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Preface

This master’s thesis represents 20 weeks of work over the course of the 2018 spring
semester. It is the continuation of a project on the quark-meson model carried out during
the fall of 2017 [1]. I assume that the reader is familiar with elementary classical and
quantum field theory, statistical mechanics, and phase transitions. Only a minimum of
thermal field theory is assumed, with clear statements included when results from the
field are used. The specifics of the models studied are covered in full detail, and no
preexisting knowledge is required.

Chapters 2 and 3 consist of a relatively lengthy introduction to the Polyakov loop
since I could not find a self-contained introduction at the level appropriate for an early
graduate student without a background in the literature. Especially the literature deriva-
tions of the formula relating the Polyakov loop and the quark free energy appeared ob-
scure to me, and I thus provided a step-by-step field theoretic derivation of the formula.

Finally, I owe gratitude to the people supporting me during this work. I would like to
thank Professor Jens O. Andersen for excellent supervision, interesting discussions and
thorough feedback on my work. I would also like to thank my housemates and friends
for providing a fantastic atmosphere in which to decouple from physics, with a special
mention to my gym partner Simen Kjernlie. Lastly, I am indebted to my partner Ana
Trišović, who always supports me and forgives me when I am fully absorbed by my work.
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Abstract

In this thesis we study the phase diagram of two-flavor quantum chromodynam-
ics with effective models. We investigate the phase diagram in the baryon chemical
potential–temperature and magnetic field–temperature planes. As approximations to
QCD we use the Polyakov-loop extended quark-meson model (PQM) and the Pisarski-
Skokov chiral matrix model (χM). We take quantum and thermal fluctuations of quarks
into account to one loop, while we neglect bosonic fluctuations. Bosonic self-energy cor-
rections are calculated in order to consistently fix coupling constants at the one-loop
level in the large-Nc limit.

We find that both models have coinciding chiral and deconfinement phase crossovers
at zero chemical potential, and the pseudocritical temperatures agree with two-flavor
lattice QCD simulations. For temperatures up to T ≈ 2Tc the models agree reasonably
with the pressure, energy density, and interaction measure as calculated on the lattice.
However, the Polyakov loop temperature dependence disagrees with the lattice results.

For quark chemical potentials satisfying µ ≤ T , the PQM model agrees well with the
pressure and quark number density from lattice simulations. The χM model overshoots
these quantities. In the regime µ � T the PQM model predicts a quarkyonic phase
while the χM model predicts a deconfined and chirally restored phase.

At constant magnetic fields the two models display magnetic catalysis at all tem-
peratures, which is in disagreement with lattice data. We show that the chiral sector
is responsible for magnetic catalysis. Furthermore, we find that a Polyakov loop model
without a chiral sector displays inverse magnetic catalysis. Finally, we show that in-
verse magnetic catalysis does not occur in the χM model even when the deconfinement
temperature in the gluonic sector is made to decrease with the magnetic field.





v

Sammendrag

I denne avhandlingen studerer vi fasediagrammet til kvantekromodynamikk (QCD)
med to kvarktyper ved hjelp av effektiv modellering. Vi undersøker fasediagrammet i
kjemisk potensial–temperatur planet og magnetisk felt–temperatur planet. Som tilnærm-
ing til QCD benytter vi en kiral matrisemodell og kvark-meson-modellen (PQM) utvidet
med Polyakovløkka. Vi tar høyde for kvantefluktuasjoner og termiske fluktuasjoner til èn
løkke, mens bosonfluktuasjoner blir neglisjert. Bosoniske selvenergikorreksjoner regnes
ut slik at vi kan bestemme koblingskonstantene konsistent på èn-løkke nivået i grensen
der Nc er stor.

Ved null kjemisk potensial finner vi at begge modellene har samtidige faseoverganger
for kvarkfrigjøring og gjenopprettelse av kiral symmetri. De pseudokritiske tempera-
turene overenstemmer med QCD-simuleringer på gitteret med to kvarktyper. For tem-
peraturer opp til T ≈ 2Tc reproduserer begge modeller gitterverdier for trykk, energitet-
thet og interaksjonsmål til relativt høy grad. Polyakovløkkas temperaturavhengighet
overenstemmer ikke med gittersimuleringer i noen av modellene.

For kjemiske potensial µ ≤ T finner vi at PQM-modellen reproduserer trykket og
kvark-tettheten på gitteret, mens χM -modellen overestimerer disse størrelsene. I regimet
µ� T forutsier PQM-modellen en kvarkyonisk fase, mens χM -modellen forutsier en fase
der kiral symmetri er gjenopprettet og hvor kvarkene er frigjort.

Ved konstante magnetfelt finner vi at begge modeller har magnetisk katalyse ved alle
temperaturer, og de reproduserer dermed ikke gittersimuleringer. Vi viser at det er den
kirale sektoren som er ansvarlig for magnetisk katalyse og at en Polyakovløkke-modell
uten en kiral sektor har invers magnetisk katalyse. Til slutt viser vi at invers mag-
netisk katalyse ikke oppstår i χM modellen selv når man lar den kritiske temperaturen
i gluonsektoren avta med magnetfeltet.
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Conventions

Units

We use natural units where ~ = c = kB = 1. For electromagnetic units we use Lorentz-
Heaviside units, which implies ε0 = µ0 = 1. This gives a fine structure constant of
α = e2

4π and an electromagnetic Lagrangian L = −1
4FµνF

µν .

Metric, Indices and Gamma Matrices

Vectors in space-time are written as vµ = v = (v0,v), where bold font indicates a
spatial vector with three components. We use Einstein summation convention when
summing over vectors. Unless otherwise specified, greek indices sum over space-time
while Latin indices sum over space. We choose the Minkowski metric signature gµν =
diag(1,−1,−1,−1), and repeated latin indices do not have an implicit minus sign, mean-
ing

uµvµ = gµνu
µvν = v0v0 − vivi. (0.0.1)

We use the Dirac representation of the gamma matrices

γ0 =
(

1 0
0 1

)
, γi =

(
0 σi

−σi 0

)
, (0.0.2)

where σi are the standard Pauli matrices.

SU(3) and Gell-Mann Matrices

We refer to the Lie algebra of SU(3) as su(3). As a basis for su(3) and as generators
for SU(3) in fundamental representation, we use T a = 1

2λ
a, where λa are the Gell-Mann

matrices. The index a runs from 1 to 8. The diagonal matrices are λ3 and λ8, which
reads

λ3 =

1 0 0
0 −1 0
0 0 0

 , λ3 = 1√
3

1 0 0
0 1 0
0 0 −2

 . (0.0.3)

We write the matrix gluon field in a bold font, Aµ = AaµT
a.



CHAPTER 1
Introduction

In this introductory chapter we start with a brief history of the strong force. We then give
a non-technical description of quantum chromodynamics and its relevance to physical
phenomena.1 Finally, we describe how this thesis is structured.

1.1 The Discovery of the Strong Force

After the discovery of the atomic nucleus by Rutherford [2] an obvious question arose:
what holds it together? Some force must overcome the electrical repulsion between the
positively charged protons, yet no such force had been observed at the time. This force
came to be known as the strong nuclear force, and several scientists attempted to explain
its origins in the following years. Most important was Yukawa’s proposition that the
protons and neutrons interact attractively as the result of exchanging a massive particle
known as a meson. There is truth to this idea, and Yukawa was in 1949 awarded the
Nobel Prize in physics for his prediction of the particles that we now call pions [3].

Gell-Mann [4] and Zweig [5] made a breakthrough in 1964 when they realized that the
nucleons, pions, and myriad of new particles discovered in the fifties could be understood
as bound states of more fundamental particles. These came to be known as quarks.
However, it was not until the 1970’s that a proper understanding of the strong forces
was achieved. It turned out that the strong nuclear force acting to bind nucleons was
a remnant effect of the more fundamental strong interaction between quarks. In 1973
the theory of quantum chromodynamics (QCD) was finally published [6], and it is this
theory that today is held to be the correct theory of the strong interactions.

1We remark that the first two sections in this chapter are nearly identical to the introduction in the
specialization project leading up to this thesis [1].

1



2 CHAPTER 1. INTRODUCTION

1.2 Quantum Chromodynamics and the Standard Model
QCD is a part of a collective of quantum field theories together known as the Standard
Model. The Standard Model describes three out of the four known forces of nature: the
strong, the weak and the electromagnetic forces. QCD describes the strong force, while
quantum electrodynamics (QED) and Glashow-Weinberg-Salam (GWS) theory describe
the electromagnetic and the weak forces, respectively.2 The Standard Model has time and
again been tested successfully in particle accelerators, and the model describes nearly all
of the observed interactions between elementary particles.3 A comprehensive summary
of the most up to date experimental measurements pertaining to the Standard Model
are found in The Review of Particle Physics [8].

Fermion generations Gauge
bosons

Scalar
bosons

I II III

Quarks u
up

c
charm

t
top

g
gluons

H
Higgs

d
down

s
strange

b
bottom

γ
photon

Leptons e
electron

µ
muon

τ
tau

Z0

Z boson

νe
electron
neutrino

νµ
muon

neutrino

ντ
tau

neutrino

W±

W bosons

Table 1.1: Elementary particles in the Standard Model of particle physics.

The Standard Model contains three classes of fundamental particles: the matter
particles, which are spin-1

2 fermions, the force carriers, which are spin-1 bosons, and the
spin-0 Higgs boson, which is responsible for generating the elementary fermion masses.
The fermions are additionally separated into leptons and quarks, and only the latter
interact via the strong force. It turns out that there are three generations of fermions,
with two quarks and two leptons in each generation. Thus, there are six quarks known
to exist, and we refer to them as having different flavors. Table 1.1 shows the particle
content of the Standard Model. In this work we will deal with the two lightest quark

2Technically, GWS theory also describes electromagnetic forces.
3Combined recent observations by the LHCb, Belle, and BaBar experiments, summarized in the

preprint [7], appears to be showing violations of a property known as lepton universality at the 5σ
confidence level.
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flavors, the up and down quarks, which have bare masses at the order of ∼ MeV [8]. The
different quark flavors get progressively heavier with each generation, and at sufficiently
low energies only the lightest flavors influence observed physics.

QCD shares many structural features with QED. In the former the interactions be-
tween quarks are mediated via massless particles known as gluons, which are the analogs
to the photon in the electromagnetic force. Similarly to the photons which only interact
with electrically charged particles, the gluons only interact with particles having a prop-
erty known as color. However, while there is only one type of electric charge, there are
three types of color charges, and eight different gluons exist. Furthermore, the gluons
carry color, causing them to interact among themselves.

The fact that gluons carry color causes QCD to become increasingly weakly inter-
acting at high energies. This effect is known as asymptotic freedom, and Gross, Wilczek
[9] and Politzer [10] were awarded the Nobel Prize in 1973 for its discovery. Asymp-
totic freedom also implies that the theory becomes increasingly strongly interacting at
low energies, and a result of this is that perturbation theory breaks down at energies
lower than ∼ 1 GeV [11]. This is the regime relevant to hadrons and arguably the most
interesting regime of the theory. Studying QCD below this scale is extremely hard and
requires non-perturbative techniques. As a result, there is still active research on QCD,
and several important unsolved problems exist, with perhaps the most prominent one
being the problem of confinement, which we describe in the following.

1.3 The QCD Phase Diagram

The property of confinement is an essential aspect of QCD. It implies that objects with
net color can never exist freely at low energies, which explains why free quarks have
never been observed.4 Confinement has not been proven rigorously, but its existence is
well establishing by simulations that use a numerical technique known as lattice QCD,
where QCD is defined on a discretized space-time.

It is however well known that at high temperatures, nuclear matter undergoes a phase
transition to a state where quarks and gluons are no longer confined. The first direct
observation of this phase was announced by experiments at the Relativistic Heavy Ion
Collider in 2005 [12–15] and later also at the Large Hadron Collider [16]. The transition
is known as the deconfinement phase transition, and the state of matter obtained at high
temperatures is called a quark-gluon plasma (QGP). The deconfinement phase transition
in lattice QCD simulations is found to happen at a temperature T ≈ 160 MeV [17], which
is outside the perturbative regime of QCD.

It turns out that QCD has a rich phase structure, and there is a large body of work
on the subject [18]. Figure 1.1 shows a sketch of the conjectured phase diagram of QCD.
In addition to the deconfinement phase transition, there is a transition known as the
chiral phase transition. For zero baryon chemical potential lattice QCD indicates that

4Technically, only SU(3) color singlets can exist freely.



4 CHAPTER 1. INTRODUCTION

Figure 1.1: Sketch of the conjectured phase diagram of QCD in the plane of temperature
and baryon chemical potential. Figure from Ref. [19].

the chiral transition happens at the same temperature as deconfinement [17].5 The chiral
phase transition is related to that fact that for the lightest quark flavors, QCD has an
approximate symmetry under mixing of the light quark flavors. For massless quarks this
symmetry is exact and is known as chiral symmetry. In the vacuum, chiral symmetry
is broken spontaneously, and as a consequence the pions arise as (approximate) Nambu-
Goldstone bosons, which is a type of particle that appears when a continuous symmetry
is spontaneously broken. At high temperatures, the approximate chiral symmetry is
restored in the chiral phase transition.

1.4 Thesis Outline

Since the most interesting features of the phase diagram lie outside the regime where we
can use QCD perturbation theory, other methods must be employed. Lattice QCD is a
method to study QCD non-perturbatively from first principles, but a technicality known
as the sign problem makes its use at non-zero baryon chemical potential infeasible at
present day [20]. In this work we will instead use phenomenological models to study the
QCD phase diagram and thermodynamics. In particular, we employ the quark-meson

5Zero baryon chemical potential means vanishing baryon density. Increasing baryon chemical poten-
tial means increasing baryon density.
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(QM) model extended with the Polyakov loop and a recently published [21] model that
we refer to as the chiral matrix (χM) model.

To better understand the deconfinement phase transition, we start out in Chapter 2
by reviewing the basics of Yang-Mills theory and QCD, and we investigate the dynamics
of heavy quarks in a gluonic background. Following this we show how the free energy Fq
of a heavy quark in a gluonic background at temperature T is related to the expectation
value of an operator Φ known as the Polyakov loop:6

e−Fq/T = 〈Φ〉 . (1.4.1)

This formula was originally derived by McLerran and Svetitsky in Ref. [22]. However,
since the original paper lacks a step-by-step derivation and the author could not find one
in the literature, an independent field theoretic derivation of the formula is provided.
The derivation is based on a similar relation for the Wilson loop at zero temperature
obtained in Ref. [23]. Once (1.4.1) is established we discuss gauge transformations at
finite temperature and the closely related concept of center symmetry. We show that
the deconfinement phase transition for heavy quarks is associated with the breaking of
center symmetry.

In Chapter 3 we construct a toy model for quark confinement by coupling free
fermions to a constant temporal gluonic background, following the procedure pioneered
by Fukushima in Ref. [24]. We furthermore discuss the effective potential in QFT at finite
temperature, its relation to the thermodynamic grand potential, and phenomenological
Polyakov loop potentials. We round off the chapter with a discussion of the relation
between the Polyakov loop 〈Φ〉 and the conjugate Polyakov loop

〈
Φ̄
〉
at non-zero baryon

chemical potential, which appears to be a subject of confusion in the literature.
The topic of Chapter 4 is the quark-meson model and its Polyakov-loop extended

version. We summarize work from the project leading up to this thesis [1], which consists
of a one-loop renormalization of the QM model at zero temperature in the large-Nc limit.
We also justify why the PQM model provides an approximation to QCD and discuss the
relationship between the symmetries of the two.

We proceed to study the phase diagram and thermodynamics of the PQM model
numerically in Chapter 5. We do this in the large-Nc limit where we can neglect mesonic
fluctuations, and we fix the coupling constants consistently at the one-loop level, which
is typically not done in the literature. Furthermore, we carry out the same study on a
modified version of the χM model. We also study the models at finite baryon chemical
potential, which at the time of writing has not been done for the χM model in the
literature. We carry out a comprehensive comparison of model results with lattice data.

In Chapter 6 we augment the PQM and χM models with a constant magnetic field.
We study the concept of magnetic catalysis and investigate the interplay between the
critical temperature for the deconfinement and chiral transitions. Finally, we study the
effect of making the gluonic sector of the χM model dependent on the magnetic field,
and we compare the resulting Tc(B)-phase diagram with lattice data.

6It is not clear that Fq is a free energy in the technical sense. We discuss this in Chapter 2.





CHAPTER 2
The Polyakov Loop

In this chapter we first summarize the basics of Yang-Mills theory and briefly discuss
how it describes the strong force. We proceed to show how the expectation value of the
Polyakov loop operator can be used as an order parameter for confinement in a pure
gluonic theory with static (infinitely heavy) quarks. We then discuss gauge transforma-
tions at finite temperature and how the spontaneous breaking of a symmetry known as
center symmetry is related to confinement. Using center symmetry, we show that only
static quark configurations with integer baryon numbers can exist in the confined phase.

2.1 Yang-Mills Theory
The quantum theory of electromagnetism, QED, is described by a Lagrangian

L = −1
4F

µνFµν + ψ̄ [iγµ(∂µ − ieAµ)−m]ψ, (2.1.1)

where ψ is a Dirac spinor field, Aµ the photon field, e the electric charge of the ψ field
and Fµν the field strength tensor

Fµν = ∂µAν − ∂νAµ. (2.1.2)

Equation (2.1.1) is invariant under a local phase change of the fields given by

ψ(x)→ e−iα(x)ψ(x), (2.1.3)

Aµ(x)→ Aµ(x) + 1
e
∂µα(x), (2.1.4)

where α(x) is some arbitrary smooth function on space-time. This symmetry is known
as a gauge symmetry. It is a mathematical redundancy in the description of QED that
is needed to describe a massless spin-1 particle, which only can have two possible spin

7



8 CHAPTER 2. THE POLYAKOV LOOP

polarizations, with a four-component vector object. That a massless spin-1 particle can
only have two spin polarizations is a classic result shown by Wigner in 1939 [25], and it
only assumes that particles transform under irreducible unitary representations of the
Poincaré group.1 Fixing the gauge, meaning that we fix a particular property of Aµ that
is not gauge invariant but which has no physical consequences, removes two degrees of
freedom and leaves only two [26].

In 1954 Yang and Mills [27] showed that the gauge symmetry in (2.1.3)–(2.1.4) could
be generalized to symmetry transformations that mix components of different spinors
and vectors fields. In the case of electromagnetism, the gauge transformation at each
space-time point constitutes a transformation in the Lie group U(1), which can be de-
fined as the group of complex numbers with unit modulus. We obtain the Yang-Mills
generalization by constructing a Lagrangian with N > 1 Dirac spinor fields that are in-
variant under local SU(N) transformations, where SU(N) is the group of N -dimensional
unitary matrices with unit determinant.2 As is shown in standard texts on QFT [11, 26,
28], the resulting Lagrangian is

The Yang-Mills Lagrangian

L = −1
4F

aµνF aµν + ψ̄(iγµDµ −m)ψ. (2.1.5)

Here ψ is an N -plet of Dirac spinors, γµ the gamma matrices, ψ̄ = ψ†γ0 the N -plet of
Dirac conjugate spinors, Aaµ the a-th gauge field, m the fermion mass and Dµ the gauge
covariant derivative,

Dµ = ∂µ − igAaµT a. (2.1.6)

The matrices T a are the generators of SU(N) in the fundamental representation and
act on the N -plet of spinors, where a runs from 1 to N2 − 1.3 The quantity g is a real
coupling constant and F aµν are the field strength tensors,

F aµν = (∂µAaν − ∂νAaµ) + gf bcaAbµA
c
ν . (2.1.7)

The numbers fabc are the structure constants of the Lie algebra of SU(N), which we
refer to as su(N), and are defined by the relation4

[T a, T b] = ifabcT c. (2.1.8)

From (2.1.5) and (2.1.7) we see that SU(N) Yang-Mills theory consists of N2−1 massless
spin-1 fields. Furthermore, from (2.1.7) it is clear that they interact among themselves
if fabc 6= 0, which is the case for all N > 1.5

1The Poincaré group is the group of space-time translations, spatial rotations, and Lorentz boosts.
2Other gauge groups than SU(N) are also possible.
3The fundamental representation in the case of SU(N) means a representation with N -dimensional

matrices.
4The Lie algebra is the vector space spanned by {T a} that is equipped with the bilinear commutator

map.
5N = 1 just gives the trivial group and is not considered.
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It is convenient to define the N ×N matrix field

Aµ = AaµT
a. (2.1.9)

Note that Aµ is in the Lie algebra of SU(N) since Aaµ is a real field. In this notation we
can write a general gauge transformation Ω(x) ∈ SU(N) as

ψ(x)→ Ω(x)ψ(x), (2.1.10)

Aµ(x)→ Ω(x)Aµ(x)Ω†(x)− i

g
[∂µΩ(x)] Ω†(x). (2.1.11)

The Yang-Mills Lagrangian is constructed by looking for the simplest fermionic La-
grangian that is invariant under (2.1.10).6 This forces us to introduce the gauge fields,
their interactions with the fermions and their gauge transformation properties. Another
way to look at it is that for a given gauge group, the Yang-Mills Lagrangian is the sim-
plest Lorentz-invariant Lagrangian that contains massless spin-1 particles that interact
with fermions.

We note that since two general transformations in SU(N) do not commute, Yang-
Mills theory is also known as non-Abelian gauge theory. For a discussion of non-Abelian
gauge theory and derivations of the results in this section, the reader is referred to Refs.
[11, 26, 28].

2.2 Quantum Chromodynamics
If we include Nf different Nc-plets of Dirac spinors in the Yang-Mills Lagrangian, each
representing a different quark flavor with a separate mass mj , we get:

L = −1
4F

aµνF aµν +
Nf∑
j=1

ψ̄j(iγµDµ −mj)ψj . (2.2.1)

If we choose Nc = 3 and Nf = 6, we get the QCD Lagrangian.7 We use the symbol Nc

since this value determines the number of different quark colors. With the appropriate
values for the six quark masses and the coupling g, (2.2.1) describes the strong force.

Upon renormalizing the QCD Lagrangian and calculating the running coupling, we
find that the strong force analogue to the fine structure constant at the one-loop level is
[11, 26]

α(Λ) ≡ g(Λ)2

4π = 2π
b0

1
ln
(

Λ
ΛQCD

) , (2.2.2)

where Λ is the momentum scale at which the coupling is evaluated, ΛQCD a dimensionful
energy scale characteristic of QCD and

b0 = 11− 2
3Nf . (2.2.3)

6Technically the Lagrangian without the gauge field kinetic terms is also gauge-invariant, but this is
not interesting since the gauge fields then have no dynamics.

7Nf = 6 is because six quark flavors are observed in nature.



10 CHAPTER 2. THE POLYAKOV LOOP

For Nf = 6, where b0 > 0, the coupling becomes weaker at higher energies. This
is the phenomenon of asymptotic freedom. As Λ → ΛQCD from above we have that
g → ∞. Thus, QCD becomes strongly coupled and perturbation theory breaks down
at low energies. The value of ΛQCD quoted in the literature varies due to different
approximation schemes used for calculating α(Λ), but it is typically of the order ΛQCD ∼
100 MeV to 200 MeV [11, 26]. As a consequence, QCD perturbation theory becomes valid
only at energies higher than ∼ 1 GeV.

As described in Chapter 1, confinement is a characteristic property of QCD. It refers
to the fact that quarks are only observed in composite states that are SU(3) color
singlets.8 It has never been proven rigorously that confinement takes place in QCD, and
it is not seen in perturbation theory. However, its existence is strongly supported by
lattice QCD simulations [29, 30]. The strong coupling of QCD at low energies likely
gives rise to the confinement of color charge as a non-perturbative effect.

2.3 Heavy Quark Dynamics

To discuss confinement, we will as an intermediate step look at the simplified case of
QCD with a single heavy quark flavor. In the following, we use the same approach as
Lowell and Weisberger [23] to construct the non-relativistic limit of the fermion sector
of the QCD Lagrangian.

Take the quark massm to be much larger than any other energy scale in the problem,
informally written as m → ∞. This is an assumption on the dynamics of the problem
and means that we are working in the extreme non-relativistic limit. We remind that
the quark sector of the QCD Lagrangian reads

Lq = ψ̄(iγµDµ −m)ψ. (2.3.1)

Define the operator

U = exp
(
− i

2mγjDj

)
, (2.3.2)

where the latin indices only sum over spatial components. Define also the spinor Ψ via9

ψ = UΨ. (2.3.3)

The argument of the exponential is skew-Hermitian,

(iγjDj)† = (∂j − igAajT a)†(γj)†(−i)
= (−i)(−∂j + igAajT

a)(−γj)
= −iγjDj , (2.3.4)

8Meaning they are invariant under SU(3).
9For this to uniquely define Ψ we must have that U is invertible, which is the case for a matrix

exponential.
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and we get

U † = exp
([
− i

2mγjDj

]†)
= exp

(
i

2mγjDj

)
= U−1, (2.3.5)

meaning that U is unitary. We used the fact that T a and γj commute since they act on
different objects, that (∂i)† = −∂i, that Aaj is a real quantum field, that (γj)† = −γj ,
and that T a is Hermitian. The generators of SU(N) are always Hermitian, since for a
general infinitesimal SU(N)-transformation Ω we can write

1 = Ω†Ω = eiα
aTa†e−iα

bT b = 1 + iαa(T a − T a†) +O(α2), (2.3.6)

for arbitrary infinitesimal parameters {αa}.
Since U is unitary, we can treat Ψ as the new fundamental field. Substituting (2.3.3)

into (2.3.1) and expanding in m−1, we find

Lq = Ψ†U †γ0(iγ0D0 − iγiDi −m)UΨ

= Ψ†
(

1 + i

2mγjDj + . . .

)
γ0(iγ0D0 − iγiDi −m)

(
1− i

2mγjDj + . . .

)
Ψ

= Ψ†(−γ0m+ iD0)Ψ +O(m−1)
= Ψ†(−γ0m+ i∂t + gAa0T

a)Ψ +O(m−1), (2.3.7)

where we used {γj , γ0} = 0, where {·, ·} is the anti-commutator. This transformation
is a special case of what is known as a Foldy-Wouthuysen transformation [31]. It shows
that in the m → ∞ limit, only the temporal component of the gauge fields govern the
quark dynamics.10 If we kept terms to order m−1 and derived the equations of motion,
we would get the QCD analogue of the Pauli equation.

Let us consider the Dirac representation of the gamma matrices, where

γ0 = diag(1, 1,−1,−1). (2.3.8)

Define
Ψ =

(
q
q̃†

)
, (2.3.9)

where q and q̃† are column Nc-plets with the upper and lower two spinor components of
the spinors in Ψ, respectively. Inserting (2.3.8) and (2.3.9) into (2.3.7), we find

Lq = q†(−m+ i∂t + gAa0T
a)q + q̃(m+ i∂t + gAa0T

a)q̃† +O(m−1). (2.3.10)

In the Dirac representation the upper and lower two components of the Dirac spinors
can be interpreted as particle and antiparticle [32], and we thus see that the quark and
antiquark degrees of freedom decouple in the m→∞ limit, which is what we expect for
a non-relativistic theory. To get the Lagrangian on the final form, we use that

q̃T aq̃† = q̃iT
a
ij q̃
†
j = −q̃†jT aij q̃i = −q̃† (T a)T q̃ = (q̃†)T T̃ aq̃T , (2.3.11)

10We avoid the gauge where Aa0 = 0, which would require us to include higher order contributions in
m−1 in (2.3.7).
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where we defined
T̃ a = −(T a)T (2.3.12)

and used that the spinor components are Grassmann numbers and thus anticommute.11

Furthermore, we use that a partial integration gives an equivalent Lagrangian:

q̃∂tq̃
† ' −(∂tq̃)q̃† = (q̃†)T∂tq̃T . (2.3.13)

Redefining q̃† to be a row object, i.e. (q̃†)T → q̃† and q̃T → q̃, and inserting (2.3.11) and
(2.3.13) into (2.3.10), the Lagrangian becomes

Lq = q†(−m+ i∂t + gAa0T
a)q + q̃†(−m+ i∂t + gAa0T̃

a)q̃ +O(m−1)
= q†Dq + q̃†D̃q̃ +O(m−1), (2.3.14)

where we have defined the operators

D = −m+ i∂t + gAa0T
a, (2.3.15)

D̃ = −m+ i∂t + gAa0T̃
a, (2.3.16)

for later convenience.
Finally, we have that the Hamiltonian density is given by

Hq = iq†∂tq + iq̃†∂tq̃ − Lq = q† (m− gAa0T a) q + q̃†(m− gAa0T̃ a)q̃, (2.3.17)

where we used that the conjugate momenta are πq = iq†, πq̃ = iq̃†, πq† = πq̃† = 0. The
static quark Hamiltonian thus is

Hq =
∫

d3xHq. (2.3.18)

2.4 The Polyakov Loop and Deconfinement
We will now consider a thermal system of gluons and study the effect of adding a single
heavy quark. By adding a heavy quark, we probe the gluon dynamics in the presence of
a static color test charge. Combining aspects of the derivations of Lowell and Weisberger
[23], and McLerran and Svetitsky [22], we show that the “free energy” cost of adding this
test charge is related to the expectation value of the Polyakov loop operator and that
the expectation value of the Polyakov loop acts as an order parameter for confinement.12

The free energy appears in quotation marks since it is not entirely clear that what in
the literature is referred to as a free energy actually is a free energy, as we will discuss
in the following.

A theory with only gluons, which we refer to as pure gauge theory, is described by

LA = −1
4F

aµνF aµν . (2.4.1)
11We suppressed the Dirac spinor indices which are not relevant to the calculation.
12The Polyakov loop was first studied by Polyakov [33] and Susskind [34] using lattice methods.
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Let HA(A) be the Hamiltonian corresponding to this Lagrangian density. The partition
function Z and free energy F of a thermal system of gluons in the canonical ensemble
at inverse temperature β is given by

Z = e−βF =
∑̃

A
〈A| e−βHA(A) |A〉 = Tr

(
e−βHA(A)P

)
. (2.4.2)

Here ∑̃A is a Hilbert-space sum over gauge-inequivalent physical states |A〉 which can
alternatively can be written as a trace if one includes an operator P that projects out
only physical states.13 Carrying out this sum is complicated by the gauge redundancy,
but we will not deal with it explicitly and refer the reader to Ref. [35] for details. When
the sum is explicitly written out as a path integral, the integral only runs over field
configurations that are β-periodic in imaginary time τ ,

Aµ(x,−iτ) = Aµ (x,−iτ − iβ) . (2.4.3)

That the partition function for bosons is obtained by summing over periodic field con-
figurations in imaginary time is an elementary result from thermal quantum field theory
[36, 37]. It follows from the commutation relations of the fields and the fact that the
initial and final states of the matrix elements in (2.4.2) are the same.

We proceed to consider states containing both gluons and heavy quarks, i.e. product
states

|ψ〉 ⊗ |A〉 , (2.4.4)

where the first ket represents the fermion state. It is intuitive to assume that the free
energy of a system of gluons with a single heavy quark of color a added at x is given by

e−βFq,a(x) = V
∑̃

A
〈A| ⊗ 〈qa(x)| e−βH |qa(x)〉 ⊗ |A〉

= V
∑̃

A
〈A| ⊗ 〈0| qa(x, 0)e−βHq†a(x, 0) |0〉 ⊗ |A〉 , (2.4.5)

where there is no sum over a and H = HA(A) + Hq(A, q, q̃). That is, we sum over all
gluonic states that contain a single quark of color a at x. The volume factor is needed
for dimensional reasons, since we have the normalization

[
qq†
]

= [x]−3. Averaging over
colors, we have the average quark free energy

e−βFq(x) = V
∑
a

1
Nc

∑̃
A
〈A| ⊗ 〈0| qa(x, 0)e−βHq†a(x, 0) |0〉 ⊗ |A〉 . (2.4.6)

This is the starting assumption of McLerran and Svetitsky’s original paper [22]. Most
authors in the literature claim that Fq is a free energy, but it is not entirely obvious that
this is the case. The definition of the partition function of a system, and thus its free
energy, crucially depends on the fact that we sum over all physical states. By inserting
the creation operators by hand we assume that the trace over quark space reduces to

13The sum
∑̃

A
〈A| · |A〉 is not a trace, since it is not a sum over a complete set, but rather a sum

over the subspace of states that are physical. See Ref. [35] for how to construct P .
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a single term and that the projection operator P is unchanged.14 Furthermore, the
fact that we sum over different colors means that we take the average of the partition
functions of different physical systems. It is indeed argued by Dumitru, Pisarski and
Zschiesche in Ref. [38] that Fq(x) is not a free energy, since it does not have the correct
monotonicity properties required of a true free energy. Instead, it is just the thermal
expectation value of the propagator of a heavy test quark, and this does not necessarily
satisfy all the properties that a free energy does.

Whether or not Fq is a free energy, let us show how it is related to the quark propa-
gator. We manipulate (2.4.6) to find

e−βFq(x) = V
∑
a

1
Nc

∑̃
A
〈A| ⊗ 〈0| qa(x, 0)e−βHq†a(x, 0)eβHe−βH |0〉 ⊗ |A〉

= V
∑
a

1
Nc

∑̃
A
〈A| ⊗ 〈0| qa(x, 0)

(
eβHqqa(x, 0)e−βHq

)†
|0〉 ⊗ e−βHA(A) |A〉

= V
∑
a

1
Nc

∑̃
A
〈A|

[
〈0| qa(x, 0)q†a(x,−iβ) |0〉

]
e−βHA(A) |A〉

= V
∑
a

1
Nc

∑̃
A
〈A| 〈qa(x, 0)|qa(x,−iβ)〉 e−βHA(A) |A〉 . (2.4.7)

In the first line we used 1 = eβHe−βH . In the second line we used that

Hq(q, q̃, A) |0〉 ⊗ |A〉 = 0, (2.4.8)

in addition to
HA(A)

[
|0〉 ⊗ |A〉

]
= |0〉 ⊗HA(A) |A〉 , (2.4.9)

and
eβHqae

−βH = eβHqqae
−βHq . (2.4.10)

The latter holds true since [HA, qa] = [HA, Hq] = 0, where the second commutator
is correct because Hq contains only Aaµ for µ = 0, and [Aa0T a, HA(A)] = 0 since the
canonical momentum of Aa0 vanishes.15 In the third line we analytically continued the
formula

eiHt
′
O(t)e−iHt′ = O(t+ t′) (2.4.11)

to imaginary times.
To proceed we must evaluate 〈qa(x, 0)|qa(x,−iβ)〉. We see that it is the zero tem-

perature Green’s function for a quark state evolving under Hq,

[G(x, t; x, 0)]aa = 〈qa(x, 0)| e−iHqt |qa(x, 0)〉 , (2.4.12)

analytically continued to imaginary time t = −iτ with τ = β . Furthermore, we note
that the gauge field contained in Hq is a classical field and not a quantum field, since Aa0

14Saying that the quark trace reduces to one term corresponds to saying there are no quark fluctua-
tions, which seems reasonable in the m→∞ limit.

15HA contains no T a matrices, only products of the gauge fields and their derivatives. But πaA0 =
∂L

∂(∂0Aa0 ) = 0, which is the only potential term in HA which would not commute with the Aa0 in Hq.
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commutes with q, q̃ and HA(A), and thus the Aa0 in Hq can always act either to the left
or the right on an A-eigenstate. Since Lq is quadratic in the quark fields, the propagator
is in practice given by a free quantum field theory. It is known that the propagator for
a quadratic Lagrangian L = q†Dq is the solution to the equation [26, 28]

DG(x, t; x′, 0) = iδ(x− x′)δ(t). (2.4.13)

With D as defined in (2.3.15), we find

[i∂t + gAa0(x, t)T a −m]G(x, t; x′, 0) = iδ(x− x′)δ(t). (2.4.14)

When the delta functions are zero this is just the Schrödinger equation, which for a
time-dependent Hamiltonian H(t) has the well-known solution

T e−i
∫ t

0 dt′H(t′) = e−imt T eig
∫ t

0 dt′Aa0(x,t′)Ta , (2.4.15)

where T is the time ordering operator. With the delta functions included we see by
direct insertion that a solution is given by

G(x, t; x′, 0) = θ(t)δ(x− x′)e−imt T eig
∫ t

0 dt′Aa0(t′)Ta , (2.4.16)

where θ(t) is the Heaviside step function. This is the retarded propagator, which we
choose since we work in the non-relativistic limit. In analytically continuing this formula
to imaginary times, we will have that that G(−iτ,x; x′, 0) = 0 for imaginary times τ < 0.
This is because we should analytically continue to imaginary time before carrying out
the path integral to get an analogue of (2.4.14) in imaginary time. Since time and space
are treated equally in this case, and space appears as δ(x−x′), time will appear as δ(τ).
Thus, we find

G(x,−iβ; x′, 0) = θ(β)δ(x− x′)e−βm Tτ e
ig
∫ −iβ

0 dt′Aa0(x,t′)Ta ,

= δ(x− x′)e−βm Tτ e
g
∫ β

0 dτAa0(x,−iτ)Ta , (2.4.17)

where we used that β > 0 and defined the imaginary time ordering operator Tτ . We
now define the Polyakov loop to be

The Polyakov Loop

L(x) = Tτ exp
[
ig

∫ β

0
dτAa4(x, τ)T a

]
, (2.4.18)

where we have introduced the Euclidean gauge field Aa4

Aa4(x, τ) = −iAa0(x,−iτ). (2.4.19)

Hence, we find

〈qa(x, 0)|qa(x,−iβ)〉 = [G(x,−iβ; x, 0)]aa = V −1e−βm [L(x)]aa , (2.4.20)
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where we used that δ(x = 0) = V −1 in a finite volume. Inserting (2.4.20) into (2.4.7),
we find

e−β[Fq(x)−m] =
∑
a

1
Nc

∑̃
A
〈A| [L(x)]aae−βHA(A) |A〉

= 1
Nc

∑̃
A
〈A| e−βHA(A) trc L(x) |A〉 , (2.4.21)

where trc is the matrix trace in color space. We did not assume any cyclic property of
the sum over |A〉, since this does not hold as the sum is not over a complete set, i.e.
it is not a trace. Rather, L contains a classical field and can be moved past e−βHA(A).
Dividing (2.4.21) by the partition function of the pure gluon system, Z = e−βF , we find

e−β∆Fq(x) = 1
Nc
〈trc L(x)〉 , (2.4.22)

where 〈·〉 is the thermal expectation value, defined for an operator O as

〈O〉 = 1
Z

Tr
(
e−βHO

)
, (2.4.23)

and ∆Fq(x) = Fq(x)−F −m. If it is correct that Fq is a free energy, then ∆F would be
interpreted as is the average change in free energy not coming from the rest mass upon
adding a quark to the system.

Defining the traced Polyakov loop operator

Φ(x) = 1
Nc

trc L(x), (2.4.24)

which we will also refer to as just the Polyakov loop, we find

e−β∆Fq(x) = 〈Φ(x)〉 . (2.4.25)

If we accept that Fq represents the average energy cost of adding a single quark to the
gluonic system, we draw the conclusion that

The Polyakov Loop as an Order Parameter

〈Φ〉 = 0 ⇒ ∆Fq =∞ ⇒ Free quarks cannot exist.
〈Φ〉 > 0 ⇒ ∆Fq <∞ ⇒ Free quarks can exist.

