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ABSTRACT: 
 
This thesis is Exploring Finite Element Analysis in a Parametric Environment, with the intent of building a 
functioning Finite Element Analysis (FEA) program within the Grasshopper parametric environment. A 
motivation for this is to provide tools for designers and architects to roughly and swiftly assess structures 
within the Grasshopper environment. 
     
In order to attain a deeper understanding of how the Finite Element Method can be implemented in a 
parametric design environment, some Finite Element Analysis software packages are created to gain some 
experience with the inner processes of the Finite Element algorithms and to help locate eventual 
implementation issues. 
     
The results are four functioning programs for calculation of displacements, strains and stresses within truss, 
beam and shell structures. In addition, analysis is performed on each of the programs to assess their 
performance in terms of running time and accuracy. To measure accuracy, the software packages has 
been compared to analytical solutions and a well-established Finite Element Analysis program. 
 
All the created software packages display sensible deformation patterns and are in accordance with the 
established Finite Element Analysis comparison tool. In terms of running time, the simpler software bundles 
are executed within satisfactory time limits, but the heavier software bundles struggle with larger structures. 
In general, the processing parts could benefit from utilization of sparse storage formats and better 
optimized solving algorithms. The software packages are very close to analytical solutions, with the 
exception of complicated shell structures. The Shell software would benefit from implementation of more 
advanced elements, especially for the membrane part of the element. 
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”Essentially, all models are wrong, but some are useful.”

— George E. P. Box (1987)



Summary

The purpose of this thesis is to explore Finite Element Analysis (FEA) in the Grasshopper

parametric environment, with the aim to provide tools to roughly and quickly assess

structural performance. Hopefully, such tools would lead to more readily optimized designs

and fewer design corrections needing to be sent between the architect and engineer.

In order to achieve this goal, a theoretical chapter has been dedicated to outlining the

basics of the Finite Element Method (FEM). The chapter explains concepts fundamental to

FEM and mechanics in general. This includes degrees of freedom, relations between force

and displacement, transformation matrix, stiffness matrices, and constitutive relations for

beams and shells. In addition, the chapter lightly enters the subjects of higher order shape

functions and direct solving by Cholesky Banachiewicz Decomposition.

Based on this theoretical background, four separate programs have been made. The

first and most basic program, 2D Truss, was made as an introduction to FEM and the

Grasshopper workflow. This program lays the foundations for the more complicated

programs, as the general method and process remains the same for all of them. Next, 3D

Truss expands the program to three dimensions and undergoes a large refactoring in order

to make use of the open-source toolkit for C#, Math.NET. With this, the processing part of

the program is markedly faster, although some optimization missteps were made in the pre-

processing section. Moving on from trusses, the 3D Beam software saw significant changes

because of the leap to moments and rotations. Initially, this program followed much the

same process as the other two, but especially calculation of strains and displacements within

elements were later altered to make use of displacement fields. The beam software is based

on Euler-Bernoulli beam theory. Lastly, the stiffness matrices of the shell program were

yet another leap from the previous programs. The shell element is created by combining a

Constant Strain Triangle for membrane action and a Morley Triangle for bending. Shell

structures requires considerably more degrees of freedom for achieving adequate results,

and consequently requires larger systems of equations to be solved. This quickly leads to

unacceptably long running times.

The software packages for 2D and 3D Truss structures presents satisfactory results

regarding runtimes and accuracy when compared to the analytical solution and the estab-
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lished FEA software used as a benchmark. As for 3D Beam and Shell, which are more

comprehensive and complex, the results deviate slightly from the benchmark program.

However, results converge towards the ”correct” solution in all examples where the results

were not already identical or constant. For the 3D Beam software, results are very close

to the benchmark software, except for the case of uniformly distributed loads. The Shell

software deviates more from the correct solutions as the elements chosen are likely very

basic in comparison to the ones used by the benchmark software.

The final software packages mostly work as intended, since deformation patterns and

stress distributions are displayed correctly, even though accuracy may at times be lacking.

Consequently, the software packages can be used to roughly assess structural deformation

behavior and stress localization. For Shells, large jumps in stress concentrations can be a

problem because of the rudimentary elements chosen. The problem is alleviated somewhat

by increasing the number of elements.

The software packages would greatly benefit from further work on the solver for the

system of linear equations, as this was found to be the bottleneck for the runtime. They

could also benefit from improvements in terms of ease-of-use, improved color-mapping of

stress, uniform load distributions and more advanced boundary conditions.
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Sammendrag
Formålet med denne avhandlingen er å utforske elementmetoden i det parametriske miljøet

til Grasshopper, med sikte på å lage verktøy for å gjøre kjappe og grove vurderinger av

strukturell ytelse. Forhåpentligvis vil dette føre til lettere optimaliserte design og færre

designkorrigeringer som må sendes mellom arkitekt og ingeniør.

For å oppnå dette målet har et teoretisk kapittel blitt dedikert til å gi en grunnleggende

beskrivelse av elementmetoden. Kapittelet forklarer begreper som er fundamentale for

elementmetoden og mekanikk. Det omfatter grader av frihet, forhold mellom kraft og

forskyvning, transformasjonsmatriser, stivhetsmatriser og konstitutive relasjoner for bjelker

og skall. I tillegg går kapitlet lett inn på temaene for høyere ordens formsfunksjoner og

direkte løsning ved Cholesky Banachiewicz faktorisering.

Basert på denne teoretiske bakgrunnen er det laget fire separate programmer. Det

første og mest grunnleggende programmet, 2D Truss, ble laget som en introduksjon til FEM

og arbeidsflyten i Grasshopper. Dette programmet legger grunnlaget for de mer kompliserte

programmene ettersom den generelle metoden og prosessen forblir den samme for alle.

Neste program, 3D Truss, utvider fagverksberegningene til tre dimensjoner og gjennomgår

en stor refaktorering for å kunne benytte et åpen kilde-verktøy til C#, Math.NET. Med dette

er prosesseringsdelen av programmet markant raskere, selv om det ble gjort noen feil i

forbehandlingsdelen. Med 3D Beam-programvaren ble det overgang fra staver til bjelker,

og det var betydelige endringer på grunn av spranget til moment og rotasjon. I utgangspunk-

tet fulgte dette programmet mye samme prosess som de to foregående, men beregning

av tøyning og spenning inne i elementer ble senere endret for å utnytte forskyvningsfelt.

Bjelkeprogrammet er basert på Euler-Bernoulli bjelketeori. Til slutt var stivhetsmatrisene

til skallprogrammet enda et sprang fra de tidligere programmene. Skallelementet opprettes

ved å kombinere en Konstant tøyningstriangel (eng: Constant Strain Triangle) for mem-

brankrefter og en Morley-trekant for bøyningskrefter. Skallstrukturer krever betydelig flere

grader av frihet for å oppnå tilstrekkelig nøyaktige resultater, og krever følgelig at det må

løses større ligningssett. Dette fører raskt til uakseptabelt lange kjøretider.

Programvarepakker for 2D og 3D Truss-strukturer gir gode resultater når det gjelder

kjøretid og nøyaktighet, sammenlignet med den analytiske løsningen og den etablerte

FEA-programvaren som brukes som referanse. Når det gjelder 3D Beam og Shell, som

er mer omfattende og komplekse, avviker resultatene litt fra referanseprogrammet. Resul-

tatene konvergerer imidlertid til den ”riktige” løsningen i alle eksempler hvor resultatene
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ikke allerede var like eller konstante. For 3D Beam-programvaren er resultatene svært

nær benchmark-programvaren, bortsett fra tilfelle av jevnt fordelte belastninger. Shell-

programvaren avviker mer fra de riktige løsningene da de valgte elementene er ganske

grunnleggende.

De endelige programvarepakkene for det meste som ønsket, ettersom deformasjonsmønstre

og spenningsfordelinger vises korrekt, selv om nøyaktighet til tider er manglende. Følgelig

kan programvarepakkene brukes til å gjøre grove vurderinger av strukturell deformasjon-

sadferd og spenningslokalisering. For skall kan store hopp i spenningskonsentrasjoner være

et problem som følge av at elementene er forholdsvis enkle. Problemet lindres noe ved å

øke antallet elementer.

Programvarepakkene vil ha stor nytte av videre arbeid på løsningen av ligningssett, da

dette ble funnet å være flaskehalsen for kjøretiden. De kan også dra nytte av forbedringer

knyttet til brukervennlighet, fargekartlegging av spenninger, jevnt fordelte laster og mer

avanserte randverdibetingelser.
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Definitions

FEA = Finite Element Analysis

FEM = Finite Element Method

CAD = Computer Aided Design

NURBS = Non-Uniform Rational Basis-Spline

RHS = Right Hand Side (of an equation)

gdof = Global Degrees of Freedom

ldof = Local Degrees of Freedom

rdof/rgdof = Reduced Global Degrees of Freedom

component = Grasshopper algorithm

software package/bundle = Bundle of components belonging to either 2D Truss,

3D Truss, 3D Beam or 3D Shell

BDC/boundary conditions = Support conditions (free or clamped)

completion runtime = Time spent to complete an algorithm’s designated task

(running time is also used)
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Chapter 1
Introduction

As parametric design becomes more popular among architects and designers, the advantages

of a parametric work environment has become evident. One of the major advantages to

parametric design is that changes are rapidly visualized for the user. By relating structures

to sets of variables, geometry can easily be altered and tweaked. Given the ease with

which designs can change early in the design process, it makes sense to give the designer

a basic understanding of how the structure will behave structurally. By considering the

implications of structural analysis early in the design process, designs may become more

easily optimized in terms of structural performance.

The most popular structural analysis software packages are, by far, the various imple-

mentations of Finite Element Analysis (FEA). These programs utilize the Finite Element

Method (FEM), which divides the main problem into several minor parts called Finite

Elements.

The Finite Element Method (FEM) is a method arising from mainly five groups

of papers, (K. and L., 1996). FEM was first coined by R.W. Clough in the 1950s after

conducting a vibration analysis of a wing structure (Clough, 2001), but papers contributing

to the method were made as early as in 1943, by Richard Courant (Williamson, Jr., 1980).

Many details regarding his calculations are lacking, however, so it would be problematic

to attribute Courant with the origin of FEM (K. and L., 1996). John Argyris published

a series of papers in 1954 which related stresses and strains to loads and displacements

and establishes a rectangular panel stiffness matrix. Next is M.J Turner, who claimed that

a triangular element holds several advantages of rectangular stiffness matrices. He also
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Chapter 1. Introduction

derived the stiffness matrix for trusses in global coordinates. Turner was the supervisor of

Clough when he was working at Boeing Airplane Company. Clough later made significant

contributions to FEM by expanding on Turner’s work. Zienkiewicz and Cheung are

recognized for applying FEM to problems outside solid mechanics, and published the first

textbook on FEM in 1957.

The intent of this thesis is to explore the Finite Element Method for use in a parametric

environment, with the aim of providing designers and architects with a tool to quickly and

roughly assess their work in a structural manner. To achieve this, an attempt to create some

parametric Finite Element Analysis software packages will be made, with the intention of

achieving a deeper understanding of the potential problems and opportunities that occurs

by combining parametric design with Finite Element Analysis. The software’s results do

not have to be completely accurate, but should provide an insight into the behavior of the

structure before being analyzed in depth by structural engineers. This way the structure

would (hopefully) be more feasible from the onset, and require fewer design iterations

between the engineer and architect. In turn, this means fewer resources are required in the

design phase.

This thesis will approach the finite element method with a numerical mindset. The

intention is to adequately explain and implement the FEM, oriented towards a programming

perspective rather than the mathematical point of view. As the mathematical approach often

can seem over-complicated and hard to apply to real-life applications, this thesis aims to

”translate” the mathematical formulations to a numerical and implementable language. The

relevant mathematical theory will be presented with an attempt to interpret it numerically,

and the intention to put it directly to use. With some background experience in C# the

reader might be able to create their own Finite FEA software. Hopefully this thesis could

act as a guide to create FEA software for parametric environment.
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1.1 Clarifications

1.1 Clarifications

Components will in this paper refer to the separate objects or ”boxes” in the Grasshopper

environment. They can be compared to individual functions or classes in a computer science

analogy. These components perform minor or major tasks, and may have multiple data

inputs and give multiple data outputs. One component can easily contain many methods,

but a method cannot contain a component.

Methods in this paper refer to a procedure or a function in a larger program written

i C#. The methods usually perform a certain task, and can be called as many times as is

necessary. Methods may be seen as the code equivalent of a component but usually perform

minor tasks.

Where there are given coded examples in the C# language, the curly brackets have

been removed for readability reasons, and indentations will in these code snippets indicate

which operations belongs where.

Global axes are denoted by capital letters (X,Y,Z) while local axes are lower-cased

(x,y,z).
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Chapter 2
Theory

2.1 Assumptions

Most of this thesis is concerned with simplified models of reality, by this we assume that

materials are elastic and homogeneous. In this ”simple world” we assume that linear theory

is sufficient to represent deformations. Linear theory is based on two basic assumptions

(Bell, 2013):

1. Small displacements, which means that equilibrium and kinematic compatibility can

be based on the undeformed geometry.

