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Abstract

This thesis represents a building block for future model predictive control of a battery con-

nected to a complex energy system consisting of a photovoltaic (PV) system and a combined

heat and power (CHP) plant. The complex energy system at Campus Evenstad in Norway is

used a case study in this thesis. The aim of this thesis is bipartite: (1) the performance of the

PV system is to be predicted, and (2) various control strategies of the battery will be investi-

gated to see the flexibility that the battery may provide for the end-user. Two models have

hence been developed: a PV model and an optimization model of the battery. Both models

have been developed in Python with the help of the PVLIB and the Pyomo libraries.

Two approaches to estimate the plane-of-array (POA) irradiance on the PV array were

tested in the PV model: the dirindex and the erbs irradiance decomposition methods,

which are both built-in functions in the PVLIB library. Results showed that the dirindex

decomposition method gave the most accurate results. However, results for winter months

are highly inaccurate, and hence the PV model should be improved to better predict the PV

performance in such months. The model was also tested with various overall PV system

efficiencies and surface types indicating how much reflected solar radiation that hits the

receiver. An overall system efficiency of 74% and surface type asphalt resulted in the most

accurate PV estimation.

The optimization model was solved with three different objectives: (1) minimization of

total import of electricity, (2) minimization of spot energy costs, and (3) peak shaving. In

addition to analyzing the charge and discharge of the battery, the total cost of import was

calculated for each control strategy. When using the battery to minimize the total import

from the grid, the battery is not frequently used. The only recharging of the battery that takes

place is a result of low demand in times of high PV production. The minimization of the spot

energy cost control strategy reduces the energy cost of the imported electricity, but low spot

prices lead to an increase in the import peak and hence an increase in the grid tariff cost. The

total import cost of this control strategy comes out higher than the total cost of the other two

control strategies. The variation in spot prices results in a rapid charge and discharge of

the battery. Optimizing the utilization of the battery with the objective of performing peak

shaving, the grid tariff, which is determined by the highest import peak in the last 12 months,

is reduced. The grid tariff makes up the highest share of the total cost of import, and hence

does this control strategy result in the lowest total cost.
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Sammendrag

Denne masteroppgaven representerer en byggestein for å i framtiden oppnå model prediktiv

regulering av et batteri koblet til et sammensatt energisystem bestående av et fotovoltaisk

(PV) system og et kraftvarmeanlegg (CHP). Det sammensatte energisystemet på Campus

Evenstad ved Høgskolen i Innlandet er brukt som et case-studie i denne masteroppgaven.

Målet med denne oppgaven er todelt: (1) PV systemets ytelse skal forutsees, og (2) ulike kon-

trollstrategier av batteriet skal testes for å illustrere fleksibiliteten batteriet i et sammensatt

energisystem representerer. To modeller har dermed blitt utviklet i denne masteroppgaven:

en PV modell og en optimeringsmodell for batteriet. Begge modellene har blitt utviklet i

Python, ved hjelp av de to bibliotekene PVLIB og Pyomo.

To tilnærminger for å estimere solinnstrålingen på et skrått plan ble testet i PV modellen:

dirindex og erbs dekomposisjoneringsmetoder som begge er innebygde funksjoner i

PVLIB. Resultatene viste at dirindex gav mer nøyaktige resultater. I vintermånedene ble

PV produksjonen estimert til å være mye større enn historiske data tilsa, og PV modellen bør

derfor forbedres for å forutsi PV prouksjonen på vinterstid mer nøyaktig. PV modellen ble

kjørt med ulike systemvirkningsgrader og ulike typer jordoverflater som indikerer hvor mye

reflektert solinnstråling som treffer PV panelene. En systemvirkningsgrad på 74% og over-

flate asfalt resulterte i mest nøyaktige estimater av PV produksjonen.

Optimeringsmodellen ble løst med tre ulike objektiver: (1) minimering av total import av

strøm, (2) minimering av spot-energikostnad, og (3) peak shaving. I tillegg til å analysere op-

pladningen og utladningen av batteriet ble den totale kostnaden av import beregnet for hver

kontrollstrategi. Ved minimering av total import av energi ble ikke batteri hyppig brukt. Den

eneste oppladningen av batteriet fant sted da lasten var lav og PV produksjonen var høy. Ved

minimering av spot-energikostnad ble energikostnaden av importert energy redusert, men

lave spotpriser resulterte i økt import-peak, og dermed økt nettleie. Den totale kostnaden

av import var derfor størst for denne kontrollstrategien. Variasjonene i spotpris førte til rask

opp- og utladning av batteriet. Nettleien var lavest da peak shaving ble utført. Nettleien ut-

gjør den største andelen av totalkostnadene for importert energi, og dermed resulterte peak

shaving i lavest totale kostnader.
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Preface

This master’s thesis has been carried out at the Department of Electric Power Engineering

during the spring semester of 2018, and marks the end of the five year master’s programme

in Energy and Environmental Engineering at the Norwegian University of Science and Tech-

nology (NTNU). The thesis has been supervised by Professor Olav Bjarte Fosso (NTNU) and

Igor Sartori (SINTEF).

This thesis is thought to be a prework to future model predictive control of batteries

implemented in existing electrical energy system. The complex energy system at Campus

Evenstad at Inland Norway University of Applied Sciences (INN University) has been used

as a case study in this thesis. However, the principles of the models developed in this thesis

may also applied to other energy systems. In addition to optimizing the use of the battery

based on selected control strategies, a model has been created to predict the performance

of the photovoltaic (PV) system from measured solar radiation and ambient temperature.

Trondheim, July 23, 2018

Lene Marie Hope Rognan
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Chapter 1

Introduction

1.1 Motivation

Power generation from renewables is increasing rapidly worldwide. Approximately 70% of

the global power capacity added in the year 2017 was accounted for by renewable energy

sources. Solar photovoltaic (PV) stands for the largest contribution with its 55%. As of the exit

of 2017, 402 GWp of solar PV DC capacity was installed globally. This represents an increase

of 99 GW compared to values registered in 2016. China is the leading country when it comes

to investment, capacity installment and production of solar PV power. [1]

At the exit of 2016, the total installed PV capacity in Norway was approximately 27 MWp.

Most of the PV systems installed in Norway are private off-grid systems at cabins. There has,

however, been a significant increase in grid-connected PV systems in private and commer-

cial buildings since 2013-2014. Grid-connected PV systems accounted for the majority of the

installed PV capacity in Norway at the exit of 2016, with approximately 13.6 MWp. The largest

grid-connected PV system in Norway has an installed capacity of 3.38 MWp. The PV power

production is directly dependent on the solar irradiance. Although Norway is not known

for its warm climate and long sunlight hours, measurements show that the solar irradiance

values in the South of Norway are close to the level measured in parts of Germany. [2, 3]

Although solar PV is not yet economically attractive in Norway, mainly due to the low

electricity prices, the use of solar PV is expected to increase with the continuously decreasing

cost of PV technology, the expected increase in Norwegian electricity prices, and with the

increasing consumer interest and awareness. [3]

The use of energy storage in combination with solar PV is becoming more common. The

1
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global energy storage capacity as of 2017 is measured to be 158.9 GW, where electrochemi-

cal batteries accounted for 2.3 GW of the total. In 2017, lithium-ion batteries made up the

majority of added battery capacity installment [1]. In addition to ensuring storage of en-

ergy, batteries also hold other important functions. For grid-connected systems, the main

function of the battery is often to balance power fluctuations to meet the requirements of

the connected grid. However, batteries can also be used for other purposes, such as peak

shaving. Reducing power peaks potentially holds economical savings, both for end-users

and grid operators [4]. Norwegian energy spot prices are expected to increase by 0.8 - 1.6 %

annually towards 2030. Grid tariffs are also expected to increase in the coming years due to

the planned investments for the modernization of the network infrastructure [5]. With the

implementation of a battery system, the PV system owner achieves greater flexibility in how

the energy system is managed and controlled in terms of both importation and exportation

of electricity.

The motivation for writing this thesis is the continuous growth of solar PV systems and

how the implementation of batteries in such systems improve the end user’s flexibility when

it comes to grid interaction. Campus Evenstad at the INN University in Norway holds a com-

plex electrical energy system, consisting of a PV system, a combined heat and power (CHP)

plant, and a battery system. The complex energy system at Campus Evenstad with the im-

plemented battery system is used as a case study in this thesis.
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1.2 Problem Formulation

This thesis represents a springboard for future model predictive control of a battery con-

nected to a PV system. The aim of this thesis is divided into two parts:

1. The performance of the PV system is to be predicted based on site-specific meteoro-

logical data.

2. Various control strategies of the battery are tested and analyzed to recognize the flexi-

bility that the battery provides for the end-user.

To meet the aims of the thesis, a PV model and an optimization model are developed.

Various commercial programs for predicting PV performance exists. When using such pro-

grams, the user is often unaware of how the program actually works due to the many built-in

functions and assumptions on which performance calculations are based. A motivation has

been to develop skills within software programming while understanding the fundamentals

of the PV model and the optimization model. Therefore, already existing PV performance

estimation programs are not used in this thesis. Instead, a PV model is developed in Python

by the author of this thesis. The PVLIB library is used as a tool in the decomposition and

transposition of solar radiation. The optimization model for optimizing the use of the bat-

tery, provided the desired objective, is developed in Pyomo. The chosen control strategies

that the battery utilization is optimized for are:

1. Minimization of total importation of electricity.

2. Minimization of spot energy costs.

3. Peak shaving.

The choice of using Python as programming language is based on the fact that many de-

velopers are starting to prefer Python over other programming languages as Python is free,

open-source, and that it can easily be translated to other programming languages.

The complex energy system at Campus Evenstad at INN University in Norway is used as

a case study in this thesis. With some adjustments, the developed PV model and the opti-

mization model may in theory also be applied to other complex energy systems.
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1.3 Limitations

Most of the limitations of this thesis are related to the access of data. The act of accessing

good quality meteorological data is challenging, especially solar radiation data. In general,

solar radiation is not well documented in Norway. The weather station at Evenstad is one

of the many weather stations in Norway where solar radiation is not measured. The access

to other relevant data, such as historical data on PV production and electricity demand at

Campus Evenstad, is also limited. The CHP plant at Campus Evenstad is heat-driven, and as

the heat demand on campus is considered to be out-of-scope in this thesis, the CHP plant’s

contribution to on-site electricity generation is not well accounted for in this thesis. In lack of

historical data on the CHP’s electricity production, simplifications are made when modeling

the CHP plant.

1.4 Structure of the Thesis

Chapter 1 An introduction to the thesis is given in Chapter 1. The background

and motivation for writing the thesis are given. The problem formu-

lation is described, and limitations related to the thesis are addressed.

Chapter 2 Chapter 2 gives a brief introduction to Campus Evenstad at INN Uni-

versity, and why Campus Evenstad has become a field of interest for

many parties.

Chapter 3 An introduction to the solar resource and the theory behind solar en-

ergy is given in this chapter. This chapter is, to a great extent, based

on the specialization project [6] written by the author of this thesis

and fellow student Maren Haugland Hansen conducted in the au-

tumn semester of 2017.

Chapter 4 In Chapter 4, the technological operation principles of the main sys-

tem components of the energy system at Campus Evenstad are ex-

plained. This chapter is necessary in order to understand the modu-

lation of the complex energy system in question.
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Chapter 5 In this chapter, relevant data for performing the modulation is pre-

sented. This includes site-specific meteorological data, historical

data of the PV production and the imported electricity, and system

specific data of the PV panel and the battery. An introduction to grid

tariffs and energy prices is also given.

Chapter 6 Chapter 6 provides a short introduction to the programming theory

of the modeling performed in this thesis.

Chapter 7 This chapter gives a detailed presentation of the functions and equa-

tions used in the system modeling, both in the PV model and in the

optimization model. The different control strategies used in the opti-

mization model are well explained and exemplified.

Chapter 8 The results of the developed PV model and the optimization model

are presented and discussed in chapter 9. Results are mainly pre-

sented in tables and plots.

Chapter 9 A short conclusion is made in this chapter based on the results and

discussion presented in Chapter 8.

Chapter 10 Chapter 10 includes suggestions to further work.





Chapter 2

Campus Evenstad

Campus Evenstad is one of three campuses at Inland Norway University of Applied Sciences

(INN University). The campus is owned by Statsbygg, which is a state-owned management

company under the Ministry of Local Government and Modernisation. An overview of Cam-

pus Evenstad is given in Fig. 2.1.

FIGURE 2.1: Overview of Evenstad Campus. Photo provided by SINTEF.

Over the years, Campus Evenstad has become a field of interest, and many parties are

involved in the continuous development of the campus. Through a collaboration with SIN-

TEF, one of Europe’s largest independent research institutes, and the Norwegian National

7



8 CHAPTER 2. CAMPUS EVENSTAD

Research Centre on Zero Emission Buildings (ZEB), a ZEB-COM (ZEB - Construction, Op-

eration, Materials) building was built on campus in 2016. This building was the first of its

kind in Norway. A roof-mounted PV system was installed in 2013. In 2016, a CHP plant was

installed. Thermal solar collectors are also present on campus, and in time of writing this

thesis (June 2018), a battery system is installed. [7]

Campus Evenstad is currently self-sufficient with heat. The long-term aim of Statsbygg

is, however, that the campus also will become 100% self-sufficient with electricity. With to-

day’s electricity situation, this is far from the reality, but the installation of the battery system

is considered to be a step in the right direction. As the focus of this thesis is the complex

electrical energy system at Campus Evenstad, the heat production on campus will not be

considered in this thesis.



Chapter 3

Solar Resource and Photovoltaic Systems

The majority of the theory presented in this chapter is taken from the specialization project

[6] conducted in autumn 2017 by the author of this thesis and fellow student Maren Haug-

land Hansen. The specialization project is unpublished but can be made available by NTNU

on request.

3.1 The Solar Resource

The sun is the earth’s most significant source to energy. Earth receives on average 1.2×1017W

of power from the sun [8]. Although the sun emits more power than the human population

can use, the availability of solar energy is dependent on the characteristics of the sun. [6]

3.1.1 The Solar Spectrum

All objects emit a certain amount of radiant energy at a given temperature. The sun behaves

almost like a blackbody at 5800 K, i.e., it behaves as a perfect emitter and absorber. Figure 3.1

shows the extraterrestrial solar spectrum, the spectrum just outside the earth’s atmosphere,

and a blackbody at 5800 K in the same graph. Irradiance, measured in W/m2, is a measure

of the power density of solar radiation, while irradiation, is a measure of energy, indicating

the amount of irradiance over time, viewed as the area under the blackbody curve in Fig. 3.1.

Only 47% of the solar spectrum is visible, as illustrated in the Fig. 3.1. [6, 9]

9
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FIGURE 3.1: Comparison of the solar spectrum with a blackbody at 5800 K. Figure from [9].

