
CMR: Concurrent Memory Reclamation

Martin Hafskjold Thoresen

Master of Science in Computer Science

Supervisor: Magnus Lie Hetland, IDI

Department of Computer Science

Submission date: June 2018

Norwegian University of Science and Technology

Abstract
Concurrent memory reclamation is the problem of deciding whether a memory

allocation is still in use or not in a concurrent system. �is thesis presents a new
memory management system called CMR for the Rust programming language and
proves its correctness. We also show implementations of four concurrent data structures
using CMR. Experimental results show that CMR may be viable for certain workloads,
although intrinsic properties of the system may prevent it from general adoption.

Sammendrag
Minnehåndtering i samtidige systemer er problemet å avgjøre om en minneallokasjon

er i bruk i et system med samtidige utførelsestråder. Denne avhandlingen presenterer et
ny� minnehåndteringssystem kalt CMR for programmeringsspråket Rust, og bevisers
dets korrekthet. Vi viser også implementasjoner av �re samtidige datastruktures som
bruker CMR. Eksperimentelle resultater viser at CMR kan være forsvarlig for visse
arbeidsmendger, til tross for at grunnleggende egenskaper ved systemet kan hindre
generell adopsjon.

i

ii

Preface
�is thesis is submi�ed in partial ful�lment of the requirements for the degree Master
of Science at the Norwegian University of Science and Technology in the spring of 2018.
�e topic of this thesis has been worked out in part from a semester project in the fall
of 2017 and discussions with the members of the Distributed Algorithms and Systems
research group by Dan Alistarh at IST Austria.

Acknowledgements

�e writing of this thesis has been a long project, but it has also been a very rewarding
one. I would like to thank my advisor, Magnus Lie Hetland, for helping me through the
project and allowing me to work independently. I would also like to thank IST Austria,
and Dan Alistarh in particular, for o�ering me an internship, and later inviting me
back for two weeks, while I was planning and working on this thesis. Discussions with
the group had been very helpful. Lastly I would like to thank all the people who have
contributed to the free so�ware I have used for developing this project and typese�ing
this thesis.

Martin Hafskjold Thoresen
Trondheim, June 2018

iii

iv

Contents

Abstract i

Preface iii

1 Introduction 1
1.1 History . 2
1.2 �is �esis . 2
1.3 Outline . 3

2 Background 5
2.1 Operating Systems . 6

2.1.1 Virtual Memory . 6
2.1.2 �reads and Processes . 6
2.1.3 Signals . 7

2.2 Programming Languages . 7
2.2.1 Garbage Collectors . 8

2.3 Concurrency . 8
2.3.1 Common Pa�erns in Concurrent Programming 10
2.3.2 �e ABA-Problem . 10

2.4 Memory Reclamation . 11
2.4.1 Reference Counting . 11
2.4.2 Epoch Based Reclamation . 12
2.4.3 Hazard Pointers . 13
2.4.4 Forkscan . 14

2.5 Related Works . 14
2.5.1 Crossbeam . 14

3 Rust 15
3.1 Introduction . 16
3.2 �e Borrow Checker . 16
3.3 Lifetimes . 17
3.4 Unsafe Rust . 18
3.5 Concurrency . 19

3.5.1 Concurrency and Aliasing . 19
3.5.2 Common Pa�erns . 19

3.6 Nightly Rust . 20
3.6.1 Non-Lexical Lifetimes . 20
3.6.2 Trait Objects . 21
3.6.3 Specialization . 21
3.6.4 Allocators . 22

4 CMR 23
4.1 Problem De�nition . 24

4.1.1 Shared Memory . 25
4.2 Overview . 26
4.3 Primitives of CMR . 27

4.3.1 Operations . 28
4.3.2 Pointer Tagging . 28

4.4 Correctness . 29

5 Implementation 31
5.1 Data . 32
5.2 Primitives . 32

5.2.1 Free Functions . 35
5.2.2 Correctness . 36

5.3 Snapshot . 37
5.4 Reachability . 38

5.4.1 Trace . 38
5.4.2 Destructors . 40

5.5 Communication . 40
5.6 Complications . 41

5.6.1 Allocation Lock . 41
5.6.2 SignalVec . 41
5.6.3 �read Registration . 42

6 Usage of CMR 43
6.1 Lock-free Stack . 44

6.1.1 Push . 44
6.1.2 Pop . 44

6.2 Lock-free �eue . 45
6.3 Lock-free List . 46

6.3.1 �e Entry API . 47
6.4 Lock-free Hash Table . 48

vi

6.4.1 Split-Ordered List . 48
6.4.2 Contains . 50
6.4.3 Insert . 50
6.4.4 Remove . 51

7 Methodology 53
7.1 Testing . 54

7.1.1 Sanitizer . 54
7.2 Benchmarking . 55

7.2.1 Trench . 55

8 Results 57
8.1 Hardware . 58
8.2 Operations of CMR . 58

8.2.1 Primitives . 58
8.3 Data Structures . 59

8.3.1 Intel® i7–4770 . 60
8.3.2 Cavium �underX . 61
8.3.3 Intel® Xeon® E7–8870 and Intel® Xeon® Gold 6150 62

8.4 Allocator . 64

9 Conclusion 65
9.1 Is CMR Useful? . 66
9.2 Alternatives . 66
9.3 Future Work . 66

Bibliography 71

vii

viii

Chapter 1

Introduction

Call me Ishmael.

Herman Melville, Moby-Dick or, �e
Whale

In this chapter we introduce the problem space in which this thesis operates. We
look at the general problem that we want to solve, and why it is an interesting problem.
We also draw an outline of the structure of this thesis, and summarizes each chapter in
short.

1.1. HISTORY CHAPTER 1. INTRODUCTION

1.1 History
�e clock speed of computer processors have increased raipdly in the last 50 years;
Gordon Moore observed in 1965 that the number of components in an integrated circuit
roughly had doubled every 18 months, and speculated that this trend would continue
for the next 10 years. �e law, which now is knows as Moores Law, still holds true today.
Moores Law has also been used on the clock speed of CPUs; this trend, however, has
grounded to a halt. �e clock speed of desktop processors in the last 10 years have been
more or less stagnant. Despite the lack of increase in clock speed, there have been major
improvements in modern CPUs, including pipelining, branch prediction, out-of-order
execution, and, most important for this thesis, multiple processing cores.

Multi-core processors have been increasingly mainstream in the last 10 years; mod-
ern enthusiast desktop CPUs, like the recently announced AMD �readRipper 2, has
32 cores and 64 hardware threads. Even embedded systems, like smartphones, o�en
come in variants with 4 or 8 threads. While multi-core systems may o�er increase on
computation speed, they also introduce new problems; utilization of parallel systems
is not trivial. Many problems are inherently serial and serial solution to problems are
o�en much easier to develop than e�cient parallel systems. E�cient synchronization
between processes is also, perhaps surprisingly, a di�cult problem.

Many modern programming languages aim for developer productivity, and many
programming abstractions and runtime subsystems are introduced in the name of
convenience; one of these is a memory management system, o�en referred to as a
garbage collector. Despite the developer ergonomic improvements such systems claim
to improve, they o�en come at a cost: e�ciency. Garbage collectors have to support
a wide range of use cases, like both short-lived allocations of small objects and bulk
allocation of large objects. Having a general problem space is bound to make the
overhead of a memory manager be far from optimal.

Rust

Rust is a new programming language aiming to unify the developer ergonomics promised
by managed languages, and the e�ciency of unmanaged languages. �e work of
managing memory is le� to the compiler, which at compile time analyses the program,
while enforcing certain rules about how memory is handled. �is way the programmer
does not need to manage memory in the traditional sense, although it does impose
a cognitive overhead when developing programs, which larger than that of managed
languages. One of the features of Rust that may make it viable for systems programmers
with strong requirements for performance and stability is that the memory management
system in Rust is fully controlled by the programmer, as there is no automatic runtime.

1.2 �is �esis
In this thesis we aim to develop a concurrent memory management system for Rust
called CMR, which is based on Forkscan 2.4.4. We believe this is an interesting topic
since it is not clear how to incorporate memory management for concurrent system

2

CHAPTER 1. INTRODUCTION 1.3. OUTLINE

in the ownership model that Rust provides, although there are existing projects which
does similar things. �ese projects are o�en implementation of other known memory
reclamation schemes like Hazard Pointers and Epoch-Based reclamation. �is thesis
develops a new scheme.

Despite one of the promises that Rust makes is one of predictability and control,
CMR works more like a traditional garbage collector. However, as the scheduling of
threads in a process inherently is fuzzy and unpredictable, we believe that this is an
intrinsic property of any concurrent memory reclamation system.

�e aims for this thesis is to consider CMR as an alternative to more traditional
methods for memory reclamation. �e viability of such a management system is both
performance and usability, and we will comment both.

1.3 Outline
We mention brie�y the contents of each chapter. �e chapters are also prefaced with a
more �ne grained introduction.

Chapter 2 highlights the most important background material that is needed in order
to appreciate the contents of this thesis. Much of the material is a part of a standard
computer science curriculum, but we repeat it here nevertheless. Relevant sections from
this chapter is cited in the remaining of the text.

Chapter 3 introduces the reader to the Rust programming language, in which the
implementation of CMR is wri�en. �e way Rust functions makes it an integral part of
how CMR is designed. While this could be considered background, it is its own chapter
due to its importance for this project as a whole.

Chapter 4 presents the memory management system CMR at a high level. We
look at primitives of CMR and common operations such as allocation and reclamation
protection. �e chapter presents CMR on a high level in order to clearly di�erentiate
the challenges of CMR from the challenges of implementing CMR on a real system in a
real programming language. �ere is no real code in this chapter.

Chapter 5 describes the implementation of CMR in Rust, including the most im-
portant primitives and procedures. With the exception of a few omi�ed code sections,
which are clearly marked as such, all program code in this chapter is fully functionally
Rust code taken from the implementation.

Chapter 6 contains example usage of CMR for external applications. We have imple-
mented four data structures using CMR, and these four along with their implementations
are discussed further in this chapter.

Chapter 7 mentions practical ma�ers when it comes to testing and benchmarking
of the system. �is is included in the thesis as it may be quite di�erent from testing and
benchmarking of sequential systems.

Chapter 8 discusses experimental results of both operations from CMR as well as
the data structures from the previous chapter. We look at the performance on a range
of di�erent machines, from a�ordable desktop computers to high-end multiple socket
server systems.

Chapter 9 concludes this thesis with a short summary of the results and discussion
about the applicability and usability of the system as presented, in addition to suggestions

3

1.3. OUTLINE CHAPTER 1. INTRODUCTION

for future work.

4

Chapter 2

Background

No two persons can learn something
and experience it in the same way.

Shannon L. Alder

In this chapter we brie�y sum up the most important background material we
depend on in this text. Parts of the material is covered in a standard computer science
education, but we will summarize it nevertheless.

We will mention operating systems in Section 2.1, notes on programming languages
in Section 2.2, concurency in general in Section 2.3, and memory reclamation in Sec-
tion 2.4. �e chapter ends whith a short note on related works in Section 2.5

Sections 2.4.1 to 2.4.3 and parts of Section 2.5 are taken from [41].

2.1. OPERATING SYSTEMS CHAPTER 2. BACKGROUND

2.1 Operating Systems
�e operating system is one of the most crucial parts of a modern computer. �e
functionality the operating system provides is generally an abstraction layer over the
hardware of the machine, but it also acts as a resource manager for resources such as
memory and processing time. We summarize a few of the most important topics within
operating systems that are relevant for this thesis.

2.1.1 Virtual Memory
One of the most important features of modern operating systems is to provide virtual
memory. Instead of having programs use the memory of the system directly, the
operating system acts as if each process have the entire address space for itself. Behind
the scenes the operating systems maps the programs address space to addresses on the
physical memory. Naturally, the memory addresses on the physical memory does not
overlap for di�erent programs.

�e operating system handles memory in segments called pages. �e page size is
con�gurable, but is usually 4096kB in size. Memory addresses in the program space is
mapped to an address in a speci�c page, and the page is again mapped to the address
on the physical memory. A common optimization in modern operating systems is for
the pages to have Copy-on-Write (CoW) semantics; this means that when a page is
copied, it is only marked as copied; it is �rst when either of the two copies of the page
is changes that the actual copy is performed. �is is an important optimization since
many page copies are never modi�ed.

Memory Maps

Memory maps is another feature that operating systems may provide. Typically a
program may memory map a �le, which maps the contents of the �le to the virtual
address space of the process. �en the program can read and write to the memory
directly, and have the operating system take care of mirroring the changes to the �le,
which resides on disk. �e main motivation behind memory mapping a �le is to abstract
away the fact that the underlying data is not all in memory, but may be read and wri�en
to incrementally. Another alternative is anonymous memory maps; this is a memory
without that is not backed by a �le. �is is o�en used internally by allocators.

2.1.2 �reads and Processes
Operating systems run programs as processes. A process have a unique address space,
in which only the process itself can operate1. While not so common in modern pro-
gramming, a common pa�ern in handling processes is forking, where the process clones
itself, and both copies, the child and parent process, continue their execution. �is is an
excellent application of the CoW semantics of page cloning, since the entire address
space of the process is copied.

1 this is a truth with modi�cations; the kernel has naturally the privilege to touch all memory it pleases.

6

CHAPTER 2. BACKGROUND 2.2. PROGRAMMING LANGUAGES

Each executing process may have multiple execution units called threads. �e main
di�erence between threads and processes is that a process have its own address space
whereas a thread does not. �is allows multiple threads to communicate and share data
by simply sharing the location of the data they want to share. �reads are also much
lighter, meaning there is a smaller overhead in creation and switching execution of
threads than that of processes.

�e most common implementation of threads on Unix based systems is POSIX
threads (pthreads). pthreads standardizes thread management, such as thread creation
and joining, but also thread communication primitives such as mutexes, condition
variables, and barriers.

2.1.3 Signals
Signals is a Inter-Process Communication (IPC) feature in POSIX operating systems
used for asynchronous communication between processes. Most system programmers
have encountered a few signals in their career, such as SIGSEGV, SIGINT, SIGKILL and
SIGTERM. Signals are caught by the receiving process and a signal handler is executed.
Certain signals, like SIGTERM cannot be caught, as the intent behind the signal is to
abruptly terminate the process.

In addition to using signals for IPC, pthreads supports signals as well. �e interface
is similar to that of POSIX signals, but instead of sending signals to processes, they are
send to threads within the sending process.

2.2 Programming Languages
Programming languages have been a hot topic since the birth of computing; we have
always been interested in being able to express our intent for the computer clearly and
e�ectively. Despite computing being a �eld of growing experience, new programming
languages are still introduced by the dozen, while programming languages that are
older than the average programmer are still in heavy use.

Many programming languages have a formal speci�cation to specify the operational
semantics of the language constructs, as well as guarantees of what subroutines and data
types are generally available, in addition to details about said subroutines and data types.
Having a speci�cation of the programming language one uses can greatly improve
security, predictability, and stability of language implementations such as compilers or
run-times.

Sometimes it may be wiser for language designers not to de�ne parts of the language;
many parts of any language is heavily in�uenced by the features or constraints of the
hardware of the era that the language is de�ned in. For instance, as the C programming
language was designed, having an own data type for �oating point numbers float and
double might not have been obvious, considering that few machines supported them.
Being faced with the same choice today is quite di�erent — no modern programming
language ships without native support for �oating point numbers.

�ere are usually gray zones of the de�nitions of parts of programming languages.
For instance, in the C and C++ world it is common to di�erentiate between implemen-

7

2.3. CONCURRENCY CHAPTER 2. BACKGROUND

tation de�ned, meaning an implementation is free to de�ne the semantics, but it must
be documented; unspeci�ed behavior, meaning an implementation needs not de�ne its
choice; and unde�ned behavior, where all bets are o� — a program containing Unde�ned
Behaviour (UB) does not make sense.

Other reasons for not having a completely speci�ed language is that compiler writers
may make assumptions about the indented semantics of the code. For instance, we
could say that if a > 0 then x+a > x is always true. However, if the addition of x and
a over�ows, it may lead to a number that is smaller than x. Another example is that
a = 2x should imply a

2
= x. Again, should the multiplication 2x over�ow, this might

not be true. If we abstain from de�ning the over�ow of numbers, we can get away with
making these assumptions; the program may end up producing non-sensible results,
but from a language speci�cation standpoint that is alright, as the program was invalid
to begin with: its behavior was unde�ned.

Good introductions to the trade-o�s regarding UB includes [35, 13].

2.2.1 Garbage Collectors
Another important distinction in programming languages is between managed and
unmanaged languages. �e former usually refers to languages in which memory man-
agement is abstracted away by having a runtime with a subsystem that manages memory
allocation and reclamation automatically; such a system is o�en refereed to as a Garbage
Collector. Most of the mainstream programming languages today, including Python,
Ruby, Java, Go, Javascript, and C#, are managed languages.

�ere are many variations of garbage collectors. �e most common is the tracing
garbage collector, where the system traces memory addresses through the application
memory in order to �nd out what subset of the total memory are still in use. Depending
on the programming language, the garbage collector may be optimized to handle speci�c
allocation pa�erns. One common pa�ern is the fact that most allocated objects are only
in use for a short time; thus it might make sense to handle new objects di�erent from
old objects, as the probability that a new object is already not in use may be quite high.

2.3 Concurrency
Modern hardware and operating systems makes heavy use of concurrency; processes
are continuously preempted in order to have more processes executing than proces-
sors available on the system. When the processes are running independently of each
other this works rather seamlessly. However, the hardware deals with many quite
di�cult concurrency problems that programmers seldom think about: for instance cache
coherency.

