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Abstract

Heat treatable aluminium alloys of the 6xxx series are important for many indus-

trial applications in the modern world. They contain small amounts of the alloying

elements magnesium and silicon, which cluster together to form precipitate phases

in the aluminium matrix. In particular, the metastable β′′ precipitate strengthens

the material significantly. This work calculates β′′ misfits and surrounding strain

fields in the host Al matrix by density functional theory. A cluster-based model is

employed, with periodic boundary conditions along the precipitate habit direction,

and a static boundary condition obtained by linear elasticity in the cross-sectional

plane. A detailed account of modeling parameters and assumptions is made. Con-

vergence of displacement related properties is assessed with respect to the modeling

parameters. Simulations are performed on a range of realistically sized β′′ pre-

cipitates, and atomic misfit values of the precipitates are calculated. The misfits,

ma and mc, are larger by between 10%–30% relative to their experimentally re-

ported counterparts, but fall below reported bulk values, as expected. ma and mc

depend strongly on the precipitate aspect ratio, and decrease in response to an

increased size in their respective lattice directions, consistent with previous experi-

mental and theoretical reports. The misfit area decreases with precipitate size and

is between 8.76%–9.75%, overestimating slightly compared to previously published

results. Elastic strain around the precipitates is calculated and shown to be in good

agreement with a previous pure DFT study of β′′ in an Al lattice.
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Sammendrag

Utherbare aluminiumlegeringer av 6xxx-serien er viktige for et vidt spektrum av

anvendelser i den moderne verden. Disse legeringene inneholder en liten tilsats

av legeringselementene magnesium og silisium, som opphopes i metallet og dan-

ner utfellinger i aluminiumstrukturen. Disse partiklene gjør materialet sterkere.

Av de ulike presiptatene er den metastabile fasen β′′ mest interessant, da den gir

størst hardhetsøkning. Denne masteroppgaven kombinerer kvantemekaniske bereg-

ninger av den elektroniske strukturen i β′′-presipitatet og det omkringliggende

aluminiumgitteret med lineær elastisitetsteori for å studere atomær forskyvning

i atomgitteret nær partiklene. En modell hvor presipitatet og omkringliggende

aluminium modelleres som en flat, atomær sylinder, blir brukt. Forskjellige mod-

elleringsparametre diskuteres i detalj sammen med de underliggende antakelsene.

Simuleringer blir utført på et utvalg tidligere rapporterte presipitatstørrelser, og

atomær mistilpasning blir beregnet. Mistilpasningene ma og mc er mellom 10%

og 30% større enn deres eksperimentelle motparter, men faller under rapporterte

verdier i bulk β′′. ma og mc avhenger tydelig av presipitatets tverrsnittlige side-

forhold, og avtar med økende sidelengde i deres respektive atomære gitterretninger.

Dette overenstemmer med med tidligere teoretiske og eksperimentelle funn. Mist-

ilpasningsarealet avtar med presipitatstørrelse, og er mellom 8.76% og 9.75%, litt i

overkant av tidligere rapporterte verdier. Elastisk tøyningsfelt rundt presipitatene

blir utregnet, og er i godt samsvar med tidligere DFT-studie av β′′ i et aluminiums-

gitter.
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Chapter 1

Introduction

Aluminium is one of the most abundant elements on the earth, making up approx-

imately 8% of the crust. Due to a high reactivity, aluminium occurs mainly in

strong interatomic bindings in silicates and aluminium oxides, and was unavailable

for widespread human use throughout most of history [1]. Aluminium production

has grown immensely following the invention of effective industrial processes for

extraction of aluminium from bauxite at the end of the 19th century [2]. With the

increased demand for lightweight materials for automotive and aerospace industries,

aluminium production has seen a large surge during the last decade as well.

Much of the success of aluminium can be attributed to the versatility of its

different alloys. One industrially important group of alloys are the heat treat-

able aluminium alloys, which can be strengthened considerably relative to pure

aluminium by the addition of small amounts of other elements. This work is con-

cerned with the strengthening process in the heat treatable 6xxx series alloys, which

make up a number of indispensable materials for engineering purposes. The 6xxx

alloys combine corrosion resistance and good weldability with moderate strength,

and represent excellent materials for use in automotive, airplane, shipbuilding and

architectural areas of production [3]. They owe their strength to an added few

percent of magnesium and silicon, which under favorable temperature conditions

during heat treatment grow into interstitial phases in the aluminium matrix called

precipitates. The precipitates strengthen the metal by providing resistance to de-

formation, and understanding this process is important for improving alloys and

production processes.

It is currently an active effort by several joint research projects between Hydro,
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Figure 1.1: An illustration of a precipitate phase (in dark grey) occupying a portion

of a surrounding host phase lattice (in silver). a): A situation where the precipitate

size matches the surrounding lattice perfectly. Hence, its atomic misfit is zero. Further,

the surrounding lattice retains its perfect crystal structure, so the displacement field is

zero. b): A situation where the precipitate is larger than the portion of the surrounding

lattice that it takes up, which means its misfit is positive and the precipitate generates a

displacement field in the lattice.

SINTEF, NTNU and others to increase the knowledge of how macroscopic behavior

in metals is affected by smaller scale processes. Having an accurate description of

interactions on the atomic scale can provide more accurate parameters for use in

macroscopic models.

Being a part of that effort, this work is concerned with the the atomic displace-

ment field generated around β′′ precipitates in the 6xxx aluminium alloys. These

precipitates are slightly larger than the portion of the aluminium lattice that they

occupy. This misfit causes the precipitate to push on the host lattice atoms, gen-

erating a displacement field radiating outwards into the host metal phase. Figure

1.1 illustrates an atomic displacement field generated by a large precipitate misfit.

The displacement field gives the precipitates a region of influence larger than their

actual physical size in the matrix. This may affect the behavior of solute elements

and line defects near the precipitate, ultimately affecting precipitation mechanics.

The authors of [4] show that interaction of the β′′ precipitate displacement field

with moving dislocations is likely a second order effect, meaning that its effect is

subtle, but not negligible. Further, the displacement fields contribute a strain en-
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ergy term to the total energy of precipitates, and are thus important for precipitate

energetics, which have been used for assessing precipitate stoichiometry [5].

The precipitate misfit causes large perturbations of interatomic distances at the

precipitate surface, necessitating an electronic level of accuracy to capture atomic

behavior in this region. This should also pick up non-negligible contributions to

the displacement field in the vicinity of the precipitate relative to a purely classical

description. A few previous works have performed simulations on the displace-

ment field around β′′ with either hybrid [6] or full quantum mechanical levels of

description [7, 8]. A recent experimental study [9] also studied the effects of atomic

displacement around entire precipitates.

The present work introduces a model combining first principles quantum me-

chanical calculations with linear elastic calculations to determine the misfits and

displacement fields of precipitates with varying dimensions. The quantum me-

chanical simulations are performed by electronic structure calculations within the

framework of density functional theory (DFT), and linear elastic calculations are

performed with the finite elements method (FEM). The results are compared with

various previous works, focusing in particular on the experimental work mentioned.

The model is a cluster model, more commonly used in dislocation modeling [10].

The precipitate is assumed to be infinitely long, with no misfit along the [0 0 1] di-

rection of the aluminium lattice. Thus, it is enough to simulate a one unit cell thick

cross-sectional slab of atoms. The atomic slab is divided into an inner cylinder, con-

taining the precipitate, surrounded by an annulus region. Refer to Figure 3.1 for a

schematic illustration of the model. The atomic positions in the inner cylinder are

optimized to their structural ground state, while the outer annulus atoms are kept

static in positions given by LET. Because the DFT code employed uses periodic

boundary conditions, an isolating vacuum is included around the atomic slab in

the cross-sectional plane to mitigate mutual interaction across the boundary. It is

hypothesized that this model could yield more accurate results for atomic displace-

ment than the somewhat similar model used the works by Ninive et al. [7, 8, 11].

Those studies used a model where the precipitates lie in an aluminium lattice di-

rectly connected to its periodic repetitions. This is equivalent to a physical situation

with an infinite number of mutually parallel, densely packed precipitates. It is sus-

pected this could lead to some degree of underestimation of the displacement field

at the boundaries of the simulation cell used, as the precipitate displacement fields
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push against each other. This effect is not present in the current model, because

the atomic displacement in the static region is supposed to be qualitatively correct,

forcing the inner region to obtain a solution relatively close to the real situation.

This thesis is divided into the following chapters, introduction, theory, model-

ing and methodology, results and discussion and concluding remarks. The theory

chapter contains a brief introduction to the fundamental concepts, covering alloys,

precipitates, linear elasticity and the fundamentals of density functional theory.

The modeling and methodology chapter begins with a motivation part, followed by

a detailed account of the proposed model, then a discussion of assumptions and

important parameters, and ends with a concise account of the methodology. The

results and discussion chapter compares the results with previous studies. Last in

the main text is the conclusion chapter. A list of acronyms has been included for

convenience above the current chapter. The main text is followed by an appendix

with an example of some of the input files used for DFT calculations.
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Chapter 2

Theory

This chapter provides an introduction to alloys and age hardening before going into

details about the 6xxx alloy system and the β′′ precipitate. A brief explanation

of linear elasticity follows, before outlining the fundamentals of density functional

theory (DFT). The chapter ends with a review of important numerical aspects of

plane-wave DFT calculations.

2.1 Alloys and Precipitate Hardening

An alloy is a compound mixture of a metallic phase with one or several additional

elements. For example, brass is usually 55% to 90% copper and the rest is mainly

zinc [12]. Steel consists of iron with up to 2% carbon [13], and aluminium foil con-

tains close to 99.4% aluminium, the rest being Si and Fe [14]. It is not always the

case that the additional elements mix evenly with the main element — they may

cluster together and form secondary phases called precipitates. The main phase

surrounding it is then referred to as the host phase. Another term, host matrix,

is an expression which means the host phase with emphasis on its regular crystal

structure on the atomic level.

Alloys are very important to modern industries because of their often superior

material properties over pure metals. For example, if the pure form of some metal

was soft, adding some additional elements could render a strong alloy but reduce its

corrosion resistance and ductility. Because improving one property could deteriorate

another, the production of alloys is often about finding good compromises between

different material properties. Aluminium is a quite soft metal which can achieve a
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very high strengthening factor through alloying with other elements. Aluminium

alloys obtain their properties through a variety of industrial processes including

casting, extrusion, annealing, work hardening and age hardening. Of those, age

hardening is the most important for this work.