Air mass (AM) is a measure of how much power that is lost due to the absorption of radi-

ation in the atmosphere. The air mass ratio, m, provides a relation between the actual path

that sunlight takes to reach a certain point on the earth’s surface and the shortest possible

path it, in theory, could take. This relation is given in Eq. (3.1), where θz is the zenith angle

[6, 8]. The zenith angle is explained in Section 3.1.3.

m =
1

cos(θz)
(3.1)

The air mass ratio hence depends on the relative position of the sun. When the sun is

directly overhead, m = 1, which abbreviates to AM1. AM1.5 is generally assumed to be the

solar spectrum at the earth’s surface on a regular day [9]. AM1.5 corresponds to a zenith

angle of 48.2° and an irradiance of 1 kW/m2 on a clear day. [6, 8]

3.1.2 Solar Radiation

Site-specific solar radiation must be assessed when designing PV systems. Not all of the radi-

ation that the sun emits reaches the surface of the earth; some is scattered in the atmosphere.

Direct radiation, also called beam radiation, is the radiation that directly hits a receiver with-

out any impact from the atmosphere. If the direction has been affected by the atmosphere,

i.e., scattered by clouds or other molecules, the radiation is referred to as diffuse radiation.
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Radiation that reaches a receiver due to reflection is called albedo radiation. Albedo is only

considered for tilted planes, i.e., albedo is neglected for horizontal planes. The total solar ra-

diation is known as the global radiation. The sunlight’s components are illustrated in Fig. 3.2.

[6, 10, 11]

FIGURE 3.2: The components of the sun.

For a horizontal plane, global horizontal irradiance (GHI) may be decomposed into its

direct normal irradiance (DNI) and diffuse horizontal irradiance (DHI) components. GHI is

given as the sum of DHI and DNI multiplied with the zenith angle, θz , as shown in Eq. (3.2).

[12]

G H I = DN I ·cosθz + D H I (3.2)

The DHI is found from Eq. (3.3), where DF is the diffuse radiation fraction. The diffuse ra-

diation on a tilted surface can be calculated using either analytic models or empirical models

[13]. The DNI can further be found by substituting Eq. (3.3) into Eq. (3.2) and solve for DNI.

D H I = DF ·G H I (3.3)
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For a tilted surface, the plane-of-array (POA) global irradiance is given by Eq. (3.4), where

POAdir is the direct irradiance incident on the plane-of-array, and POAdiff,refl and POAdiff,sky

are the ground reflected diffuse and the sky diffuse irradiance, respectively [14].

PO A = PO Adi r + PO Adi f f ,r e f l + PO Adi f f ,sk y (3.4)

The conversion from GHI on a horizontal surface to POA irradiance on a tilted surface is

done through the use of transposition models. Several transposition models are in use. Dif-

ferent models require various input data, and hence is the availability of data a limiting factor

when choosing transposition method. A comparison of some of the transposition models in

use, conducted in [14], shows that estimations of the POA irradiance vary depending on the

transposition model used when providing all models with the same GHI as input. [14]

3.1.3 Solar Position

The distribution of solar radiation is dependent on the geometric relationship between the

earth and the sun. When size, location, and orientation of solar modules are to be deter-

mined, knowledge about solar angles and the position of the sun is important.

Solar elevation and zenith The solar elevation angle, β, and the zenith angle, θz , are com-

plementary angles. β is the angle between a horizontal plane and the rays of the sun, i.e., it

describes the angular height of the sun seen from the horizon. θz is the angle between the

sunlight and an axis perpendicular to the site where the sunlight hits [10]. The two angles can

be found from Eq. (3.5), where L represents the geographical latitude and δ is the declination

angle. [6]

sinβ = sinδsinL + cosδcosL cos H = cosθz (3.5)

As the elevation angle and the zenith angle are complementary angles, the relation be-

tween them can alternatively be expressed as in Eq. (3.6). The two angles are illustrated in

Fig. 3.3.

θz = 90°−β (3.6)
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FIGURE 3.3: Solar elevation and zenith angle.

Solar azimuth The direction of the sun is defined by the solar azimuth angle, φs , and is

dependent on the specific latitude, day number, and time of day. The solar azimuth angle is

defined as zero at solar noon. The solar azimuth angle can be found using Eq. (3.7),

sinφs =
cosδsin H

cosβ
(3.7)

where H is the hour angle describing the angular displacement of the sun. The hour

angle can also be used to calculate the time of sunrise and sunset [6, 8]. The solar azimuth

angle is illustrated in Fig. 3.4.

FIGURE 3.4: Solar azimuth angle.
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Solar declination The declination angle, δ, illustrated in Fig. 3.5, is the angle between the

equatorial plane and the line drawn between the center of the sun and the center of the

earth. The declination angle ranges from +23.45° to -23.45° at the summer and winter solstice

respectively, and can be calculated from Eq. (3.8), where N is the N th day of the year. The

summer solstice is defined as the day of the year with the highest amount of daytime hours

and is set to June 21. The winter solstice occurs on December 21. [6, 9]

δ = 23.45sin[
360

365
(284 + N )] (3.8)

FIGURE 3.5: Solar declination angle.



Chapter 4

Energy System Components at Campus

Evenstad

Figure 4.1 shows the components of the complex electrical energy system at Campus Even-

stad. The theory behind PV systems, converters, batteries and CHP plants is introduced in

the following sections of this chapter.

FIGURE 4.1: System components at Campus Evenstad.

Large parts of the theory presented in this chapter are taken from the specialization

project [6] written by the author of this thesis and fellow student Maren Haugland Hansen in

autumn 2017. The specialization project is unpublished but can be made available by NTNU

on request.

15
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4.1 The Photovoltaic System

There are two overall categories when it comes to PV systems: grid-connected PV systems

and stand-alone PV systems. The main difference between grid-connected systems and

stand-alone systems is that the grid-connected system is connected to a utility grid and can

hence import electricity in times when the PV system is not able to generate the required

amount of energy demanded by the load. In times of overproduction, the grid-connected

PV system may export excess energy to the grid, thus preventing the generated energy from

going to waste. Stand-alone PV systems may be connected to a backup generator which can

provide power when the PV production is insufficient. In Norway, stand-alone PV systems

are typically found in cabins. The PV system at Campus Evenstad is a grid-connected system.

[6, 9, 15]

4.1.1 The Photovoltaic Cell

The simplest representation of a PV cell is through an equivalent circuit consisting of a real

diode in parallel with an ideal current source, as illustrated in Fig. 4.2.

FIGURE 4.2: Equivalent circuit of a PV cell.

The output current of the PV cell, I, is given in Eq. (4.1) according to Kirchhoff’s current

law (KCL).

I = ISC − Id (4.1)

The current passing through the diode, Id, is given by the Shockley diode equation. By

substituting Id in Eq. (4.1) with the Shockley diode equation, the PV cell’s output current
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can be expressed as in Eq. (4.2), where q = 1.602 × 10−19C is the electron charge and k =

1.38 × 10−23 J/K is the Boltzmann’s constant. I0 is the reverse saturation current, while T

represents the temperature at the junction measured in Kelvin. [6, 9]

I = ISC − I0(eqVpv /kT −1) (4.2)

The PV cell can be modeled more accurately by adding a parallel leakage resistance, Rp,

and a series resistance, Rs, to the equivalent circuit. The parallel and series resistances are

added to achieve a better indication of the power generated when for instance the PV cell is

exposed to shading. The modified equivalent circuit is given in Fig. 4.3.

FIGURE 4.3: A more accurate approximation to the equivalent circuit of a PV cell.

Including the parallel leakage resistance and the series resistance, the PV output current

drops V
Rp

and the voltage decreases with a factor of ΔV = I Rs . The resulting expression for

the PV output current is given in Eq. (4.3). [6, 9]

I = ISC − I0(e
q(Vpv +Ipv Rs )

kT −1)− Vpv + Ipv Rs

Rp
(4.3)

The power generated by a solar cell is the product of the current and the voltage. Ideally,

low currents and high voltages are preferable to achieve desired power output, and hence

the parallel leakage resistance should be high while the series resistance should be low in

order to improve the performance of the PV cell. Figure 4.4 shows the I-V curve of a solar cell

and the power output. The Maximum Power Point (MPP), marked in the graph, represents

the product of current, IR, and voltage, VR, that gives the highest output power of the PV cell.

Temperature and irradiance severely impacts the I-V curve of a solar cell. When tempera-

tures increase, the voltage decreases, while the current increases with increasing irradiance.

A Maximum Power Point Tracker (MPPT) is used to track the MPP, and hence ensure maxi-
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mum power operation of the PV cell for the continuously changing temperatures and irradi-

ance levels. The MPPT is included in the DC-DC converter, which is often integrated into the

inverter [6, 9]. Inverters are explained in Section 4.2. More on the electrical characteristics of

a PV cell, along with common material technologies, can be found in [6, p. 11-22].

FIGURE 4.4: The I-V curve and power output of a PV cell, showing the MPP. Figure from [9].

4.1.2 The Photovoltaic Array

Electric energy is generated when sunlight hits a PV cell, and a current starts to flow. The PV

system is built up by multiple PV cells connected in series and parallel forming a PV module.

Several modules may be connected in series to form a PV string, and the PV strings may fur-

ther be connected in parallel to form a PV array. The formation of a PV module is illustrated

in Fig. 4.5, while the formation of the PV array is illustrated in Fig. 4.6. The number of series

connected PV modules in a string determines the output voltage of the PV system, while PV

strings are connected in parallel to obtain the desired output current. [6, 9, 16]

FIGURE 4.5: Illustration of a PV cell and a PV module.
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FIGURE 4.6: PV modules forming a PV array.

4.1.3 Photovoltaic Production Model

The PV panel produces DC power. The conversion from DC to AC power for a PV panel is

given in Eq. (4.4), where Pdc0 is the PV nameplate DC rating in kW. The overall system ef-

ficiency, ηs y s , in the conversion from DC to AC power under real field conditions, includes

losses in wiring, shading, module mismatch, inverter, etc. Temperature and irradiance im-

pacts on the PV performance are, however, not included in ηs y s . [9]

Pac = Pdc0 ·ηs y s (4.4)

The amount of power that can be produced by a PV panel is highly dependent on tem-

perature and irradiance levels. Output PV power increases with increasing irradiance. The

temperature coefficient of the voltage is negative, and the voltage hence decreases with in-

creasing temperatures, implying that lower temperatures are preferable to optimize the PV

system’s performance. Equation (4.5) gives a more accurate estimation of the PV produc-

tion, including irradiance and temperature impacts. Gpoa is the global plane-of-array irra-

diance on the PV panels in W/m2, and γT is the PV temperature coefficient measured in

%/°C . GSTC = 1000W /m2 and Tcel l ,STC = 25°C represents the solar irradiance and the PV cell

temperature under Standard Test Conditions (STC). [17]

Pac = Pdc0 ·ηs y s ·
Gpoa

GSTC
[1 +γT · (Tcel l −Tcel l ,STC )] (4.5)

The solar cell temperature may be calculated for varying ambient temperatures using

Eq. (4.6). The Nominal Operating Cell Temperature (NOCT) is the predicted temperature
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of a solar cell provided by the manufacturer given an ambient temperature of 20°C, a solar

irradiance of 800 W/m2 and wind speed of 1 m/s. [6, 9]

Tcel l = Tamb +
NOC T −20°C

0.8
·G (4.6)

4.2 Inverters

For simplifying reasons, the inverters in the complex energy system at Campus Evenstad will

not be modelled in this thesis. The loss that these inverters represent will simply be included

in the PV model and the battery model respectively. Only a short introduction to the theory

behind inverters is hence given in this section.

As previously mentioned, the PV array generates DC power. Most equipment runs on AC

power, and hence the power generated in the PV array must be converted into AC power. The

conversion from DC to AC power is done using a DC-AC converter, also called an inverter.

First, the DC voltage generated in the PV array must be converted into a suitable voltage

level for the load which is to be supplied. This is referred to as DC-DC conversion. When the

voltage is at a suitable level, the DC power is converted into AC power. At Campus Evenstad,

the DC-DC converter is integrated into the inverter, but the two converters may be separate.

This is normally the case if some loads are DC loads, and hence it is unnecessary to convert

all the DC power into AC power. Batteries run on DC power. When the battery is located

on the AC side, which is the case at Campus Evenstad, a bidirectional inverter is necessary

to charge and discharge the battery. The bidirectional inverter converts AC to DC at charge,

and the reverse operation is carried out at discharge. [6, 15, 16, 18]

Figure 4.7 illustrates the fundamental circuit of a DC-AC inverter. The fundamental

circuit includes two switches, T+ and T-, and two associated diodes, D+ and D-. The two

switches can never be on or off simultaneously. Which device, the switch or the correspond-

ing diode, that conducts the current depends on the direction of the output current. When

T+ is on, T+ is conducting when the output current is positive, and D+ is conducting for nega-

tive output current. The output voltage of the inverter does not depend on which device, i.e.,

the switch or the diode, is conducting; it only depends on the operating state of the switches.

[6, 18]
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FIGURE 4.7: Fundamental inverter circuit.

The inverter must ensure that characteristics like frequency, voltage, and power are con-

trolled and regulated to meet the standards and the requirements of the load to which

power is supplied. Ideally, the inverter produces a sinusoidal waveform output. This can

be achieved using Pulse-Width Modulation (PWM). The original output voltage waveform

of the inverter is a square-wave. Inverters that use PWM can rapidly switch between on-

and off-state, resulting in a better approximation to a sinusoidal output voltage waveform.

As previously explained, the MPPT is included in the DC-DC converter. When the DC-DC

converter is integrated into the inverter, as it is at Campus Evenstad, it hence becomes the

inverter’s task to ensure optimal operation of the PV array at all times. In the case of Cam-

pus Evenstad, each inverter has two MPPT inputs which allows the inverter to perform MPP

tracking of two separate PV strings simultaneously [6, 18]. More on inverters and MPPT can

be found in [6, p. 25-36].

The inverter efficiency is not constant; it changes based on the DC output power of the

PV array and the PV voltage. Figure 4.8 shows the efficiency curve of the Sunny Boy 5000TL

inverter, which is the inverter connected to the PV system at Campus Evenstad. As seen in

Fig. 4.8, the inverter efficiency ranges between 95% and 97% depending on the PV output

voltage. For low output power, the inverter efficiency is significantly reduced. The inverter

is often undersized, meaning that the inverter limits the maximum AC power that the PV

system can deliver. This is typically due to the high cost of inverters, and the fact that, most

of the time, the PV system is generating less power than its maximum installed capacity.
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FIGURE 4.8: Inverter efficiency curve. Figure from SMA’s inverter datasheet in [19].

4.3 Battery System

One of the greatest challenges related to the use of renewable energy sources in electricity

generation is that the energy generation is dependent on uncontrollable weather conditions.

There are no guarantees that the sun shines when you need energy the most, and hence a

solution in order to store energy may be beneficial.

Energy may be stored in many forms. For PV systems, rechargeable batteries, also called

secondary batteries, are normally used as the storage unit. Batteries are electrochemical de-

vices that use chemical reactions to generate power through the acceptation and donation of

electrons at the positive and negative electrodes [20, 21]. A battery bank can consist of mul-

tiple batteries, where each battery is made up of many series connected battery cells. Each

battery cell generally has a nominal voltage of 2 V [6, 15]. Batteries are connected in series to

achieve the desired output voltage, and in parallel to achieve higher battery capacity. Gen-

erally, higher voltage and lower current are desirable to achieve the desired power capacity

since higher current leads to greater losses. However, the parallel connection of batteries

ensures system reliability as the entire battery bank shuts down if a battery fails in a system

with only series connected batteries. Hence, the system design is always a trade-off between

battery capacity, losses, and reliability. The lifetime of a battery is measured looking at how

many charge and discharge cycles the battery is capable of, and is highly dependent on the

depth of discharge (DoD), i.e., to which level the battery is discharged with respect to the

power capacity of the battery. The deeper the discharge, the more battery capacity is lost

and hence the resulting lifetime of the battery becomes shorter. [6, 9, 22]
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FIGURE 4.9: Illustration of a lithium-ion battery cell. (a) shows the charging process, and (b)
shows the discharge process of the battery. Figure from [20].

