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Problem Description

The tanker shipping segment can be considered cyclical and volatile. It involves huge capital investments and
exposes stakeholders to great amounts of risk. The total tanker fleet consists of approximately 14,500 ships which
transport several billion tonnes of oil and gas each year among other things. They play a signifianct role in the
transport of liquid commodities, allowing for high-volume, low-cost shipping in bulk. These tankers are generally
categorized by size, e.g., VLCC, Suezmax, Aframax and Panamax, whereof some operate certain routes with a
greater frequency than others. Core routes are those supporting the most essential flow between major markets.
These routes are associated with everything from varying geography, geopolitics and trade flows, to different
climate, currencies and distances.

In this study we will look deeper into the routes concerning oil tankers. A selection of a few specific routes will
be made, and these will be examined extensively. The intricacies of these routes will explored meticulously from
well-established theory, articles, related fields and expert knowledge. This will be the basis for finding determining
factors for a forecasting model of the route specific oil tanker freight rate. A Markov regime-switching regression
model will be pursued in the attempt of constructing a suitable generalized model, accounting for seasonality, lag
and global factors among other things. The model will be rigorously benchmarked and holdout-validated to ensure
operationality.
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This study is written as our Master’s thesis and concludes our university degrees in Industrial Economics and
Technology Management at the Norwegian University of Science and Technology (NTNU).

Shipbuilding and shipping are among the oldest industries in Norway. Today, Norway has one of the largest and
most comprehensive maritime sectors globally, both within traditional shipbuilding, offshore petroleum industry,
shipping, as well as industrial fishing and aquaculture. In the research project “A Knowledge Based Norway” by
Reve and Sasson (2012), the future prospects for 13 of Norway’s most important business and industry sectors
were analysed. The study concluded that the maritime sector is Norway’s only global competence based industry
and an industry where Norway has the industrial competitiveness to succeed internationally. This has lead us to
pursue areas of research within this industry.
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Economics and Technology Management.
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Abstract

In this thesis, we address the issue of explaining and forecasting oil tanker freight rates for specific tanker routes.
These freight rates are known to exhibit periods of extreme volatility. To predict the freight rates, we therefore
utilise a Markov regime-switching multiple regression model with two states - a normal state, and a volatile state.
This thesis hence postulates that predictions of short-term freight rates can be improved through a framework that
can capture the distinctive nature of freight rates by switching between two regimes, while combining this with
hypothetically superior route-specific and global determinants. We make a substantial attempt to combine market
domain knowledge with statistical methods. Our approach to doing so is twofold.

Firstly, motivated by the findings in the existing literature, the observations of structural breaks, and the plethora
of attempts at modelling the freight rate, we characterise the market. Six tanker routes, TD1, TD3, TD7, TD12,
TC1, and TC2, are investigated. An extensive assessment of the key determining factors of the freight rates is
given. A candidate predictor analysis is done, based on subsampling in combination with a selection algorithm.
By using the novel approach of stability selection and LASSO penalization with a random tuning parameter, we
are able to rank the factors based on their potential modelling importance.

Secondly, we develop a Markov regime-switching regression model for one-month ahead forecasting of the freight
rates on the selected routes. The data is tested for structural breaks using a Chow test, and indications of multiple
regimes are found. With a subset of variables for each route, we formulate two-regime regression models with
switching coefficients. Seasonal changes and varying lags are accounted for, and the result is six regime models
which are tailored specifically to each route.

Three objectives are evaluated on out-of-sample data for each route:

i ) An evaluation of whether similar parsimonious models outperform variable rich models. Six additional
parsimonious regime models are therefore created, one for each route. The parsimonious models are found to
provide better predictions based on performance metrics and the Diebold-Mariano test for forecasting accuracy.
Top performing variables in the parsimonious models include, amongst others, secondhand prices, import and
export factors, Chinese crude imports, vessel fixtures, and the ClarkSea index.

ii ) An assessment of the forecasting capabilities of the regime model on never-before-seen data. These models
yield promising results, and consistently rank in the top positions in regards to forecasting when compared to
a set of benchmark models.

iii ) An evaluation of the benefit of incorporating route-specific variables. The route-specific regime models are
compared to a generic benchmark regime model with globally universal variables. Route-specific regime models
are found to provide valuable outcomes and they improve the forecast in most cases, as opposed to the generic
factor-driven models.

Keywords: Markov regime-switching, Regression, Freight rate, Oil tankers, Routes, Stability selection, Forecasting
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Sammendrag

Oljetankermarkedet utgjør en betydelig del av det internasjonale shippingmarkedet, og anses som en kapitalintensiv
og volatil industri. I denne avhandlingen er problemstillingen knyttet til å forutsi fraktraten for oljetankere på
ulike shippingruter. For å predikere fraktraten, benytter vi en Markov-svitsjende regresjonmodell med to tilstander
- én normal tilstand, og én volatil tilstand. Denne avhandlingen postulerer dermed at prediksjoner av kortsiktige
fraktrater kan forbedres gjennom et rammeverk som har muligheten til å fange opp den distinkte underliggende
naturen til fraktraten, ved å bytte mellom to adskilte regimer, i kombinasjon med betydningsfulle rutespesifikke
og generelle determinanter. Vi gjør et inngående forsøk på å kombinere domenekunnskap om markedet, med
statistiske metoder. Vår framgangsmåte for å gjøre dette er todelt:

For det første, så utfører vi en omfattende undersøkelse av shippingmarkedet, og mer spesifikt, oljetankermarkedet.
Ved å gjøre dette, legger vi grunnlaget, og utvikler den nødvendige markedsforståelsen for modelleringen som
skal utføres. Motivert av funnene i eksisterende litteratur av blant annet de drivende faktorene til fraktratene,
observasjonene av strukturelle brudd, og mengden av eksisterende forsøk på å modellere fraktratene, så karak-
teriserer vi markedet. Vi tar et ekstensivt blikk på shippingmarkedet, undersøker hvordan tilbud og etterspørsel
påvirker frakratene, og ser på den underliggende sykliske naturen til disse ratene. Videre, så analyseres de ulike
shippingrutene grundig - seks av de globale rutene, TD1, TD3, TD7, TD12, TC1 og TC2 blir valgt ut i denne
avhandlingen. En omfattende evaluering av de påvirkende faktorene til fraktraten blir så gjort. Disse faktorene
grupperes etter om de regnes som tilbudsdrivende, etterspørselsdrivende, eller økonomiske og ikke-fundamentale.
Videre skilles det mellom faktorer for hver rute. Disse er avgjørende for modelleringen.

For det andre, så utvikler vi en regresjonsmodell med regime-svitsjing for å forutsi fraktraten til oljetankere på
ulike ruter, én måned fram i tid. Dataen testes for strukturelle brudd ved hjelp av en Chow-test, og indikasjoner på
flere regimer blir funnet. En analyse for å velge ut gunstige kandidater til forklaringsvariabler utføres, basert på å
gjøre delutvalg i kombinasjon med en seleksjonsalgoritme. Her er vi ute etter å validere de påvirkende faktorene til
fraktraten, som tidligere ble plukket ut på teoretisk grunnlag. Ved å benytte metoden stabilitets-seleksjon sammen
med en Lasso-straff med en tilfeldig regulariseringsparameter, så klarte vi å rangere faktorene basert på deres
potensial i modelleringen. Med en delmengde av variabler for hver rute, så estimerte vi regresjonsmodellen for to
tilstander. Sesongvariasjoner og tidsforskjøvne variabler ble tatt høyde for, og resultatet var seks regime-modeller,
hvor hver modell var tilpasset spesifikt til én oljetanker-rute.

Prediksjonsmodellen ble evaluert på testdata for hver rute, basert på tre målsettinger. i) Først, en evaluering av
om modeller med betydelig færre variabler kan forutsi observasjoner bedre enn modeller med mange variabler.
Dette betydde at seks ytterligere regime-modeller måtte lages, én for hver rute. Det ble funnet at disse modellene
gir bedre resultater etter vurdering av ulike effektmål. ii) Videre, en vurdering av modellenes evne til å forutsi
ny data, satt opp mot ulike referansemodeller. Regime-modellene produserte gunstige utfall og ble konsekvent
rangert i øvre sjikt. iii) Til slutt, en evaluering av fordelen ved å modellere spesifikt for ruter. De rute-spesifikke
modellene ble sammenlignet med en tilsvarende modell, som kun benyttet generiske, globale forklaringsvariabler.
Modellering for ruter ble funnet å gi verdifulle resultater og forbedret prediksjonen i de fleste tilfeller.
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1 Introduction

The tanker shipping sector can be considered cyclical
and volatile. It involves huge capital investments and
exposes stakeholders to great amounts of risk. The
tanker shipping market is one of the largest sectors
in the world of shipping in terms of trading volume.
The total tanker fleet consists of approximately 14,500
ships which transport several billion tonnes of oil each
year among other things. They play a significant role
in the transport of liquid commodities, allowing for
high-volume, low-cost shipping in bulk. These tankers
are generally categorized by size, e.g., VLCC, Suezmax,
Aframax and Panamax, whereof some operate certain
routes with a greater frequency than others. Core
routes are those supporting the most essential flow
between major markets. These routes are associated
with everything from varying geography, geopolitics
and trade flows, to different climate, currencies and
distances.
Alizadeh and Talley (2011) state that fluctuations

in the tanker freight rates are affected by the global
economic activity, and the state of the tanker shipping
market, in addition to other variables related to vessel
and route characteristics.
In this study, we will look deeper into the routes

concerning oil tankers. A selection of a six (6) specific
routes will be made, and these will be examined ex-
tensively. The intricacies of these routes will explored
meticulously from well-established theory, articles, re-
lated fields and expert domain knowledge. This will
be the basis for finding determining factors for fore-
casting models of route-specific oil tanker freight rates.
Furthermore, an approach to variable selection using
regularization techniques to rank variables will be used.
A Markov regime-switching regression model will then
be pursued in the attempt of constructing a suitable
generalised model, accounting for seasonality, lag, and
route-specific and global factors among other things.
We also wish to maintain a human element in the pro-
cess - this specifically applies to the variable selection
and modelling whereby a lot could be automated, but
not without sacrificing domain knowledge. The model
will be rigorously benchmarked and holdout-validated
to ensure operationality.
The purpose of this thesis may be placed in the

context of two research areas:

i ) We look to determine the market dynamics and
key determinants for the oil tanker freight mar-
ket. This will be achieved by examining the freight
rate mechanism and shipping cycles; studying the
oil tanker market characteristics; assessing six key
tanker routes which are different in terms of vessel
size and type of oil trade (crude oil or oil products);
revealing the fundamental factors on a macro-level

which affects the freight rates across these 6 tanker
routes; and performing rigorous variable selection
to statistically rank the best fitting determining
factors.

ii ) We investigate whether it is beneficial to create
route-specific, one-month ahead, prediction models
based on two regimes. This will be conducted by
incorporating the best factors from (i) in a Markov
two-regime regression model, and benchmarking
the results against generic models.

1.1 Chapter Breakdown

The remainder of this thesis is structured as follows:
Chapter 2. Literature review: As an initial measure

we scrutinize the existing literature to get an overview
of what has been done before, and how we can build
on this work. We will consider different forecasting
methods that have been applied to the shipping indus-
try, as well as other markets. An investigation into
the presence of regimes in the tanker market will also
be made. Additionally, we take an extensive look at
studies which examine the factors which impact the
freight rate, with a focus on identifying route specific
variables.

Chapter 3. World of Shipping: To be able to ex-
plain the market, and consequently develop a regime
forecasting model, it is imperative to understand the
market dynamics. We therefore embark on a com-
prehensive look at the freight market. We will use
fundamental shipping theory as a basis to select the
appropriate factors, as well as suitable model.
Chapter 4. Tanker Trade and Routes: In this chap-

ter, we establish the core shipping routes we will ex-
amine throughout this thesis. We also look at the the
dynamics of the supply and demand for oil which con-
cerns countries and regions that matters to the routes.
Chapter 5. Factors Affecting Tanker Freight Rates:

The key determining factors for the freight rates are
reviewed in this chapter. The chapter is divided into
three sections, which focus on supply, demand, and
economic and non-fundamental factors. We describe
the reason of interest for a factor, and the hypothetical
significance to the rates.
Chapter 6. Data Analysis: In this chapter, we look

at the data that we will be working with. The data is
based on the previous chapter, whereby determining
factors were considered. We look at where the data is
gathered from, how the data is processed and descrip-
tive statistics. We also motivate the regime model we
are going to develop, by investigating stylized facts of
the freight rates’ behavior. Lastly, we study the under-
lying foundation of our independent variables, as this
is useful in the interpretation of the results, as well as
model development.
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Chapter 7. Methodology: In the methodology chap-
ter, we establish how we will develop our model. We
set out to build a tanker freight rate forecasting model
for individual routes, based on regime-switching and
regression. In this chapter, we provide our methods
for dealing with non-stationary variables, lags, season-
ality, and assessment of the models. Our approach to
variable selection is also presented here, which ranks
factors based on the method of stability selection with
randomized Lasso.
Chapter 8. Results: Our findings are presented

based on the methodology in the previous chapter. Six
route models (in addition to six parsimonious route
models) will be considered. We will evaluate the deter-
minants that where ranked during our variable selec-
tion procedure, how well the expected impact of the
model’s coefficient are, how seasonality is modelled,
and assess the regimes. We further look at whether we
are able to forecast with the proposed framework that
theoretically should be able to explain the rates, and
how good forecasts are. The regime models are com-
pared with benchmark models on out-of-sample data,
and further evaluated with performance measures.
Chapter 9. Discussion: In this chapter, we will dis-

cuss potential problems, remark on certain pitfalls, er-
rors, and potential improvements.
Chapter 10. Conclusion: Lastly, we will provide a

conclusive chapter to summarise our work.
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2 Literature Review

A large number of empirical studies have been devoted
to analysing the tanker shipping industry in terms of
freight rates, chartering decisions and policies, trans-
portation strategies, and fleet deployments and oper-
ations (Alizadeh and Talley, 2011). Our study is con-
cerned with the former, the freight rates.
In the following, we will present our findings of em-

pirical literature in the context of (i) freight rate liter-
ature on a general level, (ii) literature on factor driven
models, and (iii) regime-switching and route-specific
literature. Finally (iv), rationales for our methodology
approach is outlined in the light of literature, along
with our research contributions.

Note that the literature review that follows does not
include detailed explanations of shipping terminology
and related theory. We may therefore recommend read-
ers who are unfamiliar with shipping to consider read-
ing through Chapters 3 and 4 beforehand.

Literature on Modelling Shipping
Freight Markets

Freight rate dynamics have been reviewed and mod-
elled throughout decades with a vast variety of ap-
proaches and techniques. Nevertheless, few articles
prove to generate promising out-of-sample forecasts.
Broadly, shipping literature throughout history can
be classified into two schools of thought; traditional
structural models, and modern time series models.
Tinbergen (1934) and Koopmans (1939) are among

the early efforts to describe the well-known cyclical na-
ture of shipping through fundamental supply-demand
theory, i.e. structural models. Koopmans (1939) ar-
gues that cyclicality is a result of the time-lag between
ship capacity (supply) meeting demand, which hence
triggers future expectations of the market. Koopmans
(1939) was further among the first to propose theories
for tanker forecasting. Today, the framework of classic
static equilibrium (structural) models set out by Tin-
bergen (1934)1 and Koopmans (1939) is still broadly
valid, but today’s literature is far more sophisticated
in regards to both real-time and lagged effects of sup-
ply and demand (see, for instance, Zannetos (1964);
Hawdon (1978); Norman and Wergeland (1981); Stran-
denes (1984); Beenstock and Vergottis (1993); Adland
(2003); Randers and Göluke (2007)).

In the 1990s, advances within the field of econo-
metrics developed rapidly, leading maritime economist
to break new ground in the understanding of freight

1Fun fact: Tinbergen (1934) investigated, among other, the
effect of the price of bunkers (fuel) on freight rates – which at
the time was the price of coal ! and not heavy fuel oil or marine
gas oil as today

rate dynamics. Studies by Beenstock and Ver-
gottis (1993) probably represents the inception of
modern time series models in freight rate mod-
elling. To date, studies have been conducted on sev-
eral types of advanced Vector Autoregressive (VAR)
models (Veenstra and Franses (1997); Tsioumas et
al. (2017)), (Generalized) Autoregressive Conditional
Heteroskedasticity ((G)ARCH) models (Jing et al.
(2008); Abouarghoub and Mariscal (2011)), Markov
Regime-Switching (MRS) models (Abouarghoub et al.
(2014); Abouarghoub and Mariscal (2011)), Autore-
gressive (Integrated) Moving Average (AR(I)MA) mod-
els (Abouarghoub et al. (2017)), and Stochastic Volatil-
ity (SV) models (Benth et al. (2015); Benth and Koeke-
bakker (2016)), to mention some.
The introduction of advanced time series models

has enabled maritime economist to explore both time-
varying structure and non-linear dynamics of freight
rates, as well as co-integration between variables in fac-
tor models. For instance, a widely researched topic of
freight rate dynamics is the stationarity property (see,
for instance, Koekebakker et al. (2006); Adland and
Cullinane (2006)). Koekebakker et al. (2006) are exam-
ining and testing whether freight rates in the dry bulk
and tanker markets are stationary, and compare their
findings to several other maritime research articles (see,
further, Chapter 6).

Literature on Factor-Driven Tanker
Models

Literature on the driving factors of freight rates can
roughly be divided into two research fields; micro-
economic models and macro-economic models. Micro-
economic factors are concerned with factors that are
specific in regards to a single ship or contractual terms,
while macro-economic factors are factors that are deter-
mining for several vessels, and that are able to describe
characteristics of either parts of, or the whole market
(see, further, Chapter 5).

Major advances in empirical maritime research are
evident when comparing literature a few decades ago to
today’s modern articles. For instance, Velonias (1995)
bases most of his literature study on articles concern-
ing traditional structural models, and performs a very
simplistic regression model himself. While Fan et al.
(2013) are, to our knowledge, the first to apply machine
learning/artificial intelligence and Wavelet Neural Net-
works (WNN) to tanker forecasting. They attempted
to forecast the BDTI index by incorporating factors
such as the oil price (Brent), a volatility index (VIX),
an oil trade index (Amex oil index) and stock indices
(MSCI World Transportation, Dow Jones, S&P Global
1200), and managed to outperform an ARIMA model
out-of-sample for longer-term forecasting.
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Zannetos (1964) empirically investigates tanker
freight rates by regression analyses with numerous vari-
ables, both macroeconomic and microeconomic. Ear-
lier efforts of factor analysis further belongs to the
researches of Hawdon (1978), Velonias (1995), Stran-
denes (1984), and Beenstock and Vergottis (1989),
who find factors affecting the interaction between sup-
ply and demand in the tanker market to include, for
instance, world gross domestic production, country-
specific industrial production, vessel tonnage capacity,
delivery and demolition of vessels, oil prices, and com-
modity trade. However, and not surprisingly, consid-
ering the time these researches were conducted, there
exists a vast amount of potential statistical violations
and erroneous results in some of the models2.
The use of macroeconomic variables to model and

forecast tanker freight rates are also seen in modern
studies by, e.g., Dikos et al. (2006) and Randers and
Göluke (2007), who use system dynamic (SD) tech-
niques to model freight rates. Randers and Göluke
(2007) argue that the history of the world’s shipping
markets can be explained as the interaction of two cy-
cle loops with different durations; a 20-year capacity
adjustment loop and a 4-year capacity utilisation loop.
They consider supply and demand to be endogenously
and exogenously related to freight rates, respectively.
They suggest that an endogenous supply model is suffi-
cient in describing past freight history, while excluding
exogenous noise. Macroeconomic factors such as new-
building orders, average building time, vessels average
life, demolition of vessels, and fleet utilisation are in-
cluded in their study.
Other studies, by Kavussanos and Alizadeh (2002);

Kavussanos (2003); Adland and Cullinane (2005); Ad-
land and Cullinane (2006); and Lyridis et al. (2004),
use univariate and multivariate time series models in
an attempt of describing dynamics of freight rates, and
further to forecast freight rate volatilities and levels. A
variety of aggregate data and macroeconomic variables
are utilised in the researches.

Later on, Alizadeh and Talley (2011) have been look-
ing at the possible factors affecting the tanker freight
rates, including the delivery time of chartered ships
(the laycan period). They state that macroeconomic
determinants have been investigated previously within
the research field of both structural and time series
models, and therefore focus their efforts on microeco-
nomic factors (see, also, Tamvakis (1995); Tamvakis
and Thanopoulou (2000)). Using contract data for the
period of 2006 to 2009, the authors find evidence that
the freight rate affects the laycan period and vice versa.
Furthermore, they also find a significant link between
the freight rate and hull size, fixture deadweight uti-

2Violations of ordinary least square regression (OLS) assump-
tions. See, further, Chapter 7.

lization ratio, vessel age and voyage routes. A similar
connection is found between these factors and the lay-
can period, as well as the Baltic Dirty Tanker Index
(BDTI) and its volatility.

A more recent study, by Lyridis et al. (2017) states
that their framework of measuring risk with the
FORESIM3 simulation technique is the first attempt
to express future tanker market risk in relation to
current market fundamentals by combining Artificial
Neural Networks (ANN) and stochastic models. They
investigate both internal and external parameters af-
fecting tanker risk. Fundamental factors included
are, among others, oil price, fleet capacity, orderbook,
demolition price, and OPEC production. Their re-
search yielded promising out-of-sample results on mar-
ket risk. FORESIM was also conducted in the research
by Zacharioudakis and Lyridis (2011), who attempt to
express future tanker freight levels (on the Ras Tanura
– Rotterdam route) in numerous states of OPEC oil
production levels. Results showed that ANNs were
adequately capable of simulating future freight rates.

Literature on Regime-Switching

In the classic maritime economic literature, the short-
term supply curve is characterised by two distinct
regimes; one elastic part and one inelastic part for lower
and higher freight rates, respectively. Hence, volatility
in freight rates are conditional on the freight rate level.
This characteristic shape of the shipping supply curve
was first proposed by Koopmans (1939), and is today
widely acknowledged by market practitioners, as well
as empirical researchers (see, further, Chapter 3 and
Chapter 6, and for instance, Zannetos (1964); Norman
and Wergeland (1981); Stopford (2009); Alizadeh and
Talley (2011); Strandenes (2002)).

We have come across almost a dozen articles incorpo-
rating regimes and non-linear characteristics of tanker
freight rates in modelling. However, most of them are
concerned with various risk models in terms of freight
return volatility, and do not attempt to forecast freight
rate levels. Nevertheless, many of the articles are pro-
viding empirical evidence for the existence of distinc-
tive regimes in the freight rates. Important to note,
and as literature suggest, regime-switching models pro-
vide a better understanding of volatility clusters in the
lower and higher volatility regimes for the distinctive
nature of the freight market, regards to, e.g., magnitude
and duration.

Abouarghoub et al. (2014) are modelling a two-state
MRS distinctive volatility model for tanker freight re-
turns (BDTI index) in a GARCH framework applied
to Value at Risk (VaR) measures. They address some

3FORESIM: an innovative simulation technique combining
stochastic models and artificial neural networks
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important dynamics of the freight rate, and the results
are profound. In line with maritime theory, they find
that the low volatility regime accounts for a higher per-
centage share of total observations and has a longer du-
ration on average. In other words, long memory is more
pronounced in lower freight rate states than in higher
freight rate states. Moreover, authors describe that
the distinct regimes are characterised with a higher ten-
dency to shift from the higher volatility structure to the
lower volatility structure, as opposed to the tendency
of shifting the opposite direction. They themselves
motivate a two-state conditional regime framework by
referring to the studies of Kavussanos and Alizadeh
(2002); Alizadeh and Nomikos (2011); Abouarghoub
and Mariscal (2011); and Abouarghoub et al. (2012).
Abouarghoub et al. (2014) finalise their study by sug-
gesting that: «further research should be conducted
to examine the extent of the impact of vessel size and
shipping routes on conditional volatility during differ-
ent phases of the supply curve», which matches parts
of the motivation and aims of this study.
IAME (2014) presents a study on MRS for 9 dirty

tanker routes which are part of the BDTI index. The
BDTI is used in the models as an explanatory variable,
serving as a market condition benchmark. The study
finds evidence of a positive correlation between the size
of tanker vessels and their four statistical moments4.
Abouarghoub et al. (2012) model average TCE

freight rates across 5 tanker classes, namely VLCC,
Suezmax, Aframax, dirty MR, and all tankers. They
take on a MRS approach, and are testing for the oc-
currence of structural breaks between 1990 and 2011
by using a Chow test (see Chapter 7). 3 structural
breaks result from their analysis. Even though mar-
itime economists agree that shipping cycles are endoge-
nously driven in the short-term, a general consensus is
also that exogenous factors channel structural breaks
in the long-run.
Alizadeh and Talley (2011) study the dynamics of

the term structure and volatility of freight rates for 3
sizes of bulk carriers and 3 sizes of tankers. They find
asymmetry to be apparent in the freight rates when
the market is in backwardation versus contango, indi-
cating that the rate of increase in volatility increases
(decreases) as the degree of the former (latter) state
increases.
Abouarghoub and Mariscal (2011) investigate 5

routes that are part of the BDTI index, namely World-
scale5 rates of TD3, TD4, TD5, TD7, and TD9 (see,
further, Chapters 3 and 4), in a two-regime MRS
GARCH framework in order to model VaR. They find
evidence of tanker freight rates exhibiting such proper-

4The four statistical moments refer to: mean, variance, skew-
ness, and kurtosis

5In Section 3.1, we briefly outline why we do not think World-
scale rates are appropriate to model as opposed to TCE rates.

ties, and market shocks to increase and have a lasting
effect on volatility. According to the authors, this is the
first attempt to investigate conditional freight volatil-
ity regimes in the tanker market. Additionally, they
find volatility in the larger tanker segments to be more
sensitive to market shocks in comparison to smaller
segments, which provides support to our motivation of
looking at different vessel sizes across different routes.

Kavussanos and Alizadeh (2002) apply MRS to both
seasonality testing and forecasting. They reject the
existence of stochastic seasonality. Deterministic sea-
sonality is evident though, and is indicating decreases
in rates from January to April and increases in rates
in November through December - although some varia-
tion in seasonality is observed depending on vessel size
and market condition (see, further, Chapter 8).
Overall, Mr. Abouarghoub is probably the single

largest contributor to research on regime models in the
tanker space. Interested readers may therefore find
Abouarghoub’s collective work paper (partial fulfilment
of PHD) as a good source to information, both in re-
gards to his contribution on regime models in shipping,
but also in general empirical terms (Abouarghoub,
2013).

Besides shipping literature, studies on non-linearity
and regime-switching can also be found in other re-
search fields. Dafas (2004) attempts to model the crude
oil spot price with a mean-reverting jump-diffusion
model, along with a Markov-switching approach. Es-
cribano (2002) implements a model for the electricity
price which accounts for seasonality, mean-reversion,
conditional heteroskedasticity and jumps. Weron et al.
(2004) propose various models to electricity spot prices.
They analyse and model the logarithm of the desea-
sonalised average daily spot prices, with a focus on
regime-switching. Kosater and Mosler (2006) compare
regime-switching models against an AR(1)-process in
the electricity market, and find the prior to be slightly
better.

Methodology Rationale and Thesis Con-
tribution

From the aforementioned literature, we find research
on freight rates in the tanker market to be quite exten-
sive in general terms, yet somewhat limited in the area
of our research scope. How does our methodology ap-
proach combined with our specification of routes and
associated factors contribute to the field of freight rate
prediction? It is done by providing results that are
fairly easily interpretable, are readily available, and
relevant. They are usable by market participants with
limited empirical modelling experience, while the re-
sults at the same time ensures to capture certain com-
plexity of the freight rate dynamics. Furthermore, com-
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pared to earlier empirical literature, we are testing a
selection of determinants (approx. 170 ) that is substan-
tially more comprehensive than ever done before, to our
knowledge. Hence, there is some lack of prior empiri-
cal evidence on the tanker market that could support
our choices for some of the determinants. Neverthe-
less, tanker market commentary, «expert-knowledge»
and literature on other markets, does provide support.
And, in the selection of the statistically most appropri-
ate factors, we will be utilising a sophisticated variable
selection technique based on stability selection with
randomized LASSO (see, further, Chapter 7).
In order to select appropriate factors, we need, in

combination with empirical literature, a thorough un-
derstanding of market fundamentals. In Chapters 3
– 4 we delve into shipping theory to understand the
most relevant conditions and factors that are prevalent
to the oil tanker market. We use this knowledge to
identify and examine the most important behavioural
properties of the tanker freight rates. Maritime Eco-
nomics by Stopford (2009) is the basis for fundamental
shipping theory6. Our selection of hypothetical driving
factors is introduced in Chapter 5, and supportive em-
pirical literature is referenced to selected factors where
available.
Our motivation of modelling freight rates across

different vessel sizes and routes in a Markov regime-
switching framework is supported by Abouarghoub et
al. (2014) and others, as aforementioned references de-
scribe. Furthermore, Abouarghoub et al. (2014) point
out that incorporating seasonality effects would be
an interesting and recommended extension of their re-
search – which we aim to incorporate in our models.
As described above, literature on shipping seasonality
suggest that tanker freight rates exhibit deterministic
seasonality (see, for instance, Kavussanos and Alizadeh
(2002)). We do not test the existence of deterministic
seasonality explicitly ourselves, but we rather build on
findings of existing literature in our methodology (see,
further, Chapter 7).

Market-wise, we further motivate why a two-regime
model could be appropriate to model shipping rates
throughout the theory chapters in advance of outlin-
ing the specific methodology that is conducted in this
thesis, as it is useful to have knowledge of some funda-
mental market theory before commencing into regime
switching. Furthermore, we set out to prove or disprove
some theoretical characteristics of freight rates regards
to having regime distinct properties. We describe these
characteristic along with supporting literature in more
detail in Chapter 6.
This thesis hence postulates that predictions of short-

term freight rates can be improved through a framework

6Maritime Economics by Stopford (2009) is broadly used
across universities lecturing in shipping economics.

that can capture the distinctive nature of freight rates
by switching between two distinctive regimes, while com-
bining this with hypothetical superior route-specific and
general-specific determinants.
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3 World of Shipping

Maritime transport of goods and raw materials has
been essential to world economic trade and growth
for millenniums. Shipping enables development by
bringing together capital goods, intermediates and con-
sumers via extensive cross-border transport networks,
further promoting global (e.g. WTO) and regional (e.g.
EFTA, NAFTA, AFTA) economic integration. Im-
port and export on the scale necessary for the modern
world would not be possible without the international
shipping industry. The world of shipping accounts
for around 85% of world trade, corresponding to 1.49
tonnes per world capita, and is thus the largest mode
of trade in the world. Total seaborne trade has al-
most doubled since the start of the 21st century. In
2016, total seaborne trade amounted to 11.1 billion
tonnes of cargo or 55.1 trillion tonne-miles7 (Clarksons
Research Services Limited, 2017). Increasing industri-
alisation, economic liberalisation as well as advances in
technology will support continued growth in shipping
trade. In the forthcoming chapter, we will highlight key
fundamentals of shipping, which serves as both useful
background information and a base for understanding
and selection of variables and econometric models.

Shipping Segments

The merchant fleet comprises above 50,000 vessels (>1k
dwt). These transport all types of cargo and are put
into categories accordingly. The three major ones be-
ing dry bulk carriers, oil tankers and container ships.
The two former segments are traditionally concerned
with Tramp Shipping (on-demand services), while the
latter segment is often referred to as Liner Shipping
(predefined routes and schedules services). Within the
tanker segment, we also find gas (LNG and LPG), spe-
cialised and chemical vessels. Other shipping segments
include, e.g., offshore, car and passenger vessels. Ves-
sels in smaller segments are normally built for a more
specific purpose or voyage than for a general market
(e.g. ferries, cruise ships, well boats).

Dry bulk commodities include iron ore, coal, grain
and other minor bulk 8, and are normally transported
in large ship hulls in bulk form. The dry bulk segment
transports the highest volume of cargo each year. Oil
tankers are ships designed for liquid bulk transport of
crude oil and oil products. Container ships typically
carry intermodal container units which are possible to

7Tonne-miles is a shipping measure of true seaborne demand;
tonnes of cargo carried multiplied by the distance it travels. The
tonne-miles measure also indicates the amount of transportation
the fleet is capable and/or willingly to supply. Equilibrium
freight rates are thus found in the intersection of tonne-miles
supply and demand (see Section 3.2).

8Steel products, forest and agricultural products, fertilisers,
cement etc.

carry on different modes of transport. Containers could
hold everything from dry storage items to specialised
refrigerated cargo. Table 3.1 provides a brief overview
of these segments’ standing in terms of seaborne trade
and fleet size.

3.1 Four Shipping Markets
In shipping, there are four overarching markets (Stop-
ford, 2009):

Newbuilding Sales and Purchase
Demolition Freight market

Cash flows between these markets are driving the over-
all shipping market. The freight market is the main
driver in shipowners’ positive cash flow. This does
however vary based on the current market situation.
In certain periods, income from for example demoli-
tion could constitute the majority of positive cash flow.
Moreover, shipowners usually have a margin policy
for acceptable freight rate below or above lay-up cost
(break-even). This could, however, vary based on a
given market situation, so that in periods income from,
e.g., demolition, could constitute the majority of pos-
itive cash flow. Shipowners do usually have a margin
policy, dependent on market situation, for acceptable
freight rate below or above lay-up cost. In the new-
building market, vessels are built at shipyards on the
order of shipowners. The S&P (or secondhand) mar-
ket is where existing vessels are sold and bought. A
vessel’s life ends in the demolition market, where ves-
sels are scrapped. The shipowner is then compensated
based on the value of the vessel’s steel, as well as other
materials and components.

Stakeholders

The key stakeholders within the four shipping markets
are:

Shipowners Charterers
Shipbrokers Shipyards

Capital markets

Shipowners are the companies owning and operating
the ships, and their fleet may constitute of ships oper-
ating across different shipping segments.

The charterers are the companies that hire the ships.
These companies have specific requirements for ship
specifications (e.g., speed, fuel consumption, deck and
volume capacity), contract length and off hire terms.
As noted by Alizadeh and Talley (2011), the behavior
of shipping freight rates and the timing of shipping
contracts affect the transportation costs of charterers
and the operating cash flows of shipowners. The ship-
broker’s task is to find suitable ships for a given job,
with regards to ship specification, contract length and
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Table 3.1: Shipping segments. Overview of seaborne trade and fleet size of the major shipping segments. Fleet size includes vessels above
10k.dwt (Clarksons Research Services Limited, 2017)

Seaborne Trade Fleet Size
Shipping (10 year CAGR %) Number of Tonnage Percentage of
Segment m.tonnes b.tonne-miles vessels (#) capacity (dwt) total fleet (%)

Oil Tanker 3,017 (1.25%) 12,620 (3.27%) 4,980 546,943,878 30%
Dry Bulk 4,895 (4.15%) 27,203 (3.85%) 11,111 817,018,864 45%
Container 1,727 (4.69%) 8,580 (4.37%) 2,445 247,639,353 14%

All merchant segments 11,130 (3.17%) 55,112 (3.26%) 26,381 1,817,057,440 100%

price. Shipbrokers act as a link between the shipown-
ers and operating companies, and participate in the
negotiations of the contractual terms. Shipbrokers are
hired both by shipowners and charterers. Additionally,
a shipbroker may participate in the negotiations of a
ship’s laytime, accounting services and in the case of
disagreements.

The shipyards perform the construction of the ships.
Additionally, they offer repairs, modifications and
maintenance. The stipulation of the newbuilding prices
is an important part of the business of the shipyards.

In the capital markets, capital is raised and restruc-
tured, as well as liquidated in various market places.
Stakeholders in these markets are many, such as cor-
porate and commercial banks, traders and investors.

The Freight Market

Contract Types for Seaborne Freight

In pursuance of understanding the dynamics of specific
tanker freight rates, it is essential to know how freight
rates are determined for various segments, vessel sizes,
cargo types and trading routes. There are four com-
monly used contract types (charter-parties) for freight
agreements between shipowners and charterers (Stop-
ford, 2009). A brief description of each of them is
given here, and summarized in Table 3.2. Contract
types are usually set apart based on what expenses
and responsibilities that are covered by the charterer.
For a single voyage, costs are associated with opera-
tional (opex) and voyage-specific (voyex) expenditures.
Opex include mostly administration, lubricating oil,
maintenance and repairs, docking, crew and insurance
costs, while voyex mainly consist of fuel, port and canal
costs that are directly related to a specific voyage.

On a voyage charter, vessels are hired to carry a spe-
cific cargo from a load port(s) to a discharge port(s)
at an agreed freight rate. The owner bears all costs
in a voyage charter contract. Payment is normally
per tonne of cargo (Clarksons, 2017b). Voyage charter
rates are not necessarily comparable across different
trading routes, since voyex costs may vary from route
to route. A single voyage charter is often referred to
as a spot fixture or spot voyage charter. If a voyage
charter is extended to include a series of shipments for

a fixed period of time, it is called a contract of affreight-
ment (COA). The charterer then pays the shipowner
a fixed amount per tonne of cargo transported. The
shipowner is also free to choose the vessel(s) under
this contract type. For example, a COA could be an
agreement of the delivery of one shipment each month
for a period of one year. A bareboat charter type of
contract gives the charterer full operational control
of a vessel for a specified period of time. The char-
terer is therefore responsible for both opex and voyex.
The freight rate is paid on a per day basis. Financial
investors are common shipowners that charter their
vessels out on such agreements, since the shipowner
does not need any operational shipping expertise. On
a time charter, vessels are chartered for a fixed period
at a set hire rate. Shipowners pay for opex, while
charterers cover bunkers (fuel) cost and other voyex
costs. In return, shipowners are paid an agreed freight
fee per day (or month or year), less potential off-hire
time. The charterer is instructing the crew, paid by
the shipowner, about where, when and what to load
and deliver. Time charters could be either spot- or
term charter parties. The difference is the duration of
the contracts; contracts with duration less than three
months are usually defined as spot contracts. Term
contracts could vary, but are often sorted into two cat-
egories, medium- and long-term contracts, which have
duration one month to a year and longer than a year,
respectively (Clarksons, 2017b). If time allows, other
charters can be done in between a voyage-, bareboat-
or time charter.

Spot contracts are usually written only a few days
before start of operations, and are re-negotiated fre-
quently. Today’s spot rate is therefore not necessarily
equal to tomorrow’s spot rate. Shipbrokers are impor-
tant actors in negotiating these spot rates on behalf of
both shipowners and operators. Ideally, spot rates are
determined by the current supply and demand equi-
librium for certain shipping services, while term/COA
rates in addition are determined by shipowners’ and
charterers’ long-term expectations about the future
(Stopford, 2009). Based on term rates’ dependency of
spot rates and the liquidity that spot rates offer, spot
rates are more volatile than term rates (Kavussanos,
2003). Volatility may also change dependent on what
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Table 3.2: Charter contract types. A brief overview of the characteristics of common charter parties.

Charter Party paying for Freight
party Opex Voyex rate

Voyage charter, COA Shipowner Shipowner $ per tonne (WS flat rate)
Time charter Shipowner Charterer $ per day

Bareboat charter Charterer Charterer $ per day

state the market is in. Forward Freight Agreements
(FFA) are derivatives instruments used to hedge freight
rates against future market conditions, based on spe-
cific routes or freight indices. FFA contracts are traded
over-the-counter. These contracts are common in both
dry bulk and tanker markets.

Worldscale - a Tanker Industry Measure

Oil tankers are commonly fixed on spot voyage charters,
where charterers could be oil and gas companies, oil
traders and oil refineries (for storage purposes). Voyage
charter freight rates in the tanker industry are generally
settled on the basis of the Worldscale index. The index
is based on the freight rate of transporting a tonne
of cargo using a standard vessel on a round voyage.
This rate ($ per tonne) is designated as the Worldscale
100 (WS 100) or flat rate. The idea is that the flat
rate should reflect a voyage break-even level for the
standard vessel9, regardless of the voyage for which
the ship is chartered. Characteristics (e.g., voyex and
distance) for different routes vary10, and thus it exists
a unique WS 100 for an array of oil routes. Today,
a schedule of about 300,000 flat rates are available
to market participants (Worldscale Association, 2018).
These flat rates are revised and updated annually by
a Worldscale panel11, and the standard vessel used in
calculations is updated from time to time.
The purpose of the flat rates is to enable market

participants to easily compare earnings on alternative
voyages. Economies of scale is evident when comparing
worldscale rates for different vessel sizes on the same
trading route (i.e. a VLCC will typically trade at
a lower worldscale than an Aframax). Large vessels

9At present, the standard vessel is a 75,000 dwt tanker. In
addition to deducting voyex costs, a fixed hire cost of $12,000
per day is included for the calculation of the WS 100; so that
in reality WS 100 refers to the standard vessel earning $12,000
per day on a time charter basis - even though the Worldscale
Association state that it is not the intention to produce rates
providing a certain level of income or margin of profit.

10Worldscale Association (2018): “From 2016 additional costs
in complying with emission regulations are provided within the
Worldscale rates. These allowances have been calculated using
a breakdown of voyage distances within and outside sulphur
emission control areas (ECA)”.

11We note that it is important to be aware that WS 100 is
not directly comparable year over year, which addresses the
importance of not using WS data in modelling; motivates why
TCE rates should be used instead

therefore need a lower worldscale rate than smaller
vessels to make a profit (Pagonis, 2009). For instance,
if an agreement for transporting crude oil from the
Middle Eastern Gulf (MEG) to the U.S. is made at
WS 70, and WS 100 corresponds to $20.00 per tonne,
then the shipowner receives a freight rate of $14.00 per
tonne. Whether this portrays a profit depends on the
vessel used.

Time Charter Equivalent

Theory above suggests that differences in the charter-
parties make it difficult to compare freight rates di-
rectly. Freight rates are therefore usually quoted on a
Time Charter Equivalent (TCE) basis to facilitate com-
parisons across periods (e.g. due to yearly revisions
of Worldscale), trading routes and shipowner’s perfor-
mance despite changes in the mix of charter types. For
instance, given a vessel on a $15,000 per day time char-
ter with $10,000 per day in voyex costs, a similar vessel
on a voyage charter will have to earn $25,000 per day
to earn a TCE rate of $15,000/day; voyex would oth-
erwise be paid by the charterer under a time charter
contract. TCE rates are thus a measure of the gross
freight income less voyex, divided by the duration of
the voyage (Clarksons, 2017b).
The Baltic Exchange is the world’s leading source

of benchmark indices in shipping. Every weekday they
publish updates on indices that are meant to track the
development of different shipping segments, which are
based on the professional assessment of independent
shipbrokers from all over the world (The Baltic Ex-
change, 2018). The shipbrokers use the latest fixing
prices in their assessments. In tanker shipping, we have
the Baltic Dirty Tanker Index (BDTI) and the Baltic
Clean Tanker Index (BCTI) that track the develop-
ment of dirty and clean oil trade, respectively12. The
indices represent a weighted average of TCE freight
rates for a set of major crude oil and oil products
routes (see Appendix A.6).

3.2 Freight Rate Mechanism
The freight rate mechanism is the mechanism which
links cycle theory with supply-demand theory. When

12Dirty refers to oil trade of crude and heavy (black) oils,
while clean refers to product tankers carrying oil products such
as gasoline, diesel fuel and jet fuel (see section 3.5)
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the market is tightly balanced, even small changes
could cause substantial impacts. It is the combina-
tion of a volatile demand and a significant time-lag for
the supply to adjust itself that creates the framework
for the shipping cycle.
Charterers and shipowners negotiate to establish a

freight rate that reflects the balance of available ships
and services/cargo in the market (Stopford, 2009). The
balance will continuously adjust the freight rate. A sce-
nario where supply is low will push freight rates higher,
with the consequence of more suppliers being willing
to enter the market. Suppliers must therefore either
buy new ships in the newbuilding market, or preferably
existing ships in the S&P market, to take advantage of
the presently high freight rates. Thus, the second-hand
prices are bid up to a level where newbuildings seem to
pay off. The subsequent delivery of newbuildings will
increase the fleet size, and possibly cause an overca-
pacity of ships. The pressure on freight rates increases,
and ships must be laid-up, sold or scrapped to restore
market balance.

Supply and Demand Curves

Supply and demand curves in shipping markets do typ-
ically have the shape seen in Figure 3.1 (Alizadeh and
Nomikos, 2011). The intersection of the supply and
demand curves is the theoretical freight rate equilib-
rium. Furthermore, market participant’s perception
regarding the current market situation does also affect
freight rate negotiations.

FR

D1 D2 D3 D4

FR4

FR3
FR2
FR1

Q1 Q2 Q3 Q4

B
A

C

Demand New demand Supply

tonne-miles

Figure 3.1: Supply-Demand curves in the freight market. Equilib-
rium freight rate levels can be seen for different shifts in demand (A,
B, C). Q# on the x-axis represents the tonnage capacity, in tonne-
miles, that shipowners are willing to supply at a given freight rate
level FR (y-axis).

The supply curve indicates the amount of transporta-
tion (tonne-miles) that the fleet is willing to supply at a
given freight rate (Alizadeh and Nomikos, 2011). The
curve is J-shaped, and is composed of each ship’s indi-
vidual supply curve. New and more modern ships will
contribute to the lower left part of the supply curve,
since these are able to operate more cost-efficiently

compared to older ships. The curve indicates that the
supply is price elastic up to a certain point, where the
fleet sails at close to maximum capacity. Here, it can-
not react to short-term increase in demand, and thus
becomes inelastic. In the elastic part, supply exceeds
demand, and only the most cost-efficient vessels are
hired - leaving freight rates lower than in the inelastic
part. In a situation where the freight rate falls below
the acceptable freight rate (opex cost) for a given ship,
shipowners have to decide whether the ship should be
operated with a loss, laid-up, scrapped or sold.
The demand curve describes charterers’ required

amount of shipping supply at a given freight rate. An
operating company, or oil company, has much higher
earnings and costs from normal operations than the
cost of shipping, hence being more affected by under-
lying demand for goods and products. Furthermore,
operators are dependent on continuous delivery of sup-
plies, due to high alternative costs concerned with, e.g.,
storage. Consequently, the demand curve is inelastic
over its entire area. In the short-run, the demand has
the ability to shift quite extensively in comparison to
the supply.