Age hardening increases the yield strength of an alloy and is performed last in a

sequence of quenching and heating in different conditions depending on the desired

alloy properties. First, to make a homogeneous structure, the alloy is heated to

temperatures in the vicinity of 530 ◦C [15]. The speed of atomic diffusion increases

exponentially with temperature [16], so the elements begin to distribute uniformly

throughout the solid. This process is called solution heat treatment and forms

what is referred to as a solid solution. The alloy is subsequently put through rapid

cooling, usually by quenching in water, to prevent formation of the equilibrium

precipitate during the cooling process [17]. The quenching of the alloy slows down

the rate of thermal diffusion and traps the atoms in a state where the diffusion

energy barrier is much greater than the thermal energy of each atom. Normally it

would be more stable for the alloying constituents to rearrange and precipitate but

there is no driving force for that at low temperatures. This state can be imagined

as a local energy minimum in the configurational space of the alloy atoms and in

this state it is referred to as a super-saturated solid solution (SSSS). The procedure

is followed by room temperature aging or artificial aging at temperatures around

160 ◦C–180 ◦C [15, 17]. During the interval of aging, the alloy strength increases

as the alloying elements rearrange due to thermally activated diffusion. Different

temperatures and storing times can be used to control the final condition of the

product.

The hardening effect is caused by the formation of precipitates, which are small

particles inside the host phase that slow down deformation of the metal. Plastic

deformation of metals occur by the formation and movement of dislocations. The

simplest type of dislocations is the edge dislocation, which can be imagined as the

presence of an extra half-plane of atoms in the periodic lattice. Figure 2.1 is a

cross-sectional view of an edge dislocation. The dislocation line follows the border

of the extra atomic plane into the page. Precipitates act as obstacles to the prop-

agation of line defects such as edge dislocations in the matrix. One of the ways

that a propagating dislocation can pass a precipitate is by shearing it. Precipitates

require a larger shear stress than the host lattice for the dislocation to pass through,
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Figure 2.1: A cross-sectional view of an edge dislocation in a regular lattice. The extra

half-plane of atoms is indicated in silver grey, and the dislocation line, indicated in red,

follows the edge of that plane, extending into the page.

and hence obstruct the movement of the dislocation.

Precipitates form as a way for the system to reduce its Gibbs energy, and dif-

ferent precipitates will dominate the host lattice at different elapsed times of the

age hardening process. The equilibrium precipitate can be preceded by several

metastable precipitate phases due to an energy barrier in its formation. The inter-

mediate phases have a smaller barrier, and thus form more easily at lower temper-

atures.

Precipitates often grow as needle or plate-like structures in the host phase in

certain crystallographic directions or planes, which are termed habit directions

and habit planes. The relation between the crystallographic directions in differ-

ent phases (such as precipitate and matrix) is commonly expressed in the following

manner,

Planes (h k l)β ∥ (u v w)α
Directions [h k l]β ∥ [u v w]α,

where the variables h, k, l and u, v, w are integers. This notation indicates that

the planes (h k l) and directions [h k l] in some phase β are parallel to the planes

(u v w) or the directions [u v w] in the phase α, respectively.

In some alloys the crystal lattice extends almost continuously across the matrix-
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precipitate interface causing a strain field which radiates outwards in the host ma-

trix. Being close to coherent, one calls this sort of interface semi-coherent. At a

semi-coherent interface, the lattice of the host phase is mainly preserved except for

a slight periodic misfit when crossing into the precipitate phase. The periodic misfit

is owed to the precipitate having different elastic constants than the host lattice,

meaning it will be slightly larger or smaller than the aluminium atoms it has re-

placed. For large particles this disregistry builds up and is periodically alleviated

by misfit dislocations.

The strain field surrounding semi-coherent precipitates will interact with moving

dislocations and solute elements, indirectly influencing their movement. One pre-

cipitate well known for generating surrounding strain fields is the β′′ precipitate in

age-hardenable aluminium alloys. The next section will outline important aspects

of aluminium and this precipitate.

2.2 Al-Mg-Si Alloys and β′′

This work is a case study of the most important hardening precipitate of the alu-

minium 6xxx alloy series, β′′ [18]. The designation of 6xxx stems from the alu-

minium alloy designation system, which classifies wrought aluminium alloys by

four digits from 1xxx to 8xxx [15]. The first digit symbolizes the main alloying ele-

ment(s), which in the case of the 6xxx alloys are magnesium and silicon. Therefore,

the 6xxx alloys are often referred to as Al-Mg-Si alloys. The introduction chapter

touched on the various uses and merits of Al-Mg-Si alloys, and this section will

introduce the atomistic details of the system.

The precipitation sequence in Al-Mg-Si alloys during aging is generally accepted

to be SSSS → Mg/Si clusters → Guinier-Preston (GP) Zones → β′′ → β′, U2, U1,

B′ → β [19]. Here, SSSS is the super-saturated solid solution after quenching of

the alloy in the age hardening process. The precipitates called GP zones are named

after Guinier and Preston, who first studied these precipitates. They are common

for many alloy precipitate systems, and are usually fully or semi-coherent with the

host matrix. Andersen et al. [20] report the GP zones in Al-Mg-Si to be fully

coherent with the host matrix, and that peak hardness occurs when a combination

of GP zones and β′′ dominates the Al matrix. U2, U1 and β′′ form as long rods in

the host matrix around pillar-like columns of silicon which form early in the pre-
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Figure 2.2: a) β′′ needle structure as seen by a transmission electron microscope. It

can be seen how some rods are pointing out of the image plane, appearing as scattered

blobs. The image is reproduced with permission from Dr. Calin D. Marioara, SINTEF. b)

A cross-sectional view of a β′′ precipitate in the aluminium matrix taken by aberration-

corrected high-resolution scanning transmission electron microscopy. The needle direction

points out of the image plane. The image is reproduced with permission from Dr. Sigurd

Wenner, SINTEF.

cipitation sequence [21]. β′′ habits the ⟨0 0 1⟩ directions of the aluminium matrix

and the length is typically around 300-1500Å, with a thickness of approximately

30Å in the peak hardness tempering condition [9, 20]. Refer to Figure 2.2 a) for

a view of β′′ lying in the ⟨0 0 1⟩Al directions and b) for a cross-sectional view of

β′′. The length ratio RL, defined further down, of the cross-sectional lengths differs

significantly from one needle to the other, and has been reported between 0.77 and

3.25 [9].

Aluminium belongs to space group 225, with the face-centered cubic structure.

Its lattice parameter is the same along the basis vectors of its unit cell and measures

a0 = 4.03Å at 0K [22] and a0 = 4.05Å at room temperature [23]. Figure 2.3 shows

the FCC structure with the lattice vectors along the x, y and z axes of the cartesian

coordinate system. The present work takes the lattice vectors of aluminium to be

aAl = ax̂, bAl = aŷ and cAl = aẑ, where a is the value of the aluminium lattice

parameter, and x̂, ŷ and ẑ are the unit vectors along the cardinal directions of the

cartesian coordinate system.
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Figure 2.3: The face-centered cubic (FCC) structure seen here is a cubic cell with an

extra lattice point at the center of each face. The diagonal line elements indicate the

planes of the cubic unit cell. This figure shows 14 atoms, but they are shared with other

unit cells and only a total of four whole atoms reside within each.

β′′ is monoclinic and belongs to the space group C2/m [20]. The vector relations

of its unit cell with the aluminium lattice are

aβ′′ = (1 +ma)(2aAl + 3bAl),

bβ′′ = (1 +mb)cAl,

cβ′′ = (1 +mc)
1
2
(−3aAl + bAl),

(2.1)

where ma, mb and mc are misfit fractions, indicating that the β′′ unit cell is slightly

larger than the region of aluminium atoms it replaces. The lattice directions aβ′′

and cβ′′ in Equation 2.1 are indicated in Figure 2.2 b). bβ′′ points out of the

image plane. A recent study reported the misfits ma and mc to lie between 1.61%-

3.66% and 2.53%-7.26%, respectively for varying precipitate dimensions [9]. The β′′

precipitate has a semi-coherent interface with the host matrix, and the misfits cause

it to displace the aluminium lattice at its interface. This generates a displacement

field around β′′, as was illustrated in Figure 1.1. The misfit mb is known to be very

small and is usually assumed to be negligible. For the purpose of this work it will

be set to zero.

The most likely formula unit for β′′ has been a topic of discussion for many
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years, early reports suggesting Mg5Si6 [20, 21], with later research indicating that

the precipitates have a 20 atomic percentage of aluminium [5]. Calculations by ab

initio methods indicate that Al2Mg5Si4 is the most energetically stable composition

[8], supported by very recent results by dispersive X-ray spectroscopy [24]. However,

some results by HAADF-STEM seem to indicate Al3Mg4Si4 [8]. It is possible that

the unit cell of β′′ can exist with varying compositions, and the effect of temperature

may play an important role in the formation energies as in the θ′ precipitate of the

Al-Cu alloy system [25]. Regardless, such a treatment is beyond the scope of the

current work, which will assume β′′ has the composition Al2Mg5Si4.

Figure 2.4: A vertical projection of the β′′ unit cell assuming the composition Al2Mg5Si4.

The stippled line separates the two antisymmetric formula units. The experimental cell

parameters in the cross-sectional plane are shown. The lattice vector bβ′′ points out of

the plane. The atoms lie in two planes separated by half the unit cell parameter in the

bβ′′ direction. The filled spheres lie in the upper plane and the hollow spheres lie in the

lower plane.

The β′′ unit cell is illustrated in Figure 2.4. Breaking somewhat with convention

from other works [6, 8, 19, 26, 27], the unit cell is drawn so that the reader can

easily identify the unit cell as consisting of two equal formula units on each side of

the unit cell. A formula unit consists of four Mg atoms at approximately mutually

right angles relative to a central Mg atom and four Si atoms at 45◦ angles to the

Mg atoms. There are two Al atoms on opposite sides of the cluster. It is common

for β′′ to appear in half-integer unit cells in the aβ′′ lattice direction. To avoid
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using half-integer unit cells, the present work will use the terms ‘eye’ or formula

unit meaning a half unit cell consisting of a single formula unit Al2Mg5Si4 in the

spatial arrangement illustrated in Figure 2.4. Further, na and nc will be taken to

mean the number of eyes in each of the lattice directions. This way, an na × nc

precipitate will be taken to mean a quadrilateral precipitate of dimensions 1
2
naaβ′′

by nccβ′′ .

In the discussion of misfits, the length ratio is defined as the ratio between the

relaxed β′′ precipitate side lengths,

RL = (naaβ′′)/(2nccβ′′). (2.2)

On the other hand, the aspect ratio will be taken to be taken as the simple fraction

between the number of eyes, na/nc. The aspect ratio will generally be relatively

close to RL because a single formula unit is almost the same length in both cross-

sectional lattice directions.

2.3 Linear Elasticity

Linear elasticity is a branch within continuum mechanics which fundamentally as-

sumes deformations of a material to be infinitesimal. Deformations can be measured

by the quantity strain, which quantifies tension/compression of the material and is

symbolized by ϵ. Strains are assumed to induce linearly related forces in the mate-

rial, called stress, symbolized by σ. The strain-stress relation is a generalization of

the one-dimensional Hook’s law to three dimensions, and is expressed as [28]

σij = Cijklϵkl, (2.3)

where Cijkl is the stiffness tensor corresponding to the spring constant in the one-

dimensional Hook’s law.