Lead-acid batteries are the most commonly used rechargeable batteries. The battery in-

stalled at Campus Evenstad is a lithium-ion battery. Lithium-ion batteries hold many advan-

tages over lead-acid batteries, e.g., higher energy density, higher efficiency, longer lifetime

capacity, and they are made up of lighter material, making it easier and cheaper to trans-

port the batteries [21, 22]. A lithium-ion battery cell is illustrated in Fig. 4.9. Li+ ions are

transferred from the positive to the negative electrode during charge, and from negative to

positive during discharge. Notice in Fig. 4.9 that the anode and cathode changes from the

charging process to the discharge process. This is due to the fact that ions always flow from

anode to cathode, and hence are the positive and negative electrode referred to as anode

and cathode during charge, and vice versa during discharge [20]. The equivalent circuit of a

battery is given in Fig. 4.10.

FIGURE 4.10: Equivalent circuit of a battery.
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4.3.1 Energy Storage Model

As the installation of the battery at Campus Evenstad took place while writing this thesis, no

information on the battery performance or the use of the battery is available. The battery

will, in this thesis, hence be modeled as a box that will be charged at a charge efficiency ηch

and discharged at a discharge efficiency ηdch . The charge efficiency, ηch , of the battery is the

ratio of energy gained by the battery during charge, while the discharge efficiency, ηdch , is

the ratio of discharged energy from the battery. The roundtrip efficiency of a battery is a term

that describes the ratio of discharged energy from the battery to the energy charged into the

battery. The roundtrip efficiency is hence equal to ηch/ηdch [22]. According to IRENA in

[22], the roundtrip efficiency of lithum-ion batteries is 85% - 95%. The roundtrip efficiency

includes losses in the battery and in the battery inverter. Both the charge- and discharge effi-

ciency depends on the State of Charge (SOC) of the battery. The SOC describes the available

charge capacity of the maximum battery capacity in %, hence does the charge- and discharge

efficiency change over time depending on the energy content in the battery. [20, 23]

4.4 Combined Heat and Power

The CHP plant produces power and heat simultaneously. The CHP plant can be steam

turbine-based, gas turbine-based, fuel cell-based or engine-based [24]. The CHP at Cam-

pus Evenstad is gas engine-based. It uses locally produced wood chips which are gasified

into biogas and further burnt in a combustion engine. For small-scale CHP plants, gas en-

gines generally achieve high power efficiencies [24]. The small-scale and wood chip based

CHP plant at Campus Evenstad was the first of its kind in Norway when installed in 2016.

As the CHP plant at Campus Evenstad is heat driven, it is necessary to consider the heat

demand on campus to model the CHP plant accurately. This is considered out-of-scope for

this thesis, and the CHP is hence modeled as only having two operation modes in this thesis;

running on maximum in winter and being completely shut off during summer. Therefore,

further theory on the operation of a CHP plant will not be given.



Chapter 5

Site-Specific Data for Campus Evenstad

5.1 Meteorological Data

The performance of a PV module is directly dependent on solar radiation and site-specific

weather conditions. The collection of meteorological data, therefore, becomes important

when modeling a PV system. A high level of uncertainty is to be expected in measurements

of solar irradiance due to the difficulty of performing such measurements. Hence, the avail-

ability of irradiance measurements, along with the quality of these measurements, varies.

[12, 25]

Various equipment to measure the solar resource exists. Such equipment is either based

on surface observations, satellite data or meteorological models. Among surface observa-

tion equipment, pyranometers and reference cells are often used to measure global radia-

tion. The pyranometer is a thermopile sensor where the measured temperature difference

generates a voltage proportional to the radiation that hits the instrument. The pyranome-

ter is the most commonly used instrument for measuring global radiation. Reference cells

have similar characteristics to the PV panel. For a reference cell sensor, a voltage is generated

when the sensor captures incoming photons. [11, 26]

5.1.1 Meteorological Data for Campus Evenstad

In this thesis, meteorological data from the Norwegian Meteorological Institute has been

used. The Norwegian Meteorological Institute has in total 70 weather stations equipped with

sunshine duration sensors or pyranometers measuring global radiation [11]. Hourly data can

be accessed from their database, eklima. Data is logged using the Norwegian Mean Time

25
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(NMT) which is equivalent to UTC+1. The time is not changed for summertime, which is

creating a timeshift in the results for simulations performed during the summer months.

More on this in Section 8.1.

The Norwegian Meteorological Institute does not measure solar radiation at the weather

station at Evenstad, 8140 EVENSTAD. The closest weather station to campus where the global

radiation is measured is 7420 RENA, which is located approximately 23 km from Evenstad.

Table 5.1 gives an overview of weather stations close to Evenstad where global irradiance is

measured.

TABLE 5.1: Overview of the Norwegian Meteorological Institute’s weather stations close to
Evenstad

Nr. Station Name Altitude Latitude Longitude Distance in km

8140 EVENSTAD 257 61.4255 11.0803 -
7420 RENA 872 61.3763 11.4992 23
13030 GAUSDAL 375 61.2247 10.2588 49
13150 FÅVANG 200 61.4582 10.1872 48

Hourly data on global radiation (W /m2) and air temperature are downloaded from ek-

lima in *.xls files from the weather stations listed in Table 5.1. Hourly values of the GHI mea-

sured at Rena, Gausdal, and Fåvang are plotted in Fig. 5.1 for the year 2017. Out of the three

weather stations, Rena is closest in distance from Evenstad. It could hence be reasonable to

use GHI values measured at Rena in the simulation of the PV system at Evenstad. However,

as seen in Fig. 5.1a, the GHI measured at Rena exceeds 1000 W/m2 on several occasions. Ac-

cording to Norsk Solenergiforening in [2], the GHI in Norway is typically between 700 W/m2

and 1000 W/m2. GHI values above 1000 W/m2 may, therefore, be considered suspiciously

high for this location. Hourly GHI values for Rena, Gausdal, and Fåvang was downloaded

for a more extended time period to see if such high values had also occurred previous years.

Values for years 2015 to 2017 are plotted in Fig. 5.2. As observed in Fig. 5.2, 2017 is the only

year where GHI values exceed 1000 W/m2. It may hence be concluded that the GHI values

measured in 2017 are irregularly high at times. These irregularities mostly apply to Rena, as

measurements for the two other stations seems to be more stable.

Taking a closer look at the location parameters of Evenstad, Rena, Gausdal and Fåvang

weather station listed in Table 5.1, it becomes evident that the altitude at which the weather

stations are located differs from one another to a great extent. Rena weather station may be

the closest in distance, but it is located at a much higher altitude than Evenstad weather sta-
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(B) Gausdal
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(C) Fåvang

FIGURE 5.1: Hourly GHI values for 2017,downloaded from eklima.
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(B) Gausdal
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(C) Fåvang

FIGURE 5.2: Hourly GHI values for 2015-2017 downloaded from eklima.
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tion. Solar radiation tends to increase with increasing altitude since sunlight has a shorter

path to reach a surface at higher altitudes, and hence is the radiation exposed to less scatter-

ing and absorption in the atmosphere. The altitudes effect on the solar radiation is referred

to as the altitude effect [27]. The difference in altitude between Rena and Evenstad is 615

meters, which may account for a significant differentiation in solar irradiance at the two lo-

cations.

Based on the previously mentioned observations, it is concluded that using global radi-

ation measured at Rena weather station in the simulation of a PV system located at Even-

stad is not ideal, both due to the high GHI values observed at Rena in 2017 and due to the

massive altitude difference of the two stations. Therefore, it was decided to manipulate the

global radiation data to be used as input to the PV model. There are several ways to manipu-

late data. As the main problem seems to be unrealistically high values of global radiation in

certain time periods, one could, for instance, replace these values with interpolated values.

After studying the global radiation data more closely, this was considered not to be a good

solution, as there are also uncertainties related to low values of measured global radiation.

Additionally, it is difficult to interpolate data when there are multiple occurrences of irregu-

lar data in series. Therefore, it was considered to be more accurate to operate with average

values. Both Gausdal and Fåvang weather stations are located East of Evenstad, while Rena

weather station is located West of Evenstad. Hourly average GHI values of Gausdal and Få-

vang weather stations were hence averaged with hourly GHI values for Rena. The obtained

approximation of the GHI at Evenstad in 2017 is plotted in Fig. 5.3.
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FIGURE 5.3: Estimated hourly GHI values for Evenstad in 2017.
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In the simulations of the PV system at Campus Evenstad, air temperature measured at

Evenstad weather station were used. At some occasions, measurements were missing, and

in these cases, the temperature was estimated in the same way as the global radiation.

5.2 Photovoltaic Production at Campus Evenstad

The PV system at Campus Evenstad was installed in late 2013 by the Norwegian company

FUSen. The system consists of 276 REC 255PE PV modules and 12 Sunny Boy 5000TL-21

inverters. The system is roof-mounted, south-faced, and tilted 35°. The installed capacity of

the PV system is 70.38 kWp, meaning that a maximum of 70.38 kWdc can be produced under

ideal conditions. The annual production on site is approximately 60 034 kWh [28]. On days

with high levels of isolation, the PV system at Campus Evenstad can produce approximately

500 kWh/day [7]. Figure 5.4 shows the installed PV system at Evenstad.

FIGURE 5.4: South-faced roof-mounted PV system at Campus Evenstad.

At SMA’s Sunny Portal measured data from the PV system at Evenstad is available for

download. Power production together with POA irradiance, PV module temperature, and

wind speed values can be accessed from Sunny Portal. The POA irradiance logged in the

Sunny Portal is measured using a reference cell. Figure 5.5 shows an annual comparison of

the PV production at Campus Evenstad.
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FIGURE 5.5: Comparison of the annual PV production at Campus Evenstad. Figure from
[28].

Hourly, daily, monthly, and yearly data are logged at the Sunny Portal. For the PV pro-

duction, a 15-minute time resolution is available. The 15-minute time resolution is easily

converted into hourly data, which is the time interval used in the modeling in this thesis.

However, data with such high time resolution is only available for day-by-day download.

This makes the process of collecting hourly data from the Sunny Portal extremely time-

consuming. The prediction of the hourly PV production cannot be executed accurately with

daily or monthly values of radiation and temperature, simply since irradiance and tempera-

ture varies continuously throughout the day. A PV production prediction based on daily or

monthly values would hence be inaccurate and useless when determining the hourly oper-

ation of the battery.

Kinect Energy Group is responsible for calculating the electricity certificate for Campus

Evenstad. An electricity certificate is a subsidy scheme for power produced from renewable

energy sources. As renewable energy is generated at Campus Evenstad, the INN University

receives electricity certificates which they can further sell to electricity suppliers which are

obliged to buy such certificates [29]. Kinect Energy Group, therefore, has measuring equip-

ment on campus, measuring the hourly PV production. Figure 5.6 illustrates the monthly

PV production at Campus Evenstad from September 2016 to April 2018 provided by Øyvind

Kaaresen at Kinect Energy Group. Kinect Energy Group does not store hourly PV production

data after a certain period of time, and hence the access to historical hourly production data

is limited. Data on PV production provided by Kinect Energy Group is rounded to the closest

kWh/h.
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FIGURE 5.6: Monthly PV production at Campus Evenstad from September 2016 to April 2018
based on data provided by Kinect Energy Group.

The estimated PV production at Campus Evenstad, obtained through simulations of the

developed PV model in this thesis, will, in Section 8.1, be compared to the measured PV

production data provided by Kinect Energy Group.

5.3 CHP Electricity Production

A CHP plant, installed in 2016 as the first of its kind in Norway, ensures local energy produc-

tion from locally produced wood chippings that are gasified and burnt, and hence produces

both electricity and heat. The CHP plant has a capacity of 40 kWel and 100 kWheat. The ex-

pected annual production is 325 MWh/year heat and 133 MWh/year electricity [7]. Histori-

cal data of the CHP electricity production at Campus Evenstad is normally logged at Sauter

Vision Center. However, due to recent upgrades in the Vision Center, historical data on the

CHP electricity production is only available from April 10, 2018.

The CHP plant at Evenstad is heat driven, i.e., the operation of the plant is determined

by the heat demand on campus. The electricity generated by the CHP is merely considered

a by-product. As the CHP is heat driven, it is impossible to make an accurate estimation of

the electricity production from the CHP without considering the heat demand on campus.

As this thesis solely focuses on the electricity management of the complex energy system at

Campus Evenstad, simplifications are made regarding the CHP plant. The CHP is therefore

assumed to be operating at maximum (40 kWel) between October and April when it is cold
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outside and students are living on campus. From May to September, the CHP is assumed to

be shut completely off as the weather is warmer, and the majority of students are assumed

not to be living on campus during these months.

5.4 Battery Specifications

Campus Evenstad has, from time to time, suffered from power failure, mainly due to weather

conditions and trees falling over power transmission lines in the area. Without access to

power, the CHP plant is unable to start up. As the CHP plant is the main source to heat on

campus, this can be critical, especially during the winter months, as the majority of students

live in dorms on campus. Based on this, Statsbygg decided to invest in a battery system. The

battery was installed in June 2018, i.e., in times of writing this thesis, by Solcellespesialisten,

the leading vendor of solar cells in Norway. The battery installed is a lithium-ion battery,

more specifically lithium nickel manganese cobalt oxide, and holds a capacity of 108 kW/204

kWh. The battery capacity describes the useful discharge capacity of the battery, not the total

amount of energy that may be stored in the battery [23]. The functions of the battery system

are listed below, in prioritized order as specified by Statsbygg [7].

1. Uninterrupted power supply

2. Start battery for the CHP plant

3. Energy storage for the PV system (maximize self-consumption)

4. Reduce the need for imported electricity from the grid

The minimum requirement for operation in island mode is 50 kW/100 kWh [7]. This is

considered sufficient to ensure backup power supply, including starting current for the CHP,

at times of power failure. The capacity of 50 kW/100 kWh must hence be available at any

given time. Additional capacity may be used as energy storage for excess energy produced

by the PV system and the CHP plant. The installed battery system may be expanded in the

future depending on demand.
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5.5 Historical Data on Grid Exchange

Imported and exported electricity at Campus Evenstad is measured by the local grid com-

pany, Eidsiva. Øystein Holm at Multiconsult provided hourly values of imported and ex-

ported electricity in 2016 and 2017. The *.xlsx for 2016 contained several timestamp dupli-

cates. Where the values of the duplicates did not correspond, the highest value of imported

electricity was consistently selected.

The estimated annual electricity consumption at Campus Evenstad is 750 MWh/year [7].