2. Linear elasticity, which means that the stress-strain relationship is linear and re-

versible.

2.2 Degree of Freedom

Degrees of freedom (d.o.fs, dofs or singular dof) are the number of independent nodal dis-

placements that are free to change (Saouma, 1999). The term ”displacements” encompasses

both translational and rotational freedom, meaning that a complete node for a beam element

would have 6 dofs, as illustrated in Figure 2.1. A three-dimensional truss would need 3 dofs

(one for each translation), while a two-dimensional truss only needs 2 dofs. A shell element

can be defined in many different ways, but in this paper the Constant Strain Triangle and
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Chapter 2. Theory

Morley Triangle has been combined to form a shell element of 9 dofs, see Ch. 2.6, two dofs

in each corner and 1 along each edge.

Figure 2.1: Six degrees of freedom

Dofs can be further elaborated by providing boundary conditions. A condition that disallows

displacements is called a ”clamped” condition. A fully clamped node is called a fixed

boundary condition.

The terms global and local degrees of freedom (gdof and ldof), respectively relates

dofs to the system as a whole or of each element. The differences are visualized for a 2D

system on Fig. 2.2.

(a) Global degrees of freedom in system (b) Local degrees of freedom in element

Figure 2.2: Degrees of freedom in system and element

Reduced degrees of freedom (rdofs) are the number of gdofs remaining after removing any

dofs connected to clamped boundary conditions.
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2.3 Force-Displacement Relations

2.3 Force-Displacement Relations

The stiffness method used in Finite Element Analysis works by:

1. Constraining all dofs

2. Applying unit displacements at each dof (others remain restrained at zero)

3. Determining the reactions associated with all dofs

In structural problems the reaction forces R and the nodal displacements u are related

through what is called a system stiffness matrix or global stiffness matrix as

R = Ku (Eq. 2.3.1)

One of the main challenges here is to establish the K matrix. This is achieved through

determining the element stiffness matrix for each element in the structure, and then assemble

all of them in the global stiffness matrix.

To find the reaction forces R the displacement vector u needs to be determined.

This can be done by reducing the global stiffness matrix so that all the rows and column

corresponding to restrained dofs are removed. This new reduced global stiffness matrix will

here be denoted K*. Likewise removing the corresponding entries from the load vector

P gives the reduced load vector P∗. The reduced displacement vector is similarly u∗. By

removing these restrained dofs the following is obtained

P∗ = K∗u∗ (Eq. 2.3.2)

The structure now is statically determinate, which means it can be solved. However, the

K*-matrix is ”ill-conditioned or nearly singular if its determinant is close to zero” (Gavin,

2012). In these cases, K* cannot be easily inverted. This complicates the solving a bit,

but it can still be solved as a system of equations, of which there exists many methods for

solving.

Solving these systems of equations for the displacement vector u∗ may take some

time compared to the other steps of solving the structural problem. For this reason, one of

the preferable solving method is the Cholesky decomposition described in Ch. 2.9, which is

very fast but has some requirements for the matrix. Luckily these requirements are met by

the reduced global stiffness matrix.
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Chapter 2. Theory

2.4 Shape Functions

Shape functions are the expressions that gives the ”allowed” ways the element can deform.

There are some requirements that shape functions must fulfill for the stresses to converge

towards the correct values (Bell, 2013), these are:

• Continuity - The field variables and their derivatives must be continuous up to and

including order m-1, where m is the order of differentiation in the strain-displacement

relation.

• Completeness - textbfNu (displacement field times displacement vector) must be able

to represent rigid body movement without producing stresses in the element, and for

certain dof values produce a state of constant stress.

• The interpolation requirement - The first requirement is valid for all elements, while

the second only for 2D and 3D cases, and the third only for displacement dofs.

1. The shape function Ni must yield ui = 1, while uj = 0 where (j 6= i).

2. Ni = 0 for all sides and surfaces which does not contain dof i.

3.
∑
Ni = 1, the sum of all shape function must be one.

8



2.5 Beam Elements

2.5 Beam Elements

2.5.1 Beam Element Shape Functions

Although solving the global stiffness matrix for the applied loads, the resulting values only

give information about displacements at supplied nodes. For information about how the

displacements look inside each element, the (sub-element) displacements must be interpo-

lated from the nodal displacements. A way of achieving this is by applying an assumed

displacement field (Saouma, 1999). The displacement field is an assumed polynomial

which aims to approximate the deformation shape of the element. Mathematically, this may

be expressed as:

∆ =

n∑
i=1

Ni(x)∆e
l,i = N(x)∆e

l (Eq. 2.5.1)

where

1. ∆l = local generalized displacement

2. ∆e
l = element’s local nodal displacement

3. N(x)i = shape functions

4. N(x) = displacement field

∆e
l is defined as:

∆e
l =

[
ux,1 uy,1 uz,1 θx,1 θy,1 θz,1 ux,2 uy,2 uz,2 θx,2 θy,2 θz,2

]T
The number of shape functions are dependent on the number of dofs, as well as desired

continuity. Continuity pertains to the reproduction of deflection and curvature. The degree

of continuity decides whether the displacements are constant or requires continuity of

slopes.

Note that the nodal displacement vector for element e, ∆e, which is calculated by

Cholesky Banachiewicz as shown in Ch. 2.9 must be transformed from global to local

coordinates before multiplied with the displacement field. The transformation matrix is a

12x12 matrix like the ones from Eq. 2.7.27-2.7.29.

∆e
l = T∆e (Eq. 2.5.2)

9



Chapter 2. Theory

After calculating the generalized deformations by Eq. 2.5.1, the resulting displacements for

each new sub element, such as ux, uy , uz , θx, θy and θz , must then be transformed back to

global coordinates using the following equation

∆ = TT∆l (Eq. 2.5.3)

Axial and Torsional Shape Function

Both axial force and torsion is constant along the length of the element (since St. Venant’s

Torsion is assumed). This means that both axial and torsional displacements are linear and

can be approximated using the same shape function. Deriving these shape functions are

done by starting from the linear polynomial

u = ax+ b (Eq. 2.5.4)

Coefficients can be found by applying boundary conditions

u(x = 0) = u1 = 0 + b = b (Eq. 2.5.5)

u(x = L) = u2 = aL+ b = aL+ u1 (Eq. 2.5.6)

L is the element’s local length along the X-axis. Solving for a and b yields

a =
u2 − u1

L
=
u2

L
− u1

L
b = u1 (Eq. 2.5.7)

Substituting Eq. 2.5.7 into Eq. 2.5.4 gives

u = ax+ b

= (
u2

L
− u1

L
)x+ u1 (Eq. 2.5.8)

=
u2

L
x− u1

L
x+ u1 (Eq. 2.5.9)

= (1− x

L
)u1 +

x

L
u2 (Eq. 2.5.10)

= N1u1 +N2u2 (Eq. 2.5.11)

The shape functions for axial and torsional displacement are then defined as

N1 = 1− x

L
N2 =

x

L
(Eq. 2.5.12)

10



2.5 Beam Elements

With this there are shape functions representing two out of six dofs.

The procedure can be sped up by use of matrix notation. Going back to Eq. 2.5.4, u(x)

can be described by the polynomial vector p and the coefficient vector Ψ

u = ax+ b =
[
x 1

] [a
b

]
= pΨ (Eq. 2.5.13)

Multiplying Ψ with the boundary condition matrix Υ constructed from Eq. 2.5.5-2.5.6

gives the displacements

∆a =

[
u1

u2

]
=

[
0 1

L 1

][
a

b

]
= ΥΨ (Eq. 2.5.14)

Here ∆a are the nodal axial and torsional parts of ∆e
l . The exact same procedure can be

done for the rotational parts ∆r.

By inverting Υ, Ψ is now defined from Υ and u

∆a = ΥΨ =⇒ Υ−1∆a = Υ−1ΥΨ = Ψ (Eq. 2.5.15)

Inversion of Υ

Υ−1 =
1

det(Υ)

[
1 −1

−L 0

]
=

1

−L

[
1 −1

−L 0

]
=

1

L

[
−1 1

L 0

]
(Eq. 2.5.16)

The coefficient values are thus given as

Ψ = Υ−1∆a =
1

L

[
−1 1

L 0

][
u1

u2

]
(Eq. 2.5.17)

By multiplying the polynomials p with the coefficients Ψ calculated from Eq. 2.5.17, the

interpolated displacements u can be found. Substituting Eq. 2.5.17 into Eq. 2.5.14 gives

u = pΨ = pΥ−1∆a (Eq. 2.5.18)

=
[
x 1

] 1

L

[
−1 1

L 0

][
u1

u2

]
=
[
(1− x

L ) x
L

] [u1

u2

]
= N∆a (Eq. 2.5.19)

11



Chapter 2. Theory

As can be observed, N can quickly be found by solving

N = pΥ−1 (Eq. 2.5.20)

Eq. 2.5.20 can be used to easily derive shape functions for flexural dofs as well.

Flexural Shape Functions

Since axial and torsional dofs now are in place, the remaining displacements are uy, uz ,

θy and θz . four more dofs need their associated shape functions, hence four more shape

functions need to be found. Four boundary conditions are used to find these shape functions,

meaning that the polynomial must be of order three (Saouma, 1999), the polynomial is

assumed as follows for displacements

u = ax3 + bx2 + cx+ d =
[
x3 x2 x 1

]

a

b

c

d

 = pΨ (Eq. 2.5.21)

where the rotational displacements are defined as

θ =
du

dx
= 3ax2 + 2bx+ c (Eq. 2.5.22)

Applying boundary conditions gives

u(x = 0) = u1
du

dx

∣∣∣∣
x=0

= θ1 (Eq. 2.5.23)

u(x = L) = u2
du

dx

∣∣∣∣
x=L

= θ2 (Eq. 2.5.24)

Converting Eq. 2.5.21 to matrix notation using the notation from Eq. 2.5.23-2.5.24 yields

the following boundary condition matrix Υ

∆f =


u1

θ1

u2

θ2

 =


0 0 0 1

0 0 1 0

L3 L2 L 1

3L2 2L 1 0



a

b

c

d

 = ΥΨ (Eq. 2.5.25)

12



2.5 Beam Elements

Here ∆f is the nodal flexural part of ∆e
l . The inverted Υ-matrix is

Υ−1 =
1

L3


2 L −2 L

−3L −2L2 3L −L2

0 L3 0 0

L3 0 0 0

 (Eq. 2.5.26)

By use of Eq. 2.5.20, N is found to be

N = pΥ−1 =
[
x3 x2 x 1

] 1

L3


2 L −2 L

−3L −2L2 3L −L2

0 L3 0 0

L3 0 0 0

 (Eq. 2.5.27)

=
[
( 2x3

L3 − 3x2

L2 + 1) (x− 2x2

L + x3

L2 ) ( 3x2

L2 − 2x3

L3 ) ( x
3

L2 − x2

L )
]

(Eq. 2.5.28)

The Complete Shape Functions

Now all shape functions are found, representing all six dofs (in each node):

N1 = 1− x

L
(Eq. 2.5.29)

N2 =
x

L
(Eq. 2.5.30)

N3 = 1− 3
x2

L2
+ 2

x3

L3
(Eq. 2.5.31)

N4 = x− 2
x2

L
+
x3

L2
(Eq. 2.5.32)

N5 = 3
x2

L2
− 2

x3

L3
(Eq. 2.5.33)

N6 =
x3

L2
− x2

L
(Eq. 2.5.34)

Notice that several shape functions are almost identical, meaning shortcuts can be made to

avoid recalculating them in the program. Addition and subtraction operations have shorter

time execution costs than division and exponentiation. Some simplification can be made as

N1 = 1−N2 N5 = −N3 + 1

13



Chapter 2. Theory

The first order derived shape functions can be useful for finding strains, stresses and internal

forces related to the axial and torsional deformations. Deriving the shape functions yields

the following equations

dN1 = − 1

L
(Eq. 2.5.35)

dN2 =
1

L
(Eq. 2.5.36)

dN3 = −6
x

L2
+ 6

x2

L3
(Eq. 2.5.37)

dN4 = 1− 4
x

L
+ 3

x2

L2
(Eq. 2.5.38)

dN5 = 6
x

L2
− 6

x2

L3
(Eq. 2.5.39)

dN6 = 3
x2

L2
− 2

x

L
(Eq. 2.5.40)

Similarly to N2 and N4, dN2 and dN5 can freed from recalculation.

dN2 = −dN1 dN5 = −dN3

Remember that θy and θz are defined as

θy =
duz
dx

θz =
duy
dx

(Eq. 2.5.41)

This means that θy and θz are calculated from the derived displacement field that will be

presented later.

The second order derivative shape functions are useful for finding strains and stresses,

but follows the same logic as before so are not shown.
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Displacement Fields

The shape functions are used to construct a displacement field N which is used to approximate a displacement pattern, as per Eq. 2.5.1.

When multiplied by the nodal displacements per element, ∆e
l , the displacement field N represents the general deformations of ux, uy , uz

and θx. The first order derived displacement field dN can be used to find θy and θz , see Eq. 2.5.41.