Due to the increasing gap between memory access speed and compute speed, modern
CPUs employ a range of caching schemes. By moving a copy of the memory a process
is accessing physically closer to the execution unit on the processor, the access time
is greatly reduced. However, with multiple processors on a single system, this data
duplication introduces problems when two processes are accessing the same data, as
the hardware must realize that the local data that each process have may be changed by

8

CHAPTER 2. BACKGROUND 2.3. CONCURRENCY

the other process, and hence invalidated. �is synchronization can be, and very o�en is,
very expensive compared to the usual work of the CPU.

Still worse, the memory location that the processes change does not need to be the
same address, but just be in proximity of each other. �is is because the cache of a
processor does not operate on single words, but on whole segments called cache lines.
Even adjacent cache lines may cause unneeded synchronization if the lines are read
and modi�ed by processes that does not share all levels of cache. Having super�uous
synchronization due to the locality of modi�es data among processes is called false
sharing.

Another problem that the slow memory access speed realizes is that for communi-
cating processes on di�erent processors, the order of operations may be of the u�ermost
signi�cance. �is strongly imposes requirements on the hardware forces the inter-
processor communication to be of a certain nature. It turns out, however, that this also
decreases the performance of the CPU signi�cantly. A�empting to both have our cake
and eat it too, CPU architectures de�ne a memory model: rules about limitations on
instruction reordering. Weak memory orderings, such as ARM and PowerPC, impose
very few restrictions on the re-orderings, so that programmers must write memory
fence instructions to explicitly manage the ordering relationship in the code. Strong
memory orderings, like x86, on the other hand, allows very few re-orderings. We will
not discuss memory models and orderings further in this text, but it is useful to keep it
in mind.

Many operations require that multiple operations appear to happen as a single unit
for all other processes. We call such operations atomic. A simple atomic operation is the
fetch_and_add: given a memory location, it reads the location of a number, increments
the number, and writes the new incremented number back to the original location.
Simply reading, incrementing, and writing back using regular instructions will not work
in a concurrent system: assume we have two threads T1 and T2, that both wants to
count an event, sharing the counter. If the system only has one physical processor,
T1 might read a number n, increment it to n+ 1, and then become preempted before
writing the value back to the original memory location. �en T2 gets execution time,
and records successfullym events. Now, the next time T1 is ran, it will write n+ 1 to
the location, which will e�ectively remove the m events that T2 counted. One of the
most important atomic instructions is the compare_and_swap(l, a, b), which reads
a location l, and writes b to it, if it read a. �e cas shows the operation, which is all
done atomically. Variations of cas returns x rather than a boolean signaling sucecsss,
as this can be checked with x = = o.

cas(l, o, n)
1 x = Load(l)
2 if x == o
3 Write(l, n)
4 return true
5 else
6 return false

9

2.3. CONCURRENCY CHAPTER 2. BACKGROUND

2.3.1 Common Pa�erns in Concurrent Programming
Many programming languages supports higher level concurrency constructs for con-
current programming, such as threads pools and the message passing pa�ern. A thread
pool acts as a thread manager; given work to do it will manage the execution of the
work on threads. �e user of a thread pool does not need to know how this management
functions, only that the work is executed concurrently, such that it hopefully utilizes
the parallel nature of modern processors. An o�en used idea in implementing a thread
pool is work stealing [8], in which threads have their list of work available to the other
threads, which may “steal” a part of their work, should they run out themselves.

Message passing is a concurrent computational model [24], which has seen some-
what of a renaissance with programming languages such as Go [3], and programming
with co-routines, a popular pa�ern in Kotlin [4]. Message passing is o�en simpler than
other means of communication, since the processes communicate in a clear manner,
and can be programmed to act reactively.

In lock-free programming, the compare_and_swap, or cas, operation is heavily used.
�e general idea is to a�empt to perform an operation, having the comparison check
that nothing has changes in between reading the value that we perform the cas on. If
the cas fails, that is the read value was di�erent, we restart. O�en operations look like
Lock-Free-Op.

Lock-Free-Op(l)
1 while
2 m = Read(l)
3

〈
some operation yielding a result x

〉
4 if cas(l,m, x)
5 return

2.3.2 �e ABA-Problem
However, there are pitfalls to this approach. Occasionally checking that the location l
still has its valuem might not be su�cient to see that the remaining of the program is
in the state that one expects. �is problem is called the ABA-Problem.

Consider the following real world analogy: assume you have an opaque bo�le that is
�lled with water. If you leave the bo�le on your desk and return to it a�er lunch, there
is no way to see whether anyone has been drinking your water by simply inspecting
the bo�le from the outside. Someone might have taken the bo�le, drunk the water, and
put the bo�le back as it were. Even worse, someone might have replaced your bo�le
with an identical bo�le �lled with bees.

�e ABA problem is o�en due to the fact that we may only look at a single word
when performing the cas; had we been able to validate arbitrary memory this would
not be a problem. Certain CPU architectures mitigate this problem by providing double
compare_and_swap (dcas), which is two cas operations only executed if both succeed,
or double-word compare_and_swap (dwcas), which checks, say, 128 bits instead of the
word size of 64. It is possible to implement cas operations with arbitrary number

10

CHAPTER 2. BACKGROUND 2.4. MEMORY RECLAMATION

of locations (casn) [23, 27], but the implementations are o�en not practical. Other
alternatives include transactional memory, but this is not covered in this thesis.

2.4 Memory Reclamation
Most programs require blocks of memory which size is only known at runtime, but the
operating system usually only deals with memory in pages. Memory allocation is a
system designed to unify the two by managing large blocks of memory and handing
out portions of it to the process. �e subsystem managing this is called the allocator.
Many general purpose allocators exist, such as [21, 25, 38], and general ideas can be
found in [26].

�e use of a general purpose allocator for all allocations is a program is o�en a
source of performance problems; specialized allocators for short lived objects, small
objects, large objects, or bulk allocated and reclaimed memory (an “arena”) are o�en
used.

In concurrent systems, memory reclamation is much harder. �e main source of
problems seems to be that scheduling of threads is unpredictable, and it is hard to
di�erentiate whether a thread is done using some memory or if it just has not used the
memory in a long time, which again may be due to it being preempted.

We look at a few schemes for concurrent memory reclamation.

2.4.1 Reference Counting
Reference counting (RC) is a natural solution for memory reclamation. It was introduced
in 1960 by G. E. Collins [17], where it was used for collecting nodes of a linked list. �e
idea is that we count the number of references to data, so that we can tell if we are
holding the only reference to some data. When we no longer need this reference, we
know it is safe to reclaim the memory the reference points to, since no other reference to
that memory exists. �e primary downsides of RC is that it is rather expensive, and that
a naı̈ve implementation does not reclaim cycles. Today reference counting is still used,
although it is unusual to have it be the primary mechanism for memory management,
due to its performance overhead.

Atoimc reference counting (ARC) is RC using atomic variables, and is a natural
extension of RC. However, the naı̈ve implementation is not correct: consider two threads
operating on some Rc<T>. When thread A want to create a new reference to the data, it
increments the count in the RC object. Upon destruction, the count is decremented and
the data is freed if the count is 0. However, it is possible that thread B has a reference
to the RC object and that it got preempted right before incrementing the count. �en
the whole object gets freed by thread A, since the count is 0, and when thread B gets
execution time again, it has a pointer to freed memory which it indents to read.

A way to mitigate this problem is by indirection: we can use intermediate Rc nodes
which are the counter and a pointer to the actual data. �e intermediate nodes are never
free’d, and by CASing the count to a sentinel value upon destruction of the data, thread
B can detect that it is about to read free’d memory and abort its operation. By allocation
the Rc objects with a memory arena and freeing them in bulk, this might be acceptable

11

2.4. MEMORY RECLAMATION CHAPTER 2. BACKGROUND

for certain problems, as the data itself is not leaked, but only the Rc nodes, which may
be comparably small.

Despite the problem of atomic reference counting, there are still use cases for it. A
thread A may create an Arc object, and make a copy of its reference to it, incrementing
the count, and only then pass it to another thread. �is avoids the problem in the previous
paragraphs, since the only threads that need to increment the reference count is already
holding onto another reference, thus making it impossible that the count reaches zero
before we get to increment it. When all threads have dropped their reference, the count
will drop to zero, and the Arc will be free’d, not risking that any other thread is just
about to increment its count.

2.4.2 Epoch Based Reclamation
Epoch Based Reclamation (EBR) was introduced by Fraser in [19]. It is a reclamation
scheme based on the observation that most programs have no references to internal
data structure memory in between of operations on the structure. �e time interval in
between operations on the data structure are therefore safe-points (also called grace
periods) for memory reclamation to occur, since we do not risk invalidating any data
that other threads are using in this period. EBR uses the concept of an epoch, a global
timestamp which we use to �nd out when it is safe to reclaim retired memory. �e
epoch is a global counter. In addition we have a global list with one entry for each
running thread, which the threads use for broadcasting their state, which includes the
last epoch they read as well as whether they are currently performing an operation. We
call a thread performing an operation pinned, and the action of marking and unmarking
pinning and unpinning the thread.

When starting an operation a thread reads the global epoch, stores it in its entry, and
pins the thread. Upon retiring memory the thread marks the memory with the global
epoch and puts it in a limbo list. Every once in a while, the threads try to increment the
epoch, which succeeds if all current pinned threads have seen the current epoch. Note
that we only have to look through the thread entries once: if another thread is pinned
while we are searching, it will read the current epoch, and cause no problems for us.
�e requirement for epoch incrementation means that all threads that have references
to memory we might want to free is either in the current or the previous epoch. �us,
a�er incrementing an epoch to e we know that garbage that was added in epoch e− 2
is safe to be freed.

Note that it is important that the thread inserting into the limbo list uses the global
epoch, and not the epoch it read when it was pinned. If we use the previously read
epoch, we may run into the following scenario:

1. A pins the thread at e = 5, and wants to remove O from the data structure.

2. B increments the epoch to e = 6, and obtains a reference to O.

3. A unlinks O from the data structure, and adds it to the limbo list, with e = 5. A
unpinns, and increments the epoch to e = 7.

4. It is now safe, by our rules, to free O, although B is still holding a reference to it.

12

CHAPTER 2. BACKGROUND 2.4. MEMORY RECLAMATION

By reading the global epoch before pushing to the list we avoid this problem, since O is
unlinked from the data structure before reading the epoch. �is makes it impossible for
B to have incremented the epoch, and then get a reference to O, without A reading the
incremented epoch.

EBR is very popular, due to its extremely low overhead. However, there are still a few
challenges with EBR. A problem is that we are not allowed to keep references to data
across operations, since the thread must be pinned while we are using the references.
A natural way to mitigate this constraint is to leave the thread pinned. However, this
will stop the advancement of the global epoch, and thus e�ectively halting the memory
reclamation. An immediate consequence of this is that EBR is not lock-free, which is
not acceptable for all use cases.

2.4.3 Hazard Pointers
Hazard pointers were introduced by Michael in [29]. �e paper formalizes hazardous
pointers, and includes a proof of correctness. We will se�le for a informal view of
them. It is based on the observation that in most operations on data structure we only
need a small constant number of references to memory that is shared between running
threads. �e technique exploits this by allowing each thread to register the pointers,
called hazard pointers, the thread wants to use, but which it cannot be sure are safe
(meaning invalid or prone to ABA errors). We call potentially unsafe pointers hazardous.
�e number of pointers we need varies with the algorithm performed, but a typical
value is one or two.

A�er reading a hazardous pointer the thread registers it as one of its hazard pointers.
It then have to validate that the pointer is still in the data structure, as it might have
been removed in between the initial read and the hazard registration. When we want to
free memory we look through the hazard pointers of all running threads. If no other
thread has registered the memory it will be safe to free, since the object is already
unlinked from the data structure, and is hence no longer reachable. If a thread has read
the pointer before it became unlinked but not yet registered it, it will fail validation. We
note that again, as with EBR, a single pass through this list is su�cient: the object is
unlinked before searching, so if a thread has a reference to it, but is yet to register it as
one of its hazard pointers, then it will fail validation.

If the memory is registered in a thread, we cannot immediately free the memory. We
now have two options: wait for the thread to �nish, or defer the deallocation. By waiting
on the thread, we are relying on that the other thread will ever deregister the pointer.
Hence, we give up lock-freedom, as this is prone to deadlocking. It has, however, very
low overhead, and will be very fast assuming all threads are fairly scheduled and have
similar work load. Deferring the deallocation is a safer option, although it have a higher
overhead, since wee need to push the pointer into a queue (or a similar scheme). We
would then occasionally visit the queue and see if any of the pointers in it have been
deregistered by all threads.

A challenge in the usage of HP is that we need to identify which pointers in our
algorithms are hazardous. In comparison, we have no such concerns in EBR, in which we
only need to register memory as garbage when we remove it from the data structure (we
do need to make sure that this memory is only registered by a single thread). Another

13

2.5. RELATED WORKS CHAPTER 2. BACKGROUND

challenge is that of validation, as there is no general way to do this. For most structures
there is an obvious way of doing this. For instance, in a queue we can validate the front
element by reading the head pointer again, observing that it has not changed. However,
it still requires local knowledge of the data structure in question.

2.4.4 Forkscan
Forkscan is a recent addition to the family of memory reclamation schemes, and was
introduced in [7]. �e high level idea is to have a thread fork() o� a new process, and
scan the stacks of all threads in the system, looking for pointers. �is way the system
can �nd all addresses that are reachable, and thus also addresses that are no longer
reachable. It also employs signals (Section 2.1.3) to have threads do some work before
the process forks. Since the signal handler is a new procedure signaling the threads
ensures that they push out their registers to the stack.

2.5 Related Works
Automatic memory management exist for languages that does not provide this luxury
themselves; the most known example is the BDW-GC [9]. �ere is also ongoing work for
standardizing such systems in some languages; A proposal for including hazard pointers
and RCU (read-copy-update, not covered in this report) into the C++ standard library
was released in November 2017 [33]. �ere is also ongoing work in managed languages,
despite the presence of a garbage collector. An example is Project Snow�ake [31] which
combines ideas from both EBR and HP to get more e�cient reclamation for concurrent
systems on the .NET platform.

2.5.1 Crossbeam
In the Rust ecosystem the most notable contribution to the space of concurrency is the
Crossbeam umbrella project [18]. Crossbeam aims to o�er concurrent data structures
and primitives, in addition to memory reclamation systems. As of June 2018 a system
using EBR is available, and ideas for a system using HP are voiced.

14

Chapter 3

Rust

Rust seems sensible

John Carmack on Twi�er
If you rest, you Rust.

Helen Hayes

Rust [36] is a new programming language focusing on safety, performance, and
concurrency. �e o�cial �rst stable release, Rust 1.0, was released in May 2015, and a
new version of the language as well as the o�cial compiler, rustc, is released every
6th week. �e language is developed as an open source project on the version control
platform GitHub [20] by over 2000 contributors as of May 2018 [37]. �e Rust project is
organized into teams, such as the Core Team, the Compiler Team, and the Documentation
Team. Many of the members of the Rust teams are Mozilla employees, and Mozilla
o�cially sponsors the Rust project. �e language has no formal speci�cation, although
all language changes are developed and documented through an Request For Comments
(RFC) process. For a thorough introduction to Rust, see [40].

3.1. INTRODUCTION CHAPTER 3. RUST

3.1 Introduction
Rust is a compiled language with a minimal runtime, similar to C and C++. rustc
uses LLVM [6] as a compiler back-end for code optimization and code generation. �e
performance of Rust code is very similar to that of C and C++ [1]; variations are o�en
due to the lack of stable features like SIMD support, or from di�erent compile time
information given to LLVM by either language.

Rust has many features from the ML family of programming languages, such as
pa�ern matching and tagged enums, and a rich type system with type inference. Most
notably, and unlike most other modern programming languages, Rust does not have a
garbage collector. Despite this, Rust programs does not handle memory management
manually; memory management is typically done statically at compile time by utilizing
language features covered in the upcoming sections.

Rust uses structs similar to C and C++ which can have methods, but it does not
have inheritance. Traits are similar to interfaces: they de�ne methods and optionally
an implementation, and structs implement the Trait. Traits can even be implemented
for types that we have not de�ned ourselves, as long as we have de�ned the Trait. �is
is useful, since it means we can extend types from the standard library, or from other
third party crates1. Important Traits include Deref (the * operator), Clone (values that
are clonable), and Drop (ran when a value is destroyed).

When an owned value leaves its scope, it is destroyed and its Drop method is
ran. Primitive types, such as char or u32 does not have a Drop implementation, but
types which holds a resource, like allocated memory, o�en has. String and Vec<T>
are common examples. String has a pointer to an internal bu�er, which needs to
be freed upon destruction in order not to leak memory. �is free call is done inside
String::Drop.

3.2 �e Borrow Checker
A central concept in Rust is that of ownership. At any moment, an object has exactly
one binding which owns the object. Ownership may be transferred (“moved”, which is
the default behavior), or it may be lent out. �en the receiver is borrowing the binding.
�ere are two types or borrows: immutable and mutable borrows. One of the reasons
to di�erentiate between mutable and immutable borrows, is references in Rust can be
either aliased, or mutable, but never both. �at is, if there is a mutable reference to some
object, then that reference has to be the only reference. �is ensures that immutable
references are never changed, which makes it simpler for the programmer to reason
about the code since we get referential transparency, in addition to that it enables more
compiler optimizations.

