter 12. Inverse scattering problem

Model r‖ (nm) r⊥ (nm) h (nm) f χ2

SEM, AFM 58± 4 36± 5 15± 10 – –

Au/SiO2 59.7 39.9 – – 18.9

ELM -10 59.3 38.7 10 0.540 12.4

ELM -20 59.9 37.4 20 0.458 9.0

ELM -opt 59.6 36.7 33.5 0.517 6.4

Table 12.1: Microscopy and reconstructed morphological parameters for the different models
assuming lattice parameters a1 = 205.6 nm and a2 = 210.9 nm. Bold entries indicate parameters
that were kept constant in the optimization.

• We have chosen to discard the off block-diagonal terms, related to cross-polarization,
because they are weaker than the block diagonal ones. In addition, it is a common practice
to focus on the block diagonal elements (or so called NCS elements) in the ellipsometry
community, and so did we. However, we want to stress that keeping these elements would
not change significantly the resulting parameters.

• Due to the symmetry of the system, it is expected that the following symmetries hold (or
approximately hold): m12 = m21, m33 = m44, m34 = −m43 for the block diagonal terms.
Thus, to avoid redundancy in the data, we have preferred to only keep m12, m33 and m34.

We would like to stress that this choice is arbitrary, and that one may keep all terms and obtain
similar results for the parameter retrieval problem within a couple of nanometers for the particle
radii. As an interesting digression to this discussion, we have experienced that only keeping the
off block-diagonal and discarding the block-diagonal elements leads to erroneous parameters.
We speculate that the reason for such a behavior is that the off block diagonal elements are too
sensitive to the precise shape of the particles and substrate corrugation. Thus one would try
to fit for small details before fitting for the big ones. This is why we rather claimed that the
block diagonal elements were the relevant elements for the problem at hand, and that using the
off block diagonal elements could be useful for getting a more accurate idea of the shape, but
then the experimental reproducibility of the particles shape over such a large sample area seems
unrealistic at this stage and the assumption of incident plane wave instead of a finite size beam
may also become a source of error at this point anyway.

Numerical details – The minimization of the cost function χ2(v), for this and later models,
was performed using the Levenberg-Marquardt algorithm where the Jacobian was calculated
by a finite-difference approach as described in Section 12.2. The dielectric functions were
obtained from oscillator fits to multiple data sets of SiO2 [143] and inversion of ellipsometric
measurements on the 40 nm thick uniform Au film performed prior to milling. The truncation in
reciprocal space for the numerical RRE was made such that mode indices whose corresponding
reciprocal lattice vectors lying within a circular domain of radius Gmax = Nmax(2π/a1, 2π/a2)
with N = 15 (see Section 5.2.1). This choice for the truncation cut-off yields 729 diffractive
modes per polarization state of the incident light and we experienced that such an amount
of modes were enough to ensure convergence of the optical response on a wide range of
photon energies. Only for energies below 2 eV the convergence of the numerical solution
of the RRE with an increasing number of modes seems not to be guaranteed, as can be



i
i

“report” — 2018/9/20 — 10:11 — page 297 — #319 i
i

i
i

i
i

12.5. Critical dimension metrology of metasurfaces 297

1 2 3 4 5 6

h̄ω (eV)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

m
1
2
,
m

3
3
,
m

3
4

(a)

m12

m33

m34

1 2 3 4 5 6

h̄ω (eV)

-0.1

-0.05

0

0.05

0.1

m
1
3

(b)

Figure 12.4: Mueller elements m12, m33, m34 (a) and m13 (b) as a function of photon energy for
φ0 = 0◦ (a), and φ0 = 20◦ (b) (polar angle of incidence fixed at θ0 = 55◦). Experimental data,
simulations for the best fit of the model Au/SiO2 (1st optimum in Table 12.1) and that of the
ELM-opt (last row in Table 12.1) are plotted respectively as solid lines, dotted lines and dashed
lines. Figure adapted from Paper [6].

seen in Fig. 12.4, with the presence of spurious oscillations. We identified that this range
of energies, below 2 eV, corresponds to a range in which the ratio of the imaginary to real
part of the dielectric function of gold becomes negatively large. Nevertheless, the number of
points affected by this issue is small compared with the total number of points used for the
optimization problem and, hence, the retrieved parameters are not assumed to be significantly
altered. On the range of energies where convergent results were obtained, we have found
that the optical response obtained by solving the RRE is, within insignificant numerical
errors, identical to that obtained by the finite element method implemented in the commercial
software COMSOL. The CPU time required to solve the RRE for a given photon energy
and angles of incidence was 2.5 s on a desktop computer (Intel i7-5930K 3.5 GHz) for the
system of interest. We have experienced that this corresponds to a speedup by two orders
of magnitude compared with COMSOL to obtain equivalent results. Such a speedup is, of
course, critical if one wants to achieve real-time growth monitoring for example. The memory
footprint for the RRE method is also minor, as we found a ratio of 1:60 between the two methods.

Results – A first set of inversion results were obtained under the assumption that the Au
hemi-spheroids were supported by a planar SiO2 substrate. The parameters that one intends
to retrieve are therefore, v = (r‖, r⊥). The reconstruction gave the values r‖ = 59.7 nm and
r⊥ = 39.9 nm (see Table 12.1; row labeled Au/SiO2). These values agree rather well with
those estimated from microscopy. Note that the out-of-plane radius seems to be overestimated.
The photon energy dependence of the resulting Mueller matrix elements that contributes to
χ2(v) are presented as dotted lines in Fig. 12.4(a) for φ0 = 0◦, and they show good agreement
with the corresponding measured data (solid lines). It is observed that the energy of the
LSPR at 2.1 eV is well reproduced by the Au/SiO2 model. The same is true for the location
of Rayleigh-Wood anomalies, consistent with the proposed approach for the determination
of the lattice parameters ai. Figure 12.4(b) depicts the energy dependence of the off-block
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Figure 12.5: Same as Fig. 12.2 but for a fixed polar angle of incidence θ0 = 45◦.

diagonal element m13 for φ0 = 20◦. Although this element was not used in the optimization, a
qualitatively good agreement is found between the experiment and the Au/SiO2 model. Similar
results were observed for the other Mueller matrix elements and/or other values of φ0 and
θ0 (results not shown).

From the results presented in Fig. 12.4, it is observed that the agreement between the measured
and the Au/SiO2 model results are best in the low energy region. We speculate that the
poorer agreement observed for high energies is mainly due to the non-planar features of the
surface of the substrate that is caused by over-milling. This seems to also be the reason
for the overestimation of the out-of-plane radius of the gold particles. Indeed, we can easily
imagine that the mound, present in the experimental sample, acts at high energies as making
an effective dielectric particles together with the gold particles. At high energies, the real part
of the dielectric function of gold is negative but small, hence the metallic character of the
particle is somewhat weak. Consequently, the gold particle and its mound become an effective
dielectric particle bigger than the original particle. Hence the optimization scheme tries to
catch this feature by increasing the out-of-plane radius of the gold particle. This speculation
can be motivated by simulations of bigger dielectric particles on the silica substrate (not shown
here), where a rather good agreement with the experiment can be found at high energy (but
not at low energies since the LSPR would be absent for example).

As a remedy, a simple effective layer characterized by its thickness h and filling fraction f
between air and glass was used to model the latter over-milling into the glass. We considered
three such effective layer models (ELMs) corresponding to fixed thickness h = 10 nm, 20 nm
and v = (r‖, r⊥, f), or variable thickness and v = (r‖, r⊥, h, f). Optimization performed on
the basis of these models, resulted in the morphological parameters presented in Table 12.1.
Of the three considered models, the ELM-opt represents best the measured data in terms of
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the lowest value for χ2. As the thickness of the effective layer is increased to 33.5 nm the value
of r‖ remains stable and the value of r⊥ decreases, while the filling fraction f is rather stable.
Note that for the best fit (last row in Table 12.1) the out-of-plane radius r⊥ seems now to be
correctly estimated in view of the value given by microscopy. Figure 12.4 presents as dashed
lines the energy dependence of some of the mij-elements that were obtained from ELM-opt
when assuming the parameters in Table 12.1. It is apparent from the results of this figure that
ELM-opt better represents the measured data than the Au/SiO2 model; this is in particular
the case in the high energy region.

It is now time to go back to Fig. 12.2, where the full (φ0, ~ω) dependence of all normalized
Mueller matrix elements obtained from the reduced Rayleigh equation (upper halves of the
contour plots) are compared to the measurements (lower halves of the contour plots). The
morphological parameters assumed in obtaining the simulation results were those of the
ELM-opt model (see Table 12.1). The results of Fig. 12.2 show good agreement between all the
measured and modeled Mueller matrix elements, and not only those used in the minimization.
It is noted that similar results to those presented in Fig. 12.2 were obtained within the Au/SiO2

model, except for larger discrepancies between measured and modeled data at high energies.

Prediction for other angles of incidence – We have now obtained a set of morphological
parameters which give a good agreement between the simulation results and the measurements,
but we have only considered experimental measurements for a fixed polar angle of incidence
θ0 = 55◦. Can we now predict accurately the optical response of the sample for a different polar
angle of incidence θ0? Yes, we can! This is illustrated in Fig. 12.5 where the optical response
for a polar angle of incidence of θ0 = 45◦ is simulated for the parameters obtained in the last
row of Table 12.1, i.e. obtained by inverting the measured data for θ0 = 55◦, and compared to
measurements made for the same angle of incidence (θ0 = 45◦). The comparison is to be made
in the same way as in Fig. 12.2. The agreement is overall very good, thus showing the potential
predictive power of the method.

12.6 Reconstruction of statistical properties of randomly rough
surfaces

We could apply the method we have presented in Section 12.5 to the reconstruction of the statis-
tical properties of a randomly rough surface. Consider a randomly rough surface separating two
dielectric media. If the surface is weakly rough for some considered wavelength λ, we may test
some hypothesis regarding the shape of the auto-correlation function, its characteristic correla-
tion length and rms roughness. For example, we may assume that the auto-correlation function
of the surface is Gaussian and find the values of the correlation length a and rms roughness σ by
minimizing the error between some measured data and the corresponding simulated response.
A significant difference compared to the previous case, is that the computation of the average
optical response may require a high computational cost due to the fact that we will need to
average the optical response over many realizations of the surface profile and that solving the
optical response for each realization may be costly since in such a case of study, we need to dis-
cretize a surface whose size is of the order of many wavelength. If the surface is weakly rough,
one may expect to obtain accurate enough statistical parameters by using analytically averaged
closed form approximate expressions for the averaged optical response. Such approximations
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like small amplitude perturbation theory for example have been discussed in Chapter 8, and
will yield results for the statistical parameters with an error that will typically increase with
increasing surface roughness. Such a method may be good enough for weakly rough surfaces and
very computationally efficient, as the one presented for example in Refs. [144, 145, 146] based
on a method known as phase perturbation theory and applied on synthetic data. For surfaces
for which the deviation of these approximate methods to the correct optical response becomes
significant, we need methods with better accuracy. A good strategy to treat this issue could be
to implement a two-stage method. First, one may minimize an objective function by using small
amplitude perturbation theory or the first iterate of the method of FIRES in order to obtain
quickly a first approximation of the statistical parameters a and σ. Then, starting from this
approximate optimum, one may continue the minimization based on an accurate modeling of
the optical response by using the iterative Monte Carlo method together with the reduction of
variance method based on a control variable as presented in Chapter 8.

12.7 Summary

The last chapter closes this thesis with a rather engineering touch. We have treated the problem
of inverse scattering which is of interest both for optical surface characterization, surface growth
monitoring during a fabrication process and for the design of surface with desired optical re-
sponse. After posing the inverse problem in terms of an optimization problem, we have focused
our attention on the Levenberg-Marquardt method of optimization which is well adapted to
non-linear least-square problems and which makes use of the Jacobian of the residual vector.
This method was implemented together with the reduced Rayleigh equations solver and shown
to give a rather powerful method for inversion of experimental data. The method was suc-
cessfully tested on experimental angle resolved spectroscopic Mueller matrix ellipsometry data
for a plasmonic photonic crystal. The size of, and separation between the gold particles could
be resolved within nanometric accuracy and the obtained simulated optical response is in very
good agreement with the experimental data. The case of parameter retrieval of the statistical
properties of randomly rough surface was also discussed. Other optimization methods were also
discussed stressing their advantages and drawbacks. We have identified a rather new optimiza-
tion method, the adjoint method, to be of great potential for future applications of sample design
as it allows to compute the Jacobian of the objective function at a cost which is independent of
the number of parameters.
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Conclusions and outlook

It is now time to conclude this thesis by summarizing the main achievements of the presented
work, but also the questions that remain unanswered and by suggesting potential research tracks.

In this work, we have built a versatile framework for the derivation of the reduced Rayleigh
equations associated with the problem of electromagnetic wave scattering by multi-layer
systems composed of stacks of linear, homogeneous, isotropic, non-magnetic materials bounded
by arbitrary surfaces. The framework has been applied to study the scattering of electro-
magnetic waves by periodic and randomly rough surfaces. We have seen that in a number of
scattering systems, the solution of the reduced Rayleigh equations gives numerical results and
approximation formulae which can lead to the understanding of new scattering phenomena such
as the optical Yoneda effect, the Brewster scattering effect, or the selective enhancement of
Selényi rings for example. In addition, the reduced Rayleigh equations are not only useful for a
qualitative description of scattering systems but yield quantitatively accurate optical response
of complex systems such as photonic plasmonic surfaces, for which we have demonstrated that
a method based on the reduced Rayleigh equations and an optimization scheme can be used for
fast critical dimension metrology of metasurfaces within nanometric accuracy.

Despite its remarkable efficiency for systems which are not too rough, in some sense, the
method based the reduced Rayleigh equations suffers from some limitations. First, there seems
to be a lack of mathematical study of the domain of validity of the reduced Rayleigh equations
for penetrable media, and on its numerical analysis in the literature. We have attempted such
a numerical analysis in this work, which must be considered as a preliminary exploration and
which we hope will motivate the development of deeper and rigorous study. In particular,
important questions are those of the convergence rate of the numerical solution with the number
of modes, and the consistency of the numerical solution with the initial scattering problem,
where error bounds depending on the system parameters would be of particular interest.

All the limitations are not, however, purely theoretical. The framework that we have presented
in this work may be very versatile (and maybe even elegant), the computational cost associated
with the problem of the scattering of light by a stack containing more than two randomly
rough surfaces remains a challenge. The computational cost of such a simulation makes such an
approach unpractical and efficient approximation methods must be developed. The bottleneck
for simulating such systems relies on the computation of the kernel which is defined as many
successive integrals. We are thus facing the so-called curse of dimensionality. Monte Carlo
methods are known to be among the best approaches for evaluating high-dimensional integrals
and we therefore believe that such methods should be adapted to tackle the issue of the
computation of the reduced Rayleigh equations kernel for multi-layer systems. In particular, we
believe that Monte-Carlo methods based on the transition probability amplitudes as discussed

301
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in Sections. 2.5 and 3.5.3 seem to be promising candidates.

In addition, the next step of generalization one can take concerning the reduced Rayleigh
equations could be to include magnetic media, and/or anisotropic media. Allowing for the
simulation of layers with different anisotropic media could be of particular interest for at least
two reasons. First, it would help to understand physical mechanism involved in the coupling
of ordinary and extraordinary waves at structured interfaces for example. Second, allowing
for anisotropic material may reduce the complexity associated with the simulation of complex
systems. Indeed, we could imagine having a system composed of a stack of layers with plas-
monic and dielectric particles embedded in the layers. In the low frequency regime, one could
derive the anisotropic dielectric tensor corresponding to each layer via homogenization methods
and then use these homogenized anisotropic media as inputs for the reduced Rayleigh equations.

There are nevertheless interesting applications that can already be handled by the present meth-
ods. As illustrated in the present work, the method seems to be a promising candidate for fast
optical characterization of surfaces and for the design of optical metasurfaces. We believe that
combining the method based on the reduced Rayleigh equations with an optimization scheme
based on the adjoint method should lead to a very efficient designer algorithm. Indeed, the
adjoint method would remove the complexity associated with evaluating the Jacobian of the ob-
jective function, hence allowing for treating each discretized point of the surface as a parameter.
One could also think of using the reduced Rayleigh equations to generate optical responses from
random systems and use such a set of systems and optical responses to train a neural network
for example. This could lead to fast optical characterization via machine learning.
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Appendix A

The ξ-integral and Fourier moments
for a collection of shapes

A.1 Introduction

Setting up the linear system of equations for solving numerically the reduced Rayleigh equation
in the case of a surface composed of a periodic array of objects on a plane requires the
evaluation of a significant number of the ξ-integrals (see e.g. Chapter 5). Analytic expressions
of the ξ-integral are derived for particular surface profiles in this appendix. We first deal with
the case of cylindrically and ’elliptically’ symmetric shapes: cylinder, rings, cone, paraboloid,
hemiellipsoid; and triangular prism which opens the possibility to approach any shape by
polyhedra with triangular facets.

Before embarking in the derivation of the ξ-integral for this zoo of surface profiles, we discuss a
few general properties, which are rather straightforward but nonetheless fundamental, and prove
to be useful in practice when it comes to combining different shapes and the implementation of
the perturbation theory.

A.2 A few fundamental observations

A.2.1 Translation property

We recall the definition of the ξ-integral, ξ(m)(γ), where m ∈ Z2, γ ∈ C. If ζ denotes a periodic
surface profile, then ξ(m)(γ) is defined as

ξ(m)(γ) =
1

ac

∫

ac

e−iG
(m)·xe−iγζ(x)d2x , (A.1)

where G(m) is a reciprocal lattice vector and ac will denote both the unit cell and its area. Let
us analyze the effect on ξ(m) of a translation of vector x0 of the surface profile. We will denote
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ξ
(m)
x0

the ξ-integral of the translated profile ζ(x−x0).

ξ(m)
x0

(γ) =
1

ac

∫

ac

e−iG
(m)·xe−iγζ(x−x0)d2x

=
1

ac

∫

ac

e−iG
(m)·(y+x0)e−iγζ(y)d2y

=
1

ac

∫

ac

e−iG
(m)·ye−iγζ(y)d2y e−iG

(m)·x0

= ξ(m)(γ) e−iG
(m)·x0 . (A.2)

The translation of the profile by a vector x0 induces a phase factor e−iG
(m)·x0 . Therefore in the

following it will be useful to choose a convenient origin to compute the ξ-integral, defined as a
center of symmetry for instance, and then apply a phase factor if a translation of the profile is
needed. This proves to be useful when combining shapes with disjoint support as discussed in
the next section.

A.2.2 Union of shapes with disjoint supports

Consider a surface profile ζ defined in the unit cell as a sum of n functions (ζj)j∈J1,nK having
disjoint compact supports included in the unit cell, i.e.

ζ|ac =

n∑

j=1

ζj

supp ζj ⊂ ac , ∀j ∈ J1, nK

supp ζi
⋂

supp ζj = ∅ , ∀(i, j) ∈ J1, nK2, i 6= j .

(A.3)

Using these properties in Eq. (A.1) yields

ac ξ
(m)(γ) =

∫

ac

e−iG
(m)·xe−iγ

∑n
j=1 ζj(x)d2x

=

∫

ac

e−iG
(m)·x

n∏

j=1

e−iγζj(x)d2x

=

∫

ac\∪jsupp ζj

e−iG
(m)·x

n∏

j=1

e−iγζj(x)d2x+

∫

∪jsupp ζj

e−iG
(m)·x

n∏

j=1

e−iγζj(x)d2x .

Now by using that on one hand

ζj (x) = 0, ∀j ∈ J1, nK, ∀x ∈ ac\supp ζj ,

and on the other hand since the supports are disjoint we have

∫

∪jsupp ζj

· · · d2x =
n∑

j=1

∫

supp ζj

· · · d2x ,

we obtain

ac ξ
(m)(γ) =

∫

ac\∪jsupp ζj

e−iG
(m)·x d2x+

n∑

j=1

∫

supp ζj

e−iG
(m)·x e−iγζj(x) d2x .
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Now we add and subtract
∫
∪jsupp ζj

e−iG
(m)·x d2x in order to complete the first term so that we

get

ac ξ
(m)(γ) =

∫

ac

e−iG
(m)·x d2x+

n∑

j=1

∫

supp ζj

e−iG
(m)·x

(
e−iγζj(x) − 1

)
d2x .

The integral ac ξ
(m)(γ) is then the sum of two terms

ac ξ
(m)(γ) = C(m) + G(m)(γ) , (A.4)

where we define the cell-term C(m) as

C(m) =

∫

ac

e−iG
(m)·x d2x , (A.5)

and the geometrical-term G(m)(γ) as

G(m)(γ) =

n∑

j=1

∫

supp ζj

e−iG
(m)·x

(
e−iγζj (x) − 1

)
d2x . (A.6)

Note that the cell-term is only dependent1 on the cell and hence will always be present and
identical for any choice of profile ζ. By decomposition of x on the direct lattice basis vectors
(a1,a2) and G(m) on the reciprocal lattice basis vectors (b1,b2), the scalar product becomes

G(m) · x = (m1b1 +m2b2) · (x1a1 + x2a2) = 2π(m1x1 +m2x2) . (A.7)

Here the property of direct-reciprocal basis vectors ai · bj = 2πδij has been used. Substituting
Eq. (A.7) in Eq. (A.5), we obtain

C(m) = ac

∫ 1/2

−1/2

e−2πim1x1dx1

∫ 1/2

−1/2

e−2πim2x2dx2 . (A.8)

If m1 = m2 = 0, C reduces to the unit cell area ac. If at least one of the component mi of m is
non zero, the corresponding integral vanishes

∫ 1/2

−1/2

e−2πi(mixi)dxi =

∫ miπ

−miπ
eiudu = 0 , (A.9)

since, it corresponds to the integrations of cosine and sine over an integer number of periods.
To sum up, the cell term is simply

C(m) = ac δm,0 , (A.10)

where δm,n = δm1,n1 δm2,n2 and δi,j is the Kronecker delta. Consequently the ξ-integral is of the
form

ξ(m)(γ) = δm,0 +
1

ac
G(m)(γ) . (A.11)

We can re-write G(m)(γ) as a sum the geometrical terms of each ζj as if there were alone

G(m)(γ) =

n∑

j=1

G(m)
j (γ). (A.12)

1given G(m)
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If we now assume that the profile ζj has a center of symmetry at xj and that one knows the

geometrical term of the same profile centered at the origin, G(m)
j,o (γ), then using the translation

property we have seen in the previous section (or adapting the change of variable y = x−xj to

G(m)
j (γ)) we get

G(m)(γ) =
n∑

j=1

G(m)
j,o (γ) e−iG

(m)·xj , (A.13)

where

G(m)
j,o (γ) =

∫

supp ζj,o

e−iG
(m)·x

(
e−iγζj,o (x) − 1

)
d2x . (A.14)

Here we denote ζj,o (x) = ζj(x− xj) and supp ζj,o = supp ζj − xj = {x− xj |x ∈ supp ζj}. In the
next sections, we will thus focus on computing the geometrical terms for a collection of shapes
centered at the origin.

A.2.3 ξ-integral as the Fourier moments generator

As we will see in the next sections, the expression of the ξ-integral will often be the sum of a
series of the form

ξ(m)(γ) =

∞∑

n=0

a(m)
n (−iγ)n . (A.15)

In Section 6.2.1, we saw that the resolution of the reduced Rayleigh equations by the use of
the perturbation theory required the knowledge of the Fourier transforms of the powers of the
surface profile restricted to the unit cell, so called Fourier moments. How do these relate to
the an? To answer this question it suffices to expand the exponential in the definition of the
ξ-integral and use the unicity of the analytical series representation. We have

ξ(m)(γ) =
1

ac

∫

ac

e−iG
(m)·xe−iγζ (x) d2x

=
∞∑

n=0

(−iγ)n

n!

1

ac

∫

ac

e−iG
(m)·x ζn (x) d2x . (A.16)

Therefore

ζ̂(n)
ac (G(m)) = n! a(m)

n . (A.17)

An equivalent way to look at it is to take the derivative of the ξ-integral with respect to γ and
evaluate it at γ = 0. The conclusion of this straightforward observation is that the Fourier
moments needed in the perturbation theory can be read directly from the terms of the series
expansion of the ξ-integral.

A.3 One-dimensional surfaces

In this section, we derive the ξ-integral for one-dimensional surfaces. By one-dimensional sur-
faces we mean a two-dimensional surface whose profile is constant along the x2-direction, i.e.
invariant by any translation along the x2-direction. Since we use the ξ-integral in the 2 dimen-
sional periodic framework, one needs to define a period a2 in the x2-direction (this can be done
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arbitrarily). However, these expressions can easily be adapted to the simpler one-dimensional
reduced Rayleigh equations, by simply ignoring the δm2,0 factors.

A.3.1 Sinusoidal surface

We consider a one-dimensional sinusoidal surface of amplitude H, and period a1 in the x1-
direction. The surface profile is constant along the x2-direction. It can be described as

ζ (x) = H sin

(
2π

a1
x1

)
. (A.18)

By plugging the above profile into Eq. (A.1) we have

ξ(m)(γ) =
1

ac

∫

ac

e−iG
(m)·xe

−iγH sin
(

2π
a1
x1

)
d2x . (A.19)

By making the linear change of variables x̂i = 2πxi/ai, i ∈ {1, 2}, we get

ξ(m)(γ) =
1

(2π)2

∫ π

−π
e−im2x̂2 dx̂2

∫ π

−π
e−im1x̂1−iγH sin(x̂1) dx̂1

=
δm2,0

2π

∫ π

−π
e−im1x̂1−iγH sin(x̂1) dx̂1

= δm2,0 J−m1
(γH) . (A.20)

Here we have recognized the integral representation of a Bessel function of the first kind of order
−m1. Note that we can also use the identity J−ν = (−1)νJν to obtain

ξ(m)(γ) = (−1)m1 δm2,0 Jm1
(γH) . (A.21)

A.3.2 Rectangular box

A one-dimensional rectangular profile of full width w < a1 and height H is now considered. The
profile is represented as

ζ (x) = H 1[−w/2,w/2](x1) , (A.22)

where we recall that 1[−w/2,w/2] is the indicator function of the segment [−w/2, w/2]. For this
profile, the ξ-integral reads

ξ(m)(γ) =
1

ac

∫

ac

e−iG
(m)·xe−iγH 1[−w/2,w/2](x1)d2x . (A.23)

As mentioned in Section A.2.2, the profile as a compact support along the x1-direction. It is
therefore practical to directly use the cell-term and geometrical-term splitting

ξ(m)(γ) = δm2,0

(
δm1,0 +

∫ w/2a1

−w/2a1
e−i2πm1x̂1

(
e−iγ H − 1

)
dx̂1

)
. (A.24)

Here we have also directly integrated over the x2-direction and made the change of variable
x̂1 = x1/a1. The factor in parenthesis in the integrand of the above integral being constant, the
integral becomes simple and gives

ξ(m)(γ) = δm2,0

[
δm1,0 +

(
e−iγ H − 1

) w

2a1

(
δm1,0 + (1− δm1,0) sinc

(
m1w

a1

))]
. (A.25)
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A.3.3 Sawtooth

We are now interested in the asymmetric sawtooth of amplitude H and asymmetry factor α ∈
]− 1/2, 1/2[ defined as

ζ (x) = H sα

(
x1

a1

)
, (A.26)

where we define the asymmetric sawtooth function sα for x ∈ [−1/2, 1/2] by

sα(x) =





2(2x−α)+1
2α+1 if x < α

2(2x−α)−1
2α−1 if x > α

. (A.27)

With these definitions the ξ-integral reads

ξ(m)(γ) =
1

ac

∫

ac

e−iG
(m)·xe−iγH sα(x1/a1)d2x . (A.28)

By applying a change of variable x̂i = xi/ai, i ∈ {1, 2}, and after the straightforward integration
along x2-direction, we obtain

ξ(m)(γ) = δm2,0

∫ 1/2

−1/2

e−i2πm1x̂1−iγH sα(x̂1)dx̂1 (A.29)

= δm2,0

(∫ α

−1/2

e−i2πm1x̂1−iγH 2(2x̂1−α)+1
2α+1 dx̂1 +

∫ 1/2

α

e−i2πm1x̂1−iγH 2(2x̂1−α)−1
2α−1 dx̂1

)
. (A.30)

The two integrals are straightforward to perform and read

∫ α

−1/2

e−i2πm1x̂1−iγH 2(2x̂1−α)+1
2α+1 dx̂1 = i

e−i2πm1α−iγH − (−1)m1eiγH

2πm1 + 4γH
2α+1∫ 1/2

α

e−i2πm1x̂1−iγH 2(2x̂1−α)−1
2α−1 dx̂1 = −i e

−i2πm1α−iγH − (−1)m1eiγH

2πm1 + 4γH
2α−1

,

which yields after some simplifications

ξ(m)(γ) = δm2,0

2iγH
(
e−i2πm1α−iγH − (−1)m1eiγH

)

(2γH)2 + 8πm1γHα+ (πm1)2(4α2 − 1)
. (A.31)

In the case of a symmetric sawtooth, i.e. α = 0, the above equation reduces to

ξ(m)(γ) = δm2,0

2iγH
(
e−iγH − (−1)m1eiγH

)

(2γH)2 − (πm1)2
. (A.32)

A.3.4 Gaussian profile

Assume that one approximates a bell-like profile by a Gaussian profile concentrated well within
the unit cell boundary. In other words, we describe the profile in the unit cell by

ζ(x) ≈ H exp

(
−x

2
1

σ2

)
, (A.33)

provided that σ � a1. The ξ-integral reads

ξ(m)(γ) =
1

ac

∫

ac

e−iG
(m)·xe

−iγH exp

(
− x

2
1
σ2

)
d2x . (A.34)
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By applying a change of variable x̂i = xi/ai, i ∈ {1, 2}, and after the straightforward integration
along x2-direction, we obtain

ξ(m)(γ) = δm2,0

∫ 1/2

−1/2

e−i2πm1x̂1e
−iγH exp

(
− x̂

2
1
σ̂2

)
dx̂1 , (A.35)

where σ̂ = σ/a1. By expanding e
−iγH exp

(
− x̂

2
1
σ̂2

)
in a power series we get

ξ(m)(γ) = δm2,0

∞∑

n=0

(−iγH)n

n!

∫ 1/2

−1/2

e−i2πm1x̂1e−n
x̂21
σ̂2 dx̂1 . (A.36)

For n = 0, the integral becomes δm1,0. For n 6= 0 we have

∫ 1/2

−1/2

e−i2πm1x̂1e−n
x̂21
σ̂2 dx̂1 = e

−π2m2
1σ̂

2

n

∫ 1/2

−1/2

exp

[
−
(√

nx̂1

σ̂
+
iπm1σ̂√

n

)2
]

dx̂1

=
σ̂√
n
e
−π2m2

1σ̂
2

n

∫ √
n

2σ̂ +
iπm1σ̂√

n

−
√
n

2σ̂ +
iπm1σ̂√

n

exp
(
−u2

)
du

≈
√
πσ̂√
n
e−

π2m2
1σ̂

2

n =

√
πσ√
na1

e
−π

2m2
1σ

2

na21 . (A.37)

Here we approximated the last integral by the integral over the whole real line. Finally we
obtain that

ξ(m)(γ) ≈ δm2,0

[
δm1,0 +

√
πσ

a1

∞∑

n=1

(−iγH)n

n!
√
n

exp

(
−π

2m2
1σ

2

na2
1

)]
. (A.38)

A.4 Two-dimensional surfaces

A.4.1 Sinusoidal surface

We consider now a two-dimensional sinusoidal surface of amplitude H, of period a1 in the x1-
direction and a2 in the x2-direction, defined as

ζ (x) =
H

2

[
sin

(
2π

a1
x1

)
+ sin

(
2π

a2
x2

)]
. (A.39)

The ξ-integral reads

ξ(m)(γ) =
1

ac

∫

ac

e−iG
(m)·xe

− iγH2
(

sin
(

2π
a1
x1

)
+sin

(
2π
a2
x2

))
d2x . (A.40)

We note that the integrations are decoupled. By a change of variable x̂i = 2π
ai
xi, i ∈ {1, 2}, we

obtain

ξ(m)(γ) =
1

(2π)2

∫ π

−π
e−im1x̂1− iγH2 sin x̂1dx̂1

∫ π

−π
e−im2x̂2− iγH2 sin x̂2dx̂2 . (A.41)

As encountered in the one-dimensional case, we recognize the integral representation of a Bessel
function of the first kind of order −m1 and −m2. The ξ-integral finally reads as a product of
Bessel functions

ξ(m)(γ) = J−m1

(
γH

2

)
J−m2

(
γH

2

)
, (A.42)
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or equivalently

ξ(m)(γ) = (−1)m1+m2 Jm1

(
γH

2

)
Jm2

(
γH

2

)
. (A.43)

A.4.2 Rectangular box

Let the profile be a cylinder on a rectangular support, i.e. a box, defined by its height H, its
full width w1 < a1 in the x1-direction and its full width w2 < a2 in the x2-direction. The profile
function reads

ζ (x) = H 1[−w1/2,w1/2]×[−w2/2,w2/2] (x) = H 1[−w1/2,w1/2](x1) 1[−w2/2,w2/2](x2) . (A.44)

Since the profile has a compact support, we can use the cell-term - geometrical-term splitting
from Section A.2.2 and the ξ-integral is thus given by

ξ(m)(γ) = δm,0 +
1

ac

∫

[−w1/2,w1/2]×[−w2/2,w2/2]

e−iG
(m) (

e−iγH − 1
)

d2x (A.45)

= δm,0 +
(
e−iγH − 1

) ∫ w1/2a1

−w1/2a1

e−i2πm1x̂1 dx̂1

∫ w2/2a2

−w2/2a2

e−i2πm2x̂2dx̂2 . (A.46)

Here we have used the change of variable x̂i = xi/ai, i ∈ {1, 2} and observed that the integrals
are decoupled. The integration is now straightforward and we obtain in a compact form

ξ(m)(γ) = δm,0 +
(
e−iγH − 1

) w1 w2

a1 a2

[
δm1,0 +

1− δm1,0

2
sinc

(
m1w1

a1

)]

×
[
δm2,0 +

1− δm2,0

2
sinc

(
m2w2

a2

)]
, (A.47)

or in a more detailed form

ξ(m)(γ) =





1 +
(
e−iγH − 1

)
w1 w2

a1 a2
if m1 = 0 and m2 = 0

(
e−iγH − 1

)
w1 w2

a1 2a2
sinc

(
m2w2

a2

)
if m1 = 0 and m2 6= 0

(
e−iγH − 1

)
w1 w2

2a1 a2
sinc

(
m1w1

a1

)
if m1 6= 0 and m2 = 0

(
e−iγH − 1

)
w1 w2

2a1 2a2
sinc

(
m1w1

a1

)
sinc

(
m2w2

a2

)
if m1 6= 0 and m2 6= 0

. (A.48)

A.4.3 Gaussian profile

Similarly to the one-dimensional case, let us assume that a protuberance can be approximated
by a two-dimensional Gaussian profile defined as

ζ(x) ≈ H exp

(
−x

2
1

σ2
1

− x2
2

σ2
2

)
, (A.49)

provided σi � ai for i ∈ {1, 2}. The ξ-integral reads

ξ(m)(γ) =
1

ac

∫

ac

e−iG
(m)·xe

−iγH exp

(
− x

2
1
σ21
− x

2
2
σ22

)
d2x . (A.50)

By applying a change of variable x̂i = xi/ai, i ∈ {1, 2}, we obtain

ξ(m)(γ) =

∫ 1/2

−1/2

∫ 1/2

−1/2

e−i2πm1x̂1−i2πm2x̂2e
−iγH exp

(
− x̂

2
1
σ̂22
− x̂

2
2
σ̂22

)
dx̂1dx̂2 , (A.51)
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where σ̂i = σi/ai for i ∈ {1, 2}. By expanding e
−iγH exp

(
− x̂

2
1
σ̂22
− x̂

2
2
σ̂22

)
in a power series we get

ξ(m)(γ) =
∞∑

n=0

(−iγH)n

n!

∫ 1/2

−1/2

∫ 1/2

−1/2

e−i2πm1x̂1−i2πm2x̂2 exp

(
−n x̂

2
1

σ̂2
2

− n x̂
2
2

σ̂2
2

)
dx̂1dx̂2 . (A.52)

For n = 0, the integral becomes δm1,0δm2,0. For n 6= 0 we recognize the product of two similar
integrals that we have already approximated in Eq. (A.37) and we obtain

ξ(m)(γ) ≈ δm,0 +
πσ1σ2

a1a2

∞∑

n=1

(−iγH)n

n! n
exp

(
−π

2m2
1σ

2
1

na2
1

− π2m2
2σ

2
2

na2
2

)
. (A.53)

A.5 Cylindrically symmetric shapes

A.5.1 General framework

Cylindrically symmetric shapes are described by

ζ (x) =





0 if r > R

ζ(r) if r < R
, (A.54)

where r =
√
x2

1 + x2
2 and R is the radius of the disc outside which ζ vanishes. Notice that the

disc must lie inside the unit cell. In order to compute the geometrical term

G(m)(γ) =

∫

supp ζ

e−iG
(m)·x

(
e−iγζ (x) − 1

)
d2x , (A.55)

it is convenient to make a change of variable, from cartesian to polar coordinates. Equa-
tion (A.55) in polar coordinates reads

G(m)(γ) =

∫ 2π

0

∫ R

0

re−iG
(m)r cos θ

(
e−iγζ(r) − 1

)
drdθ , (A.56)

where G(m) = |G(m)| and the origin of θ is taken from the direction of G(m). The θ-integration
can be carried on by recognizing the integral definition of the 0th order Bessel function of the
first kind

∫ 2π
0 eiz cos θdθ = 2πJ0(z):

G(m)(γ) =

∫ R

0

r
(
e−iγζ(r) − 1

)∫ 2π

0

e−iG
(m)r cos θdθdr = 2π

∫ R

0

r
(
e−iγζ(r) − 1

)
J0(rG(m))dr . (A.57)

Equation (A.57) will be the starting point for the derivation of the considered particular
geometries.

A.5.2 Cylinder

Let us consider the case of a cylinder, ζ(r) = H. For m 6= 0, Eq. (A.57) reduces to

G(m)
cyl (γ) = 2π

(
e−iγH − 1

) ∫ R

0

rJ0(rG(m))dr =
2πR

G(m)

(
e−iγH − 1

)
J1(RG(m)) , (A.58)

where the property d
dz [znJn] = znJn−1 of the Bessel functions has been used. For m = 0, we

have

G(0)
cyl (γ) = πR2

(
e−iγH − 1

)
, (A.59)
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which can be computed directly from Eq. (A.57) or by taking the limit of Eq. (A.58) when
G(m) → 0. Consequently, we obtain

ξ
(m)
cyl (γ) =





1 + πR2

ac

(
e−iγH − 1

)
if m = 0

2πR
acG(m)

(
e−iγH − 1

)
J1(RG(m)) if m 6= 0

. (A.60)

A.5.3 Concentric rings

The case of concentric rings can be easily derived from the cylinder. Consider a set of n concentric
rings of inner radii ri

k, outer radii ro
k and height Hk, k ∈ J1, nK indexing the rings. The rings are

assumed to have disjoint supports and ordered by increasing radii

ri
1 < ro

1 < ri
2 < ro

2 < · · · < ri
n < ro

n . (A.61)

In that case the profile can be expressed by

ζ(r) =
n∑

k=1

Hk 1[rik,r
o
k](r) , (A.62)

where we recall that 1[a,b] denotes the indicator function of the subset [a, b] (a < b) in R. By
plugging Eq. (A.62) into Eq. (A.57), we obtain, for m 6= 0,

G(m)
rin (γ) = 2π

n∑

k=1

(
e−iγHk − 1

) ∫ rok

rik

rJ0(rG(m))dr . (A.63)

By using the property of the Bessel functions d
dz [znJn] = znJn−1 as in the cylinder case gives

G(m)
rin (γ) =

2π

G(m)

n∑

k=1

(
e−iγHk − 1

) (
ro
kJ1(ro

kG
(m))− ri

kJ1(ri
kG

(m))
)

. (A.64)

For m = 0, we get

G(0)
rin (γ) = π

n∑

k=1

(
e−iγHk − 1

) (
[ro
k]2 − [ri

k]2
)

. (A.65)

The result can be interpreted as a superposition of cylinders of radii corresponding to the rings
outer radii subtracted by cylinders of radii corresponding the rings inner radii. Consequently,
we obtain

ξ
(m)
rin (γ) =





1 + π
ac

∑n
k=1

(
e−iγHk − 1

) (
[ro
k]2 − [ri

k]2
)

if m = 0

2π
acG(m)

∑n
k=1

(
e−iγHk − 1

) (
ro
kJ1(ro

kG
(m))− ri

kJ1(ri
kG

(m))
)

if m 6= 0
. (A.66)

A.5.4 Paraboloid

Consider the case of a paraboloid with circular section, ζ(r) = H
(
1− r2

R2

)
. For m = 0, Eq. (A.57)

gives directly

G(0)
par(γ) = 2π

∫ R

0

r

(
e−iγH

(
1− r2

R2

)
− 1

)
dr =

πR2

γH

(
e−iγH − 1 + iγH

)
. (A.67)
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For m 6= 0, Eq. (A.57) becomes

G(m)
par (γ) = 2π

∫ R

0

r

(
e−iγH

(
1− r2

R2

)
− 1

)
J0(rG(m))dr (A.68)

= 2π

(∫ R

0

re−iγH
(

1− r2

R2

)
J0(rG(m))dr − R

G(m)
J1(RG(m))

)
. (A.69)

Let us focus on the first term that we integrate by part

∫ R

0

rJ0(rG(m))e−iγH
(

1− r2

R2

)
dr =

R

G(m)
J1(RG(m))− 2iγH

R2G(m)

∫ R

0

r2J1(rG(m))e−iγH
(

1− r2

R2

)
dr . (A.70)

By successive integrations by part, we obtain that the nth integration by part terms gives

∫ R

0

rnJn−1(rG(m))e−iγH
(

1− r2

R2

)
dr =

Rn

G(m)
Jn(RG(m))

− 2iγH

R2G(m)

∫ R

0

rn+1Jn(rG(m))e−iγH
(

1− r2

R2

)
dr , (A.71)

which is an iterative relation of the form In = Rn

G(m)Jn(RG(m)) − 2iγH
R2G(m) In+1, where In =

∫ R
0 rnJn−1(rG(m))e−iγH

(
1− r2

R2

)
dr. Then Eq. (A.70) yields

∫ R

0

rJ0(rG(m))e−iγH
(

1− r2

R2

)
dr = R2

∞∑

n=1

(−2iγH)n−1Jn(RG(m))

(RG(m))n
. (A.72)

Substituting the previous expression in Eq. (A.69) and noticing that the first term in the sum
cancels with R

G(m)J1(RG(m)) in Eq. (A.69), we finally get

G(m)
par (γ) = 2πR2

∞∑

n=2

(−2iγH)n−1Jn(RG(m))

(RG(m))n
= 2πR2

∞∑

n=1

(−2iγH)nJn+1(RG(m))

(RG(m))n+1
. (A.73)

Consequently:

ξ(m)
par (γ) =





1 + πR2

γH ac

(
e−iγH − 1 + iγH

)
if m = 0

2πR2

ac

∑∞
n=1

(−2iγH)nJn+1(RG(m))

(RG(m))n+1 if m 6= 0
. (A.74)

Equation (A.73) takes the form of a sum of a series in powers of −2iγH/RG(m). Such a series
will converge quickly for values of −2iγH/RG(m) such that |2γH/RG(m)| < 1, and somewhat
more slowly for |2γH/RG(m)| > 1. This is a general feature of all the series expansion presented
in this appendix. However, in the case of the paraboloid, an alternative power series can be
constructed easily in power of RG(m)/2iγH instead. The method to construct such a series
expansion is to choose to integrate by part the integral in Eq. (A.69) in the following way
instead

∫ R

0

J0(rG(m)) r e−iγH
(

1− r2

R2

)
dr =

[
J0(RG(m))− e−iγH

] R2

2iγH

− R2G(m)

2iγH

∫ R

0

J−1(rG(m)) e−iγH
(

1− r2

R2

)
dr , (A.75)



i
i

“report” — 2018/9/20 — 10:11 — page 314 — #336 i
i

i
i

i
i

314 Appendix A. The ξ-integral and Fourier moments for a collection of shapes

and keep doing similar successive integration by parts, i.e. taking derivatives of r−nJ−n and

integrating r exp
[
−iγH

(
1− r2

R2

)]
. This yields the following power series expansion

G(m)
par (γ) =

2πR2

RG(m)
exp

[(
RG(m)

2iγH
− 2iγH

RG(m)

)
RG(m)

2

]
− 2πR2

RG(m)

∞∑

n=0

Jn(RG(m))

[
RG(m)

2iγH

]n
. (A.76)

The latter can also be obtained directly from Eq. (A.73) by the use of the identity

∞∑

n=−∞
Jn(x) tn = exp

[(
t− 1

t

)
x

2

]
. (A.77)

Indeed, applying the above identity for x = RG(m) and t = −2iγH
RG(m) and splitting the sum for

n < 1 and n ≥ 1 we have

∞∑

n=1

Jn(RG(m))

[−2iγH

RG(m)

]n
= exp

[(
RG(m)

2iγH
− 2iγH

RG(m)

)
RG(m)

2

]

−
∞∑

n=0

Jn(RG(m))

[
RG(m)

2iγH

]n
, (A.78)

hence

G(m)
par (γ) =

2πR2

RG(m)
exp

[(
RG(m)

2iγH
− 2iγH

RG(m)

)
RG(m)

2

]
− 2πR2

RG(m)

∞∑

n=0

Jn(RG(m))

[
RG(m)

2iγH

]n
,

as announced. The two alternative expressions Eqs. (A.73) and (A.76) are of particular from a
numerical point of view. Indeed, we can make an alogrithm that, depending on the arguments
γ and m, chooses to use Eq. (A.73) or Eq. (A.76) depending on whether |2γH/RG(m)| < 1
or |2γH/RG(m)| > 1. This way the algorithm chooses automatically the power series that
converges fastest for the given values of the arguments.