N =

ux,1 uy,1 uz,1 θx,1 θy,1 θz,1 ux,2 uy,2 uz,2 θx,2 θy,2 θz,2


N1 0 0 0 0 0 N2 0 0 0 0 0 ux

0 N3 0 0 0 N4 0 N5 0 0 0 N6 uy

0 0 N3 0 −N4 0 0 0 N5 0 −N6 0 uz

0 0 0 N1 0 0 0 0 0 N2 0 0 θx

(Eq. 2.5.42)

dN =
dN

dx
=

ux,1 uy,1 uz,1 θx,1 θy,1 θz,1 ux,2 uy,2 uz,2 θx,2 θy,2 θz,2


dN1 0 0 0 0 0 dN2 0 0 0 0 0 dux

dx

0 dN3 0 0 0 dN4 0 dN5 0 0 0 dN6
duy

dx = θz

0 0 dN3 0 −dN4 0 0 0 N5 0 −dN6 0 duz

dx = θy

0 0 0 dN1 0 0 0 0 0 dN2 0 0 dθx
dx

(Eq. 2.5.43)

If there is a nodal displacement of 1 in the Y-direction (uy,2 = 1), as in Fig 2.3a, the (transposed) displacement vector ∆e
l will look like

∆e
l =

ux1 uy1 uz1 θx1 θy1 θz1 ux2 uy2 uz2 θx2 θy2 θz2[ ]
0 0 0 0 0 0 0 1 0 0 0 0

T

(Eq. 2.5.44)
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Chapter 2. Theory

By using Eq. 2.5.1 on both N and dN, then retrieving appropriate values, the displacement

vector becomes

∆l =



ux

uy

uz

θx

θy

θz


=



0

N5

0

0

0

dN5


=



0

3 x
2

L2 − 2 x
3

L3

0

0

0

6 x
L2 − 6 x

2

L3


(Eq. 2.5.45)

Assuming L = 1 and incrementing values for x at intervals of 0.05, the resulting uy
displacement looks much like expected, see Fig 2.3b

(a) Assumed deformation (b) Interpolated deformation

Figure 2.3: Nodal displacement of 1 in Y-direction

An example following the same procedure for a displacement situation like on Fig. 2.4a,

where uz,2 = 1 and θy = −1 results in a displacement pattern like on Fig. 2.4b. Notice that

this case, where θy = −1, illustrates why N3,5 and N3,11 are negative in the displacement

matrix since rotation about the Y-axis contributes negatively to the uz value.
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2.5 Beam Elements

(a) Assumed deformation (b) Interpolated deformation

Figure 2.4: Nodal displacement of 1 in Z-direction and -1 about the Y-axis

2.5.2 One-Dimensional Stress and Strain

For trusses there is only one type of stress, namely axial stress σx. Since there are no

moments, stress is defined as

σ = σx =
F

A
(Eq. 2.5.46)

According to Hooke’s Law, the relation between stress and strain for a linearly elastic

material is

σ = Eε (Eq. 2.5.47)

Since there is only axial stress in trusses, there also only be axial strain εx. The definition

of strain along an element is

εx =
∂u

∂x
=
u2 − u1

L
(Eq. 2.5.48)

Here u1 and u2 are the length displacements of respectively node 1 and 2. By reformulating

u from Eq. 2.5.11 we end up with

u(x) = N1(x)u1 +N2(x)u2 = u1 +
u2 − u1

L
x (Eq. 2.5.49)

As can be observed, εx = du
dx , which means that the axial strain can be found by calculating

the displacement field dN from Eq. 2.5.43 and multiplying with the nodal displacement

vector ∆e
a.

εx,axial =
dux
dx

=
dN1

dx
∆e

a (Eq. 2.5.50)

Alternatively, the change in length can be calculated manually from the displacement in x-,

y-, and z-direction in both nodes.
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Chapter 2. Theory

For beams, there are two common models for straight, prismatic beams, namely

Euler-Bernoulli beam theory and Timoshenko beam theory (Aalberg, 2014). The main

difference between the two lies in their premises. Euler-Bernoulli does not include shear

deformations, which means that cross-sections remain normal to the neutral axis after

deformation. Timoshenko includes shear deformations, meaning that there may be rotation

between the cross-section and the bending line, as well as stresses in other than the length

direction. In this thesis, Euler-Bernoulli beam theory has been used.

While more thoroughly explained in Ch. 2.6.3 on plate bending, since rotations are

very small, let us assume that

u = zθy where θy =
duz
dx

=
dN3

dx
∆e (Eq. 2.5.51)

Bending strain from rotation about the y-axis is given by

εxx,y =
∂u

∂x
= z

dθy
dx

= z
d2uz
dx2

= z
d2N3

dx2
∆e

l (Eq. 2.5.52)

Here N3 is the third row of Eq. 2.5.42. Bending about the Z-axis bring about a negative

contribution, which means that biaxial bending can be written as

εxx,z = −y dθz(x)

dx
=⇒ εxx,bending = z

dθy(x)

dx
− y dθz(x)

dx
(Eq. 2.5.53)

Combining the axial contribution from Eq. 2.5.50 and bending contribution from Eq. 2.5.54

to the internal strain energy, εxx is defined as

εxx =
dux
dx

+ z
d2uz
dx2

− y d
2uy
dx2

(Eq. 2.5.54)

The maximum strain energy εxx,max is useful and can be found by taking the absolute

values while respecting the polarity of the axial strain. This means that positive axial strain

(elongated element) will result in a positive εxx, while a negative axial strain will result in

a negative εxx.

dN1

dx
∆e

l > 0 =⇒ εxx =
dN1

dx
∆e

l + |z d
2N3

dx2
∆e

l |+ |y
d2N2

dx2
∆e

l | (Eq. 2.5.55)

dN1

dx
∆e

l <= 0 =⇒ εxx =
dN1

dx
∆e

l − |z
d2N3

dx2
∆e

l | − |y
d2N2

dx2
∆e

l | (Eq. 2.5.56)
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2.5 Beam Elements

2.5.3 Element Stiffness Matrix

The beam element stiffness matrix can be derived through the shape functions found in

Ch. 2.5.1 because the chosen flexural shape function happens to be the exact solution for the

partial differential equation of Euler-Bernoulli beam theory. Through use of the principal

of virtual displacement an expression for the element stiffness matrix can be established

(Bell, 2013). In the case of axial stress (Saouma, 1999), as in a truss, it becomes

keaxial =

∫
Ve

BT
axialEBaxialdv (Eq. 2.5.57)

The Baxial matrix for an axial stress case can be extracted from Eq. 2.5.43 in combination

with Eq. 2.5.50 as

Baxial =
[
dN1

dx
dN2

dx

]
=
[
− 1
L

1
L

]
(Eq. 2.5.58)

Which when all terms are constant gives

keaxial = A

∫ L

0

[
− 1
L

1
L

]
E
[
− 1
L

1
L

]
dx =

AE

L

ux,1 ux,2[ ]
1 −1 Fx1

−1 1 Fx2

(Eq. 2.5.59)

This can also be utilized to represent the axial forces in a beam element, as shall be shown

later. As mentioned in Ch. 2.5.1 the axial and torsional parts share the same shape functions

and thus the torsional part can be shown to be

ketorsion =
GJ

L

θx,1 θx,2[ ]
1 −1 Tx,1

−1 1 Tx,2

(Eq. 2.5.60)

Where J is the torsional constant which is dependent on the cross-sectional shape, and G

for an isotropic material becomes

G =
E

2(1 + ν)
(Eq. 2.5.61)
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For a flexural element the expression for the stiffness matrix, quite similar to Eq. 2.5.57

with a few extra terms from Eq. 2.5.52, becomes

keflex =

∫ L

0

∫
Ae

BT
flexEBflexz

2dAdx (Eq. 2.5.62)

Where the B matrix for a flexural element can be found from Eq. 2.5.37 - 2.5.40 as

Bflex =
[
(−6 x

L2 + 6 x
2

L3 ) (1− 4 xL + 3) ( x
L2 − 6 x

2

L3 ) ( x
2

L2 − 2 xL )
]

(Eq. 2.5.63)

And knowing that ∫
Ae

z2dA = Iy (Eq. 2.5.64)

Which gives the flexural stiffness matrix expression as

keflex = EIy

∫ L

0

BTBdx (Eq. 2.5.65)

Thus, the flexural element stiffness matrix can be written as

keflex =
EI

L3

uz,1 θy,1 uz,2 θy,2


12 −6L −12 −6L Vz1

−6L 4L2 6L 2L2 My1

−12 6L 12 6L Vz2

−6L 2L2 6L 4L2 My2

(Eq. 2.5.66)

The same procedure can be repeated to find uy1, θz1, uy2, θz2,.
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2.5 Beam Elements

The stiffness matrix for axial, torsional and flexural deformations can now be assembled

into an element stiffness matrix for a beam element, also called 3D frame element. The

assembly will result in

ke
beam = E

L3

ux1 uy1 uz1 θx1 θy1 θz1 ux2 uy2 uz2 θx2 θy2 θz2



AL2 0 0 0 0 0 −AL2 0 0 0 0 0 Fx1

0 12Iz 0 0 0 6IzL 0 −12Iz 0 0 0 6IzL Vy1

0 0 12Iy 0 −6IyL 0 0 0 −12Iy 0 −6IyL 0 Vz1

0 0 0 IxL
2

2(1+ν) 0 0 0 0 0 − IxL
2

2(1+ν) 0 0 Tx1

0 0 −6IyL 0 4IyL
2 0 0 0 6IyL 0 2IyL

2 0 My1

0 6IzL 0 0 0 4IzL
2 0 −6IzL 0 0 0 2IzL

2 Mz1

−AL2 0 0 0 0 0 AL2 0 0 0 0 0 Fx2

0 −12Iz 0 0 0 −6IzL 0 12Iz 0 0 0 −6IzL Vy2

0 0 −12Iy 0 6IyL 0 0 0 12Iy 0 6IyL 0 Vz2

0 0 0 − IxL
2

2(1+ν) 0 0 0 0 0 IxL
2

2(1+ν) 0 0 Tx2

0 0 −6IyL 0 2IyL
2 0 0 0 6IyL 0 4IyL

2 0 My2

0 6IzL 0 0 0 2IzL
2 0 −6IzL 0 0 0 4IzL

2 Mz2

(Eq. 2.5.67)
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2.6 Triangular Shell Elements

There will only be focused at the triangular elements, this is because of their simplicity,

versatility and robustness in usage and calculations (Bell, 2013). Many of the principles

presented however can be utilized to derive the necessary equations for higher order closed

polygon elements.

The triangular shell element is a plane 2D element, in contrast to the 1D truss or 3D

solid elements. To achieve adequate results with the 2D triangular element, the structural

problem should be a thin plate/shell structure. For a shell or plate to be considered thin, it

must have a thickness less than approximately 1/10 of the span length (Mike A., 2016). A

thickness less than this is very often the case when plates and shells are used, which is why

the 2D plane element has been chosen.

It should also be noted that the reason for it to be adequate with 2D elements for thin

shell is because the shear deformation out of plane is negligible compared to the bending

deformation. This implies that for medium thick, thick plates and thick shells, 3D solid

elements that takes shear deformation into account, is considerably better. The 3D solid

elements are in general more accurate but also more demanding in terms of computing

power. Because of the increased amount of dofs, they are also more time consuming. From

a parametric real-time calculation perspective, the 2D plane elements has sufficient accuracy

with respect to time utilization.

The triangular shell element can be said to consist of two main parts, the in-plane

stresses and strains, also called membrane part, and the bending part. These parts can

be viewed as completely separate, if some assumptions are made, and can therefore be

formulated and calculated before they are assembled together in the element stiffness matrix

and solved for deformations.

Isotropic material for the shell element is assumed during the derivations that follows.

When a material is isotropic it means that the material properties is equal in all directions,

that is

Ex = Ey = Ez = E (Eq. 2.6.1)

in contrast to orthotropic which is a type of orthogonal anisotropy where

Ex 6= Ey 6= Ez (Eq. 2.6.2)
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2.6.1 Area Coordinates

To streamline the derivation of the triangular element stiffness matrix it is often advanta-

geous to use area coordinates to derive the necessary relations. The area coordinate i is a

normalized distance to edge i, so the area coordinates can be defined from Fig. 2.5 as

ζi =
Ai
A

=
1
2ziLi
1
2HiLi

=
zi
Hi

(Eq. 2.6.3)

Since

A =

3∑
i

Ai (Eq. 2.6.4)

it can be stated that

ζ1 + ζ2 + ζ3 = 1 (Eq. 2.6.5)

Figure 2.5: Area coordinate relations

It should be specified that the numbering sequence must be in counter clockwise order for

the following derivation to be applicable.