In principle the stiffness tensor has 81 elements, but symmetry constraints and

energy arguments reduce the total number to 21 independent components. Fur-

ther reduction is possible given certain conditions depending on the nature of the

material in question. The linear elastic simulations in the present work assume

orthotropic elasticity, in which the material lattice vectors are mutually orthogonal.

In this case, only nine independent components of the stiffness tensor remain.

12



2.3.1 Strain

As mentioned, strain is a measure of the deformation of a material and is defined as

the derivative of a continuous displacement field. For the atomic models calculated

in this work, the displacement field is only defined at lattice points and the usual

definition of strain is not immediately applicable. Therefore, a reformulation of the

strain is needed. The strain matrix in two dimensions is

ϵij =
1

2
(eij + eji), (2.4)

where, eij is the extension, defined as the derivative of the displacement field

u(x0, x1) =
∑2

i=1 uix̂i,

eij =
∂ui
∂xj

, (2.5)

and x0 = x, x1 = y are the coordinates in the two-dimensional plane.

In the present work, eij is defined by a central difference scheme as the difference

in displacement in the xi direction between equal lattice sites in adjoining unit cells

along the xj direction in the strained state, ∆uij, relative to the unstrained lattice

parameter aj,

eij =
∆uij(m,n)

aj
. (2.6)

This equation is combined with Equation 2.4 to calculate the strains. The notation

0 → x, 1 → y will be used for the subscripts, so ϵxx = ϵ00 and ϵyy = ϵ11. Note

that aj, does not depend on j because the lattice constant is isotropic along the

primitive lattice vectors of the FCC structure. The extension eij is assigned to

the lattice point in the middle of the two lattice points used for its calculation.

This has the advantage of yielding a symmetric strain field around the precipitate

and is intuitively understandable as it assigns the shared compression between two

lattice sites to a point equally far between them both. On the precipitate interface,

some aluminium lattice points do not have neighboring lattice points inside the

precipitate, because they are replaced by Si and Mg. Hence, a central derivative

definition of ∆uij cannot be calculated. Instead, a forward or backward derivative

is used for those lattice points, depending on which lattice point is missing.

2.4 Density Functional Theory

To study the electronic structure of materials, it is often of central importance to

solve the time-independent Schrödinger equation for an isolated system of interact-
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ing particles. With Ψ as the all-particles wave function, the Schrödinger equation

reads

ĤΨ = EΨ, (2.7)

where Ĥ is the Hamiltonian operator and E is the total energy of the system. Ĥ

and Ψ depend on all particle positions. The Hamiltonian operator can be divided

into

Ĥ = T̂n + T̂e + V̂nn + V̂ee + V̂ne, (2.8)

where T̂n and T̂e are the total nucleus and electron kinetic energy operators re-

spectively. V̂nn, V̂ne and V̂ee are the nucleus-nucleus, nucleus-electron, and electron-

electron total potential energy operators. The total energy E has corresponding

contributions for each of the above operators, which will be denoted by the same

symbol without the hat.

2.4.1 The Born-Oppenheimer Approximation

The electron is almost two thousand times less massive than the proton and the

neutron. For a given distribution of nuclei and electrons, the latter will find the most

energetically favored configuration almost instantaneously. This means that in any

instant, for a system with M nuclei and N electrons, one can assume the positions

of the nuclei, RM = (R1,R2, . . . ,RM), to be fixed. This allows one to separate out

from the total wave function Ψ an electronic wave function Ψe = Ψe(r
N)

∣∣
RMfixed

,

depending only on the electron positions, rN = (r1, r2, . . . , rN). This is called

the Born-Oppenheimer approximation and enables the use of a separate electronic

Schrödinger equation, defined as

ĤeΨe = EeΨe. (2.9)

The electronic energy Ee is determined by the electronic Hamiltonian

Ĥe = T̂e + V̂ee + V̂ne. (2.10)

It is of interest to take a closer look at the last term. It can be defined as

V̂ne =
N∑
i=0

v(ri), (2.11)

where v(r) is the total potential of the M nuclei that the electrons see at position

r, and is referred to as the external potential.
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2.4.2 The Hohenberg-Kohn Theorems

Hohenberg-Kohn [29] introduced two theorems which greatly simplify analysis of

the above defined problem of N interacting electrons in the Born-Oppenheimer ap-

proximation.

1. The first theorem states that, up to a trivial added constant, there is a one-

to-one relation between the external potential, v(r), and the ground state

electron density,

ρ(r1) = N

∫
|Ψe(r1, r2, . . . , rN)|2 dr2 . . . drN , (2.12)

which gives the statistical expectation value of the number of electrons in an

infinitesimal volume d3r to be ρ(r1) d3r. Thus, there is one unique electron

density to every possible external potential, which again uniquely determines

Ĥe. This means that it is possible to write the electronic energy of Equation

2.9 as a functional of ρ,

Ee[ρ] = Vne[ρ] + F [ρ], (2.13)

where F [ρ] = Te[ρ] + Vee[ρ] contains the kinetic and potential energies from

the electrons only.

2. The second theorem states that the electron density ρ(r) which minimizes

the energy functional of 2.13 corresponds to the ground state electronic wave

function Ψe. It is therefore equal to the ground state electron density ρ0.

Hence, it is possible to search for the ground state of the electronic wave

function by applying the variational method to equation 2.13.

Together, the Hohenberg-Kohn theorems reduce the dimensionality of the electronic

structure problem. Minimizing the energy of Ψe has gone from being a minimization

problem in 3N dimensions to a problem in 3 dimensions. Note that any theory which

uses a density as the basic variable is called a density functional theory (DFT).

However, the term is often used synonymously with quantum mechanical electronic

structure calculations because the latter often employs the framework of DFT.
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2.4.3 The Kohn-Sham Equations

The Hohenberg-Kohn theorems now dictate that E0 is the minimum value of the

electronic energy functional 2.13 with respect to ρ. To find this minimal value, one

applies the variational principle by finding the functional derivative of Equation

2.13 while applying the constraint∫
ρ(r) dr = N, (2.14)

which is equivalent to imposing normalization upon the total electronic wave func-

tion. The resulting equation can be rearranged to describe a system of noninter-

acting electrons in a redefined, corresponding, external potential which includes the

electron-electron interactions. As it happens, the wave function of a system of non-

interacting electrons is well known to take the form of a so-called Slater determinant

Ψs =
1√
N !

det


ψ1(r1) ψ2(r1) · · · ψN(r1)

ψ1(r2) ψ2(r2) · · · ψN(r2)
...

... . . . ...

ψ1(rN) ψ2(rN) · · · ψN(rN)

 (2.15)

exactly. ψi are the N lowest eigenstates of the single-electron Schrödinger equation[
−1

2
∇2 + vs

]
ψi = ϵiψi, (2.16)

where i = 1 . . . N and ∇ is the nabla operator in three dimensions. vs is the

effective potential, which contains the contributions from the external potential and

the electron-electron interactions. It can be seen that the determinant overhead is

antisymmetric with respect to the interchange of two electrons, and so automatically

fulfills the Pauli exclusion principle. The total electronic energy is

E[ρ] =
N∑
i=1

ϵi, (2.17)

which is the sum of the single electron energies. Equations 2.16 and the expression

for vs are together known as the Kohn-Sham equations and solve exactly the problem

of N interacting electrons. The detailed expression for vs is not so relevant for the

present discussion but suffice it to say that one of its terms is called the exchange-

correlation potential, Vxc[ρ], and, in contrast to the other terms, has been impossible

to calculate a precise analytical expression for. Hence, the exact dependence of the
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exchange-correlation potential Vxc on ρ is unknown, and must be approximated

to be able to solve the KS equations. Two of the famous approximations to the

exchange-correlation potential are the local density approximation (LDA) and the

generalized gradient approach (GGA). The former is known for its simplicity which

renders surprisingly accurate results, despite a simplistic treatment of the problem.

The latter method is the result of a more accurate treatment of the exchange-

correlation potential and provides very accurate energies for most applications.

2.4.4 The Self-Consistent Approach

Notice that Equations 2.16 yield the orbitals ψi, from which ρ is given. However

vs depends on ρ, so to solve the equation one needs ρ. The equation can be solved

by beginning with an initial guess for the electron density, ρtrial. Solving the equa-

tions for ρ, one gets a new trial function. The procedure is applied iteratively until

consecutive solutions reach self-consistency. This could be e.g. when the differ-

ence between consecutive values of the total electronic energy in 2.17 reaches some

threshold value.

2.5 Numerical Aspects of DFT

In the present work all electronic structure calculations have been made using the

commercial Vienna Ab initio Simulation Package (VASP). Borrowing from the home

page of VASP [30], “The Vienna Ab initio Simulation Package (VASP) is a computer

program for atomic scale materials modelling, e.g. electronic structure calculations

and quantum-mechanical molecular dynamics, from first principles.” First princi-

ples or ab initio calculations are entirely void of empirical laws and instead based

on physical theoretical background only. The following section will cover important

aspects of electronic structure calculations which have been instrumental to their

success as a commonly applied tool for analysis.

The following sections attempt to outline a few important aspects of the single-

electron orbitals in real simulations. Prioritizing brevity over accuracy, the discus-

sion has been simplified significantly.
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2.5.1 Representation of the Single-Electron Orbitals

VASP enforces periodic boundary conditions on the system in question and for this

reason most properties are represented by plane-wave expansions. The periodic

boundary conditions are defined by three supercell lattice vectors asc, bsc and csc.

The supercell is then the parallelepiped spanned by those vectors. Within this

paradigm the effective potential vs is periodic with respect to any translation of

the form T = naasc + nbbsc + nccsc, where na, nb and nc are integers. Then the

Bloch theorem states that the solutions of the wave function should be plane waves

modulated by a periodic function,

ψnk(r) = unk(r)e
ik·r, (2.18)

where unk(r) has same periodicity in T . For computational reasons it is desireable

to represent unk and other periodic quantities in plane-waves by a Fourier expansion:

unk(r) =
∑
G

CGnke
iG·r, (2.19)

where G are the reciprocal lattice vectors of the supercell lattice. Courtesy of the

Fourier expansion, the total energy and the Hamiltonian are easy to implement.

2.5.2 The Frozen Core and PAW Method

Because of the mutual orthogonality required of wave functions, they exhibit large

oscillations near the core and representing them requires many terms in the plane-

wave expansion. Bonding is determined largely by the valence electrons, whereas

the core electron states are strongly localized and vary only insignificantly during

calculations. For this reason one assumes those to be unchanging during most

simulations and calculate them in a separate run. Due to the frozen nature of the

core electron states it is called the frozen core approximation.

Another important simplifying procedure is related to the valence electrons.

Because of the orthonormality requirements with the core electron states, they

experience rapid oscillations near the atomic core. This is expensive in the plane-

wave representation. The projector augmented-wave (PAW) method alleviates this

issue by representing the wave functions by pseudo wave functions which are more

well behaved close to the core. The method requires a reevaluation of the single-

electron wave functions, energies and operators but these considerations are too
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lengthy for the current discussion.