A.5.5 Cone

Let us consider the case of a cone, ζ(r) = H(1− r
R). For m 6= 0, Eq. (A.57) becomes

G(m)
con (γ) = 2π

(∫ R

0

re−iγH(1− r
R )J0(rG(m))dr − R

G(m)
J1(RG(m))

)
. (A.79)

The integral in Eq. (A.79) can be expanded as

∫ R

0

re−iγH(1− r
R )J0(rG(m))dr =

∞∑

n=0

(−iγH)n

n!

∫ R

0

r
(

1− r

R

)n
J0(rG(m))dr . (A.80)

Using the change of variable u = r/R, Eq. (A.80) becomes

∫ R

0

re−iγH(1− r
R )J0(rG(m))dr = R2

∞∑

n=0

(−iγH)n

n!

∫ 1

0

u (1− u)
n
J0(RG(m) u)du . (A.81)

The integral in Eq. (A.81) is a particular case of the integral given in Eq. (6.569) p.690 in [147]

∫ 1

0

uλ (1− u)
µ−1

Jν(au)du =
Γ(µ) Γ(1 + λ+ ν)2−νaν

Γ(ν + 1) Γ(1 + λ+ µ+ ν)
×

2F3

(
λ+ 1 + ν

2
,
λ+ 2 + ν

2
; ν + 1,

λ+ 1 + µ+ ν

2
,
λ+ 2 + µ+ ν

2
;
−a2

4

)
, (A.82)
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under the condition Re(µ) > 0, Re(λ+ν) > −1. The function pFq is a generalized hypergeometric
function. Applying Eq. (A.82) with λ = 1, µ = n+ 1, ν = 0, a = RG(m), Eq. (A.81) yields

∫ R

0

re−iγH(1− r
R )J0(rG(m))dr = R2

∞∑

n=0

(−iγH)n

(n+ 2)!
× 2F3

(
1,

3

2
; 1,

n+ 3

2
,
n+ 4

2
;
−R2G(m)2

4

)
, (A.83)

where we have simplified Γ(n+1) Γ(2)
Γ(1) Γ(n+3) = n!

(n+2)! = 1
(n+1)(n+2) . It can be shown that the term of the

sum for n = 0 cancels the second term in Eq. (A.79). Finally, we obtain

G(m)
con (γ) = 2πR2

∞∑

n=1

(−iγH)n

(n+ 2)!
× 2F3

(
1,

3

2
; 1,

n+ 3

2
,
n+ 4

2
;
−R2G(m)2

4

)
. (A.84)

For m = 0, Eq. (A.57) gives directly

G(0)
con(γ) = 2π

∫ R

0

r
(
e−iγH(1− r

R ) − 1
)

dr (A.85)

= 2π

∫ R

0

re−iγH(1− r
R )dr − πR2 (A.86)

=
2πR2

iγH
− 2πR

iγH

∫ R

0

e−iγH(1− r
R )dr − πR2 (A.87)

=
2πR2

(γH)2

(
1− iγH − (γH)2

2
− e−iγH

)
. (A.88)

Consequently, we have

ξ(m)
con (γ) =





1− 2πR2

(γH)2ac

(
e−iγH − 1 + iγH + (γH)2

2

)
if m = 0

2πR2

ac

∑∞
n=1

(−iγH)n

(n+2)! × 2F3

(
1, 3

2 ; 1, n+3
2 , n+4

2 ; −R
2G(m)2

4

)
if m 6= 0

. (A.89)

A.5.6 Hemiellipsoid

Let us consider the case of a hemiellipsoid, ζ(r) = H
√

1− r2

R2 . For m 6= 0, Eq. (A.57) becomes

G(m)
hem(γ) = 2π

(∫ R

0

re
−iγH

√
1− r2

R2 J0(rG(m))dr − R

G(m)
J1(RG(m))

)
. (A.90)

By Taylor expansion of the exponential, we get

G(m)
hem(γ) = 2π



∫ R

0

rJ0(rG(m))
∞∑

n=0

(−iγH)n
(

1− r2

R2

)n/2

n!
dr − R

G(m)
J1(RG(m))


 . (A.91)

After switching the sum and integration, the first term of the sum cancels the last term in the
above equation, and we have

G(m)
hem(γ) = 2π

∞∑

n=1

(−iγH)n

n!

∫ R

0

r

(
1− r2

R2

)n/2
J0(rG(m))dr . (A.92)

We apply a change of variable u = r/R and the integral in Eq. (A.92) reads

∫ R

0

r

(
1− r2

R2

)n/2
J0(rG(m))dr = R2

∫ 1

0

u(1− u2)n/2J0(RG(m)u)du . (A.93)
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The integral in the right hand side of the above equation is a particular case of the integral
Eq. (6.567(1)) p.688 in [147] (under the condition α > 0, Reν > −1, Reµ > −1):

∫ 1

0

uν+1(1− u2)µJν(αu)du = 2µΓ(µ+ 1)α−(µ+1)Jν+µ+1(α) . (A.94)

Using the above result for α = RG(m), ν = 0, µ = n/2, Eq. (A.92) yields

G(m)
hem(γ) = 2πR2

∞∑

n=1

(−iγH)n

n!

2n/2Γ(n/2 + 1)Jn/2+1(RG(m))

(RG(m))n/2+1
. (A.95)

This is the result obtained by Kretschmann and Maradudin in [48]. For m = 0, the geometrical

term is G(0)
hem(γ) = 2π

∫ R
0 re

−iγH
√

1− r2

R2 dr − πR2 and its computation does not require a Taylor

expansion of the exponential. Indeed, by using the substitution u =
√

1− r2/R2, udu =
−r/R2dr, we get

G(0)
hem(γ) = 2πR2

(∫ 1

0

ue−iγHudu− 1

2

)
. (A.96)

Then an integration by part gives

∫ 1

0

ue−iγHudu =
1

−iγH

(
e−iγH −

∫ 1

0

e−iγHudu

)
=

1

(γH)2

(
e−iγH(1 + iγH)− 1

)
. (A.97)

Hence

G(0)
hem(γ) =

2πR2

(γH)2

(
e−iγH(1 + iγH)− 1− (γH)2

2

)
. (A.98)

Consequently for m = 0, we have

ξ
(0)
hem(γ) = 1 +

2πR2

ac(γH)2

(
e−iγH(1 + iγH)− 1− (γH)2

2

)
. (A.99)

The Taylor expansion method gives (either by careful re-derivation or by taking the limit G(m) →
0 in Eq. (A.101) or Taylor expansion of the previous result)

ξ
(0)
hem(γ) = 1 +

2πR2

ac

∞∑

n=1

(−iγH)n

n!(n+ 2)
, (A.100)

which is the expression found by Kretschmann and Maradudin in [48]. Consequently, we obtain

ξ
(m)
hem(γ) =





1 + 2πR2

ac(γH)2

(
e−iγH(1 + iγH)− 1− (γH)2

2

)
= 1 + 2πR2

ac

∑∞
n=1

(−iγH)n

n!(n+2) if m = 0

2πR2

ac

∑∞
n=1

(−iγH)n

n!

2n/2Γ(n/2+1)Jn/2+1(RG(m))

(RG(m))n/2+1 if m 6= 0
.

(A.101)

A.6 Shapes with elliptic section

The shapes considered in Section A.5 have the property to be cylindrically symmetric along the
x3-axis, i.e. their section in a plane of constant x3 is a circle. In practice, one can be interested
in studying the influence of an asymmetry of the shape. Indeed, in reality it may (or always)
happen that when manufacturing such structures, the particles result in being asymmetric,
whether this is done on purpose or not. In the present section, we derive a simple formula that
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gives the ξ-integral for shapes with elliptic section in a constant x3-plane using the result known
for cylindrically symmetric shapes. In other words, this formula can be seen as a correction to
be applied to the results derived in Section A.5 to handle shapes with elliptic section.

A.6.1 Ellipse’s axes collinear to the direct lattice’s axes

Consider a shape with elliptic sections in planes of constant x3 (it may or course reduce to a
point or the empty set also for some value of x3). The section in the plane x3 = 0 is defined by
the ellipse equation

(x1

a

)2

+
(x2

b

)2

= 1 (A.102)

where a, b ∈ R∗+. By definition of the elliptic section, the geometry profile ζell has the following
property

ζell (x) =





0 if x /∈ Dell

ζ(ρ) if x ∈ Dell

, (A.103)

where Dell =
{

(x1, x2) ∈ R2,
(
x1
a

)2
+
(
x2
b

)2
< 1
}

is the elliptic disc support of the profile. Here

ρ =
√(

x1
a

)2
+
(
x2
b

)2
and then denotes elliptic contours for constant height level, ρ ∈ [0, 1[ . The

geometrical term Eq. (A.55) expressed in the cartesian coordinate system reads

Gell,(m)(γ) =

∫

Dell

(
e−iγζ

ell(x) − 1
)
e−iG

(m)·xd2x . (A.104)

Consider the unit circular disc Dcirc =
{

(u1, u2) ∈ R2, u2
1 + u2

2 < 1
}

and the linear mapping, φ,
that maps the unit circular disc Dcirc onto the elliptic disc Dell, defined as

φ :




Dcirc 7→ Dell

(u1, u2) 7→ (au1, bu2)
. (A.105)

By using the change of variable x = φ (u), Eq. (A.104) becomes

Gell,(m)(γ) = ab

∫

Dcirc

(
e−iγζ

ell(x (u)) − 1
)
e−iG

(m)·x (u)d2u . (A.106)

Let analyze the term ζell(x (u)).

ζell(x (u)) =





0 if
(
x1(u1,u2)

a

)2

+
(
x2(u1,u2)

b

)2

= u2
1 + u2

2 > 1

ζ(ρ(x (u))) if
(
x1(u1,u2)

a

)2

+
(
x2(u1,u2)

b

)2

= u2
1 + u2

2 < 1
, (A.107)

with ρ(x (u)) =
√
u2

1 + u2
2. This means that ζell(x (u)) can be replaced by the corresponding

shape with circular section:

ζcirc (u) =





0 if r > 1

ζ(r) if r < 1
, (A.108)

with r =
√
u2

1 + u2
2. This is the way we defined cylindrically symmetric shapes in Section A.5.

Let us analyze now the term

G(m) · x (u) = (m1b1 +m2b2) · (au1a1 + bu2a2) = 2π (am1u1 + bm2u2) . (A.109)
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Here we have used the property Eq. (A.7). Then an equivalent way of writing the above scalar
product would be

G(m) · x (u) = G̃(m) · u , (A.110)

where G̃(m) = (m1 ab1 +m2 bb2), which can be interpreted as a re-scaling of the reciprocal
lattice basis vectors. Then Eq. (A.106) becomes

Gell,(m)(γ) = ab

∫

Dcirc

(
e−iγζ

circ (u) − 1
)
e−iG̃

(m)·ud2u . (A.111)

where we recognize the geometrical term of the cylindrically symmetric shape (with unit disc
support) associated with the elliptic one, but corrected by a factor ab and taking argument
G̃(m). To sum up

Gell,(m) = ab Gcirc,(m̃) , (A.112)

where the notation circ denotes the cylindrically symmetric shape with unit disc support associ-
ated with the elliptic shape and m̃ denotes the modified reciprocal vector.

A.6.2 General cases: a priori non-collinear axes

In the previous section we have treated the case where the ellipse’s axes are collinear with the
direct lattice’s axes to explain clearly the reasoning step by step. We shall treat the general
case below in the same fashion but passing quickly the straightforward check in the derivation,
since the method is identical to what has been done before.

u1

u2

φ

u′1

u′2

ψ

a

b x1

x2

θ

Figure A.1: Mappings from unit circle to tilted ellipse.

Consider an ellipse whose first axis is tilted by an angle θ from the x1-axis. The equation of the
ellipse in the (x1, x2) plane is

(
cos θ x1 + sin θ x2

a

)2

+

(− sin θ x1 + cos θ x2

b

)2

= 1 . (A.113)

This is immediate by considering the rotation of center the origin, and angle θ of the ellipse of
the previous section. We define the tilted elliptic disc

Dθell =

{
(x1, x2) ∈ R2,

(
cos θ x1+sin θ x2

a

)2
+
(
− sin θ x1+cos θ x2

b

)2
< 1

}
, where the superscript θ will
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help us distinguishing it from the non tilted one. As before, the geometry profile ζell,θ has the
following property

ζell,θ (x) =





0 if x /∈ Dθell

ζ(ρ) if x ∈ Dθell

, (A.114)

where ρ =

√(
cos θ x1+sin θ x2

a

)2
+
(
− sin θ x1+cos θ x2

b

)2
and still denotes elliptic contours for con-

stant height level, ρ ∈ [0, 1[ . The geometrical term Eq. (A.55) expressed in the cartesian
coordinate system reads

Gell,θ,(m)(γ) =

∫

Dθell

(
e−iγζ

ell,θ(x) − 1
)
e−iG

(m)·xd2x . (A.115)

We will re-use the linear mapping φ, that maps the unit circular disc Dcirc on the non-tilted
elliptic disc Dell, but this time in composition with a rotation of angle θ afterwards, denoted ψ
and defined as

ψ :




Dell 7→ Dθell

(u′1, u
′
2) 7→ (cos θ u′1 − sin θ u′2, sin θ u

′
1 + cos θ u′2)

. (A.116)

For more clarity we will associate to the linear mappings φ and ψ their representative matrices
Φ and Ψ (in the canonical basis of the (ê1, ê2)-plane) defined as

Φ =


a 0

0 b


 and Ψ =


cos θ − sin θ

sin θ cos θ


 . (A.117)

Then the unit circular disc Dcirc is mapped on the tilted elliptic disc Dθell through ψ◦φ (Fig. A.1)
and we denote the corresponding matrix

M = ΨΦ =


a cos θ −b sin θ

a sin θ b cos θ


 . (A.118)

By using the change of variable x = ψ ◦ φ (u), Eq. (A.115) becomes

Gell,θ,(m)(γ) = ab

∫

Dcirc

(
e−iγζ

ell,θ(x (u)) − 1
)
e−iG

(m)·x (u)d2u . (A.119)

As previously, it is straightforward to verify that ζell,θ ◦ψ ◦φ = ζcirc. The scalar product can be
written as

G(m) ·Mu = G̃(m) · u , (A.120)

where G̃(m) = MTG(m). We finally obtain

Gell,θ,(m) = ab Gcirc,(m̃) , (A.121)

where m̃ is a short hand notation to denote the modified reciprocal vector G̃(m) = MTG(m).
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x1

x2

x3

2

3
1

T

x3 = αx1 + βx2 + δ

(a)

x1

x2

x̂1

x̂2
1

2
3

T

T̂
φ

(b)

Figure A.2: (a) Triangular facet. (b) Transformation of the canonical triangle through the affine
mapping φ.

A.7 Plane on a triangular support

Let us consider the case of plane defined on a triangular support T , ζ(x) = αx1 + βx2 + δ
(Fig. A.2(a)). The geometrical term Eq. (A.55) is expressed in the cartesian coordinate system
as

G(m)(γ) =

∫

T

(
e−iγζ(x) − 1

)
e−iG

(m)·xd2x . (A.122)

We will denote by a super-script - taken in {1, 2, 3} - the coordinates of the vertices of T taken

in a direct (trigonometric) order, i.e. (x
(i)
1 , x

(i)
2 ) are the coordinates of the vertex i (Fig. A.2).

We note that G(m) can be recast as

G(m)(γ) = I(m)(γ)− I(m)(0) , (A.123)

where we have introduced

I(m)(γ) =

∫

T
e−iγζ(x)e−iG

(m)·xd2x (A.124)

= e−iγδ
∫

T
eα
′x1+β′x2dx1dx2 , (A.125)

with

α′ = −iγα− iG(m) · ê1 , β′ = −iγβ − iG(m) · ê2 . (A.126)

Even though it is straight forward to find a primitive of the integrand in Eq. (A.125), the
boundary for the integration for a general triangle T is not trivial. It is convenient to consider
an affine change of variables that maps together a generic triangle T and what we will call the
canonical triangle T̂ (i.e. constructed on the unit vectors of the canonical basis). As depicted
in Fig. A.2(b), consider the affine mapping:

φ :





R2 7→ R2

(x1, x2) 7→ (x
(1)
1 , x

(1)
2 ) +A(x1, x2)

, (A.127)
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where A is the automorphism of R2 defined by the following matrix in the canonical basis (we
will denote both the automorphism and its representative matrix by the same letter):

A =


x

(2)
1 − x

(1)
1 x

(3)
1 − x

(1)
1

x
(2)
2 − x

(1)
2 x

(3)
2 − x

(1)
2


 . (A.128)

We show without trouble that A is an automorphism if and only if the triangle T has a non-zero
area, which is the case of interest. Indeed we have

|detA| =
∣∣∣(x(2)

1 − x
(1)
1 )(x

(3)
2 − x

(1)
2 )− (x

(3)
1 − x

(1)
1 )(x

(2)
2 − x

(1)
2 )
∣∣∣ = 2AT , (A.129)

where AT is the area of the triangle T . Furthermore, we can verify without effort that the
vertices of T̂ map onto those of T , and conserve the orientation. Considering now the change
of variables (x, y) = φ−1(x1, x2) in Eq. (A.125), we obtain

I(m)(γ) = 2AT eα
′x(1)

1 +β′x(1)
2 −iγδ

∫

T̂
e(α′a11+β′a21)x+(α′a12+β′a22)ydxdy . (A.130)

The coefficients aij denote the elements of A, and we have used Eq. (A.129) to express the
determinant of the Jacobian of φ, detJφ = detA. We are then able to integrate without
difficulty. By denoting α′′ = α′a11 + β′a21 and β′′ = α′a12 + β′a22, and if α′′ 6= 0, β′′ 6= 0

∫

T̂
eα
′′x+β′′ydxdy =

∫ 1

0

∫ 1−x

0

eα
′′x+β′′ydydx

=
β′′
(
eα
′′ − 1

)
− α′′

(
eβ
′′ − 1

)

α′′β′′(α′′ − β′′)

We can treat the cases α′′, β′′ = 0, either by starting from the first line or by taking the limit in
the second. This yields the following cases:

∫

T̂
eα
′′x+β′′ydxdy =





β′′
(
eα
′′−1

)
−α′′

(
eβ
′′−1

)
α′′β′′(α′′−β′′) if α′′ 6= 0 , β′′ 6= 0

eβ
′′−1−β′′
β′′2 if α′′ = 0 , β′′ 6= 0

eα
′′−1−α′′
α′′2 if α′′ 6= 0 , β′′ = 0

1/2 if α′′ = 0 , β′′ = 0

. (A.131)

To sum up, I(m)(γ) is given by Eq. (A.130) and Eq. (A.131) plugging in the adequate parameters
defined through the reasoning. The geometrical term, G(m)(γ), for a polyhedral shape with
triangular facets is then the sum of the geometrical terms for each triangular facet. This is
useful for treating triangulated surfaces.
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Appendix B

Algorithm for determining the
Isserlis-Wick coefficients

”One and one and one is three.”
Come together,

The Beatles (1969).

B.1 Listing all pair-partitions

The first step in determining the coefficients of the Isserlis-Wick polynomials, is to be able to
make a list of all the possible distinct pair-partitioning of J1, NK where N = 2k > 0 is a even
integer. First, it is instructive to ask ourselves how many distinct pair-partitioning there are
for a given k. Let us denote this number νk. We will reason recursively on the number of such
partitioning. First, for k = 1, there is only one way of paring the two elements 1 and 2, hence
ν1 = 1. Assuming νk known, what is νk+1? To make a pair-partitioning of J1, 2(k+ 1)K we need
to pick two distinct elements in J1, 2(k + 1)K and make a pair-partitioning of the 2k remaining
elements. There are 2(k + 1)× (2k + 1) ways of choosing the first pair of the partitioning, and
νk possible pair-partitions of the remaining elements. However, we are now counting too many.
Indeed, choosing first the pair (i, j) and a remaining pair-partition can be written in the form
{(i, j), (a, b), · · · , (α, β)}, but this pair-partition would also occur if we chose first (a, b) and then
the remaining same pairs, or (α, β) and then the remaining same pairs, etc ... since the order of
the pairs does not matter. A way to avoid this issue is to force a certain order of the pairs so
that each pair-partitions are only counted once. Let us consider the following reasoning: choose
the element 1, there is only one way of doing so, then choose one of the remaining elements,
say i, there are 2k + 1 ways of doing so and finally there are νk possible partitioning for the
remaining elements. This gives the correct recursion relation for νk, namely

νk+1 = (2k + 1)νk . (B.1)

We then easily deduce that

νk = (2k − 1)(2k − 3) · · · 3 · 1 =
(2k)!

2kk!
. (B.2)

The reasoning for counting the number of pair-partitions now gives a concrete idea for an
algorithm for listing all these pair-partitions. Indeed, a pair-partition can be viewed as a specific
permutation of (1, · · · , 2k). Let us construct a matrix, M, with νk rows and 2k columns that

323
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we want to fill with all the possible pair-partition, one per row. Let us now revisit the counting
reasoning stated above and extend it to make a recursive algorithm as follows.

0 For a given k > 1, start with an empty matrix M(k) and the array v(k) = (1, 2, · · · , 2k).

• Execute recursively the following instructions:

1.1 if k > 1 then pick the first (which is also the smallest) element in v(k) and set it in

the first column of M(k): ∀i ∈ J1, νkK, M
(k)
i,1 ← v

(k)
1 .

2.1 initialize a counter: c← 0;

2.2 for i between 2 and 2k

· set: ∀j ∈ Jc+ 1, c+ νkK, M
(k)
j,2 ← v

(k)
i

· make a new array v(k−1) of dimension 2k−2 composed of the ordered elements

of v(k) distinct from v
(k)
1 and v

(k)
i .

· select the matrix block M(k−1) = (M
(k)
m,n) for m ∈ Jc + 1, c + νkK and n ∈

J3, 2kK.
· increment the counter c← c+ νk.

· repeat the recursive instruction with v(k−1), M(k−1), k ← k − 1.

1.2 if k = 1 then set v(1) in M(1): M
(1)
1,1 ← v

(1)
1 and M

(1)
1,2 ← v

(1)
2 .

Let us illustrate what the algorithm is doing in a more visual way for a starting k = 2. We start
with an empty matrix, that we fill with zeros for the sake of illustration, and the vector v(2)

with components from 1 to 4

M(2) =




0 0 0 0

0 0 0 0

0 0 0 0


 v(2) =




1

2

3

4




Step 1.1 sets the first column of M(2) to 1, and let us slash the corresponding element in v(2) to
denote that it will not be used anymore.

M(2) =




1 0 0 0

1 0 0 0

1 0 0 0


 v(2) =




/1

2

3

4




Then the counter c in step 2.1 is just a convenience that helps selecting sub-matrices as we will
soon see. Now step 2.2, for i from 2 to 4 the algorithm actually splits into three branches. The
first one will take care of all pair-partitions starting by (1, 2), the second branch will take care
of all pair-partitions starting by (1, 3) and the third branch will take care of all pair-partitions

starting by (1, 4). Indeed, let us follow the first branch i = 2. In this branch, we set M
(2)
1,2 to
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2 (colored in red), we slash it from v(2), and repeat the recursive function with the final 1 × 2
block elementary block which will be filled with the remaining element of v(2) according to step
1.2 (colored in pink).

M(2) =




1 2 3 4

1 0 0 0

1 0 0 0


 v(2) =




/1

/2

3

4




First branch: the gray elements are not affected.

Then for the second branch, i = 3, we set M
(2)
2,2 to 3 (colored in blue), we slash it from v(2), and

repeat the recursive function with the final 1×2 block elementary block which will be filled with
the remaining element of v(2) according to step 1.2 (colored in cyan). Note that in this branch
the element 2 were not slashed and is still available for filling the last elementary block.

M(2) =




1 2 3 4

1 3 2 4

1 0 0 0


 v(2) =




/1

2

/3

4




Second branch: the gray elements are not affected.

Finally, for the last branch, i = 4, we set M
(2)
3,2 to 4 (colored in green), we slash it from v(2),

and repeat the recursive function with the final 1× 2 block elementary block which will be filled
with the remaining element of v(2) according to step 1.2 (colored in orange). Note that in this
branch the element 2 were not slashed and is still available for filling the last elementary block.

M(2) =




1 2 3 4

1 3 2 4

1 4 2 3


 v(2) =




/1

2

3

/4




(B.3)

Third branch: the gray elements are not affected.

We have now filled the matrix with all permutations of (1, 2, 3, 4) that correspond to a pair-
partitions. We encourage the reader to repeat the exercise for k = 3 and verify that the
algorithm yields
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M(3)T =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 3 3 3 4 4 4 5 5 5 6 6 6

3 3 3 2 2 2 2 2 2 2 2 2 2 2 2

4 5 6 4 5 6 3 5 6 3 4 6 3 4 5

5 4 4 5 4 4 5 3 3 4 3 3 4 3 3

6 6 5 6 6 5 6 6 5 6 6 4 5 5 4




which contains all the permutations of (1, 2, 3, 4, 5, 6) that correspond to a pair-partition.

B.2 Counting monomes

Now that we have a list of all the pair-partitions available, we can proceed to determine the
coefficients of the Isserlis-Wick polynomials. Recall that we have found in Section 8.3 that a
covariance of the form 〈ζn(x + u)ζm(x)〉 /σn+m can be expressed as an integer polynomial in
the auto-correlation W (u) of degree at most k, where n and m are two positive integers such
that n + m = 2k is an even integer (see Eq. 8.10). The reasoning that lead to this conclusion,
presented in Section 8.3, was based on the fact that the covariance of a pair of random variable
〈XiXj〉, for X1 = · · · = Xn = ζ(x + u) and Xn+1 = · · · = Xn+m = ζ(x), could possibly take

only two values, σ2 or σ2W (u). The algorithm to obtain the polynomial coefficients (p
(j)
n,m)0≤j≤k

is essentially constructed on the very same observation. The idea is the following. For a given
pair (n,m) and for a given term in the Isserlis sum, i.e. a given pair-partitioning of J1, 2kK,
we can count the degree of the resulting monome in W (u), i.e. it will be some power j. Such

a monome will hence contribute to one unit in p
(j)
n,m. Therefore, it suffices to loop over all

pair-partitioning (which are now available thanks to the previous algorithm) and keep track of
how many of each monome are generated. But how to we determine the degree of a monome
resulting from a given pair-partitioning? Simply by going through each pair of the partition and
checking whether the corresponding random variables are the same or not. The algorithm reads
as follows.

1 Start with a one-dimensional array of size k+ 1 initialized with zeros. We will denote this
array P and we choose to index its components with j from 0 to k. The component pj in
this array will keep the count of how many terms in the Isserlis sum leads to a monome
of degree j.

2 Generate the list of all pair-partitions of J1, n+mK with the previous algorithm. We then
have M(k) available (recall n+m = 2k here). We will drop the superscript (k) for clarity
since we work at k given.

3 Loop over each pair-partition: for i from 1 to νk

3.1 Start a counter to be incremented j ← 0.

3.2 Loop over pairs in the partition i: for q from 1 to 2k in step of 2

* Check the whether the covariance of XMi,q and XMi,q+1 is σ2 or σ2W (u) and
increment the power index accordingly:
if ( Mi,q < n+1/2 and Mi,q+1 > n+1/2) or (Mi,q > n+1/2 and Mi,q+1 < n+1/2)
then j ← j + 1.
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3.3 Increment pj by one unit: pj ← pj + 1

4 All the (p
(j)
n,m)0≤j≤k are now stored in P.

Let us visualize our algorithm working on a simple example. Assume we are given M(2) from

Eq. (B.3), and we wish to compute the (p
(j)
3,1)0≤j≤2, and the (p

(j)
2,2)0≤j≤2. Let us start with

(n,m) = (3, 1), hence n+ 1/2 = 3.5. We initialize P = (p0,p1, p2) = (0, 0, 0).

• Let us set j to zero and go through the pairs of the first row of M(2). The first pair is
(1, 2), both elements are smaller than 3.5 hence nothing happens to j. The next pair is
(3, 4) where one element is smaller than 3.5 and the second is larger, hence we increment
j by one. This is it for the first row, then since j = 1, we increment p1 by one, i.e. that
now P = (0, 1, 0).

• Let us set j to zero and go through the pairs of the second row of M(2). The first pair is
(1, 3), both elements are smaller than 3.5 hence nothing happens to j. The next pair is
(2, 4) where one element is smaller than 3.5 and the second is larger, hence we increment
j by one. This is it for the second row, then since j = 1, we increment p1 by one, i.e. that
now P = (0, 2, 0).

• Let us set j to zero and go through the pairs of the third row of M(2). The first pair is
(1, 4) where one element is smaller than 3.5 and the second is larger, hence we increment
j by one. The next pair is (2, 3), both elements are smaller than 3.5 hence nothing more
happens to j. This is it for the third row, then since j = 1, we increment p1 by one, i.e.
that now P = (0, 3, 0).

Let us continue with (n,m) = (2, 2), hence n + 1/2 = 2.5. We initialize P = (p0,p1, p2) =
(0, 0, 0).

• Let us set j to zero and go through the pairs of the first row of M(2). The first pair is
(1, 2), both elements are smaller than 2.5 hence nothing happens to j. The next pair is
(3, 4), both elements are smaller than 2.5 hence nothing happens to j. This is it for the
first row, then since j = 0, we increment p0 by one, i.e. that now P = (1, 0, 0).

• Let us set j to zero and go through the pairs of the second row of M(2). The first pair is
(1, 3) where one element is smaller than 2.5 and the second is larger, hence we increment
j by one. The next pair is (2, 4) where one element is smaller than 2.5 and the second is
larger, hence we increment j by one. This is it for the second row, then since j = 2, we
increment p2 by one, i.e. that now P = (1, 0, 1).

• Let us set j to zero and go through the pairs of the third row of M(2). The first pair is
(1, 4) where one element is smaller than 2.5 and the second is larger, hence we increment
j by one. The next pair is (2, 3) where one element is smaller than 2.5 and the second is
larger, hence we increment j by one. This is it for the third row, then since j = 2, we
increment p2 by one, i.e. that now P = (1, 0, 2).

We see with this two simple examples that we indeed recover the coefficients (p
(j)
3,1)0≤j≤2, and

(p
(j)
2,2)0≤j≤2 found by hand and reported in Table. 8.1.
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[23] J.-C. Nédélec. Acoustic and Electromagnetic Equations: Integral Representations for Har-
monic Problems. Springer, Applied mathematical sciences 144, 2001.

[24] C. M. Bender and S. A. Orszag. Advanced Mathematical Methods for Scientists and
Engineers I: Asymptotic Methods and Perturbation Theory. Springer, 1978.

[25] G. S. Agarwal. Interaction of electromagnetic waves at rough dielectric surfaces. Phys.
Rev. B, 15(4):2371–2383, 1977.

[26] K. Miyamoto and E. Wolf. Generalization of the Maggi-Rubinowicz Theory of the Bound-
ary Diffraction Wave Part I. J. Opt. Soc. Am., 52(6):615–625, 1962.

[27] W. T. Doyle. Scattering approach to Fresnel’s equations and Brewster’s law. Am. J. Phys.,
53(5):463–468, 1985.

[28] P. P. Ewald. Zur Begründung der Kristalloptik. Annalen der Physik, 354(1):1–38, 1916.

[29] R. W. Wood. On a remarkable case of uneven distribution of light in a diffraction grating
spectrum. Philosophical Magazine, 4(21):396–402, 1902.

[30] Lord Rayleigh. Note on the remarkable case of diffraction spectra described by Prof.
Wood. Philosophical Magazine, 14(79):60–65, 1907.



i
i

“report” — 2018/9/20 — 10:11 — page 331 — #353 i
i

i
i

i
i

Bibliography 331

[31] J. Strong. Effect of Evaporated Films on Energy Distribution in Grating Spectra. Phys.
Rev., 49:291–296, 1936.

[32] U. Fano. The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves
on Metallic Surfaces (Sommerfeld’s Waves). J. Opt. Soc. Am., 31(3):213–222, 1941.

[33] A. Hessel and A. A. Oliner. A New Theory of Wood’s Anomalies on Optical Gratings.
Appl. Opt., 4(10):1275–1297, 1965.

[34] M. C. Hutley and V. M. Bird. A detailed experimental study of the anomalies of a
sinusoidal diffraction grating. Opt. Acta, 20:771–782, 1973.

[35] R.C. McPhedran and D. Maystre. A Detailed Theoretical Study of the Anomalies of a
Sinusoidal Diffraction Grating. Optica Acta: International Journal of Optics, 21(5):413–
421, 1974.

[36] A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez. Enhanced backscattering
of light from a random grating. Ann. Phys. (N.Y.), 203(2):255 – 307, 1990.

[37] F. Toigo, A. Marvin, V. Celli, and N. R. Hill. Optical properties of rough surfaces: General
theory and the small roughness limit. Phys. Rev. B, 15:5618–5626, 1977.

[38] G.C. Brown, V. Celli, M. Coopersmith, and M. Haller. Unitary and reciprocal expansions
in the theory of light scattering from a grating. Surface Science, 129(2):507 – 515, 1983.

[39] G.C. Brown, V. Celli, M. Haller, and A. Marvin. Vector theory of light scattering from
a rough surface: Unitary and reciprocal expansions. Surface Science, 136(2):381 – 397,
1984.

[40] G. Brown, V. Celli, M. Haller, A. A. Maradudin, and A. Marvin. Resonant light scattering
from a randomly rough surface. Phys. Rev. B, 31:4993–5005, 1985.

[41] T. A. Leskova, P. A. Letnes, A. A. Maradudin, T. Nordam, and I. Simonsen. The scattering
of light from two-dimensional randomly rough surfaces. Proc. SPIE, 8172:817209–817209–
20, 2011.

[42] T. Nordam, P. A. Letnes, I. Simonsen, and A. A. Maradudin. Numerical solutions of
the Rayleigh equations for the scattering of light from a two-dimensional randomly rough
perfectly conducting surface. J. Opt. Soc. Am. A, 31(5):1126–1134, May 2014.

[43] T. Nordam, P. A. Letnes, and I. Simonsen. Numerical simulations of scattering of light
from two-dimensional rough surfaces using the reduced Rayleigh equation. Frontiers in
Physics, 1, 2013.

[44] P. A. Letnes, T. Nordam, and I. Simonsen. Coherent effects in the scattering of light from
two-dimensional rough metal surfaces. J. Opt. Soc. Am. A, 30(6):1136–1145, 2013.

[45] Ø. S. Hetland, A. A. Maradudin, T. Nordam, and I. Simonsen. Numerical studies of the
scattering of light from a two-dimensional randomly rough interface between two dielectric
media. Phys. Rev. A, 93:053819, 2016.

[46] Ø. S. Hetland, A. A. Maradudin, T. Nordam, P. A. Letnes, and I. Simonsen. Numerical
studies of the transmission of light through a two-dimensional randomly rough interface.
Phys. Rev. A, 95:043808, 2017.



i
i

“report” — 2018/9/20 — 10:11 — page 332 — #354 i
i

i
i

i
i

332 Bibliography

[47] T. Nordam, P. A. Letnes, I. Simonsen, and A. A. Maradudin. Satellite peaks in the
scattering of light from the two-dimensional randomly rough surface of a dielectric film on
a planar metal surface. Opt. Express, 20(10):11336–11350, 2012.

[48] M. Kretschmann and A. A. Maradudin. Band structures of two-dimensional surface-
plasmon polaritonic crystals. Phys. Rev. B, 66:245408, 2002.

[49] A. V. Shchegrov, I. V. Novikov, and A. A. Maradudin. Scattering of Surface Plasmon
Polaritons by a Circularly Symmetric Surface Defect. Phys. Rev. Lett., 78:4269–4272,
1997.

[50] J. A. Sánchez-Gil and A. A. Maradudin. Surface-plasmon polariton scattering from a finite
array of nanogrooves / ridges: Efficient mirrors. Applied Physics Letters, 86(25):251106,
2005.

[51] R. E. Arias and A. A. Maradudin. Scattering of a surface plasmon polariton by a localized
dielectric surface defect. Opt. Express, 21(8):9734, 2013.

[52] A. Soubret, G. Berginc, and C. Bourrely. Backscattering enhancement of an electromag-
netic wave scattered by two-dimensional rough layers. J. Opt. Soc. Am. A, 18:2778–2788,
2001.

[53] A. Soubret, G. Berginc, and C. Bourrely. Application of reduced Rayleigh equations to
electromagnetic wave scattering by two-dimensional randomly rough surfaces. Phys. Rev.
B, 63:245411, 2001.

[54] R. F. Millar. On the Rayleigh assumption in scattering by a periodic surface. Math. Proc.
Camb., 65:773–791, 1969.

[55] R. F. Millar. On the Rayleigh assumption in scattering by a periodic surface. II. Math.
Proc. Camb., 69:217–225, 1971.

[56] A. A. Maradudin. Iterative solutions for electromagnetic scattering by gratings. J. Opt.
Soc. Am., 73(6):759–764, 1983.

[57] F. G. Tricomi. Integral Equations. Dover Books on Mathematics. Dover Publications,
revised edition, 1985.

[58] V. N. G. Kampen. Stochastic Processes in Physics and Chemistry. North-Holland Personal
Library. Elsevier, Amsterdam, third edition, 2007.

[59] Max Born and Emil Wolf. Principles of Optics. Pergamon, 6th edition, 1980.

[60] G. Allaire and S. M. Kaber. Numerical Linear Algebra. Text in applied mathematics,
Springer, 2008.

[61] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes.
Cambridge University Press, 3rd edition, 2007.
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On the physics of polarized light scattering from weakly rough dielectric surfaces:
Yoneda and Brewster scattering phenomena

J.-P. Banon1, Ø. S. Hetland1, and I. Simonsen1,2

1Department of Physics, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway and
2Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain, F-93303 Aubervilliers, France

(Dated: April 20, 2018)

The optical Yoneda and Brewster scattering phenomena are studied theoretically based on pertu-
bative solutions of the reduced Rayleigh equations. The Yoneda phenomenon is characterized as an
enhancement of the intensity of the diffuse light scattered by a randomly rough interface between
two dielectric media when the light is observed in the optically denser medium. The intensity en-
hancement occurs above a critical angle of scattering which is independent of the angle of incidence
of the excitation. The Brewster scattering phenomenon is characterized by a zero scattered intensity
either in the reflected or transmitted light for an angle of scattering which depends on the angle of
incidence. We also describe a generalization of the Brewster scattering phenomenon for outgoing
evanescent waves and circularly-polarized waves. The physical mechanisms responsible for these
phenomena are described in terms of simple notions such as scalar waves, oscillating and rotating
dipoles and geometrical arguments, and are valid in a regime of weakly rough interfaces.

I. INTRODUCTION

When light is scattered in either reflection or transmis-
sion from or through a weakly rough interface, two phe-
nomena of interest can be observed in the scattered in-
tensity distributions. These are the Yoneda phenomenon,
relatable to the idea of total internal reflection, and the
Brewster scattering phenomenon, relatable to the polar-
izing angle.

The Yoneda phenomenon is characterized as an en-
hancement of the intensity of the light scattered diffusely
by a randomly rough interface between two dielectric me-
dia when the light is observed in the optically denser
medium. The intensity enhancement occurs above a crit-
ical angle of scattering which is independent of the angle
of incidence of the excitation. This critical angle is al-
ways the polar angle, in the denser medium, for which
the wavenumber of a plane wave turns non-propagating
in the less dense medium [1, 2]. Although well known
in the scattering of x-rays from both metallic [3–8] and
non-metallic [9–12] surfaces, a paper by Kawanishi et
al. [13] marks their first explicit appearance in optics[14].
Kawanishi et al., by the use of the stochastic functional
approach, studied the case where a two-dimensional ran-
domly rough interface between two dielectric media is il-
luminated by p- or s-polarized light from either medium.
They obtained several interesting properties of the re-
flected and transmitted light that are associated with the
phenomenon of total internal reflection when the medium
of observation is the optically denser medium. These in-
clude the appearance of Yoneda peaks, which were de-
scribed by the authors as “quasi-anomalous scattering
peaks.” As an interpretation of their results, the authors
suggested that the Yoneda peaks may be associated with
the presence of lateral waves [15] propagating along the
interface in the optically less dense medium. Although
the mathematical origin of the Yoneda effect has been
shown through various perturbative approaches based on
the reduced Rayleigh equations (RRE), a physical inter-

pretation of the effect is still under discussion; a summary
of which can be found in Ref. 1. Optical Yoneda peaks
were recently observed experimentally for a configuration
of reflection from a randomly rough dielectric interface,
when the medium of incidence was the optically denser
medium [16].

The Brewster angle is maybe the best known planar
surface reflection effect where the polarization of light
plays a major role. Proposed as a polarizing angle by
Sir David Brewster in 1812 [17], its exact definition has
been a slight matter of debate in modern times [18]. For
isotropic dielectric non-magnetic materials, however, it
may be defined to be the angle of incidence, onto a planar
dielectric surface, for which the reflection amplitude for
p-polarized light (light polarized in the plane given by
the incident light and the surface normal) is zero.

A complete physical understanding of the Brewster
phenomenon is, at best, non trivial. The most com-
mon explanation for the gradual disappearance of the
reflection amplitude is based on the radiation pattern of
dipoles induced in the scattering substrate [19, 20]. This
idea is not new, and can be traced back to investigations
by e.g. Sommerfeld [21]. Modelling the scattering from
a rough surface as a layer of polarizable spheres led Gr-
effet and Sentenac [22] to the same conclusion. In a later
collaboration with Calvo-Perez, this point of view was
reinforced through the development of, and the results
given by, the Mean Field Theory (MFT) [23, 24]. How-
ever, amongst others Lekner [25] argues that even if the
dipole argument holds great explanatory power for a wide
range of scattering systems, he challenges the argument
for the case of the Brewster angle for dielectric media.
His main issue with the argument is that the accelerated
electrons cannot oscillate as dipoles in the transmitted
medium in the case of the wave approaching an interface
with vacuum on the opposing side, since the argument
goes that the dipoles are oriented according to the field
in the refracted wave. Also, there is an analogue to Brew-
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ster’s angle for longitudinal acoustic waves called Green’s
angle, and in this case the radiation from each scatterer
does not have dipole character [25].

These and other conceptual issues in the explanatory
model for the Brewster angle are attempted reconciled
by Doyle [26] in his work with a factored form of the
Fresnel equations. Inspired by the work of Sein [27], and
Pattanayak and Wolf [28] on the interpretation and gen-
erality of the extinction theorem, Doyle claims that the
proper understanding of the Brewster phenomenon has
been hampered by the attention given to surface sources
through a slightly misunderstood interpretation of the
Ewald-Oseen extinction theorem [29]. Doyle emphatizes
the participation of the entire media in the creation of
the reflected wave, and makes use of Ewald’s original
concept of “wave triads”. Doyle’s factored form of the
Fresnel equations separately expresses the scattering pat-
tern from individual dipoles and the coherent scattering
function of the dipole array, and manages in this way
to explain the polarizing angles for any combination of
transparent media.

Kawanishi et al. [13] observed angles of zero scattering
intensity to first order in their approach in the distribu-
tions of the intensity of the incoherently scattered light
when the incident light was p-polarized. Due to their re-
semblance to the Brewster angle in the reflectivity from
a flat interface, they dubbed these angles the “Brewster
scattering angles”. These angles were observed in both
reflection and transmission, for light incident from either
medium.

Both the Brewster scattering angles and Yoneda peaks
were recently observed and discussed in numerical simu-
lations of scattering in both reflection and transmission
from weakly rough surfaces [1, 2], and also in a film ge-
ometry [30] where it was claimed that the phase shifts
associated with these phenomena impact the angular po-
sitions of interference rings of diffusely scattered light,
known as Selényi rings.