(2.4.26)

Alternatively, we can instead use (2.4.20) to say that
The Polyakov Loop as an Order Parameter

〈Φ〉 = 0⇒ The expected color-averaged quark propagator vanishes.
⇒ Single propagating quarks does not exist (on average).
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Hence, it is natural to interpret 〈Φ〉 = 0 as a criterion for confinement, and in a pure
gauge theory we should have 〈Φ〉 = 0 for a confined phase and 〈Φ〉 > 0 for a deconfined
phase.16

The derivation above is readily generalized to nq quarks and nq̃ antiquarks by in-
serting the relevant creation and annihilation operators for each quark and antiquark in
(2.4.7). The result is

exp
[
−β∆F (x1, . . . ,xnq ,y1, . . . ,ynq̃)

]
=
〈

Φ(x1) . . .Φ(xnq)Φ̄(y1) . . . Φ̄(ynq̃)
〉
, (2.4.27)

where ∆F is the change in “free energy” upon addition of quarks at x1, . . . ,xnq and
antiquarks at y1, . . . ,ynq̃ in a pure gluon system. The quantities Φ̄ for antiquarks appear
since we must replace T a → T̃ a in the Polyakov loop. This gives

Φ̄(x) ≡ 1
Nc

trc Tτ e
ig
∫ β

0 dτAa4(x,τ)T̃a

= 1
Nc

trc Tτ e
−ig
∫ β

0 dτAa4(x,τ)(Ta)T

= 1
Nc

trc
(

Tτ e
ig
∫ β

0 dτAa4(x,τ)(Ta)†
)∗

= 1
Nc

trc
(

Tτ e
ig
∫ β

0 dτAa4(x,τ)Ta
)∗

= 1
Nc

trc
(

Tτ e
ig
∫ β

0 dτAa4(x,τ)Ta
)†

= 1
Nc

trc L†(x), (2.4.28)

where we assumed that Aa4 is real and that T a is Hermitian. Furthermore, we used that
the matrix trace is invariant under transposition.

Assuming that Aa4 is real requires a comment. From the definition iAa4(τ) = Aa0(−iτ)
and the knowledge that A0(t) is a real field, it would be natural to assume that Aa4 is
imaginary. However, it is not clear that A0 should stay real when analytically continued
to imaginary times. It turns out that when converting (2.4.2) to a path integral in a
way such that only gauge-inequivalent and gauge-invariant states are counted, one can
initially set Aa0 = 0 as a gauge choice. However, in the process of implementing the
sum over only gauge invariant states in the path integral, auxiliary real fields Aa4 are
introduced. It turns out that these fields occur in the Lagrangian exactly where −iAa0
occurred in the original Lagrangian. Thus, we can directly replace Aa0 → iAa4, as long
as we remember that Aa4 is real. For a discussion of the Euclidean gauge field and its
properties, the reader is referred to Ref. [39].

16Note that we have only shown that Φ is an order parameter for heavy quark confinement. We have
not shown any relation between gluon confinement and Φ, even though it might exist.
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If we want to evaluate the Polyakov loop for an Aa4 that is complex, Φ̄ is given by

Φ̄(x) = 1
Nc

trc Tτ e
−ig
∫ β

0 dτAa4(x,τ)(Ta)T

= 1
Nc

trc
(

T̄τe
−ig
∫ β

0 dτAa4(x,τ)(Ta)
)T

= 1
Nc

trc T̄τe
−ig
∫ β

0 dτAa4(x,τ)(Ta)

= 1
Nc

trc L̄(x), (2.4.29)

where T̄τ is anti-time ordering, which orders terms in the opposite order from the time
ordering operation. We must change to anti-time ordering upon pulling the time ordering
inside the transposition operation since transposition reverses the order of a product of
matrices. In the last line we defined the conjugate Polyakov loop L̄, which is a term
we will also use to refer to Φ̄. Why we would want to consider a complex gauge field
is at first sight puzzling. It is related to the case of µ 6= 0, where the Euclidean action
becomes complex. We will postpone the discussion of this until Sec. 3.5.

2.5 Dual Systems
Since confinement happens at low temperatures, we should have that 〈Φ〉 = 0 at low T
and 〈Φ〉 6= 0 at high T . In other words, the system is disordered at low temperatures
and ordered at high temperatures. This behavior is opposite to typical order parameters
such as magnetization in an Ising system and is at first sight puzzling. However, one
can gain insight into this behavior by studying so-called dual systems. It turns out,
as first discovered by Kramers and Wannier [40, 41], that if we write high-temperature
and low-temperature series expansions of the partition function of a 2D Ising model on
a square lattice, there is a special one-to-one correspondence between the terms in the
two series. With a modification of the coupling, one can transform the low-temperature
expansion of the 2D Ising model into the high-temperature expansion, and vice versa.
More precisely, this means that the series expansions of the free energy at low and high
temperatures, FL and FH respectively, can be written as

FL(β, J) = l(K) + s(K), (2.5.1)
FH(β, J) = h(K̃) + s(K̃), (2.5.2)

where s(x) is an infinite series in x, h(x) and l(x) some finite series in x, and K and
K̃ two functions of βJ , where J is the coupling between two neighbouring spins. The
significance of these equations lies in the fact that the same series expansion s(x) occurs
in both expressions, only evaluated at different arguments. Since both series give the
exact free energy when they are not truncated, we can write

FL(β, J) = FH(β, J) = h(K̃(K)) + s(K̃(K)). (2.5.3)
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Thus, with the appropriate modification of the temperature, realized as K → K̃, the
low-temperature Ising model can be described by an Ising model at high temperature.
Since the mapping K ↔ K̃ interchanges low and high temperatures, we have that the
dual description of the Ising model has net magnetization at high temperatures. This is
exactly how the Polyakov loop expectation value is shown to behave at the qualitative
level.

While most systems are not self-dual, we can sometimes find two different systems
such that the low-temperature description of one system is dual to the high-temperature
description of the other. Interestingly, the 3D Ising model on a square lattice is dual to
a lattice Z2 gauge theory on the same lattice [42], indicating the possibility of SU(N)
gauge theory being dual to some Ising-like system which is ordered at low temperatures.
Feeding this idea is Svetitsky and Yaffe’s conjecture [43], which is obtained using univer-
sality arguments, that a (d+ 1) dimensional gauge theory has the same critical behavior
as a d-dimensional spin model with the same global symmetry.

Finally, we mention, as pointed out in Ref. [44], that in the strong coupling limit an
SU(N) gauge theory at temperature T can be approximately described as an XY -model
at temperature ∼ T−1, where 〈Φ〉 corresponds to the order parameter for magnetization
in the latter model.17 With the knowledge of dual systems in mind, the behavior of the
Polyakov loop is less perplexing.

2.6 Center Symmetry and its Spontaneous Breaking
In the study of phase transitions one finds that when an order parameter becomes non-
zero, it is associated with the spontaneous breaking of some symmetry. As was first
shown by t’Hooft [45], and as will be described in the following, this is also the case in
the deconfined phase.

We pointed out in Sec. 2.1 that the gauge transformation of the gluon field takes the
form

Aµ(x)→ Ω(x)Aµ(x)Ω†(x)− i

g
[∂µΩ(x)] Ω†(x) (2.6.1)

for any Ω(x) ∈ SU(Nc). This transformation leaves the gluonic Lagrangian (2.4.1)
invariant and is thus a symmetry of the action of pure gauge theory. However, for a
generic Ω(x) this transformation ruins the periodicity in imaginary time, as required for
the field configurations summed over in the partition function. Let us rename the gauge
fields Aaµ(x,−iτ) → Aaµ(x, τ), and similarly for the gauge transformations and other
time-dependent fields to be introduced. Restricting to transformations that satisfy

Ω(x, τ) = Ω(x, τ + β) (2.6.2)

solves the problem, but it turns out that there is a larger group of symmetries that leaves
the action invariant. Assume instead a generic gauge transformation that satisfies

Ω(x, τ + β) = G(x, τ)Ω(x, τ), (2.6.3)
17The XY -model is a generalization of the Ising model, where the direction of the spins can take

continuous values in a 2D plane.
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for some G(x, τ) ∈ SU(Nc). Let A′µ be the transformed field:

A′µ(x, τ) = Ω(x, τ)Aµ(x, τ)Ω†(x, τ)− i

g
[∂µΩ(x, τ)] Ω†(x, τ). (2.6.4)

We then get

A′µ(x, τ + β) = G(x, τ)A′µ(x, τ)G†(x, τ)− i

g
[∂µG(x, τ)]G(x, τ)†. (2.6.5)

If G(x, τ) is constant in space and time and commutes with A′µ for all (x, τ), then

A′µ(x, τ + β) = A′µ(x, τ). (2.6.6)

Since Aµ is a matrix in the fundamental representation of SU(Nc), which is irreducible,
G is proportional to the identity matrix by Schur’s lemma. Let G = λINc , where INc is
the Nc×Nc identity matrix and λ ∈ C. Since we know that G ∈ SU(Nc), we must have

detG = λNc = 1. (2.6.7)

Thus, λ = λn is one of the Nc-th roots of unity, and all possible matrices G are given by

Gn = λnINc = e−2πin/NcINc , n = 0, . . . , Nc − 1. (2.6.8)

Clearly {Gn} forms a finite group under matrix multiplication that is isomorphic to ZNc .
Since {Gn} contains all elements that commute with all other elements of SU(Nc), it is
the the center subgroup of SU(Nc).18

Before proceeding, a comment about terminology is warranted. Non-periodic trans-
formations of the kind shown in (2.6.3) are perfectly valid gauge transformations as
normally defined in Minkowski space. However, if we restrict the term “gauge trans-
formation” to mean transformations that satisfy imaginary time periodicity, as is often
done in the literature on thermal field theory, then we might refer to the transformation
in (2.6.3) with G = Gn 6= 1Nc as a twisted gauge transformation or a center trans-
formation. In this language, twisted gauge transformations are not a subset of gauge
transformations. If we take the view that our fields are defined on a Euclidean space-
time, which then corresponds to the space S1 × R3, it appears natural to ask that our
gauge transformations are single-valued on that space-time. We will refer to invariance
under twisted gauge transformations as center symmetry.

Restricting the definition of gauge transformations is also useful upon the introduc-
tion of dynamical fermions. A basic result from thermal QFT in the imaginary time
formalism states that for a partition that includes fermions, only fermionic fields satis-
fying

ψ(x, τ + β) = −ψ(x, τ) (2.6.9)
18For any group G, the center group is the subgroup of elements that commute with all elements in

G.
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are included in the sum over field configurations [36, 37]. However, a fermionic field that
changes as ψ → ψ′ under a twisted gauge transformation satisfies

ψ′(x, τ + β) = Ω(x, τ + β)ψ(x, τ + β) = −λnΩ(x, τ)ψ(x, τ) = −λnψ′(x, τ), (2.6.10)

which does not have the required anti-periodicity for n 6= 0.
Under a gauge transformation, the Polyakov loop transforms as

L(x)→ L′(x) = Ω(x, β)L(x)Ω†(x, 0). (2.6.11)

This follows from the gauge-transformation properties of the so-called Wilson line, which
is a Minkowski space generalization of L. We do not prove this equation and instead
refer the reader to the proof in Ref. [11]. We note from (2.6.11) that L is not a gauge
invariant quantity, although its trace might be. Since equation (2.6.11) also holds true
for a twisted gauge transformation, it gives that the traced Polyakov loop transforms
into

Φ′(x) = 1
Nc

Tr
[
λnΩ(0,x)L(x)Ω†(0,x)

]
= λn

1
Nc

Tr [L(x)] = λnΦ(x). (2.6.12)

Thus, we see that the traced Polyakov loop is gauge invariant (n = 0), but not center
invariant. This means that

〈Φ〉 → λn 〈Φ〉 , (2.6.13)
under a twisted gauged transformation. However, if center symmetry is a symmetry of
the partition function, we conclude that

Center Symmetry and the Polyakov Loop

〈Φ〉 6= 0⇒ Center symmetry is spontaneously broken.

Thus, deconfinement in pure gauge theory with static quarks is associated with sponta-
neous center symmetry breaking.

From (2.4.28) we see that Φ̄ transforms as

Φ̄→ λ∗nΦ̄ = λ−1
n Φ̄ (2.6.14)

under a twisted gauge transformation associated with the center element λn. Consider
the correlator C between nq quarks located at x1, . . .xnq and nq̃ antiquarks located at
y1, . . .ynq̃ :

C ≡
〈

Φ(x1) . . .Φ(xnq)Φ̄(y1) . . . Φ̄(ynq̃)
〉
. (2.6.15)

Under a center transformation the correlator transforms as

C → (λn)nq−nq̃C. (2.6.16)

Assume now that we are in a phase where center symmetry is not broken. Then C should
transform into itself under (2.6.16). But this is only possible if either C = 0 or if

(nq − nq̃) = 0 (mod Nc), (2.6.17)
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since λn is an Nc-th root of unity. Consequently, in the confined phase C = 0 unless
the correlator probes a configuration of quarks with integer baryon number, where the
baryon number is defined as

B = (nq − nq̃)/Nc. (2.6.18)

Thus, a configuration with non-integer baryon number will (on thermal average) not
propagate. If we accept that ∆F is an energy cost, we have that e−β∆F = C = 0 im-
plies infinite energy cost associated with a quark configuration with non-integer baryon
number.

2.7 The Polyakov Gauge
In choosing a gauge for the Aµ fields, it is convenient to use a gauge which simplifies
the Polyakov loop as much as possible. An obvious candidate would be the Weyl gauge
where A4 = 0, in which the Polyakov loop would be trivial. However, quite reassuringly,
it turns out that the Weyl gauge is not compatible with the time-periodicity required of
the thermal gauge fields [46, 47]. Instead, we can choose a so-called static gauge, where

∂τA4 = 0. (2.7.1)

That we can choose such a gauge is shown in Ref. [48]. One can furthermore rotate the
gauge fields so that A4 is in the Cartan subalgebra of su(Nc) [44], which is the algebra
spanned by the generators of SU(Nc) that commute with each other. Combining these
gauge choices gives us the Polyakov gauge, in which A4 is diagonal and time independent.
We then see that the Polyakov loop takes the simple form

L(x) = eigβA4(x) = diag(eigβ[A4(x)]11 , . . . , eigβ[A4(x)]NcNc ), (2.7.2)

where square brackets [·]ij mean that we are referring to the (i, j) matrix element. This
is a significant simplification, especially since we could drop the time ordering operator
which makes the Polyakov loop hard to manipulate in practical calculations.

In the case of SU(3) there are two Cartan generators. We use the most common set
of generators for SU(3) in the fundamental representation, which is given by T a = 1

2λa,
where λa are the Gell-Mann matrices [11, 26]. We can then write

A4 = 1
2(λ3A

3
4 + λ8A

8
4), (2.7.3)

where λ3 and λ8 are the two diagonal Gell-Mann matrices, given by

λ3 =

1 0 0
0 −1 0
0 0 0

 , λ8 = 1√
3

1 0 0
0 1 0
0 0 −2

 . (2.7.4)

Defining

q = 3
4πgβA

3
4, r =

√
3

4π gβA
8
4, (2.7.5)
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we get
gβA4 = 2π

3 diag(q + r,−q + r,−2r), (2.7.6)

which gives that the Polyakov loop is

L(x) =

e
i 2π

3 [q(x)+r(x)] 0 0
0 ei

2π
3 [−q(x)+r(x)] 0

0 0 ei
2π
3 [−2r(x)]

 . (2.7.7)

From (2.4.29) we see that the conjugate Polyakov loop is given by

L̄(x) =

e
−i 2π

3 [q(x)+r(x)] 0 0
0 e−i

2π
3 [−q(x)+r(x)] 0

0 0 ei
2π
3 [2r(x)]

 . (2.7.8)

If Aa4 is real, then L̄(x) = L†(x). Irrespective of whether this is the case, the traced
Polyakov loops are

Φ = e2πir/3

3

[
e−2πir + 2 cos

(2πq
3

)]
, (2.7.9)

Φ̄ = e−2πir/3

3

[
e2πir + 2 cos

(2πq
3

)]
, (2.7.10)

When A4 is constant in space, and thus also r and q, we have

Φ =
{

0, q = 1, r = 0
1, q = 0, r = 0

, (2.7.11)

at the classical level. Recalling (2.4.26) we conclude that a state with q = 1, r = 0 is
a confined state, while a state with q = 0, r = 0 is a deconfined state. For a quantum
state we reach the same conclusion if the given state is a simultaneous eigenstate of r
and q with the eigenvalues being the above combinations.

Note that if we in (2.7.9) and (2.7.10) set r to some integer, we get states which only
differ by a center transformation, and |Φ| is identical for any r ∈ Z. Furthermore, Φ is
periodic in q and r, with both having periods of 3. Thus, we can with full generality
restrict q ∈ [0, 3] and r ∈ [0, 3].

Finally, assuming that A4 is spatially constant means that we ignore the possible
formation of domains with different “center phases”. This is analogous to how we can
have domains with opposite magnetizations in an Ising model.





CHAPTER 3
Modeling Quark

Confinement

In Chapter 2 it was shown how the Polyakov loop is an exact order parameter for a
gauge theory with infinitely heavy quarks. However, in theories with quarks of finite
mass, such as QCD, our analysis breaks down, and center symmetry is explicitly broken
by fermionic terms. Despite this, lattice studies have shown that the Polyakov loop
still is an approximate order parameter for deconfinement [44]. This is analogous to the
fact that magnetization in an Ising model is an approximate order parameter upon the
introduction of an external magnetic field.

Due to the challenging nature of studying non-Abelian gauge theories, the QCD phase
diagram is often instead studied with effective models without gauge fields. Examples
of such models include the Nambu-Jona-Lasinio (NJL) model [49, 50] and the linear
sigma model [51]. The latter initially described nucleons and mesons but was later
reinterpreted to describe mesons and quarks, and it is usually referred to as the quark-
meson model. These models do not take confinement into account in their standard
form, but in 2004 Fukushima [24] showed how the NJL model could be extended to
also have a confining mechanism. This involves including a static temporal background
gauge field and a phenomenological potential associated with it. In this chapter we show
how the Polyakov loop can be incorporated into a fermionic Lagrangian to model quark
confinement.

For a review on effective Polyakov loop modeling, on which this section is partly
based, see Ref. [44].

25
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3.1 The Partition Function of Fermions in a Gluonic
Background

One of the elementary results of thermal QFT in imaginary time is that the grand
canonical partition function of a field φ with canonical momentum π is given by the
path integral [36, 37]

Z =
∫

(A)PBC

Dφ
∫
Dπ exp

{∫ β

0
dτ
∫

d3x [iπ∂τφ−H(π, φ) + µN (π, φ)]
}
, (3.1.1)

where µ is the chemical potential corresponding to the conserved charge density N .
(A)PBC refers to the fact that in imaginary time, we should only integrate over fields
satisfying either periodic and anti-periodic boundary conditions, where the latter must
be choosen for fermions. More precisely

φ(x, τ + β) = φ(x, τ) if φ is bosonic, (3.1.2)
φ(x, τ + β) = −φ(x, τ) if φ is fermionic. (3.1.3)

Note that Z must be dimensionless, and thus so must DφDπ. This is achieved by
interpreting the path integrals as integrals over the dimensionless Fourier coefficients of
the fields.

Consider an Nc-plet of Dirac spinor fields in a background temporal gauge field that
is treated classically. The Lagrangian reads

L = ψ̄ [iγµ(∂µ − igδµ0A0)−m]ψ, (3.1.4)

where we remind that A0 = Aa0T
a. We can think of the background gauge field as the

mean value of the quantum gauge field A0 = 〈Aqu
0 〉. The Lagrangian is clearly symmetric

under ψ → e−iαψ, which via Noether’s theorem leads to the conserved current

jµ = ψ̄γµψ. (3.1.5)

This gives the conserved charge

Q =
∫

d3xj0 =
∫

d3xψ†ψ, (3.1.6)

which is the conservation of quark number (and thus also baryon number). We refer to
the chemical potential corresponding to this conserved charge, µ, as the quark chemical
potential, and define µB = 3µ to be the baryon chemical potential.

The conjugate momenta for ψ and ψ† are πψ = iψ† and πψ† = 0. Deriving the
Hamiltonian corresponding to (3.1.4) in the usual way, setting N = j0 and introducing
the Euclidean gauge field, we find that

H− µN = ψ̄
[
iγi∂i − igγ0A4 +m

]
ψ − µψ̄γ0ψ

= ψ̄
[
iγi∂i − γ0(igA4 + µ) +m

]
ψ. (3.1.7)
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Thus, we see that A4 plays the role of an imaginary chemical potential. Alternatively,
the chemical potential acts as an imaginary gauge field. Combining (3.1.1) and (3.1.7),
we have that the partition function is

Z =
∫

ABPC

iDψ†Dψ exp
{∫ β

0
dτ
∫

d3xψ†
[
−∂τ − iγ0γi∂i + igA4 + µ− γ0m

]
ψ

}

=
∫

ABPC

iDψ†Dψ exp (−SE) , (3.1.8)

where we in the second line defined the Euclidean action SE .
Assume that we are in the Polyakov gauge, as described in Sec. 2.7, and that A4

does not depend on the spatial position. Since A4 by assumption is spatially constant
and, by gauge choice, time-independent, we can write the action as a sum over Fourier
modes. We insert the Fourier expanded fields

ψ(x, τ) = 1√
V

∑
p,n

ψ(p, n)ei(p·x+ωnτ), (3.1.9)

ψ†(x, τ) = 1√
V

∑
p,n

ψ†(p, n)e−i(p·x+ωnτ), (3.1.10)

where the factors V − 1
2 are separated out to make the Fourier coefficients dimensionless.

The antiperiodicity of the fermion fields give

eiωnβ = −1 ⇒ ωn = (2n+ 1)πT. (3.1.11)

The energies ωn are known as the fermionic Matsubara frequencies. After inserting the
Fourier expansions, the Euclidean action is given by

−SE = β
∑
p,n

ψ†(p, n)
[
−iωn + igA4 + µ+ γ0γipi − γ0m

]
ψ(p, n) (3.1.12)

Inserting (3.1.12) into the partition function and writing the path integral as integrals
over the Fourier coefficients, we find

Z =
∏
n,p

∫
i d[ψ†(p, n)] d[ψ(p, n)] e−iψ†(p,n)D(p,n)ψ(p,n), (3.1.13)

where

D(p, n) = iβ
[
−iωn + igA4 + µ+ γ0γipi − γ0m

]
,

= iβ
[
(−iωn + µ+ γ0γipi − γ0m)⊗ INc + igI4 ⊗A4

]
, (3.1.14)

In the second line we wrote out explicitly the identity matrices to emphasize that D(p, n)
are 4Nc × 4Nc matrices. Changing integration variable iψ† → ψ† and using the well
known formula for a Gaussian Grassmann integral [11, 26]∫

dψ†dψe−ψ†Aψ = detA, (3.1.15)
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we find that
lnZ = ln

∏
n,p

detD(p, n) =
∑
n,p

ln detD(p, n). (3.1.16)

Defining the 4× 4 matrix

K = −iωn + µ+ γ0γipi − γ0m, (3.1.17)

D(p, n) takes the block matrix form

D(p, n) = iβ


K + (ig[A4]11)I4 0 . . . 0

0 K + (ig[A4]22)I4
...

... . . .
0 . . . K + (ig[A4]NcNc)I4

 .
(3.1.18)

Using that the determinant of a block diagonal matrix is the product of the determinant
of the blocks, we find

lnZ =
∑
n,p

ln

(iβ)Nc
Nc∏
j=1

det
(
K + ig[A4]jj

)
=
∑
n,p

Nc∑
j=1

ln det
[
iβ
(
K + ig[A4]jj

)]
.

Note thatK(µ)+ig[A4]jj = K(µ+ig[A4]jj), where µ is to be interpreted an argument of
K. Thus, from here our derivation coincides with the derivation of the partition function
for a free Fermi gas, except we have Nc independent fermion types labeled by c which
each have a different effective chemical potential that is given by

µ̃j = µ+ ig[A4]jj . (3.1.19)

The next step is to calculate the determinant of the matrices K(µ̃c) and carry out the
sum over the Matsubara frequencies. This procedure can be found in any treatment on
elementary thermal field theory [36, 37] and is also carried out explicitly in Appendix A.1.
The result, after taking the thermodynamic limit where can replace

∑
p
→ V

∫ d3p

(2π)3 , (3.1.20)

is

lnZ = 2V
Nc∑
j=1

∫ d3p

(2π)3

{
βωp + ln

[
1 + e−β(ωp−µ̃j)

]
+ ln

[
1 + e−β(ωp+µ̃j)

]}
, (3.1.21)

which is the well known result for the partition function of a free Fermi gas, except that
we have Nc fermion species with different chemical potentials µ̃c. The different signs
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of the chemical potential correspond to particles and antiparticles. The factor of two
arises because each spin-1

2 fermion has two spin polarizations. We finally note that the
first term is divergent. It is the famous vacuum energy, which we for the time being will
ignore, but whose divergence we cure with renormalization in Chapter 4.

We can rewrite (3.1.21) in terms of the Polyakov loop, by using that

Nc∑
j=1

ln
[
1 + e−β(ωp−µ̃j)

]
=

Nc∑
j=1

ln
[
1 + eiβg[A4]jje−β(ωp−µ)

]

=
Nc∑
j=1

ln
[
1 + [L]jje−β(ωp−µ)

]
= trc ln

[
1 + Le−β(ωp−µ)

]
, (3.1.22)

where we in the last line use that the logarithm of a diagonal matrix is taken by applying
the logarithm to each diagonal element. Analogously we get the conjugate Polyakov loop
for the antiquark contribution with the opposite sign of µ̃j . Thus, we achieve the result
commonly cited in the literature:

Partition Function of Free Fermi Gas in Background Temporal Gauge Field

lnZ =2V
∫ d3p

(2π)3

{
trc ln

[
1 + Le−β(ωp−µ)

]
+ trc ln

[
1 + L̄e−β(ωp+µ)

]}
+ 2V Ncβ

∫ d3p

(2π)3ωp.

(3.1.23)

We emphasize that the derivation of this formula required the Polyakov gauge and that
A4 is spatially constant. By writing L̄ instead of L† we also allow for Aa4 being complex,
which is a topic we return to at the end of the chapter.

3.2 Quarks in a Nc = 3 Gluonic Background

Let us consider the case of SU(3). Equation (3.1.23) is not the most useful way to write
the partition function. Instead, we write

Nc∑
j=1

ln
[
1 + [L]jje−β(ωp−µ)

]
= ln

 3∏
j=1

(
1 + [L]jje−β(ωp−µ)

) . (3.2.1)

The argument of the logarithm on the left hand side reads

1 + (L11 + L22 + L33)e−y + (L11L22 + L22L33 + L33L11)e−2y + L11L22L33e
−3y, (3.2.2)



30 CHAPTER 3. MODELING QUARK CONFINEMENT

where y = β(ωp − µ). From (2.7.7), which gives the matrix form of L in the Nc = 3
Polyakov gauge, we see that

L11 + L22 + L33 = 3Φ, (3.2.3)
L11L22 + L22L33 + L33L11 = 3Φ̄, (3.2.4)

L11L22L33 = 1. (3.2.5)

The result for antiparticles is obtained by interchanging Φ ↔ Φ̄ and µ → −µ. Hence,
for Nc = 3 the partition function reads

lnZ = 2V
∫ d3p

(2π)3 ln
[
1 + 3Φe−β(ωp−µ) + 3Φ̄e−2β(ωp−µ) + e−3β(ωp−µ)

]
+ 2V

∫ d3p

(2π)3 ln
[
1 + 3Φ̄e−β(ωp+µ) + 3Φe−2β(ωp+µ) + e−3β(ωp+µ)

]
+ 2V Ncβ

∫ d3p

(2π)3ωp.

(3.2.6)

The expectation value of the quark number, where quarks and antiquarks count oppo-
sitely, is

〈N〉 =
〈∫

d3xN
〉

= 1
β

∂

∂µ
lnZ, (3.2.7)

since for a general system in the grand canonical ensemble with a conserved quantity N ,

1
β

∂

∂µ
lnZ = 1

β

1
Z

∂

∂µ

∑
n

〈n| e−β(En−µN) |n〉 = 1
Z

Tr
{
e−β(H−µN)N

}
. (3.2.8)

Differentiating (3.2.6) with respect to µ, we get

nq ≡ 〈N〉 /V = 6
∫ d3p

(2π)3

{
nF
(
β [ωp − µ] ,Φ, Φ̄

)
− ñF

(
β [ωp + µ] ,Φ, Φ̄

)}
(3.2.9)

where

nF (y,Φ, Φ̄) = 1 + 2Φ̄ey + Φe2y

1 + 3Φ̄ey + 3Φe2y + e3y , (3.2.10)

ñF (y,Φ, Φ̄) = 1 + 2Φey + Φ̄e2y

1 + 3Φey + 3Φ̄e2y + e3y , (3.2.11)

are the effective Fermi distribution functions for the quarks and antiquarks, respectively.
In the confined limit where Φ = Φ̄ = 0, we have that the distribution functions are
Fermi Distribution Functions in the Confined State

nF (β [ωp − µ] , 0, 0) = 1
1 + eβ(3ωp−3µ) (3.2.12)

ñF (β [ωp + µ] , 0, 0) = 1
1 + eβ(3ωp+3µ) (3.2.13)
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These functions are exactly the Fermi distribution functions for free fermions with energy
3ωp and chemical potential ±3µ = ±µB. We interpret this result to mean that in the
state where Φ = Φ̄ = 0, the relevant degrees of freedom are baryons and antibaryons, at
least in a statistical sense. We have not yet implemented any mechanism for determining
Φ as a function of T , but knowing that Φ = 0 should occur at low temperatures, we
might reasonably call the above the low-temperature limit.

Let us also consider the case where Φ = Φ̄ = 1. The Fermi distribution functions
then take the form

nF (y, 1, 1) = ñF (y, 1, 1) = 1 + 2ey + e2y

1 + 3ey + 3e2y + e3y = (1 + ey)2

(1 + ey)3 = 1
1 + ey

. (3.2.14)

Hence, we have Fermi distribution functions

nF (β [ωp − µ] , 1, 1) = 1
1 + eβ(ωp−µ) , (3.2.15)

ñF (β [ωp + µ] , 1, 1) = 1
1 + eβ(ωp+µ) , (3.2.16)

that describes free quarks and antiquarks, as expected in the deconfined phase. Since
we should have Φ = Φ̄ = 1 at high temperatures, we refer to the above as the high-
temperature limit.

If µ = 0 the quark number satisfies 〈Nq〉 = 0. This is as expected since with µ = 0
we have not introduced any imbalance in the numbers of quarks and antiquarks.

We should also ask if two-quark bound states form in the confined state, thus de-
scribing mesons in a statistical sense. In the expression for 〈N〉 in the confined limit, we
did not find any terms (1+e−2βω)−1, indicating that mesons do not form. However, such
a state would not contribute to the quark number 〈N〉, since each meson state has net
quark number zero. On the other hand, mesonic states should contribute to the energy
density. The energy density ε = 〈H〉 /V is given by

ε = 1
V

[
µ
∂

∂µ
(T lnZ)− ∂

∂β
(lnZ)

]
, (3.2.17)

which one can promptly work out from the definition of Z. Carrying out these derivatives
and setting Φ = Φ̄ = 0, i.e. considering the confined limit, gives

ε = 2V
∫ d3p

(2π)3

[ 3ωp

1 + eβ(3ωp−3µ) + 3ωp

1 + eβ(3ωp+3µ)

]
. (3.2.18)

Thus, it appears that the quarks confine into only baryonic states in our toy model. In
Chapter 4 we will see that this makes it natural to combine the model presented here
with separate mesonic fields.

3.3 The Effective Potential
In the previous section we showed how a constant classical background gauge field A4
could induce quark confinement, given that its value is chosen appropriately. However,
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A4, and thus also Φ(A4) and Φ̄(A4), is a free parameter since we have not included any
dynamical mechanism for determining A4 as a function of temperature and chemical
potential. We do not want A4 to remain free since the external gluon field is not a
quantity we can manipulate in the laboratory. Thus, we need to find a way to determine
A4. To do this, we will use the concept of an effective potential.

We first consider some thermodynamics. The grand canonical potential G for a
system in the grand canonical ensemble is defined as [52]

G(T, µ, V ) = Ω(T, µ)V = −T logZ, (3.3.1)

where we also defined the grand canonical potential density Ω.1 As indicated by the
name, G is a thermodynamical potential, meaning that it is a Legendre transform of the
internal energy E(S, 〈N〉 , V ) ≡ 〈H〉, and it can be written as

G(T, µ, V ) = E − TS − µ 〈N〉 , (3.3.2)

where S is the entropy. Since G is a thermodynamical potential, it is subject to a general
minimum principle which states that in a system in equilibrium, any unconstrained
dynamical parameter in the potential will attain a value which minimizes the potential
for the given state variables [53]. Thus, the equations we need to determine A4(µ, T ),
and by extension Φ(µ, T ) and Φ̄(µ, T ), are

∂

∂q
G(µ, T ) = 0, ∂

∂r
G(µ, T ) = 0, (3.3.3)

where q, r are the parameters used to parametrize A4 in Sec. 2.7. However, using the
partition function in (3.2.6) to calculate G does not provide a good model since we have
excluded all gluon dynamics. We are not modeling the energy cost of having a gluonic
background field A4. To address this problem, it is useful to consider the effective
potential. We cover the subject following the approach of Ref. [39], which is based on
the original work in Ref. [54].

For simplicity, let us consider the partition function for a real scalar field φ with
Euclidean action SE , which is given by

Z =
∫
Dφe−SE (3.3.4)

after the conjugate momentum is integrated out.2 Consider writing SE and Dφ in terms
of the dimensionless Fourier modes φp,n of φ(x), so we get

exp[−βV Ω] = Z =
∫ ∞
−∞

dφ0,0

∫  ∏
(p,n)6=(0,0)

dφp,n

 e−SE({φp,n}), (3.3.5)

where we in the first equality just inserted the definition of Ω in terms of Z and in
the second factored out the (0, 0)-mode. Let us rename φ0,0 = φ̄ and refer to it as the

1Writing G(T, µ, V ) = Ω(T, µ)V assumes that the system under study is homogeneous.
2We implicitly assume the imaginary time periodicy requirement.
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condensate. Imagine now carrying out the integral over all Fourier modes except φ̄.
Define the result to be

exp[−βV Ω] =
∫ ∞
−∞

dφ̄ exp
[
−βV Ueff(φ̄)

]
, (3.3.6)

where Ueff is the effective potential density, which we usually just refer to as the effective
potential. Expanding Ueff about a minimum φ̄m,3

Ueff(φ̄) = Ueff(φ̄m) + 1
2U
′′
eff(φ̄m)(φ̄− φ̄m)2 + . . . , (3.3.7)

we can approximate the partition function to be

exp[−βV Ω] ≈ exp
[
−βV Ueff(φ̄m)

] ∫ ∞
−∞

dφ̄ exp
[
−βV2 U

′′
eff(φ̄m)(φ̄− φ̄m)2

]
= exp

[
−βV Ueff(φ̄m)

]√ 2π
βV U ′′eff(φ̄m)

, (3.3.8)

which gives that
Ω = Ueff(φmin) +O

( lnV
V

)
. (3.3.9)

From this equation we draw the conclusion that in the thermodynamic limit, when
V → ∞, the effective potential evaluated at the minimum coincides with the grand
potential density. Thus, in the thermodynamic limit we need not consider fluctuations
in the condensate mode, and it will take on the value that minimizes Ueff(φ̄).

It should be noted that the way we have defined the effective potential here differs
slightly from the typical definition used in texts on QFT, such as Refs. [11, 26, 28],
which is based on the Legendre transform of the generating functional in the presence of
an external source. However, the two definitions are entirely equivalent, as pointed out
in Ref. [54].

We now have a hypothetical process that can be used to generate an effective potential
for the static background field A4. Namely, using the pure gluonic Lagrangian (2.4.1),
we can integrate out all the spatial gauge fields and all the Fourier modes of A4 except
the condensate mode,4 in the same way as in (3.3.6), to obtain a potential for the
background gauge field. Physically it means that we integrate out all quantum and
thermal fluctuations on top of the constant background field A4. As a result we get a
potential Uglue(q, r, T ) that represents the free energy cost of having a constant temporal
background gauge field in a pure gauge theory. We can then add Uglue to the grand
potential obtained from (3.2.6) to get a model that incorporates a sensible dynamical
way of determining Φ(µ, T ) and Φ̄(µ, T ). Note that this process still is an approximation,
since we do not include the fermion-gluon interaction term Ψ̄iγµAaµT aΨ when we are
integrating out gauge fields to obtain Uglue, and we are still coupling only the temporal
gauge field to the quarks.

3If there is no unique minimum, as is the case when there is spontaneous symmetry breaking, we
must choose a particular minimum by adding a source to the action [39].

4The temporal Fourier modes of A4 are zero by gauge choice and need not be integrated out.
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3.4 Phenomenological Polyakov Loop Potentials

Calculating Uglue from first principles is highly non-trivial, and one usually instead uti-
lizes phenomenological potentials Uglue(Φ, Φ̄, T ) whose form are based on symmetry con-
siderations and whose parameters are fitted with data from pure glue lattice simulations.
To understand common choices of potentials we should summarize some of the results
from SU(3) lattice gauge theory.

It is known from lattice simulations that a pure SU(3) gauge theory undergoes a first-
order phase transition, corresponding to gluonic deconfinement, at T0 = 270 MeV [55].
A first-order transition is expected on the basis of universality, as argued by Svetitsky
and Yaffe in Refs. [43, 56]. In addition to the location of the phase transition, various
thermodynamical properties such as the pressure and internal energy as functions of
temperature have been established [57–59]. Finally, one also has simulations of the
Polyakov loop as a function of temperature [60].

With knowledge about pure SU(3) gauge theory from the lattice one can fit a phe-
nomenological potential. We can for example fit the potential so that three quantities
from lattice simulations are reproduced: the critical temperature where Uglue admits a
phase transition, the pressure of the gluonic system at the phase transition, and the value
of the Polyakov loop at the phase transition, i.e. T0, P (T0) and Φ(T0). The first require-
ment necessitates that the form of the effective potential admits a first-order transition
in the first place. For the second criterion, we can find the pressure from the effective
potential as

P = −Uglue(Φ, Φ̄, T ) (3.4.1)

by using the general relation P = − ∂G
∂V . It should be noted that the above argument

only justifies why three fit parameters are likely to be needed, and it is not meant to be
a claim on how to best perform the fit. In reality one would likely obtain better results
with first fixing the phase transition point and then doing a simultaneous least squares
fits of P (T ) and Φ(T ) versus lattice data.

Multiple things can be said about the form of Uglue on the basis of general consider-
ations. Uglue must be symmetric under center transformations since the gluonic action
is center symmetric. Remembering the transformation rule for Φ and Φ̄ under center
transformations, (2.6.12) and (2.6.14), we see that the potential can be a function the
terms ΦΦ̄, Φ3 and Φ̄3 only. Additionally, there is no reason for any asymmetry between
Φ and Φ̄ in a pure gluonic system, and we thus require that the potential be symmetric
under Φ↔ Φ̄. Finally, we must demand that the minimum of Uglue at low temperatures
is at Φ = Φ̄ = 0. At high temperatures it should preferably equal to or asymptotically
approach Φ = Φ̄ = 1.