3.3 Shipping Cycles
Shipping markets are known to be cyclical, not struc-
tural in nature (Tønne, 2016). A cycle can be summa-
rized as a long-winded, almost constant imbalance in
the market. This imbalance is mostly a consequence of
the various stakeholders interacting - it is both created
and attempted stabilised by the various stakeholders.
Consequently, it is important to understand how this
market dynamic behaves to identify the most applica-
ble model. Cycle and supply-demand theory is central
in this understanding.

Cycle Characteristics

The history reveals that significant upturns imply that
a large number of shipowners are betting on the same
upturning wave, which can trigger long periods of re-
cession. When the market eventually recovers and
seems profitable, shipowners again tend to overorder
newbuildings, so that the cyclical movement continues.
Traditionally, shipowners and shipping investors with
this kind of strategy have been labelled with a certain
degree of short-mindedness.
Stopford (2009) distinguishes between three cycle

periods when describing cycle characteristics:

Long-term Short-term Seasonal

Shipping cycles are periodic, and not symmetric.
That is to say, cycles can last for various lengths of
time, and be very different from previous cycles. Cy-
cles will occur as long as there exists fluctuations in the
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balance between supply and demand. The short-term
cycle especially, acts as a function for coordinating this
balance.

Long-term Cycle

Long-term cycles are periods which span from several
decades to whole centuries. These periods are char-
acterized by overarching technological, economic and
regional developments. Technological innovations are
often the easiest to identify. These include great innova-
tive breakthroughs throughout the world history such
as the steam engine, railway and motor power. Still,
it will be challenging to pinpoint the exact moment in
time where these have affected the freight rates.

Short-term Cycle

Short-term cycles range from periods from three to
twelve years. These cycles are usually the most promi-
nent, being more distinct and relevant for analysis.
This comes from a limited access to long-term histor-
ical data, as well as uncertainty for the nearby and
distant future. Short-term cycles have the following
four stages (See Figure 3.2):

Trough Recovery Peak Collapse

Trough is where the freight rate has reached a min-
imum level or marks the end of a downturn. In this
stage, the market experiences a saturation of ships
and/or low demand. Freight rates reach a level be-
low operational costs, and ships are consequently laid
up. Low freight rates and pressured credit loans leads
to negative cash flows, and banks defer granting new
loans. Shipowners face difficult decisions, and ships
may be sold for far less than book value. Second-hand
prices may fall even down to the level of scrap prices.
The recovery stage occurs when the market bal-

ance is adjusting towards a supply-demand equilib-
rium. Freight rates increase above operational costs,
and ships are taken out of lay-up. The second-hand
prices increase and the future prospects brighten. The
peak is then reached when the market experiences sur-
plus demand. Freight rates increase far beyond opera-
tional costs, so that every ship is taken out of lay-up
and operates at high transit speeds. Optimism spreads
as the peak stage lasts on. Modern ships are sold at
second-hand prices reaching above newbuilding prices,
orderbooks increase and banks are willing to grant
loans against strong asset collateral. At the point of
surplus supply, when newbuildings reach the market
and/or demand drops, freight rates will exhibit a col-
lapse. The liquidity remains high during the collapse
phase, and shipowners hesitate to sell or scrap ships.

Supply and demand forces will eventually force the
market back to the trough stage, and the cyclical na-
ture continues.
Short-term shipping cycles do, however, not always

follow these four stages precisely. The recovery stage
may end up in a second collapse or a long-lasting flat
growth, called abortive recovery, inducing a prolonged
trough stage. Large order volumes of cheap newbuild-
ings as a consequence of investors predicting the mar-
ket cycle is an example of counter cyclical activity.
This means that supply which is meant to decrease, in-
creases. Particularly heavily ordering of newbuildings
in peak periods may cause the following trough and
recovery stages to endure far longer, hence delaying a
cyclical upswing. Newbuildings are usually delivered
one to four years after orders have been made, causing
increased pressure on the market when they are finally
delivered.

A moving average is suitable to represent the short-
term cycle (Stopford, 2009). The seasonal element can
be leveled out with such a method. The average is
centered around a given month, with an equal num-
ber of months on either sides. The average is subse-
quently shifted from month to month. The purpose
is to capture the freight rate shape that best repre-
sents a short-term cycle (Stopford, 2009). Figure 3.2
shows the short-term cycle for two Baltic Exchange in-
dices obtained from this method, adjusted for seasonal
variations.
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Figure 3.2: Short-term cycle. The four stages of a short-term cy-
cle. Seasonal trends are leveled out with equally weighted moving
averages. Baltic Exchange Dirty, and Clean indices are displayed.

Seasonal Cycle

Seasonal cycles are seasonal changes in the freight rate
within a year, mainly determined by the seasonal de-
mand. Regulation of supply is generally subject to
a more long-lasting shift. In Figure 3.3, the seasonal
cycle for the BDTI index is represented. Further, in
Figure 3.4, a smoothed BDTI short-term cycle is rep-
resented along with the original BDTI index to illus-
trate the seasonal effects. Seasonality will be more
thoroughly investigated in later chapters (see, further,
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Chapters 6 - 8).
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Figure 3.3: Seasonal cycle. Seasonal components for the BDTI in-
dex. Calculated as the mean seasonal change within the period
August 2002 - June 2017.
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Figure 3.4: BDTI index. A smoothed short-term cycle overlaid the
original BDTI index.

3.4 Risk and Cycles

Shipping cycles are defining the risk in the market.
Shipping risk is defined as the «measurable liability for
any financial loss arising from unforeseen imbalances
between the supply and demand for sea transport»
(Stopford, 2009). In shipping, the risk is divided be-
tween spot and term contracts. The spot market is
where the shipping companies are at the greatest risk,
but at the same time exposed to the greatest poten-
tial upside. In addition to potential upside with high
freight rates, the spot market is more like a showcase
than the long-term market (Fearnley, 2018). Ships
that have traded in the spot market may as such be
more likely to secure future contracts, as these are of
higher awareness to several charterers. Charterers, on
the other hand, would be at the greatest risk if they
own their own fleet, as they then will be directly af-
fected by their own activity. An «intermediate risk»
for both parties is to enter into long-term contracts
and/or speculative FFA trading.

Although a long-term market position is considered
to be least risky for the charterers, they will in times
of low capacity supply be at risk of paying a premium
on the spot freight rate. The downside of lost revenues

or increased operating costs from a lack of transporta-
tion options, is simply far too big compared to that
extra potential freight cost. The shipping companies,
however, will also take a certain risk of entering into
long-term contracts, as they sometimes may be paid
less at times when the spot rate is higher than their
long-term rates. Time charter contracts for a certain
period should reflect a weighted average of spot rates
for the same particular period. The market is rarely
quite efficient, and as a consequence, term and spot
rates differ from each other during an observed period.

Revenue and Cost Risk

Risk in regards to earnings is depending both on in-
come and cost. On the income side, owners are exposed
to risk in the freight rate, utilisation (employment days
and cargo capacity) and lifetime of the vessel regards
to second-hand or demolition value. On the cost side,
risks lie in capex costs (e.g., interest and amortisation
subject to fluctuations in devaluation risk of curren-
cies), opex costs (e.g., administration and operation,
maintenance and docking, crew and insurance) and
voyex costs (e.g., fuel, port and canal costs). Alto-
gether, as the numerous factors that bear risks for the
shipowners’ earnings indicate, risk management mea-
sures are important to take. For instance, fuel costs
accounts for about 75% of the total voyex costs, and
shipowners actively manage this short-term risk by ad-
justing the ship speed in accordance to the activity
level in the market. In the long-term, future expecta-
tions are vital in the decision-making process of when
to order, sell or scrap a vessel. Forecasting techniques
may be very useful to understand the underlying fac-
tors of the risks, and to make an opinion about the
future.

Expectations Creates Challenges

Analysts have seen that wealthy shipping companies
have a better ability of tackling a cyclical market, as
their financial buffer against losses is higher (Fearn-
ley, 2018). An alternating offer strategy that follows
the cycle may turn out to be catastrophic for compa-
nies if the trough phase is lasting over a longer period
(Stopford, 2009). In addition to normal supply and de-
mand behaviour, cyclical uncertainty is also impacted
by shipbrokers. Hampton (1991) has addressed the im-
portance of human impact in both the long-term and
short-term cycle: «In today‘s modern shipping market
it is easy to forget that a drama of human emotions is
played out in market movements». Shipbrokers have a
desire to interpret the signals generated by the freight
rate and, as an intermediary, will directly affect the
freight rate cycle. Hampton points out the weakness of
shipbrokers’ rational for giving particular price signals
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as a reason for the «overresponsiveness» of the market.
However, it is not just about being right, but being

right when others are not right. Hampton (1991) ar-
gues that some of the best opportunities arise this way,
and that consensus is generally not a good indication.
If both a shipping company and a chartering company
have made proper analyses, and both have identified
a peak in the market, naturally, the chartering com-
pany would prefer not to lease on long-term contracts,
although this is desired by the shipping company. Con-
sequently, it is important to evaluate at which stage of
the cycle period you are at and at the same time assess
the underlying psychology of the market, and not to
be too concerned about the time horizon. If shipping
companies find that they do not want to scrap ships
as a result of expectations of an early upturn, the cy-
cle will last longer. Shipowners, and other actors like
brokers, who are guessing at which stage the market
cycle currently is, as Hampton points out, makes it
challenging to assess the duration of the cycle.

3.5 Oil Tankers

Seaborne trade of oil can be divided into two main
groups; crude oil trade and products oil trade. In 2016,
oil tankers13 carrying these two cargo types accounted
for a total of 22.9% of world seaborne trade (Clarksons
Research Services Limited, 2017). Crude oil accounts
for 33% of world’s primary energy consumption, illus-
trating the scale of this energy source (BP, 2017).
In this section, we will at first give a more com-

prehensive description of the cargo itself, and put its
corresponding trade in context to other trade. Next,
we introduce the various tanker vessels and the current
tanker fleet. Finally, we highlight some characteristics
of the tanker market. We consider this knowledge to
be important in order to understand the underlying
drivers of the trade of oil.

Cargo

Crude oil and oil products are liquid bulk cargo.
Crude oil is a commodity. However, crude oil is not

a «universal» commodity, many different gradings of
crude oil are produced around the world. Crude oils
have different quality characteristics, the two most im-
portant being sulphur content and density level. The
sulphur content, expressed as percentage by mass, de-
termines whether the oil is sweet or sour. Sweet oil
has low sulphur content. The density level is measured
in American Petroleum Institute gravity (API), and
is a function of the oils specific gravity. API deter-
mines whether we are dealing with a light or heavy
oil. Crude oil’s quality grade is an important factor

13Oil tankers are hereinafter simply referred to as tankers.

to consider for oil refineries, who are processing the
crude oil. Refineries adjust their refinery facilities in
order to process and make the most out of different
crude oils. Processing of light, sweet grades of oil is far
less sophisticated and energy-intensive to heavy, sour
grades (EIA, 2018). Switching between gradings may
be cost-intensive or infeasible. Hence, refinery capacity
must be seen in the light of capacity by oil grading.
Oil products are the refined products (distillates)

produced from a refinery process. These products are
usually grouped into three categories; light distillates14
(e.g., butane, LPG, gasoline, naphtha), middle distil-
lates (e.g., kerosene, jet fuel, diesel fuel) and heavy
distillates (e.g., heavy fuel oil, residues). Most refiner-
ies focus on products used for transportation. In fact,
of world’s oil consumption, about 45% is consumed
by light and heavy duty transportation (ExxonMobil,
2017).

According to the U.S. Energy Information Adminis-
tration (EIA) agency, pricing of crude oils is usually
in the favour of the light and sweet oil gradings. Oil
products such as gasoline and diesel fuel typically sell
at a premium compared to more heavier products, and
these products are more easily refined from light, sweet
crude oil. The North Sea Brent and the U.SWest Texas
Intermediate (WTI) are examples of light and sweet
oils (EIA, 2018).

To put crude oil and oil products trade into context,
we have listed a breakdown of world seaborne trade of
goods and raw materials by tonnes and tonne-miles, as
well as their respective shares. As follows from Table
3.3, oil products’ share of total tonne-miles is lower
than its share of tonnes, indicating the fact that the
average haul of oil products voyages is less than the
average haul of world seaborne trade. If only consider-
ing crude and products, products’ share of total trade
drops from 35% of tonnes to 24% of tonne-miles. In
line with theory (Talley, 2011), we observe that oil
products voyages are significantly shorter than crude
oil voyages.

Crude and Product Tankers

Crude tankers transport crude oils to refineries for pro-
cessing. Seaborne transportation and distribution of
distillates from the refineries to consumers is done by
product tankers. Product tankers do also differ based
on whether they carry clean (light and middle distil-
lates) or dirty products (heavy and residue distillates,
as well as, e.g., heavy crude oil)15.

Liquid bulks require transportation in tanks and to

14Commonly referred to as “top of the barrel” products.
15Another common definition is to divide oil trade into dirty

(crude oil and dirty oil products) and clean (clean oil products)
trade. Dirty tankers may further carry, e.g., bitumen, molten
sulphur, coal tar and pitch.
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Table 3.3: Seaborne trade. Tonnes and tonne-miles of world cargoes (Clarksons Research Services Limited, 2017).

Cargo Million Share of Million Share of
type tonnes total (oil) tonne-miles total (oil)
Crude oil 1,950 17.5% (0.65%) 9,578 17.4% (0.76%)
Oil products 1,067 9.6% (0.35%) 3,042 5.5% (0.24%)
Total Oil 3,017 21.1% (100%) 12,620 22.9% (100%)
Gas 355 3.2% 1,463 2.7%
Chemicals 283 2.5% 991 1.8%
Containers 1,727 15.5% 8,592 15.6%
Iron ore 1,411 12.7% 7,912 14.4%
Coal 1,140 10.2% 4,968 9.0%
Grain 480 4.3% 3,396 6.2%
Minor bulk 1,864 16.7% 10,934 19.8%
Other dry 852 7.7% 4,236 7.7%
Total cargo 11,130 100% 55,112 100%

be handled by pumping systems (Talley, 2011). In gen-
eral, tankers can be identified by the flush freeboard
deck with a series of pipes and vents covering the deck
(Beard, 2011). Furthermore, due to oil spillage disas-
ters over the history, regulations have been enforced
so that tanker newbuildings now must be double hull
vessels; seeing a final phase-out of single hull ships in
202016. The degree of technicality of tankers is not
particularly high compared to other, more specialised
segments, but more advanced than dry bulk carriers.

In contrast to crude carriers which only carry crude
oil, product tankers transport several batches of differ-
ent distillates simultaneously. Coating of the tanks in
clean product tankers is one of the main differences that
allow for transportation of distillates (Jeffries, 2017).
Clean product tankers also requires more sophisticated
pumping and piping systems to support the number of
cargo segregations. Dirty product tankers, or high heat
tankers, carry dense, viscous cargo that require high
heat to flow smoothly through piping systems. High
heat tanks, or floating tanks, are allowed to expand
and ensure a cargo temperature up to 250°C. Conse-
quently, dirty product tankers demand higher sophis-
tication than clean product tankers with regards to
heating requirements, insulation, as well as valves and
pumps (Wärtsilä, 2018), but have less complex segre-
gation systems. Spread in freight rates between clean
and dirty product tankers may cause some tankers to
switch from clean to dirty or vice versa. Clean tanks
require less cleaning than dirty tanks before loading
new product, and would need a lower spread in freight
rates to be sufficiently incentivised to switch. Cleanup
of crude tankers is, nevertheless, very rare nowadays
due to the high expense.

16The International Maritime Organization (IMO (2017)) en-
forced a 2015 phase-out date, but the Nigerian Maritime Admin-
istration and Safety Agency (NIMASA) extended the deadline
to 2020 for Nigerian tankers.

Tanker Fleet

The tanker fleet comprises about 2,000 and 3,000 crude
and product vessels, respectively. This corresponds
to 19% of the merchant fleet, and 30% in capacity
terms (>10 k.dwt) (Clarksons Research Services Lim-
ited, 2017). Another common measure of oil trade is
barrels of oil (bbl). In 2016, world seaborne exports
of crude oil and oil products was 39.2 and 23.1 mil-
lion barrels per day, respectively. A Very Large Crude
Carrier (VLCC) tanker vessel of 270,000 dwt is capa-
ble of loading approximately 2 million barrels of oil17.
Nonetheless, there is significant differentiation in dwt
capacity across tanker vessels.
The highest volumes of crude oil are traded over

intercontinental routes with the largest tanker ships.
VLCC and Suezmax are the main ship types employed
on long-haul voyages, while Aframax ships are usually
employed on short to medium-haul voyages. Aframax
ships are also used for carrying oil products. Aframax
is considered to be the “workhorse” among the tankers,
due to its ability to access most ports around the world.
Smaller sizes, such as Panamax and Handysize, mainly
carry oil products. Some ship classes are named based
on the canal that will be transit-restrictive in terms of
size18 (e.g., Suezmax vessels in a laden condition are
capable of transiting through canals that are of equal
or larger size than the Suez Canal). VLCCs are too
large to pass through any canal in laden, and must
transit around the great capes of the world. Aframax,
Panamax and Handysize ships used for oil products
trade are often referred to as LR2, LR1 and MR, re-
spectively19. An overview of the tanker fleet can be
seen from Table 3.4.

As ships are being built larger, the ULCC class has

171 barrel equals 159 litres. Assuming 0.88 specific gravity, a
metric tonne then equals about 7 barrels of oil.

18Aframax vessel is named not because it travels around Africa,
but after the Average Freight Rate Assessment (AFRA) tanker
rating system.

19LR: Long Range. MR: Medium Range. Serves the purpose
of separating crude and product tankers in the same dwt range.
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been introduced in the upper range along with VLCCs.
ULCCs are used almost exclusively on the longest long-
haul routes, such as the Middle Eastern Gulf to the
US Gulf and East Asia (Chapter 4). The largest ves-
sels are also more commonly used as speculative oil
hubs outside major import markets in certain market
situations (Tradewinds (2017a); see discussion about
contango oil pricing in Section 5.3). Table 3.5 shows
the development of the productivity of the tanker fleet,
measured as total million tonnes of oil traded by sea
to total fleet tonnage. This indicates that tankers have
become less productive following the period between
2005 and 2010. Demand has thus weakened relative
to supply. Although supporting demand, some of the
explanation may be that tonnage are now being trans-
ported over longer distances than before. Increased use
of vessels as storage units, or oil hubs, may be a further
support to demand. From Table 3.5, at least for crude,
indications of a recovery can be seen. Furthermore,
by dividing tonne-miles by tonnes an explicit measure
of the average distance the cargo travels can be made.
Results from this is also given in Table 3.5. We see a
tendency of upward movement from 2015 to 2017 in
average haul, which will strongly support a recovery
from today’s distressed rates if more oil flood into the
market. Discussion on trade flows are further given in
Chapter 4.

Market Characteristics

Oil companies are dependent upon independent
shipowners’ transportation capacities. There are sev-
eral explanations of why oil charterers’ interests ensure
the need of independent shipowners (Talley, 2011). In-
spiration taken from Talley (2011) lead us to identify
five explanations. Firstly, there exists uncertainty of
transportation volumes of oil. Secondly, the buying
and the selling side of oil do not want to be depen-
dent on the other for transportation. Thirdly, special-
isation suggest more favourable operating economic
conditions, as well as exemption from certain politics
and governance. Next to last, cost of capital considera-
tions of purchasing a vessel is avoided. Fifth and lastly,
tonnage supply regulates in line with transportation
demand. Accordingly, it is evident that a monopolistic
structure of oil companies on tanker transportation is
not in these companies’ best interest.
Stopford (2009) identifies shipping markets as text-

book examples of markets operating under conditions
of nearly perfect competition, or efficient markets.
Five characteristics are met under a perfect compe-
tition market structure (Investopedia, 2018b), which
we translate to the tanker market. Firstly, shipowners
offer almost identical products. Tanker technology is
generally homogeneous within the various classes of
tankers, and tankers are as such perfectly interchange-

able. Secondly, all shipowners are price takers. The
freight rate mechanism sets the price. Thirdly, the
tanker market is known to have a high level of frag-
mentation. The top 20 ownership distribution of oil
tankers portrays that these companies only own 34.5%
of the tanker fleet capacity20. No single owner owns
more than 2.5% of the total capacity; as of today, this is
the privately owned Iranian company National Iranian
Tanker (Clarksons Research Services Limited, 2017).
In fact, economies of scale is not particularly evident
in terms of the number of vessels a company owns.
Fourthly, charterers have complete information about
the worldscale rates charged on various routes, as well
as tankers available for chartering. Freight rate ma-
nipulation is difficult with this transparency. Lastly,
the market is characterised by ease of entry and exit.
No complex administration structures are required for
operations. With the necessary financing, everyone
can order a newbuilding, and scrapping a vessel is, in
most respects, straightforward. The ease of exit also
translates to tankers’ mobility of switching to routes
in which freight rates are more profitable. Further-
more, referring back to the introduction of this chap-
ter, we note that the tanker market comes under the
category of tramp shipping, wherein vessels are hired
on-demand. In other segments, such as those involved
with liner shipping, obstacles of entry are greater.

In the context of freight rate prediction, these market
characteristics possibly indicate that tanker market
dynamics exhibit predictable behaviour over time, and
hence serves as a theoretical support of translating past
history into future predictions.

20Total capacity of owners with more than 10k dwt in their
fleet.
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Table 3.4: Oil Tanker Fleet above 10k.dwt (Clarksons Research Services Limited, 2017).

Vessel class Vessel size range Number Fleet Capacity Avg. Typical
k.dwt Avg. k.bbl of vessels k.dwt Share of fleet age (year) haul

Crude Tankers
U/VLCC 200 - 442(d.d) 2,102 734 225,686 41% 9.3 Long
Suezmax 120 - 200 1,055 543 84,740 15% 9.5 Med-Long
Aframax 80 - 120 742 658 71,483 13% 11.1 Med-Short
Panamax 60 - 80 481 89 6,212 1% 12.9 Short-Med

Total Crude 2,024 388,121 71% 10.1

Product Tankers
Suezmax 120 - 200 1,072 16 2,539 0.5% 9.3 Long

LR2 80 - 120 804 342 37,354 7% 7.9 Med-Long
LR1 60 - 80 514 360 26,426 5% 9.3 Med-Long
MR 30 - 60 307 1,961 88,389 16% 10.2 Med-Short
SR 10 - 30 108 277 4,114 1% 16.4 Short

Total Product 2,956 158,823 29% 10.4

Total Oil Tanker Fleet 4,890 546,944 100% 10.3

Table 3.5: Tanker fleet productivity: Tonnes carried per dwt of tankers & Tonne-miles carried per dwt of tankers & Average haul in miles -
dividing tonne-miles by tonnes. Includes tankers above 10 k.dwt (Clarksons Research Services Limited, 2017). NA: data not available.

A more detailed breakdown of each productivity constituent is given in Appendix C.

Ratio: Tonnes carried Ratio: 1k. tonne-miles carried Average haul
Year per dwt of per dwt of [miles]

Crude Product Total tankers Crude Product Total tankers Crude Product Total tankers

1990 5.6 NA NA 26.6 NA NA 4,719 3,040 4,268
1995 6.9 NA NA 32.7 NA NA 4,765 3,087 4,372
2000 7.6 10.50 8.2 36.5 29.4 35.1 4,803 2,797 4,031
2005 7.8 10.39 8.4 35.7 30,9 34.6 4,580 2,978 4,140
2010 6.3 7.56 6.7 29.4 22.3 27.4 4,641 2,950 4,099
2015 5.4 7.35 6.0 26.4 20.9 24.8 4,855 2,844 4,144
2017 5.2 7.04 5.8 26.4 20.1 24.6 5,042 2,861 4,270
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4 Tanker Trade and Routes

Oceans, continents and ports are all important geo-
graphical terms to consider in the context of intercon-
tinental tanker trade. Three economic centres dom-
inate the world of shipping; North America, Europe
and Asia. The most predominant oil trades are tak-
ing place in the oceans and seas between these conti-
nents. Shipowners face several logistical matters when
employing the ships to carry out these trades, such
as acceptable freight rates, size restrictions, voyage
durations, voyage costs, labour, and congestions and
disruptions at sea-chokepoints, canals and ports.

At first, we will briefly look at how the tanker route
pattern has changed over the last decades. Then, we
will look at how trade flows are today, and emphasise
some of the major trading routes in terms of imports
and exports of oil. Next, we will select and introduce
more in-depth the routes of which freight rates we will
analyse. Finally, we will look at the background of
the freight rate data that we will use throughout this
paper.

4.1 Tanker Trade

Historical Tanker Trade

Trade change, along with changing economies, is im-
perative to get right, as described by Stopford (2009):
«One of the most fundamental principles of trade fore-
casting is to recognize [trade change and changing
economies] and build it into the forecast». The choice
of relevant determinants heavily rests on acknowledg-
ing this statement, moreover motivating somewhat why
a model should be conditional on varying market con-
ditions. In other words, economic forces and relation-
ships important for trade in the past, may be of less
importance today. Over the history, tanker trade has
undergone a continuous development in trade dynam-
ics.
Crude Oil. The first charter of crude oil by sea

was conducted in 1861. Oil tanker trade is accordingly
far younger than several other types of shipping trade.
Tanker vessels carrying oil in bulk, using the outer ship-
hull as tank compartment, were not seaborne before
1886. The Suez Canal opened for tanker transit in
1892, which considerably shortened voyage distances,
and has since been shut down, reopened and enlarged
several times. At this time, shorter distances supported
demand tonnes more than it teared on demand miles.
Tonne-miles demand grew rapidly in the mid-1900s

as the Middle East exported more and more oil, es-
pecially to Western Europe through the Suez Canal.
The increase in average haul was profound during this
period. Shipping costs and the price of oil was about
the same in the 1950s (today, the price of oil is way

higher than shipping costs). Oil majors, who also were
tanker shipowners at the time, eventually faced high
shipping costs by building supertankers (UL/VLCCs),
thus exploiting economies of scale. The first VLCC
sat sail in 1966. From then on, the tanker fleet grew
rapidly.
Fleet growth combined with a decline in oil trade

caused the tanker market to plunge in the late 1970s.
Maturing transition from coal to oil as an energy source
in Europe and Japan was part of the cause21. High oil
prices, along with economic recessions were additional
contributors. Furthermore, the average haul was struck
by increased production of oil trading short-haul (e.g.
North Sea), opening of Middle Eastern refinery capac-
ities and pipelines, increased domestic production in
importing regions (e.g. North America), as well as the
reopening of the Suez Canal in 1975 following the clo-
sure in 1967. Smaller vessel classes, performed well un-
der the growing short-haul trade, while VLCCs moved
to medium-haul trades in the Atlantic. In 1986 the
freight market improved again, when lower oil prices
supported demand for Middle Eastern oil. From the
beginning of the 1990s, and up until today, seaborne
oil trade has grown greatly, but also been subject to
cyclical downturns.
Oil Products. The history of crude oil trade and

oil products trade is related. However, trade of prod-
ucts is different from crude trade. Not only in terms of
cargo and vessel sizes and technicalities, but also from
a geographical and route perspective. We mentioned
oil refinery capacity in the context of crude trade above.
Before 1960, the share of products tonne-miles to total
oil tonne-miles was greater than it is today. In the
1960s, cost benefits of moving crude to refineries in
proximity to products demand was brought to life in
much larger scale, which was further supported by po-
litical matters. Western Europe, especially, expanded
its oil refinery base substantially at the end of the 1950s.
These refineries are still majors players in the oil trade
today (see, e.g., port of Rotterdam in the description of
«TC2» below). Naturally, the route patterns of crude
and products trade were adjusted thereafter. Europe
was now importing crude instead of products from the
Middle East, and US built up their own refinery capac-
ity instead of importing products from South America
and the Caribbean. After that, constrained capability
of building additional refining capacity and the need of
balancing trade of various oil products, among other
things, lead to increasing trade into US and Europe
in the 1990s. From the 1990s, Fear East Asian prod-
ucts demand has had a solid growth until today (for
detailed history, see Stopford (2009); Talley (2011)).
In summary, seaborne oil trade has developed from

21Maturing trade import of iron ore to China is today a po-
tential concern for the Dry Bulk industry (Clarksons, 2017a).
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a less speculative mode of trade, carefully planned by
oil majors, to a volatile, market regulated industry.
Natural resources and geographical locations play a
vital role in the seaborne route pattern, and tonne-
miles demand that follows – conflicted by a variety of
stakeholders filling different roles.

Tanker Trade Today

The route pattern today consists of a comprehensive
network of routes going across the entire world. Routes
are commonly referred to with route codes as they are
presented in the Baltic indices, whereof TD and TC are
route codes for the BDTI index and the BCTI index,
respectively. A complete list of the routes included in
BDTI and BCTI can be seen in Appendix A.6.
Table 4.1 provides an overview of regional tonne-

miles importers and exporters of crude oil and oil
products. By analysing seaborne trade tables over
time, one may be able to capture important changes in
trade dynamics. The Middle East is by far the largest
exporting region of oil in the world22. Due to the re-
gion’s geographical location, several long-haul routes
exist between the Middle East and large importing re-
gions such as the Far East and North America. These
long-haul routes contribute significant to tonne-miles
demand. Understandably, an increase or decrease of
exports from the Middle East will have large effects
on tanker freight (as history above revealed). In terms
of import, the Asian continent is the largest for both
crude and products. Furthermore, Table C.4 in Ap-
pendix C provides a list of top 10 producers, consumers,
importers and exporters of oil.
On the products side, analysts would track oil re-

finery capacity to see what distances the crude must
travel. Surplus refinery capacity to oil products de-
mand would be an indicator of potential exports of oil
products. In terms of deficit trade, keeping track on do-
mestic refinery capacity and output to production and
demand may reveal a country’s capability to export
surplus products or crude; or the need of importing
the deficit of either or both.

4.2 Selection of Routes

As previously mentioned, we will be looking in-depth at
specific routes for the tanker market, and later attempt
to model respective freight rates of these. But which
routes should be considered? Our selection of routes
is based on the following criteria:

1. Route:
Major oil route, and part of the BDTI or the
BCTI.

22About half of the seaborne oil exported originates from the
Middle East (Talley, 2011).

2. Data time horizon and frequency:
Data available back to year 2002, and on a
monthly frequency (see, also, Chapter 6).

3. Ship type:
Both crude, and product vessels.

4. Ship size:
Both similarity, and variation in vessel size.

5. Freight rate (TCE) correlation:
As much variation as possible between the selected
routes in terms of freight rate correlation.

After addressing the criteria above, the correspond-
ing freight rates for the following routes were chosen:
TD1, TD3, TD7, TD12, TC1 and TC2. Table 4.2
presents an overview over the selected routes, and Fig-
ure 4.1 displays these routes on a world map. With
these routes, we get a mix of routes that makes it
possible to compare several interesting relationships;
the same vessel size and oil trade, but different routes
(TD1, TD3); crude oil and oil products trade on the
same route (TD3, TC1); along with relationships re-
garding vessel sizes and routes across both types of
trade. Next, we will give a description of some charac-
teristics of each route.

Route Characteristics

Crude oil round voyages are often made up of one laden
leg and one ballasting leg, i.e. vessels are only trans-
porting cargo one way. Product tankers on the other
hand, are not unusually transporting backhaul cargo
on a round voyage, i.e. vessels are loading and carrying
cargo both ways on a round voyage. These are impor-
tant facts that have been considered when selecting
determinants (Chapter 5). In regards to loading and
discharging, terminals for UL/VLCCs normally have
jetties23 in deep waters outside a port. This is due to
the massive beam and draft (size) of the largest tankers.
These terminals are thus often referred to as offshore
terminals. Ships discharge cargo using their own pump-
ing systems, and cargo is pumped via offshore pipelines
that are connected to storage tanks on-shore. When
ships are loading oil, terminals’ pumping capacity are
used. Product tankers and smaller crude tankers are
less size-restricted, so jetties are usually not needed.
Product tanker terminals do, however, require a load-
ing/discharge system that can manage a combination
of products.

VLCC TD1: Ras Tanura - LOOP

Ras Tanura is the main export terminal of Saudi Ara-
bia, and located in the Middle East Gulf (MEG). Crude

23Jetty: in the same category as a pier, i.e. a structure that
projects from the land out into the water.
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Table 4.1: Seaborne trade by region. Import and export in 2017 of crude oil and oil products (Clarksons Research Services Limited, 2017).

Seaborne crude oil Seaborne oil products
[b.tonne-miles] [b.tonne-miles]

Region Export Region Import Region Export Region Import
AG 5,178 China 3,030 Far East 203 UK/Cont. 216

Caribs. 1,399 N.America 1,721 USG 190 L.America 136
WAF 1,320 Japan 1,000 UK/Cont. 149 China/Jap/Korea 94
U.S.* 242 India 732 AG 137 Med. 90

UK/Cont. 217 UK/Cont. 577 Baltic 101 N.America 89

*U.S. crude export is set to increase by 80% in 2018 according to CRSL forecasts.

Table 4.2: 6 selected routes, and corresponding route description. Route symbol in accordance to the Baltic Exchange indices.

Route symbol Route ports Vessel size Cargo type Oceans (Seas) Baltic Exchange
(Countries)

TD1 Ras Tanura - LOOP VLCC Crude oil Indian Ocean, Atlantic Ocean BDTI
(Saudi Arabia - U.S.)

TD3 Ras Tanura - Chiba VLCC Crude oil Indian Ocean, Pacific Ocean BDTI
(Saudi Arabia - Japan)

TD7 Sullom Voe - Wilhelmshaven Aframax Crude oil (North Sea) BDTI
(UK - Germany)

TD12 Antwerp - Houston LR1 Dirty oil products Atlantic Ocean BDTI
(Belgium - U.S.)

TC1 Ras Tanura - Chiba LR2 Clean oil products Indian Ocean, Pacific Ocean BCTI
(Saudi Arabia - Japan)

TC2 Rotterdam - New York MR Clean oil products Atlantic Ocean BCTI
(Netherlands - U.S.)

oil is imported to refineries in the US Gulf area after
being discharged at the Louisiana Offshore Oil Port
(LOOP). Once reaching the refineries, the oil is refined
and distributed through a network of oil pipelines. VL-
CCs must transit the most important oil chokepoint in
the world, namely Strait of Hormuz connecting MEG
and the Arabian Sea. In 2016, 18.5 million barrels
flowed through the strait (EIA, 2017c). At sea, VL-
CCs are sailing around the Cape of Good Hope, hence
crossing over from the Indian Ocean to the Atlantic
Ocean. Notable for the TD1 route, is that VLCCs may
not perform a complete round voyage, but rather take
on charter parties that lead them to ballast to, e.g.,
West Africa (WAF) for new cargo loads.

The port of Ras Tanura has several deep-water ter-
minals that are linked to relatively short pipelines from
large-reserve on-shore oil fields, securing this oil to be
readily available for exports. The terminal has a series
of storage tanks that are connected to jetties which
VLCCs berth to. LOOP is located in the US Gulf off
the coast of Louisiana. The terminal is a designated oil
lightering terminal. In other words, oil is being trans-
ferred from VLCCs to smaller vessels, which again
transports oil to ports along the Gulf that the VLCCs
are size-restricted to enter. LOOP is the only deep-

water oil terminal in the U.S. capable of offloading
VLCCs. Pipelines are also stretching from LOOP to
ports on-shore, connecting to 35% of the U.S. refining
capability (Stopford, 2009). Going forward, LOOP will
play an important role in the export of U.S. crude, as
the U.S. will increase its exports substantially following
the lifting of U.S. crude export ban in 2015.
EIA divides the U.S. mainland into to five so

called Petroleum Administration for Defense Districts
(PADD) (EIA, 2012). Of relevance to this thesis, are
PADD1 and PADD3, which represents the Gulf Coast
and the East Coast, respectively. EIA’s database in-
cludes data on PADD-specific level, which our inclusion
of determinants in Chapter 5 reveals.

VLCC TD3 and LR2 (Aframax) TC1: Ras Ta-
nura - Chiba

Vessels on the TD3 (crude) and the TC1 (clean) route
are sailing from Ras Tanura, Saudi Arabia, in the
Middle East Gulf to Chiba, Japan, on the east coast
of Japan. On the voyage, VLLCs and LR2s transit
eastward through the Strait of Malacca. The Strait
of Malacca, linking the Indian Ocean and the Pa-
cific Ocean, is a key chokepoint for the trade between

19



Figure 4.1: An overview of the specific tanker routes which are investigated in this thesis; spanning nine ports, seven countries and four
regions. TD1: Ras Tanura [SA] - LOOP [US], VLCC; TD3: Ras Tanura [SA] - Chiba [JP] VLCC; TD7: Sullom Voe [GB] - Wilhelmshaven
[DE] Aframax; TD12: Antwerp [BE] - Houston [US] LR1; TC1: Ras Tanura [SA] - Chiba [JP] LR2; TC2: Rotterdam [NL] - New York [US],
MR.

the Middle East Gulf and Japan. According to EIA
(2017b), nearly 16 million barrels of crude oil and oil
products per day transited the strait in 2016. Clearly,
the Strait of Hormuz is also a key chokepoint on this
route (see TD1). The port of Chiba is Japan’s second
largest port in terms of cargo tonnage handled (Find
a Port, 2017).
Japan is one of the major contributors to seaborne

imports in the world, which is supported by their large-
scale industrial capacity. Japan does possess very lim-
ited natural resources, and are highly dependent on
foreign energy supply to cover energy demand. Most
of Japan’s imports of oil come exactly from the Middle
East. Countries in the Middle East, relative to other
world regions, are namely generally rich on natural
resources. The economy of Saudi Arabia is heavily de-
pendent on its exports of oil. The Middle East is one
of the world’s conflict areas, and oil trade has been
disrupted several times over the history. Political in-
stability, and the pressure it has on seaborne freight, is
unfortunately difficult to safeguard against for shipping
participants.

Aframax TD7: Sullom Voe - Wilhelmshaven

On the TD7 route, vessels transit from Sullom Voe,
UK, in the North Sea to Wilhelmshaven, Germany, at
the northern German coastline. Vessels on this route
load crude oil from the storage terminal Sullom Voe
on the northern Shetland Islands. Sullom Voe receives
its oil from offshore oilfields in the Shetland Basin. Ac-
cording to Enquest, the terminal operator, the terminal

has a current inflow rate of 0.13 million barrels per day
(EnQuest, 2017). The port of Wilhelmshaven has Ger-
many’s only deep-water oil terminal and is the largest
import port for crude oil (Niedersachsen, 2017). Simi-
lar to Ras Tanura, jetties handle the transhipments of
oil.
The voyage to Wilhelmshaven is free of oil choke-

points, but bad weather causing colossal waves repre-
sents possibly the most significant bottleneck in up-
(oil production) and midstream (tankers) operations in
the North Sea. Histories of tankers running aground
in the waters off the Shetland Islands do exist.

LR1 (Panamax) TD12: Antwerp - Houston

TD12, from Antwerp, Belgium to Houston, U.S., in the
US Gulf is a dirty products route. The voyage is fairly
straightforward, and no major oil chokepoints exist
on the route, even though port congestions and un-
favourable climate conditions occasionally occur. For
instance, the Atlantic hurricane season in the U.S. Gulf
may tighten available tonnage supply and cause tanker
rates to spike, historically, around August (Teekay,
2017).

The port of Antwerp has a long merchant history, in
which the 1500s marked Antwerp’s golden age (Port of
Antwerp, 2017). Today, Antwerp is a main competitor
to, e.g., Rotterdam (see TC2 below). The port of Hous-
ton, on the other hand, is the largest port on the U.S.
Gulf Coast (Port Houston, 2017). The aforementioned
PADD3 district is thus relevant to this route also.
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MR (Handysize) TC2: Rotterdam - New York

Vessels on the TC2 route cross the Atlantic Ocean with
clean products cargo from Rotterdam, Netherlands to
New York/New Jersey, U.S., at the US North-East
Atlantic Coast24. Like TD12, the voyage is clear of
major oil chokepoints.
Following the port of Antwerp’s golden age, Dutch

ports took over as Europe’s maritime capital. Rotter-
dam25 is today Europe’s largest port, and a distribu-
tion centre for the European continent (Port of Rotter-
dam, 2017). The port of New York and New Jersey is
the third-largest port in the U.S., and the largest on the
East Coast (Port of NY/NJ, 2017). Above-mentioned
PADD1 district is thus relevant to this route also.

Route Analysis

TD1, Ras Tanura – LOOP, is the route with the longest
voyage duration among our selected routes, with ap-
proximately 78 days or 24,4450 miles if a complete
VLCC round voyage is made. In comparison, Ras Ta-
nura – Chiba has a duration of about 43 days or 13,308
miles for the same vessel (voyage details for all routes
follow in Table 6.2). It is evident that the future de-
velopment in route patterns is important to consider
when analysing tonne-miles demand.

Oil moves from areas of surplus to areas of shortage,
defined by Stopford (2009) as deficit trade. In terms
of oil trade, deficit trade is undoubtedly the most rel-
evant and make up the largest portion of trade. In
addition to deficit trade, Stopford (2009) argues that
we can look at two additional economic forces as un-
derlying drivers of trade; competitive trade and cyclical
trade. Competitive trade occurs when countries that
are capable of producing oil, imports oil at a lower cost
instead - this is what economists and market analysts
commonly refers to as arbitrage trade. Cyclical, or
temporary trade refers to trade (or the lack of it) due
seasonal or temporary shortages. For instance, unusual
cold winters will lead to unusual high demand for heat-
ing oils, failure on oil rigs in countries of shortage will
suggest more import, and instabilities (war, politics
etc.) in oil producing countries may lead to disruption
of oil supply (and consequently oil trade). In Figure
4.2, we have visualised spreads in crude production and
demand by countries/area of relevance for the selected
routes. This serves to identify the countries that are in
surplus or shortage of oil, and at what level they are
in the need of oil trade; either crude oil for domestic
refining or oil products for direct use.

24The TC2 is often treated as part of a triangulated Atlantic
route including a ballasted leg between the US East Coast and
US Gulf Coast (Tradewinds, 2017b).

25MEG-Rotterdam is one of the key benchmark indices used
by owners, brokers and charterers to describe the health of the
VLCC market (Kavussanos and Visvikis, 2016).

Viewed simplistically26, the following can be read
from the graphs in Figure 4.2 given a negative (posi-
tive) value in the spreads:

• Spread 1) Refinery Output − Oil Demand: Im-
port of products; or draw in inventory (ex-
port of products; or add to inventory)

• Spread 2) Crude Oil Production − Oil Demand:
Import of crude and/or products; or draw
in inventory (export of crude and/or products;
or add to inventory)

• Spread 3) Crude Oil Production − Refinery Out-
put: Import of crude; or draw in inventory
(export of crude; or add to inventory)

*i.e. Spread 2(S2) − Spread 3(S3) = Spread 1(S1)

EU4 (Germany, France, UK, Italy) is included here,
since Rotterdam, Antwerp and Wilhelmshaven are all
distribution centres for European oil trade. EU4 thus
serves as a benchmark for European oil trade. Overall,
Saudi Arabia is the only country not in the need of
imports. For instance, U.S. oil demand exceeds U.S.
oil production with approximately 10.7 million barrels
per day (Sept. 2017). The U.S. is therefore dependent
on imports to cover demand. Yet, balancing trade does
occur. Countries in shortage of oil do therefore also
export certain amounts of oil.

In the summer months of 2017, Saudi Arabia decided
to cover high domestic demand, caused by the Middle
East heat season, by cutting down on exports instead
of increasing production. This was to support OPEC’s
cut-deal on production from November 2016. The main
aim of OPEC with this cut deal is to constrain supply
to increase oil prices. From Figure 4.2, we can see a
clear dip in the Saudi Arabian spreads at the end of
2016, which have been translating negatively to the
tanker market. OPEC compliance with output cuts is
not impacting tanker trade favourably; at least in the
short-term, until high oil prices potentially accelerate
sanctioning of oil projects. Similar macroanalyses may
be made to uncover relationships in other spreads. We
will elaborate on these relationships in more detail in
the determinants chapter (Chapter 5).

26This should, however, possibly be seen in the context of
refinery capacities (and/or refinery utilisation) also, to get the
full picture of deficit trade. Furthermore, changes in inventory
(stock-buildings) may support analysis. Unfortunately, we do
not have adequate data to perform such analysis.
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Figure 4.2: Figures from top to bottom: USA, Japan, Saudi Arabia, EU4 (Germany, France, UK, Italy).

Spreads between combinations of Refinery Output, Oil Demand and Crude Oil Production for countries relating to our 6 selected routes (TD1,
TD3, TD7, TD12, TC1, TC2). Serves as a visualisation of oil shortage or surplus.

Spreads are calculated as: S1) Refinery Output − Oil Demand ; S2) Curde Oil Production − Oil Demand ; S3) Crude Oil Production −
Refinery Output. Numbers in million barrels per day (Mbbl/d). S2 and S3 on secondary axis (RHS).

* Be aware that Saudi Arabian Refinery Output and Oil Demand are rated as "Not assessed" or "Use with caution" by the data source (Joint
Organisations Data Initiative (JODI, jodidb.org)).
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5 Factors Affecting Tanker
Freight Rates

In the consecutive parts of this chapter, we will in-
troduce hypothetical route-specific and general deter-
minants for our 6 selected routes. We consider route-
specific factors as factors solely focused on a single
route. General-specific, or common factors, concerns
either all routes or some subset of routes - A VLCC
determinant might for instance affect more than one
route. We group determinants27 into three groups:
Supply, Demand, and Economic and Non-fundamental
(E&N). The classification of each group is, generally,
based on the following:

i ) Supply: ship and fleet related factors

ii ) Demand: cargo trade, vessel fixtures, produc-
tion and oil demand factors

iii ) E&N: a variety of market price, financial and
other factors possibly affecting supply and demand

In the rest of the chapter, a combination of market
theory and empirical theory will be used to justify the
relevance of the determinants we will be considering
for the regime models.