In this paper we seek to further illuminate the phenom-
ena of Brewster scattering angles and Yoneda peaks and
more generally identify the fundamental mechanisms at
play in the scattering of polarized light by a weakly rough
surface. After describing the statistical properties of the
interface in Sec. II, we derive, in Sec. III, a set of reduced
Rayleigh equations (RREs) for the case of electromag-
netic scattering inspired by the work of Soubret et al. [31]
and give the corresponding RRE for scalar waves sub-
jected to the continuity of the scalar field and its normal
derivatives with respect to the interface. Furthermore,
we give an approximate solution of the RREs to first or-
der in the surface profile function in a series expansion of
the reflection and transmission amplitudes. The first or-
der perturbative solution will be our main tool of investi-
gation in Sec. IV. Section IV A is devoted to summarizing
some phenomenological observations which have been ob-
tained in the literature before embarking in Sec. IV B into
a more in-depth analysis of the reflection and transmis-
sion amplitudes with special care given to their physical

interpretation. In particular, we show how the response
can be factorized as a product of a term reminiscent of a
scalar wave response and a term encoding the component
of the response specific to polarization. Such a factoriza-
tion is a clear signature of two aspects of scattering by
arrays of dipoles; the radiated power is controlled both
by the interference of the spherical-like waves emitted
by each atomic source and their individual characteristic
dipolar radiation. Once the general physical interpreta-
tion of the equations is clarified, we explain in detail the
origin of the Yoneda phenomenon in Sec. IV C, and show
that it is fundamentally a single scattering, scalar wave
phenomenon. The Brewster scattering phenomenon, and
more generally all polarization induced effects, are then
discussed thoroughly in Secs. IV D-IV F. We first restrict
the analysis of the Brewster scattering phenomenon to
scattering in the plane of incidence and derive a one-
line criterion for predicting the Brewster scattering angle
which allows for a simple geometrical interpretation. A
detour via the analysis of the polarization properties of
the radiation of oscillating and rotating dipoles in free
space is made in Sec. IV E in order to facilitate the in-
tuitive understanding of the full angular distribution of
scattering by a rough surface discussed in Sec. IV F. Fi-
nally, Sec. V summarizes the conclusions we have drawn
from this study and suggests experimental setups to test
some interesting predictions made by the theory.

II. SCATTERING SYSTEMS

FIG. 1. Definitions of the angles of incidence and scattering,
together with the relevant wave vectors.

The system we study in this work consists of a non-
magnetic dielectric medium (medium 1), whose dielectric
constant is ε1 > 0 (refractive index n1 =

√
ε1), in the re-

gion x3 > ζ(x‖), and a non-magnetic dielectric medium
(medium 2), whose dielectric constant is ε2 > 0 (refrac-
tive index n2 =

√
ε2), in the region x3 < ζ(x‖) [Fig.

1]. The definition of the geometry is set in the three-
dimensional space endowed with a Cartesian coordinate
system (O, ê1, ê2, ê3), with the vector plane (ê1, ê2) par-
allel to the mean plane of the interface. The origin, O,
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of the coordinate system can be arbitrarily chosen, only
affecting the complex reflection and transmission ampli-
tudes by an overall phase factor which plays no role in
the intensity of the scattered light. A point is then rep-
resented as x =

∑3
i=1 xiêi = x‖ + x3 ê3. An overview of

a typical system geometry is provided in Fig. 1. The sur-
face profile function ζ will be assumed to be a realization
of a continuous, differentiable, single-valued, stationary,
isotropic, Gaussian random process with zero mean and
given auto-correlation. More specifically, the surface pro-
file function is assumed to satisfy the following properties:

〈
ζ(x‖)

〉
= 0 , (1a)

〈
ζ(x‖)ζ(x′‖)

〉
= σ2 W (x‖ − x′‖) . (1b)

Here and in the following, the angle brackets denote an
average over an ensemble of realizations of the stochastic
process, σ denotes the rms roughness and W the height
auto-correlation function normalized so that W (0) = 1.
In particular, we will deal with the special case of a Gaus-
sian auto-correlation function defined by

W (x‖) = exp

(
−|x‖|

2

a2

)
, (2)

where a is the correlation length. The corresponding
power spectrum (defined as the Fourier transform of W )
is then

g(p) = πa2 exp

(
−|p |

2a2

4

)
, (3)

with p = p1 ê1 + p2 ê2.

III. THEORY

The theoretical approach used in this work to study the
scattering of light from the systems of interest is based
on the so-called reduced Rayleigh equations. A reduced
Rayleigh equation is an inhomogeneous integral equation
in which the integral kernel encodes the materials and ge-
ometry of the scattering system, and the unknowns are
the reflection or transmission amplitudes for each polar-
ization. First derived by Brown et al. [32], the reduced
Rayleigh equation is obtained from the Rayleigh solution
to the electromagnetic boundary problem. Using inspi-
ration drawn from the extinction theorem it is possible
to “reduce” the full Rayleigh equations through the elim-
ination of either the reflected or transmitted field. In the
following, in order to establish the notation and highlight
the main assumptions of the method, we will briefly recall
the key ideas of the derivation of the reduced Rayleigh
equations for a system composed of two media separated
by a rough interface. We will use, to our knowledge, the
most general form of the reduced Rayleigh equations for
a single interface derived by Soubret et al. in Ref. 31 and
used by these authors in Refs. 31 and 33 in the case of a
single interface system and a film geometry.

A. The reduced Rayleigh equations

In this work we assume the electromagnetic response of
the media to be modeled by non-magnetic, homogeneous,
isotropic, linear constitutive relations in the frequency
domain. We consider the presence of an electromag-
netic field (E,H) in the whole space, where their restric-
tion will be denoted by a subscript j depending on the
medium in which they are evaluated. As an example, the
electric field evaluated at a point x in medium 1 at time
t is denoted E1(x, t). The source free Maxwell equations,
together with homogeneous, linear and isotropic consti-
tutive relations in the frequency domain, result in the fact
that the electric and magnetic fields satisfy the Helmholtz
equation in each region. Namely, for j ∈ {1, 2},

∇2Ej(x, ω) + εj(ω)
(ω
c

)2
Ej(x, ω) = 0 , (4)

and similarly for H. Here, ∇2 denotes the vector Laplace
operator and c is the speed of light in vacuum. Here on-
ward, we will drop the time, or frequency, dependence,
since we assume a stationary regime at a fixed frequency
where time contributes only by an overall phase fac-
tor exp(−iωt). It is well known that a solution to the
Helmholtz equation can be written as a linear combina-
tion of plane waves, thus the electric field in each region
can be represented as

Ej(x) =
∑

a=±

∫

R2

[
Eaj,p(q) êap,j(q) + Eaj,s(q) ês(q)

]

× exp
(
i kaj (q) · x

) d2q

(2π)2
, (5)

where we have defined

k±j (q) = q± αj(q) ê3 , (6a)

αj(q) =
√
k2j − q2, Re (αj), Im (αj) ≥ 0 , (6b)

ês(q) = ê3 × q̂ , (6c)

ê±p,j(q) = k−1j (±αj(q) q̂− |q| ê3) (6d)

kj = nj
ω

c
= |k±j (q)| . (6e)

In other words, the wave vector k±j (q) of an elemen-
tary plane wave is decomposed into its projection q
in the lateral vector plane (ê1, ê2) and the component
±αj(q) along ê3. The sum over a = ± takes into ac-
count both upwards (+) and downwards (−) propagating
and evanescent (and possibly growing) waves. The field
amplitude is decomposed in the local polarization basis
(êap,j(q), ês(q)), hence Eaj,α(q) denotes the component of
the field amplitude in the polarization state α of the mode
characterized by a and q. In this basis, the directions
given by ê±p,j(q), and ês(q) are the directions of the p-
and s-polarization of the electric field amplitude, respec-
tively. Furthermore, the electromagnetic fields have to
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satisfy the boundary conditions

n(x‖)×
[
E2(s(x‖))−E1(s(x‖))

]
= 0 (7a)

n(x‖)×
[
H2(s(x‖))−H1(s(x‖))

]
= 0 , (7b)

where n(x‖) is a vector normal to the interface at the
surface point s(x‖) = x‖ + ζ(x‖)ê3, given by

n(x‖) = ê3 −
∂ζ

∂x1
(x‖) ê1 −

∂ζ

∂x2
(x‖) ê2 . (8)

Here, ∂ · /∂xk denotes the partial derivative along the
direction êk. Following Soubret et al. [31], by substi-
tuting the field expansion Eq. (5) into Eq. (7) and by a
clever linear integral combination of the boundary con-
ditions inspired by the extinction theorem [28], one can
show that the upward or downward field amplitudes in
medium 2 can be linked to the upward and downward
field amplitudes in medium 1 via the following integral
equation defined for a2 = ±, and p in the vector plane
(ê1, ê2):

∑

a1=±

∫
J a2,a12,1 (p |q) Ma2,a1

2,1 (p |q) Ea11 (q)
d2q

(2π)2

=
2 a2 n1n2 α2(p)

ε2 − ε1
Ea22 (p). (9)

Here Eaj (q) = (Eaj,p(q), Eaj,s(q))T denotes a column vector
of the polarization components of the field amplitude in

medium j. Moreover, Mb,a
l,m(p |q) is the 2×2 matrix

Mb,a
l,m(p |q) = k1k2

(
êbp,l(p) · êap,m(q) êbp,l(p) · ês(q)
ês(p) · êap,m(q) ês(p) · ês(q)

)
,

(10)
which originates from a change of coordinate system be-
tween the local polarization basis (êbp,l(p), ês(p)) and

(êap,m(q), ês(q)), defined for a = ±, b = ±, and l,m ∈
{1, 2} with l 6= m. The kernel scalar factor J b,al,m(p |q)
encodes the surface geometry and is defined as

J b,al,m(p |q) = [bαl(p)− aαm(q)]
−1

×
∫

exp
[
−i(kbl (p)− kam(q)) · s(x‖)

]
d2x‖. (11)

Notice that, as already pointed out in Ref. 31, due to
the symmetry of the boundary conditions, one may also
show in the same way that

∑

a2=±

∫
J a1,a21,2 (p |q) Ma1,a2

1,2 (p |q) Ea22 (q)
d2q

(2π)2

=
2 a1 n1n2 α1(p)

ε1 − ε2
Ea11 (p), (12)

which can be obtained from Eq. (9) by interchanging the
subscripts 1 and 2. Typically, Eq. (9) is appropriate to

solve the problem of reflection whereas Eq. (12) is appro-
priate to solve the problem of transmission, as we will see
later.

So far, we have stayed general and simply assumed
the presence of an electromagnetic field decomposed in
propagating and non-propagating waves in each region.
Therefore, there is no uniqueness in the solutions to the
transfer equations, Eqs. (9) and (12). To ensure a unique
solution, one needs to impose some constraints on the
field. First, we need to introduce an incident field to our
model. This will split the field expansion into a sum of an
incident field, which is given by our model of the problem,
and a scattered field. Note that within this framework,
the incident field may be chosen to be in either medium,
or to be a combination of excitations incident from dif-
ferent media.

In our case, the incident field will be taken as a plane
wave incident from medium 1 and defined as

E0(x) =
[
E0,p ê−p,1(p0) + E0,s ês(p0)

]

× exp
(
ik−1 (p0) · x

)
, (13)

where p0 is the projection of the wave vector of the in-
cident wave onto the (ê1, ê2) plane, with the property
|p0 | ≤ k1, i.e. we consider an incident propagating wave.
The fact that this is the only incident wave considered,
together with the Sommerfeld radiation condition at in-
finity, gives that the only elementary waves allowed in
the scattered field are those with wave vectors of the
form k+

1 (p) and k−2 (p) in medium 1 and 2, respectively.
This property can be expressed by defining the field am-
plitudes

E−1 (q) = (2π)2 δ(q−p0) E0 , (14a)

E+
2 (q) = 0 , (14b)

where E0 = (E0,p, E0,s)T. Next, we assume that the scat-
tered field amplitudes are linearly related to the incident
field amplitude E0 via the reflection and transmission
amplitudes, R(q |p0) and T(q |p0), defined as

E+
1 (q) = R(q |p0)E0, (15a)

E−2 (q) = T(q |p0)E0 . (15b)

The reflection and transmission amplitudes are therefore
described by 2×2 matrices of the form,

X =

(
Xpp Xps

Xsp Xss

)
, (16)

with X = R or T. From a physical point of view, the
complex amplitude Rαβ(q |p0) (resp. Tαβ(q |p0)) for
α, β ∈ {p, s} is the field amplitude for the reflected light
(resp. transmitted) with lateral wave vector q in the po-
larization state α from a unit incident field with lateral
wave vector p0 in the polarization state β. The reflec-
tion and transmission amplitudes are then the unknowns
in our scattering problem. The equations we need to
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solve are deduced from the transfer equations, Eqs. (9)
and (12), by applying them respectively at a2 = + and
a1 = − and by using Eqs. (14) and (15) for the model
of the field expansion. This yields the following two de-
coupled integral equations for the reflection and trans-
mission amplitudes, the so-called reduced Rayleigh equa-
tions, that can be written in the following general form,
for X = R or T:

∫
MX(p |q) X(q |p0)

d2q

(2π)2
= −NX(p |p0) , (17)

where the matrices MX and NX are given by

MR(p |q) = J +,+
2,1 (p |q) M+,+

2,1 (p |q) (18a)

MT(p |q) = J−,−1,2 (p |q) M−,−
1,2 (p |q) (18b)

NR(p |q) = J +,−
2,1 (p |q) M+,−

2,1 (p |q) (18c)

NT(p |q) =
2n1n2α1(p)

ε2 − ε1
(2π)2δ(p−q) I2, (18d)

with I2 denoting the 2×2 identity matrix.

B. RRE for scalar waves

The reduced Rayleigh equations can also be derived
for scalar waves satisfying the scalar Helmholtz equation
and subjected to various boundary conditions at the in-
terfaces. Here, we focus on scalar waves subjected to the
continuity of the field and its normal derivative at the
interface. Under these hypotheses, one can derive the
corresponding reduced Rayleigh equations which read

∫
MX(p |q)X(q |p0)

d2q

(2π)2
= −NX(p |p0) , (19)

where X = R or T is either the scalar reflection or trans-
mission amplitude, and the scalar kernels and right-hand-

sides are given by Eq. (18) where all the Mb,a
l,m matrices

are replaced by the scalar constant k1k2 = n1n2 ω
2/c2

and I2 is replaced by the scalar constant 1. We would
like to stress that the fact that one can go from the elec-
tromagnetic RRE to the scalar RRE by simply replacing
all the aforementioned matrices by 1 is only true for the
case where the scalar field is subjected to the continu-
ity of the field and its normal derivative at the surface.
For other types of boundary conditions, as for the case
of acoustic waves for example, one would obtain different
expressions [25]. The obtained equations could in prin-
ciple be used for modeling the scattering of a quantum
particle by a surface between two regions of constant po-
tential. In this paper, we will use the presented scalar
RRE, for which the analysis is simplified compared to
the case for electromagnetic waves, to explain the fun-
damental mechanism of the Yoneda effect. We will show
that the Yoneda effect is present for scalar waves (sub-
jected to the aforementioned boundary conditions) and
can be decoupled from additional effects induced by the

polarization of electromagnetic waves, such as the Brew-
ster scattering effect. The identified mechanism for scalar
waves will then be extended to electromagnetic waves.

C. Perturbative method

Probably the most common approximate solution to
Eq. (17) is based on a perturbative expansion of the re-
flection and transmission amplitudes in powers of the
interface profile function. This approach, often called
“small amplitude perturbation theory” (SAPT) or “small
perturbation method” (SPM), has shown that it is ca-
pable of obtaining solutions of the RRE of high quali-
tative and quantitative predictive power, for interfaces
with sufficiently small slopes and amplitudes. To first
order in ζ for the reflection and transmission amplitudes,
the method is often interpreted as a single scattering ap-
proximation. When implemented to the complete fourth
order in the surface profile function for the intensity,
i.e. involving terms up to third order in the amplitude,
the method has been used to obtain reliable results that
also correctly include multiple scattering effects, most
notably the backscattering peaks observed in reflection
from metallic surfaces [34–37].

To first order in the interface profile function ζ, we
have for X = R or T that

X (p |p0) ≈ X(0) (p |p0)−iX(1) (p |p0) , (20)

where

R(0) (p |p0) = (2π)2δ(p−p0)ρ(0)(p0) , (21a)

T(0) (p |p0) = (2π)2δ(p−p0) τ (0)(p0) , (21b)

R(1) (p |p0) = ζ̂(p−p0)ρ(1) (p |p0)

= [α1(p)− α2(p)] ζ̂(p−p0) ρ̂(1) (p |p0) , (21c)

T(1) (p |p0) = ζ̂(p−p0) τ (1) (p |p0)

= [α1(p)− α2(p)] ζ̂(p−p0) τ̂ (1) (p |p0) . (21d)

Here ζ̂ denotes the Fourier transform of ζ, and ρ(0)(p0)
and τ (0)(p0) are matrix-valued amplitudes for the
zero order reflection and transmission amplitudes, re-
spectively. The matrix-valued amplitudes ρ(1) (p |p0),

ρ̂(1) (p |p0), τ (1) (p |p0), and τ̂ (1) (p |p0) for the first
order terms are derived in A. In Eqs. (21c) and (21d),
we have given two alternative factorizations of the first
order reflection and transmission amplitudes. The factor-
ization including the caret amplitudes is the most appro-
priate for physical interpretation, while the factorization
including the non-caret amplitudes simply aims at sepa-

rating ζ̂, which is the only factor depending on the spe-
cific realization of the surface profile, from the remaining
profile-independent amplitude factor.
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D. Observables

The observables of interest in this study are
the so-called diffuse or incoherent component of the
mean differential reflection and transmission coefficients
(MDRC and MDTC) denoted 〈∂Rαβ(p|p0)/∂Ωr〉incoh
and 〈∂Tαβ(p|p0)/∂Ωt〉incoh, respectively. They are both
defined as the ensemble average over realizations of the
surface profile of the incoherent component of the radi-
ated reflected/transmitted flux of an α-polarized wave
around a direction given by k+

1 (p)/k−2 (p) per unit inci-
dent flux of a β-polarized plane wave with wave vector
k−1 (p0), per unit solid angle. Based on the reflection and
transmission amplitudes found to first order in ζ, the in-
coherent component of the MDRC and MDTC can be
expressed as

〈
∂Rαβ
∂Ωr

(p |p0)

〉

incoh

= ε1

( ω

2πc

)2 cos2 θr
cos θ0

× σ2 g(p−p0)
∣∣∣ρ(1)αβ (p |p0)

∣∣∣
2

, (22)

and

〈
∂Tαβ
∂Ωt

(p |p0)

〉

incoh

=
ε
3/2
2

ε
1/2
1

( ω

2πc

)2 cos2 θt
cos θ0

× σ2 g(p−p0)
∣∣∣τ (1)αβ (p |p0)

∣∣∣
2

. (23)

The detailed derivation of the Eqs. (22) and (23) can be
found in B. The definition of the angles of incidence and
scattering can be deduced from Figure 1.

IV. RESULTS AND DISCUSSION

In order to study the phenomena observed in the scat-
tering of light from weakly rough dielectric interfaces, we
choose to base our discussion on results obtained through
small amplitude perturbation theory (SAPT) to lowest
non-zero order in the interface profile function, Eqs. (21).
For sufficiently smooth interfaces this approximation has
previously been compared to numerical non-perturbative
solutions to the reduced Rayleigh equations, where it has
been shown to adequately model the phenomena of both
the Brewster scattering angles and the Yoneda peaks
[1, 2]. We will start our investigations with a summary of
the features observed in the main physical observables,
the MDRC and MDTC [Eqs. (22) and (23)], followed by
more in-depth analyses and discussions from a physics
point of view.

A. Phenomenology of the Yoneda and Brewster
scattering effects

The top panel of each subfigure in Fig. 2 presents re-
sults based on Eqs. (22) and (23) for the contribution

to the co-polarized diffuse component of the MDRC and
MDTC in the plane of incidence (p̂ ‖ p̂0), for a configu-
ration where light is incident from vacuum [ε1 = 1] onto
a two-dimensional randomly rough interface with glass
[ε2 = 2.25]. The incident light was assumed to be a p-
or s-polarized plane wave of wavelength λ = 632.8 nm
in vacuum. In the current work all results presented
for randomly rough interfaces consist of interfaces de-
fined by an isotropic Gaussian height distribution with
rms height σ = 32 nm = λ/20 and an isotropic Gaus-
sian correlation function of transverse correlation length
a = 211 nm = λ/3.

For normal incidence [θ0 = 0◦, Fig. 2(a)] the MDRC
distributions are nearly featureless. The differences in the
scattered intensities observed for p- and s-polarized inci-
dent light are very small. Note that the scattered inten-
sity is zero beyond the limit of propagation in the medium
of reflection (|p1| > k1). The overall bell-shape of the dis-
tributions can be attributed in part to the Gaussian cor-
relation function for the transverse correlation length in
the interface profile together with the cos2 θr factor of the
MDRC, as seen in Eq. (22). The corresponding transmit-
ted intensity (MDTC) shown in Fig. 2(d), however, shows
several interesting features. As is detailed in Ref. 2, we
now observe pronounced peaks in s-polarization and nar-
row dips to zero in p-polarization around |p1| = k1. For
normal incidence these features are independent of the
azimuthal angle of transmission φ. The peaks have be-
come known as “Yoneda peaks”, and are always found at
the parallel wavevectors p along the propagation limit in
the less dense medium (i.e. |p| = min(k1, k2)). The polar
angles corresponding to the dips to zero in the MDTC
have been called the “Brewster scattering angles”[13],
and are unique to scattered light which is p-polarized.
As the polar angle of incidence is increased [θ0 = 35◦

or 70◦ in Fig. 2], we observe that a Brewster scattering
angle also appears in the MDRC. In transmission, the
distributions of the MDTC behave very predictably in
the s-polarized case as the weight of the distribution is
shifted to higher polar scattering angles. However, in the
case of p-polarization the Brewster scattering angle in the
direction of φ = 180◦ (negative values of θt in Fig. 2(d))
shifts to positions closer to θt = 0◦ as the angle of in-
cidence is increased, and the dip to zero in the forward
scattering direction [φ = 0◦] first becomes a non-zero lo-
cal minimum and is gradually replaced with a Yoneda
peak similar to the one found for s-polarization.

Figure 3 presents results similar to those in Fig. 2,
but for the situation where the media are interchanged;
the light is now incident from glass [ε = 2.25] onto a
two-dimensional randomly rough interface with vacuum
[ε = 1]. A closer inspection of the distributions of the
MDRC for normal incidence reveals that the distribu-
tions are reminiscent of the distributions seen in trans-
mission for the MDTC in Fig. 2, and vice versa. This
similarity between intensity distributions for which the
media of propagation is the same is an expected sym-
metry, but as the angle of incidence increases these sim-
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FIG. 2. The incoherent component of the MDRC (top row) and MDTC (bottom row) for light incident from vacuum [ε1 = 1.0]
onto a randomly rough interface with glass [ε2 = 2.25], for in-plane co-polarized scattering, as a function of the lateral component
of the wave vector of scattering p1 or polar angle of scattering θr,t. The polar angle of incidence is indicated on top of each

subfigure. The argument and the modulus of ρ
(1)
αα and τ

(1)
αα are indicated in the middle and bottom section of each subfigure

respectively. Note that we have adopted here the convention that negative θr,t values correspond to θr,t > 0 according Fig. 1
but for φ = 180◦. The vertical lines indicate |p | = kmin.

ilarities gradually fade. For light impinging on the in-
terface at θ0 = 35◦, the Brewster scattering angle for
the MDRC is now in the forward scattering direction,
and as documented in Ref. 1 it shifts closer to θr = 0◦ as
the angle of incidence increases towards the critical angle
given by θc = sin−1(n2/n1). Results for an angle of inci-
dence equal to the critical angle, θ0 = θc, are presented in
Figs. 3(c) and 3(f). For the same system but for polar an-
gles of incidence larger than the critical angle, presented
in Fig. 4, the dip to zero MDRC in the forward scatter-
ing direction is gradually overtaken by a Yoneda peak for
p-polarized light. Contrary to the case for transmission
in Fig. 2 however, the peak in p-polarization never grows
beyond the peak in s-polarization. For the intensity dis-

tributions of the transmitted light we again observe a
gradual shift of the weight of the distributions into the
forward scattering direction, but the Brewster scattering
angle is now only visible (strictly speaking) for θ0 = 35◦

and θ0 = 41.81◦, where it is now found in the backward
scattering direction and at θt = 0◦, respectively.

As an aid in understanding the Brewster scattering
angles in Figs. 2, 3 and 4, and also as a support to the
further discussion of these angles in both reflection and
transmission, Fig. 5 presents an overview of the Brewster
scattering angles found in the MDRC/MDTC as derived
from first order SAPT. Figure 5 is based on the following
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FIG. 3. Same as Fig. 2, but for light incident from glass [ε1 = 2.25] onto a randomly rough interface with vacuum [ε2 = 1.0].

result, obtained from SAPT [1, 2]:

ΘB(θ0) = sin−1
(√

ε2(ε2 − ε1 sin2 θ0)

(ε22 − ε21) sin2 θ0 + ε1ε2

)
. (24)

for reflection and

ΘB(θ0) = sin−1
(
ε1
ε2

√
ε2
ε1
− sin2 θ0

)
, (25)

for transmission. Here ΘB indicates the Brewster scat-
tering angle. As can be observed in both Fig. 5 and from
Eqs. (24) and (25), ΘB is not well-defined for all angles
of incidence for all ε1 and ε2. These limits will be further
explored in Sec. IV D where a clear geometrical interpre-
tation will be given.

The scattering in both reflection and transmission from
such a randomly rough interface has been thoroughly
studied in the past, and the distributions of the MDRC
and MDTC presented in Figs. 2, 3 and 4 were partially

explained based on the components of the perturbative
approximation in Refs. 1 and 2. However, these publica-
tions stopped short of presenting a full physical interpre-
tation of the features seen in these distributions. In the
current work we aim to finalize this analysis, and to that
end we expand the investigation to include results for the
complex amplitudes on which the MDRC and MDTC are
based. The center panel of each subfigure in Figs. 2, 3

and 4 presents the average phase, φ
r,(1)
αα , φ

t,(1)
αα of the co-

polarized scattered light, obtained from the argument of

the complex amplitudes ρ
(1)
αα or τ

(1)
αα for α ∈ {p, s} given

in Eqs. (21 d) and (21 e), respectively. The lower panel

of each subfigure shows the modulus of ρ
(1)
αα and τ

(1)
αα .

In passing we emphasize that even if the results pre-
sented are based on a perturbation method to lowest non-
zero order in the interface profile function, previous stud-
ies have demonstrated their validity for the parameters
and dielectric constants assumed in obtaining them. In



i
i

“report” — 2018/9/20 — 10:11 — page 365 — #387 i
i

i
i

i
i

9

0.0

5.0

10.0

15.0

20.0

25.0

30.0

〈∂
R
α
α
/∂

Ω
r〉 i

n
co

h

×10−2

α = p

α = s

−π

−π/2

0

π/2

π

φ
r,

(1
)

α
α

[r
ad

]

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
p1 [ω/c]

0

5

10

|ρ
(1

)
α
α
|

-90 -50 -30 -15 0 15 30 50 90
θr [deg]

(a) θ0 = 42◦

0.0

5.0

10.0

15.0

20.0

25.0

30.0

〈∂
R
α
α
/∂

Ω
r〉 i

n
co

h

×10−2

α = p

α = s

−π

−π/2

0

π/2

π

φ
r,

(1
)

α
α

[r
ad

]

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
p1 [ω/c]

0

5

10
|ρ

(1
)

α
α
|

-90 -50 -30 -15 0 15 30 50 90
θr [deg]

(b) θ0 = 50◦

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

〈∂
R
α
α
/∂

Ω
r〉 i

n
co

h

×10−2

α = p

α = s

−π

−π/2

0

π/2

π

φ
r,

(1
)

α
α

[r
ad

]

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
p1 [ω/c]

0

2

4

6

|ρ
(1

)
α
α
|

-90 -50 -30 -15 0 15 30 50 90
θr [deg]

(c) θ0 = 70◦

0.0

0.5

1.0

1.5

2.0

2.5

3.0

〈∂
T
α
α
/∂

Ω
t〉 i

n
co

h

×10−2

α = p

α = s

−π

−π/2

0

π/2

π

φ
t,

(1
)

α
α

[r
ad

]

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
p1 [ω/c]

0

10

20

|τ
(1

)
α
α
|

-90 -50 -30 -15 0 15 30 50 90
θt [deg]

(d) θ0 = 42◦

0.0

0.5

1.0

1.5

2.0

〈∂
T
α
α
/∂

Ω
t〉 i

n
co

h

×10−2

α = p

α = s

−π

−π/2

0

π/2

π

φ
t,

(1
)

α
α

[r
ad

]

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
p1 [ω/c]

0

5

10

15

|τ
(1

)
α
α
|

-90 -50 -30 -15 0 15 30 50 90
θt [deg]

(e) θ0 = 50◦

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

〈∂
T
α
α
/∂

Ω
t〉 i

n
co

h

×10−2

α = p

α = s

−π

−π/2

0

π/2

π

φ
t,

(1
)

α
α

[r
ad

]

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
p1 [ω/c]

0.0

2.5

5.0

7.5

|τ
(1

)
α
α
|

-90 -50 -30 -15 0 15 30 50 90
θt [deg]

(f) θ0 = 70◦

FIG. 4. Same as Fig. 3, but for additional polar angles of incidence θ0.

addition, the results for both MDRC and MDTC have
been compared against numerical results based on the
extinction theorem based method described in Ref. 37
for a 1D system, a method known to be rigorous.

B. Physical interpretation of SAPT to first order

Order zero, Fresnel amplitudes — First we revisit the
interpretation of the Fresnel coefficients which are en-
coded in the amplitudes ρ(0)(p0) and τ (0)(p0) [Eqs. (21a)
and (21b)].

We start our analysis looking at the case of reflection.
The Fresnel amplitudes for s- and p-polarized waves re-
flected by a planar surface between two dielectrics read

[19]

rFs (p0) =
α1(p0)− α2(p0)

α1(p0) + α2(p0)
(26a)

rFp (p0) =
ε2α1(p0)− ε1α2(p0)

ε2α1(p0) + ε1α2(p0)
, (26b)

which we have here written in a common form in terms of
the components of the wave vectors along ê3. It is easy
to show by using straightforward algebra that these ex-

pressions are equivalent to ρ
(0)
ss (p0) and ρ

(0)
pp (p0) respec-

tively, given by perturbation theory to zero order. An
equivalent way of writing the Fresnel amplitudes which
follows directly from Eq. (A6) and the definition of the

Mb,a
l,m(p |q) matrix in terms of the polarization vectors,
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FIG. 5. Dependence of the in-plane Brewster scattering an-
gle ΘB on the polar angle of incidence θ0, as given by Eq. (25).
φ = 180◦ is indicated by negative values of ΘB and θ0. Solid
lines indicate ΘB in transmission, while the dashed lines with
color corresponding to the values of ε indicate ΘB in reflec-
tion. The critical angles and the regular Brewster angles for
a corresponding system with a planar interface have been in-
dicated on both axes as black dash-dotted lines.

Eq. (10), is

ρ(0)ss (p0) = ρ(0)(p0)
ês(p0) · ês(p0)

ês(p0) · ês(p0)
(27a)

ρ(0)pp (p0) = ρ(0)(p0)
ê+
p,2(p0) · ê−p,1(p0)

ê+
p,2(p0) · ê+

p,1(p0)
(27b)

ρ(0)(p0) =
α1(p0)− α2(p0)

α1(p0) + α2(p0)
. (27c)

In Eq. (27a), we have intentionally chosen not to sim-
plify the dot products (all equal to 1) to illustrate that
the Fresnel amplitudes expressed in the form given by
Eqs. (27a) and (27b) exhibit a remarkable factorization
which reveals two facets of the physics of scattering from
a microscopic point of view. First, both Fresnel ampli-
tudes in Eqs. (27a) and (27b) share the same first factor,
ρ(0)(p0) defined in Eq. (27c), which corresponds to the
reflection amplitude for a scalar plane wave subjected to
the continuity of the scalar field and its normal derivative
at the surface. In other words, this first factor can be in-
terpreted as the coherent response of arrays of individual
scatterers (at the atomic level) which scatter the inci-
dent wave as spherical waves. The second factor, which
differs for each polarization, is the signature of the dipo-
lar nature of the radiation of each individual scatterer.
Indeed, for an s-polarized incident wave, the scattering
dipoles are excited along the ê2-axis and hence re-emit
isotropically in the plane of incidence (ê1, ê3). We argue

that this is the reason why the second factor is identi-
cally equal to 1 for s-polarized light. For p-polarization,
the scattering dipoles are excited along some direction in
the plane of incidence (ê1, ê3) and therefore the reflection
amplitude given by the scattering of spherical waves must
be weighted with the second factor in Eq. (27b) in order
to take into account the dipole radiation pattern. Such
a factorization and interpretation of the Fresnel ampli-
tudes were given and thoroughly discussed by Doyle [26]
in light of the Ewald-Oseen extinction theorem and its
original derivation by Ewald based on microscopic optics
[29].

For a planar surface all scattered waves interfere de-
structively in all directions but the specular, as indi-
cated by the Dirac distribution in Eqs. (21a) and (21b).
This is not the case when the surface is non-planar, and
the above interpretation suggests that the spherical-like
waves scattered away from the specular direction are then
to be weighted by the appropriate dipole factor, even for
s-polarized light (as will be the case for the first order
term).

From Eq. (27), we can deduce two properties well
known for the reflection of a plane wave at a planar in-
terface between two dielectric media. First, for ε1 > ε2
there exists a critical polar angle θc = sin−1(n2/n1), or
equivalently a critical norm of the lateral wave vector
pc = n2 ω/c, such that for all angles of incidence larger
than θc (equivalently for all lateral wave vectors where
|p0 | > pc), all the incident power is reflected. The phe-
nomenon of total internal reflection is entirely controlled
by the factor ρ(0)(p0) present for both polarizations, and
hence can be analyzed from a scalar wave picture de-
coupled from polarization effects. From a physical point
of view, total internal reflection occurs whenever the re-
fracted wave is evanescent in the medium of transmis-
sion, and therefore it cannot transport energy away from
the surface. It is instructive to analyze the behavior of
the reflection amplitude ρ(0)(p0) as the refracted wave
turns evanescent in the second medium as one varies the
incident lateral wave vector p0. For |p0 | < pc, both
α1(p0) and α2(p0) are real. As |p0 | → pc, ρ

(0)(p0)
moves on the real line towards 1 when α2 vanishes,
α1(p0) =

√
ε1 − ε2 ω/c. When |p0 | > pc, α2(p0) be-

comes pure imaginary and ρ(0)(p0) starts to trace a cir-
cular arc in the lower half of the complex plane (neg-
ative imaginary part) with unit modulus (the fact that
|ρ(0)(p0)| = 1 for |p0 | > pc is immediate since then
ρ(0)(p0) is of the form z∗/z where z is a non-zero com-
plex number). As |p0 | → n1ω/c, the reflected wave (and
the incident wave) reaches the limit of propagation in the
first medium and α1(p0)→ 0 which makes the reflection
amplitude real, negative, equal to −1. Thus, as we go
from the critical point to grazing incidence the reflection
amplitude traces a half circle in the complex plane with
unit modulus. The argument of the reflection amplitude,
the phase, hence varies from 0 to −π rad. This gradual
phase shift is known as the Goos-Hänchen phase shift and
can be interpreted as follows. If we regard the reflected
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and refracted waves as two components of a single mode,
then as the wave enters the second medium the wave
oscillates while propagating along the surface before it
eventually goes back into the first medium where it can
continue to propagate to infinity. As the wave propagates
along the surface, while being evanescent in medium 2,
it acquires a temporal delay which depends on its wave
vector. This delay is translated into a phase shift as the
wave oscillates back into medium 1. Geometrically this
process is often interpreted as if the wave is reflected from
the second medium only after a slight penetration into it
[19].

The second phenomenon of interest is that of the polar-
ization angle, or Brewster’s angle, which, as the name in-
dicates, requires us to analyze the polarization dependent
factor in the reflection amplitudes. For an s-polarized
wave the polarization factor is identically equal to 1 and
no polarization angle is observed. However, the Fresnel
amplitude for p-polarized light, Eq. (27b), is shown to be
proportional to ê+

p,2(p0) · ê−p,1(p0) i.e. it is proportional

to the component of the incident electric field (given by
E0 ê−p,1(p0)) along the direction given by ê+

p,2(p0). We

recall that the direction given by ê+
p,2(p0) corresponds

to the local p-polarization direction for a wave whose
wave vector is given by k+

2 (p0), in other words, a wave
which propagates upwards in the second medium. These
factors of the dot products in Eq. (27b) therefore seem
to indicate that the reflected amplitude for p-polarized
light depends on a projection of the incident field along
the polarization vector of a seemingly nonexisting wave,
propagating along the wave vector k+

2 (p0). However,
such a seemingly virtual wave does have a physical in-
terpretation, based on the mutual interaction between
waves propagating in dielectric media. Doyle [26] pro-
vided an explanation based on the concept of the wave
triad originally introduced by Ewald [29]. Ewald con-
sidered a dense array of dipole scatterers (the entire di-
electric medium) situated in a half space and excited by
an incident plane wave incident from the vacuum half-
space, filling the whole space between the scatterers. He
showed that the dipole scatterers would respond to the
excitation in such a way that there exist planes of scatter-
ers of coherent response, meaning that all dipoles within
such a plane oscillate in phase. As a consequence of this
fact and that the array of scatterers is bounded within a
half space, the superposition of all elementary wavelets
emitted by each individual scatterer results in the prop-
agation of three plane waves: two waves called vacuum
waves propagating with a phase velocity equal to c and
one wave propagating with phase velocity c/n called po-
larization wave, where n corresponds to the refractive
medium made of scatterers within the macroscopic pic-
ture. The wave propagating with phase velocity c/n cor-
responds to the transmitted wave in the macroscopic pic-
ture, while one of the waves propagating with phase ve-
locity c serves to exactly cancel the incident wave within
the dielectric medium. The other wave propagating with
phase velocity c exits the medium and corresponds to the

reflected wave. The wave vectors of the different waves
are naturally given by Snell’s law, and Ewald’s derivation
can be viewed as a microscopic validation of Snell’s law.

When two half-spaces are filled with dipole scatter-
ers of different dipole moments, similar arguments apply
with the difference that the superposition of all wavelets
emitted by all scatterers (i.e. from both sides of the
interface) must be taken into account. This results in
three wave triads: one triad associated with the incident
wave, one for the reflected wave and one for the refracted
wave, which all satisfy the so-called dynamical conditions
[26]. To the incident polarization wave in medium 1,
propagating with phase velocity c/n1 and wave vector
k−1 (p0) are associated two waves propagating with phase
velocity c/n2 with wave vectors k±2 (p0). Similarly, to
the reflected (resp. refracted) polarization wave, whose
wave vector is given by k+

1 (p0) (resp. k−2 (p0)), are asso-
ciated two waves propagating with phase velocity c/n2
(resp. c/n1) and wave vectors k±2 (p0) (resp. k±1 (p0)).
The dynamical conditions are state that the amplitudes
of the different waves are such that (i) the wave associ-
ated with the refracted polarization wave and propagat-
ing along k−1 (p0) in medium 2 cancels the incident wave
and (ii) that the superposition of waves associated with
the incident and reflected polarization waves and propa-
gating along k+

2 (p0) vanishes (more details can be found
in Refs. 26 and 29).

In the following, we will refer to the wave vectors ka1(p)
and ka2(p), i.e. wave vectors sharing the same projection
in the (ê1, ê2)-plane and pointing either both upward
or downward, as Snell-conjugate wave vectors. When
it comes to the polarization dependence of the reflec-

tion amplitudes, the fact that ρ
(0)
pp (p0) is proportional

to ê+
p,2(p0) · ê−p,1(p0) indicates that the amplitude of the

reflected wave is controlled by the component of the inci-
dent field along the p-polarization vector associated with
the Snell-conjugate wave vector of the wave vector of
the reflected wave. This indicates that the direction of
the dipole oscillation is intimately linked to waves in the
aforementioned triad.

Equation (27b) provides an interesting condition for
the well known Brewster’s angle. The Brewster phe-
nomenon for dielectric media is commonly defined as
the extinction of the p-polarized reflected wave in the
case of a planar interface. From Eq. (27b), it is clear
that the Fresnel amplitude vanishes if and only if [38]
ê+
p,2(p0) · ê−p,1(p0) = 0. Since ê+

p,2(p0) is orthogonal to

k+
2 (p0), we can restate the condition for Brewster’s an-

gle as the polar angle where k+
2 (p0) ‖ ê−p,1(p0). This

means that we can define Brewster’s angle as the angle of
reflection ensuring colinearity between the incident field
amplitude and the wave vector which is Snell-conjugate
to that of the reflected wave. Note that we take here a
slight change of point of view compared to the common
phrasing. One usually refer to Brewster’s angle as an an-
gle of incidence, while we prefer to refer to the angle of
reflection. Obviously, the two are the same for a planar
interface, but the latter point of view is the one which
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will hold true for non-planar interfaces. Nevertheless, it
is convenient to use the term Brewster’s incidence for
a planar interface and we can define it as the angle of
incidence θB = arctan(n2/n1) which yields a Brewster
(non-)reflected wave. We will see that this angle of inci-
dence, θ0 = θB, has a remarkable property in the case of
scattering by a non-planar interface.

Brewster’s angle in the case of non-magnetic media
is often said to be the angle of incidence that results
in a right angle (90◦) between the wave vector of the
transmitted wave and that of the (non-)reflected wave.
In the case of a planar interface, our new definition
of Brewster angle agrees with this explanation. In-
deed, if ê−p,1(p0) · ê+

p,2(p0) = 0 it is immediate that

k+
1 (p0) · k−2 (p0) = 0. However, we will see below that

the new geometrical criterion proposed in the above holds
when applied with Snell-conjugate wave vector associated
with a non-specularly scattered wave, while the “right
angle” criterion between wave vectors breaks down.

The Fresnel amplitudes for the refracted wave for s-
and p-polarized light expressed in terms of polarization
vectors, presented in a similar fashion as Eq. (27), read

τ (0)ss (p0) =
τ (0)(p0)

ês(p0) · ês(p0)
(28a)

τ (0)pp (p0) =
τ (0)(p0)

ê−p,1(p0) · ê−p,2(p0)
(28b)

τ (0)(p0) =
c2

ω2

2α1(p0)

(ε1 − ε2)
[α1(p0)− α2(p0)] . (28c)

From Eq. (28), it is readily observed that neither the s-
nor p-polarized zero order transmitted wave vanishes in
general, which relates to the common experience that no
Brewster angle is known for transmission through a pla-
nar interface. This fact does not, however, prevent the
existence of Brewster scattering angles in the diffusely
transmitted light. Equation (28) will therefore be impor-
tant in the remainder of this paper. Note the presence of
the factor α1(p0)−α2(p0) in the transmission amplitude
of the scalar wave in Eq. (28c) which is identical to the
numerator of the reflection amplitude in Eq. (27c). The
analysis of this term on total internal reflection hence
leads to a similar behavior for the transmission ampli-
tude, in the sense that τ (0)(p0) leaves the real line and
traces a path in the complex plane when total internal re-
flection occurs. This fact illustrates the coupling between
the reflected and the transmitted waves, which may be
interpreted as two components of the same mode.

First order — We now turn to the first order ampli-
tudes R(1)(p |p0) and T(1)(p |p0). The first remark-
able point to notice is that, when using the caret am-
plitudes, both the first order reflection and transmission

amplitudes are proportional to [α1(p)−α2(p)] ζ̂(p−p0).
By a careful examination of the derivation of Eqs. (21c)
and (21d) we note that this factor originates from a Tay-
lor expansion of the term exp[−i(bαl(·) − aαm(·))ζ(·)]
appearing in the J b,al,m integral (see A). Intuitively, the

J b,al,m integral encodes information about the sum of am-
plitudes of scattering events occurring near the surface.