Several potentials have been suggested in the literature [61–64], and some of the most
frequently used are compared in Ref. [65]. The number of fit parameters vary from two
[63] to seven [61]. One of the models by Ratti, Rößner, Thaler and Weise [62] takes the
form

URRTW
T 4 = −1

2a(T )ΦΦ̄ + b(T ) ln
[
1− 6ΦΦ̄ + 4(Φ3 + Φ̄3)− 3(ΦΦ̄)2

]
, (3.4.2)
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with the temperature dependent parameters

a(T ) = a1 + a2

(
T0
T

)
+ a3

(
T0
T

)2
, (3.4.3)

b(T ) = b1

(
T0
T

)3
, (3.4.4)

with T0 = 270 MeV and fit parameters a1 = 3.51, a2 = −2.47, a3 = 15.22, b1 = −1.75.
Fukushima proposes a similar potential of the form [63]

UFuku
T 4 = − b

T

{
ce−aT0/TΦΦ̄ + ln

[
1− 6ΦΦ̄ + 4(Φ3 + Φ̄3)− 3(ΦΦ̄)2

]}
, (3.4.5)

with free parameters a, b, c, T0. The parameters a and T0 occur as a product, and they
can thus be considered together as one independent parameter α = aT0. In his original
work Fukushima does not fit α and b to lattice data, but instead chooses α so the
deconfinement temperature is reproduced and b so that the chiral and deconfinement
phase transitions happen at the same temperature when the potential is combined with
the NJL model. c is chosen to be c = 54.

Figure 3.1 shows the potential UFuku as function of Φ = Φ̄ at three different tem-
peratures with a = 2.46. The latter chosen so a phase transition occurs roughly at T0.
Figure 3.2 compares the minimum location of the Fukushima and RRTW potentials as
function of temperature.

The appearance of the same logarithmic factor in both potentials deserves a comment.
The term is motivated by the integration measure, also known as the Haar measure, of
group integration over SU(3). It turns out that for the Polyakov gauge, the argument
of the logarithm in the potentials (3.4.2) and (3.4.5) corresponds to the Haar measure
[63].

The potentials presented above do not take into account the backreaction of quarks
onto the gluonic sector. This is due to the approximations noted at the end of Sec. 3.3.
However, from the fact that the running coupling in QCD depends on the number of
quark flavors, as evident from the one-loop expression

g(Λ, Nf )2

4π = 2π
(11− 2

3Nf )
1

ln
(

Λ
ΛQCD

) , (3.4.6)

we conclude that the behavior in the gluonic sector should also depend on Nf , since
g determines the strength of the interactions between the gauge fields. The authors in
Refs. [66, 67] parametrize this dependence as

T0(Nf ) = T̂ e
− 2π
α0

(11− 2
3Nf )−1

, (3.4.7)

where T̂ = 1.77 GeV and α0 = 0.304, which yields T0(Nf = 0) = 270 MeV. This
expression is heuristically obtained by assuming that the temperature dependence of g
is governed by (3.4.6) with Λ = T and that the phase transition occurs at a specific
coupling, so that we can solve

g(T0(Nf ), Nf ) = g(T0(0), 0) (3.4.8)
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Figure 3.1: UFuku/(bT 3
0 ) as function of Φ = Φ̄ for a = 2.46 for three different tempera-

tures. A first-order phase transition happens at roughly T0.
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Figure 3.2: Comparison of the minimum location of UFuku and URRTW as function of
temperature. Note that Φmin = Φ̄min, and that a first-order phase transition occurs at
T ≈ T0.
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for T0(Nf ). With Nf = 2 the relation (3.4.7) yields

T0 ≈ 208 MeV. (3.4.9)

Finally, we point out that some works introduce a µ-dependence in T0 [66]. How-
ever, it was shown in Ref. [68] that the phase diagram is highly sensitive to the exact
parametrization of T0(µ). For this reason, to avoid overfitting, we do not use such a
dependence in this thesis.

3.5 The Relation Between Φ and Φ̄ at µ 6= 0
In Sec. 2.4 we defined the Polyakov loop and the conjugate Polyakov loop:

L[A4] = Tτ e
ig
∫ β

0 dτA4(x,τ) = eigβA4(x), (3.5.1)

L̄[A4] = T̄τe
−ig
∫ β

0 dτA4(x,τ) = e−igβA4(x), (3.5.2)

where the rightmost equations apply in the Polyakov gauge only. We also defined (in
the Polyakov gauge)

Φ = 1
Nc

trc eigβA4(x), Φ̄ = 1
Nc

trc e−igβA4(x). (3.5.3)

These are operators in a quantum theory, and the quantities which are related to the
quark (possibly pseudo) free energies are 〈Φ〉 and

〈
Φ̄
〉
.

It turns out that
〈
Φ
〉∗ =

〈
Φ̄
〉
for µ = 0, while for µ 6= 0 we have

〈
Φ
〉∗ 6= 〈

Φ̄
〉
[38, 44,

69, 70]. Furthermore, it is found that
〈
Φ
〉
and

〈
Φ̄
〉
are both real, and with

〈
Φ̄
〉
6=
〈
Φ
〉

for µ 6= 0 [44, 70, 71]. In Ref. [44] this is shown nonperturbatively.
Exactly how to treat the µ 6= 0 case appears to be the subject of some disagreement,

and various solutions and explanations are proposed in the literature [38, 69, 72–74]. To
discuss it, let us start by examining how we constructed our toy model for confinement
in Sec. 3.2.

In Sec. 3.2 we considered quantum fermionic fields which were in a constant temporal
background field Abk

4 . As we did not consider fluctuations in Abk
4 it was considered to

represent the mean value of the quantum field: 〈Aqu
4 〉 = Abk

4 . Thus, the quantity which
appeared in our theory really was L[〈Aqu

4 〉] and not 〈L[Aqu
4 ]〉 (and similar for L̄). Let us

now include a 0-subscript to refer to these approximations to
〈
Φ
〉
and

〈
Φ̄
〉
:

Φ0 = 1
Nc

trc eigβ〈A
qu
4 〉, Φ̄0 = 1

Nc
trc e−igβ〈A

qu
4 〉. (3.5.4)

Perturbative QCD shows that [75–77]〈
Φ
〉

= Φ0 +O(g2),
〈
Φ̄
〉

= Φ̄0 +O(g2), (3.5.5)
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so that in the regime above the deconfinement phase transition, where g is small, we are
at least approximately dealing with

〈
Φ
〉
and

〈
Φ̄
〉
. If we assume that Abk

4 is Hermitian,5
we necessarily find that

Φ∗0 = Φ̄0 ⇒ |Φ0| = |Φ̄0|, (3.5.6)

However, as mentioned, it is seen analytically [44] that for µ > 0 one has
〈
Φ
〉
6=
〈
Φ̄
〉
with

both being real.6 Thus, we want our model to capture |Φ0| 6= |Φ̄0|, but this cannot be
obtained when choosing a mean field Abk

4 ∈ su(3), since it implies that Abk
4 is Hermitian.

In Ref. [73] it is argued that it is fluctuations that cause
〈
Φ
〉∗ 6= 〈

Φ̄
〉
, and by using

Abk
4 = 〈Aqu

4 〉 ∈ su(3) from the beginning we necessarily cannot obtain this difference
for Φ0 and Φ̄0. Thus, it seems reasonable that fluctuations cause |

〈
Φ
〉
| 6= |

〈
Φ̄
〉
|, since

evaluating (3.5.3) for a single configuration A4 ∈ su(3) can never yield Φ∗ 6= Φ̄. The
authors of Ref. [73] conclude that the mean field treatment of A4 involves |Φ0| = |Φ̄0|,
and they use a more elaborate scheme to account for fluctuations.

However, if we realize that when µ 6= 0 we can have 〈A4〉 /∈ su(3) even though each
configuration A4 separately is in su(3), then we might also obtain |Φ0| 6= |Φ̄0|. This is
possible since the introduction of a chemical potential makes the exponential weighting
factor e−SE complex [20]. Thus, in calculating 〈A4〉 for µ 6= 0, one might obtain that
〈A4〉 is non-Hermitian even though each single gauge field configuration A4 is, since
one in practice is adding up su(3) matrices weighted with the complex “probability
measure” e−SE . The case that

〈
A4
〉
is not in su(3), and thus non-Hermitian, is proposed

and discussed in Refs. [77, 78]. Pisarski and Skokov in their paper on the χM model
[21], which we will study in Chapter 5, propose an imaginary value for the gauge field
parameter r, which leads to to a non-Hermitian

〈
A4
〉
.

A third approach taken in several papers, including for example Refs. [79, 80], is to
forget about the parametrization Φ0(q, r) and Φ̄0(q, r) and vary Φ0 and Φ̄0 as two real
independent quantities. In the view of the authors of Ref. [73] this is a non-systematic
way of including fluctuations since they require that

〈
A4
〉
is Hermitian, and thus any

way of obtaining |Φ0| 6= |Φ̄0| requires treatment of the fluctuations in the gauge field.
However, since we find that Φ(q, ir) and Φ̄(q, ir) are both real and different, as we
see from (2.7.9) and (2.7.10), we might regard viewing Φ0 and Φ̄0 as real independent
quantities as equivalent to introducing a complex background mean field where we let
r → ir. Thus realizing that

〈
A4
〉
/∈ su(3) is possible justifies the use of the term mean

field for the case when Φ0 and Φ̄0 are varied as real independent quantities.
There is one more problem we must face. Let us drop the 0-subscripts on Φ0 and

Φ̄0. For the case of µ = 0, the thermal contribution to the quark effective potential,

Uq =− 2T
∫ d3p

(2π)3 ln
[
1 + 3Φe−β(ωp−µ) + 3Φ̄e−2β(ωp−µ) + e−3β(ωp−µ)

]
− 2T

∫ d3p

(2π)3 ln
[
1 + 3Φ̄e−β(ωp+µ) + 3Φe−2β(ωp+µ) + e−3β(ωp+µ)

]
(3.5.7)

5Remember that elements of su(3) are Hermitian.
6 It is also seen on the lattice based on a µ/T expansion [71] and in a SU(3) spin model similar to

QCD [70].
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is real for any q, r ∈ R since the two terms are complex conjugates of each other. However,
on the introduction of µ 6= 0 this argument breaks down, and the potential becomes
complex in general. As discussed, the solution suggested in Refs. [21, 77, 78] is to keep
q real and let r → ir so that the Polyakov loops and thus the potential become real.
This, however, leads to problems with unbounded potentials, which is a subject we will
return to discuss when we specify the explicit form of the Polyakov loop potentials we
will consider. Another option is to keep q and r real and to minimize Re Ω with respect
to (∆, q, r), which is what is suggested in Refs. [73, 74]. We will see later that this leads
to r = 0, which in the end gives a real effective potential. Either way, if we make the
speculative assumption that a complex energy density represents an unstable state, we
should choose some way of determining the parameters q and r so that they in the end
yield a real potential and real Polyakov loops. However, the problem is that the standard
thermodynamical principle of minimizing Ω(∆, q, r) with respect to (∆, q, r) no longer
applies if Ω is a complex quantity.





CHAPTER 4
The Polyakov Loop

Quark-Meson Model

In the previous chapter we showed how a temporal background gauge field could be used
to model quark confinement in a statistical sense. However, to construct an effective
model that approximates QCD, additional ingredients are needed. In particular, the
model presented in Chapter 3 does not include chiral symmetry breaking, which is an
essential feature of QCD. Furthermore, interactions between quarks should be incorpo-
rated without involving dynamical gauge fields.

In the following we present the quark-meson model for two quark flavors and show
how it exhibits chiral symmetry breaking similar to QCD. Then we summarize the work
from Refs. [1, 81–83], where the coupling constants of the QM model are calculated at
the one-loop level when mesonic fluctuations are neglected. Following this we augment
the QM model with the Polyakov loop and justify why the resulting model, which we
refer to as a PQM model, provides an effective model of QCD.

4.1 An O(4) Model with Spontaneous Symmetry Breaking

Before tackling the QM model, we will consider an O(4)-symmetric Lagrangian with four
neutral scalar fields with a quartic interaction:

L = 1
2 (∂χ)2 + 1

2m
2χ · χ− λ

4!(χ · χ)2. (4.1.1)

Here χ is a four-component field χT = (χ1, χ2, χ3, χ4) and (∂χ)2 ≡ ∂µχ · ∂µχ . The
O(4) symmetry means that the Lagrangian is invariant under transformations

χi → Rijχj , (4.1.2)

41
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for an orthogonal 4× 4 matrix Rij . O(4) is the group defined by these transformations.
The symmetry is manifest since all terms, up to irrelevant derivatives, are of the form
(χ · χ)n, and

(Rχ) · (Rχ) = (Rχ)T (Rχ) = χTRTRχ = χTχ = χ · χ, (4.1.3)

where we used that for orthogonal matrices, RT = R−1.

Figure 4.1: Comparison of a potential of the form −aχ2 + bχ4 (left) to a potential of the
form aχ2 + bχ4 (right) for a two-component field χ with a, b > 0. The two plots have
different scales.

It should be noted that the quadratic term in L has a positive sign, which is opposite
of a standard mass term. The potential

U0(χ) = −1
2m

2χ · χ+ λ

4!(χ · χ)2 (4.1.4)

does not have a minimum at χ = 0, but rather a maximum. Figure 4.1 shows two
potentials of the same form as (4.1.4) with different signs for the quadratic term. Because
the value of U0(χ) is invariant under O(4) transformations, the minimum is not unique.
Thus, since at the classical level the ground state is the constant field configuration
that minimizes U0(χ), we see that we will have an arbitrary ground state chosen via
spontaneous symmetry breaking. Let us assume, without loss of generality, that the
non-zero value is acquired by the first χ-component.1 We define the field σ to be the
deviation of χ1 from the minimum value v and rename the remaining components as π:

σ = χ1 − v, (4.1.5)
π = (χ2, χ3, χ4) = (π1, π2, π3). (4.1.6)

1It is always possible to find an O(4)-rotation which makes only one component nonzero.
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The π fields will be interpreted as pions, with the convention that π3 corresponds to the
neutral pion π0, while the combinations

π± = 1√
2

(π1 ± iπ2) (4.1.7)

correspond to the charged pions π±. Inserting (4.1.5) and (4.1.6) into (4.1.1) gives

L =1
2(∂π)2 + 1

2(∂σ)2 + 1
2m

2π · π + 1
2m

2 (v + σ)2 − λ

4!
[
π · π + (v + σ)2

]2
. (4.1.8)

We find v at the classical level by extremizing the classical potential U0:

∂

∂χ1

(
−1

2m
2χ2

1 + λ

4!χ
4
1

)
= 0. (4.1.9)

This gives minima at

χ1,min = v = ±
√

6
λ
m, (4.1.10)

and a maximum at χ1,max = 0. We can choose the positive minimum solution without
loss of generality since the negative solution always can be rotated to the positive one
by applying the O(4)-transformation χ1 → −χ1. Inserting this value for v gives the
Lagrangian

L =1
2(∂π)2 + 1

2(∂σ)2 −m2σ2 −

√
λ

6mσ
3 −

√
λ

6mσπ
2 − λ

4!σ
4 − λ

4!π
4 − λ

12π
2σ2,

(4.1.11)

where we introduced the notation V2n ≡ (V·V)n for vectors V and dropped an irrelevant
constant term. We see that the σ-field is massive, with a mass mσ =

√
2m, while the

three π-fields are massless. This is expected from Goldstone’s theorem which says that
for a Lorentz-invariant theory, if a continuous symmetry is spontaneously broken, a
massless boson appears for each generator corresponding to a broken symmetry [84–
86]. These particles are known as Nambu-Goldstone (NG) bosons. After spontaneous
symmetry breaking, the ground state has a manifest O(3) symmetry, which constitutes
rotating the π fields. Since the orthogonal group O(N) has 1

2N(N − 1) generators,
each corresponding to a plane in RN , we see that reducing a symmetry O(4) → O(3)
corresponds to removing three generators. Thus, the appearance of three massless fields
is as expected. Note however that when Lorentz invariance does not hold, which will
be the case when a chemical potential is present, the one-to-one relationship between
broken generators and massless bosons is not guaranteed. See Ref. [87] for details.

Consider now the addition of a term linear in χ1 in the Lagrangian:

L = 1
2(∂χ)2 + 1

2m
2χ · χ− λ

4!(χ · χ)2 + hχ1. (4.1.12)

The O(4) symmetry is reduced to an O(3) symmetry since any rotation involving χ1 will
change the linear term, and we can thus only rotate between the last three components.
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After introducing the σ and π-fields like earlier, but without yet specifying what v is,
we find the Lagrangian to be

L = 1
2(∂σ)2 + 1

2(∂π)2 − 1
2m

2
ππ

2 − 1
2m

2
σσ

2 − (m2
πv − h)σ − U(v) + LI , (4.1.13)

where LI contains all interaction terms, and we defined

m2
σ = 1

2λv
2 −m2, (4.1.14)

m2
π = 1

6λv
2 −m2, (4.1.15)

and
U(v) = −1

2m
2v2 + λ

4!v
4 − hv. (4.1.16)

Consider what happens if we choose v be a minimum of U(v), meaning that v satisfies

∂U

∂v
= −m2v + λ

6 v
3 − h = m2

πv − h = 0. (4.1.17)

This is the prefactor of the linear term, which thus vanishes when v is evaluated at the
classical minimum. We also see that this implies, at the classical level,

vm2
π = h, (4.1.18)

which means that m2
π 6= 0 if h 6= 0. Thus, the explicit breaking of the O(4) symmetry

generates a pion mass, and the pion no longer is a true Nambu-Goldstone boson. We will
refer to the limit where h = 0 as the chiral limit and the case where h 6= 0 as the physical
point, since h can be adusted so that mπ = 140 MeV, which is roughly the measured
pion mass [8].

Note that even though we considered what happens when v attains the value corre-
sponding to the classical minimum, we do not want to assume that this happens, since
we will treat the model quantum mechanically. In the full quantum theory v will take
on the value which minimizes the effective potential and not the classical potential U(v).
Thus, we leave v unspecified until we have calculated loop corrections to the effective
potential. We will in the following refer to U(v) as the tree-level potential, since it is the
lowest order approximation in QFT where no loop diagrams are involved.

4.2 The Quark-Meson Model
To obtain the two-flavor quark-meson model we couple the mesonic theory described by
the Lagrangian in (4.1.12) to two Nc-plets of fermionic fields via Yukawa interactions.
The fields ψ1 and ψ2 are taken to represent up and down quarks, respectively. Let ψ be
the flavor doublet

ψ =
(
ψ1
ψ2

)
. (4.2.1)
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The QM model is then given by

The Quark-Meson Model

L = ψ̄iγµ∂µψ−gψ̄(χ1 +iπ ·τγ5)ψ+ 1
2(∂χ)2 + 1

2m
2χ ·χ− λ

4!(χ ·χ)2 +hχ1. (4.2.2)

Here τi are the Pauli matrices which act in flavor space and γ5 ≡ iγ0γ1γ2γ3.
The reason for choosing an interaction of the form ψ̄(χ1 + iπ · τγ5)ψ is as follows:

Because the QCD Lagrangian is invariant under parity transformations, we also want
the QM model to be parity invariant. Since it is known that the pion is a pseudoscalar
[8], meaning that it transforms as π → −π under parity transformations, the simplest
fermionic term we can couple it to that yields a parity-even interaction is ψ̄iγ5ψ. This
is because a spinor term ψ̄iγ5ψ transforms as [28]

ψ̄iγ5ψ → −ψ̄iγ5ψ, (4.2.3)

under parity and is a Lorentz scalar, and it thus combines with π to produce a parity
even Lorentz scalar. The σ field will be identified with the f0(500) resonance, which is
the lightest parity even meson that has been measured [8]. Thus we couple it to the
parity even Lorentz scalar ψ̄ψ, which is the simplest choice that yields a parity even
interaction with the σ.

Let us identify the continuous symmetries of the QM model. In the chiral limit the
QM Lagrangian has a global SU(Nc)×SU(2)L×SU(2)R×U(1)B symmetry, while at the
physical point the symmetry is SU(Nc) × SU(2)V × U(1)B. The subscripts L,R, V,B
will be described in the following. Explicit derivations of all claims made about the
symmetries of the QM model in the rest of this section can be found in Appendix A.3.
Before proceeding we note that SU(2) × SU(2) is locally isomorphic to O(4) [88], so,
up to some symmetries containing discrete transformations, the O(4) symmetry of the
mesonic sector is preserved in the chiral limit.2

The global SU(Nc) symmetry is realized by acting on ψ as

ψ →
(

Ωψ1
Ωψ2

)
, (4.2.4)

for any Ω ∈ SU(Nc). Since Ω commutes with matrices that act in flavor space or on
Dirac spinor components, we see that both fermionic terms in (4.2.2) are invariant under
(4.2.4). We will not consider any non-zero color chemical potential corresponding to the
conserved charges resulting from the SU(Nc) symmetry, since this would imply a net
color charge in the system we are considering.

The SU(2)L×SU(2)R-symmetry is what we refer to as chiral symmetry, and the L,R
subscripts refer to the fact that independent SU(2) mixing of the left- and right-handed

2Local isomorphism means that they have the same Lie algebra and thus behave the same close to
the identity.
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spinor components of different flavors is a symmetry. To better see this, we rewrite the
QM Lagrangian as

L =ψ̄Riγµ∂µψR + ψ̄Liγ
µ∂µψL − 2gψ̄LΘψR − 2gψ̄RΘ†ψL

+ Tr
(
∂µΘ†∂µΘ

)
+m2 Tr

(
Θ†Θ

)
− λ

6
[
Tr
(
Θ†Θ

)]2
+ 1

2hTr
(
Θ + Θ†

)
, (4.2.5)

where the left- and right-handed spinors are defined as

ψR = 1
2(1 + γ5)ψ, (4.2.6)

ψL = 1
2(1− γ5)ψ, (4.2.7)

and
Θ = 1

2 (χ1 + iπ · τ ) = 1
2

[
χ1 + iπ3 iπ1 + π2
iπ1 − π2 χ1 − iπ3

]
. (4.2.8)

For two independent transformations ΩR,ΩL ∈ SU(2) that are taken to act on flavor
components and the components of Θ, we have that the Lagrangian is invariant under

ψR → ΩRψR, (4.2.9)
ψL → ΩLψL, (4.2.10)
Θ→ ΩLΘΩ†R. (4.2.11)

Since ΩR and ΩL are unitary and that a trace is cyclic, we see that every term in
(4.2.5) except the hTr

(
Θ + Θ†

)
term is manifestly invariant under this transformation.

However, one must check that the transformation (4.2.11) leaves the mesonic fields real.
Otherwise, the rewriting of the Lagrangian given by (4.2.5) is invalid. In Appendix A.3
it is explicitly shown that the mesonic fields are left real under (4.2.11) and that (4.2.5)
is equivalent to (4.2.2).

The conserved currents corresponding to the chiral symmetry are

jµi,R = ∂µπiχ1 − ∂µχ1πi + εijkπj∂
µπk + ψ̄Rγ

µτiψR, (4.2.12)
jµi,L = −∂µπiχ1 + ∂µχ1πi + εijkπj∂

µπk + ψ̄Lγ
µτiψL, (4.2.13)

where i ∈ {1, 2, 3}. Taking linear combinations of these currents we get the so-called
vector (V) and axial (A) currents, which are also conserved:

jµi,V = 1
2
(
jµi,R + jµi,L

)
= εijkπj∂

µπk + 1
2 ψ̄γ

µτiψ, (4.2.14)

jµi,A = 1
2
(
jµi,R − j

µ
i,L

)
= ∂µπiχ1 − ∂µχ1πi + 1

2 ψ̄γ
µγ5τiψ. (4.2.15)

The names vector and axial here refers to the fact that jµi,V is parity-even while jµi,A is
parity-odd.
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At the physical point chiral symmetry is broken due to the term linear in χ1, since the
transformation (4.2.11) generally changes χ1. However, a single SU(2) transformation
remains. It turns out that if we choose ΩL = ΩR, only the π components are mixed, while
χ1 is left invariant. The conserved current corresponding to this symmetry is exactly
the vector current (4.2.14), and we refer to the remaining SU(2) symmetry, which is also
known as isospin symmetry, as SU(2)V . It can also be seen that the transformation that
corresponds to conservation of the axial current is given by setting ΩL = Ω†R, and we
refer to these transformations as axial transformations.3 Thus, h 6= 0 explicitly breaks
axial symmetry.

The chemical potential corresponding to a conserved SU(2)V charge is what we call
isospin chemical potential, µI . Note that j0

i,V gives rise to three potentially conserved
charges, but only one of these can be conserved at any time since the charges do not
commute. This is similar to how a spin-1/2 system has three spin components, but a
state can only be a spin-component eigenstate of one spatial direction.

Finally, we have the U(1)B symmetry that is realized as

ψ → ΩBψ, (4.2.16)

for ΩB ∈ U(1). As discussed in Sec. 3.1 this gives rise to conservation of baryon number,
with the associated chemical potential µB = 3µ. The chemical potential µ is what we re-
fer to as the quark chemical potential, and it corresponds to quark number conservation,
where the quark number is defined as the sum of up and down quarks with antiquarks
counting negatively.4

4.3 Chiral Symmetry Breaking in the QM Model
Like in the pure bosonic model in Sec. 4.1, we expect that the mesonic field χ1 will
develop a non-zero expectation value in the vacuum. Introducing σ and v, where we
assume 〈σ〉 = 0, the QM model Lagrangian reads

L =U(v) + 1
2(∂π)2 + 1

2(∂σ)2 − 1
2m

2
σσ

2 − 1
2m

2
ππ

2 + σ
(
h−m2

πv
)

+ LI,σπ

+ ψ̄iγµ∂µψ −mqψ̄ψ − gψ̄(σ + iπ · τγ5)ψ,
(4.3.1)

where
mq = gv (4.3.2)

is a dynamically generated quark mass and LI,σπ is the meson-meson interaction sector,
which works out to be:

LI,σπ = −1
6λvσ

3 − 1
6vλσπ

2 − λ

12σ
2π2 − λ

4!σ
4 − λ

4!π
4. (4.3.3)

3Note that axial transformations do not form a group. If we perform two successive axial transforma-
tions Ω1, Ω2 ∈ SU(2) on ψR we get ψR → Ω2Ω1ψR, while ψL transforms as ψL → Ω†2Ω†1ψL 6= (Ω2Ω1)†ψL.
Thus, the composition of two axial transformations is not an axial transformation.

4Note that µ is distinct from the separate up quark chemical potential µu and down quark chemical
potential µd, which are sometimes used.
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U(v), m2
π and m2

σ are defined like in Sec. 4.1. In the chiral limit, if we calculate the
effective potential U(v, T, µ) for this Lagrangian and find that the minimum of U is
located at v 6= 0, we have that the chiral symmetry is spontaneously broken, since
〈χ1〉 = v 6= 0 is not invariant under chiral transformations. However, 〈χ1〉 = v is
invariant under the SU(2)V symmetry, since, as stated earlier, these transformations do
not alter χ1. Thus, spontaneous breaking of chiral symmetry is a violation of the axial
symmetry.

At the physical point the axial (and thus chiral) symmetry is explicitly broken from
the start, but we can informally say that we have a more severe breaking of the symmetry
if the value of v increases significantly in some region of temperatures and chemical
potentials. If we compare with an Ising system, we can identify v with the magnetization
and h with the external magnetic field. Even though the magnetization is non-zero for
all temperatures when an external field is present, the magnetization is still a good
approximate measure for the magnitude of the symmetry breaking.

In the following we will refer to v as the chiral condensate, since we renormalize so
that 〈χ1〉 = v and 〈σ〉 = 0.

4.4 Parameters of the QM Model at One Loop

To make quantitative predictions with the QM model, we need to fix the parameters
m,λ, g and h to the given order that we are working in perturbation theory. By solving
(4.1.14), (4.1.15), (4.1.18) and (4.3.2) with respect to the coupling constants, we find

λ = 3(m2
σ −m2

π)
v2 , (4.4.1)

m2 = m2
σ − 3m2

π

2 , (4.4.2)

h = m2
πv, (4.4.3)

g = mq

v
. (4.4.4)

However, these relations can be used to fix the parameters only at tree-level, since at
some arbitrary order in perturbation theory the equations defining m2

π, m2
σ and mq

do not actually define the physical masses of the pions, the sigma and the quarks. At
higher orders in perturbation theory the particle masses receive loop corrections. Despite
this, as out pointed in Ref. [81], the parameter fixing in the literature is often done at
tree-level while other quantities are calculated to higher orders, which is inconsistent. To
consistently fix the parameters at any order higher than tree-level we need to renormalize
m,λ, g, h, v and calculate self-energy corrections to the particle masses.

In Refs. [81, 82] the running coupling constants were determined to one loop in the
large-Nc limit by using dimensional regularization. To determine the running couplings,
they calculate the particle self-energy corrections at T = 0 and then use the physically
measured masses for the pions, the sigma and the quarks in the vacuum to determine
the coupling constants at the one-loop level. These results were also later reproduced
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in a master thesis [83] and in an unpublished project by the author leading up to this
thesis [1]. We here quote the results directly and only explain schematically how the
results are obtained since the detailed calculations are quite involved and not crucial for
understanding the work presented in this thesis. The full derivation is for completeness
included in Appendix A.4.

The large-Nc limit implies that only diagrams scaling as O(Nc) are kept at the one-
loop level, while diagrams O(N0

c ) are neglected. This amounts to neglecting mesonic
fluctuations. All diagrams of order O(Nc) at one loop are shown in Fig. 4.2.

Figure 4.2: All O(Nc) diagrams up to one-loop order in the QM model contributing
to two-point functions. The pion, sigma and quark propagators are given by double
lines, full lines and arrow-lines, respectively. The crossed circles represent counterterm
vertices. The renormalization condition 〈σ〉 = 0 enforces that the sum of the last three
diagrams within each row vanishes. The condition that the minimum of the effective
potential is equal to the minimum of the tree-level potential causes the last diagram in
each row to vanish separately since the tadpole vertex factor is proportional to (m2

πv−h),
which is zero exactly at the classical minimum.

The calculation of self-energies is most easily performed when we use as a renormal-
ization condition that the sigma one-point function satisfies 〈σ〉 = 0, so that 〈Φ1〉 = v.
This gives a relation between the counterterm δh and the other counterterms in the
problem. Furthermore, we use the MS renormalization scheme, which implies that only
factors of 1

ε + ln (4πe−γE ) are absorbed into counterterms. Here ε is defined in dimen-
sional regulation as d = 3 − 2ε and γE is the Euler-Mascheroni constant. Finally, an
additional simplifying condition we enforce is to require that the minimum of the one-
loop effective potential U(v) at T = µ = 0 is identical to the minimum of the tree-level
potential U(v). This fixes the renormalization scale Λ to a particular value Λ = Λ0.
The running couplings at some other Λ are then obtained by solving the renormalization
group equations. The result is
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The Large-Nc Running Couplings at One Loop

g2
MS(Λ) = g2

0

1− 4Ncg2
0

(4π)2 ln
(

Λ2

Λ2
0

) , (4.4.5)

m2
MS(Λ) = m2

0

1− 4Ncg2
0

(4π)2 ln
(

Λ2

Λ2
0

) , (4.4.6)

λMS(Λ) =
λ0 − 48Nc

(4π)2 g
4
0 ln

(
Λ2

Λ2
0

)
[
1− 4Ncg2

0
(4π)2 ln

(
Λ2

Λ2
0

)]2 , (4.4.7)

hMS(Λ) = h0

1− 2Ncg2
0

(4π)2 ln
(

Λ2

Λ2
0

) , (4.4.8)

v2
MS(Λ) = v2

0

1 + 4Ncg2
0

(4π)2 ln
(

Λ2

Λ2
0

) (4.4.9)

where
Λ2

0 = m2
q exp

[
−ReC(m2

π)−m2
π ReC ′(m2

π)
]
, (4.4.10)

and

C(p2) = 2− 2
√

4m2
q

p2 − 1 arctan

 1√
4m2

p2 − 1

 , (4.4.11)

with C ′(p2) = dC(p2)
dp2 . Introducing the shorthands ReC(m2

π) = Cπ, ReC(m2
σ) = Cσ and

ReC ′(m2
π) = C ′π, the values g0, m0, λ0, v0 and h0 are given by

m2
0 = m2

σ − 3m2
π

2 +
2Ncm

2
q

(4π)2f2
π

[
4m2

q + (m2
σ − 4m2

q)Cσ −m2
σCπ − (m2

σ − 3m2
π)m2

πC
′
π

]
,

(4.4.12)

λ0 = 3(m2
σ −m2

π)
f2
π

+
12Ncm

2
q

(4π)2f4
π

[(
m2
σ − 4m2

q

) (
Cσ − Cπ −m2

πC
′
π

)
+m4

πC
′
π

]
, (4.4.13)

g2
0 =

m2
q

f2
π

, (4.4.14)

h0 = m2
πfπ −

4Ncm
2
qm

4
π

(4π)2fπ
C ′π, (4.4.15)

v2
0 = f2

π , (4.4.16)

where fπ is the pion decay constant, which we will explain in the next section. It is
important to point out that the masses mπ, mσ and mq occurring in (4.4.10)–(4.4.15)
are the actual physical masses, so that (4.4.5)–(4.4.16) can be used to to fix the coupling
constants of the QM model with the measured particle masses in the vacuum. We see
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that the first four equations are corrections to the tree-level relations (4.4.1)–(4.4.4) with
v = fπ. The quark mass does not receive any corrections at one loop, since in the large-
Nc limit all mesonic fluctuations are neglected, and only meson loops provide corrections
to the quark two-point function at one loop.

Note that the mass mq = gv, which we will refer to as the constituent quark mass,
does not correspond to the mass parameter that occurs in the QCD Lagrangian, which
is known as the current quark mass. Instead, mq is a quark mass dynamically generated
through the process of chiral symmetry breaking. In QCD this mass includes quark
binding energy in the non-perturbative regime of the theory. It is this mass which is
responsible for giving the proton a mass of the order of ∼ GeV even though the u and d
current quark masses are of the order of ∼ MeV [8].

4.5 The Pion Decay Constant

The quantities m, g, λ and h are independent couplings in the QM Lagrangian, while
v is determined once these four parameters are fixed, since it will be taken to be the
minimum of the effective potential, which is a function of the couplings. Thus, in total
four measurements are required to fix all parameters. However, the pion, sigma, and
constituent quark masses provide only three inputs. It turns out that the value of the
chiral condensate v can be identified with a measurable quantity known as the pion decay
constant, thus providing the last input.

For a Nambu-Goldstone mode G corresponding to a spontaneously broken symmetry
with Noether current jµ, it can be shown that one in general can write [26]

〈G(p, t)| jµ(x) |Ω〉 = ipµFeipx, (4.5.1)

where |Ω〉 is the vacuum and |G(p, t)〉 a p-eigenstate defined as

|G(p, t)〉 = −2i
F

∫
d3xeip·xj0(x) |Ω〉 . (4.5.2)

Here F is a normalization constant, and equation (4.5.1) is derived by enforcing the
one-particle normalization condition 〈G(p, t)|G(k, t)〉 = 2ωp(2π)3δ(p − k). For pions
the quantity F is referred to as the pion decay constant fπ, and we can write

〈πj(p, t)| jµA,i(x) |Ω〉 = ipµfπe
ipxδij , (4.5.3)

where jµA,i are the axial currents and |πj(p, t)〉 the state defined by (4.5.2) with the j-th
axial current. Note that relation (4.5.3) is model independent as long as jµA,i is chosen
to be whatever currents correspond to the pions in the model studied. By using a low-
energy effective theory of QCD known as chiral perturbation theory, one can can relate
fπ to observation by calculating the decay rate π+ → µ+νµ, where µ+ is the anti-muon
and νµ a muon neutrino [26]. Since one finds that the decay rate satisfies Γ ∝ f2

π , one
can determine fπ through a measurement of this decay.
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As a consequence of the above, if we can calculate the left-hand side of (4.5.3) in
the QM model, we get a relation between parameters of the QM model and fπ. After
symmetry breaking we see from (4.2.15) that the axial current of the QM model is

jµi,A = v∂µπi + (terms containing σ and ψ). (4.5.4)

But only the first term gives a non-zero matrix element in the left-hand side of (4.5.3)
since σ or ψ cannot create or destroy a πj state, and we find

〈πj(p, t)| jµA,i(x) |Ω〉 = v 〈πj(p, t)| ∂µπi(x) |Ω〉 . (4.5.5)

To lowest order, where we can use creation operator relations for a free theory, we can
calculate this matrix element to be

〈πj(p, t)| ∂µπi(x) |Ω〉 = δij 〈Ω| ap∂
µ

[∫ d3k

(2π)3(2ωk)
(
ake
−ikx + a†ke

ikx
)]
|Ω〉

= 〈Ω| i
∫ d3k

(2π)3(2ωk) [ap, a
†
k]kµeikx |Ω〉 = ipµeipx, (4.5.6)

where ap is the creation operator for the i = j pion with the normalization [ak, a
†
p] =

(2π)32ωpδ(p− k). Hence, at tree level we have

〈πj(p, t)| jµA,i(x) |Ω〉 = ipµveipxδij , (4.5.7)

and we indentify v = fπ.

4.6 The PQM Partition Function in the One-Loop
Large-Nc Limit

Consider the addition of a constant temporal background gauge field in the Polyakov-
gauge to the QM Lagrangian. As we saw in Chapter 3, this amounts to adding a
term gaψ̄iγ

0A4ψ to the Lagrangian, where we have denoted the Yang-Mills coupling
constant as ga to separate it from the Yukawa coupling. We will refer to the QM model
extended with the Polyakov loop as a PQM model. Note that the addition of this
term does not break any of the symmetries of the QM-model. Furthermore, it does not
affect the calculation of self-energies, since this term effectively adds a constant offset
p0 → p0 + ga[A4]jj in the quark propagator of the j-th color, which can be seen by
writing the Dirac Lagrangian in momentum space:

ψ̄(x)iγµ∂µψ(x) + gaψ̄(x)iγ0A4ψ(x)→ ψ̄(p)iγµ(pµ + δµ0gaA4)ψ(p). (4.6.1)

Remembering that A4 is diagonal in the Polyakov-gauge, this effect is reversed by a
simple shift of the p0 variable in the loop integrals.

With the parameters of the QM model known to one loop in the large-Nc limit, we
proceed to write down the partition function to one loop in the same approximation.
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Since the partition function is given by the sum of connected vacuum diagrams with
no external sources, calculating Z to one loop is equivalent to closing all propagators
on themselves, meaning that no interaction vertices appear. Hence, the one-loop per-
turbative calculation of Z amounts to neglecting all interaction terms. Furthermore,
neglecting both thermal and quantum mesonic fluctuations means that the only mesonic
contribution to Z is the tree-level potential U(v). Thus, if we work at zero isospin chem-
ical potential, we can directly use our result from Sec. 3.1, except we now have two quark
flavors, yielding an extra factor of two. The result is

lnZ =4V
∫ d3p

(2π)3

{
trc ln

[
1 + Le−β(ωp−µ)

]
+ trc ln

[
1 + L̄e−β(ωp+µ)

]}
+ 4V Ncβ

∫ d3p

(2π)3ωp − βV U(v),
(4.6.2)

with ωp =
√

p2 + ∆2, where we use the notation ∆ = gv instead of mq, since gv is
temperature dependent and not equal to the vacuum constituent quark mass for nonzero
temperatures (we must keep in mind that v is to be chosen as the minimum of Ω(v, T, µ)).
We will reserve mq for the zero-temperature constituent quark mass.