Figure 5.7a shows the electricity imported from and exported to the grid at Campus Even-

stad for the year 2016. In total, 1.06 GWh was imported while only 157.59 kWh was exported

in 2016. According to Multiconsult [7], the high electricity consumption in 2016 can be ex-

plained by construction work on campus and the fact that the actual electricity consumption

in new buildings is typically higher than the estimated consumption. The highest hourly im-

ported electricity in 2016 was 479.46 kWh and occurred on the 7th of March. Figure 5.7b

shows the imported electricity from the grid in 2017, from February 8 to December 31. The

highest hourly imported energy in this period was 467.70 kWh and occurred on the 22nd of

November. The total import sums up to 904.18 MWh, i.e., also higher than the estimated

annual electricity consumption. Data on exported electricity is not available for 2017.
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FIGURE 5.7: Imported electricity at Campus Evenstad.

5.6 Cost of Import

The total cost of the energy imported from the grid is divided into two:

1. The cost of the actual amount of electricity that is imported, and

2. The cost of the grid tariff.

The company that distributes the energy is not necessarily the same company that sup-

plies the energy. The supplier charges the customer for the electricity supplied, while the

distributor charges the customer for the distribution, i.e., the transportation, of the supplied

energy.

5.6.1 Grid Tariff Structure

Tariff designs are controlled and regulated by Norwegian Water Resources and Energy Direc-

torate, Norges Vassdrags- og Energidirektorat (NVE).
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Current Tariff Structure

Although NVE provides guidelines and regulations to how grid companies may design tar-

iffs, they are to some extent free to design grid tariffs as they please. It is common among

grid companies to differentiate customers depending on annual consumption or installed

capacity, and set the tariff thereafter. The tariff for residential customers consist of a fixed

annual charge and an energy charge based on how much energy they consume. In addition

to the fixed charge and the energy charge, commercial customers are charged with a capac-

ity charge. As Campus Evenstad at INN university annually imports more than 100 MWh, it

is considered to be a commercial customer. [30]

Future Tariff Structure

Lately, there has been an increasing focus on the grid tariff structure in Norway. The con-

stantly increasing electricity consumption is putting pressure on the grid companies. In

many cases, an expansion of the existing grid has become, or is becoming, necessary. High

investment costs are related to such expansions. In the report Status of NVE’s work on net-

work tariffs in the electricity distribution system [30], NVE suggests that future tariff struc-

tures should ensure that customers are rewarded for reducing their demand during peak

hours. Reducing demand during peak load decreases the installed capacity demand, and

thus costs related to grid building and grid extension will decrease. The grid is built based

on the demand of capacity, not energy. This implies that, with today’s tariff design, the grid

holds unused capacity large parts of the day when demand is lower than the maximum in-

stalled capacity. If consumers manage to change their consumption behavior such that the

load profile is more evenly distributed throughout the day, the grid would be used more effi-

ciently. [30]

NVE stresses that the grid tariff structure highly influences the usage of the grid. Within

the year of 2018, smart meters will replace conventional meters for measuring electricity in

Norway. Smart meters provide consumers with more detailed information regarding their

electricity consumption and the cost of the energy they consume. These smart meters are

expected to cause consumers to become more conscious of their energy consumption, and

potentially make consumers distribute their load in a more efficient way such that the de-

mand in specific periods is reduced. If this is the case, a potential need for expansion of the

grid may be reduced or postponed, lowering the overall cost for the consumer. [30]
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Grid Tariff for Campus Evenstad

Eidsiva is the local grid company at Evenstad. Campus Evenstad is considered to be a com-

mercial customer, and hence, in addition to paying for the energy that they consume, they

are also charged for the power they draw from the grid. Eidsiva base their power tariff on the

highest hourly consumption over the last 12 months. As the future grid structure is uncer-

tain, the current tariff structure is used as a basis in this thesis. The expression for calculating

the grid tariff is given in Eq. (5.1).

Ct ar i f f = C f i xed ,year l y +Cpower · y i mp,peak +Cener g y ·
8760∑
t=1

y i mp
t (5.1)

Eidsiva’s tariff prices for commercial customers for 2017 are given in Table 5.2. If the

power peak exceeds 200 kW, the highest power price listed in Table 5.2 apply to the first 200

kW while the lowest power price is multiplied with the remaining power in kW.

TABLE 5.2: Eidsiva’s tariff prices for commercial customers, including VAT and customer fee,
for 2017. Prices from [31]

Grid level Fixed [NOK/yr] Energy [NOK/kWh] Power [NOK/kW]

Low voltage 20 500 0.279
Power < 200 kW 620
Power > 200 kW 470

5.6.2 Energy Prices

All residences are assigned a grid company responsible for the power grid and for making

sure that electricity is delivered to the consumer. Each grid company has the monopoly in

their assigned geographical area, meaning that the consumer cannot freely choose a grid

company. Consumers are, on the other hand, free to choose the energy distribution com-

pany of their preference.

Energy distribution companies operate with different prices, price structures and terms

of agreements. Most energy distribution companies offer a spot price structure. The spot

price structure is widely used among consumers. The spot price structure, given in Eq. (5.2),

consists of a fixed monthly charge, a price for each kWh consumed according to Nord Pool
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power market spot prices, and an additional cost per kWh including an electricity certificate

fee decreed by law. The price of energy per kWh is generally higher during peak hours.

Cspot = 12 ·C f i xed ,monthl y +
8760∑
t=1

(C nor d pool
t +CGC ) · y i mp

t (5.2)

In the system modeling, Eidsiva is assumed to be the energy distribution company at

Campus Evenstad, and the spot price structure is assumed to be the price structure in use.

The fixed monthly charge of Eidsiva’s spot price structure is 45 NOK, and the electricity cer-

tificate fee is 0.045 NOK/kWh [32]. Historical data on the hourly spot prices in different re-

gions may be downloaded from Nord Pools’s database [33]. Spot prices, including VAT, for

Oslo in 2017 are plotted in Fig. 5.8.
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FIGURE 5.8: Hourly spot prices including VAT for 2017. Data from [33].

5.7 Electricity Load

Several factors affect the electricity demand and load profile of the consumer. Time, econ-

omy and social behavior represent some factors [34]. The energy consumption in Norway

is naturally higher in winter than in summer due to the cold climate. The daily load curve

of residences generally has two power peaks; one in the morning and one in the evening.

The industry is often divided into primary, secondary and tertiary industry depending on

what kind of operations and services the industry provides. Campus Evenstad goes under
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the tertiary industry category. In the tertiary industry, the daily load profile is smoother and

doesn’t contain the typical power peaks expected in the load profile of residences [35]. So-

cial behavior and customer awareness affect the load profile, and it is expected to do so to

an even greater extent in the future as the structure of the grid tariff changes as described in

Section 5.6.1.

Many methods for predicting or forecasting the load profile exists. The different methods

use different approaches in the prediction process. Some methods are based on historical

data of the load with respect to weather data, while others also require information about

user behavior and specific information of the building construction [36]. For simplifying

reasons, historical data are, in this thesis, used to determine the electricity demand at Cam-

pus Evenstad. As the battery was installed in June 2018, and hence no data on the use of

the battery was accessible at the time of writing this thesis, the demand is determined by

the simple relation given in Eq. (5.3). The estimated load demand at Campus Evenstad in

2017 is plotted in Fig. 5.9. Note that the load estimation for 2017 is inaccurate as historical

data on export was unavailable for 2017 and the electricity generation from the CHP plant is

estimated as explained in Section 5.3.

Demand = PV +C HPel + Impor t −E xpor t (5.3)
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FIGURE 5.9: Estimated demand at Campus Evenstad in 2017.





Chapter 6

Programming Theory

Python is chosen as the programming language in this thesis. Python is open-source, and

hence it is free to use, and information and examples can easily be accessed online. In addi-

tion, Python plays well with other programming languages such as R and C.

6.1 PV System Modeling

Various software packages for predicting the performance of PV systems exists. PVsyst, SAM,

and PVWatts represent some of the most well-known software packages available on the

market. Such commercial software packages are great for performance prediction, system

sizing, and loss factor analysis, but they generally lack simulation flexibility as they are cre-

ated and designed based on integrated tools and assumptions that the user of the software

is unaware of. PVLIB, a fairly young open-source environment developed for PV modeling,

represents an alternative to the well-established PV system softwares mentioned above. [37,

38]

6.1.1 PVLIB

PVLIB is a fairly young PV modeling environment. It started as an in-house project at Sandia

National Laboratories in 2009 with the aim to collect and standardize PV modeling func-

tions. As has been mentioned on several occasions in this thesis, the system performance of

a PV system depends on many factors. The system performance modeling consists of many

steps, and there are various methods for completing each step. Through PVLIB, developed

algorithms for PV system performance is published in one place, giving the software user the

41
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flexibility and ability to customize, modify, and compare algorithms based on the specific

PV system in question. The PVLIB environment includes algorithms for weather forecasting,

weather data conversion and handling, and PV performance forecasting. [37, 38]

As stated in Section 1.2, one of the motivations for writing this thesis was to develop

skills within software programming while understanding how the software packages work.

In relation to this, it was decided to use a combination of the built-in functions that PVLIB

provides for the PV performance prediction and well-accepted functions described in Sec-

tion 4.1. As the model constructed in this thesis is meant to be a prework for future model

predictive control of the battery, the forecast weather functions that PVLIB provides, may be

implemented in the model at a later time.

There are some limitations to the use of PVLIB for PV system performance modeling, es-

pecially for PV systems located in Northern countries. Several of the built-in functions used

in this thesis enables the user to specify optional input parameters that will ensure a more

accurate performance estimation. Some of these optional input parameters are unknown

values for the specific case of this thesis, and hence the functions default settings are used

in such cases. In other cases, none of the possible input parameters fit the description of

the specific case used in this thesis due to a mismatch between the site locations used in

the documentation of the built-in functions and the specific site location of this thesis. This

primarily applies for the transposition function from irradiance components on a horizontal

plane to POA irradiance components, which is based on Perez coefficients. Perez coefficients

are only determined for a handful of sites around the world, most of them situated in the

United States and with climatic conditions which differ from Norwegian climate conditions.

[39]

6.1.2 Validation of the PV Model

The predicted PV performance of the constructed PV model is validated using historical data

on the PV production. The goodness of the PV model is, in this thesis, determined by using

two different methods. Firstly, the error of the total amount of estimated PV production is

compared to the total amount of measured PV production is calculated for each test period

using the simple relation given in Eq. (6.1). Note that the error does not account for hourly

differences between estimated and measured production; only the total error is found.
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er r or =
|PVmeasur ed −PVest i mated |

PVmeasur ed
·100% (6.1)

Secondly, the coefficient of determination, also known as R2, is calculated for each test

period. R2 holds a value between 0 and 1, and indicated how much of the variations in the

predicted value, ŷ , are explained by the variations in the measured value, y [40]. In other

words, R2 describes how similar two datasets are; not necessarily in value, but in variation.

In this thesis, R2 is used to indicate to what degree the daily curve of the predicted PV pro-

duction follows the daily curve of the measured PV production, i.e, how much of the hourly

variation in the predicted PV production (ŷ) can be explained by the hourly variations in the

measured PV production (y). Several expressions for calculating R2 exist [41]. The mathe-

matical expression used in this thesis is given in Eq. (6.2), where ȳ is the mean of y . Note

that, for this expression, R2 may, in fact, be negative if the two datasets are not at all a good

fit [41].

R2 = 1− SSRes

SST

= 1−
∑n

i =1(yi − ŷi )2∑n
i =1(yi − ȳ)2

(6.2)

6.2 Optimization

The act of optimization is performed in order to find the solution to a problem that gives the

best outcome under specified conditions. Various optimization modeling tools exist. Pyomo

has been chosen for the optimization of the use of the battery in this thesis.

6.2.1 Pyomo

Pyomo is an open-source library, supported by Python, commonly used to handle optimiza-

tion problems. Tools to formulate the problem, solve and analyze the results are included in

the Pyomo software. Various problem types can be optimized using Pyomo, including linear,

quadratic, nonlinear, and stochastic programming. [42]

In pyomo, parameters and variables included in the model must be declared. Parameters

represent values that must be provided in order for the model to be solved and optimized.

Variables, on the other hand, represents changing or unfixed values that will be determined
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during the solving of the model depending on the optimal solution. Problem restrictions are

modeled as constraints, and finally, the objective of the optimization model is declared.

The optimization problem formulation is performed in Pyomo, but in order to obtain the

optimal solution to the problem, a third-party solver must be specified. Pyomo supports a

wide range of solvers, including ASL solvers, cplex, glpk and gurobi [42]. Gurobi is widely

used in industries due to its fast run-time and its capability of solving a wide range of op-

timization problem types. Gurobi is not open-source, but offer a free license for academic

users. Although it is a drawback that gurobi is not an open-source solver, and many free,

open-source solvers exist on the market, it is concluded that a robust, fast solver is preferred

over a less robust open-source solver, and hence gurobi is chosen as the solver in this thesis.

Gurobi also supports interfaces for other programming languages. [43]



Chapter 7

System Modeling

In this section, equations used in the modelling process are given. Parameters and variables

used in the modelling are listed below.

Model Parameters
Del Electricity demand at time t [kWh]
X ba Installed battery capacity [kWh]
ηch Charge efficiency [%]
ηdch Discharge efficiency [%]

Model Variables
yPV

t PV production at time t [kWh]
yC HP

t CHPel production at time t [kWh]

y i mp
t Imported electricity at time t [kWh]

yexp
t Exported electricity at time t [kWh]

ych
t Energy charge of battery at time t [kWh]

ydch
t Energy discharge of battery at time t [kWh]

zba
t Energy content of battery at time t [kWh]

7.1 PVLib

Built-in functions from the PVLIB library are used to perform the PV modelling in this the-

sis. The functions used are listen in Table 7.1. All functions are accessed through the PVLIB

online documentation [44].

45
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TABLE 7.1: Built-in functions in PVLIB used for the PV modelling

Solar Position Function
pvlib.solarposition.spa_python(lat, ..) Calculate the solar position

Clear Sky Function
pvlib.location.get_clearsky(times,..) Clear sky GHI, DNI and DHI

Irradiance Decomposition Function
pvlib.irradiance.erbs(ghi, zenith, doy) Estimate DNI and DHI from GHI
pvlib.irradiance.dirindex(ghi, zenith,..) Determine DNI from GHI

Irradiance Transposition Function
pvlib.irradiance.total_irrad(tilt, ..) Determine total POA irradiance

Cell Temperature Function
pvlib.pvsystem.sapm_celltemp(gPOA, ..) Estimate cell temperature

Solar position function The solar position function is based on the National Renewable

Energy Laboratory’s (NREL) Solar Position Algorithm (SPA) described in [45]. The solar posi-

tion function is used to calculate the apparent zenith, the solar zenith, and the solar azimuth

angles in degrees for a specific location. These angles are further used as input to the de-

composition and transposition functions. The site-specific parameters for Evenstad, listed

in Table 7.2, were given as input to the solar position function. The air pressure in Table 7.2, is

the average air pressure measured at Evenstad weather station in 2017, based on data down-

loaded from eklima.