A comparison of the expression for the J b,al,m integral and
the expression obtained by summing complex amplitudes
for single scattering paths scattered at the surface of a
perfect conductor supports this analogy. In other words,
the integral encodes the resulting interference due to the
phase difference between any scattering path occurring
along the surface. To be more accurate, if one has the
microscopic picture in mind one might say that it corre-
sponds to summing scattering events occurring anywhere
in the bulk, but in virtue of the extinction theorem the
summation reduces to a sum over the surface [28]. With

this picture in mind, the factor [α1(p)−α2(p)] ζ̂(p−p0)
corresponds to the resulting interference pattern when
the phase factor is linearly approximated. Note that this
factor does not contain any information about polariza-
tion. It is therefore instructive to consider the first order
reflection and transmission amplitudes for scalar waves
as a first step in order to obtain a better understanding
of the full amplitudes. For scalar waves we set all the

Mb,a
l,m matrices to unity in Eqs. (21c) and (21d) to obtain

R(1)(p |p0) = [α1(p)− α2(p)] ζ̂(p−p0)

× [1 + ρ(0)(p0)] (29a)

T (1)(p |p0) = [α1(p)− α2(p)] ζ̂(p−p0) τ (0)(p0) .
(29b)

From Eq. (29) it is apparent that the first order ampli-
tudes are equal to the aforementioned interference factor,

[α1(p) − α2(p)] ζ̂(p−p0), weighted by the total scalar
zero order field amplitude in either medium 1 or 2. In-
deed, the factor [1 + ρ(0)(p0)] in Eq. (29a) represents the
sum of the unit incident field amplitude and the ampli-
tude of the reflected zero order field, while τ (0)(p0) is
simply the refracted zero order field amplitude; hence
the denomination total zero order field.

One may think of the total zero order field as char-
acterizing the state of a background field to which the
interference pattern induced by the surface corrugation
is superimposed (in a multiplicative sense). One could
say that the interference pattern allows to probe the
state of the zero order field away from the specular di-
rection. In addition, note that the dependence on the
outgoing wave vector p is entirely encoded in the term

[α1(p)−α2(p)]ζ̂(p−p0) while the state of the zero order
field only depends on the incident wave vector p0. This

indicates that the factor [α1(p) − α2(p)] ζ̂(p−p0) can
be thought to define a probability measure (by taking
its modulus square) for a change of lateral wave vector
from p0 to p (or its corresponding lateral momentum).
Moreover, since the amplitude for a wave scattered with
lateral wave vector p does not, to first order, involve any
other wave than the incident one through its wave vector
p0, we can consider a wave with lateral wave vector p as
completely decoupled from a wave with lateral wave vec-
tor q 6= p. However, the wave reflected with lateral wave
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vector p is considered to be coupled to the wave trans-
mitted with the same lateral wave vector. In fact, this
point of view is strengthened by the fact that both the
reflected and transmitted waves sharing the same lateral
wave vector also share exactly the same p-dependence
for their amplitude according to Eq. (29). We can inter-
pret this fact by saying that the reflected and transmitted
waves sharing the same lateral wave vector are two pieces
of one mode defined in the whole space, and not solely
on a single side of the interface. Note that this point of
view is not new. It was adopted by Fano in the early
1940s as a general interpretation of the first order per-
turbative solution of the Rayleigh equation and used to
further deduce the origin of the Wood anomalies [39].

What is now the physical interpretation of the polar-

ization factors ρ̂(1)(p |p0) and τ̂ (1)(p |p0)? It is clear

from the definition of the amplitudes ρ̂(1)(p |p0) and

τ̂ (1)(p |p0), given in Eqs. (A9) and (A16) respectively,
that they are identical for different realizations of the
surface profile. This suggests that these amplitudes are,
in some sense, rather a signature of the bulk polarization
response than the surface scattering properties. In using
their definitions together with Eqs. (A9) and (A16) and

by expressing the Mb,a
l,m matrices as functions of the po-

larization vectors in the local polarization basis as given
in Eq. (10), we obtain the following expressions:

ρ̂(1)ss (p |p0) =
ês(p) · ês(p0) + ρ

(0)
ss (p0) ês(p) · ês(p0)

ês(p) · ês(p)

= ês(p) ·E(0)
1,s(p0) (30a)

ρ̂(1)ps (p |p0) =
ê+
p,2(p) · ês(p0) + ρ

(0)
ss (p0) ê+

p,2(p) · ês(p0)

ê+
p,2(p) · ê+

p,1(p)

=
ê+
p,2(p) ·E(0)

1,s(p0)

ê+
p,2(p) · ê+

p,1(p)
(30b)

ρ̂(1)sp (p |p0) =
ês(p) · ê−p,1(p0) + ês(p) · ê+

p,1(p0)ρ
(0)
pp (p0)

ês(p) · ês(p)

= ês(p) ·E(0)
1,p(p0) (30c)

ρ̂(1)pp (p |p0) =
ê+
p,2(p) · ê−p,1(p0) + ê+

p,2(p) · ê+
p,1(p0)ρ

(0)
pp (p0)

ê+
p,2(p) · ê+

p,1(p)

=
ê+
p,2(p) ·E(0)

1,p(p0)

ê+
p,2(p) · ê+

p,1(p)
(30d)

for the reflection amplitudes and

τ̂ (1)ss (p |p0) = τ (0)ss (p0)
ês(p) · ês(p0)

ês(p) · ês(p)

=
ês(p) ·E(0)

2,s(p0)

ês(p) · ês(p)
(31a)

τ̂ (1)ps (p |p0) = τ (0)ss (p0)
ê−p,1(p) · ês(p0)

ê−p,1(p) · ê−p,2(p)

=
ê−p,1(p) ·E(0)

2,s(p0)

ê−p,1(p) · ê−p,2(p)
(31b)

τ̂ (1)sp (p |p0) = τ (0)pp (p0)
ês(p) · ê−p,2(p0)

ês(p) · ês(p)

=
ês(p) ·E(0)

2,p(p0)

ês(p) · ês(p)
(31c)

τ̂ (1)pp (p |p0) = τ (0)pp (p0)
ê−p,1(p) · ê−p,2(p0)

ê−p,1(p) · ê−p,2(p)

=
ê−p,1(p) ·E(0)

2,p(p0)

ê−p,1(p) · ê−p,2(p)
(31d)

for the transmission amplitudes. Here we have defined
the total zero order field amplitudes in media 1 and 2,
for s- and p-polarized incident light, as

E
(0)
1,s(p0) =

[
1 + ρ(0)ss (p0)

]
ês(p0) (32a)

E
(0)
1,p(p0) = ê−p,1(p0) + ρ(0)pp (p0) ê+

p,1(p0) (32b)

E
(0)
2,s(p0) = τ (0)ss (p0) ês(p0) (32c)

E
(0)
2,p(p0) = τ (0)pp (p0) ê−p,2(p0) . (32d)

The amplitudes given in Eqs. (32) correspond to the sum
of the unit incident field and the reflected or transmitted
zero order field amplitudes. In other words, they charac-
terize the state of the field given by the superposition of
the incident wave and the zero order response of the me-
dia. This is analogous to what we found for scalar waves
in Eq. (29), with the difference that due to the dipolar
nature of the scatterers the state of this zero order back-
ground is anisotropic, as indicated by the dependence on
p.

An interesting point to notice from Eqs. (30) and (31)
is that the amplitude of the first order α-polarized wave
scattered with lateral wave vector p in medium j is
proportional to the projection of the total zero order
field amplitude in medium j, induced by an incident β-
polarized wave with lateral wave vector p0, on the direc-
tion of the polarization vector associated with its Snell-
conjugate wave vector (with lateral wave vector p). For
s-polarized scattered waves the Snell-conjugate wave vec-
tor is not apparent since all s-polarization vectors are
in the (ê1, ê2)-plane. For p-polarized scattered waves
this is clear as is indicated by the vectors ê+

p,2(p) and

ê−p,1(p), for the first order amplitudes in reflection and
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transmission, respectively. One way of interpreting these
equations is to imagine that the wave scattered in one
medium is induced by the roughness of the surface in the
sense that, contrary to the case of the planar surface, the
path issued from a scattering event on the surface will
not destructively interfere anymore when summed over
the surface, and hence probe the underlying polarized
radiation pattern induced by arrays of dipole emitters in
the bulk. The scattering amplitude of such a scattered
wave will be controlled by the polarized state of the me-
dia, in such a way that the amplitude is proportional
to the total zero order field amplitude in the medium of
scattering but projected on the polarization vector the
scattered wave would have had, keeping its lateral wave
vector and according to Snell’s law, if it were incoming
from the opposite medium. This is a generalization of
Doyle’s analysis based on the Ewald triad, although we
now have a triad associated with each observed scattered
wave.

A more detailed microscopic understanding of this
result would require an analysis of the way arrays of
dipoles emit when excited by a primary incident wave,
and by summing the elementary wavelets emitted by all
the dipoles while also taking into account the geometry
of the surface. Such an analysis was done by Ewald in his
derivation of the extinction theorem for a planar surface
[29], and later used by Doyle [26] in interpreting the
Fresnel coefficients at a microscopic level, as explained
earlier. A Snell-conjugate wave vector can be viewed as
the wave vector of one of the waves of the Ewald triad
associated to a (first order) scattered wave, in a similar
fashion as what we have already encountered when fac-
torizing the Fresnel coefficients for a p-polarized wave in
Eq. (27b). Modern derivations of the extinction theorem
are directly based on the macroscopic properties of the
media, and what we obtain from such formalism can
only be the integrated contribution of all the scatterers,
as is also the case with the solution of the reduced
Rayleigh equations, which can be shown to derive from
the extinction theorem. Consequently, we must take our
Snell-conjugate wave interpretation as a signature of a
more fundamental microscopic view, and consider this
concept as a useful short cut for reasoning directly on
the integrated response, just as we did for interpreting
the Fresnel coefficients following Doyle’s interpretation.

We can summarize the interpretations of the first or-
der amplitudes discussed in this section as a factorization
of two main mechanisms. All the first order amplitudes
can be written as the product of a polarization indepen-

dent factor, [α1(p) − α2(p)] ζ̂(p−p0), common to all
amplitudes sharing the same outgoing lateral wave vec-
tor, and a polarization dependent factor. The polariza-
tion independent factor encodes the interference pattern
of all spherical waves scattered in the vicinity of the non-
planar surface, and can be viewed as the scattering or
probing mechanism. The polarization dependent factor
is controlled by the state of the zero order field, and is

always proportional to the projection of the total zero
order field amplitude onto the polarization vector of a
Snell-conjugate wave associated to the observed scattered
wave. This mechanism ensures that the polarization and
amplitude of the observed scattered wave is consistent
with the polarized dipole radiation characterized by the
state of the zero order field. We are now ready for a more
in-depth analysis of the Yoneda and Brewster scattering
effects based on the physical interpretation and concepts
we have developed in the present section.

C. The physical origin of the Yoneda effect

Our observations on the Yoneda and Brewster scat-
tering effects in Section IV A led us to the conclusion
that the two effects can be explained independently. The
fact that the Brewster scattering angle coincides with the
Yoneda critical angle for normal incidence can, for the
time being, be considered a simple coincidence. Since
the Yoneda phenomenon seems to be independent of po-
larization we can attempt an explanation solely based on
scalar waves and consider Eq. (29) a relevant simplified
model, in an analogous fashion as Eq. (27c) was suffi-
cient to explain total internal reflection from a planar
surface. In fact, for the scattering of s-polarized waves
restricted to the plane of incidence (p ‖ p0) the reflec-
tion and transmission amplitudes are exactly given by
Eq. (29). We will therefore keep to scalar waves for the
main analysis, but we will also illustrate our conclusions
with results obtained for s-polarized waves. In the fol-
lowing, it will be convenient to refer to the smallest and
largest dielectric constant by εmin and εmax respectively,
and more generally we will index by min and max the
quantities corresponding to these media. Our analysis
will be independent of the configurations of the media
but will require us to distinguish the optically denser
medium from the less dense medium for the scattered
waves.

We can view the scattering mechanism responsible for
the Yoneda peak phenomenon as a two step process for
the sake of clarity. First, the incident wave impinges
on the surface with an in-plane lateral wave vector p0

and, within a single scattering point of view, gives rise
to a scattered elementary wave reflected with the in-
plane lateral wave vector p and a scattered elementary
wave transmitted with the in-plane lateral wave vector
p. These are arbitrarily chosen wave vectors; the total
scattered field will have components a priori for all wave
vectors but in our analysis we consider just these two ar-
bitrary waves. One may have in mind the picture of an
optical path allowed to be scattered only once in our sin-
gle scattering view and the total field will be obtained by
summing the probability amplitude of all optical paths.
As argued in Section ??, the probability for a change of
lateral wave vector from p0 to p is controlled by the fac-

tor [α1(p) − α2(p)] ζ̂(p−p0) (or its modulus square).
This is not sufficient to obtain the complete probability
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amplitude, which in general and for polarized waves will
depend on the wave vectors, dielectric constants and po-
larizations of the waves involved in the process. However,
we will show that we do not need to analyze the details
of these amplitudes in order to investigate the Yoneda
phenomenon.

The second step determines whether the intensity is
enhanced in the optically denser medium for a given el-
ementary scattered wave. We can view the elementary
reflected and transmitted waves as coupled into a single
mode as explained in the previous section. We can take
this one step further, and interpret the argument based
on the probability measure for a change of momentum
as a way to allocate part of the energy from the incident
wave, to be shared between, and radiated away by, the
two scattered waves gathered in a coupled mode with a
shared lateral wave vector p.

Let us first consider the situation where the shared
lateral wave vector of the scattered waves is restricted
to |p | < nminω/c = pc, which means that both waves
are allowed to propagate to infinity in their respective
medium. Under this assumption, the total energy of the
two waves will be shared a priori non-trivially between
the two waves. In particular, for a given p it is appar-
ent from Eq. (29) that the energy will be split accord-
ing to the relative amplitudes given by the zero order

state since the factor [α1(p) − α2(p)] ζ̂(p−p0) is com-
mon to both the reflected and transmitted wave. How-
ever, if now the shared lateral wave vector is such that
nminω/c < |p | < nmaxω/c, the wave scattered in the
optically less dense medium will be evanescent. There-
fore the total energy for the coupled mode will be carried
away solely by the wave which can propagate, namely
the one scattered into the dense medium, resulting in
the apparent sudden increase of intensity at the transi-
tion between propagation and evanescence of the wave
scattered in the optically less dense medium. An illus-
trative way of seeing that the intensity needs to be en-
hanced is by analyzing the factor α1(p)−α2(p) assuming

|ζ̂| to vary slowly. For |p | < pc both α1(p) and α2(p)
are real. As |p | → pc from below, αmin(p) → 0 and
α1(p)− α2(p)→ ±αc, with αc =

√
εmax − εmin ω/c. By

writing p = |p | = pc −∆p, with ∆p > 0, we can make
an asymptotic analysis of |α1(p)−α2(p)| as p→ pc from
below. In this way we obtain the following result

|α1(p)− α2(p)| c
ω

= [αmax(p)− αmin(p)]
c

ω

= [εmax − (p̃c −∆p̃)2]1/2 − [εmin − (p̃c −∆p̃)2]1/2

= [εmax − εmin + 2ε
1/2
min∆p̃−∆p̃2]1/2 − [2ε

1/2
min∆p̃−∆p̃2]1/2

= αc
c

ω
− [2ε

1/2
min∆p̃]1/2 + o(∆p̃1/2) . (33)

Here we have chosen to work with unit-less quantities and
denoted p̃ = p c/ω for conciseness. From Eq. (33) it then
follows that as ∆p → 0, |α1(p) − α2(p)| must increase
towards αc in an inner-neighborhood of the circle p = pc.
Furthermore, the asymptotic expansion reveals that the

critical point will be reached with a sharp edge (infinite
slope) for p < pc as can be deduced from the square
root behavior in ∆p. Note that both the reflection and
transmission amplitudes exhibit the same behavior inde-
pendently of which medium is denser. This is due to the
fact that the two waves are part of the same mode. How-
ever, as the wave propagating in the less dense medium
becomes a grazing wave, the corresponding differential
scattering coefficient is forced to vanish due to the an-
gular dependence in cos2 θs (θs = θr or θt depending on
the context). The complex amplitude is nevertheless en-
hanced for both the reflected and transmitted wave. This
is illustrated for example in Figs. 2(a) and 2(d), which
corresponds to a case for which the medium of incidence
is vacuum. From the results presented in these figures,
we can see that while the incoherent component of the
MDRC is forced to go to zero when p1 → pc = ω/c, the

surface-independent part of the reflection amplitude ρ
(1)
ss

exhibits a sharp increase in modulus. Simultaneously, the
surface-independent part of the transmission amplitude

τ
(1)
ss also exhibits a similar sharp increase in modulus as
p1 approaches pc. Consequently, since the wave can prop-
agate away from the surface in the second medium (which
consists of glass in this specific case), the corresponding
incoherent component of the MDTC exhibits a similar

increase. Note that both the phases associated with ρ
(1)
ss

and τ
(1)
ss remain constant and equal to 0 for p1 < pc for

all θ0 in Fig. 2, since the complex amplitude stays on the
real line in the case where ε1 < ε2 independent of the
angle of incidence.

Figures 3 and 4 support the same conclusion but by
interchanging the role of the media. The only difference

worth noting is that the phases φ
r,(1)
ss and φ

t,(1)
ss have a

constant plateau for p1 < pc which is equal to 0 only
for θ0 < θc. The plateau is offset for θ0 > θc. This
overall phase offset is due to the Goos-Hänchen phase
shift associated with total internal reflection of the zero
order wave. Indeed, recall that the first order amplitudes
are proportional to the total zero order field amplitudes.
As a consequence, if the zero order waves exhibit a phase
shift, it will affect the first order amplitudes in the form
of a constant phase offset for all p.

When |p | > pc, αmin becomes purely imaginary and
α1(p) − α2(p) thus moves off the real line. For pc <
|p | < nmaxω/c, we find that in this regime α1(p)−α2(p)
keeps a constant modulus equal to αc. Indeed, by writing
αmin(p) = iβmin(p) we have

|α1(p)− α2(p)| = |αmax(p)− iβmin(p)|

=
[
α2
max(p) + β2

min(p)
]1/2

=
[
εmax − p̃2 + p̃2 − εmin

]1/2
ω/c

= αc . (34)

The complex number α1(p)−α2(p) thus traces a circular
arc of radius αc in the complex plane. Finally, when
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|p | > nmax ω/c, both the reflected and transmitted
waves are evanescent, αmax becomes pure imaginary and
hence α1(p) − α2(p) moves along the imaginary axis.

The constant value of |ρ(1)ss | and |τ (1)ss | in the regime
nmin ω/c < p < nmax ω/c can be appreciated for all
angles of incidence illustrated in Figs. 2 – 4, while the
phases exhibit a smooth variation from their plateau
value and decay by a total amount of −π/2 when reach-
ing p1 = nmax ω/c. Once the threshold of nmax ω/c has
been passed, the phases remain constant and the modulii
decay towards zero as |p | → ∞ (which can easily be
deduced from a straightforward asymptotic analysis
leading to α1(p) − α2(p) ∼ i(εmax − εmin)ω2/(2c2p)).
The phase change associated with the transition from
the real line to the imaginary line in the complex plane
is therefore −π/2. This gradual phase change is similar
to that of the Goos-Hänchen phase shift discussed for
the reflection by a planar surface. The difference of
absolute total phase change, of π for the case of the
Fresnel amplitude and π/2 in the case of the scattered
waves, comes mathematically from the fact that in the
former case the amplitude is written as the ratio of
a complex number and its complex conjugate, while
in the latter case there is no such ratio. The phase
consequently turns twice as fast in the former case than
in the latter. A physical interpretation of this difference
is that for the Fresnel amplitude both the incident and
outgoing wave vector must vary simultaneously (since
they are the same), while in the case of a scattered
wave the incident wave vector is fixed while only the
outgoing wave vector is allowed to vary. In fact, we
have only analyzed the phase associated with the factor
α1(p) − α2(p) in Eq. (29). The phase of the overall
complex amplitude will be the sum of the aforementioned

phase, that given by the argument of ζ̂(p−p0), and
the phase given by the argument of the total zero order
amplitude [1 + ρ(0)(p0)] or τ (0)(p0). In particular, if the
angle of incidence is such that total internal reflection
occurs for the zero order field, the overall phase of
the scattered amplitude will contain a signature of the
Goos-Hänchen phase shift associated with the total
internal reflection of the zero order field in addition to
the corresponding Goos-Hänchen phase shift associated
with the Yoneda effect. Note that when averaged over
surface realizations, the phase contribution coming from

ζ̂ averages to zero. This supports our choice of limiting
the detailed investigation to the surface-independent
factors in Eq. (29).

To summarize, let us gather some important results
and answer some of the questions which were left unan-
swered in previous studies. First, we would like to stress
that the above analysis predicts a critical angle for the
Yoneda phenomenon which is independent both of the
angle of incidence and of which medium the incident wave
came from. The Yoneda transition will therefore always
occur at the same polar angle of scattering: the one given
by |pc | = nmin ω/c. We also want to emphasize that the

approximate solution of the reduced Rayleigh equations
obtained via SAPT to first order in the surface profile is
commonly accepted as a single scattering approximation.
In light of our analysis of the Yoneda phenomenon, it is
clear that the analogy of the Yoneda phenomenon with
that of total internal reflection put forward in the liter-
ature may seem a valid one. There are, however, some
comments to be made about this analogy. It is important
to emphasize the underlying cause of total internal reflec-
tion, namely the impossibility of an evanescent wave to
carry energy away from the surface, given the assumed
scattering system. Indeed, trying to directly and naively
apply the total internal reflection argument would lead
one to expect an absence of the Yoneda effect in trans-
mission into the dense medium based on a single scat-
tering picture, as this would require multiple scattering
events. Indeed, one could imagine that the incident wave
would need to scatter once to a transmitted grazing or
evanescent wave and then a second time to be scattered
in reflection in the dense medium and therefore follow
the rule of total internal reflection. Such a naive pic-
ture would be in contradiction with results from numeri-
cal experiments based on first order perturbation theory
[1, 2], or at least contradict the common single-scattering
picture associated with it, and we believe that our inter-
pretation resolves this issue. The results presented in
Refs. 1 and 2 validated the qualitative use of SAPT in
describing the Yoneda phenomenon, for the roughness
parameters assumed in these studies, when compared to
numerical results obtained through a non-perturbative
solution of the reduced Rayleigh equations. Similar non-
perturbative solutions were found to match experimental
results showing the Yoneda phenomenon in Ref. 16.

In fact, the Yoneda phenomenon for weakly rough sur-
faces originates from the same physical mechanism as
the Rayleigh anamolies for periodic dielectric gratings.
The continuous set of scattered wave vectors in the case
of a randomly rough surface can be viewed as probing
a diffracted order scattered from a periodic surface with
continuously changing lattice constant. It is easy to show
numerically and with SAPT to first order, that the be-
havior of the efficiency of a given diffractive order as the
lattice constant is changed exhibits the same character-
istic peak as the Yoneda peak when its counter part in
the less dense medium becomes evanescent. The pertur-
bative analysis in the case of a periodic grating is exactly
the same as in the case of a randomly rough surface with
the only difference being that p must be replaced by the
in-plane wave vector of the diffractive order of interest
and make the lattice constant vary instead.

As a remark, we would like to point out that since
the analysis was carried out for the scattering of a scalar
wave subjected to the continuity of the field and its nor-
mal derivative with respect to the surface, we predict that
the Yoneda phenomenon should also be observed for the
scattering of a quantum particle by a rough interface be-
tween two regions of constant potential.

In studying the results from Figs. 2 – 4 we avoided



i
i

“report” — 2018/9/20 — 10:11 — page 373 — #395 i
i

i
i

i
i

17

a direct discussion for p-polarized waves, for which the
results put forward by the scalar wave analysis seem to
be invalidated. The analysis done for scalar waves is,
in fact, still valid but must be complemented with addi-
tional effects, due to polarization, not only for p-polarized
light but also for s-polarized light when the scattering di-
rection is out of the plane of incidence as suggested by
Eqs. (30, 31). This is the subject of the following section.

D. Physical and geometrical explanations of the
Brewster scattering effect

For a randomly rough surface, we have seen in Figs. 2
– 4 that we may find a Brewster scattering angle for a
wide range of angles of incidence if we look at both the
reflected and transmitted light (the MDRC and MDTC).
We will now see that the general Brewster scattering
phenomenon, roughly defined as a wave scattered with
zero amplitude in a single scattering approximation, also
extends to scattered waves in the evanescent regime.
To this end we will continue our dissection of the phe-
nomenon through perturbative theory.

In-plane reflection — Let us focus first on the case of
co-polarized scattering in the plane of incidence to fix the

ideas. Equation (30a) shows that ρ̂
(1)
ss (p |p0) is propor-

tional to ês(p) ·E(0)
s,1(p0), where E

(0)
s,1(p0) is the total zero

order field amplitude in medium 1 given by the sum of the
unit incident field amplitude and the reflected field am-
plitude given by the Fresnel coefficient for an s-polarized
wave. This relation indicates that the field amplitude of
the first order reflected amplitude for the wave scattered
with lateral wave vector p is proportional to the projec-
tion of its polarization vector on the total zero order field.
For scattering in the plane of incidence ês(p) = ês(p0)
and therefore the first order reflection amplitude reduces
to that of the scalar wave Eq. (29a). Consequently, there
is no extinction for s→ s scattering in the plane of inci-
dence for any angle of incidence. The same analysis and
conclusion hold for the transmitted s-polarized wave.

Similarly, for p-polarized light, Eq. (30d) shows that
the first order reflection amplitude is proportional to

ê+
p,2(p) · E(0)

1,p(p0), where we recall that E
(0)
1,p(p0) is the

total zero order field amplitude given by the sum of the
unit incident field amplitude and the reflected field am-
plitude given by the Fresnel coefficient for p-polarized
waves. Equation (30d) states that the first order field
amplitude is proportional to the projection of the Snell-
conjugate wave’s polarization vector ê+

p,2(p) along the
direction of the total zero order field. Note the similar-
ity with what was found for the Fresnel coefficient for
p-polarized light in Eq. (27b). From Eq. (30d) we can
deduce a simple geometrical criterion for Brewster scat-
tering within first order perturbation theory: The lat-
eral wave vector(s) pB of the elementary Brewster scat-
tered wave(s), for which the reflection amplitude for a p-
polarized reflected wave vanishes given a p-polarized in-
cident wave with lateral wave vector p0 is given by the

condition of orthogonality between the p-polarization vec-
tor of the Snell-conjugate scattered wave(s) and the total
zero order field in medium 1, i.e.

ê+
p,2(pB) ·E(0)

p,1(p0) = 0 . (35)

As a direct consequence, in the case of co-polarized scat-
tering in the plane of incidence, the geometrical condi-
tion can be re-stated as a requirement on the colinearity
between the Snell-conjugate wave vector and the total
zero order field, which is exactly the same geometrical
criterion found in the case of reflection from a planar
interface. A second corollary is that for in-plane scat-
tering ΘB(θB) = θB: the Brewster scattering angle is
equal to the Brewster angle for a planar interface when
the angle of incidence is equal to the Brewster angle for
a planar interface, θ0 = θB (or so-called Brewster inci-
dence). In other words, the Brewster angle for a planar
interface, θB, is a fixed point for the mapping which as-
sociates the angle of incidence to the Brewster scattering
angle: ΘB : θ0 7→ ΘB(θ0). This is readily understood
from the geometrical criterion expressed by Eq. (35). At
Brewster incidence the zero order reflected wave vanishes
(by definition of Brewster incidence). Thus the total
zero field amplitude is simply the incident field ampli-

tude, E
(0)
p,1(p0) = ê−p,1(p0), and consequently, the Brew-

ster scattering angle is necessarily equal to θB.
Let us now apply the above criterion for tracking the

Brewster scattering direction while the angle of inci-
dence varies. We start with the case where the incident
plane wave is approaching the rough interface from vac-
uum, and is reflected from a glass substrate [ε1 = 1 and
ε2 = 2.25]. Figure 6 presents selected wave vectors for
different polar angles of incidence θ0, highlighting the
geometrical relations leading to the Brewster scattering
direction. The dashed circles in this figure represent the
dispersion relations (|k±j | = kj = njω/c) by indicating
the norm of wave vectors allowed to propagate in the
two media. The incident wave vector k−1 (p0) is repre-
sented pointing towards the origin for clarity while the
wave vector for the reflected zero order wave, k+

1 (p0), is
represented as pointing outwards. The red dashed line
corresponds to the direction of the reflected wave vector
for Brewster scattering in the case of a planar interface
with the purpose of illustrating the aforementioned fixed
point property of the Brewster incident angle θ0 = θB.
The general construction rules go as follows. First, the
wave vectors of the incident and the reflected zero or-
der waves are drawn in black. Second, the direction of
the total zero order field given by Eq. (32b) is determined
and the wave vector of the virtual wave, which is colinear
to the total zero order field (not represented), is drawn
as the blue wave vector k+

2 (pB). Note that k+
2 (pB) lies

on the circle of radius n2ω/c. The projection of k+
2 (pB)

along ê1 gives the Brewster lateral wave vector pB from
which we deduce k+

1 (pB) in red. Note that the reflected
wave associated with k+

1 (pB) may be evanescent, and in
that case we simply represent its lateral component pB
as its component along ê3 is pure imaginary.



i
i

“report” — 2018/9/20 — 10:11 — page 374 — #396 i
i

i
i

i
i

18

FIG. 6. Illustration of the geometrical criterion for in-plane Brewster scattering for different polar angles of incidence: (a)
θ0 = 0◦, (b) θ0 = 35◦, (c) θ0 = 50◦ and (d) θ0 = 70◦. The dashed circles represent the norm of the full wave vectors, given
by the dispersion relations, in vacuum (ε1 = 1 inner circle) and glass (ε2 = 2.25 outer circle). The black arrows represent
respectively the incident wave vector k−1 (p0), which is drawn as pointing towards the origin for clarity, and the wave vector
of the reflected zero order wave, k+

1 (p0). The blue arrow represents the wave vector of the virtual wave, k+
2 (pB), from which

the lateral wave vector of the Brewster wave, pB, is deduced by projection along ê1. From pB, the full wave vector for the
Brewster wave, k+

1 (pB), can be drawn (provided propagation in medium 1) as a red arrow. Note that if the Brewster wave is
evanescent, only pB is draw in red as the out-of-plane component of k+

1 (pB) is purely imaginary. The red dashed line indicates
the Brewster angle for a planar surface approximately equal to 56.3◦ in this case.

FIG. 7. Illustration of the geometrical criterion for in-plane Brewster scattering for different polar angles of incidence: (a)
θ0 = 0◦, (b) θ0 = 35◦ and (c) θ0 = 41.81◦. The dashed circles represent the norm of the full wave vectors, given by the
dispersion relations, in glass (ε1 = 2.25 inner circle) and vacuum (ε2 = 1 outer circle). The black arrows represent respectively
the incident wave vector k−1 (p0), which is drawn as pointing towards the origin for clarity, and the wave vector of the reflected
zero order wave, k+

1 (p0). The blue arrow represents the wave vector of the virtual wave, k+
2 (pB), from which the lateral wave

vector of the Brewster wave, pB, is deduced by projection along ê1. From pB, the full wave vector for the Brewster wave,
k+
1 (pB), can be drawn (provided propagation in medium 1) as a red arrow. Note that if the Brewster wave is evanescent, only

pB is drawn in red as the out-of-plane component of k+
1 (pB) is purely imaginary. The red dashed line indicates the Brewster

angle for a planar surface, approximately equal to 33.7◦ in this case.

For normal incidence [Fig. 6(a)] the total zero order
electric field lies along ê1, and consequently, so does
k+
2 (pB). In fact, for normal incidence, due to the fact

that the total zero order field lies along ê1, there are two
Brewster waves in the plane of incidence with opposite
wave vectors p1 = ±n2 ω/c, but we focus on the one
pointing to the right for clarity in Fig. 6(a). It follows
from k+

2 (pB) that |pB | > n1 ω/c and the correspond-
ing Brewster (non-) reflected wave is therefore evanes-
cent. Such a case could not be revealed in previous work
which focused on the diffusely scattered intensity radi-
ated away from the surface. Nevertheless, the theory

suggests that the notion of Brewster scattering should
be extended to evanescent waves. This effect is indeed
visible by inspection of the modulus of the amplitude ρ

(1)
pp

in Fig. 2(a). Indeed, we observe that for p1 = ±n2 ω/c,
ρ
(1)
pp vanishes. The corresponding phase φ

r,(1)
pp exhibits a

jump which is characteristic of the Brewster effect. The
phase jump is equal to π/2 in this case, while in gen-
eral the phase jump associated with the Brewster effect
is equal to π. The π/2 jump seems to happen only when
two Brewster waves with opposite lateral wave vectors
are solutions of the criterion Eq. (35), which as far as
we can see only occurs at normal incidence for the sys-
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tems studied in this paper. It is tempting to interpret
the π/2 jump as actually a π jump evenly shared by the
two Brewster waves (although this is over interpreted as
we will see later). By progressively increasing the polar
angle of incidence, the direction of the total zero order
field changes, and so does the wave vector of the Brew-
ster Snell-conjugate wave (which now is unique). For
a polar angle of incidence equal to 35◦, as sketched in
Fig. 6(b), we can observe that the projection of k+

2 (pB)
along ê1 still yields an evanescent Brewster wave, but
the lateral wave vector is now closer to the propagation
limit. This case corresponds to the parameters assumed
in obtaining the results in Fig. 2(b) and we can observe

that ρ
(1)
pp vanishes indeed for p1 just above ω/c, and that

the corresponding phase exhibits a π jump. By further
increasing the polar angle of incidence the Brewster wave
is found in the propagating region as |pB | < n1 ω/c, and
its full wave vector can now be represented as following
the inner dashed circle. As the polar angle of incidence
increases towards the Brewster angle for a planar surface,
the wave vector associated with the reflected zero order
wave k+

1 (p0), drawn in black in Fig. 6, and the wave
vector of the Brewster scattered wave both approach the
red dashed line from either sides and cross it at the same
angle of incidence, namely the Brewster angle for a pla-
nar interface, θ0 = θB. Figure 6(c) shows the case where
θ0 = 50◦ at a slightly lower angle than the Brewster an-
gle of incidence (approximately equal to 56.3◦), i.e. just
before the cross-over. When θ0 is further increased the
lateral component of the Brewster wave vector contin-
ues to decrease. Figure 6(d) assumes θ0 = 70◦ which
corresponds to Fig. 2(c) where we now observe that the
Brewster wave is indeed in the propagating region as can

be seen both from ρ
(1)
pp and the extinction of the incoher-

ent component of the MDRC. Note also the π jump in the
phase. Finally, as the polar angle of incidence approaches
90◦, the virtual wave does not approach the vertical di-
rection as one might naively expect. Indeed, the total
zero order field does not become oriented along ê3 but
along the direction given by the critical angle for total
internal reflection. The change in the expected Brewster
scattering angle ΘB(θ0) for a range of angles of incidence
and for the currently discussed system is visible as blue
dashed lines in Fig. 5.

We now repeat the analysis but for an incident wave
approaching the surface in the denser medium [ε1 = 2.25,
ε2 = 1.0]. For normal incidence, the total zero order
field is along ê1, and yet again we recover two Brew-
ster waves. However, since now the magnitudes of the
Snell-conjugate waves are situated on the inner circle
(ε2 = 1), the wave vectors k+

1 (±pB) correspond to prop-
agating waves in glass, and coincide with the Yoneda
threshold. This situation is illustrated in Fig. 7(a) and
Fig. 3(a). Due to the presence of two Brewster waves, the
phase jump is π/2 [see Fig. 3(a)]. The coincidence of the
Yoneda threshold and the Brewster scattering angle for
internal reflection for normal incidence is now explained,
and we see that although the two effects are of different

nature and decoupled, they occur simultaneously in this
case simply as a consequence of the geometry imposed by
the dispersion relations. As the polar angle of incidence
is increased, only one Brewster wave remains, and the
corresponding lateral wave vector shrinks [see Fig. 7(b)
and Fig. 3(b)]. The wave vectors of the reflected zero
order wave and of the Brewster wave cross each other at
the Brewster angle of incidence (≈ 33.7◦). Now comes an
interesting effect which was not present when the wave
was incident from the less dense medium. As the po-
lar angle of incidence approaches the critical angle of to-
tal internal reflection of the zero order reflected wave,
the Snell-conjugate wave vector and that of the Brew-
ster wave approach the vertical direction and reach it for
θ0 = θc, as displayed in Fig. 3(c). Then a sudden transi-
tion occurs when θ0 is increased beyond θc. In Fig. 4(a),
which shows results for θ0 just above the critical angle,
it seems that the Brewster scattering angle is nowhere to
be found. However, the Brewster scattering angle now
comes back from the left (backscattering) side, visible in
the evanescent region of Fig. 4(c) where the polar angle
of incidence is 70◦. What happened? The overall be-
haviour of the phase in Figs. 4(a)–(c) gives us a good in-
dication. We have mentioned earlier that for s-polarized
light, when the zero order reflected wave undergoes total
internal reflection, the central phase plateau must un-
dergo a Goos-Hänchen shift with θ0 (in fact it is the
whole graph which undergoes the shift). Similarly, the
p-polarized zero order reflected wave undergoes a Goos-
Hänchen shift and, as a consequence, the two terms in
Eq. (32b) are not any longer in phase. In the case where
ε1 < ε2, the arguments of the two complex amplitudes in
Eq. (32b) are always either in phase or are separated by a
phase difference of π. Therefore, as time progresses, the
real total zero order field keeps a fixed direction. When
ε1 > ε2, the Goos-Hänchen phase shift makes the real to-
tal zero order field change direction and turn in the plane
of incidence as time progresses (it describes an ellipse).
Intuitively, this seems to indicate that the corresponding
dipole radiation is not expected to be that of an oscil-
lating dipole anymore but that of a rotating dipole. It
is therefore understandable that the measurement of a
propagating p-polarized wave does not yield any direc-
tion of extinction when the radiation is emitted from a
rotating dipole. Stated in an equivalent way, ρ

(0)
pp now

draws a lower half circle in the complex plane from 1 to
−1 as the angle of incidence is varied from the critical
angle to 90◦, while it previously stayed on the real line.

It follows that E
(0)
p,1(p0) has a complex amplitude with

non-zero imaginary part. It is therefore not possible for
a propagating Snell-conjugate wave to satisfy the require-
ment of Eq. (35) since its p-polarization vector would be
real. Hence, in order to satisfy Eq. (35) the polarization
vector ê+

p,2(pB) must itself be complex, and the Snell-
conjugate wave is now found in the evanescent region of
medium 2. This is the reason why the Brewster scattering
lateral wave vector seems to disappear at the transition
θ0 = θc + ∆θ0 and then come back from the negative p1
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side as the angle of incidence is increased, which reveals
the evanescent nature of the Snell-conjugate wave.

Note that what we have defined as a p-polarized wave,
according to the polarization vector ê±p,j(p) given in

Eq. (6d), takes a rather interesting structure when it
is evanescent. For an evanescent wave, αj(p) is pure
imaginary and the polarization vector ê±p,j(p) hence
has a real component along ê3 and a pure imaginary
component along the transverse wave vector direction.
This means that the corresponding real electric field is
the sum of a wave polarized along ê3 and a longitudinal
wave (longitudinal with respect to the lateral wave
vector) dephased by π/2 radians with respect to the first
wave. The resulting field therefore describes an ellipse
in the (ê3, p̂)-plane.

In-plane transmission — The analysis for the Brewster
scattering effect in the transmitted light is similar to that
of the reflected light and will not be analyzed in details.
One difference worth mentioning, however, is that the
Brewster scattering direction is generally found in the
backscattering region when the corresponding Brewster
scattering for reflection is found in the forward scattering
direction. Intuitively, this effect can be related to the
emission of an oscillating dipole which yields zero emitted
power along the direction of oscillation, hence producing
two antipodal zero intensity points when the intensity is
mapped onto a sphere. This fact is better illustrated in
the next section.

E. Polarization of the radiation of oscillating and
rotating dipoles in free space

Before treating the full angular distribution of the
light scattered diffusely by a randomly rough surface,
we allow ourselves a detour via the analysis of the
polarization properties of the radiation emitted by an
oscillating dipole or a rotating dipole in free space. The
study of the polarization of the radiation in these two
cases gives remarkable insight and intuition into the
qualitative physical mechanisms at play for the case of
the scattering from a random interface, for which a more
quantitative analysis requiring Snell-conjugate waves
will be given in the next section.

Polarization of the radiation from an oscillating dipole
in free space with respect to the local (êp, ês) basis – We
consider first the radiation emitted by a single oscillating
dipole in free space. We let this dipole, of dipole moment
D(ϑ) = d(sinϑ ê1 + cosϑ ê3)/2 = d/2 êϑ, be tilted from
the x3-axis by an angle of ϑ ∈ [0, π/2] radians. The dipole
is placed in free space at the origin of the coordinate
system, where it oscillates with angular frequency ω and
radiates the following electric field in the far-field [19]:

Edip(r, t) = − ω2

4πε0c2
êr ×[êr ×D(ϑ)]

r
e−iω(t−r/c) , (36)

where r = r êr =
r(sin θ cosφ ê1 + sin θ sinφ ê2 + cos θ ê3) is the point
of observation, and r = | r |. It is well known that no
power is radiated along the axis of oscillation of the
dipole (êr ×D(ϑ) vanishes in Eq. (36) when êr ‖ êϑ) and
that the radiation is polarized in accordance with the
cross products in Eq. (36). The electric field is polarized
along the vector êθ

′, which is the basis vector tangent
to a meridian in a spherical coordinate system (r, θ′, φ′)
attached to the dipole direction. We are, however, inter-
ested in analyzing the polarization of the dipole radiation
with respect to the local polarization basis given in
Eq. (6), which is defined with respect to the propagation
direction of the radiation and the plane x3 = 0. Thus we
study the following dot products: êr ×[êr × êϑ] · ês and

êr ×[êr × êϑ] · êp where ês =
ê3× êr

| ê3× êr | and êp =
ês× êr

| ês× êr |
are defined with respect to êr in order to mimic the local
s- and p-polarization vectors attached to a scattering
direction along êr. The unit vectors êp = êθ = d êr /dθ
and ês = êφ = 1/ sin θ d êr /dφ are also the conventional
basis vectors in spherical coordinates. First we observe
that êr ×[êr × êϑ] · ês and êr ×[êr × êϑ] · êp are invariant
under the transformation êr 7→ − êr, and so the s- and
p-polarized distributions of the dipole radiation are
symmetric with respect to the origin as êr runs over the
unit sphere. Second, for ϑ ∈ (0, π/2] radians the identity
a×[b× c] = (a · c) b−(a ·b) c leads to

êr ×[êr × êϑ] = (êr · êϑ) êr − êϑ , (37)

hence the projection of the dipole radiation on the local
s-polarization basis reads

êr ×[êr × êϑ] · ês = − êϑ · êφ = − sinϑ sinφ . (38)

A direct consequence of Eq. (38) is that êr ×[êr × êϑ] · ês
vanishes for all êr in the (ê1, ê3)-plane [see Fig. 8(d)].
The corresponding projection on the local p-polarization
basis reads

êr ×[êr × êϑ] · êp = − êϑ · êθ , (39)

which is a quantity that depends on ϑ, θ, and φ. In
the particular case where êθ belongs to the (ê1, ê3)-
plane, there are two solutions for Eq.(39) equal to zero:
êr = ± êϑ, which correspond to the two intersections of
the dipole moment direction with the unit sphere. This
is not surprising since we already know that no power is
emitted along the direction of oscillation of the dipole, in-
dependent of polarization. More interesting are cases for
which êθ, and hence êr, does not belong to the (ê1, ê3)-
plane. Expanding the dot product in Eq. (39) in terms
of the angles ϑ, θ, and φ we obtain the following implicit
equation for the set of points on the unit sphere where
the p-polarization component of the dipole radiation van-
ishes:

sinϑ cos θ cosφ− cosϑ sin θ = 0 , (40)

or equivalently for non-pathologic cases

tanϑ

tan θ
=

1

cosφ
. (41)



i
i

“report” — 2018/9/20 — 10:11 — page 377 — #399 i
i

i
i

i
i

21

FIG. 8. (a-c) Dependence of the p-polarized radiation of a tilted dipole in free space, | êr ×[êr × êϑ] · êp |, on the direction of
êr as it runs over the unit sphere for different dipole tilting angles ϑ ∈ {0◦, 45◦, 90◦}. (d) Similar dependence of the s-polarized
radiation of a tilted dipole in free space on êr for ϑ = 45◦. The black line in panels (a-d) indicates the direction of the dipole
moment. (e-f) Dependence of the σ+-polarized radiation of a rotating dipole in free space parametrized by ϑ = 45◦ and ϑ = 30◦

respectively (note the orientation of the coordinate system).