After introducing the renormalized couplings in the MS scheme, the vacuum energy
becomes finite and the effective potential to one loop reads (see Appendix A.4)

Ω(∆,Φ, Φ̄, T, µ) = Uq,T (∆,Φ, Φ̄, T, µ) + Uq,vac(∆) + Uχ(∆), (4.6.3)

where

Uq,T (∆, T, µ,Φ, Φ̄) = −4T
∫ d3p

(2π)3

{
trc ln

[
1 + Le−β(ωp−µ)

]
+ trc ln

[
1 + L̄e−β(ωp+µ)

]}
(4.6.4)

is the contribution from thermal quark fluctuations,

Uq,vac(∆) = 2Nc∆4

(4π)2

[
3
2 + ln

(
m2
q

∆2

)
− Cπ −m2

πC
′
π

]
(4.6.5)

is the vacuum contribution from quark quantum fluctuations and

Uχ(∆) = −1
2m

2
0f

2
π

∆2

m2
q

+ 1
4!λ0f

4
π

∆4

m4
q

− h0fπ
∆
mq

(4.6.6)

the tree-level mesonic potential. The parameters m2
0, λ0 and h0 are as defined in the

previous section. We have chosen to write Ω as a function of ∆ instead of v since, since
∆ is independent of the renormalization scheme. It turns out that in the large-Nc limit
to one loop, δ(gv) = vδg + gδv = 0, where δg and δv are the one-loop counterterms of g
and v (again, see Appendix A.4).

After inserting m0, λ0, h0 and adding a not yet specified Polyakov loop potential
Uglue, we find
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Large-Nc One-Loop Effective Potential of the PQM model

Ω(∆, T, µ) = 3
4m

2
πf

2
π

{
1−

4Ncm
2
q

(4π)2f2
π

m2
πC
′
π

}
∆2

m2
q

+
2Ncm

4
q

(4π)2

(
3
2 − ln ∆2

m2
q

)
∆4

m4
q

− m2
σf

2
π

4

{
1 +

4Ncm
2
q

(4π)2f2
π

[(
1−

4m2
q

m2
σ

)
Cσ − Cπ −m2

πC
′
π +

4m2
q

m2
σ

]}
∆2

m2
q

+ m2
σf

2
π

8

{
1 +

4Ncm
2
q

(4π)2f2
π

[(
1−

4m2
q

m2
σ

)
Cσ − Cπ −m2

πC
′
π

]}
∆4

m4
q

− m2
πf

2
π

8

{
1−

4Ncm
2
q

(4π)2f2
π

m2
πC
′
π

}
∆4

m4
q

−m2
πf

2
π

[
1−

4Ncm
2
q

(4π)2f2
π

m2
πC
′
π

]
∆
mq

− 4T
∫ d3p

(2π)3

{
trc ln

[
1 + Le

−β
(√

p2+∆2−µ
)]

+ trc ln
[
1 + L̄e

−β
(√

p2+∆2+µ
)]}

+ Uglue(Φ, Φ̄, T ). (4.6.7)

In Fig. 4.3 we see the phase diagram resulting from the effective potential (4.6.7) in the
case where A4 = 0, i.e. without the Polyakov loop, as calculated by the author in Ref.
[1]. The parameters are choosen so that mσ = 550 MeV, mq = 300 MeV and mπ = 0
or mπ = 140 MeV, depending one whether one assumes h = 0 or h 6= 0. For µq = 0
there is a second-order phase transition occuring at roughly Tc = 160 MeV in the chiral
limit. For µq greater than ∼ 270 MeV the transition becomes first-order. A first-order
transition also happens at the physical point, for chemical potentials close to 300 MeV.
When h 6= 0 there is no true thermodynamic phase transition, but rather a crossover
between large and small ∆. We can define a pseudocritical temperature as the inflection
point of the order parameter. This is how we will define the phase transition in the case
of a crossover for the rest of the thesis.

4.7 The PQM Model as an Effective Model of QCD

Before proceeding to choose Uglue and investigating the thermodynamics of the PQM
model, we should justify why it is sensible to consider the PQM model to be an effective
model of QCD. Let us consider the QCD Lagrangian for the two light quark flavors u
and d,

L = LA + ū(iγµDµ −mu)u+ d̄(iγµDµ −md)d. (4.7.1)

Here LA is the gluonic sector term and u and d two Nc-plets of spinors. We can decom-
pose the spinors into right- and left-handed parts, and for mu = md = 0, which we also
refer to as the chiral limit, we find

L = LA + iψ̄LγµDµψ
L + iψ̄RγµDµψ

R, (4.7.2)
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Figure 4.3: Phase diagram of ∆ in the one-loop large-Nc limit without the Polyakov
loop. µq is the quark chemical potential. The region bounded by the axes and the blue
lines show where chiral symmetry is spontaneously broken in the chiral limit, i.e. where
∆ 6= 0.

where ψ = (u, d)T . Exactly like for the (P)QM model we have a global SU(2)R ×
SU(2)L symmetry. The Lagrangian also has two U(1) symmetries given by applying
a phase transformation to ψL and ψR separately. However, there exist symmetries of
a Lagrangian that are not symmetries of the corresponding quantum theory due to a
phenomenon called an anomaly. It is caused by that fact that the integration measure
in the partition function is not invariant under a symmetry of the action. It will not be
shown here, but it turns out that the U(1)L ×U(1)R symmetry of the QCD Lagrangian
for massless quarks is such a symmetry. The reader is referred to Refs. [11, 26, 28] for
details. The result is that only a single U(1) that acts as

ψ → eiαψ (4.7.3)

remains. However, this is exactly the U(1)B symmetry of the (P)QM model. Hence,
both QCD and the (P)QM model have a U(1)B ×SU(2)R×SU(2)L global symmetry in
the chiral limit.

It is also known that the global SU(2)R×SU(2)L symmetry is spontaneously broken
down to a SU(2)V symmetry in the QCD vacuum, generating the pions as Nambu-
Goldstone bosons in the process [26]. The exact mechanism for this process remains
mysterious, but the fact is well established. The order parameters for this symmetry
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breaking are the quark bilinears 〈ūu〉 and 〈d̄d〉, which on the lattice are determined to
be [89, 90]

〈ūu〉 = 〈d̄d〉 ≈ −(250 MeV)3, (4.7.4)

for mu = md.
The symmetry breaking pattern described in the above is exactly the spontaneous

symmetry breaking pattern observed in the (P)QM model in the chiral limit, although
in the (P)QM model we describe pions with fundamental fields, while in nature the pions
are bound states of quarks. 〈ψ̄ψ〉 is the order parameter for chiral symmetry breaking
in QCD, while in the (P)QM model it is v which plays this role. Nevertheless, we
expect both QCD and the (P)QM model to have a phase transition associated with the
restoration of chiral symmetry at high temperatures, which is what we refer to as the
chiral phase transition. Note that the quark bilinear ψ̄ψ in the (P)QM model should not
be expected to behave like the quark bilinear in QCD.

At the physical point, if we assume mu = md, two-flavor QCD has no chiral sym-
metry but instead an SU(2)V symmetry, which is also the case in the (P)QM model.
However, our intuition from the chiral limit still holds, but the chiral symmetry is now
approximate. Instead of a true thermodynamic phase transition we expect, when reach-
ing high temperatures, a crossover to where we have approximate chiral symmetry and
thus a small chiral condensate. The symmetry breaking patterns of QCD and the (P)QM
model are illustrated in Table 4.1.

Model Symmetry before SSB Symmetry after SSB
(high T ) (low T )

QCD, chiral limit SU(2)R × SU(2)L SU(2)V
QM, chiral limit SU(2)R × SU(2)L SU(2)V
QCD, mu = md 6= 0 SU(2)V , approx. SU(2)R × SU(2)L SU(2)V
QM, h 6= 0 SU(2)V , approx. SU(2)R × SU(2)L SU(2)V

Table 4.1: Chiral symmetry breaking patterns of two-flavor QCD and the quark-meson
model.

For the most realistic case ofmu 6= md, the QCD Lagrangian has no SU(2) symmetry
at all. However, the mass difference between mu and md is so small compared to the
relevant mass scale in QCD, ΛQCD, that mu = md is a very good approximation [26].

If we choose a gluon potential similar to one of those discussed in Sec. 3.4, we also
expect the PQM model to have a deconfining phase transition. However, the similarity
between the deconfinement transitions in these two theories is harder to assess a priori,
since center symmetry is not a symmetry of either theory, neither at the physical point
nor in the chiral limit. In the PQM model there is no gauge-invariance, so speaking about
twisted gauge transformations does not make sense, while in QCD the finite quark mass
explicitly breaks the center symmetry.

Finally, a natural objection to the PQM model is that we combine fundamental
quark and mesonic degrees of freedom, even though mesons in reality are composite
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Figure 4.4: Integrating out the gauge fields gives rise to an effective theory where a
4-quark interaction vertex (upper right) replaces the quark-quark interactions that is
really mediated by gluons (upper left). Connecting two or more such vertices (lower left)
gives rise to an effective meson exchange (lower right). Time should be read as running
vertically.

states of quarks. It is not immediately evident that combining separate meson fields
with quarks makes sense. However, since we are dealing with a description of quarks
without dynamical gauge fields, we cannot expect that the fermionic fields will exhibit
bound states and give rise to mesons. Actually, in Sec. 3.2 we saw that a model with
non-interacting quarks in a static temporal background gauge field describes baryons
in the confined phase and free quarks in the deconfined phase. We did not find any
mesons, which justifies the addition of separate meson fields, at least in the confined
phase. However, the presence of mesons in the deconfined phase might be puzzling,
since we expect bound states to “melt” in the quark-gluon plasma phase. Nevertheless,
we can still think of free quarks as interacting via meson exchange. To see why, let us first
imagine an effective field theory where we integrate out all the gauge fields so that we get
effective 4-quark interactions (such as in the NJL-model [49, 50]). If we connect two such
vertices with two quark propagators, we have an effective meson exchange, as illustrated
in Fig. 4.4. Thus, it still appears reasonable to consider the exchange of mesons between
the quarks in deconfined phase. Nevertheless, the only real justification is to compare
the results obtained with the PQM model to lattice data to see if reasonable quantitative
and qualitative agreement is achieved, which we do in the following chapter.





CHAPTER 5
Thermodynamics of the
PQM and χM Models

We are now ready to investigate the thermodynamics of the one-loop renormalized PQM
model in the large-Nc limit. In addition to the case of µ > 0, which is mostly inaccessible
to lattice simulations, the intermediate temperature region 130 MeV–400 MeV for µ = 0 is
especially interesting. Below roughly 130 MeV a model known as the Hadron Resonance
Gas (HRG) model appears to describe QCD thermodynamics well. The model assumes
that all hadrons are separate non-interacting degrees of freedom, and comparison with
lattice data shows good agreement [91, 92]. For temperatures above roughly 400 MeV,
finite-temperature perturbation theory with a method know as hard thermal loops (HTL)
can be applied [91–94]. The latter technique also works for non-zero chemical potentials,
given that the temperature is high enough [95, 96]. Thus, it is in the intermediate region
where HRG and HTL do not work (and the region of µ > 0) that it is the most important
for the PQM model to describe correctly. Incidentally, this region is exactly where the
deconfinement and chiral phase transitions occur.

We will in the following investigate two different gluonic potentials. The first one is
a slightly modified version of the potential proposed by Ratti, Rößner, Thaler and Weise
(RRTW) [62], which was discussed in Sec. 3.4. We repeat it here for convenience:

URRTW
T 4 = −1

2a(T )ΦΦ̄ + b(T ) ln
[
1− 6ΦΦ̄ + 4(Φ3 + Φ̄3)− 3(ΦΦ̄)2

]
, (5.0.1)

with

a(T ) = a1 + a2

(
T0
T

)
+ a3

(
T0
T

)2
, (5.0.2)

b(T ) = b1

(
T0
T

)3
, (5.0.3)

59
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with all the parameters except T0 as given in the original paper, meaning

a1 = 3.51, a2 = −2.47, a3 = 15.2, b1 = −1.75. (5.0.4)

However, we make one modification. In their original paper, Ratti et al. finds that
Tc ≈ 215 MeV when their potential is combined with the NJL model [69].1 This is
∼ 45 MeV higher than what is found in most two-flavor lattice data, as we will discuss
in Sec. 5.4. To attempt to correct for this we use the prescription proposed in Ref. [66],
which involves including the backreaction of the fermions onto the gluonic sector via a
dependence T0(Nf ) in the way that was discussed in Sec. 3.4. With the parametrisation
of T0(Nf ) given by (3.4.7), we find

T0 = 208 MeV (5.0.5)

for Nf = 2.
When we in the following mention the PQMmodel, we mean the PQMmodel with the

potential (5.0.1) with the parameters (5.0.4) and (5.0.5). The other model we investigate
comes from a recent publication by Pisarski and Skokov [21], where they construct a
chiral matrix model for three quark flavors. The model is similar to the PQM model, but
instead of choosing a gluonic potential that is composed of polynomials and logarithms
of Φ and Φ̄, the gluonic potential is written directly in terms of the eigenvalues of the
matrix background gauge field A4, which is what gives rise to the term “matrix model”.
Furthermore, the Pisarski-Skokov chiral matrix model, from here on just the χM model,
contains a new phenomenological term in the effective potential which causes the quark
mass ∆ to approach the current quark mass in the high-temperature limit.

In the following we calculate several of the same quantities as Pisarski and Skokov
do in Ref. [21], except for various susceptibilities. We adapt the χM model to describe
the two light quark flavors only. This makes the model less similar to real QCD, but on
the other hand, it allows us to use the results from Chapter 4 to determine the coupling
constants of the chiral sector to one loop. This is different from Ref. [21], where they
calculate the potential to one loop but match the parameters at tree-level. Furthermore,
we extend on the work in Ref. [21] by studying the case µ > 0.

Note that since the strange quark has a constituent mass that is roughly 500 MeV
[97], we can hope that our model is not too affected by the omission of the strange quark
at low temperatures, since it is reasonable to assume that the strange quark degrees of
freedom are “frozen out” for low T .2

5.1 The Gluonic Sector of the χM Model
Let us parameterize the background gauge field A4 in the Polyakov gauge as in Sec. 2.7,
so that

Φ = e2πir/3

3

[
e−2πir + 2 cos

(2πq
3

)]
(5.1.1)

1They defined the critical temperature via the Polyakov loop.
2This assumes that the constituent mass of the strange quark does not rapidly decrease at the chiral

phase transition. This assumption is valid, as lattice data show [98].
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for two real degrees of freedom r and q. The gluonic part of the χM model was developed
as an effective model for pure SU(3) gauge theory in Refs. [99, 100], where the degrees
of freedom of the model are r and q only. The gluonic model consists of two effective
potential terms: one is calculated by integrating out all but the condensate mode of A4
to one loop in perturbation theory, and one is a phenomenological term modeling the
contribution in the non-perturbative regime of pure Yang-Mills theory. We summarize
the results in the rest of this section, following Pisarski and Skokov [21].

Define the functions

B1(x) = |x|mod1 (1− |x|mod1), (5.1.2)
B2(x) = |x|2mod1 (1− |x|mod1)2, (5.1.3)

where |x|mod1 is the modulo 1 operation for a real number x. We define the boundary
case so that 0 ≤ |x|mod1 < 1. We for example have |−0.3|mod1 = 0.7 and |1.3|mod 1 = 0.3.
Define also

V1(q, r) = B1

(2q
3

)
+B1

(
q

3 + r

)
+B1

(
q

3 − r
)
, (5.1.4)

V2(q, r) = B2

(2q
3

)
+B2

(
q

3 + r

)
+B2

(
q

3 − r
)
. (5.1.5)

The one-loop perturbative contribution to the effective potential of pure SU(3) Yang-
Mills theory then reads

Vpt(q, r) = π2T 4
[
− 8

45 + 4
3V2(q, r)

]
. (5.1.6)

The term proportional to V2 is known as the Weiss potential, and it was first calculated
by Weiss [47, 101] and Gross, Pisarski and Yaffe [35]. The first term gives rise to
the Stefan-Boltzmann pressure, which is the pressure in a non-interacting system of N
massless bosonic degrees of freedom [36]:

PSB = N
π2

90T
4 = 2(N2

c − 1)π
2

90T
4 = 8π4

45 T
4, (5.1.7)

where
N = 2(N2

c − 1), (5.1.8)

is the number of gluonic degrees of freedom, with N2
c − 1 being the number of gluons

and the factor 2 coming from the two independent spin polarizations. Since we saw in
Sec. 2.7 that one of the deconfined states is characterized by r = q = 0, which gives
V2(0, 0) = 0, we find that the pressure contribution of Vpt goes to the Stefan-Boltzmann
value in the high-temperature limit. However, if we only include the perturbative term,
the pure glue system will always be deconfined, since confinement is never energetically
favored. A fully confined state can for example can be characterized by r = 0, q = 1,
and V2(q, 0) always increases as function of q when 0 ≤ q ≤ 1.
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To drive the system to confinement at low temperatures, one adds a phenomenological
potential, which is chosen to be of the form

Vnonpt(q, r) = −8π2

45 T
2T 2

d

[
c1
5 V1(q, r) + c2V2(q, r)− 2

15c3

]
, (5.1.9)

with four fit parameters c1, c2, c3 and Td. At low temperatures this ∼ T 2 term will
dominate over the ∼ T 4 perturbative term, and with an appropriate choice of the fit
parameters it can drive the system to confinement. The T 2 behavior is chosen since it
has been observed in lattice data that the subleading contribution to the pressure goes
as ∼ T 2 [102, 103]. The parameters c1 and c3 are chosen so that the pressure in the
confined phase of the pure gauge theory is zero and that a phase transition happens
at Td. The former is an approximation, but it is reasonable since the pressure of the
confined phase in SU(3) gauge theory is very low compared to the deconfined phase, as
lattice data show [57]. Furthermore, Td is chosen to be Td = 270 MeV, which is roughly
the deconfinement temperature in SU(3) gauge theory [57]. Then only c2 remains as a
fit parameter. It is determined by fitting the interaction measure (E − 3P )/T 4 predicted
by the full gluonic potential,

UχM = Vpt + Vnonpt, (5.1.10)

to lattice data. The result is

c1 = 0.315, c2 = 0.830, c3 = 1.13. (5.1.11)

The potentials Vnonpt(q, r)/(T 2
dT

2) and Vpt(q, r)/T 4 are shown in Fig. 5.1. Both
potentials have multiple degenerate minima corresponding to different center phases.
The combination q = r = 0, which gives Φ = 1, is a minimum for Vpt and a maximum
for Vnonpt. For q = 1, r = 0, which corresponds to Φ = 0, it is opposite. For high
temperatures Vpt (left) dominates while for low temperatures Vnonpt (right) dominates.
For comparison we show the thermal quark potential Uq,T (q, r) at T = 100 MeV and
∆ = 300 MeV in Fig. 5.2. We see that this potential, whose qualitative shape is mostly
unchanged for other values of ∆ or T , drives (q, r) towards q = r = 0, which corresponds
to deconfinement. Thus, it is reasonable that the addition of quarks to pure gauge theory
lowers the deconfinement temperature.

5.2 A Phenomenological Quark Term
In addition to the (partly) phenomenological gluonic sector, Pisarski and Skokov add to
the χM model a phenomenological quark term not usually found in the PQM model,
which in the two-flavor case is given by

Uq,cur(∆, q, r, T, µ) = −mcur
∂

∂∆Uq,T , (5.2.1)

were mcur is the current quark mass. This purely phenomenological term is added to
achieve that limT→∞∆(T ) = mcur, since without it we have limT→∞∆(T ) = 0. Let us
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Figure 5.1: Contour plots of the perturbative (left) and non-perturbative (right) contri-
butions to the gluonic potential in the χM model.
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Figure 5.2: Contour plot of Uq,T (q, r) for µ = 0, ∆ = 300 MeV, T = 100 MeV.
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show how this term works: In the high-temperature limit we expect Φ = Φ̄ = 1. Let us
furthermore assume that µ = 0 and that T � ∆. It is possible to expand Uq,T for µ = 0,
Φ = Φ̄ = 1 in decreasing powers of T and increasing powers of ∆, with the result being3

Uq,T /NfNc = −4T
∫ d3p

(2π)3 ln
[
1 + e−βωp

]
≈ −7π2

180T
4 + T 2∆2

12 +O
(

∆4 ln ∆
T

)
. (5.2.2)

Thus, to leading order we find

Uq,cur/NfNc = −1
6mcurT

2∆ +O
(

∆3 ln ∆
T

)
. (5.2.3)

Since we assume high temperatures, we consider the potential only up to subleading
temperature dependence ∼ T 2. Furthermore, we assume that ∆� T , which we expect
in the high-temperature phase where chiral symmetry is approximately restored. Using
this we keep only leading and subleading terms in ∆. Thus, taking Ω as given in (4.6.3)
and adding Ucur, we find that the effective potential goes as

Ω
NfNc

≈ −7π2

180T
4 + T 2∆2

12 − 1
6mcurT

2∆ +O(∆) +O
(

∆4 ln ∆
T

)
, (5.2.4)

for high temperatures, where the neglected O(∆) term is the leading term ∼ h∆ from
the mesonic potential. Minimizing (5.2.4) with respect to ∆, we immediately find

∆ = mcur, (5.2.5)

and we thus expect ∆→ mcur in the high-temperature limit.
When we later in this chapter investigate the thermodynamics of the PQM and

χM models, we will assess the effects of Uq,cur on thermodynamics. Due to its ad hoc
nature, it should preferably affect the thermodynamics minimally while still achieving
its purpose of ensuring the constituent quark mass to approach the current quark mass
in the (approximately) chirally restored phase.

5.3 The Complete PQM and χM Models
We now have all the ingredients needed to investigate the thermodynamics of the PQM
and χM models at one loop in the large-Nc limit. For a given temperature we numerically
solve

∂Ω
∂r

= 0, ∂Ω
∂q

= 0, ∂Ω
∂∆ = 0, (5.3.1)

requiring that we have a minimum, where Ω is one of the potentials

ΩχM = Uq,T (∆, r, q, T, µ) + Uq,vac(∆) + Uχ(∆) + UχM(r, q, T ) + Uq,cur(∆, r, q, T, µ)− P0, (5.3.2)

ΩPQM = Uq,T (∆, r, q, T, µ)+Uq,vac(∆)+Uχ(∆)+URRTW(r, q, T )+Uq,cur(∆, r, q, T, µ)−P0. (5.3.3)
3Since the Taylor series at ∆ = 0 does not exist, it is more complicated than expected to derive this

series. We refer the reader to Refs. [39, 104] for derivations.
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P0 is a constant. The explicit forms of Uq,T , Uq,vac, Uχ are given in (4.6.4)–(4.6.6), UχM
in (5.1.10), URRTW in (5.0.1) and Uq,cur in (5.2.1). We also add the phenomenological
term Uq,cur to the PQM model, for the same reason that it is added to the χM model
and for better comparison between the models. The parameters q and r are assumed
real so that the Euclidean gauge field is Hermitian and L̄ = L† ⇒ Φ∗ = Φ̄. We will get
back to the more complicated case of µ 6= 0 later in the chapter.

The parameter P0 is a constant that we add to the effective potential so that the
condition

P (T = µ = 0) = 0, (5.3.4)

is satisfied. This constant will turn out to be small and has a negligible effect on the
thermodynamics. However, it makes thermodynamic quantities normalized with 1/T 4

better behaved at temperatures close to zero.
Once we determine ∆, r and q as functions of T and µ, we can find Ω as a function of

T and µ only. We can then calculate the pressure P , quark density nq = 〈N〉 /V , energy
density E and interaction measure (E − 3P ) as functions of µ and T via the relations

P (T, µ) = −Ω, (5.3.5)

nq(T, µ) = ∂P

∂µ
, (5.3.6)

E(T, µ) = µnq − P + T
∂P

∂T
. (5.3.7)

To determine the one-loop couplings we set

mq = 300 MeV, (5.3.8)
mπ = 140 MeV, (5.3.9)
mσ = 500 MeV, (5.3.10)
fπ = 93 MeV, (5.3.11)

which input in (4.4.12)–(4.4.15) yield

λ0 = 61.5, (5.3.12)
m0 = 449 MeV, (5.3.13)
g0 = 3.23, (5.3.14)
h0 = (121 MeV)3. (5.3.15)

These are the one-loop values of the running couplings in the MS scheme at the renor-
malization scale

Λ2
0 = m2

q exp
[
−ReC(m2

π)−m2
π ReC ′(m2

π)
]

= (289 MeV)2. (5.3.16)

The value of the constituent quark mass is roughly one third of the nucleon mass, while
the value of the sigma mass corresponds to the mass of the f0(500) resonance, which has
a measured mass in the range from 400 MeV to 550 MeV [8]. The value fπ = 93 MeV
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corresponds roughly to the measured value of fπ = 92.2 [8].4 We round it up to agree
with numerous other papers on the QM model. For the current quark mass we choose

mcur = 3 MeV. (5.3.17)

This is roughly the average of the current quark masses for the u and d quarks, which
by the Particle Data Group are reported to be mu = 2.2 MeV and md = 4.7 MeV in the
MS-scheme at the renormalization scale Λ = 2 GeV.

If we determine the couplings at tree-level using (4.4.1)–(4.4.4), we find λtree = 79.9,
mtree = 309 MeV, gtree = 3.23 and htree = (122 MeV)3. Thus, we see that λ and m are
altered quite significantly by bosonic self-energy corrections.

5.4 QCD Lattice Results
To compare model predictions with lattice data, we should understand what lattice
simulations predict. Some works indicate that the chiral and deconfinement phase tran-
sitions coincide [105, 106], while others find the deconfinement transition to happen at
25−30 MeV higher temperatures [107–109]. However, it is hard to unambiguously define
whether the transitions coincide or not, since the transition temperatures are not well
defined.5 This is because at the physical point neither the deconfinement nor the chiral
phase transitions are real thermodynamic phase transitions, but rather crossovers. The
deconfinement transition is also a crossover in the chiral limit.

For the location of the chiral transition, there seems to be better agreement. For 2+1
flavors, meaning two light flavors and one heavier strange flavor, the chiral transition is
found to occur at approximately T (2+1)

c = (155± 9) MeV by the HotQCD collaboration
[98, 110]. Within the uncertainty this agrees with the findings of Aoki et al. [107,
108] and the Wuppertal-Budapest collaboration [17]. For two flavors the chiral phase
transition is found to be Tc = (171± 4) MeV by the CP-PACS collaboration [111], Tc =
(174± 3± 6) MeV by the QCDSF-DIK collaboration [106] and Tc = (172± 3± 6) MeV
by Bornyakov et al. [112]. Note that for two flavors, Ref. [106] finds that the chiral and
deconfinement transitions coincide.

For comparison of thermodynamics at zero chemical potential, our primary sources
for (2 + 1)-flavor lattice simulations are the results from the Wuppertal-Budapest [91]
and HotQCD [92] collaborations that were published in 2014. Several older papers on
(2 + 1)-flavor simulations exist, but since inconsistencies and disagreements between
various data sets were resolved more recently [17], we use only these two papers for
(2 + 1)-flavor thermodynamics. For two flavors, data are more scarce, and we use results
from the CP-PACS collaboration from 2001 [113].

For data on the Polyakov loop as a function of temperature for (2 + 1) flavors we use
data from the 2013 publication by Bazavov and Petrecszky [114] and the 2010 publication

4The Particle Data Group’s definition of fπ differs by a factor
√

2 from our convention, and they
find fπ = 130.41 MeV [8].

5Not well defined in the sense that calculating the inflection point for different observables give
different critical temperatures.
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by Cheng et al. [115]. For data on the Polyakov loop with two flavors we use data from
Kaczmarek and Zantow from 2005 [116].

Data on thermodynamics from lattice simulations at finite chemical potential also
exist. This relies on a Taylor series expansion of the fermion determinant in powers
of µ/T around µ/T = 0. In the following we compare model calculations at nonzero
quark chemical potentials with lattice simulations performed to order O

(
(µ/T )6) in the

effective potential by Allton et al. in 2005 [117].
Since we expect a ∼ 20 MeV difference in the critical temperature between the (2+1)-

flavor lattice data and the two-flavor lattice and model data, we plot thermodynamic
quantities against T/Tc, where Tc in the lattice data is taken to be T (2+1)

c = 155 MeV
whenever the data are not already given as a function of T/Tc.6 This allows us to more
easily assess the similarities and differences between the two- and (2 + 1)-flavor data
which is not related to the obvious difference in critical temperature. Furthermore, we
plot quantities normalized to the Stefan-Boltzmann (SB) pressure

PSB =
(

8π
2

45 + 2NcNf
7π2

180

)
T 4, (5.4.1)

2NcNf is the number of fermionic degrees of freedom, with the factor 2 coming from the
spin.7 The Stefan-Boltzmann pressure is simply the pressure of a non-interacting gas of
bosons and fermions in the high-temperature limit where the particles can be assumed
massless [36]. By dividing out the Stefan-Boltzmann pressure, we can factor out the
difference in the pressure in the two- and (2 + 1)-flavor data that stems from the fact
that they have different asymptotic values for the pressure at high T . It is also useful since
the two-flavor data from Ref. [113] is not extrapolated to the continuum limit, but the
Stefan-Boltzmann pressure, whose value is different from (5.4.1) in a finite discretization
of space-time, is still estimated. Thus P/PSB from a finite lattice discretization that is
not continuum extrapolated can still be compared to model and continuum extrapolated
lattice data.

Finally, a comment on the acquisition of the lattice data is warranted. In the data
by HotQCD and Wuppertal, Refs. [91, 92], all thermodynamical quantities are provided
in tables. However, in the older papers the data are extracted from plots with a data
mining tool known as WebPlotDigitizer [118].8 It is found that the uncertainty in the
y-value of each data point caused by extracting the data with this tool is well below 1%
of Ly, where Ly is the total length of the y-axis in the plot, i.e. the difference between
the maximal and minimal values displayed on the y-axis. For the purpose of comparing
with an effective model without any finely tuned parameters, this uncertainty is entirely
inconsequential.

6The two-flavor data we consider is already given as T/Tc.
7This means that the (2 + 1) and two-flavor data are normalized with different factors.
8https://automeris.io/WebPlotDigitizer/
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5.5 Numerical Results: PQM and χM Model
Thermodynamics at µ = 0

We solve for the minimum of the effective potential with a global optimization method
known as Basin-Hopping [119] using a routine implemented in the SciPy Optimize library
for Python [120].9 Using this method we obtain the pressure, energy density, interaction
measure and order parameters as functions of temperature for µ = 0. When optimizing
we always have that a global minimum is located at r = 0, which we choose so that
Φ and Ω is real.

We restrict ∆ ∈ [0,∆c], where ∆c is an upper bound on ∆ specifying the validity range
of our model. This is needed, possibly because we have neglected mesonic fluctuations,
since the effective potential is unbounded from below for ∆ ∈ [0,∞]. In the large-∆ limit
we have that the dominating term comes from the renormalized quark vacuum energy,
which goes as ∼ −∆4 ln ∆, as seen from (4.6.5). However, mesonic fluctuations would
contribute with terms O(+∆4 ln ∆), which might have kept the potential bounded from
below. Thus, in neglecting mesonic fluctuations, we always expect an upper validity
range on ∆ in the effective models. With mesonic fluctuations it might or might not be
needed.

Figure 5.3 shows the effective potential as function of ∆ for the χM model at µ =
T = 0 and q = r = 0, and with the parameters as discussed previously. We see that the
effective potential is non-increasing above roughly ∆ = 500 MeV, which we use as our
value for ∆c. We also see that if we inconsistently match the coupling constants of the
theory at tree-level, the potential would be qualitatively different, and no local minimum
would be present in the effective potential for the mσ we have chosen.

Figures 5.4 and 5.5 show the order parameters ∆(T )/∆0, Φ(T ) and their derivatives
with respect to T , where ∆0 = ∆(T = 0). We see in Fig. 5.4 that chiral symmetry
is approximately restored at temperatures higher than ∼ 200 MeV in both models. We
point out that ∆ does not go to zero at high temperatures, but rather towards ∆ ≈ mcur
(see Fig. 5.13), as expected from the discussion in Sec. 5.2. We find that the χM model
reaches full deconfinement at T ∼ 250 MeV, while the PQM model reaches Φ = 1 more
slowly and is in a “semi-deconfined” state between roughly 200 MeV to 400 MeV.

From Fig. 5.5 we see that the pseudocritical temperatures for the chiral and de-
confinement transitions coincide for both models, with the inflection points of ∆ being
located at

TχMc = 181+6
−9 MeV, (5.5.1)

TPQM
c = 169+3

−3 MeV. (5.5.2)

The uncertainties are obtained by varying the sigma mass within the uncertainty range,
which is 400 MeV to 550 MeV. The lowest mσ corresponds to the lowest temperature
and vice versa. We see that Tc of the two models differ by 11 MeV, but the un-
certainty ranges of both models overlap with the uncertainty range from the lattice,

9https://docs.scipy.org/doc/scipy/reference/optimize.html
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Figure 5.3: The χM model one-loop effective potential in the large-Nc limit for q = r = 0
and T = µ = 0 with one-loop and tree-level determination of the couplings.
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Figure 5.4: Order parameters in the χM and PQM models as function of temperature.

T lat
c = (172± 3± 6) MeV [112]. However, the PQM model is in best agreement with

lattice data for the upper sigma mass, while for the χM model it is opposite.
The coinciding of the phase transitions is natural in the PQM and χM models for
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Figure 5.5: Absolute value of the differentiated order parameters as function of T . The
peak locations correspond to the pseudocritical transition temperatures.

the following reason: Φ and ∆ at some T are obtained by maximizing the pressure
P (Φ,∆, T ) = −Ω(Φ,∆, T ) with respect to ∆ and Φ.10 Below T0 (or Td) the gluonic
contribution is pushing Φ towards zero, while the quark thermal contribution is pushing
Φ towards 1, and there is competition between the two. However, when ∆ � T the
thermal contribution of the quarks to the pressure is Boltzmann-suppressed, and the
pressure gained from the thermal quark term by increasing Φ is small, since we then are
deconfining quark degrees of freedom that are anyway frozen out. Thus, the energy cost
from the gluonic potential dominates. However, once ∆ is driven to be equal to or smaller
than T , the quark degrees of freedom become active (no longer Boltzmann-suppressed),
and there is a sizeable potential pressure gain in deconfining them. Thus, once ∆ < T
it becomes much more energetically favorable to increase Φ. Hence, we expect that Φ
undergoes a transition once ∆ does, given that the gluonic potential is not too stiff. The
argument does not work as well in reverse since the mesonic potential turns out to be
too dominating at low T . We can see this as follows: we obtain the standard QM model
without the Polyakov loop by setting A4 = 0, which gives Φ = Φ̄ = 1. We can view this
as the PQM model that is deconfined already from T = 0. But the QM model displays
a chiral phase transition at temperatures around T =150 MeV to 200 MeV [81, 121, 122]
and not already at T = 0. Thus, the backreaction of Φ onto ∆ is not as strong. However,
since the natural chiral transition temperature, meaning the transition temperature in

10Remember that we have Φ = Φ̄.
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the QM model, is below the natural deconfinement transition temperature, meaning the
transition temperature T0 or Td in the pure gluonic model, we will have that the chiral
condensate brings with it the Polyakov loop. If T0 or Td were lower than the natural
chiral transition temperature, we would not expect the reverse to happen. We indeed
verify this in Sec. 6.14
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Figure 5.6: The chiral order parameter in the effective models compared with lattice
data from Ref. [92].

In Figs. 5.6 and 5.7 we compare the (normalized) order parameters with the lattice
results. We see that the χM model agrees fairly well with the (2 + 1)-lattice data, while
in the PQM model the chiral condensate appears to drop slightly later. However, the
apparent difference between the two models is largely due to the sensitive nature of
the definition of Tc as the inflection point of ∆. If we look at Fig. 5.6 we see that the
chiral condensates of the PQM and χM models are nearly identical as functions of T (as
opposed to T/Tc). One qualitative difference between model and lattice results is that
the chiral order parameter on the lattice goes down to approximately zero shortly after
the transition temperature. However, we have no particular reason to assume that the
high-temperature asymptotic behavior of ∆, which is the constituent quark mass at a
given temperature, should be the same as for the QCD chiral condensate

〈
ψ̄ψ
〉
.

For the Polyakov loop we find that Φ(T ) in (2+1)-flavor lattice data rises significantly
slower than in model calculations. The two-flavor data agree well with the PQM model,
while Φ in χM model rises significantly faster than in two-flavor lattice data also. Both
models exhibit a fast rise of Φ around the transition temperature, and this behavior is not
seen (2+1)-flavor lattice data. Before proceeding to discuss the potential reason for this,
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Figure 5.7: The Polyakov loop in the effective models compared with lattice data from
Refs. [114–116].

a comment on the two-flavor data from Kaczmarek and Zantow [116] is warranted. In
their paper they give the Polyakov loop as function of T/Tc and estimate the unusually
high value Tc = (202± 4) MeV. If we plot their data and the model data against T ,
the two-flavor and (2 + 1)-flavor lattice data agree to a much greater extent, while the
agreement with the models become significantly worse. This is shown in Fig. 5.8. Unless
there is some reason why Φ should rise faster in two-flavor data, the strong disagreement
between the two- and (2 + 1)-flavor lattice data in Fig. 5.7 indicates that Fig. 5.8 shows
the more accurate picture and thus that both the PQM and χM models show a too fast
rise in the Polyakov loop.

The fast rise of Φ is also present in the original (2 + 1)-flavor χM model by Pisarski
and Skokov. It is natural to assume that the nonperturbative contribution to Uglue
is the problem. However, when they in Ref. [21] modify the nonperturbative gluonic
potential to obtain better agreement with Φ from the lattice, the agreement for various
susceptibilities and thermodynamic quantities is ruined. They let the parameters c1 and
c2 in the non-perturbative potential (5.1.9) have a more general T -dependence by making
the replacement

T 2c1 → α1T + β1T
2 + γ1T

3, (5.5.3)
T 2c2 → α2T + β2T

3 + γ2T
3. (5.5.4)

Then, after imposing the same conditions as for the original potential, namely that
in the pure gauge theory Tc = Td and that the pressure vanishes at Td, they fit the
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Figure 5.8: The Polyakov loop in the effective models compared with lattice data from
Refs. [114–116]. The data from Ref. [116] is converted to be given as a function of T
instead of T/Tc by setting Tc = 202 MeV, which is the value estimated in the paper.

new free parameters so that the Polyakov loop agrees with the lattice. However, as
pointed out, this ruins the thermodynamics of the model. The comparison of the χM
model with the PQM model in Fig. 5.7 hints to the fact that it is the choice of the
Polyakov loop potential in the χM model that is the problem however, since in the
PQM model we obtain better agreement with Φ on the lattice while still also obtaining
equally good or better agreement with lattice data for all thermodynamic quantities (see
the following). We can imagine that we should choose a qualitatively different form
of the non-perturbative potential contribution. Two potentials which both can fit pure
gauge theory well might still behave differently when combined with quarks.