Borrowed objects are in e�ect references to some data, similar to pointers or ref-
erences in other programming languages. While Rust does have raw pointers (see
Section 3.4), it is rarely used, and passing values by reference is preferred. �e three
types of ownership handling is shown in Fig. 3.1. In Fig. 3.1a we move x, so x is no

1 A crate is a project unit, similar to a library

16

CHAPTER 3. RUST 3.3. LIFETIMES

longer usable a�er the last line, and an a�empt to use it is caught as a compile time
error: error[E0382]: use of moved value: ‘x‘. Since the caller of foo has “sent”
the Foo to the function, it does no longer have to do any cleanup: this is now foos
responsibility.

Fig. 3.1b shows immutable borrow of x; the function foo may use the Foo, but it
cannot mutate it. Fig. 3.1c shows a mutable borrow; now foo may mutate the Foo. Note
that the binding x also needs to be mutable in order to borrow mutably.

(a) Ownership transfer

fn foo(f: Foo);
let x = ...
foo(x);

(b) Immutable Borrow

fn foo(f: &Foo);
let x = ...
foo(&x);

(c) Mutable Borrow

fn foo(f: &mut Foo);
let mut x = ...
foo(&mut x);

Figure 3.1: �e three types of ownership handling.

Understanding the borrow checker is o�en a pain point for new programmers, and
the period in which new Rust programmers learns an intuition about how to structure
programs within these rules is o�en referred to as “�ghting with the borrow checker”.

3.3 Lifetimes
Lifetimes is the second important concept in Rust. �e idea of lifetimes is to reason
about the duration of the program execution in which some object is valid — its lifetime.
By tracking the lifetime of all variables at compile time the Rust compiler is able to
catch errors such as returning function local variable addresses. Section 3.3 shows an
example function a�empting to do this.
fn foo(_a: &i32) -> &i32 {
let num: i32 = 420;
let r: &i32 = #
r }

Since Rust tracks the lifetime of all variables, it knows that the lifetime of num is the
same as that of the function body, since it lives on the function’s stack frame. �e
lifetime of r is the same, as it is a reference to num. So when we try to return r in the
last line of the function, Rust realizes that the lifetime of the reference we return ends
its life at the end of the function; this is clearly not what we wanted, since it would
make the returned reference dead on arrival. Compilation fails with the following error:
error[E0597]: ‘num‘ does not live long enough.

Although Rust programmers may have to think about the lifetime of the variables,
they seldom have to write lifetime annotated functions, due to lifetime elision — the
compiler can usually �gure out the most general lifetime that �ts the function. Functions
may be annotated with explicit lifetimes, for instance if it takes multiple references in
which the relative di�erence of the lifetimes of the references is important. structs can
also be annotated with lifetimes, and in fact is required to be so if any of its members
are references. �is is because the lifetime of the struct is bounded by the lifetime of its
member variables.

17

3.4. UNSAFE RUST CHAPTER 3. RUST

struct Person<'a> {
age: i32,
name: &'a str }

Should we have a function that crates a new Person we might want to annotate it
explicitly, if the function takes multiple references, but only one of these references is
the name �eld:
fn make<'x, 'y>(f: &'y File, n: &'x str) -> Person<'x> { ... }

�is way we can convey the information that the resulting Person should live as long
as n, but may outlive the �le f.

3.4 Unsafe Rust
When talking about the Rust programming language, one usually talks about a subset
of Rust, called Safe Rust. In Safe Rust, there are no race conditions, mutable memory
locations are never aliased, and all pointer accesses are valid. �e real world, on the other
hand, rarely o�ers these guarantees, and the unfortunate truth which Rust programmers
must deal with is that in order to implement some of these safe abstractions we want
(like Vec, Mutex, and Box), some unsafety is required. For this reason, Rust o�ers an
escape hatch for some of its rules: Unsafe Rust.

�e di�erence between Safe and Unsafe Rust is only four things. In Unsafe Rust one
may: 1) dereference raw pointers 2) mutate statics 3) call unsafe functions 4) implement
unsafe traits. One way of thinking about the unsafety of ones codebase is that there
should be no unde�ned behavior in safe code, no ma�er how the code looks like. In
other words, it should be impossible to mess up so badly as to invoke unde�ned behavior
without typing unsafe.

Dereferencing raw pointers is naturally unsafe, as it is not possible to statically
guarantee that the address of the pointer is valid memory, or that the objects it points to
is still alive, nor that mutation of that memory does not change an immutable reference
some other place in the program. Mutation of static variables is also unsafe due to
mutability of aliased references, and due to the lack of thread synchronization.

unsafe functions and traits are just a marker added to the function or trait, signaling
that not all uses of this is guaranteed to be safe. As an example, the trait Send is a
marker trait and types implementing Send may be sent across thread boundaries. While
this is �ne for most types, there are types which does not allow this. �e reference
counted pointer Rc<T> is an example, which is a pointer to a tuple2 (count, data). �e
count is incremented each time .clone() is called, and decremented when a variable
is Dropped. To understand why this cannot be send across thread boundaries safely,
consider what happens if T1 .clone() at the same time as T2 Drops it: the count �eld
is wri�en to twice without any synchronization atomic operations3 — a race condition!

Rust is marketed as a safe programming language; it is however important to realize
that this is only a half-truth. In principle Rust, due to the unsafe keyword, is no more
safe than any codebase in C or C++ is, and third party libraries might hide the fact that

2 Not really, but for our purposes here we can pretend that it is.
3 Rc does not use atomics for performance reasons, but Arc does, and it does implement Send.

18

CHAPTER 3. RUST 3.5. CONCURRENCY

they utilize unsafe code in order to appear more “safe”. �e language o�ers many ways
to avoid having to type the dreaded six le�ers and enter the world where all bets are
o�, but nobody is stopping crate authors, co-workers, or even yourself, to write unsafe
code.

3.5 Concurrency
One of the main focuses of Rust is concurrency, and the language does o�er a helping
hand in writing concurrent code. Many of these arises naturally from the type system,
and the ownership model, like the single owner principle, and the single mutable
reference rule.

3.5.1 Concurrency and Aliasing
One observation to make from the reference rules as presented in Section 3.2 is that
since references are either aliased or mutable, then there can be no writes shared data
between threads in Safe Rust, even using atomics. While this is technically true, the Rust
standard library uses &T and &mut T slightly di�erent than “immutable” vs “mutable” in
this context: &T means that the type may be shared between threads.

Take AtomicUsize as an example, a usize exposing atomic operations like store,
load, and compare_and_swap, which signatures are shown in Listing 3.1.

Listing 3.1: Signatures for selected operations on AtomicUsize

fn load(&self, order: Ordering) -> usize;
fn store(&self, val: usize, order: Ordering);
fn swap(&self, val: usize, order: Ordering) -> usize;
fn compare_and_swap(&self, current: usize, new: usize, order: Ordering) -> usize;

Clearly, AtomicUsize::store modi�es memory of the usize; despite this the function
is &self and not &mut self, since the operation is allowed on variables which are shared
between threads. �is is a useful distinction, since we can have methods on AtomicUsize
that is &mut self, which then is only possible to invoke should the variable not have been
shared between threads yet; we know this since this means that we have aliased mutable
references, which is not allowed. For instance, AtomicUsize::get_mut(&mut self)
-> &mut usize allows the underlying usize to be changed without any synchronization
overhead.

3.5.2 Common Pa�erns
�e standard library’s synchronization module std::sync contains primitives that most
concurrent programs require, such as Mutex, Channels, Condvar, and Atomics. A com-
mon pa�ern in Rust is the Resource Allocation Is Initialization (RAII) pa�ern. �e idea is
that resources should be managed automatically when constructing and destructing an
object. Mutex uses these ideas: Mutex::lock returns an Result<MutexGuard>, where
the MutexGuard wraps a mutable reference to the data that is protected by the Mutex.
When the MutexGuard goes out of scope, its Drop implementation is ran, and the Mutex
is unlocked.

19

3.6. NIGHTLY RUST CHAPTER 3. RUST

It is common among Rust programmers to build abstractions over lower level prim-
itives. For instance, a common pa�ern in parallel and concurrent programming is to
have a thread pool, which is given work, and internally handles the thread synchro-
nization and work division. Example usage of such an abstraction could be let tp
= ThreadPool::new(); tp.execute(|| ...);. Since this can be implemented
without any special compiler support, such crates are usually made as third party
libraries.

Another example is data parallelism: given some collection of data we want to
iterate over the elements and perform some operation on each element. �e Rust library
rayon [34] o�ers exactly this: parallel iterators. Instead of writing vec.iter() to iterate
over a Vec and then performing some operation on each element sequentially, with
rayon we can write vec.par_iter(), and get data parallelism for free. �e operation
is then ran in parallel with any number of threads. Internally rayon uses a thread pool
and work stealing to handle the division of labor among the threads.

3.6 Nightly Rust

�e Rust language and compiler follows a �xed release schedule, where a new stable
version is released every six weeks. In addition to this there is the beta branch, which is
the upcoming version, and the nightly version which is the most recent version, build
daily from the master branch of the source tree.

�e nightly version of the compiler allows users to opt in on unstable features:
features that are partially or fully implemented, but which details are not yet commi�ed
to. �ese features includes new APIs in the standard library, new syntax, and new
language features all together. As we have used multiple unstable features in CMR, we
look at some of them in detail.

3.6.1 Non-Lexical Lifetimes
�e current implementation of lifetime checking in the compiler is lexical, meaning
variables are live until they go out of scope, despite not being used. �is is a limitation
that one may want to get rid o�. �e feature Non-Lexical Lifetimes (NLL) li�s this
requirement, and lets the lifetime of a variable last only until its last usage. Having this
it is possible to seemingly break some of Rust rules, like aliased mutable references:

let mut v = vec![1,2,3];
let r1 = &mut v;
let r2 = &mut v;

�is clearly violates one of the Rust rules, namely that we cannot have mutable aliased
references. Yet, in this example we have two mutable references, r1 and r2, to the same
data. With NLL this will compile, as we do not use r1 a�er having made r2, so its
lifetime is implicitly ended right a�er its declaration. If we write r1.push(1); a�er
let r2, we get the same error as without using NLL, since the lifetime r1 overlaps with
the lifetime of r2.

20

CHAPTER 3. RUST 3.6. NIGHTLY RUST

3.6.2 Trait Objects
When using traits in function signatures or structs we can either make the struct generic
over some type that implements the trait, or we can use dynamic dispatch. As generics
usually are implemented by copying the source code for the type for each invocation
of a new type, it increases code size and compilation time. In addition, collections and
similar structures cannot mix di�erent types: a Vec<SomeTrait> cannot both contain
elements of type A and B, even if both implements SomeTrait.

Dynamic dispatch is the other option. Now variables are fat pointers, containing both
the pointer to the data type, and a pointer to a vtable4, which contains information
about the function addresses for that type, as shown in Fig. 3.2. �e entry in the vtable
is all functions for some trait. With this we can take any concrete type, and follow
its vtable pointer, in order to �nd the implementation of some trait function for that
type. In Fig. 3.2, both Foo and Bar implements some trait which have a function named
fnc. By following the pointers from the stack, we get the data (le�) and the function
pointer (right). �is way of implementing Trait Objects are usually not mandated by
any standard, but it is popular across di�erent language implementations nevertheless.

stack
…

…

…

vtables
fnc

…

fnc

…

memory

Foo {x: usize}

…

Bar {y: &str}

…

Figure 3.2: Illustration of memory when using Trait Objects.

While trait objects o�ers greater �exibility in the usage of traits, the pointer jumping
leads to worse cache behavior which may have a large impact on performance, and
important compiler optimizations like in-lining is impossible.

3.6.3 Specialization
Specialization is a feature which allows multiple implementations of a trait for the same
type, where the implementations are ordered by their speci�city.

Assume we want to implement the trait Debug for a struct that is generic over
some type T: Struct<T>. We might want to have di�erent implementations of Debug
depending on whether the generic parameter T implements Debug or not. Specialization
makes this possible.

4 the name vtable comes from the C++ world, where function on abstract types are called virtual
functions

21

3.6. NIGHTLY RUST CHAPTER 3. RUST

Listing 3.2: Using specialization to implement a trait twice.
impl<T> Trait for Struct<T> {

default fn fmt(&self);
}
impl<T: Debug> Trait for Struct<T> {

fn fmt(&self);
}

With only these two implementation it is clear which of the two we want for any
type: if T implements Debug we want the second, and if it does not, we want the �rst.
However, if we mix in yet another trait, Clone, such that we have a third implementation
impl<T: Clone> Trait for Struct<T> { ... }

it is no longer clear which implementation to use if T implements both Clone and Debug.
�e current implementation forbids such specializations.

3.6.4 Allocators
�e �nal nightly feature that we look at is allocators. It is not yet possible to change
the default allocator in stable Rust, but a suggested API for creating new allocators and
specifying the default system wide allocator for Rust programs is available by opting in
on the allocator feature. �e feature de�nes a trait GlobalAlloc that de�nes functions
analogous to malloc and free from libc, and a a�ribute #[global_allocator] to
select which allocator we want to use.

�e default allocator for Rust is jemalloc [25]. By using other external crates we
can use either the default system allocator, or jemalloc wrapped in our own allocator.
�is can be useful if we want to do bookkeeping, gather statistics, or do any thread
synchronization outside of the actual allocator we are using.

Listing 3.3: Custom allocators wrapping jemalloc and the system allocator
pub struct WrapJemalloc;
unsafe impl GlobalAlloc for WrapJemalloc {

unsafe fn alloc(&self, layout: Layout) -> *mut Opaque {〈
Do something before calling alloc

〉
Jemalloc.alloc(layout) }

unsafe fn dealloc(&self, ptr: *mut Opaque, layout: Layout) {〈
Do something before calling free

〉
Jemalloc.dealloc(ptr, layouer); } }

pub struct WrapSystem;
unsafe impl GlobalAlloc for WrapSystem {

unsafe fn alloc(&self, layout: Layout) -> *mut Opaque {〈
Do something before calling alloc

〉
System.alloc(layout) }

unsafe fn dealloc(&self, ptr: *mut Opaque, layout: Layout) {〈
Do something before calling free

〉
System.dealloc(ptr, layout); } }

22

Chapter 4

CMR

Garbage removal is a citizen
responsibility.

Jaime Lerner

In this chapter we present a concurrent memory reclamation scheme called CMR.
We de�ne the problem of memory management carefully in Section 4.1, in order to
get a complete understanding of which problem we set out to solve. In Section 4.2 we
present an abstract overview of CMR in order to get a high level understanding of the
system as a whole without having to think about technical or implementation details.
Section 4.3 discusses the primitives and operations of CMR and how they are used.
Finally in Section 4.4 we argue for the correctness of the system as presented in this
chapter. By reasoning about CMR without an implementation we later aim to show that
the implementation (Chapter 5) �ts the description of the system as we de�ne it in this
chapter, and thus gives the same guarantees as we give here.

4.1. PROBLEM DEFINITION CHAPTER 4. CMR

4.1 Problem De�nition
We start by de�ning some central concepts. Memory M is the set of all addresses in
the address space of the machine. A block is a tuple (a, n) and represents the memory
segment [a, a+ n). M is a disjoint set M = A ∩ F where A is the set of allocated
blocks, and F is the remaining of the memory space. F needs not, and is almost never, a
consecutive segments, but simply all memory that is outside any allocated block. We
call such memory invalid, and all memory in an allocated block valid. We model the
program memory as a graph G = (A,E) where (u, v) ∈ E i� there is a pointer in u
pointing to an address in the segment v. �at is, memory blocks are the vertices, and
pointers in the program are the edges. See Fig. 4.1 for a possible memory layout with a
graph.

a = Node { value = 4, next = null }
b = Node { value = 8, next = a }
list = [a, b, 3]

a b 3

list

x

y
z

Figure 4.1: Code sample (le�) with possible heap layout (right). If the black �lled node
is the only root, the black nodes are reachable, and the grey nodes are not.

As most programs need memory blocks of dynamic size, allocation and deallocation,
“freeing”, is commonplace. �e problem of memory management is to know when it is
safe to free a memory block. We want to avoid the following memory hazards:

De�nition 4.1 (use-a�er-free). Memory that was allocated and then freed is read.

De�nition 4.2 (invalid-read). Memory that has never been allocated is read.

De�nition 4.3 (double-free). A block is freed twice without being allocated in between.

use-a�er-free is the most hazardous of the three, as program behavior is o�en
unde�ned when freed values are read; in many language implementations unde�ned
behavior means that the entire program is illegal, and one cannot assume anything
about its behavior (see Section 2.2). �e consequence of use-a�er-free usually ranges
from reading values that are unchanged from the time the block was freed, to mutation
of memory that has been reused.

invalid-access is the least frequent of the three, as it requires the programmer to
conjure a pointer out of thin air, since it has never been allocated in the system. As
with use-a�er-free, this is too is usually unde�ned, with similar consequences. Despite
their similarities we choose to have invalid-access as a separate category, as pointer
arithmetic may lead to these hazards.

double-free is technically not a memory hazard, as the operating system can check
for the validity of pointers that are freed, although this is o�en not done in practice. It

24

CHAPTER 4. CMR 4.1. PROBLEM DEFINITION

is not clear whether this is due to performance penalties of checking, or if it is primarily
a legacy behavior; POSIXs de�nition of free states that it is unde�ned behavior to pass
a non-allocated pointer to free [32].

We aim to show that CMR guarantees that neither of the three memory hazards are
possible.