2.5.3 Cut-off Energy

Usually the number of harmonic terms needed to express unk(r) is infinite. For

any continuous function the coefficients CGnk must approach zero for high enough

values of G, which means it is sufficient to sum over a finite number of terms. A

value of the kinetic energy is used to define the highest included mode of the plane

wave expansion, and is called the cut-off energy,

Ecutoff >
1

2
|G+ k|2, (2.20)

and all contributions from harmonics of higher energy than Ecutoff are left out.

Ecutoff must be chosen carefully. It can significantly alter the accuracy of the simula-

tion if set too low. It should be as low as feasible while introducing only insignificant

errors. If one runs the same simulation consecutively while increasing the cut-off

energy, one will observe that the total energy changes significantly from one to the

next in some interval and then becomes almost constant between simulations. The

interval of most change is where the most energetic energy contributions are lo-

cated. When exceeding some value, the harmonic coefficients are close to zero. In

this area, the electronic energy is said to be converged with respect to the cut-off

energy. The process of determining sufficient values for various parameters in this

manner is called convergence testing.

2.5.4 k-point Sampling

Various important quantities are evaluated by numerical integration of some prop-

erty over the first Brillouin zone of the reciprocal space of the lattice supercells. In

general one may write

A =

∫
BZ

a(k) dk, (2.21)

where one is interested in the value of A and a(k) must be integrated. k is the

lattice vector in supercell reciprocal space. To approximate the integral one uses an

equally spaced mesh of points in reciprocal space. Due to symmetry certain points

have the same value, and the integral can be approximated by a weighted sum over

the reduced set of points, the k-points ki,

A ≈ Ã =
∑
i

wki
a(ki)∆ki, (2.22)
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where wki
denotes a set of weights and dk → ∆k. Often the grid of k-points ki

is chosen so that the k-point density is the same in the three reciprocal directions.

Further, the grid may include the origin of the Brillouin zone, called the gamma

point, or not. The former option is usually safer because it preserves the symmetry

used for reducing the necessary number of k-points [31].

As with Ecutoff , the distribution of k-points in reciprocal space is very important

for the accuracy of results. One should perform convergence tests of the total energy

with respect to the k-point density to determine a sufficient value.

2.5.5 Smearing of the Fermi-Surface

In metals, integrals involving the occupancy of states present a numerical problem

due to very slow convergence with respect to the number of k-points. This is solved

by introducing partial occupancies of electronic states. For example, one needs to

calculate the energy per supercell, given by∑
n

1

ΩBZ

∫
BZ

ϵnkfn(k) dk, (2.23)

where ΩBZ is the volume of the first Brillouin zone, and ϵnk is the energy of an

electronic state. fn(k) is the occupancy level of the electronic states. In metals

at 0K, fn(k) is described by the step function Θ(ϵnk − µ) where µ is the Fermi

level. Thus, the occupancy level drops from one to zero across the Fermi surface in

k space. Following the discussion on sampling of k-points, Equation 2.23 takes the

following form, ∑
n

∑
k

wnkϵnkΘ(ϵnk − µ)∆k. (2.24)

A large number of k-points is required to accurately resolve this sum [32, 33].

In order to reduce the number of k-points, one replaces the step function with

a smoothing function f(ϵnk) to smear out the integrand in k-space. Chosen right,

the numerical integration of such a continuous function is much more effective while

introducing only small errors.

A problem with the introduction of the smearing factor is that the total en-

ergy functional discussed in Section 2.4.2 is no longer minimal for the ground state.

This is because the smearing in effect can be seen as introducing a temperature

T to the system, whereas the original problem is to find the ground state at 0K.

Independent publications by Wentzcovitch et al. [34] and Weinert and Davenport
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[35] presented a solution by showing that the free energy quantity

F [ρ] = E[ρ] +
∑
n

kBTS(fn) (2.25)

is minimized by the ground state electron density ρ0, even when E is not. This

enables finding the ground state electron density through minimization of F and

then the ground state energy energy E0 by extrapolation of the free energy F to

kBT → 0.

2.5.6 Electronic and Ionic Relaxation

As mentioned earlier, VASP solves the Kohn-Sham equations for a system subject

to periodic boundary conditions. As touched upon in Section 2.4.3, an algorithm

may define the stopping criterion as when the total energy differs by less than some

threshold value between iterations. This process is referred to as the electronic re-

laxation.

So far this chapter has focused on the problem of finding the minimum energy

configuration of a set of electrons given a distribution of nuclei. However, many ap-

plications are concerned with the minimum energy distribution of both the electrons

and the nuclei, that is ionic relaxation. The atoms are moved iteratively according

to mutual forces and the self consistency loop is stopped when forces are below a

certain limit Fmax. It is therefore necessary for VASP to know the forces on the

nuclei, i.e. the Hellmann-Feynman forces,

f = −∇mE, (2.26)

where E is the total system energy given a distribution of nuclei and electrons,

m ∈ 1 . . .M and ∇m is the gradient operator with respect to positional components

of nucleus m. However because of the introduction of partial occupancies, E is not

readily available during simulation. Instead one has the smeared energy expression

of Equation 2.23. This is where the free energy expression 2.25 comes in again.

Wentzcovitch et al. [34] and Weinert and Davenport [35] showed that the Hellmann-

Feynman forces of F are zero at the ground state. Thus, ionic relaxation can be

performed by iteratively performing electronic relaxation before moving the nuclei

according to the forces

f = −∇mF , (2.27)
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where F is given by Equation 2.25. VASP can use numerical methods such as the

conjugate gradient or the quasi-Newton methods to search the configuration space

of RM ionic positions for the ground state.
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Chapter 3

Modeling and Methodology

3.1 Motivation

The goal of the present study is to calculate the atomic displacement field around

β′′ to obtain related properties, such as misfits and strains, and compare with pre-

vious experimental and theoretical studies. Near the precipitate-matrix interface of

β′′, atoms are displaced significantly, which means that a quantum mechanical de-

scription is necessary to predict their mutual forces. Comparing with a fully linear

elastic treatment of the atomic interactions around a precipitate, a quantum me-

chanical treatment of the system picks up an additional contribution to the atomic

displacement field, either positive or negative. This work attempts to capture this

contribution by the use of the plane-wave DFT code VASP. An ionic relaxation

procedure is employed as described in section 2.5.6.

Before presenting the current model in detail, a look is taken at the motivation

for its use. Suppose one starts out with a full-size β′′ precipitate enclosed in an

infinite aluminium lattice. There are especially two problems in plane-wave DFT

which make it difficult to realistically simulate this situation. The first is that the

precipitate is not periodic, and must be contained within a periodic supercell as

discussed in Section 2.5.1. The second problem is that the computational effort

of DFT scales as N q where 2 < q < 3 and N is the number of electrons, which

means that the practical limit for calculation with currently available computing

resources is at a couple of hundreds to a few thousand atoms. In contrast, a full-

scale β′′ precipitate may contain more than ten thousand atoms, not even counting

the surrounding host lattice. The question is then how to capture the behavior of
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a precipitate with a very limited number of atoms.

The solution to these problems is to take advantage of the needle-like geometry

of β′′ and the small misfit along its habit directions. By assuming the precipitate

to be entirely coherent along the [0 1 0]β′′ direction, it is sufficient to model a sin-

gle unit cell thick cross-sectional slice of the precipitate. The super cell is made

finite in the cross-sectional plane by cutting away the infinite aluminium lattice

at some distance from the precipitate. Then, a surrounding vacuum is added as

padding to mitigate the crosstalk between periodic repetitions of the system in the

cross-sectional plane. Doing this, one goes from a full three-dimensional description

of the problem to a semi two-dimensional one and the required number of atoms

becomes manageable.

However, the vacuum-matrix interface presents a problem, because it is too close

to the precipitate to contain the displacement field. Also, vacuum interface effects

in the electronic structure may affect the simulation in unpredictable ways. Due to

this, the present work fixes atomic positions in a boundary region at some radius

from the precipitate. The displacement of these atoms are fixed to the solution

predicted by linear elasticity. The rest of the atoms are allowed to relax during

structural relaxation. The idea is to use a sufficiently wide annulus for the bound-

ary region so that atoms inside and close to the precipitate experience being inside

an infinite aluminium lattice.

3.2 Model Geometry

The model consists of four regions, contained in the simulation supercell. Figure

3.1 shows a schematic illustration of an na×nc eyes precipitate model for reference.

The outermost region is a vacuum which encloses what shall be referred to as the

atomic slab. The regions are addressed here in order of decreasing proximity to the

precipitate.

An na × nc eyed precipitate is fit into a corresponding void in the aluminium

lattice. The number of eyes used in each direction is sufficiently small that the

entire precipitate fits into the aluminium lattice without misfit dislocations. The

precipitate radius is the distance from its center of mass to its farthermost corner

atom, as shown in Figure 3.1 and is given by

Rp = a
√

13n2
a/4− 3nanc + 5n2

c , (3.1)
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Figure 3.1: A two-dimensional schematic visualization of the model. The model is a

one unit cell thick atomic cylinder. The square supercell has side lengths L. (1): Outline

of the precipitate. (2): The inner region of relaxable Al atoms. (3): The static Al

atoms displaced by LET. (4): Vacuum region to isolate periodic repetitions of the system.

Important simulation parameters are indicated.

when all misfits are zero. Here, a is the zero Kelvin lattice constant of aluminium,

determined through DFT, which will be discussed in Section 3.4.3.

The relaxable aluminium atoms enclose the precipitate and form a circularly

shaped region about the precipitate. The distance from the outermost corner atom

of the precipitate to the static region is

∆ = R1 −Rp, (3.2)

where R1 is the radius of the circle bounding the relaxable region. ∆ must be

determined such that the displacement field is allowed to develop sufficiently before

reaching the static region. If ∆ is set too small, atomic displacement in the relaxable

region may be constrained too much by the static atoms in the annulus region.

However, the total number of atoms and hence computational time grows with ∆,
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so there is a limit on how large ∆ can be. Thus, a convergence test is in order to

determine the appropriate level of accuracy against computational cost.

The static region is shaped as an annulus defined by R1 < r < R2 where R2

is the outer radius of the atomic slab and r is the distance from the center of the

slab. The width,

w = R2 −R1 , (3.3)

of the annulus determines how far the outermost relaxable atoms should be away

from the vacuum-matrix interface. The vacuum and hence absence of atoms beyond

the annulus means the particles in the relaxable region may not experience an

infinite lattice environment. The atoms within the annulus are initially spaced like

in a perfect aluminium lattice. They are then displaced by a compressive strain away

from the precipitate from linear elastic calculations. The details of this coupling

are presented below.

A vacuum region surrounds the circular slab in the x, y plane and is formed by

cutting away all the aluminium atoms further than R2 from the precipitate center

of mass. The shortest mutual distance between relaxable atoms is the radius of

the relaxable region subtracted from the side length of the supercell and must be

chosen so that periodic repetitions of the system do not interact significantly.