We verify that for the cases φ = 0 and φ = π radians,
we recover that θ = ϑ and θ = π − ϑ, i.e. the points
of intersection of the dipole moment direction and the
unit sphere. For φ ∈ (−π/2, π/2), cosφ > 0, which
implies that tan θ > 0 (recall that 0 < ϑ < π/2 hence
tanϑ > 0) and tanϑ > tan θ. By the monotony of the
tangent function, and the continuity of Eq. (41) with
respect to the variables, we thus deduce that when φ
varies in (−π/2, π/2) the set of the points of zero traces
a curve on the unit sphere latitude-bounded by θ < ϑ.
By the aforementioned symmetry of the polarization
dependence of the dipole radiation with respect to the
origin we immediately deduce that when φ varies in
(π/2, 3π/2) the set of the points of zero traces a curve on
the unit sphere latitude-bounded by θ > π − ϑ. This is
well illustrated in Fig. 8(b) where | êr ×[êr × êϑ] · êp | is
shown as a color map on a unit sphere. For ϑ = 45◦ we

here observe that the curve of zero p-polarized radiation
passes through both the north pole and the intersection
point of the dipole moment direction on the northern
hemisphere. The degenerate cases ϑ = 0◦ [Fig. 8(a)] and
ϑ = 90◦ [Fig. 8(c)] are also illustrated. For these cases
the curves of zero p-polarized radiation reduces to two
points (the poles) in the former case, and the equator
(θ = π/2) and meridians φ = ±π/2 in the latter. Indeed,
θ must go to zero when ϑ → 0 as tanϑ vanishes, and,
either φ must go towards ±π/2 or θ must go towards
π/2 when ϑ→ π/2 as tanϑ diverges.

Polarization of the radiation from a rotating dipole in
free space with respect to the local (êσ+ , êσ−) basis – We
now consider the radiation of a dipole rotating in the
(ê1, ê3)-plane. Equation (36) still holds, but we need to
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FIG. 9. The full angular distribution of the incoherent component of the MDRC/MDTC, 〈∂Xαβ/∂Ωr〉incoh for X = R or T , as
function of the lateral wave vector q of the light that is scattered from a rough interface where the angle of incidence θ0 = 0◦.
The positions of the specular directions in reflection and transmission are indicated by white dots. The parameters assumed
for the scattering geometry and used in performing the numerical calculation had values that are identical to those assumed
in obtaining the results of Fig. 2. The sub-figures in Figs. 9(a)–(i) and 9(j)–(r) are both organized in the same manner and
show how incident β-polarized light is scattered by the one-rough-interface film geometry into α-polarized light [with α = p, s
and β = p, s] and denoted β → α. Moreover, the notation ◦ → ? is taken to mean that the incident light was unpolarized
while the polarization of the scattered light was not recorded. For instance, this means that the data shown in Fig. 9(a) are
obtained by adding the data sets presented in Figs. 9(b)–(c); similarly, the data shown in Fig. 9(g) result from the addition
and division by a factor two of the the data sets presented in Figs. 9(a) and 9(d); etc. Finally, the in-plane intensity variations
from Figs. 9(b, f) and 9(k, o) are the curves depicted in Figs. 2(a) and Figs. 2(d), respectively.

modify the dipole moment which now reads

D(ϑ) = d (sinϑ ê1 +i cosϑ ê3)/2 = d/2 ε̂ϑ . (42)

The real vector Re[ε̂ϑ exp(−iωt)] hence describes an
ellipse in the (ê1, ê3)-plane whose excentricity is
parametrized by ϑ. In the limiting cases ϑ = 0 and
ϑ = π/2 radians we obtain an oscillating dipole along
ê3 and ê1 respectively. For ϑ = π/4 we obtain a circu-
larly rotating dipole. We now consider the polarization
of the radiation from such an elliptically rotating dipole
with respect to the local left and right circularly polar-
ized basis êσ+ and êσ− defined as

êσ± =
1√
2

(êp±i ês) . (43)

The σ+ polarization component of the rotating dipole
radiation is then measured by

êr ×[êr ×ε̂ϑ] · êσ+ = −ε̂ϑ · êσ+ , (44)

which when expressed in terms of the angles reads[40]

êr ×[êr ×ε̂ϑ] · êσ+ = − 1√
2

sinϑ cos θ cosφ

− i√
2

(cosϑ sin θ − sinϑ sinφ) . (45)

The modulus square of Eq. (45) yields

| êr ×[êr ×ε̂ϑ] · êσ+ |2 =
1

2
sin2 ϑ cos2 θ cos2 φ

+
1

2
(cosϑ sin θ − sinϑ sinφ)2 . (46)

The directions of zero σ+-polarized light radiation are
obtained if and only if both terms on the right-hand side
of Eq. (46) are zero. The first term vanishes if at least
sinϑ, cos θ or sinφ is zero. If we first assume that ϑ = 0,
then the second term is zero if and only if the condition
sin θ = 0 is satisfied. Such a case corresponds to a dipole
oscillating along the x3-axis and its radiation vanishes
at the poles of the unit sphere. More interesting are
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FIG. 10. Same as Fig. 9, but now for the angle of incidence θ0 = 70◦.

the cases for which ϑ 6= 0 and either θ = π/2 (recall
that θ ∈ (0, π)) or φ = ±π/2. Let us first assume that
φ = ±π/2. The second term in Eq. (46) then vanishes if
and only if

sin θ = ± tanϑ . (47)

This last condition imposes a constraint on ϑ, which must
then have a value between 0 and π/4 in order for tanϑ
(and hence sin θ) to be less than unity. Since θ ∈ (0, π),
only the case φ = π/2 yields two solutions, θ1 and θ2,
that are symmetric with respect to θ = π/2. This is
illustrated in Fig. 8(f). Assuming now that θ = π/2, the
second term in Eq. (46) vanishes if and only if

sinφ = cotanϑ . (48)

Since sinφ requires cotanϑ to be less than unity the
above condition can only be satisfied if ϑ ∈ (π/4, π/2).
There are then two solutions for φ between 0 and π
(since sinφ > 0 for ϑ ∈ (π/4, π/2)), which are symmetric
with respect to π/2. In fact, it can be shown that the
polarization of the radiation of the rotating dipole for
ϑ ∈ (π/4, π/2) corresponds to that of a rotating dipole
for which ϑ′ = π/2−ϑ (as in Fig. 8(f)) but rotated by 90◦

with respect to the x2-axis. These different cases where
Eq. (46) vanishes for a given circular polarization have
a very simple geometrical interpretation. For ϑ < π/4
the rotating dipole describes an ellipse whose long axis
is oriented along the x3-axis. The two directions of zero
σ+-polarized radiation correspond to the two directions

from which the ellipse is observed as a circle, with the
orientation of the dipole rotation opposite to that of the
σ+ polarization. For these two directions the radiation is
therefore purely σ−-polarized, explaining why the zeros
of radiation are found on the meridian where φ = π/2.
For ϑ > π/4 the long axis of the ellipse is along the
x1-direction, which explains the fact that the directions
where one circular polarization is zero are found at the
equator. By symmetry the directions where the σ−-
polarized radiation vanishes are symmetric to those of
the σ+-polarized radiation with respect to the (ê1, ê3)-
plane.

These results, obtained for the polarization of the
dipole radiation in free space, will prove to be useful
for the qualitative understanding of the full angular
distribution of the incoherent component of the MDRC
and MDTC in the case of the scattering by a randomly
rough dielectric surface.

F. Full angular distributions of the MDRC/MDTC

P-polarized Brewster scattering — Figure 9 presents
the full angular distributions of the diffuse contribution
to the MDRC and MDTC for θ0 = 0◦ and parameters
equivalent to those assumed in Figs. 2(a) and 2(d),
respectively. The overall dipole-like appearance of the
lower left 2 × 2 panels in each collection of panels in
Fig. 9 is reminiscent of the polarization pattern of the
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(a) (b) (c)

(d) (e) (f)

FIG. 11. Illustration of the construction steps leading to the set of directions of zero p→ p reflection for an angle of incidence
of θ0 = 70◦. (a) Sketch of the average surface, the plane of incidence and the considered wave vectors of the incident and

reflected zero order waves (k−1 (p0) and k−1 (p0)). (b) Construction of the total zero order field amplitude E
(0)
p,1(p0) and the

plane orthogonal to it. Note that the incident wave vector does not in general belong in this plane as illustrated with the

dashed indigo line indicating the intersection of the plane of incidence and the plane E
(0)
p,1(p0)⊥. (c) Unit vectors belonging to

the lower half E
(0)
p,1(p0)⊥-plane. They correspond to the possible polarization vectors ê+

p,2(p) of Eq. (35). The wave vectors

k+
2 (p) associated to the polarization vectors ê+

p,2(p) are then constructed according to Eqs. (6). Note that they lie on a sphere

of radius |k | = n2 ω/c. The color associated to the vectors ê+
p,2(p) and k+

2 (p) helps us to identify the k+
2 (p) associated to

each ê+
p,2(p) (they share the same color). (d) The wave vectors k+

2 (p) are projected on the sphere of radius |k | = n1 ω/c

following the x3-direction, hence giving the wave vectors k+
1 (p) of zero p→ p reflection. (e) The incoherent component of the

MDRC is shown on the scattering sphere together with the set of wave vectors k+
1 (p) obtained in (d). (f) Projection of (e) in

the (ê1, ê2)-plane. We verify in (e) and (f) that the constructed wave vectors indeed follow the curve of zero scattering of the
incoherent component of the MDRC.

dipole radiation in free space discussed above in the
case when the dipole oscillates in the (ê1, ê2)-plane.
For normal incidence all the zero order waves and the
incident wave have an oscillating electric field either
along ê1 for p polarization or along ê2 for s polarization.
Thus the dipoles in the media[41] oscillate along the
direction of the incident field. For an s-polarized wave
(field along ê2) we have seen that the dipole radiation
in free space yields zero s-polarized emission in the
(ê2, ê3)-plane and an overall | sin(φr − π/2)| intensity,
which is consistent with what is observed in Fig. 9(f).
Note that for a given polar angle of reflection θr, the

variation along φr of the incoherent component of
the MDRC to lowest non-zero order in the surface
roughness for s → s polarized scattering is exactly

proportional to | sin(φr − π/2)| since ρ
(1)
ss is proportional

to ês(p) · ês(p0), as can be seen from Eq. (30a), and this
is the only φr dependence for normal incidence. This
observation holds for all the polarization couplings up
to a rotation by π/2 for cross-polarization. For example,
for an s-polarized incident field and p-polarized reflected
light the φr dependence is proportional to | sinφr|.
For the transmitted light [Fig. 9(j-r)] the behaviour is
similar, but in addition we now observe the Yoneda



i
i

“report” — 2018/9/20 — 10:11 — page 381 — #403 i
i

i
i

i
i

25

FIG. 12. The full angular distribution of |ρ(1)αβ |2 for normal incidence, θ0 = 0◦, ε1 = 2.25, ε2 = 1, for incident polarization

β ∈ {p, s} or unpolarized (◦) and outgoing polarization α ∈ {p, s, σ+, σ−}.

FIG. 13. Same as Fig. 12 but for the angle of incidence θ0 = 35◦.

phenomenon. This is the enhancement of the diffuse
contribution to the MDTC intensity above the critical
lateral wave vector for the scattered light |p | > pc,
as discussed extensively in Sec. IV C, which for normal
incidence is directly observable for outgoing s-polarized
light, especially in Fig. 9(r). For transmitted p-polarized
light we observe a black ring of zero scattering intensity
along the circle |p | = pc. This is the two-dimensional
extension of our discussion in Sec. IV D for in-plane
scattering, where we found that at normal incidence two
Brewster waves with pB = ±pc ê1 could be found. Now
we see that in two-dimensional p-space the solution
to Eq. (35) is in fact given by |p | = pc. In terms of
dipole radiation in free space this corresponds to the
vanishing radiation of p-polarized light in the equatorial
plane for the case ϑ = 90◦ as illustrated in Fig. 8(c). A

ring of zero intensity for the p-polarized reflected waves
can also be found, but then in the evanescent regime
as a two-dimensional extension of the corresponding
discussion for in-plane scattering.

The similitude with the polarization of the radiation
emitted by an oscillating dipole in free space is clear for
normal incidence. Let us now consider a larger angle of
incidence, θ0 = 70◦, for which the diffuse contributions
to the MDRC and MDTC for incidence in vacuum are
shown in Fig. 10. First, we observe that for p → p re-
flection [Fig. 10(b)], there exists a closed curve of zero
intensity in the forward scattering direction. Similarly,
we observe a closed curve of zero intensity for p → p
transmission [Fig. 10(k)] but in the backscattering re-
gion. These features are analogous to those observed in
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FIG. 14. Same as Fig. 12 but for the angle of incidence equal to the critical angle for total internal reflection, θ0 = θc = 41.81◦.

FIG. 15. Same as Fig. 12 but for the angle of incidence θ0 = 43◦.

the case of the p polarization component of the dipole
radiation in free space in the case where the dipole tilt-
ing angle is such that 0◦ < ϑ < 90◦, e.g. as is illustrated
in Fig. 8(b) for ϑ = 45◦. We can interpret the curves
of zero intensity for p → p scattering in Fig. 10 as the
signature of an overall dipole radiation whose dipole mo-
ment is tilted from the x3-axis by some angle ϑ, where
the polarization of the reflected light is derived from the
northern hemisphere of the radiation polarization pattern
while the polarization of the transmitted light is derived
from the southern hemisphere of the radiation polariza-
tion pattern.

Let us now interpret Eq. (35) geometrically for p→ p
scattering for the case of reflection and θ0 = 70◦. This
construction is a generalization of the one made for scat-
tering in the plane of incidence presented in Sec. IV D.
Figure 11 provides illustrations of the main steps of the

geometrical construction of the set of directions of zero
p → p reflection in three dimensions. First, the wave
vectors of incidence k−1 (p0) and of the reflected zero or-
der wave k+

1 (p0) are drawn [Fig. 11(a)]. Second, one
determines the direction of the total zero order field am-
plitude E

(0)
p,1(p0) which is contained in the plane of in-

cidence. The steps to geometrically construct the total
zero order field have been treated in detail for s- and p-
polarizations in Ref. 42, and thus we do not show these

here for clarity. Once E
(0)
p,1(p0) is determined, we can con-

struct the plane orthogonal to it: E
(0)
p,1(p0)⊥ [Fig. 11(b)].

Note that in general this plane does not contain the inci-
dent wave vector as made clear by the dashed line, show-
ing the intersection of the plane of incidence with the

plane E
(0)
p,1(p0)⊥. According to Eq. (35), all the polar-

ization vectors ê+
p,2(p) must be contained in the plane
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FIG. 16. Same as Fig. 12 but for the angle of incidence θ0 = 70◦.

E
(0)
p,1(p0)⊥. Moreover, since the ê+

p,2(p) vectors are nor-
malized their end points are distributed on a circle of unit
radius. The set of all ê+

p,2(p) vectors satisfying Eq. (35)

therefore spans a half circle in the plane E
(0)
p,1(p0)⊥ as

shown on Fig. 11(c), where a sample of polarization vec-
tors are represented. The fact that only the lower half
circle is needed comes from the definition[43] of a po-
larization vector ê+

p,2(p). For each polarization vector

satisfying Eq. (35) we can construct its corresponding
wave vector k+

2 (p), using for example that the direction
is given by ê+

p,2(p) × [ê+
p,2(p) × ê3] and that k+

2 (p) lies

on the northern hemisphere of radius k2 = n2ω/c. We
thus obtain the set of all wave vectors k+

2 (p) whose cor-
responding p polarization vector satisfies Eq. (35). A
sample of such vectors are represented for ê+

p,2(p) and

k+
2 (p) in Fig. 11(c). The last step consists in project-

ing the vectors k+
2 (p) along ê3 onto the sphere of radius

|k | = n1 ω/c to obtain the wave vectors k+
1 (p) of zero

p → p reflection [Fig. 11(d)]. Figures 11(e) and 11(f)
show the resulting sampled wave vectors k+

1 (p) together
with the diffuse contribution to the the MDRC, mapped
to the hemisphere and its projection in the (ê1, ê2)-plane
respectively. We verify that the set of constructed wave
vectors correspond to the observed curve of zero intensity
for p→ p reflection.

Figure 10(n) shows that the s → p transmitted light
exhibits a circle of zero intensity, for |p | = n1 ω/c
similar to what was observed for normal incidence
[Fig. 9(n)]. This feature is also present in reflection but
in the evanescent region, and is observed by considering
the complex amplitude instead of the MDRC. The
reason for the invariance of the circle of zero intensity
with the angle of incidence for the s → p scattering is
simple to understand in terms of the dipole radiation in
free space. For s-polarized incident light the dipoles in
the media are all oriented along ê2, independent of the
angle of incidence. Thus when measuring the p-polarized

component of the radiated light we expect to obtain
an underlying pattern of zero intensity consistent with
that obtained in the case of the oscillating dipole in free
space as illustrated in Fig. 8(c).

Circularly-polarized Brewster scattering — It is in-
structive to study the modulus square of the amplitudes
rather than the MDRC and MDTC in order to appreciate
the behavior of the amplitudes of the waves scattered in
the evanescent region as well as the ones scattered in the
propagating region. Furthermore, in order to illustrate,
to our knowledge, a new effect which can be considered
as a generalization of the Brewster scattering effect for
light scattered from p-polarized to circularly-polarized

light, we show in Figs. 12-16 |ρ(1)αβ |2 in the p-plane for

different polar angles of incidence. We let β ∈ {p, s, ◦}
represent the polarization of the incident light, where ◦
indicates unpolarized light, and we let α ∈ {p, s, σ+, σ−}
represent the polarization of the light scattered from the
surface. The subscripts σ± denote respectively left and
right circular polarization states and the corresponding
reflection amplitudes are derived from the p and s polar-
ization states by

ρ
(1)
σ±β =

1√
2

[
ρ
(1)
pβ ± iρ

(1)
sβ

]
, (49)

and similarly for the transmission amplitudes. We con-
sider here only the case for which the medium of inci-
dence is the denser one, as the circularly-polarized Brew-
ster scattering effect only takes place when the reflected
zero order wave undergoes total internal reflection. Note,
however, that the effect can be observed both in the re-
flected and the transmitted scattered light. In Sec. IV D
we have seen that the Brewster scattering effect exhibits
a sudden transition when the reflected zero order wave
undergoes total internal reflection. We have seen that,
when restricted to scattering in the plane of incidence,
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the direction of zero p-polarized reflected intensity goes
towards the x3-direction as the polar angle of incidence
approaches the critical angle for total internal reflec-
tion. Then the zero direction suddenly disappears from
the propagating region as the polar angle of incidence
goes beyond the critical angle for total internal reflec-
tion. This sudden transition was argued to be attributed
to a transition of the dipolar response of the media, go-
ing from an oscillating behavior to a rotating behavior
due to the phase shift between the incident excitation
and the reflected zero order wave. We are now studying
this transition in the full p-plane with particular atten-
tion on the scattered circularly polarized light, as it was
shown in Sec. IV E that the radiation emitted by a rotat-
ing dipole in free space exhibits characteristic signatures
in the emitted circularly-polarized light out of the plane
of incidence.

First, for polar angles of incidence smaller than the

critical angle, θ0 < θc, we have seen that both ρ
(1)
pβ and

ρ
(1)
sβ are real for scattering angles smaller than the Yoneda

threshold. In that case the right-hand side in Eq. (49)

vanishes if and only if both ρ
(1)
pβ and ρ

(1)
sβ are zero simul-

taneously. For an incident p-polarized wave, β = p, this
occurs only where the curve of zero p → p scattering
(cf. previous subsection) intersects with the plane of in-
cidence in which p→ s scattering is identically zero. This
is illustrated for normal incidence, θ0 = 0◦, in Figs. 12(a)

and (d) showing |ρ(1)pp |2 and |ρ(1)sp |2 in the p-plane, where
we recognize the curves of zero scattering for the p- and
s-polarized light discussed in previous sections. It is also

illustrated in Figs. 12(g) and (j) showing |ρ(1)σ±p|2 where

two directions of zero p → σ± scattering are present at
p = ±pc ê1, although they are hard to spot on this figure.
The effect is clearer for oblique incidence, as in Figs. 13(g)
and (j), for which θ0 = 35◦. Figures 13(g) and (j) show
a clear unique direction of zero intensity in p→ σ± scat-
tering in the plane of incidence.

As the angle of incidence reaches the critical angle of
incidence, θ0 = θc = 41.81◦, the direction of zero in-
tensity in p → σ± scattering reaches the x3-direction,
as illustrated in Figs. 14(g) and (j). Note that the x3-
direction also implies zero p → p scattering intensity as
already explained earlier, and that the distribution of

|ρ(1)pp |2 and |ρ(1)σ±p|2 are cylindrical symmetric as shown in

Fig. 14(a), (g) and (j). The cylindrical symmetry can
be understood based on the radiation of an oscillating
dipole aligned with the x3-axis. Indeed, we have seen in
Section IV E that the p-polarized radiation from such a
dipole is cylindrically symmetric with zero radiation at
the poles of the unit sphere. The radiation from such a
dipole is also purely p-polarized, which has two conse-
quences: (i) the s-polarized scattered light vanishes iden-
tically for all p [Fig. 14(d)]; (ii) the radiation can be de-
composed into σ+ and σ− components of equal intensity,
as can be observed in Figs. 14(g) and (j). Even though
we have now based our interpretation on the radiation of

an oscillating dipole in free space for the sake of simplic-
ity, it is straightforward to verify these assertions based
on the expressions of the amplitudes given in Eq. (30).
For example, it is clear that for θ0 = θc, the total zero

order field E
(0)
1,p(p0) is along ê3 and the dot product in

Eq. (30c) vanishes for all p.

For θ0 > θc, it is convenient to expand the right-hand
side in Eq. (49). By inserting Eq. (30) into Eq. (49), the

reduced first order reflection amplitude, ρ̂
(1)
σ±p, for σ±-

polarized light scattered from incident p-polarized light
is then given by

ρ̂
(1)
σ±p(p |p0) =

1√
2

[γ(p) ê+
p,2(p)± i ês(p)] ·E(0)

1,p(p0) .

(50)
Here we have used the short-hand notation γ(p) =
(ê+
p,2(p) · ê+

p,1(p))−1. For θ0 > θc, the total zero order

field amplitude E
(0)
1,p(p0) is complex. Therefore neither

ρ
(1)
pp nor ρ

(1)
sp can be zero for propagating waves. We have

seen in Section IV D that a zero intensity p→ p scattering
point can be found in the evanescent region since ê+

p,2(p)

becomes complex. However, a zero point in p→ σ± scat-
tering may be found in the propagating region. Indeed,
the fact that the square bracket in Eq. (50) is complex
even for purely real values of ê+

p,2(p) and ês(p) may com-

pensate for the fact that E
(0)
1,p(p0) is complex and make

the dot product in Eq. (50) vanish. Note the similarity
with the right-hand side in Eq. (44) for the case of the ra-
diation emitted by a rotating dipole, with the important
difference that the p polarization vector is that of the

Snell-conjugate wave. Since E
(0)
1,p(p0) represents a state

of polarization of the media in which the dipole rotates
in the plane of incidence (cf. discussion in Section IV D),
we expect to find a zero in the σ± scattering intensity on
each side (φr = ±π/2) of the plane of incidence. This
is indeed what we observe in Figs. 15(a) and (d) in the

|ρ(1)σ±p|2 distribution of p→ σ± scattering.

Finally, let us comment on s → σ± scattering. In
Figs. 12-16 it can be observed that the distribution for

|ρ(1)σ±s|2 stays identical, up to an overall factor, as the an-
gle of incidence varies. This can be understood from the
dipole picture. For s-polarized incident light, the inci-
dent and zero order waves are s-polarized, so the dipoles
oscillate along the x2-direction independently of the an-
gle of incidence. For scattering in the plane of incidence
the first order waves are purely s-polarized and the two
σ± components have equal intensity. For scattering at
φr = ±π/2, the first order waves are purely p-polarized
and the two σ± components have again have equal in-
tensity. We obtain the largest contrast between σ+ and
σ− for φr being a multiple of 45◦ since then the p- and
s-polarized components are of similar amplitudes.
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V. CONCLUSION

Based on a perturbative solution of the reduced
Rayleigh equations to first order in the surface profile
function, we have achieved a detailed mathematical and
physical analysis of the scattering of polarized light by
a weakly rough interface between two dielectric media.
The first order amplitudes are factorized as a product
of a scalar component, mainly representing the relative
phases of the different scattering paths, and a polariza-
tion component. The polarization component can be in-
terpreted as the signature of the polarization state of the
dipoles in the media induced by the incident and zero
order fields.

We have seen that the Yoneda phenomenon can be
explained simply based on a scalar wave, single scatter-
ing picture as an intensity enhancement induced by the
evanescence of the component of a scattered couple mode
existing in the lesser dense medium, while all the energy
allocated to the couple mode is radiated away by the
component existing in the denser medium. This mech-
anism clearly answers previous questions put forward in
the literature: we conclude that the phenomenon results
from a so-called single scattering mechanism, and is not
associated with surface (eigen) modes. In particular, the
Yoneda phenomenon is nothing else but the continuous
analogue of a Rayleigh anomaly for periodic dielectric
grating, in the sense that the diffuse light here plays the
role of probing what the efficiency of a diffracted order
would be if it were tracked as the period of the grating
would vary. This claim is easily verified with straight-
forward numerical calculation and the exact same per-
turbation analysis we have exposed here but adapted to
gratings.

By factorizing the scalar behavior from that specific
to a polarized wave, we have identified the geometrical
criterion for the Brewster scattering phenomenon for p-
polarized excitation, and more generally, for predicting
the zeros of scattered intensity and amplitude for any po-
larization state. Simply put, these zeros are not different
from those found for the radiation from a tilted oscillating
dipole in free space, when the polarization of the emitted
radiation is adequately measured in a fixed frame of refer-
ence. To be more accurate one may say that the physical
essence is that of oscillating dipoles, but one must include
the fact that arrays of dipoles yield conjugate waves as
was described by e.g. Ewald and Doyle [26, 29]. The
directions of zero scattering (also for evanescent waves)
can then be easily interpreted geometrically in terms of
Snell-conjugate waves. Moreover, we have discovered an
interesting phenomenon of circularly-polarized Brewster
scattering in the reflected and transmitted light scattered
out of the plane of incidence when the light is incident
in the dense medium and the zero order wave undergoes
total internal reflection. The physical mechanism respon-
sible for this effect was explained based on the emission of
dipoles rotating in the plane of incidence (and by Snell-
conjugate waves), which are induced by the fact that

the reflected and transmitted zero order waves are out
of phase with the incident wave.

In the present work, particular attention is given to
the average phase of the scattered waves compared to
previously published works on the Yoneda and Brewster
scattering phenomena. We have seen that the Brewster
scattering phenomenon is associated with a phase jump,
while the region of polar scattering angles beyond the
Yoneda threshold is associated with a gradually changing
phase. These considerations on the phase of the scattered
waves can be of particular interest for testing the theory
against experiment, e.g. the phase behavior could be
tested by the use of interferometry techniques. A simple
way to measure the phase behavior associated with the
Yoneda and the Brewster scattering effects is to study the
scattering of light by a thin dielectric film deposited on
a dielectric substrate, as was recently suggested and ob-
served numerically in Ref. 30. For such a system, Selényi
rings, which are interference rings in the intensity of the
diffusely scattered light, are expected to exhibit: (i) a re-
versal of angular positions of the maxima and minima of
intensity of the rings for p-polarized light as the Brewster
scattering angle is surpassed; (ii) a gradual shift of the
angular positions of the rings with respect to those pre-
dicted by the simple path difference argument for light
scattered at angles beyond the Yoneda threshold due to
the additional gradual phase change associated with the
Yoneda phenomenon. In addition, a scattering experi-
ment such as the one achieved in Ref. 16, but where the
outgoing circularly-polarized light is measured instead of
the linearly polarized light, would be of particular inter-
est to verify the existence of a circularly-polarized Brew-
ster scattering phenomenon out of the plane of incidence
as it would strengthen the rotating dipole interpretation
from which it originates.

Finally, we emphasize that the results presented in this
work are approximate and are expected to be valid only
for weakly rough surfaces. Additional experimental and
theoretical investigations are therefore welcome to assess
the range of validity of the presented hypotheses.
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Appendix A: Perturbative solution

This appendix is devoted to the derivation of the method known as small amplitude perturbation theory (SAPT)
for obtaining approximate solutions of the reduced Rayleigh equations. The basic principle of the method is to expand

the kernel factor J b,al,m in a series of Fourier transforms of the power of the surface profile function ζ and to expand
the unknown reflection and transmission amplitudes in a similar series and matching terms of the same order. The
expansions can be expressed as follows

J b,al,m (p |q) = [bαl (p)−aαm (q)]−1
∫

exp[−i(p−q) · x‖] exp[−i(bαl (p)−aαm (q)) ζ(x‖)] d2x‖

=

∞∑

n=0

(−i)n
n!

[bαl (p)−aαm (q)]n−1 ζ̂(n)(p−q) (A1a)

R (q |p0) =

∞∑

j=0

(−i)j
j!

R(j) (q |p0) (A1b)

T (q |p0) =

∞∑

j=0

(−i)j
j!

T(j) (q |p0) . (A1c)

In equation Eq. (A1a), we have defined the Fourier transform of the nth power of ζ, which we will refer to as the nth

Fourier moment of the surface profile, as

ζ̂(n)(q) =

∫
ζn(x‖) exp[−iq ·x‖] d2x‖ . (A2)

We are now ready to proceed with the perturbative method.

Reflection: We start by inserting Eqs. (A1a,A1b) into the reduced Rayleigh equation Eq. (17) in the case of
reflection (see Eq. (18)). We obtain

∞∑

n=0

∞∑

j=0

(−i)n+j
n! j!

∫
[α2 (p)−α1 (q)]n−1 ζ̂(n)(p−q) M+,+

2,1 (p |q) R(j) (q |p0)
d2q

(2π)2

= −
∞∑

m=0

(−i)m
m!

[α2 (p) +α1(p0)]m−1 ζ̂(m)(p−p0) M+,−
2,1 (p |p0) . (A3)

A summation over all (n, j) ∈ N2 is equivalent to a summation over subsets Sm = {(n, j) ∈ N2 |n+ j = m} of pairs of
constant sum m = n+ j, i.e. that we have

∑∞
n,j=0 ≡

∑∞
m=0

∑
(n,j)∈Sm , therefore the previous equation can be recast

as
∞∑

m=0

(−i)m
m!

m∑

n=0

(
m

n

) ∫
[α2 (p)−α1 (q)]n−1 ζ̂(n)(p−q) M+,+

2,1 (p |q) R(m−n) (q |p0)
d2q

(2π)2

= −
∞∑

m=0

(−i)m
m!

[α2 (p) +α1(p0)]m−1 ζ̂(m)(p−p0) M+,−
2,1 (p |p0) . (A4)

Note that here we have used that 1
n! (m−n)! = 1

m!

(
m
n

)
by definition of the binomial coefficients. The perturbation

procedure consists in matching orders in both side of the equation. The order zero only consists of one term n = m = 0
and gives

∫
[α2 (p)−α1 (q)]−1 ζ̂(0)(p−q) M+,+

2,1 (p |q) R(0) (q |p0)
d2q

(2π)2

= −[α2 (p) +α1(p0)]−1 ζ̂(0)(p−p0) M+,−
2,1 (p |p0) . (A5)

By using that ζ̂(0)(p−q) = (2π)2 δ(p−q), we finally obtain the zero order reflection amplitude

R(0) (p |p0) = (2π)2 δ(p−p0)
α1(p0)− α2(p0)

α2(p0) + α1(p0)

[
M+,+

2,1 (p0 |p0)
]−1

M+,−
2,1 (p0 |p0) = (2π)2 δ(p−p0) ρ(0)(p0) (A6)
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We have just obtained that the zero order of the reflection amplitude corresponds exactly to the reflection amplitude
for a planar surface and it is straightforward to show that ρ(0)(p0) is a diagonal matrix containing the Fresnel
amplitudes. This was to be expected in the sense that the zero order of the surface profile corresponds to its averaged
plane. For orders m ≥ 1, we have

m∑

n=0

(
m

n

) ∫
[α2 (p)−α1 (q)]n−1 ζ̂(n)(p−q) M+,+

2,1 (p |q) R(m−n) (q |p0)
d2q

(2π)2

= −[α2 (p) +α1(p0)]m−1 ζ̂(m)(p−p0) M+,−
2,1 (p |p0) , (A7)

which by isolating the term of interest, n = 0 gives R(m) as a function of R(m−1) · · ·R(0), in other words we have a
recursive relation for determining all orders,

R(m) (p |p0) =[α1 (p)−α2 (p)]
[
M+,+

2,1 (p |p)
]−1 [

(α2 (p) +α1(p0))m−1 ζ̂(m)(p−p0) M+,−
2,1 (p |p0)

+

m∑

n=1

(
m

n

) ∫
[α2 (p)−α1 (q)]n−1 ζ̂(n)(p−q) M+,+

2,1 (p |q) R(m−n) (q |p0)
d2q

(2π)2

]
. (A8)

In general, the evaluation of high orders would require the evaluation of as many integrals as the order and can become
costly. For the first order, only one such integral is to be evaluated and is straightforward thanks to the fact that
R(0)(q |p0) ∝ δ(q−p0). Applying the above equation for m = 1 gives

R(1) (p |p0) = [α1 (p)−α2 (p)]
[
M+,+

2,1 (p |p)
]−1 [

ζ̂(1)(p−p0) M+,−
2,1 (p |p0)

+

∫
ζ̂(1)(p−q) M+,+

2,1 (p |q) R(0) (q |p0)
d2q

(2π)2

]

= [α1 (p)−α2 (p)] ζ̂(1)(p−p0)
[
M+,+

2,1 (p |p)
]−1 [

M+,−
2,1 (p |p0) + M+,+

2,1 (p |p0) ρ(0)(p0)
]

= [α1 (p)−α2 (p)] ζ̂(1)(p−p0) ρ̂(1) (p |p0) = ζ̂(1)(p−p0) ρ(1) (p |p0) . (A9)

In Eq. (A9), we define the amplitude ρ̂(1) (p |p0) and ρ(1) (p |p0) = (α1 (p)−α2 (p)) ρ̂(1) (p |p0). The reason for
these two alternative expressions is that the first one gives a factorization which is more easily interpreted from a
physical point of view while the latter factorization aims at separating what depends on the realization of the surface

profile, which is just ζ̂ here, and the amplitude factor ρ(1) (p |p0) which remains independent of the specific realization
of the surface profile (see Section III).

Transmission: Repeating the reasoning for the transmission amplitudes, we start by inserting Eqs. (A1a,A1c) into
Eq. (17) for transmission (see Eq. (18)) and get

∞∑

n=0

∞∑

j=0

(−i)n+j
n! j!

∫
[−α1 (p) +α2 (q)]n−1 ζ̂(n)(p−q) M−,−

1,2 (p |q) T(j) (q |p0)
d2q

(2π)2

=
2
√
ε1ε2 α1(p0)

ε2 − ε1
(2π)2 δ(p− p0) I2 . (A10)

By using the same re-summation argument as for reflection, the previous equation thus becomes

∞∑

m=0

m∑

n=0

(−i)m
m!

(
m

n

) ∫
[−α1 (p) +α2 (q)]n−1 ζ̂(n)(p−q) M−,−

1,2 (p |q) T(m−n) (q |p0)
d2q

(2π)2

=
2
√
ε1ε2 α1(p0)

ε2 − ε1
(2π)2 δ(p− p0) I2 . (A11)

Next we match the zero order to the right hand side and the other orders to zero. The zero order only consists of one
term n = m = 0 and gives

T(0) (p |p0) =
2
√
ε1ε2α1(p0)

ε2 − ε1
(2π)2 δ(p− p0) [α2(p0)− α1(p0)]

[
M−,−

1,2 (p0 |p0)
]−1

(A12)

= (2π)2 δ(p− p0) τ (0)(p0) (A13)
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Here we have used that ζ̂(0)(p−q) = (2π)2 δ(p−q). As observed for the reflection amplitudes, we have just obtained
that the zero order of the transmission amplitudes corresponds exactly to the transmission amplitudes for a planar
surface, i.e. that τ (0)(p0) is a diagonal matrix containing the Fresnel transmission amplitudes. For orders m ≥ 1, we
have

m∑

n=0

(
m

n

) ∫
[α2 (q)−α1 (p)]n−1 ζ̂(n)(p−q) M−,−

1,2 (p |q) T(m−n) (q |p0)
d2q

(2π)2
= 0 , (A14)

which by isolating the term of interest, n = 0 gives T(m) as a function of T(m−1) · · ·T(0), in other words we have a
recursive relation for determining all orders,

T(m) (p |p0) =[α1 (p)−α2 (p)]
[
M−,−

1,2 (p |p)
]−1

m∑

n=1

(
m

n

) ∫
[α2 (q)−α1 (p)]n−1 ζ̂(n)(p−q) M−,−

1,2 (p |q) T(m−n) (q |p0)
d2q

(2π)2
. (A15)

Applying the above equation for m = 1 and using that T(0) (q |p0) ∝ δ(q−p0) gives

T(1) (p |p0) =[α1 (p)−α2 (p)] ζ̂(1)(p−p0)
[
M−,−

1,2 (p |p)
]−1

M−,−
1,2 (p |p0) τ (0)(p0)

=[α1 (p)−α2 (p)] ζ̂(1)(p−p0) τ̂ (1) (p |p0) = ζ̂(1)(p−p0) τ (1) (p |p0) . (A16)

Appendix B: Differential reflection coefficient

Assuming we have obtained the reflection amplitudes Rαβ(p |p0) either by using the perturbative approach or by
the purely numerical simulation, we can now proceed to express the differential reflection coefficient (DRC) defined as
the time-averaged flux radiated around a given scattering direction (θr, φ) per unit solid angle and per unit incident
flux and denoted ∂R/∂Ωr(p |p0). Let a virtual hemisphere of radius r � c/ω lie on the plane x3 = 0 on top of
the scattering system. The support of this hemisphere is a disk of area S = πr2. We consider the scattering from
a truncated version of the scattering system in which the surface profiles are set to be flat outside the disk support.
Consequently, the field amplitudes we will manipulate are not strictly speaking those of the full system of interest but
will converge to them as r →∞. We will nevertheless keep the same notations as that from the full system introduced
in Section III for simplicity. The time-averaged flux incident on this disk is given by

Pinc/S = −Re
c

8π

∫

S

[
E∗0(p0)×

( c
ω

k−1 (p0)×E0(p0)
)]
· ê3 exp

[
−i(k−∗1 (p0)− k−1 (p0)) · x

]
d2x‖

= − c2

8πω
Re

∫

S

[
|E0(p0)|2 k−1 (p0)−

(
E∗0(p0) · k−1 (p0)

)
·E0(p0)

]
· ê3d2x‖

= S
c2

8πω
α1(p0) |E0(p0)|2

= S
c2

8πω
α1(p0)

[∣∣E0,p
∣∣2 +

∣∣E0,s
∣∣2
]
. (B1)

Here, the ∗ denotes the complex conjugate, and incident field amplitude E0(p0) = E0,p ê−p (p0)+E0,s ês(p0) as defined
in Eq. (13), the vector identity a× (b× c) = (a · c)b− (a · b)c and the orthogonality between the field and the wave
vector E∗0(p0) · k−1 (p0) = 0 have been used. Note that the flux incident on the disk is proportional to the disk area.
Let us now consider the outgoing flux crossing an elementary surface dσ = r2 sin θrdθrdφ = r2dΩr around a point
r = r (sin θr cosφ ê1 + sin θr sinφ ê2 + cos θr ê3) = r n̂. The flux crossing this elementary surface is given by

Pdσ =
c

8π
Re
[
E+∗

1 (r)×H+
1 (r)

]
· n̂ dσ. (B2)

We then use the well-known asymptotic expansion of the field in the far-field given by (see Refs. 44 and 45)

E+
1 (r) ∼ −i ε1/21

ω

2π c
cos θr

exp(iε
1/2
1

ω
c r)

r
E+

1 (p) (B3a)

H+
1 (r) ∼ −i ε1

ω

2π c
cos θr

exp(iε
1/2
1

ω
c r)

r
n̂×E+

1 (p) (B3b)
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where p =
√
ε1
ω
c (sin θr cosφ ê1 +sin θr sinφ ê2). This asymptotic approximation will become more and more accurate

as we let r →∞. Plugging Eq. (B3) into Eq. (B2) we obtain

Pdσ = ε
3/2
1

( ω

2π c

)2
cos2 θr

c

8π
|E+

1 (p)|2 dΩr = ε
3/2
1

( ω

2π c

)2
cos2 θr

c

8π

(
| E+1,p(p)|2 + | E+1,s(p)|2

)
dΩr. (B4)

The total differential reflection coefficient is then given by

∂R

∂Ωr
(p |p0) = lim

r→∞
Pdσ

Pinc/S dΩr
= lim
r→∞

ε1
S

( ω

2π c

)2 cos2 θr
cos θ0

| E+1,p(p)|2 + | E+1,s(p)|2
| E0,p |2 + | E0,s |2

. (B5)

From the total differential reflection coefficient given by Eq. (B5), we deduce the differential reflection coefficient when
an incident plane wave of polarization β, with lateral wave vector p0 is reflected into a plane wave of polarization α
with lateral wave vector p given as

∂Rαβ
∂Ωr

(p |p0) = lim
r→∞

ε1
S

( ω

2π c

)2 cos2 θr
cos θ0

|Rαβ(p |p0)|2 = lim
r→∞

∂R
(S)
αβ

∂Ωr
(p |p0). (B6)

As we are interested in averaging the optical response over realizations of the surface profiles, we consider the following
ensemble average

〈
∂R

(S)
αβ

∂Ωr
(p |p0)

〉
=
ε1
S

( ω

2π c

)2 cos2 θr
cos θ0

〈
|Rαβ(p |p0)|2

〉
. (B7)

A similar derivation for the differential transmitted coefficient yields

〈
∂T

(S)
αβ

∂Ωt
(p |p0)

〉
=

ε
3/2
2

ε
1/2
1 S

( ω

2π c

)2 cos2 θt
cos θ0

〈
|Tαβ(p |p0)|2

〉
. (B8)

By decomposing the reflection amplitudes as the sum of the mean and fluctuation (deviation from the mean)

Rαβ(p |p0) = 〈Rαβ(p |p0)〉+ [Rαβ(p |p0)− 〈Rαβ(p |p0)〉] , (B9)

we can decompose the MDRC as the sum of a coherent term and an incoherent term

〈
∂R

(S)
αβ

∂Ωr
(p |p0)

〉
=

〈
∂R

(S)
αβ

∂Ωr
(p |p0)

〉

coh

+

〈
∂R

(S)
αβ

∂Ωr
(p |p0)

〉

incoh

, (B10)

where
〈
∂R

(S)
αβ

∂Ωr
(p |p0)

〉

coh

=
ε1
S

( ω

2π c

)2 cos2 θr
cos θ0

|〈Rαβ(p |p0)〉|2 (B11a)

〈
∂R

(S)
αβ

∂Ωr
(p |p0)

〉

incoh

=
ε1
S

( ω

2π c

)2 cos2 θr
cos θ0

[〈
|Rαβ(p |p0)|2

〉
− |〈Rαβ(p |p0)〉|2

]
. (B11b)

If we now use the expression found in A for the reflection amplitudes to first order in the product of surface profiles,

R (p |p0) ≈ R(0) (p |p0)−iR(1) (p |p0) , (B12)

where R(0) (p |p0) is the response from the corresponding system with planar interface, Eq. (A6), and R(1) (p |p0)
is given in Eq. (A9), we obtain that the factor in the square bracket in Eq. (B11b) reads

〈
|Rαβ(p |p0)|2

〉
− |〈Rαβ(p |p0)〉|2 =

〈∣∣∣R(1)
αβ(p |p0)

∣∣∣
2
〉

=
〈
|ζ̂S(p−p0)|2

〉
|ρ(1)αβ (p |p0) |2. (B13)

Note here that we are still dealing with a scattering system whose surface profiles are flat outside the disk of radius
r, hence the subscript S. For the statistical properties attributed to the surface profiles in Sec. II, we have

〈
ζ̂S(q)ζ̂∗S(q)

〉
=

〈∫

S

∫

S

ζ(x)ζ(x′) exp [iq ·(x−x′)] d2x d2x′
〉

=

∫

S

∫

S

〈ζ(x)ζ(x′)〉 exp [iq ·(x−x′)] d2x d2x′

=

∫

S

∫

S

σ2 W (x−x′) exp [iq ·(x−x′)] d2x d2x′. (B14)
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Here we have used the definition of the Fourier transform, and the fact that ensemble average commutes with the
integration of the surfaces and the definition of the correlation function. Via the change of variable u = x−x′ we
obtain

〈
ζ̂S(q)ζ̂∗S(q)

〉
= S σ2

∫

S

W (u) exp(iq ·u) d2u = S σ2 gS(q). (B15)

Thus

〈
|Rαβ(p |p0)|2

〉
− |〈Rαβ(p |p0)〉|2 = S σ2 gS(p−p0)

∣∣∣ρ(1)αβ (p |p0)
∣∣∣
2

. (B16)

Finally, by plugging the above equation into Eq. (B11b), the surface area S cancels and letting r →∞, gS → g (where
we remind the reader that g is the power spectrum of the surface profiles) and we finally obtain the expression for
the incoherent component of the MDRC for the entire (infinite) system under the first order approximation of the
reflected amplitudes in product of the surface profiles

〈
∂Rαβ
∂Ωr

(p |p0)

〉

incoh

= ε1

( ω

2πc

)2 cos2 θr
cos θ0

g(p−p0) σ2
∣∣∣ρ(1)αβ (p |p0)

∣∣∣
2

. (B17)

Similarly, for the transmitted light we obtain

〈
∂Tαβ
∂Ωt

(p |p0)

〉

incoh

=
ε
3/2
2

ε
1/2
1

( ω

2πc

)2 cos2 θt
cos θ0

g(p−p0) σ2
∣∣∣τ (1)αβ (p |p0)

∣∣∣
2

. (B18)
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a b s t r a c t

By the use of both perturbative and non-perturbative solutions of
the reduced Rayleigh equation, we present a detailed study of the
scattering of light from two-dimensional weakly rough dielectric
films. It is shown that for several rough film configurations, Selényi
interference rings exist in the diffusely scattered light. For film
systems supported by dielectric substrates where only one of the
two interfaces of the film is weakly rough and the other planar,
Selényi interference rings are observed at angular positions that
can be determined from simple phase arguments. For such single-
rough-interface films, we find and explain by a single scattering
model that the contrast in the interference patterns is better when
the top interface of the film (the interface facing the incident light)
is rough than when the bottom interface is rough. When both film
interfaces are rough, Selényi interference rings exist but a potential
cross-correlation of the two rough interfaces of the film can be
used to selectively enhance some of the interference rings while
others are attenuated and might even disappear. This feature may
in principle be used in determining the correlation properties of
interfaces of films that otherwise would be difficult to access.
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1. Introduction

Interference effects in the diffuse light scattered by thin and rough dielectric films can look
both stunning and unexpected, and they have fascinated their observers for centuries. First formally
described in modern times as colorful rings in the diffusely scattered light originating from a dusty
back-silvered mirror by Newton [1], what is today known as Quételet- and Selényi-rings have been
thoroughly analyzed theoretically [2–6] and experimentally [7,8]. An example of a non-laboratory
situationwhere onemayobserve this phenomenon is in light reflections frombodies ofwater if appro-
priate algae are present on the water surface. This phenomenon, modeled as a thin layer of spherical
scatterers suspended on a reflecting planar surface, was investigated by Suhr and Schlichting [6].