TABLE 7.2: Input parameters for the solar position function

Location Parameters Evenstad
Longitude [°] 11.0803
Latitude [°] 61.4255
Altitude [m a.s.l.] 257
Pressure [kPa] 980

Irradiance decomposition and transposition functions The irradiance decomposition

function decompose the measured GHI into its DNI and DHI components, while the trans-

position function transpose these components into POA components for a given surface tilt.

As previously mentioned, multiple decomposition and transposition models exists. PVLIB

includes various built-in decomposition methods. Based on available data for Campus Even-
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stad, only two of the built-in decomposition methods could be used in the PV model devel-

oped in this thesis:

1. The erbs irradiance decomposition model, and

2. The dirindex irradiance decomposition model.

Both were implemented in the model to see if the choice of decomposition model would sig-

nificantly impact the results. The erbs decomposition model is described in [46], and has

its name from one of the authors of the article, D.G. Erbs. The erbs decomposition model

estimates both the DNI and the DHI based on input GHI, where the diffuse fraction is esti-

mated through an empirical relationship between the diffuse fraction and the ratio of GHI to

extraterrestrial irradiance [46]. The dirindex decomposition model is based on [47]. This

decomposition method determines the DNI using clear-sky values of the GHI and the DNI.

The corresponding DHI is calculated using Eq. (3.2) described in Section 3.1.2. Clear-sky

values of the GHI and the DNI are estimated using get_clearsky. The get_clearsky

function takes in the time and the solar position angles, and returns the GHI and DNI that

can be expected on a clear-sky day for the specific site in question.

TABLE 7.3: PV panel input parameters for the transposition function

PV panel parameters
Tilt angle 35 °
PV azimuth 170 °
Albedo 0.2

The transposition function takes in the PV panel’s tilt angle, the panel’s azimuth from

North, and the surface albedo. The values of the mentioned parameters are listed in Ta-

ble 7.3. The approximation of the PV azimuth and the albedo is supported by a master’s

thesis [25], conducted spring 2017, analyzing the PV system at Campus Evenstad, though in

[25], the azimuth was approximated to be -10° from South. The total_irrad transposi-

tion function overrides the albedo if the user specifies the surface type on which the sunlight

is reflected. Among the possible surface types are grass, snow, and asphalt. According to the

references [48, 49, 50] provided for total_irrad in [44], surface type grass is equivalent to

an albedo of 0.15 - 0.25. Surface types snow and asphalt represents an albedo of 0.80 - 0.90

and 0.04-0.18, respectively. Based on the big difference in albedo for the different surface

types, the selected surface type is expected to have a great impact on the resulting PV pro-
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duction estimation. Therefore, total_irrad, will be run with the different surface types

mentioned above, including none which implies that the specified albedo of 0.2 is used.

The transposition function chosen for this thesis provides a list of six irradiance models

to choose from. Required input vary from model to model, which in turn limits the choice

of irradiance model. The isotropic irradiance model was selected as the preferred irradiance

model. A perez model also needed to be specified in the transposition function. Most of the

available perez models are based on observations from the United States, at locations with

distinct climate conditions from those expected in Norway [39, 51, 52, 53]. The allsitecom-

posite1990 perez model was hence selected, as this model includes an average over all sites

investigated.

PV production Equation (4.5) from Section 4.1.3 is used to estimate the PV production at

Campus Evenstad. The overall PV system efficiency, ηs y s , is suggested to be 77%, excluding

temperature impacts, on p. 323 in [9]. Knowing that the AC capacity of the PV system at Cam-

pus Evenstad is approximately 60 kWac [7], ηs y s is calculated to be 85% from Eq. (4.4). Investi-

gating the measured data of the PV production provided by Kinect Energy Group, the highest

hourly PV production was found to be 52 kWh/h, which suggests an overall system efficiency

of 74%. The PV production of Campus Evenstad will hence be estimated using three values

of ηs y s : 0.74, 0.77 and 0.85. The cell temperature, Tcell, is calculated using Eq. (4.6). The

remaining parameters are listed in Table 7.4.

TABLE 7.4: Input parameters to the PV production model

PV production parameters
Pdc0 [kW] 70.38
γT [%/°C] -0.4
GSTC [W/m2] 1000
Tcel l ,STC [°C] 25
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7.2 Pyomo

7.2.1 Battery Model

As mentioned in Section 4.3.1, the battery is in this thesis modeled as a box that will be

charged at an efficiency ηch and discharged at an efficiency ηdch . As the installation of the

battery took place while writing this thesis, no information on the battery performance is

available. Based on [22], the roundtrip efficiency of the battery is assumed to be 90%. Fur-

ther, ηch and ηdch are assumed to be equal and constant at 95% for simplifying reasons. The

battery is initially assumed to fully charged.

The energy content of the battery at time t is given by Eq. (7.1), where zba
t−1 represents

the energy content prior to time t. The energy drawn from the energy system at time t to

charge the battery is denoted as ych
t , while ydch

t is the energy that becomes available from

discharging the battery at time t. Imported electricity along with locally generated electricity

from the PV system and the CHP plant may be used to charge the battery.

zba
t = zba

t−1 + ych
t ·ηch − ydch

t

ηdch
(7.1)

The energy content of the battery must at all times, given grid access, have at least 100

kWh usable energy available in case of operation in island mode. This restriction is expressed

in Eq. (7.2). On the other hand, the energy content of the battery cannot surpass the installed

capacity of the battery. This constraint is given in Eq. (7.3).

zba
t ≥ 100kW h

ηdch
(7.2)

zba
t ≤ 204kW h

ηdch
= X ba (7.3)
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To ensure that the energy charged to the battery does not exceed the remaining capacity

of the battery, Eq. (7.4) is introduced. Likewise, Eq. (7.5) is introduced to ensure that the

energy discharged from the battery does not exceed the available amount of energy stored

in the battery at time t.

ych
t ≤ X ba − zba

t−1

ηch
(7.4)

ydch
t ≤ zba

t−1 ·ηdch (7.5)

7.2.2 CHP Model

As explained in Section 5.3, the CHP will be modelled to have two modes of operation:

1. Completely shut off in months October to April, and

2. Operating at maximum (40 kWel) in months May to September.

7.2.3 Electricity Balance

Based on the previous definitions, the electricity demand of Campus Evestad is given in

Eq. (7.6). The electricity demand is modelled as a parameter as it, in this thesis, is assumed

to be known.

Del
t = yPV

t + yC HP
t + y i mp

t − yexp
t − ych

t + ydch
t (7.6)

The system is modelled as a single node for simplifying reasons, meaning that it is not

considered how the electricity demand is distributed within the campus.
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7.2.4 Control Strategies

Three control strategies of the battery are defined in this thesis:

1. Minimization of total import,

2. Minimization of spot energy cost, and

3. Peak shaving.

Minimization of total import As Statsbygg has a long-term vision that Campus Evenstad

will become 100% self-sufficient with electricity, an obvious control strategy of the battery

would be to minimize the total imported electricity from the grid. Previous to the bat-

tery system installation on campus, there were no possibility to control the amount of im-

ported electricity, except creating awareness of the consumption behaviour among students

and employees. With the installed battery system, one can, to a greater extent, control the

amount of energy imported. As the total import is minimized with this control strategy, the

optimization model does not consider at which hours throughout the day it would be more,

or less, beneficial to import electricity. From Eq. (7.6), Eq. (7.7) gives the expression to mini-

mize the total amount of imported electricity.

Mi n
∑
t∈T

y i mp
t =

∑
t∈T

(Del
t −Y PV

t − yC HP
t + yexp

t + ych
t − ydch

t ) (7.7)

Minimization of spot energy cost As explained in Section 5.6, the total cost of import is

given by the cost of energy and the grid tariff. The minimization of the spot energy cost

control strategy takes into consideration the hourly spot price from Nord Pool. The grid

tariff is not included in this control strategy. Historical spot prices for 2017, downloaded

from Nord Pool, are used in the simulations when implementing this control strategy. The

expression for calculating the spot energy cost is given in Eq. (5.2) in Section 5.6.2.

Peak shaving The integration of an energy storage unit is, according to [54] the strategy

for peak shaving that holds the most potential. Using the battery to perform peak shaving

includes shifting the load from peak periods to off-peak periods, i.e. to charge the battery

when demand is low and to discharge the battery in times when the demand is high [54].

It is important to differentiate between grid peak and consumer peak, as the two may not

correlate. Shifting the load from grid peak periods to off-peak periods could benefit the grid
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as it may reduce the risk of necessary grid expansion. Note that peak shaving at Campus

Evenstad solely in grid peak periods is insignificant due to the size of electricity consumption

at Campus Evenstad compared to the size of the grid. For the grid to experience effects of the

grid peak shaving, other customers must also shift their consumption. In the specific case of

Campus Evenstad, there is another reason why peak shaving would be beneficial; reducing

the grid tariff. As Campus Evenstad is categorized as a commercial customer when it comes

to the grid tariff, the campus is charged for power drawn from the grid in addition to the

energy consumed. Eidsiva’s grid tariff for commercial customers is calculated based on the

hour with the highest amount of power drawn from the grid the last 12 months. Minimizing

the local import peak would therefore reduce the grid tariff for Campus Evenstad. There are

different approached to reduce the peak power in the optimization problem. The approach

chosen in this thesis is to introduce a fictitious penalty cost for power peak.

One could differentiate between two ways of performing peak shaving; minimize the ab-

solute highest import peak, and minimize the sum of imported power above a certain kW.

If the objective is to minimize the grid tariff, the highest import peak must be minimized.

Minimizing the highest import peak is considered to be the preferred peak shaving strategy

for Campus Evenstad.

Minimizing the highest import peak is a quite complicated optimization problem that

calls for several iterations. First, the initial import is determined by running the mini-

mization of total import control strategy. In the result, the second highest import value,

y i mp,2peak , is located. The bounds of y i mp,l ow
t are set to this value. The total import is now

defined as in Eq. (7.8), differentiating between imports lower and higher than y i mp,2peak .

y i mp
t = y i mp,low

t + y i mp,hi g h
t (7.8)

Further, fictitious penalty costs are introduced for y i mp,l ow and y i mp,hi g h . The optimiza-

tion model is then run with the objective of peak shaving. In practice, this is carried out

by minimizing the total fictitious penalty cost of the imported electricity as expressed in

Eq. (7.9). The value of y i mp,2peak is adjusted according to the obtained results, and the sim-

ulations are repeated.

minCpenal t y =
∑
t∈T

(Cl ow · y i mp,low
t +Chi g h · y i mp,hi g h

t ) (7.9)
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In theory, it would also be beneficial to minimize the export power peak. Per definition,

Campus Evenstad is a prosumer. A prosumer is an end-use customer that generates electric-

ity for self consumption. At times when the self-generated electricicty surpass the demand,

the prosumer may sell the surplus electricity to the local grid company. The self-generated

electricity exported to the grid must not exceed 100 kW at any given time for the end-user to

be a prosumer. If the exported electricity exceeds 100 kW, the end-user is categorized as a

power supplier and additional costs apply [55]. With today’s complex energy system, Cam-

pus Evenstad will not exceed 100 kW of self-generated electricity at any given time as the

maximum production of the PV system is approximately 60 kW while the maximum electric-

ity production of the CHP is 40 kW. In relation to this, the minimization of the export power

peak is therefore not relevant for Campus Evenstad with today’s complex energy system. In

the future, if the PV system is expanded or additional electrical energy sources are installed,

this may become an interesting problem to address.

7.2.5 Minimization of Import Costs

For each control strategy, the total import cost is calculated to see how the choice of control

strategy impacts the total cost of import. The total yearly cost of import is given in Eq. (7.10)

from Eqs. (5.1) and (5.2) in Section 5.6.

(7.10)
Ctot ,year l y = 12 ·C f i xed ,monthl y +

8760∑
t=1

(C nor d pool
t + CGC ) · y i mp

t

+ C f i xed ,year l y + Cpower · y i mp,peak + Cener g y ·
8760∑
t=1

y i mp
t

The grid tariff is assumed to amount to the highest cost for the customer, and the largest

savings potential therefore lies in reducing the grid tariff. In 2017, the highest hourly value

of imported electricity was 467.70 kWh. Based on the size of the battery, power peak can as a

maximum be reduced by 104 kW. In theory, the grid tariff could therefore be reduced by 104

kW · 470 NOK/kW = 48 880 NOK. In reality, savings of this size would require low demand the

following hours and high levels of on-site electricity production.





Chapter 8

Results & Discussion

In this chapter, the obtained results are presented and discussed. Firstly, results from the

PV model simulations are given, and lastly, the results of the optimization model with the

different control strategies of the battery are presented. Tables and plots are mainly used to

present the results. A short recap of some of the terms used to present and discuss the results

in this chapter is given below. All terms have been explained in previous chapters, and hence

they are only included for fast access.

dirindex A PVLIB built-in function that decomposes measured GHI into its
DNI component based on site-spesific clear-sky values.

erbs A PVLIB built-in function that decomposes measured GHI into its
DNI and DHI components.

R2 Coefficient of determination. A factor used to describe the goodness
of fit between two datasets. R2 = 1 indicates a perfect fit. Note that R2

may be negative if the two datasets are incompatible.

Albedo Radiation that reaches a reciever due to reflection.

Pyranometer Surface observation measuring equipment used to measure global
radiation.

Reference cell Measuring equipment used to measure POA irradiance on the same
tilt angle as the PV panel.

DoD Depth-of-Discharge of the battery, i.e., to which level the battery is
discharged with respect to the power capacity of the battery.

55
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8.1 Photovoltaic Model

The PV model constructed in PVLIB is thought to be used to predict future PV production at

Campus Evenstad given the weather forecast for a specific day. Although the weather fore-

cast usually changes from hour to hour, it was considered necessary to validate the con-

structed PV model for longer time periods. Historical meteorological data downloaded from

eklima and historical data on the PV production provided by Kinect Energy Group are used to

validate the PV model. A manually adjusted timeshift is included to account for Norwegian

summertime in the downloaded meteorological data.

The limited available data on historical PV production, and the quality of the historical

meteorological data, limit the time periods possible for validation and also the credibility of

the result. All simulations were run with the two irradiance decomposition methods, erbs

and dirindex, and various surface types as explained in Section 7.1. When running the

simulations, it became clear from the results that an albedo of 0.2 was used for the surface

type grass, i.e. surface types grass and none gave the same result in all cases. Surface type

grass is therefore excluded from the results.

Firstly, it was desirable to run simulations for a whole year to compare the estimated an-

nual PV production with the measured and expected annual production. Based on available

data, 2017 was chosen. Further, it was interesting to split the test period into summer and

winter to see if the different methods worked better or worse in periods with low tempera-

tures and irradiance values compared to high temperatures and irradiance values. An ob-

vious way to separate summer from winter is to differentiate Norwegian summertime from

wintertime. In 2017, Norwegian summertime was from the 26th of March at 02:00 to the 29th

of October at 03:00. For simplifying reasons, summertime was modelled from 26.03.2017

00:00 to 28.10.2017 23:00. Hence, 2017 is divided into the following three test periods:

1. 1st Wintertime Period: 01.01.2017 - 25.03.2017

2. Summertime Period: 26.03.2017 - 28.10.2017

3. 2nd Wintertime Period: 29.10.2017 - 31.12.2017

Due to the time-consuming process of downloading measured POA irradiance from Sunny

Portal as explained in Section 5.1.1, the estimated POA irradiance is not presented nor com-

pared to measured POA irradiance in these three test periods.
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As Norwegian summertime and wintertime represent quite long time periods, the model

was also tested for shorter periods of time. Two additional time periods were selected based

on the quality of the meteorological data. The two time periods are listed below.