3.3 Coupling with Linear Elasticity

The LET displacement field for the precipitate comes from a simplified version

of the modeling approach applied in the paper by Ehlers et al. [6]. The key

difference is that they used DFT simulations for the precipitate interface, whereas

the simulations used in this work employ LET exclusively.

The finite elements method (FEM) with orthotropic linear elasticity is used for

the calculations. The model used is illustrated schematically in Figure 3.2. The

precipitate in the DFT model is na × nc eyes, bounded by na/2 × nc unit cells

of β′′, with the shape of a parallelogram. Hence, the precipitate is modelled as

a corresponding wp × hp parallelogram region with an angle of 105.3◦, as seen in

b). The host matrix is 11 times larger than the precipitate, as illustrated in a).

The matrix and precipitate are represented by an approximately 200× 200 grid of

discrete nodes, where the grid lines were parallel to the precipitate directions aβ′′

and cβ′′ . Elastic constants for the Al2Mg5Si4 composition found by DFT in the
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Figure 3.2: A figure illustrating the model used in linear elastic calculations for this

work. (a): The precipitate in orange has dimensions wp × hp. The aluminium phase in

grey is 11 times the dimensions of the precipitate along each grid direction. The nodes of

the simulation are located at the intersections between line elements in the skewed grid.

The number of nodes in the figure has been played down relative to the actual model.

(b): A zoomed in view of the precipitate in the model. Note that there are nodes inside

the precipitate even though they have been omitted from the figure.

paper [26] are used. The calculations were performed strictly in two dimensions

under the same assumption that mc = 0.

The elastic field about the β′′ precipitate is determined by following Eshelby’s

[36] approach. Conceptually one may view the process as follows: the precipitate is

cut out of the host matrix and relaxed to the bulk state. An appropriate compressive

displacement field is applied to the precipitate surface so that it fits the hole in host

matrix. The surface nodes of the void are merged with their node counterparts on

the precipitate. Subsequently, the entire system is relaxed through finite element

calculations. The displacement field is discretely defined on the simulation nodes.

The linear elastic displacement field obtained had to be rotated about the z axis

before applying it to the present atomic model. As Figure 3.2 shows the simulation

by FEM was carried out with the precipitate aβ′′ vector along the x axis. The x, y

components of each position and displacement were transformed by the following
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transformation matrix

T =
1

aβ′′


2 −3 0

3 2 0

0 0 aβ′′

. (3.4)

The linear elastic displacement field obtained had to be interpolated before

applying it to the atoms in the annulus of the present model. This is due to the

displacement field being defined at nodes which do not directly correlate to atomic

positions. A piecewise cubic polynomial interpolation of the displacement field

was performed by a Clogh-Tocher scheme [37] using the griddata function [38] in

the numerical package SciPy for Python. From this the displacement field at all

positions in the atomic slab could be obtained, importantly for the atoms in the

static region.

The interpolated displacement field was applied to all atoms in the slab by vector

addition of the displacement field ui at atom i and the atomic coordinate ri:

r′
i = ri + ui, (3.5)

where the index i runs over all the atoms and r′
i is the coordinate in the strained

state. The displacement field was applied to all atoms rather than only those in

the annulus because this was assumed to bring nearly all atoms closer to their

equilibrium positions. This may reduce the number of necessary steps in the ionic

relaxation, implying fewer electronic relaxation steps, effectively reducing the com-

putational time needed.

3.4 Considerations

The present method of employing a coupling with LET to reduce the necessary

number of atoms in the cross-sectional plane differs from previous atomistic mod-

eling approaches to precipitates in that it focuses particularly on capturing a more

accurate description of the atomic displacement field. Previous DFT studies of β′′

have focused on the energetics [39] and morphology [21] of its formation, determi-

nation of the formula unit [5], configuration of the host-matrix interface [27] and

energy barriers [40]. Most of those calculations are performed on bulk β′′, single

solute elements in an aluminium matrix or narrow interface supercells and do not

take into account the precipitate cross-section surrounded by the host matrix. Such
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studies obviously will not be able to capture the precise evolution of the strain field

radiating from a precipitate.

So far only a few previous works have considered a complete precipitate cross-

section in the host matrix. Ehlers et al. [26, 6] developed a multi-scale atomistic

modeling scheme which combined LET calculations for bulk behavior with DFT

calculations on the matrix-precipitate interface and expanded it from two dimen-

sions to three in [41]. If the method in the present work is expanded to calculate

energies, the results may be used to compare results obtained by Ehlers. Ninive et

al. [8] modeled by DFT a precipitate cross-section in periodic aluminium supercells

consisting of 12×12×1 primitive aluminium cells to calculate formation enthalpies

for different compositions of β′′ and quantified the strain field surrounding the pre-

cipitates. The strain field obtained by Ninive [8] is effectively the strain field from

an infinite number of densely spaced precipitates along the {0 0 1}Al plane. It was

reported to fall exponentially with the distance from the precipitate, which may be

caused by the clearly unrealistic boundary conditions in this case because atomic

displacement within the slab must be expected to be damped by the mutual inter-

actions between the periodically repeating precipitates.

The use of atomic slab models with linear elastic boundary conditions has been

more common in modeling of dislocation cores [42, 43, 10], but to the best of the

current author’s knowledge these methods have not been applied to precipitate

modeling approaches thus far. One reason for this could be that modeling of entire

precipitates of realistic size in DFT requires a greater number of atoms than a single

dislocation and has therefore been more unachievable until the advent of increased

computing power in recent years.

The hypothesis of this work is that the development of the displacement field

close to the precipitate can be significantly improved compared to the previous

atomistic models by letting the inner, relaxable region ‘see’ the displacement of

atoms outside it. There are a few assumptions at play, discussed in the following

sections.

3.4.1 Inner Region

First, one assumes that the true field surrounding the precipitate approaches rapidly

the linear elastic solution in the relaxable region and that clamping their difference

to zero in the fixed annulus introduces negligible errors within the relaxable area.
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Setting ∆ too small will constrain the inner field. Since the true solution to the

interface field is unknown, it is impossible to know the evolution of the relative

difference between it and the linear elastic field. The absolute value of the fields

may even differ by a large relative factor far from the precipitate albeit both values

should be small. In that case it would be best to couple the two systems and

perform some sort of self-consistency cycle until the fields converge at the boundary.

However, that is beyond the scope of this work and the important thing is that the

LET field is an educated guess based on a higher level of approximation than DFT.

This means it is a decent initial starting point and should at least yield more reliable

estimates for the displacement and strain than previous models given that the errors

introduced from other modeling assumptions are sufficiently small.

3.4.2 Fixed Atoms

It is assumed that fixing the annulus atoms to the linear elastic positions is sufficient

to make the atoms in the inner region experience being in an infinite aluminium

lattice. This assumption requires that the mutual interactions between pairs of

atoms at a distance w in aluminium are negligible. It seems reasonable that such

interactions should decay rapidly with the number of included nearest neighbors,

as these are essentially quantum mechanical forces between neutral atoms. An

additional effect arising at the matrix-vacuum interface is an abrupt reorganization

of the electronic density which produces large forces at the outer boundary of the

static region. These forces decay rapidly moving into the static region and are

expected to be sufficiently small even for a narrow annulus. However, since the

above assumptions do not say anything quantitatively about the width necessary

to mitigate the above effects, a formal study of the width is needed.

In a preliminary investigation of the proposed model leading up to the present

study, Ofstad [44] concludes that relaxation results should be fairly converged for

w > 10Å. However, the present work will revisit that discussion with some new and

more nuanced observations. The previous work studies the necessary width w of the

annulus region by a convergence test of atomic displacement between subsequent

atomic relaxation runs with increasing w. The work studies the displacement field

surrounding a single β′′ formula unit. Because the 1×1 precipitate is symmetrically

equal in the [1 0 0]Al and [0 1 0]Al directions the surrounding field should be equal

with respect to rotations of π/2. However in the preliminary work, a linear elastic
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field made for larger precipitates, only symmetric with respect to rotations of π,

is erroneously applied, and causes the relaxed state to be physically unreasonable.

For this reason it is seen as necessary to revisit the discussion of w in the results

and discussion chapter.

3.4.3 Important Parameters

For the consistency of the simulations, the present work uses the lattice constant

a = aDFT for aluminium determined by density functional theory, rather than the ex-

perimental lattice parameter a0 of aluminium. This ensures that during simulation,

the interatomic forces between atoms in a perfect aluminium lattice will be bal-

anced at the lattice parameter a. The preliminary work by Ofstad [44] determined

the DFT lattice parameter by fitting of unit cell energies to the Birch-Murnhagan

equation of state. The value was found to be aDFT = 4.046Å, and is used through-

out this work.

As mentioned in the theory chapter, the user of DFT should perform conver-

gence tests on the total energy as a function of the cut-off energy in the plane-wave

expansion and the density of k-points. For the current work values are taken from

Ofstad [44] which determined appropriate values for these parameters. All param-

eters used are formally presented in Section 3.5.

3.5 Methodology

DFT Details

VASP was used for density functional theory calculations. The projector augmented-

wave method (PAW) [45, 46] was used in combination with the generalized gradient

approximation (GGA) by Perdew, Burke and Ernzerhof (PBE) for the core states

and the exchange-correlation potential. The partial smearing of the Fermi-level was

performed with a first order Methfessel-Paxton scheme [47].

Ionic relaxation was performed with the conjugate gradient algorithm, and the

self-consistency loop was stopped according to a maximum force criterion as de-

scribed in Section 2.5.6. The force criterion Fmax < 0.1 eVÅ−1 was used for one se-

ries of convergence tests. More accurate simulations used the quasi-Newton method

with a stricter requirement of Fmax < 0.01 eVÅ−1. The simulations used a gamma-
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point centered k-point mesh with 1× 1× 9 k-points along the cardinal directions in

the reciprocal space so that the maximum k-point spacing is 0.18Å−1. The energy

cut-off was set to 400Å.

LET Boundary Conditions

Simulations with linear elasticity were performed by the finite elements method on

the commercial package LS DYNA [48] †. The linear elasticity simulations were

performed assuming a homogeneous medium, and are therefore scale independent.

Hence, the LET displacement field is the same up to a linear scaling factor for models

with the same aspect ratio of precipitate eyes. For this reason, the same data sets

were used for the displacement field in simulations with precipitates of equal aspect

ratio. For each model created, displacement field data with the appropriate aspect

ratio was scaled to fit the current precipitate. As a concrete example, the linear

elastic data for an 8 × 8 precipitate was used in the 2 × 2, 3 × 3, 4 × 4 and 5 × 5

simulations by DFT.

3.5.1 Convergence Test of w

Four simulations were performed, the first with w = 7Å, the second to fourth

with increasing w from 8Å–12Å by steps of 2Å. The stopping criterion for ionic

relaxation was set to Fmax < 0.01 eVÅ−1.