In a theoretical study of the scattering from one-dimensional randomly rough surfaces ruled on
dielectric films on perfectly conducting substrates, Lu et al. [4] concluded that the degree of surface
roughness had the biggest impact onwhich interference phenomena could be observed. For filmswith
a thickness on the order of several wavelengths they were able to explain the periodic fringes they
observed in themean differential reflection coefficient through simple phase arguments. The patterns
in the diffusely scattered light were shown to undergo a transition, with increasing surface roughness,
from an intensity pattern exhibiting fringes whose angular positions are independent of the angle
of incidence (Selényi rings [9]) to one with fringes whose angular positions depend on the angle of
incidence (Quételet rings [7]) and eventually into a fringeless pattern with a backscattering peak,
which is a signature of multiple scattering [10]. Although the Selényi rings are centered around the
mean surface normal,with their position being independent of the angle of incidence, their amplitude,
however, is modulated by the angle of incidence. According to the current understanding of the
Selényi rings, their main origin is due to the interference between light scattered back directly from
the top scattering layer and light reflected by the film after being scattered within it. In this paper
we seek to complete this interpretation of the interference phenomena within a single scattering
approximation, enabling a sound interpretation of the Selényi rings for the previously unexplored
case when the rough surface is shifted to the non-incident face of the film.

A similar system to the one studied by Lu et al. was also thoroughly studied perturbatively and
experimentally by Kaganovskii et al. [8]. They concluded that the long-range (smooth) component
of the surface roughness, whenever present, can have a deciding effect on the interference pattern
observed in the diffusely scattered light.

However, most of the relevant studies conducted on the topic so far have been restricted to
investigations of scattering from a single rough interface. Allowing for more than one rough interface
significantly increases the complexity of the problem both analytically and computationally, but it
also opens a door to a richer set of scattering phenomena. Such stacked, multi-layered systems will in
many cases better represent the real-world scattering systems we are attempting to model [2]. Two
or more of these randomly rough interfaces in the stack will also often be correlated, either naturally
occurring, by design or by method of production [11,12]. Since both Quételet- and Selényi-rings may
enable a practical way of remote sensing and surface characterization for certain geometries and layer
thicknesses, it is important also to model the impact of such roughness cross-correlation.

In this paper we investigate interference effects in the light scattered diffusely from an optical
system composed of two semi-infinite media separated by a single thin dielectric film where both
interfaces may be rough [Fig. 1(a)]. After describing the statistical properties of the interfaces in
Section 2, we derive, in Section 3, a set of reduced Rayleigh equations (RREs) for the case of
electromagnetic scattering from a system with two rough interfaces, inspired by the work of Soubret
et al. [13]. Although only the case of reflected light will be analyzed in detail, the RREs for both
the reflection and the transmission amplitudes are given for completeness; furthermore, this also
serves to show that the presented framework can easily be generalized to an arbitrary number of
rough interfaces. A perturbative method and a purely numerical method for solving the RREs are
described in Section 4. Since solving the RREs for a set of two, or more, two-dimensional randomly
rough surfaces by purely numericalmeans is a highly computationally intensive task, the perturbative
method will be our main investigation tool for simulating and interpreting interference effects in
such geometries. In Section 5.1 we discuss rough film geometries where either the top interface or
bottom interface of the film is allowed to be randomly rough and the other interface is planar. For
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Fig. 1. (a) Layered systemwith two rough interfaces. (b) Definitions of the angles of incidence and scattering andwave vectors.

such geometries, we compare the predictions for the scattered intensities obtained on the basis of
the perturbative and non-perturbative methods. After having established the apparent validity of
the perturbative method for the level of roughness assumed, we continue to investigate rough film
geometries where both interfaces of the film are randomly rough and have a varying cross-correlation
[Section 5.2]. Section 5.3 gives a brief discussion concerning additional effects one expects to observe
in transmission. Finally, Section 6 presents the conclusions that we have drawn from this study.

2. Scattering systems

An overview of a typical system geometry is provided in Fig. 1. We consider the case where both
interfaces of the film may be randomly rough and possess non-trivial auto- and cross-correlation.
Furthermore, we will be interested in scattering systems for which the mean thickness of the film
is several wavelengths so that interference fringes can be observed in the diffusely reflected or
transmitted intensities. The definition of the geometry is set in the three-dimensional space endowed
with a Cartesian coordinate system (O, ê1, ê2, ê3), with the vector plane (ê1, ê2) parallel to the mean
plane of the interfaces [Fig. 1(b)]. The origin, O, can be arbitrarily chosen, only affecting the complex
reflection and transmission amplitudes by an overall phase factor which plays no role in the intensity
of the scattered light. The scattering system splits space into a slab of three domains, or layers, that
will be denoted by the indices j ∈ {1, 2, 3}. The mean thickness of the film will be denoted d > 0, and
the jth interface separating media j and j + 1 can be described by the equation

x3 = ζj(x∥) = dj + hj(x∥) , (1)

for j ∈ {1, 2}, where x∥ = x1 ê1 + x2 ê2, dj = ⟨ζj⟩ denotes the average of the jth profile (and
we have d1 − d2 = d), and the term hj will be assumed to be a continuous, differentiable, single-
valued, stationary, isotropic, Gaussian random process with zero mean and given auto-correlation.
More specifically, the surface profile functions are assumed to satisfy the following properties⟨

hj(x∥)
⟩
= 0 (2a)⟨

hj(x∥)hj(x′

∥
)
⟩
= σ 2

j W (x∥ − x′

∥
). (2b)

Here and in the following, the angle brackets denote an average over an ensemble of realizations of
the stochastic process, σj denotes the rms roughness of interface j and W (x∥) represents the height
auto-correlation function normalized so that W (0) = 1. For reasons of simplicity we here restrict
ourselves to the situation where both interfaces are characterized by the same form of the correlation
function. In particular, we will here assume a Gaussian form of the auto-correlation function that is
defined by

W (x∥) = exp
(

−
|x∥|

2

a2

)
, (3)
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where a is the correlation length. The corresponding power spectrum (defined as the Fourier trans-
form of W ) is then

g(p) = πa2 exp
(

−
|p|

2a2

4

)
, (4)

with p = p1 ê1 + p2 ê2. In addition, the two interfaces will be assumed to be cross-correlated in the
following way⟨

h1(x∥)h2(x′

∥
)
⟩
= γ σ1σ2 W (x∥ − x′

∥
) , (5)

where γ ∈ [−1, 1] is a dimensionless cross-correlation coupling variable. When γ = 0 the two
interfaces are uncorrelated, and the extreme cases γ = ±1 and σ1 = σ2 can be viewed respectively
as the second interface being a shifted copy of the first one by a vector−d ê3, or as the second interface
being a symmetric copy of the first one with respect to the plane x3 = (d1 +d2)/2.We can summarize
the correlations expressed by Eqs. (2b) and (5) by the following relation⟨

hi(x∥)hj(x′

∥
)
⟩
= [δij + γ (1 − δij)] σiσj W (x∥ − x′

∥
) , (6)

where δij denotes the Kronecker delta.

3. Formulation of the problem

The theoretical approach used in this work to study the scattering of light from the systems of
interest is based on the so-called reduced Rayleigh equations. A reduced Rayleigh equation is an
integral equation in which the integral kernel encodes the materials and geometry of the scattering
system and the unknowns are the reflection or transmission amplitudes for each polarization. In the
following, in order to establish thenotation andhighlight themain assumptions of themethod,wewill
briefly recall the key ideas of the derivation of the reduced Rayleigh equations for a system composed
of three media separated by two disjoint rough interfaces. We will use, to our knowledge, the most
general form of the reduced Rayleigh equations for a single interface derived by Soubret et al. in Ref.
[13] and used by these authors in Refs. [13,14] in the case of a single interface system and a film
geometry. Once the general framework is established, we will apply it to the specific geometries of
interest.

3.1. The reduced Rayleigh equations

All physical quantities introduced hereafter will be indexed with respect to the medium (domain)
they belong to. The electromagnetic response of the media is modeled by non-magnetic, homoge-
neous, isotropic, linear constitutive relations in the frequency domain, i.e. that a priori each medium
is characterized by frequency dependent scalar complex dielectric functions, ϵj(ω), where ω denotes
the frequency of the electromagneticwave excitation.We consider the presence of an electromagnetic
field (E,H) in thewhole space. The fieldswill be denoted by a subscript jdepending on their containing
medium. As an example, the electric field evaluated at a point x in medium 1 at time t is denoted
E1(x, t) = E1(x, ω) exp(−iωt). The source freeMaxwell equations, togetherwith homogeneous, linear
and isotropic constitutive relations in the frequency domain, result in the electric andmagnetic fields
satisfying the Helmholtz equation in each region. Namely, for all j ∈ {1, 2, 3},

∇
2Ej(x, ω) + ϵj(ω)

(ω

c

)2
Ej(x, ω) = 0 , (7)

and a similar equation satisfied for H. Here, ∇2 denotes the Laplace operator and c represents the
speed of light in vacuum. In the following, we will drop the time, or frequency, dependence, since
we assume a stationary regime where time contributes only by an overall phase factor exp(−iωt). It
is known that a solution to the Helmholtz equation can be written as a linear combination of plane
waves, thus the representation of the electric field in each region can be written as

Ej(x) =

∑
a=±

∫
R2

[
Ea
j,p(q) ê

a
p,j(q) + Ea

j,s(q) ês(q)
]
exp

(
i ka

j (q) · x
) d2q
(2π )2

, (8)
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where

αj(q) =

√
ϵj

(ω

c

)2
− q2, Re (αj), Im (αj) ≥ 0 , (9a)

k±

j (q) = q ± αj(q) ê3 , (9b)

ês(q) = ê3 × q̂ , (9c)

ê±

p,j(q) =
c

√
ϵjω

(
±αj(q) q̂ − |q| ê3

)
. (9d)

Here a caret over a vector indicates that the vector is a unit vector. Note that the wave vector
k±

j (q) of an elementary plane wave is decomposed into its projection q in the lateral vector plane
(ê1, ê2) and the component ±αj(q) along ê3. The sum for a = ± takes into account both upwards
and downwards propagating and evanescent (and possibly growing) waves. The field amplitude is
decomposed in the local polarization basis (êap,j(q) , ês(q) ), so that Ea

j,α(q) denotes the component of
the field amplitude in the polarization state α of the mode characterized by a and q. In this basis,
the directions given by ê±

p,j(q) , and ês(q) are respectively the directions of the p- and s-polarization
of the electric field amplitude. Furthermore, the electromagnetic fields have to satisfy the boundary
conditions (j ∈ {1, 2})

nj(x∥) ×

[
Ej+1(sj(x∥)) − Ej(sj(x∥))

]
= 0 (10a)

nj(x∥) ×

[
Hj+1(sj(x∥)) − Hj(sj(x∥))

]
= 0 , (10b)

where nj(x∥) is a vector that is normal to surface j at the surface point sj(x∥) = x∥ +ζj(x∥)ê3, and given
by

nj(x∥) = ê3 −
∂ζj

∂x1
(x∥) ê1 −

∂ζj

∂x2
(x∥) ê2 . (11)

Here, ∂/∂xk denotes the partial derivative along the direction êk. Following Soubret et al. [13], for a
given surface indexed by j, by substituting the field expansion Eq. (8) into Eq. (10) and by a clever
linear integral combination of the boundary conditions, one can show that the upward or downward
field amplitudes in medium j + 1 can be linked to the upward and downward field amplitudes in
medium j via the following integral equation defined for aj+1 = ±, j ∈ {1, 2}, and p in the vector
plane (ê1, ê2):∑

aj=±

∫
J aj+1,aj
j+1,j (p | q) Maj+1,aj

j+1,j (p | q) Eaj
j (q)

d2q
(2π )2

=
2 aj+1

√
ϵjϵj+1 αj+1(p)

ϵj+1 − ϵj
Eaj+1
j+1 (p) . (12)

Here Ea
j (q) = (Ea

j,p(q) , E
a
j,s(q) )

T denotes a column vector of the polarization components of the field
amplitude in medium j. Moreover, Mb,a

l,m(p | q) is a 2 × 2 matrix which originates from a change of
coordinate system between the local polarization basis (êbp,l(p) , ês(p) ) and (êap,m(q) , ês(q) ), defined
for a = ±, b = ±, and l,m ∈ {j, j + 1} such that l ̸= m as

Mb,a
l,m(p | q) =

⎛⎜⎝|p||q| + ab αl(p)αm(q) p̂ · q̂ −b
√

ϵm
ω

c
αl(p) [p̂ × q̂] · ê3

a
√

ϵl
ω

c
αm(q) [p̂ × q̂] · ê3

√
ϵlϵm

ω2

c2
p̂ · q̂

⎞⎟⎠ . (13)

The kernel scalar factor J b,a
l,m (p | q) encodes the surface geometry and is defined as

J b,a
l,m (p | q) = (bαl(p) − aαm(q) )−1

∫
exp

[
−i(kb

l (p) − ka
m(q) ) · (x∥ + ζj(x∥) ê3)

]
d2x∥. (14)
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Notice that, as already pointed out in Ref. [13], due to the symmetry of the boundary conditions, one
may also show in the same way that∑

aj+1=±

∫
J aj,aj+1
j,j+1 (p | q) Maj,aj+1

j,j+1 (p | q) Eaj+1
j+1 (q)

d2q
(2π )2

=
2 aj

√
ϵjϵj+1 αj(p)

ϵj − ϵj+1
Eaj
j (p) , (15)

which can be obtained from Eq. (12) by interchanging j and j + 1. Typically, Eq. (12) is appropriate to
solve the problem of reflection whereas Eq. (15) is appropriate to solve the problem of transmission,
as we will see later. In the following, it will be convenient to define

Θ
aj+1,aj
j+1,j (p | q) = α−1

j+1(p)J
aj+1,aj
j+1,j (p | q) Maj+1,aj

j+1,j (p | q) (16)

and

Θ
aj,aj+1
j,j+1 (p | q) = α−1

j (p)J aj,aj+1
j,j+1 (p | q) Maj,aj+1

j,j+1 (p | q) (17)

which we will refer to as the forward and backward single interface transfer kernels between media j
and j+1, respectively. Our aim is to study reflection from and transmission through thewhole system,
i.e. we need to relate the field amplitudes in regions 1 and 3 without having to explicitly consider the
field amplitudes in region 2. To this end, we have to combine Eq. (12) for j = 1 and j = 2 in order to
eliminate E±

2 . A systematic way of doing this, and which can be generalized to an arbitrary number
of layers, is presented below. The key observation lies in the fact that one can choose the sign aj+1 in
Eq. (12) and therefore Eq. (12) contains two vector equations for a given j. For reasons that will soon
become clear, the variable p that appears in Eq. (12) is renamed p2. By left-multiplying both sides of
Eq. (12) taken at j = 1 by a2 Θ

a3,a2
3,2 (p | p2), where a3 = ± can be arbitrarily chosen, we obtain∑

a1=±

a2

∫
Θ

a3,a2
3,2 (p | p2) Θ

a2,a1
2,1 (p2 | q) Ea1

1 (q)
d2q
(2π )2

=
2

√
ϵ1ϵ2

ϵ2 − ϵ1
Θ

a3,a2
3,2 (p | p2) Ea2

2 (p2) .

By integrating this equation over p2 divided by (2π )2 and summing over a2 = ±, one obtains that
the right-hand-side of the resulting equation is, up to a constant factor, equal to the left-hand-side of
Eq. (12) evaluated for j = 2. In this way we obtain

∑
a1=±

∫
Θ

a3,a1
3,1 (p | q) Ea1

1 (q)
d2q
(2π )2

= a3
4
√

ϵ1ϵ
2
2ϵ3

(ϵ3 − ϵ2)(ϵ2 − ϵ1)
Ea3
3 (p) , (18)

where the forward two-interface transfer kernel Θa3,a1
3,1 (p|q) is defined by the composition rule

Θ
a3,a1
3,1 (p | q) =

∑
a2=±

a2

∫
Θ

a3,a2
3,2 (p | p2) Θ

a2,a1
2,1 (p2 | q)

d2p2
(2π )2

. (19)

By a similar method and by the use of Eq. (15), we obtain the backward relation

∑
a3=±

∫
Θ

a1,a3
1,3 (p | q) Ea3

3 (q)
d2q
(2π )2

= a1
4
√

ϵ1ϵ
2
2ϵ3

(ϵ1 − ϵ2)(ϵ2 − ϵ3)
Ea1
1 (p) , (20)

where the backward two-interface transfer kernel Θa1,a3
1,3 (p|q) is defined as

Θ
a1,a3
1,3 (p | q) =

∑
a2=±

a2

∫
Θ

a1,a2
1,2 (p | p2) Θ

a2,a3
2,3 (p2 | q)

d2p2
(2π )2

. (21)

Let us nowmake a few remarks on Eqs. (18) and (19). Eq. (18) is an integral equation of the same form
as Eq. (12) but it only relates the field amplitudes in medium 1 and 3. Our aim of eliminating the field
amplitudes in the intermediarymedium is therefore achieved. However, this comes at a cost since the
new transfer kernelΘa3,a1

3,1 (p | q) is defined as an integral of the product of two single interface kernels
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as can be seen in Eq. (19). We will see that this pays off in the case where one of the interfaces is flat,
but that the cost can be significant in terms of computational load when both interfaces are rough.

So far,wehave stayed general and simply assumed thepresence of an electromagnetic field decom-
posed in propagating and non-propagating waves in each region. Therefore, there is no uniqueness
in the solutions to the transfer equations, Eqs. (18) and (20). To ensure a unique solution, one needs
to impose some constraints on the field. First, we need to introduce an incident field to our model.
This will split the field expansion into a sum of an incident field, which is given by our model of the
problem, and a scattered field. Note that within this framework, the incident field may be chosen to
be in either medium, or to be a combination of excitations incident from different media. Second, we
need to impose the Sommerfeld radiation condition at infinity. This implies that the non-propagating
waves are indeed only evanescent waves in the media unbounded in the ê3-direction and that the
propagating ones are directed outwards.

In our case, the incident field will be taken as a plane wave incident from medium 1 and defined
as

E0(x) =
[
E0,p ê

−

p,1(p0) + E0,s ês(p0)
]
exp

(
ik−

1 (p0) · x
)
, (22)

where p0 is the projection of the incident wave’s wave vector in the (ê1, ê2) plane, with the property
|p0| ≤

√
ϵ1 ω/c , i.e. we consider an incident propagating wave. The fact that this is the only incident

wave considered, together with the Sommerfeld radiation condition at infinity, gives, apart from the
incident field, that the only elementary waves allowed in the scattered field are those with wave
vectors of the form k+

1 (p) and k−

3 (p) in medium 1 and 3, respectively. This property can be expressed
by defining the field amplitudes

E−

1 (q) = (2π )2 δ(q − p0) E0 , (23a)
E+

3 (q) = 0 , (23b)

where E0 = (E0,p, E0,s)T. Next, we assume that the scattered field amplitudes are linearly related to
the incident field amplitude E0 via the reflection and transmission amplitudes, R(q | p0) and T(q | p0),
defined as

E+

1 (q) = R(q|p0)E0, (24a)
E−

3 (q) = T(q|p0)E0. (24b)

The reflection and transmission amplitudes are therefore described by 2 × 2 matrices, i.e. for X = R
or T

X =

(
Xpp Xps
Xsp Xss

)
. (25)

From a physical point of view, the coefficient Rαβ (q|p0) (resp. Tαβ (q|p0)) for α, β ∈ {p, s} is the field
amplitude for the reflected (resp. transmitted) lightwith lateralwave vectorq in the polarization state
α from a unit incident field with lateral wave vector p0 in the polarization state β . The reflection and
transmission amplitudes are then the unknowns in our scattering problem. The equations we need
to solve are deduced from the general equations Eqs. (18) and (20) by applying them respectively
at a3 = + and a1 = − and by using Eqs. (23) and (24) for the model of the field expansion. This
yields the following two decoupled integral equations for the reflection or transmission amplitudes,
the so-called reduced Rayleigh equations, that can bewritten in the following general form, forX = R
or T [15]∫

MX(p|q) X(q|p0)
d2q
(2π )2

= −NX(p|p0) , (26)

where the matricesMX and NX are given by

MR(p|q) = Θ
+,+
3,1 (p|q) (27a)

MT(p|q) = Θ
−,−
1,3 (p|q) (27b)
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NR(p|q) = Θ
+,−
3,1 (p|q) (27c)

NT(p|q) =

4
√

ϵ1ϵ
2
2ϵ3

(ϵ1 − ϵ2)(ϵ2 − ϵ3)
(2π )2 δ(p − q) I2, (27d)

with I2 denoting the 2 × 2 identity matrix. In the cases where only one interface is rough and the
other interface is planar, the complexity associated with the transfer kernels is equivalent to that of
a single rough interface separating two media. For instance, if the second interface is planar and the
first interface is rough, we can choose the origin of the coordinate system such that ζ2(x∥) = d2 = 0,
and Eq. (14) yields, for l,m ∈ {2, 3} and l ̸= m,

J b,a
l,m (p | q) =

(2π )2 δ(p − q)
bαl(p) − aαm(q)

. (28)

TheDirac distribution then simplifies thewave vector integrationpresent in the two-interface transfer
kernels and one gets

Θ
a3,a1
3,1 (p | q) =

∑
a2=±

a2
Ma3,a2

3,2 (p | p) Θa2,a1
2,1 (p | q)

α3(p) [a3α3(p) − a2α2(p) ]
, (29a)

and

Θ
a1,a3
1,3 (p | q) =

∑
a2=±

a2
Θ

a1,a2
1,2 (p | q) Ma2,a3

2,3 (q | q)
α2(q) [a2α2(q) − a3α3(q) ]

. (29b)

If the first interface is planar and the second interface rough,we can choose the origin of the coordinate
system such that ζ1(x∥) = d1 = 0, and Eq. (28) holds for l,m ∈ {1, 2} and l ̸= m, and the two-interface
transfer kernels read

Θ
a3,a1
3,1 (p | q) =

∑
a2=±

a2
Θ

a3,a2
3,2 (p | q) Ma2,a1

2,1 (q | q)
α2(q) [a2α2(q) − a1α1(q) ]

, (30a)

and

Θ
a1,a3
1,3 (p | q) =

∑
a2=±

a2
Ma1,a2

1,2 (p | p) Θa2,a3
2,3 (p | q)

α1(p) [a1α1(p) − a2α2(p) ]
. (30b)

3.2. Observables

The observable of interest in this study is the so-called incoherent (or diffuse) component of the
mean differential reflection coefficient (DRC) that we denote ⟨∂Rαβ (p|p0)/∂�s⟩incoh. It is defined as the
ensemble average over realizations of the surface profile function of the incoherent component of
the radiated reflected flux of an α-polarized wave around direction k̂+

1 (p), per unit incident flux of a
β-polarized plane wave of wave vector k−

1 (p0), and per unit solid angle. The precise mathematical
definition and the derivation of the expression for the mean DRC as a function of the reflection
amplitudes is given in Appendix B.

4. Numerical methods

Solutions of the reduced Rayleigh equation, Eq. (26), are obtained via both a perturbative and a
non-perturbative numerical approach. In this work we investigate systems with two interfaces; For
the case when one of these interfaces is planar we are able to employ both approaches, but when both
interfaces are rough wewill exclusively use the perturbative approach due to the high computational
cost of the non-perturbative approach.
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4.1. Perturbative method

The approximated solution of Eq. (26) for the reflection amplitudes, and to first order in product
of surface profiles, obtained by small amplitude perturbation theory (SAPT) is derived in Appendix A
and given by

R(p | p0) ≈ R(0)(p | p0) − iR(1)(p | p0) , (31a)

R(1)(p | p0) = ĥ1(p − p0)ρ1(p | p0) + ĥ2(p − p0)ρ2(p | p0). (31b)

Here R(0)(p | p0) is the response from the corresponding system with planar interfaces (i.e. that of a
Fabry–Perot interferometer), ĥj are the Fourier transforms of the stochastic component of the surface
profiles and ρj(p | p0) are matrix-valued amplitudes depending only on the mean film thickness,
the dielectric constants of all media and the wave vectors of incidence and scattering. The explicit
expressions for thesematrices are given in Appendix A (see Eq. (A.20)). The corresponding expression
for the incoherent component of themean differential reflection coefficient reads Appendices A and B⟨

∂Rαβ (p|p0)
∂�s

⟩
incoh

= ϵ1

( ω

2πc

)2 cos2θs
cos θ0

g(p − p0)
[
σ 2
1 |ρ1,αβ (p | p0)|2 + σ 2

2 |ρ2,αβ (p | p0)|2

+ 2γ σ1σ2 Re
{
ρ1,αβ (p | p0)ρ∗

2,αβ (p | p0)
} ]

, (32)

where the wave vectors

p =
√

ϵ1
ω

c
sin θs(cosφs ê1 + sinφs ê2) (33a)

and

p0 =
√

ϵ1
ω

c
sin θ0(cosφ0 ê1 + sinφ0 ê2) (33b)

are defined in terms of the angles of scattering (θs, φs) and incidence (θ0, φ0), respectively [see Fig. 1].
The three terms present in the angular brackets of Eq. (32) can be interpreted as follows. The term
containing σ 2

1 |ρ1,αβ (p | p0)|2 (resp. σ 2
2 |ρ2,αβ (p | p0)|2) corresponds to the contribution to the diffuse

intensity of the associated system for which the first (resp. second) interface would be rough and
the other planar. Indeed, this would be the only remaining term if we were to set σ2 = 0 (resp.
σ1 = 0) in Eq. (32). The sum of the two first terms would correspond to the sum of intensity of the
aforementioned associated systems,whichwould be the expected overall response if the two interface
were not correlated, i.e. if γ = 0. The last term in Eq. (32), which does not vanish for γ ̸= 0, can be
interpreted physically as taking into account the interference between paths resulting from single
scattering events on the top interface and those resulting from single scattering events on the bottom
interface. Note that this last term, in contrast to the two first, may take positive and negative values as
the incident and scatteringwave vectors are varied, and hencemay result in cross-correlation induced
constructive and destructive interference. It is clear from the derivation, however, that the overall
incoherent component of the mean differential coefficient remains non-negative, as is required for
any intensity.

4.2. Nonperturbative method

Solutions of Eq. (26) were also obtained in a rigorous, purely numerical, nonperturbative manner
according to the method described in detail in Ref. [16]; only a brief summary of the method is
presented here. This method has previously been used for the investigations of the two-dimensional
rough surface scattering of light from metallic or perfectly conducting surfaces [16–18]; from and
through single dielectric interfaces [17,19,20] and film geometries [21–23]. In this method, an
ensemble of realizations of the surface profile function ζj(x∥) is generated by the use of the Fourier
filtering method [24] on a square grid of Nx × Nx surface points, covering an area of S = L2 in
the (ê1, ê2)-plane. The integral equation, Eq. (26), is solved numerically with finite limits ±Q and
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discretization 1q = 2π/L with Nq × Nq points in wave vector space according to the Nyquist
sampling theorem given the spatial discretization of the surface. On evaluating the kernel scalar
factors J b,a

l,m (p | q) , defined in Eq. (14), we first expand the integrand in powers of ζj(x∥), truncate
this expansion after 20 terms, and integrate the resulting sum term-by-term. The Fourier integral of
ζ n
j (x∥) that remains nowonly depends on the surface profile function and thedifference in lateralwave
vectors p−q, and not onαl(p) andαm(q). These Fourier integrals are therefore calculated only once, on
a p−q grid, for every surface realization by the use of the fast Fourier transform. The resulting matrix
equations are then solved by LU factorization and back substitution, using the ScaLAPACK library [25].
This process is repeated for a large number Np of realizations of the surface profile function, enabling
the calculation of the ensemble averaged observables of interest; like the mean DRC.

It remains to mention that Eqs. (29) and (30), giving the transfer kernels in the case where only
one of the interfaces is rough and the other planar, have been written in a rather compact form.
Numerically, these expressions tend to lead to instabilities due to factors of the form exp(−iα2(q)d)
or exp(−iα2(p)d) which grow for evanescent waves inside the film. This technical issue is resolved
by using the following two ideas: (i) expanding the two terms in the kernels (i.e. for a2 = ±) and
factorizing out the troublesome exponential factor and canceling it on both sides of the reduced
Rayleigh equation (if the exponential factor is a function of the variable p) or (ii) making a change of
variable such that the troublesome exponential factor is absorbed into the reflection or transmission
amplitudes (if the exponential factor is a function of the variable q). One may also shift the x3-axis in
order to facilitate the aforementioned steps. We chose here not to give more details on the explicit
implementation, as these modifications are to be done in a case by case basis depending on which
surface is planar and whether the reflected or transmitted light is considered.

5. Results and discussion

5.1. Single rough interface

As a direct comparison between results obtained by the perturbative and nonperturbative so-
lutions of Eq. (26), Fig. 2 shows the angular distributions of the co-polarized (α = β) incoherent
contribution to the mean DRC for light incident from vacuum (ϵ1 = 1) that is reflected diffusively
into the plane of incidence (i.e. |p̂ · p̂0| = 1) from a randomly rough dielectric film (photoresist,
ϵ2 = 2.69) deposited on a silicon substrate (ϵ3 = 15.08 + 0.15i) for the cases where only one of
the interfaces is rough and the other planar. Results for the case where only the top interface (the
interface facing the medium of incidence) is rough (σ2 = 0) and where only the bottom interface
is rough (σ1 = 0) are shown in Figs. 2(a)–(b) and (c)–(d), respectively. Light was incident on the
dielectric film from the vacuum side in the form of a plane wave of wavelength λ = 632.8 nm with
angles of incidence (θ0, φ0) = (16.8◦, 0◦). The two interfaces were characterized by rms-roughness
σ1 = λ/30, σ2 = 0 [Figs. 2(a)–(b)] or σ1 = 0, σ2 = λ/30 [Figs. 2(c)–(d)], correlation length a = λ/3,
and the film thickness was assumed to be d = 8λ ≈ 5 µm. The scattering system was chosen in
order to highlight the interference phenomena and to purposely deviate from the more historically
typical scattering system of a dielectric film on a perfect electric conductor. The dashed curves in Fig. 2
display the results of computations of the perturbative solution of the RRE, Eq. (32), to leading order,
while the solid curves in Fig. 2 show the non-perturbative solutions of the RRE, Eq. (26). In obtaining
these latter results the following parameters, defined in Section 4.2, were used: Nx = 449, L = 45λ,
Nq = 225 and Np = 325, implying integration limits in wavevector space Q = ±2.5ω/c. Since these
non-perturbative results for the mean DRC are obtained through an ensemble average over a finite
number of surface realizations, they are less smooth than their perturbative counterparts, for which
the averaging is performed analytically. Using a larger number of surface realizations in obtaining the
ensemble average would have produced smoother results, but we have chosen not to do so here due
to the high associated computational cost.

Figs. 2(a)–(b) show excellent agreement between the results for the mean DRC obtained by the
analytical perturbative method and the corresponding results obtained by a full solution of the RRE
for the chosen parameters for the case where only the upper interface is rough. In particular, the
fringes observed in these figures are consistently predicted by both calculation methods for the set
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Fig. 2. Incoherent components of the mean DRCs for in-plane co-polarized scattering as functions of the polar angle of
scattering, θs (note the convention θs < 0 for φs = φ0 + 180◦). The light of wavelength λ = 632.8 nm was incident from
vacuum on the rough photoresist film supported by a silicon substrate [ϵ1 = 1.0, ϵ2 = 2.69, ϵ3 = 15.08 + 0.15i]. The surface-
height correlation length of the rough Gaussian correlated surface was a = λ/3, the mean film thickness was d = 8λ, and the
angles of incidence were (θ0, φ0) = (16.8◦, 0◦) in all cases. Panels (a) and (b) correspond to cases where only the top interface
was rough, while panels (c) and (d) present the results for a film where only the bottom interface of the film is rough. In both
cases, the rms-roughness of the rough interface was set to σ = λ/30. The results obtained on the basis of the non-perturbative
method are shown as solid lines while those obtained with the perturbative method, Eq. (32), are shown as dashed lines. The
position of the specular direction in reflection is indicated by the vertical dashed lines. The vertical dash-dotted and dotted
lines indicate the angular positions of the maxima and minima predicted by Eq. (36), respectively.

of parameters assumed and their angular positions agree well with the expected angular positions
(dashed–dotted vertical lines in Figs. 2(a)–(b)).When the lower surface is rough, the results presented
in Figs. 2(c)–(d) show that the agreement between the two calculation methods is still satisfactory,
but a larger discrepancy between them is now observed relative to what was found when the upper
surface was rough. This larger discrepancy might be due to the fact that the error between the
perturbative solution and the exact solution grows with the ratio of the dielectric constants of the
media that are separated by the rough interface. Since the dielectric contrast between the silicon
substrate and the photoresist film is larger than that between the photoresist film and vacuum,
the corresponding error is also larger. Since the perturbative method is employed only to leading
order, these agreements overall indicate that the physical phenomena that give rise to the scattered
intensity distributions are well approximated as single scattering phenomena, at least for weakly
rough surfaces.

We identify the interference fringes in Fig. 2 as in-plane scattering distributions of Selényi rings
[9]. These rings are known to be centered around themean surface normal, with their angular position
being independent of the angle of incidence. Their amplitude, however, is modulated by the angle of
incidence. This can indeed be observed if we vary the angle of incidence and record the resulting
in-plane co-polarized angular scattering distributions, presented as contour plots in the first two
columns of Fig. 3. Figs. 3(a)–(b) present, for p-polarized light, contour plots of the (θ0, θs) dependence
of the in-plane co-polarized incoherent component of themeanDRCwhen the top or bottom interface
of the film is rough, respectively. Similar results but for s-polarized light are presented in Figs. 3(f)–(g).
For both configurations, the co-polarized incoherent component of the mean DRC exhibits maxima
that occur on a regular grid of (θ0, θs)-points for s-polarized light [Figs. 3(f)–(g)]. A similar pattern
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Fig. 3. Scaled incoherent component of themean DRCs for in-plane co-polarized scattering, 100×⟨∂Rαα/∂�s⟩incoh , as functions
of the polar angle of incidence θ0 and the polar angle of scattering θs obtained on the basis of Eq. (32). The first row of sub-figures
[Figs. 3(a)–(e)] corresponds to p-polarized light (as marked in the figure), while the second row [Figs. 3(f)–(j)] corresponds to
s-polarized light. These results were obtained under the assumption that the wavelength in vacuum was λ = 632.8 nm, the
mean film thickness was d = 8λ, and the dielectric constants of the media were ϵ1 = 1.0, ϵ2 = 2.69, ϵ3 = 15.08 + 0.15i.
The rms-roughness of the rough interfaces of the film were assumed to be σ1 = σ2 = λ/30, and the Gaussian correlation
functions were characterized by the correlation length a = λ/3. The first column of sub-figures presents contour plots of the
mean DRCs for a film geometry where only the top interface of the film is rough and the bottom interface planar. The second
column shows similar results when the top film interface is planar and the bottom film interface is rough. In the third column,
contour plots of only the cross-correlation term in Eq. (32) – that is, the contribution to the mean DRC produced by the last
term in the square brackets of this equation – are depicted assuming a perfect correlation [γ = 1] between the rough top and
rough bottom interface of the film. Finally, in the fourth and fifth column, contour plots of the total mean DRCs obtained on the
basis of Eq. (32) are presented for two-rough-interface film geometries characterized by γ = 1 and γ = −1, respectively.

is observed for p-polarized light in Figs. 3(a)–(b), although the grid of maxima appears to lose some
of its regularity for the larger polar angles of incidence and scattering [Figs. 3(a)–(b)]. We speculate
that this is due to a Brewster effect, both in its traditional sense and through the Brewster scattering
angles [19,20,26], but we will not delve further on this behavior here. In addition, by comparing the
results presented in Figs. 2, 3(a)–(b), and 3(f)–(g), we note that the contrast in the interference pattern
is better for the configurations where the top interface is rough than for those where the bottom
interface is rough. In the following we will explain these observations in terms of a single scattering
model which is an extension of the model previously proposed by Lu and co-workers [4].

Lu et al. suggested that, for sufficiently small roughness, the main effect of the rough interface is to
produce scattered waves that cover a wide range of scattering angles both inside and outside the film,
and the film may then be considered to approximate a planar waveguide for subsequent reflections
and refractions within the film. This claim is supported by the observed agreement between the
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Fig. 4. Sketch of the optical paths involved in the single scatteringmodel in the case of scattering from the top surface (a) and (b),
or from the bottom interface (c). Incoherent component of the mean differential reflection coefficient for in-plane co-polarized
scattering as a function of the polar angle of scattering for normal incidence for p-polarization (d) to (f). Apart from the angle
of incidence the remaining parameters are the same as those from Fig. 2. In panels (d) and (f), the results were obtained from
SAPT (circles), and from the single scattering model Eqs. (40)(d) and (41)(e) (solid line) respectively for the cases illustrated in
(a–b) and (c). In panel (e), only the contribution of r ′′ (Eq. (39)) to the incoherent component of the mean DRC is shown.

mean DRC distributions obtained through the perturbative solution to leading order, whose physical
interpretation is to take only single scattering events into account, and the full solutions of the RRE in
Fig. 2, since the latter method allows for the full range of multiple scattering events. As the incident
light interacts with the rough interface, whether it is located at the top or bottom interface, multiple
wave components are generated in the film. These waves then undergo multiple specular reflections
within the film while also being partially refracted back into the medium of incidence. Since Lu et al.
only investigated the casewhere the rough interface is on top, their resultswere adequately explained
under the assumption that the incident light was scattered by the rough interface during its first
encounter with the interface. However, a more detailed analysis of the possible optical paths in the
system is necessary in order to fully understand the case where the rough interface is at the bottom of
the film, as illustrated by the more complete depiction of optical paths in Figs. 4(a)–(c). We will now
analyze the different optical paths involving a single scattering event in the two configurations inmore
detail, and also construct a model for the resulting reflection amplitudes. Let rji(p | p0) and tji(p | p0)
denote the reflection and transmission amplitudes obtained by small amplitude perturbation theory
to first order in the surface profile separating two media with dielectric constants ϵi and ϵj (with the
incident wave in medium i). Note that these amplitudes are different from those obtained for the full
system considered in this paper. The expressions for these reflection amplitudes can be found e.g. in
Refs. [19,20]. Moreover, let r (F)ji (p) and t (F)ji (p) represent the corresponding Fresnel amplitudes. All the
amplitudes considered heremay represent either p-polarization or s-polarization aswe treat in-plane
co-polarized scattering for simplicity.

In the case where only the top interface is rough the scattering event may occur on the first
intersection between the path and the top interface, yielding a reflected scattered path denoted (0)
in Fig. 4(a). Alternatively, on the first intersection the scattering event may yield a refracted (and
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scattered)wave in the film. Since the single scattering event allowed in our analysis has then occurred,
subsequent reflections within the film and refractions through the top interface are treated according
to Snell’s law of reflection and refraction, resulting in the paths denoted (1) and (2) (and so on) in
Fig. 4(a). With each such non-scattering interaction with an interface, the reflection/transmission
amplitude associated with the path is given by the Fresnel amplitude. Following the different paths
depicted in Fig. 4(a) and summing the corresponding (partial) reflection amplitudes we obtain the
following reflection amplitude:

r(p|p0) = r21(p|p0) + t (F)12 (p) r
(F)
32 (p) t21(p|p0) exp(2iϕs)

∞∑
n=0

[
r (F)12 (p) r

(F)
32 (p) exp(2iϕs)

]n

= r21(p|p0) +
t (F)12 (p) r

(F)
32 (p) t21(p|p0) exp(2iϕs)

1 − r (F)12 (p) r
(F)
32 (p) exp(2iϕs)

, (34)

where ϕs = 2π
√

ϵ2d cos θ
(2)
s /λ. The positions of the maxima in the resulting angular intensity

distribution |r(p|p0)|
2 are consistent with the predictions given by Lu et al. [4]. The difference in

optical path length between path (0) and (1), and between (1) and (2), and more generally between
two such consecutive paths, can be expressed as

1 = 2
√

ϵ2d cos θ (2)
s , (35)

where θs in the vacuum is related to θ
(2)
s in the film by

√
ϵ2 sin θ

(2)
s =

√
ϵ1 sin θs according to Snell’s

law. The polar angles of scattering for which the diffusely scattered intensity has local maxima are
given by

2π
√

ϵ2d
λ

cos θ (2)
s =

2πd
λ

(
ϵ2 − ϵ1sin2θs

)1/2
= (ν + 1/2)π, (36a)

while the positions of the minima are determined from the relation

2π
√

ϵ2d
λ

cos θ (2)
s =

2πd
λ

(
ϵ2 − ϵ1sin2θs

)1/2
= νπ, (36b)

where ν ∈ Z. The angular positions of the maxima and minima predicted by Eq. (36) are indicated by
vertical dash-dotted and dotted vertical lines, respectively, in Fig. 2, and these predictions agree well
with the maxima and minima that can be observed in the in-plane co-polarized mean DRC. Equation
(36) does not depend on the polar angle of incidence θ0, which supports the observation that the
positions of themaxima andminima of the incoherent components of themeanDRCdo notmovewith
angle of incidence for weakly rough films. However, the modulation of the fringes with the angle of
incidence cannot be explained if we consider solely the paths depicted in Fig. 4(a). Indeed, additional
paths involving a single scattering event may be drawn as illustrated in Fig. 4(b). It is possible for the
incident path not to experience a scattering event when it encounters the top interface for the first
time, and it may also bounce within the film an arbitrary number of times before it experiences a
scattering event while finally being refracted into the vacuum. Such paths are denoted (1′) and (2′) in
Fig. 4(b). The resulting (partial) reflection amplitude corresponding to the ‘‘single-primed’’ paths in
Fig. 4(b) reads

r ′(p|p0) = t12(p|p0) r
(F)
32 (p0) t

(F)
21 (p0) exp(2iϕ0)

∞∑
n=0

[
r (F)12 (p0) r

(F)
32 (p0) exp(2iϕ0)

]n

=
t12(p|p0) r

(F)
32 (p0) t

(F)
21 (p0) exp(2iϕ0)

1 − r (F)12 (p0) r
(F)
32 (p0) exp(2iϕ0)

, (37)

where ϕ0 = 2π
√

ϵ2d cos θ
(2)
0 /λ. The difference in optical path length between path (1′) and (2′) is

given by

1 = 2
√

ϵ2d cos θ
(2)
0 , (38)
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where
√

ϵ2 sin θ
(2)
0 =

√
ϵ1 sin θ0 according to Snell’s law. Hence, we again obtain a series of maxima

and minima in the mean DRC if we replace θ
(2)
s by θ

(2)
0 in Eq. (36), but this time the positions of

the maxima and minima are indeed a function of the polar angle of incidence θ0. This interference
phenomenon serves to modulate the intensity of the Selényi interference patterns. The static fringe
pattern and the modulation introduced by the angle of incidence is clearly observed in the in-plane
scattered intensities displayed in Fig. 3(a) and (f). However, we still have more optical paths to take
into account. Indeed, paths yielding outgoing paths of type (1′) and (2′) may experience a scattering
event while being reflected on the top surface instead of being refracted into the vacuum. Such a
scattering event is indicated by the star in Fig. 4(b), and thereon the path may be reflected within
the film an arbitrary number of times before being refracted into the vacuum as depicted by the
paths denoted (1′′) and (2′′) in Fig. 4(b). In order to obtain the reflection amplitudes corresponding
to all such paths, it suffices to multiply the overall reflection amplitude for all paths bouncing any
arbitrary number of times with an angle θ

(2)
0 within the film before the scattering event, with the

overall reflection amplitude of all paths starting from the scattering event and bouncing any number
of times within the film before being refracted into the vacuum. In this way we obtain the reflection
amplitude

r ′′(p|p0) = t (F)21 (p0) r
(F)
32 (p0) exp(2iϕ0)

∞∑
n=0

[
r (F)12 (p0) r

(F)
32 (p0) exp(2iϕ0)

]n

× t (F)12 (p) r
(F)
32 (p) r12(p|p0) exp(2iϕs)

∞∑
n′=0

[
r (F)12 (p) r

(F)
32 (p) exp(2iϕs)

]n′

=
t (F)12 (p) r

(F)
32 (p) r12(p|p0) r

(F)
32 (p0) t

(F)
21 (p0) exp(2i(ϕ0 + ϕs))[

1 − r (F)12 (p) r
(F)
32 (p) exp(2iϕs)

] [
1 − r (F)12 (p0) r

(F)
32 (p0) exp(2iϕ0)

] . (39)

Note that the paths (1′′) and (2′′) are somewhat ill-defined in Fig. 4(b). Indeed, each path represents a
family of paths with different history prior to the scattering event. For a given path, the path prior to
the scattering event consists of a number of specular reflections within the film for which amplitudes
dependent on the angle of incidence θ0, as seen previously for the paths represented by r ′, while the
path that follows after the scattering event consists of a number of specular reflectionswithin the film
which are dependent on the angle of scattering θs. Therefore, the phase difference between any two
such paths will, in general, contain an integer combination of ϕ0 and ϕs depending on the number
of bounces prior to and after the scattering event. Eq. (39) hence contains both ϕ0 and ϕs. The total
reflection amplitude for all possible paths involving a single scattering event for the rough-planar
(RP) film [Figs. 4(a) and (b)] is obtained by summing the amplitudes obtained from all the previously
analyzed diagrams, namely

rRP(p|p0) = r(p|p0) + r ′(p|p0) + r ′′(p|p0). (40)

The intensity distribution corresponding to Eq. (40) is shown in Fig. 4(d) for normal incidence and
p-polarized light, and is compared to results based on small amplitude perturbation theory to leading
order, Eq. (32), in the case where only the top interface is rough. The two results are literally
indistinguishable. Similar results were also found in the case of s-polarized light, but the results are
not shown (in order to keep the figure simple). These findings strongly suggest that the two methods
are equivalent. In particular, this means that the perturbative solution to leading order derived in
AppendixA can indeedbe interpreted as a sumof all paths involving a single scattering event, although
this was not obvious from the derivation itself. The model presented here thus justifies this physical
picture. Fig. 4(e) shows the incoherent contribution to the in-plane co-polarizedmean DRC onewould
obtain if only paths of type (1′′), (2′′), and so onwere present, in other words the intensity distribution
resulting from Eq. (39). The relative contribution from r ′′ [Fig. 4(e)] to rRP [Fig. 4(d)] is so small that it
to some approximation may be ignored, as it was in Ref. [4], but we will soon see that this path type
is crucial in the case of a system with the rough interface shifted to the bottom of the film.