To use the area coordinates, a transformation between Cartesian coordinates and area

coordinates are necessary to later fit the element into a global system. By inspection of

Fig. 2.5 it can be seen that the area coordinate for point i increases towards 1 the closer it

gets to node i. From this, the following transformation emerges

x = x1ζ1 + x2ζ2 + x3ζ3 (Eq. 2.6.6)

y = y1ζ1 + y2ζ2 + y3ζ3 (Eq. 2.6.7)
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In an easily invertible matrix form this is
x

y

1

 =


x1 x2 x3

y1 y2 y3

1 1 1



ζ1

ζ2

ζ3

 (Eq. 2.6.8)

It can also be shown that the determinant of this matrix is equal to twice the triangle area

(Bell, 2013), much like in Eq. 2.6.61. The inverse of this then becomes
ζ1

ζ2

ζ3

 =
1

2A


y23 x32 (x2y3 − x3y2)

y31 x13 (x3y1 − x1y3)

y12 x21 (x1y2 − x2y1)



x

y

1

 (Eq. 2.6.9)

xij = xi − xj yij = yi − yj and A = area of triangle

From Eq. 2.6.6 and Eq. 2.6.7, the derivative relations are defined as

∂x

∂ζi
= xi and

∂y

∂ζi
= yi (Eq. 2.6.10)

By combining Eq. 2.6.10 and Eq. 2.6.9, it becomes

∂ζ1
∂x

=
y23

2A

∂ζ2
∂x

=
y31

2A

∂ζ3
∂x

=
y12

2A
(Eq. 2.6.11)

∂ζ1
∂y

=
x32

2A

∂ζ2
∂y

=
x13

2A

∂ζ3
∂y

=
x21

2A
(Eq. 2.6.12)

If an arbitrary function f(ζ1, ζ2, ζ3) shall be derived, the above expressions can be assem-

bled as

∂f

∂x
=

1

2A
(
∂f

∂ζ1
y23 +

∂f

∂ζ2
y31 +

∂f

∂ζ3
y12) (Eq. 2.6.13)

∂f

∂y
=

1

2A
(
∂f

∂ζ1
x32 +

∂f

∂ζ2
x13 +

∂f

∂ζ3
x21) (Eq. 2.6.14)
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In matrix notation, this is


∂

∂x

∂

∂y

 =
1

2A

[
y23 y31 y12

x32 x13 x21

]


∂

∂ζ1

∂

∂ζ2

∂

∂ζ3


(Eq. 2.6.15)

Notice that there are three area coordinates for every two ”global” coordinates. This is

easily fixed since the area coordinates are not independent, as seen from Eq. 2.6.5, and

therefore

ζ3 = 1− ζ1 − ζ2 (Eq. 2.6.16)

There can now be established invertible and unambiguous expressions for differentiation

where only the independent area coordinates are included. This can with the definition in

Eq. 2.6.16 be written as 
∂

∂x

∂

∂y

 =
1

2A

[
y23 y31

x32 x13

]
∂

∂ζ1

∂

∂ζ2

 (Eq. 2.6.17)

The area coordinate derivation thus far is only valid for triangles with straight edges. With

this, the area coordinate expressions for linear elements has been found.
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2.6.2 Two-Dimensional Stress and Strain

In a plane element, the forces and deformations are simplified to be dependent on only two

axes, namely x and y axis. The illustration on Fig. 2.6 shows the relevant stresses for a

plate element. Notice that all stresses depending on the z axis has been neglected.

Figure 2.6: Two-dimensional stresses in plate element, equally on the opposite sides

From Eq. 2.5.47 an equation for the strain in each of these axes can be derived, but first it

must be rearranged to solve for the strain in x direction.

σx = Exεx =⇒ εx =
σx
Ex

(Eq. 2.6.18)

For a plane element, a strain in one direction will result in some strain in the other direction.

This can be shown in a uniaxial stress test (Bell, 2013). This effect is called the Poisson

effect. The general way of implementing this into the formulas is through Poisson’s ratio,

which is defined as

νx = −εx
εy

(Eq. 2.6.19)

Thus from Eq. 2.6.18 and Eq. 2.6.19, the two-dimensional strain in x direction is defined as

εx =
σx
Ex
− νx

σy
Ey

(Eq. 2.6.20)

The same can be shown for strain in the y direction. Shear strain can be thought of in a

similar manner since it relates to the rotational deformation, as illustrated in Fig. 2.7. For

very small rotations the tangent of the angle can be approximated equal to the angle, and
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the shear strain can therefore be found as follows

γxy = 2φ (Eq. 2.6.21)

where

φ ≈ tan(φ) =
2δ

d
(Eq. 2.6.22)

which gives

εx =
2δ

d
= φ =

γxy
2

(Eq. 2.6.23)

Figure 2.7: Rotation from shear deformation

Whereas for an element like on Fig. 2.8, where main axes coincides with x and y axes,

equilibrium requires that

σ = σx = σy (Eq. 2.6.24)

τ = τxy = σ (Eq. 2.6.25)

Figure 2.8: Axial and shear stress relation

If an isotropic material is assumed in Fig. 2.8, then Eq. 2.6.20 for the strain simplifies to

εx =
1

E
(σ − ν(−σ)) =

σ

E
(1 + ν) (Eq. 2.6.26)
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Hence from Eq. 2.6.23
γxy
2

= εx =
σ

E
(1 + ν) (Eq. 2.6.27)

Substitution from Eq. 2.6.25 gives

τxy =
E

2(1 + ν)
γxy = Gγxy (Eq. 2.6.28)

Here the G is called the shear modulus.

Moving on to matrix notation, the system for the strain-stress relation can be assembled

from Eq. 2.6.20 and Eq. 2.6.28 as

ε =


εx

εy

γxy

 =
1

E


1 −ν 0

−ν 1 0

0 0 2(1 + ν)



σx

σy

τxy

 = C−1σ (Eq. 2.6.29)

Here the C−1 matrix is called the flexibility matrix, and the inverse relation is

σ =


σx

σy

τxy

 =
E

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2



εx

εy

γxy

 = Cε (Eq. 2.6.30)

The C matrix is called the elasticity matrix and will be particularly important to the

development of the general shell element. If the material is orthotropic, which means the

stiffness is different for x and y direction, and we assume that Eq. 2.6.28 still is valid, it is

clear from Eq. 2.6.20 that the strain becomes

ε =

[
εx

εy

]
=

[
1
Ex

−νx
Ey

−νy
Ex

1
Ex

][
σx

σy

]
(Eq. 2.6.31)

Which can be inverted to achieve the orthotropic equivalent to C from Eq. 2.6.29. It should

be noted that the strain in z direction is regularly not zero as

εz =
−ν(σx + σy)

E
(Eq. 2.6.32)

However, this is of little consequence as it is a result of the lateral contraction from x and/or

y direction, and σz is therefore still zero.
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2.6.3 Plate Bending

For plate bending it is assumed that the element qualifies as a thin plate as described in

Chapter 2.6.

The first additional assumption is that straight lines in the plate which is normal to

the mid-surface, remains both straight and normal to the mid-surface after deformation,

and the thickness remains after deformation. This means that strains varies linearly with

the thickness of the plate. This is often called Kirchhoff-Love plate theory and is the

plate equivalent to the weak form of Navier’s hypothesis for beams (Bell, 2013). With the

illustration in Fig. 2.9 and the assumption of small angles, this results in

tan(θ) ≈ θ =⇒ −u = z(−θ) ⇐⇒ u = zθ (Eq. 2.6.33)

The second assumption is that the center plane of the plate does not strain. These strains will

be handled by the two-dimensional strains described in Chapter 2.6.2. The mathematical

formulation can therefore be stated as

u0 = u(x, y, 0) = 0 (Eq. 2.6.34)

v0 = v(x, y, 0) = 0 (Eq. 2.6.35)

Eq. 2.6.33 in x and y direction gives

u = zθy (Eq. 2.6.36)

v = −zθx (Eq. 2.6.37)

Figure 2.9: Bending plate

These are functions of x and y

w = w(x, y) θx = θx(x, y) θy = θy(x, y) (Eq. 2.6.38)
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Using these expressions, strain can be written as

εx =
∂u

∂x
= z

∂θy
∂x

(Eq. 2.6.39)

εy =
∂v

∂y
= −z ∂θx

∂y
(Eq. 2.6.40)

εz =
∂w

∂z
= 0 (Eq. 2.6.41)

With the shear strain defined as

γxy =
∂u

∂y
+
∂v

∂x
= z(

∂θy
∂y
− ∂θx

∂x
) (Eq. 2.6.42)

Since the shear deformation is neglected due to thin plate theory, also known as

Kirchhoff’s hypothesis, the other shear strains can be set to zero. With the remaining terms

relevant to bending, the plate strains can be written as

εb =


εx

εy

γxy

 = −z



−∂θy
∂x

∂θx
∂y

∂θx
∂x
− ∂θy

∂y


= −zc (Eq. 2.6.43)

where θx =
∂w

∂y
and θy = −∂w

∂x

Eq. 2.6.43 can be reformulated as

εb = −z



∂2w

∂x2

∂2w

∂y2

∂2w

∂x∂y


= −zcK (Eq. 2.6.44)

The subscript K in the Kirchhoff curvature cK indicates a Cartesian coordinate system. It

is assumed that stresses in z direction is zero, even though this is not the actual case when

strains are also zero in z direction. However, this discrepancy is insignificant enough to

neglect (Bell, 2013).
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The stress-strain relation can now be written as

σb = Cbεb (Eq. 2.6.45)

Cb is the same elasticity matrix as was found in Eq. 2.6.30. The stress resultants, which are

the moments in Fig. 2.10, can now be calculated from Eq. 2.6.45 and Eq. 2.6.43

m =


Mx

My

Mxy

 =

∫ h/2

−h/2
σbzdz = −Cb

∫ h/2

−h/2
z2dzc = −h

3

12
Cbc = −Dc (Eq. 2.6.46)

Here D is the flexural rigidity matrix for the plate.

Figure 2.10: Membrane bending forces in plate element
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2.6.4 CST - Constant Strain Triangle

The Constant Strain (and Stress) Triangle will represent the membrane forces in a shell

element. The stress and strain vary linearly over the element as the displacement field

is bi-linear and only deforms at the three edge nodes. Each node has two dofs, namely

translation in x and y direction, which leaves the element with a total of 6 dofs. A method

of indirect interpolation by shape functions will be used to establish the element membrane

stiffness matrix.

The bi-linear displacement functions are set up for x and y direction as

u(x, y) = a1 + a2x+ a3y (Eq. 2.6.47)

v(x, y) = b1 + b2x+ b3y (Eq. 2.6.48)

Figure 2.11: CST bi-linear displacement field

Proceeding with Eq. 2.6.47, the equations for each node displacement can be written as

u1 = a1 + a2x1 + a3y1 (Eq. 2.6.49)

u2 = a1 + a2x2 + a3y2 (Eq. 2.6.50)

u3 = a1 + a2x3 + a3y3 (Eq. 2.6.51)

Which in matrix form is

u =


u1

u2

u3

 =


1 x1 y1

1 x2 y2

1 x3 y3


︸ ︷︷ ︸

Γ


a1

a2

a3

 = Γa (Eq. 2.6.52)
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If Eq. 2.6.52 is solved for a, the expression becomes

a =


a1

a2

a3

 =
1

%


x2y3 − x3y2 x3y1 − x1y3 x1y2 − x2y1

y2 − y3 y3 − y1 y1 − y2

x3 − x2 x1 − x3 x2 − x1



u1

u2

u3

 = Γ−1u

(Eq. 2.6.53)

where % =x1y2 − x2y1 − x1y3 + x3y1 + x2y3 − x3y2

Eq. 2.6.47 can now be expanded into

u(x, y) = a1 + a2x+ a3y =
[
1 x y

]
a1

a2

a3

 =
[
1 x y

]
Γ−1


u1

u2

u3

 (Eq. 2.6.54)

The strain expression from Eq. 2.6.39 combined with Eq. 2.6.54 can thus be written as

εx =
∂u(x, y)

∂x
=

∂

∂x

[
1 x y

]
Γ−1u =

[
0 1 0

]
Γ−1


u1

u2

u3

 (Eq. 2.6.55)

The same procedure for v(x,y) in y direction gives

εy =
∂v(x, y)

∂y
=

∂

∂y

[
1 x y

]
Γ−1v =

[
0 0 1

]
Γ−1


v1

v2

v3

 (Eq. 2.6.56)

And the shear strain becomes

γxy =
∂u

∂y
+
∂v

∂x
=
[
0 0 1

]
Γ−1


u1

u2

u3

+
[
0 1 0

]
Γ−1


v1

v2

v3

 (Eq. 2.6.57)
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There are three shape functions in a Constant Stress Triangle, one for each node, and all of

them can be found as

εx =
∂

∂x

[
1 x y

]
Γ−1︸ ︷︷ ︸

N


u1

u2

u3

 =
∂

∂x
Nu (Eq. 2.6.58)

Here N is the displacement field. The exact same would be found for v, the shape functions

NT =


N1

N2

N3

 =
1

%


x2y3 − x3y2 + x(y2 − y3) + y(x3 − x2)

x3y1 − x1y3 + x(y3 − y1) + y(x1 − x3)

x1y2 − x2y1 + x(y1 − y2) + y(x2 − x1)

 (Eq. 2.6.59)

where % =x1y2 − x2y1 − x1y3 + x3y1 + x2y3 − x3y2 (Eq. 2.6.60)

It is also interesting that the area of the triangle can be found as

% = det(Γ) = 2A (Eq. 2.6.61)

The total displacement vector will be rearranged according to the node numbering as

d =
[
u1 v1 u2 v2 u3 v3

]T
(Eq. 2.6.62)

The matrix Bm, relating the strains and displacements, is defined as


εx

εy

γxy

 =


∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x


[
N1 0 N2 0 N3 0

0 N1 0 N2 0 N3

]
︸ ︷︷ ︸

Bm



u1

v1

u2

v2

u3

v3


(Eq. 2.6.63)

And thus

Bm =



∂N1

∂x
0

∂N2

∂x
0

∂N2

∂x
0

0
∂N1

∂y
0

∂N2

∂y
0

∂N3

∂y

∂N1

∂y

∂N1

∂x

∂N2

∂y

∂N2

∂x

∂N3

∂y

∂N3

∂x


(Eq. 2.6.64)
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Fully written out, this results in

Bm =
1

2A


y23 0 y31 0 y12 0

0 x32 0 x13 0 x21

x32 y23 x13 y31 x21 y12

 (Eq. 2.6.65)

xij = xi − xj yij = yi − yj

In this case, the entries in Bm are constants. This is not necessarily the case for higher order

displacement polynomial elements.