3.5.2 Convergence Tests of ∆

Separate convergence tests were performed for precipitate sizes of 2 × 2 eyes and

3 × 3 eyes. The initial test was performed with a low force criterion of Fmax <

0.1 eVÅ−1. Simulations were performed with increasing w by 1Å steps from 2.57Å

to 11.57Å. The next convergence test was performed with Fmax < 0.01 eVÅ−1. w

was incremented by 2Å intervals from 6.57Å to 10.57Å for the 2 × 2 precipitate.

For the 3 × 3 precipitate, w was incremented by the same amount from 6.57Å to

12.57Å.

†Simulation results supplied by Stephane Dumoulin, SINTEF.
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3.5.3 Realistically Dimensioned Precipitate Models

Simulations were performed for a range of precipitate sizes reported experimentally

in [9]. The sizes were 4× 4, 4× 5, 5× 3, 5× 4 and 5× 5.

For each model an appropriate linear elastic displacement field was calculated

and applied as explained earlier. Each precipitate model used ∆ = 6.57Å and the

width of the static region was set to w = 7Å, with the exception of 5× 3, for which

it was w = 8Å. The force requirement was set to Fmax < 0.01 eVÅ−1.
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Chapter 4

Results and Discussion

First, a note on terminology. The results are obtained on a per-simulation slab basis

as relaxed atomic positions. When speaking about subsequent steps in convergence

tests of either w or ∆, it should be taken to mean those simulations sorted by

order of increasing w or ∆. Atoms which are associated with the same lattice

point in the aluminium lattice relative to the precipitate are considered to be the

same atom, just in a different simulation. When talking about the displacement

between subsequent simulations, what is meant is the vector length between the

relaxed positions of the same atom in separate simulations. When talking about

the displacement field, what is meant is the atomic displacement in the relaxed

state, relative to the perfect aluminium lattice.

4.1 Convergence Test of w

Figure 4.1 a) shows the atomic displacement in the inner region between subse-

quent relaxed configurations for increasing w. It is clear that the maximum atomic

movement between subsequent relaxations is 0.033Å, less than a percent of the alu-

minium lattice parameter. On average the atoms move by approximately 0.011Å

from one relaxation to the next, which is about 0.3% of the aluminium lattice

constant, a. The average displacement changes insignificantly with respect to w.

The maximum displacement between subsequent relaxations displays a weakly de-

creasing trend. However, inspection showed that the maximally displaced atoms

corresponded to regions near the precipitate. Due to the distance from the static

region, the interior part near the precipitate is expected to be least sensitive to
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Figure 4.1: Mean and max values of the norm of the vector difference of atomic positions

in subsequent relaxed configurations for the w convergence test with Fmax < 0.01 eVÅ−1.

This means each successive data point in w uses information from the relaxed slab from

the previous value of w. a): In red triangles, the maximal displacement over the inner

region. In blue circles, the mean displacement. b): The mean displacement taken over

the rim.

changes in w. These atoms are not likely to experience the effects of not being in

an infinite aluminium lattice as strongly as those on the rim. Hence, the decreasing

trend of the maximum displacement is likely not a sign of convergence.

The observed atomic displacement between simulations may be explained by the

force criterion Fmax. To make the discussion simple, imagine a single atom being

displaced from its least-energy position while all other atoms are kept static. Sur-

rounding its energetic minimum position is a small region within which the forces

on the particle will be less than Fmax. Then as soon as the particle falls within that

region, the relaxation procedure is stopped. Thus the atom may end up anywhere

within that region depending on the exact behavior of the minimization algorithm

used. Further, if the starting point is changed slightly, the atom will likely relax

to another position within the region. For the full system of relaxable atoms, the

situation is even more complicated due to the fact that all atoms are allowed to

relax, but the basic behavior is the same. Atoms will come to rest somewhere in

the vicinity of their least-energy positions, and the starting point will affect the

final relaxed result. In this way, the distribution of atoms in the vicinity of their

equilibrium position is similar to a random variable in that it is impossible for the

user to predict where the atoms will relax to. In the convergence test on w, the
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starting point is different due to the different number of atoms in each subsequent

simulation. The perfectly relaxed positions were estimated by taking the average of

the relaxed atomic positions. Then the positional standard deviation in the position

of each atom in the x direction is given by

σ =

√∑N
i=1(xi − x̄)

N − 1
, (4.1)

where x̄ is the average and N is the number of simulations in the w convergence

test. The standard deviation was calculated, and the mean of this quantity taken

over all the atoms was approximately 0.01Å in both the x and y directions. Thus,

it appears that atomic positions are determined within approximately 0.01Å in the

x and y directions for Fmax < 0.01 eVÅ−1 and that fluctuation with respect to w is

below that limit.

As mentioned previously, the atoms which are expected to be the most affected

by the choice of the annulus width are the ones on the outer rim of the inner

region, due to their proximity to the annulus. The displacement of these atoms

between subsequent relaxations has been plotted in Figure 4.1 b). The mean atomic

displacement is approximately 0.008Å, which is almost the same as for the average

over the entire inner region. There is no decreasing trend in this plot either. Thus,

in conclusion the fluctuation of the atomic positions between simulations is likely

caused by other factors such as the force criterion used, rather than the variations

in the annulus width. Hence it was deemed sufficient to use w = 7Å for further

simulations.

The misfit parameters ma and mc were calculated to assess how much they could

vary due to the observed variation of atomic positions. The average misfits were

ma = 4.12% and mc = 5.36%. The misfits varied by 3.5% (ma) and 6% (mc) relative

to the misfits themselves, so the variation was small. This shows that variations of

a few percent can be attributed to the positional inaccuracy at Fmax < 0.01 eVÅ−1.

4.2 Convergence Tests of ∆

Figure 4.2 shows the mean difference between the LET field and the relaxed po-

sitions on the rim of the relaxable region for the convergence test with Fmax <

0.1 eVÅ−1. The graphs show a marked decrease with the first few values of ∆ but

do not decrease significantly for ∆ > 6.57Å. Since the displacement field from
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Figure 4.2: The mean norm of the vector difference between the atomic positions before

and after relaxation taken over the rim region of each consecutive atomic slab in the first

∆ convergence test. In blue triangles, evaluated for the 2 × 2 precipitate models. In red

squares, evaluated for the 3× 3 models.

both DFT and LET should approach zero far away from the precipitate, so should

their difference. However, as noted, the graphs do not decrease significantly after

∆ > 6.57Å. To investigate convergence further, additional simulations were per-

formed with Fmax < 0.01 eVÅ−1 to look for convergence beyond ∆ = 6.57Å. Figure

4.3 is the same as Figure 4.2 for the strict force requirement. The mean difference

in atomic position before and after relaxation decreases somewhat for the 2 × 2

precipitate in this convergence test. However for the 3× 3 precipitate the trend is

opposite, the displacement field increases for the first three data points and drops

by 0.02Å for the last. The results indicate that increasing the force requirement

does not significantly change the difference between DFT and LET on the edge.

One can only assume the atoms to come to rest within some radius of the LET

positions. This is caused by the atoms never really relaxing beyond a positional

accuracy of approximately 0.01Å as observed for the w convergence test.

Due to the difference between DFT and LET decreasing to approximately 0.01Å

for ∆ = 6.57Å it was decided that this value would be sufficient for all further sim-

ulations in this work. To obtain a rough estimate of the error in this assumption,

the average displacement by increasing radial distance to the precipitate has been
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Figure 4.3: The mean norm of the vector difference between the atomic positions before

and after relaxation taken over the rim region of each consecutive atomic slab in the second

∆ convergence test. In blue triangles, evaluated for the 2 × 2 precipitate models. In red

squares, evaluated for the 3× 3 models.

Figure 4.4: The magnitude of the DFT displacement field averaged over all atoms at

a radius ∆ from the center of the precipitate plotted for increasing ∆. In red triangles,

the displacement field for the largest slabs. In blue circles, the displacement field for the

smallest slabs. a): Plot for the 2× 2 precipitate. b): For the 3× 3 precipitate.
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plotted in Figure 4.4 a) (2× 2) and b) (3× 3) using the data obtained with a strict

force requirement. Notice that the curves represent the linear elastic displacement

field to the right of their respective ∆. Hence the blue and red curves, indicated by

circles and triangles respectively, will be equal to the right of the red vertical lines.

In the case of the 3 × 3 precipitate the blue curve does not go that far because

∆ = 12.5Å lies in its vacuum region. One can see that the development of the

displacement field is qualitatively similar for different ∆, differences being in the

order of 0.01Å. This was found to be true for the rest of the graph as well. The

difference in displacement field strength between the largest and smallest slabs at

∆ = 6.57Å was found to be 0.007Å and 0.013Å for the 2×2 and 3×3 precipitates,

respectively. Thus, clamping the displacement field to the linear elastic value at

∆ = 6.57 seems to systematically underestimate the displacement field strength

relative to the largest slab by roughly these values, and notably more for the 3× 3

precipitate.

The misfits ma and mc were calculated for the different inner region sizes to

investigate if there was an observable relation between misfits and differences in

displacement field strength. Misfits in the aβ′′ and cβ′′ directions vary by 2% and

1.4% (3× 3) and 0.25% (ma) and 3.17% (2× 2), respectively. No significant trend

could be observed. Further, the observed variations are within the variations of 3%

and 6% for the w convergence test, meaning that they could be entirely caused by

the inherent fluctuation of atomic positions. For this reason, the misfits are likely

not significantly affected by the change in the magnitude of the displacement field

associated with the clamping at 6.57Å, further justifying the choice of parameter.

4.3 Importance of Fmax

It is important to use a requirement on the forces of at least Fmax < 0.01 eVÅ−1

for all simulations of large atomic slabs such as those in the present work.

Figure 4.5 is the same as 4.1 b) except with a less strict force criterion of

Fmax < 0.1 eVÅ−1. It can be seen that the atomic displacement is lower in both the

graphs relative to 4.1. This actually indicates that atomic positions change more

between subsequent simulations for a strict force requirement than for a weak force

requirement. This seemed contradictory at first, because it was expected a stricter

force requirement would reduce the amount of atomic displacement. To see exactly
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Figure 4.5: Mean and max values of the norm of the vector difference of atomic posi-

tions in subsequent relaxed configurations for increasing w in the w convergence test with

Fmax < 0.1 eVÅ−1.

what the difference is between using a mild and a strict force requirement, it is

useful to look at the displacement of individual atoms. Figure 4.6 a) illustrates

the difference in the atomic displacement field between the case of the strict force

criterion and the weak criterion for w = 8Å. A significant portion of atoms move as

much as 0.04-0.06Å, 1% of a, due to the increase in Fmax. Figures 4.6 b) and c) are

the components of a) in the radial and angular directions with respect to the slab

center of mass. It is clear that most of the displacement occurs in the radial direction

and least in the angular direction. The radial component is mostly positive, so

the relative displacement is mainly outwards from the precipitate, indicating that

when Fmax is too large, the aluminium lattice does not properly accommodate the

displacement field generated by the precipitate. This may be caused by the way

the structural relaxation is performed. For a soft force requirement, the atoms are

closer to an acceptable configuration from the start, and do not require a lot of

movement before the algorithm finds a configuration that obeys the force criterion.