4.1.1 Shared Memory
Newer languages like modern C++ and Rust aim to avoid having the programmer manage
memory manually, due to a long history of the consequences of memory hazards. For
single threaded application, this may be considered a problem with suggested solutions.
Rusts ownership model and lifetime tracking (Chapter 3), and similar methods from the
C++ standard library, are proposed solutions. However, the ownership model does not
handle shared memory functionally, as objects in shared memory might not have an
owner responsible for its management. Despite not being a complete solution, having
“solved” single threaded memory management turns out to be of great help.

π "hello"

0xcafe

Shared memory

Owned memory

Figure 4.2: Example of memory layout showing owned memory (beige) and shared
memory (red). Types in shared memory may contain pointers to owned memory, and
vice versa.

We divide up A into two disjoint parts O ∪ S: owned and shared memory. Owned
memory is all memory which management is already handled by some system, like
Rusts ownership model or the smart pointers of C++. Shared memory is the memory in
which the structures that is not modeled well by other constructs live, like the nodes in
a linked list.

A key idea to recognize is that despite data being in Shared memory, they might
themselves own data that is in Owned memory, like the binary tree in Fig. 4.2. �e
destruction of a list node containing the binary tree will utilize the system for owned
memory, and make sure that the binary tree is cleaned up properly. It does not ma�er if
the list node itself resided in owned or shared memory. With this distinction we can
reduce our problem space signi�cantly, as we only have to worry about the small subset
of A that is shared memory. Note that it is also possible to have the data types that are
referenced from shared memory but stored in owned memory, like the pointer pointing

25

4.2. OVERVIEW CHAPTER 4. CMR

to 0xcafe in Fig. 4.2. �is includes pointers on a stack frame, but might also include a
entry in a hash map. It is these pointers that CMR aims to control.

4.2 Overview
We call a pointer from owned memory to shared memory for a root. CMR is based on
the idea that if we have access to all roots in the system at an instant, �nding the set of
all reachable blocks R from the set of roots R0 is simple: R is the transitive closure of
“there is a pointer from x to y” on R0. We call identifying R reachability analysis. By
then tracking all allocated blocks A, we can identify the set of unreachable block G by
taking the relative complement of R in A: G = A \ R.

CMR tracks all roots for each thread by restricting where the roots may be stored in
memory. �is way we know at any time where all roots in the process resides, so they
can be collected by any other thread with relatively low e�ort.

When performing the reachability analysis in a concurrent systems, simply following
pointers while maintaining a frontier of unvisited blocks is not su�cient. Since there
are multiple threads in the system, some other thread T ′ may come along and change
pointers, causing reachable blocks to be observed as unreachable by the reclaiming
thread, as shown in Fig. 4.3. A�er having read the le� child of some node with two
children, the two pointers can be swapped by the other thread, causing us to visit one of
the nodes twice, as if the two child pointers point to the same node. CMR handles this
problem by obtaining a snapshot of the process memory, and performs the reachability
analysis on the snapshot.

a b

read le�

a b ab

read right

Figure 4.3: Mutation in the memory graph may lead to reachable blocks being observed
as unreachable.

�e Reclaim procedure shows how we reclaim memory in CMR. �e input is the
set of allocated address A and information on all threads T . In Get-Roots we collect all
roots for all threads. Find-Reachable runs the reachability analysis, and returns the
set of all reachable blocks R. We can then �nd G.

Reclaim(A, T)
1 Snapshot()
2 R0 = Get-Roots(T)
3 R = Find-Reachable(R0)
4 G = A \ R
5 Free(G)
6 A = R

26

CHAPTER 4. CMR 4.3. PRIMITIVES OF CMR

Find-Reachable(R0)
1 Frontier = R0
2 Seen = R0
3 whilem = Pop(Frontier)
4 for ptr = Pointers(m)
5 if ptr /∈ Seen
6 Insert(Seen, ptr)
7 Push(Frontier, ptr)
8 return Seen

4.3 Primitives of CMR

In this section we look at the four data types in CMR, and operations that act on them.
All types are generic over some type T , which is omi�ed for brevity. �e operations on
these types always act on the same generic type. We use ⊥to signal the null-pointer.

De�nition 4.4 (Guard). Guard is an object that either contains a root or ⊥. �e Guard
is non-movable in memory. All roots are stored in Guards.

�e Guard is the only type that CMR de�nes that are di�erent from conventional
memory management systems; they are solely used for managing the storage of the
roots in the memory graph.

De�nition 4.5 (Atomic). Atomic is a pointer type that provides safe concurrent access
to its users.

Atomic is similar to regular atomic pointers from any programming language; it
o�ers safe reads and writes for concurrent systems.

De�nition 4.6 (NullablePtr). NullablePtr is an immutable pointer that may be ⊥. It
is obtained through a Guard. When a NullablePtr p is obtained from a Guard g, g is
immutable throughout the lifetime1 of p.

�e de�nition of NullablePtr is important: it shows that we scope the immutability
of a Guard to the lifetime of the NullablePtr; this allows us to have certain invariants
that hold in between changes to a Guard to hold for the lifetime of an NullablePtr .

De�nition 4.7 (Ptr). Ptr is an immutable pointer that may not be ⊥. All accesses to
shared memory is through a Ptr.

�e semantics of Ptr are similar to that of NullablePtr , but the two are distinct types
for simpli�cation of the ⊥-case.

1 We use the same meaning of lifetime as Rust (Section 3.3)

27

4.3. PRIMITIVES OF CMR CHAPTER 4. CMR

4.3.1 Operations
A Guard can be constructed with the initial value of ⊥ with make-guard

Make-Guard : : () → Guard (4.1)

It can copy the value of another Guard with copy-guard.

Copy-Guard : : (Guard,Guard) → () (4.2)

�e pointer a Guard holds can also be read:

Read-Guard : : (Guard) → NullablePtr (4.3)

General usage of Guard is to construct the number of Guards one needs for some
operation. �ese Guards are then used to load Atomics into.

Atomic is a regular atomic pointer variable, supporting operations such as store, and
compare-and-swap.

Store : : (Atomic,NullablePtr) → () (4.4)
Compare-And-Swap : : (Atomic,NullablePtr,NullablePtr) → NullablePtr (4.5)
It is not safe to load an atomic, as there is no guarantee that the pointer read is

protected by a guard. Instead, CMR de�nes load-atomic, which loads an Atomic into a
Guard, and returns the value read as a NullablePtr:

Load-Atomic : : (Guard,Atomic) → NullablePtr (4.6)

�e NullablePtr is just a convenience type in order to not have to handle the ⊥ case
of all pointers. Whether the pointer is null or not can be checked:

Is-Null : : (NullablePtr) → bool (4.7)
�e Ptr is the type that mimics reference types in other languages; the object it points

to is used transparently through the Ptr. Ptr may be used in the place of NullablePtr,
since is it just a special case of it. All functions that take a NullablePtr can also take a
Ptr.

4.3.2 Pointer Tagging
CMR also supports using the lower bits of a pointer to store extra information (a tag).
�is is useful for implementing deletion in linked lists, among other things. �e tag is
read with tag,

Tag : : (NullablePtr) → int (4.8)
and a new NullablePtr can be constructed with a given tag using with-tag.

With-Tag : : (NullablePtr, int) → NullablePtr (4.9)

�e actual address of the pointer is obtained through addr

Addr : : (NullablePtr) → int (4.10)

28

CHAPTER 4. CMR 4.4. CORRECTNESS

4.4 Correctness
Having de�ned the types and operations that CMR provides we prove important proper-
ties of the system. In this section we may assume that no reclamation pass is happening
within the procedure Load-Atomic:

Claim 4.8. No reclamation happens while the procedure Load-Atomic is running.

With this assumption in place we �nally prove the correctness of CMR.

Lemma 4.9. If a Guard is valid, then any Ptr read from it is valid.

Proof. �e Ptr p is read from a Guard g and g is immutable throughout the lifetime of
p so they have the same value: g = p 6= ⊥.

�eorem 4.10 (Guard is valid). If a Guard is not ⊥, it points to valid memory.

Proof. �e Guard got its pointer from an Atomic a using Load-Atomic. We start by
showing that a is valid.

If a ∈ O then a is valid. Else then a ∈ S, so it is accessed through a Ptr p, which is
read from a Guard g ′. Since Load-Atomic mutates g and g ′ is immutable throughout
the lifetime of p (De�nition 4.6), g 6= g ′. �us a is valid by induction.

Next, since a is valid, it is reachable, and any address reachable from it is also
reachable. Since the Guard g is protecting the pointer read from a, and since no
reclamation may happen during Load-Atomic, g points to valid memory.

Lemma 4.11 (Ptr is valid). �e Ptr points to valid memory.

Proof. �is follows from �eorem 4.10 and the fact that a Ptr cannot be constructed
from a Guard that is ⊥.

�eorem 4.12 and �eorem 4.13 follows, which guarantees that neither of the three
memory hazards de�ned in Section 4.3 are possible in CMR.

�eorem 4.12. CMR has no use-a�er-free or invalid-read

Proof. �is follows from Lemma 4.11 as all accesses to shared memory are through a
Ptr (De�nition 4.7).

�eorem 4.13. CMR has no double-free

Proof. G = A \ R so only allocated addresses are freed. Ai+1 = R, so freed addresses
are discarded from A in each call to Reclaim.

29

4.4. CORRECTNESS CHAPTER 4. CMR

30

Chapter 5

Implementation

Talk is cheap. Show me the code.

Linus Torvalds

In this chapter we look at the Rust implementation of CMR. �e source code is
openly available on GitHub under the MIT license [15].

�is chapter is organized as follows: Section 5.1 discusses brie�y the most important
data that CMR de�nes, both global and thread local; Section 5.2 shows the implementa-
tion of the primitives from Section 4.3, and argues for their correctness by the de�nitions
in the previous chapter; Section 5.3 explains how memory snapsho�ing, an important
part of CMR, is implemented; Section 5.4 describes the reachability analysis including
important details of the Rust type system; Section 5.5 mentions how communication
between the parent and child process; we �nish the chapter with Section 5.6 where we
highlight a few of the complications that we encountered during the implementation of
CMR.

5.1. DATA CHAPTER 5. IMPLEMENTATION

5.1 Data
In order to be�er understand how CMR is laid out, we start out by looking at the data.
As Fred Brooks [10] said:

Show me your �owcharts and conceal your tables, and I shall continue to be
mysti�ed. Show me your tables, and I won’t usually need your �owcharts;
they’ll be obvious.

Allocated addresses are stored in a global HashSet, ALLOCS, which uses a Mutex
for thread synchronization. Only addresses in ALLOCS are subject for reclamation.
Section 5.4.1 explains more about the way allocations are stored in order to preserve
type information.

�read also stores data in �read-Local Storage (TLS). Each thread maintains a Vec
of pointers to their Guards, such that collecting all guards is just a ma�er of iterating
through the Vec, and following the pointer. Since the data is thread local, no synchro-
nization is needed when operating on the Vec, which makes updates cheap. In addition
all threads store the allocations they have done since the last reclamation pass; these
allocations are “stolen” by the reclaiming thread in each pass. See Section 5.6.2 for the
details.

One caveat of CMR is that new threads needs to register themselves before using
the system. �is is done through cmr::register_thread(). �is initializes thread
local data, and pushes a thread handle used in Section 5.3. We summarize some of the
problems in Section 5.6.3, and note that this is still a pain point of the implementation.

Only one thread may be in a reclamation pass at any given time, and we limit this by
having a global reclaim_lock. A thread wanting to reclaim grabs the lock before doing
anything else in the reclamation procedure; this lock is later freed (see Section 5.5). If a
thread a�empts to do a reclamation pass but �nds that the lock is taken, it simply does
not do the pass; waiting for the lock to be released would only increase the latency of the
reclamation pass for that thread, and since a reclamation pass was recently performed,
chances are that there will be very few new allocations to free in the pass.

5.2 Primitives
In this section we present implementation of the primitives as presented in Section 4.3,
and show that the implementation is uni�able with the de�nitions of Chapter 4. All
structs are shown with their full de�nitions, but we show only highlights of the
methods of the structs, as most of them are trivial.

Guard

�e Guard is implemented as a single word, in addition to an empty type (the PhantomData)
as Rust requires generic types to be used. Guards aren’t normally constructed di-
rectly, but rather declared with the guard! macro, which constructs it and calls
Guard::register. An excerpt of the de�nitions of Guard is shown in Listing 5.1.

32

CHAPTER 5. IMPLEMENTATION 5.2. PRIMITIVES

Listing 5.1: Excerpt of Guards de�nitions
struct Guard<T> { ptr: usize, _marker: PhantomData<T> }
impl<T: Trace> Guard<T> {

pub unsafe fn new() -> Self { Guard { inner: 0, _marker: PhantomData, } }
pub fn copy_guard(&mut self, other: &Self) { self.inner = other.inner; }
pub fn register(&mut self) {

ROOTS.with(|r| { let mut v = r.borrow_mut();
v.push(GuardPointer::from_guard(self)) }); }〈

. . . Remaining methods
〉

}
macro_rules! guard {

($var:ident) => { let $var = unsafe { &mut $crate::guard::Guard::new() };
$var.register(); } }

Guard::register gets a mutable reference to the thread local Vec of Guards, and
inserts a pointer to itself into it. Guard::drop (omi�ed) does the opposite. Guard::new
is marked unsafe since the caller must guarantee to register the guard before using
it. �is is normally handled by the guard! macro, but there are use cases for calling
new directly. Usage of the guard is normally as follows:

{
guard!(g);
let my_num = cmr::alloc(123, g);
println!("{}", my_num); // prints `123`

} // `g` is dropped here, and `my_num` is ripe for deallocation

Note that by using guard!, the caller only obtains a &mut Guard<T>, and not the
Guard<T> itself; this makes it impossible to move the Guard in memory.

Atomic

Atomic is mainly a wrapper around Rusts AtomicPtr, although the internals di�er
slightly. CMR de�nes its own type so that we can control the return types of certain
functions. Listing 5.2 shows the de�nition of the struct, as well as cas, the compare-
and-swap operation, in which we utilize some Traits from the Rust standard library to
convert between types. Implementation of remaining methods are straight forward.

Listing 5.2: Excerpt of Atomics de�nitions (Trait bounds omi�ed for brevity)
pub struct Atomic<T> { data: AtomicUsize, _marker: PhantomData<T>, }
impl<T> Atomic<T> {

pub fn cas<'a, A, B>(&self, a: A, b: B, ordering: Ordering)
-> Result<A, NullablePtr<'a, T>> {

let (old, new) = (raw(a), raw(b));
let ret = self.data.compare_and_swap(old, new, ordering);
if ret == old { Ok(A::try_from(NullablePtr::new(ret)).unwrap()) }
else { Err(NullablePtr::new(ret)) } }〈

. . . Remaining methods
〉

}

33

5.2. PRIMITIVES CHAPTER 5. IMPLEMENTATION

NullablePtr

NullablePtr is used as the canonical pointer type in CMR, and all pointer like types are
converted to NullablePtr using the From and Into traits from the Rust standard library,
which handles conversion between types. For instance, we implement From<*const
T> for NullablePtr<T>. �is way we can write functions that are generic over all
types of pointers, so that the user of CMR does not have to handle these conversions
themselves.

�e de�nition of NullablePtr is shown in Listing 5.3, with the new and ptr methods.
Note that we cannot get a reference to the T that NullablePtr points to; this is because
we don’t know if the pointer is null or not. ptr promotes the NullablePtr to a Ptr,
should it not be null, by using the Option type which Rust provides.

Listing 5.3: De�nition of NullablePtr
pub struct NullablePtr<'a, T: 'a>(usize, PhantomData<&'a T>);
impl<'a, T> NullablePtr<'a, T> {

pub fn new(u: usize) -> Self { NullablePtr(u, PhantomData) }
pub fn ptr(self) -> Option<Ptr<'a, T>> {

if addr(self) == 0 { None }
else { unsafe { Some(Ptr::new(raw(self))) } }〈

. . . Remaining methods
〉

}

Ptr

Ptr provides access to the type it points to, as it is guaranteed to be non-null. �is is
done through the Deref trait, which handles the * operator in Rust. Due to auto-deref,
we can now use &Ptr<T> in place of a &T. �e de�nition of Ptr, a new of its methods,
and its Deref implementation is shown in Listing 5.4. Node that both new and get_mut
are unsafe methods; new because we can not guarantee that the address passed is valid,
and get_mut because the data may be aliased.

Listing 5.4: De�nition of Ptr
pub struct Ptr<'a, T: 'a> { data: usize, _marker: PhantomData<&'a T> }
impl<'a, T> Ptr<'a, T> {

pub(crate) unsafe fn new(u: usize) -> Self {
Self { data: u, _marker: PhantomData, } }

pub unsafe fn get_mut(&mut self) -> &mut T { &mut *self.as_raw() }
fn as_raw(&self) -> *mut T { with_tag(*self, 0).data as *mut T }〈
. . . Remaining methods

〉
}

impl<'a, T> Deref for Ptr<'a, T> {
type Target = T;
fn deref(&self) -> &T { unsafe { &*(self.as_raw()) } } }

34

CHAPTER 5. IMPLEMENTATION 5.2. PRIMITIVES

Tagging

By having one canonical pointer type, we can de�ne functions that are generic over
all types that supports conversion from and/or to NullablePtr. �is is used in the
functions for pointer tagging, as well as the cas in Listing 5.2 (the types A and B).
Listing 5.5 shows some of the free functions for pointer tags that are generic over
di�erent pointer types.