Let us now turn to thermodynamics. Figure 5.9 shows the comparison between the
SB-normalized pressure in lattice and model data, where the nearly invisible error bands
are obtained by varying the sigma mass in its uncertainty range. Both the PQM and
χM models show reasonable agreement with lattice data above T = Tc, although with a
pressure lower than in data. Below and around T = Tc the PQM model appears to have
a pressure that is significantly lower than what lattice data show. However, below and
around Tc we expect mesons to exist and contribute to the pressure, and by neglecting
mesonic fluctuations in the model calculations, we have underestimated the pressure.
Since the pions have masses of ∼ 140 MeV below Tc while the quarks have masses of
∼ 300 MeV, we expect that the mesons would provide a significant contribution to the
pressure in this range. For temperatures below Tc the agreement with the χM model
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is worse, since there is a small but nonzero pressure causing P/PSB to blow up for low
temperatures due to the PSB ∝ T 4 dependence. However, this does not mean that the
pressure diverges or that it is large. It only means that a small non-zero pressure exists
for T > 0. This pressure is insignificant, as we see if we compare the pressure of the χM
and the PQM models without SB-normalizing, which is done in Fig. 5.10.
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Figure 5.9: Boltzmann-normalized pressure in the χM and PQM model compared to
lattice data from Refs. [91, 92, 113].

When comparing the pressure of the (2 + 1)-flavor data to the two-flavor data, we
see that the two-flavor model and lattice data are closer to the SB limit at temperatures
above the critical temperature. This is expected since the strange quarks constitute
degrees of freedom which are partly “frozen out” out at temperatures just above Tc due
to their large mass. While the light quarks become nearly massless above Tc and their
contribution to the pressure become close to the SB-value, the strange quark always has
a mass that is at least equal to its current quark mass, which is of the order ∼ 100 MeV
[8]. Furthermore, the strange quark chiral condensate goes to zero much slower than
the light quark chiral condensate [98], so that the strange quarks still have a large
constituent quark mass just above Tc. Thus, it is expected that the SB limit is reached
at higher temperatures in (2 + 1)-flavor QCD than two-flavor QCD since significantly
higher temperatures must be reached before the strange quark has a negligible mass. If
we plot P/T 4 instead of P/PSB, the pressure in the two-flavor model and (2 + 1)-flavor
lattice data agree well.11

11Remember that two-flavor and (2+1)-flavor data are normalized with different Boltzmann pressures.
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Figure 5.10: Pressure divided by f4
π in the χM and PQM models compared to the

SB-limit.

For the interaction measure I and energy density E , both normalized by ESB = 3PSB
and shown in Figs 5.11 and 5.12 (with error bands obtained in the same way as for the
pressure), we find fairly good agreement between the PQM model and two-flavor lattice
data up to T ∼ 1.5Tc. The peak of the interaction measure in the χM model is shifted
to higher values than what is seen in the PQM model and two-flavor lattice data. The
χM model also has an interaction measure that is negative for low temperatures and a
peak that is too low.

For temperatures above 1.5Tc there are a few data points in the two-flavor lattice
data which show a peculiar drop in the energy density. One possible explanation is that
statistical errors cause the drop. The (2 + 1)-flavor simulations and a more recent two-
flavor simulation in Ref. [123] do not show this drop in energy density.12 The drop in
energy density is naturally also associated with a drop in the interaction measure above
T = 1.5Tc, which is not seen in either model.

Given Figs. 5.4–5.11, we see that both models exhibit the essential qualitative fea-
tures of QCD: chiral and deconfinement phase transitions. Furthermore, except for the
Polyakov loop, there also appears to be reasonable quantitative agreement with lattice
data, especially for the PQM model. We remind that except for the Polyakov loop po-
tentials that are fitted to SU(3) gauge theory without quarks, there is no fitting in the
models.

12The two-flavor simulation in Ref. [123] uses an unphysical pion mass of mπ ≥ 360, which is the
reason it is not used for comparison with the models.



76 CHAPTER 5. THERMODYNAMICS OF THE PQM AND χM MODELS

0.5 1.0 1.5 2.0 2.5 3.0

T/Tc

0.0

0.2

0.4

0.6
(E
−

3P
)/

3P
S
B

χM
PQM
Wup.-Bud., Nf = 2 + 1
HotQCD, Nf = 2 + 1
CP-PACS, Nf = 2

Figure 5.11: SB-normalized interaction measure in the effective models compared to
lattice data from Refs. [91, 92, 113].
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Figure 5.12: SB-normalized energy density in the effective models compared to lattice
data from Refs. [91, 92, 113].
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Before proceeding to study the models at a nonzero chemical potential, we should
comment on the significance of two aspects which are untypical about our study: the
phenomenological quark term and the one-loop determination of the couplings.
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Figure 5.13: Comparison of ∆(T ) in the PQM model with and without the phenomeno-
logical quark term.

We find that Uq,cur has only the effect of changing the high-temperature behavior
of ∆(T ), while the thermodynamics for all purposes is unaffected. ∆(T ) is shown in
Fig. 5.13 for the PQM model both with and without the term included. Below T ≈
200 MeV, ∆ is practically unaffected. The inclusion of Uq,cur has no measurable effect
on Tc, and when we plot the pressure, energy density and interaction measure with and
without Uq,cur we find no visible difference. For this reason we omit Uq,cur in the section
where we study the effective models at µ > 0. This is because the numerical evaluation
of Uq,cur is fairly intensive, and the minimization of the effective potential requires a large
number of function evaluations. We will instead live with the fact that the quark mass
goes towards zero for high temperatures which, as we have pointed out, is irrelevant for
thermodynamics.13

When it comes to the couplings, we find that for low sigma masses it does not
even make sense to consider the model with tree-level couplings combined with one-loop
corrections to the potential. This is because with tree-level couplings we find that the
point ∆ = mq = 300 MeV at T = 0 corresponds to an inflection point rather than a

13Due to the µ-dependence of Uq,cur it contributes to the quark density as − ∂Uq,cur
∂µ

= mcur
∂Uq,T
∂∆∂µ .

It has been verified that this contribution is entirely negligible, just like for the other thermodynamic
quantities.
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Figure 5.14: Comparison of the order parameters resulting from using tree-level and
one-loop couplings in the PQM model with the one-loop potential in the large-Nc limit
with mσ = 600 MeV.
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Figure 5.15: Comparison of the thermodynamics resulting from using tree-level and one-
loop couplings in the PQM model with the one-loop potential in the large-Nc limit with
the value of mσ = 600 MeV.

local minimum, and the effective potential becomes non-increasing for all ∆. This can
be seen from Fig. 5.3. However, for higher sigma masses a minimum is still present.
In Fig. 5.14 we show the effect of using tree-level couplings at the higher sigma mass
of mσ = 600 MeV. For this mσ the model has a minimum for ∆ at T = 0 also when
tree-level parameters are used. We see that in this case, the tree-level parameters cause
the chiral phase transition to happen earlier – roughly at a temperature which is 25 MeV
lower. On the other hand, the Polyakov loop and thus the location of the deconfinement
phase transition is nearly unchanged. Consequently, using tree-level parameter matching
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causes a discrepancy between the pseudocritical temperature of the deconfinement and
chiral phase transitions. Additionally, as shown in Fig. 5.15, we see a slight difference in
the interaction measure for intermediate temperatures, although it is not very significant.
For the pressure and energy density (not shown) the difference is minuscule. Thus, if
one is lucky enough to use a set of input parameters where the use of tree-level matching
does not entirely break the model by removing the minimum in Ω(∆), it appears that
the thermodynamics is not too strongly affected.

We finally note that the tree-level determination of the parameters corresponds to
using (4.4.1)–(4.4.4) and a renormalization scale that satisfies

ln Λ2

m2
q

+ 1 = 0, (5.5.5)

as shown in Ref. [124]. The latter condition ensures that h −m2
πv = 0 at T = 0 with

tree-level parameter matching and one-loop potential contributions.

5.6 Minimizing Ω at µ 6= 0
We now return to the issue of minimizing Ω at µ 6= 0, which we first discussed in
Sec. 3.5. It is suggested in Refs. [21, 77, 78] to let the background gauge field become
non-Hermitian by setting q ∈ R and r = iR, with R ∈ R. Inserting r = iR into the
expressions for the Polyakov loops, (2.7.9) and (2.7.10), we get

Φ = e−2πR/3

3

[
e2πR + 2 cos

(2πq
3

)]
, (5.6.1)

Φ̄ = e2πR/3

3

[
e−2πR + 2 cos

(2πq
3

)]
, (5.6.2)

which give that both are real, but with different values in general. For the RRTW
potential, which is a function of Φ and Φ̄ directly, it is clear that the Polyakov loop
potential becomes real, and thus the full potential is real for all (q,R) ∈ R2, since Uq,T
can also be written in terms of Φ and Φ̄. For the χM model this is also the case, since
the only potentially complex terms in (5.1.4) and (5.1.5) are

B1

(
q

3 + iR

)
+B1

(
q

3 − iR
)

= 2 ReB1

(
q

3 − iR
)
, (5.6.3)

and
B2

(
q

3 + iR

)
+B2

(
q

3 − iR
)

= 2 ReB2

(
q

3 − iR
)
. (5.6.4)

However, the problem is that ΩχM is unbounded in R for low temperatures, and ΩPQM is
unbounded in R for all temperatures. The part of the potential that depends on R in
the χM model, Ṽ = Uq,T + UχM, is shown in Fig. 5.16 as function of (q,R). We see that
there is no minimum below R < 1. This behavior persists for any R.

In Refs. [77, 78] they suggest choosing the physically realized state to be the lowest
saddle point of Ω(q,R). The method has the benefit of yielding Φ 6= Φ̄ with Φ, Φ̄ ∈ R,
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Figure 5.16: Normalized R-dependent part of the effective potential in the χM model
at T = µ = 200 MeV, ∆ = 150 MeV.

and we avoid a complex potential. However, choosing a saddle point is highly arbitrary
and does not follow from any known principle of thermodynamics. Furthermore, it
is not clear why r should be purely imaginary and q purely real. In Ref. [74] it is
argued that the saddle point approach is problematic since it is impossible to calculate
interface tensions with this scheme. Instead they suggest, together with Ref. [73], that
r and q should stay real, and that we instead should minimize Re Ω. This scheme has
the unfortunate consequence of giving Φ = Φ̄ also at µ 6= 0. However, it allows for
the calculation of interface tensions and is partly based on the potential minimization
principle. Furthermore, a minimum of Re Ω still lies at r = 0 even though µ 6= 0, such
that at the minimum of Re Ω we have Im Ω = 0 (see Fig. 5.17). If we are of the opinion
that Φ 6= Φ̄ mainly is a result of fluctuations in A4, then Φ = Φ̄ is not a pathology
but a natural consequence of the mean field treatment of A4 combined with keeping A4
Hermitian.

Unlike for the saddle point method, we can also provide an (admittedly speculative)
interpretation of the minimization of Re Ω: When a complex energy appears in quantum
mechanics, it usually signals a decaying quantity, and ImE plays the role of a decay
rate Γ. To see this, consider a generic physical state Ψ(t) = ψe−iEt, with the factor
e−iEt determining its time evolution. Then

Ψ(t) = ψe−iEt = ψe−iReEteImEt = ψeiReEte−Γt, (5.6.5)

which is a state decaying with rate Γ = − ImE. An even closer analogy is provided when
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we try to calculate the one-loop effective potential for a Lagrangian with spontaneous
symmetry breaking without expanding about the minimum of the tree-level potential.
Consider the complex scalar theory

L = ∂µχ
†∂µχ+m2χ†χ− λ

(
χ†χ

)2
. (5.6.6)

Normally we would expand about the potential minimum χ = v + σ. However, if we
directly calculate the one-loop effective potential, we find that the thermal contribution
is [36]

UT = −2V
∫ d3p

(2π)3 ln
(
1− e−βωp

)
, (5.6.7)

where ωp =
√

p2 −m2. However, ωp is complex for low momenta, and thus UT becomes
complex. The reason for this is that we have expanded around the potential maximum,
which is unstable, instead of the stable potential minimum. Thus, if we interpret states
with Im Ω 6= 0 as unstable states that are not realized in an equilibrium system, then we
imagine that the equilibrium state is the state that satisfies the constrained minimization
problem14

∂ Re Ω(q, r)
∂q

= 0, ∂ Re Ω(q, r)
∂r

= 0, Im Ω(q, r) = 0, r, q ∈ R, (5.6.8)

with the additional requirement that we choose the global minimum. However, in the
case studied in this thesis, the condition Im Ω(q, r) = 0 can be automatically satisfied
when

∂ Re Ω(q, r)
∂q

= 0, ∂ Re Ω(q, r)
∂r

= 0, r, q ∈ R, (5.6.9)

is satisfied, given that we chose the global minimum with r = 0. We see that this will be
the case from Fig. 5.17, which shows the real and imaginary part of the quark thermal
potential. The minimum of ReUq,T is at r = 0 also for µ 6= 0. However, we speculate
that (5.6.8) is the correct criterion in general.

Due to the lack of physical interpretation, the seeming arbitrariness of setting q ∈ R,
ir ∈ R, and the impossibility of calculating surface tensions, we avoid the saddle point
scheme and instead use (5.6.8). As for the consequences of this choice, it is pointed out in
Ref. [74] that the two methods always agree for (T = 0, µ = µmax) and (T = Tmax, µ = 0),
where µmax is the largest chemical potential for which there is a (pseudo) phase transition
and Tmax = Tc(µ = 0). Thus, the phase diagrams obtained from the two methods
converge on the endpoints of the critical curves.

5.7 Numerical Results: PQM and χM Model
Thermodynamics at µ > 0

Now that we have verified that the models provide reasonable approximations to the
QCD thermodynamics up to T ≈ 2Tc, we proceed to investigate the predictions of these

14We ignore ∆ at the moment.
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Figure 5.17: The real and imaginary parts of the quark thermal potential at T = µ =
∆ = 150 MeV. ImUq,T has a discontinuity at q = r = 0, with ImUq,T = 0 exactly at this
point.

models at nonzero quark chemical potential. Due to the existence of lattice simulations
at finite chemical potentials based on Taylor expansions in powers of µ/T , as discussed in
Sec. 5.4, we also carry out checks on our results at µ > 0. Lattice data are however only
available for µ/T ≤ 1, since for large µ/T the Taylor series is not expected to converge.

In the following we calculate the pressure increase and quark number caused by
a nonzero quark chemical potential and compare with lattice data. Furthermore, we
calculate the chiral and deconfinement phase diagrams of the two models.

To study the pressure, we define the quantity ∆P (T, µ) as

∆P (T, µ) = P (T, µ)− P (T, 0). (5.7.1)

This corresponds to the pressure increase at a given temperature that is caused by a
nonzero quark chemical potential. Figure 5.18 shows the comparison of ∆P from lattice
and models as function of T/Tc for different fixed ratios of µ/T . The lattice data are
taken from Ref. [117]. We see that the PQM model agrees well with lattice simulations,
especially up to temperatures of T ∼ 1.5Tc. Between T = 1.5Tc and T = 2Tc the
deviation is slightly larger at the high µ/T ratios, but still not much more than 10%. For
the χM model ∆P is larger than what is found in lattice data. However, the qualitative
shape of the ∆P/T 4 curves for the χM model appears to be in good agreement with
lattice data, with a fast saturation in ∆P/T 4 after the initial rise around T = Tc.

In Fig. 5.19 we see nq(T, µ)/T 3 for constant µ/T compared to lattice data. Here nq is
the quark number density which is given by (3.2.9), except that we now have two quark
flavors. We see reasonable quantitative agreement between PQM model and lattice data.
However, like for ∆P/T 4, we find that the curves given by the χM model have a shape
more similar to lattice data.

Figures 5.20 and 5.21 display the phase diagrams for both models, where the pseudo-
critical temperatures corresponding to the inflection points of ∆ and Φ are indicated, in
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Figure 5.18: Pressure increase as function of T for fixed µ/T ratios in the PQM and χM
models compared to lattice data from Allton et al. [117].

addition to the temperature where Φ = 1
2 .15 We see that the chiral and deconfinement

phase transitions also coincide for nonzero chemical potentials. However, referring to the
inflection point of the Polyakov loop as deconfinement at high chemical potentials is mis-
leading. It is correct that the chiral symmetry in the models is approximately restored
above the lines of the chiral phase transition in Figs. 5.20 and 5.21, as we see in Fig. 5.22,
but it is not correct to assume that quarks are deconfined everywhere outside the phase
boundaries given by the inflection point of Φ. This is clear since the temperatures where
Φ = 1

2 extends well beyond the temperature where the inflection point occurs – especially
for the PQM model. We have a phase where chiral symmetry is restored and where the
quarks are confined or semi–confined. In Fig 5.23 we see the value of the Polyakov loop
in the µ− T plane. Interestingly, we see that the χM model approaches deconfinement
in the high-density limit, which is not the case in the PQM model. This is a radical
difference between the two models, and it is hard to assess which behavior best reflects
QCD due to the lack of lattice data for µ > T . The chirally restored and confined phase
predicted for µ� T in the PQM model is sometimes referred to as a quarkyonic phase
[125].

We also note that at sufficiently high temperatures some of the crossovers become
15The inflection point for each µ-value is extracted by fitting the ∂∆/∂T and ∂Φ/∂T curves with

Gaussians in a small range around the peak value. A more direct method would be to directly extract
the temperature value on the discretized T -axis where the peak occurs, but the former method works
better as it is more stable against varying step sizes in the discretization of the T -axis.
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Figure 5.19: Normalized quark density as function of T for fixed µ/T ratios in the PQM
and χM model compared to lattice data from Allton et al. [117].
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Figure 5.20: Phase diagram of the χM model.

first order phase transitions, with the transition from crossover to first order marked by
a critical point. In the χM model the critical points of the chiral condensate and the
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Figure 5.21: Phase diagram of the PQM model.

Polyakov loop coincide, and they are located at

(µ∗, T ∗) = (262 MeV, 78 MeV). (5.7.2)

For PQMmodel only the chiral transition has a critical point, which is another qualitative
difference between the two models. The chiral critical point of the PQM model is located
at

(µ∗, T ∗) = (262 MeV, 105 MeV). (5.7.3)
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Figure 5.22: The chiral condensate as function of (µ, T ) in the two models. Units of ∆,
µ and T are in MeV.
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Figure 5.23: The Polyakov loop as function of (µ, T ) in the two models. Units of µ and
T are in MeV.



CHAPTER 6
The PQM Model in a

Magnetic Field

Strongly interacting matter in magnetic fields is relevant for the study of various physical
phenomena, such as heavy-ion collisions, compact stars, and the early universe [126]. In
heavy-ion collisions it is known that strong time-dependent magnetic fields are created
when collisions are non-central [127–129], with the magnetic field strength in the LHC
estimated to reach up to values of |eB| ≈ 15m2

π [128], where e is the electron charge
and B the magnetic field. In the case of compact stars there is a class of neutron stars
known as magnetars that have magnetic fields reaching 1010 T to 1011 T on the surface
[130] and possibly ∼ 1014 T in the core [131], with the latter field corresponding to
|eB| ≈ 0.3m2

π.1 Furthermore, if large magnetic fields existed in the early universe, it
has potential consequences for early universe phase transitions [126]. Thus, the study
of strongly interacting matter in a magnetic field is well motivated, and it is the goal of
this chapter.

In both model [132–137] and lattice calculations [138–141] an effect known as mag-
netic catalysis is found in the vacuum. In the context of QCD, magnetic catalysis is the
effect where an external B-field strengthens chiral symmetry breaking by increasing the
value of the chiral condensate. In the chiral limit, it can also refer to the effect where
a nonzero B-field breaks the chiral symmetry that was present at B = 0. This could
happen at T > Tc where chiral symmetry is not spontaneously broken for B = 0.

In lattice simulations one also finds what is known as inverse magnetic catalysis [141–
143], which is the decrease of the chiral transition temperature with increasing magnetic
field. It is also found that the chiral and deconfinement phase transitions coincide at
B > 0 [139]. These two findings are not reproduced in model calculations [132–137, 144,

11 T = 1 kgs−1C−1 ≈
(
5.61× 1035 eV

) (
6.58× 10−16 eV

) (
1.6× 10−19 e−1) ≈ 195 eV2, where we use

the relations 1 = ~ ≈ 6.58× 10−16 eV s, 0.303 ≈ 1 e ≈ 1.60× 10−19 C and 1 kg = (1.66× 10−27)−1mp,
where mp = 931 MeV is the proton mass.

87
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145] and represent cases where the naive application of effective models is qualitatively
wrong.

In the following we study magnetic catalysis in the PQM and χM models at the
one-loop large-Nc level with consistent parameter fixing. Furthermore, we investigate
the findings of Ozaki et al. in Ref. [146], where they find inverse magnetic catalysis in
a Polyakov loop model without a chiral sector, which is opposite to what is found in
models with a chiral sector. Finally, we briefly explore the effect a B-dependent gluonic
potential in the χM model.

We note in passing that we do not look at the case of µ 6= 0 in a magnetic field,
since the authors of Ref. [147] have shown that high magnetic fields and nonzero baryon
chemical potentials lead to a fundamentally altered vacuum structure of QCD, with
neutral pion domain walls favored over nuclear matter.

6.1 The PQM Lagrangian Coupled to the EM field

Let Aµ be the electromagnetic gauge field. We want to minimally couple it to the quarks
and the pions so that we take the effect of an external magnetic field into account.
To couple to the pions, we must identify the fields corresponding to charged pions,
π±. Knowing that the electromagnetic field should be U(1) gauge invariant, we should
identify mesonic fields which are also U(1) gauge invariant. Define the complex field

π = 1√
2

(π1 + iπ2). (6.1.1)

Rewriting the non-interacting π1, π2 sector of (4.2.2), we find

Lπ1π2 = ∂µπ
†∂µπ −m2

ππ
†π, (6.1.2)

which is clearly invariant under global U(1) transformations. To obtain gauge invariance
we follow the canonical perscription of replacing the partial derivative with the gauge-
covariant derivative. Doing this we find that the mesonic sector reads

Lπ = (Dµπ)†(Dµπ)−m2
ππ
†π + 1

2(∂π3)2 − 1
2mππ

2
3 + 1

2(∂σ)2 − 1
2mσσ

2 + LI,σπ, (6.1.3)

where LI,σπ is given by (4.3.3) and Dµπ is

Dµπ = (∂µ − ieAµ − igaAµ)π, (6.1.4)

where we set Aµ = δ0
µA0 as usual. We have written the gluon gauge coupling as ga

to avoid confusion with the Yukawa-coupling. The coupling e is the electric elementary
charge. The choice of coupling the EM field to π1 and π2 is entirely arbitrary and has
no physical content – it is just a matter of labeling. What is important is that only a
complex field couple to the EM field, meaning that one of the pion fields cannot couple
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minimally to the EM gauge field without breaking gauge invariance.2 This field, here
chosen to be π3, will represent the neutral pion, π0.

In the quark sector we also couple to the EM fields by replacing the partial derivative
with gauge covariant derivatives. However, since ψ1 and ψ2 represent up and down
quarks that have charges q1 = 2

3e and q2 = −1
3e respectively, we must couple to gauge-

covariant derivatives with different charges. The quark sector, not including the Yukawa
interactions, then reads

Lψ =
Nf∑
j=1

ψ̄jiγ
µ(∂µ − iqjAµ − igaAµ)ψj − gvψ̄ψ. (6.1.5)

The Yukawa interaction is unchanged. Note that the introduction of different EM charges
for the two flavors breaks both chiral symmetry and isospin symmetry, and only SU(Nc)×
U(1)B remains.

6.2 Quarks in a Constant Magnetic Field

Let us now consider the partition function to one loop in the large-Nc limit, so that we can
neglect mesonic fluctuations. We consider a constant magnetic field in the z-direction,
given in the Landau gauge by

Aµ = (0, 0,−Bx, 0). (6.2.1)

We treat the EM field as a classical background field. The quark contribution to the
one-loop partition function reads

Zq =
∫

ABPC

Nf∏
j=1

Nc∏
k=1

iDψ†jkDψjk exp
{∫ β

0
dτ
∫

d3xψ†jkDjkψjk

}
, (6.2.2)

with ψjk being Dirac spinors of flavor j and color k with no implicit sum over either
index, and

Djk = −∂τ − iγ0γi∂i + ig[A4]kk + µ− γ0∆ + qjγ
0γµAµ

= −∂τ − iγ0γi∂i + µ̃k − γ0∆ + qjBxγ
0γ2. (6.2.3)

The above result is obtained by generalizing (3.1.8) by adding a second flavor and cou-
pling the two flavors to the EM gauge field with different charges. Furthermore, we have
assumed that A4 is constant and in the Polyakov gauge, and we have defined

µ̃k = µ+ ig[A4]kk. (6.2.4)
2We emphasize that the coupling is minimal, since the so-called chiral anomaly allows for a coupling

between π0 and photons [148, 149]. It is this coupling which causes the modified vacuum structure of
QCD at nonzero baryon chemical potential [147].
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Using the Gaussian Grassman integral, (3.1.15), we find that

Zq =
Nf∏
j=1

Nc∏
k=1

detDjk. (6.2.5)

In using the Gaussian integral in the case where Djk is a differential operator, we must
clarify what the determinant here means. For matrices the determinant can be defined
as the product of the eigenvalues of the matrix. This is a definition we can carry over to
differential operators, with the difference being that the number of eigenvalues usually
is infinite. To see that the formula is correct also for differential operators one could
discretize space, carry out the Gaussian integrals and then again take the continuum
limit.

6.3 Landau Levels
We now want to find the spectrum of the operator Djk. Thus, we consider the eigenvalue
problem

Dψ = λψ, (6.3.1)

where we for the moment consider a single flavor and color and thus suppress the flavor
index j and color index k. We can rewrite this equation as

(−∂τ + µ̃− λ)ψ = (iγ0γi∂i + γ0∆− qBxγ0γ2)ψ. (6.3.2)

Writing ψ(τ,x) in terms of its Matsubara frequencies ωl,3

ψ(τ,x) =
l=∞∑
l=−∞

ψ̃l(x)e−iωlτ , (6.3.3)

we obtain
(iωl + µ̃− λ)ψ̃l = (iγ0γi∂i + γ0∆− qBxγ0γ2)ψ̃l. (6.3.4)

Choosing the Dirac representation of the gamma matrices, setting

ψ̃l =
(
χ−
χ+

)
, (6.3.5)

and defining
η = iωl + µ̃− λ, (6.3.6)

we find
(η ±∆)χ± = (iσi∂i − qBxσy)χ∓. (6.3.7)

Inserting one into the other yields(
η2 −∆2

)
χ+ = (iσi∂i − qBxσy)2χ+. (6.3.8)

3There is no factor V − 1
2 , since we do not Fourier expand the spatial part.
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Simplifying the operator on the left hand side, we obtain

(iσi∂i − qBxσy)2 =
[
−∂2

x − ∂2
z − (∂y + iqBx)2 + qBσz

]
, (6.3.9)

where we used σiσj = δij + iεijkσk. Thus, we find the equation[
η2 −∆2 + ∂2

x + ∂2
z + (∂y + iqBx)2 − qBσz

]
χ+ = 0. (6.3.10)

The equation for χ− is identical, so to find the spectrum of D we only need to consider
(6.3.10). The z and y parts of the equation are solved by plane waves. Thus, we see that
we have two independent solutions of the form

χ+ =
(

0
f−(x)

)
eipzz+ipyy, χ+ =

(
f+(x)

0

)
eipzz+ipyy. (6.3.11)

Note that to satisfy the specific boundary conditions of the problem, one might have
to take linear combinations of these solutions. Furthermore, the boundary conditions
might put quantization conditions on py and pz, which we will get back to later.

Inserting (6.3.11) into (6.3.10), we get[
η2 −∆2 − p2

z + ∂2
x − (py + qBx)2 − qBs

]
f∓ = 0, (6.3.12)

where s = ±1. Defining w = x + py/qB, changing variables and dividing by 2|qB|, we
find [

− 1
2|qB|∂

2
w + 1

2 |qB|w
2
]
f∓(w) = η2 −∆2 − p2

z − qBs
2|qB| f∓(w). (6.3.13)

But this is just the well-known harmonic oscillator equation where the parameters m, ω,
and E now correspond to |qB|, 1 and (η2 −∆2 − p2

z − qBs)/2|qB|. Thus, we find that
solutions exist when

(η2 −∆2 − p2
z − qBs)/2|qB| = n+ 1

2 (6.3.14)

for some integer n ≥ 0. Since we later will sum over s = ±1, we can replace qBs→ |qB|s.
Insertion of η into (6.3.14) gives

(λ− µ̃− iωl)2 = ∆2 + p2
z + |qB|(2n+ 1 + s). (6.3.15)

The energies E(pz, n, s)2 = ∆2 + p2
z + |qB|(2n+ 1 + s) are known as Landau levels and

correspond to the energy eigenstates of fermions in a constant magnetic field at T = 0
with no chemical potential or background gluon field. Now, (6.3.15) is a quadratic
equation in λ with two solutions. We write the equation as

(λ+ α)2 = γ2, (6.3.16)

with α = −µ̃− iωl and γ equal to the right hand side of (6.3.15). We have two solutions

λ± = ±γ − α. (6.3.17)
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6.4 The Quark Partition Function at One Loop: Part I

We now return to evaluate the partition function. With the index j summing over the
whole eigenvalue spectrum, which includes summing over pz, py, l, n and s, we have that
the contribution of one quark flavor is

lnZq = ln detD = ln
∏
j

λj =
∑
j

lnλj =
∑
j

lnλ+,j +
∑
j

lnλ−,j

=
∑
j

1
2 ln

(
λ2

+,jλ
2
−,j

)
=
∑
j

1
2 ln

[
(γ2 − α2)2

]
=
∑
j

ln
(
γ2 − α2

)
=
∑
j

ln
[
(ωl − iµ̃)2 + ∆2 + p2

z + |qB|(2n+ 1 + s)
]
. (6.4.1)

We observe that (6.4.1) is dimensionally inconsistent since we have something of mass
dimension two in the logarithm. This is because we really should have inserted the
Matsubara frequency expansion in the path integral (6.2.2), which would give us a factor
β in the action, and the Euclidean action would be of the form

−SE =
∑
l

∫
d3xψl(x)†βD(ωl,x)ψl(x). (6.4.2)

Thus, we should really replace D → βD in the previous section, which leads to the
replacements λi → βλi, which finally gives

lnZq =
∑
i

ln
{
β2
[
(ωl − iµ̃)2 + ∆2 + p2

z + |qB|(2n+ 1 + s)
]}
. (6.4.3)

The sum over the eigenvalues is given by

∑
j

=
∞∑
n=0

∞∑
l=−∞

∑
s=±1

∑
pz ,py

(6.4.4)

Even though the eigenvalues are degenerate in the py quantum number, the py sum is
non-trivial since it is not obvious what the degeneracy factor is. A heuristic non-rigorous
argument commonly found in the literature goes as follows: From the fact that (6.3.13)
is a harmonic oscillator equation with the quadratic potential centered at xc = −py/qB,
we known that the solutions are fn(x + py

qB ), with fn being the eigenfunctions of the
harmonic oscillator. If we put the system in a finite cubic volume of size V = L3

and assume periodic boundary conditions,4 we have that the momentum py must be
quantized, satisfying

py = 2π
L
m, (6.4.5)

4The background gauge field Aµ = (0, 0,−Bx, 0) is not compatible with periodic boundary conditions
in the x-direction, but periodicity in the y-direction is sufficient for this argument.
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for some integer m. Assume for a moment that qB < 0. Wanting the center of our
eigenstate to be localized within the box, and letting x ∈ [0, L] define the x-coordinates
of the box, we have the requirement

0 < xc = −2πm
qBL

= 2πm
|qB|L

< L, (6.4.6)

which implies

0 < m <
|qB|L2

2π . (6.4.7)

This gives a degeneracy of ⌊
|qB|L2

2π

⌋
≈ |qB|L

2

2π , (6.4.8)

where we assume that |qB|L2/2π � 1, so that the effect of the floor function b·c is
negligible. Clearly the argument also applies for qB > 0 with trivial modifications.
Whether or not one buys this argument, it can anyhow be verified by checking that the
B → 0 limit reproduces the correct B = 0 result. This uniquely and rigorously fixes
the degeneracy factor. For a rigorous direct derivation of the degeneracy factor of the
Landau levels the reader is referred to Ref. [150].

Taking the thermodynamic limit where ∑pz → L
∫ dpz

2π , we find

∑
i

= |qB|L
2

2π

∞∑
n=0

∞∑
l=−∞

∑
s=±1

L

∫ dpz
2π . (6.4.9)

We thus finally obtain, for a single color and flavor,

lnZ = |qB|V2π

∞∑
n=0

∞∑
l=−∞

∑
s=±1

∫ dpz
2π ln

{
β2
[
(ωl − iµ̃)2 + ∆2 + p2

z + |qB|(2n+ 1 + s)
]}
.

(6.4.10)
The Matsubara frequency sum is the same as the one encountered for non-interacting
fermions with no external EM field if we identify an effective mass

M2
B = ∆2 + |qB|(2n+ 1 + s), (6.4.11)

replace
∫ d3p

(2π)3 →
∫ dpz

2π and notice that we have an explicit factor of two less that is
replaced by the sum ∑

s=±. Using the derivations in Appendix A.1 and A.2 with these
replacements, we obtain

lnZ = |qB|V2π

∞∑
n=0

∑
s=±1

∫ dpz
2π

β
√
p2
z +M2

B +
∑
k=±1

ln
[
1 + e−β

(√
p2
z+M2

B−kµ̃
)] .
(6.4.12)
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6.5 Interlude: Regularization of the Vacuum Energy
As is the case for a system without a magnetic field, we find a divergent vacuum energy,
except in this case the divergent integral corresponds to quantum fluctuations in one
dimension only. We regularize the integral with dimensional regularization by letting∫ ∞

−∞

dpz
2π

√
p2
z +M2

B → Λ2ε
∫ dd−2εpz

(2π)d−2ε

√
p2
z +M2

B ≡ I, (6.5.1)

for some small ε. Here Λ is the renormalization scale, d = 1 and dd−2εpz the volume
element in d− 2ε dimensions. The analytic continuation of the volume element to non-
integer dimensions is obtained by using that ddp = pd−1dpdΩd and the fact that the
solid angle integration

∫
dΩd can be analytically continued to non-integer d, since

∫
dΩd = 2π d2

Γ
(
d
2

) (6.5.2)

is defned for non-integer d. Since the integrand of (6.5.1) is spherically symmetric, we
can use the above relation to get

I = (4πΛ2)ε
√
πΓ
(

1
2 − ε

) ∫ ∞
0

dp p−2ε

(p2 +MB)−1/2 . (6.5.3)

This integral is essentially the Euler beta function, and we use the well-known integral
formula [26]5

∫ ∞
0

dx xa

(x2 +M2)b = (M2)
a+1

2 −b
Γ
(
a+1

2

)
Γ
(
b− a+1

2

)
2Γ(b) (6.5.4)

with a = −2ε and b = −1
2 to obtain

I = −M
2
B

4π

(
4πΛ2

M2
B

)ε
Γ(−1 + ε), (6.5.5)

where we used that Γ
(
−1

2

)
= −2

√
π. Like in Chapter 4 we adopt the MS renormalization

scheme, which means we absorb all factors (ε−1+ln 4πe−γE ) into counterterms. The effect
of this is equivalent to redefining Λ2 → Λ2/4πe−γE everywhere and absorbing factors of
ε−1 into counterterms. Doing this we finally get that

I = −M
2
B

4π

(
eγEΛ2

M2
B

)ε
Γ(−1 + ε). (6.5.6)

Usually at this point we expand in the ε → 0 limit. However, keeping I on the form
given will help us regulate the sum over the Landau levels, as we see in the next section.

5The Euler beta function satisfies B(x, y) = Γ(x)Γ(y)
Γ(x+y) and is defined by B(x, y) =

∫
ux−1du

(1+u)x+y [151].
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6.6 The Quark Partition Function to One Loop: Part II
Now that we have regulated the diverging integral, we want to sum over the Landau
levels. Unfortunately, we cannot do this explicitly, but we can rewrite our expressions
more succinctly.

Combining (6.4.12) and (6.5.5) gives an effective potential

Ω = |qB|2π

∞∑
n=0

∑
s=±1

{
M2−2ε
B

(
eγEΛ2)ε

4π Γ(−1 + ε)−
∑
k=±1

T

∫ dpz
2π ln

[
1 + e

−β
(√

p2
z+M2

B
−kµ̃
)]}

.

(6.6.1)
Let us first deal with the vacuum energy. We must consider the sum

S ≡
∞∑
n=0

∑
s=±1

M2−2ε
B =

∑
s=±1

∞∑
n=0

[
∆2 + |qB|(2n+ 1 + s)

]1−ε
, (6.6.2)

which for large n goes as ∼ ∑
n n

1−ε. Conveniently, ε acts as a regulator on the sum.
Carrying out the s = ±1 sum:

S = (2|qB|)1−ε ∑
s=±1

∞∑
n=0

(
n+ ∆2

2|qB| + 1 + s

2

)1−ε

= (2|qB|)1−ε

 ∞∑
n=1

(
n+ ∆2

2|qB|

)1−ε

+
∞∑
n=0

(
n+ ∆2

2|qB|

)1−ε


= 2(2|qB|)1−ε
∞∑
n=0

(
n+ ∆2

2|qB|

)1−ε

−∆2−2ε. (6.6.3)

The above sum is of the same form as the definition of the Hurwitz zeta function, which
is given by [152]

ζ(s, a) =
∞∑
n=0

(n+ a)−s. (6.6.4)

The Hurwitz zeta function is defined by (6.6.4) only for Re s > 1, but it can be analyti-
cally continued with the formula

ζ(s, a) = 1
s− 1

∞∑
n=0

n∑
k=0

(−1)k
n+ 1

(
n

k

)
(a+ k)1−s, (6.6.5)

which is valid for all real numbers a > −1 and complex numbers s 6= 1 [152].6 Defining

δ = ∆2

2|qB| , (6.6.6)

we find that
S = 2(2|qB|)1−ε

[
ζ(−1 + ε, δ)− 1

2δ
1−ε
]
. (6.6.7)

6The Hurwitz zeta function can be analytically continued to any real a and complex s as long as
s 6= −1 [152].