Macroeconomic Landscape

UNCTAD (2016) claims that maritime trade flows con-
tinue to be largely determined by developments in the
macroeconomic landscape. These are variables that
hypothetically could explain the whole or subsets of
the whole tanker market. On the contrary, microeco-
nomic variables are individual ship specifications, char-
ter party details and so on (see, for instance, Köhn
(2008); Alizadeh and Talley (2011); Adland and Cul-
linane (2006); Abouarghoub et al. (2017)). Multiple
empirical studies over the history find macroeconomic
data to be of great influence on tanker freight rates.
Findings include determinants such as global economic
activity, oil prices, ordered newbuildings, growth in
industrial production, trade in commodities at sea, de-
liveries of new vessels and the scrapping rate (Hawdon
(1978); Beenstock and Vergottis (1989); Abouarghoub
et al. (2012); Abouarghoub et al. (2017)). Our models
will as such be based on macroeconomic variables.

Abouarghoub et al. (2012) identifies that both ex-
ogenous and endogenous factors affect shipping busi-
ness cycles. Exogenous factors belong to shipping de-
mand, while endogenous factors are concerned with
shipping supply. The fact that demand for oil seaborne
trade is derived demand, supports empirical findings

27Interchangeably referred to as «factors», «determinants»
and «external variables» etc.

of freight rate dynamics being influenced by macroe-
conomic events (Stopford (2009); Abouarghoub et al.
(2012)). Global exogenous, macroeconomic events such
as the most recent global boom caused by the Chinese
activity in mid-2000s or the financial crisis in 2008,
lead to significant changes in the demand for shipping
services, which in turn lead to endogenous capacity
adjustments of shipping supply. Supply adjustments
must be considered in the light of both actual events
and future expectations. The level of endogenous re-
actions to exogenous factors, i.e. lead time for cycle
transition, will further depend on the current capacity
and fleet utilization situation. Kavussanos and Visvikis
(2016) argue that short-term cycles are largely supply
driven, with a few exceptions from external shocks -
«originates from timing effects and mass psychology
on very fragmented markets with low entry barriers
for vessel ownership». Supply regulating behaviour
is supported by maritime economic theory of efficient
shipping markets (see Section 3.5).

Since we in this study are dealing with 6 differ-
ent routes and a manifold of variables, factors will
be grouped into subgroups when presented here. For
instance, all determinants on oil import and export
are gathered into a subgroup called «Oil Import and
Export», belonging to «Demand»28. We will also
address the various determinants’ hypothesised direc-
tional (positive) impact on freight rates. Table 5.1
provides a complete overview29. At the end, a brief
discussion on “non-capturable» factors and factors that
could have been useful is given.

5.1 Supply-Driving Factors

Shipping supply is broadly given by the available fleet’s
tonne-miles capacity. Tonne-miles is made up of two
factors, namely deadweight tonnage and productivity
(see, further, Section 3.2). The former is quite unam-
biguous. The latter is imponderable; non-easy access
or non-capturable data. Productivity refers to speed,
deadweight utilisation, port time, loaded days at sea
and lay-ups30 (Stopford, 2009). Other than productiv-
ity factors, supply relies on factors such as the size of
the fleet, shipbuilding activities and the rate at which
ships are scrapped (Alizadeh and Talley, 2011).

Aforementioned theory suggests that supply factors
exhibit cyclical behaviour to freight rate movement, i.e.

28Instead of listing and mentioning all single individual vari-
ables that we have tested, we refer to the Appendix, although
some specific variables are mentioned where found natural.

29Hypothesises are based on a “most cases” basis. Thinking of
all possible cases where a directional impact would yield opposite
effect will make our heads spin. Luckily, we have statistical
measures to reveal the «truths».

30Factor added by authors.
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they are endogenously related. Cyclicality causes the
signs of correlation to change across the lag structure.
When hypothesising the expected coefficient sign in
the regressions models, we therefore consider real-time
(0-lag) correlation.

Fleet Size

The size of the tanker fleet refers to the total dead-
weight capacity (dwt) in the market, i.e. it is a direct
measure of shipping supply. In the short term, the
capacity is fairly constant and not subject to large fluc-
tuations. Medium to long-term, capacity will move up
and down along with newbuildings (deliveries) and de-
molitions, respectively. When demand is low, typically
only a portion of the fleet will be on charter, while
surplus capacities are laid-up and/or marketed in the
S&P market.

We have linked fleet determinants for VLCCs, Afra-
maxes, LR2s, LR1s (Panamaxes), and MRs (Handy-
sizes) to respective routes, including dwt (current and
yr/yr growth), contracting, orderbooks, deliveries, de-
molitions and removals.
We expect to see distinctions in the dynamics of

models concerned with different vessel sizes. See for
instance Jing et al. (2008), who find that asymmetric
characteristics are distinct for different vessel sizes and
market conditions in the dry bulk market. van Dellen
et al. (2011) draw similar conclusions for freight rates
in both the dry bulk and the tanker market, where
they conclude that different vessel sizes regardless of
trade (e.g. crude vs. products) are suited for different
models (see also Abouarghoub and Mariscal (2011);
Abouarghoub et al. (2012)). Moreover, maritime the-
ory suggest that smaller vessels have greater ability to
switch to different routes and cargoes (IAME, 2014).
Accordingly, freight rates for larger vessels may prove
to be more sensitive to, e.g., fleet capacity adjustments.
Supported by maritime theory in the introductory

chapters, we hypothesise positive and negative relation-
ship to freight rates for capacity down-adjustments (de-
molitions, removals) and up-adjustments (dwt increase,
deliveries), respectively. We do not, directly, consider
possible effects of interchangeable fleets, i.e. capacity
may move to other routes/markets. In other words,
we do not include fleet size determinants across routes
(e.g. Aframax on VLCC routes, neither total tanker
fleet). However, (as mentioned earlier), we might dis-
cover higher volatility among larger vessels, attributed
to small vessels ability to interchange.
Newbuilding Contracts. Newbuildings require

huge capital investments, and the lead time from con-
tract signing to delivery could be lengthy (1-4 years).
The history reveals that the profitability of a newbuild
investment is heavily dependent on the ability of timing
the cycle, and thus is very reliant on accurate forecasts

(Fearnley, 2018). Timing decisions are complex. Sev-
eral shipowners do not have the liquidity of taking on
high risk in trough periods. Hence, they rather tend
to contract newbuilds when the market is strongly re-
covering or about to peak. This could in turn cause a
rapid surplus capacity if the market is in decline during
delivery, which would lead to an unavoidable collapse.
If a shipowner company, nevertheless, manage to time
delivery against a peak, cash inflows could yield a con-
siderably competitive advantage in the trough phase
to come. Figures in Appendix illustrate the close pos-
itive relationship between newbuilding contracts and
freight rates (Figure D.3). Such relationship was ac-
knowledged by Zannetos (1964) as far back as in 1964.
Maritime regulations affect the rate of contracting.

For instance, double hull regulations in the 1990s, sul-
phur emission limitations in emission control areas
in 2015, and the upcoming ballast water treatment
contribute(d) to economic aging of existing vessels.
Less efficient vessels are forced to leave the market as
more eco-friendly and efficient vessels enter the market
(Clarksons, 2017a).
Orderbook. The total number of newbuilding con-

tracts shipyards currently have, make up the order-
book. Quotations of newbuilding prices depend upon
orderbooks, and both measures follow a cyclical pat-
tern towards freight rates. An increase in freight rates
will trigger the placing of newbuilding orders, thus con-
straining capacity at shipyards and increasing prices.
The opposite yields in periods of recession. Further-
more, orderbook lag effects indicate that an orderbook
buildup will affect freight rates negatively in a two-
three years’ time. In real time, however, we anticipate
a positive relation to freight rates.
Down-payment of a ship is usually spread over sev-

eral instalments. Therefore, we could expect that the
orderbook does not necessarily reflect the correct num-
ber of ships that will enter market, since cancellations
or delays do occur (Fearnley, 2018). We have included
orderbook numbers both in deadweight tonnage and
percentage of fleet although we consider the latter to
be most relevant (see, for instance, Tsolakis (2005) and
references within).
Deliveries. We have already suggested that order-

ing activity of ships is high when freight rates are high.
Deliveries on the other hand, is anticipated to have
the opposite effect, both in real time and across sev-
eral years of lags. This is expected when considering
lead times of delivery in the context of cycle duration.
Delivery tops therefore coincide with trough periods,
as can be seen from figures presented in the Appendix
(Figure D.3). So why is this? We mentioned in Section
3.3 that shipowners could be labelled with a certain
degree of short-mindedness. One main reason is that,
during boom markets, a potential great profit can be
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made. If you do not catch the train, some other will
- which in its own sense accelerates the cycle process.
Some will unfortunately always catch a train heading
for a cliff (Clarksons, 2017a). It is fascinating how
the history repeats itself. Paradoxically, if everyone
follows a recommendation of ordering vessels at the
bottom (counter-cyclical activity), newbuilding prices
will inflate, and once delivered, will push freight rates
down and consequently prolong the cycle. Yet, over
the history, shipping magnates have succeeded well in
buying cheap vessels during recession periods.
Demolition and Removal. Ship demolitions, or

scrapping, reduce the tonnage of the tanker fleet. A
demolition decision has almost real-time effect on the
market. Aspects regarding technical innovations, mar-
itime regulations, market prospects and cost of classing
influence scrapping decisions. Removals refer to ves-
sels converted to another ship type, or vessels that for
some other reason are taken out of the market.

Fleet Age

Average age determinants for aforementioned vessel
sizes are included. Scrapping normally occurs when
vessels are about 25 years (Clarksons, 2017a). Demoli-
tions are more likely to increase when the age profile
is becoming heavier right-tailed. An older fleet sug-
gests shorter lead-time for capacity down-adjustments
in terms of scrapping. In this sense, an increased age
profile is hypothesised to be positive related to freight
rates. Additionally, when the market improves own-
ers tend to hold onto their ships. Furthermore, the
fleet becomes younger when vessels are delivered. As
we described earlier, deliveries are unfavourable to the
market.
Empirical literature in regards to the fleet age in

a macro context is far more limited than in a micro
context. Köhn (2008) describes that the risk of hiring
an aged vessel should require a discount in the freight
rates. He indicates that a two-tier tanker market has
emerged post-OPA90 (Oil Prevention Act of 1990). Al-
though from the same paper, Kohn refers to Tamvakis
(1995) who does not find any consistent difference in
freight rates between younger, double-hull or single-
hull vessels. Further, Tamvakis finds that weak market
conditions are likely to disfavour freight rate discrim-
ination. Strandenes (1999) also find that a two-tier
tanker market only can be marginally seen in freight
rates under some short-lasting period. We expect that
these matters would not be of any particular signifi-
cance in a macro environment.

Vessel Prices

Price dynamics have repeated themselves over the his-
tory. For instance, in 1995, Velonias (1995) exemplified

with several cases that high ordering during boom peri-
ods leads to higher prices, both in the S&P and the new-
building market. S&P prices and newbuilding prices
have historically developed in parallel (Beenstock and
Vergottis (1993); Tsolakis et al. (2003); Kavussanos
and Visvikis (2016)). In contrary to boom periods,
market collapse has the opposite effect. In the after-
math of the financial crisis in 2008, prices fell sharply
across all tanker vessels (Clarksons, 2017a).

While newbuilding and S&P prices depend on both
the activity in the freight market and steel commodity
prices, scrap prices are more dependent on the lat-
ter. Scrap prices are namely quoted in dollars per
lightweight tonnage (i.e. the amount of steel). Coun-
tries reliant on scrap metal import, such as Southeast
Asian countries, imports only a small share as vessel
scrap. Hence, demolition values are less influenced by
the freight market (Kagkarakis et al., 2016). Further,
safety and environmental concerns with beaching31 ves-
sels have triggered EU to impose new standards for
world-wide dismantlement32. Several countries have
ratified a convention saying that all EU flagged vessels
are required to be dismantled in EU-approved facili-
ties, thus increasing the number of qualified scrapyards
(The Maritime Executive, 2017). Increased care of dis-
mantlement will possibly cause demolition values to
decrease, and consequently decisions of dismantlement
will be less incentivised, which isolated is negative for
freight rates.
Tsolakis et al. (2003) provides an empirical analy-

sis of S&P prices in the dry bulk and tanker market.
Their findings indicate that S&P prices of different
segments and ship sizes react differently to changes
in determining variables, and proposed that analyses
should be carried out at a disaggregated rather than an
aggregated level. This supports the inclusion of route-
specific vessel prices (i.e. VLLC prices for TD1 and
TD3). Furthermore, newbuilding prices and time char-
ter rates are found to be leading predictors of S&P
prices, both in the short and long run. They also
provide results indicating that tanker orderbooks (as
percentage of the fleet) has a negative effect on S&P
prices in the long run. This is in line with the hypo-
thetical orderbook lag effects presented earlier. Other
econometric articles on S&P tanker prices found, e.g.,
the state of the freight market, deadweight tonnage,
newbuilds, scrap prices, age, voyage rates, time charter
rates and orderbook to have significance (Köhn (2008);
Pruyn et al. (2011); Zhong and Shi (2007); Adland and

31Refers to vessels laid ashore for dismantlement; often under
very poor and dangerous working conditions.

32EU Ship Recycling Regulation entered into force on Dec. 30
2013. Further to be followed by the IMO Hong Kong Convention
of May 15th 2009, which will enter into force 24 months after
countries representing 40% of world merchant shipping have
acceded to the convention.
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Koekebakker (2007)).

5.2 Demand-Driving Factors

Demand tonne-miles is also made up of two factors,
namely cargo volume and the distance cargo travels
(see Chapter 3). The demand for tanker services is
heavily dependent upon international trade in crude
oil and oil products. This is in turn derived from global
and regional economic activity, as well as import and
export of (other) energy commodities (Stopford, 2009).
In contrast to supply factors, demand factors are

generally exogenously related to freight rates. Further-
more, as we saw in Section 3.2, demand is price inelas-
tic to freight rates. Hence, correlograms of demand
variables will not portray the same cyclical relation
as supply variables. Interesting lag structures may,
however, exist.

Oil Demand

Arguably the most important factor of derived ship-
ping demand. Demand placed on a good or service
is a result of changes in the demand or price of some
other related good or service (Alderton and Rowlin-
son, 2013). Hence, demand for tankers is influenced
by the demand for crude oil and oil products. If oil
is not consumed, people would have few incentives to
trade oil. Therefore, future trade dynamics are heavily
influenced by this factor. We saw in Section 3.5 that
45% of the world’s oil is consumed on the road. Topics
regarding electrical vehicles’ disruption on oil demand
are popular these days. Oil demand itself is price in-
elastic to freight rates. We hypothesise demand to be
positively related to freight rates.

Oil Import and Export

Oil import and export cover the tonnes part of the
tonne-miles equation, and are direct measures of oil
being traded in the world. Naturally, crude oil and
dirty and clean products trade are expected to have
a positive impact on freight rates of respective routes.
Seaborne crude oil and products trade numbers, both
import and export, are also added to respective routes
where available. We note that these numbers are gen-
erally very similar33 to total import and export, in-
dicating that most of the oil trade is traded by sea –
which support the relevance of “non-seaborne-specific”
import and export numbers. The positive relationship
between seaborne oil trade and tanker freight rates is
widely covered in literature (see, for instance, Tsolakis
(2005); Stopford (2009); and Anyanwu (2013)).

33Caution must be taken regards to multicollinearity (ad-
dressed in the Methodology chapter).

In Chapter 4, we outlined trade patterns. Here it
became evident that the Middle Eastern Gulf (or Ara-
bian Gulf (AG)) produces and exports a vast share
of oil. This leads us to include regional import and
exports variables as well. We figure it is positive that
high regional activity levels, in proximity to our se-
lected routes, cancel out available fleet capacity. EU4
serves as a benchmark for the need of European oil
trade (TC1, TC2), and North Sea exports is deemed
relevant (TD7), even though Sullom Voe gets its oil
from the UK shelf. Furthermore, regarding TD1, TD12
and TC2, we are able to capture route-specifics almost
on port level, with trades into PADD3 and PADD134.
While China is a major player in oil trade (largest
crude importer), Chinese crude export and products
import and export are not added because of poor data
quality. Data are too likely to be ambiguous, according
to footnotes from one of the data sources we use35. In
general, Chinese industry numbers are not among the
most credible numbers that market participants have
available (Clarksons, 2017a). However, we find Chi-
nese crude imports from SIN to be of good quality, as
import numbers are more transparent. Further, India
crude imports (3rd largest crude importer) and com-
bined US, EU4 and Japan crude imports are added as
general-specific variables to all routes.
The U.S. is not self-supplied with oil, which Figure

4.2 from Section 4.2 indicates. Imports of crude oil
or oil products are necessary. Products are, however,
not imported in high volumes, most seem to be re-
fined by domestic refineries. Of products imported to
the US, gasoline is the dominant product. The con-
sumption of gasoline is higher than the consumption
of diesel, partly since the sweat and light quality of the
U.S. WTI oil (see section 3.5) does make refinement
ideal for gasoline. The majority of the U.S. car fleet is
gasoline-driven as a consequence. According to JODI
(2017), they import about 0.5 million of barrels per
day of gasoline. In contrast to Europe, where diesel
became the main transport fuel after Europe backed
for a switch from gasoline to diesel in the late 1990s,
which doubled diesel imports between 2001 and 2014.
In Japan, the consumption levels of distillates are fairly
evenly distributed (Clarksons, 2017a).

Vessel Fixtures

Vessel fixture refers to the hiring of a vessel. We have
included vessel fixtures for all relevant vessel sizes on
both a total and a route-specific level. One of the fix-
ture series we use has been constructed to “suit” the
specific route - Aframax fixtures related to TD7 is com-
posed of Aframax AG-Cont, Baltic-Cont., Baltic-Med.,
Med-Cont. and FarEast-Cont. fixtures. Fixtures for

34EIA provides excellent data on US oil trade
35Joint Organisations Data Initiative (JODI) (see Chapter 6).
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other routes are available quite precisely. For instance,
VLCC AG-West and VLCC AG-Japan fixtures are
added to TD1 and TD3, respectively. Moreover, fix-
tures on routes hypothesised to affect our selection of
routes are also added. For instance, MR Med-USA
fixtures is added to TC2. Rising fixture numbers are
hypothesised positive to freight rates.

We do also add a factor describing VLCCs that are
due in the MEG in the month in question. These VL-
CCs arrives the Gulf, e.g., when a round voyage is
performed, and hence increasing the available supply
capacity. A negative relationship is therefore hypoth-
esised. We find these factors only to be applicable to
TD1 and TD3. Unfortunately, the empirical literature
on vessel fixtures on a macroeconomic level seems to
be limited, and we have not come across any literature
that include these factors in forecasting. Tamvakis
(1995) finds, however, that a two-tier market in terms
of vessel age can be described on the basis of whether
fixtures are US-bound or non-US-bound.

Crude Oil Production

Oil produced is an explicit indicator of tanker demand.
Zacharioudakis and Lyridis (2011) explore tanker mar-
ket elasticity with respect to oil production, and shows
that OPEC oil production is the crucial non-supply ex-
ternal variable affecting the tanker market. He argues
that this variable is able to embody political, economic
and direct and indirect psychological matters to the
shipping market, including wars, OPEC decisions on
production and production productivity. Increasing oil
production is hypothesised to be positively related to
tanker rates. However, some caution must be taken
regards to this hypothesis. In Figure 4.2, we saw how
production related to demand. Hence, increased pro-
duction may actually offset the need of imports in
countries short of oil. We therefore hypothesise a neg-
ative relationship for U.S. oil production on the TD1
route only.
OPEC and global oil production are added as

general-specific variables to all routes. Certain pro-
duction numbers are also added as general-specific
variables to subsets of routes. For instance, US oil
production is relevant for TD1, TD12 and TC2.

Refinery Output

Refinery output refers to the output of finished prod-
ucts only (JODI, 2017). We have only included refinery
outputs for products routes, and we have been precise
by adding clean and dirty refinery outputs to respec-
tive routes (i.e. dirty on TD12 and clean on TC1 and
TC2). Refinery output could be a better forecast indi-
cator than import and export, since its lag structure is
more likely to contain information that could describe

future trade flows. After all, import and export de-
scribe cargoes that are already transported. However,
refinery output is somewhat complicated to address.
We use, among other things, Figure 4.2 in Chapter 4
to understand whether output is likely to cover domes-
tic or foreign demand. TC1 is quite straightforward, as
Saudi Arabia is not in the need of imports. TD12 and
TC2 depend on the aforementioned; if output is cover-
ing domestic demand, less import is needed and/or less
is exported. For TC1, increased Japanese output would
yield less need of imports. Nevertheless, we hypothe-
sise a positive relationship with freight rates (except
Japanese output) - more oil is generally a positive sign.

For crude routes, we have not included refinery out-
put, partly since we do not have the specifics of what
refinery input is domestic crude production and what
is crude imports. Isolated, increased U.S. production
could yield higher refinery outputs, which will not be
positive for TD1. For TD3, increased Japanese refinery
output would be positive, since they do not produce
any oil. Moreover, refinery of crude is taking place
after it has been imported.

Refinery Utilisation

Refinery utilisation refers to refineries’ output level as
a percentage of its capacity level. EIA provides time
series on district-specific level. We are therefore in-
cluding PADD1 and PADD3 refinery utilisation levels
to TC2 and TD12, respectively. Trade is not neces-
sarily unidirectional, as described in Section 4.2. Our
hypothesis is therefore neutral for these variables.

The impact of increasing capacity and utilisation on
trade flows varies by region. On the one hand, crude
trade may offset some products import demand. On
the other, increased capacity may also support exports.
For instance, Latin America is short on light products,
and its sanctioned refining projects do not add up to
this shortage, which in turn supports products export
from the US Gulf (McKinsey, 2015). High capacity
additions may further put pressure on utilisation if
demand growth slows down.
Europe’s sanctioning of refinery capacity is slowing

down, while we see built ups in China, Middle East
and the U.S. When refinery capacity change, trade pat-
terns also change. Lower refining capacities in Europe
will lead to the need of more long-haul products routes
(LR2 vessels) across, e.g., the Atlantic Basin towards
Europe. In 2017, the Chinese government tightened
scrutiny over taxes and shifted quota policies, causing
refinery margins to tighten, and also cut off export quo-
tas of products, trapping products output for domestic
demand. So called non-state-driven "teapot refineries"
produce approximately 12% of Chinese crude demand.
Seeing squeezed refinery margins, these refineries get
incentives to shut down, and thus cap Chinese crude im-
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ports. In the unsureness of import quota adjustments,
refineries built high inventories, which have translated
negatively to tanker shipping (McKinsey, 2015). How-
ever, in 2018 China has relaxed its policies towards
these independent refiners.

5.3 Economic and Non-fundamental
Factors

Economic and imponderable factors such as external in-
fluences (e.g. market prices), financial markets, bound-
aries (e.g. politics and weather) and behaviour and
psychology (see Section 3.4) may have significance in
addition to fundamental supply and demand factors.
We will try to capture the influence of such factors
through 10 additional groups of Economic and Non-
fundamental variables. As with supply and demand
factors, we will rationalize the hypothetical significance
and empirical studies that lies behind our selection.

Gross Domestic Product (GDP)

World GDP is a measure of the development of the
world economy. Stopford (2009) describes GDP as
the single most influential factor on shipping demand.
He compares the world business cycle36 with shipping
business cycles, and find them to coincide. In short, he
argues that investments and consumption trigger trade
and vice a versa. Klovland (2002) examines business
cycles, commodity prices and shipping freight rates for
periods pre-WWI, and finds a close timing relation-
ship between the upper turning points of these three
factors. On the other hand, trough periods were gen-
erally less synchronized with business cycle troughs.
Along with empirical literature and economic theory,
Klovland’s findings support our assumption of asymme-
try between the peaks and troughs of shipping cycles.
Abouarghoub et al. (2012) investigates the tanker mar-
ket between 1994 and 2010, and finds the correlation
between GDP growth and oil seaborne trade growth to
be significant. During the most recent economic boom
period, GDP increased 20%, while total seaborne trade
grew by 21.5%. After the financial crisis, both GDP
and oil seaborne trade fell. As expected, Abouarghoub
et al. (2012) concludes that continuous changes in de-
mand for oil seaborne trade have profound effect on
tanker earnings.
In the relation to seaborne trade, GDP acts as a

measure of the successfulness of global interaction - the
way regions collaborate and generate global GDP. The
world is becoming increasingly globalised, and trade
and flow of cargo is thus essential in global value gen-
eration. Furthermore, the world is growing, both in

36Business cycle: periodic fluctuations in the rate of economic
growth.

complexity and population (energy demanding), and
cities are becoming larger and need access to interna-
tional trade by sea. The constant change and increased
complexity of the pattern of world trade will continue,
as developing countries will account for above 90% of
population growth from today to 2030 (Kavussanos
and Visvikis, 2016). Kavussanos and Visvikis (2016)
do, however, argue that attempts from economists to
correlate GDP growth with seaborne trade growth are
not particularly successful.
In terms of GDP, UNCTAD (2016) do help us fur-

ther motivate why a regime model is suitable. They
find long-term trade-GDP elasticity to vary across dif-
ferent historical time periods, in which estimates sug-
gests that cyclical factors to trade slowdown is more
noticeable during crisis and recession periods.
World GDP is the only GDP selected. GDP on

country-level is rarely accessible on higher frequency
data, and is nevertheless highly correlated with indus-
trial production which will be introduced later.

Time Charter Rate

1-year time-charter rates have been included for ship
sizes relevant for each route. Shipowners’ and charter-
ers long-term expectations about the future is reflected
in term as well as FFA rates (see Section 3.1). Shipown-
ers closes on term time-charter contracts when they do
not want to bear the risk of varying spot rates. The
time-varying risk premium of spot contracts thereby
suggests a higher spot rate today than future term
rates. Tsolakis (2005) identify spot rates as the ma-
jor determinant for period rates, both in the dry bulk
and tanker market, thus confirms validity of the expec-
tations theory37 of the term structure relationship in
shipping freight rates (see, also, Alizadeh and Nomikos
(2011)). However, he finds exceptions in the Aframax
and Panamax tankers models, whereby fleet changes
were found to be statistically significant instead.

A positive change in time-charter rates means that
the market is expecting spot rates to improve (Köhn,
2008). Stopford (2009) does somewhat challenge this
hypothesis, by arguing that shipping demand may be
affected by higher transportation costs, which is the
case when freight rates increase. We find this unlikely,
and consider demand very inelastic to freight rates
(see section 3.2). For instance, a VLCC transporting
2 million barrels of oil for 25,000 $/day on a 43 days
TD3 round voyage (see Table 6.2) would require a hire
of 0.009% of the cargo value, if assumed an oil price of
60 $/barrel.

37Expectations theory: the hypothesis that long-term rates
contain a prediction of future short-term rates (Investopedia,
2018a).
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Exchange Rate

Exchange rate refers to the value of a nation’s currency
in terms of another currency. We include exchange
rates for currencies against the US dollar for respective
routes. Additionally, we have included a dollar index
and a euro index to track shipowners’ revenues and
the European economy, respectively. A trade has two
sides; money is either received or paid. Japanese as
importers, for instance, would benefit from a strong
Japanese economy in relation to Saudi Arabian or US
economy. Cullinane et al. (2005) refer to Tvedt (2003)
who claims that the Japanese economy is a major driver
of dry bulk shipping. We expect this to hold for tanker
shipping as well.
Referring to Section 6.2, we identified that certain

voyage costs are converted from local currency to US
dollars. Freight rate income is normally received in US
dollars (see Section 3.1). A strong dollar would thus
be positive in terms of income and voyage cost. Hence,
both cost and revenues for shipping participants are
concerned with exchange rates fluctuations. Further-
more, shipyards in, e.g., the Far-East normally receive
payment based on dollar quotes. A strong dollar could
thus lead to an increase in newbuilding orders. Overall,
exchange rate fluctuations is hypothesised neutral.

Consumer Price Index and Money Supply

A consumer price index (CPI) is a measure of prices of
consumer goods and services. The percentage change
in CPI is often used as a measure of inflation in an
economy. We motivate this inclusion by referring to
Ringheim and Stenslet (2017), who find that US CPI
is statistically significant when predicting the BDTI
index, but has a negative impact as opposed to their
initial hypothesis. A possible explanation is that a
weak CPI reflects declining prices, which raise con-
sumer power, and consequently demand for traded oil
products. Furthermore, we have included M1 money
supply. M1 refers to funds that are readily accessible
for spending (FRED, 2017). We therefore anticipate
this to have a positive influence on freight rates, as
purchasing power to buy oil products increase with in-
creasing spending funds. Japanese, US and European
CPI are included for respective routes. Japanese and
US money supply are included for TD3 and TC1, and
TD1, TD12 and TC2, respectively.

Interest Rate

Our intuition is that interest rates have a negative re-
lationship to freight rates. Our rational is that a rise
in interest rate will increase the cost of capital and
as a result lower people’s purchasing power and the
liquidity of most shipowners, and oppositely a decline

in interest rates will result in higher investment will-
ingness. Most shipping loans are financed based on a
LIBOR base rate. We include three different 3-month
LIBOR interest rates, based on Euro, Yen and US Dol-
lar. The world of shipping is intercontinental. Hence,
our motivation lies in the possibility of these variables
to capture somewhat distinct dynamics in the freight
rates.

Zhong and Shi (2007) found interest rates to have a
negative effect on VLCC S&P prices. Tsolakis (2005)
argued in his excellent PhD thesis, investigating the
four shipping markets as well as ship finance of bulk
shipping, that shipping demand is negatively affected
by the LIBOR rate.

Industrial Production

Oil trade should be somewhat proportional to the in-
dustrial production of each country (Velonias, 1995).
Above-mentioned factors, such as oil demand and in-
terest rates, do also affect a nation’s industrial produc-
tion. According to EIA (2018), relationships between
economic growth, oil prices and oil consumption are
determined by structural conditions in each country’s
economy. Hence, we expect the impact of industrial
production on freight rates to vary depending on the
country in question. Japan, for instance, being heavily
dependent on oil imports, are dependent on oil trade
in all oil related industries. The industrial production
numbers in Europe and the US are probably less sen-
sitive to oil trade. The industrial sectors in Japan
accounted for 30% of total oil consumption in 2013
(EIA, 2017a).

Industrial production numbers, on a year-on-year
basis, are included for countries relevant to our selec-
tion of routes. Further, OECD industrial production is
added as a proxy of oil consumption in large economies.
We have also chosen to include industrial production
numbers for India and China, being major players in
the world economy as well as oil trade. Besides, India
and China are not captured in the OECD factor. In
fact, in the first decade of this century, non-OECD oil
consumption rose 40%, whereby oil consumption in the
OECD fell (EIA, 2017d). In the period from 2010 until
today, OECD oil consumption growth has been rather
flat overall, but increased somewhat between 2015 and
2017.

Crude Oil and Oil Products Price

The impact of oil prices on tanker freight and the econ-
omy as a whole has been extensively researched, but
the relationship is not easily quantifiable. Hypothe-
sis differ between a positively, negatively and twofold
effect (see, for instance, Stopford (2009); Poulakidas
and Joutz (2009); and UNCTAD (2016)). We support
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the latter. Oil prices’ effect on rates must be seen in
the context of the underlying drivers of the oil price,
namely oil supply (production) and demand (consump-
tion). The oil price decreases because supply increases
and/or demand drops. In times when demand keeps
up with supply growth, the freight market will ben-
efit. When supply grows, and demand cannot keep
up, oil prices decline, and the freight market benefits
from higher oil flow. Low oil prices then initiate de-
mand for oil, and oil prices rise. Increasing demand
and oil prices, in turn, give incentives to increased sup-
ply. No wonder why people have different views on a
unidirectional impact on freight rates; it is simply not
unidirectional. Clarksons Platou summarise it nicely,
“Oil price dynamics have a mixture of positive and neg-
ative effects for shipping, but certainly remain crucial
given the key role of oil both for shipping and for the
wider economy" (Clarksons Research Services Limited,
2017). This further motivates why a regime model may
be appropriate.
Poulakidas and Joutz (2009) analyse, using cointe-

gration techniques and Granger causality38, the rela-
tionship between spot rates on the TD4 (WAF – US
Gulf) route and the oil market from 1998-2006. They
find a feedback between spot rates and WTI and crude
stockbuilding. They conclude that rising oil prices put
an upward pressure on spot rates. Hence, the oil price
might serve as a proxy for oil demand.

We have in this study decided to focus on three differ-
ent crude oils, namely the North Sea Brent, the United
Arab Emirates Dubai and the U.S. West Texas Inter-
mediate (WTI). The Brent39 is a natural choice, since it
is the most common benchmark crude oil. The reason
for this is twofold; it is easily refined (light and sweet,
see Section 3.5) and transportable. The North Sea oil
is waterborne cargo, which make it ideal for seaborne
trade. Brent could, for instance, be either loaded onto
FPSOs40, directly onto oil tankers or pumped to oil
terminals like Sullom Voe (see TD7, Section 4.2). Ac-
cording to ICE futures, Brent is the source of pricing
of 60% of the world’s traded oil (ICE, 2013)41. The
WTI is ranking next below Brent as a common bench-
mark. In contrast to Brent, WTI transportation is
onerous in terms of shipping, since it is extracted on-
shore and transported by pipelines and rail. However,
WTI is both lighter and sweater than the Brent blend.
The quality of the Dubai falls in between Saudi Ara-
bia - Light and -Heavy in both sulphur content and
density (which are both loaded at Ras Tanura (TD1,

38The Granger causality: statistical hypothesis test for deter-
mining whether a variable is useful in forecasting another.

39Brent is extracted from the BFOE oil fields in the North
Sea (Brent, Forties, Oseberg and Ekofisk).

40Floating Production Storage & Offloading units
41Great article that covers the essentials of crude oil and oil

products trade.

TD3, TC1), and is also a more common benchmark
oil than Saudi oil, and thus seem as an appropriate
choice. It becomes evident that dynamics in regards
to oil production and transportation of different crude
oils further complicates hypothesising the directional
impact of oil price movements on tanker rates. More-
over, differences in oil prices may generate arbitrage
trade opportunities. Furthermore, these three bench-
mark oils also directly relate to the trading routes we
are focusing on. However, we do not expect to see big
differences when testing variables, considering the high
correlation between the price of these oils.
In the Oil import and Export category above, we

suggested that gasoline is the main fuel source in US
road transportation. Gasoline prices in the US has a
high elasticity to oil prices42. In July 2017, Reuters
reported that low domestic gasoline prices at the start
of the US summer driving season had encouraged diver-
sion of tanker shipments from Europe, due to smaller
profit margins, and incentivised domestic refineries to
export (Reuters, 2017). This leads us to additionally
include the US gasoline price (US Gulf Spot) on the
TC2 route.
Crude Oil Forward Price. We have constructed

a crude oil forward curve from Brent 6-month and 1-
month delivery prices (6m – 1m). The rationale for this
inclusion is to capture the contango43 structure in the
oil market. During contango periods, oil suppliers and
oil traders have incentives to store, primarily on VL-
CCs, rather than trade crude at once. This exemplifies
that it is not only the supply side that is psychologi-
cal and speculative driven in the tanker market. The
effect of increased storage due to a contango market
is stronger when oil prices are relatively low compared
to historical levels or when the price has dropped fast
(Fearnley, 2018). Furthermore, contango in oil pricing
favours long haul routes where the largest ships are
employed, such as TD1 and TD3 – i.e. to arrive at
offloading latest possible.

Bunker Price

Fuel, or bunkering cost, accounts for about 75% of total
voyex costs44. Tsolakis (2005), in his investigation of
the freight market, finds that bunker prices are signifi-
cant in the long run for large tankers only (VLCC and
Suezmax). He attributes this to the fact that larger
vessels trade on long-haul routes, and thus earnings

42In comparison to countries in Europe, like, e.g., Norway,
where government regulations make gasoline and diesel prices
far more inelastic to crude oil prices.

43Contango refers to future oil prices being higher than cur-
rent prices, thus indicating a positive sentiment in the market.
Backwardation refers to the opposite effect.

44Of total costs (capex, opex and voyex), bunkering accounts
for 40-50%. Capex and opex accounts for about 25% and 20%,
respectively (Kavussanos and Visvikis, 2016).
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of these vessels are more exposed to fluctuations in
voyage costs. We have chosen to include two bunker
variables, namely 380 cSt Japan and 380 cSt Philadel-
phia. These were found to vary the most in relation
to crude prices although they do move in highly in
parallel with each other. It is further highly likely that
vessels on some of our selected routes bunker at ports
in Japan and Philadelphia. Furthermore, bunker costs
used in Clarksons calculation of TCE rates are based
on 380 cSt fuel (see Section 6.2). Our hypothesis is,
however, neutral, in line with our oil price hypothesis
above.

Shipping Index

The ClarkSea shipping index is included to capture gen-
eral freight market sentiment and possible cointegra-
tion across shipping segments (see, for instance, (Talley,
2011)). The index is an indicator of earnings for all the
main commercial vessel types, and is weighted accord-
ing to the number of vessels in each segment (Clark-
sons Research Services Limited, 2017). We further add
three tanker indices; BDTI, BCTI and Clarksons Av-
erage Tanker Earnings Index. We are including these
instead of lagged observations of the dependent vari-
ables. Motivated by theory from introductory chapters,
our hypothesis is that freight rates are driven by cycli-
cal momentum. Hence, we expect relationships to be
positive.

Stock Index

Lastly, our selection of variables concludes with a
set of stock indices. These are S&P500 (US), MSCI
World, MSCI Emerging, Tadawul (Saudi Arabia) and
Nikkei225 (Japan). S&P500 measures the value of the
500 largest companies listed on the New York Stock
Exchange. MSCI World and MSCI Emerging are de-
signed to measure equity market performance for large
and mid-cap companies across 23 developed markets
and 24 emerging markets, respectively. Tadawul is the
Saudi stock exchange, and we link it to TD1, TD3
and TC1. Nikkei is Japan’s leading index of Japanese
stocks, and we link it to TD3 and TC1. S&P500 and
MSCI indices are tested across all routes. A positive
relationship is hypothesised, as improving market con-
ditions lead to higher trade activity.

Shipping markets exhibit, as we know from Chapter
3 periods of extreme volatility. In the hope of cap-
turing psychological effects, we have included the VIX
index (motivated by Section 3.4). This index tracks
the market’s volatility expectations of the S&P50045.
Recently, the VIX index has been very calm (see Figure
D.3 in the Appendix). From Section 3.2, we identified
that freight rates are more volatile during peak than

45Implied volatilities of S&P500 options.

trough periods. Hence, we expect the VIX to have a
positive impact on freight rates.

5.4 Additional and Non-capturable
Factors

Supply. In general, shipowners are concerned with
four core factors when employing a ship on a voyage.
These are: distance, ship size, ship type and ship speed
(Stopford, 2009). These factors are all determining fac-
tors of freight rates. We are able to compare freight
rates in terms of ship size (VLCC, Aframax etc.) and
ship type (crude or products), and also distance (route),
which are constant factors, but we do not have a long
enough time frame on time series for ship speeds to in-
clude these in the models. In shipping, slow steaming
is used as a way of managing excess capacity. Besides
speed, other fleet productivity data are not included.
Furthermore, referring to Clarksons’ TCE calculation
in Section 6.2, we do not have time series’ for port
costs. However, these costs are minor in comparison
to, e.g., bunkering cost, as described earlier. Missing
port costs could, nevertheless, be captured somewhat
by exchange rate variables. Moreover, congestions and
disruptions in relation to ports, canals and chokepoints
are not captured by factors presented above. Addition-
ally, weather factors would have been useful to collect,
but we argue that these effects may be captured by
incorporating seasonality in our models (see Chapter
7).
Demand. Initially, we thought of including export

variables for non-route-specific countries that a vessel
may ballast to and load new cargo at before eventually
(or potentially) returning to its port of origin. This
could indirectly capture capacity that cancels out. For
instance, exports from West Africa (WAF) could be es-
pecially relevant to TD1. However, for several reasons,
we concluded not to add them after all. Furthermore,
market participants do also follow refinery margins. In
general, we hypothesise that higher refinery margins
will translate into higher attractiveness of crude import
(refinery demand), thus being positive for crude tanker
shipping. For products trade, the relationship is more
complex. As for vessel speed, we were only available to
gather such data from 2008. Lastly, oil inventory and
strategic petroleum reserve (SPR) factors could help in
the insight of whether oil has been exported/imported
or been added/drawn from inventory.
E&N. Ringheim and Stenslet (2017), forecasting

the BDTI and BDI indices, include a high yield bond
spread, which is motivated to reflect investor’s will-
ingness to invest money. However, the variable was
not implemented in the best models, as other variables
where found to have better predictive power. Lyridis
et al. (2017) and Velonias (1995) identify, among other
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factors, political decisions, war and climate conditions
as influencing factors on tanker demand. Politics is,
however, not easily captured by time series. Knowl-
edge of politics does make it possible to identify factors
that may be of high importance in the future, such as
the rescinding of U.S. export bans in 2015, which leads
us to identify US exports as an important factor go-
ing forward (see Chapter 9). Further, costs of sulphur
emission regulations are included in Worldscale rates,
thus it could be argued that this political enforcement
is somewhat captured. Lastly, geopolitical conflicts can
potentially disrupt and limit tanker trade significantly.
Conflicts in oil producing countries can cause cut-offs
in oil production and distribution channels.

32



Table 5.1: Hypotheses overview of the directional impact of determinants on freight rates. Hypotheses are based on the impact a positive
change in the determinant has on the freight rate on real-time lag (0-lag). Exceptions made to each determinant group are given at the end of
the table. See Chapter 5 for a description of each of the determinant groups. A complete overview of specific determinants included for each
group is given in Appendix A.1.

Determinant Group Hypothetical impact

Dependent Variable
TD1 TCE Ras Tanura − LOOP; VLCC route
TD3 TCE Ras Tanura − Chiba; VLCC route
TD7 TCE Sullom Voe − Wilhelmshaven; Aframax route
TD12 TCE Antwerp − Houston; LR1 route
TC1 TCE Ras Tanura − Chiba; LR2 route
TC2 TCE Rotterdam − New York; MR route

Panel A: Supply
Fleet Size, Mdwt & Yr/Yr growth (−)
Fleet Size, Newbuilding contracting (+)
Fleet Size, Orderbook Mdwt & Perc. of fleet (+)
Fleet Size, Deliveries (−)
Fleet Size, Demolition & Removals (+)

Fleet Age (+)

Vessel Prices (+)

Panel B: Demand
Oil Demand (+)

Oil Import and Export (+)

Vessel Fixtures (+)

Crude Oil Production (+)

Refinery Output (+)

Refinery Utilisation (+)

Panel C: Economic & Non-fundamental
Gross Domestic Product (+)

Time Charter Rate (+)

Exchange Rate (neutral)

Consumer Price Index & Money Supply (−) & (+)

Interest Rate (−)
Industrial Production (+)

Crude Oil & Oil Products Price (neutral)

Bunker Price (neutral)

Shipping Index (+)

Stock Index (+)

Comment on hypothetical exceptions:
Panel A: Supply:
*non exceptions made
Panel B: Demand:
* Vessel Fixtures, VLCC Due (TD1, TD3): (−)
* Crude Oil Production, US Production (TD1): (−)
Panel C: Economic and Non-fundamental:
* Oil Products Price, US Gasoline Spot Price (TC2): (−)
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6 Data Analysis

In this study, we model the logarithmic return distribu-
tion of 6 different oil tanker freight rates. The rest of
this chapter is structured as follows. First, we examine
stylized facts about shipping freight rates from a theo-
retical point of view, which are of relevance as support-
ing theory and motivation to the modelling method-
ology and results in the forthcoming chapters. We
briefly examine three characteristic properties of freight
rates; mean reversion, seasonality, and distribution and
jumps. Second, the background story of how Time
Charter Equivalent (TCE) freight rates are calculated
and quoted by Clarksons Research Services Limited
is outlined. Third, we present some brief comments
on data gathering and sources. Next, pre-processing
of some of the data gathered is discussed along with
a presentation of the dependent times series. Finally,
descriptive statistics of the selected freight rates are
given.

6.1 Stylized Facts of Freight Rates

Mean reversion

Stationarity, and the mean-reverting property that fol-
lows for shipping freight rates, is a significant prop-
erty of short-term cycle behaviour according to mar-
itime literature (Koekebakker et al., 2006). It is gen-
erally stated that cyclical behaviour of a time series
is a strong indication of mean-reverting properties in
the data. Mean-reversion theory suggests that supply-
demand dynamics in the market eventually will force
the freight rate back to its mean. As described in
Section 3.2, there is a continuous regulation of supply
in the shipping markets, which is causing freight rate
fluctuations around the long-term mean.

Stopford (2009) identifies that shipping markets op-
erate under conditions of nearly perfect competition,
and are as such usually held as textbook examples
(see Section 3.5). In these markets, mean-reversion is
usually apparent. Koekebakker et al. (2006) identifies
that freight rates are unsustainable at extreme highs
and lows, due to the potential for supply adjustments.
At high freight rates, scrapping of vessels slows down,
and delivery and order book placements continues un-
abated. As the tonne-miles capacity in the market
increases, the supply curve will gradually shift to the
right, and freight rates will revert down to levels more
close to or below the mean. In the times of low freight
rates, downward regulation of supply will yield oppo-
site effect. Moreover, in a perfectly competitive market,
maritime economists argue that freight rates cannot
exhibit asymptotically explosive behaviour, which im-
plies rejection of non-stationarity.