This way, the atoms are not displaced so far from their initial positions in the relaxed

state. Hence, different relaxed states are correspondingly more similar. Making the

force criterion stricter, the algorithm must move atoms more in the search for the

optimal configuration. While the relaxed structures are closer to the true ground

state, incidentally they also happen to be less similar than predicted by the soft

force requirement.

It can be observed from Figure 4.6 that the displacement is larger close to the
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Figure 4.6: The vector difference between atomic positions before and after relaxing

forces from Fmax < 0.1 eVÅ−1 to Fmax < 0.01 eVÅ−1. a): The magnitude. b): The

radial component with respect to the precipitate center, which is indicated by a black dot.

The displacements are mostly positive, that is, pointing away from the precipitate. c):

The angular component relative to the precipitate center.

precipitate. This suggests the precipitate also expands by a significant amount

when going from a slack to a strict force requirement. Indeed, the relative increase

in ma and mc was 4% and 10% for the strict force criterion, which is more than the

variations observed between subsequent simulations in the w convergence test. This

further attests to the fact that there is a systematic difference between simulations

with a high force criterion and a low force criterion. The behavior of increased

radial displacement, as in figure 4.6, was observed for all the relaxations performed

in the current work when comparing relaxed positions for different force criterions.

This fact makes it clear that the convergence of atomic positions with respect to the

force requirement Fmax should be tested. This was not done due to time constraints

close to the approaching deadline for submission of the present work. That being

said the force criterion Fmax < 0.01 eVÅ−1 is the same as used in Ninive et al.

[8], which is used for comparison. Finally, it is noted that because there was a

significant radial displacement of atomic positions between Fmax < 0.1 eVÅ−1 to

Fmax < 0.01 eVÅ−1, it is expected that making the force requirement even stricter

should lead to a mostly radial displacement which is stronger near the precipitate.
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If this assumption is correct, the calculated misfits in the current work should be

somewhat underestimated.

4.4 Misfits

Table 4.1: Misfit values ma and mc for β′′ precipitates of different cross-sectional sizes.

On the left are the values calculated in the present work. Misfits from other works have

been included for reference. For each reference value, the difference with the presently

calculated misfit is included in parentheses, except for the bulk misfits.

DFT (Present) ADF-STEM [9] DFT [41] ∗ DFT [5] †

Size ma mc ma mc ma mc ma mc

(%) (%) (%) (%) (%) (%) (%) (%)

Bulk 4.91 5.85 6.15 5.25

5× 5 3.94 4.76 3.36 (-0.58) 3.69 (-1.07)

5× 4 3.59 5.11 3.09 (-0.50) 4.61 (-0.50) DFT/LET [49] ‡

5× 3 3.09 5.71 2.62 (-0.47) 4.54 (-1.17) ma mc

4× 5 4.25 4.32 3.59 (-0.66) 3.36 (-0.96) (%) (%)

4× 4 3.98 4.71 3.66 (-0.32) 4.29 (-0.42) 2.45 (-1.53) 3.07 (-1.64)

3× 3 4.04 4.89

2× 2 4.11 5.41

Misfits were calculated by measuring the distance between the aluminium atoms

on the midpoints of the precipitate-matrix interface in each of the directions aβ′′

and cβ′′ . The calculated misfits can be found in Table 4.1. Computational and

experimental results from other works have been included for reference.

The present misfits are smaller than previously reported values in bulk for

Al2Mg5Si4, except for two of the geometries. This is expected, because β′′ is known

to produce a displacement field which is positive radially outwards from the precipi-

tate. Consequently, the matrix acts with a compressing force on the β′′ precipitate.

∗Obtained from TABLE III in that work.
†Obtained from Table 1 in that work.
‡Obtained from Table 1 in that work.
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Bulk relaxations do not take into account this pressure, and so the relaxed lattice

parameters will be less compressed in bulk than in the host matrix. There are two

exceptions to this trend. mc is larger than the bulk values for the 2× 2 and 5× 3

precipitates, mc = 5.41% and 5.71% respectively. The former is somewhat extraor-

dinary due to its small size. The present author has not been able to find direct

reference to such small precipitates in experimental studies, but Ninive [8] reported

the 2 × 2 precipitate unit cell to be larger than the one for 3 × 3, consistent with

the present work (see discussion on misfit areas below for further details).

The large mc for the 5×3 precipitate is explained by the Poisson effect. The pre-

cipitate responds to a larger cross-sectional aspect ratio in one direction by reducing

the misfit along that lattice direction and increasing the misfit along the other di-

rection. The Poisson effect arises because larger precipitate dimensions along one

lattice direction increases the compression exerted by the surrounding aluminium

lattice in that direction. This would lead to the analogue of a pressure increase

inside the precipitate, but the precipitate expands in the other direction to cancel

out the pressure differential analogue. For a high aspect ratio precipitate such as

the 5 × 3 one, mc should be larger the due to the large aβ′′ dimension, and this

is precisely what is observed. The Poisson effect can be visualized by plotting the

misfit ratio RM = ma/mc as a function of the length ratio of the precipitate, RL,

given by Equation 2.2, as in Figure 4.7. The same has been done previously in [9],

and for reference, the corresponding graph from that paper has been reproduced by

using the misfit values reported therein as well as data from [49]. [9] also commented

that the data (in red) showed a close to inverse proportionality between RL and

RM. Indeed, for the data in that work, a least squares fit to a reciprocal function

RM(RL) = C/RL gives a value of the coefficient C ≈ 1.00. The same procedure

repeated with data in the current work gives C ≈ 0.93, as can be seen in Figure

4.7. The fitting to the reciprocal function works quite well for both of these works,

as the data points fall relatively close to the curve in both cases. In contrast, the

data from [49] yields C ≈ 0.78, and the fitted curve does not seem to describe the

development of the data points very well. Returning to the data obtained in the

present work, since RM(1/RL) = C2/RM(RL), the misfit ratio ma/mc of a 4 × 5

precipitate should be C2 ≈ 86% of mc/ma for a 5 × 4 precipitate. In contrast,

this relation was perfectly symmetrical between the aβ′′ and cβ′′ directions in the

experimental study [9].
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Figure 4.7: A plot of the misfit ratio RM = ma/mc by the length ratio RL (see Equation

2.2) of various precipitate dimensions. In blue circles, the data from the present work. In

red triangles, data from Wenner and Holmestad [9]. In green squares, data from Ehlers

et al. [49]. Each data set has been fitted by least squares to a reciprocal expression

RM = C/RL by varying the coefficient C. Values for the coefficient can be found in the

text.

The misfits in the present work are comparatively larger by between 10%–30%

relative to their experimental counterparts from [9]. Andersen et al. [20] measured

ma = 3.82% and mc = 5.25% for a relatively large precipitate, and this observa-

tion is slightly closer to the values obtained in the current work. Another way to

quantify the size of the precipitates is the relative misfit area. It is the fraction

by which the β′′ unit cell is expanded relative to when all misfits are zero. It is

given by Am = (1 +ma)(1 +mc)− 1, assuming the precipitate retains the quadri-

lateral shape with straight precipitate-matrix interfaces. The large precipitate in

[20] yielded Am = 9.27%, and the present work obtains values between 8.76% and

9.75% for the various precipitate dimensions, averaging at Am = 9.03%. This is

in good agreement with the result from [20]. Am decreases with precipitate size,

with Am being approximately 0.01 larger for the 2 × 2 precipitate than the 5 × 5

one. In contrast, Wenner and Holmestad [9] found Am in average to be 7.18% with

no clear dependence on precipitate dimensions. Hence, the present investigation

suggests the precipitate unit cell shrinks slightly with increasing precipitate dimen-
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sions, whereas the experimental study by Wenner and Holmestad showed no such

correlation. The difference between the β′′ unit cell dimensions in the present study

and the experimental study decreases with precipitate size.

Comparing the misfit area with some other studies, the value for the 4× 4 pre-

cipitate was reported to be Am = 7.53% in the pure DFT study by Ninive [8]. The

combined DFT/LET approach by Ehlers [49] reported 5.6%. The present investi-

gation obtained a value of 8.86%, whereas the experimental study of Wenner [9]

reported 8.11%. Ninive’s model does comes closest to the experimental study for

this precipitate size. Further, Ninive reports values of Am = 7.12% (2 × 2) and

Am = 5.75% (3 × 3). Notably, also these values are closer to the experimental

results of [9] than those obtained in the present work.

If one assumes the misfits measured in [9] to be the ground truth, the current

work is systematically overestimating the expansion of the precipitate. This could

be caused by the Al matrix exerting less constricting force on the β′′ particle than

would be the case in a real alloy. Temperature effects may play a role in this, but

this is entirely speculative. One could also hypothesize that the LET simulations

overestimate the displacement field in the annulus region, and less so for larger

precipitates. This would lead to a larger displacement field in the static region, ef-

fectively reducing the degree of constriction of the inner region and the precipitate

during structural relaxation. However, this seems contradictory, as it is observed

in the next section on strain that LET underestimated the strain field near the

precipitate-host matrix interface significantly. Furthermore, the discussion on the

force criterion, Fmax concluded that the misfits are likely somewhat underestimated,

in contrast to the overestimation which is actually observed. Ultimately, the ob-

served discrepancy between experiment and theory could not be explained in the

present investigation.

4.5 Strain

Figure 4.8 illustrates the discrete strain components ϵxx and ϵyy at each atomic

position in the lattice for the 3×3 precipitate. The plots are qualitatively represen-

tative of the other precipitate sizes as well. Paying attention to the silicon atoms

(silver grey) in a), one sees that the most negatively strained Al rows correspond

to the Si atoms on the [2 3 0] precipitate interfaces. Vice versa, the Si atoms on the
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Figure 4.8: The discrete strain field, as explained in Section 2.4 for a 3× 3 precipitate.

The spheres indicate each atom, and the color indicates the strain value at each atom.

The aluminium atoms of the precipitate which lie on the precipitate-host matrix interface,

have been assigned a strain value and are colored according to the color bar as well. In

dark grey, Mg atoms and Al atoms which do not belong to the aluminium lattice. In

silver, Si atoms. The red, stippled line indicates the radius of the relaxable region, R1 .

a): A plot of ϵxx. b): A plot of ϵyy.

[3 1 0] of β′′ coincide with the most positively strained atomic columns in the Al ma-

trix. In particular, the largest magnitude of ϵxx occurs near the corners, right/left

of symmetrically opposite Si atoms, whose x coordinates are the largest/smallest

of any Si atom in the precipitate. ϵxx is mainly negative at the [2 3 0]Al interfaces

and positive at the [3 1 0]Al interfaces. ϵxx is notably more negative outward in the

[1 0 0]Al direction out from the interface Si atoms on the [2 3 0]Al interfaces than in

the surrounding lattice. This effect is not as strong on the other two interfaces,

where the expansion of the lattice is more diffuse except for exactly at the interface.