96 CHAPTER 6. THE PQM MODEL IN A MAGNETIC FIELD

Hence, the vacuum energy contribution to the effective potential is

ΩT=0 = 2|qB|
(4π)2

(
eγEΛ2

)ε
Γ(−1 + ε)2(2|qB|)1−ε

[
ζ(−1 + ε, δ)− 1

2δ
1−ε
]

= 8(qB)2

(4π)2

(
eγEΛ2

2|qB|

)ε
Γ(−1 + ε)

[
ζ(−1 + ε, δ)− 1

2δ
1−ε
]
. (6.6.8)

To take the ε→ 0 limit we use that
ζ(−1 + ε, δ) = ζ(−1, δ) + εζ(1,0)(−1, δ) +O(ε2), (6.6.9)

Γ(−1 + ε) = −1
ε
− 1 + γE +O(ε), (6.6.10)

δε = 1 + ε ln δ +O(ε2), (6.6.11)

where ζ(1,0)(s, δ) = ∂xζ(x, δ)|x=s. We can further simplify (6.6.9) by using the known
relation [153]

ζ(−n, δ) = −Bn+1(δ)
n+ 1 , n ∈ N, (6.6.12)

where Bn(x) is the n-th Bernoulli polynomial. Thus we find

ζ(−1, q) = −1
2B2(δ) = − 1

12 + δ

2 −
δ2

2 . (6.6.13)

Inserting (6.6.9)–(6.6.13) into (6.6.8) and neglecting terms going as O(ε) we find

ΩT=0 =8(qB)2

(4π)2

{[
1
ε

+ 1 + ln
(

Λ2

2|qB|

)][
1
12 + δ2

2

]
− 1

2δ ln δ − ζ(1,0)(−1, δ)
}

=8(qB)2

(4π)2

[
1
12 + δ2

2 −
1
2δ ln δ − ζ(1,0)(−1, δ) + ln

(
Λ2

2|qB|

)(
1
12 + δ2

2

)]
+ δΩdiv, (6.6.14)

with the divergent part

δΩdiv = 8(qB)2

(4π)2

(
1
12 + δ2

2

)
1
ε
, (6.6.15)

which will be absorbed by counterterms later.
For the thermal contribution to the effective potential we consider

ΩT = −|qB|2π
∑
k=±1

∞∑
n=0

∑
s=±1

T

∫ ∞
−∞

dpz
2π ln

[
1 + e−β

(√
p2
z+M2

B−kµ̃
)]
. (6.6.16)

This integral converges, and it is thus not necessary to regularize it. We use that
∫∞
−∞ =

2
∫∞

0 since the integrand in symmetric in pz and perform a partial integration to obtain

ΩT = −|qB|2π
∑
k=±1

∞∑
n=0

∑
s=±1

2
∫ ∞

0

dpz
2π

p2
z√

p2
z +M2

B

1

1 + eβ
(√

p2
z+M2

B−kµ̃
)

= −8|qB|T 2

(4π)2

∞∑
n=0

∑
s=±1

K (MB, µ̃) , (6.6.17)
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where we defined the dimensionless function Kβ(m2, µ):

Kβ(m2, µ) = β2
∫ ∞

0
dpz

p2
z√

p2
z +m2

[
1

1 + eβ
(√

p2
z+m2−µ

) + 1

1 + eβ
(√

p2
z+m2+µ

) ] ,
(6.6.18)

Again we can sum over s by using that, for any function f and parameters a, b,
∞∑
n=0

∑
s=±1

f
(
a+ b(2n+ 1 + s)

)
=
∞∑
n=0

[
f
(
a+ 2b(n+ 1)

)
+ f

(
a+ 2bn)

)]
=
∞∑
n=1

f(a+ 2bn) +
∞∑
n=0

f(a+ 2bn)

= f(a) + 2
∞∑
n=1

f(a+ 2bn). (6.6.19)

This gives us

ΩT = −8|qB|T 2

(4π)2

∞∑
n=0

(2− δn0)Kβ

(
∆2 + 2|qB|n, µ̃

)
. (6.6.20)

Since we have summed out the s quantum number, from here and onward we redefine

M2
B = ∆2 + 2|qB|n. (6.6.21)

6.7 The PQM Partition Function
We now proceed to write down the full one-loop partition function of the PQM model in
the large-Nc limit. To absorb the diverging vacuum energy that is proportional to |qB|
we include the tree-level energy term from the EM gauge field itself, which is

U tree
EM = −1

4FµνF
µν = 1

2(E2 +B2) = 1
2B

2, (6.7.1)

where Fµν = ∂µAν −∂νAµ is the EM field strength tensor. We could of course also have
included one-loop contributions to Ω from the pure gauge sector, which would be given
by

U1−loop
EM =

∫ d3p

(2π)3

[
|p|+ 2T ln

(
1− e−β|p|

)]
= −π

2

45T
4 +

∫ d3p

(2π)3 |p|. (6.7.2)

In dimensional regularization the last integral vanishes. We see this immediately since
it has no momentum scale to go in the logarithm ln

(
Λ
·

)
that usually arises in these

integrals. Furthermore, the nonzero thermal contribution is not proportional to Nc, and
should not be included in the large-Nc limit. Even if the nonzero T 4 contribution does
affect the pressure of the model, it does not affect the minimization of the potential with
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respect to ∆, q and r. Hence, while the neglection of mesonic fluctuations does affect
the phase diagram, the phase diagram is not affected by neglecting thermal fluctuations
in the photon field.

Adding the chiral sector and summing over all the quark flavors and colors, we have
the effective potential

Ω =1
2B

2 − 1
2mv

2 + 1
4!λv

4 − hv + δΩdiv + Uglue

+Nc

∑
f

8(qfB)2

(4π)2

[
1
12 +

δ2
f

2 −
1
2δf ln δf − ζ(1,0)(−1, δf ) + ln

(
Λ2

2|qfB|

)(
1
12 +

δ2
f

2

)]

−
∑
c

∑
f

8|qfB|T 2

(4π)2

∞∑
n=0

(2− δn0)Kβ

(
∆2 + 2|qfB|n, µ̃c

)
. (6.7.3)

The index f runs over 1, . . . , Nf = 2, while c runs over 1, . . . , Nc = 3, and

δf = ∆2

2|qfB|
, (6.7.4)

µ̃c = µ+ ig[A4]cc. (6.7.5)

The diverging part is given by

δΩdiv = Nc

∑
f

8(qfB)2

(4π)2

(
1
12 +

δ2
f

2

)
1
ε

= Nc

∑
f

2
3

(qfB)2

(4π)2
1
ε

+ 2Nc∆4

(4π)2
1
ε
. (6.7.6)

We now need to take care of renormalization. Conveniently, everything from chapter 4
carries over, as the particle masses still are identified with the masses measured in the
vacuum where B = 0, and we have no photon loops shifting particle masses in the one-
loop large-Nc limit. Letting all couplings s ∈ {g, λ, v,m, h} be given by s = sMS + δsMS

and inserting the running couplings given in (4.4.5)–(4.4.9) and the counterterms given
in (A.4.84), we find that the chiral sector is

Uχ = −1
2m

2
0f

2
π

∆2

m2
q

+ 1
4!λ0f

4
π

∆4

m4
q

− h0fπ
∆
mq

+ δΩMS
chiral, (6.7.7)

with
δΩMS

chiral = −2Nc∆4

(4π)2
1
ε
. (6.7.8)

Here λ0, m0, h0 are given by (4.4.13)–(4.4.15). We see that the counterterm from the
renormalization of the couplings in the tree-level mesonic potential exactly cancels the
divergence that is independent of B.

We remind that ∆ = gv = gMSvMS, as was pointed out Sec. 4.6. This means that all
occurrences of ∆ in the last two lines of (6.7.3) can be kept as they are upon introducing
the MS couplings.
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Everything that remains is the renormalization of the B-field. We could just let
B2 → (1 + δZ)B2, and demand that δZB2 absorbs the B-dependent divergences. How-
ever, since the underlying dynamics of the B-field is known, we can do better. The
renormalization of B is a consequence of the renormalization of the gauge field Aµ. If we
calculate the self-energy corrections to the photon propagator to one loop and demand
that it is zero, we find an expression for δZ in the on-shell scheme. Since this is a stan-
dard result of QED, we quote the final expression and refer to textbooks for a derivation
[11, 26, 28]. Letting Aµ =

√
ZOSAOS

µ with ZOS = 1 + δZOS, we find that7

δZOS = − 4Nc

3(4π)2

∑
f

q2
f

[
1
ε

+ ln
(

Λ2

m2
q

)]
. (6.7.9)

Note that we should use mq and not ∆, since the renormalization is carried out at
T = 0. Furthermore, compared to the alternative approach outlined in the beginning
of this paragraph we have gained an extra ln

(
Λ2

m2
q

)
term. This term only affects the

pressure of the model and has no effect on the phase diagram, since it is independent of
the order parameters.

Since the bare magnetic field should be independent of the renormalization scheme,
we have

ZOSB
2
OS = ZMSB

2
MS, (6.7.10)

which gives, to one-loop order,

B2
MS = 1 + δZOS

1 + δZMS
B2

OS ≈ (1 + δZOS − δZMS)B2
OS, (6.7.11)

which evaluates to

B2
MS =

1− 4Nc

3(4π)2 ln
(

Λ2

m2
q

)∑
f

q2
f

B2
OS. (6.7.12)

Inserting B = BMS + δBMS we see that the B-dependent divergence cancels, and we find,
after some rewriting, that the vacuum part of the potential reads

Ωvac =− 1
2m

2
0f

2
π

∆2

m2
q

+ 1
4!λ0f

4
π

∆4

m4
q

− h0fπ
∆
mq

+ 2Nc∆4

(4π)2

[
3
2 + ln

(
Λ2

∆2

)]

+ 8Nc

(4π)2

∑
f

(qfB)2
[

1
12 − ζ

(1,0)(−1, δf )− 1
2δf ln δf −

δ2
f

4 + 1
2δ

2
f ln δf

]

+ 1
2B

2

1 + 4Nc

3(4π)2

∑
f

q2
f ln

(
m2
q

2|qfB|

) , (6.7.13)

7Again we have redefined Λ2 → Λ2/4πe−γE . Furthermore, our result differs by a factor two in the
ε−1-term from Refs. [26, 28], since we define d = 4− 2ε in dimensional regularization, while in Refs. [26,
28] they let d = 4− ε.
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where we wrote BOS = B. Note that for all terms except the tree-level term 1
2B

2, we can
set BMS = BOS, since working to one-loop order means we are working up to O(q2

f ), and
|qfBMS| and |qfBOS| differs only at higher orders in qf . Furthermore, we have rewritten
the potential so that the first line is the B = 0 contribution, while the second and third
lines are the additional terms arising due to the magnetic field. Again we point out that
if we are only studying the order parameters, the term on the last line is irrelevant.

The term on the second line of (6.7.13) superficially appears to be nonzero even if
B = 0 due to terms ∼ B2δ2

f ∼ O(B0) and ∼ B2δ2
f ln δf ∼ O(− lnB). However, it

turns out that these contributions are cancelled by similar contributions from the the
∼ B2ζ(1,0)(−1, δf ) term. Noting that small B corresponds to large δf , and using the
large-δf expansion [126]

ζ(1,0) (−1, δf ) = −1
4δ

2
f + δ2

f ln δf −
1
2δf ln δf + 1

12 ln δf + 1
12 +O

(
1
δ2
f

)
, (6.7.14)

we see that

lim
B→0

(qfB)2
[

1
12 − ζ

(1,0)(−1, δf )− 1
2δf ln δf −

δ2
f

4 + 1
2δ

2
f ln δf

]
= 0. (6.7.15)

Inserting the couplings λ0, m0 and h0 and setting Λ = Λ0, with Λ0 as defined in
(4.4.10), we finally find

Large-Nc One-Loop Effective Potential of the PQM model in a B-field

Ω =3
4m

2
πf

2
π

{
1−

4Ncm
2
q

(4π)2f2
π

m2
πC
′
π

}
∆2

m2
q

+
2Ncm

4
q

(4π)2

{
3
2 + ln

(
m2
q

∆2

)}
∆4

m4
q

− m2
σf

2
π

4

{
1 +

4Ncm
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(4π)2
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f

(qfB)2
[
ζ(1,0)(−1, δf ) + 1

2δf ln δf +
δ2
f

4 −
1
2δ

2
f ln δf −

1
12

]

− 8|qfB|T 2

(4π)2 T 2 ∑
n,c,f

(2− δn0)Kβ

(
∆2 + 2|qfB|n, µ̃c(q, r)

)

+ 1
2B

2

1 + 4Nc

3(4π)2

∑
f

q2
f ln

(
m2
q

2|qfB|

)+ Uglue(Φ(q, r), Φ̄(q, r), T ).

(6.7.16)
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We have

βµ̃1 = βµ+ i
2π
3 (q + r), βµ̃2 = βµ+ i

2π
3 (−q + r), βµ̃3 = βµ− i4π3 r, (6.7.17)

as can be seen from the definition of µ̃c in (6.2.4) and the parametrization of A4 in
Sec. 2.7. Note that here q is the Polyakov loop eigenvalue and not an electric charge.

6.8 A Fugacity Expansion of ΩT

The expression for ΩT given in (6.6.20) appears to be the one usually quoted in the
literature. However, the integral Kβ(m2, µ) is computationally intensive to evaluate
numerically. For this reason we will derive an alternative expression for ΩT in terms
of Bessel functions. With this expression we can take advantage of preexisting code
libraries for highly efficient computation of Bessel functions.

We find that (6.6.16) generalized to Nc colors reads

ΩT = −|qfB|2π T
∑
c

∑
k=±1

∞∑
n=0

(2− δn0)
∫ ∞
−∞

dpz
2π ln

[
1 + e−β

(√
p2
z+M2

B−kµ̃c
)]
, (6.8.1)

for a single flavor f . Introducing x = βpz, y = βMB and zc = βµ̃c, we find

ΩT = −|qfB|2π2 T 2
∞∑
n=0

(2− δn0)
∑
c

∑
k=±1

∫ ∞
0

dx ln
(

1 + e−
√
x2+y2+kzc

)
. (6.8.2)

We now Taylor expand the logarithm, sum over k, and find

ΩT = −|qfB|2π2 T 2
∞∑
n=0

(2− δn0)
∑
c

∞∑
l=1

(−1)l+1

l
(elzc + e−lzc)

∫ ∞
0

dxe−l
√
x2+y2 (6.8.3)

Performing a change of variables we have

I ≡
∫ ∞

0
dxe−l

√
x2+y2 = y

∫ ∞
1

du u√
u2 − 1

e−(ly)u, (6.8.4)

where u =
√

(x/y)2 + 1. Setting u = cosh t we find

I = y

∫ ∞
0

dt cosh te−(ly) cosh t. (6.8.5)

Up to a factor, I can be identified with a modified Bessel function of the second kind
Kν with ν = 1 through the integral representation [153]

Kν(z) =
∫ ∞

0
dt cosh(νt)e−z cosh t, (6.8.6)

and we thus find
I = yK1(ly) = βMBK1 (lβMB) . (6.8.7)
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We also have that ∑
c

(elzc + e−lzc) = Nc

(
elβµΦl + e−lβµΦ̄l

)
, (6.8.8)

where
Φl = 1

Nc
trc Ll, Φ̄l = 1

Nc
trc L̄l, (6.8.9)

are “Polyakov loops” winding imaginary time l times. For more flavors we thus find the
expression

ΩT Fugacity Expansion

ΩT = −
∑
f

8Nc|qfB|T
(4π)2

∞∑
n=0

(2−δn0)MB

∞∑
l=1

(−1)l+1

l
K1(lβMB)

(
elβµΦl + e−lβµΦ̄l

)
.

(6.8.10)

We refer to this as a fugacity expansion, since the quantity eβµ is known as the fugacity
of the system. In the case where µ = 0, where we can always set r = 0 and which is the
case we will be studying, we find

Nc(Φl + Φ̄l) = 2 + 4 cos
(2πql

3

)
, (6.8.11)

and finally obtain

ΩT = −
∑
f

8|qfB|T
(4π)2

∞∑
n=0

(2− δn0)MB

∞∑
l=1

(−1)l+1

l
K1(lβMB)

[
2 + 4 cos

(2πql
3

)]
,

(6.8.12)
with MB =

√
∆2 + 2|qfB|n.

6.9 Numerical Methods
We now proceed to study numerically how the effective potential changes in the presence
of a magnetic field and its consequences for the transitions. To calculate the thermal
contribution to the effective potential, we must sum over Landau levels. This causes
the computational burden to increase significantly compared to the B = 0 case. In
practice we must truncate the sum over Landau levels and, if we use (6.8.12), the sum
over Bessel functions. However, for either large ∆ or large magnetic fields, the sum over
Landau levels should rapidly converge since we effectively sum up thermal fluctuations
from one-dimensional particles with mass MB =

√
∆2 + 2|qfB|n. Increasing n leads to

increasing effective masses and a high degree of Boltzmann suppression. Since K1(z)
decays very rapidly for z > 1, we see that Landau levels are strongly suppressed once
lMB > T , as expected. For either small B or ∆ both the number of Landau levels and
“l-levels” required in the sum increase significantly.
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We truncate the sum over Landau levels when the difference between two consecutive
terms is less than 10−4f4

π . This is significantly smaller than the expected value of the
potential at the minimum at any temperature. From Fig. 5.3 we see that the potential
at the minimum is of the order Ω ∼ f4

π at T = 0, while from Fig. 5.10 we see that the
minimum is of the order Ω ∼ 103f4

π for T = 400 MeV. The value of the potential at
the minimum will of course change in the presence of a magnetic field, but it will not
change so much that 10−4f4

π no longer can be considered small. This would require the
pressure to decrease by many orders of magnitude upon the introduction of a magnetic
field, which is not the case.

For the sum over Bessel functions, we truncate the sum when the difference between
two terms is less than 10−6f4

π . Thus the main error comes from the truncation of Landau
levels.

With these convergence requirements, we find that we get roughly a factor ten speed-
up by summing over Bessel functions instead of evaluating Kβ for each Landau level,
even though both methods produce identical plots. This comparison is clearly depen-
dent on the particular libraries, programming language and implementation used. Here
we have used the scipy.integrate.quad routine in SciPy [120] for the numerical inte-
gration needed to evaluate Kβ, with is an adaptive integration scheme from the Fortran
library QUADPACK [154].8 For faster integration we have implemented the integrand in
C and accessed it through the scipy.LowLevelCallable class. For the modified Bessel
functions we use the scipy.special.kn routine, which is a wrapper to the Fortran li-
brary AMOS [155].9 The Hurwitz zeta function derivative is calculated with the mpmath
library for Python [156], which has an implementation of the Hurwitz zeta function.10

For the global minimization, we again used the Basin-Hopping method for finding
the global minimum of Ω(∆, q) in the domain ∆ ∈ [0,∆c], where ∆c is an upper validity
range of the effective potential. ∆c is set to a value just below where Ω becomes non-
increasing with increasing ∆. As mentioned, we only study the case where µ = 0 where
we can minimize Ω with respect to q and ∆ only, and with r set to zero.

6.10 Numerical Results: The Effective Potential

In Fig. 6.1 we see the normalized effective potential Ω̃(∆) = Ω(∆)−Ω(∆ = 0) as function
of ∆ at Φ = 0, T = 0 for various magnetic fields. The parameters are the same as the
ones used in Chapter 5, meaning mπ = 140 MeV, mσ = 500 MeV and mq = 300 MeV.

It is clear that the minimum of the potential moves to higher ∆ for increasing B,
indicating that we have magnetic catalysis at T = 0. We also see from Fig. 6.1 that
the model is only valid up to roughly ∆c = 500 MeV. For larger values of ∆ it becomes
non-increasing. Furthermore, the potential becomes non-increasing for magnetic fields
of around |eB| = 10m2

π and larger, and thus the model is only valid for magnetic fields
below this value. With a larger sigma mass, as is frequently used in the literature, both

8http://www.netlib.org/quadpack/
9http://www.netlib.org/amos/

10http://mpmath.org/



104 CHAPTER 6. THE PQM MODEL IN A MAGNETIC FIELD

0 200 400 600
∆ [MeV]

−20

−15

−10

−5

0
Ω̃

va
c(

∆
)/
f

4 π

|eB| = 0

|eB| = 5m2
π

|eB| = 10m2
π

Figure 6.1: Normalized effective potential for increasing magnetic fields at Φ = 0 and
T = 0.

the validity range in ∆ and B increases. For mσ = 700 MeV the model is valid up to
roughly ∆c = 1100 MeV and |eB| = 100m2

π at T = 0. For a sigma mass of 400 MeV,
which is the lower estimate for the mass of the f0(500) resonance, the model breaks
down already at |eB| = 4m2

π. Thus, for lower sigma masses it seems more important to
include mesonic fluctuations, which potentially, if the relative coupling strengths allow,
can stabilize the potential with their O (+∆ ln ∆) contribution.

In Fig. 6.2 we see Ω̃(∆) for increasing values of T at Φ = 0 and |eB| = 5m2
π. As in

the B = 0 case we see that as temperature increases the minimum moves towards ∆ = 0.
Figures 6.3 and 6.4 show the normalized effective potential Ω̄(Φ) = Ω(Φ)−Ω(Φ = 1)

at T = ∆ = 150 MeV for the two different Polyakov loop potentials. Choosing r = 0
implies that Φ ∈ R and −1

3 ≤ Φ ≤ 1, which explains the plotted range on the x-axis.
We see that for both the PQM and χM models the minimum moves to larger Φ for
increasing B. Interestingly, remembering that Φ(T ) behaves oppositely to ∆(T ), this
indicates the possibility of inverse magnetic catalysis for the Polyakov loop. However,
this does not show that inverse magnetic catalysis actually occurs. To investigate this,
we must solve for Φ(T ) and ∆(T ) by minimizing Ω(∆,Φ, T ) with respect to ∆ and Φ,
as usual. Before moving on to doing this in the next section, we also note that the PQM
and χM models are significantly different in their sensitivity to Φ and B. We see that
the minimum of the PQM model moves much less than the minimum of the χM model
upon the introduction of a magnetic field.
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Figure 6.2: Normalized effective potential for increasing temperatures at |eB| = 5m2
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and Φ = 1.

6.11 Numerical Results: Magnetic Catalysis

The chiral condensate and the Polyakov loop as a function of temperature for different
magnetic fields are shown in Figs. 6.5 and 6.6. For both models we see the same behavior.
The chiral condensate increases as a function of magnetic field everywhere, meaning the
system displays magnetic catalysis at any temperature. At low temperatures this is the
right behavior, but lattice data show that inverse magnetic catalysis occurs around the
transition temperature, causing Tc to be lowered. This is not reproduced in the models,
as is also reported in other model studies. Instead, we have a slight increase in Tc, which
is plotted in Fig. 6.7.

We also see that the Polyakov loop is practically unchanged, meaning that we have
a slight splitting between the chiral and deconfinement transition temperatures. Again,
this is not in line with the lattice data [141–143], which shows a decreasing Tc(B) (see
Fig. 6.10).

6.12 Numerical Results: The Effect of the Chiral Sector
on Magnetic Catalysis

Interestingly, by varying mσ and mq we find that it is possible to obtain inverse mag-
netic catalysis for the Polyakov loop while we still have magnetic catalysis for the chiral
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Figure 6.3: Normalized effective potential with ∆ = T = 150 MeV as function of the
Polyakov loop Φ = Φ̄ at different magnetic fields for the χM model.

condensate. In Fig. 6.8 we see ∆(T ) and Φ(T ) for mσ = 600 MeV and mq = 200 MeV.
This is a useful observation since Ozaki et al. in Ref. [146] find inverse magnetic catal-
ysis in a simple effective model with one quark flavor and the RRTW potential, but
with no chiral sector. The finding that inverse magnetic catalysis for Φ does not imply
inverse magnetic catalysis for ∆(T ) is useful have in mind when looking at the results
of Ref. [146], since it means that it cannot be considered a solution to the problem of
lacking inverse magnetic catalysis in effective models.

We can go further and investigate what happens if we add a chiral sector to the
model investigated in Ref. [146]. We obtained the model as the one studied in Ref. [146]
if we remove the chiral sector of the PQM model, use the RRTW potential, and study
only one quark flavor with charge qf = e.11,12 Since we are only looking at the behaviour
Φ(q(T )), which is determined by the solutions of ∂qΩ = 0, we can drop all terms that do
not depend on the Polyakov loop eigenvalue q. Thus, we can optimize the potential

V = URRTW(Φ(q), Φ̄(q), T )

− 8|eB|T
(4π)2

∞∑
n=0

(2− δn0)MB

∞∑
l=1

(−1)l+1

l
K1(lβMB)

[
2 + 4 cos

(2πql
3

)]
(6.12.1)

11The quark thermal contribution is written in a different form in Ref. [146], since they instead use
the Schwinger proper time method to calculate the thermal quark term.

12To remove the vacuum energy divergence in the case where we have no chiral sector we would simply
add a vacuum energy counterterm δL ∝ m4

qε
−1 to the Lagrangian at one loop.
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Figure 6.4: Normalized effective potential with ∆ = T = 150 MeV as function of the
Polyakov loop Φ = Φ̄ at different magnetic fields for the PQM model.

with respect to q to find Φ(T ). For a direct comparison we use the same parameters
as Ref. [146], which means that we set T0 = 270 MeV in the RRTW potential and
mq = 350 MeV.

In the left plot of Fig. 6.9 we see Φ(T ) as predicted by the model given by (6.12.1).
The left plot is in full agreement with Fig. 10 in Ref. [146], and we see that inverse
magnetic catalysis occurs. However, in the right plot we see the resulting Φ(T ) when we
reintroduce chiral sector. When reintroducing the chiral sector, we add only one quark
flavor with a charge qf = e.13 Furthermore, we use a sigma with mσ = 800 MeV to be
able to reach the very high magnetic field of |eB| = 0.75 GeV2 ∼ 38m2

π, which is the
highest magnetic field considered in Ref. [146]. We see that the addition of the chiral
sector removes the inverse magnetic catalysis.

6.13 Inverse Magnetic Catalysis

To gain a better understanding of the reason for inverse magnetic catalysis, we repeat
the main points presented Ref. [143].

Consider QCD with a single quark flavor. One can show that the chiral condensate

13Note that with one quark flavor, the one-loop corrections to the couplings, equations (4.4.13)-
(4.4.15), are halved.
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Figure 6.5: The normalized chiral condensate ∆/∆(T = 0, B = 0) and the Polyakov
loop in the χM model as function of temperature for different magnetic fields. A full
line represents the chiral condensate and a dashed line the Polyakov loop.

is given by

〈
ψ̄ψ
〉

= 1
Z

∫
DAµe−SYM det

(
/D(B) +m

)
tr
(
/D(B) +m

)−1
, (6.13.1)

with the partition function being

Z =
∫
DAµe−SYM det

(
/D(B) +m

)
, (6.13.2)

and /D = γµDµ.14 Let B be small compared to all other scales in the problem of the
same dimension, so that it is reasonable to assume that

det
(
/D(B) +m

)
= det

(
/D(0) +m

)
+ δdet(B) (6.13.3)

tr
(
/D(B) +m

)−1 = tr
(
/D(0) +m

)−1 + δtr(B). (6.13.4)

with the δ-terms being small compared to the trace and determinant terms. We can now
write 〈

ψ̄ψ
〉
≈
〈
ψ̄ψ
〉val +

〈
ψ̄ψ
〉sea

, (6.13.5)
14Here γµ are Euclidean gamma matrices, whose exact form are entirely irrelevant to our argument.
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Figure 6.6: The normalized chiral condensate ∆/∆(T = 0, B = 0) and the Polyakov
loop in the PQM model as function of temperature for different magnetic fields. A full
line represents the chiral condensate and a dashed line the polyakov loop.

where we have defined the valence and sea quark contributions

〈
ψ̄ψ
〉val = 1

Z

∫
DAµe−SYM det

(
/D(0) +m

)
tr
(
/D(B) +m

)−1
, (6.13.6)〈

ψ̄ψ
〉sea = 1

Z

∫
DAµe−SYM det

(
/D(B) +m

)
tr
(
/D(0) +m

)−1
, (6.13.7)

and neglected δtrδdet. In the low-B regime we see that the change in the chiral con-
densate from the introduction of a magnetic field arises from two effects: The term
e−SYM det

(
/D(B) +m

)
represents the probability distribution for a given gauge field

configuration, and the introduction of a magnetic field in the determinant thus changes
the relative weighting of different gauge field configurations in the path integral. The
is the sea effect. The valence contribution comes from the change in the eigenvalue
spectrum of the quark propagator

(
/D(B) +m

)−1.15

It is shown on the lattice [138] that (6.13.5) is a very good approximation at low
magnetic fields. Furthermore, it is shown in Ref. [143] that

〈
ψ̄ψ
〉val is positive for all

T and B, while around the critical temperature
〈
ψ̄ψ
〉sea becomes negative. Thus, it is

the sea effect which drives inverse magnetic catalysis. The sea effect can be seen as a
backreaction from the quark sector onto the gluonic sector. However, since the PQM or

15Taking the trace corresponds to summing over all the eigenvalues.
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Figure 6.7: The critical temperature for the chiral phase transition for (a) the χM model
and (b) the PQM model.

χM models do not contain dynamical gluons, this effect is not taken into account in our
models.

A natural way to attempt to take the quark backreaction onto the gluonic sector
into account in the PQM or χM models is to add a dependence on the magnetic field
in the gluonic potential. This was systematically investigated for the PQM model with
the RRTW potential at the mean field level in Ref. [144] and later also with fluctuations
with the functional renormalization group (FRG) in Ref. [145].16 Both papers find
that even for an arbitrary dependence T0 = T0(B) in the RRTW potential, inverse
magnetic catalysis can only be obtained for a range small range of magnetic fields.17 In
Ref. [144] they find that inverse magnetic catalysis cannot be obtained for |eB| > 15m2

π

for any functional dependence T0(B), while in Ref. [145] they find that it cannot be
obtained for magnetic fields |eB| > m2

π. Note that the latter paper uses a sigma mass
of mσ = 530 MeV, while for the first paper it is not clear what mσ is. The two papers
mentioned above also investigate a dependence on the magnetic field in the Yukawa
coupling, g = g(B), and similarly find that this cannot reproduce inverse magnetic
catalysis.

16The functional renormalization group is a non-perturbative method to take fluctuations into account.
17Note that both papers require that the chiral transition should not become first order, in order to

agree with lattice data [143].
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Figure 6.8: The normalized chiral condensate and the Polyakov loop for the unphysical
particle masses mq = 200 MeV and mσ = 600 MeV. A full line represents the chiral
condensate and a dashed line the Polyakov loop.
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Figure 6.9: The Polyakov loop in a quark model without (left) and with (right) a chiral
sector.

6.14 Numerical Results: A B-Dependent Gluonic Sector
We end this chapter with a brief investigation of the effect letting Td decrease with B in
the χM model. We choose

Td(B) = Td(B = 0)e
−
(

eB

bm2
π

)2

, (6.14.1)
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with the dimensionless constant b setting the decay scale of Td(B), and Td(B = 0) =
270 MeV.

The resulting phase diagram with b = 70 is shown in Fig. 6.10. We have chosen a
sigma mass ofmσ = 800 MeV to be able to reach magnetic fields comparable to the largest
magnetic fields in Ref. [142]. It is clear that the critical temperature of the Polyakov
loop is driven down by a decreasing Td, while the chiral sector still displays magnetic
catalysis. The result is a splitting between the chiral and deconfinement temperatures
which is not found on the lattice [141, 142, 157]. We are not able to choose any value
for b the remedies this problem. Hence, with a magnetic field included it appears that
the χM model is suffering from the same problems as the PQM model.

It appears that some mechanism that tends to keep Tchiral ≤ Tdeconf is lacking in the
PQM model. We argued in Chapter 5 that there is a strong drive for deconfinement to
happen once the chiral transition has taken place, which tends to keep Tdeconf ≤ Tchiral.
However, the opposite does not appear to be the case, and it seems that some essential
physics is lacking from the PQM and χM models at B 6= 0.
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Figure 6.10: Phase diagram of the χM model with Td(B) as given by (6.14.1) with b = 70
compared to the phase diagram from the lattice. The sigma mass is mσ = 800 MeV.
(2 + 1)-flavor lattice data is taken from Bali et al. [142].



CHAPTER 7
Conclusion and Outlook

7.1 Summary
In this work we have studied spontaneous symmetry breaking and thermodynamics in
the two-flavor Polyakov-loop extended quark-meson model and Pisarksi-Skokov chiral
matrix model. We worked at the one-loop order and investigated the cases of nonzero
temperature and baryon chemical potentials, and nonzero temperature and magnetic
fields. As a simplifying approximation, we have neglected mesonic fluctuations, which
is equivalent to working in the large-Nc limit. Furthermore, we have fixed the coupling
constants consistently at the one-loop level, in contrast to what is most often done in
the literature on the QM model.

The Effect of One-Loop Couplings

We find that the one-loop determination of couplings could affect the validity range
of the models in terms of what particle masses yield an effective potential that has a
local minimum. Furthermore, we found that one-loop couplings could have a significant
effect on the location of the chiral transition, with the chiral transition being lowered
by approximately 25 MeV when using a tree-level determination of the couplings. When
it comes to thermodynamics, the introduction of loop corrections to the particle masses
have only a small effect.

The Phase Transition and Thermodynamics at µ = 0
We find that both models exhibit coinciding chiral and deconfinement phase transitions,
with the inflection points of the chiral condensates located at

TχMc = 181+6
−9 MeV, (7.1.1)

TPQM
c = 169+3

−3 MeV, (7.1.2)
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which both lie in the uncertainty range of the transition temeprature found on the lattice
for two flavors, which is Tc = (172± 3± 6) MeV [112]. We find that both models undergo
crossovers at the physical point, rather than true phase transitions.

Furthermore, at zero baryon chemical potential we find that the PQM and χM
models have similar predictions for thermodynamic quantities, and they mostly agree
reasonably well with QCD lattice data up to T ≈ 2Tc – both qualitatively and quanti-
tatively. However, the PQM model appears to be in better agreement with data when
it comes to the interaction measure.

For the chiral order parameter both models agree with lattice simulations. However,
when it comes to the Polyakov loop, neither model reproduce the lattice result, since
Φ in the models show a faster rise with T . However, the PQM model has a functional
form Φ(T ) which resembles lattice data, with a slower approach to the asymptotic value
Φ = 1 that is associated with a semi-deconfined region.

The Phase Diagram and Thermodynamics at µ 6= 0
At µ 6= 0 we face the problem of how to deal with a complex effective potential or a
complex gauge field. We chose to minimize the real part of the potential with a gluonic
mean field in

〈
A4
〉
∈ su(3). This has the benefit of giving a bounded effective potential

and yields a real effective potential at the minimum of the real part. However, it comes
at the cost of having the unphysical effect Φ = Φ̄.

We find that the PQM model agrees well with both the pressure and quark density
from two-flavor lattice data at nonzero chemical potentials in the region µ/T ≤ 1 and
T ≤ 1.5Tc. For T > 1.5Tc the PQM model starts to overshot the pressure and quark
number from the lattice. For the χM model we find that the pressure and quark density
is too large in the regime µ/T ≥ 0.4, but the curves have the correct qualitative shape.

In the µ−T phase diagram, the chiral condensate in the two models behaves similarly.
The chiral transition starts out as a crossover and then becomes a first order transition
at sufficiently high chemical potentials. The change of transition order is marked by a
critical point, which is located at

(µ∗, T ∗) = (262 MeV, 78 MeV), for the χM model, (7.1.3)
(µ∗, T ∗) = (262 MeV, 105 MeV), for the PQM model. (7.1.4)

A significant difference between the models was found in the deconfinement phase
diagram. In the χM model the deconfinement transition also goes from a crossover to
a first order transition, with the critical point located at the same place as the critical
point for the chiral transition. This is not the case in the PQM model, where the
deconfinement transition is a crossover for all µ. Thus, the latter model predicts that
the chiral and deconfinement phase transitions are of different order at high chemical
potentials.1 Furthermore, the χM model predicts deconfinement in the low T , high

1Note that when we say deconfinement phase transition, we are only talking about an inflection
point in Φ. We are not claiming that Φ ≈ 0.5 or even that it is much larger than zero at the critical
temperature.
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µ regime, while the PQM model predicts a quarkyonic phase. Thus, the two models
predict entirely different phases of matter in the low-temperature, high-density regime,
which is the most significant difference between the two models.

The Phase Diagram at B 6= 0

With a nonzero magnetic field, we find that both the PQM and the χM models in
their standard form exhibit magnetic catalysis at all temperatures. This is in line with
lattice data at low temperatures but contradicts them for temperatures around T = Tc.
We also find that for certain unphysical particle masses, it is possible to obtain inverse
magnetic catalysis for the Polyakov loop while still having magnetic catalysis for the
chiral condensate. Additionally, we see that a model without a chiral sector predicts
inverse magnetic catalysis for Φ.

Finally, we briefly discussed the topic of making the gluon potential dependent on
the magnetic field. We find that a B-dependent Td in the gluonic sector cannot make the
χM model display inverse magnetic catalysis, and it thus suffers from the same problems
as the PQM model at B 6= 0.

7.2 Conclusion

We find that the two-flavor χM and PQM models are in reasonable agreement with
two-flavor QCD thermodynamics at zero baryon chemical potential for temperatures up
to T ∼ 2Tc. The main problem with the models is the temperature dependence of the
Polyakov loop. At nonzero µ the PQM model appears to agree with the lattice for
T ≤ 1.5Tc in the regime of µ/T -values where data exist. The χM model overshoots
the quark number and pressure in this regime. Furthermore, the χM and PQM models
strongly disagree in the high-µ and low-T phase, predicting different states of matter.
At nonzero magnetic fields, both models do not show inverse magnetic catalysis in their
standard form and disagree qualitatively with lattice results.

7.3 Outlook

There are several natural ways to continue and extend on the work presented in this
thesis. In the following we summarize some possibilities.

Including Mesonic Fluctuations

In this work we have used the large-Nc approximation. The most obvious generalization
of our approach is to drop this assumption and include fluctuations from mesons. Several
studies taking mesonic fluctuations into account have been carried out, both with [121,
122, 158, 159] and without [160] the functional renormalization group (FRG). They seem
to indicate possible qualitative effects on the phase diagram. For example, in Ref. [122]
they find that the phase diagram splits into two branches after the critical point.
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If we would include mesonic fluctuations and still carry out consistent parameter
fixing at one loop, it would require the calculation of significantly many more diagrams
in the one-loop parameter matching procedure. Thus, the process of renormalizing the
theory becomes much more involved. Furthermore, if we do not use FRG we face the
problem of m2

π becoming negative once the temperature becomes high enough.2 Solving
this problem would require more advanced methods of perturbative thermal field theory
such as hard thermal loops, which is a reorganization of the perturbative expansion [36,
37, 39].

Investigating Minimization Scheme at µ 6= 0
We have chosen a scheme where we minimize the real part of the effective potential.
It would be illuminating to see how different the results are between this method and
saddle point method. Both methods have been compared in the PQM model, and while
they always agree at the endpoints of the phase diagram, they show potentially large
differences for the location of the critical point [74]. Since at the time of writing there
are no publications on the χM model at µ 6= 0, the saddle point method has not been
used with the χM model.

Calculation of Susceptibilities

In Ref. [21] they calculate various susceptibilities for the χM model, including baryon
number susceptibilities. Susceptibilities provide more opportunities to compare model
data to lattice simulations. Thus, more stringent tests can be put on the χM and PQM
models if we extend the study performed in this work also to include susceptibilities.