The rate at which the freight rate returns to its mean

could be distinctive for which state the supply-demand
curve is at, either the elastic or inelastic part of the sup-
ply. Adland and Cullinane (2006) shows that freight
rates in the tanker market only reverts to its mean
in the extremes of the distribution (trough and peak),
and else is exhibiting a non-stationary process over
most of its empirical range. This kind of non-linear
mean-reverting behaviour backs our motivation of im-
plementing regimes in modelling. Regime switching
methodology is set out in detail in Chapter 7.
Several empirical research articles in the maritime

literature have explored the stationary property of the
freight rates. Koekebakker et al. (2006) argues that
maritime economic theory suggests non-linear station-
ary dynamics, and are using various methods to test
this themselves for the dry bulk and tanker markets.
Their conclusion, after performing a non-linear ver-
sion of the augmented Dickey-Fuller (ADF) test, is
that freight rates, in line with maritime theory, ex-
hibit a non-linear stationary behaviour. Koekebakker
et al. (2006) identifies that a substantial body of em-
pirical research suggest non-stationary behaviour of
freight rates, and further identifies that this conclu-
sion is mostly drawn when traditional linear unit root
tests are used. Using such tests may be a pitfall, since
they are known to have low power against relevant
non-linear alternatives. Non-linear alternatives may
be better when dealing with a highly persistent price
process, which is the case for freight rates in the short-
run. The persistent behaviour is partly a consequence
of the continuous slow supply regulation against the
demand due to lead times between ordering and de-
livering of vessels (Section 3.2), which indicates that
it usually takes time for the cycle to move into a new
cycle stage. Oppositely, demolition of vessels may take
time as shipowners hesitate to make these decisions.
Non-stationarity may therefore be too easily captured
when using linear unit root tests if the time-horizon
for the data set is short.
Further discussion on stationarity and its implica-

tions on modelling is given in Chapter 7.

Seasonality

From Section 3.3 it became evident that tanker rates
exhibit seasonal variation, both from a theoretical per-
spective and from a visual representation of the sea-
sonal cycle. This kind of behaviour is broadly docu-
mented in maritime literature across all market seg-
ments (Alizadeh and Nomikos (2009); Kavussanos and
Alizadeh (2002)). Seasonal cycles and events in the
underlying market, such as seasonal variation in oil
demand, oil production, refinery outputs and heat-
ing/cooling demand causes demand for tanker services
to vary. Furthermore, we identified weather conditions
as a significant bottle-neck on certain routes. In peri-
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ods, weather can limit the capability and availability of
a portion of the fleet, leaving the rest of the fleet with
potential lucrative contracts. The influence of such
seasonal effects vary across different market segments
and routes. In Chapter 7, we will address how we ad-
dress and incorporate seasonal effects in our prediction
models.

As for the mean-reversion property, seasonal changes
in freight rates exhibit asymmetric properties between
different supply-demand states. In recession periods
(collapse and trough), seasonal changes are less evi-
dent in comparison to expansion periods (recovery and
peak), due to the supply curve being elastic and inelas-
tic during recession and expansion stages, respectively.
This is more evident in time series with monthly or
higher frequency (Alizadeh and Nomikos, 2009). As
such, distinct seasonal patterns and effects across dif-
ferent regimes may occur.

Distribution and Jumps

Demand could be subject to short-term rapid change,
thus causing sudden jumps as the supply-demand equi-
librium changes. Jumps tend to be of greater magni-
tude and of higher frequency when the equilibrium is
closer to the inelastic part of the supply curve, i.e. in
expansion periods. The combination of excess demand
and short-term constrained supply will cause strong
freight rate movements. Oil companies have high al-
ternative costs, so they would usually rather pay a
premium if there is shortage of ships. In more trou-
blesome times, with excess supply, a rapid change in
demand would not have the same strong effect. Higher
volatility, and consequently more frequent jumps, at
higher freight rate levels has historically been the case
(Fearnley, 2018). Hence, the distribution of the freight
rate is expected to feature non-zero and higher levels
of skewness and kurtosis, respectively (Abouarghoub
et al., 2014).

Maritime literature provides strong evidence of clus-
ters in rates’ return distribution, whereof large changes
tend to be followed by large changes, of either sign, and
small changes tend to be followed by small changes
(Abouarghoub et al., 2014). This means that a jump
tend to be followed by a new jump or be persistent
at the current level. Climate conditions affecting sup-
ply is for instance a reason for sudden jumps in the
freight rates. Weather was also mentioned in the con-
text of seasonality, indicating that jumps may occur
more frequently in different seasons.
Shipowners’ awareness of the significant lead time

from placing an order to delivery of a ship can occa-
sionally cause shipowners to make early investments.
Shipowners trying to predict freight rates could
therefore trigger a decrease of the likeliness for jumps,
since delivery of early investment ships contribute in

meeting potential excess demand.

In summary, considering shipping theory and empirical
literature, we set out to prove or disprove the following
regards to each fact :

i ) Mean reversion: Freight rates to revert to its
mean faster in high volatility regimes, and hence
these periods to have a shorter duration than low
volatility periods.

ii ) Seasonality : Freight rates to have more evident
seasonal effects in high volatility regimes.

iii ) Distribution and Jumps: Freight rate changes to
be of higher magnitude and extremes to occur at
higher frequency in high volatility regimes, also re-
ferred to as level effects in the conditional variance.

6.2 TCE Earnings Calculation

We continue this chapter by giving a more compre-
hensive explanation of the time series that are to be
forecasted, the dependent variables. Such knowledge is
deemed important for sound judgement in the selection
and interpretation of hypothetically significant deter-
minants, which was covered in the previous chapter
(Chapter 5).

The route-specific TCE rates, or voyage earnings,
are gathered from the Shipping Intelligence Network
(SIN) database of Clarksons Research Services Limited
(2017). In the document “Sources & Methods for the
Shipping Intelligence Weekly”, CRSL gives detailed de-
scriptions of the freight rate data in SIN. We will now
outline the CRSL’s assumptions made for the TCE cal-
culations. The complete structure of the calculations
are presented in more detail in Appendix A.7.

CRSL states that the purpose of the TCE time series
is to provide an estimate46 of the daily earnings of ships
which is implied by the current level of Worldscale
rates. These estimates are calculated on the basis of
characteristics of a set of reference vessels trading on
various routes, which CRSL have consulted Clarksons
Platou brokers in order to determine. Furthermore,
CRSL provides TCE data for both a modern and an
older reference vessel for each route. We note that the
reference vessels used for calculations have changed
over the time series period. At the most recent date
of our chosen time horizon, time series are based on
c.2000 built vessels for crude routes and c.2010 built
vessels for products routes. Either way, rates based on

46In fact, Baltic Exchange indices are also estimates, and
are calculated in a similar manner as TCE rates modelled in
this study. In general, awareness of potential biasness from
using data made up by assumptions is important. CRSL: “The
use of different assumptions can potentially make a significant
difference to the results of earnings calculations.”.
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different reference vessels are almost fully correlated
on the same route despite vessel age.

Calculations of earnings are in line with TCE theory
presented in section 3.1, i.e. net revenue earned on the
voyage, after deducting bunker costs, port and canal
costs as well as commissions, and finally dividing by
the days for the voyage. Certain cost factors are not
accounted for, such as: i) waiting time at port, ii)
off-hire time, iii) other voyex.
Freight rates are converted from Worldscale using

flat rates for the respective routes. Cargo volume
loaded is predetermined, and intended to represent
the most common volume currently prevalent on the
route in question; considering restrictions concerning
vessel capacity, ports (draft) and canals (draft, beam).
Bunker cost is a function of the days for the voy-
age, with consumption per day at sea and in port47
and price of bunker48 as parameters. A representa-
tive bunker port(s), and thus a corresponding regional
bunker price, have been selected for each route. Port
cost is the sum of loading and discharge costs based
on cargo size and ship type. Canal cost is only added
when a voyage includes passage through a canal. Im-
portant to notice, is that costs are converted from local
currency to US $ at the current exchange rate. The
duration of the voyage in days is determined on the
basis of sea time and port time (and potentially canal
transit). Sea time is calculated from the voyage dis-
tance and predetermined speeds for laden and ballast,
plus an additionally sea margin of 5%. As indicated
earlier in this chapter, for some tanker routes, a shorter
ballast voyage may occur (e.g. for TD1), and is thus
accounted for in calculations when considered realis-
tic. Regarding port time, an average of two days both
at loading and discharging is used for tanker vessels.
Further, earnings are not attempted optimised by any
means, e.g., by adjusting speed or fuel type.
In table 6.1 and 6.2, we have listed the reference

vessels CRSL use in calculations for our selection of
routes, as well as assumptions made in terms of route-
specific factors mentioned above. As can be seen, the
same reference vessel can be used for several routes
(here TD1 and TD3), while voyage details differ. TD1
is the only route that is assumed not ballasting back
to its port of origin, as the shorter ballast distance
portrays. In the tables, we have only included vessel
and voyage details used in the most recent part of
the time series’, i.e. January 2009 onwards. Prior to
January 2009, some deviation occur.

The fact that most TCE rates are calculated based

47Dirty products voyage calculations include allowance for
heating consumption at sea and in port. In our study, this
matter is relevant for the TD12 route.

48Worldscale.co.uk: “Annual bunker prices and consumption
rates for standard 380 cSt fuel allowances are set out in the
Preamble for each edition of Worldscale.”

on vessels trading on a round voyage, excludes the
favourability that shipowners may have by achieving
higher utilisation for their vessels, i.e. ballasting less
than 50% of the time at sea. Triangulation is a well-
known strategy for maximizing utilisation, whereof es-
pecially smaller vessels load and discharge cargo at sev-
eral ports before returning to the port of origin. TCE
rates could thus be downwards biased compared to true
spot earnings (see, for instance, Adland (2003)). Fur-
thermore, CRSL provides TCE data on a specific route
that is constructed on the basis of the arithmetic mean
of the flat rates (see Section 3.1). Accordingly, these
TCE rates do not directly reveal that vessel-specific
earnings may deviate significantly from the reference
vessel used in the calculations, due to distinctive fuel
consumption and cargo capacity properties of each in-
dividual vessel. Throughout this thesis, we therefore
consider TCE rates that portray the average state of
the market on each route for a certain reference vessel.

6.3 Data Gathering and Sources
We mentioned in the previous chapter that we have
chosen variables quite specifically to capture character-
istics of each route. For instance, Aframax and LR2
vessel data are used on crude oil and oil products routes,
respectively. When, e.g., LR2 data were not available,
Aframax data were used as a substitute (and so on).
Furthermore, data concerning oil types (e.g., import
& export, demand, and refinery output) have been col-
lected on crude oil, clean products and dirty products
level according to the relevance for respective routes.
Additionally, we mentioned general variables. These
are data that are not unique to any specific route, but
can be used on several routes or all routes.

In total, we have gathered 169 time series’, whereof
6 dependent variables and 163 independent variables.
Demand, Supply and E&N groups consist of 68, 51 and
46 variables, respectively. On route level, TD1, TD3,
TD7, TD12, TC1 and TC2 consist of 31, 29, 23, 34, 28,
35 variables, respectively. There are also 29 additional
variables that are common to all routes (see, also, Ap-
pendix A.2). We refer to Table 5.1 from the previous
chapter for an overview of the hypothetical impact of
each variable group. For a complete list of all variables
included in the data selection, and details regarding
data source, data description, unit and more, see Ap-
pendix A.1. Moreover, a complete list and description
of data sources used is given in Appendix A.3.

Data are gathered on a monthly frequency. However,
note that data variables vary in their format; whether
they are quoted based on start of month (SoM ), end of
month (EoM ), average, year on year, or sum. Above-
mentioned appendices give a complete overview. Data
that were only available on a higher frequency than
monthly, were collected based on EoM quotes. Ad-
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Table 6.1: Tanker reference vessels for earnings (TCE) calculations on selected routes (Clarksons Research Services Limited, 2017).

Cons. at sea Cons. in port
Route [tonnes/day] [tonnes
Reference vessel Dwt Laden Ballast (gross)]

TD1: Ras Tanura - LOOP and TD3: Ras Tanura - Chiba
VLCC (c.2000 built, dh49) 300,000 93 80 225

TD7: Sullom Voe - Wilhelmshaven
Aframax (c.2000 built, dh) 105,000 50 50 100

TD12: Antwerp - Houston
Panamax (c.2010 built, heating dirty cargo) 74,000 42 27 76.5

TC1: Ras Tanura - Chiba (clean)
LR2 (c.2010 built, products) 115,000 42 30 100

TC2: Rotterdam - New York (clean)
MR (c.2010 built, products) 50,000 30 25 38

Table 6.2: Voyage assumptions for earnings (TCE) calculations on selected routes (Clarksons Research Services Limited, 2017)

Cargo Voyage dist. Voyage time Total Speed
Route size [miles] [days] voyage time [knots]

[tonnes] Laden Ballast Sea time Sea margin Port time [days] Laden Ballast

TD1: Ras Tanura - LOOP
280,000 12,225 1,970 38.4 2.0 4.0 45.4 15.0 15.0

TD3: Ras Tanura - Chiba
265,000 6,654 6,654 37.0 1.8 4.0 42.8 15.0 15.0

TD7: Sullom Voe - Wilhelmshaven
80,000 600 600 3.4 0.2 4.0 7.6 14.5 14.5

TD12: Antwerp - Houston
55,000 5,100 5,100 33.4 1.7 4.0 39.1 13.5 12.0

TC1: Ras Tanura - Chiba (clean)
75,000 6,654 6,654 43.6 2.2 4.0 49.8 13.5 12.0

TC2: Rotterdam - New York (clean)
37,000 3,383 3,383 22.2 1.1 4.0 27.3 13.5 12.0

ditionally, note that we have constructed some of the
variables by summing time series together. This matter
variables for clean oil products, like demand, import
and export, and refinery output. Time series’ were gen-
erally only available on single clean distillate level50,
so we summed these together.

As for the time horizon, we have collected data from
February 2002 to June 2017. However, considering a
maximum lag of 6 months, the “effective period” we
consider spans from August 2002 to June 2017. We
discuss, further, how we deal with lag structures in the
following chapter (Chapter 7).

50See Appendix A.1 for the breakdown of clean constituents
summed together.

6.4 Data Pre-Processing and Presenta-
tion

Pre-processing of some of the variables were required.
We found four out of six dependent variables to have
the occurrence of negative values, i.e. negative TCE
earnings. We handled this by qualitatively smoothing
the value of these data points in accordance with obser-
vations before and after the data point, while ensuring
that the direction of change remained unchanged51.
TD1, TD3, TD7 and TC2 had the occurrence of 1,
4, 4 and 1 negative values, respectively. Further pre-
processing required, such as the concept of stationarity,
is given next in the Methodology chapter (Chapter 7).
In Figure 6.1, we have presented the $/day freight

51As an alternative, we could have added a constant term to
the entire time series’. Considering the low count of conflicting
values, we found this to be of less importance (as well as avoiding
unnecessary "human-error bias").
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Figure 6.1: Displaying the freight rate time series’ for each selected route.

Table 6.3: Descriptive statistics for the relevant variables 1/3.

Variable Mean Median Min Max SD Kurtosis Skew JB ADF

TD1 45.7k 44.3k .8k 159.9k 27.1k 2.134 1.076 71*** -3,9**
TD3 50.2k 42.2k .0k 250.1k 41.8k 4.990 1.851 296,4*** -3,4*
TD7 30.2k 26.5k .1k 113.5k 24.7k 0.572 1.009 33,7*** -3,7**
TD12 24.2k 19.7k 2.4k 78.5k 14.8k 0.563 0.962 30,8*** -3,4*
TC1 24.6k 21.3k 6.3k 77.5k 14.5k 1.769 1.350 80,1*** -4**
TC2 17.3k 15.7k .5k 44.0k 10.0k -0.336 0.647 13,4*** -3,6**
US_dem 19.7 19.6 17.8 21.7 0.8 -0.867 0.190 6,4** -0.900
Jap_dem 4.8 4.8 3.6 6.8 0.7 -0.226 0.506 8,1** -7,1***
Eur_dem 7.6 7.5 6.6 8.7 0.5 -0.872 0.149 6** -3,9**
US_fdem 0.5 0.5 0.2 1.1 0.2 -0.978 0.300 9,5*** -2.900
Eur_fdem 0.5 0.5 0.2 0.9 0.2 -1.293 0.107 12,4*** -5,2***
Jap_cdem 3.0 2.9 2.0 3.7 0.4 -0.667 0.170 3.9 -6***
Eur_cdem 5.7 5.7 5.1 6.4 0.3 -0.226 -0.183 1.3 -3,9**
US_cdem 14.7 14.7 13.6 15.8 0.4 -0.526 -0.099 2.1 -1.900
AG_exp 17.3 17.5 13.0 21.4 1.5 0.464 -0.113 2.3 -2.400
NS_exp 2.6 2.4 1.4 4.9 0.9 -0.380 0.811 20,9*** -1.500
Bel_fexp 0.1 0.1 0.0 0.2 0.0 1.717 0.589 33,9*** -3,3*
US_fexp 0.3 0.3 0.1 0.6 0.1 -0.346 -0.034 0.8 -2.600

rate development for the 6 selected routes, adjusted
for aforementioned negative values.

6.5 Descriptive Statistics

Tables 6.3, 6.4 and 6.5 display a selection of descriptive
statistics for the monthly freight rates in their original
form, as well as the explanatory variables. We present
the four statistical moments, mean, standard devia-
tion, skewness, and kurtosis, of the respective depen-
dent variables. Furthermore, statistical tests describ-
ing normality and autocorrelation are presented5253.

52See Appendix B for a mathematical formulation of the tests.
Normality: JB test. Autocorrelation: (A)DF test.

53Engle’s ARCH test could have been a method to verify
ARCH effects, as a high ARCH order is necessary to catch the

By looking at the column for the ADF test statistic, it
is apparent that we will have to perform transforma-
tions on some of the variables.

dynamics of conditional variance in freight returns. However,
this has been widely approved by researches conducted earlier
(see, for instance, IAME (2014); Abouarghoub and Mariscal
(2011)).
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Table 6.4: Descriptive statistics for the relevant variables 2/3.

Variable Mean Median Min Max SD Kurtosis Skew JB ADF

USBel_fexp 0.0 0.0 0.0 0.1 0.0 2.652 1.149 95,1*** -5,4***
SA_cexp 0.4 0.3 0.0 1.2 0.3 0.394 1.272 50,5*** -1.100
Ne_cexp 1.2 1.3 0.7 1.7 0.3 -1.489 -0.169 17*** -2.200
US_cexp 1.1 1.0 0.2 2.6 0.7 -1.449 0.240 17*** -3,2*
USNe_exp 0.2 0.2 0.0 0.5 0.1 -0.509 0.388 6,3** -4,4***
SA_exp 7.0 7.2 5.3 8.3 0.7 -0.164 -0.751 17,2*** -3,3*
VLCC_fix_west 19.5 19.0 6.0 41.0 6.1 0.448 0.529 10,3*** -3,4*
VLCC_fix 158.3 156.0 89.0 230.0 26.0 0.056 0.251 2.0 -3.000
VLCC_due 10.6k 10.6k .6k 26.8k 4.4k 0.233 0.177 1.5 -4,5***
VLCC_fix_east 74.6 73.0 40.0 121.0 17.1 -0.500 0.112 2.0 -2.900
VLCC_fix_jap 7.4 7.0 0.0 22.0 4.4 0.453 0.798 21,1*** -3,3*
Afra_fix_sum 60.0 61.0 11.0 121.0 19.0 0.251 -0.259 2.7 -3.100
Afra_fix 445.7 415.0 285.0 736.0 107.7 -0.984 0.523 15,2*** -2.000
Pana_fix_US 5.5 5.0 0.0 14.0 2.9 -0.087 0.595 10,8*** -4,1***
Pana_fix 47.0 46.0 21.0 90.0 12.7 0.355 0.625 13*** -2.700
Afra_fix_east 18.7 18.0 4.0 47.0 8.5 -0.040 0.553 9,3*** -3,7**
Afra_fix_us 0.3 0.0 0.0 5.0 0.7 10.451 2.779 1072,7*** -4,9***
MR_fix_US 34.6 35.0 9.0 63.0 12.4 -0.675 0.181 4.1 -3,2*
MR_fix 569.5 527.0 272.0 1109.0 173.5 0.496 0.946 29,3*** -2.100
US_sea_imp 6.7 7.1 3.9 9.1 1.6 -1.344 -0.349 16,8*** -3,9**
US_imp 9.0 9.1 7.1 10.8 1.1 -1.300 -0.192 13,4*** -3,8**
SAUS_imp 1.3 1.3 0.7 2.2 0.3 0.124 0.254 2.1 -3,5**
SAPadd3_imp 0.8 0.8 0.4 1.5 0.2 0.637 0.332 6,8** -3,3*
PADD3_imp 4.9 5.3 2.5 7.0 1.2 -1.294 -0.304 14,9*** -4,1***
Jap_imp 3.2 3.2 2.5 4.3 0.4 -0.615 0.321 5,7* -7***
Eur_imp 5.6 5.6 3.9 7.1 0.8 -1.147 -0.144 10,1*** -3.100
Ge_imp 2.0 2.0 1.6 2.4 0.2 -1.285 0.197 13,1*** -3.000
Bel_fimp 0.1 0.1 0.0 0.2 0.0 -0.130 0.470 6,8** -3,5**
US_fimp 0.3 0.3 0.1 0.7 0.1 0.615 0.797 22,5*** -4**
Padd3_fimp 0.1 0.1 0.0 0.2 0.0 0.254 0.797 19,9*** -3,3*
Jap_cimp 0.3 0.4 0.0 0.7 0.2 -1.587 -0.236 20,1*** -2.300
Ne_cimp 0.8 0.9 0.3 1.4 0.3 -1.499 -0.185 17,4*** -2.100
US_cimp 1.3 1.2 0.7 2.4 0.3 0.211 0.545 9,5*** -3.100
Major_imp 15.6 15.9 11.0 19.3 2.6 -1.416 -0.253 16,5*** -3,4*
Chi_imp 4.1 4.0 1.2 8.7 1.8 -0.656 0.436 8,7** -2.400
Ind_imp 2.9 2.7 1.4 4.6 0.9 -1.339 0.201 14,2*** -3,9**
BelUS_fimp 0.0 0.0 0.0 0.1 0.0 1.392 0.714 30,9*** -4,1***
BelPadd3_fimp 0.0 0.0 0.0 0.1 0.0 0.070 0.179 1.1 -4,9***
NeUS_cimp 0.1 0.1 0.0 0.3 0.1 0.287 0.692 15,3*** -3,4*
NePadd3_cimp 0.1 0.1 0.0 0.2 0.0 0.230 0.676 14,4*** -3,7**
ME_prod 23.0 22.9 19.3 26.9 1.4 0.496 0.583 12,5*** -2.000
NA_prod 15.8 14.6 12.6 20.1 2.2 -0.756 0.915 29,4*** -1.400
US_prod 6.4 5.6 4.0 9.6 1.6 -0.872 0.856 27,6*** -1.800
SA_prod 9.2 9.4 7.1 10.7 0.8 -0.479 -0.424 7** -3,2*
NS_prod 3.8 3.7 2.3 6.0 1.0 -0.906 0.527 14,2*** -2.000
OPEC_prod 30.0 30.0 24.7 33.9 1.8 0.238 -0.380 5* -3.000
W_prod 88.1 86.8 76.2 98.8 5.4 -0.714 0.140 4.1 -2.600
Padd3_refuti 89.6 90.1 59.8 99.1 5.3 5.902 -1.582 344,6*** -3,7**
Padd1_refuti 83.7 85.5 57.8 97.7 8.7 0.202 -0.829 21,3*** -2.900
US_fout 0.6 0.6 0.4 0.7 0.1 -1.277 -0.231 13,4*** -3,4*
Bel_fout 0.1 0.1 0.0 0.2 0.0 -0.148 0.226 1.6 -3,8**
SA_cout 1.1 1.0 0.7 2.0 0.3 0.250 1.167 42*** -1.100
Ne_cout 0.9 0.9 0.6 1.1 0.1 0.825 -1.128 44,2*** -3.000
US_cout 14.5 14.5 12.8 16.4 0.8 -0.629 0.027 2.7 -3,8**
Yen_USD 104.1 107.0 76.6 123.9 13.8 -0.926 -0.510 14*** -1.400
USD_Pound 1.7 1.6 1.2 2.1 0.2 -0.359 0.129 1.3 -3.000
USD_Eur 1.3 1.3 1.0 1.6 0.1 -0.502 -0.056 1.8 -2.600
SDR_USD 1.5 1.5 1.3 1.6 0.1 -0.716 -0.330 6,9** -2.500
Euro_index 125.1 126.6 96.7 155.3 12.7 -0.509 -0.061 1.8 -2.600
USD_index 81.9 81.0 69.1 104.1 8.4 -0.550 0.548 11,1*** -2.100
GDP_w 100.7 99.6 75.1 124.5 14.1 -1.084 -0.130 8,9** -3,2*
US_CPI 216.1 218.0 180.7 245.0 19.1 -1.160 -0.327 12,9*** -2.000
Jap_CPI 101.2 100.7 99.2 104.0 1.4 -0.776 0.783 22,8*** -1.700
Eur_CPI 92.4 92.2 79.6 102.0 6.9 -1.302 -0.293 14,9*** -0.400
Ind_US 1.6 2.3 -13.6 8.2 4.0 4.629 -1.991 286*** -4,2***
Ind_Jap 0.7 1.8 -38.4 31.3 9.4 4.639 -1.051 200*** -4,1***
Ind_Eur 0.7 1.4 -19.1 9.3 4.9 4.578 -1.887 270,2*** -4,1***
Ind_OECD 1.0 1.8 -18.9 10.5 5.0 5.966 -2.148 414,5*** -4***
Ind_China 12.6 13.3 5.4 23.2 4.6 -1.136 0.014 9,3*** -3,6**
Ind_India 5.0 5.3 -5.1 17.6 4.6 -0.328 0.225 2.2 -3.100
LIBOR 1.6 0.9 0.2 5.6 1.7 -0.113 1.163 41,1*** -1.800
LIBOR_Yen 0.2 0.2 -0.1 1.0 0.3 1.077 1.499 77,6*** -1.700
LIBOR_Eur 1.6 1.3 -0.1 5.3 1.5 -0.614 0.711 17,9*** -2.400
Jap_money .5k .5k .4k .7k .1k -0.137 0.868 22,9*** 1.500
US_money 2.0k 1.7k 1.2k 3.5k .7k -1.077 0.647 21*** -1.000
VLCC_1tc 41.4k 38.3k 18.0k 90.0k 16.9k -0.332 0.609 11,9*** -2.300
Afra_1tc 23.5k 20.1k 13.0k 43.5k 8.3k -1.076 0.465 14,8*** -2.500
Pana_1tc 21.1k 18.6k 12.5k 37.1k 6.9k -1.081 0.577 18,5*** -2.300
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Table 6.5: Descriptive statistics for the relevant variables 3/3.

Variable Mean Median Min Max SD Kurtosis Skew JB ADF

LR2_1tc 23.8k 21.0k 13.5k 42.5k 7.9k -1.033 0.512 15,6*** -2.500
MR_1tc 17.8k 15.0k 12.0k 30.5k 5.3k -0.822 0.844 26,3*** -2.100
MR_3tc 15.6k 14.0k 10.5k 21.8k 3.3k -0.996 0.653 20*** -2.400
US_gaso 1.9 1.9 0.7 3.3 0.7 -1.125 0.136 9,6*** -2.100
Bunker_Jap 437.0 386.3 174.5 781.0 184.7 -1.308 0.262 14,5*** -1.600
Bunker_Phil 396.1 346.1 141.6 745.9 176.8 -1.294 0.293 14,7*** -1.500
Brent 71.2 64.8 24.7 137.2 29.7 -1.190 0.265 12,3*** -1.700
WTI 68.7 66.3 26.1 140.0 25.6 -0.940 0.199 7,5** -1.900
Dubai 68.3 63.8 23.3 131.2 29.4 -1.235 0.229 12,6*** -1.600
Oil_price_index 130.2 121.6 46.5 249.7 53.1 -1.194 0.212 11,6*** -1.800
ClarkSea 18.3k 14.3k 7.4k 48.5k 9.7k 0.341 1.086 36,9*** -3.000
ClarkAve 25.1k 21.9k 6.3k 79.7k 14.1k 0.575 0.935 29,4*** -3,4**
BDTI 1.0k .9k .5k 3.1k .4k 2.970 1.559 142,6*** -4,5***
BCTI .8k .7k .4k 1.9k .3k 0.410 0.946 28,6*** -4***
VIX 19.5 16.7 10.4 59.9 8.4 4.633 1.941 280,4*** -3.000
SP500 1.4k 1.3k .7k 2.4k .4k -0.631 0.658 15,9*** -1.500
VLCC_age 8.5 8.5 7.5 9.9 0.6 -1.007 0.005 7,2** -1.500
Afra_age 9.1 9.0 8.0 11.6 0.9 0.338 0.912 26,3*** -2.900
Pana_age 10.3 9.5 7.5 16.7 2.6 -0.062 1.050 33,5*** -0.500
MR_age 10.8 10.1 8.5 15.1 1.9 -0.738 0.712 19,2*** 0.000
VLCC_down 435.7k 272.6k .0k 3780.8k 609.6k 8.144 2.398 684,5*** -3,6**
VLCC_deliveries 988.4k 920.8k .0k 3643.4k 647.9k 0.910 0.790 25,7*** -2.400
Afra_down 185.0k 176.0k .0k 674.2k 154.1k -0.209 0.700 15,1*** -3,7**
Afra_deliveries 498.0k 444.0k .0k 1632.1k 300.9k 0.534 0.681 16,5*** -2.700
Pana_down 51.9k .0k .0k 357.6k 73.1k 2.944 1.694 154,7*** -4,8***
Pana_deliveries 135.7k 138.6k .0k 513.1k 122.0k -0.233 0.738 16,8*** -3,4*
LR2_down 63.9k .0k .0k 496.7k 107.9k 4.064 2.030 253,1*** -3,4*
LR2_deliveries 179.8k 112.5k .0k 753.7k 167.2k 1.225 1.150 52,2*** -2.900
MR_down 138.1k 121.7k .0k 527.4k 99.8k 1.760 1.225 70,1*** -3,7**
MR_deliveries 424.9k 375.9k 75.5k 970.0k 191.5k -0.051 0.663 13,3*** -2.000
VLCC_mdwt 163.4 160.5 122.3 222.3 28.6 -1.242 0.214 12,5*** -2.200
VLCC_yy 0.0 0.0 -0.1 0.1 0.0 0.160 -0.410 5,4* -3,9**
Afra_mdwt 82.6 87.3 51.2 107.7 16.9 -1.345 -0.374 17,4*** -1.700
Afra_yy 3.3 3.7 -3.1 11.3 3.3 -0.600 -0.078 2.6 -4,4***
Pana_mdwt 18.4 21.1 7.1 25.9 6.5 -1.376 -0.498 21,3*** -0.800
Pana_yy 8.9 7.5 -4.3 24.2 8.5 -1.407 0.210 15,7*** -4,1***
LR2_mdwt 19.8 21.1 7.3 36.1 8.7 -1.384 0.043 14*** -2.500
LR2_yy 11.5 10.8 0.0 38.3 7.4 3.172 1.539 150,2*** -3,2*
MR_mdwt 65.3 69.4 40.0 91.6 15.7 -1.276 -0.127 12,3*** -2.300
MR_yy 5.6 5.4 0.3 11.9 2.8 -0.787 0.355 8,2** -3.000
VLCC_new 1171.8k 634.5k .0k 10385.6k 1536.0k 10.125 2.670 1003,5*** -5,2***
Afra_new 550.7k 440.0k .0k 5060.4k 641.3k 13.795 2.859 1706,7*** -3.100
Pana_new 151.3k .0k .0k 2089.1k 250.6k 19.990 3.509 3431,5*** -4,7***
LR2_new 211.7k 104.5k .0k 1887.0k 335.6k 7.775 2.569 665,3*** -2.900
MR_new 477.0k 376.0k .0k 3784.1k 474.1k 12.818 2.613 1467*** -3,9**
VLCC_order 39401.2k 34430.3k 17337.4k 79755.1k 16721.2k -0.951 0.569 16,2*** -1.700
VLCC_order_fleet 24.9 19.9 9.1 54.4 11.5 -0.815 0.667 18,1*** -1.800
Afra_order 11503.0k 11750.1k 3798.7k 19834.6k 4653.4k -0.852 -0.037 5,2* -1.900
Afra_order_fleet 15.2 15.7 3.9 27.5 7.5 -1.430 -0.090 15,1*** -1.600
Pana_order 5479.1k 5297.9k 939.8k 10387.2k 2818.0k -1.236 0.131 11,6*** -2.500
Pana_order_fleet 38.5 30.5 3.9 82.4 27.3 -1.538 0.268 19,5*** -2.600
LR2_order 6606.0k 5705.7k 1553.6k 14161.9k 3394.0k -0.289 0.773 18,6*** -2.400
LR2_order_fleet 41.5 31.8 5.9 107.2 28.5 -0.125 0.991 29,9*** -2.600
MR_order 15573.3k 13859.3k 6853.3k 27780.9k 5945.6k -0.582 0.787 21,1*** -2.100
MR_order_fleet 25.9 23.0 7.5 50.8 12.4 -0.958 0.507 14,3*** -2.300
VLCC_price 104.8 99.0 62.5 162.0 23.4 -0.305 0.489 7,8** -2.400
VLCC_SP 64.3 58.0 34.0 135.0 25.6 0.071 0.962 28,1*** -2.300
VLCC_demo_price 339.4 342.5 143.0 582.5 93.3 -0.395 0.222 2.5 -3.000
Afra_price 54.8 53.5 33.5 82.5 10.5 0.013 0.372 4.2 -2.600
Afra_SP 33.6 29.0 16.0 64.0 14.0 -0.863 0.728 21,3*** -2.100
Afra_demo_price 6.7 6.8 2.5 12.4 1.9 0.481 0.271 4.2 -2.900
Pana_price 46.9 45.5 29.5 68.0 8.5 0.012 0.567 9,8*** -2.200
Pana_SP 37.9 36.0 20.0 62.0 11.0 -0.503 0.704 16,7*** -2.400
Pana_demo_price 5.4 5.4 2.1 9.5 1.5 -0.373 0.114 1.3 -2.800
MR_price 38.2 36.0 26.3 53.5 6.7 -0.325 0.727 16,7*** -2.400
MR_SP 19.0 16.0 10.5 37.0 7.2 0.855 1.394 65*** -2.300
MR_demo_price 3.4 3.4 1.2 6.7 1.1 0.463 0.383 6,3** -2.700
Brent_forw 0.6 0.9 -6.0 10.2 2.8 -0.270 0.251 2.3 -2.600
Tadawul 7.6k 7.0k 2.4k 19.5k 2.9k 2.915 1.327 119,7*** -2.900
Nikkei 13.1k 11.9k 7.6k 20.6k 3.7k -1.268 0.312 14,6*** -1.700
USD_SAR 3.8 3.8 3.7 3.8 0.0 100.252 -8.807 79062,2*** -4,8***
MSCI_w 1.3k 1.3k .7k 1.9k .3k -0.973 -0.084 6,9** -2.600
MSCI_e .8k .9k .3k 1.3k .3k -0.551 -0.685 16,3*** -2.600
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7 Modelling Methodology

We now present our approach for creating a forecasting
model. In this chapter we will look at the underlying
theory and reasoning behind the approach, before pre-
senting and interpreting the results in the following
chapter. We will create separate models for all 6 routes.
A novel variable selection approach based on regular-
ization will be used to rank and statistically evaluate
the potential candidate variables from the last chapter,
Chapter 5. This ensures we have a solid foundation
in the decision making of which variables to include in
the final model(s). To evaluate the forecasting model
for each route, we will be considering three main ob-
jectives:

Objectives

Assess the forecasting capabilities of our
regime-model: It is imperative to know how well
the model(s) actually forecasts the freight rate.
Regime-switching forecasting models will be created
for each route and compared with benchmark models
on out-of-sample data. Common performance metrics
will be applied, and the impact of the different deter-
minants on the freight rate will be reviewed.

Evaluate the route impact: We will investigate
the impact of creating route-specific models. Will a
route-specific model have a significantly different per-
formance, compared to a generic tanker model? We
will assess this by comparing each route model against
a generic tanker model which uses non-route-specific
variables.

Consider a parsimonious model: The issue of
overfitting, whereby the model becomes too tailored
to the random noise in the sample data, is a risk of-
ten incurred in models which include too many vari-
ables. We therefore investigate whether a parsimonious
model will fare better in out-of-sample forecasting than
a more comprehensive, sweeping model with more vari-
ables.
Two models will be created for each route. One

based on domain knowledge and a theoretical foun-
dation, containing a broad selection of features. The
other, a feature-limited model, based on the best per-
forming variables from our regularization approach for
each route.

Note, this means that we will be working with a total
of 12 models (excluding benchmarks), one variable rich
and one parsimonious model, for each route.

We will also be considering the significance of the
selected predictors, the regimes, vessel size, oil trade
types (crude or products) amongst others.

7.1 Stationarity

To be able to forecast properly and get meaningful
results, it is imperative that the time series are station-
ary. Here we will present the concept and definition
of stationarity and why it is necessary. We will also
present our method of choice for testing this. Lastly,
we explain how we will transform the data.

Definition of stationarity

A time series is said to be stationary if its probabil-
ity distribution does not change over time (Pelagatti,
2013). A more formal definition is given by Alexan-
der (2008a) whereby a discrete time stochastic process
{Xt}Tt=1 is stationary if

1. E(Xt) is a finite constant

2. V (Xt) is a finite constant

3. The joint distribution of (Xt, Xs) depends only on
|t− s|

The first condition simply implies that the expected
value should be the same for every observation, i.e. it
does not trend at all. The second condition means
that most observations will be in the proximity of the
expected value, and not drift too far away, with the dis-
tance depending on the size of the variance. The third
condition implies that the joint distributions between
the variables are the same at any point in time, whether
they are two steps apart, three steps apart and so forth.
Since the definition of strict stationarity is generally
too strict for everyday life, a weaker definition is usu-
ally employed. This only requires that the covariance
is independent of the time it is measured, instead of
the whole joint distribution (Alexander, 2008b). The
latter definition is used in this article, and is simply
referred to as «stationary».

Common issues

Many time series are non-stationarity, whereby the ex-
pected value and variance changes over time. These
time series cannot reliably be used to forecast as they
are unpredictable. The results from a model based
on non-stationary data can be spurious, signifying re-
lationships between variables where none exists. In
such cases it is common that values like the adjusted
R2, the t-statistic and the Durbin-Watson statistic ex-
hibit inflated or deflated values (Baumöhl and Lyócsa,
2009).
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A stationary time series should not have a trend,
nor seasonality. These will influence the time series at
various points. However, a time series could consist of
cycles. Cycles are very much present within shipping.
Although cycles can sometimes be misinterpreted as
seasonality, they are different. Cycles are not of fixed
length. This in turn means we cannot accurately fore-
see where the various peaks and troughs of the cycles
will be (Hyndman and Athanasopoulos, 2014). Cycles
within the time series is therefore not expected to be
an issue for stationarity.

How we test for stationarity, and transform the
time series

A method of identifying non-stationary time series’ is
by examining autocorrelation function (ACF) plots.
For a non-stationary time series the autocorrelations
will slowly reduce, while for a stationary time series the
autocorrelations is expected to quickly drop to zero.
Furthermore, one can test for stationarity using

methods like an augmented Dickey-Fuller (ADF) test,
see Appendix B.10, where one tests for the presence of
a unit root.

Looking at Figures D.3 - D.9, most of the time series
appear to be non-stationary, displaying pronounced
trends. Non-stationary variables can in several cases
be made stationary through transformations. This in-
cludes calculating the difference between two consecu-
tive observations and stabilizing an increasing variation
in the observations with logarithmic transformation.
Furthermore, the removal of any deterministic trend
and seasonal adjustments by decomposition can accom-
plish similar results. Initially, we attempt to perform
logarithmic difference transformations, before pursuing
other methods like absolute or percentage differences.
Working with logarithmic differences is preferred due
to the nature of prices often being approximately log
normally distributed, as well as for the sake of compu-
tational brevity (Hudson and Gregoriou, 2014).

The augmented Dickey-Fuller test will be performed
on all time series to evaluate stationarity. For non-
stationary series, the necessary tranformations will be
applied until the null hypothesis of a unit root can be
rejected with a significance level of 5%. Time series
that remain non-stationary will be excluded.

7.2 Standard Multiple Regression

Before attempting any advanced methods of modelling
the freight rate, we run a regular multiple regression
technique using ordinary least squares (OLS) to corrob-
orate any relationships in the data (Alexander, 2008a).
See a full explanation of multiple regression in Ap-
pendix B.9. Finding indications of relationships using

OLS would provide the foundation for more complex
methods.

7.3 Determining Lags

As we are creating a model to forecast ahead of time, it
is imperative that we utilise lagged independent vari-
ables. The problem lies in selecting the best fitting
lagged time series and/or combinations of lagged time
series. For example, the fleet size three months ago
might provide better predictions than the fleet size one
month ago. We are therefore looking for lagged time
series that can provide signs and patterns of the freight
rate movements ahead of time.
How many past lags are within our scope? If we

are to brute force the selection of lags, and attempt
every possible combination, we could quickly run into
a computational problem in regards to the vast amount
of possible combinations - often referred to as the curse
of dimensionality. With approximately 170 variables,
and looking at 6 lags for each variable, the total number
of combinations equals 1706, which is already a number
in the trillions. Evaluating 12 lags for each variable
would result in numbers the septillions. To limit the
scope, we therefore decide to consider 6 months of lags.
The approach to determining lags will be to quali-

tatively assess cross-correlograms between each depen-
dent variable and all relevant independent variables.
This method ensures that we can include market do-
main knowledge in the lag selection, and make choices
that pertain to a theoretical foundation. Variables that
do not have any lags with a significant cross-correlation,
will not be evaluated, and will default to a lag of 1.

7.4 Seasonality

Seasonality involves patterns that repeat every year
(Diebold, 2017). As was evident in the literature
review, the tanker freight rate appears to exhibit
signs of deterministic seasonality. We rely on the
findings of others, notably Kavussanos and Alizadeh
(2002); Ringheim and Stenslet (2017); and Alizadeh
and Nomikos (2009), and assume the presence of sea-
sonality.
We therefore want to account for the seasonality

that theoretically should be present in the tanker mar-
ket. Our approach will be to create monthly dummy
variables. A simple dummy variable takes the value 0
except during specific periods, where it takes the value
1. Such a dummy allows the model to shift during this
period, resulting in a better fit (Grotenhuis and Thijs,
2015). As we are using monthly dummies, we need
to include 11 variables in our regime-switching model.
Note, we only include 11 variables, as the last month
will be captured by the intercept. The associated co-
efficients can be interpreted as a measure of the effect
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Figure 7.1: Deterministic seasonality based on the mean seasonal change of our selection of dirty tanker (TD1, TD3, TD7, TD12) and clean
tanker (TC1, TC2) routes, which is represented alongside their respective Baltic Exchange index. Serves as a documentation of the presence
of seasonality in the time series’. The incorporation of seasonal dummies is discussed in Section 7.4. Calculation is based on the entire time
series period from August 2002 to June 2017.

of each month on the dependent variable, relative to
the omitted month (the intercept). The deterministic
seasonal component can be seen in Equation 1.

St =

s∑
i=1

γiDit (1)

Where γi is considered a seasonal factor, and Dit is
a dummy variable with e.g. D1t = (1, 0, 0, . . . ) as
described by Diebold (2017). These dummy variables
will later be included in the regime-switching model.

Seasonality is generally accounted for as a fixed and
known frequency in modelling (Hyndman, 2014). How-
ever, as we are modelling two distinct regimes that
are hypothesised to have distinct qualities, we expect
seasonal effects to be different between these regimes.
In Figure 7.1, we present the mean of the seasonal

changes of our selection of dirty and clean routes. We
anticipate these seasonal components to be broadly
reflected in the supposed low volatility regime of the
regime models, as this regime should have the highest
weighting of total number of observations, and thus be
considered the «normal state» regime (see, for instance,
Abouarghoub et al. (2014), (2011) and Abouarghoub
et al. (2012)). In Appendix A.4, a complete represen-
tation of each route’s seasonal components are repre-
sented alongside their respective Baltic Exchange in-
dex.
Our mix of dirty tanker routes seems to exhibit

higher irregularity and magnitude in their seasonal
derivatives than our mix of clean routes. As occasion-
ally discussed up to his point, the monthly increase in
freight rates throughout the late fall and early winter
months, November and December, is induced by a mix
of the derived energy shipping demand and seasonal
climate effects in this period of the year. This seems to
be the case for both the dirty and the clean routes. As
for the rest of the year, we observe that the seasonal
pattern is quite similar, although components of the
clean routes are fluctuating much tighter around the

0 percentage line; indicating less volatile earnings for
these vessels. A decrease in January is followed by an
increase in February, and then the sign of the double-
derivative shifts each month until June. The biggest
difference is seen from June to October, where the dirty
routes continue the negative trend until they increase
from September throughout December, while the clean
routes continue fairly stable before having a dip in Oc-
tober, and then accelerating through November and
December. Similar deterministic seasonal patterns are
found in the study by Kavussanos and Alizadeh (2002),
although they are investing a 20-year period pre-2000.
In the following chapter, Chapter 8, we will address
whether we are able to match these effects in our mod-
els.