1. May & June 2017: 01.05.2017 - 30.06.2017

2. October 2016: 01.10.2016 - 31.10.2016

For these two time periods, hourly values of the measured POA irradiance were downloaded

from Sunny Portal. Both the estimated POA irradiance and the estimated PV production are

hence compared to measured data for May & June 2017 and for October 2016.

The following subsections present the results obtained for the different test periods. The

POA irradiance is given in kW/m2, while the PV production is given in kW. All results are

rounded to the nearest kW. The error of the estimations, compared to measured data, is given

in %. Both the calculated error and R2 are given in separate columns for each result.

8.1.1 Results 2017

The total PV production measured in 2017 by Kinect Energy Group is 46 770 kW. The PV

model results are listed in Table 8.1, including the calculated error and R2 of each PV esti-

mate. The combination of overall system efficiency, irradiance decomposition method and

surface type that gives the best estimation of the measured PV production is highlighted in

Table 8.1.

TABLE 8.1: Estimated PV production 2017

ηs y s PVdirindex error R2 PVerbs error R2

Surface type = none

0.74 52 304 11.83 % 0.76 54 175 15.83 % 0.64
0.77 54 424 16.37 % 0.75 56 371 20.53 % 0.61
0.85 60 079 28.46 % 0.70 62 228 33.05 % 0.52

Surface type = snow

0.74 54 093 15.66 % 0.76 55 962 19.65 % 0.63
0.77 56 286 20.35 % 0.74 58 231 24.51 % 0.60
0.85 62 134 32.85 % 0.68 64 281 37.44 % 0.50

Surface type = asphalt

0.74 51 985 11.15 % 0.77 53 856 15.15 % 0.64
0.77 54 092 15.66 % 0.75 56 040 19.82 % 0.61
0.85 59 712 27.67 % 0.70 61 862 32.27 % 0.53
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As seen from Table 8.1, the calculated R2 correlates to the calculated error, i.e., the com-

bination of ηs y s , irradiance decomposition method and surface type that gives the smallest

error is also the best fit of the measured PV production according to R2. Using dirindex to

decompose the GHI into its DNI and DHI components gives the best approximation of the

total PV production for all combinations of ηs y s and surface type. The difference in calcu-

lated error for surface type none and asphalt is small, while surface type snow accounts for a

larger error.

The hourly variation in the estimated PV production is plotted in Fig. 8.1 using the

dirindex irradiance decomposition method and a system efficiency of 74%. The mea-

sured PV production is included in the figure for comparison. As seen in Fig. 8.1, PVerbs

exceeds the installed capacity of the PV system on some occasions. The scaling of the graph

makes it difficult to see how the hourly variations of PVerbs fit the hourly variations of the

measured PV production, but it may seem like the PV production is somewhat flat through-

out the whole year compared to the measured PV production which clearly is lower the first

three and the last two months of the year. Although PVdirindex clearly is a better fit to the

hourly variations in the measured PV production, it is evident from Fig. 8.1 that the esti-

mated PV production in winter is higher than the measured PV production.

1st Wintertime Period

The total measured PV production in the first wintertime period, from the 1st of January to

the 25th of March, is 4 416 kW. Simulated results for this time period are listed in Table 8.2.

The combination of overall system efficiency, irradiance decomposition method and sur-

face type that gives the estimated PV production closest to the measured PV production is

highlighted in the table.

In the first wintertime period of 2017, PVdirindex gives the smallest error of the estimated

PV production as seen in Table 8.2, although the error is unacceptably high. Using the erbs

irradiance decomposition method gives an error over 100% for all combinations of ηs y s and

surface type. Notice that the calculated R2 is negative for PVerbs, indicating that estimated

values and the measured values are incompatible. As the estimated PV production is clearly

an overestimation of the measured PV production, the lowest overall system efficiency and

the lowest albedo value results in the most accurate PV estimation. Recall from Section 7.1

that surface type asphalt indicates an albedo between 0.04 - 0.18.
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FIGURE 8.1: Hourly variations in the 2017 PV production.

TABLE 8.2: Estimated PV production in the 1st wintertime period

ηs y s PVdirindex error R2 PVerbs error R2

Surface type = none

0.74 8 106 83.56 % 0.39 9 437 113.70 % -0.28
0.77 8 435 91.01 % 0.33 9 820 122.37 % -0.40
0.85 9 311 110.85 % 0.13 10 840 145.47 % -0.77

Surface type = snow

0.74 8 310 88.18 % 0.36 9 640 118.30 % -0.31
0.77 8 647 95.81 % 0.30 10 030 127.13 % -0.44
0.85 9 546 116.17 % 0.09 11 073 150.75 % -0.83

Surface type = asphalt

0.74 8 070 82.74 % 0.40 9 401 112.88 % -0.27
0.77 8 397 90.15 % 0.34 9 782 121.51 % -0.39
0.85 9 269 109.90 % 0.14 10 799 144.54 % -0.76

Figure 8.2 gives a closeup of the measured and the estimated PV production in the first

three months of 2017. Looking at the graph of the measured PV production in this time

period, hardly any energy is generated the first month and a half. It is questionable whether

these are realistic measurements of the PV production. Although the PV system is expected
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to generate less energy in winter due to less solar radiation and fewer sunlight hours, low

temperatures and the reflection of sunlight from the snow should contribute to a higher PV

production than what is visualized in Fig. 8.2. The PVdirindex production is also lower the

first month and a half compared to the rest of the time period, although significantly higher

than the measured PV production. As commented in the 2017 results, the erbs irradiance

decomposition method is, on some occasions, resulting in a much higher PV production

than the installed capacity of the PV system corresponds to. From the plot of the PVerbs

production, it is clearer that, apart from the extremely high values mentioned, the hourly

variations in the PV production are smaller than the hourly variations in the measured and

the estimated PVdirindex production. The extreme overestimation may explain the negative

R2 of the estimated PVerbs production.

FIGURE 8.2: Hourly variation in the PV production during the 1st wintertime period.

Summertime Period

Table 8.3 includes the obtained results for the summertime period in 2017. As it is unlikely

that there is snow in this time period, simulations were not run for surface type snow. The
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total measured PV production in this time period is 41 325 kW. The combination of ηs y s ,

irradiance decomposition method and surface type that gives the most accurate result com-

pared to measured PV production is highlighted in the table.

TABLE 8.3: Estimated PV production in the 2017 summertime period

ηs y s PVdirindex error R2 PVerbs error R2

Surface type = none

0.74 41 680 0.86 % 0.80 41 009 0.76 % 0.79
0.77 43 369 4.95 % 0.80 42 672 3.26 % 0.78
0.85 47 875 15.85 % 0.76 47 105 13.99 % 0.74

Surface type = asphalt

0.74 41 406 0.20 % 0.80 40 736 1.43 % 0.79
0.77 43 085 4.26 % 0.80 42 387 2.57 % 0.78
0.85 47 561 15.09 % 0.77 46 791 13.23 % 0.75

As seen from Table 8.3, the calculated error of the estimated PV production in much

smaller in the summertime period compared to the error found in the 1st wintertime pe-

riod. It is not unlikely that the built-in functions in PVLIB are calibrated to work better in

summer as PV systems are expected to produce more energy in summer than in winter due

to solar radiation levels. The smallest error, 0.20%, is found for PVdirindex with surface type

asphalt and an overall system efficiency of 74%. For an insignificant error of 0.20% one could

expect that the R2 would be higher than 0.80. A goodness of fit of 80% when the error is only

0.20% indicates that the estimated PV production might be overestimated some hours and

underestimated other hours. The overestimation and underestimation of the PV production

add up to a total estimated production of low error compared to total measured PV produc-

tion. The difference in the PVdirindex and the PVerbs production estimations are very small,

and much smaller than the differences found in the 1st wintertime period results.

The hourly variations in the PV production are plotted in Fig. 8.3 using ηs y s = 74% and

surface type asphalt. Unlike in the 1st wintertime periods, there are no PV production values

that exceeds the installed capacity of the PV system. However, as seen in Fig. 8.3, the highest

estimated PVerbs value is higher than the highest estimated PVdirindex value. Comparing the

three plots in Fig. 8.3, there is a small deviation between the hourly variation in the estimated

PV production and the hourly variations in the measured PV production. From Table 8.3, the

R2 of the PVdirindex estimation is 0.80 while the R2 of the PVerbs estimation is 0.79. 80% of the

variations in the PVdirindex estimation and 79% of the variations in the PVerbs can hence be

accounted for in the hourly variations of the measured PV production.
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FIGURE 8.3: Hourly variations in the PV production in summertime 2017.

2nd Wintertime Period

The total measured PV production in the 2nd wintertime period in 2017 is 1 029 kW. The esti-

mated results obtained from the PV model are presented in Table 8.4, where the combination

of ηs y s , irradiance decomposition method and surface type that gives the best approxima-

tion of the PV production is highlighted.

As in the first two time periods of 2017, an overall system efficiency of 74% and using the

dirindex irradiance decomposition method gives the best PV approximation. However,

the error of the PV estimation is 143.8% which is significantly bigger than the error found in

the 1st wintertime period and in the summertime period. Both irradiance decomposition

methods result in negative R2, but as seen from Table 8.4, the calculated R2 is much poorer

for PVerbs.

Looking at the PV plots in Fig. 8.4, the case is similar to that in the 1st wintertime pe-

riod. In December, hardly any PV production is registered in the measured data provided by

Kinect Energy Group. As discussed earlier, it seems unlikely that the PV production is zero or

close to zero even though irradiance levels are low. Also in the first half of the time period, the
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TABLE 8.4: Estimated PV production in the 2nd wintertime period of 2017

ηs y s PVdirindex error R2 PVerbs error R2

Surface type = none

0.74 2 518 144.70 % -0.43 3 728 262.29 % -4.32
0.77 2 620 154.62 % -0.57 3 880 277.07 % -4.80
0.85 2 892 181.05 % -0.98 4 283 316.23 % -6.19

Surface type = snow

0.74 2 570 149.76 % -0.48 3 779 267.25 % -4.40
0.77 2 674 159.86 % -0.63 3 933 282.22 % -4.88
0.85 2 952 186.88 % -1.05 4 341 321.87 % -6.30

Surface type = asphalt

0.74 2 509 143.83 % -0.42 3 719 261.42 % -4.31
0.77 2 610 153.64 % -0.56 3 870 276.09 % -4.79
0.85 2 882 180.08 % -0.97 4 272 315.16 % -6.17

FIGURE 8.4: Hourly variations in the PV production during the 2nd wintertime period.

estimated PV production is higher than the measured PV production. In the hourly variation

plot for the whole year of 2017 in Fig. 8.1, a peak was seen in the estimated PVerbs produc-

tion. In Fig. 8.4 it is evident that the PVerbs estimate exceeds the installed PV capacity on two

occasions in the 2nd wintertime period. Even the lower values of PVerbs are higher than the
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PVdirindex estimations. The hourly variation plots of the estimated PVdirindex production and

the PVerbs production reflects the negative R2 in Table 8.4.

8.1.2 May & June 2017

Due to weather conditions, the highest PV production is expected to take place during the

summer months. Good irradiance values in Norway are normally detected in May and June,

and therefore these two months were selected for further validation of the PV model in sum-

mer. Figures 8.1 and 8.3 in Section 8.1.1 confirms high levels of measured PV production at

Campus Evenstad in May and June 2017. Surface type snow is excluded from the simulations

as it is considered unsuitable and unrealistic for this time period. Hourly data of the mea-

sured POA irradiance, downloaded from Sunny Portal, are used to compare the measured

and the estimated POA irradiance. The total measured POA irradiance in May & June 2017 is

301.66 kW/m2. The results of the estimated POA irradiance are presented in Table 8.5. It is

self-explanatory that the overall PV system efficiency does not impact the results of the POA

irradiance estimates as the PV performance is dependent on the solar radiation, but not vice

versa. The best estimation of the measured POA irradiance is highlighted in Table 8.5.

TABLE 8.5: Estimated POA irradiance May & June 2017

Surface type Gdirindex error R2 Gerbs error R2

none 287.64 4.65 % 0.81 277.18 8.12 % 0.81
asphalt 285.56 5.34 % 0.81 275.10 8.80 % 0.81

The total estimated POA irradiance in May & June 2017 is lower than the measured POA

irradiance in all cases. Gdirindex gives an error of 4.65% when surface type none is applied.

This is a very small error considering the following factors:

1. The GHI data used as input in the PV model for Campus Evenstad is estimated based

on GHI measurements from close-by weather stations. As stated in Section 5.1, the

solar radiation is site dependent, which implies that the Evenstad GHI estimate itself

may be inaccurate. Apart from the large distances between the close-by weather sta-

tions and Evenstad weather station, the variation in altitude of the different weather

stations is significant. Recall from Section 5.1 that locations at higher altitudes tend

to experience higher levels of solar radiation due to the path that the sunlight takes

before it reaches the surface is shorter.
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2. The estimated GHI at Evenstad is further decomposed into its DNI and DHI compo-

nents using built-in functions in PVLIB that are mainly tested for sites with distinct

climate conditions from what is expected in Northern countries.

3. Ultimately, POA irradiance estimated from estimated GHI values measured with a

pyranometer is compared to POA irradiance measured on a reference cell.

From the estimated POA irradiance, the estimated PV production is found. According

to data provided by Kinect Energy Group, the total PV production in May & June 2017 is

14 160 kW. The results of the PV estimates are presented in Table 8.6. The combination of

overall system efficiency, irradiance decomposition method and surface type that gives the

best estimation of the measure PV production is highlighted.

TABLE 8.6: Estimated PV production May & June 2017

ηs y s PVdirindex error R2 PVerbs error R2

Surface type = none

0.74 14 661 3.54 % 0.83 14 099 0.43 % 0.83
0.77 15 255 7.73 % 0.82 14 670 3.60 % 0.83
0.85 16 840 18.93 % 0.77 16 194 14.36 % 0.78

Surface type = asphalt

0.74 14 561 2.83 % 0.83 13 999 1.14 % 0.83
0.77 15 151 7.00 % 0.83 14 566 2.87 % 0.83
0.85 16 725 18.11 % 0.78 16 079 13.55 % 0.78

The PVerbs estimation gives the smallest error as seen from Table 8.6. This is the first test

period where the erbs irradiance decomposition method resulted in the best PV estimation.

However, the difference in the calculated PVdirindex and PVerbs errors with ηs y s = 74% is so

small that PVdirindex estimate can also be considered to be a good estimate of the measured

PV production. R2 for the two irradiance decomposition methods are equal, implying that

PVdirindex and PVerbs are an equally good fit of the measured PV production. Compared to the

results of the summertime period in 2017 in Section 8.1.1, the error is slightly higher but the

goodness of fit is better. This simply implies that the hourly variations of the PV estimation

are better accounted for in the May & June test period although the deviation of the total PV

production is slightly higher.