Isospin Chemical Potential

Since QCD does not suffer from a sign problem at nonzero isospin chemical potentials
µI , the scenario is open to lattice studies, and the phase diagram in the µI−T plane was
recently calculated in Ref. [161]. The PQM model can readily be extended to include
nonzero isospin, where a pion condensate appears as a new order parameter. Studies
of the PQM model at nonzero isospin has been carried out previously in Ref. [162]
and recently also with one-loop couplings in Refs. [163, 164]. Since the PQM and χM
models differ the most in their behavior at nonzero baryon chemical potential, it would
be interesting to see how the χM model behaves at nonzero µI .

2In the chiral limit m2
π becomes negative for any T > 0, since m2

π = 0 in the vacuum, and m2
π

decreases with decreasing ∆.
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APPENDIX A
Additional Derivations

A.1 Calculation of the Fermion Partition Function
We here finish the calculation of the Fermion partition function from Sec. 3.1. Using the Dirac
representation,

γ0 =
(
I2 0
0 −I2

)
γi =

(
0 σi

−σi 0

)
, (A.1.1)

where σi are the Pauli matrices, we have that

K + gAcc ≡
Dc

iβ
=
(

[−iωn + µ+ gAcc −m] I2 σipi
σipi [−iωn + µ+ gAjj +m] I2

)
, (A.1.2)

where K is defined as
K = −iωn + µ+ γ0γipi − γ0m. (A.1.3)

Let
K± = −iωn + µ+ gAcc ±m. (A.1.4)

Then Dcc reads

Dcc

iβ
=
(
K−I2 σipi
σipi K+I2

)
=


K− 0 pz px − ipy
0 K− px + ipy −pz
pz px − ipy K+ 0

px + ipy −pz 0 K+

 , (A.1.5)

which gives a determinant

detDcc = β4 [−K+K− + p2]2 = β4 [−(−iωn + µ+ gAcc)2 +m2 + p2]2
= β4 [(ωn + iµ+ igAcc)2 + ω2

p
]2

= β4 [(ωn + iµ̃c)2 + ω2
p
]2
, (A.1.6)

where
µ̃c ≡ µ+ gAcc. (A.1.7)
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Using (3.1.16), which reads

lnZ =
∑
n,p

Nc∑
c=1

ln detDc(p, n), (A.1.8)

we get

lnZ = 2
Nc∑
c=1

∑
n,p

ln
(
β2 [(ωn + iµ̃c)2 + ω2

p
])

=
Nc∑
c=1

∑
n,p

ln
(
β4 [(ωn + iµ̃c)2 + ω2

p
] [

(−ωn + iµ̃c)2 + ω2
p
])

=
Nc∑
c=1

∑
n,p

ln
(
β4 [ω2

n + (ωp − µ̃c)2] [ω2
n + (ωp + µ̃c)2])

=
Nc∑
c=1

∑
n,p

ln
(
β2 [ω2

n + (ωp − µ̃c)2])+ ln
(
β2 [ω2

n + (ωp + µ̃c)2]) , (A.1.9)

where we have used that we sum over all n ∈ Z, so that the sum is unchanged under ωn → −ωn.
Remembering that ωn = (2n+ 1)πT and using the integral∫ β2ω2

p

1

dx2

x2 + ω2
n

= ln
[
ω2
n + β2ω2

p
]
− ln

[
(2n+ 1)2π2 + 1

]
, (A.1.10)

we find

lnZ =
Nc∑
c=1

∑
p

∑
n

(∫ β2(ωp+µ̃c)2

1

dx2

x2 + (2n+ 1)2π2 +
∫ β2(ωp−µ̃c)2

1

dx2

x2 + (2n+ 1)2π2

)
,

where we dropped an irrelevant additive factor that does not affect thermodynamics. Carrying
out the Matsubara frequency sums, which are shown in Appendix A.2, and taking the large
volume limit, where ∑

p
→ V

∫ d3p

(2π)3 , (A.1.11)

we finally get

lnZ = 2V
Nc∑
c=1

∫ d3p

(2π)3

{
βωp + ln

[
1 + e−β(ωp−µ̃c)

]
+ ln

[
1 + e−β(ωp+µ̃c)

]}
. (A.1.12)

A.2 Matsubara Frequency Sums

Bosonic Sum
Consider the sum

1
4πi

∞∑
i=−∞

∮
Ci

dp0f(p0) coth
(

1
2βp0

)
(A.2.1)
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p0 p0

C0

C1

C2

C-1

C-2

C

Figure A.1: Left: each square Cn is an integration path in the complex plane. Right:
Equivalent integration path C.

where the paths Ci are shown in Fig. A.1. We have that

coth
(

1
2βp0

)
= 1 + e−βp0

1− e−βp0
(A.2.2)

has poles at

p0 = 2πinT ≡ iωn n ∈ Z, (A.2.3)

and it is analytic everywhere else. We have here introduced the bosonic Matsubara frequencies
ωn. If f(p0) is analytic we can use the residue theorem for each path Cn. Furthermore, we use
that the integral over all paths Cn is equivalent to integrating over the path C shown in Fig. A.1.
As a result we get

1
2

∞∑
n=−∞

f(iωn) Res
p0=iωn

coth
(

1
2βp0

)
= 1

4πi

∮
C

dp0f(p0) coth
(

1
2βp0

)
(A.2.4)

The pole is of first order, and the residue thus is given by

Res
p0=iωn

coth
(

1
2βp0

)
= lim
p0→iωn

(p0 − iωn)
cosh

( 1
2βp0

)
sinh

( 1
2βp0

) (A.2.5)

= 2iπT lim
k→n

(k − n)cosh(iπk)
sinh(iπk) (A.2.6)

= 2πT lim
k→n

(k − n)cos(πk)
sin(πk) (A.2.7)

= 2πT lim
q→0

q
cos(πq + πn)
sin(πq + πn) (A.2.8)

= 2πT lim
q→0

q
cos(πq)
sin(πq) (A.2.9)

= 2πT lim
q→0

q
1
πq

(A.2.10)

= 2T (A.2.11)
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Thus we get

T

∞∑
n=−∞

f(iωn) = 1
4πi

∮
C

dp0f(p0) coth
(

1
2βp0

)
. (A.2.12)

Let us now calculate the sum for

f(p0) = 1
x2 − β2p2

0
. (A.2.13)

Using that we can rewrite ∮
C

=
∫ −ε−i∞
−ε+i∞

+
∫ ε+i∞

ε−i∞
, (A.2.14)

we find ∑
n

1
x2 + (2πn)2 = β

4πi

(∫ −ε−i∞
−ε+i∞

+
∫ ε+i∞

ε−i∞

)
dp0

coth
( 1

2βp0
)

x2 − (βp0)2 (A.2.15)

We can now close each of the line integrals with a half-circle to negative and positive real infinity,
so that we again can use the residue theorem. We have poles at p0 = ± x

β , giving∑
n

1
x2 + (2πn)2 = β

4πi2πi
[

Res
p0=x/β

g(p0)+ Res
p0=−x/β

g(p0)
]
, (A.2.16)

for

g(p0) =
coth

( 1
2βp0

)
x2 − (βp0)2 . (A.2.17)

The poles are of first order, and the sum of the residues are

coth
(
x
2
)

2xβ −
− coth

(
x
2
)

2xβ =
coth

(
x
2
)

xβ
= 1
βx

(
1 + 2

ex − 1

)
. (A.2.18)

Thus ∑
n

1
x2 + (2πn) = 1

2x

(
1 + 2

ex − 1

)
. (A.2.19)

Using this gives ∫ β2ω2
p

1

∑
n

dx2

x2 + (2πn)2 =
∫ β2ω2

p

1

dx

2
√
x

(
1 + 2

e
√
x − 1

)
(A.2.20)

= βωp + 2 ln
(
1− e−βωp

)
+ const. (A.2.21)

Fermionic Sum
With the same argument as for the bosonic sum, except with Matsubara frequencies ωn =
(2n+ 1)πT and the replacement

coth
(

1
2βp0

)
→ tanh

(
1
2βp0

)
, (A.2.22)
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which has poles at p0 = iωn, we find

T

∞∑
n=−∞

f(iωn) = 1
4πi

∮
C

dp0f(p0) tanh
(

1
2βp0

)
. (A.2.23)

Let us calculate the same sum as for the bosons, except with the Fermionic matsubara
frequencies. We find∑

n

1
x2 + (2n+ 1)2π2 = β

4πi2πi
[

Res
p0=x/β

g(p0)+ Res
p0=−x/β

g(p0)
]
, (A.2.24)

where g(p0) now is

g(p0) =
tanh

( 1
2βp0

)
x2 − (βp0)2 . (A.2.25)

The sum of the residues is

tanh
(
x
2
)

2βx −
tanh

(
x
2
)

−2βx =
tanh

(
x
2
)

βx
= 1
βx

(
1− 2

ex + 1

)
(A.2.26)

Using this gives∫ β2(ωp±µ)2

1

∑
n

dx2

x2 + (2n+ 1)2π2 =
∫ β2(ωp±µ)2

1

dx

2
√
x

(
1− 2

e
√
x + 1

)
(A.2.27)

= (βωp ± µ) + 2 ln
(

1 + e−β(ωp±µ)
)

+ const. (A.2.28)

A.3 Symmetries of the QM Model

One can show that γ5 satisfies
(
γ5)2 = 1,

(
γ5)† = γ5 and

{
γ5, γµ

}
= 0. Define the operators PR

and PL as
PR = 1

2
(
1 + γ5) , PL = 1

2
(
1− γ5) . (A.3.1)

Using that (γ5)2 = 1, we find that P 2
R = PR and P 2

L = PL, which means that they are projection
operators. Since PR + PL = 1, we can write

ψ = PRψ + PLψ = ψR + ψL, (A.3.2)

where we in the last equality defined the right- and left-handed spinors, ψR = PRψ and ψL =
PLψ. We see that

γ5ψR = ψR, (A.3.3)
γ5ψL = −ψL. (A.3.4)

Inserting these relations into the Yukawa term gives

−LY = gψ̄L(χ1 + iπ · τ )ψR + gψ̄R(χ1 − iπ · τ )ψL + gψ̄L(χ1 − iπ · τ )ψL + gψ̄R(χ1 + iπ · τ )ψR.
(A.3.5)
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The last two terms vanish for the following reason. Let ξ and χ be two spinors and let P be one
of the two defined projection operators. Then

(Pχ)(Pξ) =
[(

1± γ5)χ]† γ0(1± γ5)ξ = χ†(1± γ5)γ0(1± γ5)ξ = χ†γ0(1∓ γ5)(1± γ5)ξ
= χ†γ0 [1− (γ5)2] ξ = 0.

For the kinetic terms we have that ψ̄Riγµ∂µψL and ψ̄Liγ
µ∂µψR vanish, as can be shown by a

similar calculation. Thus, the quark sector of the Lagrangian becomes

ψ̄Riγ
µ∂µψR + ψ̄Liγ

µ∂µψL − gψ̄L(χ1 + iπ · τ )ψR − gψ̄R(χ1 − iπ · τ )ψL. (A.3.6)

To make the symmetries of the Lagrangian manifest, introduce

Θ = 1
2 (χ1 + iπ · τ ) = 1

2

[
χ1 + iπ3 iπ1 + π2
iπ1 − π2 χ1 − iπ3

]
(A.3.7)

We see that

Tr
(
Θ†Θ

)
= 1

4 Tr
[
χ2

1 + π2
3 + 2π−π+ 0

0 χ2
1 + π2

3 + 2π−π+

]
= 1

2χ
2
1 + 1

2π
2, (A.3.8)

when the fields are real. We furthermore have that

Tr
(
Θ† + Θ

)
= 2χ1. (A.3.9)

Consequently we can rewrite the full quark-meson Lagrangian as

L = ψ̄Riγ
µ∂µψR + ψ̄Liγ

µ∂µψL − 2gψ̄LΘψR − 2gψ̄RΘ†ψL

+ Tr
(
∂µΘ†∂µΘ

)
+m2 Tr

(
Θ†Θ

)
− λ

6
[
Tr
(
Θ†Θ

)]2 + 1
2hTr

(
Θ + Θ†

)
. (A.3.10)

Assume now first that h = 0. Let U1 and U2 be two independent transformations in SU(2)
acting on flavor space. Consider the transformations

ψR → U1ψR, ψL → U2ψL. (A.3.11)

Since Ui acts on flavor components while γµ acts on the spinors, we find that Ui commutes with
γµ. Thus the kinetic quark terms are invariant:

U1ψRiγ
µ∂µU1ψR = ψ†RU

†
1γ

0iγµ∂µU1ψR = ψ†RU
−1
1 U1γ

0iγµ∂µψR = ψ̄Riγ
µ∂µψR,

and similar for ψL. The Yukawa-part becomes

−LY = 2gψ̄LU−1
2 Θ′U1ψR + gψ̄RU

−1
1 Θ′†U2ψL, (A.3.12)

where we assume Θ has transformed into some Θ′. We see that if we transform Θ as

Θ′ = U2ΘU−1
1 , (A.3.13)

both these terms are invariant, since U†i = U−1
i . However, we must check that the transformed

σ and π fields are still real; otherwise the way we have written the Lagrangian in (A.3.10) is not
valid. If this is the case, as we will show that it is in the following, we see that also the meson
sector of the Lagrangian invariant, since

Tr
[
(U2ΘU−1

1 )†(U2ΘU−1
1 )
]

= Tr
[
U1Θ†U−1

2 U2ΘU−1
1
]

= Tr
(
Θ†Θ

)
, (A.3.14)
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where we use the cyclic property of the trace. Thus, the Lagrangian is invariant under SU(2)R×
SU(2)L, where we have included subscripts to indicate that the Lagrangian is invariant under
separate SU(2) transformations on left- and right-handed components of the doublet.

Let us now verify that χ1 and π are still real after an SU(2)R×SU(2)L transformation. We
can write

U1 = e−
i
2 α·τ = 1− i

2α · τ , U2 = e−
i
2 β·τ = 1− i

2β · τ , (A.3.15)

for two general infinitesimal transformations, since the Pauli matrices generates a two-dimensional
representation of SU(2). Here α and β are real infinitesimal parameters. We have that the Θ
transformation on infinitesimal form reads:

(χ1 + iπ · τ )→
(

1− i

2β · τ
)

(χ1 + iπ · τ )
(

1 + i

2α · τ
)

= (χ1 + iπ · τ ) + i

2(α− β) · τχ1 + 1
2 [(β · τ )(π · τ )− (π · τ )(α · τ )]

= (χ1 + iπ · τ ) + i

(
α− β

2

)
· τχ1 +

(
β −α

2

)
· π + i

[(
β +α

2

)
× π

]
· τ

=
[
χ1 −

(
α− β

2

)
· π
]

+ i

[
π +

(
α− β

2

)
χ1 +

(
α+ β

2

)
× π

]
· τ ,

where we between the second and third line used the identity

(a · τ )(b · τ ) = (a · b) + i(a × b) · τ . (A.3.16)

Hence, an infinitesimal SU(2)R × SU(2)L transformation corresponds to changing the scalar
fields as

δχ1 = −
(
α− β

2

)
· π, δπ =

(
α− β

2

)
χ1 +

(
α+ β

2

)
× π. (A.3.17)

We see that the fields remain real, and the claim that L is invariant under SU(2)R × SU(2)L is
thus valid.

For the case h 6= 0, we see that SU(2)R×SU(2)L is broken since the term (A.3.9) is changed
when δχ1 6= 0. However, a single SU(2) symmetry remains, which corresponds to choosing the
two SU(2) transformations to be equal, U1 = U2. This implies α = β in the infinitesimal case,
which leads to δχ1 = 0. We refer to this symmetry as SU(2)V .

Conserved Currents
Let us find the currents corresponding to the SU(2) symmetries. Consider first h = 0. Choosing
β = 0 and αj = 2δij for i ∈ {1, 2, 3} gives us the conserved right-handed currents

jµi,R = ∂L
∂(∂µχ1) (−δijπj) + ∂L

∂(∂µπj)
(χ1δ

i
j + εjklδ

i
kπl) + ∂L

∂(∂µψ) (−iτiψR)

= ∂µπiχ1 − ∂µχ1πi + εijkπj∂
µπk + i(ψ̄L + ψ̄R)γµ(−iτiψR). (A.3.18)

Using that ψ̄LγµψR = 0, we get

jµi,R = ∂µπiχ1 − ∂µχ1πi + εijkπj∂
µπk + ψ̄Rγ

µτiψR. (A.3.19)

Similarly we get for the conserved left-handed currents

jµi,L = −∂µπiχ1 + ∂µχ1πi + εijkπj∂
µπk + ψ̄Lγ

µτiψL. (A.3.20)
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We can also form the vector and axial currents, which are the linear combinations

jµi,V = 1
2

(
jµi,R + jµi,L

)
= εijkπj∂

µπk + 1
2 ψ̄γ

µτiψ, (A.3.21)

jµi,A = 1
2

(
jµi,R − j

µ
i,L

)
= ∂µπiχ1 − ∂µχ1πi + 1

2 ψ̄γ
µγ5τiψ. (A.3.22)

In rewriting the quark contribution to these currents we have again used that the ψR-ψL cross-
terms vanish. Furthermore, we have used equations (A.3.3) and (A.3.4) to rewrite

ψ̄Rγ
µτiψR − ψ̄LγµτiψL = (ψ̄R + ψ̄L)γµτi(ψR − ψL) = (ψ̄R + ψ̄L)γµγ5τi(ψR + ψL).

To find the conserved currents in the h 6= 0 case we must set α − β = 0. We choose
αj + βj = 2δij and find that

δψ = − i2α · τψR −
i

2β · τψL = − i2

(
α+ β

2

)
· τψ − i

2γ
5
(
α− β

2

)
· τψ = − i2τiψ. (A.3.23)

Using this, we find exactly (A.3.21) as the conserved currents. Thus for h 6= 0, only the vector
currents are conserved. The vector currents are, as the name suggests, the currents corresponding
to the SU(2)V symmetry.

A.4 One-Loop Renormalization of the QM Model
We will here derive the one-loop self-energies in the large-Nc limit of the quark-meson model.
This section is a partial summary of the work done in Ref. [1].

Renormalized Perturbation Theory
Consider the quark-meson Lagrangian. Let the coupling constants and fields before renor-
malization be denoted with a subscript B, standing for bare. After we have expanded about
χ1,B = vB + σB we have:

L = U(vB) + 1
2(∂πB)2 + 1

2(∂σB)2 − 1
2m

2
σ,Bσ

2
B −

1
2m

2
π,Bπ

2
B + σB

(
hB −m2

π,BvB
)

+ ψ̄Bi/∂ψB −mq,Bψ̄BψB − gBψ̄B(σB + iπB · τγ5)ψB + Li,B , (A.4.1)

where

Li,B = −1
6vBλBσBπ

2
B −

λB
12 σ

2
Bπ

2
B −

1
6λBvBσ

3
B −

λB
4! σ

4
B −

λB
4! π

4
B (A.4.2)

contains all interactions except the Yukawa-term. We introduce the renormalized fields and
couplings via

πB =
√
Zππ, σB =

√
Zσσ, ψB =

√
Zψψ,

m2
B = Zmm

2, λB = Zλλ, gB =
√
Zgg, (A.4.3)

hB = Zhh, vB =
√
Zvv,
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where the Z-factors are the field, mass and coupling renormalizations. Inserting (A.4.3) into
(A.4.1) gives the Lagrangian

L = U (v) + δU + 1
2Zπ(∂π)2 + 1

2Zσ(∂σ)2 − 1
2Zσ

(
Zλλ

2 Zvv
2 − Zmm2

)
σ2

− 1
2Zπ

(
Zλλ

6 Zvv
2 − Zmm2

)
π2 + σ

√
Zσ

(
Zhh−

Zλλ

6
(
Zvv

2) 3
2 + Zmm

2
√
Zvv2

)
+ Zψψ̄i/∂ψ − Zψ

√
ZgZvmqψ̄ψ − Zψ

√
Zggψ̄(

√
Zσσ + i

√
Zππ · τγ5)ψ + Li + δLi. (A.4.4)

Here δU is the change in the tree-level potential, which we will look at later, while the countert-
erms coming from the non-Yukawa interactions, δLi, will not be needed at one-loop level in the
large-Nc limit for the renormalization scheme we will adopt. Introducing

Z = 1 + δZ (A.4.5)

for all the quantities in (A.4.3), we find that the quadratic part of the meson sector becomes

1
2(∂π)2 + 1

2(∂σ)2 − 1
2(1 + δZσ)

(
m2
σ + δm2

σ

)
σ2 − 1

2(1 + δZπ)
(
m2
π + δm2

π

)
π2

+ 1
2δZπ(∂π)2 + 1

2δZσ(∂σ)2, (A.4.6)

where we have introduced

δm2
σ = 1

2δλv
2 − δm2 + 1

2λδv
2, (A.4.7)

δm2
π = 1

6δλv
2 − δm2 + 1

6λδv
2, , (A.4.8)

δm2 = δZmm
2, δλ = δZλλ, δv2 = δZvv

2. (A.4.9)
To one-loop order, where we can drop products of counterterms, we see that the quadratic meson
part gives the counterterms

i
1
2
[
δZσ(p2 −m2

σ)− δm2
σ

]
≡ σ σ , (A.4.10)

i
1
2
[
δZπ(p2 −m2

π)− δm2
π

]
≡ π π . (A.4.11)

Note that in the definition of the vertex factor, we do not include a factor of 2! coming from the
fact that a σ or π-field can attach to the counterterm in two ways. We will instead multiply with
these factors explicitly when summing diagrams.

We notice that to one-loop order, to find the counterterms corresponding to a product of
renormalized quantities, we can effectively take the variation of the product. For example, if A
and B are being renormalized at one loop, then the counterterms corresponding to the product
AB is given by

δ(AB) ≡ (A+ δA)(B + δB)−AB = (δA)B +A(δB) + δAδB︸ ︷︷ ︸
two-loop term

. (A.4.12)

Using this we see that to one-loop order the linear counterterm becomes

1
2δZσσ

(
h−m2

πv
)

+ σ

(
δh− δm2

πv −
1
2m

2
πv
δv2

v2

)
, (A.4.13)
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σ σ = i

p2 −m2
σ

, π π = i

p2 −m2
π

,

ψ ψ =
i(/p+mq)
p2 −m2

q

, σ = i(h−m2
πv),

σ

σ σ

σ

= −i λ4! ,

σ

σσ

= −i16λv,

πi

πi σ

σ

= −i λ12

πi

πi

σ = −i16λv,

πi

πi πj

πj

=
{
−i2λ

4! , i 6= j

−i λ4! , i = j
,

ψα

ψβ

πi = g[τi]αβγ5,

ψα

ψα

σ = −ig.

Figure A.2: Vertex factors and propagators in the quark-meson model. Note that in this
definition of the vertex factors, we do not include in the vertex itself a factor n! for n
equal external legs.

with √
Zσ ≈ 1 + 1

2δZσ, δv = 1
2v δv

2. (A.4.14)

Thus, we have the counterterm

i

[
1
2δZσ(h−m2

πv)− 1
2m

2
πv
δv2

v2 + δh− δm2
πv

]
≡ σ ≡ iδt, (A.4.15)

where we have defined the δt as the expression in the braces.
From the Lagrangian we read off the rest of the Feynman rules. They are displayed in

Fig. A.2. As we will see in the following, in the large-Nc limit at one loop we will not need any
more counterterms than the ones we have derived when we use the appropriate renormalization
conditions.

Simplifications in the One-Loop Large-Nc Limit
From now on we assume that Nc is large so that we can neglect all O(N0

c )-terms. This allows
us to derive several useful relations between the various counterterms at the one-loop level. In
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this limit the quark mass receives no corrections at one loop, since the pion and sigma loops that
would renormalize the quark propagator goes as O(N0

c ). Thus, for our approximation scheme to
be consistent, we must have that the counterterms which would cancel these contributions must
vanish. This means that

ψ ψ = 0. (A.4.16)

In other words, the counterterm corresponding to ψ̄i/∂ψ −mqψ̄ψ must be zero:

δZψi/p− δZψmq − δmq = 0 ∀p. (A.4.17)

For this to hold for all p we must have that

δZψ = 0, δmq = 0. (A.4.18)

This gives

δmq = gδv + δgv = g
δv2

2v + v
δg2

2g = 1
2

(
δg2

g2 + δv2

v2

)
= 0, (A.4.19)

giving that

δg2

g2 = −δv
2

v2 . (A.4.20)

We also have that the one-loop contribution to the πψ̄ψ vertex goes as O(N0
c ) and thus is ne-

glected in the large-Nc approximation. Hence, we must have that the corresponding counterterm
also vanishes:

ψ̄α

ψβ

πj = 0⇒ Zψ

√
Zgg2

√
Zπ ≈ g

(
1 + 1

2
δg2

g2 + 1
2δZπ

)
= g, (A.4.21)

where we used Zψ = 1 and discarded two-loop corrections. This implies that we need

δg2 = −g2δZπ. (A.4.22)

Combining this relation with equation (A.4.20), we find

δv2

v2 = δZπ. (A.4.23)

From the definitions (A.4.7) and (A.4.8) we can find additional relations between the coun-
terterms. We see that

δλ = 3(δm2
σ − δm2

π)
v2 − λδv

2

v2 , (A.4.24)

δm2 = (δm2
σ − 3δm2

π)
2 . (A.4.25)

Combining (A.4.23) with (A.4.24) we find

δλ = 3(δm2
σ − δm2

π)
v2 − λδZπ. (A.4.26)
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Subtleties in Dimensional Regularization
In four space-time dimensions one has a multitude of gamma-matrix identities, but in d = 4− 2ε
dimensions several of these relations either must be modified or becomes undefined. In the original
paper by t’Hooft and Veltmann where dimensional regularization is introduced, Ref. [45], it is
illustrated how ambiguities arise in integrals involving γ5. In four space-time dimensions γ5 is
defined by

γ5 = iγ0γ1γ2γ3. (A.4.27)

However, in d = 4 − 2ε it is not clear how to define γ5. We will assume that it is somehow
possible to define γ5 in 4− 2ε dimensions such that it satisfies{

γ5, γµ
}

= 0, (γ5)2 = 1. (A.4.28)

We will not need to take the trace of γ5, since we will only evaluate diagrams where two γ5

matrices occur and thus can be combined to square to one. The justification for using these
properties of γ5 in arbitrary dimensions is discussed in Ref. [165].

The only other identities we need in the following are

Tr γµ = 0, Tr I = 4, Tr γµγν = gµν , (A.4.29)

which are not modified [11].

Pion and Sigma Self-Energies
We are now ready to calculate the self-energies of the sigma and the pions. All the relevant
one-loop terms proportional to Nc and counterterms at the same order are shown in Fig. 4.2.
Let us label the σ diagrams iΣ1

σ, iΣ1,ct
σ , iΣ2

σ, iΣ2,ct
σ from left to right, respectively, and similarly

for π. We note that in a general renormalization scheme, we would also need to account for the
rightmost diagrams in Fig. 4.2. However, we will renormalize so that m2

πv − h = 0 holds also
after renormalization, so that these diagrams vanish.

Sigma Self-Energy Diagrams
The first loop diagram is

iΣ1
σ(p2) =

= 2Nc(−1)(−ig)2Λ4−d
∫

ddk

(2π)d Tr
[
i(/k + /p+mq)
(k + p)2 −m2

q

i(/k +mq)
k2 −m2

q

]
= −8Ncg2Λ4−d

∫
ddk

(2π)d
k2 + p · k +m2

q[
(k + p)2 −m2

q

] [
k2 −m2

q

]
= −8Ncg2Λ4−d

∫
ddk

(2π)d
(k + p)2 −m2

q − p · k − p2 + 2m2
q[

(k + p)2 −m2
q

] [
k2 −m2

q

]
= −8Ncg2

{
A(m2

q) + Λ4−d
∫

ddk

(2π)d
−p · k − p2 + 2m2

q[
(k + p)2 −m2

q

] [
k2 −m2

q

]} . (A.4.30)
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where we have defined

A(m2
q) = Λ4−d

∫
ddk

(2π)d
1

k2 −m2
q

. (A.4.31)

In the second line we calculated the trace to be

Tr
[(
/k + /p+mq

)
(/k +mq)

]
= 4(k2 + p · k +m2

q) (A.4.32)

by using that Tr (γµγν) = 4gµν . We can rewrite the last integral in the parenthesis of equation
(A.4.30) as

I ≡ Λ4−d
∫

ddk

(2π)d
−p · k − p2 + 2m2

q[
(k + p)2 −m2

q

] [
k2 −m2

q

] = Λ4−d
∫

ddq

(2π)d
p · q + 2m2

q[
q2 −m2

q

] [
(q + p)2 −m2

q

] ,
(A.4.33)

where we changed variable q = −k−p in the last step. Adding both ways of writing the integral,
we find that

I = I

2 + I

2 = Λ4−d
∫

ddk

(2π)d
− 1

2p
2 + 2m2

q[
(k + p)2 −m2

q

] [
k2 −m2

q

] ≡ −1
2(p2 − 4m2

q)B(p2),

where we defined

B(p2) = Λ4−d
∫

ddk

(2π)d
1[

(k + p)2 −m2
q

] [
k2 −m2

q

] . (A.4.34)

Thus we have

iΣ1
σ(p2) = −8Ncg2

[
A(m2

q)−
1
2(p2 − 4m2

q)B(p2)
]
. (A.4.35)

The other diagram we consider is

iΣ2
σ(p2) = = 3!(−1)(2Nc)

(
−iλv

6

)
i

−m2
σ

(−ig)Λ4−d
∫

ddk

(2π)d Tr i(
/k +mq)
k2 −m2

q

= 8Ncλgvmq

m2
σ

Λ4−d
∫

ddk

(2π)d
1

k2 −m2
q

=
8Ncλm2

q

m2
σ

A(m2
q). (A.4.36)

The factor 3! comes from the fact that external propagators can attach to the σ3 vertex in 3!
ways, the (−1) comes from the fermion loop and 2Nc from the fact that we have 2 different
flavors and Nc different colors. Λ is a dimensionful scale keeping the dimensions of the integrals
the same as in d = 4. We have also used that Tr γµ = 0⇒ Tr(/k +mq) = 4mq.

Adding up the two diagrams, we find

iΣ2
σ(p2) + iΣ1

σ(p2) = −8Ncg2
[
A(m2

q)−
1
2(p2 − 4m2

q)B(p2)
]

+
8Ncλm2

q

m2
σ

A(m2
q). (A.4.37)
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Pion Self-Energy Diagrams
The Σ1

π diagram is new since we here have the pseudoscalar Yukawa vertex associated with the
term

gψ̄iγ5τiπiψ =gi[π1(ψ̄1γ
5ψ2 + ψ̄2γ

5ψ1) + π2i
(
−ψ̄1γ

5ψ2 + ψ̄2γ
5ψ1
)

+ π3(ψ̄1γ
5ψ1 − ψ̄2γ

5ψ2)]. (A.4.38)

Due to the SU(2)V symmetry which mixes components of π, the contribution of these interactions
to the self-energy is necessarily the same for all the components of π. For π3 we find Nc diagrams
for each flavor:

iΣ2
π(p2) = Nc


ψ1

ψ1

π3 π3

+Nc


ψ2

ψ2

π3 π3

 (A.4.39)

= (−1)(±g)22NcΛ4−d
∫

ddk

(2π)d Tr
[
γ5i(/k + /p+mq)
(k + p)2 −m2

q

γ5i(/k +mq)
k2 −m2

q

]

= −2Ncg2Λ4−d
∫

ddk

(2π)d Tr
[ (/k + /p−mq)

(k + p)2 −m2
q

(/k +mq)
k2 −m2

q

]
= −8Ncg2Λ4−d

∫
ddk

(2π)d
k2 + p · k −m2

q[
(k + p)2 −m2

q

] [
k2 −m2

q

] = −8Ncg2
[
A(m2

q)−
1
2p

2B(p2)
]
.

(A.4.40)

We here used that
{
γ5, γµ

}
= 0 and performed the same kind of manipulation on the integral as

with σ. If we look at π1 or π2 instead, we would have loops with two different quark flavors at
each vertex, but the final result is the same.

The Σ2
π diagram is

iΣ2
π(p2) = = 1

3 · (A.4.41)

The factor 1
3 difference is simply a result of the fact that the external pion propagators only can

connect to the σππ vertex in 2! ways instead of 3!.
The two diagrams add up to

iΣ1
π(p2) + iΣ2

π(p2) = −8Ncg2
[
A(m2

q)−
1
2p

2B(p2)
]

+
8Ncλm2

q

3m2
σ

A(m2
q). (A.4.42)
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The On-Shell Renormalization Scheme
In the on-shell renormalization scheme we demand, at T = 0, that v = h

m2
π
and 〈σ〉 = 0 also after

loop corrections. The latter means that we have the condition

+ = −8NcgmqA(m2
q) + iδt = 0, (A.4.43)

since these are the diagrams that contribute to the one-point function in the large Nc limit. This
gives

δt = −8iNcgmqA(m2
q) = −8iNcg2vA(m2

q). (A.4.44)

This fixes δt, and thus gives an expression for δh in terms of δZσ, δv2 and δm2
π through equation

(A.4.15). Condition (A.4.43) also gives us that

Σ2
σ(p2) + Σ2,ct

σ (p2) = 0, Σ2
π(p2) + Σ2,ct

π (p2) = 0, (A.4.45)

since these sums are proportional to (A.4.43). Using this we then have the inverse propagators

Gσ(p2)−1 =p2 −m2
σ + Σ1

σ(p2) + Σ1,ct
σ (p2), (A.4.46)

Gπ(p2)−1 =p2 −m2
π + Σ1

π(p2) + Σ1,ct
π (p2). (A.4.47)

The on-shell scheme is defined by the fact that the masses receive no radiative corrections [11,
26]. Hence, we demand that the full propagators have poles at the location of the renormalized
masses, meaning1

Σ1
σ(m2

σ) + Σ1,ct
σ (m2

σ) = 0, (A.4.48)
Σ1
π(m2

π) + Σ1,ct
π (m2

π) = 0. (A.4.49)

The terms iΣ1,ct
σ and iΣ1,ct

π are, up to a factor of two, given by equations (A.4.10) and (A.4.11).
Using that Σ1,ct

σ (m2
σ) = −δm2

σ and Σ1,ct
σ (m2

π) = −δm2
π, we find

δm2
σ = Σ1

σ(m2
σ) = 8iNcg2

[
A(m2

q)−
1
2(m2

σ − 4m2
q)B(m2

σ)
]
, (A.4.50)

δm2
π = Σ1

π(m2
π) = 8iNcg2

[
A(m2

q)−
1
2m

2
πB(m2

π)
]
. (A.4.51)

In the on-shell scheme one also takes as a renormalization condition that the residue of the
propagators at the mass poles are equal to i. Using the formula for a simple pole gives the
criterion

i = Res
p2=m2

G(p2) = lim
p2→m2

(p2 −m2) i

p2 −m2 + Σ(p2) = i

1 + dΣ(p2)
dp2 |p2=m2

, (A.4.52)

1We actually here mean the real part of the inverse propagators. In order to not clutter the notation
we will suppress this and discard imaginary parts. We will comment on this more in the following.
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where we used L’Hôpital’s rule. We thus find the on-shell condition

dΣ(p2)
dp2

∣∣∣∣∣
p2=m2

= 0. (A.4.53)

This condition gives

d

dp2
[
Σ1
σ(p2) + Σ1,ct

σ (p2)
] ∣∣∣∣∣
p2=m2

σ

= dΣ1
σ(p2)
dp2

∣∣∣∣∣
p2=m2

σ

+ δZσ = 0, (A.4.54)

and similarly for π. We find the expressions

δZσ = −dΣ1
σ(p2)
dp2

∣∣∣∣∣
p2=m2

σ

, δZπ = −dΣ1
π(p2)
dp2

∣∣∣∣∣
p2=m2

π

. (A.4.55)

Differentiating (A.4.35) and (A.4.40), we find

δZσ = 4iNcg2 [B(m2
σ) + (m2

σ − 4m2
q)B′(m2

σ)
]
, (A.4.56)

δZπ = 4iNcg2 [B(m2
π) +m2

πB
′(m2

π)
]
, (A.4.57)

where B′(m2) = dB(p2)
dp2

∣∣∣
p2=m2

.
To find an expression for δh, we combine (A.4.15), (A.4.23) and (A.4.44), and find

−8iNcg2vA(m2
q) = 1

2δZσ(h−m2
πv)− 1

2m
2
πvδZπ + δh− δm2

πv, (A.4.58)

which gives

δh = −8iNcg2vA(m2
q) + vδm2

π + 1
2m

2
πvδZπ −

1
2δZσ(h−m2

πv). (A.4.59)

Note that the last term vanishes since we renormalize so the minimum of the potential does not
change.

Having determined δm2
σ, δm2

π, δZσ and δZπ, we are in position to use relations (A.4.22),
(A.4.25), (A.4.26) and (A.4.59) to find δg2, δv2, δλ, δm2 and δh. We find the on-shell expressions

δm2
OS = −8iNcg2

[
A(m2

q) + 1
4(m2

σ − 4m2
q)B(m2

σ)− 3
4m

2
πB(m2

π)
]
, (A.4.60)

δλOS = −12iNcg2

v2
[
(m2

σ − 4m2
q)B(m2

σ)−m2
πB(m2

π)
]
− 4iλNcg2 [B(m2

π) +mπB
′(m2

π)
]
,

(A.4.61)
δg2

OS = −4iNcg4 [B(m2
π) +m2

πB
′(m2

π)
]
, (A.4.62)

δhOS = −2iNcg2m2
πv
[
B(m2

π)−m2
πB
′(m2

π)
]
, (A.4.63)

δv2
OS = 4iNcg2v2 [B(m2

π) +m2
πB
′(m2

π)
]
, (A.4.64)

δZOS
σ = 4iNcg2 [B(m2

σ) + (m2
σ − 4m2

q)B′(m2
σ)
]
, (A.4.65)

δZOS
π = 4iNcg2 [B(m2

π) +m2
πB
′(m2

π)
]
, (A.4.66)

where we have listed δZσ and δZπ again for completeness.
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Calculating the Loop Integrals
We want to calculate the integrals A(m2

q) and B(p2) and separate out the divergent parts so that
we can relate the counterterms and couplings in the on-shell and MS schemes.