7.5 Variable Selection

A preliminary candidate predictor analysis will be per-
formed. We are interested in examining if the initial
variables we have selected are appropriate, and rank
them based on how well they can presumably explain
the freight rates. This will provide an indication, as
well as necessary support in the decision making of
which variables to include in the final model (along-
side the theoretical foundation gathered in the earlier
chapters). Our method of choice for ranking candidate
variables, will be a combination of stability selection
with the penalization of LASSO accompanied with a
random tuning parameter, hereby referred to as sim-
ply stability selection. As mentioned by Hasinur et
al. (2016), by properly balancing goodness of fit and
model complexity, penalization approaches can lead to
parsimonious models.
As we are managing approximately 170 different

time series, it is becoming necessary that we utilise
such methods to gain statistical insight into this data.
We were limited to only approximately 180 observa-
tions, by the amount of available past observations for
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many of the time series’. We are facing a situation
where the amount of available variables are very close
the amount of observations. Regularization techniques
would allow us to estimate models with fewer observa-
tions than parameters (Hyndman, 2014).
We have deemed certain approaches inadequate or

unsuited for these purposes. Among these are least ab-
solute shrinkage and selection operator (LASSO), prin-
cipal component analysis (PCA), stepwise regression
and ridge regression. LASSO does select the best per-
forming candidates, while at the same time forcing
other candidates close to zero. As such, it fulfils the
need for feature selection, but lacks in being able to
interpret the data. The same is true for PCA as it cre-
ates new linear relationships, which in turn reduces the
ability to interpret and explain the factors. Stepwise
regression is avoided due to the potential pitfalls such
as yielding high, biased R2 values, the standard errors
of the parameters being too small and it providing p-
values without proper meaning (Harrell, 2001). Lastly,
ridge regression could potentially force the coefficients
to spread out similarly between correlated variables,
and is thus avoided (Doreswamy and Vastrad, 2013).
Instead, as mentioned in the introduction, we will

utilise the method of stability selection (Appendix B.5),
a novel approach to feature selection, which combines
subsampling with selection algorithms.

How does it work?

Stability selection is a technique on its own. This is
simply the technique of running a model on multiple
subsets of the data in order to select the best variables.
A common interpretation of the practical implemen-
tations available is to use subsamples of both the ob-
servations (i.e. various time periods) and subsamples
of the actual variables. This means that a model is
run on a smaller amount of observations, with fewer
variables, many times. Stability selection does however
require a selection algorithm.
A typical selection algorithm is LASSO, which uti-

lizes `1-penalization. Here the coefficients of most vari-
ables are forced to zero. The tuning parameter λ deter-
mines how strict it should be in leaving out variables.
A simple enhancement of LASSO which has great prac-
tical benefits is randomized LASSO (Meinshausen and
Bühlmann, 2009). The difference here is that regular
LASSO is dependent upon specifying a good initial
set of available tuning parameters Λ, while random-
ized LASSO can function very well without such rigid
initial values. Randomized LASSO uses randomly se-
lected tuning parameters λ for each run. For one sin-
gle model run, this would provide inadequate results,
but when implemented along with stability selection
which is based on multiple runs, the results are very
favourable.

How does this work for us?

The underlying idea is to run variable selection rou-
tines on subsets of the data, with various subsets of
variables. This approach enhances the performance of
existing methods. After numerous runs, the results
can be aggregated by for example examining how fre-
quently a variable ended up being selected as relevant.
The strongest candidates will have scores close to one,
while the weaker relevant candidates will have non-
zero scores. These latter candidates would be selected
during runs where the strongest candidates might not
be present. Irrelevant candidates should have scores
close to zero. This method is useful for both variable
selection to reduce overfitting, as well being able to
interpret data (Hasinur et al., 2016).

Approach

In order to look for and select interesting candidate
variables, we will be taking multiple approaches with
the help of stability selection.

Firstly, in the way variables are included in the mul-
tiple runs. Stability selection will be run on a set of all
variables, as well as route-specific subsets of variables.
These route-specific subsets contain the variables that
we have already deemed most likely to impact the vari-
ous freight rates, based on our domain knowledge. This
approach allows us to review the robustness of the vari-
ables that we have picked, as well as look for any new
ones, which might play a significant role.
Secondly, two different fractions of samples will be

utilised for each randomized design, one smaller sam-
ple fraction and one larger sample fraction. In other
words, stability selection’s regression models will be
run on data samples spanning either a few months, or
several years. This will allow us to identify candidate
variables that better fit a multi-regime model. We ex-
pect to find a discrepancy in the variables that are fre-
quently selected for short time periods versus long time
periods, by the stability selection algorithm. Some vari-
ables might perform far better on shorter time hori-
zons, which better coincides with the abnormal high
volatility state of the market. Longer time horizons are
potentially a better representation for the normal state,
and different variables could have a higher degree of
impact on the freight rate.
The model will be tuned with a sample fraction of

0.05 and 0.3. This represents approximately 9 and 54
observations respectively. Each stability selection run
will be performed with 10,000 different models, and a
maximum number of iterations equal to 100,000.
After having run the regularizations, we hand-pick

a selection of the most promising candidate variables
for each route. We hand-pick in order to apply further
domain knowledge during the selection, and avoid just
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performing an automatic selection of variables.
Additionally, we will use the top candidates for each

route to create parsimonious regime-switching models,
to compare their performance to our domain knowledge
regime models. This is discussed further in Section 7.8.

7.6 Model Formulation
Chow test

To look for initial empirical signs of multiple regimes in
the dependent data, we will perform a Chow test. This
is a simple and intuitive way of uncovering structural
breaks. As seen in Alexander (2008a), a regression
model consisting of structural breaks in the parameters
at time t∗ can be defined as

y1 = X1β1 + ε1, for t = 1, . . . , t∗

y2 = X2β2 + ε2, for t = t∗ + 1, . . . , T
(2)

where

y1 = (Y1, . . . , Yt∗)
′, y2 = (Yt∗+1, . . . , YT )′,

ε1 = (ε1, . . . , εt)
′, ε2 = (εt∗+1, . . . , εT )′,

X1 =

X11 X21 · · · Xk1

...
...

. . .
...

X1t∗ X12t∗ · · · Xkt∗



X2 =

X1,t∗+1 X2,t∗+1 · · · Xk,t∗+1

...
...

. . .
...

X1T X2T · · · XkT


We will perform the Chow test as presented by Alexan-
der (2008a), where one compares the combined residual
sum of squares of multiple estimates of linear models
for sub periods of the data, with one linear estimate
for the whole period. We will do the following steps:

1. First we run a regression of the model up to time
t∗. We then proceed to run a regression on the
rest of the data. We must calculate the residual
sum of squared errors on each of these sub-models.

2. We then add the two residual sums of squares
to get the unrestricted residual sum of squares,
RSSU .

3. We proceed to run a regression on the whole data
set. This represents the scenario where there are
no regimes present in the data. We estimate the
restricted residual sum of squares, RSSR.

4. We complete the test by using an F test to see if
there is a significant difference between these two
models - the one containing structural breaks and
the other ordinary linear regression model.

Markov regime-switching model

As we have seen up until now, Markov regime-switching
seems to be an appropriate approach to modelling
tanker freight rates. These models allow for greater
flexibility than a standard multiple linear regression,
and can account for different dynamics in each regime.
They appear fitting for the tanker freight rate which
exhibits a more volatile behaviour in states where the
effects of supply and demand constrain the market.
Markov regime-switching has its foundation in

Hamilton’s paper released in 1989, where he statis-
tically formalized that different economic states can
affect the behavior of the economic variables.
As we walk through the modelling process, we use

an ordinary linear regression model as a placeholder,
for the sake of brevity and simplicity. The Markov
switching regression model can then be expressed as
follows

Yt = αst + βstXt + εstt. εstt ∼ N(0, σ2
st) (3)

The model is assumed to have normally distributed
homoscedastic errors (Alexander, 2008a). The regime
is given by the latent variable st, which can be realized
into two different values:

st =

{
1, if state 1 governs at time t,
2, if state 2 governs at time t.

(4)

It is assumed that this state variable follows a first-
order Markov chain, whereby the probability of being
in any state is only dependent upon the previous state.
In such a Markov chain, it is assumed that the transi-
tion probabilities are constant. The transition proba-
bilities determine the probability of being in a certain
state at time t, given a specific state in time t−1. The
matrix of transition probabilities can be written as

Π =

(
π11 π21

π12 π22

)
=

(
π11 1− π22

1− π11 π22

)
= (πij).

In this equation, πij represents the probability of going
from state i to state j. We are also able to find the
unconditional probability of, for instance, regime 1 by

π =
π21

π12 + π21
. (5)

The full set of parameters for the model can be given
by the following vector

θ = (α1, α2, β1, β2, σ1, σ2, π11, π22)′. (6)

To represent the states of the Markov chain, we use
a random state indicator vector ξt, whereby the ith
element is equal to 1 if st = i, and 0 otherwise. For a
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two-state regime model this vector can be written as

ξt =

(
ξ1
t

ξ2
t

)
=



(
1

0

)
, if in state 1 at time t,(

0

1

)
, if in state 2 at time t,

(7)

We consider these states unobservable, and we cannot
be certain of which state the series is in at any time.
However, we can estimate the conditional probability
of being in a state. We are interested in the expected
state vector at time t, at time t − 1. We therefore
introduce a new variable ξt|t−1 for the conditional
expectation of the state indicator ξt at time t, given
all the information up to time t−1. From the definition
of the transition matrix, this can be expressed as the
transition matrix multiplied with the state indicator
at time t− 1

ξt|t−1 = Et−1(ξt) = Πξt−1. (8)

Our parameter estimation will be based on maximum
likelihood estimation. Simply put, this is a technique
to find the most likely function that explains observed
data. In other words, if the data were to have been
generated by the model, what parameters were most
likely to have been used? (Halls-Moore, 2016). It is
therefore essential to build the likelihood function us-
ing the sample data and the model. The estimation
process is complicated by the necessity to estimate the
conditional probabilities as well. We are therefore re-
quired to perform further iterations at each algorithmic
step. In other words, for each step of the algorithm
where log likelihood function is maximized, it is also
necessary to estimate the conditional probabilities.

Now, to have a look at the sub-iterative process. The
probability density of the normal distribution with ex-
pectation µ and standard deviation σ can be expressed
as follows

φ(x;µ, σ2) =
1√
2πσ

exp

[
−1

2

(
x− µ
σ

)2
]
.

We also assign starting values for the conditional ex-
pectation of the state indicator

ξ̂1|0 =

(
ξ̂1
1|0
ξ̂2
1|0

)
=

(
1
0

)
or

(
0
1

)
,

as well as the initial model parameters. We will utilise
the values from a regular multiple regression as a start-
ing point. This means that the parameters for both
states will be equal from the start. The iteration pro-
ceeds as follows from t = 1:

1. ft(Yt|Xt; θ̂) = ξ̂1
t|t−1ϕ(Yt; α̂1 + β̂1Xt, σ̂1)

+ ξ̂2
t|t−1ϕ(Yt; α̂2 + β̂2Xt, σ̂2)

2. Set

ξ̂t|t =

(
ξ̂1
t|t
ξ̂2
t|t

)
=

 ξ̂1t|t−1ϕ(Yt;α̂1+β̂1Xt,σ̂1)
ft(Yt|Xt;θ̂)

ξ̂2t|t−1ϕ(Yt;α̂2+β̂2Xt,σ̂2)
ft(Yt|Xt;θ̂)


3. Set ξ̂t+1|t = Π̂ξ̂t|t.

4. Set t = t + 1 before returning to step 1, while
repeating the iteration until t = T.

This iterative process provides us with two necessities:

• a set of conditional state probabilities {ξ̂t|t}Tt=1

• a set of conditional densities {ft(Yt|Xt; θ̂)}Tt=1

The elements of conditional state probabilities serves
us with the (conditional) probability of being in state
1 or 2.

We continue by estimating the model parameters θ
by maximizing the log likelihood function.

lnL(θ) =

T∑
t=1

ln ft(Yt|Xt;θ). (9)

For each iterative step of this maximization, we per-
form the sub-iteration to get the conditional densities
and the set of conditional state probabilities, using the
currently estimated model parameters.

Specific regime-switching model

The regime-switching regression model we will be im-
plementing can then be formulated as follows

Y rt = αrst + βr1stX1t + βr2stX2t + . . .

+ βrnstXnt +

k∑
i=1

γristDit + εrstt.

εrstt ∼ N(0, σ2
st)

(10)

where Xht represents the explanatory variables, βrhst
is the associated route specific regime determined coef-
ficient, with h ∈ {1, . . . , n}. Furthermore, αrst denotes
the state dependent intercept,

∑k
i=1 γ

r
ist
Dit represents

the seasonal dummy component as seen in Section
7.4 with k = 11 , and εrstt the residual of each ob-
servation. The regression model will be estimated for
each of the six tanker routes r ∈ {TD1, TD3, TD7,
TD12, TC1, TC2}, using different explanatory vari-
ables for each model.
This leaves the following model parameters to be

estimated

θr = (αr1, α
r
2, β

r
11, . . . , β

r
n1, β

r
12, . . . , β

r
n2,

γr11, . . . , γ
r
g1, γ

r
12, . . . , γ

r
g2,

σr1, σ
r
2, π

r
11, π

r
22)′.

(11)
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Forecasting with the regime-switching model

Having defined how we will establish the model it-
self, we also need to determine how the model will be
utilised to generate forecast results at time t+ 1.
An inital problem that arises is how we are going

to select which regime’s forecasted value to use as our
predicted value - the regime-switching model consists
of two regression models which both produces a pre-
diction. A solution would be to obtain forecasts as
the weighted average of the outputs from both models,
weighted by their associated probability.

To determine this probability for time t + 1, one
can obtain the filtered probability at time t. Multiply-
ing this filtered probability with the transition matrix
yields predicted probabilities of each regime at time
t+ 1.
In this way, we establish a forecast which incor-

porates both regimes at all times. The model takes
lagged variables as input, produces a prediction for
each regime, which is weighted by the estimated prob-
ability of being in each regime.

The forecast horizon is 1-month-ahead. The regime-
switching model parameters are not re-estimated for
each step. We vary the origin from which forecasts are
made, but maintain a consistent forecast horizon, as
described by Hyndman (2006). The residuals from the
forecast will later be evaluated.

7.7 Assumptions

Underlying the regular OLS method are a set of as-
sumptions. We will investigate and ensure that these
OLS assumptions are met for the regime regression
models. If they are not, the model may be inefficient, or
highly biased. There are multiple ways of assessing this,
and we will consider two general approaches. We will
be performing analyses both qualitatively (plot-based)
and quantitatively (test-based), to evaluate most of
the assumptions. This ensures a better understanding
of the underlying characteristics, and also validates the
test approaches for each assumption.

Overview of the OLS assumptions

1. Linear relationship

2. No autocorrelation in the errors

3. Homoscedastic (constant) errors

4. Normally distributed errors with zero mean

Approach to testing the assumptions

1 There should exist a linear relationship between
the dependent and independent variables. If no such

relationship exists, the model will be incorrect and un-
reliable. Erroneous results from the extrapolation is
thus likely. To investigate this qualitatively, we study
the plot of fitted values versus residuals. For the as-
sumption to be met, we expect to see a fairly flat
horizontal line, with no significant patterns. The indi-
vidual points should be distributed evenly around this
horizontal line, and have a roughly constant variance.

2 A common issue in time series regression models is
autocorrelation in the errors, whereby the error terms
of different observations are correlated with each other.
This is often a sign of room for improvement in the
model, and in the extreme cases, a sign of a highly
misspecified model. To assess this qualitatively, an
inspection of residual autocorrelation plots will be per-
formed. This plot shows the correlation of the residuals
with its own lags. Neighbouring residuals with signifi-
cant autocorrelation can indicate a need to reevaluate
the model.
To analyse this assumption quantitatively, several

options are available (Gujarati, 2011). The Durbin-
Watson statistic (Appendix B.10) is a test for detecting
significant residual autocorrelation at lag 1. We are
looking for statistic values deviating significantly from
2, which pertain to autocorrelation. Small values of
DW indicate positive autocorrelation and large values
indicate negative autocorrelation (Alexander, 2008b).
A drawback of the basic Durbin-Watson approach is
the lacklustre amount of lags. We therefore also include
the Breusch-Godfrey test. This test is more general
than a standard Durbin-Watson statistic, and statis-
tically more powerful. We are working with monthly
frequency data, and have limited the amount of lags
to six. As the test allows for a specified order of serial
correlations to be tested, we will be investigating the
results from orders between one and six.

3 Heteroscedasticity is a display of differently dis-
persed errors. The residual terms should all have the
same variance. If the residuals on the other hand are
heteroscedastic, then the standard error of the regres-
sion estimates cannot be trusted due to unreliable con-
fidence intervals. This can cause our confidence inter-
vals for out-of-sample predictions to be unrealistically
narrow (Nau, 2017).
For the qualitative approach, we will be examining

the plot of residuals against fitted values. In the case
of heteroscedasticity, we are looking for disparities in
the variance of the errors.

As for the quantitative method, we will be employing
the Breusch-Pagan test (Appendix B.13). This test
for heteroscedasticity is performed using an auxiliary
regression of the squared residuals on the explanatory
variables (Gujarati, 2011). The resulting statistic nR̂2
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follows the chi-squared distribution.

4 The residuals are expected to be normally dis-
tributed. Violations of this assumption can cause is-
sues for the estimation of confidence intervals for the
forecast, as well as determining whether the model
coefficients are significantly different from zero (Nau,
2017). Regression analyses are quite robust to devia-
tions from the normal distribution, which means the
residuals only have to be approximately normally dis-
tributed (Gujarati, 2011).
When reviewing the normality assumption qualita-

tively, an effective approach is to examine the Q-Q
plot, as well as consider the histogram. For the Q-Q
plot, the standardized residuals are plotted against or-
dered expected residuals, whereby the points should
roughly fall on a diagonal line. If there is no misspecifi-
cation in the model, these two plots can be interpreted
sufficiently.

There exists several quantitative tests for normality,
and the most popular approach is the Jarque-Bera test
(Appendix B.12). The method takes the skewness and
kurtosis as input, which provides a statistic. With the
null hypothesis being that the residuals are normally
distributed, the statistic is evaluated against the chi-
square distribution.

7.8 Model Assessment
How will we evaluate the route-specific regime mod-
els? To simplify comprehension, we have divided most
of the assessment into three objectives, as mentioned
before. We will consider the benefit of implementing
models with few variables. We will assess the forecast-
ing capabilities of the model. Lastly, we will evaluate
how relevant it is to specify models distinctly for a
route. This is to ensure handling 2x6 regime models,
as well as a plethora of benchmark models is manage-
able. The data will be split into a training set, and a
never-before-seen test set. Various performance met-
rics and tests will be applied to the forecasts of these
models, and compared with benchmark models.

The problem of overfitting

Overfitting can be thought of as fitting a model to
the randomness in data. Such a model would perform
vastly better when creating the model, than when actu-
ally using it on real world data. Researchers sometimes
add variables to their model in the hopes of increasing
the R2 value, mistakenly believing that this complexity
will make a better model (Gujarati, 2011). However,
the inclusion of unnecessary variables might lead to a
loss of efficiency of the estimators, reduced degrees of
freedom, as well as the problem of multicollinearity. In
other words, an overfit model corresponds too closely

to a particular set of data. As we are interested in
modelling the future, it is imperative that the model
generalises well to never-before-seen data.
We will therefore be partitioning the data into two

sets, a training set and a test set. The model will ini-
tially be trained on the training set. The forecasting
model will then be evaluated on new validation data,
other than the data that was used to train the model.
As a common consequence of overfitting is poor perfor-
mance on the validation data set (Domingos, 2012), we
can evaluate how specialised the forecasting model(s)
are. The data is split in a 80/20 ratio, with the most
recent 20 % of the data earmarked for validation.
Besides partitioning the data set, another method

to mitigate overfitting is by adding a regularization
term to the evaluation function (Domingos, 2012). We
implement this in the best candidate variable selec-
tion, randomized LASSO. LASSO ensures only a few
best candidate variables are selected, and forces most
features to zero.
We also ensure to consider parsimonious models to

evaluate how well such models generalise, see 8.5.
Other approaches also exists, such as stepwise mul-

tiple regression where the selection of variables is au-
tomated. One builds a model by successively adding
or removing variables based on statistical tests (Nau,
2017). We will not be employing such approaches, as
we are interested in adding our domain knowledge to
the modelling.

Performance measures

To assess the performance of the forecasting models, a
range of various measures will be used. Several met-
rics are used both due to the commonality of their
inclusion, as well as the compromises that exists for
them individually. The compromises include how easy
it is to understand and compute, if it can be compared
across series, and how well it functions with zero or
close-to-zero values. The selection of forecast metrics
include scale-dependent metrics, percentage error met-
rics and scale-free error metrics. We will specifically
be looking at the root-mean-squared error (RMSE ),
the mean absolute error (MAE ), the mean absolute
percentage error (MAPE ), the median absolute per-
centage error (MdAPE ), and the mean absolute scaled
error (MASE ).

RMSE =

√∑T
t=1 (yt − ŷt)2

T
(12)

MAE =

∑T
t=1 |yt − ŷt|

T
(13)

MAPE =
1

T

T∑
t=1

∣∣∣∣yt − ŷtyt

∣∣∣∣ (14)
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MdAPE = median
t∈T

(∣∣∣∣yt − ŷtyt

∣∣∣∣) (15)

MASE =
1

T

T∑
t=1

(
|yt − ŷt|

1
T−m

∑T
t=m+1 |yt − n̂t−m|

)
(16)

Here, ŷt represents the forecasted value, yt is the actu-
alt value, T is the number of samples, n̂t is the fore-
casted value of a one-step «naive forecasting method»,
and m is the seasonalperiod (or 1 if non-seasonal).

The MAE works well on a single series. It is simple
to understand and calculate. It does not however, fare
well on comparison between several series, as it is scale
dependent. MAPE and Mdape are based on percent-
age errors, and can thus be used to compare between
different data series. Despite this, these measures do
not perform well with errors close to or equal to zero.
The MASE is scaled based on the in-sample MAE from
a naive forecast method. This means it can be used to
compare across series, and does not have trouble with
infinite values (Hyndman, 2006).

Benchmark models

To get an indication of the relative performance of our
regime-switching models, we need to compare them
with the performance metrics of benchmark models.
We will use the following four benchmarks.

Random walk The next value is composed of the
current value in addition to a white noise error term.
This should be considered a minimum requirement to
outperform (See Appendix B.7).

Mean The forecasts of all future values are simply
equal to the mean of the historical data (Hyndman and
Athanasopoulos, 2014) (See Appendix B.8).

Multiple linear regression The dependent vari-
able is modelled as a linear combination of the ex-
planatory variables (See Appendix B.9). These bench-
mark models will use the same variables as the regime-
switching models for the different routes. From this
we can assess the usefulness of including regimes.

ARIMA The forecasts of an autoregressive inte-
grated moving average model consists of lags of a sta-
tionarized series (autoregressive) and lags of the fore-
cast errors (moving average), as well as a constant (See
Appendix B.6). A best fit ARIMA(p, d, q) will be esti-
mated for each route. The model is commonly applied
to time series and should provide a potent benchmark.

Diebold-Mariano test

To better evaluate the forecasting capabilities of our
regime-switching model, we are going to utilise the
Diebold-Mariano test (See Appendix B.14). This test
allows us to compare two forecasts of interest and gauge
if one is significantly different than the other. The qual-
ity of each forecast is evaluated on some loss function
of the forecast errors. For this test, the null hypothesis
is that the methods are equally accurate on average.
It must be noted that the DM test is not intended for
model comparison, but merely to compare forecasts,
as explained by the original researcher Diebold (2013).
Hence, we will ensure the DM test is only used to assess
predictive accuracy.

I Considering a parsimonious model

We attempt to increase the accuracy of the regime
model by decreasing the complexity. In other words,
we will also evaluate the performance of a regime model
with far fewer explanatory variables than the initial
regime model based on domain knowledge. Such a
parsimonious model will be created for each route.

The parsimonious regime model will be generated by
only including the most highly ranked variables from
our candidate variable selection approach, based on
randomized LASSO.

The parsimonious regime models will be evaluated
against the domain knowledge regime models, based on
common performance metrics, as well as the Diebold-
Mariano test for forecasting accuracy.

II Assessing the forecasting capabilities of our
regime-model

As it is crucial to evaluate the predictions performance
of the regime models, we will apply them to our out-of-
sample data set. The regime models will be compared
against the previously mentioned benchmark models.
Only the best performing regime models will be evalu-
ated (either domain knowledge models or parsimonious
models). This means we will have 6 regime models, 6
mean benchmark models, 6 linear regression bench-
mark models and 6 Arima benchmark models, one for
each route.

The models will be evaluated based on common per-
formance metrics, as well as the Diebold-Mariano test
for forecasting accuracy.

III Evaluating the route impact

We will consider how impactful a route-specific model
is. How can this be evaluated? To measure this, we
will make a generic forecasting regime model based
on explanatory variables with no specific relation to
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Table 7.1: Global benchmark. Variables to be used solely for the
generic benchmark regime model based on global variables. This
model will be utilised to assess the impact of specifying models
specifically for routes. If such a generic model greatly outperforms
the route specific models, claims can be made regarding the need
for such models.

Variable Brief reasoning

Major_imp World oil trade
Chi_imp The largest importer (went past US in 18’)
W_prod World production measure
OPEC_prod Oil trade and oil price is largely dependent on

OPEC
USD_index USD is the most important currency in shipping
Euro_index The EU consumes a lot of oil
GDP_w World economic measure
Ind_China A globally impacting economy
Ind_US A globally impacting economy
LIBOR The most common interest rate benchmark
Brent_forw The state of the oil market, and future expectations
Brent The current state of the oil market
ClarkSea A global shipping measure
ClarkAve An overall tanker index
MSCI_w Global state and economic measure
SP500 Global state and economic measure
VIX World psychology and market expectations
Afra_yy Aframax is the workhorse in the tanker market*
*Should ideally be a general tanker variable, but we
were unable to collect this.

individual shipping routes. In other words, a bench-
mark regime model will be formulated which consists
solely of global variables. This generic model will be
compared to the route-specific regime models. Its abil-
ity to forecast will be evaluated based on common
performance metrics, as well as the Diebold-Mariano
test. If such a generic model greatly outperforms the
route-specific models, assertions should be made for
the usefulness of including very specific variables for
each route.

The variables in Table 7.1 are going to make up this
generic, global benchmark model.
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8 Results

8.1 Initial preparation
Stationarity

The augmented Dickey-Fuller test was performed on
all variables, as seen in Table D.1. At a 5% signifi-
cance level, approximately one quarter of the 169 vari-
ables were initially found to be non-stationary. Dif-
ferent measures were taken to get all the time series
stationary. Most series were transformed with logarith-
mic differencing, but some required different measures
like double differencing. After the transformations, all
variables were found to be stationary with a 5% signif-
icance.

Determining lags

To determine the appropriate number of lags for each
explanatory variable, a visual inspection of cross-
correlograms on a route by route basis was performed.
This allowed us to qualitatively assess the cross-
correlograms (as seen in Figure 8.1) while utilising
domain knowledge based on shipping theory and em-
pirical research to manually select the lags. Lag corre-
lation had to overcome a significance level threshold in
order to get approved. A lag of 1 month was chosen if
the variable did not pass this threshold, as all variables
had to be lagged to be used in forecasting. Explana-
tory variables were considered with a maximum lag of
6 months. This method of lag selection could have al-
lowed for a greater limit than 6 months, which will be
discussed in Chapter 9. The selected lags for each ex-
planatory variable for each route can be seen in Table
D.2.

−
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Figure 8.1: An example of a plot used to assist in the lag investiga-
tions.

Dealing with singular solutions

After performing an initial selection of variables based
on our domain knowledge, and attempted to use these
variables for modelling, we ran into an issue. We found
that the selected variables did not provide a solution as
a consequence of the design matrix not being invertible
- the predictors were not independent, and their effects

could not be uniquely identified. In other words, we
needed to look for strongly correlated variables, and
remove superfluous variables.

Checking the matrix rank: As an initial measure,
we first constructed and ran a procedure based on the
rankrank54 of the matrix, in order to look for fully lin-
early dependent factors. The procedure excluded one
variable for each iteration, and calculated the rank of
the remaining matrix. This would allow us to identify
any variable(s) that were fully linearly dependent. No
such variables were found.

Issues can often occur when the matrix one is work-
ing with is «almost» not full. The problem is com-
monly referred to as multicollinearity. In our case, our
likelihood model ran into trouble with singularities.

Review correlation between independent vari-
ables: The next step was to look into the correlation
between the different variables. A calculation of the
correlation matrix was done, and an accompanying
visual representation added. The correlations were
examined and potential variables were considered for
removal. This includes the variable VLCCage, among
others, which provided irregular model results.

8.2 Candidate Predictor Analysis

Part one (i) of our research contribution (see Chapter
1) is finalized by the variable selection approach of
stability selection with randomized LASSO. We will
be looking for candidate variables with a high rank
value55 to validate variables that were initially included
based on domain knowledge. Variables with a low
score may be excluded, but we reserve the right to
still include them if it seems viable from a theoretical
stance. The low volatility state is expected to be the
regime with the largest number of observations. Runs,
hereby referred to as searches, were therefore made on
differently sized subsamples - more precisely 30% and
5% of total training observations. We hypothesised
that running based on these different fractions might
provide us with variables that are better at explaining
each regime.

In order to determine which variables to include in
the domain knowledge and the parsimonious models,
two search processes were performed:

i ) Domain knowledge model search: These
were searches which used the entire variable data
set that we have gathered.

54This refers to the rank term from linear algebra.
55To avoid further confusion regarding rank and score of vari-

ables; rank value refers to the place a variable is ranking relative
to other variables based on variables’ individual score value from
the stability selection.
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The domain knowledge variable selection was based
on a combination of stability selection and a theo-
retical foundation56. Stability selection was run for
each route with all variables from the complete set
available. The results were then aggregated, and
the variables were ordered based on their (poten-
tial) performance ranking. In Table 8.1, we list the
ranked results from the domain search on a route
by route basis57.

ii ) Parsimonious model search: These were
searches based on the subset of variables associated
with each route, from the selection of variables in
(i).

The best performing variables for each route were
selected for the parsimonious regime models. We
refer to the Appendix for a complete list of parsi-
monious ranking results (Table D.3).

Domain Search: Picking Domain Knowledge
Variables

Based on the 30% stability search, Saudi Arabian crude
export, followed by Chinese crude import provided
the best fit for our two VLCC routes (TD1, TD3).
Thus, a route-specific variable performed better than
all the general variables. Among high ranked vari-
ables, we also find several VLCC supply factors, such
as fixtures and newbuilding price. Furthermore, among
more global variables, ClarkSea and VIX indices seem
to be good indicators of VLCC freight rates. Medium
good rankings belong to more general variables, such
as world oil production and industrial production fac-
tors. We also find it interesting that more traditional
variables, such as GDP, oil prices, certain stock in-
dices, interest rates, Baltic indices, as well as capacity
regulating supply factors do not perform particularly
well.

On the last crude route, TD7, rankings of the best
variables score closer to 1 than the two other crude
routes. We do not observe the same top-one ranking
of route-specific variables on TD7, although several
import and export variables obtain close to 0.5 score,
which would otherwise rank among the top on other
routes. More variables are in general found to have a
higher score on TD7 compared to other routes. Fur-
thermore, it is encouraging to see that European con-
sumer price index and European industrial production

56This was done in conjunction with a rudimentary multi-
collinearity assessment by the evaluation of VIF, to limit issues
stemming from this.

57For the sake of clarity, variables that were found to be associ-
ated with some sort of linear dependence issue are not excluded
from Table 8.1, but are nevertheless ignored and not addressed
further.

rank high, and significantly higher than, e.g., indus-
trial production for some of the larger economies. TD7
is after all only concerned with European countries. In
regards to supply, deadweight capacity and demolition
price of Aframax all rank high. ClarkSea, world oil
production, and VIX are the global factors ranking the
highest. However, and again, several general factors
are falling short.

When it comes to TD12, we observe a mix between
the goodness of route-specific and general variables.
The list of good-scoring candidates is shorter than
crude routes. Chinese crude import is again the top-
ranking variable, followed by four other general vari-
ables; ClarkSea, Panamax fixtures and deadweight ca-
pacity, and OECD industrial production. As with TD7,
deadweight capacity and demolition price of the rele-
vant fleet is ranking adequately high. Moreover, it is
promising that some of the route-specific variables on
a country and distillate level are scoring high. These
include fuel oil export from Belgium and the US, as
well as US refinery output of fuel oil. Additionally, fac-
tors such as US PADD3 fuel oil import and US fuel oil
demand are performing medium well. A whole range of
general variables are in fact beaten by these variables.
In regards to the clean routes, TC1 and TC2, the

story with Chinese crude import and ClarkSea repeats
itself. The two first high-ranked exchange rates are
found on the TC1 route, namely US Dollar against the
Saudi Arabian Riyal, and the Japanese Yen. Consid-
ering a route perspective, it is auspicious that these
were performing compared to, e.g., pure Euro or Dollar
indices. General-specific variables are more apparent
on the TC1 route than the TC2 route, including, for in-
stance, world oil production and a couple of supply vari-
ables. Furthermore, TC1 is the route with the fewest
variables scoring sufficiently high. Scoring results are
more interesting in a route perspective on TC2, as the
second and third ranking variables are route-specific.
These are also some of the more precise route-specific
variables, as they involve both countries and type of
oil trade; clean products export from Netherlands, and
US clean products import from Netherlands. Similar
to TD12, OECD industrial production ranks high on
TC1 - hence it was included for both routes.

Based on the 5% search, route-specific variables are
maybe even more noticeable among high ranked vari-
ables. Hypothetically, we find this to be in line with
shipping theory and our own intuition, as high volatil-
ity states should be more irregular to underlying fun-
damentals. We observe that especially fixtures are
ranking better in these searches. Fixture variables are
intuitively more likely to exhibit inhomogeneous dis-
tributions as compared to other variables. This is due
to charterers and shipowners potential for speedy re-
sponsiveness as opposed to, e.g., change in industrial
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production. We believe some of the same reasoning is
applicable to import and export factors as well, which
also rank strong within these searches. Furthermore,
the Brent oil forward curve ranks significantly better
for most routes, including VLCC where its hypotheti-
cal significance probably is strongest (see Section5.3).
We find this plausible, as psychology and future expec-
tations may be more prominently reflected in a high
volatility regime.

The fact that Chinese crude import is performing
consistently well on all routes, is not surprising taking
into consideration that China has been ranking among
the top 5 crude importers during the relevant time hori-
zon, ranking from 5th in 2002 to 1st today. We also
note that the most consistent global indices are Clark-
Sea, world oil production and VIX. With these three
variables, three key states of the freight market can be
captured, namely the state of shipping markets in gen-
eral, the flow of oil in the world, and market psychology,
respectively. Oil prices, being a much-debated factor
in all parts of the oil value chain, are consistently not
scoring particularly strong on any of the routes. This
is also true for several other economic variables, espe-
cially various stock indices, interest rates and exchange
rates, as well as GDP. Surprisingly, 1 year-time charter
rates also perform rather poor, except for MR vessels
on TC2. Among the supply variables, we find dead-
weight capacities, in mdwt, to perform better than
year-on-year capacity changes. Other supply variables,
such as orderbook, demolitions and deliveries are not
found to perform consistently well across our selection
of routes. Vessel prices also occasionally score high.

As a sidenote, considering the historically high corre-
lations between freight rates for tanker vessels, we were
not surprised to see some of the same variables ranking
consistently high. Fewer variables, however, seemed to
be able to perform strong on products routes contrary
to crude routes. Finally, we find it very encouraging
that route-specific variables were able to rank very well
across all routes despite the inclusion of many general
variables.

Parsimonious Search: Picking Parsimonious
Variables

In the parsimonious models, the best ranking variables
from the second search are chosen. We have included
a reasonable amount of high scoring variables. Results
tend to be quite consistent with results from the do-
main search, while some deviation naturally exists as
the selection process is based on simulation. For in-
stance, rankings on TD1 are almost the same, while
high-scoring variables on TD3 are now significantly
shortened. Familiar variables from the domain search
are though seen. At least, it is encouraging that two
Japanese variables are included on TD3. On TD7 and

TD12, top-ranking variables are also familiar from the
domain search. On TC1, Aframax MEG - East fixtures
is now at the top of the 30% search, as opposed to be-
ing at the top of the 5% search in the domain search. It
is also noticeable that Japanese industrial production
now ranks at the top in the 5% search. On TC2, a
route-specific variable is ranking highest on the 30%
search and second on the 5% search, namely products
export from US to Netherlands. In fact, top 5 rank-
ing variables on TC2 can be directly connected to this
route. Moreover, the Brent forward curve seems to be
a strong indicator also in the 5% search, ranking top
4 on TD12, TC1 and TC2. In general, we find route-
specific variables to perform well in the parsimonious
searches as well.

We believe that results from the parsimonious search
are likely to have better validity and predictive power
than results from the domain search, as the search is
run without variables causing any misspecification. In
subsequent parts of this chapter, statistical tests will
reveal the predictive power of the various models.

8.3 Modelling

In the remainder of this chapter, we move on to part
two (ii) of our research contribution (see Chapter 1),
namely one-month prediction models of our 6 selected
tanker routes. Results from the LASSO stability selec-
tion described above is incorporated.

Chow test

Before the model was developed, the Chow test for
structural breaks was performed. The time series
were evaluated and noteworthy periods were identi-
fied. These are seen in Table 8.2. The presence of
structural breaks was assessed with the Chow test, by
the estimation of regression models. We refer to plots
of the time series’ in Figure 6.1 when we comment on
the individual routes below.

TD1 From surveying the plot of monthly freight rate
movements, it appears to behave mostly the same. A
couple of time periods appeared noteworthy. They
were both tested for structural breaks, and the period
from mid 2005 to late 2005 allowed us to reject the
null hypothesis of no structural breaks.

TD3 The plot shows ordinary movements in most of
the time span. The time series did, however appear to
have noteworthy movements in the range from 2011 to
2014. A significant structural break was identified in
the period from early 2012 to mid 2014.
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TD7 For TD7, a longer period of a significant struc-
tural break was discovered - starting from mid 2009
and lasting to mid 2014. We rejected the null hypoth-
esis with a 5% significance. The period can possibly
be subdivided into several structural breaks with inter-
mittent normal periods.

TD12 By visual inspection of the plot, one can see
many periods spanning several months with higher
changes than normal. Several structural breaks were
identified, with a 0.01 significance. Most notable are
the periods from mid 2009 to mid 2011 and late 2013
to early 2014.

TC1 The initial impression of this series was that it
mostly behaves the same throughout the whole period.
This impression is further strengthened by no rejections
of the null hypothesis by the Chow test. There were
no clear structural breaks to be easily identified.

TC2 The time series appears to follow the same
patterns across most of the time period. A few
unstable periods were identified around late 2013 and
late 2014. We were able to reject the null hypothesis
of no structural breaks for observations in this time
span.

Abouarghoub et al. (2012) found noteworthy breaks
for the tanker market. Particularly, they found the pre
boom-cycle from 1990 to 2000 to be better captured by
a two state regime model, and the period after 2000 to
be suited to fit an even more volatile structure. As our
data range was limited, beginning in mid 2002, due to
the inclusion of explanatory variables, we were unable
to capture similar results. However, Abouarghoub et al.
(2012) did not explore the post-boom structure explic-
itly, and recommended this for future research. From
our findings, some noteworthy changes in movements
were determined for all series, except TC1. The results
can be seen in Table 8.2. TD3 and TD7 had clearly vis-
ible structural changes. The others had certain periods
which were identifiable.

Model Development

The purpose of the regime-switching models is to fore-
cast tanker freight rates for different routes and vessel
sizes. By combining the driving determinants of sup-
ply and demand that affect the spot freight rates, we
established a prediction model for each route. The de-
terminants were initially picked based on a theoretical
foundation, and then validated as candidate variables
with the use of a regularization (randomized LASSO)
ranking approach (see Table 8.1). The models were

trained based on the time period spanning from Au-
gust 2002 to July 2014, while leaving the remaining pe-
riod until June 2017 for validation of the out-of-sample,
one-step-ahead forecast.

In total, 12 models were created. One domain knowl-
edge model and one parsimonious model, for each of
the 6 tanker routes. The fitted models were Markov
regime-switching models consisting of different multi-
ple regression models for each regime. Every model
was fitted to two regimes, k = 2, and all variables
were assumed to switch between these regimes. Do-
main knowledge models and parsimonious models are
hereinafter referred to as TD1 and TD1pars etc., re-
spectively.

Resulting models are presented in Tables 8.5-8.10.

Regimes

In Table 8.3, we have provided an overview of regime
properties for both domain and parsimonious models.
In Figure 8.2, two distinctive regimes can be visually
seen for the in-sample period for each route.

Remembering back to Section 6.1, we described three
stylized facts of shipping freight rates, namely mean
reversion, seasonality, and distribution and jumps. We
will comment on the former and the latter here, while
seasonality is being discussed later in Section 8.3.
At first, we note that the transition probability of

switching from the low volatile regime to the high
volatility regime is consistently lower than the prob-
ability of switching the opposite direction. This is
true across all models, and in line with theory. From
Table 8.3, we observe that the duration of high volatil-
ity regimes is lower than the duration of low volatil-
ity regimes. Furthermore, results indicate that low-
volatility regimes have a larger weight of total obser-
vations than high-volatility regimes. This may suggest
two things. First, freight rate levels are less sustainable
at high levels, and thus reverts to its mean faster. Sec-
ond, short-term momentum is less persistent in high
volatility regimes. Ideally, the mean reversion property
should portray a negative and a positive conditional
mean for low levels of the freight rate and high levels
of the freight rate, respectively. Adland (2003), In his
PHD thesis, finds that non-linearity in the conditional
mean is only statistical significant in the extremes of
the freight rate distribution.

Shipping theory in Chapter 3 revealed the character-
istics of the shipping supply curve, and suggested that
freight rates exhibit higher volatility in the inelastic
part of the curve. Adland (2003) argue and empirically
proves that the volatility of TCE spot freight rates is
an increasing function of the freight rate level. He fur-
ther points out that freight rate volatility is non-zero
in its empirical range except in its boundaries. Though
in reality, freight rates do not reach these boundaries,
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hence making the true non-linear conditional variance
curve impossible to fully replicate empirically. Yet,
and as Adland (2003) argue, level effects in the con-
ditional variance is an apparent maritime economic
fact. Referring to Table 8.3, we clearly observe that
this holds across all our models as well, by comparing
volatilities as well as returns of low and high volatility
sates against average freight rate levels in these states.
Consequently, we confirm that freight rate changes are
of higher magnitude and extremes to occur at higher
frequency in high volatility regimes.
Additionally, Adland (2003) argues that a compre-

hensive model should incorporate residual lag effects
in the conditional variance as well. We argue that we
capture this somewhat indirectly by allowing volatility
regimes to switch based on a given probability distribu-
tion. Furthermore, Adland empirically proves that the
conditional variance, and the resulting magnitude ex-
hibits a rich variation across bulk shipping sectors and
vessel sizes (both dry bulk and tankers). He finds level
effects in the conditional variance to be more evident
across larger vessels sizes. This conforms somewhat
with our findings in Table 8.3, whereof larger vessel
sizes rank high on volatility in both states. At least,
there is a clear indication that dirty routes are more
volatile than clean routes. This is observable in both
volatility regimes; however, more apparent for higher
volatilities.

All in all, considering regime properties from Table
8.3, we are able to acknowledge empirical results from
existing Markov regime-switching tanker literature,
which we presented in the Literature Review (Chapter
2). In general, these studies were consistent in finding
regime properties equal to those we have presented here
(see, for instance, Abouarghoub et al. (2014); IAME
(2014); Abouarghoub et al. (2012); Alizadeh and
Nomikos (2011); Abouarghoub and Mariscal (2011)).

Parameter Evaluation

In the following, we address and interpret the economic
impact of the selected variables from the LASSO pro-
cess based on our hypothetical discussion from Chapter
6. Moreover, our interpretation will be mainly focused
towards the regime with the largest share of total ob-
servations, i.e. what presumably is the low-volatility
(«normal») regime (see Table 8.3). All of the resulting
coefficients from our domain and parsimonious models
can be seen from Tables 8.5-8.10, and Tables 8.15-8.20,
respectively.
General observations of the domain models reveal

that coefficient signs are very mixed from what we
hypothesised in Chapter 5. This is in line with find-
ings of Ringheim and Stenslet (2017), who also obtain
a very mixed directional impact based on their initial
hypotheses. In Table 8.4, a complete overview of our di-

rectional correctness regards to our hypotheses is given
for each route model. Comparing seasonal dummies
against each route’s theoretical seasonal components
from Appendix A.4 revels that seasonal dummies have
a higher hypothetical coefficient correctness than deter-
minant coefficients. Somewhat similar conclusions are
drawn by Ringheim and Stenslet (2017), who find pure
seasonal models to outperform factor-driven models
for the BDTI index.

Remembering that our initial hypothesis was based
on real-time lag effects (0-lag), we acknowledge that
some of the hypothetical impact could differ based on
variables’ lag structure58 (see Table D.2). We identified
supply variables to possibly have the most interesting
lag structures among our variable groups, due to their
endogenous effect on shipping cycles. We do, how-
ever, have the same directional hypotheses for most
of the demand and economic variables even when we
are considering the lags chosen, although several argu-
ments may exist to support changing these hypothe-
ses after all. For instance, several import and export
variables included in the models have surprisingly a
negative coefficient based on a 1-month lag. “What
goes up, comes down”, i.e. if a lot of oil was trans-
ported last month, less oil could be transported in the
current month. However, oil trade is likely to exhibit
a non-stationary process, so we argue that a trend in
increases/decreases should exist. Equally, several oil
demand variables are found to yield a negative impact
on freight rates in the domain models.