Listing 5.5: Implementation of pointer tagging functions
TA1 pub fn tag<'a, P, T: 'a>(p: P) -> usize where P: Into<NullablePtr<'a, T>> {
TA2 let n: NullablePtr<T> = p.into();
TA3 n.0 & ones(TAG_BITS) }
TA4
TA5 pub fn with_tag<'a, P, T: 'a>(p: P, tag: usize) -> P
TA6 where P: Into<NullablePtr<'a, T>> + TryFrom<NullablePtr<'a, T>> {
TA7 let p = p.into();
TA8 let n = (p.0 & !(ones(TAG_BITS))) | tag;
TA9 P::try_from(NullablePtr::new(n)).unwrap_or_else(|_e| panic!("failed conversion")) }

ones(k) returns the bit mask with the k lower bits set, and TAG_BITS is a prede�ned
number of bits allowed to use for tagging for any pointer. We convert from P to
NullablePtr with .into() (TA2). In with_tag (TA5) we need to use TryFrom, which is
a conversion trait that may fail. In CMR Ptr<T> implements TryFrom<NullablePtr>,
where the conversion fails if the NullablePtr is null. We assert that this failure
should never happen (TA9) with the rationale that if we converted some type P into a
NullablePtr and changed its tag, we should be able to convert back to P, even though
the conversion is not always possible in general.

5.2.1 Free Functions
Having looked at the types and their member functions we now look at the implemen-
tations of important free functions.

We �rst look at the higher order function without_reclamation:
pub fn without_reclamation<R, F: FnOnce() -> R>(f: F) -> R {

let lock = ALLOC_LOCK.lock();
compiler_fence(SeqCst);
let ret = f();
compiler_fence(SeqCst);
drop(lock);
ret }

�e function runs the given closure without having a reclamation pass happening in
between. �e function simply grabs the reclamation lock before executing; is it however
important that the overhead here is as low as possible, as this is used in other important
functions. For this reason CMR also has the without_reclamation_repeat function,
with a�empts to run the closure without any synchronization; if a reclamation pass
happened while running, we rerun the function.

With the ability to run arbitrary code without a reclamation pass happening in
between we can implement guard, which is Load-Atomic (Eq. (4.6)).

35

5.2. PRIMITIVES CHAPTER 5. IMPLEMENTATION

pub fn guard<'a, T>(guard: &'a mut Guard<T>, a: &Atomic<T>) -> NullablePtr<'a, T> {
without_reclamation_repeat(|| { let p = unsafe { a.load(SeqCst) };

guard.inner = ptr::raw(p);
p }) }

Since we guarantee that no pass happened in between reading the Atomic and protecting
the data it pointed to in the Guard, we know that the data is still valid.

Another important function is alloc, which allocates memory:
pub fn alloc<T: Trace>(guard: &mut Guard<T>, t: T) -> Ptr<T> {

let ptr = alloc::alloc(t);
guard.inner = ptr::addr(ptr);
alloc::register(ptr);
ptr }

Note that we do not need to use without_reclamation here, since the newly address
is protected by the Guard before being registered; recall from Section 5.1 that only
registered allocations are subject for reclamation.

5.2.2 Correctness
We argue for the correctness of the primitives as presented with respect to the de�nitions
from Chapter 4.

Claim 5.1. Claim 4.8 is achievable.

Proof. guard implements Load-Atomic with the wanted semantics.

Claim 5.2. Guard satis�es De�nition 4.4.

Proof. �e Guard is constructed with null, and gets values from Atomics using cmr::guard;
the values read are roots. Using the guard! macro it is impossible to move the
Guard.

Claim 5.3. NullablePtr satis�es De�nition 4.6.

Proof. �e type does not expose any mutating methods, so it is immutable. Looking
at the function guard we see that the &mut Guard is mutably borrowed, and since the
lifetime of the NullablePtr returned has the same lifetime, the Guard is borrowed for
the lifetime of the NullablePtr

Claim 5.4. Ptr satis�es De�nition 4.7.

Proof. �e type does not expose any mutating methods, so it is immutable. Since Ptr is
the only type implementing Deref and no function return a &T, all accesses to Ts must
be though the Ptr.

We argue that since the primitives de�ned in Chapter 4 are implemented with the
de�ned semantics the results from Section 4.4 holds for the Rust implementation of
CMR.

36

CHAPTER 5. IMPLEMENTATION 5.3. SNAPSHOT

5.3 Snapshot
For obtaining a snapshot of the process memory CMR utilizes a operating system
features o�ered by POSIX compliant systems: forking. Calling fork() makes a copy
of the current process, called the child process. �e return value of fork() determined
whether we are in the child or parent process. In the child process, only the thread
that called fork() continues its execution. For this reason, we need to perform some
work before forking. Most importantly, the threads needs to tell the reclaiming thread
where to �nd their Guards. To do this we use a second POSIX feature: signals (see
Section 2.1.3).

Listing 5.6: �read signaling
fn signal_threads_except_self() -> usize {

let mut count = 0;
let me = thread_id();
let mut th = THREAD_HANDLERS.lock().unwrap();
th.retain(|&th|

if th == me { true }
else { unsafe {

let val = libc::sigval { sival_ptr: std::ptr::null_mut() };
let r = libc::pthread_sigqueue(th as u64, libc::SIGUSR1, val);
if r == 0 { count += 1; true }
else { false } } });

count }

Using pthreads signals we register a signal handler for the SIGUSR1 signal with the
sigaction call, and the reclaiming thread signals all threads with pthread_sigqueue.
�is is done through the Rust library libc, which provides Rust bindings to the C
standard library. �e procedure for signaling all registered threads is shown in Listing 5.6.
Here we actually do two things at once: in addition to signaling the threads, we remove
the thread handlers that we fail to signal. �e procedure returns the number of threads
we successfully signaled, so the caller knows how many threads to expect being in the
signal handler. Pseudo code for the signal handler is shown in Listing 5.7.

Listing 5.7: Pseudocode for the signal handler used by CMR
SH1 id = sh_enter_counter.fetch_add(1)
SH2 write_out_data_to(thread_datas[id])
SH3 sh_done_counter.fetch_add(1)
SH4 while sh_frozen.load():
SH5 wait()
SH6 sh_enter_counter.fetch_sub(1)

We use sh_enter_counter to keep track of how many threads are present in the
signal handler; the reclaiming thread knows how many threads it successfully signaled,
so it knows how many threads to expect. (SH1) registers a threads presence, in addition
to giving each thread a unique index in the range [0, n), where n is the number of

37

5.4. REACHABILITY CHAPTER 5. IMPLEMENTATION

threads signaled. �is is used in (SH2), where each thread writes out their guards and
allocations into the global vector thread_datas. We then register that we have wri�en
our data (SH3), and wait for the reclaiming thread to unfreeze us (SH5). At last we
register that we have seen that we are done (SH6), so that no thread risk being stuck in
the next iteration of the reclaiming procedure, waiting again on the sh_frozen �ag.

5.4 Reachability
Reachability analysis is a straight forward implementation of the Find-Reachable
procedure from Section 4.2, and is shown in Listing 5.8. We maintain one HashMap
(FR2) for all blocks we have seen, and a VecDeque (FR3) for the queue of blocks we
want to visit. For e�ciency reasons we write out the reachable set when we �nd a new
block, instead of collecting up the blocks and writing it in one iteration (FR10). �is
implementation has capped the number of pointers a single type can write out to be 32
(FR6); while this is not su�cient in the general case, most types only require one or two
pointers.

Listing 5.8: Rust implementation of Find-Reachable
FR1 fn mark_and_sweep(mut cursor: Cursor<&mut [u8]>, roots: Vec<TraitObject>) -> usize {
FR2 let mut seen = HashMap::new();
FR3 let mut queue = VecDeque::new();

FR4
〈
insert roots into seen and queue

〉
FR5 let mut num_ptr = 0;
FR6 let mut ptr_buffer: [TraitObject; 32] = unsafe { std::mem::zeroed() };
FR7 while let Some(to) = queue.pop_front() {
FR8 let addr = to.data as usize;
FR9 let t: &ptr::Trace = unsafe { ::std::mem::transmute(to) };
FR10

〈
write out addr to the cursor

〉
FR11 num_ptr += 1;
FR12 let n = t.write(&mut ptr_buffer);
FR13 for i in 0..n {
FR14 let (to, addr, vtable) =

〈
destructure ptr_buffer[i]

〉
FR15 if seen.insert(addr, vtable).is_none() {
FR16 queue.push_back(to); } } }
FR17 num_ptr }

5.4.1 Trace
Finding pointers in arbitrary data types might involve signi�cant work since the size
of the data types can be arbitrarily large. In addition, memory might not be initialized,
and false positives might occur if we are not careful. Instead of scanning through the
memory block linearly, CMR de�nes the Trait Trace, which all data types that is stored
in shared memory must implement. A type implementing Trace knows a bound on
how many shared memory pointers it contains, and can write these out to a bu�er. For
instance, a Node in a single linked list contains only one pointer, namely its next pointer,
which is trivial to write out.

38

CHAPTER 5. IMPLEMENTATION 5.4. REACHABILITY

�e implementation of this uses Trait Objects (Section 3.6.2), which involves dynamic
dispatch. �is solution is potentially expensive, as it may involve cache misses in the I-
cache, although the number of misses is limited by the di�erence in data types in shared
memory, which normally is smaller than in Rust memory. Listing 5.9 shows the Trait
as well as a sample implementation for a node in a linked list. �is implementation uses
specialization (Section 3.6.3) as the implementation of Nodes containing data that itself
is Trace is di�erent.

BTNode

BTNode BTNode

"foo"

(a) Illustration of a BTNode<String>

BTNode

BTNode BTNode

π

LNode
τ

LNode

(b) Illustration of a BTNode<List>

Figure 5.1: Generics in�uence the number of potential roots a type has, as shown here
with a binary tree node BTNode<T>. �e String does not contain a root, but a node in
a linked list LNode does.

Listing 5.9: De�nition of the Trace trait and a sample implementation for a linked list
node.

T1 pub trait Trace { fn count(&self) -> usize { 0 }
T2 fn write(&self, &mut [TraitObject]) -> usize { 0 } }
T3 pub struct Node<T> { data: ManuallyDrop<T>,
T4 next: Atomic<Node<T>> }
T5 impl<T> cmr::Trace for Node<T> {
T6 default fn count(&self) -> usize { 1 }
T7 default fn write(&self, slice: &mut [TraitObject]) -> usize {
T8 let p = unsafe { self.next.load(SeqCst) };
T9 if !p.is_null() { slice[0] = ptr::trait_object(p);
T10 1 }
T11 else { 0 } } }

Trace contains default implementations of the two functions, such that primi-
tive types can easily implement it. write takes a bu�er, writes all pointers to it as
TraitObjects, and returns the number of objects wri�en. count gives an upper bound
on the number of pointers wri�en. �is is useful for collection types, like Vec or HashMap,
which also may contain pointers to shared memory.

Node is a standard node from a linked list, containing data, and a next pointer. �e
implementation of write loads the next pointer (T8), which is an unsafe operation, as
there is no Guard protecting the pointer. �is is safe in the context of the reclaiming
thread since the memory will be freed at earliest when we �nish the reachability analysis,
and at that point we no longer read the memory. �e implementation only writes out
the pointer if it is non-null; while this is not required for CMR to function, it simpli�es
the logic in the reachability analysis.

39

5.5. COMMUNICATION CHAPTER 5. IMPLEMENTATION

5.4.2 Destructors
Since Rust uses the RAII pa�ern extensively, we would like to run the destructors of
type when we free memory of that type. However, due to constraints in the the type
system, this has shown to be di�cult to implement. We would like to have a single
function foo<T> that, based on whether the generic type T implements Drop or not to
run have two di�erent implementations. �ere is no implemented solutions in the type
system that allows this. See [5] for discussion on the topic. �e main di�erence between
this and Trace is that CMR requires all types to implement Trace, but implementing
Drop is optional.

5.5 Communication

When forking the child process continues the thread of the parent process that called
fork(), such that it has access to everything that the original thread had. As such,
we don’t need to communicate from parent to child. However, the job of the child
process is to run reachability analysis, and we do need its result. CMR uses memory map
(Section 2.1.1) for IPC, which is set up before the fork. Since we need to know when
the child is done writing its results, we write a marker word as the �rst word in the
memory map. �en we fork(). �e child process does the reachability analysis, and
writes the result a�er marker in the memory map. When it is done writing, it overwrites
the marker with the number of elements wri�en.

Parent Process

T1

T2

T3

Background �read

Child Process

T ′
2

mmap

0xbeef

0xcafe

0xbabe

0xdead

0xabba

Figure 5.2: Illustration of IPC through a memory map. T2 in the parent process is the
reclaiming thread, so T2 is the one thread in the child process. Both processes have
access to the same memory in the memory map.

In order to minimize the delay of the reclamation pass from the point of view of
the user, we spawn a background thread which handles the part of the reclamation
performed a�er we fork(). �is ensures that no user thread has to wait for the child
process to �nish its reachability analysis before going back to running application code.
A�er forking, the parent process unfreezes the other threads, and sends all necessary
data to the background thread. Note that the reclaim_lock is not released, even though
the thread is exiting the procedure. �e lock is only released when the background
thread is fully done with the reclamation pass.

40

CHAPTER 5. IMPLEMENTATION 5.6. COMPLICATIONS

5.6 Complications
A number of implementation complications arose while developing CMR. We look at a
few of them here.

5.6.1 Allocation Lock
In order to protect programmers from deadlocks, POSIX de�nes a subset of functions as
async-signal safe, meaning they are safe to call from a signal handler. Functions that
are async-signal safe includes time(), open(), and mkdir(), but it does not include
malloc(). As such, allocation in signal handlers is not safe, and is a source of deadlock
bugs. �is itself was not a large problem for CMR, as its signal handler did not require
any allocation. However, as threads are frozen by the reclaimer in a signal handler, it
is also not safe for the reclaimer to call malloc, despite not being in a signal handler
itself. �is is because some thread may be in the process of allocating memory, and have
acquired a lock internal to libc, right before being signaled. �e thread is still holding
the libc lock and is frozen in its signal handler by the consolidator, which prevents all
threads, even those oblivious to CMR, from allocating.

�is problem is not solved properly by CMR, but its e�ects are mitigated by wrapping
the general allocator in Rust to go through yet another lock, the alloc_lock, which
can be acquired by the reclaiming thread. In order to be more thread friendly we do not
grab the global lock every time we allocate; instead each thread �ips a bit when they
allocate, to signal to other threads that they might be holding some internal lock. Upon
exit they �ip the bit back. When some other thread wants to make sure that no thread
is holding the lock, it �ips a �ag, and waits for all threads to have their bit set to zero.
�is is e�ectively a read-write lock.

�e locking scheme prevents most allocations of deadlocking, but not all. Rust uses
pthreads internally for thread handling on Linux, which allocates internally, both in
spawn and join. �e former may be circumvented by acquiring the allocation lock
before calling it, but this is no solution for the la�er, since the thread may depend on
allocating before exiting.

5.6.2 SignalVec
For performance reasons threads store their allocation in TLS in between reclamation
passes in a Vec. �e allocations are later collected in the threads signal handler when
some thread wants to reclaim memory, as the reclaiming thread requires access to all
allocations in the process. However, due to the asynchronous nature of signals we
run into problems if a thread is in the middle of some operation on the Vec when it is
signaled, since the vector is copied and clear()ed in the signal handler.

To handle this complication we made SignalVec, a Vec that supports asynchronous
clear()s. �e implementation is a standard Vec implementation except that we use cas
to increment the length �eld of the SignalVec, such that we can detect the case where
clear() was called in the middle of push. Since we are writing to the last element, we
do not risk overwriting any values. �e SignalVec is speci�cally designed to only work
in the exact use case that CMR requires.

41

5.6. COMPLICATIONS CHAPTER 5. IMPLEMENTATION

5.6.3 �read Registration
�read startup and shutdown has shown to be a di�cult problem to handle, especially
when carefully managing when threads are allowed to allocate. Early a�empts were
made to automate this using lazy initialization of thread local variables, but controlling
allocations in these, or guaranteeing the order of initialization was problematic. Testing
with continuously checking whether the thread was initialized in CMR methods showed
that it imposed too much overhead for the strategy to be viable.

42

Chapter 6

Usage of CMR

An algorithm must be seen to be
believed.

Donald E. Knuth

In this chapter we look at usage code for CMR. �e goal of this chapter is twofold:
we mainly want to look closer at how the abstractions that CMR provides are used and
how di�cult they are to use; we also believe that showing the implementations of the
data structures we can further reason about the performance characteristics and pitfalls
for the results obtained in Chapter 8.

We have implemented four data structures: a stack, a queue, a list, and a hashmap,
and the implementations will be considered in sequence.

6.1. LOCK-FREE STACK CHAPTER 6. USAGE OF CMR

6.1 Lock-free Stack
We begin by looking at an implementation of a concurrent stack, which is arguably the
simplest concurrent data structure. �e stack is the well known Treiber Stack from [42].

�e de�nitions of the Stack and Node structs and the two most important opera-
tions on a stack, push and pop, is shown in Listing 6.1. We look at each one in turn.
Construction of the stack is omi�ed for brevity, since an empty stack just has a null
pointer as its top node.