In the following we will use the integral formula∫
ddk

(2π)d
k2a

(k2 − η)b = i(−1)a−b 1
(4π) d2

η
d
2 +a−bΓ

(
a+ d

2
)

Γ
(
b− a− d

2
)

Γ(b)Γ(d2 )
, (A.4.67)

with d = 4− 2ε. We find

A(m2
q) = Λ4−d

∫
ddk

(2π)4
1

k2 −m2
q

=
−im2

q

(4π) d2

(
Λ
mq

)4−d
Γ
(

1− d

2

)
=
−im2

q

(4π2)2

(
4πΛ2

m2
q

)ε
Γ (−1 + ε)

=
im2

q

(4π)2

[
1
ε

+ 1 + ln
(
4πe−γE

)
+ ln

(
Λ
m2
q

)]
, (A.4.68)

where we only keep terms up to order O(ε0). For the integral B(p2) we use that

1
XY

=
∫ 1

0

dx

[X + (Y −X)x]2 , (A.4.69)

where we have introduced a so-called Feynman parameter x. Defining

η(x) = p2x(x− 1) +m2
q, (A.4.70)

we then find

B(p2) = Λ4−d
∫

ddk

(2π)4
1[

(k + p)2 −m2
q

] [
k2 −m2

q

] = Λ4−d
∫ 1

0
dx
iη(x) d2−2

(4π) d2
Γ
(

2− d

2

)
= i

(4π)2

∫ 1

0
dx

(
4πΛ2

η(x)

)ε
(ε− 1)Γ(−1 + ε)

≡ i

(4π)2

[
1
ε

+ ln
(
4πe−γE

)
+ ln

(
Λ
m2
q

)
+ C(p2)

]
, (A.4.71)

where we have defined the function

C(p2) = −
∫ 1

0
dx ln

(
η(x)
m2
q

)
= −

∫ 1

0
dx ln

[
p2

m2
q

x(x− 1) + 1
]
. (A.4.72)

This integral can be calculated exactly and is found in standard integral tables. The result is

C(p2) = 2− 2

√
4m2

q

p2 − 1 arctan

 1√
4m2

p2 − 1

 . (A.4.73)

Differentiating gives

C ′(p2) =
4m2

q

p4
√

4m2
q

p2 − 1
arctan

 1√
4m2

q

p2 − 1

− 1
p2 . (A.4.74)
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Note that for p2 > 4m2
q, C(p2) and C ′(p2) get an imaginary part. Thus, the self-energy also

gets an imaginary part. This is the case for C(m2
σ) and C ′(m2

σ) if mσ > 2mq, because the sigma
then will have a finite lifetime, since the decay σ → ψ̄ψ through the Yukawa-vertex becomes
kinematically allowed. For the pions this decay will be kinematically forbidden, since we will use
a quark mass satisfying mπ < mq. In the following we will only keep the real parts of C(m2

σ)
and C ′(m2

σ). We can do this since the requirement that the inverse propagators vanish when
evaluated at the physical masses, equations (A.4.48) and (A.4.49), should really have been

ReGσ(m2
σ)−1 =0, (A.4.75)

ReGπ(mπ)−1 =0. (A.4.76)

To avoid writing ln (4πe−γE ) everywhere we redefine Λ→ ΛeγE/4π. Inserting our analytical
expressions for the integrals, equations (A.4.68) and (A.4.71), into equations (A.4.60)–(A.4.66),
we get

δm2
OS = δm2

MS +
2Ncm2

q

(4π)2v2 (m2
σ − 3m2

π) ln
(

Λ
m2
q

)
+

4Ncm2
q

(4π)2v2

[
2m2

q + 1
2(m2

σ − 4m2
q)C(m2

σ)− 3
2m

2
πC(m2

π)
]
, (A.4.77)

δλOS = δλMS +
12Ncm2

q

(4π)2v4

[
2(m2

σ −m2
π − 2m2

q) ln
(

Λ
m2
q

)
+ (m2

σ − 4m2
q)C(m2

σ)
]
,

+
12Ncm4

q

(4π)2v4
[
(m2

σ − 2m2
π)C(m2

π) + (m2
σ −m2

π)m2
πC
′(m2

π)
]
, (A.4.78)

δg2
OS = δg2

MS +
4Ncm4

q

(4π)2v4

[
ln
(

Λ
m2
q

)
+ C(m2

π) +m2
πC
′(m2

π)
]
, (A.4.79)

δhOS = δhMS + 2Ncg2m2
πv

(4π)2

[
ln
(

Λ
m2
q

)
+ C(m2

π)−m2
πC
′(m2

π)
]
, (A.4.80)

δv2
OS = δv2

MS −
4Ncm2

q

(4π)2

[
ln
(

Λ
m2
q

)
+ C(m2

π) +m2
πC
′(m2

π)
]
, (A.4.81)

δZOS
σ = δZMS

σ −
4Ncm2

q

(4π)2v2

[
ln
(

Λ
m2
q

)
+ C(m2

σ) + (m2
σ − 4m2

q)C ′(m2
σ)
]
, (A.4.82)

δZOS
π = δZMS

π −
4Ncm2

q

(4π)2v2

[
ln
(

Λ
m2
q

)
+ C(m2

π) +m2
πC
′(m2

π)
]
, (A.4.83)

where the 1
ε−parts, which will be common to both subtraction schemes, are

δm2
MS = 4Ncg2m2

(4π)2
1
ε
, δλMS = 8Ncg2

(4π)2
(
λ− 6g2) 1

ε
, δg2

MS = 4Ncg4

(4π)2
1
ε
, δhMS = 2Ncg2h

(4π)2
1
ε
,

δv2
MS = −4Ncg2v2

(4π)2
1
ε
, δZMS

σ = −4Ncg2

(4π)2
1
ε
, δZMS

π = −4Ncg2

(4π)2
1
ε
. (A.4.84)

These are the counterterms in the MS scheme. Note, very importantly, that the masses present
in equations (A.4.77)-(A.4.83) are the physical masses, since the renormalized and the physical
pole masses coincide in the on-shell scheme.
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We should now determine the value for Λ that is consistent with our assumption thatm2
πv−h

= 0. This assumption is valid if

∂Ωvac
∂v

∣∣∣
v= h

m2
π

= 0, (A.4.85)

i.e. if the minimum of the effective potential is the same as the minimum of the tree-level potential.
Dropping terms not proportional to Nc gives that the vacuum effective potential is,

Ωvac(v) = U(v) + δU(v) + 2Ncg4v4

(4π)2

[
1
ε

+ 3
2 + ln

(
Λ2

g2v2

)]
, (A.4.86)

We will show later that the infinite part of δU cancels the divergent part in the last term.
Assuming this, requirement (A.4.85) reads

∂

∂v

{
δU(v)finite + 2Ncg4v4

(4π)2

[
3
2 + ln

(
Λ2

g2v2

)]} ∣∣∣∣∣
v= h

m2
π

= 0, (A.4.87)

where we have that

δU = −1
2δm

2v2 − 1
2m

2δv2 + δλ

4! v
4 + λ

4!2v
2δv2 − δhv − hδv

2

2v . (A.4.88)

Inserting the finite parts of the on-shell counterterms into equation (A.4.87) and calculating the
derivative in Wolfram Mathematica, we find

C(m2
π) +m2

πC
′(m2

π) + ln
(

Λ2
0

m2
q

)
= 0. (A.4.89)

Thus, equations (A.4.77)–(A.4.83) are valid when the renormalization scale is

Λ2
0 ≡ m2

q exp
{
−C(m2

π)−m2
πC
′(m2

π)
}
. (A.4.90)

The MS Renormalization Scheme
We must have that the bare quantities are independent of renormalization scheme. Hence, we
have

m2
B = ZMS

m m2
MS = ZOS

m m2, (A.4.91)

which implies

m2
MS + δm2

MS = m2 + δm2
OS. (A.4.92)

Hence, m2
MS, and all the other couplings by the same argument, can be found by

m2
MS(Λ) = m2 + δm2

OS − δm2
MS, λMS(Λ) = λ+ δλOS − δλMS, g2

MS(Λ) = g2 + δg2
OS − δg2

MS,

hMS(Λ) = h+ δhOS − δhMS, v2
MS(Λ) = v2 + δv2

OS − δv2
MS. (A.4.93)

The difference between the OS and MS counterterms can be read off directly from the expressions
(A.4.77)–(A.4.83). Since the masses are measured in vacuum, where the minimum of the potential
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is v = fπ by assumption, we find that the running couplings are

m2
MS(Λ) = m2

σ − 3m2
π

2 +
2Ncm2

q

(4π)2f2
π

(
m2
σ − 3m2

π

)
ln
(

Λ
m2
q

)
+

4Ncm2
q

(4π)2f2
π

[
2m2

q + 1
2(m2

σ − 4m2
q)C(m2

σ)− 3
2m

2
πC(m2

π)
]
, (A.4.94)

λMS(Λ) = 3(m2
σ −m2

π)
f2
π

+
12Ncm2

q

(4π)2f4
π

[
2(m2

σ −m2
π − 2m2

q) ln
(

Λ
m2
q

)
+ (m2

σ − 4m2
q)C(m2

σ)
]

+
12Ncm2

q

(4π)2f4
π

[
(m2

σ − 2m2
π)C(m2

π) + (m2
σ −m2

π)m2
πC
′(m2

π)
]
, (A.4.95)

g2
MS(Λ) =

m2
q

f2
π

+
4Ncm4

q

(4π)2f4
π

[
ln
(

Λ
m2
q

)
+ C(m2

π) +m2
πC
′(m2

π)
]
, (A.4.96)

hMS(Λ) = m2
πfπ + 2Ncg2m2

πfπ
(4π)2

[
ln
(

Λ
m2
q

)
+ C(m2

π)−m2
πC
′(m2

π)
]
, (A.4.97)

v2
MS(Λ) = f2

π −
4Ncm2

q

(4π)2

[
ln
(

Λ
m2
q

)
+ C(m2

π) +m2
πC
′(m2

π)
]
, (A.4.98)

We again emphasize that the masses on the right hand side of those equations are the physical
masses, and thus we can use these relations to calculate the running couplings at the scale Λ0.
Later we find the expressions for the couplings valid at any scale Λ via the renormalization group
equations.

Let us now find the effective potential in the large-Nc limit. In the MS scheme the vacuum
potential reads

Ωvac(v) = U(vMS) + δUMS +
2Ncg4

MSv
4
MS

(4π)2

[
1
ε

+ 3
2 + ln

(
Λ2

g2
MS
v2

MS

)]
. (A.4.99)

Since we have not explicitly demanded that the vacuum energy is finite, we should check that
this is the case. If we plug in all the counterterms in the MS-scheme into equation (A.4.88), we
find

δUMS = −
2Ncg4

MSv
4
MS

(4π)2
1
ε
. (A.4.100)

But this exactly cancels the divergence in (A.4.99). Including the temperature dependent term
and defining ∆ = vMSgMS, we find

Ω(∆, T, µq) =− 1
2
m2

MS(Λ)
g2

MS
(Λ) ∆2 + 1

4!
λMS(Λ)
g4

MS
(Λ) ∆4 − hMS(Λ)

gMS(Λ) ∆ + 2Nc∆4

(4π)2

[
3
2 + ln

(
Λ2

∆2

)]
− 4NcT

∫ d3p

(2π)3

{
ln
[
1 + e

−β
(√

p2+∆2−µq
)]

+ ln
[
1 + e

−β
(√

p2+∆2+µq
)]}

.

(A.4.101)

Note that since δ(gv) = 0, we have, to order O(N1
c ), that ∆ = vMSgMS = vOSgOS, which is

independent of Λ.
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Renormalization Group Equations
In the previous we found the grand potential in the MS scheme. However, since we have required
that the minimum of Ωvac(v) equals the minimum of the tree-level potential, we have a require-
ment on Λ, which is given in equation (A.4.90). A fundamental idea of quantum field theory is
that physical quantities should be independent of the choice of the renormalization scale Λ. This
leads us to the renormalization group (RG) equations, which is a class of equations implementing
this requirement.

We obtain the RG equations for the running couplings by simply differentiating relations
(A.4.94)–(A.4.97) and inserting the expressions for h, m2, λ and g2 in terms of hMS, m2

MS, λMS

and g2
MS to lowest order in the MS quantities. We find

dm2
MS(Λ)
d ln Λ = 8Nc

(4π)2m
2
MS(Λ)g2

MS(Λ),
dg2

MS(Λ)
d ln Λ = 8Nc

(4π)2 g
4
MS(Λ),

dhMS(Λ)
d ln Λ = 4Nc

(4π)2 g
2
MS(Λ)hMS(Λ), dλMS(Λ)

d ln Λ = 16Nc
(4π)2

[
g2

MS(Λ)λMS(Λ)− 6g4
MS(Λ)

]
, (A.4.102)

where we used d
d ln Λ = Λ d

dΛ . These are standard ordinary differential equations, and we find that
the solutions are

m2
MS(Λ) = m2

0

1− 4Ncg2
0

(4π)2 ln
(

Λ2

Λ2
0

) , g2
MS(Λ) = g2

0

1− 4Ncg2
0

(4π)2 ln
(

Λ2

Λ2
0

) ,
hMS(Λ) = h0

1− 2Ncg2
0

(4π)2 ln
(

Λ2

Λ2
0

) , λMS(Λ) =
λ0 − 48Nc

(4π)2 g
4
0 ln

(
Λ2

Λ2
0

)
[
1− 4Ncg2

0
(4π)2 ln

(
Λ2

Λ2
0

)]2 , (A.4.103)

where the values with the 0-subscript are the values of the couplings at the given scale Λ0. These
relations together with the values g0, m0, λ0 and h0 calculated at the specific scale Λ0 thus gives
us these couplings at any other scale.

The Effective Potential
Inserting the running couplings into the potential gives

Ωvac(∆) =− 1
2m

2
0f

2
π

∆2

m2
q

+ 1
4!λ0f

4
π

∆4

m4
q

− h0fπ
∆
mq

(A.4.104)

+ 2Nc∆4

(4π)2

[
3
2 + ln

(
m2
q

∆2

)
− C(m2

π)−m2
πC
′(mπ)2

]
, (A.4.105)

where we used

hMS(Λ)
gMS(Λ) = h0

g0

√
1− 4Ncg2

0
(4π)2 log

(
Λ2

Λ2
0

)
1− 2Ncg2

0
(4π)2 log

(
Λ2

Λ2
0

) = h0
g0

+O
(
N2
c log2

(
Λ2

Λ2
0

))
. (A.4.106)

We drop the O(N2
c ) term as this is a two loop term. We now see that the grand potential is

independent of Λ.





APPENDIX B
Code

In the following we provide the Python and C routines used to minimize the effective potential.
The code used for plotting is voluminous and not included.

B.1 Implementation of the Effective Potential in Python

import numpy as np
import scipy
from scipy import integrate , LowLevelCallable
import mpmath
import math
import cmath
import os, ctypes
import time

#Im p o r t C f u n c t i o n s f o r i n t e g r a n d s f o r f a s t e r i n t e g r a t i o n
lib = ctypes.CDLL(os.path.abspath(’quarkIntegrand.so’))
lib.quark_integrand.restype = ctypes.c_double
lib.quark_integrand.argtypes = (ctypes.c_int, ctypes.
POINTER(ctypes.c_double))

quark_integrand = LowLevelCallable(lib.quark_integrand)

lib = ctypes.CDLL(os.path.abspath(’quarkIntegrand.so’))
lib.quark_integrand_noB.restype = ctypes.c_double
lib.quark_integrand_noB.argtypes = (ctypes.c_int, ctypes.
POINTER(ctypes.c_double))

quark_integrand_noB = LowLevelCallable(lib.
quark_integrand_noB)

#G l o b a l v a r i a b l e s p e c i f y i n g when t h e B=0 e x p r e s s i o n s
s h o u l d b e u t i l i z e d

151
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mpi = 140
B_cutoff = 1.e−2 ∗mpi ∗∗2

class CouplingSet:
def __init__(self, m_pi, m_sigma, m_quark, f_pi,
n_colors = 3):

self.m_quark = m_quark
self.m_pi = m_pi
self.m_sigma = m_sigma
self.f_pi = f_pi
self.n_colors = n_colors

self.renorm_MS0 = np.sqrt( m_quark ∗∗2 ∗ np.exp(
− self.C(m_pi) − m_pi ∗∗2 ∗ self.C_prime(m_pi) )
)

self.m0 = self.calc_m_MS()
self.lambda0 = self.calc_lambda_MS()
self.g0 = self.calc_g_MS()
self.h0 = self.calc_h_MS()
self.renorm_MS = self.renorm_MS0
self.m_MS = self.m0
self.lambda_MS = self.lambda0
self.g_MS = self.g0
self.h_MS = self.h0

def convertToTreeLevel(self):
self.m0 = np.sqrt((self.m_sigma ∗∗2 − 3.0∗self.m_pi

∗∗2) /2.0)
self.lambda0 = 3.0∗(self.m_sigma ∗∗2 − self.m_pi

∗∗2)/self.f_pi ∗∗2
self.g0 = self.m_quark/self.f_pi
self.h0 = self.m_pi ∗∗2 ∗ self.f_pi
self.renorm_MS0 = np.exp(−0.5) ∗self.g0 ∗self.f_pi
self.m_MS = self.m0
self.lambda_MS = self.lambda0
self.g_MS = self.g0
self.h_MS = self.h0
self.renorm_MS = self.renorm_MS0

def C(self, p):
" " " C ( p ) i s a m a t h e m a t i c a l f u n c t i o n a p p e a r i n g i n

t h e c a l c u a t i o n o f t h e p i o n and s i gm a self−
e n e r g i e s . " " "

if (p==0):
return 0

else:
q = 4.∗(self.m_quark ∗∗2)/p ∗∗2 − 1. + 0j
r = np.sqrt(q)
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return np.real(2.−2.∗r ∗np.arctan(1.0/r))

def C_prime(self, p):
" " " The d e r i v a t i v e o f C ( p ) . " " "
if (p==0):

return 0
else:

q = 4.∗(self.m_quark ∗∗2)/p ∗∗2 − 1. + 0j
r = np.sqrt(q)
return np.real(4.∗self.m_quark ∗∗2/(p ∗∗4 ∗ r) ∗np.
arctan(1/r) − 1./p ∗∗2)

def calc_m_MS(self):
n_colors = self.n_colors
mu2 = (self.m_sigma ∗∗2 − 3.0∗self.m_pi ∗∗2) /2.0
bigBrace = 2∗self.m_quark ∗∗2 + mu2 ∗np.log(self.
renorm_MS0 ∗∗2/ self.m_quark ∗∗2) + 0.5∗(self.
m_sigma ∗∗2 − 4.∗self.m_quark ∗∗2) ∗self.C(self.
m_sigma) − 1.5∗self.m_pi ∗∗2 ∗ self.C(self.m_pi)

mu2 += 4.∗n_colors ∗(self.m_quark ∗∗2) /(4.∗np.pi ∗
self.f_pi) ∗∗2 ∗ bigBrace

return np.sqrt(mu2)

def calc_lambda_MS(self):
n_colors = self.n_colors
Lambda = 3.0∗(self.m_sigma ∗∗2 − self.m_pi ∗∗2)/self
.f_pi ∗∗2

bigBrace1 = 2.0∗(self.m_sigma ∗∗2 − self.m_pi ∗∗2 −
2.0∗self.m_quark ∗∗2) ∗np.log(self.renorm_MS0 ∗∗2/
self.m_quark ∗∗2) + (self.m_sigma ∗∗2 − 4.0∗self.
m_quark ∗∗2) ∗self.C(self.m_sigma)

bigBrace2 = (self.m_sigma ∗∗2 − 2.0∗self.m_pi ∗∗2) ∗
self.C(self.m_pi) + (self.m_sigma ∗∗2 − self.
m_pi ∗∗2) ∗self.m_pi ∗∗2 ∗ self.C_prime(self.m_pi)

Lambda += 12.0∗n_colors ∗(self.m_quark ∗∗2) /((4.0∗np
.pi) ∗∗2 ∗ self.f_pi ∗∗4) ∗ (bigBrace1 + bigBrace2)

return Lambda

def calc_g_MS(self):
n_colors = self.n_colors
g2 = self.m_quark ∗∗2/ self.f_pi ∗∗2 + (4.∗n_colors ∗
self.m_quark ∗∗4) /((4.∗np.pi) ∗∗2 ∗ self.f_pi ∗∗4) ∗
( np.log(self.renorm_MS0 ∗∗2/ self.m_quark ∗∗2) +
self.C(self.m_pi) + self.m_pi ∗∗2∗ self.C_prime(
self.m_pi) )

return np.sqrt(g2)

def calc_h_MS(self):
n_colors = self.n_colors
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h = self.m_pi ∗∗2 ∗ self.f_pi + (2.∗n_colors ∗self.
m_quark ∗∗2 ∗ self.m_pi ∗∗2) /((4.∗np.pi) ∗∗2 ∗ self.
f_pi) ∗ ( np.log(self.renorm_MS0 ∗∗2/ self.
m_quark ∗∗2) + self.C(self.m_pi)−self.m_pi ∗∗2 ∗
self.C_prime(self.m_pi) )

return h

def v_effective(parameters , T, chem_pot , B, couplings ,
scale, potential , withPhoton=False):

" " " As sume p a r a m e t e r s o f t h e f o rm p a r a m e t e r s = [ d e l t a ,
q ] " " "

delta = parameters[0]
q = parameters[1]
r_imag = 0
r = 0

v = 0
v += v_qk_vac_noB(delta, couplings)
v += v_qk_vac_B(delta, B)
v += v_qk_thermal(delta, B, T, chem_pot, q)
v += v_meson(delta, couplings)
if(potential==’chiM’):

v += v_gluon(q, r, r_imag, T)
elif(potential==’RRTW’):

v += v_gluon_RRTW(q, r, r_imag, T)
else:

print "Invalid potential. Terminating."
return np.nan

if(withPhoton):
v += v_photon(couplings , B)

return v ∗scale

def v_meson(delta, couplings):
v_mes = −0.5 ∗ couplings.m_MS ∗∗2 ∗ delta ∗∗2 /
couplings.g_MS ∗∗2 + couplings.lambda_MS /(4.∗3.∗2.∗
couplings.g_MS ∗∗4) ∗delta ∗∗4 \

− couplings.h_MS ∗delta/couplings.g_MS
return v_mes

def v_qk_thermal(delta, B, T, chem_pot, q):
if(T == 0):

print("WARNING: T identical 0 not implemented
in thermal quark term. Choose T close to 0.
")

return np.nan
mPi = 140.
if(B < B_cutoff):

print "Warning: below magnetic field cutoff.
Evaluation will use B=0 expression.\n"
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upper_lim=np.inf
integral , err = scipy.integrate.quad(
quark_integrand_noB , 0, upper_lim , args=(
delta, T, chem_pot, q, 0))

return −4∗T ∗ integral/(2∗np.pi ∗∗2)
elif( B < 0.1∗mPi ∗∗2):

print "Warning: small magnetic field.
Evaluation will be slow.\n"

e_charge = 0.303
q_up = (2./3.) ∗ e_charge
q_down = (−1./3.) ∗ e_charge
v = double_sum(delta, B, T, q, q_up)
v += double_sum(delta, B, T, q, q_down)
return v

def v_qk_vac_B(delta, B):
" " " B− d e p e n d e n t p a r t o f t h e q u a r k va cuum e n e r g y " " "
if(B < B_cutoff):

return 0
n_colors = 3.
e_charge = 0.303
q_up = 2./3.∗e_charge
q_down = −1./3.∗e_charge
delta_up = delta ∗∗2 / (2. ∗ np.abs(q_up ∗ B) )
delta_down = delta ∗∗2 / (2. ∗ np.abs(q_down ∗ B) )
v = (q_up ∗ B) ∗∗2 ∗ (1./12. − mpmath.fp.zeta(−1,
delta_up , 1) − 1./2. ∗ delta_up ∗math.log(
delta_up) − 1./4. ∗ delta_up ∗∗2 + 1./2. ∗
delta_up ∗∗2 ∗ math.log(delta_up) )

v += (q_down ∗ B) ∗∗2 ∗ (1./12. − mpmath.fp.zeta(−1,
delta_down , 1) − 1./2. ∗ delta_down ∗math.log(
delta_down) − 1./4. ∗ delta_down ∗∗2 + 1./2. ∗
delta_down ∗∗2 ∗ math.log(delta_down) )

v ∗= 8∗n_colors/(4∗np.pi) ∗∗2
return v

def v_photon(couplings , B):
" " " B− d e p e n d e n t p a r t o f t h e p h o t o n vacuum e n e r g y . I t

h a s no e f f e c t on p h a s e d i a g r am . " " "
if(B<B_cutoff):

return 0
n_color = 3.
e_charge = 0.303
q_up = 2./3.∗e_charge
q_down = −1./3.∗e_charge
prefactor = 4.∗n_color/( 3. ∗ (4.∗np.pi) ∗∗2 )
v = 0
v += 0.5∗B ∗∗2
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v += 0.5∗B ∗∗2 ∗ prefactor ∗ (q_up ∗∗2 ∗ math.log(
couplings.m_quark ∗∗2 / ( 2.∗np.abs(q_up ∗B))))

v += 0.5∗B ∗∗2 ∗ prefactor ∗ (q_down ∗∗2 ∗ math.log(
couplings.m_quark ∗∗2 / ( 2.∗np.abs(q_down ∗B))))

return v

def v_qk_vac_noB(delta, couplings):
" " " B− i n d e p e n d e n t p a r t o f t h e q u a r k va cuum e n e r g y " " "
v = 0
delta_cutoff = 1e−9
if(abs(delta) > delta_cutoff):

v += (2.0 ∗ couplings.n_colors ∗ delta ∗∗4) /((4.∗
np.pi) ∗∗2) ∗ (1.5 + np.log(couplings.renorm_MS
∗∗2/( delta ∗∗2)))

return v

def zetaPrime(x):
" " " D e r i v a t i v e o f H u r w i t z z e t a f u n c t i o n w i t h r e s p e c t

t o f i r s t a r g um e n t e v a l u a t e d a t −1 " " "
return mpmath.zeta(−1, x, 1)

def double_sum(delta, B, T, q, charge):
" " " Sum o v e r Landau l e v e l s " " "
fpi = 93.
nTolerance = 1.e−4 ∗ fpi ∗∗4
lTolerance = nTolerance/100.

current_sum = 0.
prev_sum = 0.
sumN = True
n = 0

prefactor = np.abs(charge ∗B) ∗T/(2∗np.pi ∗∗2)
while(sumN):

if(n==0):
current_sum += l_sum(delta, B, T, q, charge, n
, lTolerance)

else:
current_sum += 2.∗l_sum(delta, B, T, q, charge
, n, lTolerance) #D e g e n e r a c y f a c t o r o f 2
f o r n >1 .

if(prefactor ∗ np.abs(current_sum − prev_sum) <
nTolerance):
sumN = False

elif(current_sum == 0):
sumN = False

n=n+1
prev_sum = current_sum
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return − np.abs(charge ∗B)/(2∗np.pi ∗∗2) ∗ T ∗
current_sum

def l_sum(delta, B, T, q, charge, n, tolerance):
" " " Sum o v e r f u g a c i t i e s " " "
current_sum = 0.
prev_sum = 0.
l = 1
continueSum = True

prefactor = np.abs(charge ∗B) ∗T/(2∗np.pi)
M = math.sqrt(delta ∗∗2 + 2∗np.abs(charge ∗B) ∗n)
while(continueSum):

l_term = (−1) ∗∗(l+1) ∗ M ∗ ( 2+4∗math.cos( 2.∗np.
pi ∗q ∗l/(3.) ) ) / (l) ∗ scipy.special.kn(1, l ∗M
/T)

current_sum += l_term
if(prefactor ∗ np.abs(current_sum − prev_sum) <
tolerance):
continueSum = False

elif(l_term == 0):
continueSum = False

prev_sum = current_sum
l = l+1

return current_sum

# G l u o n i c p o t e n t i a l
# B2 , B4 a s s um e s c om p l e x i n p u t .
def B2(x):

while(x.real >= 1.):
x = x − (1.+0j)

while(x.real < 0.):
x = x + (1.+0j)

return x ∗ ( 1 − x )

def B4(x):
while(x.real >= 1.):

x = x − (1.+0j)
while(x.real < 0.):

x = x + (1.+0j)
return x ∗∗2 ∗ ( 1 − x ) ∗∗2

# v2 , v 4 a s s um e s r e a l i n p u t .
def v4(q, r, r_imag):

r_imag = r_imag ∗(0+1j)
return B4(2.∗q/3.) + B4(q/3. + r + r_imag) + B4(q/3. −

r − r_imag)

def v2(q, r, r_imag):
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r_imag = r_imag ∗(0+1j)
return B2(2.∗q/3.) + B2(q/3. + r + r_imag) + B2(q/3. −

r − r_imag)

def v_gluon_perturbative(q, r, r_imag, T):
return math.pi ∗∗2 ∗ T ∗∗4 ∗ ( −8./45. + 4./3. ∗ v4(q,r,

r_imag) )

def v_gluon_nonperturbative(q, r, r_imag, T, Td):
c2 = 0.830
c1 = 50.∗(1−c2)/27.
c3 = (47. − 20. ∗ c2)/27.
return 4.∗ math.pi ∗∗2 /3. ∗ T ∗∗2 ∗ Td ∗∗2 ∗ ( − 1./5. ∗

c1 ∗ v2(q, r, r_imag) − c2 ∗ v4(q,r, r_imag) +
2./15.∗c3 )

def v_gluon(q, r, r_imag, T, Td = 270):
complexPot = v_gluon_perturbative(q, r, r_imag, T) +
v_gluon_nonperturbative(q, r, r_imag, T, Td)

return complexPot.real

def v_gluon_RRTW(q, r, r_imag, T, Td = 208.):
loop = polyakov_loop(q, r, r_imag)
aloop = polyakov_antiloop(q, r, r_imag)

T0 = Td
a0 = 3.51
a1 = −2.47
a2 = 15.2
b3 = −1.75
A = a0 + (T0/T) ∗ a1 + (T0/T) ∗∗2 ∗ a2
B = b3 ∗ (T0/T) ∗∗3
logArg = 1 − 6∗loop ∗aloop − 3 ∗ (loop ∗aloop) ∗∗2 + 4∗(
loop ∗∗3 + aloop ∗∗3)

U = T ∗∗4 ∗ (− 0.5∗A ∗loop ∗aloop + B ∗cmath.log( logArg )
)

return U.real

def polyakov_loop(q, r, r_imag):
r_imag = r_imag ∗(0+1j)
return 1/3. ∗ cmath.exp(2∗math.pi ∗( r+r_imag )∗(0+1j)
/3.0) ∗ ( cmath.exp( 2∗math.pi ∗(r+r_imag)∗(0+1j) )
+ 2∗math.cos(2∗math.pi ∗q/3.0) )

def polyakov_antiloop(q, r, r_imag):
r_imag = r_imag ∗(0+1j)
return 1/3. ∗ cmath.exp(−2∗math.pi ∗( r+r_imag )∗(0+1j)
/3.0) ∗ ( cmath.exp( −2∗math.pi ∗(r+r_imag)∗(0+1j) )
+ 2∗math.cos(2∗math.pi ∗q/3.0) )
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B.2 Implementation of the Thermal Quark Integrand in
C

#include <math.h>
#include <complex.h>
#include <stdio.h>

complex double quark_integrand(int n, double ∗x) {
// x [ 0 ] = p , x [ 1 ] = M_B, x [ 2 ] = T , x [ 3 ] = chem_po t , x

[ 4 ] = q , x [ 5 ] = r im a g
double p_squared = x[0]∗x[0];
double eff_energy = sqrt(p_squared + x[1]∗x[1]);
double beta_eff_energy = eff_energy/x[2];
double mu_prefactor = (2.0∗M_PI/3.0);
double complex img_unit = 0.0 + 1.0 ∗ I;
double complex betamu1 = x[3]/x[2] + img_unit ∗
mu_prefactor ∗ ( x[4] + x[5]∗img_unit);

double complex betamu2 = x[3]/x[2] + img_unit ∗
mu_prefactor ∗ ( − x[4] + x[5]∗img_unit);

double complex betamu3 = x[3]/x[2] + img_unit ∗
mu_prefactor ∗ ( −2∗x[5]∗img_unit);

double complex integrand = 0;
integrand += 1.0/(1 + cexp(beta_eff_energy − betamu1))

+ 1.0/(1 + cexp(beta_eff_energy + betamu1));
integrand += 1.0/(1 + cexp(beta_eff_energy − betamu2))

+ 1.0/(1 + cexp(beta_eff_energy + betamu2));
integrand += 1.0/(1 + cexp(beta_eff_energy − betamu3))

+ 1.0/(1 + cexp(beta_eff_energy + betamu3));
integrand ∗= p_squared / (eff_energy ∗ x[2]∗x[2]);
return creal(integrand);

}

complex double quark_integrand_noB(int n, double ∗x) {
// x [ 0 ] = p , x [ 1 ] = d e l t a , x [ 2 ] = T , x [ 3 ] = chem_po t ,

x [ 4 ] = q , x [ 5 ] = r_ imag
double complex img = 0.0 + 1.0 ∗ I;
double pSquared = x[0]∗x[0];
double energy = sqrt( pSquared + x[1]∗x[1] );
double complex exponent1 = − ( energy − x[3] ) / x[2]
+ 2∗M_PI ∗ img ∗ ( x[4] + x[5]∗img ) / 3.0;

double complex exponent2 = − ( energy − x[3] ) / x[2]
+ 2∗M_PI ∗ img ∗ ( −x[4] + x[5]∗img ) / 3.0;

double complex exponent3 = − ( energy − x[3] ) / x[2]
+ 2∗M_PI ∗ img ∗ ( −2. ∗ x[5]∗img ) / 3.0;

double complex exponent4 = − ( energy + x[3] ) / x[2]
− 2∗M_PI ∗ img ∗ ( x[4] + x[5]∗img ) / 3.0;
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double complex exponent5 = − ( energy + x[3] ) / x[2]
− 2∗M_PI ∗ img ∗ ( −x[4] + x[5]∗img ) / 3.0;

double complex exponent6 = − ( energy + x[3] ) / x[2]
− 2∗M_PI ∗ img ∗ ( −2. ∗ x[5]∗img ) / 3.0;

double complex totIntegrand = 0;
double exponentCutoff = 10;
if(creal( exponent1 ) > exponentCutoff && creal(
exponent2 ) > exponentCutoff && creal( exponent3 )
> exponentCutoff &&

creal( exponent4 ) > exponentCutoff &&
creal( exponent5 ) >
exponentCutoff && creal( exponent6
) > exponentCutoff){

totIntegrand = pSquared ∗(exponent1+exponent2+
exponent3+exponent4+exponent5+exponent6);

}
else {

double complex arg = ( 1 + cexp(exponent1) )∗(
1 + cexp(exponent2) )∗( 1 + cexp(exponent3
) )∗( 1 + cexp(exponent4) )∗( 1 + cexp(
exponent5) )∗( 1 + cexp(exponent6) );

totIntegrand = pSquared ∗ clog(arg);
}
return creal(totIntegrand);

}

B.3 Implementation of the Global Minimization in
Python

from potentials import CouplingSet , v_effective
import numpy as np
import cmath, math
import scipy
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
from joblib import Parallel , delayed
import os
import time

# S e t CPU a f f i n i t y t o a l l o w m u l t i t h r e a d i n g w i t h numpy /
s c i p y

# T h i s i s n e c e s s a r y d u e t o a b u g i n t h e BLAS l i b r a r y
n_cores = 12
os.system(’taskset −cp 0−%d %s’ % (n_cores, os.getpid()))

def opt_function(temp, chem_pot, B, couplings , bnds, model
):
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# F i n d s ( D e l t a , q ) a t g i v e n T , B
scale = (8./45. + 2.∗7./60.) ∗np.pi ∗∗2 ∗ temp ∗∗4

#N o r m a l i z e p o t e n t i a l w i t h P_SB s o i t i s o f t h e
o r d e r o f 1 .

optimizer = ’TNC’
kwargs = {’args’:(temp, chem_pot, B, couplings , 1./
scale, model), ’method’:optimizer , ’bounds’:bnds}

delta_guess = 300.0
q_guess = 0.9
res = scipy.optimize.basinhopping(

v_effective ,
np.array([delta_guess , q_guess]),
minimizer_kwargs = kwargs,
niter=30,
)

return res

def polyakov_loop(q, r, r_imag):
r_imag = r_imag ∗(0+1j)
return 1/3. ∗ cmath.exp(2∗math.pi ∗( r+r_imag )∗(0+1j)
/3.0) ∗ ( cmath.exp( 2∗math.pi ∗(r+r_imag)∗(0+1j) )
+ 2∗math.cos(2∗math.pi ∗q/3.0) )

def calc_condensates(couplings , potential , chem_pot,
B_vals, N_steps, T_lower, T_upper, delta_upper , comment
=’’):
# C a l c u l a t e c o n d e n s a t e s a s f u n c t i o n o f t e m p e r a t u r e s

f o r a l i s t o f B v a l u e s
# As s ume s B_ v a l s i u n i t s o f mp i ∗ ∗ 2 / e

header_string = ’|eB|−field values in units of m_pi^2:
%s’ % np.array2string(B_vals, precision=2)

mpi = 140
e_charge = 0.303
B_vals = B_vals ∗ mpi ∗∗2/ e_charge

# I n i t i a l i z e a r r a y s
temps = np.linspace(T_lower, T_upper, N_steps)
delta_mins = np.zeros((len(temps), len(B_vals)))
q_mins = np.zeros((len(temps), len(B_vals)))
loop_mins = np.zeros((len(temps), len(B_vals)))
results = np.empty((len(temps), len(B_vals)),
dtype = scipy.optimize.OptimizeResult)

# Ca r r y o u t m i n i m i z a t i o n p r o c e d u r e a t e a c h t e m p e r a t u r e
. Minimum i s a l w a y s l o c a t e d a t q <1 $ .

bnds = ((0.01, delta_upper), (0.005, 0.999))
start = time.time()
for k in range(len(B_vals)):
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results[:, k] = Parallel(n_jobs=n_cores)(delayed(
opt_function)(temps[i], chem_pot, B_vals[k],
couplings , bnds, potential) for i in range(len(
temps)))

print("Time spent on optimization: %.1f s" % (time.
time() − start) )

for k in range(0, len(B_vals)):
for i in range(0, len(temps)):

delta_mins[i, k], q_mins[i, k] = results[i, k
].x

loop_mins[i, k] = np.abs(polyakov_loop(q_mins[
i, k], 0, 0)) #Has i m a g i n a r y p a r t 0 , b u t
a b s n e e d e d t o c o n v e r t c o m p l e x f l o a t t o r e a l
f l o a t .

#S a v e f o r p o s t p r o c e s s i n g and p l o t t i n g .
timestr = time.strftime("%Y%m%d−%H%M%S")
filename1 = ’temps_N%.0f_msigma%.0f_mquark%.0
f_potential%s_Tmin%.0f_Tmax%.0f_%s_%s.csv’ % (
N_steps, couplings.m_sigma, couplings.m_quark,
potential , T_lower, T_upper, timestr, comment)

filename2 = ’deltas_N%.0f_msigma%.0f_mquark%.0
f_potential%s_Tmin%.0f_Tmax%.0f_%s_%s.csv’ % (
N_steps, couplings.m_sigma, couplings.m_quark,
potential , T_lower, T_upper, timestr, comment)

filename3 = ’loop_N%.0f_msigma%.0f_mquark%.0
f_potential%s_Tmin%.0f_Tmax%.0f_%s_%s.csv’ % (
N_steps, couplings.m_sigma, couplings.m_quark,
potential , T_lower, T_upper, timestr, comment)

np.savetxt(filename1 , temps, header =
header_string)

np.savetxt(filename2 , delta_mins , header =
header_string)

np.savetxt(filename3 , loop_mins , header =
header_string)

#Examp l e u s e
mpi = 140
msigma = 500
mquark = 300
fpi = 93
chem_pot = 0
N_steps = 20
delta_max = 450
T_min = 1
T_max = 250
B_fields = np.array([0, 4, 8])
default_couplings = CouplingSet(mpi, sigma, mquark, fpi)
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calc_condensates(default_couplings , ’chiM’, chem_pot,
B_fields , N_steps, T_min, T_max, delta_max)