Based on Table 8.4, we observe that the accuracy of
our hypotheses for the parsimonious models are gen-
erally quite mixed as well. Only one regime in one
model conforms 100% with our initial hypotheses; the
high volatility regime in TD7pars. Seasonal dummies
although seem to be equally accurate regards to our
hypotheses as the domain models. Regarding some of
the variables that we hypothesised natural, such as the
WTI oil price and various exchange rates, we observe
their directional impact to be mixed across the models
they are included in.
Chinese crude import yields a negative impact on

freight rates on both TD1pars and TD12 pars, while
having a positive impact on TD7pars. Nonetheless, we
find a negative impact not to be completely off what we
find rational, despite initially hypothesising a positive
impact. The development in VLCC fixtures from MEG
to China by Chinese shipowners deviates from freight
rate changes on MEG – Far East routes, as opposed
to fixtures from MEG to Far East by non-Chinese
shipowners, which move almost in parallel (Fearnley,

58Several data formats exist for the data collected; variables
that are updated, e.g., in the start of month are as such in reality
lagged by about 2 months to the freight rate if a 1-month lag
is used. A complete overview of data formats can be seen in
Appendix A.1.
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Figure 8.2: Indication of which observations are associated with a possibly high volatile regime (gray scaled), for the parsimonious regime
models The x-axis represents the in-sample time horizon. The small bars below each plot indicate the probability of being in the high volatility
state at each time step.
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Figure 8.3: Representation of seasonal dummy coefficients based on the mean of seasonal dummy coefficients from the parsimonious regime
models. Dirty tanker (TD1, TD3, TD7, TD12) and Clean tanker (TC1, TC2) routes.
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2018). Further, and different from our initial hypothe-
sis, 1-month lagged VLCCs that are due in the MEG
have a positive impact on TD1pars. This may be likely,
as VLLCs that were due previous month may have
taken on new charters, and thus fewer VLLCs may
be due in the 0-lagged month. ClarkSea and Saudi
Arabian exports are as expected positively related to
TD1pars. On TD3pars, only 6-month lagged Japanese
money supply is hypothesised correct according to the
model. However, this variable is also the only one that
is significant in the low volatility regime. On TD12pars,
TC1pars, and TC2pars, we find the Brent forward curve
to be negatively related to freight rates. As none of
the vessels on these routes are particularly used for
storage, this impact may reflect that an increase in oil
price have a negative impact on these routes, which
the negative coefficient for WTI on TD12pars further
may portray.59

More surprisingly is that there is lack of consistency
in whether the low volatility regime has a better hy-
pothetical coefficient impact than the high volatility
state. We expected the low volatility regime to portray
a closer to “normal state” condition. However, when
the directional correctness is as limited as it is for
some of the routes, this expectation is difficult prove
righteously. Finally, we remark that some of our hy-
potheses certainly could be a wrong-pointers in terms
of “real impact”. However, that is exactly some of the
“beauty” of statistics; we can reveal relationships we
otherwise would not be able to prove/disprove with
general knowledge.

Seasonal Dummies

Moving on to a closer assessment of the seasonal rela-
tionships; we saw from Figure 7.1 that seasonality was
apparent in tanker freight rates. We restrict our in-
terpretation of seasonal dummies to the parsimonious
models. In order to get a better visual tool for inspec-
tion, we calculate the mean of the dummy coefficients
for dirty and clean routes. Hence, we are able to com-
pare these against the «theoretical» seasonal compo-
nents from Figure 7.1. Resulting figures from this are
given in Figure 8.3 (see Appendix A.5 for individual
routes).
We are now ready to evaluate the last stylized fact

from Section 6.1, namely seasonality. We observe from
the resulting seasonal dummies that the seasonal mag-
nitude are clearly different between the two regimes in
our models (Figure 8.3). Furthermore, seasonal dum-
mies are more stable for clean routes than for dirty
routes, which is in line with the theoretical represen-
tation in Figure 7.1. It is also encouraging that the

59We leave further interpretation to the reader, as there exist
endless of possible interpretations considering the large scale of
variables; arguments from Chapter 5 may serve as a useful guide.
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Table 8.1: Domain search. The ranked variables which are the basis for creating our domain knowledge regime models. This variable ordering
was utilised to evaluate the benefit of including certain factors. They have been ranked by the method of stability selection with randomized
LASSO. The fraction of included observations was tuned to 0.3 and 0.05 in order to look for variables that perform better in certain short
time periods, i.e. we were attempting to narrow down variables for the high volatility regime. Notes: Certain variables were not considered
for use due to modelling conflicts, like V LCCage. TD3 with a fraction of 0.05 did not provide any sufficient high-scoring results.

TD1 TD3 TD7

Regularization run: 0.3 Regularization run: 0.3 Regularization run: 0.3
score score score

SA_exp 0.581 SA_exp 0.578 Chi_imp 0.761
VLCC_age 0.555 VLCC_age 0.574 Eur_CPI 0.692
Chi_imp 0.507 Chi_imp 0.511 Ind_Eur 0.648
ClarkSea 0.446 ClarkSea 0.439 W_prod 0.612
VLCC_fix 0.438 VLCC_due 0.393 LIBOR_Yen 0.536
VLCC_due 0.429 VLCC_new 0.346 Afra_demo_price 0.503
VLCC_new 0.344 VLCC_price 0.346 Afra_mdwt 0.498
VIX 0.323 VIX 0.345 ClarkSea 0.490
VLCC_price 0.319 VLCC_fix 0.342 Eur_imp 0.458
W_prod 0.310 VLCC_fix_east 0.329 Afra_new 0.454
US_money 0.277 Yen_USD 0.326 VIX 0.445
USD_SAR 0.273 W_prod 0.324 Afra_down 0.443
ClarkAve 0.261 Ind_Jap 0.285 Ind_India 0.431
SAPadd3_imp 0.240 ClarkAve 0.280 NS_exp 0.430
Ind_India 0.234 Jap_CPI 0.265 Ge_imp 0.416
US_imp 0.233 USD_SAR 0.264 NS_prod 0.410
VLCC_deliveries 0.231 Ind_India 0.253 Ind_China 0.409
VLCC_down 0.222 VLCC_deliveries 0.247 Afra_SP 0.389
VLCC_fix_west 0.216 Jap_imp 0.243 Afra_price 0.387
USD_index 0.206 Jap_dem 0.235 Afra_deliveries 0.381
LIBOR_Yen 0.198 VLCC_down 0.233 Ind_imp 0.374
NA_prod 0.191 Jap_money 0.231 Brent_forw 0.366

Regularization run: 0.05 Regularization run: 0.05 Regularization run: 0.05
score score score

Chi_imp 0.195 Chi_imp 0.210
ClarkSea 0.180 NS_prod 0.200
VLCC_age 0.165 NS_exp 0.191
Major_imp 0.160 Ge_imp 0.188
VLCC_down 0.155 Afra_down 0.188
Brent_forw 0.155 Eur_imp 0.186
US_money 0.145 Ind_Eur 0.185
SAPadd3_imp 0.145 Ind_India 0.182

TD12 TC1 TC2

Regularization run: 0.3 Regularization run: 0.3 Regularization run: 0.3
score score score

Chi_imp 0.445 Chi_imp 0.421 Chi_imp 0.475
ClarkSea 0.344 ClarkSea 0.320 Ne_cexp 0.429
Pana_fix 0.320 LR2_new 0.262 NeUS_cimp 0.425
Ind_OECD 0.311 USD_SAR 0.255 ClarkSea 0.365
Pana_mdwt 0.301 Afra_age 0.237 MR_deliveries 0.343
Bel_fexp 0.282 W_prod 0.233 Ind_OECD 0.336
US_fexp 0.268 Yen_USD 0.210 MR_3tc 0.326
LIBOR_Yen 0.254 Afra_fix_us 0.206 MR_1tc 0.269
US_fout 0.254 Afra_demo_price 0.203 USNe_exp 0.255
W_prod 0.238 LR2_order 0.203 ClarkAve 0.249
Pana_price 0.232 ClarkAve 0.185 W_prod 0.231
Pana_demo_price 0.224 LIBOR_Yen 0.178 Ne_cout 0.229
Padd3_fimp 0.221 VIX 0.173 MR_demo_price 0.220
US_fdem 0.213 Afra_down 0.167 MR_yy 0.216
ClarkAve 0.202 LR2_order_fleet 0.156 MR_fix_US 0.209
Pana_fix_US 0.193 NePadd3_cimp 0.202
VIX 0.179 LIBOR_Yen 0.195
Bel_fout 0.177 US_money 0.182
Pana_yy 0.173 Ind_India 0.178
US_dem 0.169 VIX 0.178
US_money 0.159 MR_down 0.174
Pana_deliveries 0.157 US_dem 0.173

Regularization run: 0.05 Regularization run: 0.05 Regularization run: 0.05
score score score

Pana_fix 0.153 Afra_fix_east 0.170 Ne_cout 0.160
Chi_imp 0.151 Chi_imp 0.145 US_cdem 0.155
US_fout 0.150 Afra_down 0.145 Chi_imp 0.145
US_fexp 0.143 Afra_fix_us 0.140 MR_fix_US 0.140
US_fimp 0.131 Major_imp 0.135 MR_deliveries 0.140
Pana_mdwt 0.129 Afra_fix 0.125 NeUS_cimp 0.135
LIBOR_Yen 0.124 Jap_money 0.120 Brent_forw 0.135
BelUS_fimp 0.122 Brent_forw 0.120 USNe_exp 0.125
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Table 8.2: The notable results from the Chow test for structural breaks, with a null hypothesis of no structural breaks. The test was performed
for different routes, on notable movements in the data. Included are the time periods that were compared (break dates are considered volatile
time periods, while normal dates are a comparable regular time period), the f-value from the test and it associated p-value.

Break dates Normal dates f-value p-value

TD1 2005-06/2005-10 2006-01/2007-06 20.506 0.000
TD1 2012-08/2013-10 2011-03/2012-07 0.214 1.554

TD3 2012-03/2014-06 2009-01/2012-02 2.385 0.050

TD7 2009-07/2014-04 2004-01/2009-04 2.492 0.035

TD12 2009-07/2011-04 2004-01/2009-07 3.365 0.008
TD12 2013-10/2014-03 2011-06/2013-09 4.401 0.006

TC1 2013-10/2014-03 2011-06/2013-09 1.674 0.179

TC2 2013-10/2014-03 2011-06/2013-09 5.290 0.002
TC2 2014-07/2014-12 2015-01/2016-06 4.860 0.009

Table 8.3: This table contains key information regarding the regimes from all of the route models. It consists of the probabilities of transitioning
from one regime to the other, the number of observations, volatility, and much more.

Domain knowledge models Parsimonious models

TD1 TD3 TD7 TD12 TC1 TC2 TD1 TD3 TD7 TD12 TC1 TC2

Transition π12 0.761 0.258 0.638 0.584 0.392 0.663 0.358 0.096 0.079 0.149 0.579 0.102
Transition π21 0.366 0.479 0.299 0.530 0.449 0.467 0.066 0.584 0.041 0.597 0.593 0.503
LV Regime 2 1 2 2 1 2 2 1 2 1 1 1
LV Observa-
tions

93 93 96 78 76 84 120 124 88 114 75 117

HV Observa-
tions

51 51 48 66 68 60 24 20 56 30 69 27

LV, Volatility 0.409 0.554 0.824 0.289 0.295 0.362 0.379 0.588 0.500 0.249 0.297 0.266
HV, Volatility 0.961 1.416 1.547 0.360 0.346 0.515 1.388 2.135 1.679 0.500 0.340 0.826
LV Weight 0.68 0.65 0.68 0.52 0.53 0.58 0.85 0.87 0.60 0.80 0.52 0.82
Avg. LV Dura-
tion

3.55 4.63 4.25 3.29 3.61 3.53 13.22 10.25 22.00 6.94 3.07 9.75

Avg. LV Re-
turn

0.02 0.05 0.00 -0.01 0.00 -0.03 -0.01 0.01 -0.01 0.03 0.03 0.02

HV Weight 0.32 0.35 0.32 0.48 0.47 0.42 0.16 0.13 0.40 0.20 0.48 0.18
Avg. HV Du-
ration

2.17 3.00 2.50 2.59 3.86 2.20 4.00 2.75 18.33 2.50 2.26 2.88

Avg. HV Re-
turn

-0.020 -0.081 0.019 0.020 -0.004 0.008 0.098 -0.003 0.036 -0.126 -0.036 -0.155

Avg. LV Rate 43,197 46,799 29,018 25,018 24,486 18,379 43,323 46,073 35,193 25,621 23,950 18,886
Max LV Rate 13,8758 222,142 104,411 76,729 71,255 39,949 138,758 222,142 104,411 76,729 71,255 42,457
Min LV Rate -3,394 -909 -103,409 4,816 6,676 -3,891 -3,394 -100,510 -16,460 4,816 4,613 3,530
Avg. HV Rate 33,520 32,595 13,621 23,582 23,834 15,766 22,005 15,081 6,119 19,566 24,426 10,373
Max HV Rate 100,635 201,359 91,539 63,373 69,192 42,457 100,635 157,770 91,539 63,373 68,340 40,745
Min HV Rate -81,723 -100,510 -87,297 -1,760 3,066 -1,794 -81,723 -53,981 -103,409 -1,760 3,066 -3,891

πij : The transition probability of switching from state i to state j
LV: Low volatility state
HV: High volatility state

Table 8.4: Evaluation of hypothetical coefficient impact. Domain knowledge models and parsimonious models. Percentage correctness of
variable coefficients are based on the selection of variables that had an initial hypothesis, i.e. excluding neutral hypothesised variables.
Seasonal dummies include the intercept, serving as a seasonal measure for the month of July.

«(*)» next to percentages indicates which regime that has the largest number of observations, i.e. the low volatility regime.

Percentage correct hypothetical sign of
Variable coefficients Seasonal dummies
Regime 1 Regime 2 Regime 1 Regime 2

TD1 75% 60%(*) 67% 83%(*)

TD3 48%(*) 48% 75%(*) 67%
TD7 70% 39%(*) 75% 50%(*)

TD12 45% 52%(*) 75% 67%(*)

TC1 50%(*) 39% 75%(*) 58%
TC2 41% 31%(*) 50% 75%(*)

TD1pars 60% 40%(*) 50% 92%(*)

TD3pars 25%(*) 75% 75%(*) 83%
TD7pars 100% 67%(*) 67% 67%(*)

TD12pars 50%(*) 50% 67%(*) 58%
TC1pars 55%(*) 63% 75%(*) 67%
TC2pars 29%(*) 43% 58%(*) 67%
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Table 8.5: Estimated coefficients for the TD1 regime-switching model

Regime 1 Regime 2

Coef t-value Coef t-value

(Intercept) -0.087 -2.084 * 0.088 1.359
AG_exp 2.392 3.773 *** -3.054 -3.349 ***
VLCC_fix_west -0.335 -6.482 *** 0.294 6.102 ***
VLCC_due 0.739 15.950 *** 0.153 4.129 ***
SAPadd3_imp 0.019 0.178 0.042 0.343
NA_prod 33.738 29.221 *** -4.773 -4.922 ***
SA_exp 4.282 12.710 *** 2.035 4.444 ***
USD_SAR -61.426 -4.360 *** 29.885 1.846 .
US_money -25.252 -14.222 *** 1.362 0.904
Tadawul 1.467 7.871 *** 0.053 0.220
VLCC_price 0.032 3.323 *** 0.027 3.649 ***
Major_imp 0.739 1.784 -1.263 -2.226 *
Chi_imp -1.038 -8.946 *** -0.628 -5.569 ***
Ind_imp 0.899 6.537 *** -0.507 -2.460 *
W_prod 56.015 24.341 *** 2.144 0.690
SDR_USD -5.302 -7.012 *** -1.845 -1.679 .
Ind_China 1.173 13.484 *** -0.177 -1.956 .
Ind_US -0.010 -0.665 0.029 1.400
Ind_India 0.053 9.017 *** 0.034 6.491 ***
LIBOR -1.512 -8.770 *** -1.503 -7.961 ***
Brent_forw 0.042 3.150 ** -0.022 -1.192
WTI 1.466 6.935 *** 1.424 6.483 ***
ClarkSea 1.998 13.960 *** 0.233 1.442
VIX 2.307 22.617 *** 0.380 3.291 ***
Aug -1.490 -25.470 *** -0.671 -5.962 ***
Sep 0.076 1.026 0.041 0.466
Oct 1.026 18.522 *** 0.013 0.135
Nov -0.644 -9.633 *** 0.343 3.599 ***
Dec 0.930 14.220 *** 0.221 2.524 *
Jan 0.693 7.747 *** -0.489 -5.113 ***
Feb -2.442 -24.670 *** -0.062 -0.639
Mar -0.350 -4.841 *** 0.203 2.203 *
Apr 1.212 18.882 *** -0.455 -5.023 ***
May 1.353 20.463 *** -0.083 -0.961
Jun 0.447 6.249 *** -0.153 -1.714 .

R-squared 0.9959 0.8760
R-squared-adj 0.9843 0.8079
Approx. num. 51 93
Significance 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 8.6: Estimated coefficients for the TD3 regime-switching model

Regime 1 Regime 2

Coef t-value Coef t-value

(Intercept) -0.025 -0.209 -0.181 -3.325 ***
VLCC_SP -2.654 -4.437 *** 10.474 36.419 ***
ClarkSea 1.971 6.650 *** -0.268 -2.066 *
Chi_imp -0.203 -0.955 3.538 32.726 ***
Jap_dem -0.304 -0.365 -12.985 -31.548 ***
VLCC_fix_east -0.768 -5.047 *** 0.024 0.335
VLCC_fix_jap 0.021 2.972 ** 0.048 10.413 ***
VLCC_due 0.437 6.207 *** 0.460 12.272 ***
Jap_imp 2.364 4.700 *** -6.008 -24.551 ***
SA_exp 1.396 2.498 * -2.447 -4.544 ***
Jap_money 13.519 3.909 *** 6.813 5.069 ***
USD_SAR -117.175 -2.266 * -200.194 -16.710 ***
Yen_USD 3.549 2.375 * 8.157 10.906 ***
Jap_CPI -39.653 -3.895 *** 102.439 14.235 ***
Ind_Jap -0.055 -5.170 *** 0.145 45.250 ***
Tadawul 0.265 0.605 -1.208 -4.228 ***
Nikkei -0.572 -0.730 4.854 15.509 ***
VLCC_yy -1.473 -0.473 24.908 15.067 ***
VLCC_price 0.034 2.603 ** 0.057 5.788 ***
Major_imp -5.967 -5.205 *** 1.551 3.292 ***
Ind_imp -1.060 -3.245 ** -0.011 -0.058
W_prod 15.060 3.912 *** 22.549 9.328 ***
Ind_China -0.621 -3.789 *** -0.627 -6.017 ***
Ind_US 0.175 5.126 *** -0.629 -44.324 ***
Ind_India 0.039 4.021 *** -0.044 -6.441 ***
LIBOR_Yen 0.161 0.250 -9.587 -26.601 ***
Brent_forw -0.067 -2.227 * -0.360 -23.213 ***
WTI 0.427 1.086 -3.147 -18.664 ***
VIX -0.384 -1.864 . 3.773 44.126 ***
Aug 0.069 0.416 -1.164 -16.415 ***
Sep 0.087 0.575 -1.118 -12.192 ***
Oct 0.135 0.757 1.080 13.865 ***
Nov 0.162 0.985 1.774 22.573 ***
Dec 0.190 1.237 3.031 29.344 ***
Jan -0.610 -3.748 *** 1.294 10.852 ***
Feb 0.152 0.807 -1.232 -16.085 ***
Mar -0.129 -0.732 1.734 19.369 ***
Apr -0.536 -2.754 ** -0.976 -13.063 ***
May 0.360 1.854 . -0.379 -3.917 ***
Jun 0.435 2.158 * -0.968 -11.621 ***

R-squared 0.8166 0.9978
R-squared-adj 0.6840 0.9892
Approx. num. 93 51
Significance 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Table 8.7: Estimated coefficients for the TD7 regime-switching model

Regime 1 Regime 2

Coef t-value Coef t-value

(Intercept) -1.735 -21.604 *** 0.776 3.961 ***
Afra_demo_price 7.310 24.416 *** -0.021 -0.057
Afra_price -28.322 -39.997 *** 4.828 2.358 *
Eur_dem 8.998 16.301 *** 2.349 1.892 .
NS_exp -3.639 -23.957 *** 3.013 7.830 ***
Afra_fix_sum 0.087 1.374 -0.056 -0.362
Eur_imp 5.338 32.953 *** -1.010 -1.885 .
Ge_imp 4.513 21.278 *** -1.966 -2.847 **
NS_prod -22.028 -47.721 *** 4.323 3.963 ***
USD_Pound -1.445 -1.362 -12.353 -6.200 ***
Eur_CPI -134.752 -20.670 *** 43.073 1.998 *
Ind_Eur 0.340 32.673 *** -0.006 -0.188
Afra_mdwt -0.892 -25.861 *** -0.619 -5.034 ***
Afra_yy 0.314 30.495 *** -0.552 -5.393 ***
Afra_SP 7.164 28.082 *** -0.789 -0.785
Chi_imp 3.564 21.405 *** -0.025 -0.101
Ind_imp 8.488 59.274 *** 1.190 2.676 **
W_prod 24.104 14.858 *** -1.436 -0.233
Ind_China 2.068 20.349 *** -0.469 -2.089 *
Ind_US 0.415 31.165 *** 0.036 0.898
Ind_India 0.103 28.528 *** -0.008 -0.598
LIBOR -3.230 -18.322 *** 1.377 2.997 **
Brent_forw -0.365 -28.984 *** -0.187 -5.011 ***
WTI 2.224 12.093 *** 1.076 2.052 *
ClarkSea -2.884 -23.580 *** 0.513 1.368
VIX -1.454 -13.256 *** -0.307 -1.473
Aug 3.264 26.641 *** -1.209 -3.912 ***
Sep 1.972 14.716 *** -0.934 -2.689 **
Oct 1.186 11.996 *** 0.172 0.576
Nov 5.376 48.962 *** -1.699 -5.883 ***
Dec 4.971 40.347 *** -0.216 -0.786
Jan -1.639 -17.869 *** -1.048 -5.006 ***
Feb 1.608 16.963 *** -1.103 -4.229 ***
Mar 2.261 20.384 *** -1.140 -4.286 ***
Apr 3.887 38.295 *** -1.616 -5.353 ***
May -1.573 -19.866 *** -0.716 -2.693 **
Jun 2.224 20.185 *** -1.080 -3.780 ***

R-squared 0.9989 0.8543
R-squared-adj 0.9946 0.7683
Approx. num. 48 96
Significance 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 8.8: Estimated coefficients for the TD12 regime-switching model

Regime 1 Regime 2

Coef t-value Coef t-value

(Intercept) -0.231 -3.412 *** 0.263 11.489 ***
US_dem -2.685 -2.401 * 0.184 0.589
US_fdem 0.306 3.704 *** -0.522 -20.785 ***
Eur_fdem -1.056 -4.453 *** -0.396 -4.098 ***
Bel_fexp -0.566 -7.314 *** 0.306 16.732 ***
US_fexp -0.205 -2.223 * -0.230 -9.948 ***
USBel_fexp 2.806 2.943 ** -3.685 -10.200 ***
Pana_fix_US -0.003 -0.430 -0.033 -14.348 ***
Pana_fix 0.355 5.693 *** 0.057 2.990 **
Bel_fimp -0.021 -0.230 -0.598 -21.522 ***
Padd3_fimp 1.835 3.723 *** -0.513 -2.797 **
US_fout -0.577 -2.723 ** 0.059 0.797
Bel_fout -0.029 -0.328 -0.248 -11.067 ***
BelPadd3_fimp 0.064 2.374 * -0.037 -4.089 ***
US_money -10.230 -7.217 *** 4.823 7.261 ***
US_CPI 4.819 0.725 -11.734 -5.908 ***
Ind_OECD -0.027 -2.068 * 0.000 0.037
Pana_yy -0.028 -2.000 * -0.060 -13.022 ***
Pana_order -0.584 -2.552 * 1.023 12.191 ***
Pana_price 0.084 4.704 *** 0.087 13.197 ***
Pana_demo_price -0.423 -2.281 * -0.059 -0.633
Major_imp -2.185 -4.363 *** 2.305 13.506 ***
Chi_imp 0.143 1.354 -0.283 -7.547 ***
Ind_imp -0.513 -2.884 ** 0.583 10.664 ***
OPEC_prod 3.469 2.974 ** 0.726 1.600
SDR_USD 5.333 6.154 *** 2.788 8.995 ***
Ind_China 0.004 0.063 -0.461 -13.335 ***
Ind_US 0.111 6.721 *** 0.018 2.382 *
Ind_India -0.016 -2.613 ** 0.018 11.188 ***
LIBOR -0.156 -1.046 1.110 21.773 ***
Brent_forw -0.084 -4.982 *** -0.046 -9.830 ***
WTI 0.182 0.876 0.971 11.977 ***
ClarkSea 0.614 3.203 ** 0.119 2.369 *
VIX 0.120 1.052 0.472 15.135 ***
Aug -0.379 -4.312 *** -0.407 -13.055 ***
Sep 0.255 2.955 ** 0.254 10.496 ***
Oct 0.553 5.859 *** -0.104 -4.357 ***
Nov 0.081 0.970 0.358 13.207 ***
Dec 0.592 6.118 *** 0.227 8.365 ***
Jan 0.350 3.715 *** 0.222 6.204 ***
Feb -0.605 -5.379 *** 0.130 4.137 ***
Mar 0.587 6.789 *** -0.222 -7.235 ***
Apr 0.505 4.695 *** -0.635 -19.187 ***
May 0.195 2.431 * -0.122 -4.303 ***
Jun 0.114 1.398 -0.237 -7.514 ***

R-squared 0.9436 0.9876
R-squared-adj 0.8402 0.9693
Approx. num. 66 78
Significance 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Table 8.9: Estimated coefficients for the TC1 regime-switching model

Regime 1 Regime 2

Coef t-value Coef t-value

(Intercept) 0.095 2.551 * -0.101 -3.401 ***
SA_cexp 0.170 6.300 *** -0.097 -3.123 **
Afra_fix_east 0.321 15.160 *** 0.110 4.765 ***
Afra_fix_us 0.036 3.140 ** 0.195 13.921 ***
Afra_fix 0.018 0.220 -0.559 -5.452 ***
Jap_cimp -0.029 -1.193 -0.320 -11.150 ***
SA_prod -0.841 -2.880 ** -0.868 -2.814 **
SA_cout -0.174 -1.410 -0.502 -4.048 ***
Jap_money 0.320 0.104 17.597 6.624 ***
USD_SAR 27.550 3.839 *** 8.800 0.719
Yen_USD 6.475 16.467 *** 1.285 2.593 **
Jap_CPI 24.332 8.323 *** -29.048 -6.716 ***
Ind_Jap 0.002 0.750 0.024 14.000 ***
Tadawul -1.215 -9.067 *** -0.321 -2.587 **
Nikkei 0.513 2.679 ** -1.575 -7.733 ***
LR2_mdwt -0.229 -4.693 *** -0.403 -8.681 ***
LR2_order -1.928 19.418 *** 0.534 5.604 ***
Afra_price 3.366 5.563 *** -0.853 -2.487 *
Afra_SP -0.348 -1.668 . -1.166 -6.112 ***
Afra_demo_price -0.252 -2.047 * -1.323 -10.799 ***
Major_imp -0.339 -1.384 -0.726 -2.651 **
Chi_imp -0.164 -2.570 * -0.049 -0.919
W_prod 10.654 7.923 *** 9.123 7.340 ***
SDR_USD 3.750 10.526 *** 9.647 14.064 ***
Ind_China 0.175 4.214 *** 0.037 0.818
Ind_US 0.059 6.556 *** 0.003 0.282
Ind_India -0.007 -2.063 * -0.004 -1.464
LIBOR_Yen 1.237 7.967 *** 1.299 5.613 ***
Bunker_Jap -0.999 -7.228 *** 1.042 7.442 ***
Brent_forw -0.009 -1.084 -0.011 -1.217
WTI -0.358 -3.508 *** -0.453 -4.473 ***
ClarkSea 0.785 9.665 *** 0.423 4.559 ***
VIX 0.372 5.860 *** -0.146 -2.664 **
Aug -0.330 -5.482 *** 0.260 7.552 ***
Sep 0.018 0.410 0.298 6.795 ***
Oct -0.191 -4.456 *** -0.442 -11.030 ***
Nov -0.071 -1.449 -0.545 -14.182 ***
Dec 0.128 2.461 * -0.024 -0.485
Jan -0.140 -2.820 ** -0.213 -4.949 ***
Feb -0.317 -5.776 *** 0.110 2.536 *
Mar -0.273 -5.124 *** 0.235 5.047 ***
Apr -0.229 -5.105 *** -0.020 -0.460
May -0.209 -3.835 *** 0.296 7.746 ***
Jun -0.016 -0.356 -0.523 -9.314 ***

R-squared 0.9666 0.9803
R-squared-adj 0.9230 0.9434
Approx. num. 76 68
Significance 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 8.10: Estimated coefficients for the TC2 regime-switching model

Regime 1 Regime 2

Coef t-value Coef t-value

(Intercept) 0.592 10.121 *** 0.121 2.484 *
Eur_cdem -5.447 -15.425 *** -3.346 -10.287 ***
Ne_cexp -0.117 -0.978 -0.219 -1.752 .
US_cexp 0.459 7.020 *** -0.201 -2.539 *
USNe_exp 1.752 8.914 *** -2.345 -14.404 ***
MR_fix_US 0.048 1.453 0.351 8.244 ***
Ne_cimp -0.869 -8.946 *** -0.064 -0.830
US_cimp 0.451 3.295 *** -0.236 -2.514 *
US_prod 2.314 7.016 *** -0.259 -0.531
Padd1_refuti -1.574 -11.781 *** -1.369 -8.266 ***
Ne_cout -0.856 -8.127 *** -1.318 -8.473 ***
US_cout -2.587 -3.669 *** 0.690 1.511
NeUS_cimp 0.174 6.736 *** -0.172 -8.677 ***
NePadd3_cimp -5.853 -18.518 *** -0.995 -3.954 ***
US_money -0.711 -0.420 -1.455 -1.547
US_CPI -28.646 -7.073 *** 27.112 6.455 ***
Ind_OECD -0.052 -4.522 *** -0.018 -2.815 **
MR_3tc 3.431 9.568 *** -0.010 -0.021
MR_yy -0.216 -8.143 *** 0.096 5.112 ***
MR_order 1.245 3.260 ** -2.821 -8.011 ***
MR_demo_price 0.701 5.040 *** 0.514 3.482 ***
MR_price -5.318 -7.088 *** 3.458 4.870 ***
MR_SP -0.125 -0.441 -1.705 -10.113 ***
Major_imp -4.387 -11.003 *** 1.898 6.413 ***
Chi_imp -0.110 -1.599 0.215 3.226 **
Ind_imp -0.320 -2.492 * 1.069 9.186 ***
OPEC_prod -8.965 -11.236 *** 5.051 6.506 ***
SDR_USD -5.988 -9.870 *** 2.000 3.771 ***
Ind_China -0.518 -8.683 *** -0.290 -7.207 ***
LIBOR 0.435 4.657 *** -0.359 -3.753 ***
Brent_forw 0.085 9.713 *** -0.233 -26.523 ***
VIX -0.178 -3.179 ** -0.231 -3.689 ***
Aug 0.147 2.194 * -0.330 -6.900 ***
Sep -0.242 -2.985 ** -0.019 -0.362
Oct 0.571 10.142 *** -0.492 -9.031 ***
Nov 0.408 4.453 *** 0.037 0.575
Dec 0.916 12.374 *** 0.136 1.978 *
Jan -0.062 -0.718 0.158 2.570 *
Feb 0.089 1.244 -0.496 -7.981 ***
Mar 0.271 3.240 ** 0.236 2.984 **
Apr -0.372 -3.414 *** -0.186 -2.735 **
May -0.363 -4.336 *** 0.007 0.136
Jun -0.807 -12.525 *** 0.315 4.387 ***

R-squared 0.9892 0.9685
R-squared-adj 0.9638 0.9354
Approx. num. 60 84
Significance 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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seasonal dummies do follow, almost, the same seasonal
pattern throughout the year. So, do these differences
make sense? Yes, this is well in line with theory pre-
sented, considering the elasticity characteristics of the
supply curve. It is thus proven that freight rates have
more evident seasonal effects in high volatility regimes.
Additionally, we present seasonal plots across all

years in a 3D format in Appendix A.4 to see whether
we can observe periods where the seasonal components
seemed abnormal. Occurrences of abnormality and
spikes in seasonality should thus be mostly related to
the high volatility regime considering our discussion
above. Our brief take on these plots is that dirty tanker
routes clearly exhibit a higher degree of abnormality
than clean tanker routes.

8.4 Checking the Assumptions
We continued to perform diagnostic tests to look for in-
dications of misspecification in the models. The set of
assumptions, as presented in Section 7.7, were checked
against the pooled residuals, which should give an ap-
proximate representation of the underlying regression
models. The results in Table 8.11, and the plots in
Figure D.1 and D.2 from the Appendix were consulted
during the diagnostic.

The linear relationship between the dependent vari-
able and explanatory variables was evaluated by study-
ing the plots of residuals versus fitted values, in D.1
and D.2. The observations appeared to be symmet-
rically distributed around the horizontal line. Some
minor fluctuations in the line were discovered for all
models.

An investigation into the presence of autocorrelation
in the error terms was made. With no serial correla-
tion, a Durbin-Watson (DW) statistic of 2 is expected.
For the domain models, the DW statistic showed no
apparent signs of autocorrelation. The associated DW
statistics diverges only slightly from a value of 2. As
for the Breusch-Godfrey (BG) test, a noteworthy ex-
ception appeared at order = 1 and order = 5. TD1
reject the null hypothesis of no serial correlation at a
10 % significance. Further inspection by addressing the
ACF plots was required, see Figure D.1. TD1 showed
a barely significant positive correlation at lag 5 and
negative correlation at lag 9. There were however no
clear patterns, and no initial apparent signs of serial
correlation.
For the parsimonious models, both TD3pars and

TD7pars were identified to have a DW statistic notice-
ably greater than 2. This indicates that successive
error terms are negatively correlated. From the BG
test we observe significant statistics at 1 % for all or-
ders for TD7pars. The ACF plot validates this, and
significant correlations exist at lag 1, 3, 4, 5 and 6.
The pattern seems to shift from positive to negative

for these values. Misspecification might be of issue
for TD7pars. Overall, the (mostly) lack of correlation
suggested that the forecasts were good.
To assess heteroscedasticity in the errors, we first

looked to the Breusch-Pagan (BP) test. No route mod-
els showed evidence of rejecting the null hypothesis
of homoscedastic errors. This was further evaluated
against the plots of fitted values versus residuals. The
residuals were approximately evenly distributed along
the horizontal axis. No signs of the typical funnel shape
for heteroscedastic errors were seen.

To evaluate normality, the Jarque-Bera test was em-
ployed. We were able to reject the null hypothesis for
both TD12 and TD7pars with a 1 % significance, as
well as for TC2 with a 10 % significance. The lat-
ter is not considered much of an issue, as normality
is not a strong requirement. The prior are not likely
to originate from a gaussian distribution. The Q-Q
plots in D.1 and D.2 supported the evidence of non-
normality for TD12 and TD7pars. The residuals were
not distributed along the diagonal line, and appeared
to have fat tails. It was noted that TD7pars appears to
have repeated issues. Deviations from normality is not
necessarily a cause for concern as analyses are quite
robust.

8.5 Model assessment

In this section we will analyse the results obtained from
in-sample and out-of-sample tests to evaluate predic-
tive power. The latter is performed with the three
objectives in mind, and will be compared to bench-
mark models.

In-Sample Comparison

We first evaluate the models’ performance on the train-
ing data. How well does it manage to fit the observa-
tions? We investigate the in-sample results in Table
8.14, for our variable rich models and our parsimonious
models.

We first consider the regular domain knowledge mod-
els. What is initially apparent, is that weighted R2

adj

appears to be abnormally high. By looking specifically
at TD1 in Table 8.5, we see very large R2

adj values. The
normal regime has a value of 0.81, while the volatile
regime has the significantly higher value of 0.98. The
same is true for the other routes, with weighted R2

adj

in the upper percentile. Does the same apply for the
other metrics in Table 8.14? We see very low residual
errors, for example, the MASE, which is in the approx-
imate range of 0.10 - 0.15. The is most likely a result
of overfitting, whereby the models are fit too well to
the training data. We can already postulate that these
models will not generalize well to never-before-seen
data.
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Table 8.11: Results from the statistical tests performed to evaluate the underlying assumptions. The table contains statistics from the Breusch-
Pagan test for heteroscedasticity, the Durbin-Watson test for serial correlation, the Jarque-Bera test for normality, and the Breusch-Godfrey
test for higher order serial correlation, for each route model.

B-P D-W J-B B-G (1) B-G (2) B-G (3) B-G (4) B-G (5) B-G (6)

TD1 0.952 2.004 3.073 3,052* 4.050 4.874 4.850 9,278* 9.290
TD3 0.022 1.709 3.325 0.911 1.224 1.359 1.543 1.594 2.247
TD7 0.003 2.204 2.966 1.606 2.452 2.465 2.536 2.977 3.515
TD12 1.847 1.950 68,998*** 2.112 2.476 2.762 3.196 3.264 8.740
TC1 0.001 1.803 3.248 0.865 1.322 1.528 1.632 1.491 3.394
TC2 0.619 1.861 4,757* 1.237 2.286 3.484 4.121 4.130 4.652

TD1pars 0.042 2.169 0.123 0.501 2.504 2.679 2.908 2.927 3.300
TD3pars 0.005 2.538 0.495 0.375 1.073 1.559 4.085 5.363 8.945
TD7pars 0.109 3.028 71,905*** 28,625*** 31,583*** 32,324*** 40,624*** 41,395*** 41,349***
TD12pars 1.599 2.048 0.752 2,736* 3.426 5.782 6.414 7.126 7.325
TC1pars 0.001 1.830 0.951 0.018 0.022 2.736 2.724 2.674 2.727
TC2pars 0.258 2.333 0.746 0.291 0.878 1.075 1.816 3.919 6.421
Significance: *** 0.01, ** 0.05, * 0.1

We then continue to look at the parsimonious regime
models for the same routes, in Table 8.14. These
weighted R2

adj values seem far more reasonable, with
most models being around 0.40. In other words, these
values do not appear as inflated as for the regular
regime models. Similarly, higher residual errors are
now observed. TC1pars and TD12pars do appear to
have the lowest RMSE, MAE, MAPE and MASE, and
notably higher R2

adj values. Seeing them deviate that
much from the other models, can indicate that we will
see problems with these two models’ out-of-sample per-
formance. Overall, however, the parsimonious models
thus seem like better candidates, with less likeliness of
misspecification.
From the initial look at the models’ in-sample per-

formance it was evident that the parsimonious models
showed the most promise. The domain knowledge mod-
els score better on metrics, but these numbers are so
high that one comes to think that the models might be
suffering from overfitting or misspecification (see, fur-
ther, Chapter 9).The question now, is how well these
models will generalise to new data.

Out-of-Sample Comparison

The out-of-sample comparison of forecasts is performed
in conjunction with the evaluation of the three objec-
tives.
For the benchmark models, we included one mini-

mum requirement model, the random walk with a drift
component. A well-defined model is expected to out-
perform this basic measure, based on random values.
The remaining three models were set up to be challeng-
ing to beat. These models include a fitted linear model
with all the same carefully selected variables as our par-
simonious regime model; a model based on the average
historic values in the training sample; and an automat-
ically configured best fit ARIMA(p, d, q) model (with
p, d, q determined by the best fit for the given route).
In other words, we evaluate our regime models against
tough contenders in the task of forecasting the tanker

freight rate.
The forecasting period is set from August 2014 to

June 2017. A comprehensive summary of prediction
performance for each model is presented in Table 8.12.
The accuracy is measured using the RMSE, MAE,
MAPE, MdAPE and MASE. The best forecasting
model is the one with the lowest values. Most interest-
ing is the MASE, which is the more robust performance
metric. We do expect too see a rise in error metrics
when comparing out-of-sample to in-sample metrics.
The Diebold-Mariano test for forecasting accuracy is
also considered.
As we were looking to model volatile periods, and

irregularities, we did not expect to significantly outper-
form models with a more straight-forward approach -
models which do not necessarily account for such be-
havior, like the average, and linear model benchmarks.
Modelling extraordinary characteristics is a difficult
task, and thus we might assume that simpler models
will perform better on average. However, the potential
from getting it right, is much greater for models that
can predict uncommon movements.

I Considering a parsimonious model

We evaluate the explanatory power of the parsimo-
nious regime models against the domain knowledge
regime models for different routes. We look to uncover
whether a regime model with far less predictors will
fare better or worse than a regime model with more
variables.

We refer to the the performance metrics for the do-
main knowledge regime models and the parsimonious
regime models which can be seen in Table 8.1260. As
lower values indicate a better performing model, it
is immediately evident that the parsimonious models

60It must be noted that the MAPE metric is abnormally high
for all models, as a consequence of the metric being used on
return values. Percentage errors are unreliable and can have an
extremely skewed distribution at values close to zero (Hyndman,
2006).
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Table 8.12: Out-of-sample performance measures for all route models considered in this thesis, including benchmark models. All models are
«scored» compared to one parsimonious model and one variable rich domain knowledge model. The following can be assessed from the table:
(i) Domain and parsimonious models are compared to see if a model with fewer variables perform better; (ii) The next four benchmarks are
used to evaluate the out-of-sample forecast accuracy of the prior two regime models (with a focus on the parsimonious one); and (iii) The last
global benchmark is used to study if route-specific models outperform a generic model based on global variables.

∼Best score

RMSE MAE MAPE MdAPE MASE Domain know. Pars.

Parsimonious regime models

TD1pars 0.380 0.323 142.3 96.4 0.525
TD3pars 0.446 0.381 318.9 90.8 0.397
TD7pars 0.670 0.543 774.6 119.5 0.436
TD12pars 0.259 0.206 2035.1 122.2 0.598
TC1pars 0.334 0.244 318.3 121.6 0.717
TC2pars 0.415 0.276 160.9 84.3 0.681

Domain knowledge regime models

TD1 0.737 0.562 313.0 111.6 0.914 X
TD3 0.695 0.588 654.7 156.1 0.611 X
TD7 1.025 0.849 1628.6 190.3 0.682 X
TD12 0.340 0.265 2900.8 166.0 0.771 X
TC1 0.377 0.263 387.8 101.2 0.771 X
TC2 0.528 0.424 299.5 122.4 1.047 X

Benchmark models

RW-TD1 0.713 0.514 203.671 132.076 0.835 ÷ X
RW-TD3 0.633 0.477 377.586 127.428 0.496 ÷ X
RW-TD7 0.865 0.674 971.685 147.806 0.541 ÷ X
RW-TD12 0.257 0.198 3161.424 133.151 0.577 ÷ ÷
RW-TC1 0.396 0.319 695.615 160.417 0.934 X X
RW-TC2 0.472 0.386 565.985 124.220 0.954 ÷ X

Fit-TD1 0.409 0.321 155.3 94.0 0.523 ÷ ÷
Fit-TD3 0.537 0.429 276.4 122.6 0.446 ÷ X
Fit-TD7 0.744 0.593 1086.8 118.8 0.476 ÷ X
Fit-TD12 0.198 0.166 2098.1 96.7 0.483 ÷ ÷
Fit-TC1 0.240 0.195 667.1 80.7 0.573 ÷ ÷
Fit-TC2 0.417 0.328 222.5 114.1 0.810 ÷ X

Mean-TD1 0.479 0.383 100.2 100.4 0.623 ÷ X
Mean-TD3 0.419 0.342 101.5 100.9 0.356 ÷ ÷
Mean-TD7 0.538 0.414 97.8 100.5 0.332 ÷ ÷
Mean-TD12 0.210 0.169 139.6 100.4 0.491 ÷ ÷
Mean-TC1 0.267 0.211 104.5 99.8 0.619 ÷ ÷
Mean-TC2 0.359 0.284 107.1 101.7 0.703 ÷ X

Arima-TD1 0.466 0.381 133.7 116.2 0.619 ÷ X
Arima-TD3 0.490 0.421 294.3 123.4 0.438 ÷ X
Arima-TD7 0.506 0.416 404.1 106.6 0.334 ÷ ÷
Arima-TD12 0.212 0.178 1740.2 100.6 0.518 ÷ ÷
Arima-TC1 0.267 0.211 100.0 100.0 0.620 ÷ ÷
Arima-TC2 0.347 0.293 266.2 121.4 0.723 ÷ X

Generic variables benchmark regime models

Global-TD1 0.878 0.615 263.305 143.179 1.000 X X
Global-TD3 0.508 0.395 310.076 110.551 0.411 ÷ X
Global-TD7 1.176 0.982 1481.228 213.937 0.788 X X
Global-TD12 0.258 0.215 5063.729 118.803 0.625 ÷ X
Global-TC1 0.378 0.304 752.205 139.098 0.891 X X
Global-TC2 0.518 0.398 543.786 88.500 0.983 X X

Table 8.13: Diebold-Mariano results for forecasting accuracy for the parsimonious regime models versus comparison models.

Benchmark models

Pars. model Domain. know. RW Fit Mean Arima Global

TD1pars 3,202*** X 2,092** X 0.574 ÷ 1,43* X 1,391* X 1,6* X
TD3pars 2,598*** X 2,127** X 1,763** X -0.464 ÷ 0.706 ÷ 0.935 ÷
TD7pars 2,592*** X 1,728** X 1.212 ÷ -1.908 ÷ -1.775 ÷ 3,305*** X
TD12pars 1,694** X -0.053 ÷ -2.183 ÷ -1.547 ÷ -1.401 ÷ -0.053 ÷
TC1pars 0.918 X 1,409* X -2.408 ÷ -2.017 ÷ -2.018 ÷ 2,106** X
TC2pars 1,397* X 0.533 ÷ 0.026 ÷ -0.700 ÷ -0.657 ÷ 0.919 ÷

Significance: *** 0.01, ** 0.05, * 0.1
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yield more precise results. A MASE below 1 also means
that the forecast is better than a naive forecast. Some
of the domain knowledge models have a high MASE,
even close to or above 1. This is especially true for
TD1 and TC2. Considering the parsimonious models,
approximately four out of six models are likely to have
about half as much error as the naive forecast. We
also see that the models for both clean routes, TC1
and TC2, seem to have a higher MASE value than
other parsimonious models.
When comparing the in-sample performance met-

rics in Table 8.14 with the out-of-sample performance
metrics in Table 8.12, we see a notable discrepancy
for the domain knowledge models. These models have
residual metrics which point towards an improbably
excellent model in-sample, while performing close to
a naive forecasting approach out-of-sample. This is a
very likely sign of an overfitted model. For the parsi-
monious regime models, the difference is much more in
line with what is expected. The models get reasonable
results, and performs slightly better in-sample. The
two models TD12pars and TC1pars are notable, though.
They provide significantly better results in-sample than
out-of-sample, and differentiate themselves from the
other parsimonious models. We do not expect these
two models to generalise well, when comparing them
to the benchmark models in the next section.
Furthermore, we evaluate the results from the

Diebold-Mariano test for predictive accuracy. The fore-
casts of the domain knowledge model is compared to
the corresponding parsimonious model for each route,
under the null hypothesis of equal predictive accuracy.
The predictions for all dirty tanker routes reject the
null hypothesis with a 5% significance, signaling a
greater accuracy for the parsimonious model in the
one-sided test. For the clean routes, we fail to reject
the null hypothesis in the Diebold-Mariano test, and
no significant difference was therefore detected.
However, the combined results of the performance

metrics and the Diebold-Mariano test illustrates that
the parsimonious models perform reasonably well for
the 1-month-ahead forecasts, compared to the knowl-
edge models. They also behave more reasonably, and
do not appear to have the same degree of overfitting.
The parsimonious models will therefore be used for fur-
ther assessments, and are considered an improvement
of the domain knowledge models.