6.1.1 Push
push allocates the stack node itself, so it takes the value we want to push onto the stack
(ST5). We start out by declaring two Guards (ST6): one for the new node we allocate,
and one for the head of the stack. We must protect the head of the stack, since the node
may be removed a�er we read its address, and we would have a dangling pointer. Next
we allocate a new node (ST7), which is done outside the retry loop so that we only have
to allocate one time per call to push. Now we enter the retry loop, which we repeat
until we succeed in changing the top pointer of the stack to our new node. �e top
node is read (ST8), and the next pointer of the new node is set to the head (ST9). If we
succeed of changing the top pointer of the stack to our new node, we break out of the
loop and return (ST10). If not, we retry until we do.

6.1.2 Pop
pop is similar to push. We declare two Guards (ST13), but this time they are for the
�rst and second node in the stack. We read the top pointer (ST14), and return from the
function if it is null using the ? Rust operator. We then read the next pointer of the
node (ST15); here the null case is the same as the non-null case. We try to swap the
head pointer from the �rst to the second node (ST16); if we fail we restart, and if we
succeed we move out the Node from the Guard. �is is an unsafe operation, as the type
is copied out of its original place, e�ectively aliasing it. At last, the data is returned.

As an example of why reading and returning the node data is unsafe in the general
case, consider two threads T1 and T2 using a Stack<Box<T>>. T1 is looking at a node n,
and T2 is popping n from the stack, ge�ing the Box<T> back from it. Now T2 drops the

head 1 4 1

3T1

4T2

Figure 6.1: T1 and T2 both tries to swap the head pointer towards their node.

44

CHAPTER 6. USAGE OF CMR 6.2. LOCK-FREE QUEUE

Listing 6.1: Stack::push and Stack::pop

ST1 struct Stack<T> { top: SharedGuard<Node<T>>, }
ST2 struct Node<T> { data: ManuallyDrop<T>, next: Atomic<Node<T>>, }
ST3
ST4 impl<T> Stack<T> {
ST5 pub fn push(&self, t: T) {
ST6 guards!(_new_top, _top);
ST7 let mut new_top = cmr::alloc(_new_top, Node::new(t));
ST8 loop { let top = cmr::guard(_top, &self.top);
ST9 unsafe { new_top.get_mut().next = Atomic::new(top); }
ST10 if self.top.cas(top, new_top, SeqCst).is_ok() { break; } } }
ST11
ST12 pub fn pop(&self) -> Option<T> {
ST13 guards!(_top, _next);
ST14 loop { let top = cmr::guard(_top, &self.top).ptr()?;
ST15 let next = cmr::guard(_next, &top.next);
ST16 if self.top.cas(top, next, SeqCst).is_ok() {
ST17 let node = unsafe { top.move_out() };
ST18 return Some(node.data()); } } } }

Box, which frees the pointer. If T1 decides to look at the data in n, it will dereference
a freed pointer, which is a use-a�er-free (De�nition 4.1). Despite being unsafe in
the general case, it is safe for the implementation of the stack as presented, since no
operation on the stack looks at the data of a node, except in (ST17), where only one
thread may be for any given node, since we succeed the cas operation.

6.2 Lock-free �eue
�e queue implemented is based on the well known Michael-Sco� �eue from [30].
�e idea behind the queue is to have a sentinel node as the �rst node of the queue in
order to avoid di�cult edge cases when the queue is empty. �e sentinel node is the
grayed out node in Fig. 6.2.

�e Node and MsQueue struct de�nitions are omi�ed, as they are very similar to
those of the Stack. �e main di�erence is that in the Queue we maintain both the
head and tail. �e following invariants hold for the Queue: head is never null, at any
instant tail is either the last, or second last node in the queue.

push is shown in Listing 6.2; pop is omi�ed due to its similarity with Stack::pop.
We start out by declaring three Guards (MS3): one for the new node, one for the

current tail, and one for the tails next node, which may be present. We load tail (MS5),

3 1 4 ⊥

head tail

Figure 6.2: �e Michael-Sco� �eue. �e �rst node in the queue is a sentinel node.

45

6.3. LOCK-FREE LIST CHAPTER 6. USAGE OF CMR

Listing 6.2: �e push operation on a Michael-Sco� �eue.
MS1 impl<T> MsQueue<T> {
MS2 pub fn push(&self, t: T) {
MS3 guards!(_new_node, _tail, _next);
MS4 let new_node = cmr::alloc(_new_node, Node::new(t));
MS5 loop { let tail = cmr::guard(_tail, &self.tail).ptr().unwrap();
MS6 let next_ptr = &tail.next;
MS7 let ptr = cmr::guard(_next, next_ptr);
MS8 if ptr::addr(ptr) != 0 { let _ = self.tail.cas(tail, ptr, SeqCst); }
MS9 else if next_ptr.cas(ptr::null(), new_node, SeqCst).is_ok() {
MS10 let _ = self.tail.cas(tail, new_node, SeqCst);
MS11 break; } } } }

and its next pointer (MS7). Since the Michael-Sco� queue is always non-empty, we
know that the head is non-null, and it is therefore safe to promote the NullablePtr to
a Ptr using .unwrap(). If the next pointer is non-null the node we believed was the
tail was not the tail a�er all. We try to swing tail from the node we read, to its next
node (MS8) before restarting. If the tail was null we try to cas its next �eld from null
to our new node (MS9). If we succeed, we cas the tail to our node and exit. If we fail, we
restart. Note that we do not check the results of the the cas where we set the tail to the
node we just inserted; if this operation fails, it just means that some other thread came
along and noticed that tail was not the real tail, and cased it to the last node (MS8).

6.3 Lock-free List
Michael introduced a concurrent List in [22], which this implementation is based upon.
�e list is similar to the Stack from Section 6.1, but we support more operations than
push and pop, including queries and removals, and insertions into arbitrary points in
the list. De�nitions of List are very similar to that of the Stack and Queue, and is
therefore omi�ed.

Having arbitrary insert and remove opens for a problem known as double-remove,
shown in Fig. 6.3. Let there be two threads in the system T1 and T2, and let A, B, and
C be three consecutive nodes in the list. If T1 wants to remove the B node, there is a
small window in which T2 may insert a new node, X, between B and C. When T1s cas
operation succeeds — note that A.next was not touched by T2 — it will accidentally
swing the pointer past the new node X without noticing. �is is a variant of the ABA
problem (Section 2.3.2).

A solution to this problem, as shown in eg. [28], is to exploit memory alignment on
modern CPU architectures: structs are aligned in memory, meaning their address is a
multiple of some power of two. �is causes the least signi�cant bits of their address to
always be zero; bits that may be used for other purposes. We use the least signi�cant
bit in the .next �eld in a node for a tag1, signaling that the node is logically deleted,
and should not be acted upon. To see how this helps the problem as shown above, T1

1 Now we �nally understand why CMR supports pointer tagging from Section 4.3.2

46

CHAPTER 6. USAGE OF CMR 6.3. LOCK-FREE LIST

2
A

7
B

8
C

(a) T1 calls cas(A.next, B, C).

2
A

7
B

1
X

8
C

(b) T2 inserts X before the cas is ran.

2
A

7
B

1
X

8
C

(c) �e cas succeeds. Both B and X are removed.

Figure 6.3: Double removal with List::remove.

would start out the deletion process of B by calling cas(B.next, C, with_tag(C, 1)).
Should this fail, T1 can just read B.next again, and retry. When it succeeds, it may try
to cas A.next over B to C. Now T2 realizes that it should not insert X between B and C,
since it reads the tag of B, realizing that it was deleted.

6.3.1 �e Entry API
Many of the most interesting operations on the List involves iterating through the list.
Due to the ownership and lifetime rules that Rust imposes, it may be tricky to implement
typical iteration since due to the pointer juggling and the lifetime issues that arises. For
this reason, the API uses an abstraction for iterating through the list: Entry.

Listing 6.3: Partial Entry API from the List implementation.
pub struct Entry<'a, T: 'a> {

current: &'a mut cmr::guard::Guard<Node<T>>,
previous: &'a mut cmr::guard::Guard<Node<T>>,
next: &'a mut cmr::guard::Guard<Node<T>>, }

impl<'a, T> Entry<'a, T> {
pub fn step(&mut self) -> Result<T>;
pub fn current(&'a self) -> cmr::NullablePtr<'a, Node<T>>;
pub fn previous(&'a self) -> cmr::NullablePtr<'a, Node<T>>;
pub fn insert_between(&self, new_node: ptr::Ptr<Node<T>>) -> Result<T>;
pub fn delete(&self) -> Result<T>;
pub fn seek_with<F>(&mut self, f: F) -> Result<T> where F: Fn(&T) -> bool; }

An Entry is like a pointer into the list, which can step() to the next node, get a
pointer to the current() node, remove the current node, insert_between two nodes,
and �nd nodes which data satis�es arbitrary closures Fn(T) -> bool. Since there

47

6.4. LOCK-FREE HASH TABLE CHAPTER 6. USAGE OF CMR

is some overhead in declaring a Guard, Entry contains references to Guards rather
than the Guards themselves. �is makes constructing a Guard nearly free. Another
implication of this is that Entry is movable in memory (as Guard is not), which can be
practical.

�is indirection simpli�es many operations, and we barely need to deal with lifetime
and ownership issues, although it almost requires NLL (Section 3.6.1) to use, since we
still need to handle the pointer management inside the Entrys methods.

Listing 6.4: Implementation of List::for_each using the Entry API.
pub fn for_each<F: Fn(&T)>(&self, f: F) {

guards!(_a, _b);
let mut entry = self.entry(_a, _b);
while let Some(ptr) = entry.current().ptr() {

f(ptr.data());
if entry.step().is_err() { break; } } }

6.4 Lock-free Hash Table
�e hash table is a versatile and popular data structure, and is widely used due to its
fast operations, which includes queries, insertions, and removals. �e hash table is also
a more interesting data structure to look at from a concurrency perspective, as it has
the potential to scale much be�er, since not all operations is on the same memory; in
comparison a queue only has two locations, namely the front and back, which are of
interest. Multiple inserts may be done concurrently in a hash table without touching
the same memory at all; this greatly increases the gain from having multiple threads.

Lock-free hash tables are interesting for the same reasons as regular hash tables.
Despite the interest, designing a concurrent hash table turns out to be a di�cult problem.
Usually the problems revolve around resizing the hash table. A common approach to
implementing hash tables is to have an array of buckets in which the elements resides.
Keys which hashes share some property (egȧ common pre�x or su�x) may be put in the
same bucket. When the load factor — the ratio of elements in the table to the number of
buckets — is too large, we increase the number of buckets: we resize the hash table. �e
hash table implemented does not deal with this problem: we have a �xed number of
“buckets”, although it is possible to extend the implementation to be�er handle large
load factors by recursively constructing a new sentinel array to handle the next n bits
of the hash. �e size of the array in the implemented hash table is 220 = 1048576.

6.4.1 Split-Ordered List
We start by describing the Split-Ordered List, which were introduced in [39]. �e list is a
regular linked list where the nodes are ordered by the reverse hash of the value in the
node. �e list also contains sentinel nodes, nodes without meaningful data, but which
marks the beginnings of a bucket in the hash table. By making the number of buckets
b = 2k we can double b when the load factor is too high, and insert one more sentinel

48

CHAPTER 6. USAGE OF CMR 6.4. LOCK-FREE HASH TABLE

node between each of the nodes already present; this e�ectively di�erentiates between
one new bit of the reverse hash. See Fig. 6.4 for an illustration of the numbers [0, 15]
ordered by their bit-reverse. Note that when adding numbers up to the next power of
two no two inserted numbers are consecutive; they spread nicely.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

Figure 6.4: �e numbers [0, 15] ordered by their bit-reversal

Using the Split-Ordered List we can implement a concurrent hash table by having
an array of pointers to sentinel nodes, and a “size” of the bucket array. If a sentinel
pointer is null, then the node is not yet in the table. When inserting a new element into
the table, we �rst �nd the sentinel node that precedes the node we want to insert (the
parent); this is known, since we know the ordering of the nodes in the list — the reverse
hash. However, due to the resizing method, the parent may not have been inserted yet.
If not, we can simply recurse on the insertion method, and insert the parent �rst. �en
we jump to the preceding sentinel node, and iterate through the list, �nding the place
in which our new node should be. Assuming a small load factor, this is a fast operation.

0(0)

h

0(0)

e

4(1) 1(4)

l

5(5)

l

5(5) 3(6)

o

7(7)

0 1 2 3

Figure 6.5: �e Split-Ordered List. Node labels shows the hash and its reverse in
parenthesis.

Fig. 6.5 shows the split-ordered list with a table size of 4. �e nodes in the list are
ordered by the reverse of their hash (shown in parenthesis). Given a node n, we �nd
the sentinel node that should precede it in the list by taking hash(n) % table_size.
Note that this is not the reverse hash. For instance, inserting a node where hash(n)
== 7, we look in bucket 7 % 4 == 3, and iterate from sentinel node 3. It is only in the
iteration where we insert our new node that we use the reverse hash. Inserting a node
where hash(n) == 10, we would get bucket == 2, which is null, so we need to insert
the sentinel node �rst. �is sentinel node would be inserted in between the h and e

49

6.4. LOCK-FREE HASH TABLE CHAPTER 6. USAGE OF CMR

node, since sentinel nodes precede data nodes with the same reverse hash.
Next we look at the most important operations in the hash table: contains and

insert. Removals are similar to in the List; we remove the data node from the list.
Sentinel nodes are never removed. While this increases the memory usage of hash
tables, it does not reduce the performance of lookups since the number of sentinel nodes
we need to look at does not change.

6.4.2 Contains
Listing 6.5 shows the implementation of HashMap::contains. �e implementation of
utility functions such as bucket_and_revhash are omi�ed for brevity. We �nd the
parent node (HC4), and use the Entry API from List (HC6) to look for the �rst node
which hash and key is the same; if we encounter a node which hash is more than our
node, we know that we have gone too far. Entry::seek_with_opt lets us break out of
the search early by returning None (HC10). If we �nd a node with both the right hash
and the right key, we return Some(true) from the closure (HC11), and seek_with_opt
returns Ok. If we get back Ok, the search succeeded, so we return true, and false
otherwise.

Listing 6.5: Implementation of HashMap::contains.
HC1 impl<K, V> HashMap<K, V> {
HC2 pub fn contains(&self, k: &K) -> bool {
HC3 let (bucket, rev_hash) = self.bucket_and_revhash(k);
HC4 let curr = self.get_or_insert_bucket(bucket);
HC5 guards!(_curr, _prev);
HC6 let mut entry = list::Entry::from_node_ptr(curr, _curr, _prev);
HC7 entry.seek_with_opt(|data|
HC8 Some(match data {
HC9 &Entry::Value((h, ref key, _)) => {
HC10 if h > rev_hash { return None; }
HC11 else { h == rev_hash && k == key }
HC12 }
HC13 _ => false })
HC14).is_ok() } }

6.4.3 Insert
HashMap::insert is more complicated, as there are multiple things that can go wrong,
and that some operations require cleanup. Listing 6.6 shows the implementation of
insert. Due to the complexity of the method, we have omi�ed certain sections of the
code. �e omi�ed code is either similar operations to previously shown methods, or
explained in the text.

Listing 6.6: Implementation of HashMap::insert.
HI1 impl<K, V> HashMap<K, V> {
HI2 pub fn insert(&self, k: K, v: V) {
HI3 let (bucket, rev_hash) = self.bucket_and_revhash(&k);
HI4 let curr: cmr::Ptr<_> = self.get_or_insert_bucket(bucket);
HI5 guards!(_new_node, _curr, _prev, _r1, _r2);

50

CHAPTER 6. USAGE OF CMR 6.4. LOCK-FREE HASH TABLE

HI6 let node_data = Entry::Value((rev_hash, k, v));
HI7 let mut new_node = cmr::alloc(_new_node, list::Node::new(node_data));
HI8 'restart: loop {
HI9 let mut entry = list::Entry::from_node_ptr(curr, _curr, _prev);
HI10 let res = entry.seek_with(|e| match e {
HI11 &Entry::Value((h, ref key, _)) => h >= rev_hash,
HI12 &Entry::Sentinel(h) => h > rev_hash });
HI13 if let Err(list::Error::Empty) = res {
HI14

〈
End of list case

〉
}

HI15 if res.is_err() { continue 'restart; }
HI16 if entry.insert_between(new_node).is_err() { continue 'restart; }
HI17

〈
Remove other nodes with the same key

〉
}

HI18 self.increment_length(); } }

We start out by hashing the key, �nding the reverse hash (HI3) and the bucket of
the sentinel node, and a pointer to the node is acquired (HI4). We declare �ve (!) Guards
(HI5), and alloc our new node (HI7). Next we make our entry from the sentinel (HI9),
and �nd the correct place to put our new node (HI10). �e new node is put before any
other nodes with the same hash, but a�er the sentinel node, should their hashes be the
same. We insert the new node in front of the old nodes so that other threads will see the
most recently updated node �rst. �e result of this operation has three cases: 1) we fail
with Empty which means we got to the end of the list, and is handled by inserting the
new node at the end of the list (HI13), 2) we fail with another failure case and restart
(HI15), and 3) we succeed and actually insert our new node into the list (HI16), where
we, again, restart upon failure.

A�er insertion we must check for other nodes with the same key, since there should
only be one entry for any given key in the map (HI17). �is is done by making a new
Entry with the new node, stepping once, so that the current node is not our new
node, and delete() any node that has the right key. When we hit a node which hash is
more than our own, we are done.

6.4.4 Remove
HashMap::remove is, in comparison to insert, simpler. Finding the sentinel is simi-
lar to insert (HR3-HR7), but in (HR8) we use seek_with_opt which allows for early
termination of the search, since we should stop if we reach a node with a larger hash
than the one we want to remove. We test the result of the search (HR14) and branch
appropriately, and call Entry::delete (HR18) if we found the node we are looking for.
Only if we succeed in removing the node we break the loop.