Through use of the principal of virtual displacement an expression for the element

stiffness matrix can be established (Bell, 2013). It can be expressed as

ke =

∫
Ve

BTCBdV (Eq. 2.6.66)

C in this case is the matrix found in Eq. 2.6.30, and B is the newly derived matrix from

Eq. 2.6.64. If a constant thickness of t is assumed for the plate, Eq. 2.6.66 becomes

kem =

∫
Ae

BT
mCBmtdA (Eq. 2.6.67)

If both Bm and C are independent of the area, Eq. 2.6.67 simplifies to

kem = AtBT
mCBm (Eq. 2.6.68)

In matrix form, this becomes

kem =
Et

4A(1− ν2)



y23 0 x32

0 x32 y23

y31 0 x13

0 x13 y31

y12 0 x21

0 x21 y12




1 ν 0

ν 1 0

0 0 1−ν
2



y23 0 y31 0 y12 0

0 x32 0 x13 0 x21

x32 y23 x13 y31 x21 y12



(Eq. 2.6.69)

where xij = xi − xj yij = yi − yj
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2.6.5 The Morley Triangle

The Morley triangle is the simplest triangular plate bending element attainable according to

Bell (2013), and only has three nodes and six dofs. Three of the dofs are the translations out

of plane, while the remaining three dofs gives the rotation around each side of the triangle,

as illustrated in Fig. 2.12. The dofs are given as

v =



w1

w2

w3

θ4

θ5

θ6


(Eq. 2.6.70)

Figure 2.12: Dofs for the Morley triangle

The Morley triangle has its base in a quadratic polynomial. It satisfies the completeness

criteria for shape functions, but does not satisfy continuity (Bell, 2013). Despite this, the

element behaves rather well according to Bell (2013), which in combination with the low

amount of dofs is the reason it has been selected for implementation. The area coordinates

described in Ch. 2.6.1 through indirect interpolation will be utilized to ease the process for

establishing the element stiffness matrix for bending. Despite the Morley triangle being a

basic element, this is not a minor task.

From a complete quadratic polynomial, the equivalent homogeneous polynomial is

assumed in area coordinates as

w =
[
ζ2
1 ζ2

2 ζ2
3 ζ1ζ2 ζ2ζ3 ζ3ζ1

]
= Ngg (Eq. 2.6.71)

Here, g is the generalized displacement parameters. The relation between w and v is now

needed, which can be done by expressing v through g. First, however, the rotations must be

defined in area coordinates. If the independent variables are chosen like in Eq. 2.6.16, the

independent variables are ζ1 and ζ2.

The rotations now need to be expressed through derivatives with respect to ζ1 and ζ2,
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but to do this some unambiguous expressions for the normal slope θm must be established.

Note that the directions for the rotations in Fig. 2.12 and the t axes in Fig. 2.13 is oriented

towards the positive local x axis for the element. Through inspection of Fig. 2.13, it can be

stated that

0 ≤ φm <
π

2
(Eq. 2.6.72)

or

3π

2
≤ φm < 2π (Eq. 2.6.73)

where m = 4, 5, 6

Figure 2.13: Normal slope definition

Notation for cosine and sine is then denoted as

cm ≡ cos(φm) sm ≡ sin(φm)

The relationship between the x-y coordinates and n-t coordinates can through further

inspection of Fig. 2.13 be defined as follows

x = ct− sn y = st+ cn (Eq. 2.6.74)

t = cx+ sy n = −sx+ cy (Eq. 2.6.75)
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The derivatives can be expressed as

∂

∂t
=

∂

∂x

∂x

∂t
+

∂

∂y

∂y

∂t
= c

∂

∂x
+ s

∂

∂y
(Eq. 2.6.76)

∂

∂n
=

∂

∂x

∂x

∂n
+

∂

∂y

∂y

∂n
= −s ∂

∂x
+ c

∂

∂y
(Eq. 2.6.77)

The rotations from Eq. 2.6.70 can now be expressed as

θm =
∂wm
∂n

= −sm
∂wm
∂x

+ cm
∂wm
∂y

(Eq. 2.6.78)

The element stiffness relation in Eq. 2.6.66 was defined as

ke =

∫
Ve

BTCBdV (Eq. 2.6.79)

The B matrix is missing for bending, but can be established from the basic assumption that

ε = ∆u = ∆Nv = Bv (Eq. 2.6.80)

Here u is the displacement component vector relating to ”real” strain. Remember that v is

locally defined.

The bending strain can with Eq. 2.6.80 combined with Eq. 2.6.44 and Eq. 2.6.71 be

written as

εb = −zcK

= −z∆Kw

= −z∆KNgg

= −z∆KNgA
−1v

= −zBKv (Eq. 2.6.81)

Solving for B gives

B = −zBK = −z∆KNgA
−1 (Eq. 2.6.82)

And the sought relation between v and g is given by the A matrix as

g = A−1v and v = Ag (Eq. 2.6.83)
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2.6 Triangular Shell Elements

If the term for B from Eq. 2.6.82 is substituted into Eq. 2.6.79, the element bending stiffness

matrix can be written as

keb =

∫ h/2

−h/2

∫
Ae

(−zBT
K)Cb(−zBK)dzdA =

1

12

∫
Ae

h3BT
KCbBKdA (Eq. 2.6.84)

or, with constant plate thickness, simply

keb =

∫
Ae

BT
KDBKdA where D =

h3

12
Cb (Eq. 2.6.85)

With an expression for the stiffness matrix for bending established, the next step will be

to determine the A matrix. As the shape functions are in terms of area coordinates, an

expression for the normal slope θm derived with respect to area coordinates is needed.

Through Eq. 2.6.17 the relation from Eq. 2.6.78 can be written as

θm =
∂wm
∂n

(Eq. 2.6.86)

=
[
−sm cm

]
∂wm
∂x

∂wm
∂y

 (Eq. 2.6.87)

=
[
−sm cm

] 1

2A

[
y23 y31

x32 x13

]
∂wm
∂ζ1

∂wm
∂ζ2

 (Eq. 2.6.88)

=
cmx32 − smy23

2A

∂wm
∂ζ1

+
cmx13 − smy31

2A

∂wm
∂ζ2

(Eq. 2.6.89)

For simplicity, the following notation is introduced

γm =
cmx32 − smy23

2A
(Eq. 2.6.90)

µm =
cmx13 − smy31

2A
(Eq. 2.6.91)

αm = γm + µm (Eq. 2.6.92)
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Chapter 2. Theory

Going through the nodes of the element and knowing that ζ3 = 1− ζ1 − ζ2 and ζ2 = 0 at

node 1, and so on, it can from Eq. 2.6.71 be shown that

v1 = w1 = g1

v2 = w2 = g2

v3 = w3 = g3

At ”mid-edge node” 4 it becomes ζ3 = 0 and ζ1 = ζ2 = 1/2, and similarly for 5 and 6.

This calculation is a tedious task to do by hand, therefore the Matlab script shown in Lst. 2.1

was used to perform the derivation of these expressions.

1 syms g4 m4 g5 m5 g6 m6 z1 z2 ;

2 z3 = 1 − z1 − z2 ;

3 N = [ z1 ˆ2 z2 ˆ2 z3 ˆ2 z1* z2 z2* z3 z3* z1 ] ;

4

5 dw4 = g4* d i f f (N, z1 ) + m4* d i f f (N, z2 ) ;

6 dw5 = g5* d i f f (N, z1 ) + m5* d i f f (N, z2 ) ;

7 dw6 = g6* d i f f (N, z1 ) + m6* d i f f (N, z2 ) ;

8

9 v4 = subs (dw4 , [ z1 , z2 ] , [ 1 / 2 , 1 / 2 ] ) ;

10 v5 = subs (dw5 , [ z1 , z2 ] , [ 0 , 1 / 2 ] ) ;

11 v6 = subs (dw6 , [ z1 , z2 ] , [ 1 / 2 , 0 ] ) ;

Listing 2.1: Deriving equations for v4, v5 and v6

Running this script gives the equations

v4 = γ4g1 + µ4g2 +
1

2
α4g4 −

1

2
α4g5 −

1

2
α4g6

v5 = µ5g2 − α5g3 +
1

2
γ5g4 −

1

2
γ5g5 +

1

2
γ5g6

v6 = γ6g1 − α6g3 +
1

2
µ6g4 +

1

2
µ6g5 −

1

2
µ6g6
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2.6 Triangular Shell Elements

From Eq. 2.6.83, the A matrix can now be established as

v =



w1

w2

w3

θ4

θ5

θ6


=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

γ4 µ4 0 α4

2
−α4

2
α4

2

0 µ5 −α5
γ5
2

−γ5
2

γ5
2

γ6 0 −α6
µ6

2
µ6

2
−µ6

2





g1

g2

g3

g4

g5

g6


= Ag (Eq. 2.6.93)

In matrix notation, this can be written as

v =

[
I 0

A21 A22

]
g (Eq. 2.6.94)

When inverted, A becomes

A−1 =

[
I 0

−A−1
22 A21 A−1

22

]
(Eq. 2.6.95)

Having established the A matrix, there is a problem of coordinate system from Eq. 2.6.82

where Ng is given in area coordinates and ∆K is in Cartesian coordinates. By applying

Eq. 2.6.17 twice, the following transition can be found



∂2

∂x2

∂2

∂y2

2
∂2

∂x∂y


=

1

4A2


y2

23 y2
31 2y23y31

x2
32 x2

13 2x13x32

2x32y23 2x13y31 2(x13y23 + x32y31)


︸ ︷︷ ︸

H



∂2

∂ζ2
1

∂2

∂ζ2
2

∂2

∂ζ1∂ζ2


(Eq. 2.6.96)

Which in short can be written as

∆K = H∆ζ (Eq. 2.6.97)

The expression for BK from Eq. 2.6.82 can now be written as

BK = ∆KNgA
−1 = H ∆ζNg︸ ︷︷ ︸

Bg

A−1 = HBgA
−1 (Eq. 2.6.98)

41



Chapter 2. Theory

Bg for this element is a constant matrix defined as

Bg = ∆ζ

[
ζ2
1 ζ2

2 ζ2
3 ζ1ζ2 ζ2ζ3 ζ3ζ1

]

=



∂2

∂ζ2
1

∂2

∂ζ2
2

∂2

∂ζ1∂ζ2


[
ζ2
1 ζ2

2 (1− ζ1 − ζ2)2 ζ1ζ2 ζ2(1− ζ1 − ζ2) (1− ζ1 − ζ2)ζ1

]

=


2 0 2 0 0 −2

0 2 2 0 −2 0

0 0 2 1 −1 −1

 (Eq. 2.6.99)

All the terms that defines BK are now known. The expression for the element bending

stiffness matrix from Eq. 2.6.85 can then be evaluated as

keb =

∫
Ae

BT
KDBKdA =

∫
Ae

A−TBT
g HTDHBgA

−1dA (Eq. 2.6.100)

For a defined triangular element all of these matrices are constants, which means the

expression becomes

keb = A−TBT
g HTDHBgA

−1Ae (Eq. 2.6.101)

where Ae = Area of triangle (Eq. 2.6.102)

The bending forces from Eq. 2.6.46 can in combination with Eq. 2.6.81 and Eq. 2.6.98 now

be written as

m =


Mx

My

Mxy

 = −Dc = −DBKv = −DHBgA
−1v (Eq. 2.6.103)
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2.6 Triangular Shell Elements

2.6.6 Triangular Shell Element Assembly

To acquire the element stiffness matrix for a shell element, a membrane element and a

bending element can be assembled as

ke
shell =

[
kem 0

0 keb

]
and vshell =

[
vm

vb

]
(Eq. 2.6.104)

For an element consisting of a CST element as described in Ch. 2.6.4 for the membrane

part and a Morley triangle element from Ch. 2.6.5 for the bending part, and the assembly

becomes

ke
shell =

[
kem,CST 0

0 keb,Morley

]
(Eq. 2.6.105)

vshell =
[
u1 v1 u2 v2 u3 v3 w1 w2 w3 θ4 θ5 θ6

]T
(Eq. 2.6.106)

For the CST-Morley shell element it should be noted that it only has 12 dofs per element,

as shown in Fig. 2.14. In other words, not more than a normal 3D Beam element. The dofs

can be rearranged in any order, as long as this is taken into account when transforming

from local to global and vice versa.