II Assessing the forecasting capabilities of our
regime-model

As previously mentioned, it is imperative that the fore-
casting models perform adequately on never-before-
seen data. The models are consequently compared to
benchmark models to assess the adequacy of the pre-
dictions. Figures 8.4 and 8.5 show a comparison of the

actual values for each route versus the 1-month-ahead
forecast of the parsimonious regime models. Tables
8.12 and 8.13 contain the key results for the compari-
son.
Earlier, we saw that the parsimonious models per-

formed better, and therefore these are the most inter-
esting to evaluate61.

TD1pars From plots in Figures 8.4 and 8.5, the
model appears to capture the freight rate’s movements
very well. This model performs roughly 50 % better
than a naive model on the new data, according to the
MASE. When compared to the benchmark model, ran-
dom walk with a drift component (RW), we also see
good results. For the more challenging benchmarks,
the difference becomes far less. TD1 yields better met-
rics than the Mean model and the Arima model, but
does fail to beat the simple regression model, Fit.
Similar results are observed when evaluating the

Diebold-Mariano statistics. TD1 provides better fore-
casting accuracy than 3/4 of the benchmark models,
with a significance of 10 %.

TD3pars The plot in Figure 8.5 appears equally good
as TD1. The directions look to be mostly correct,
and the deviations look to be small. The model out-
performs the minimum benchmark, and also provides
slightly better metrics than Arima and Fit, while being
unable to beat Mean. The DM statistics indicate that
the model’s forecasts are more accurate than both RW
and Fit with a 5 % significance.

TD7pars The plot in Figure 8.5 does have most of
the same characteristics as the prior models. From
a visual inspection, the model does, however, seem
to miss the mark more often, but this can also be
attributed to what looks to be a time series with more
movements. The MAE and MASE of 0.670 and 0.436,
respectively, yields better results than both the RW
and Fit benchmark models. Both Arima and Mean
appear to have very low metrics for this time series, and
are not outperformed. These findings are confirmed by
the DM test, whereby only the RW is beaten, with a
5 % significance.

TD12pars For this model, we postulated poorer re-
sults based on the in-sample model review. This is
not inherently clear from the plots in Figures 8.4 and
8.5. We do, however, see lower performance when com-
paring it to the benchmark models. TD12 fails to
yield better results than all of the benchmarks. The
difference is not necessarily great, but the failure to

61The variable rich domain knowledge model does not provide
adequate results. It only outperforms the minimum requirement
benchmark in one instance.
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Table 8.14: Performance measures for route specific regime models, in-sample

Route RMSE MAE MAPE MdAPE MASE R2
adj,weighted

TD1 0.119 0.091 158.038 29.266 0.148 0.870
TD3 0.188 0.140 162.014 27.495 0.146 0.792
TD7 0.254 0.182 457.526 24.337 0.146 0.844
TD12 0.061 0.042 53.783 16.921 0.122 0.910
TC1 0.050 0.038 59.024 14.483 0.111 0.933
TC2 0.059 0.043 76.188 15.243 0.107 0.947
TD1pars 0.277 0.215 351.127 83.982 0.350 0.379
TD3pars 0.450 0.352 331.427 84.158 0.366 0.325
TD7pars 0.811 0.532 984.047 72.304 0.427 0.392
TD12pars 0.138 0.100 114.060 47.888 0.289 0.623
TC1pars 0.108 0.083 117.228 34.117 0.243 0.799
TC2pars 0.183 0.141 2606.474 61.999 0.349 0.423

beat the minimum requirement RW can be considered
troublesome.

TC1pars As was the case with the prior model, this
model was also expected to perform less than adequate
on never-before-seen data. We see this come to fruition
when it does not give any better results in the metrics
nor the DM test, apart from beating the RW.

TC2pars For this regime model, the plot in Figure
8.5 does look promising. Although the time series ap-
pears to have less spiky movements, we see the model
providing better residual measures than both RW, Fit,
Mean and Arima. Being able to contend with estab-
lished time series models is promising. We do not see
a significantly better accuracy in the DM test, though.

About three years of data was included for the test
period. This is not necessarily long enough to cover
the cyclical behavior which characterizes the shipping
freight rates. The impact of accounting for several
states could thereby also potentially be impaired, as
few high volatility occurrences might happen. It would
have been interesting and favorable to evaluate the
performance on more test data.
Although, from these observations, we frequently

see the parsimonious regime models being ranked in
the top two places62 for the performance metrics, com-
pared to the benchmark models. So, while no model
is consistently better on all of the routes, the regime
models are amongst the better. This in turn means
that they can be assumed to generalise well to new
data.

III Evaluating the route impact

Is there a benefit to specify models specifically for
certain routes? To evaluate the benefit of creating
route-specific models, generic benchmark models were
established based on global variables. These regime

62Rank ∼ 1, 2, 3, 2 and 1 for the routes, respectively.

models were set up as models which could be applica-
ble to all routes, with no distinct route characteristics
for the variables (as seen in Section 7.8). The global
benchmark model, Global, was used to forecast the
1-month-ahead freight rate for the same routes as our
other regime models. For this section, we only con-
sider the parsimonious models63. In the following, we
present the results from these forecasts.

From the Diebold-Mariano tests of forecast accuracy,
we saw evidence of some routes being better predicted
by route specific models (see Table 8.13). For the
regime model TD1pars, we were able to reject the null
hypothesis with a 10% significance The forecasts from
TD7pars and TC1pars were even more promising, with
a rejection of the null hypothesis at a significance level
of 1% and 5% respectively.
Similar results can be discerned by comparing the

performance metrics from the different route mod-
els with the global benchmark model in Table 8.12.
The parsimonious models appeared to outperform the
generic benchmark model based on global variables,
for all models, TD1pars, TD3pars, TD7pars, TD12pars,
TC1pars and TC2pars.

Now, this improved forecasting accuracy could pos-
sibly be attributed to our previous findings, of par-
simonious regime models outperforming models with
more variables. The generic benchmark model based
on global variables did consist of approximately two
and a half times as many variables as the parsimo-
nious models. This makes the model fall somewhere
in-between the domain regime models and the parsi-
monious regime models, in terms of the number of
variables. We are therefore careful to make assertions
regarding the distinct route impact. However, the ma-
jority of the models did give indications of better re-
sults in the performance metrics, and this includes the
domain knowledge models63. We therefore still propose
that a route-specific model could improve forecasting.

63The domain knowledge regime model was also considered,
but did not outperform the global benchmark within a 5% sig-
nificance. We were, however, able to identify four domain knowl-
edge models that performed better, TD1, TD7, TC1 and TC2
in regards to the residual performance metrics.
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Figure 8.4: Comparing the forecasted returns (stapled line) from the parsimonious regime model, with the actual values (solid line), for each
route.
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Figure 8.5: Comparing the forecasted freight rates (stapled line) from the parsimonious regime model, with the actual values (solid line), for
each route.
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Table 8.15: Estimated coefficients for the TD1 parsimonious regime-switching model

Regime 1 Regime 2

Coef t-value Coef t-value

(Intercept) 0.784 54.055 *** -0.057 -0.558
ClarkSea 8.240 115.246 *** 0.799 3.442 ***
SA_exp 10.757 83.909 *** 0.451 0.799
Chi_imp -1.480 -20.789 *** -0.694 -3.717 ***
VLCC_due 1.778 98.778 *** 0.135 2.194 *
VIX 3.982 117.799 *** -0.129 -0.753
Aug -1.795 -104.983 *** -0.221 -1.455
Sep 0.332 12.834 *** 0.111 0.779
Oct -0.638 -27.157 *** 0.159 1.126
Nov -0.974 -32.346 *** 0.306 2.083 *
Dec -0.705 -32.064 *** 0.110 0.768
Jan -1.179 -56.956 *** -0.128 -0.873
Feb -2.151 -77.935 *** 0.202 1.448
Mar -1.115 -54.141 *** 0.123 0.778
Apr -0.271 -11.275 *** -0.184 -1.297
May 0.629 25.553 *** 0.086 0.621
Jun -0.558 -24.902 *** 0.015 0.100

R-squared 1.000 0.354
R-squared-adj 0.999 0.255
Approx. num. 24 120
Significance 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 8.16: Estimated coefficients for the TD3 parsimonious regime-switching model

Regime 1 Regime 2

Coef t-value Coef t-value

(Intercept) -0.172 -1.164 -0.812 -53.098 ***
VIX -0.314 -1.174 3.759 139.219 ***
Jap_money 15.522 2.844 ** 28.083 69.892 ***
VLCC_SP -1.653 -1.624 10.990 322.296 ***
Ind_imp -0.385 -0.847 -4.010 -60.302 ***
Aug -0.249 -1.163 -0.616 -33.650 ***
Sep 0.337 1.537 -0.509 -24.570 ***
Oct 0.163 0.753 2.294 108.716 ***
Nov 0.791 3.690 *** 3.460 159.442 ***
Dec 0.138 0.660 1.878 82.722 ***
Jan 0.075 0.361 -1.150 -56.382 ***
Feb 0.182 0.841 -0.675 -38.770 ***
Mar -0.072 -0.337 0.969 52.923 ***
Apr -0.120 -0.579 0.430 15.368 ***
May 0.031 0.147 3.874 177.711 ***
Jun 0.473 2.224 * 1.501 64.412 ***

R-squared 0.310 1.000
R-squared-adj 0.216 1.000
Approx. num. 124 20
Significance 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Table 8.17: Estimated coefficients for the TD7 parsimonious regime-switching model

Regime 1 Regime 2

Coef t-value Coef t-value

(Intercept) 0.266 0.469 -0.135 -1.052
Chi_imp 2.457 1.807 . 0.188 0.863
Ind_India 0.076 1.470 0.056 3.810 ***
LIBOR -1.136 -0.861 0.552 1.357
ClarkSea 0.325 0.210 0.580 1.873 .
Afra_demo_price 3.656 1.361 0.171 0.470
Eur_dem 6.331 1.070 -2.727 -2.721 **
WTI 2.117 0.985 -0.722 -1.599
Aug -0.145 -0.164 -0.285 -1.661 .
Sep -1.844 -1.974 * 0.218 1.218
Oct 0.704 0.794 0.660 3.506 ***
Nov -0.352 -0.412 0.153 0.821
Dec 0.730 0.779 0.973 4.780 ***
Jan -1.030 -1.186 -0.213 -1.194
Feb -0.815 -0.950 -0.010 -0.057
Mar 0.442 0.523 0.032 0.183
Apr -0.298 -0.365 -0.448 -2.253 *
May -1.788 -1.901 . 0.652 3.190 **
Jun 0.139 0.168 -0.090 -0.501

R-squared 0.425 0.638
R-squared-adj 0.160 0.540
Approx. num. 56 88
Significance 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 8.18: Estimated coefficients for the TD12 parsimonious regime-switching model

Regime 1 Regime 2

Coef t-value Coef t-value

(Intercept) 0.056 0.961 -0.408 -77.057 ***
ClarkSea 0.664 4.871 *** 1.164 41.568 ***
Pana_price 0.040 2.230 * 0.044 15.000 ***
Ind_US -0.005 -0.329 0.362 150.792 ***
WTI -0.307 -1.760 . -0.575 -17.683 ***
Bel_fexp 0.065 1.172 -0.925 -58.176 ***
Chi_imp -0.149 -1.412 0.441 24.781 ***
Brent_forw -0.008 -0.597 -0.132 -66.200 ***
Bel_fimp -0.216 -2.988 ** -0.642 -58.908 ***
US_dem 1.151 1.352 -6.944 -60.384 ***
Aug -0.181 -2.161 * 0.106 6.644
Sep -0.030 -0.387 0.730 54.485 ***
Oct 0.176 2.320 * 0.395 37.226 ***
Nov -0.054 -0.682 -0.173 -16.178 ***
Dec 0.348 4.488 *** 0.601 71.548 ***
Jan -0.015 -0.173 0.595 70.000 ***
Feb -0.178 -1.932 . 0.281 24.658 ***
Mar -0.118 -1.442 1.038 97.925 ***
Apr -0.115 -1.427 -0.203 -24.410 ***
May 0.078 1.010 0.512 55.630 ***
Jun -0.160 -1.911 . 0.372 40.424 ***

R-squared 0.607 1.000
R-squared-adj 0.524 0.999
Approx. num. 114 30
Significance 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Table 8.19: Estimated coefficients for the TC1 parsimonious regime-switching model

Regime 1 Regime 2

Coef t-value Coef t-value

(Intercept) 0.121 1.912 . 0.099 1.970 *
Afra_fix_east 0.130 2.964 ** 0.246 6.685 ***
W_prod 17.204 6.034 *** 1.309 0.464
SDR_USD 3.195 2.826 ** 3.978 5.230 ***
LR2_order -0.637 -3.058 ** -1.176 -5.356 ***
ClarkSea 0.832 4.247 *** 0.471 3.432 ***
Ind_Jap 0.013 2.867 ** 0.014 3.512 ***
Brent_forw -0.093 -4.194 *** -0.039 -2.543 *
Ind_US 0.006 0.247 -0.052 -2.802 **
Jap_cimp -0.126 -2.470 * 0.068 1.434
SA_cout 0.128 0.328 -0.629 -3.370 ***
Tadawul -1.208 -5.347 *** 0.734 3.180 **
Afra_fix_us -0.004 -0.177 0.065 2.016 *
Aug 0.063 0.796 -0.477 -5.499 ***
Sep -0.040 -0.469 0.186 2.420 *
Oct 0.036 0.399 -0.546 -7.909 ***
Nov -0.456 -5.336 *** -0.002 -0.024
Dec -0.207 -2.187 * 0.164 2.262 *
Jan -0.295 -2.807 ** -0.369 -4.788 ***
Feb -0.338 -4.021 *** -0.156 -1.643
Mar -0.264 -2.738 ** 0.043 0.481
Apr -0.669 -5.906 *** -0.007 -0.090
May 0.281 2.141 * -0.036 -0.562
Jun 0.034 0.400 -0.175 -2.144 *

R-squared 0.851 0.877
R-squared-adj 0.782 0.817
Approx. num. 75 69
Significance 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 8.20: Estimated coefficients for the TC2 parsimonious regime-switching model

Regime 1 Regime 2

Coef t-value Coef t-value

(Intercept) 0.079 1.040 -1.220 -24.740 ***
USNe_exp -0.677 -1.884 . -5.739 -32.025 ***
MR_order -0.735 -1.182 6.676 12.197 ***
Ne_cimp -0.210 -1.512 -0.360 -3.909 ***
Ne_cout -0.560 -1.962 * -1.088 -5.928 ***
Brent_forw -0.095 -3.918 *** 0.125 6.505 ***
OPEC_prod 4.043 2.963 ** 4.882 3.855 ***
MR_3tc 0.171 0.258 -2.059 -3.441 ***
Aug -0.319 -2.979 ** 1.704 22.752 ***
Sep 0.011 0.105 0.854 9.348 ***
Oct -0.068 -0.653 0.092 1.485
Nov 0.111 1.071 0.970 18.412 ***
Dec 0.158 1.495 2.565 37.178 ***
Jan -0.042 -0.417 1.123 10.031 ***
Feb -0.124 -1.179 1.061 19.188 ***
Mar -0.031 -0.296 1.079 13.298 ***
Apr -0.176 -1.662 . 0.629 10.528 ***
May -0.067 -0.679 2.810 21.063 ***
Jun -0.089 -0.858 1.001 15.205 ***

R-squared 0.401 0.996
R-squared-adj 0.293 0.984
Approx. num. 117 27
Significance 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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9 Discussion

Modelling Improvements and Next Steps

We saw abnormally good in-sample results for several
of the domain knowledge models. This could poten-
tially be a problem of overfitting, or misspecification.
A model is overfit when it adapts too much to the
training data, as previously mentioned. As we saw a
large discrepancy between the in-sample results and
the out-of-sample results, this leads us to believe that
such a problem could have occurred. Issues were found
in the residuals of some models, notably TD7pars. If
the residuals misbehave, the results are not necessarily
reliable, and thus cannot be trusted.
We did see the parsimonious models provide more

realistic in-sample results. The domain regime models
consisted of far more variables than the parsimonious
models. An issue can therefore also stem from multi-
collinearity, whereby one explanatory variable can be
linearly predicted based on others. A more comprehen-
sive Variance Inflation Factor (VIF) analysis could po-
tentially be performed to evaluate this, while keeping in
mind that we are dealing with a multi-regime model64.
In short, the VIF test is based on the regression of a
single predictor against all the other predictors. If the
R2 is high, there is an indication that the relationship
of this predictor to the dependent variable is already
accounted for in one or several of the other predictors.
The problem of omitted variables could potentially

also be an issue. We made a good effort to consider as
many potentially relevant variables as possible. How-
ever, a great challenge lies in finding variables that
might describe the volatile regime with better accuracy.
Having variables that can explain more of the irregular
movements would be beneficial. Such variables are not
easy to come by, and there could therefore be room for
exploring more candidate predictors.

During the transformation of variables to adhere to
the need for stationarity, there is a loss of information.
Some variable transformation could potentially have
been avoided. This is especially true for the dependent
variables, whereby four out of six variables already
rejected the null hypothesis of the presence of a unit
root (see, further, Table 6.3). However, they were all
transformed with logarithmic differencing to unify the
modelling approaches, and make them easier to work
with.

The predicted probabilities of being in a regime one-
month ahead, appeared less than accurate. The infre-
quent, high volatility regime, appeared to get too much
of an influence in the weighting of the forecasted val-
ues. The extreme impact of this can possibly be seen
by looking at the minimum freight rates for the regimes,

64Note, VIF tests based on simple OLS regression were per-
formed on all variables (see, further, Section 8.2).

with some values being more than -100,000 (see Table
8.3). This was a consequence of too moderate distinc-
tion between the two regimes in the transition matrix,
which was used to calculate the step-ahead probabili-
ties. This can be seen when estimating the smoothed
probability for the test period. When we compared
the smoothed probabilities, estimated based on seeing
the actual state values, to the forecasted probabili-
ties, the smoothed probabilities were almost close to
binary. The certainty of which state the observation
was from, was far more precise. In other words, the
forecasted probabilities was far less decisive in the in-
dication of the current state. The regime model thus
had a bias towards predictions from the high volatility
regime. Better probability predictions could improve
the forecasts.
The inclusion of more frequent data points could

provide a significant benefit. With more observations,
the regime model could potentially be more efficient
at locating structural breaks. We would have liked to
include data on a weekly, or even daily frequency. How-
ever, it was not possible to gather explanatory variables
to the extent we have done with such frequency.

For the selection of lags, we could have expanded the
scope to include more lags than six. We are certain
that we were not able to capture the full relationship
between some dependent variables and independent
variables with only a six months lag. Endogenous sup-
ply variables may even have a lead time of several years
before they directly affect the freight rates. The impact
of, e.g., the orderbook and newbuilding contracting
might thus not yield any results to the fleet capacity
until vessels are delivered and readily available in the
market. As such, an even greater lag analysis could be
performed.
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10 Conclusion
An in-depth analysis of the freight market for oil
tankers has been performed. Regime-switching regres-
sion models were then developed in order to provide
predictions of one-month ahead freight rates for six
tanker routes.
The existing literature on freight rates in the ship-

ping field was reviewed. There exists a lot of attempts
at modelling the freight rates, and a clear increase
in the level of sophistication is seen when comparing
earlier work to more recent efforts. Several studies
were also found to investigate the determinants, the
driving factors, of the shipping markets on both a mi-
croeconomic and a macroeconomic level. Additionally,
shipping literature also exist in the context of multi-
regimes. However, these studies are mainly focused on
assessing risk and volatility. The results from these
studies are nevertheless conclusive, and confirm the
presence of distinctive regimes in the freight rates -
whereby freight rate characteristics indicate a normal,
low volatility state and a more irregular, high volatile
state. Besides empirical shipping literature, we were
able to find inspiration in other research fields, such
as oil and electricity price modelling. This lead us to
explore a combination of Markov regime-switching and
multiple regression, applied to specific tanker routes in
the oil tanker market.

We further considered the theoretical foundation of
the shipping market. The four shipping markets and
common stakeholders were explored. We discussed dif-
ferent contract types and industry measures, and con-
cluded that the freight rate quoted on a Time Charter-
Equivalent basis would be best suited for the modelling
to come. The freight rate mechanism and shipping cy-
cles were then assessed, which were key to our choice of
building a two-regime model - a model which could po-
tentially correspond with the elastic and inelastic part
of the supply curve. A look into the tanker market
specifically was done, and we considered cargo, ves-
sels, and market characteristics - on which the market
appears to operate under nearly perfect competition.
We moved on to take a specific look at the tanker

trade, and the different routes we would be taking an
in-depth look at, as well as model. After addressing
a set of criteria, we landed on six routes, TD1, TD3,
TD7, TD12, TC1, and TC2. The routes span the globe
and cover different vessels and cargo.

After having gained insight into the oil tanker market
and various routes, the key driving factors of the tanker
market were analysed. We divided the determining fac-
tors into three major groups, based on supply, demand,
and economic and non-fundamental factors. Determi-
nants such as fleet size, orderbook, vessel prices, oil
demand, oil import and export, crude oil prices, refin-
ery output and a range of global indices were assessed.

The intricacies and relationship between the determin-
ing factors were evaluated at great length.
Moreover, we began the process of collecting data.

We also noted a few stylized facts about the freight
rates, such as a tendency to mean-revert, evidence of
seasonality and frequent rate jumps. The data was
fetched from a collection of sources, and some initial
descriptive statistics were presented.
Subsequently, the modelling methodology was out-

lined - how we would approach the modelling of route-
specific oil tanker freight rates using Markov regime-
switching multiple regression. We established three
objectives to study the model benefits:

i ) to figure out if a parsimonious model with fewer
variables would outperform a variable rich model;

ii ) to see how well the model forecasted;

iii ) to see if incorporating route-specific variables
would yield a benefit.

We then addressed how we would get the data set
stationary, determine an appropriate number of lags
and how we would model seasonality. Moreover, the
method for variable selection was discussed. As we al-
ready had a solid theoretical foundation of important
variables, we also wanted to assess this importance sta-
tistically. A procedure was set up based on stability
selection with randomized LASSO. For this approach,
one takes subsamples of variables and subsamples of
data, and creates regression models based on the selec-
tion algorithm LASSO with a random tuning param-
eter. This technique was run thousands of times, and
the results were aggregated. The most frequently ap-
pearing variables in the regression models were ranked
the highest.
We moved on to the actual model formulation. We

examined a method of discovering structural breaks us-
ing the Chow test, and presented the regime-switching
model and the approach to estimating it based on the
two-step expectation-maximization algorithm. We also
noted how we would set up the model to be used for
forecasting, by weighting predicted values from two
models with the probability of being in each regime.
Insight into the underlying assumptions for OLS

were presented. As our regime-switching model con-
sisted of two multiple regression models, we wanted to
assess their residuals. Approaches for evaluating linear-
ity, autocorrelation, heteroscedasticity, and normality
in these residuals were thus presented. Moving on, we
laid out how we would assess the models’ performance.
The problem of overfitting was introduced, as well as
the performance metrics to be used. A set of bench-
mark models were be established for comparison, and
the Diebold-Mariano (DM) test for forecasting accu-
racy would be employed. The approach to studying the

73



three main objectives were further embarked upon. All
objectives would be considered with the performance
metrics and the DM test. To consider the benefit of
a parsimonious model, we would create parsimonious
variants of our regime-switching models, consisting of
a smaller set of variables, for each route. To assess the
forecasting capabilities of the regime-switching model,
it would be compared to benchmark models on out-of-
sample data, for each route. To evaluate the benefit of
incorporating route-specific variables in modelling, we
compared the route-specific regime-switching models
with a generic regime-switching model based only on
global variables, for each route.

The actual model development was then performed.
The initial preparation was handled, transforming the
data to stationary and setting up lags. An analysis into
the variable selection was subsequently performed. We
found route-specific variables to be good contenders as
they ranked high across all routes. We briefly looked
into the presence of structural breaks by performing
a Chow test, and found indications of volatile states,
most evident in TD3 and TD7. The regime-switching
models were later evaluated, and specifically the in-
dependent variable’s impact on the freight rates, in
accordance with the theoretical assumptions. Further-
more, we were able to replicate the theoretical seasonal
components for each route well by introducing seasonal
dummy variables. Findings of seasonality were in line
with the findings of Kavussanos and Alizadeh (2002).

The different regimes were subsequently examined.
We were able to construct important characteristics
of each regime, such as volatility magnitude, dura-
tions and occurrences of volatility clusters – whereby
the presumably lower volatility regime where found to
hold the highest weighting of number of observations,
the longest duration, and the lowest volatility, across
all routes. Results did also somewhat indicate that
volatility increases with an increasing vessel size. The
regime findings can potentially support shipping port-
folio managers and vessel operators, as expressed by
Abouarghoub et al. (2014). One can use the improved
understanding of the dynamics in a low volatility and
high volatility state, in addition to the transition prob-
abilities, duration of regimes, and level of returns to
ones advantage during operations, hedging or specula-
tion.
The model residuals were later checked for linear-

ity, autocorrelation, heteroscedasticity, and normality.
The residuals of most models were well-behaved, with
the notable exception of TD7pars, which had some re-
peated issues.
The in-sample performance of the regime models

was then considered. A great discrepancy was found
between the domain knowledge models, and the parsi-
monious models. The prior had very high R2 and low

error metrics. The latter showed more well-behaved
results, in line with that is to be expected. It was
therefore assumed that the prior models suffered from
overfitting, or misspecification.
We moved on to consider the out-of-sample perfor-

mance. The performance on never-before-seen data
was done with the three objectives in mind.

Firstly the parsimonious regime models were evalu-
ated against the variable rich domain regime models.
The parsimonious models were found to outperform
variable rich models in most metrics. This was also
mostly true for the DM test, whereby four out of six
forecasts were found to be more accurate with a 5% sig-
nificance. Fewer variables therefore seemed to improve
the modelling effort. Top performing variables in the
parsimonious models include, secondhand prices, im-
port and export factors, Chinese crude imports, vessel
fixtures, and the ClarkSea index, amongst others.

Secondly, the forecasting capabilities of the parsimo-
nious regime-switching models (as these were shown
to be better) were evaluated against benchmark mod-
els. The benchmark models were set up to be chal-
lenging contenders, with the exception of the random
walk. As we were attempting to model uncommon
behaviour in the freight rates, and not simply the nor-
mal behaviour, the benchmark models were expected
to outperform the regime models on regular observa-
tions. The regime models were, however, seen to gener-
alise well to the new data. They provided results well
above a naive forecasting method, and challenged the
benchmark models on most routes. The regime models
consistently scored in the higher tier.
Lastly, we evaluated the impact of constructing

regime models with route-specific variables. The par-
simonious regime models were evaluated against a
generic benchmark regime model with global variables.
By studying the performance metrics, all regime mod-
els were found to outperform the generic benchmark to
various degrees. Three out of these were also found to
have better forecasts with a 10% significance in the DM
test. Accounting for route characteristics can therefore
be considered beneficial. Finally, we discussed the find-
ings, how the models could be improved and potential
next steps. Different measures of handling the overfit-
ted domain knowledge regime models were considered.
The issue of omitted variables was brought up, and it
was proposed that more high volatility predictors could
be added to the model. We looked at the regime-bias in
the forecasting probabilities, the benefit of more data
and the value of increasing the scope for selecting lags.
Our opening statements for the thesis claimed that

the tanker market exhibits high volatility. Risk is close
to a necessity for speculation and high returns. Since
we are attempting to model irregularities, and not just
the normal behaviour, we are expected to miss more.
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The irregularities and volatile conditions are more chal-
lenging to predict. Thus, the rewards of getting them
right, are also potentially higher. Our models might
miss, but when they hit, the returns can be significant.
With higher frequency data, further research is highly
recommended into the benefit of predicting the great,
abnormal changes of the freight rates.
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Appendix A Data

A.1 Data List

Table A.1: An overview of the input data used throughout the thesis, along with description, unit, format (e.g. average during the
period, or start/end of month), and routes applicable for each variable.

Data period: August 2002 - June 2017 (Start from February 2002 if including lags)
Frequency: Monthly
# of variables: 169

Variable Description Unit Format Source Route(s)

Dependent Variable
TD1 TCE Ras Tanura − LOOP - VLCC route $/day Average Clarksons SIN -
TD3 TCE Ras Tanura − Chiba - VLCC route $/day Average Clarksons SIN -
TD7 TCE Sullom Voe − Wilhelmshaven - Aframax route $/day Average Clarksons SIN -
TD12 TCE Antwerp − Houston - LR1 route $/day Average Clarksons SIN -
TC1 TCE Ras Tanura − Chiba - LR2 route $/day Average Clarksons SIN -
TC2 TCE Rotterdam − New York - MR route $/day Average Clarksons SIN -

Panel A: Supply
Fleet Size:
VLCC_mdwt Fleet size, VLCC mDWT SoM Clarksons SIN TD1,TD3
Afra_mdwt Fleet size, Aframax mDWT SoM Clarksons SIN TD7
Pana_mdwt Fleet size, Panamax mDWT SoM Clarksons SIN TD12
LR2_mdwt Fleet size, LR2 mDWT SoM Clarksons SIN TC1
MR_mdwt Fleet size, MR mDWT SoM Clarksons SIN TC2
VLCC_yy Fleet growth, VLCC % Yr/Yr Clarksons SIN TD1,TD3
Afra_yy Fleet growth, Aframax % Yr/Yr Clarksons SIN TD7
Pana_yy Fleet growth, Panamax % Yr/Yr Clarksons SIN TD12
LR2_yy Fleet growth, LR2 % Yr/Yr Clarksons SIN TC1
MR_yy Fleet growth, MR % Yr/Yr Clarksons SIN TC2
VLCC_new Newbuilding contracting, VLCC mDWT Sum Clarksons SIN TD1,TD3
Afra_new Newbuilding contracting, Aframax mDWT Sum Clarksons SIN TD7
Pana_new Newbuilding contracting, Panamax mDWT Sum Clarksons SIN TD12
LR2_new Newbuilding contracting, LR2 mDWT Sum Clarksons SIN TC1
MR_new Newbuilding contracting, MR mDWT Sum Clarksons SIN TC2
VLCC_order Orderbook, VLCC mDWT SoM Clarksons SIN TD1,TD3
Afra_order Orderbook, Aframax mDWT SoM Clarksons SIN TD7
Pana_order Orderbook, Panamax mDWT SoM Clarksons SIN TD12
LR2_order Orderbook, LR2 mDWT SoM Clarksons SIN TC1
MR_order Orderbook, MR mDWT SoM Clarksons SIN TC2
VLCC_order_fleet Orderbook as percentage of fleet, VLCC % SoM Clarksons SIN TD1,TD3
Afra_order_fleet Orderbook as percentage of fleet, Aframax % SoM Clarksons SIN TD7
Pana_order_fleet Orderbook as percentage of fleet, Panamax % SoM Clarksons SIN TD12
LR2_order_fleet Orderbook as percentage of fleet, LR2 % SoM Clarksons SIN TC1
MR_order_fleet Orderbook as percentage of fleet, MR % SoM Clarksons SIN TC2
VLCC_deliveries Vessel deliveries, VLCC mDWT Sum Clarksons SIN TD1,TD3
Afra_deliveries Vessel deliveries, Afrmax mDWT Sum Clarksons SIN TD7
Pana_deliveries Vessel deliveries, Panamax mDWT Sum Clarksons SIN TD12
LR2_deliveries Vessel deliveries, LR2 mDWT Sum Clarksons SIN TC1
MR_deliveries Vessel deliveries, MR mDWT Sum Clarksons SIN TC2
VLCC_down Down adj. of fleet (Demolitions & Removals), VLCC mDWT Sum Clarksons SIN TD1,TD3
Afra_down Down adj. of fleet (Demolitions & Removals), Aframax mDWT Sum Clarksons SIN TD7,TC1
Pana_down Down adj. of fleet (Demolitions & Removals), Panamax mDWT Sum Clarksons SIN TD12
LR2_down Down adj. of fleet (Demolitions), LR2 mDWT Sum Clarksons SIN
MR_down Down adj. of fleet (Demolitions & Removals), MR mDWT Sum Clarksons SIN TC2

Fleet Age:
VLCC_age Average age of fleet, VLCC Yr SoM Clarksons SIN TD1,TD3
Afra_age Average age of fleet, Aframax Yr SoM Clarksons SIN TD7,TC1
Pana_age Average age of fleet, Panamax Yr SoM Clarksons SIN TD12
MR_age Average age of fleet, MR Yr SoM Clarksons SIN TC2

Vessel Prices:
VLCC_price Newbuilding price quote, VLCC c.320k dwt $m EoM Clarksons SIN TD1,TD3
Afra_price Newbuilding price quote, Afrmax c.115k dwt $m EoM Clarksons SIN TD7,TC1
Pana_price Newbuilding price quote, Panamax c.75k dwt $m EoM Clarksons SIN TD12
MR_price Newbuilding price quote, MR c.50k dwt $m EoM Clarksons SIN TC2
VLCC_SP 10Yr old secondhand price quote (S&P), VLCC c.300k dwt $m EoM Clarksons SIN TD1,TD3
Afra_SP 10Yr old secondhand price quote (S&P), Aframax c.105k dwt $m EoM Clarksons SIN TD7,TC1
Pana_SP 5Yr old secondhand price quote (S&P), Panamax c.73k dwt $m EoM Clarksons SIN TD12
MR_SP 10Yr old secondhand price quote (S&P), MR c.37k dwt $m EoM Clarksons SIN TC2
VLCC_demo_priceDemolition price, VLCC $/ldt EoM Clarksons SIN TD1,TD3
Afra_demo_price Demolition price, Aframax $m EoM Clarksons SIN TD7,TC1
Pana_demo_price Demolition price, Panamax $m EoM Clarksons SIN TD12
MR_demo_price Demolition price, MR $m EoM Clarksons SIN TC2
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Panel B: Demand
Oil Demand:
US_dem Oil demand (total products), United States mbbl/d Average JODI TD1,TD12,TC2
Jap_dem Oil demand (total products), Japan mbbl/d Average JODI TD3,TC1
Eur_dem Oil demand (total products), EU-4 (Germ., France, UK, Italy) mbbl/d Average JODI TD7,TD12,TC2
US_fdem Fuel Oil demand, United States mbbl/d Average JODI TD12
Eur_fdem Fuel Oil demand, EU-4 (Germany, France, UK, Italy) mbbl/d Average JODI TD12
Jap_cdem Clean oil demand (Naphtha, Gasoline, Kerosene, Diesel), Japan mbbl/d Average JODI TC1
Eur_cdem Clean oil demand (Naph., Gaso., Kero., Dies.), EU-4 mbbl/d Average JODI TC2
US_cdem Clean oil demand (Naph., Gaso., Kero., Dies.), United States mbbl/d Average JODI TC2

Oil Import:
US_sea_imp Crude imports (Seaborne), United States mbbl/d Average Clarksons SIN TD1
US_imp Crude imports, United States mbbl/d Average JODI TD1
SAUS_imp Crude imports, United States from Saudi Arabia mbbl/d Average EIA TD1
SAPADD3_imp Crude imports, Saudi Arabia to US PADD3 mbbl/d Average EIA TD1
PADD3_imp Crude imports, PADD3 mbbl/d Average EIA TD1
Jap_imp Crude imports (Seaborne), Japan mbbl/d Average Clarksons SIN TD3
Eur_imp Crude imports, EU-4 (Germany, France, UK, Italy) mbbl/d Average Clarksons SIN TD7
Ge_imp Crude imports, Germany mbbl/d Average JODI TD7
Major_imp Crude imports, US, EU-4, Japan mbbl/d Average Clarksons SIN All
Chi_imp Crude imports (Seaborne), China mbbl/d Average Clarksons SIN All
Ind_imp Crude imports (Seaborne), India mbbl/d Average Clarksons SIN All
Bel_fimp Dirty products imports, Belgium mbbl/d Average JODI TD12
US_fimp Dirty products imports, United States mbbl/d Average JODI TD12
PADD3_fimp Dirty products imports, United States PADD3 mbbl/d Average EIA TD12
BelUS_fimp Dirty products imports (unfinished oils), Belgium to US mbbl/d Average EIA TD12
BelPADD3_fimp Dirty products imports (unfinished oils), Belgium to US PADD3 mbbl/d Average EIA TD12
Jap_cimp Clean products imports, Japan mbbl/d Average JODI TC1
Ne_cimp Clean products imports, Netherlands mbbl/d Average JODI TC2
US_cimp Clean products imports, United States mbbl/d Average JODI TC2
NeUS_cimp Clean products imports (mainly Gasoline), Netherlands to US mbbl/d Average EIA TC2
NePADD1_cimp Clean products imports, Netherlands to US PADD1 mbbl/d Average EIA TC2

Oil Export:
AG_exp Crude exports, Arabian Gulf (incl. Red Sea from 2014) mbbl/d Average Clarksons SIN TD1,TD3
NS_exp Crude exports, North Sea (UK and Norway) mbbl/d Average JODI TD7
SA_exp Crude exports, Saudi Arabia mbbl/d Average JODI TD1,TD3
Bel_fexp Dirty products exports, Belgium mbbl/d Average JODI TD12
US_fexp Dirty products exports, United States mbbl/d Average JODI TD12
USBel_fexp Dirty products exports, United States to Belgium mbbl/d Average EIA TD12
SA_cexp Clean products exports, Saudi Arabia mbbl/d Average JODI TC1
Ne_cexp Clean products exports, Netherlands mbbl/d Average JODI TC2
US_cexp Clean products exports, United States mbbl/d Average JODI TC2
USNe_exp Products exports (total products), United States to Netherlands mbbl/d Average EIA TC2

Vessel Fixtures:
VLCC_fix VLCC single voyage fixtures (total) # Sum Clarksons SIN TD1,TD3
VLCC_fix_west VLCC single voyage fixtures, Arabian Gulf - West # Sum Clarksons SIN TD1
VLCC_fix_east VLCC single voyage fixtures, Arabian Gulf - East # Sum Clarksons SIN TD3
VLCC_fix_jap VLCC single voyage fixtures, Arabian Gulf - Japan # Sum Clarksons SIN TD3
VLCC_due VLCCs due this month, Arabian Gulf # Sum Clarksons SIN TD1,TD3
Afra_fix Aframax single voyage fixtures (total) # Sum Clarksons SIN TD7,TC1
Afra_fix_sum Aframax sing. v.fix, sum of AG-Cont, Baltic-Med, FarEast-Cont # Sum Clarksons SIN TD7
Afra_fix_east Aframax single voyage fixtures, Arabian Gulf - East # Sum Clarksons SIN TC1
Afra_fix_US Aframax single voyage fixtures, Arabian Gulf - US # Sum Clarksons SIN TC1
Pana_fix Panamax single voyage fixtures (total) # Sum Clarksons SIN TD12
Pana_fix_US Panamax single voyage fixtures, Mediterranean - US # Sum Clarksons SIN TD12
MR_fix Handysize single voyage fixtures, sum of UKC-USG, UKC-USAC # Sum Clarksons SIN TC2
MR_fix_US Handysize single voyage fixtures (total) # Sum Clarksons SIN TC2

Crude Oil Production:
W_prod Crude oil production, World total mbbl/d Average Clarksons SIN All
ME_prod Crude oil production, Middle East mbbl/d Average Clarksons SIN TD1,TD3
NA_prod Crude oil production, North America mbbl/d Average Clarksons SIN TD1
US_prod Crude oil production, United States mbbl/d Average JODI TD1,TD12,TC2
SA_prod Crude oil production, Saudi Arabia mbbl/d Average JODI TD1,TD3,TC1
NS_prod Crude oil production, North Sea (UK and Norwegian shelf) mbbl/d Average Clarksons SIN TD7
OPEC_prod Crude oil production, OPEC mbbl/d Average Clarksons SIN All

Refinery Output:
US_fout Fuel Oil refinery output, United States mbbl/d Average JODI TD12
Bel_fout Fuel Oil refinery output, Belgium mbbl/d Average JODI TD12
SA_cout Clean products refinery output, Saudi Arabia mbbl/d Average JODI TC1
Ne_cout Clean products refinery output, Netherlands mbbl/d Average JODI TC2
US_cout Clean products refinery output, United States mbbl/d Average JODI TC2

Refinery Utilisation:
PADD3_refuti Refinery utilisation, PADD3 % Average EIA TD12
PADD1_refuti Refinery utilisation, PADD1 % Average EIA TC2

Panel C: Economic & Non-fundamental
Gross Domestic Product:
GDP_w Weighted geometric mean of real GDP indices Index - Quandl All
Time Charter Rate:
VLCC_1tc 1Yr Time charter rate, VLCC c.310k dwt $/day Average Clarksons SIN TD1,TD3
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Afra_1tc 1Yr Time charter rate, Aframax c.110k dwt $/day Average Clarksons SIN TD7
Pana_1tc 1Yr Time charter rate, Panamax c.80k dwt $/day Average Clarksons SIN TD12
LR2_1tc 1Yr Time charter rate, LR2 c.115k dwt $/day Average Clarksons SIN TC1
MR_1tc 1Yr Time charter rate, MR c.48k dwt $/day Average Clarksons SIN TC2
MR_3tc 3Yr Time charter rate, MR c.37k dwt $/day Average Clarksons SIN TC2
Exchange Rate:
USD_SAR Exchange rate, USD/SAR Ratio EoM Bloomberg TD1,TD3,TC1
USD_Pound Exchange rate, USD/Pound Ratio Average Clarksons SIN TD7
USD_Eur Exchange rate, USD/Eur Ratio Average Clarksons SIN TD7,TD12,TC2
Yen_USD Exchange rate, Yen/USD Ratio Average Clarksons SIN TD3,TC1
SDR_USD IMF index, SDR is based on USD, Euro, Yen, Pound, Yuan Index Average Clarksons SIN All
Euro_index Index, Euro Index Average Clarksons SIN All
USD_index Index, USD Index Average FRED All
Consumer Price Index & Money Supply:
US_CPI Consumer price index, United States Index - BLS TD1,TD12,TC2
Jap_CPI Consumer price index, Japan Index - FRED/OECD TD3,TC1
Eur_CPI Consumer price index, 19 European countries Index - FRED/EurostatTD7
US_money M1 money stock/supply, United States $Bn - FRED TD1,TD12,TC2
Jap_money M1 money stock/supply, Japan YenTn - FRED/OECD TD3,TC1
Interest Rate:
LIBOR Interest rate, 3-month USD based LIBOR % EoM FRED All
LIBOR_Yen Interest rate, 3-month Yen based LIBOR % EoM FRED All
LIBOR_Eur Interest rate, 3-month Eur based LIBOR % EoM FRED All
Industrial Production:
Ind_US Industrial production, United States % Yr/Yr Clarksons SIN All
Ind_Jap Industrial production, Japan % Yr/Yr Clarksons SIN TD3,TC1
Ind_Eur Industrial production, Europe % Yr/Yr Clarksons SIN TD7
Ind_OECD Industrial production, OECD % Yr/Yr Clarksons SIN TD12,TC2
Ind_China Industrial production, China % Yr/Yr Clarksons SIN All
Ind_India Industrial production, India % Yr/Yr Clarksons SIN All
Crude Oil & Oil Products Price:
Brent Oil price, Brent crude $/bbl Average Clarksons SIN All
Brent_forw Brent crude forward curve (6month − 1month) $/bbl EoM Bloomberg All
WTI Oil price, WTI crude $/bbl EoM EIA All
Dubai Oil price, Dubai crude $/bbl Average IMF All
Oil_price_index Index, Brent, WTI, Dubai Index Average IMF All
US_gaso Gasoline conventional spot FOB, US Gulf Coast $/gallon - EIA TC2
Bunker Price:
Bunker_Jap Bunker price 380CST, Japan $/tonne Average Clarksons SIN All
Bunker_Phil Bunker price 380CST, Philadelphia US $/tonne Average Clarksons SIN All
Shipping Index:
ClarkSea ClarkSea shipping index, weighted of major vessel classes $/day Average Clarksons SIN All
ClarkAve Clarksons Average Tanker Earnings $/day Average Clarksons SIN All
BDTI Baltic Exchange Dirty Tanker Index (BDTI) Index Average Clarksons SIN All
BCTI Baltic Exchange Clean Tanker Index (BCTI) Index Average Clarksons SIN All
Stock Index:
Tadawul Tadawul stock index, Saudi Arabia Index EoM Bloomberg TD1,TD3,TC1
Nikkei Nikkei stock index, Japan Index EoM Bloomberg TD3,TC1
SP500 S&P500 stock index, United States Index EoM Yahoo All
MSCI_w Stock index, MSCI World Index EoM Bloomberg All
MSCI_e Stock index, MSCI Emerging Index EoM Bloomberg All
VIX S&P500 volatility index, VIX Index EoM Yahoo All

Comments from data sources:
Panel A:
*MR tankers (SIN): Most MR time series’ include chemical tankers.
*NB, S&P and Demo. prices (SIN): Long run historical series based on last quotes for each vessel class. Size (dwt) may vary over the
time series period.
*S&P prices (SIN): Between October 2008 and January 2010, Clarksons Research did not publish benchmark values and users should be
aware that this was a period of transition in the Sale and Purchase markets, characterised by spells of rapidly changing price levels, low
levels of sales activity and a wide spread of price ideas. During this period, the data should be treated with caution as confidence limits
will vary over time and between sectors.
*Demolition prices (SIN): Series based on highest quoted demolition price of vessels within an appropriate age range each month.
Panel B:
*Oil demand (JODI): Deliveries or sales to domestic consumption plus Refinery Fuel plus International Marine and Aviation Bunkers.
*Clean products (JODI): Naphtha, Gasoline, Kerosene, Diesel.
*Fuel Oil/Dirty products (JODI): Heavy residual oil/boiler oil, including bunker oil.
*Dirty products (EIA): Sum of Distillate Fuel Oil, Residual Fuel Oil, Lubricants and Petroleum Coke.
*Crude imports PADD3 (EIA): Excluding SPR (strategic petro. reserves.)
*Unfinished oils (EIA): partial refining of crude oil, and include naphthas and lighter oils, kerosene and gas oils, and residuum.
*Imp.&Exp. (JODI): Goods having physically crossed the national boundaries, excluding transit trade, intl. marine and aviation bunkers.
*Fixtures (SIN): Note that weeks do not fall discretely into months. Consequently, the monthly timeseries does not equal the sum of weekly
data points during the month. The weekly frequency represents fixtures reported in the seven days prior to the datum specified.
*Refinery output (JODI): Refinery output of finished products only.
Panel C:
*GDP (Quandl): Weighted g.mean of real GDP indices for various countries, weights equal to each country’s share of world oil consumption.
*1Yr TC rate (SIN): Long run historical series based on average TC rates for each vessel class. Size (dwt) may vary over the time series period.
*CPI (BLS&FRED): US - all items in U.S. city average. Japan and Europe - all items.
*Money supply (FRED): M1 includes funds that are readily accessible for spending.
*LIBOR (FRED): LIBOR 3-month interest rate is the average interest rate at which a selection of banks in London are prepared to lend to one
another in USD/Yen/Eur with a maturity of 3 months.
*MSCI World & MSCI Emerging (Bloomberg): World - a broad global equity benchmark that represents large and mid-cap equity performance
across 23 developed markets countries. Emerging - large and mid cap representation across 24 emerging markets countries.
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A.2 Data List per Route

Table A.2: Brief overview of data input per route - Variable abbreviations as used in the empirical work (see also Appendix A.1)
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A.3 Data Sources

Below, we have copied in a brief description of each source that we have used, in accordance to how they are
presented on their respective webpages. We have, to the extent possible, tried to find reliable and publicly available
sources. However, subscriptions are needed to access the following sources: Clarksons SIN and WFR, and Bloomberg
Terminal. Clarksons Shipping Intelligence Network (SIN) is the most widely used data source for actors in the
shipping market, and holds information and data that could not be reached elsewhere. We are extremely grateful
for Clarksons Platou’s contribution by granting us access to the Holy Grail of shipping intelligence.