The hourly variations of the estimated POA irradiance and the estimated PV production

are plotted in Fig. 8.5. For consistency, an overall system efficiency of 74% and surface type

asphalt is applied in the plots. The accuracy of the obtained results in Tables 8.5 and 8.6 are

confirmed by the plots in Fig. 8.5.
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(A) POA irradiance

(B) PV production

FIGURE 8.5: Hourly variations in POA irradiance and PV production in May & June 2017.
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8.1.3 October 2016

Although October is per definition summertime in Norway, the month is generally consid-

ered to represent the transition between summer and winter. The climate conditions may

vary from one extreme to another, which makes October an interesting month to analyze.

Surface type snow is included in the simulations as October is a month where the first snow-

fall may occur.

The results of the estimated POA irradiance are presented in Table 8.7 and compared

to measured POA irradiance downloaded from Sunny Portal. As mentioned in Section 5.2,

no data is logged on the Sunny Portal after October 19, 2017. Therefore, October 2016 is

modelled. The total measured POA irradiance in October 2016 is 59.24 kW/m2. The most

accurate POA irradiance estimation is highlighted in Table 8.7.

TABLE 8.7: Estimated POA irradiance October 2016

Surface type Gdirindex error R2 Gerbs error R2

none 54.76 7.56 % 0.86 76.61 29.33 % -0.00
snow 56.42 4.76 % 0.87 78.27 32.12 % -0.02
asphalt 54.47 8.05 % 0.86 76.32 28.83 % -0.00

Compared to the POA irradiance results found for May & June 2017, the difference in

error between Gdirindex and Gerbs is significantly larger in the results of October 2016. The

dirindex irradiance decomposition method gives the most accurate estimation of the POA

irradiance. The calculated R2 of Gerbs ranges from -0.02 to -0.00, i.e., the estimated POA irra-

diance from erbs is a bad fit of the measured POA irradiance. Gdirindex, on the other hand,

represents a fit of approximately 86%-87%. What is surprising about the POA irradiance re-

sults is that surface type snow gives the best estimation of the measured POA irradiance. As

described in Section 7.1, surface type snow is equivalent to an albedo of 0.80 - 0.90, while

the approximated albedo, i.e., the albedo for surface type none, is 0.20. The higher albedo,

the larger amounts of solar radiation is reflected onto the PV panel, and the more energy is

generated by the PV array. Even with an albedo of 0.80 - 0.90, the Gdirindex POA irradiance is

underestimated compared to the measured POA irradiance.

The PV production measured at Campus Evenstad in October 2016 is 3 319 kW. The to-

tal estimated PV production based on estimated POA irradiance is presented in Table 8.8.

The combination of overall system efficiency, irradiance decomposition method and surface

type that estimated the total PV production to be closest to the measured PV production is
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highlighted in the table.

TABLE 8.8: Estimated PV production October 2016

ηs y s PVdirindex error R2 PVerbs error R2

Surface type = none

0.74 2 923 11.93 % 0.74 3 894 17.32 % 0.66
0.77 3 041 8.38 % 0.74 4 052 22.08 % 0.62
0.85 3 357 1.14 % 0.74 4 472 34.74 % 0.51

Surface type = snow

0.74 3 007 9.40 % 0.75 3 976 19.80 % 0.65
0.77 3 129 5.72 % 0.75 4 137 24.65 % 0.62
0.85 3 454 4.07 % 0.74 4 567 37.60 % 0.49

Surface type = asphalt

0.74 2 908 12.38 % 0.74 3 879 16.87 % 0.66
0.77 3 025 8.86 % 0.74 4 036 21.60 % 0.62
0.85 3 340 0.63 % 0.74 4 456 34.26 % 0.51

Unlike the results of the POA irradiance, the best estimation of the PV production is found

for surface type asphalt. In all other test periods presented in this chapter, ηs y s = 74% gave

the best result. The October 2016 results show that ηs y s = 85% gives the best estimation of

the PV production. In fact, for all other test periods, the estimation of the PV production

is less accurate with increasing overall system efficiency without exception, both when the

estimated PV production is based on the dirindex and when it is based on the erbs ir-

radiance decomposition method. For October 2016, the accuracy of the estimated PVdirindex

production increases with increasing ηs y s . Assuming surface type asphalt and ηs y s = 74%,

both the resulting POA irradiance and the PV production are underestimated compared to

the measured data. The high albedo of the best POA irradiance estimation and the high

overall PV system efficiency of the optimal PV production estimate may be a cause of several

things:

1. The estimated GHI values used as an input to the PV model may be underestimated.

Underestimated GHI values would cause the estimated POA irradiance to be too low

compared to the measured POA irradiance, which would explain the high albedo. Low

POA irradiance estimations will in turn result in an underestimate of the PV produc-

tion, which would explain the high overall system efficiency.

2. The measured PV production used for comparison may be inaccurately high. As stated

in Section 5.2, the measured data on the historical hourly PV production provided by

Kinect Energy Group is rounded to the nearest kWh/h. Information on how the PV
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production values are rounded to the nearest kW is not given, but it is a reasonable

assumption that the values are rounded up if .5 or higher and down otherwise. The

hourly PV production may be reduced or increased by 1 kW as a consequence of this.

This itself is an insignificant number, but in the long run this might impact the total PV

production significantly. Hypothetically, the total PV production in October could be

reduced or increased by 744 kW as a consequence of this rounding, i.e., the measured

PV production in October 2016 would lie in the range of 2 575 kW - 4063 kW. Assuming

that actual PV production in October 2016 is lower than the data provided by Kinect

Energy Group implies, the accuracy of the estimated PV production would possibly be

better than the current results show.

3. The PV model itself may be underestimating the POA irradiance and hence also the PV

production. As discussed previously, the built-in functions in PVLIB used to decom-

pose and transpose GHI into POA irradiance are not tested and validated for high lat-

itudes and cold climates. An inaccurate decomposition and transposition of the GHI

causes an inaccurate estimation of the POA irradiance, and hence an even more inac-

curate estimation of the PV production as the POA irradiance is also used to calculate

the PV cell temperature that impacts the estimated performance of the PV system.

4. As previously stated, October represents the transition between summer and winter

in Norway, and hence varying weather conditions may occur. Uncertain and unstable

weather conditions may have had an impact on both meteorological data, the POA

irradiance measurements, and the measurements of the historical PV production.

The hourly variations in the POA irradiance and the PV production are plotted in Fig. 8.6,

using surface type asphalt and ηs y s = 74% for consistency. As for the estimated PV produc-

tion in the two wintertime periods in 2017, PVerbs exceeds the installed PV capacity on some

occasions. As seen from Fig. 8.6a, the high PVerbs values are caused by extremely high esti-

mated Gerbs values. The highest POA irradiance value exceeds 4 kW/m2. Such high values

of irradiance are impossible to reach, and the estimation is hence fundamentally wrong for

this time point. The quality of input data may to some extent cause too high estimations of

the POA irradiance, however, the main reason why the estimated POA irradiance is so high is

without a doubt due to the decomposition and the transposition of input GHI data. It is dif-

ficult to tell whether the error is caused by the decomposition or by the transposition of GHI,

but most likely it is a combination of both as many uncertain factors are involved. Apart from
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(A) POA irradiance

(B) PV production

FIGURE 8.6: Hourly variations in POA irradiance and PV production for October 2016.

the POA irradiance peak, Gerbs exceeds 1 kW/m2 on three occasions as seen in Fig. 8.6a. The

maximum POA irradiance found in the measured data and in the estimated POA irradiance
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based on the dirindex irradiance decomposition method is around 800 W/m2.

8.1.4 Notes and Comparison of the PV Model Results

Some general observations can be made when comparing the results of the PV model for the

different test periods:

• The developed PV model in this thesis is more accurate in summertime periods than

in wintertime periods, i.e., when expected solar radiation is higher.

• The dirindex irradiance decomposition method proved to give more accurate es-

timations of POA irradiance and PV production. The exception is the test period in

May & June 2017, where the PVerbs estimation was closest to the measured PV produc-

tion. However, the difference in error between PVdirindex and PVerbs is so small that

dirindex can be considered to be the preferred irradiance decomposition method.

• An overall system efficiency of 74% gave the best results for all test periods, except in

October 2016. The irregularity in the October 2016 results may be caused by multiple

factors as discussed in Section 8.1.3. ηs y s = 74% was the overall system efficiency found

based on the maximum measured PV production.

• Generally, a low albedo, i.e., low levels of reflected solar radiation, resulted in the most

accurate results. Again, October 2016 results were the exception.

• The calculated R2 is not always consistent with the calculated error. For instance, the

results of the summertime period in 2017 had an error of 0.20% and a R2 value of 0.80,

while the estimated PV production in for the May & June 2017 test period, the error

was higher (0.43%) but it still resulted in a higher goodness of fit to the measured PV

production (0.83). This indicates that although the total error is low, there might be

some points where the estimated results are shifted from the measured results, i.e., the

estimated PV production decreasing when the measured production is rising or vice

versa.

• May & June 2017 results and October 2016 results verify that the largest source to error

lies in the decomposition and transposition of GHI into POA irradiance. Other sources

to error in the PV model have been discussed throughout Section 8.1, but are briefly

recapped here:

– The GHI values used as input to the PV model are estimated.
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– The chosen built-in functions to decompose and transpose GHI into POA irra-

diance may be inappropriate or even inaccurate. As described in Section 6.1.1,

PVLIB is developed and tested for geographical locations that are very distinct

from that of Evenstad.

– Input GHI is measured using a pyranometer, while measured POA irradiance is

measured on a reference cell.

– Data on historical PV production was rounded to the nearest kW. In the worst-

case scenario, the actual annual PV production could be 8760 kW higher or lower

than the provided data indicate.

As the results of the two wintertime period in 2017 were bad, one could argue that more

validation of the developed PV model should have been performed for winter months. How-

ever, as discussed in Section 8.1.1, the measured PV production that the estimated values

are compared to are questionable. If the model had given accurate results of inaccurate

measurements, the model would still be wrong. It was attempted to run the PV model for

additional winter months. However, due to the lack of access to good quality meteorological

data and measured PV data in winter, it was concluded that presenting the results would be

both improper and erroneous.

8.2 Optimization Model

The optimization model created in Pyomo was solved with the three battery control strate-

gies explained in Section 7.2.4:

1. Minimization of total imported electricity.

2. Minimization of spot energy cost.

3. Peak shaving of the highest import peak.

When minimizing the spot energy cost, the fixed monthly charge of the spot energy cost

is excluded from Eq. (5.2) in the optimization model. Excluding the fixed charge from the

simulations will not affect the use of the battery since the fixed charge remains constant in

all months. The modified expression for total spot energy cost is given in Eq. (8.1).

Cspot =
n∑

t=1
(C nor d pool

t +CGC ) · y i mp
t (8.1)
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The use of the battery is dependent on the hourly load demand and the hourly electricity

generation on site. In this thesis, as the CHP electricity generation is assumed to be known,

the PV production accounts for the hourly variations in the on-site electricity generation.

The model created in this thesis is supposed to be a building block to perform model predic-

tive control of the battery in the future. The PV production is, as previously discussed, highly

dependent on the variations in solar radiation and air temperature. The weather forecast

changes continuously, and to account for the changing forecast of solar radiation and air

temperature, it makes sense to optimize the use of the battery for shorter time periods. A 48-

hour optimization period of the battery is chosen as the simulation time period in this thesis.

As it is desirable to see how much savings potential the battery holds, the optimization model

is also applied to the whole year of 2017. Based on the results of the 2017 simulations, the

total cost of import is calculated, including the monthly fixed cost of the spot price and the

yearly fixed cost of the grid tariff.

In addition to applying the control strategies to the actual complex energy system at

Campus Evenstad, two additional cases were added:

1. The estimated PV production was doubled to see how an expansion of the PV system

would affect the use of the battery, and

2. The installed capacity of the battery was doubled to see how the size of the battery

would affect its use.

8.2.1 48h Optimization Results

It was desirable to test time periods of high load demand and periods of high PV production.

Four 48-hour time periods were chosen: two in May due to the high PV production, and two

in November due to the high load demand. The results are presented graphically for each

test period.

The peak shave control strategy is not applied to the 48-hour test periods as the cost-

benefit of peak shaving at the specific case of Campus Evenstad is to reduce the grid tariff,

and looking at an isolated 48-hour time period does not give a good indication of whether

the peak in this period is also the yearly peak.
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May 2017

May holds high solar radiation levels in Norway and hence high PV production. From

Fig. 8.5b in Section 8.1.2, it is visible that the PV production on May 17 is especially high

compared to the day before and the day after. Therefore, the following two 48-hour time

periods were chosen:

1. May 16 to 17

2. May 17 to 18

Figure 8.7 shows the optimization results for these two 48-hour time periods in May 2017.

The spot price is plotted using a secondary axis to see the correlation between the spot price

and the imported energy for the minimization of spot energy cost control strategy.

Naturally, when the objective is to minimize the total import of electricity, energy is not

imported to recharge the battery. Hence, does only the on-site PV production contribute

to the recharging of the battery. As seen from Figs. 8.7a and 8.7b, recharging of the battery

only occurs when the PV production is assumed doubled for both 48-hour time periods in

May, and even then, only a small recharge of the battery takes place. Doubling the installed

battery capacity leads to the discharging of the battery being distributed over some time, as

the available discharge capacity of the battery is higher than the load demand.

When optimizing with the objective of minimizing the spot energy cost, the battery is

used more actively since low spot prices leads to full recharging of the battery. For both 48-

hour time periods in May, the spot price decreases drastically between hours 24 and 30, as

seen in Figs. 8.7a and 8.7b, resulting in a full recharge of the battery. The low spot price in

this time period results in a significant increase of the import peak, and the peak also takes

place at a time where the load demand is not at its highest. When doubling the installed

battery capacity for this control strategy, the import peak exceeds 400 kW. The results hence

show that applying the minimization of spot energy cost control strategy may lead to a peak

shift and also a peak increase. The peak is no longer determined by the load demand; it is

determined by the spot price and the available storage capacity of the battery.
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(B) 17th and 18th of May

FIGURE 8.7: Optimization results of the 48-hour time periods in May 2017.
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November 2017

November is chosen due to the historical high import peaks in both 2016 and 2017, as seen

from Fig. 5.7 in Section 5.5. The import peak in 2017 from the historical data provided by

Multiconsult is 467.70 kW and occurred on November 22. Since the days prior to November

22 also showed high values of imported electricity, the following 48-hour time periods were

selected for November 2017:

1. November 20 to 21

2. November 21 to 22

The results of the optimization model for the two 48-hour time periods in November 2017

are illustrated in Fig. 8.8. The main findings in the 48-hour time periods in May also apply in

the 48-hour time periods in November:

1. When minimizing the total imported electricity, the battery is only discharged once.

2. When applying the minimization of spot energy cost control strategy, the battery is

fully recharged as a result of low spot prices.

However, unlike in the May optimization results, doubling the PV production does not lead

to small recharging of the battery. The PV production in November is much smaller than in

May, while the load demand is higher, and hence a recharge of the battery is unlikely. Also,

when doubling the installed battery capacity, the discharge of the battery is not spread over

time, like it was in May for the minimization of total import control strategy, due to the high

load demand.