Figure 2.14: The degrees of freedom for the CST-Morley element
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2.7 Transformation Matrix

Each element has a global (X, Y, Z) and a local (x, y, z) coordinate system. Stiffness (E,

G, A, Ix, Iy, Iz, L) is evaluated in the local coordinate system, and are independent of the

beam’s location in global space. In order to relate an element’s stiffness matrix to the global

stiffness matrix, we must use a transformation matrix.

First we can define the transformation matrix T in such a way that

δ = T∆ p = TP (Eq. 2.7.1)

Here δ is a list of generalized unit displacement (in local coordinate system), ∆ is a list of

generalized unit displacement (in global coordinate system), p is a list of local forces and P
is a vector of global forces.

Clarification of notation: capital letters signifies stiffness matrix in global coordinates,

while superscripted G signifies global stiffness matrix (unlike e for element). Matrices and

vectors are written in bold, and node numbers are denoted by i.

By inserting Eq. 2.7.1 into Eq. 2.5.47 from Chapter 2.3 we obtain

TP = keT∆ (Eq. 2.7.2)

Premultiplying this with T−1 gives

P = T−1keT∆ (Eq. 2.7.3)

Since the matrix T is orthogonal, the inverse and transposed will be identical, which means

that

P = TTkeT∆ (Eq. 2.7.4)

Ke is the element in global coordinates, defined as

P = Ke∆ (Eq. 2.7.5)

This means the relationship between local and global coordinates can be defined as

Ke = TTkeT (Eq. 2.7.6)
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2.7 Transformation Matrix

2D Transformation Matrix

The transformation matrix itself is constructed by rotation of the local axes. For a 3-dof

system like in Figure 2.15, this means projecting the local dofs vi (of node i) to the global

dof Vi by sine and cosine.

Figure 2.15: Transformation of axes in two dimensions

As can be seen on Fig. 2.15, the global translations Vxi and Vzi are defined as

a = vxi sin γ b = vzi cos γ (Eq. 2.7.7)

c = vzi sin γ d = vxi cos γ (Eq. 2.7.8)

Vxi = c+ d =⇒ Vxi = vxi cos γ + vzi sin γ (Eq. 2.7.9)

Vzi = b− a =⇒ Vzi = −vxi sin γ + vzi cos γ (Eq. 2.7.10)

Vθi = vθi (Eq. 2.7.11)

Simplified notation gives

cos γ = c sin γ = s (Eq. 2.7.12)

In matrix form

Vi =


Vxi

Vzi

Vθi

 =


c s 0

−s c 0

0 0 1



vxi

vzi

vθi

 = tvi (Eq. 2.7.13)

For 2-noded elements (like in Figure 2.16) the transformation matrix becomes
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V =

[
V1

V2

]
=

[
t 0

0 t

][
v1

v2

]
= Tv (Eq. 2.7.14)

Figure 2.16: A simply supported beam

For a simple beam with 3 dofs per node, the ke can be constructed by combining Eq. 2.5.57

and Eq. 2.5.66, and the transformation matrix T as shown in Eq. 2.7.14.

ke =



µ 0 0 −µ 0 0

0 12 −6L 0 −12 −6L

0 −6L 4L2 0 6L 2L2

−µ 0 0 µ 0 0

0 −12 6L 0 12 6L

0 −6L 2L2 0 6L 4L2


EI

L3
where µ =

AL2

I

(Eq. 2.7.15)

V =



Vxi

Vzi

Vθi

Vxi+1

Vzi+1

Vθi+1


=



c s 0 0 0 0

−s c 0 0 0 0

0 0 1 0 0 0

0 0 0 c s 0

0 0 0 −s c 0

0 0 0 0 0 1





vxi

vzi

vθi

vxi+1

vzi+1

vθi+1


= Tv (Eq. 2.7.16)

As known from in Eq. 2.7.6, the expression for the element stiffness matrix in global

coordinates is

Ke = TTkeT

This leads to
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2.7 Transformation Matrix

Ke =
EI

L3
·



µc2 + 12s2 µcs− 12cs 6Ls −µc2 − 12s2 −µcs+ 12cs 6Ls

µcs− 12cs µs2 + 12c2 −6Lc −µcs+ 12cs −µs2 − 12c2 −6Lc

6Ls −6Lc 4L2 −6Ls 6Lc 2L2

−µc2 − 12s2 −µcs+ 12cs −6Ls µc2 + 12s2 µcs− 12cs −6Ls

−µcs+ 12cs −µs2 − 12c2 6Lc µcs− 12cs µs2 + 12c2 6Lc

6Ls −6Lc 2L2 −6Ls 6Lc 4L2


(Eq. 2.7.17)

Which when fully written out gives the element stiffness matrix in the global coordinate

system. µ is defined in Eq. 2.7.16.

3D Transformation Matrix

For simple 3D coordinate transformation the direction cosines can be utilized to transform

from global coordinates xg , yg , zg to local xl, yl, zl as

vl =


uxl

uyl

uzl

 =


c(xl, xg) c(xl, yg) c(xl, zg)

c(yl, xg) c(yl, yg) c(yl, zg)

c(zl, xg) c(zl, yg) c(zl, zg)



uxg

uyg

uzg

 = Tvl (Eq. 2.7.18)

where c(xl, xg) is the cosine of the angle between the local x axis xl and the global x axis

xg. The direction cosines is therefore dependent upon having the three local axes defined.

The directional cosines can be observed on Fig. 2.18a. Without the defined local axes this

becomes more of a challenge, and for beams a more handy transformation matrix can be

derived as follows.

For beams, allowing for rotation about its local x-axis requires adding the angle α as

shown in Figure 2.17, while allowing for simple 3D rotation requires adding an angle β

and γ as shown in Figure 2.18b

Figure 2.17: Rotation α about local x-axis
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(a) Direction angles (b) Rotation β about Y-axis and γ about
Z-axis

Figure 2.18: Angles needed for transformation in arbitrary 3D coordinates

The general case must take all three angles into account.

t =
[
Rγ Rβ Rα

]
(Eq. 2.7.19)

Similarly to for Eq. 2.7.9-2.7.11, the angles between the different axes can be described

by sine and cosine. Following the same procedure as the 2D case, the rotational matrices

becomes

Rγ =


cos γ sin γ 0

− sin γ cos γ 0

0 0 1

 (Eq. 2.7.20)

Rβ =


cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ

 (Eq. 2.7.21)

Rα =


1 0 0

0 cosα sinα

0 − sinα cosα

 (Eq. 2.7.22)

Next, it would be beneficial to describe the angles in terms of directional cosines instead

of angles, since that makes them easy to calculate for a line element. Directional cosines

are defined as the cosines of angles between two vectors and are the component’s length
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contribution per unit vector in that direction.

CX = cos θx =
xj − xi
L

CY = cos θy =
yj − yi
L

CZ = cos θz =
zj − zi
L

(Eq. 2.7.23)

L =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2 CXZ =
√
C2
X + C2

Z (Eq. 2.7.24)

Note that

sin γ = CY cos γ = CXZ (Eq. 2.7.25)

sinβ =
CZ
CXZ

cosβ =
CX
CXZ

(Eq. 2.7.26)

Multiplication of these matrices yields Matrix 2.7.27.

t =


CX CY CZ

−CXCY cosα−CZ sinα
CXZ

CXZ cosα −CY CZ cosα+CX sinα
CXZ

CXCY sinα−CZ cosα
CXZ

−CXZ sinα CY CZ sinα+CX cosα
CXZ

 (Eq. 2.7.27)

Beware that some entries are divided by CXZ which is zero if the nodal points only change

along the Y-axis (i.e. xj − xi = 0 and zj − zi = 0). For this case, CX , CZ and CXZ are all

zero, so t = RγRα. Since Rγ is simplified to
0 CY 0

−CY 0 0

0 0 −1

 (Eq. 2.7.28)

The matrix t simplifies to

t =


0 CY 0

−CY cosα 0 sinα

CY sinα 0 cosα

 (Eq. 2.7.29)
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2.8 Global Stiffness Matrix

After the element stiffness matrix has been converted to global coordinates, they must be

assembled into the global stiffness matrix. The global stiffness matrix consists of stiffnesses

from all global dofs (gdofs) and is a gdof by gdof matrix.

The procedure for assembling the global stiffness matrix is as follows:

1. Construct element stiffness matrix ke for each element.

2. Transform element matrices to global coordinates Ke.

3. Enter stiffnesses from Ke into correct entries in global stiffness matrix KG. When

nodes are shared among elements, stiffnesses are summed.

A pseudocode for the procedure is shown in Lst. 2.2.

1 foreach element in elements

2 ke = Get local element stiffness matrix

3 T = Get element transformation matrix

4 Ke = TT*ke*T

5

6 index1 = Get index of node 1 in Point List

7 index2 = Get index of node 2 in Point List

8

9 KG(index1, index1) = KG(index1, index1) + Ke(1,1)

10 KG(index1, index2) = KG(index1, index2) + Ke(1,2)

11 KG(index2, index1) = KG(index2, index1) + Ke(2,1)

12 KG(index2, index2) = KG(index2, index2) + Ke(2,2)

Listing 2.2: Pseudocode for assembly of KG

The global stiffness matrix must take into account the stiffnesses from all elements, which

means that any elements that shares nodes must sum their stiffnesses. As an example, Step

3 has been performed for two element matrices identical to the one from Eq. 2.7.17 and is

shown in Eq. 2.8.1. Observe that entries in rows and columns 4-6 contain summed stiffness.
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KG =



K1
1,1 K1

1,2 K1
1,3 K1

1,4 K1
1,5 K1

1,6 0 0 0

K1
2,1 K1

2,2 K1
2,3 K1

2,4 K1
2,5 K1

2,6 0 0 0

K1
3,1 K1

3,2 K1
3,3 K1

3,4 K1
3,5 K1

3,6 0 0 0

K1
4,1 K1

4,2 K1
4,3 K1

4,4 +K2
1,1 K1

4,5 +K2
1,2 K1

4,6 +K2
1,3 K2

1,4 K2
1,5 K2

1,6

K1
5,1 K1

5,2 K1
5,3 K1

5,4 +K2
2,1 K1

5,5 +K2
2,2 K1

5,6 +K2
2,3 K2

2,4 K2
2,5 K2

2,6

K1
6,1 K1

6,2 K1
6,3 K1

6,4 +K2
3,1 K1

6,5 +K2
3,2 K1

6,6 +K2
3,3 K2

3,4 K2
3,5 K2

3,6

0 0 0 K2
4,1 K2

4,2 K2
4,3 K2

4,4 K2
4,5 K2

4,6

0 0 0 K2
5,1 K2

5,2 K2
5,3 K2

5,4 K2
5,5 K2

5,6

0 0 0 K2
6,1 K2

6,2 K2
6,3 K2

6,4 K2
6,5 K2

6,6


(Eq. 2.8.1)

2.9 Cholesky Banachiewicz

The Cholesky decomposition method can be used to numerically solve matrices of the form

Ax = b. The method works by first decomposing A into the lower triangular matrix L and

its conjugate transposed. L is then used to calculate y by forward substitution. And finally,

x can be found by performing back substitution on y. Note that the conjugate transposed

matrix will be identical to the transposed matrix when only dealing with real numbers.

A = LLT =⇒ Ly = b =⇒ LTx = y (Eq. 2.9.1)

To show how L and LT can be found, consider a square, symmetric 2x2 matrix, A. Since

LT is the transpose of L, they are always symmetric to each other.

A =

[
1 2

2 8

]
= LLT =

[
L11 0

L21 L22

][
L11 L21

0 L22

]
=

[
L2

11 L11L21

L11L21 L2
21 + L2

22

]
(Eq. 2.9.2)

Since the Cholesky method requires that the diagonal must be positive, the values for L11,

L21 and L22 are easily found.

A[1, 1] = L2
11 = 1 =⇒ L11 = 1 (Eq. 2.9.3)

A[1, 2] = L11L21 = 2 =⇒ L21 = 2 (Eq. 2.9.4)

A[2, 2] = L2
21 + L2

22 = 8 =⇒ L22 = 2 (Eq. 2.9.5)
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In general notation this is

Ljj =

√√√√Ajj −
j−1∑
k=1

L2
j,k (Eq. 2.9.6)

Lij =
1

Ljj
(Aij −

j−1∑
k=1

Li,kLj,k) for i > j (Eq. 2.9.7)

Assuming a matrix b =

[
3

0

]
, we can now find x by first doing forwards and backwards

substitution according to Eq. 2.9.1.