Shipping Intelligence Network (SIN) &World Fleet Register (WFR) by Clarksons Research Services
Limited (CRSL):

«Shipping Intelligence Network (SIN) provides access to the comprehensive range of data collected and published
by Clarksons Research, including the latest information on the shipping markets at a glance, easily downloadable
versions of our wide range of market reports, comprehensive fleet and orderbook listings and thousands of
timeseries and graphs of key commercial indicators all updated regularly by our leading industry analysts.» *Note
that SIN also gathers data from publicly available sources (e.g., EIA, IEA, OECD).

"...World Fleet Register (WFR) is the market leading online vessel reference tool from Clarksons Research.
Updated daily, WFR provides comprehensive, authoritative and timely information on over 150,000 ships...»

URL: sin.clarksons.net & clarksons.net/wfr2/

Joint Organisations Data Initiative (JODI) - JODI Oil World Database:

«The Joint Organisations Data Initiative is a concrete outcome of the producer-consumer energy dialogue. The
initiative relies on the combined efforts of producing and consuming countries and the seven JODI partner
organisations to build the timely, comprehensive, and sustainable energy data provision architecture which is a
prerequisite for stable energy commodity markets. JODI Oil partners include APEC, Eurostat, IEA, OLADE,
OPEC and UNSD»

URL: jodidata.org/oil/

U.S. Energy Information Administration (EIA):

«The U.S. Energy Information Administration (EIA) is the statistical and analytical agency within the U.S.
Department of Energy. EIA collects, analyzes, and disseminates independent and impartial energy information to
promote sound policymaking, efficient markets, and public understanding of energy and its interaction with the
economy and the environment.

EIA’s data and analyses are widely used by federal and state agencies, business & industry, media, researchers,
consumers, financial, international, students, and educators.»

URL: eia.gov

Quandl - Financial, Economic and Alternative Data:

«Quandl delivers financial, economic and alternative data to over 250,000 people worldwide. Quandl offers essential
financial and economic data alongside a suite of unique, alpha-generating alternative datasets. Quandl’s customers
include the world’s top hedge funds, asset managers and investment banks.»

URL: quandl.com

Bloomberg Professional Services - Bloomberg Terminal:

«The Bloomberg Terminal brings together real-time data on every market, breaking news, in-depth research,
powerful analytics, communications tools ... »
URL: bloomberg.com/professional/
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Federal Reserve Economic Data (FRED):

«This site offers a wealth of economic data and information to promote economic education and enhance economic
research. The widely used database FRED is updated regularly and allows 24/7 access to regional and national
financial and economic data.»

URL: fred.stlouisfed.org

U.S. Bureau of Labor Statistics (BLS):

«The Bureau of Labor Statistics (BLS) of the U.S. Department of Labor is the principal federal agency responsible
for measuring labor market activity, working conditions, and price changes in the economy. Its mission is to
collect, analyze, and disseminate essential economic information to support public and private decision making.
As an independent statistical agency, BLS serves its diverse user communities by providing products and services
that are accurate, objective, relevant, timely, and accessible.»

URL: www.bls.gov/home.htm

OECD Data:

«...We measure productivity and global flows of trade and investment. We analyse and compare data to predict
future trends.»

URL: data.oecd.org

Eurostat:

«Eurostat is the statistical office of the European Union situated in Luxembourg. Its mission is to provide high
quality statistics for Europe.»

URL: ec.europa.eu/eurostat/web/main/home

International Monetary Fund (IMF):

«The IMF publishes a range of time series data on IMF lending, exchange rates and other economic and financial
indicators. Manuals, guides, and other material on statistical practices at the IMF, in member countries, and of
the statistical community at large are also available.»

URL: imf.org/en/data

Yahoo Finance:

«At Yahoo Finance, you get free stock quotes, up-to-date news, portfolio management resources, international
market data, social interaction and mortgage rates ...»

URL: finance.yahoo.com
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A.4 Route Seasonality
Seasonal components for each individual route are given in Figure A.1, alongside seasonal components for their
respective Baltic Exchange index.
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Figure A.1: Individual seasonality components for each route. Calculated as the mean percentage change within a month for all observations
over the entire time series period.

In Figure A.2, freight rate changes are represented on an average level for dirty tanker (TD1, TD3, TD7, TD12)
and clean tanker (TC1, TC2) routes. Serves as an illustration of the existence of higher seasonal irregularity in
dirty tanker routes versus clean tanker routes. *Seasonal components from Figure 7.1 thus equals the average of
each month across all years of the plots in Figure A.2.
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Figure A.2: Freight rate changes on average level for our selection of dirty tanker (TD1, TD3, TD7, TD12) and clean tanker (TC1, TC2)
routes. Blue and gray levels indicate positive and negative freight rate changes, respectively.
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A.5 Seasonality from Modelling

Seasonal dummy coefficients for each individual route are given in Figure A.3, alongside seasonal components for
their respective Baltic Exchange index.
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Figure A.3: Individual seasonality dummy coefficients for each route. HV: high volatility regime (stapled line). LV: low volatility regime. See,
further, Chapter 8.

A.6 BDTI and BCTI

In Table A.3, a complete list of the routes included in the dirty (BDTI), and clean (BCTI) Baltic Exchange index
is given. Routes in bold are relevant for this thesis.

Table A.3: Route constituents of the Baltic Exchange indices for dirty and clean tanker routes (Kavussanos and Visvikis, 2016).

Baltic Exchange Indices

Route Vessel Description

Panel A: Baltic Dirty Tanker Index (BDTI)
TD1 VLCC Ras Tanura (Saudi Arabia) - LOOP (US Gulf)
TD2 VLCC Ras Tanura (Saudi Arabia) - Singapore
TD3 VLCC Ras Tanura (Saudi Arabia) - Chiba (Japan)
TD6 Suezmax Novorossiysk (Russia) - Augusta (USA)
TD7 Aframax Sullom Voe (UK) - Wilhelmshaven (Germany)
TD8 Aframax Mena al Ahmadi (Kuwait) - Singapore
TD9 Panamax Puerto La Cruz (Venezuela) - Corpus Christi (USA)
TD12 Panamax Antwerp (Belgium) - Houston (USA)
TD14 Aframax Syria - Sydney (Australia)
TD15 VLCC Bonny Offshore (Nigeria) - Ningbo (China)
TD17 Aframax Primorsk (Russia) - Wilhelmshaven (Germany)
TD18 Handysize Tallinn (Estionia) - Amsterdam (Netherlands)
TD19 Aframax Ceyhan (Turkey) - Lavera (France)
TD20 Suezmax West Africa - UK Continent/Rotterdam
TD21 Panamax Mamonal (Colombia) - Houston (USA)

Panel B: Baltic Clean Tanker Index (BCTI)
TC1 Aframax (LR2) Ras Tanura (Saudi Arabia) - Chiba/Yokohama (Japan)
TC2 Handysize (MR) Rotterdam (Netherlands) - New York (USA)
TC5 Panamax (LR1) Ras Tanura (Saudi Arabia) - Yokohama (Japan)
TC6 Handysie (MR) Skikda (Syria) - Lavera (France)
TC8 Panamax (LR1) Jubail (Saudi Arabia) - Rotterdam (Netherlands)
TC9 Handysize (MR) Primorsk (Russia) - Le Havre (France)
TC14 Handysize (MR) Houston (USA) - Amsterdam (Netherlands)
TC15 Aframax (LR2) MED - Far East (Trial)
TC16 Panamax (LR1) Amsterdam (Netherlands) - Lome Offshore (Togo) (Trial)
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A.7 Clarksons TCE Freight Rate Calculations
Tanker TCE freight rates in the SIN database is based on the calculation breakdown seen in Table A.4 (Clarksons
Research Services Limited, 2017). In Section 6.2, a more detailed discussion of the calculations is given.

Table A.4: Breakdown of the calculation method of TCE tanker freight rates in Clarksons SIN (Clarksons Research Services Limited, 2017)

Tanker TCE Calculations

Element Description Unit

Earnings (E):
E = (R−C)/D Average Earnings $/day

Revenue (R):
V*($*WS/100)*(1−CM) Freight Revenue $

Costs (C):
(D−dl*SM)*L−dfo*FO−d$ Laden Fuel Oil Cost $
(D−dl*SM)*B−dfo*FO−d$ Ballast Fuel Oil Cost $
(D−dl*SM)*L−ddo*DO−d$ Laden mdo Cost $
(D−dl*SM)*B−ddo*DO−d$ Ballast mdo Cost $
P−dfo*FO−d$ Port Fuel Cost $
P−ddo*DO−d$ Port mdo Cost $
P−d$ Port Charges $
C−d$ Canal Charges $

Voyage Time (D):
(D−db+D−dl)*SM+D−dp Total Voyage Time days

Key items:
Earnings:
E Earnings $/day
R Revenue $
C Costs $
D Voyage Time days

Revenue:
V Cargo Loaded tonnes
WS Worldscale Rate rate
$ Worldscale Basic $/tonne
CM Commission 2.50%

Costs:
D−dl Days Laden days
D−db Days Ballast days
D−dp Days in Port days
L−dfo, B−dfo FO Cons. m.t./day
L−ddo, B−ddo DO Cons. m.t./day
P−dfo, P−ddo Port Cons. tonnes
FO−d$ Cost FO $/tonne
DO−d$ Cost DO $/tonne
SM Sea Margin Fixed 5%
P−d$ Port Charges $
C−d$ Canal Charges $

Voyage time:
D Voyage Time days
General:
L Laden
B Ballast
P In Port
FO Fuel Oil
DO Diesel Oil
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Appendix B Statistics and meth-
ods

B.1 R2 & R2
adj

The R2 and R2
adj are commonly used to evaluate the

goodness of fit of a regression model. To define these,
we first need a few other definitions.

The total sum of squares is the sum of the squared
mean deviations of the dependent variable (Alexander,
2008b).

TSS =

T∑
t=1

(yt − ȳ)2

The amount of variation in Y that is captured by the
model, is measured by the explained sum of squares
(Alexander, 2008b).

ESS =

T∑
t=1

(ȳt − ȳ)2

The regression R2 is the square of the correlation be-
tween the fitted value ŷ and y (Alexander, 2008a). The
value lies between 0 and 1, where values closer to 1 sig-
nifies a good model fit.

R2 =
ESS

TSS
= 1− RSS

TSS

An issue with the standard R2 is that it does not take
into account the parsimony of the model. R2 will in-
crease as one adds more variables to the model, but
this does not imply a good fit. R2

adj solves this issue by
accounting for the degrees of freedom. It is therefore
preferable to use for comparing models.

R2
adj = 1− RSS/(n− p− 1)

TSS/(n− 1)

B.2 Residual sum of squares

The sum of squared residuals, which is frequently called
residual sum of squares (RSS), measures the deviation
between the data and an estimation model. It can be
written as

RSS =

T∑
t=1

e2
t =

T∑
t=1

(yt − ȳt)2

where Y is the observation, Ȳ is the predicted value,
i.e. the model, and e is the residual.

B.3 Akaike information criterion (AIC)

The Akaike criteria is used for model selection, and
is a degree-of-freedom-penalized version of the mean-
squared residual (Diebold, 2017). A lower AIC value
is better.

AIC = e(
2K
T )
∑T
t=1 e

2
t

T

B.4 LASSO

The LASSO procedure attempts to force most features
to zero, while only selecting a few best candidates. As
seen in Doreswamy and Vastrad (2013) the LASSO
estimator uses `1 penalized least squares basis to get
a solution to the following optimization problem

β̂LASSO = arg min
β
‖Y −Xβ‖22 + λ

p∑
k=1

|βk|

where the added λ
∑p
k=1 |βk| equals the `1-norm

penalty, and λ can be considered a regularization pa-
rameter.

B.5 Stability selection with rand. LASSO

Large datasets might require methods to improve their
understanding and interpretation. Stability selection is
a way of achieving this. Stability selection is based on
subsampling in combination with selection algorithms.
Stability selection enhances existing variable selec-

tion techniques. For variable selection methods, we
usually have a tuning parameter, λ, which controls the
amount of regularization applied. We would normally
want to know, study and figure out this value.

For every value of λ ∈ Λ, one obtains a structure
estimate Ŝλ = {k; β̂λk 6= 0}, and a set of non-zero β
coefficients. One then wishes to figure out if there
exists a λ ∈ Λ which makes Ŝλ equal to S with high
probability.

Stability paths can be considered the probability for
each variable to be selected, when randomly resampling
from the dataset (Meinshausen and Bühlmann, 2009),
as described below from the selection probability

Π̂λ
k = P ∗(K ⊆ Ŝλ(I))

where, I is a random subsample of size bn/2c.
Normally, in variable selection, one would simply

select one element from the set of models

{Ŝλ;λ ∈ Λ}

With stability selection one performs subsampling
many times, selecting the variables that frequently oc-
cur. Variables with a high selection probability are
kept. A set of stable variables is defined as

Ŝstable = {k : max
λ∈Λ

Π̂λ
k > πthr}

where πthr is regarded as a cutoff between 0 and 1, and
with the set of regularization parameters Λ.

When estimating with stability selection, the choice
of an initial regularization parameter Λ is not crucial
(Meinshausen and Bühlmann, 2009). The problem of
proper regularization is addressed with a generic sub-
sampling approach.
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Table B.1: The automatically estimated Arima models to be used
as benchmarks for each route.

Route Best fit Arima model

TD1 Arima(1,0,1)
TD3 Arima(3,0,1)
TD7 Arima(0,0,1)
TD12 Arima(2,0,2)
TC1 Arima(0,0,0)
TC2 Arima(1,0,2)

Randomized LASSO changes the penalty of λ to a
randomly chosen value in the range [λ, λ/α] Random-
ized LASSO with a weakness α ∈ (0, 1] can be defined
as follows

β̂λ,W = argmin
β∈R
||y − xβ||22 + λ

p∑
k=1

|βk|
Wk

with Wk as i.i.d random variables in the range [α, 1],
for k = (1, . . . , p), and β̂λ,W as the randomized LASSO
estimator (Meinshausen and Bühlmann, 2009).

B.6 ARIMA

An ARIMA(p, d, q) is given by the following equation

(1−
p∑
k=1

αkL
k)(1− d)Xt = (1 +

q∑
k=1

βkL
k)εt

whereby α1, . . . , αp and β1, . . . , βp are related the au-
toregressive and moving average terms. L is the lag
operator, Xt the variable, and ε1, . . . , εk are the errors.
As noted by Nau (2017):

• p is the number of autoregressive terms,
• d is the number of nonseasonal differences needed

for stationarity, and
• q is the number of lagged forecast errors in the

prediction equation.

The ARIMA models that will be considered in this
thesis are listed in Table B.1.

B.7 Random walk

A random walk with a drift component is simply de-
fined as

yt = yt−1 + a+ εt

where εt is a white noise term with zero mean, and
variance equal to one.

B.8 Mean model

A forecast based on the average of past data can be
written as in the equation below, where y1, . . . , yT rep-
resents the historical data, and ŷT+h|T is notation for
the estimate of yT+h based on this data.

ŷT+h|T = ȳ = (y1 + · · ·+ yT )/T

B.9 Multiple regression

The linear regression model can be written as

yi = β1 + β2x2i + β3x3i + · · ·+ βnxni + ui

by which the variable y is the dependent variable, the
x variables are the explanatory variables, and ui is a
stochastic error term (Gujarati, 2011).
To estimate the coefficients of the linear regression

model, the method of ordinary least squares is appro-
priate. Here, one tries to minimize the sum of squared
residuals by tuning the coefficients.

β̂ = arg min
β
RSS

The result is estimated parameter values for the linear
model.

Statistical Tests
B.10 Augmented Dickey-Fuller (ADF) test

The augmented Dickey-Fuller test is based on the re-
gression

∆Xt = α+ βXt−1 + γ1∆Xt−1 + · · ·+ γq∆Xt−q + εt

This test is carried out similarly to a Dickey-Fuller
test, whereby the test statistic is the t ratio on the
estimated coefficient β̂. However, the critical values
are dependent upon the number of lags, q. (Alexander,
2008a).

Durbin-Watson statistic (DW)

The Durbin-Watson test statistic can be used to iden-
tify first order autocorrelation in the residuals. For
this statistic, T is the number of observations and et
is the residual at time t.

d =

∑T
t=2 (et − et−1)2∑T

t=1 e
2
t

The value of the statistic d lies in the range 0 to 4.
Having a d equal to 2 signifies no autocorrelation.

B.11 Breusch-Godrey (BG) test

The Breusch-Godfrey test is a method of assessing the
model residuals for serial correlation. It uses the errors
from the model and derives a test statistic from these.

The model is fitted initially to obtain a set of sample
residuals.

yt = β1 + β2x2t + · · ·+ βnxnt + ut

The residuals are then regressed on the independent
variables and on the lagged residuals.

ut = ρ0 + ρ1ut−1 + · · ·+ ρkut−k + vt
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The test statistic is then estimated by multiplying the
R2 from the second regression with the number of ob-
servations in the set. The test statistic can then be
evaluated against the applicable chi-squared distribu-
tion. Rejection of the null hypothesis indicates serial
correlation in the residuals.

H0 : ρ0 + ρ1 + ρ2 + · · ·+ ρk = 0

H1 : ρ0 ∪ ρ1 ∪ ρ2 ∪ · · · ∪ ρk 6= 0

B.12 Jarque-Bera test (JB)

The Jarque-Bera test is utilised to test for normality
in a data set. The formula for the test is as such:

JB = n

[
S2

6
+

(K − 3)2

24

]
∼ χ2

2

Here S is the skewness coefficient, n is the sample size,
and K the kurtosis effect. The closer the statistic is
to zero, the closer the sample is to normal (Gujarati,
2011). This can be seen if inputting the normality
values of skewness and kurtosis, S = 0 and K = 3 into
the formula, which results in a statistic of zero.

B.13 Breusch-Pagan (BP) test

The Breusch-Pagan test is a test for heteroskedastic-
ity in the residuals of a regression model. Under the
null hypothesis, the residuals are assumed to have a
constant variance, i.e. being homoskedastic (Gujarati,
2011).

Consider the following estimated linear regression.

yt = β0 + β1x1t + · · ·+ βnxnt + ut

Obtain û2
t , and the predicted Ŷt values. Proceed to fit

the squared residuals to the predicted values. The R2

is then retained for the chi-squared statistic, TR2.

û2
t = δ0 + δ1Ŷt

Ŷn represents the predicted value of y from the original
regression.

Ŷt = β̂0 + β̂1x1t + · · ·+ β̂nxnt

The chi-squared statistic is estimated based on R2 and
the number of observations, with degrees of freedom
equal to 1. The null hypothesis can then be evaluated.

TR2 ∼ χ2(m)

B.14 Diebold-Mariano (DM) test

Diebold and Mariano propose a test which allows one
to evaluate the significance of apparent predictive su-
periority (Diebold, 2013). The null hypothesis is of
equal expected loss. It relies on assumptions made

on the loss difference of the forecast error. With a
quadratic loss this would equate to L(et) = e2

t . The
loss difference between two forecasts can be written
as d12t = L(e1t) − L(e2t). The test only requires this
difference to be covariance stationary, i.e.:

Assumpt.


E(d12t) = µ, ∀t
Cov(d12t, d12(t−τ)) = γ(τ),∀t
0 < V ar(d12t) = σ2 < inf .

The null hypothesis corresponds to E(d12t) = 0, which
entails:

DM12 =
d̄12

σ̂d̄12

d−→ N(0, 1)

where d̄12 = 1
T

∑T
t=1 d12t and σ̂d̄12 is an estimate of the

standard deviation of d̄12.

Appendix C Oil Trade Details

Tanker Fleet Productivity
The tables below (Tables C.1 − C.3) represent a more
detailed breakdown of the components that are in-
cluded in the tanker fleet productivity table from Sec-
tion 3.5 (Table 3.5).

Top 10 Countries in Oil Trade
An overview of top 10 countries engaged in oil trade
based on various measures is given in Table C.4.
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Table C.1: Tanker fleet productivity: Tonnes carried per dwt of tankers. Includes tankers above 10 k.dwt (Clarksons Research Services Limited,
2017). NA: data not available.

Seaborne trade Tanker fleet Ratio: Tonnes carried
Year Crude oil Oil products Total oil Crude Products Total fleet per dwt of

[m.tonnes] [m.dwt, mid year] Crude Products Total
1990 1,132.75 415.41 1,548.16 200.62 NA NA 5.64 NA NA
1995 1,454.73 444.29 1,899.02 212.18 NA NA 6.86 NA NA
2000 1,676.18 561.91 2,238.09 220.82 53.56 274.38 7.60 10.50 8.16
2005 1,878.43 712.63 2,591.06 241.36 68.59 309.95 7.78 10.39 8.36
2010 1,871.87 881.52 2,753.39 295.57 116.56 412.13 6.33 7.56 6.68
2015 1,872.01 1,021.83 2,893.85 344.51 139.01 483.52 5.43 7.35 5.98
2017 2,003.58 1,098.06 3,101.64 382.07 156.00 538.07 5.24 7.04 5.76

Table C.2: Tanker fleet productivity: Tonne-miles carried per dwt of tankers. Includes tankers above 10 k.dwt (Clarksons Research Services
Limited, 2017). NA: data not available.

Seaborne trade Tanker fleet Ratio: 1k. tonne-miles carried
Year Crude oil Oil products Total oil Crude Products Total fleet per dwt of

[b.tonne-miles] [m.dwt, mid year] Crude Products Total
1990 5,345.1 1,262.7 6,607.8 200.62 NA NA 26.64 NA NA
1995 6,931.2 1,371.6 8,302.8 212.18 NA NA 32.67 NA NA
2000 8,050.4 1,571.9 9,022.5 220.82 53.56 274.38 36.46 29.35 35.07
2005 8,603.4 2,122.5 10,725.9 241.36 68.59 309.95 35.65 30.94 34.61
2010 8,686.8 2,600.5 11,287.3 295.57 116.56 412.13 29.39 22.31 27.39
2015 9,087.6 2,905.7 11,993.3 344.51 139.01 483.52 26.38 20.90 24.80
2017 10,101.6 3,141.7 13,243.3 382.07 156 538.07 26.44 20.14 24.61

Table C.3: Tanker fleet productivity: Average haul in miles - dividing tonne-miles by tonnes. Includes tankers above 10 k.dwt (Clarksons
Research Services Limited, 2017).

Average haul
Year Crude oil Oil products Total oil

[miles]
1990 4,718.7 3,039.7 4,268.2
1995 4,764.6 3,087.2 4,372.2
2000 4,802.8 2,797.4 4,031.3
2005 4,580.1 2,978.4 4,139.6
2010 4,640.7 2,950.0 4,099.4
2015 4,854.5 2,843.6 4,144.4
2017 5,041.8 2,861.1 4,269.8

Table C.4: Top 10 countries in oil trade. As of January 2018 (Joint Organisations Data Initiative(JODI)). Remark: Chinese numbers must
be treated with caution. Russia only included in the crude production entry.

Rank Crude prod. Oil dem. Crude imp. Crude exp. Products imp. Products exp.
# (mbbl/d) (mbbl/d) (mbbl/d) (mbbl/d) (mbbl/d) (mbbl/d)

1 Russia (10.4) U.S. (20.8) China (8.5) Saudi Arabia (7.2) Singapore (2.3) U.S. (4.9)
2 Saudi Arabia (10.0) China (11.5) U.S. (8.0) Iraq (3.8) Netherlands (2.3) Netherlands (2.4)
3 U.S. (9.9) India (4.5) India (4.8) Canada (2.9) U.S. (2.2) Singapore (1.9)
4 Iraq (4.4) Japan (4.3) Japan (3.4) Nigeria (2.0) Japan (1.2) Saudi Arabia (1.9)
5 China (3.8) Korea (3.0) Korea (3.2) Angola (1.4) Mexico (1.0) China (1.6)
6 Canada (3.3) Germany (2.5) Thailand (2.1) U.S. (1.4) Korea (0.8) India (1.5)
7 Brazil (2.6) Canada (2.2) Germany (1.9) Brazil (1.3) India (0.8) Korea (1.4)
8 Nigeria (2.0) Brazil (2.1) Spain (1.6) Norway (1.2) Belgium (0.8) Italy (0.6)
9 Mexico (1.9) Saudi Arabia (2.1) Italy (1.3) Mexico (1.2) Germany (0.8) Belgium (0.5)
10 Venezuela (1.8) Mexico (1.8) France (1.2) UK (0.7) Saudi Arabia (0.8) UK (0.5)
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Appendix D Results and Plots
Table D.1: ADF test. The results from the augmented Dickey-Fuller tests performed on all transformed variables. The null hypothesis of
a unit root is rejected, and all time series are shown to be stationary with a 5 percent significance. Most variables were transformed with
logarithmic differencing.

Variable ADF-stat Variable ADF-stat Variable ADF-stat

TD1 -6,903*** ME_prod -7,181*** MSCI_w -5,108***
TD3 -7,292*** NA_prod -7,177*** MSCI_e -5,682***
TD7 -7,058*** US_prod -6,341*** VIX -6,59***
TD12 -6,773*** SA_prod -6,229*** SP500 -5,249***
TC1 -7,6*** NS_prod -7,481*** VLCC_age -8,275***
TC2 -8,012*** OPEC_prod -5,441*** Afra_age -3,813**
US_dem -6,328*** W_prod -5,996*** Pana_age -4,532***
Jap_dem -8,224*** Padd3_refuti -8,057*** MR_age -8,114***
Eur_dem -8,161*** Padd1_refuti -7,336*** VLCC_down -3,61**
US_fdem -7,829*** USGC_marg -5,173*** Afra_down -3,683**
Eur_fdem -7,544*** NWE_marg -7,532*** Pana_down -4,785***
Jap_cdem -8,64*** US_fout -8,801*** LR2_down -12,16***
Eur_cdem -8,081*** Bel_fout -7,993*** MR_down -3,688**
US_cdem -6,206*** SA_cout -7,126*** VLCC_deliveries -8,532***
AG_exp -6,836*** Ne_cout -8,789*** Afra_deliveries -7,091***
NS_exp -8,839*** US_cout -7,851*** Pana_deliveries -6,893***
Bel_fexp -7,636*** USD_SAR -7,569*** LR2_deliveries -7,135***
US_fexp -7,18*** Yen_USD -5,682*** MR_deliveries -7,54***
USBel_fexp -5,393*** USD_Pound -5,852*** VLCC_mdwt -4,542***
SA_cexp -7,507*** USD_Eur -5,268*** VLCC_yy -4,655***
Ne_cexp -7,845*** SDR_USD -5,595*** Afra_mdwt -6,935***
US_cexp -6,587*** Euro_index -5,289*** Afra_yy -6,173***
USNe_exp -7,189*** USD_index -5,077*** Pana_mdwt -4,321***
SA_exp -5,886*** GDP_w -4,823*** Pana_yy -3,685**
VLCC_fix_west -8,266*** US_CPI -6,788*** LR2_mdwt -6,517***
VLCC_fix -8,421*** Jap_CPI -6,256*** LR2_yy -4,03***
VLCC_due -7,426*** Eur_CPI -4,38*** MR_mdwt -7,547***
VLCC_fix_east -8,175*** Ind_US -3,898** MR_yy -3,631**
VLCC_fix_jap -8,539*** Ind_Jap -4,682*** VLCC_new -5,196***
Afra_fix_sum -7,418*** Ind_Eur -4,131*** Afra_new -7,356***
Afra_fix -6,028*** Ind_OECD -4,186*** Pana_new -4,651***
Pana_fix_US -4,141*** Ind_China -6,648*** LR2_new -7,45***
Pana_fix -7,675*** Ind_India -5,797*** MR_new -3,87**
Afra_fix_east -8,518*** LIBOR -4,252*** VLCC_order -4,758***
Afra_fix_us -4,897*** LIBOR_Yen -11,485*** VLCC_order_fleet -4,739***
MR_fix_US -7,126*** LIBOR_Eur -3,71** Afra_order -7,815***
MR_fix -6,415*** Jap_money -3,632** Afra_order_fleet -8,4***
US_sea_imp -7,279*** US_money -4,402*** Pana_order -3,634**
US_imp -7,336*** VLCC_1tc -5,254*** Pana_order_fleet -3,629**
SAUS_imp -5,923*** Afra_1tc -4,615*** LR2_order -3,581**
SAPadd3_imp -5,996*** Pana_1tc -4,442*** LR2_order_fleet -3,491**
PADD3_imp -8,162*** LR2_1tc -4,847*** MR_order -3,55**
Jap_imp -7,859*** MR_1tc -5,245*** MR_order_fleet -3,467**
Eur_imp -8,316*** MR_3tc -3,861** VLCC_price -6,991***
Ge_imp -7,976*** US_gaso -6,837*** VLCC_SP -4,864***
Bel_fimp -7,775*** Bunker_Jap -5,563*** VLCC_demo_price -4,914***
US_fimp -8,082*** Bunker_Phil -5,638*** Afra_price -3,511**
Padd3_fimp -8,039*** Brent_forw -5,292*** Afra_SP -4,229***
Jap_cimp -6,439*** Brent -5,831*** Afra_demo_price -4,877***
Ne_cimp -6,848*** WTI -5,875*** Pana_price -8,607***
US_cimp -8,142*** Dubai -6,354*** Pana_SP -4,175***
Major_imp -6,692*** Oil_price_index -6,297*** Pana_demo_price -4,9***
Chi_imp -8,113*** ClarkSea -5,803*** MR_demo_price -4,865***
Ind_imp -8,172*** ClarkAve -7,028*** MR_price -3,549**
BelUS_fimp -4,052*** BDTI -7,318*** MR_SP -4,461***
BelPadd3_fimp -8,833*** BCTI -6,829*** VLCC_speed -5,988***
NeUS_cimp -8,595*** Tadawul -4,319*** Crude_speed -5,827***
NePadd3_cimp -3,686** Nikkei -5,698*** Afra_speed -6,45***
Significance *** 0.01 ** 0.05 * 0.1
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Table D.2: An overview of the different lags applied to the time series for the specific routes; TD1, TD3, TD7, TD12, TC1, and TC2. All variables are lagged between 1 and 6. Note, not all
variables are relevant to each route - see Table A.1 for which variables that are applicable to each route.

Variable TD1 TD3 TD7 TD12 TC1 TC2 Variable TD1 TD3 TD7 TD12 TC1 TC2 Variable TD1 TD3 TD7 TD12 TC1 TC2

US_dem 4 5 5 5 6 6 SA_prod 1 1 1 1 6 6 MSCI_e 1 1 1 1 1 1
Jap_dem 1 1 1 1 6 6 NS_prod 1 1 1 1 1 1 VIX 1 1 6 6 1 6
Eur_dem 3 3 3 3 5 5 OPEC_prod 1 1 1 6 6 6 SP500 1 1 1 1 1 1
US_fdem 1 1 1 1 1 1 W_prod 1 6 6 6 6 6 VLCC_age 1 1 1 1 1 1
Eur_fdem 1 1 1 1 1 1 Padd3_refuti 6 6 6 6 6 6 Afra_age 6 6 6 6 6 6
Jap_cdem 3 3 3 3 3 3 Padd1_refuti 6 6 6 6 6 6 Pana_age 6 6 6 6 6 6
Eur_cdem 1 1 1 1 1 1 US_fout 1 1 1 1 1 1 MR_age 6 6 6 6 6 6
US_cdem 6 6 6 6 6 6 Bel_fout 6 6 6 6 6 6 VLCC_down 1 1 1 1 1 1
AG_exp 1 1 1 1 1 1 SA_cout 1 1 1 1 1 1 Afra_down 1 1 1 1 1 1
NS_exp 6 6 6 6 6 6 Ne_cout 2 2 2 2 2 2 Pana_down 1 1 1 1 1 1
Bel_fexp 4 4 4 4 4 4 US_cout 2 2 2 2 2 2 LR2_down 1 1 1 1 1 1
US_fexp 1 1 1 1 1 1 USD_SAR 1 1 1 1 1 1 MR_down 1 1 1 1 1 1
USBel_fexp 1 1 1 1 1 1 Yen_USD 6 6 6 6 1 1 VLCC_deliveries 4 4 4 4 4 4
SA_cexp 1 1 1 1 1 1 USD_Pound 1 1 1 1 1 1 Afra_deliveries 1 1 1 1 1 1
Ne_cexp 1 1 1 1 1 1 USD_Eur 1 1 1 1 1 1 Pana_deliveries 1 1 1 1 1 1
US_cexp 1 1 1 1 1 1 SDR_USD 1 1 1 1 1 1 LR2_deliveries 5 5 5 5 5 5
USNe_exp 1 1 1 1 1 1 Euro_index 1 1 1 1 1 1 MR_deliveries 2 2 2 2 2 2
SA_exp 1 1 1 1 1 1 USD_index 1 1 6 6 6 6 VLCC_mdwt 6 6 6 6 6 6
VLCC_fix_west 1 1 1 1 1 1 GDP_w 1 6 6 6 6 6 VLCC_yy 6 6 6 6 6 6
VLCC_fix 1 1 1 1 1 1 US_CPI 1 1 1 6 6 6 Afra_mdwt 6 6 6 6 6 6
VLCC_due 1 1 1 1 1 1 Jap_CPI 1 1 1 1 1 1 Afra_yy 6 6 6 6 6 6
VLCC_fix_east 5 5 5 5 5 5 Eur_CPI 6 6 6 6 6 6 Pana_mdwt 6 6 6 6 6 6
VLCC_fix_jap 2 2 2 2 2 2 Ind_US 3 1 5 5 6 6 Pana_yy 1 1 1 1 1 1
Afra_fix_sum 1 1 1 1 1 1 Ind_Jap 2 2 2 2 5 5 LR2_mdwt 1 1 1 1 1 1
Afra_fix 1 1 1 1 1 1 Ind_Eur 2 2 2 2 2 2 LR2_yy 1 1 1 1 1 1
Pana_fix_US 1 1 1 1 1 1 Ind_OECD 4 4 4 4 6 6 MR_mdwt 1 1 1 1 1 1
Pana_fix 1 1 1 1 1 1 Ind_China 6 6 6 6 6 6 MR_yy 1 1 1 1 1 1
Afra_fix_east 1 1 1 1 1 1 Ind_India 4 2 5 6 3 6 VLCC_new 6 1 1 1 1 1
Afra_fix_us 4 4 4 4 4 4 LIBOR 1 1 1 1 1 1 Afra_new 1 1 1 1 1 1
MR_fix_US 1 1 1 1 1 1 LIBOR_Yen 1 1 1 1 1 1 Pana_new 6 6 6 6 6 6
MR_fix 1 1 1 1 1 1 LIBOR_Eur 1 1 1 1 1 1 LR2_new 1 1 1 1 1 1
US_sea_imp 1 1 1 1 1 1 Jap_money 6 6 6 6 1 1 MR_new 4 4 4 4 4 4
US_imp 4 4 4 4 4 4 US_money 1 1 1 1 1 1 VLCC_order 1 1 1 1 1 1
SAUS_imp 1 1 1 1 1 1 VLCC_1tc 1 1 1 1 1 1 VLCC_order_fleet 1 1 1 1 1 1
SAPadd3_imp 4 4 4 4 4 4 Afra_1tc 1 1 1 1 1 1 Afra_order 1 1 1 1 1 1
PADD3_imp 1 1 1 1 1 1 Pana_1tc 1 1 1 1 1 1 Afra_order_fleet 1 1 1 1 1 1
Jap_imp 1 1 1 1 1 1 LR2_1tc 1 1 1 1 1 1 Pana_order 1 1 1 1 1 1
Eur_imp 1 1 1 1 1 1 MR_1tc 1 1 1 1 1 1 Pana_order_fleet 1 1 1 1 1 1
Ge_imp 1 1 1 1 1 1 MR_3tc 1 1 1 1 1 1 LR2_order 1 1 1 1 1 1
Bel_fimp 1 1 1 1 1 1 US_gaso 1 6 6 6 6 6 LR2_order_fleet 1 1 1 1 1 1
US_fimp 1 1 1 1 1 1 Bunker_Jap 1 6 6 6 6 6 MR_order 1 1 1 1 1 1
Padd3_fimp 1 1 1 1 1 1 Bunker_Phil 1 6 6 6 6 6 MR_order_fleet 1 1 1 1 1 1
Jap_cimp 1 1 1 1 1 1 Brent_forw 1 1 1 1 1 1 VLCC_price 1 1 1 1 1 1
Ne_cimp 1 1 1 1 1 1 Brent 1 6 6 6 6 6 VLCC_SP 1 1 1 1 1 1
US_cimp 1 1 1 1 1 1 WTI 1 6 6 6 6 6 VLCC_demo_price 1 6 1 1 1 1
Major_imp 1 1 1 1 1 1 Dubai 1 6 6 6 6 6 Afra_price 1 1 1 1 1 1
Chi_imp 1 6 1 2 1 1 Oil_price_index 1 6 6 6 6 6 Afra_SP 1 1 1 1 1 1
Ind_imp 1 3 1 2 1 1 ClarkSea 1 1 1 1 1 1 Afra_demo_price 3 3 3 3 1 1
BelUS_fimp 6 6 6 6 6 6 ClarkAve 1 1 1 1 1 1 Pana_price 1 1 1 1 1 1
BelPadd3_fimp 6 6 6 6 6 6 BDTI 1 1 1 1 1 1 Pana_SP 1 1 1 1 1 1
NeUS_cimp 1 1 1 1 1 1 BCTI 1 1 1 1 1 1 Pana_demo_price 1 1 1 1 1 1
NePadd3_cimp 6 6 6 6 6 6 Tadawul 1 1 1 1 1 1 MR_demo_price 1 1 1 1 1 1
ME_prod 1 1 1 1 1 1 Nikkei 6 6 6 6 1 1 MR_price 1 1 1 1 1 1
NA_prod 1 1 1 1 1 1 MSCI_w 6 1 1 1 1 1 MR_SP 1 1 1 1 1 1
US_prod 1 1 1 1 1 1
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Table D.3: Parsimonious search. The ranked variables which are the basis for creating our parsimonious models. These variables are based
on a search from the variables included in the original domain knowledge regime models. They have been ranked by the method of stability
selection with randomized lasso. The fraction of included observations was tuned to 0.3 and 0.05 in order to look for variables that perform
better in certain short time periods, i.e. we were attempting to narrow down variables for the high volatility regime.

TD1 TD3 TD7

Regularization run: 0.3 Regularization run: 0.3 Regularization run: 0.3
score score score

ClarkSea 0.688 VLCC_SP 0.323 Chi_imp 0.559
SA_exp 0.653 Ind_imp 0.240 Ind_India 0.490
Chi_imp 0.611 Jap_money 0.210 LIBOR 0.437
VLCC_due 0.595 Ind_Jap 0.157 ClarkSea 0.366
VIX 0.509 VIX 0.150 Afra_demo_price 0.365
VLCC_price 0.431 Ind_imp 0.364
W_prod 0.425 Ind_US 0.355
SAPadd3_imp 0.411 WTI 0.346
Ind_China 0.411 Eur_dem 0.335
Ind_India 0.396 Ind_Eur 0.326
USD_SAR 0.391 NS_exp 0.312
VLCC_fix_west 0.376 USD_Pound 0.310
US_money 0.354 Eur_imp 0.288

Regularization run: 0.05 Regularization run: 0.05 Regularization run: 0.05
score score score

VLCC_fix_west 0.310 Ind_imp 0.210 Ind_imp 0.315
Chi_imp 0.276 VIX 0.205 NS_exp 0.255
SAPadd3_imp 0.273 VLCC_SP 0.170 ClarkSea 0.255
Ind_India 0.272 Jap_imp 0.165 Chi_imp 0.250
VLCC_due 0.267 ClarkSea 0.160 Ind_Eur 0.245
Major_imp 0.266 VIX 0.230
VIX 0.260 Afra_SP 0.230
ClarkSea 0.258 NS_prod 0.215
Ind_imp 0.257 Ind_US 0.215
Brent_forw 0.252 Afra_mdwt 0.210
US_money 0.243 WTI 0.205
SA_exp 0.238 USD_Pound 0.200
WTI 0.236 Ind_India 0.200

TD12 TC1 TC2

Regularization run: 0.3 Regularization run: 0.3 Regularization run: 0.3
score score score

ClarkSea 0.745 Afra_fix_east 0.687 USNe_exp 0.330
Pana_price 0.385 W_prod 0.643 MR_order 0.255
Ind_US 0.342 SDR_USD 0.636 Ne_cimp 0.244
Chi_imp 0.312 LR2_order 0.597 Ne_cout 0.236
WTI 0.298 ClarkSea 0.554 MR_3tc 0.213
US_fdem 0.281 Ind_US 0.468 Brent_forw 0.186
US_dem 0.272 Yen_USD 0.448 US_CPI 0.172
Bel_fimp 0.259 Jap_cimp 0.434 Eur_cdem 0.168
Brent_forw 0.259 SA_cout 0.430
LIBOR 0.243 Tadawul 0.406
Ind_India 0.239 Afra_fix_us 0.400
SDR_USD 0.223 Ind_Jap 0.381
Major_imp 0.220 Chi_imp 0.377

Regularization run: 0.05 Regularization run: 0.05 Regularization run: 0.05
score score score

ClarkSea 0.270 Ind_Jap 0.275 Brent_forw 0.200
Chi_imp 0.230 Brent_forw 0.255 USNe_exp 0.190
Bel_fexp 0.220 W_prod 0.245 Chi_imp 0.185
Brent_forw 0.210 SA_cout 0.240 OPEC_prod 0.180
BelPadd3_fimp 0.210 LR2_order 0.235 MR_fix_US 0.165
US_dem 0.200 Jap_cimp 0.225 MR_3tc 0.165
US_fdem 0.190 Ind_US 0.225 VIX 0.160
Padd3_fimp 0.190 Major_imp 0.220 Ne_cout 0.160
Ind_India 0.190 Ind_India 0.220 Major_imp 0.160
Ind_China 0.185 ClarkSea 0.220 Ind_OECD 0.155
Bel_fout 0.180 WTI 0.215 Ind_China 0.155
US_fout 0.175 Afra_price 0.215
US_money 0.165 Tadawul 0.210
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Figure D.1: Residual plots to validate the assumptions for the domain knowledge regime models.
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(i) Residual plot TD7pars
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(l) Residual plot TD12pars
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(m) Q-Q plot TC1pars
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(o) Residual plot TC1pars
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Figure D.2: Residual plots to validate the assumptions for the parsimonious regime models.
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Figure D.3: Displaying all time series considered for this thesis 1/7.
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Figure D.4: Displaying all time series considered for this thesis 2/7.
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Figure D.5: Displaying all time series considered for this thesis 3/7.
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Figure D.6: Displaying all time series considered for this thesis 4/7.
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Figure D.7: Displaying all time series considered for this thesis 5/7.
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Figure D.8: Displaying all time series considered for this thesis 6/7.
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Figure D.9: Displaying all time series considered for this thesis 7/7.
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