The same can be observed for ϵyy, atomic columns out from the Si atoms at the

[3 1 0]Al interfaces being more compressed than the surrounding lattice.

Further insight can be obtained by looking at Figure 4.9 a), which is an interpo-
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lated plot of the strain field ϵxx from Figure 4.8 a). It can be seen that the strain is

negative inside two regions beginning at the two respective [2 3 0]Al interfaces, and

bounded by the 0% contour curves which almost connect to the four corners of the

figure with the corners of the precipitate. These regions will simply be referred to

as the right and left sides of the precipitate, corresponding to positive and negative

x respectively. Correspondingly, ϵxx > 0 above and below the precipitate. The

interpolation of ϵyy has not been plotted, but in its case the behavior is similar,

only this time with an opposite sign of ϵxx in the different regions surrounding the

precipitate.

The above observations on the strain in the [1 0 0] and [0 1 0] directions in the

aluminium lattice can be explained by the precipitate being expanded relative to

the perfect aluminium lattice in the x and y directions respectively. The expansion

of the precipitate in the x direction leads to compression of atomic rows to its right

and left. Due to shear forces, atomic rows above and below the compressed atomic

rows are also compressed slightly. This will lead to negative ϵxx on the left and

right side of atomic rows that are situated off the precipitate in the y direction as

well. This means these rows must expand in the middle to distribute compression

and expansion evenly. Furthermore, the precipitate expansion in the x direction

above and below the precipitate pulls atomic columns apart, leading to a positive

strain component. The effect is naturally stronger near the precipitate interface, as

atoms will seek to reduce deformation further away. The strain differences cancel

out along the 0% isolines, which incidentally fall relatively close to the ⟨1 1 0⟩ di-

rections outwards from the precipitate. A similar explanation applies to the strain

component ϵyy, in which case the expansion in the y direction leads to a negative

value above and below the precipitate and positive to the right and left.

Figure 4.9 b) shows ϵxx given by pure LET. Together with a) one may compare

the differences between pure LET and the combined DFT/LET approach. The

contour curves are smoother for the LET data. This is expected, because the LET

simulations assumed a continuous medium. It can be seen that the LET results

underestimate the magnitude of the strain field at the precipitate interfaces. In

particular, the aluminium atoms next to interface silicon atoms experience signifi-

cant strain values of |ϵxx| ≈ 6%. The corresponding values by LET are |ϵxx| ≈ 3.5%,

showing that LET significantly underestimates these strains. Even so, the strain is

relatively similar for the two levels of approximation away from the interface.
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Figure 4.9: A cubic interpolation of the discrete strain component ϵxx for a 3 × 3

precipitate from Figure 4.8. a) shows the strain component given by combined LET

boundary conditions and relaxation with DFT. b) is the strain from pure LET. The

colors indicate the local strain. Contour curves are included with colors contrasting the

background. The precipitate has been indicated. The other atoms have been indicated by

small, grey dots. The stippled red line shows the extent of the region relaxed by DFT.

In comparison, Ninive et al. comment in [7] that the aluminium matrix was

strained by up to 5% close to the precipitate-matrix interface, smaller by ap-

proximately 1% than the number observed in the present work. [7] also reports

a near exponential decline in strain away from the precipitate-matrix interface.

The strain field components ϵxx and ϵyy were reported to be < 1% at at 10Å from

the precipitate-matrix interface. Figure 4.10 was made for comparison with those

results, and illustrates the strain field ϵxx at each atomic position away from the

precipitate-matrix interface in the x direction taken at the atomic row of maximum

strain magnitude. b) illustrates the line along which ϵxx was taken. As can be seen

from the figure, the magnitude of ϵxx decreases almost linearly for the first four

data points. Then at the annulus interface, the strain magnitude decreases more
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Figure 4.10: a): A plot of ϵxx by the distance d from the precipitate along the row

of maximal strain magnitude for four precipitate models. In red circles, 2 × 2, in green

triangles 3 × 3, in blue squares, 4 × 4 and in black reversed triangles, 5 × 5. The four

leftmost data points are taken between atoms relaxed by DFT, and the four rightmost

data points are taken between static atoms in the annulus. b): A plot illustrating which

atoms have been measured in the 2 × 2 precipitate model. In grey, relaxable aluminium

atoms, in brown, static atoms.

than between the previous data points before flatting out. If one were to draw a

continuous function between the data points, its derivative would change signifi-

cantly at the annulus interface. Further, in the 2 × 2 case the derivative seems to

decrease slightly in the first four data points, before decreasing to the next and then

increasing again. This erratic behavior seems to be caused by the LET boundary

conditions. Due to the large changes in the derivative, it is clear that the devel-

opment of ϵxx cannot be described very well by an exponential function. However,

excluding the annulus data points, a fit can be made reasonably well. The fit for

the 2× 2 precipitate was ϵxx = c0 exp(c1x), with c0 = 24.2 and c1 = −0.15. These

values fall quite close to the numbers from [7], c0 = 25.2 and c1 = −0.2. Evidently,

the present combined DFT/LET approach and the pure DFT approach in [7] are

comparatively similar in predictions of strain in relaxable region. The coefficients

obtained for the present strain curves were slightly lower than in [7], meaning that

the exponential fit decreases slower with respect to the distance from the precip-

itate. Last on the topic of comparison, the reader is referred to Figure 4.4, p.57
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in Ninive et al. [11] for a visual comparison between the strain plots of the 2 × 2,

3 × 3 and 4 × 4 precipitate contour plots of ϵxx. The corresponding plots in the

present work are found in Figure 4.9 a) and Figure 4.11 a) and b). The plots are

comparatively quite similar, and the strain values are almost indistinguishable by

visual inspection. However, near the precipitate-matrix interface, there are some

differences in strain magnitudes they tend to be stronger in the present work. This

is consistent with the earlier discussion of misfits. It would seem natural that the

larger precipitates of he present work lead to a larger strain close to the precipi-

tate. Finally, Figures 4.11 c) and d) show the contour plots of the 4× 5 and 5× 3

precipitates respectively.
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Figure 4.11: Contour plots by cubic interpolation of the strain component ϵxx for a a)

2×2, b) 4×4, c) 4×5, and d) 5×3 precipitate. The isolines indicate curves along which

ϵxx is constant. The stippled, red line indicates the radius of the relaxable region. The

grey dots indicate perfect aluminium lattice positions. The precipitate has been indicated.
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Chapter 5

Concluding Remarks

The present work has presented a cluster-based modeling scheme for a semi-coherent

precipitate in a surrounding host lattice based on electronic structure calculations

by plane-wave DFT with static boundary conditions given by LET. A case-study

was performed with the metastable hardening precipitate β′′ from the industrially

important Al-Mg-Si alloys. Convergence tests showed that the simulations were

sufficiently converged with a static region width of w = 7Å and a precipitate-static

region distance of ∆ = 6.57Å. Atomic positions were converged to within ap-

proximately 0.01Å with a force criterion of Fmax = 0.01 eVÅ−1 during structural

relaxation.

Simulations with experimentally observed precipitate dimensions were performed.

The calculated misfits ma and mc varied between 3.09%–4.25% and 4.32%–5.71%

respectively and were between 10%–30% larger than corresponding experimental

values in [9]. The values were in general smaller than reported bulk values, as β′′

structure is constricted by the surrounding Al matrix. The misfit area Am decreased

with increasing precipitate size, and varied between 8.76%–9.75%, in relatively good

agreement with the average of Am = 7.12% from the experimental study [9]. The

results show that the relaxed β′′ structures are somewhat larger than previous ex-

perimental and theoretical counterparts, and are expected to be larger still if one

uses a stricter force requirement on the structural relaxation.

The precipitates reduce their cross-sectional size in one lattice directions in re-

sponse to increased size in the other direction. This has been attributed to the

Poisson effect, and is in agreement with observation from previous experimental

and theoretic studies of β′′. The effect is visualized by fitting the misfit ratio to a
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reciprocal expression Rm = C/RL. The fitting seems to describe the data well, and

the optimal coefficient was C = 0.93. In comparison, the experimental study [9]

obtained C = 1.00.

The elastic strain in the aluminium matrix has been calculated. The strain along

the [1 0 0] direction out from the surface Si atoms on the [2 3 0] interface showed a

sharp change in derivative at the interface to the annulus. The data gives simi-

lar coefficients with [7] when fitting only the relaxable region data points with an

exponential function. Finally, contour maps of strain around the different precipi-

tate dimensions were presented. A comparison with previous works show they are

very similar, except strain magnitude is generally higher along the precipitate-host

matrix interface in the current work.
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Appendix A

Input files for VASP

VASP requires four input files to run.

• INCAR determines the general behavior of the VASP code by a list of key-

words which define simulation parameters.

• KPOINTS defines the k-points used for sampling of the reciprocal space.

• POSCAR gives the atomic positions and the size of the simulation supercell.

• POTCAR defines the projector augmented-wave potentials used.

Examples of INCAR and KPOINTS files used for simulations in the present work

follow.

A.1 INCAR file

INCAR fo r i o n i c r e l axa t i on ,

! E l e c t r on i c r e l a x a t i o n

ALGO = Fast

NELMIN = 4 ! Minimum # of e l e c t r o n i c s t ep s

EDIFF = 1e−05

ENCUT = 400 ! Cut−o f f energy f o r plane wave expansion

PREC = Accurate ! Normal/Accurate

LREAL = Auto ! Pro j e c t i on in r e c i p r o c a l space ?
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ISMEAR = 1 ! 1 g i v e s Methfesse l−Paxton method . −5 does not

work f o r l a r g e super c e l l s because the number o f kpo int s i s l e s s

than 3

SIGMA = 0.2 ! Smearing width

ISPIN = 1 ! Spin p o l a r i z a t i o n ?

AMIN = 0.01 ! Charge mixing . Changed to 0 .01 on recommendation

from slurm f i l e because l a r g e s u p e r c e l l

! I on i c r e l a x a t i o n

EDIFFG = −0.01

NSW = 80 ! Max # of i o n i c s t ep s

MAXMIX = 80 ! Keep d i e l e c t r i c func t i on between i o n i c movements

IBRION = 1 ! Using Conjugate g rad i en t method . Algorithm f o r

i on s . 0 : MD 1 : QN/DIIS 2 : CG

ISIF = 2 ! Relaxat ion . 2 : i on s 3 : i on s+c e l l

! ADDGRID= .TRUE. ! More accurate f o r c e s with PAW

POTIM = 0.6

! Output opt ions

NWRITE = 1 ! Write e l e c t r o n i c convergence at f i r s t s tep only

! Memory handl ing

NPAR = 8 ! sq r t (CPUs)

LPLANE = .TRUE.

LSCALU = .FALSE

NSIM = 4

LWAVE = . True .

A.2 KPOINTS file

Max k−po int d i s t anc e : 0 .180000

0

Gamma

1 1 9

0 0 0
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