Ly = b
F. subs
====⇒ y =

[
y1

y2

] b1/L11

(b2−L21x1)
L22

 =

[
3

−3

]
(Eq. 2.9.8)

Lx = y
B. subs
====⇒ x =

[
x1

x2

] (y1−L21x2)
L11

y2/L22

 =

[
6

− 3
2

]
(Eq. 2.9.9)

The formulas for forward and backwards substitution respectively, are

yi =
bi −

∑i−1
k=i Likyk
Lii

(Eq. 2.9.10)

xi =
yi −

∑n
k=i+1 L

T
ikxk

LTii
(Eq. 2.9.11)

The x found from using this series of forward and backwards substitution is the same as

can be found by inverting A and multiplying with b.

Ax = b =⇒ A−1b = x =

[
6

− 3
2

]
(Eq. 2.9.12)

The reason this is not applicable for a global stiffness matrix is because it can be singular

and thus noninvertible (Bell, 2013). Inverting the A matrix (if possible) costs 2n3 while,

LU decomposition, a common method for solving Ax = b, comes at a cost of 2
3n

3. The

cholesky algorithm is considered to cost 1
3n

3 flops for a matrix A of size n, so twice as

quick as the LU algorithm.
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Software

This thesis is primarily focused on creating structural analysis packages for Grasshopper,

which is an add-on for the computer-aided design (CAD) application Rhinoceros 5, often

nicknamed Rhino. Rhino allows for drawing of 3D models, and makes use of non-uniform

rational B-splines (NURBS) for mathematically correct drawing of curves. The user

interface for Rhino can be seen on Fig. 3.1a.

Rhino has an add-on for a visual programming language called Grasshopper, see

Fig. 3.1b. Grasshopper is run from within the Rhino application, and is used to build

generative algorithms for geometry. These algorithms are made by pulling components

onto a canvas. Components can have outputs which can subsequently be connected to other

components. The process is intuitive even without prior knowledge of coding, and is very

helpful for automating repeated tasks during model generation.

(a) Rhinoceros 5 (b) Grasshopper

Figure 3.1: Parametric environment
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3.1 Parametric Software

The Grasshopper add-on is a so-called ”Parametric Environment”, in which a chosen set of

parameters can be used to influence the geometry to change as desired. The components

can be viewed as functions, where the inputs affect the output. These parameters can be

sliders, Boolean toggles, or knobs, all of which can be used to send a number or Boolean

value to the components. On Fig. 3.2a, a knob and a slider is used to define the coordinates

of a new point. The point component output can then be used along with another point

component as inputs to a line component, as shown on Fig. 3.2b. In these two steps, an

algorithm has been created for generation of a line with two nodes.

(a) Slider and knob parameters (b) Create a line

Figure 3.2: Algorithm

The components are organized in tabs and panels on the upper part of the Grasshopper

interface. For the Maths tab, the panels are Domain, Matrix, Operators, etc., as can be

observed on Fig. 3.3. The Operator panels contains components for Addition, Multiplication,

Smaller Than, Equality and more. Tabs are marked in blue, panels in red, and components

(which can be dragged onto the canvas below) is green. Additional component packages can

be downloaded and added to Grasshopper from external sources. The components created

in this thesis is organized in the tab Koala, with panels for 2D Truss, 3D Truss, 3D Beam

and Shell, which can be spied upon in Fig. 3.7. Each panel contains all the components

related to their respective structure type.

Figure 3.3: Grasshopper component organization
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3.2 Installation Instructions

3.2 Installation Instructions

Grasshopper is launched from Rhino by entering the command ”Grasshopper” in the Rhino

command line, as shown in Fig. 3.4.

Figure 3.4: Launch Grasshopper

To add 3rd party components, go to File → SpecialFolders → ComponentsFolder

in Grasshopper, as shown on Fig. 3.5.

Figure 3.5: Open 3rd party Component Libraries folder
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A folder containing all external libraries will open, as shown on Fig. 3.6. If no 3rd party

components have been added, this folder would be empty. To add the Koala components,

simply drag the whole folder (called Koala) into the libraries folder as it is shown on

Fig. 3.6. Afterwards, restart Rhino and Grasshopper and the new components should be

available.

Figure 3.6: Libraries folder

After restarting Rhino and Grasshopper the Koala tab should be visible and contain all the

software components created in this thesis, as shown in Fig. 3.7.

Figure 3.7: Koala tab containing all software components

56



Chapter 4
Truss Calculation Software

Without any experience in C# or in creation of a Finite Element Analysis (FEA) software,

it was decided that creating a simple 2D truss calculation software would be a fitting

introductory task. It was conjectured that the main challenges would be the ”core” of the

software, which would be the solver and logic for the system of equations in matrix form.

Designing the main component also introduces the finite element method (FEM) and could

provide an understanding of how the method can be implemented to solve any arbitrary

truss structure.

As the early work progressed it became apparent that the amount of support code

needed was greater than initially assumed. Among these were the definition of boundary

condition and the preparation of loads. The software was therefore dispersed among various

components and methods to increase code readability and for user convenience. The need

for a method to view the result also emerged as it became difficult to determine if the results

were logical and consistent. It was by this reason determined that some sort of visualization

of the results was in order. This functionality was placed in its own component to ease the

manageability of the viewing.

When the 2D Truss calculation software were operational, the task naturally became

making a 3D Truss software from the 2D version. The two software packages therefore

operates very similarly, where the 3D has some extended functionality. For this reason, the

2D and 3D Truss software will be described in this chapter and an attempt will be made to

point out the differences made from the 2D version to 3D. The full source codes for 2D and

3D Truss can be found in respectively Appendix A and Appendix B.
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Chapter 4. Truss Calculation Software

To use the software some simple relation needs to be understood, a simplified organization

of the component relations is shown on Fig. 4.1.

Figure 4.1: Organization of 3D Truss Components.

Where the Geometry represents the structure in form of lines, which in this case represents

the trusses. The structures to be analyzed are built in Grasshopper, which can swiftly be

adapted through parameters. The same relation pattern applies to the 2D Truss software.

4.1 Calculation Component

The inputs for the main 3D Truss components seen in Fig. 4.2 are:

Lines - The structure or geometry made with lines in the Grasshopper environment.

Boundary Conditions - The list of strings describing the support conditions for the struc-

ture, given by the BDC Truss component described in Ch. 4.2.1. The format is more

comprehensively explained in Ch. 4.1.1.

Cross-sectional area - The cross-sectional area of the members used in the truss structure.

Material E modulus - The material parameter Young’s modulus for the members of the

truss structure. Describes the linear relation between stress and strain.

Loads - The loads applied to the truss structure, formatted as a list of string, given from the

SetLoads component described in Ch. 4.2.2. The format is more thoroughly explained in

Ch. 4.1.1.
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4.1 Calculation Component

The outputs from the main truss calculation component are:

Deformations - The deformation for each node in the order the nodes are found, the node

order is further described in Ch. 4.1.1. The deformation are separated in respectively x, y

and z direction, which gives a list three times the size the amount of unique nodes.

Reactions - Gives a list of reaction forces divided into the vector components in x, y and z

direction, following the same pattern as the deformation. The reaction list also includes the

applied loads in the correct positioning according to the unique load list.

Element stresses - The stresses is given as a list with the axial stress for each line in

the same order they are given as input. This can be either positive or negative values for

respectively tension and compression.

Element strains - The strains for each element in the same order as the lines are given as

input, which is also in the same order as the stresses. Positive strain for tension and negative

for compression.

When the necessary information about the geometry, boundary conditions, cross-

section, material properties and loads are supplied, the various structural calculations can

proceed. Initial values for E-modulus (200 GPa, assumed steel) and cross-section area (10

000 mm2) are defined in the case either or both are unspecified.

Figure 4.2: The main 3D calculation component

The main calculation component has quite a lot of tasks to perform besides the solving for

deformations. There to attain a better overview of the functions, it has been separated into

three parts, namely pre-processing, which is al that is done before the main calculation.

The middle part is the processing which includes the main solving for the deformations,

and the last part is post-processing, which will work on the results from the processing.
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Chapter 4. Truss Calculation Software

4.1.1 Pre-Processing

Point List

Throughout the calculation process it is important to organize all the variables. Misplaced

deformations or boundary conditions in relation to the stiffness matrix will result in erro-

neous results. Therefore, the first step will be to create a list of all the points (i.e. nodes)

from the input geometry of lines. The important thing to note about the point list is that

no point occurs twice. This is done deliberately so that the point list will be the ”model

order” for assembling the global stiffness matrix from the element stiffness matrices in a

later procedure.

Because of lower accuracy in Grasshopper than C#, the input points are only accurate

to a certain degree, and tend to have strange numbering for decimals placed after 10−6.

Since the Cholesky solve method outlined in Ch. 4.1.2 requires a symmetric matrix, they

need to be rounded to stave off errors caused by this phenomenon. The process of creating

the point list is presented in Lst. 4.1.

1 List<Point3d> points = new List<Point3d>();

2 foreach (Line line in geometry)

3 Point3d tempFrom = new Point3d(Math.Round(line.From.X, 5),

Math.Round(line.From.Y, 5), Math.Round(line.From.Z, 5));

4 Point3d tempTo = new Point3d(Math.Round(line.To.X, 5),

Math.Round(line.To.Y, 5), Math.Round(line.To.Z, 5));

5 //adds point unless it already exists in pointlist

6 if (!points.Contains(tempFrom))

7 points.Add(tempFrom);

8 if (!points.Contains(tempTo))

9 points.Add(tempTo);

Listing 4.1: Method CreatePointList for 3D Truss

Having identical points occur more than once could disturb the stiffness relations in

the global stiffness matrix and add more equations to the linear system, this would be

unnecessary and may cause error in the computation process. The method for creating

the point list will therefore skip any point if it already exists in the point list, and add

it otherwise. The index for each unique point in the point list will thereafter act as the

identifier for each point. It is of no consequence in which order the point occur as long as

all points are unique and stays in the same order throughout the computation.
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4.1 Calculation Component

Boundary Conditions

With the arbitrary order of points established, the list of boundary conditions can be

constructed. Using the BDC Truss component described in Ch. 4.2, the boundary conditions

are given as a list of strings with the format ”x,y,z:fx,fy,fz” as shown on Fig. 4.3. The x,y

and z represents the coordinates of a point in three dimensional Cartesian coordinates, given

in millimetres. The field ”fx” can be interpreted as the question ”free x?”, and takes the

form of an integer, 1 or 0, representing respectively true or false, the logic is similar for fy

and fz.

An example of how the input is formatted for two nodes is shown in Fig. 4.3, where

the nodes coordinates are as given in Eq. 4.1.1 below.

(x, y, z)1 = (0, 0, 0) (x, y, z)2 = (2000, 0, 0) (Eq. 4.1.1)

Figure 4.3: BDC string format.

Here Node 1 is clamped in x-,y-,z-direction (notice the fx,fy,fz = 0,0,0), while Node 2 is

clamped in y- and z-direction, but free to move in x-direction.

The information about the points in the inputted string list is used to arrange the

boundary conditions according to the order from point list. Thereafter, the boundary

conditions is stored as a list with the true/false values for fx, fy and fz separated, resulting

in a list with three entries for each point in the point list. For all the other points besides the

boundaries, the condition is set to 1, which means it is free to move.

In the 2D Truss software, the fy value is disregarded since the calculations are only

performed for two dimensions. It can be specified for testing reasons but it will be dis-

regarded in the calculation component. Note that the y axis has been disregarded, which

means 2D Truss works in the x and z axes.
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Chapter 4. Truss Calculation Software

Loads

Similarly to the boundary condition input, the supplied load list is a list of strings. The

strings is formatted as ”x,y,z:vx,vy,vz”, where x, y and z is the coordinates of the loaded

point, and vx, vy and vz is the vector components in hence x-, y- and z-direction. Each

vector component has the value of the force in the respective direction, hence the complete

vector contains information about direction and the force magnitude. The strings are

decoded and transformed into a list of doubles, in much the same manner as for the

boundary conditions. The respective force in each direction is set separately and adhering

to the ordering given in the point list previously created. For 3D Truss, this results in a list

thrice the length of the number of points, where all points without loads are set to zero. For

2D Truss, the length is twice the number of all points, as only two directions are considered.

Lst. 4.2 shows how the method CreateLoadList in 3D Truss parses the text input from

the load component and stores them as a List of doubles.