Listing 6.7: Implementation of HashMap::remove.
HR1 impl<K, V> HashMap<K, V> {
HR2 pub fn remove(&self, k: &K) -> bool {
HR3 let (bucket, rev_hash) = self.bucket_and_revhash(k);
HR4 let curr: cmr::Ptr<_> = self.get_or_insert_bucket(bucket);
HR5 guards!(_curr, _prev, _en);
HR6 loop {
HR7 let mut entry = list::Entry::from_node_ptr(curr, _curr, _prev, _en);
HR8 let ret = entry.seek_with_opt(|data|
HR9 if data.hash() > rev_hash { None }
HR10 else { match data {

51

6.4. LOCK-FREE HASH TABLE CHAPTER 6. USAGE OF CMR

HR11 &Entry::Value((h, ref key, _)) if h == rev_hash &&
HR12 k == key => Some(true),
HR13 _ => Some(false), } });
HR14 match ret {
HR15 Err(list::Error::Empty) => return false,
HR16 Err(_) => continue,
HR17 Ok(_) => {} }
HR18 if entry.delete().is_ok() { break; } }
HR19 self.count.fetch_sub(1, Ordering::SeqCst);
HR20 return true; } }

An important detail about Entry::remove is that the actual cas to remove the node
from the list does not need to be successful for the operation to be considered as such;
it is su�cient for the node to be tagged as removed. �is is due to the fact that if the
node is tagged as removed, any thread stepping over it will remove it.

52

Chapter 7

Methodology

Inspector, your methods are
unconventional to say the least.

�e Police Commissioner, Sudden
Impact (1983)

�is chapter summarizes some of the practical ma�ers surrounding the implementa-
tion part of the thesis. �is is neither a description of, nor a part of the implementation,
of CMR. Despite this we believe documenting the methods of experimentation is of
equal importance in Computer Science as in any other science.

We look at testing in Section 7.1, as testing of concurrent systems are of a di�erent
nature than that of sequential programs. Section 7.2 shows how we have performed the
benchmarks, which results are presented in Chapter 8.

7.1. TESTING CHAPTER 7. METHODOLOGY

7.1 Testing
Testing is an important part of so�ware development. While formal methods have not
yet made its way into the so�ware development industry, simpler and more heuristic
methods, like unit testing and integration testing, are widespread. However, while
testing is useful to improve the quality of so�ware, it is far from su�cient. As Edsger
Dijkstra famously said [12]:

Testing shows the presence, not the absence of bugs

In the world of concurrent programming this is even less so. Many bugs are mani-
fested through unfortunate1 thread execution interleavings done by the scheduler. We
try to reveal these interleavings by repeatedly running tests until our con�dence that
no such interleavings exists is su�ciently high. In addition, we run tests with tools
such as Valgrind [44] and our own sanitizer (Section 7.1.1). Tests were also ran with
and without compiler optimizations, as these optimizations o�en reveal yet more bugs.

7.1.1 Sanitizer
To automate validation of pointer reads we made a compile time feature2 called sanitize
that tracked all allocations, frees, and pointer reads. Allocations and frees were tracked
in two HashMaps, ALLOCATIONS and FREES. On each new allocation, we insert it into
the HashMap while asserting that it was not there previously. We also remove it from
the frees map, in case it had previously been allocated and freed. Since we are using a
custom pointer type, Ptr, checking the validity on each pointer access is possible, as
shown in the snippets below:
pub fn alloc<'a, T: Trace>(t: T) -> Ptr<'a, T> {

let addr = B::into_raw(B::new(t)) as usize;
#[cfg(feature = "sanitize")] {

let mut a = ALLOCATIONS.lock().unwrap();
assert!(a.insert(addr));
let mut f = FREES.lock().unwrap();
f.remove(&addr); }

unsafe { Ptr::new(addr) } }

impl<'a, T> Deref for Ptr<'a, T> {
type Target = T;
fn deref(&self) -> &T {

#[cfg(feature = "sanitize")] {
let a = ::alloc::ALLOCATIONS.lock().unwrap();
if !a.contains(&addr(self)) {

let was_freed = ::alloc::FREES.lock().unwrap().contains(&addr(self));
panic!("{:x} is not valid. Was it freed? {}", self.data, was_freed); } }

unsafe { &*(self.as_raw()) } } }

�is feature was of great help during development and testing, and it quickly reported
illegal memory accesses, without having the overhead of other sanitizers like Valgrinds
memcheck. �e downside of this sanitizer is that it did not show the source of the errors,

1 Some would call interleavings that reveal bugs fortunate
2 features are similar to #ifdefs in C and C++

54

CHAPTER 7. METHODOLOGY 7.2. BENCHMARKING

only their presence. However, with this in mind we could rerun the program using
memcheck and try to force the illegal accesses to manifest themselves, as we then knew
that they were present.

7.2 Benchmarking
�e benchmarks are ran with timed trials, where a function is ran repeatedly for a
speci�ed duration with any number of threads. �e number of executions is counted
for each thread and the total operations per second is summed and reported. All threads
run the same code, but they may have di�erent thread local data. �is is useful when
benchmarking HashMap::insert, so that the threads can inserts values with di�erent
keys. �reads also time their execution time to catch skewage in the executed wall time
for each thread, due to unfortunate scheduling.

�ere are a number of pitfalls when it comes to benchmarking code. We discuss a
few of them; [11] is a good resource for experimental testing of data structures.

Initialization of data structures should not be done on a single core as this creates a
strong skew of data locality for that core, and other cores will have reduced performance
due to the data locality. �is is especially important on NUMA systems with multiple
CPU sockets. �e e�ect of having a single thread initializing all data is also dependent
on the allocator used.

Having a constant overhead, and assuming that all workloads are equally hit by the
overhead of the performance pro�ling system may also lead to errors; smaller workloads
will naturally be more a�ected, and percentage wise changes to the reported data may
get biased.

7.2.1 Trench
In order to more e�ectively benchmark threaded applications in Rust, an open source
benchmarking library called trench [43] was developed. �e library handles thread
management and state for the runs of the benchmark. Trench supports both mutable
thread local state and immutable shared state between all threads.

Listing 7.1: Hashmap::insert benchmark using trench

fn hashmap_insert(num_threads: usize) {
fn func(state: &HmState, local: &mut RandomSource<u64>) {

state.hashmap.insert(local.next(), 0); }
let b = trench::TimedBench::<HmState, RandomSource<u64>>::with_threads(num_threads);
b.with_local_state(|l| { cmr::thread_activate();

l.gen_n(10_000_000); });
let res = b.run_for(duration(), func);
b.with_local_state(|_| cmr::thread_deactivate());
println!("cmr::HashMap\tinsert\t{} ops/sec", fmt_thousands_sep(res.ops_per_sec)); }

For CMR this is useful since we can put the data structures we want to benchmark in
the immutable shared state, as neither of the operations we want to test are &mut self

55

7.2. BENCHMARKING CHAPTER 7. METHODOLOGY

HashMap

Global Shared State

fn() RandomSource T1

�read local mutable state

fn() RandomSource T2

fn() RandomSource T3

fn() RandomSource T4

Figure 7.1: Illustration of the HashMap benchmark. �e four threads all have their
own RandomSource which supplies thread local random numbers, and they share the
HashMap.

(see Section 3.5.1). �e user speci�es the function to be benchmarked, the number of
threads, and the states, and the duration of the benchmark, and trench handles the rest.
�e number of runs of the function speci�ed during the given duration is measured.

Listing 7.1 shows the benchmark for HashMap::insert. RandomSource allows us
to pre-generate random numbers that we can insert into the hashmap, such that the
random number generation itself is thread local, and is not included in the benchmarking
loop.

�e with_local_state function runs the closure on each thread in parallel; this is
used both for initializing the local state, and for thread local initialization and destruction.
�e global and local states, HmState and RandomSource, implements the trait Default,
so that we do not have to initialize it ourselves.

56

Chapter 8

Results

I pass with relief from the tossing sea
of Cause and �eory to the �rm
ground of Result and Fact.

Winston S. Churchill, �e Story of the
Malakand Field Force

In this chapter we look at the experimental results of the system, both piece-wise
and as a whole. We start by summarizing the hardware that the benchmarks is ran on
in Section 8.1. In Section 8.2 we look at the overhead of the operations done by CMR. In
Section 8.3 we look at the performance of the data structures implemented, with and
without the overhead CMR, and compare them to alternatives in the Rust ecosystem,
like Crossbeam [18] and data structures in the standard library wrapped in a Mutex.

8.1. HARDWARE CHAPTER 8. RESULTS

8.1 Hardware
We start this chapter by looking at the hardware the benchmark suite is ran on. �e
benchmark suite is ran on four separate machines: one desktop machine Intel® i7–4770,
an ARM based cloud server Cavium �underX and two quad-socket high-end server
CPUs, Intel® Xeon® E7–8870 and Intel® Xeon® Gold 6150. �e four CPUs all have
di�erent indented usage and price range, with the exception of the two high-end servers.
It is therefore interesting to look at the performance on all systems, as opposed to
limiting ourselves to a certain price range or intended usage.

Intel® i7–4770 is an x86 desktop CPU running at 3.40GHz, with 4 cores and 8 threads.
�e system has 16 GB of RAM, and is the system with the least amount of free memory.

Cavium �underX is an ARMv8 CPU at 2.50GHz, having 32 cores and 32 threads
over two NUMA cores, with 32 GB of RAM.

Intel® Xeon® E7–8870 is an x86 CPU for the server market running 10 cores with
20 threads at 2.40GHz. �e system we ran tests on was a quad socket system, making
the total thread count 80. �e system had 1 TB of main memory.

Intel® Xeon® Gold 6150, the last server, is similar to the Intel® Xeon® E7–8870
except that it has a slightly fast clock rate, 2.70GHz, and it has 18 cores with a total of
36 cores. �is was also a quad-core system, making the total thread count a whopping
144. �e system used had 512 GB of main memory.

�e number of threads for the benchmark ranges from 1 to slightly above the
number of hardware threads on the CPU the benchmark is ran on. It is expected that
the performance evens out when the number of threads reaches the maximum number
of hardware threads in all benchmarks. �e duration of the benchmarks also varies, due
to memory constraints of the system they are ran on.

8.2 Operations of CMR
�e operations that CMR provides that are most interesting to look at is allocation
(cmr::alloc) and guard initialization and destruction (guard!), as these operations are
the only ones that have any signi�cant overhead. Atomic loads pointer manipulations
are mainly tricks of the type system to ensure the safety of the operations, and has no
run-time overhead.

8.2.1 Primitives
We begin by looking at the performance of Guard construction and allocation. �e
generated code from the guard! macro contains some initialization checks, which the
compiler could not remove despite constructing multiple guards in a row. For this
reason the guards! macro were wri�en, which reduced the execution time by 20% for
10 declarations. We measure the time one Guard declaration takes, and the time for 10
Guards to be declared using the guards! macro. All measurements are amortized over
1000 runs as shown in Fig. 8.1, but the reported numbers are per operation.

�e results for all machines are summarized in Table 8.1. Note that a single guard!
is faster than guards! per declaration. �is can be a�ributed to that destruction of a

58

CHAPTER 8. RESULTS 8.3. DATA STRUCTURES

#[bench]
fn cmr_guard_1k(b: &mut Bencher) {

global_init();
let _t = ::test::test_init();
b.iter(|| for _ in 0..1000 { guard!(g);

let _: &mut Guard<u64> = g; }); }

Figure 8.1: Benchmark for Guard construction.

Guard must �nd itself in the Vec of Guards, so more Guards take longer.

Table 8.1: Summary of the execution of selected CMR operations. All numbers are per
single operation.

Machine guard! guards! cmr::alloc Box::new

Cavium �underX 78 ns 92 ns 335 ns 185 ns
Intel® i7–4770 13 ns 13 ns 45 ns 28 ns
Intel® Xeon® E7–8870 28 ns 30 ns 73 ns 50 ns
Intel® Xeon® Gold 6150 12 ns 18 ns 56 ns 33 ns

8.3 Data Structures
As mentioned in Chapter 6, the stack and the queue both have operational bo�lenecks;
that is most operations contest the same memory locations, which causes poor scaling
with more cores. In addition, since the list from Section 6.3 is the primary building block
for the hash table, we do not look at the performance of the list explicitly. �us, the only
remaining data structure to look at is the hash table. �is is also the most interesting.

We compare the four hashmap variations: 1) the hashmap from Section 6.4 (cmr)
2) the same hashmap, but with all operations of CMR to be no-ops (cmr(noop)) 3) an ex-
ternal SkipList implementation from the Crossbeam project [2] (cb) and 4) std::HashMap
wrapped in a Mutex (std).

�e HashMap benchmarks consists of four operations: insert, remove, contains,
and a combination of the three: a 80/10/10 split of contains, inserts, and remove
respectively. �is is shown experimentally to mirror real world [7, 39, 16] usage of
hashmaps quite well, and is common in concurrent performance testing.

Naturally, this is not quite an apples-to-apples comparison; the hashmap of CMR is
implemented quite di�erently than in Crossbeam, and even more di�erent than the one
in the standard library. �erefore we can, and should, a�ribute parts of any experimental
di�erence to the di�erence in implementation.

59

8.3. DATA STRUCTURES CHAPTER 8. RESULTS

8.3.1 Intel® i7–4770

 1x106

 2x106

 3x106

 4x106

 5x106

 6x106

 7x106

 8x106

 9x106

 1x107

 1.1x107

 2 4 6 8 10 12

cmr
cmr(noop)

std
cb

(a) HashMap::insert

 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 1.4x107

 2 4 6 8 10 12

cmr
cmr(noop)

std
cb

(b) HashMap::remove

 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 1.4x107

 1.6x107

 1.8x107

 2x107

 2.2x107

 2 4 6 8 10 12

cmr
cmr(noop)

std
cb

(c) HashMap::contains

 0

 5x106

 1x107

 1.5x107

 2x107

 2.5x107

 2 4 6 8 10 12

cmr
cmr(noop)

std
cb

(d) HashMap with 80% contains, 10% insert, 10%
remove

Figure 8.2: HashMap performance on Intel® i7–4770

�e experimental results reveal that the hash table scales properly up to the thread
limit of the machine. As mentioned in Section 8.1 this is expected. We also see that
the variant of CMR with all overhead removed performs strictly be�er than the real
CMR; this acts as a �ne sanity check. Crossbeams SkipList also scales well, although its
performance is slightly lower than that of CMR, with the exception of the very last data
points from the remove benchmark.

It is also nice to see that the naı̈ve approach of wrapping a HashMap in a Mutex scales
rather poorly; however we should point out that for Crossbeam, it makes sense to use
the Mutex with up to four threads; which, for many applications, might be su�cient.

60

CHAPTER 8. RESULTS 8.3. DATA STRUCTURES

8.3.2 Cavium �underX
�e Cavium �underXis of a di�erent nature than the remaining CPUs in this section,
since it is an ARM machine. It also has a relative low clock speed. �is manifests
itself here in that the throughput in terms of absolute numbers is lower than the Intel®
i7–4770 on multiple benchmarks, despite having four times the thread count.

In the insert benchmark we see a dip in throughput at 16 cores. �is may be
a�ributed to the number of threads being too high to run e�ectively on a single socket.
However, if we calculate how many elements are inserted, we get 5M × 16 = 80M
elements; since the size of the pointer array is only ≈ 1M, we get a load factor of ≈ 80,
which means that inserts risk looking at 80 nodes before �nding the correct place in the
list to insert! In addition, the remove benchmark seems not to run into this problem.
�is suggests that it is in fact the capacity of the hash table that is the limiting factor,
and not the cross-socket synchronization.

 0

 1x106

 2x106

 3x106

 4x106

 5x106

 6x106

 7x106

 8x106

 5 10 15 20 25 30 35

cmr
cmr(noop)

std
cb

(a) HashMap::insert

 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 1.4x107

 5 10 15 20 25 30 35

cmr
cmr(noop)

std
cb

(b) HashMap::remove

 0

 5x106

 1x107

 1.5x107

 2x107

 2.5x107

 5 10 15 20 25 30 35

cmr
cmr(noop)

std
cb

(c) HashMap::contains

 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 1.4x107

 1.6x107

 1.8x107

 5 10 15 20 25 30 35

cmr
cmr(noop)

std
cb

(d) HashMap with 80% contains, 10% insert, 10%
remove

Figure 8.3: HashMap performance on Cavium �underX

61

8.3. DATA STRUCTURES CHAPTER 8. RESULTS

8.3.3 Intel® Xeon® E7–8870 and Intel® Xeon® Gold 6150
�is section contains both the Intel® Xeon® E7–8870 and the Intel® Xeon® Gold 6150;
this is done due to the similarities of both the CPUs and of the data.

�e HashMap performance on the quad sockets is much more pessimistic than the
graphs from the earlier sections; the operational throughput on both insert and remove
evens out already a�er 16 and 36 cores for the Intel® Xeon® E7–8870 and Intel® Xeon®
Gold 6150 respectively. �is is probably because of the fact that only a limited number of
threads are running on one socket, so that any shared memory location that is modi�ed
by the HashMaps operations must be �ushed to main memory. For us, this is the number
of elements in the HashMap, which we need for resizing appropriately.