Let us nowanalyze the casewhere only the bottom interface is rough, as illustrated in Fig. 4(c). Ifwe
follow paths (1) and (2) in Fig. 4(c), it becomes evident that a pathmust first undergo a Snell refraction
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from vacuum into the film before it may interact with the rough interface. Following this refraction
into the film a given path may undergo an arbitrary number of Snell reflections within the film, now
at a polar angle θ

(2)
0 with the normal to the mean film interfaces, before it is scattered by the rough

interface as indicated by the star in Fig. 4(c). The path then performs an arbitrary number of Snell
reflections within the film, now at a polar angle of scattering θ

(2)
s with the normal to the mean film

interfaces, before it exits into the vacuum. All possible paths involving a single scattering event are for
the present configuration depicted in Fig. 4(c), and it is now immediately evident that these paths bear
close resemblance to those shown in Fig. 4(b) which correspond to the amplitude r ′′. Consequently
the resulting intensity pattern associatedwith the paths in Fig. 4(c) will exhibit, by construction of the
paths, dependencies on both the polar angles of incidence and scattering as given by Eqs. (38) and (35).
This is supported both by the resulting reflection amplitude [Eq. (41)] and the angular positions of the
maxima and minima of the in-plane co-polarized mean DRC displayed in Figs. 2(c) and (d), indicated
as vertical dashed–dotted and dotted lines, respectively. Similar to what was done for the paths of
type (1′′) and (2′′) in the configuration depicted in Fig. 4(b), the resulting reflection amplitude for the
paths shown in Fig. 4(c) can be expressed as the product of the partial reflection amplitude resulting
from all possible paths prior to the scattering event and the partial reflection amplitude resulting from
all possible paths that may follow after the scattering event. The resulting reflection amplitude for the
planar-rough (PR) film [Fig. 4(c)] obtained in this way reads

rPR(p|p0) = t (F)21 (p0) exp(iϕ0)
∞∑
n=0

[
r (F)12 (p0) r

(F)
32 (p0) exp(2iϕ0)

]n

× t (F)12 (p) r32(p|p0) exp(iϕs)
∞∑

n′=0

[
r (F)12 (p) r

(F)
32 (p) exp(2iϕs)

]n′

=
t (F)12 (p) r32(p|p0) t

(F)
21 (p0) exp(i(ϕ0 + ϕs))[

1 − r (F)12 (p) r
(F)
32 (p) exp(2iϕs)

] [
1 − r (F)12 (p0) r

(F)
32 (p0) exp(2iϕ0)

] . (41)

The intensity pattern predicted by Eq. (41) is presented as a solid line in Fig. 4(f) for normal incident
p-polarized light; in the same figure, the filled circles represent the prediction from Eq. (32). As was
the case when only the top interface was rough, we find an excellent agreement between the two
approaches also when only the bottom interface is rough. A similar agreement was also found when
the incident light was s-polarized (results not shown). These findings support our single scattering
interpretation of the perturbative solution to leading order. We have now explained the angular
positions of the Selényi rings and their amplitude modulation with the angle of incidence based on
optical path analysis.

It remains to explain the difference in contrast observed in the interference patterns corresponding
to the geometries where the rough surface is either located on the top of the film or at the bottom of
the film (with the other film interface planar). In providing such an explanation, the expressions given
by Eqs. (40) and (41) will prove to be useful alternative representations of the perturbative solutions
of the RRE to leading order. Indeed, we can now investigate the relative contribution from each type
of path by artificially removing terms. In our analysis of the type of paths in the two configurations,
we have identified that paths of type (1′′) and (2′′), in the configuration where the top interface is
rough, are similar to paths (1) and (2) for the configuration where the bottom interface is rough.
As was mentioned previously, Fig. 4(e) shows the (diffuse) in-plane mean DRC we would obtain if
only paths of type (1′′), (2′′), etc. were present; in other words the scattering intensities originating
in Eq. (39). We observe that the curve in Fig. 4(e) exhibits poor contrast, and is very similar to the
scattering intensities observed in the case where the bottom interface is rough [Fig. 4(f)]. This clearly
hints towards the idea that the poor contrast observed when the bottom film interface is rough is
intrinsically linked to the nature of the paths. Moreover, we have seen that ignoring the contribution
from r ′′ in Eq. (40) gives a result similar to when all terms of the same equation are included. This
indicates that the contribution from r ′′ can be neglected relative to the other two terms in Eq. (40).
However, since paths similar to (1′′), (2′′), etc. are the only paths allowed for the configuration where
the bottom interface is rough, the contrast is poor by default. In both cases, and as we have seen, a



i
i

“report” — 2018/9/20 — 10:11 — page 411 — #433 i
i

i
i

i
i

368 J.-P. Banon et al. / Annals of Physics 389 (2018) 352–382

Fig. 5. The full angular distribution of the incoherent component of the mean DRC,
⟨
∂Rαβ/∂�s

⟩
incoh , as function of the lateral

wave vector q of the light that is scattered from a rough film where either the top interface is rough [Figs. 5(a)–(i)] or the
bottom interface is rough [Figs. 5(j)–(r)] and the other interface of the film is planar. The light of wavelength λ = 632.8 nmwas
incident from vacuum on the rough photoresist film supported by a silicon substrate [ϵ1 = 1.0, ϵ2 = 2.69, ϵ3 = 15.08+0.15i].
The rms-roughness of the rough film interface was σ1 = λ/30, σ2 = 0 [Figs. 5(a)–(i)] and σ1 = 0, σ2 = λ/30 [Figs. 5(j)–(r)].
The surface-height correlation length was a = 211nm = λ/3, the film thickness was d = 5062.4nm = 8λ and the angles
of incidence were (θ0, φ0) = (16.8◦, 0◦) for all panels. The positions of the specular directions in reflection are indicated by
white dots. The remaining parameters assumed for the scattering geometry and used in performing the numerical simulations
had values that are identical to those assumed in obtaining the results of Fig. 2. The upper halves of all panels are results from
the small amplitude perturbation method to leading order, while the lower halves show results obtained through the non-
perturbative solutions of the RRE. The sub-figures in Figs. 5(a)–(i) and (j)–(r) are both organized in the same manner and show
how incident β-polarized light is scattered by the one-rough-interface film geometry into α-polarized light [with α = p, s and
β = p, s] and denoted β → α. Moreover, the notation ◦ → ⋆ is taken to mean that the incident light was unpolarized while
the polarization of the scattered light was not recorded. For instance, this means that the data shown in Fig. 5(a) are obtained
by adding the data sets presented in Figs. 5(b)–(c); similarly, the data shown in Fig. 5(g) result from the addition and division
by a factor two of the data sets presented in Figs. 5(a) and (d); etc.. Finally, the in-plane intensity variations from Figs. 5(b, f)
and (k, o) are the curves depicted in Figs. 2(a)–(b) and (c)–(d), respectively. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

typical pathmust undergo a number of non-scattering reflectionswithin the filmboth before and after
the scattering event occurs. Consequently, the phase difference between any two such paths will in
general involve integer combinations of ϕ0 and ϕs, as can be seen from Eqs. (39) and (41). This phase
mixing is the fundamental reason for the difference in contrast found in the contributions to the total
intensity rRP from the three components of Eq. (40). The difference in contrast can also be investigated
mathematically by estimating the contrast directly, as explained in Appendix C.

We now turn to the full angular distributions for the mean DRC. Figs. 5(a)–(i) and (j)–(r) show the
full angular distributions of the incoherent contribution to the mean DRC, for simulation parameters
corresponding to those assumed in obtaining the results of Figs. 2(a)–(b) and (c)–(d), respectively. In
fact, the non-perturbative results presented in Figs. 2(a)–(b) and (c)–(d) correspond to in-plane cuts
along the q1 axis from Figs. 5(b, f, k, o). The results of Fig. 5 show that, in addition to the interference
phenomena already mentioned, the distributions of the incoherent contributions to the mean DRC
are also weighted by the shifted power spectrum of the rough interface. In the current work this is
a Gaussian envelope centered at the angle of specular reflection, where the width of the envelope is
directly influenced by the surface-height correlation length a. This is shown explicitly in the case of
small amplitude perturbation theory to leading order as the term g(p − p0) in Eq. (32), and its impact
on the scattering distributions should not be confused with the interference phenomena.
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The reader may verify that the maxima and minima are located at the same positions as predicted
for Fig. 2, as is predicted by Eq. (36). However, for Figs. 5(j)–(r) the contrast in the oscillations of the
incoherent contribution to themeanDRC is now less pronounced, as explained for in-plane scattering.

The lower left 2 × 2 panels in each of the panel collections in Fig. 5 display overall dipole-like
patterns oriented along the plane of incidence for co-polarized scattering and perpendicular to it for
cross-polarized scattering. These features are consequences of the definition used for the polarization
vectors of our system. They are similar to the scattered intensity patterns obtained in recent studies
of light scattering from single two-dimensional randomly rough surfaces [16,19,20,27–29].

5.2. Two rough interfaces

We will now turn to the discussion of the geometry where both the top and bottom interfaces of
the film are rough. In the following it will be assumed that these rough interfaces are characterized by
Eq. (6), and for simplicity it will be assumed that their rms-roughness are the same and equal to σ1 =

σ2 = λ/30. The cross-correlation between these two interfaces is characterized by the parameter
γ which is allowed to take values in the interval from −1 to 1. All the remaining experimental
parameters are identical to those assumed in the preceding sections of this paper.

For the case where only one of the two interfaces of the film was rough, we demonstrated that
good agreement exists between the results obtained by a purely numerical solution of the RRE and
those obtained on the basis of a perturbative solution of the same equation [SAPT]. A purely numerical
solution of the RRE associated with a film geometry where more than one of the interfaces are
rough is a challenging task that requires extensive computational resources to obtain, and to the
best of our knowledge such a purely numerical solution has not yet been reported. Therefore, for
film geometries where both interfaces are rough we will only solve the corresponding RRE through
SAPT to obtain the incoherent component of the mean DRC to second order in products of the surface
profile functions, for which the relevant expression is given by Eq. (32). In the following it will be
assumed that for the level of surface roughness thatwe consider here,which provided accurate results
for the corresponding one-rough-interface film geometry considered in the preceding subsection,
such a perturbative solution method is sufficiently accurate to adequately describe the physics of the
problem under investigation.

The first set of scattering results for a film bounded by two rough interfaces is presented in Fig. 6. In
particular, Figs. 6(a)–(c) present the incoherent component of themean DRC for in-plane co-polarized
scattering (i.e. |p̂ · p̂0| = 1 and α = β) as a function of the polar angle of scattering θs, for given polar
angle of incidence equal to θ0 = 0◦, and for three extreme values of the cross-correlation parameter
γ ∈ {0, 1, −1}. These three values of γ physically correspond to the situations of uncorrelated film
interfaces; perfectly positively correlated interfaces so that the film thickness measured along any
vertical line segment will be constant and equal to d; and perfectly negatively correlated or anti-
correlated interfaces, respectively. From Fig. 6(a) one observes that for uncorrelated interfaces of the
film [γ = 0], the number of interference fringes and their angular positions remain unchanged as
compared to what was found when only one of the two interfaces of the filmwas rough. This is found
to be the case for both p- and s-polarized incident light. Such behavior can easily be understood in
terms of the expression in Eq. (32); when γ = 0 only the first two terms in the square brackets on
the right-hand-side of this equation contribute. These two terms are the only non-zero contributions
to the incoherent component of the mean DRC (to second order) for a film system bounded by two
uncorrelated rough surfaces. Moreover, these two contributions are, respectively, identical to the
incoherent component of the mean DRC obtained for film geometries where either the top or the
bottom interface of the film is rough and the other planar. Summing these two contributions will
hence result in summing two similar interference intensity patterns. Consequently, the resulting
interference pattern maintains the same number of fringes at the same positions as the pattern
obtained from scattering from the corresponding one-rough interface film geometry. However, by
gradually introducing more cross-correlation between the two rough interfaces of the film [γ ̸= 0],
one observes that half of the fringes observed for the system for which γ = 0 are significantly
attenuated whereas the other half are enhanced [Figs. 6(b) and (c)]. Furthermore, it is observed from
the results in Figs. 6(a)–(c) that the fringes that are enhanced (attenuated) for the case when γ = 1
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Fig. 6. Incoherent components of the mean differential reflection coefficients ⟨∂Rαα/∂�s⟩incoh for in-plane co-polarized
scattering from a two-rough-interface film geometry for the polar angle of incidence θ0 = 0◦ [Figs. 6(a)–(c)] and θ0 = 60◦

[Figs. 6(d)–(e)]. The wavelength of the incident light was λ = 632 nm, the mean thickness of the film d = 8λ, and the dielectric
constants of themediawere ϵ1 = 1.0, ϵ2 = 2.69, ϵ3 = 15.08+0.15i. The rms-roughness of the interfaceswereσ1 = σ2 = λ/30,
and the Gaussian correlation functions of each of the surfaces were characterized by the correlation length a = λ/3. The cross-
correlation function between the rough top and rough bottom interface of the film had the form (5) and was characterized by
the parameter γ with values as indicated in each of the panels. The vertical dash-dotted and dotted lines indicate the expected
angular positions of the maxima and minima of the scattered intensity as predicted by Eq. (36b), respectively. For reasons of
clarity only the expected positions of the minima of the in-plane mean DRCs are indicated in Figs. 6(a) and (d).

are the fringes being attenuated (enhanced) for the case when γ = −1. This phenomenon can
be attributed to the last term in the square brackets in Eq. (32) which is linear in γ and can take
both positive and negative values and hence increase or decrease the value of the intensity pattern
resulting from the superposition of the scattering amplitudes obtained for the two independent
aforementioned one-rough-interface film geometries.

The last term in the square brackets of Eq. (32) is an interference term. Physically it can be inter-
preted as the interference between a path formed by a single scattering event occurring on the top in-
terface of the film such as one depicted in Figs. 4(a–b), and a path consisting of a single scattering event
taking place on the bottom interface as depicted in Fig. 4(c).When the two interfaces are uncorrelated,
the phase difference between these two optical paths will form an uncorrelated random variable so
that the ensemble average of the termwhere it appears in Eq. (32) will be zero and themean DRCwill
equal the sum of the intensities of the two corresponding one-rough-interface geometries, i.e. it will
be given by the two first terms of Eq. (32). However,when the two interfaces of the film are completely
or partially correlated, |γ | > 0, the phase difference of these two paths becomes a correlated random
variable so that the interference term – the last term in (32) – does not average to zero; this results in
an optical interference effect. Consequently, the observed interference pattern for |γ | > 0 will obtain
a non-zero contribution from the last term in the square brackets of Eq. (32), which thus will make it
different from the pattern obtained for an uncorrelated film geometry that corresponds to γ = 0.

Figs. 6(d)–(f) present for polar angle of incidence θ0 = 60◦ similar results to those presented
in Figs. 6(a)–(c) for normal incidence. Except for the increased intensity of the light scattered into
the forward direction defined by θs > 0◦ relative to what is scattered into angles θs < 0◦, and the
increased contrast of the fringes observed for s-polarized light in the forward direction, the behavior of
themean DRC curves is rather similar for the two angles of incidence. In particular, for the same value



i
i

“report” — 2018/9/20 — 10:11 — page 414 — #436 i
i

i
i

i
i

J.-P. Banon et al. / Annals of Physics 389 (2018) 352–382 371

of γ , fringes are observed at the same angular positions for the two angles of incidence. Moreover,
which of the fringes that are enhanced or attenuated by the introduction of (positive or negative)
cross-correlation between the two rough interfaces of the film are also the same for the two angles of
incidence. Such behavior is as expected for Selényi fringes.

A close inspection of the perturbative results presented in Fig. 6 reveals that for both θ0 = 0◦ and
θ0 = 60◦ the angular positions of the maxima of the in-plane, co-polarized mean DRC curves are
more accurately predicted by Eq. (36) for s-polarized light than for p-polarized light; this seems in
particular to be the case for the larger values of |θs|. We speculate that such behavior is related to a
phase change associated with the Brewster scattering phenomenon [19,20,26] that exists in the case
of p-polarized light, reminiscent of the well known phase change associated with the Brewster angle
found for planar interfaces.

So far in our analysis of the two-rough-interface film geometry, we have observed that the
enhancement or attenuation of the diffusely scattered co-polarized intensity are localized to regions
around the polar angles determined by Eq. (36a). In order to make this observation more apparent,
Figs. 3(a)–(e) present various terms, or combinations of terms, from Eq. (32) when the incident and
scattered light is p-polarized; Figs. 3(f)–(j) depict similar results for s-polarized incident and scattered
light. The three first columns of sub-figures that are present in Fig. 3 – labeled ‘‘Interface 1’’, ‘‘Interface
2’’, and ‘‘Cross-correlation’’ – represent the terms in Eq. (32) that contain the factors σ 2

1 , σ
2
2 , and σ1σ2,

respectively. The cross-correlation terms, Figs. 3(c) and (h), where obtained from the last term of
Eq. (32) with γ = 1. Furthermore, a contour plot that appears in the 4th column of Fig. 3 [labeled
‘‘Total (γ = 1)"], displays the sum of the data used to produce the three first mean DRC contour plots
appearing in the same row. In other words, the results depicted in Figs. 3(d) and (i) are the contour
plots of the incoherent component of the mean DRC for a film geometry bounded by two perfectly
correlated rough interfaces and therefore given by the expression in Eq. (32) with γ = 1. Similarly,
the incoherent component of themeanDRCs for a geometrywhere the two rough interfaces of the film
are perfectly anti-correlated are displayed in the last column of Fig. 3 [Figs. 3(e) and (j)] and labeled
‘‘Total (γ = −1)’’. These latter results correspond to Eq. (32) with γ = −1, and can be obtained by
summing the results of the two first columns and subtracting the result of the third column of Fig. 3.

The contour plots of the cross-correlation terms presented in Figs. 3(c) and (h), which are obtained
under the assumption that γ = 1, display extrema localized on the same grid of points in the (θ0, θs)-
plane as the extrema of the incoherent component of the mean DRC obtained when only one of the
film interfaces is rough [Figs. 3(a)–(b) and (f)–(g)]. An important observation should be made from
these results. The minima of the former (the cross-correlation terms) are negative while the latter are
always non-negative. Hence, the incoherent component of the mean DRC for γ = 1, which according
to Eq. (32) corresponds to the addition of the results used to produce the three first columns of each
row of Fig. 3, will cause fringes localized at the minima of the cross-correlation terms to be attenuated
(or disappear) and those localized at the maxima of the cross-correlation terms to be enhanced [see
Figs. 3(d) and (i)].

The preceding discussion stays valid when considering the full angular distribution of the inco-
herent component of the mean DRC. Fig. 7 presents the full angular distribution of the incoherent
component of the mean DRC, obtained on the basis of Eq. (32), for the two polar angles of incidence
θ0 = 0◦ [Figs. 7(a)–(f)] and θ0 = 60◦ [Figs. 7(g)–(l)]. In this figure, each column formedby the sub-plots
corresponds to either p- or s-polarized incident light, and in all cases the polarization of the scattered
light was not recorded. Moreover, each of the three rows of sub-figures that are present in Fig. 7
corresponds to different values for the cross-correlation parameter γ ∈ {0, 1, −1} as indicated in the
figure. From the results presented in Fig. 7 it should be apparent that what appear as fringes in the
in-plane angular dependence of the mean DRCs indeed are expressed as interference rings in the full-
angular distribution of the same quantity; this is particularly apparent for normal incidencewhere the
intensity of the (Selényi) interference rings is independent of the azimuthal angle of scattering φs (due
to the rotational invariance of the system and the source). The angular distributions in Figs. 7(a)–(f)
also demonstrate very clearly how the possible interference rings present for uncorrelated interfaces
of the film [γ = 0] are enhanced or attenuated when |γ | ̸= 0, i.e. when cross-correlation exists
between the two rough interfaces of the film.

Figs. 7(g)–(l) show that interference rings are also present for non-normal incidence and that they
are present for the same polar scattering angles θs as was found for normal incidence. However, for
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Fig. 7. The full angular distribution of the incoherent component of the mean DRC,
⟨
∂Rαβ/∂�s

⟩
incoh , for incident β-polarized

light that is scattered by a two-rough-interface film geometry into α-polarized light [with α = p, s and β = p, s]. When the
polarization of the scattered light is not observed, the relevant mean DRC quantity is

∑
α=p,s

⟨
∂Rαβ/∂�s

⟩
incoh and this situation

is labeled as β → ⋆. The reported results were obtained on the basis of SAPT, Eq. (32), and the polar angles of incidence
were θ0 = 0◦ [Figs. 7(a)–(f)] and θ0 = 60◦ [Figs. 7(g)–(l)]. The incident in-plane wave vector is indicated by the white dot
for non-normal incidence [Figs. 7(g)–(l)]. The cross-correlation function between the rough top and rough bottom interface of
the film had the form (5) and was characterized by the parameter γ as indicated in the figure (and constant for each row of
sub-figure). The remaining roughness parameters are identical to those assumed in producing the results presented in Fig. 6.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

non-normal incidence the intensity of the rings does depend on the azimuthal angle of scattering. It
is found that the intensity of the interference rings are concentrated to the forward scattering plane
[|φs − φ0| < 90◦].

For normal incidence Fig. 8 presents, for completeness, the full angular distribution of
⟨
∂Rαβ/

∂�s
⟩
incoh for all possible linear polarization couplings, i.e. from incident β-polarized light to scattered

α-polarized light. The values assumed for the cross-correlation parameter in obtaining these results
were γ ∈ {0, 1, −1}. It should be observed from the results of Fig. 8 that interference structures are
observed but they are not ring structures of a constant amplitude as was seen in Figs. 7(a)–(f). The
reason for this difference is that in the results presented in Fig. 8 only scattered light of a given linear
polarization was observed; this contrasts with the situation assumed in producing Fig. 7 where all
scattered light was observed and not only scattered light of a given linear polarization.

We have here only shown the extreme cases of cross-correlation, but one may also consider
intermediate values for the cross-correlation parameter γ . The effect found for γ = ±1 remains
also for 0 < |γ | < 1 but with less pronounced enhancement and attenuation of the rings. The reader
is invited to take a look at the animations in the Supplementary Materials, where the contour plots
of the incoherent component of the mean DRCs are featured for smoothly varying cross-correlation
parameter γ over the interval from −1 to 1, for both normal incidence and for θ0 = 60◦ incidence.

5.3. Transmitted light

Finally, we would like to briefly comment on what would be observed in transmission if a non-
absorbingmediumwas chosen, such as silica. No results will be presented here, but we have observed
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Fig. 8. The full angular distribution of the incoherent component of the mean DRC,
⟨
∂Rαβ/∂�s

⟩
incoh , for incident β-polarized

light of polar angle θ0 = 0◦ that is scattered by a two-rough-interface film geometry into α-polarized light [with α = p, s
and β = p, s] and labeled β → α in the sub-figures. The cross-correlation function between the rough top and rough bottom
interface of the film had the form (5) and was characterized by the parameter γ as marked in the figure. The reported results
were obtained on the basis of SAPT, Eq. (32). The remaining experimental and roughness parameters are identical to those
assumed in producing the results presented in Figs. 6 and 7.

that interference rings are also observed in the diffusely transmitted light and that the effect of
enhancement and attenuation of the rings induced by the interface cross-correlation still holds.
Furthermore, additional features attributed to the so-called Brewster scattering angles and Yoneda
effects in the diffusely transmitted light would then be present. As presented in Ref. [20] for scattering
systems of comparable surface roughness and materials, the diffusely transmitted intensity as a
function of angle of transmission will be modulated by a typical Yoneda intensity pattern. At normal
incidence this pattern exhibits a peak at some critical angle of scattering for s-polarized light and a
vanishing intensity for p-polarized light (see Ref. [20] for details). However, we observed that not only
did the overall intensity distribution undergo such modulation: the angular positions of the fringes
were also affected compared to the predictions provided by naive optical path arguments, analogous
to what was presented in this paper for reflection. The angular positions of the fringes predicted by
optical path arguments leading to equations similar to Eq. (36) still hold for scattering angles below the
Yoneda critical angle, butmust be corrected for scattering angles larger than the Yoneda critical angle.
We speculate that this is due to a gradual phase shift that occurs above the critical angle, and that it is
associatedwith the Yoneda phenomenon. Note that this phenomenon is also observed in the diffusely
reflected light if the medium of incidence has a higher refractive index than that of the substrate (i.e.
ϵ1 > ϵ3) [19,22]. Moreover, we have also observed that when scattered to larger polar angles than
the Brewster scattering angle the p-polarized transmitted light exhibits an additional phase shift, as
compared to s-polarized transmitted light, resulting in a switch in the positions for the maxima and
minima. These and other features of the interference rings in the diffusely transmitted light will be
discussed in more detail in a dedicated paper.
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6. Conclusion

Based on both non-perturbative and perturbative solutions of the reduced Rayleigh equation,
we have in this paper demonstrated that for systems composed of two-dimensional weakly rough
dielectric films, Selényi rings can be observed in the diffusely scattered light. These rings make up a
static interference pattern that is modulated by the polar angle of incidence. We have illustrated that
the interference mechanism at play can be explained by simple optical path arguments, leading to a
simplemodel capable of predicting both the angular positions of the rings and the expected difference
in contrast of the rings for film geometries where either the top or the bottom interface of the film is
rough (but not both interfaces).

Furthermore, by investigating the influence of the cross-correlation between the film interfaces
when both interfaces are rough, we have shown that a selective enhancement or attenuation of the
interference rings in the diffusely scattered light can be observed. This suggests that the positions
and the amplitudes of Selényi rings can, when combined with reflectivity and/or ellipsometry
measurements, in principle enable the determination of the mean film thickness, the dielectric
constant of the film material and the statistical properties of the interfaces. In particular, numerical
experiments show that the cross-correlation between interfaces can be assessed. Alternatively, film
geometries consisting of cross-correlated interfaces can be designed to control the intensity pattern
of the diffusely scattered light that they give rise to. Sensors can also be designed in such a way that
the interference rings observed for a clean system with known cross-correlated interfaces will be
modified by the adsorption of a substance or nano-particles onto the first interface, hence partially
destroying the effective cross-correlation between the interfaces. These possibilities are, however,
likely to be limited by the ordering of length scales d > λ > σ , which expresses the fact that
the film thickness must be on the order of a few wavelengths to observe interference rings in the
diffusely scattered light and that the rms-roughness of the interfaces should be small compared to
the wavelength. Such a length scale ordering combined with controlled interface cross-correlation
may be challenging to achieve experimentally.

While the main results presented in this paper considered the diffusely scattered light, the
theoretical framework that it presents also allows for the investigation into the light transmitted
diffusely through transparent film structures with one or several rough interfaces. The developed
theoretical framework is readily generalized to the case of an arbitrary number of correlated layers
and allows, for example, for the study of the effect of gradually changing cross-correlations overmany
interfaces.

We hope that the results presented in this paper can motivate experimental investigations into
the scattering of light from rough film systems so that the predictions that are reported here based on
theoretical grounds can be confirmed experimentally.
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Appendix A. Perturbative solution

We present here a method known as small amplitude perturbation theory that we apply to find an
approximate solution of the reduced Rayleigh equations. We will illustrate the method considering
a system made of a stack of three media separated by two randomly rough interfaces, like the one
depicted in Fig. 1. Using the notation introduced in Section 3, we know that the reduced Rayleigh
equations for the reflection amplitude is given by Eqs. (26) and (27)∫

Θ
+,+
3,1 (p | q) R(q | p0)

d2q
(2π )2

= −Θ
+,−
3,1 (p | p0) , (A.1)
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where we recall that the forward two-interface transfer kernel is defined as

Θ
a3,a1
3,1 (p3 | p1) =

∑
a2=±

a2

∫
Θ

a3,a2
3,2 (p3 | p2)Θ

a2,a1
2,1 (p2 | p1)

d2p2
(2π )2

, (A.2)

with the single-interface kernelsΘb,a
l,m defined for successivemedia, i.e. l,m ∈ {1, 3} such that |l−m| =

1, a, b ∈ {±}, as

Θ
b,a
l,m(p | q) = α−1

l (p)J b,a
l,m (p | q) Mb,a

l,m(p | q). (A.3)

The perturbative method consists in expanding each single-interface kernel in a series of Fourier
moments. In order to avoid unnecessary lengthy expansion, we first introduce some notations that
will allow us to keep a compact derivation and proved to be useful for generalizing to an arbitrary
number of layers and for numerical implementation. We define

Θ̃
a3,a1,(m)
3,1 (p3 | p2 | p1) =

∑
a2=±

a2 α−1
3 (p3)

[
a3α3(p3) − a2α2(p2)

]m2−1

× exp
[
−i

{
a3α3(p3) − a2α2(p2)

}
d2

]
× α−1

2 (p2)
[
a2α2(p2) − a1α1(p1)

]m1−1

× exp
[
−i

{
a2α2(p2) − a1α1(p1)

}
d1

]
× Ma3,a2

3,2 (p3 | p2)M
a2,a1
2,1 (p2 | p1) , (A.4)

wherem = (m1,m2) ∈ N2 is a pair-index (i.e. a two componentmulti-index). Here, we havemade the
choice of factorizing the phase factor e−i(aj+1αj+1(pj+1)−ajαj(pj))dj , with dj = ⟨ζj⟩ being the offset height
of the jth interface, from each factor J aj+1,aj

j+1,j (pj+1 | pj) for later convenience. Given this definition, an
expansion of the two-interface kernel in Fourier moments is given by

Θ
a3,a1
3,1 (p3 | p1) =

∞∑
m=0

(−i)|m|

m!

∫
ĥ(m2)
2 (p3 − p2) ĥ

(m1)
1 (p2 − p1)Θ̃

a3,a1,(m)
3,1 (p3 | p2 | p1)

d2p2
(2π )2

=

∞∑
m=0

(−i)|m|

m!
Za3,a1,(m)
3,1 (p3 | p1) , (A.5)

where
∑

∞

m=0 ≡
∑

∞

m1=0
∑

∞

m2=0, |m| = m1 +m2 is the length of the pair-index, andm! = m1!m2!, and
for all j ∈ {1, 2},

ĥ
(mj)
j (q) =

∫
exp

[
−iq · x

] [
ζj(x) − dj

]mjd2x , (A.6)

is the Fourier moment of hj = ζj − dj of order mj. It is then clear that Za3,a1,(m)
3,1 (p3 | p1) is a term of

order |m| in product of surface profiles. The reflection amplitude can be expanded as

R(q | p0) =

∞∑
j=0

(−i)j

j!
R(j)(q | p0) , (A.7)

where the term R(j)(q | p0) is of order j in product of surface profiles. We are now ready to start the
derivation of the perturbative expansion. By plugging Eqs. (A.5) and (A.7) into Eq. (A.1) we obtain

∞∑
m′=0
j=0

(−i)|m
′
|+j

m′! j!

∫
Z+,+,(m′)
3,1 (p | q) R(j)(q | p0)

d2q
(2π )2

= −

∞∑
m=0

(−i)|m|

m!
Z+,−,(m)
3,1 (p | p0). (A.8)

Summing over all multi-index m is equivalent to summing over subsets Sm = {m ∈ N2
||m| = m}

of multi-index of constant lengthm, i.e. that we have
∑

∞

m=0 ≡
∑

∞

m=0
∑

m∈Sm
, therefore the previous
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equation can be re-written as
∞∑

m′=0
j=0

∑
m′∈S

m′

(−i)m
′
+j

m′! j!

∫
Z+,+,(m′)
3,1 (p | q) R(j)(q | p0)

d2q
(2π )2

= −

∞∑
m=0

∑
m∈Sm

(−i)m

m!
Z+,−,(m)
3,1 (p | p0). (A.9)

We then use the definition of the multinomial coefficient in multi-index form as |m|!/m! =
(
|m|

m

)
to

obtain
∞∑

m′=0
j=0

(−i)m
′
+j

m′! j!

∑
m′∈S

m′

(
m′

m′

)∫
Z+,+,(m′)
3,1 (p | q) R(j)(q | p0)

d2q
(2π )2

= −

∞∑
m=0

(−i)m

m!

∑
m∈Sm

(
m
m

)
Z+,−,(m)
3,1 (p | p0). (A.10)

We nowmake a change of summation index j ↔ m − m′ on the left hand side of the above equation.
This makes clearly appear terms of orderm in product of surface profiles. We obtain

∞∑
m=0

m∑
m′=0

(−i)m

m′! (m − m′)!

∑
m′∈S

m′

(
m′

m′

)∫
Z+,+,(m′)
3,1 (p | q) R(m−m′)(q | p0)

d2q
(2π )2

= −

∞∑
m=0

(−i)m

m!

∑
m∈Sm

(
m
m

)
Z+,−,(m)
3,1 (p | p0) , (A.11)

which can be re-written with the use of the definition of the binomial coefficient
(m
m′

)
as

∞∑
m=0

(−i)m

m!

m∑
m′=0

(
m
m′

) ∑
m′∈S

m′

(
m′

m′

)∫
Z+,+,(m′)
3,1 (p | q) R(m−m′)(q | p0)

d2q
(2π )2

= −

∞∑
m=0

(−i)m

m!

∑
m∈Sm

(
m
m

)
Z+,−,(m)
3,1 (p | p0).

It is now time to identify terms of same orders in the left and right hand sides. For m = 0, only the
term form′

= (0, 0) remains in the left hand side, only the termm = (0, 0) remains in the right hand
side and we have∫

Z+,+,(0)
3,1 (p | q) R(0)(q | p0)

d2q
(2π )2

= −Z+,−,(0)
3,1 (p | p0). (A.12)

which, when expanded, reads∫∫
ĥ(0)
2 (p − p2) ĥ

(0)
1 (p2 − q)Θ̃+,+,(0)

3,1 (p | p2 | q)
d2p2
(2π )2

R(0)(q | p0)
d2q
(2π )2

= −

∫
ĥ(0)
2 (p − p2) ĥ

(0)
1 (p2 − p0)Θ̃

+,−,(0)
3,1 (p | p2 | p0)

d2p2
(2π )2

. (A.13)

From the definition of the zero order Fourier moment, we have ĥ(0)
j (q) = (2π )2 δ(q), which yields

Θ̃
+,+,(0)
3,1 (p | p | p) R(0)(p | p0) = −(2π )2Θ̃+,−,(0)

3,1 (p0 | p0 | p0) δ(p − p0). (A.14)
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Here, the reader may recognize the solution of the reflection problem for a stack of layers with flat
interfaces, i.e. Fresnel amplitudes

R(0)(p|p0) = −
[
Θ̄

+,+
3,1 (p0)

]−1
Θ̄

+,−
3,1 (p0) (2π )2δ(p − p0) = −ρ0(p0) (2π )2δ(p − p0) , (A.15)

where Θ̄
+,+
3,1 (p0) ≡ Θ̃

+,+,(0)
3,1 (p0 | p0 | p0) and Θ̄

+,−
3,1 (p0) ≡ Θ̃

+,−,(0)
3,1 (p0 | p0 | p0). Thus, the order zero of

the perturbative expansion corresponds to the Fresnel coefficients for the corresponding systemwith
flat interfaces. For ordersm ≥ 1, we have

m∑
m′=0

(
m
m′

) ∑
m′∈S

m′

(
m′

m′

)∫
Z+,+,(m′)
3,1 (p | q) R(m−m′)(q | p0)

d2q
(2π )2

= −

∑
m∈Sm

(
m
m

)
Z+,−,(m)
3,1 (p | p0).

By isolating the term corresponding to m′
= 0, hence m′

= (0, 0) and using that for all j ∈ {1, 2} we
have ĥ(0)

j (q) = (2π )2 δ(q), we obtain

R(m)(p | p0) = −
[
Θ̄

+,+
3,1 (p)

]−1

⎡⎣ ∑
m∈Sm

(
m
m

)
Z+,−,(m)
3,1 (p | p0)

+

m∑
m′=1

(
m
m′

)∫ ∑
m′∈S

m′

(
m′

m′

)
Z+,+,(m′)
3,1 (p | q)R(m−m′)(q | p0)

d2q
(2π )2

⎤⎦ . (A.16)

We have finally obtained a recursive expression giving themth order term in the reflection amplitude
expansion as a function of lower order terms. For weakly rough surfaces, an approximation based on
a truncation of the expansion of the reflection amplitude Eq. (A.7) to the first non-trivial order often
yields accurate physical insights. Form = 1, we obtain that

R(1)(p | p0) = −
[
Θ̄

+,+
3,1 (p)

]−1
[
Z+,−,(1,0)
3,1 (p | p0) + Z+,−,(0,1)

3,1 (p | p0)

+

∫ (
Z+,+,(1,0)
3,1 (p | q) + Z+,+,(0,1)

3,1 (p | q)
)
R(0)(q | p0)

d2q
(2π )2

]
= −

[
Θ̄

+,+
3,1 (p)

]−1
[
Z+,−,(1,0)
3,1 (p | p0) + Z+,−,(0,1)

3,1 (p | p0)

−

(
Z+,+,(1,0)
3,1 (p | p0) + Z+,+,(0,1)

3,1 (p | p0)
) [

Θ̄
+,+
3,1 (p0)

]−1
Θ̄

+,−
3,1 (p0)

]
, (A.17)

where we have used the previously obtained expression for R(0)(q | p0) in Eq. (A.15), and in particular
the fundamental property of the Dirac delta. From the definition of Za3,a1,(m)

3,1 [Eq. (A.5)] it is clear that
form = (1, 0) or (0, 1) the integration reduces to

Za3,a1,(1,0)
3,1 (p | p0) = ĥ(1)

1 (p − p0)Θ̃
a3,a1,(1,0)
3,1 (p | p | p0) (A.18a)

Za3,a1,(0,1)
3,1 (p | p0) = ĥ(1)

2 (p − p0)Θ̃
a3,a1,(0,1)
3,1 (p | p0 | p0). (A.18b)

It is convenient to group terms with common factor ĥj ≡ ĥ(1)
j in Eq. (A.17), which leads to

R(1)(p | p0) = ĥ1(p − p0)ρ1(p | p0) + ĥ2(p − p0)ρ2(p | p0) , (A.19)

with

ρ1(p | p0) =
[
Θ̄

+,+
3,1 (p)

]−1
[
Θ̃

+,+,(1,0)
3,1 (p | p | p0)ρ0(p0) − Θ̃

+,−,(1,0)
3,1 (p | p | p0)

]
(A.20a)

ρ2(p | p0) =
[
Θ̄

+,+
3,1 (p)

]−1
[
Θ̃

+,+,(0,1)
3,1 (p | p0 | p0)ρ0(p0) − Θ̃

+,−,(0,1)
3,1 (p | p0 | p0)

]
. (A.20b)



i
i

“report” — 2018/9/20 — 10:11 — page 421 — #443 i
i

i
i

i
i

378 J.-P. Banon et al. / Annals of Physics 389 (2018) 352–382

We have treated the case of reflection as a representative example, but the same method applies for
transmission.