In the two 48-hour time periods in May, the import peak increased and changed its oc-

currence when the control strategy of minimizing the energy spot cost was applied. In the

November results, for the same control strategy, the peak is increased and shifted only when

the installed battery capacity is assumed doubled. Even though the spot price is fairly low

during peak under normal conditions and when the PV production is assumed doubled, the

battery is not able to recharge itself due to the high load demand, and hence the import

peak remains the same in these two cases. When the installed battery capacity is doubled,

the import peak increases and the occurrence of the peak changes when applying the mini-

mization of spot energy cost control strategy for both November test periods. The resulting

import peak is significantly higher than the historical import peak of 2017. For November
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(A) 20th and 21st of November
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(B) 21st and 22nd of November

FIGURE 8.8: Optimization results of the 48-hour time periods in November 2017.
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20 to November 21 in Fig. 8.8a, new import peak of 499.31 kWh/h. Due to the extremely low

spot price between hours 24 and 30 on November 22 in Fig. 8.8b, import peak increases from

467.70 kWh/h to 604.18 kWh/h.

As seen in Fig. 8.8, the spot price is initially low before it starts to increase. The battery is,

when applying the minimization of spot energy cost control strategy, set to recharge when

the spot price is low. However, since the battery is assumed to be fully charged at the start

of each test period, there is no available storage capacity at this time. If the initial battery

content had been set to a lower value, the battery would initially charge. This is also the case

for the 48-hour time periods in May.

8.2.2 Yearly Optimization Results

In the yearly simulations, the peak shave control strategy with the objective of minimizing

the highest import peak is applied in addition to the other two control strategies. The size of

the battery is a limiting factor when applying the peak shave control strategy. The installed

capacity of the battery is 108 kW/204 kWh, and the battery is restricted to be able to deliver

100 kWh of usable energy at any given time to start up the CHP in case of power failure. This

leaves a peak shaving potential of 104 kWh/h. The power peak typically occurs in winter,

and as the PV production in winter is much lower than in summer, the realistic peak shaving

potential becomes even smaller than 104 kWh/h.

Results of the minimization of total imported electricity control strategy are illustrated

graphically in Fig. 8.9. Figure 8.10 shows the results when the total imported energy is min-

imized. The results of the peak shaving control strategy are presented in Fig. 8.11. For the

peak shaving control strategy, the first, second and last iteration are plotted for each case.

The iterations of the peak shaving control strategy were stopped when the resulting peak

was higher than the restricted maximum. Each control strategy is tested for the same three

cases as the 48-hour time periods: normal conditions, doubled PV production, and doubled

installed battery capacity. For each case, and for each control strategy, the total yearly spot

energy cost and grid tariff are calculated. For comparison, the total cost of import prior to the

battery installation is also calculated. As historical import values from 2017 are only avail-

able from the 8th of February, the resulting cost estimation is lower than the expected cost

of import. For consistency, the same time period, i.e., from 08.02.2017 to 31.12.2017, is used

for all cases. The cost results are presented in Table 8.9.
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TABLE 8.9: Calculated cost of imported electricity in 2017

Control Strategy Energy Cost [NOK] Grid Tariff [NOK] Total Cost [NOK]

Initial import 362 305 523 379 885 684
Normal conditions

Minimize import 360 547 522 019 882 566
Minimize energy cost 358 938 543 914 902 852
Peak shaving 360 591 505 899 866 490

Doubled PV production

Minimize import 341 559 507 805 849 364
Minimize energy cost 339 929 529 625 869 554
Peak shaving 341 571 491 034 832 605

Doubled installed battery capacity

Minimize import 360 484 521 962 882 447
Minimize energy cost 356 046 651 190 1 007 236
Peak shaving 360 493 487 208 847 701

FIGURE 8.9: Control strategy result: Minimization of total import.

For the control strategy of minimizing the total imported electricity, the battery is not

frequently utilized, just like the 48-hour optimization results showed. Some recharging of the

battery takes place, especially when the PV production is assumed doubled. As the objective

of this control strategy is to minimize the total import, the recharge of the battery is solely
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a result of high PV production and low demand. Some energy is exported to the grid as

a result of the doubled PV production. The total cost of imported energy when applying

the minimization of import control strategy is lower than the total cost calculated for the

historical import for all cases. As seen from Table 8.9, the savings potential of this control

strategy is biggest when the PV production is assumed doubled.

FIGURE 8.10: Control strategy result: Minimization of spot energy cost.

When the objective of the optimization model is set to minimize the total energy spot

price, the battery is rapidly charged and discharged throughout the whole year as seen in

Fig. 8.10. In the first two cases, under normal conditions and when the PV production is

assumed doubled, the import peak is nearly constant at just over 500 kW. When the battery

capacity is doubled, the import peak increases significantly to 738.48 kW. Recall that the his-

torical import peak in 2017 was 467.70 kW, i.e., this control strategy leads to a higher import

peak in all cases. As seen in Table 8.9, the minimization of spot energy cost control strategy,

named "Minimize energy cost" in the table, results in the lowest total energy cost in all cases.

However, due to the increased power peak that this control strategy results in, the grid tariff

is high and hence is also the total cost of imported electricity higher compared to the other

two control strategies. Especially when the installed battery capacity is doubled, the total
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cost of import is extremely high. The combination of large battery capacity and low spot

prices, results in large amounts of import, increased import peak, and hence high grid tariff

costs. Also with the implementation of this control strategy, some energy is exported when

the PV production is assumed doubled.

The peak shaving control strategy results in the lowest total import cost. As seen from

Table 8.9, the energy cost of this control strategy is similar to that of the minimization of

total import control strategy, and hence, as expected, the largest savings potential of the total

import cost lies with the grid tariff. Under normal conditions and when the PV production

is doubled, the peak reduction potential is approximately 34 kW. The minimum import peak

was found after four and five iterations, respectively. Although doubling the installed battery

capacity results in a greater peak reduction (72.81 kW), the total cost of import is higher than

when the PV production is doubled. This is due to the increased storage capacity allowing for

more import of electricity as long as the peak is not increased. When doubling the installed

battery capacity, the peak shaving control strategy is significantly less efficient than for the

first two cases. Seen from Fig. 8.11c, 26 iterations were needed to find the minimum possible

peak.

(A) Normal conditions
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(B) Doubled PV production

(C) Doubled installed battery capacity

FIGURE 8.11: Control strategy result: Peak shaving.
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As seen from the plots in Fig. 8.11, the battery is more actively used when the PV pro-

duction is doubled as high levels of PV production together with low load demand results

in a recharge of the battery. Some energy is exported to the grid when the PV production

is doubled, and as seen from Fig. 8.11b, the amount of exported electricity decreases with

the number of iterations, i.e., the more the peak is reduced, more of the on-site generated

electricity is used internally instead of being exported.

8.2.3 Notes and Comparisons of the Optimization Results

The goal of implementing different control strategies is not necessarily to find the optimal

use of the battery. In this sense, the name "optimization model" is misleading. The battery

utilization is optimized based on the given objective. The chosen battery control strategies

may not be realistic, but they illustrate the main principles of different ways that the battery

can be used. The main observations of the optimization model results from Section 8.2 are

listed below:

Control Strategies

• Minimizing the total import was chosen as one of the control strategies due to the long-

term vision of Statsbygg that Campus Evenstad would become 100% self-sufficient

with electricity. The results show that the battery is not frequently used when applying

this control strategy; the battery is simply discharged to reduce the total import. Any

recharging of the battery is due to high PV production in times of low load demand.

• The minimization of spot energy cost control strategy results in rapid charge and dis-

charge of the battery. As stated in Section 4.3, the lifetime of the battery is highly de-

pendent on the number of charge and discharge cycles that the battery undergoes and

the DoD of the battery. The deeper the battery is discharged, the more battery capacity

is lost, and hence the battery lifetime is reduced. Based on this, the implementation

of the minimization of spot energy cost control strategy could possibly impact the life-

time of the battery at Campus Evenstad. However, due to the small size of the battery

and the restriction that the battery must at all times be able to deliver 100 kWh usable

energy, the DoD of the battery is only approximately 50% which is considered low. The

minimization of the spot energy cost control strategy reduces the energy cost of the

imported electricity, but low spot prices result in higher peaks, which in turn results in
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higher total costs. From the 48-hour time period results in Section 8.2.1, it is evident

that the occurrence of the peak may also shift as a result of implementing this control

strategy. As long as the new import peak does not exceed the initial import peak, it will

not impact the grid tariff cost.

• Using the battery to perform peak shaving may significantly reduce the grid tariff. Even

though spot prices are not considered in this control strategy, the total cost of imported

electricity is reduced compared to the other control strategies. Reducing the import

peak may also lead to that more of the self-generated electricity is used on-site instead

of being exported to the grid.

Cases

• Doubling the PV production naturally has a bigger impact of the battery use in summer

than it does in winter. The total import costs of all control strategies are lower when

the PV production is doubled compared to the other cases. Doubled PV production

also leads to some export of energy to the grid. The exportation of electricity repre-

sents a source of income that is not included in the cost calculations. However, ex-

porting electricity at one price and importing it again at a later time at a higher price is

not economically beneficial. As the installed PV capacity at Campus Evenstad is small

compared to the load demand, it could be interesting to see how tripling the PV pro-

duction would impact both the use of the battery and the grid tariff costs. However, as

the PV production in November is very low due to few sunlight hours and small levels

of solar radiation, a tripling of the PV production is not expected to impact the import

peak significantly.

• Doubling the installed battery capacity enabled a greater peak reduction which in turn

leads to lower grid tariff. However, due to the large energy storage potential that the

battery holds under this assumption, more electricity is imported to recharge the bat-

tery, hence resulting in higher total costs. Both when the objective is to minimize the

total import and when the objective is to perform peak shaving, the battery is infre-

quently used when the installed battery capacity is doubled.
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It is important to emphasize that uncertain data is used in the optimization. For instance,

the load demand is estimated based on historical data, and the PV production is estimated

from the constructed PV model. In addition, the CHP plant, which contributes to the on-

site electricity generation, is not modelled but set to be running on maximum in winter and

completely cut off in summer as stated in Section 7.2.2. However, although the input data

may be inaccurate, the main principles of the different control strategies and cases will still

apply.





Chapter 9

Conclusion

This thesis represents a building block for future model predictive control of a battery sys-

tem coupled with a grid-connected PV system. The aim of this thesis was to (a) develop a

PV model to predict the PV system performance, and (b) test and analyze various control

strategies of the battery.

Some built-in functions in the PVLIB library in Python were used in the handling of

the input solar radiation, to decompose and transpose measured GHI into POA irradiance.

Based on the testing and validation of the developed PV model in this thesis, the PV model

proved to give accurate estimations of the PV performance of the PV system at Campus Even-

stad in summertime. In wintertime, the built-in irradiance functions proved to be inac-

curate. This shows the complexity of decomposing and transposing global solar radiation

measured on a horizontal plane into POA irradiance for a specific tilt angle, especially in

Northern countries. The PV model was tested with two irradiance decomposition methods,

various overall PV system efficiencies, and surface types representing different albedo values.

The dirindex irradiance decomposition method together with an overall system efficiency

of 74% and surface type asphalt resulted in the most accurate PV estimations compared to

historical measured PV performance.

Three control strategies were implemented in the optimization model of the battery:

minimization of total importation of electricity, minimization of spot energy cost, and peak

shaving. The intention of the optimization model was not to find the optimal use of the bat-

tery at Campus Evenstad. Rather, the goal was to investigate different ways a battery in a

complex energy system could be used based on various optimization objectives. The main

findings of tested control strategies are as following:

87
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• Optimizing the utilization of the battery with the objective of minimizing total import

results in an inactive use of the battery. The battery is only recharged when the PV

production is higher than the load demand.

• Minimizing the spot energy cost, the battery is frequently charged and discharged. Us-

ing the battery for this purpose may result in an increased import peak, and the occur-

rence of the import peak may change.

• The peak shaving control strategy leads to a reduction of the total cost of imported

energy. However, the way the peak shaving control strategy is implemented in the op-

timization model is not very efficient as several iterations are necessary to reach the

optimal result.

Both the minimization of total import and the peak shaving control strategy resulted in a

rather inactive use of the implemented battery when simulating for a whole year. Naturally,

if the utilization of the battery was optimized for shorter time periods, e.g., 24 or 48 hours,

the hourly battery content curve would look different than in the yearly simulations.

Suggestions to further work, both with regards to the improvement and further testing of

the developed PV model and the optimization model, and with respect to performing model

predictive control of the battery in the future, are given in Chapter 10.



Chapter 10

Further Work

This thesis represents a building block for future model predictive control of a battery con-

nected to a PV system. In order to determine the hourly utilization of the battery, the hourly

load demand and the hourly on-site electricity generation must be known. In this thesis,

a model, predicting the PV performance based on measured meteorological data, has been

developed. The model is solely tested with historical meteorological data, but forecasted me-

teorological data may also be used. Campus Evenstad has been used as a case study in this

thesis. A CHP plant also contributes to the on-site electricity production at Campus Even-

stad. The CHP plant at Campus Evenstad is heat driven, and as this thesis solely focuses on

the electrical energy flow, it was considered out-of-scope to model the CHP plant. In order

to predict the use of the battery, all on-site energy sources should be accounted for. Further

work in order to achieve model predictive control of the battery should therefore include:

1. Load demand forecasting.

2. Heat demand forecasting, which in turn determines the electricity generation of the

CHP plant.

3. Manipulation of the weather forecast to extract expected site-specific GHI values.

As illustrated and discussed in Section 8.1, the developed PV model highly overestimates

the PV production in winter when solar radiation is low. An overestimation of the PV pro-

duction would indicate that less import of electricity is needed than what is the actual case.

In order to get accurate estimations of the PV performance in all periods of the year, the de-

veloped PV model should be improved. As previously discussed, the largest source to error

in the PV model is the decomposition and transposition of input GHI into POA irradiance. In

89
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this thesis, built-in functions in the PVLIB library were used to estimate the POA irradiance

for the PV system at Campus Evenstad. Improving the accuracy of the developed PV model

includes testing other irradiance decomposition and transposition methods - methods that

adapt better to high latitudes and colder climates.

With regards to the control of the battery, three control strategies have been tested and

analyzed in this thesis. These three control strategies may not be ideal for determining the

operation of the battery in the specific case of Campus Evenstad, but they illustrate the flex-

ibility that the battery provides for the end-user. It could be advantageous to test other con-

trol strategies than the ones presented in this thesis, or, perhaps even more interesting, to

combine the different control strategies. When introducing the peak shave control strategy

in Section 7.2.4, the benefit of performing peak shaving in times of grid peak was briefly dis-

cussed. An alternative control strategy of the battery could be to reduce the peak in times

where the grid normally experiences their peak. In practice, a time range for when the peak

should be reduced would have to be specified in the model. As described in Section 5.7, the

typical power peaks that are often found in residences, do normally not take place in tertiary

industries (Campus Evenstad goes under the category tertiary industry based on its opera-

tion). However, the grid itself will still experience peak periods. Optimizing the utilization

of the battery to minimize grid peaks could, therefore, be an interesting control strategy to

analyze.
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