A back of the envelope calculation supports this claim: �e Intel® Xeon® E7–8870
runs at 2400 GHz, and with 16 threads we manage about 4M inserts per second in total.
�is means that if we assume that all accesses to the count �eld happened sequentially,
each access takes 2400 GHz

4M
= 600 cycles per operation. While this is a lot for a single

memory access, it is not too far o� from main memory access latencies, which are o�en
around 100 ns [14].

Yet another observation which supports the claim is that contains seems una�ected
by the NUMA e�ects, as it does not mutate the HashMap in any way.

62

CHAPTER 8. RESULTS 8.3. DATA STRUCTURES

 0

 1x106

 2x106

 3x106

 4x106

 5x106

 6x106

 10 20 30 40 50 60 70 80

cmr
cmr(noop)

std
cb

(a) HashMap::insert

 0

 1x106

 2x106

 3x106

 4x106

 5x106

 6x106

 7x106

 8x106

 9x106

 10 20 30 40 50 60 70 80

cmr
cmr(noop)

std
cb

(b) HashMap::remove

 0

 2x107

 4x107

 6x107

 8x107

 1x108

 1.2x108

 1.4x108

 1.6x108

 10 20 30 40 50 60 70 80

cmr
cmr(noop)

std
cb

(c) HashMap::contains

 0

 1x106

 2x106

 3x106

 4x106

 5x106

 6x106

 7x106

 8x106

 9x106

 1x107

 10 20 30 40 50 60 70 80

cmr
cmr(noop)

std
cb

(d) HashMap with 80% contains, 10% insert, 10%
remove

Figure 8.4: HashMap performance on Intel® Xeon® E7–8870

 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 1.4x107

 20 40 60 80 100 120 140 160

cmr
cmr(noop)

std
cb

(a) HashMap::insert

 0

 5x106

 1x107

 1.5x107

 2x107

 2.5x107

 3x107

 20 40 60 80 100 120 140 160

cmr
cmr(noop)

std
cb

(b) HashMap::remove

 0

 5x107

 1x108

 1.5x108

 2x108

 2.5x108

 3x108

 20 40 60 80 100 120 140 160

cmr
cmr(noop)

std
cb

(c) HashMap::contains

 0

 5x106

 1x107

 1.5x107

 2x107

 2.5x107

 20 40 60 80 100 120 140 160

cmr
cmr(noop)

std
cb

(d) HashMap with 80% contains, 10% insert, 10%
remove

Figure 8.5: HashMap performance on Intel® Xeon® Gold 6150

63

8.4. ALLOCATOR CHAPTER 8. RESULTS

8.4 Allocator
�e choice of allocator is also shown to have a real e�ect. Fig. 8.6 shows the HashMap::insert
benchmark while using the JeMalloc allocator (drawn lines) and the default system
allocator (dashed lines). JeMalloc is optimized for multiple threads; however in this
benchmark we clearly see a large increase in favor of the system allocator with 32
threads. �is lead is however unique for all other data points, with the exception of a
few of the data points from the Crossbeam hash table, when the thread count is 96, 128,
and 144.

�e general trend for the system allocator for both variants of CMR is downwards
from its maxima at 16 threads, while neither allocator seems to a�ect the hash table from
Crossbeam. �is might mean that the allocation is not in the bo�leneck for Crossbeam,
whereas it is for the hash table implemented using CMR.

 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 20 40 60 80 100 120 140 160

cmr
cmr(noop)

std
cb

cmr(system)
cmr(noop)(system)

std(system)
cb(system)

Figure 8.6: �e HashMap insert benchmark using JeMalloc and the system allocator

64

Chapter 9

Conclusion

Are we there yet?

Unknown

In this thesis we have presented CMR, a new memory reclamation system for con-
current systems, in the Rust programming language. We have presented an abstract
description of the system, and walked through the most important parts of the imple-
mentation. �en, we have shown usage code for the system, namely four concurrent
lock-free data structures. A�er notes on practical ma�ers of the implementation work,
we have looked at experimental results of both CMRs primitive operations as well as
the performance of the data structures implemented using CMR. What remains is a
conclusion.

9.1. IS CMR USEFUL? CHAPTER 9. CONCLUSION

9.1 Is CMR Useful?
�e big question of this text is that of the usefulness of CMR. While the operational
throughput measured of the hash table that used CMR was almost always above that of its
main competitor in this thesis, the SkipList from Crossbeam, we note that the di�erence
with and without the overhead of CMR o�en was quite signi�cant; occasionally the
functioning version of CMR laid right in between Crossbeam and non-functioning CMR.
It is therefore fair to assume that much of the di�erence is due to the di�erence in
implementation, as noted in Section 8.3. �is was not always the case however, and
there is clear use cases where CMR really shows a low overhead, namely low-write
workloads.

A pain point of CMR is that it depends on forking the process. While modern
operating systems leverage CoW optimizations on such operations, these might still be
very expensive. Worse still, the cost of this operation, and thus also of CMR in total, is
not dependent on the size of the subset of the process that is performing concurrent
work, but the process as a whole: any large application, like a compiler, will most likely
not be able to utilize CMR in a meaningful way, since the overhead of the fork operation
is likely to be too high.

Still, we argue that CMR presents a simple API for programmers to work with; we
require no explicit free calls, and implementation of rather intricate data structures has
shown that a very low number of unsafe blocks is required in order to handle memory
— this despite the very unsafe nature of concurrent programming. We believe that CMR
may act as a good instructional example of a way of making a safe interface over an
intrinsically unsafe one, by utilizing the Rust type system.

9.2 Alternatives
�ere are still a numerous variants of concurrent memory reclamation schemes. For
most applications it seems that is is hard to beat Epoch-based reclamation (Section 2.4.2),
due to its very lean overhead. Considering that Rust also has a well implemented third-
party crates for EBR, it is fair to say that the Rust ecosystem does not lack viable options
for managing memory in a concurrent se�ing.

Other alternatives also exist, and there are numerous implementation of Hazard
Pointers (Section 2.4.3), despite no one crate is sticking out as the go-to implementation
of HPs. It seems that most users that require a memory management system in their code
base prefer to implement their own version, so that they can tailor the implementation
to their needs.

It seems that there is still room in the Rust ecosystems for contenders within the
concurrency space, memory reclamation being no exception.

9.3 Future Work
Working in a relatively new and sparse problem space allows for many ideas to come to
life during development, and CMR has not been an exception to this. Plenty of ideas

66

CHAPTER 9. CONCLUSION 9.3. FUTURE WORK

have been considered, only for the author to realize that time is sparse.
�e subset of a program in which threads are operating concurrently with other

threads is usually rather small; not many tasks �t in this space. Additionally, for the data
structures implemented in this thesis, much of the execution time is spent on allocation.
For this reason it would make sense to have a specialized allocator for, say, a data
structure. �e allocator would then have access to pa�erns, like the size of allocations,
or the lifetime of objects. For instance, an allocator for a Queue of a certain type would
always be the same, and the lifetime would o�en be the same as the allocation order.
�is might open for performance gains.

Despite forking being a pain point of CMR, it might be possible to use the idea
of a custom allocator to limit the pages in which shared memory resides. If we could
limit the types of objects referenced from the shared memory, we might get away with
not having to copy the entire memory space when we fork, but only the parts of the
memory that is allocated for concurrent use. �is could greatly reduce the overhead
of forking, and would make the overhead of such as scheme independent of the total
memory space of the process, but only dependent on the memory used for concurrent
operations.

Many data structures and applications still remains to consider for CMR, in order
to see whether a system that is similar to CMR is feasible for real-world usage. �e
primary issue in performing such a survey today is that there is simply a lack of use
cases: CMR is heavily dependent on Rust, and there are simply not many large enough
applications to make a fair comparison between CMR and, say, the GDW-GC.

It is still not clear how memory management for concurrent systems can — or even
if they can — be uni�ed with static analysis, such as the Rust borrow checker, for con-
current systems, or in what degree programming language rules can help programmers
utilize the system they are programming on while still helping the programmer not to
make mistakes.

67

9.3. FUTURE WORK CHAPTER 9. CONCLUSION

68

Bibliography

[1] Rust programs vs C gcc. https://benchmarksgame-team.pages.debian.net/
benchmarksgame/faster/rust.html.

[2] Crossbeam SkipList. https://github.com/crossbeam-rs/
crossbeam-skiplist, 2018.

[3] �e go programming language. https://www.golang.org, 2018.

[4] �e kotlin programming language. https://www.kotlinlang.org, 2018.

[5] More �exible coherence rules that permit overlap; Issue 1053. https://github.
com/rust-lang/rfcs/issues/1053, 2018.

[6] �e LLVM Compiler Infrastructure. https://llvm.org, 2018.

[7] Alistarh, D., Leiserson,W., Matveev, A., and Shavit, N. Forkscan: Conservative
memory reclamation for modern operating systems. In Proceedings of the Twel�h
European Conference on Computer Systems (2017), ACM, pp. 483–498.

[8] Blumofe, R. D., and Leiserson, C. E. Scheduling multithreaded computations by
work stealing. Journal of the ACM (JACM) 46, 5 (1999), 720–748.

[9] Bohem, H. Bdw: A garabge collector for c and c++. http://www.hboehm.info/
gc/, 2018.

[10] Brooks Jr, F. P. �e mythical man-month (anniversary ed.).

[11] Brown, T. Good Data Structure Experiments are R.A.R.E. https://www.youtube.
com/watch?v=x6HaBcRJHFY.

[12] Buxton, J. N., and Randell, B. So�ware Engineering Techniques: Report on a
Conference Sponsored by the NATO Science Commi�ee. NATO Science Commi�ee;
available from Scienti�c A�airs Division, NATO, 1970.

https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/rust.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/rust.html
https://github.com/crossbeam-rs/crossbeam-skiplist
https://github.com/crossbeam-rs/crossbeam-skiplist
https://www.golang.org
https://www.kotlinlang.org
https://github.com/rust-lang/rfcs/issues/1053
https://github.com/rust-lang/rfcs/issues/1053
https://llvm.org
http://www.hboehm.info/gc/
http://www.hboehm.info/gc/
https://www.youtube.com/watch?v=x6HaBcRJHFY
https://www.youtube.com/watch?v=x6HaBcRJHFY

BIBLIOGRAPHY BIBLIOGRAPHY

[13] Carruth, C. Garbage in, garbage out: Arguing about unde�ned behavior, cppcon
2016. https://www.youtube.com/watch?v=v1COuU2vU w, 2018.

[14] Chang, J. Memory Latency - Return to Single Processor. http://www.qdpma.
com/ServerSystems/MemLat2018.html, 2018.

[15] CMR - Concurrent Memory Reclamation. https://github.com/IST-DASLab/
rust-drop-box, 2018.

[16] Cohen, N., and Petrank, E. E�cient memory management for lock-free data
structures with optimistic access. In Proceedings of the 27th ACM symposium on
Parallelism in Algorithms and Architectures (2015), ACM, pp. 254–263.

[17] Collins, G. E. A method for overlapping and erasure of lists. Communications of
the ACM 3, 12 (1960), 655–657.

[18] Crossbeam. https://github.com/crossbeam-rs/, 2018.

[19] Fraser, K. Practical lock-freedom. Tech. rep., University of Cambridge, Computer
Laboratory, 2004.

[20] GitHub. http://github.com/.

[21] glibcWiki. MallocInternals, glibc wiki. https://sourceware.org/glibc/wiki/
MallocInternals, 2018.

[22] Harris, T. L. A pragmatic implementation of non-blocking linked-lists. In Interna-
tional Symposium on Distributed Computing (2001), Springer, pp. 300–314.

[23] Harris, T. L., Fraser, K., and Pratt, I. A. A practical multi-word compare-and-
swap operation. In International Symposium on Distributed Computing (2002),
Springer, pp. 265–279.

[24] Hewitt, C., Bishop, P., and Steiger, R. Session 8 formalisms for arti�cial intelli-
gence a universal modular actor formalism for arti�cial intelligence. In Advance
Papers of the Conference (1973), vol. 3, Stanford Research Institute, p. 235.

[25] Jemalloc. http://jemalloc.net/, 2018.

[26] Knuth, D. E. �e Art of Computer Programming, Vol. 1: Fundamental Algorithms,
3rd Edition. Addison-Wesley Professional, 1997.

[27] Luchangco, V., Moir, M., and Shavit, N. Nonblocking k-compare-single-swap.
In Proceedings of the ��eenth annual ACM symposium on Parallel algorithms and
architectures (2003), ACM, pp. 314–323.

[28] Michael, M. M. High performance dynamic lock-free hash tables and list-based
sets. In Proceedings of the fourteenth annual ACM symposium on Parallel algorithms
and architectures (2002), ACM, pp. 73–82.

[29] Michael, M. M. Hazard pointers: Safe memory reclamation for lock-free objects.
IEEE Transactions on Parallel and Distributed Systems 15, 6 (2004), 491–504.

70

https://www.youtube.com/watch?v=v1COuU2vU_w
http://www.qdpma.com/ServerSystems/MemLat2018.html
http://www.qdpma.com/ServerSystems/MemLat2018.html
https://github.com/IST-DASLab/rust-drop-box
https://github.com/IST-DASLab/rust-drop-box
https://github.com/crossbeam-rs/
http://github.com/
https://sourceware.org/glibc/wiki/MallocInternals
https://sourceware.org/glibc/wiki/MallocInternals
http://jemalloc.net/

BIBLIOGRAPHY BIBLIOGRAPHY

[30] Michael, M. M., and Scott, M. L. Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms. In Proceedings of the ��eenth annual ACM
symposium on Principles of distributed computing (1996), ACM, pp. 267–275.

[31] Parkinson, M., Vaswani, K., Costa, M., Deligiannis, P., Blankstein, A., Mc-
Dermott, D., Balkind, J., and Vytiniotis, D. Project snow�ake: Non-blocking
safe manual memory management in .net. Tech. rep., July 2018.

[32] POSIX.1-2017. http://pubs.opengroup.org/onlinepubs/9699919799/.

[33] Proposed Wording for Concurrent Data Structures: Hazard Pointer and Read-Copy-
Update (RCU). https://issues.isocpp.org/show bug.cgi?id=382.

[34] Rayon: A data parallelism library for Rust. https://github.com/rayon-rs/
rayon, 2018.

[35] Regehr, J. Unde�ned behavior in 2017, cppcon 2017. https://www.youtube.
com/watch?v=v1COuU2vU w, 2018.

[36] �e Rust Programming Language. http://rust-lang.org/.

[37] �e Rust Programming Language on GitHub. http://github.com/rust-lang/
rust.

[38] Sanjay Ghemawat. TCMalloc: �read-Caching Malloc. http://
goog-perftools.sourceforge.net/doc/tcmalloc.html, 2018.

[39] Shalev, O., and Shavit, N. Split-ordered lists: Lock-free extensible hash tables.
Journal of the ACM (JACM) 53, 3 (2006), 379–405.

[40] �e Rust Programming Language. https://doc.rust-lang.org/book/
second-edition/.

[41] Thoresen, M. H. Implementing concurrent memory reclamation schemes. Tech.
rep., Norwegian University of Science and Technology, December 2017.

[42] Treiber, R. K. Systems programming: Coping with parallelism. International
Business Machines Incorporated, �omas J. Watson Research Center New York,
1986.

[43] trench, the threaded benchmarking library. https://github.com/martinhath/
trench, 2018.

[44] Valgrind. http://valgrind.org/, 2018.

71

http://pubs.opengroup.org/onlinepubs/9699919799/
https://issues.isocpp.org/show_bug.cgi?id=382
https://github.com/rayon-rs/rayon
https://github.com/rayon-rs/rayon
https://www.youtube.com/watch?v=v1COuU2vU_w
https://www.youtube.com/watch?v=v1COuU2vU_w
http://rust-lang.org/
http://github.com/rust-lang/rust
http://github.com/rust-lang/rust
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://doc.rust-lang.org/book/second-edition/
https://doc.rust-lang.org/book/second-edition/
https://github.com/martinhath/trench
https://github.com/martinhath/trench
http://valgrind.org/

	Abstract
	Preface
	Introduction
	History
	This Thesis
	Outline

	Background
	Operating Systems
	Virtual Memory
	Threads and Processes
	Signals

	Programming Languages
	Garbage Collectors

	Concurrency
	Common Patterns in Concurrent Programming
	The ABA-Problem

	Memory Reclamation
	Reference Counting
	Epoch Based Reclamation
	Hazard Pointers
	Forkscan

	Related Works
	Crossbeam

	Rust
	Introduction
	The Borrow Checker
	Lifetimes
	Unsafe Rust
	Concurrency
	Concurrency and Aliasing
	Common Patterns

	Nightly Rust
	Non-Lexical Lifetimes
	Trait Objects
	Specialization
	Allocators

	CMR
	Problem Definition
	Shared Memory

	Overview
	Primitives of CMR
	Operations
	Pointer Tagging

	Correctness

	Implementation
	Data
	Primitives
	Free Functions
	Correctness

	Snapshot
	Reachability
	Trace
	Destructors

	Communication
	Complications
	Allocation Lock
	SignalVec
	Thread Registration

	Usage of CMR
	Lock-free Stack
	Push
	Pop

	Lock-free Queue
	Lock-free List
	The Entry API

	Lock-free Hash Table
	Split-Ordered List
	Contains
	Insert
	Remove

	Methodology
	Testing
	Sanitizer

	Benchmarking
	Trench

	Results
	Hardware
	Operations of CMR
	Primitives

	Data Structures
	Intel® i7–4770
	Cavium ThunderX
	Intel® Xeon® E7–8870 and Intel® Xeon® Gold 6150

	Allocator

	Conclusion
	Is CMR Useful?
	Alternatives
	Future Work

	Bibliography