Appendix B. Differential reflection coefficient

Assuming we have obtained the reflection amplitudes Rαβ (p | p0) either by using the perturbative
approach or by the purely numerical simulation, we can now proceed to express the differential
reflection coefficient (DRC) defined as the time-averaged flux radiated around a given scattering
direction (θs, φs) per unit solid angle and per unit incident flux and denoted ∂R/∂�s(p | p0). Let a
virtual hemisphere of radius r ≫ c/ω lie on the plane x3 = 0 on top of the scattering system. The
support of this hemisphere is a disk of area S = πr2. We consider the scattering from a truncated
version of the scattering system inwhich the surface profiles are set to be flat outside the disk support.
Consequently, the field amplitudes we will manipulate are not strictly speaking those of the full
system of interest butwill converge to them as r → ∞. Wewill nevertheless keep the same notations
as that from the full system introduced in Section 3 for simplicity. The time-averaged flux incident on
this disk is given by

Pinc/S = −Re
c
8π

∫
S

[
E∗

0(p0) ×

( c
ω

k−

1 (p0) × E0(p0)
)]

· ê3 exp
[
−i(k−∗

1 (p0) − k−

1 (p0)) · x
]
d2x∥

= −
c2

8πω
Re

∫
S

[
|E0(p0)|

2 k−

1 (p0) −
(
E∗

0(p0) · k−

1 (p0)
)
· E0(p0)

]
· ê3d2x∥

= S
c2

8πω
α1(p0) |E0(p0)|

2

= S
c2

8πω
α1(p0)

[⏐⏐E0,p⏐⏐2 +
⏐⏐E0,s⏐⏐2] . (B.1)

Here, the ∗ denotes the complex conjugate, and incident field amplitude E0(p0) = E0,p ê
−

p,1(p0) +

E0,s ês(p0) as defined in Eq. (22), the vector identity a × (b × c) = (a · c)b − (a · b)c and the
orthogonality between the field and the wave vector E∗

0(p0) · k−

1 (p0) = 0 have been used. Note that
the flux incident on the disk is proportional to the disk area. Let us now consider the outgoing flux
crossing an elementary surface dσ = r2 sin θsdθsdφs = r2d�s around a point r = r (sin θs cosφs ê1 +

sin θs sinφs ê2 + cos θs ê3) = r n̂. The flux crossing this elementary surface is given by

Pdσ =
c
8π

Re
[
E+∗

1 (r) × H+

1 (r)
]
· n̂ dσ . (B.2)

We then use the well-known asymptotic expansion of the field in the far-field given by (see Refs.
[30,31])

E+

1 (r) ∼ −i ϵ1/2
1

ω

2π c
cos θs

exp(iϵ1/2
1

ω
c r)

r
E+

1 (p) (B.3a)

H+

1 (r) ∼ −i ϵ1
ω

2π c
cos θs

exp(iϵ1/2
1

ω
c r)

r
n̂ × E+

1 (p) (B.3b)

where p =
√

ϵ1
ω
c (sin θs cosφs ê1 + sin θs sinφs ê2). This asymptotic approximation will becomemore

and more accurate as we let r → ∞. Plugging Eq. (B.3) into Eq. (B.2) we obtain

Pdσ = ϵ
3/2
1

( ω

2π c

)2
cos2θs

c
8π

|E+

1 (p)|
2 d�s

= ϵ
3/2
1

( ω

2π c

)2
cos2θs

c
8π

(
|E+

1,p(p)|
2
+ |E+

1,s(p)|
2
)

d�s. (B.4)

The total differential reflection coefficient is then given by

∂R
∂�s

(p | p0) = lim
r→∞

Pdσ
Pinc/S d�s

= lim
r→∞

ϵ1

S

( ω

2π c

)2 cos2θs
cos θ0

|E+

1,p(p)|
2
+ |E+

1,s(p)|
2

|E0,p|
2
+ |E0,s|

2 . (B.5)
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From the total differential reflection coefficient given by Eq. (B.5), we deduce the differential reflection
coefficient when an incident plane wave of polarization β , with in-plane wave vector p0 is reflected
into a plane wave of polarization α with in-plane wave vector p given as

∂Rαβ

∂�s
(p | p0) = lim

r→∞

ϵ1

S

( ω

2π c

)2 cos2θs
cos θ0

⏐⏐Rαβ (p | p0)
⏐⏐2 = lim

r→∞

∂R(S)
αβ

∂�s
(p | p0). (B.6)

As we are interested in averaging the optical response over realizations of the surface profiles, we
consider the following ensemble average⟨

∂R(S)
αβ

∂�s
(p | p0)

⟩
=

ϵ1

S

( ω

2π c

)2 cos2θs
cos θ0

⟨
|Rαβ (p | p0)|

2⟩ . (B.7)

By decomposing the reflection amplitudes as the sum of the mean and fluctuation (deviation from
the mean)

Rαβ (p | p0) =
⟨
Rαβ (p | p0)

⟩
+

[
Rαβ (p | p0) −

⟨
Rαβ (p | p0)

⟩]
, (B.8)

we can decompose the mean differential reflection coefficient as the sum of a coherent term and an
incoherent term⟨

∂R(S)
αβ

∂�s
(p | p0)

⟩
=

⟨
∂R(S)

αβ

∂�s
(p | p0)

⟩
coh

+

⟨
∂R(S)

αβ

∂�s
(p | p0)

⟩
incoh

, (B.9)

where ⟨
∂R(S)

αβ

∂�s
(p | p0)

⟩
coh

=
ϵ1

S

( ω

2π c

)2 cos2θs
cos θ0

⏐⏐⟨Rαβ (p | p0)
⟩⏐⏐2 (B.10a)⟨

∂R(S)
αβ

∂�s
(p|p0)

⟩
incoh

=
ϵ1

S

( ω

2π c

)2 cos2θs
cos θ0

[⟨⏐⏐Rαβ (p|p0)
⏐⏐2⟩ −

⏐⏐⟨Rαβ (p|p0)⟩
⏐⏐2] . (B.10b)

If we now use the expression found in Appendix A for the reflection amplitudes to first order in the
product of surface profiles,

R(p | p0) ≈ R(0)(p | p0) − iR(1)(p | p0) , (B.11)

where R(0)(p | p0) is the response from the corresponding system with flat interfaces (i.e. that of a
Fabry–Perot interferometer), Eq. (A.15), and R(1)(p | p0) is given in Eq. (A.19), we obtain that the factor
in the square bracket in Eq. (B.10b) reads⟨

|Rαβ (p | p0)|
2⟩

−
⏐⏐⟨Rαβ (p | p0)

⟩⏐⏐2 =

⟨⏐⏐⏐R(1)
αβ (p | p0)

⏐⏐⏐2⟩
=

⟨
|ĥ1,S(p − p0)|

2⟩
|ρ1,αβ (p | p0)|2

+

⟨
|ĥ2,S(p − p0)|

2⟩
|ρ2,αβ (p | p0)|2

+ 2 Re
⟨
ĥ1,S(p − p0)ĥ

∗

2,S(p − p0)
⟩

×
(
ρ1,αβ (p | p0)ρ∗

2,αβ (p | p0)
)
. (B.12)

Note here that we are still dealing with a scattering systemwhose surface profiles are flat outside the
disk of radius r , hence the subscript S. For the statistical properties attributed to the surface profiles
in Section 2, we have⟨

ĥi,S(q)ĥ∗

j,S(q)
⟩
=

⟨∫
S

∫
S
hi(x)hj(x′) exp

[
iq · (x − x′)

]
d2x d2x′

⟩
=

∫
S

∫
S

⟨
hi(x)hj(x′)

⟩
exp

[
iq · (x − x′)

]
d2x d2x′



i
i

“report” — 2018/9/20 — 10:11 — page 423 — #445 i
i

i
i

i
i

380 J.-P. Banon et al. / Annals of Physics 389 (2018) 352–382

=

∫
S

∫
S
γij W (x − x′) exp

[
iq · (x − x′)

]
d2x d2x′. (B.13)

Here we have used the definition of the Fourier transform, and the fact that ensemble average
commutes with the integration of the surfaces and the definition of the correlation function. We have
also introduced the shorthand γij =

[
δij + γ (1 − δij)

]
σi σj. Via the change of variable u = x − x′ we

obtain ⟨
ĥi,S(q)ĥ∗

j,S(q)
⟩
= S γij

∫
S
W (u) exp(iq · u) d2u = S γij gS(q). (B.14)

Thus ⟨
|Rαβ (p | p0)|

2⟩
−

⏐⏐⟨Rαβ (p | p0)
⟩⏐⏐2 = S gS(p − p0)

[
σ 2
1

⏐⏐ρ1,αβ (p | p0)
⏐⏐2 + σ 2

2

⏐⏐ρ2,αβ (p | p0)
⏐⏐2

+ 2γ σ1σ2 Re
{
ρ1,αβ (p | p0)ρ∗

2,αβ (p | p0)
} ]

. (B.15)

Finally, by plugging the above equation into Eq. (B.10b), the surface area S cancels and letting r → ∞,
gS → g (where we remind the reader that g is the power spectrum of the surface profiles) and
we finally obtain the expression for the incoherent component of the mean differential reflection
coefficient for the entire (infinite) system under the first order approximation of the reflected
amplitudes in product of the surface profiles⟨

∂Rαβ (p|p0)
∂�s

⟩
incoh

= ϵ1

( ω

2πc

)2 cos2θs
cos θ0

g(p − p0)
[
σ 2
1

⏐⏐ρ1,αβ (p | p0)
⏐⏐2 + σ 2

2

⏐⏐ρ2,αβ (p | p0)
⏐⏐2

+ 2γ σ1σ2 Re
{
ρ1,αβ (p | p0)ρ∗

2,αβ (p | p0)
} ]

. (B.16)

Appendix C. Contrast estimates

We propose here to motivate mathematically that the phase mixing in paths of type (1’’), (2’’) etc.,
from Fig. 4(b) and those from Fig. 4(c) intrinsically leads to poorer contrast in the interference pattern
found in the incoherent contribution to the mean DRC than, for example, paths of type (1), (2) in
Fig. 4(a), where no phase mixing is allowed. As a prototypical reflection amplitude for a sum of paths
that involves phase mixing and a sum of paths that does not (and will serve as reference), let us have
respectively

rmixϕ =
r̃

[1 − r0 exp(2iϕ0)] [1 − rs exp(2iϕs)]
(C.1a)

rref =
r̃

1 − rs exp(2iϕs)
. (C.1b)

These reflection amplitudes mimic the structure from Eqs. (41) and Eq. (34) respectively, but we will
see that the precise expressions for the numerators do not matter for the contrast, and are hence
denoted by the same symbol r̃ . Note that all the reflection amplitudes in Eq. (C.1) depend on angles
of incidence and scattering, but for clarity we drop these arguments. Our first step consists in taking
the square modulus of Eq. (C.1)

Imixϕ =
|r̃|2

|1 − r0 exp(2iϕ0)|2 |1 − rs exp(2iϕs)|2
(C.2a)

Iref =
|r̃|2

|1 − rs exp(2iϕs)|2
, (C.2b)

and in bounding the intensity by using the triangular inequality

|r̃|2

(1 + |r0|)2 (1 + |rs|)2
≤ Imixϕ ≤

|r̃|2

(1 − |r0|)2 (1 − |rs|)2
(C.3a)
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|r̃|2

(1 + |rs|)2
≤ Iref ≤

|r̃|2

(1 − |rs|)2
. (C.3b)

It is clear from Eq. (C.3) that the intensity lies between two bounding curves. A fair estimate for the
trend, i.e. the intensity without the oscillationswould be given by |r̃|2, andwe thus estimate, or rather
define, the inverse contrast as

η−1
mixϕ = (1 + |r0|)2 (1 + |rs|)2 − (1 − |r0|)2 (1 − |rs|)2 (C.4a)

η−1
ref = (1 + |rs|)2 − (1 − |rs|)2. (C.4b)

This may not be the most natural definition for the contrast, but we choose this one since it is easier
to work with and will not change the conclusion. By re-writing Eq. (C.4) by using straightforward
algebra, we obtain

η−1
mixϕ = 4|rs| + 4|r0| + 4|r0||rs| + 4|r0|2|rs| (C.5a)

η−1
ref = 4|rs|. (C.5b)

This shows that the inverse contrast for phase mixing is larger than that of the reference, i.e. that the
contrast in the case of phase mixing is smaller than that of the reference. Indeed, the two last terms
in Eq. (C.5a) are cross-terms resulting directly from the phase mixing nature of the initial reflection
amplitude. Note that the choice for the reference was arbitrary and one could choose to study paths
of type (1’), (2’), etc., in Fig. 4(b), and hence replace rs exp(2iϕs) in Eq. (C.1) by r0 exp(2iϕ0), and the
conclusion would still hold.

Appendix D. Supplementary data

Supplementarymaterial related to this article can be found online at https://doi.org/10.1016/j.aop.
2017.12.003.
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a  b  s  t  r  a  c  t

Square  arrays  of  gold  (Au)  hemispheroids  deposited  on  a UV-transparent  glass  substrate  reveal  a  rich
optical response  when  investigated  by spectroscopic  Mueller  Matrix  Ellipsometry.  Two  samples  were
studied;  the first consisted  of hemispheroids  of  parallel  radius  of  58  nm and  height  30  nm with  lat-
tice  constant  210  nm;  the  corresponding  parameters  for  the  second  sample  were  38  nm,  20  nm  and
125  nm,  respectively.  By  a full azimuthal  rotation  of the  samples,  we  observe  all  the  Rayleigh  anoma-
lies  corresponding  to grazing  diffracted  waves,  with  strong  resonances  for  co-polarization  scattered  light
near the  high  symmetry  points  and  cross-polarization  scattered  light  around  the  Localized  Surface  Plas-
mon  Resonance.  Polarization-conversion  becomes  particularly  important  at  grazing  incidence,  and  the
cross-polarization  follows  the  Rayleigh  lines.  The  optical  response  (neglecting  polarization  conversion)  is
modelled  in the  quasi-static  approximation  using  the  so-called  Bedeaux-Vlieger  formalism,  and  the  Finite
Element  Method  using  COMSOL.  The  direct inversion  of the  effective  (substrate  dependent)  dielectric
function  is  discussed.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Mueller matrix ellipsometry is expected to play an impor-
tant role in the characterization of plasmonic based devices,
such as plasmonic metamaterials/metasurfaces [1,2], or com-
posite nanoplasmonic devices with applications ranging from
optoelectronics to biomedicine [3–5]. The fascinating properties of
metamaterials can be exemplified by e.g. the negative refractive
index [6] and its application to perfect lensing and subdiffraction
imaging [7].

The metamaterials approach consists in determining effective
electromagnetic parameters for an inhomogeneous periodic artifi-
cial material. As such, the metamaterials approach bridges the gap
between low-frequency effective medium theory and the high fre-
quency diffractive regime (therein photonic crystals) [8]. However,
it is necessarily the combined response that will be observed by
spectroscopy across a larger spectral range.

Here we study an apparently simple model system consisting
of hemispheroidal Au particles organized in a square lattice on a

∗ Corresponding author.
E-mail address: Morten.Kildemo@ntnu.no (M.  Kildemo).

UV-transparent flat glass substrate. The particle dimensions are
such that the quasistatic approximation should be valid, at least for
the longest wavelengths. This system was recently shown to have
a rich optical response including polarization coupling around the
Localized Surface Plasmon Resonance (LSPR), and around so-called
Rayleigh anomalies (or Rayleigh lines) related to grazing diffracted
waves just at the onset of diffracted orders [2].

Indeed, the importance of the polarization coupling can be
directly observed in Mueller matrix spectroscopic studies with
complete azimuthal sample rotation of inherently anisotropic sys-
tems, such as self-assembled Ag or Au particles along the ripples
of a nanopatterned substrate [9–11], meta-surfaces of U-shaped
particles [12], slanted metallic pillars [13], and chiral structures
[14].

In this paper, the regular lattices of idealized metallic hemi-
spheroids supported by a flat dielectric substrate (here SiO2) are
modelled by the Bedeaux-Vlieger theory [15]. Since this theory
does not account for cross-polarized scattered light, only a block-
diagonal Mueller matrix can be obtained within this approach.
In order to account for cross-polarized scattered light, and there-
fore obtaining non-vanishing off-diagonal elements of the Mueller
matrix, more accurate and time consuming modelling approaches
have to be used. One possibility is to perform the modelling on

http://dx.doi.org/10.1016/j.apsusc.2017.02.008
0169-4332/© 2017 Elsevier B.V. All rights reserved.
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the basis of the reduced Rayleigh equation [16,17] which recently
was shown to produce reliable results for the Mueller matrix ele-
ments [18]. Other approaches, often used in the metamaterials
community, are the full wave solutions obtained by the Finite Ele-
ment Method (FEM) and Finite Difference Time Domain (FDTD)
simulations. In this work we will present results obtained by FEM
simulations.

2. Experimental

The samples were produced by evaporating a thin film of Au
onto a clean (and flat) UV-grade fused silica surface using an e-beam
evaporator (Pfeiffer Vacuum Classic 500). The deposited film thick-
nesses were 40 nm (Sample A) and 20 nm (Sample B). The resulting
films were smooth but polycrystalline. The Au nano-structures on
glass were produced by Focused Ion Beam (FIB)-milling using Ga
ions (FEI Helios Dual-beam FIB). The two samples reported here
were manufactured to make up Au hemispheroids distributed in a
square pattern on a glass-surface, see Fig. 1(a); the lattice constants
were a = 210 nm (Sample A) and a = 125 nm (Sample B). After the
milling, the particles were found to be hemispheroids of lateral
radius Rxy = (58 ± 4) nm (Sample A), and (38 ± 4) nm (Sample B), see
Fig. 1(c). The heights of the particles (the perpendicular radii) were
difficult to estimate accurately from the combination of AFM and
SEM images. However, rough estimates are Rz = 30 nm for Sample
A (<40 nm) and Rz = 25 nm for Sample B (with an expected uncer-
tainty of several nanometers). Unfortunately, an over-etching into
the substrate was observed for both samples, i.e. the Au particles
are probably on top of a dielectric mound, as roughly sketched in
Fig. 1(d). Both samples had an over-milling of at least 10 nm into
the substrate.

The surface coverage for a square lattice of hemispheroidal par-
ticles is defined as � = �R2

xy/a2, giving �A = 0.20 and �B = 0.18 for
the coverage of Sample A and Sample B, respectively.

For the optical characterization of the samples, a variable angle
multichannel dual rotating compensator Mueller matrix ellipsome-
ter (RC2) from JA Woollam Company was used. Our instrument has
a collimated 150 W Xe source and operates in the spectral range
from 210 nm (5.9 eV) to 1700 nm (0.73 eV). As the FIB-milling is
a time consuming process, the total milling area opened by FIB
was limited to 240 �m × 240 �m.  Focusing and collection lenses
with a focal length of 20 mm and a Numerical Aperture of approxi-
mately 0.15, were applied, allowing a normal incidence spot size
of smaller 100 �m.  This spot size allowed us to study the full
azimuthal rotation of the sample while ensuring that the spot-
size remained within the 240 �m × 240 �m area. The spectroscopic
Mueller matrix was measured for the polar incidence angles (with
respect to surface normal) �0 = 45◦, 55◦ and 65◦. Full azimuthal

Fig. 1. (a) Real space Scanning Electron Microscopy (SEM) image of the particle
array. (b) Schematic drawing of the 2-dimensional reciprocal lattice defining �0. (c)
The ideal model consisting of a hemispheroidal Au particle on uv-transparent glass.
(d) The presumed non-ideal model with the particles on a mound.

rotation of the sample around the sample normal (360◦) in steps
of 5◦ was performed for each polar angle of incidence in order to
fully map  any anisotropy in the optical response of the sample (see
Brakstad et al. [2] for further details).

3. Results and discussion

3.1. Mueller matrix: LSPR, Rayleigh lines and polarization
coupling

Fig. 2 presents an overview of the normalized Mueller matrix
optical response, m,  measured for Sample A as a function of the
photon energy (E = �  ω), for the specular direction [(�0, �0) = (�s,
�s)]. A series of measurements were performed for a fixed polar
angle of incidence �0 = 55◦, but different values of the azimuthal
angle of incidence �0. The coordinate system is defined so that the
value �0 = 0◦ represents a direction that coincides with one of the
main axes of the square lattice. In Fig. 2 the (2 × 2) block diagonal
elements of m are stacked as functions of the azimuthal angle of
incidence (except m22). The corresponding SEM image of Sample
A and a schematic diagram of the reciprocal lattice are shown in
Fig. 1(a) and (b), respectively, see also Figs. 1–3 in Brakstad et al.
[2]. We  observe from the diagonal elements of the Mueller matrix
that a LSPR exists for a photon energy around 2.1 eV, which is here
found to be slightly dispersive with azimuthal rotation angle �0,
see also �pp and 〈ε〉pp in Ref. [2]. Furthermore, we observe polar-
ization conversion around the LSPR that dependends on �0; this is
seen from the off-block-diagonal elements (which are not stacked)
in Fig. 2. We  further observe that there are prominent features in
both the block-diagonal elements (dips and peaks) and the off-
block-diagonal elements (strong polarization conversion); these
features are attributed to the Rayleigh anomalies [19] as previously
described in detail in Brakstad et al. [2] and references therein.

In recent works [2,9,20,21] we have found it useful to present
Mueller matrix data in terms of contour plots in polar coordinates
as they clearly show their dependence on the rotation of the sam-
ple. In such plots, the polar coordinate corresponds to the azimuthal
rotation angle (�0) and the radial coordinate represents the pho-
ton energy. Fig. 3 presents in this fashion the normalized Mueller
matrix data of which the data-sets from Fig. 2 are subsets; the
inner and outer circles in Fig. 3 correspond to 0.73 eV and 5.9 eV,
respectively. Notice that for given azimuthal rotation angle (�0), a
cut along the radial direction of the data-sets presented in Fig. 3
will result in curves for the same value of �0 that are similar to
those in Fig. 2. Moreover, the data in Fig. 3 are organized such that
�0 = ∠(k‖, G(10)

‖ ), where the component of the incident wave vector

parallel to the surface of the substrate is (
∣∣k
∣∣ = k = n0ω/c)

k‖ = k sin �0(cos �0, sin �0, 0),  (1)

and the reciprocal lattice vector is defined as

G(l)
‖ = l1b1 + l2b2 = G(l)

‖ (cos �l, sin �l, 0),  (2)

where l1 and l2 are integers and G(l)
‖ = |G(l)

‖ |. In writing Eq. (2) we
have introduced the primitive translation vectors of the reciprocal
lattice b1 and b2 (|b1,2| = 2�/a), and defined the vector l = (l1, l2) (see
Ref. [2] for further details).

It is observed from Fig. 3 that the Mueller matrix of Sample A
is nearly block-diagonal for photon energies up till about 3 eV, and
the same was  found also for Sample B (results not shown). The LSPR
is now observed as the nearly circular features around 2.1 eV in all
the block diagonal elements presented in Fig. 3. The Rayleigh lines
observed in e.g. the m12 element, now make up a set of features that
resembles the first and second Brillouin zone (BZ), see Fig. 1(b).

Brakstad et al. [2] described thoroughly the main features of
these Rayleigh lines [19]. In particular, in this work, a compact
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Fig. 2. Overview of the experimental normalized Mueller matrix elements for Sample A as functions of photon energy. The polar angle of incidence was �0 = 55◦ and
the  azimuthal angle of incidence �0 was  varied from 0◦ to 45◦ in steps of 5◦ . The measurements were done in the specular direction, i.e. (�s , �s) = (�0, �0). The (2 × 2)
block  diagonals elements are stacked (except the m22 element), that is, a constant offset was added to each data set for reasons of clarity. The vertical limits for the off-
diagonal elements are m13 = [−0.103, 0.117], m14 = [−0.079, 0.116], m23 = [−0.097, 0.067], m24 = [−0.148, 0.082]. Similarly, m31 = [−0.122, 0.102], m32 = [−0.062, 0.098],
m41 = [−0.0696, 0.116], m42 = [−0.149, 0.081], while m22 = [0.96, 1]. See the colorbars in Fig. 3 for the vertical limits for all elements and all azimuthal orientations. (For
interpretation of the references to color in this figure legend, the reader is referred to the web  version of this article.)

Fig. 3. Contour plots of the elements of the experimental normalized Mueller matrix m for the Sample A, measured for �0 = �s = 55◦ and �0 = �s (where �s and �s denote the
polar  and azimuthal angles of scattering). The photon energy and the azimuthal rotation angle (�0) of the incident light represent the radius and the angle in these polar
plots, respectively. The inner circles in the plots correspond to the photon energy 0.73 eV, while the outer correspond to 5.90 eV. The Rayleigh-lines for the first BZ (upright
semi-square), the 2nd BZ (tilted semi-square) in air (white lines), and in the glass substrate (black lines) have been superimposed on the m21 element. In the m13 and m14

elements, the extended Rayleigh-lines for air (white lines) and glass (black lines) that were calculated for a 90◦ symmetry are superimposed, in addition to the LSPR resonance
at  2.1 eV (white circles) as estimated from the quasi-static approximation. The circles in the schematic inset, replacing the m11 element (that is trivially one), correspond to
the  photon energy of the incident light from 1 eV (thick inner line) to 6 eV (thick outer line) in steps of 1 eV, while 0, 45, 90, etc. denote the azimuthal rotation angle (�0) in
degrees.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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expression for the Rayleigh line condition was rederived, and it
reads [2]

k2 −
2k sin �0G(l)

‖ cos(�l − �0)

n2
i

− sin2�0

−
(G(l)

‖ )
2

n2
i

− sin2�0

= 0, (3)

where ni denotes the refractive index of either the ambient (air) or
the substrate (SiO2). The form in Eq. (3) is extremely useful, as it
allows to either solve for the Rayleigh lines, the lattice constants or
even the refractive index of the substrate.

The Rayleigh lines calculated from Eq. (3) are shown in Fig. 3
as black lines for the substrate and white lines for air, and they
describe the main features of the block-diagonal elements of
the Mueller matrix. The polarization conversion is now clearly
observed from Fig. 3 as regular dots around the LSPR (with maxima
for incidence midway between 	 − X and 	 − M).  It is also clearly
observed from the results presented in Fig. 3 that the polarization
conversion is found around the Rayleigh lines [2], i.e. around the
black (substrate) and white (air) Rayleigh lines drawn in the m13
and m14 elements.

We speculate that the polarization coupling around the LSPR is a
result of spatial dispersion [22,12], while the polarization coupling
around the Rayleigh lines is a result of a modification of the effective
polarizability tensor as a result of the grazing diffracted waves. In
the remaining part of this paper we will focus on modelling the
approximately near block diagonal response below the Rayleigh
lines, in particular using the Bedeaux-Vlieger formalism, and full
wave COMSOL simulations.

3.2. Bedeaux-Vlieger model

Over several decades, starting in the 1970s, Bedeaux and Vlieger
developed an approach to the calculation of the optical proper-
ties of thin island films (or rough surfaces) that is based on the
use of effective boundary conditions [15,23–25,1,26]. The Bedeaux-
Vlieger (BV) model introduces so-called surface suceptibilities,
related to particle polarizabilities, that modifies the well-known
Fresnel amplitudes of a flat surface to account for the presence of
the island film (or surface roughness) [see Eqs. (4) and (7)]. When
no particles (islands) are present at the flat surface of the substrate,
the surface suceptibilities vanish and the modified Fresnel ampli-
tudes reduce to the classic and well-known Fresnel amplitudes;
in this sense the surface suceptibilities encode the effects of the
presence of the island film. Within the BV model, the polarizabil-
ity of a particle is calculated within the quasi-static approximation
by means of adapting a multipole expansion of the scalar electric
potential [15,23,24,27]. This is achieved by first calculating, to a
high multipole order, the interaction between a single particle and
the substrate by the use method of images [27]. Next, the single-
particle polarizability is corrected for particle-particle interactions
by assuming that this can be done adequately by only including
dipolar or quadrupolar interactions. That is, the particle-particle
interaction is included only to a low multipolar order which is
expected to be a good approximation in the low particle cover-
age limit. In this way, the particle polarizabilities are calculated
within the BV model, and from them, the surface suceptibilities
and, therefore, the optical response can be calculated. For a more
detailed discussion of the BV model the interested reader is referred
to Refs. [15,23,24]. It should be mentioned that the BV formalism
is implemented in the (open source) software GranFilm developed
by Simonsen and Lazzari [25]. The advantage of the BV formalism
is that it results in a fast calculation (fraction of seconds) of the full
spectrum.

The BV model introduces two types of surface susceptibilities
that are either parallel or perpendicular to the surface of the

substrate; in accordance with Ref. [15], we will in the following
denote them 
(ω) and ˇ(ω), respectively.

When light of s polarization is incident from an ambient medium
of refractive index n0, onto an island film supported by the flat
surface of a substrate that has refractive index n2, the BV model
predicts that the reflection amplitude should equal [15,25]:

r012s(ω) = n0 cos �0 − n2 cos �2 + i ω
c 
(ω)

n0 cos �0 + n2 cos �2 − i ω
c 
(ω)

. (4)

Here, �0 and �2 are the polar angles of incidence and transmission,
respectively, and they are measured positive from the normal to the
mean surface. It is convenient to rewrite Eq. (4) in the alternative
form

r012s(ω) =
r02s(ω) + i ω

c

(ω)

�s

1 − i ω
c


(ω)
�s

, (5)

with �s = n0 cos�0 + n2 cos�2, so that the Fresnel reflection ampli-
tude for the ambient-substrate system, r02s(ω), enters explicitly;
this latter quantity is defined by the expression obtained by putting

 = 0 in Eq. (4).

Similarly, for p-polarized incident light the reflection amplitude
of an island film is expressed in the BV model as [15,25]:

r012p(ω) =
�−(ω) − i ω

c

[

 cos �0 cos �2 − n0n2ε0ˇsin2�0

]

�+(ω) − i ω
c

[

 cos �0 cos �2 + n0n2ε0ˇsin2�0

] (6a)

where

�±(ω) = (n2 cos �0 ± n0 cos �2)

(
1 − 1

4
ω2

c2

ˇε0sin2�0

)
. (6b)

For reasons of a more compact presentation, we have in Eq. (6)
not indicated explicitly the frequency dependence of the surface
susceptibilities. Neglecting terms of second or higher order in the
surface susceptibilities allow us to write Eq. (6a) approximately as

r012p(ω) ≈
r02p(ω)  − i ω

c
1

�p

[

 cos �0 cos �2 − n0n2ε0ˇsin2�0

]

1 − i ω
c

1
�p

[

 cos �0 cos �2 + n0n2ε0ˇsin2�0

] . (7)

In writing Eq. (7) we have defined �p = n2 cos�0 + n0 cos�2 and
r02p(ω) denotes the Fresnel reflection amplitude of the flat ambient-
substrate surface for p-polarized illumination [27,28] and can be
obtained by putting 
 =  ̌ = 0 in Eq. (6).

Several parameters are needed to calculate the surface suscep-
tibilities, 
(ω) and ˇ(ω), in the approach of BV. In addition to the
wavelength, angles of incidence (�0, �0), and refractive indices of
the media involved, they are the morphological parameters of the
hemispheroidal island film; the radii of the hemispherodal parti-
cles that are parallel (Rxy) and perpendicular (Rz) to the surface
of the substrate, and the lattice constant, a. These morphological
parameters are also those that one typically tries to extract during
the inversion of experimental data sets using the BV model (more
about this later). It should be noted that the BV model does not con-
vey polarization coupling, and does not describe Rayleigh modes
correctly; thus it is only an approximate solution for regular lat-
tices. Indeed, the BV model was  originally developed to treat the
general problem of disordered particles on surfaces and the weak
cross-polarized scattered signal was neglected. Moreover, the par-
ticle dimensions we will be concerned with, allow us to neglect
both finite size and retardation effects in each particle (as is done
in the BV model). We  will in the following also neglect the plausible
SiO2 mound underneath each particle and treat the surface of the
substrate as flat (i.e. as in Fig. 1(c)).

The open symbols in Figs. 4 and 5 represent the experimental
normalized Mueller matrix elements m12 (N), m33 (C) and m34 (S)
for Samples A and B, respectively, as functions of photon energy for
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Fig. 4. The measured standard ellipsometric quantities N = m21 (blue �); C = m33 (red
©);  and S = m34 (black 	) for Sample A as functions of photon energy for the three
polar angles of incidence �0 = 45◦ , 55◦ and 65◦ as indicated in each of the panels.
The scattered signal was  observed in the specular direction. The experimental data
are shown as open symbols, and are selected for the azimuthal angle �0 = 0◦ . The
vertical lines indicate the photon energies of the corresponding Rayleigh lines. The
results of the GranFilm simulations (the BV formalism) are shown as full lines, while
the COMSOL simulations are given as dashed lines. The morphological parameters
used in these simulations are given in Table 1; the GranFilm simulations assumed
the  parameter set corresponding to the smallest value of 2. (For interpretation of
the references to color in this figure legend, the reader is referred to the web  version
of  this article.)

the azimuthal angle of incidence �0 = 0◦ and three polar angles of
incidence �0 = 45◦, 55◦ and 65◦. The experimental data sets in Figs. 4
and 5 were then fitted with respect to the morphological param-
eters of the spheroidal lattice (Rxy, Rz and a) using the BV model as
implemented in GranFilm [25]. The corresponding Mueller matrix
elements obtained in this way are presented as full lines in Figs. 4
and 5 and the parameter sets that were obtained by this procedure

Fig. 5. Same as Fig. 4 but for Sample B. The COMSOL simulations used (Rxy , Rz ,  a) = (38,
20, 125) nm (dashed lines), see Table 1. The GranFilm simulations assumed the
parameter set corresponding to the smallest value of 2. The dotted lines shown
in  the middle panel for � = 55◦ are COMSOL simulations with an added mound of
height 20 nm,  see Fig. 1(d).

are presented in Table 1. As can be observed from the values pre-
sented in Table 1, the morphological parameter obtained from SEM
and AFM images (that are marked in boldface in Table 1) do not
result in the smallest figure of merit, denoted 2 in the Table 1. For
Sample A [Fig. 4] the lateral diameter of the particles 2Rxy = 116 nm
is at the limit of breakdown of the quasistatic approximation and
some of the Rayleigh lines coincide with the position of the LSPR
resulting in a perturbed signal around this photon energy. On the
other hand, for Sample B a better agreement is found between the
experimental morphological parameters and those resulting from
a fitting procedure using the BV formalism, see Fig. 5; in this case
the Rayleigh lines are shifted to higher energies and away from
the LSPR, and the lateral particle size is smaller (than for Sample

Table 1
The morphology parameter sets (Rxy , Rz , a) (in nanometers) used in the numerical simulations performed using either GranFilm or COMSOL. The values that appear in boldface
coincide with the values obtained from analyzing SEM and AFM images of the samples. It is noted that the values for Rz that were obtained from such images had considerable
uncertainty associated with them. The GranFilm software was used for the purpose of reconstructing the morphology parameters of the samples by fitting the experimental
data  for the standard ellipsometric quantities presented in Figs. 4 and 5. This was  done by defining a cost function that was minimized over parameter space using a mean
square error estimator; the 2 values obtained in this way  are reported. The star superscript (�) indicates that the (COMSOL) simulation result corresponds to a geometry
where  the particles were on top of mounds of height 20 nm.

GranFilm COMSOL

Rxy Rz a 2 Rxy Rz a 2

Sample A 58 30 210 3.7 58 30 210 5.5
60  29 198 2.6 − − − −

Sample B 34 20 125 3.5 34 20 125 6.4
34  29 114 2.1 34 20� 125 3.0
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A) so that the quasistatic approximation should be more accurate.
However, as mentioned in Section 2, the manufactured samples did
turn out to have some non-ideal characteristics, which probably
will affect both the quality of the fit and the extracted morpholog-
ical parameters that can be obtain from the BV approach. These
aspects will be discussed in greater detail below.

It is worth noting that the BV model predicts that the optical
response of a system consisting of a hemispheroidal island film
supported by a planar substrate is distinctly different from that of
an identical system but made with untruncated spheroidal parti-
cle (of the same volume) nearly touching the substrate [24,29,30].
Recently this latter system was studied by Mendoza-Galván et al.
[26] who adapted the simplifying dipole approximation (known as
the (modified) Yamaguchi model, see Refs. [15,31,32]). The advan-
tage of considering untruncated particles, instead of truncated
ones, in combination with the dipole approximation, is that one
can easily obtain closed form expressions for the uniaxial effective
medium dielectric functions [26].

3.3. Full wave simulations

The two structures, Sample A and Sample B, were also
modelled using the Finite Element Method based commer-
cial software package COMSOL Multiphysics, operating in the
frequency-domain. The input to the simulations were the fre-
quency dependent dielectric functions from the ellipsometric
analysis of the deposited Au film, and SiO2 data from the Woolam
software database, in addition to the geometric parameters esti-
mated from SEM and AFM, see Table 1. It is particularly interesting
to use such a full wave tool in conjunction with real ellipsomet-
ric data, since the Finite Element Method has been regularly used
for simulating the optical response of metamaterials, with conse-
quent retrieval of effective optical parameters [8]. It is noted that
this method can also be used to study modes, important in order
to both interpret the optical response, but also in order to deduce
bi-anisotropy and polarization coupling.

The simulations were performed using 4 ports with periodic Flo-
quet boundary conditions to simulate the periodicity. The incident
wave on port 1 was assumed either plane TE (s-polarized) or plane
TM (p-polarized), along the G(10)

‖ direction. In the current work, the
azimuthal angle was not changed.

The dashed lines in Figs. 4 and 5 present the standard ellipsomet-
ric quantities N, C and S calculated using COMSOL for both Samples
A and B.

It is clear that the simulations to a large extent reproduce the
block diagonal Mueller matrix, including the Rayleigh lines. This is
evidently an important step in order to validate any EM simulator.

The simulations using the current model do not properly repro-
duce the experimental LSPR. As this problem occurs both in the BV
and the COMSOL simulations, the models must be refined to include
the SiO2 mound as sketched in Fig. 1(d), which probably resulted
from an over-etching during the FIB milling in between the Au par-
ticles. The dotted lines shown in the middle panel of Fig. 5 (�0 = 55◦),
was calculated using an additional 20 nm SiO2 mound, as shown in
Fig. 1(d). Indeed, the results show that the mound causes a blue
shift of the LSPR, in addition to an improvement of the simulated
response in the ultraviolet part of the spectrum. The simulation
results that can be obtained using such refined models will be the
topic for future work, among a full description of the polarization
conversion.

In the simulations, both polarizations (TE and TM input) were
run in parallel on a computer equipped with 32 GB RAM and an
Intel i7-3930K processor operating at 3.2 GHz and running 64
bits Windows operating system. Typically, with an appropriate
meshing, COMSOL used 1 minute per wavelength for Sample A

and 13 seconds per wavelength for Sample B, with increasing
computational time with added complexity (here the mound).
Using a smaller number for the maximum allowed mesh size,
considerably increases the computational time. It appears that for
small unit cells and an optimized mesh size, fitting of ellipsometric
data using finite element methods can in principle be performed on
typical desk-top systems used in ellipsometric analysis. However,
the required computational cost of such an approach will be orders
of magnitude higher than when using GranFilm.

3.4. Direct Inversion (continuous film approximation)

It is common in the field ellipsometry to extract the effective
optical properties of a thin film containing plasmonic nanoparticles.
Therefore, we  will below perform this analysis with the intention
of comparing the results from such an approach to what can be
obtained by other methods. A natural question then follows, what
does an extracted dielectric function for an ultrathin layer repre-
sent? For such an ultrathin film (particles on the surface), and in
view of the BV model, we learn that the resulting dielectric func-
tion is dependent on the substrate and thus not unique for the film.
This behaviour is a direct consequence of the interaction between
the particle and the substrate. A fitted effective dielectric function
for the ultrathin effective film does not reveal the quantitative mor-
phological parameters such as particle size/shape, density (lattice
constant) and material, which is often sought in metrology. How-
ever, the effective dielectric function of this ultrathin layer may
play an important role in terms of design and characterization of
optical meta-surfaces, in particular with respect to controlling the
propagation of surface bound waves, such as e.g. Surface Plasmon
Polaritons on hyperbolic meta-surfaces [33].

The dielectric function of the effective film on the substrate was
determined through a direct inversion of the Mueller matrix ele-
ments (principally sensitive to the N, C, and S quantities in Figs. 4
and 5). Fig. 6 shows the result of the inversion, where the dielectric
tensor has been posed as an effective thin biaxial film. The film is
as expected mainly uniaxial, but a small in-plane anisotropy was
allowed for in order to reproduce some of the features observed in
the off-diagonal elements of the Mueller matrix. The in-plane com-
ponents were described by Bsplines where the initial guess was
given by the fit of a Maxwell Garnett effective medium [1,34], while
the out of plane component was  simply described by a Bruggeman
effective medium [1,34]. The thickness of the effective medium film
was fixed to a “reasonable apriori-initial value” and not further fit-
ted. The effective medium model is found to reproduce the data
with high accuracy, and the fitted dielectric function gives indeed
the position of the LSPR, and evidently it conveys non-quantitative
information about particle-size and distribution (the distribution is
evidently narrow in this idealized case), in addition to information
about lattice interactions.

It is both interesting and instructive to establish a relationship
between the BV formalism and the extracted dielectric function for
the continuous effective film. To this end we  start by neglecting
the polarization coupling (in-plane anisotropy) and assume that
the system has a uniaxial response. Under these assumptions, the
relationship between the BV formalism and the effective medium
film approach can be obtained by considering the first order Taylor
expansion of the exponential function in the thin film formulas for
a uniaxial film with the extraordinary axis perpendicular to the
surface normal [28]. Let d be the thickness of the continuous thin
film, and assume d/� 
 1, then

r012� = r01� + r12�e−2iX�

1 + r01�r12�e−2iX�
≈

r02� − 2iX�
r12�

1+r01�r01�

1 − 2iX�
r01�r12�

1+r01�r12�

, (8)
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Fig. 6. Effective biaxial dielectric functions of Sample A (bottom Figure) and Sample
B (top Figure). The biaxial Bspline inverted data are shown as full lines. The dielectric
function calculated from 
 and ˇ (obtained from GranFilm) with the use of Eqs. (9)
and (10) are shown as dashed lines. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

where � = s, p, and the expression for the Fresnel reflection ampli-
tudes rmn� are given by Eqs. (4) and (6) after setting to zero the
surface suceptibilities that appear in them; 
 = ˇ = 0 (see also Refs.
[27,28]). In writing Eq. (8) we introduced the phase thickness
(eigenmode) functions, X�, given in Azzam and Bashara [28].

To relate the reflection amplitudes in Eq. (8) to the reflection
amplitudes obtained in the BV model, e.g., Eqs. (5) and (7), we
start by observing that the BV amplitude for s polarization depends
only on the parallel susceptibility (
), while the BV amplitude for
p polarization depends both on the parallel and perpendicular sus-
ceptibilities (
 and ˇ). Therefore, it is to be expected that the
effective dielectric function εxx = εyy will depend on 
 but not ˇ,
in the same way as εzz will depend on ˇ but not 
 . In order to see
if this assertion is true, we start by considering the case of s polar-
ization. Equating the right hand side of Eq. (8) for � = s, with the
corresponding BV formula in Eq. (5) gives the relationship:

εxx = ε2 + 


d
, (9)

where the thickness of the continuous thin film (d) must be cho-
sen independently. Substituting the above expression for εxx into
the right hand side of Eq. (8) for � = p, and equating the resulting
expression with the corresponding BV formula, Eq. (7), results in

1
εzz

= 1
ε2

− ˇ

d
. (10)

It is interesting to note that the effective medium dielectric func-
tions add as disks on a substrate; additively parallel to the planar
surface and capacitively perpendicular to it.

The fitted uniaxial dielectric function extracted from the ellip-
sometric data can now in principle be related to morphological
parameters through the BV formalism as is the case for an effective
medium theory. Using the calculated 
 and ˇ from the BV model
implemented inGranFilm, and the relationship in Eqs. (9) and (10),
we finally obtain the uniaxial dielectric function plotted (dashed
lines) in Fig. 6. In both cases, the parameter d is adjusted to make
a reasonable fit (we used d = 1.0 nm for Sample B and d = 1.9 nm for
Sample A, but it is emphasized that these values depend on the
initial choice for the thickness in the direct inversion).

The dielectric function calculated based on Eqs. (9) and (10)
turns out to be in reasonable agreement with the one obtained by
inversion (see Fig. 6). The difference is in particular, a small red-
shift of the one calculated from the BV formalism, and the more
asymmetric shape towards higher energies of the Bspline inverted
one. The correspondence appears better for Sample B, as expected.
This red-shift was also observed from the COMSOL simulations, and
was probably a result of reduced screening by the substrate, again
as a result of the over-etching of the substrate (i.e. the particles are
sitting on a small SiO2 mound). The real part of the calculated εz

component is observed to be off-set from the inverted one. Indeed,
it is difficult to invert for the z-component accurately using ellip-
sometry, and it is strongly correlated to the chosen film thickness.
As a result, in future work, it appears better to replace the initial
guess by the dielectric function produced by GranFilm.

4. Conclusions

Mueller Matrix Ellipsometry reveals a complex optical response
from a simple square array of Au-nanoparticles supported by a glass
substrate. In particular, polarization conversion is found around the
Localized Surface Plasmon Resonance (LSPR), and along Rayleigh
lines. The Rayleigh lines can be used to find the orientation of the
sample, and through a simple second order equation be used to
directly estimate lattice constants.

It is found that for a regular 2D lattice, the Bedaux-Vlieger
formalism can extract reasonable parameters related to particle
dimensions, as long as the Rayleigh anomalies are well above the
LSPR. However, the weak polarization conversion around the plas-
mon resonance and the small dispersion of the plasmon resonance
with respect to the azimuthal rotation of the substrate cannot be
modelled within the current formulation of the latter formalism.

The finite element method appears, when using periodic bound-
ary conditions, to reasonably well model the ellipsometric spectra
including the Rayleigh lines.

Both methods show that imperfections in the system, such as
a dielectric mound, must be included in the model in order to
reproduce well the recorded data. The Bedaux-Vlieger formalism
must be reworked in order to include such an over-etching into the
substrate, while it can be easily added to the Finite Element model.

The GranFilm implementation of the Bedeaux-Vlieger model
is computationally fast (spectra calculated in fraction of seconds),
in addition to being highly instructive. The Finite Element Model
appears much more versatile and seems accurate, but is compu-
tationally expensive (spectra calculated in 30 minutes to several
hours, depending on number of spectral points, meshing and unit
cell size).

The substrate dependent effective uniaxial dielectric function
for an equivalent continuous ultra-thin film was extracted by direct
inversion of the ellipsometric data. It is possibly to give a meaning
to this dielectric function by e.g. correlating it to the one directly
estimated in the continuous film limit of the Bedaux-Vlieger
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formalism. It is envisaged that the latter dielectric function may  be
useful in the description of meta-surfaces, therein e.g. to estimate
the propagation of surface waves.
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