1 for (int i = 0; i < loadtxt.Count; i++)

2 string coordstr = (loadtxt[i].Split(’:’)[0]);

3 string loadstr = (loadtxt[i].Split(’:’)[1]);

4

5 string[] coordstr1 = (coordstr.Split(’,’));

6 string[] loadstr1 = (loadstr.Split(’,’));

7

8 inputLoads.Add(Math.Round(double.Parse(loadstr1[0]), 5));

9 inputLoads.Add(Math.Round(double.Parse(loadstr1[1]), 5));

10 inputLoads.Add(Math.Round(double.Parse(loadstr1[2]), 5));

11

12 coordlist.Add(new Point3d(Math.Round(double.Parse(coordstr1[0]), 5),

Math.Round(double.Parse(coordstr1[1]), 5),

Math.Round(double.Parse(coordstr1[2]), 5)));

13

14 //place at load at correct entry in global load list

15 foreach (Point3d point in coordlist)

16 int i = points.IndexOf(point);

17 int j = coordlist.IndexOf(point);

18 loads[i * 3 + 0] = inputLoads[j * 3 + 0];

19 loads[i * 3 + 1] = inputLoads[j * 3 + 1];

20 loads[i * 3 + 2] = inputLoads[j * 3 + 2];

Listing 4.2: Excerpt of method CreateLoadList for 3D Truss
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Stiffness Matrices

The element stiffness matrices are established based on the geometry (List of lines), point

list (List of points), Young’s Modulus E and cross-sectional area A. The E-modulus and area

A has been assumed to apply to all elements. The global stiffness matrix is later assembled

by inserting the values from each element stiffness matrix (i.e. the element stiffness matrix

of each bar) according to their node numbering, and thus connecting all the elements.

Element Stiffness Matrix

The element stiffness matrix in global coordinates Ke is different for 2D and 3D Truss.

However, the local element stiffness matrices ke are (almost) identical for both, and is

similar to Eq. 2.5.59. Since the stiffness matrix from Eq. 2.5.59 is defined for one dimension,

and trusses are for two and three dimensions, there is a gradual increase in the matrix size.

The local element stiffness matrix for a 2D truss then becomes

ke2DTruss =


1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

 (Eq. 4.1.2)

The global element stiffness matrices Ke for 2D and 3D becomes rather different as they

are multiplied by different transformation matrices. In the 2D case, the transformation

matrix will be similar to the one in Eq. 2.7.13, without the rotational dof, and reads

T2DTruss =


c s 0 0

−s c 0 0

0 0 c s

0 0 −s c

 (Eq. 4.1.3)

By applying Eq. 2.7.6, this results in

Ke
2DTruss =

EA

L


c2 s · c −c2 −s · c
s · c s2 −s · c −s2

−c2 −s · c c2 s · c
−s · c −s2 s · c s2

 (Eq. 4.1.4)
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Solving for Ke directly as in Eq. 4.1.4 is faster and simpler than first establishing ke in

local coordinates and then transforming to global coordinates. By this reason the 2D Truss

component skips this transformation step and implements Ke. For larger matrices like

in 3D Truss, 3D Beam and Shell, the transformation procedure of Eq. 2.7.6 is followed

instead, choosing to prioritize readability rather than optimize for time, the time usage

of this process will be investigated further in later chapters. In three dimension the only

difference between from the 2D local element stiffness matrix is two added rows and

column of zeroes, this becomes

Ke
3DTruss =

EA

L


1 0 0 −1 0 0

0 0 0 0 0 0

−1 0 0 1 0 0

0 0 0 0 0 0

 (Eq. 4.1.5)

The transformation matrix T3DTruss for the 3D Truss elements is found by assembling the

directional cosines from Eq. 2.7.23-2.7.24 for each node and is assembled as

T3DTruss =



CX CY CZ 0 0 0

CX CY CZ 0 0 0

CX CY CZ 0 0 0

0 0 0 CX CY CZ

0 0 0 CX CY CZ

0 0 0 CX CY CZ


(Eq. 4.1.6)

The resulting Ke
3DTruss will then be calculated according to Eq. 2.7.6 for each element as

the coordinates are obtained.

64



4.1 Calculation Component

As an example of how the transformation matrix is used, the 2D truss element matrix from

Eq. 4.1.4 is filled for element 1 on Fig. 4.4. The coordinates for the node in the figure is

presented in Tab. 4.1.

Figure 4.4: 2D Truss with red indices for elements and white indices for nodes.

Table 4.1: Example 2D Truss. Nodal coordinates for Fig. 4.4.

Node index X-coord Y-coord Z-coord
0 0.0 0.0 0.0

1 1000.0 0.0 1000.0

2 2000.0 0.0 0.0

The angle θ is found by taking the arctangent of ∆z
∆x .

θ = arctan
0− 0

2000− 0
(Eq. 4.1.7)

= arctan
0

2000
(Eq. 4.1.8)

= 0° (Eq. 4.1.9)

The angle is then inserted into the abbreviated sine and cosine from Eq. 2.7.12.

c = cos 0° = 1 s = sin 0° = 0 (Eq. 4.1.10)

Material properties are set as

E = 210GPa A = 10000mm2 L = 2000mm (Eq. 4.1.11)
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Inserting values from Eq. 4.1.10 to 4.1.11 into Ke
2DTruss from Eq. 4.1.4 results in the

complete element stiffness matrix for element 1, in global coordinates.

Ke1
2DTruss =

210GPa · 10000mm2

2000mm


1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

 (Eq. 4.1.12)

= 10.5 · 105 N

mm


1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

 (Eq. 4.1.13)

A remark on the example is that the global element stiffness matrix looks exactly like in

Eq. 4.1.4 because it is oriented horizontally. The numbers would be ”messier” for the other

diagonal elements.

Global Stiffness Matrix

The element stiffness matrix for bar element 1 is now the 4x4 matrix from Eq. 4.1.13 and

next step is to add it to the global stiffness matrix. The element stiffness matrix can be

divided into four 2x2 matrices: upper left corner, upper right corner, lower left corner

and lower right corner. The placement of each 2x2 matrix in the element stiffness matrix

is dependent on which index the start node and end node has in the point list. The four

sub-matrices is illustrated in Eq. 4.1.14 with the respective node relation.

K1
2DTruss = 10.5 · 105 N

mm


1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0


}

Node 0}
Node 2

︸ ︷︷ ︸
Node 0

︸ ︷︷ ︸
Node 2

(Eq. 4.1.14)

This can be automated by use of for-looping like in Lst. 4.3. Note that this double for-loop

is for 3D Truss, while the 2D Truss utilized a more direct placement method as there were

just a few term to place. As the element stiffness matrices grow, this process become more

comprehensive and a double for-loop seemed like the organized way to accomplish this

task.
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4.1 Calculation Component

1 for (int row = 0; row < K_elem.RowCount / ldof; row++)

2 for (int col = 0; col < K_elem.ColumnCount / ldof; col++)

3 //top left 3x3 of K-element matrix

4 K_G[nIndex1 * 3 + row, nIndex1 * 3 + col] += K_elem[row, col];

5 //top right 3x3 of K-element matrix

6 K_G[nIndex1 * 3 + row, node2 * 3 + col] += K_elem[row, col + 3];

7 //bottom left 3x3 of K-element matrix

8 K_G[node2 * 3 + row, nIndex1 * 3 + col] += K_elem[row + 3, col];

9 //bottom right 3x3 of K-element matrix

10 K_G[node2 * 3 + row, node2 * 3 + col] += K_elem[row + 3, col + 3];

Listing 4.3: An automated process for Ke placement into KG for the 3D Truss software

For the 2D Truss from Fig. 4.4, element 1 begins at node 0 and ends at node 2, this results

in a placement in the global stiffness matrix as shown in Eq. 4.1.15-4.1.16.

KG
1 =



K1
0,0 K1

0,1 0 0 K1
0,2 K1

0,3

K1
1,0 K1

1,1 0 0 K1
1,2 K1

1,3

0 0 0 0 0 0

0 0 0 0 0 0

K1
2,0 K1

2,1 0 0 K1
2,2 K1

2,3

K1
3,0 K1

3,1 0 0 K1
3,2 K1

3,3


(Eq. 4.1.15)

=



10.5 · 105 0 0 0 −10.5 · 105 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−10.5 · 105 0 0 0 10.5 · 105 0

0 0 0 0 0 0


(Eq. 4.1.16)

An identical procedure is performed for every element, normally starting with element 0

and ending with the last element. A complete global stiffness matrix KG for Fig. 4.4 will

look like in Eq. 4.1.17.

The global stiffness matrix can be preallocated with a dimension of NxN by using the

number of nodes multiplied with the number of local degrees of freedom (ldofs). For the

2D Truss there will always be 2 ldofs per node, in respectively x- and z-direction. While for

3D Truss there are 3 ldofs, in respectively x-, y- and z-direction. For the 2D Truss example

shown in Fig. 4.4 there are three unique nodes, which gives a global stiffness matrix of 6x6

entries. A more thorough description of ldofs and gdofs can be found in Ch. 2.2.
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Chapter 4. Truss Calculation Software

KG =



K0
0,0 +K1

0,0 K0
0,1 +K1

0,1 K0
0,2 K0

0,3 K1
0,2 K1

0,3

K0
1,0 +K1

1,0 K0
1,1 +K1

1,1 K0
1,2 K0

1,3 K1
1,2 K1

1,3

K0
2,0 K0

2,1 K0
2,2 +K2

0,0 K0
2,3 +K2

0,1 K2
0,2 K2

0,3

K0
3,0 K0

3,1 K0
3,2 +K2

1,0 K0
3,3 +K2

1,1 K2
1,2 K2

1,3

K1
2,0 K1

2,1 K2
2,0 K2

2,1 K1
2,2 +K2

2,2 K1
2,3 +K2

2,3

K1
3,0 K1

3,1 K2
3,0 K2

3,1 K1
3,2 +K2

3,2 K1
3,3 +K2

3,3



=



17.9 7.4 −7.4 −7.4 −10.5 0

7.4 7.4 −7.4 −7.4 0 0

−7.4 −7.4 14.8 0 −7.4 7.4

−7.4 −7.4 0 14.8 7.4 −7.4

−10.5 0 −7.4 7.4 17.9 −7.4

0 0 7.4 −7.4 −7.4 7.4


· 105 N

mm
(Eq. 4.1.17)

When assembled the constant global stiffness matrix can describe the linear static behaviour

of the structure, by providing a relation between forces and deformations.

Reduced Global Stiffness Matrix and Reduced Load List

After the global stiffness matrix has been established, the reduced global stiffness matrix

(KG
r -matrix) must be constructed. In order to create the KG

r -matrix, the clamped boundary

conditions are removed. It is also necessary to reduce the load list equivalently so that it

can be used as the right-hand-side (RHS) of the equation when solving for displacements.

The process of solving is more thoroughly explained in Ch. 2.3 and Ch. 2.9.

For every entry in the boundary list containing zeros, the corresponding index for rows

and columns in KG and load list is removed, as illustrated in Eq. 4.1.18. Numbers in black

will remain in the new list, while the rest (grey) numbers are removed.

The RHS of Eq. 4.1.18 will be the reaction and loading forces, where the reaction

forces at this time are still unknowns and are therefore set as zeroes in the software. The

equations with reaction forces as the RHS can not be solved without more information and

is therefore not taken into the reduced stiffness matrix. The equations involving reaction

forces however, does not relate to any deformations as they relates to clamped dofs, which

are not movable. They can therefore be removed and the system can be solved without any

complications.
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

0

0

1

1

1

0


︸ ︷︷ ︸
BDC list

−→ 105



17.9 7.4 −7.4 −7.4 −10.5 0

7.4 7.4 −7.4 −7.4 0 0

−7.4 −7.4 14.8 0 −7.4 7.4

−7.4 −7.4 0 14.8 7.4 −7.4

−10.5 0 −7.4 7.4 17.9 −7.4

0 0 7.4 −7.4 −7.4 7.4


︸ ︷︷ ︸

KG



u0

v0

u1

v1

u2

v2


︸ ︷︷ ︸

u

=



Reac.

Reac.

Load

Load

Load

Reac.


︸ ︷︷ ︸

load list

(Eq. 4.1.18)

The resulting KG
r -matrix becomes as shown in Eq. 4.1.19, along with the reduced load list.

105


14.8 0 −7.4

0 14.8 7.4

−7.4 7.4 17.9


︸ ︷︷ ︸

KG
r


1

1

1


︸︷︷︸

BDC list

=


Load

Load

Load


︸ ︷︷ ︸

reduced load list

(Eq. 4.1.19)

While the 3D Truss makes use of inbuilt functions for lists and matrices to remove rows and

columns by index, the 2D Truss instead builds the reduced stiffness matrix (and reduced

load list) from scratch by adding all the entries which relates to free dof in the KG matrix

and load list. As will be explained in Ch. 5.1.1, the method for 2D Truss is actually superior

to the ”improved” 3D Truss method in terms of runtime.

The difference in the algorithms for reducing the global stiffness matrix in 2D Truss

and 3D Truss can be seen from respectively Lst. 4.4 and Lst. 4.5. Notice how the 3D Truss

reducing method seem simpler because of the methods RemoveRow and RemoveColumn.

But in fact it is noticeable slower than the 2D Truss method when the matrices grow quite

large.
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1 int dofs_red = points.Count * 2 - (bdc_value.Count - bdc_value.Sum());

2 double[,] K_redu = new double[dofs_red, dofs_red];

3 List<double> load_redu = new List<double>();

4 List<int> bdc_red = new List<int>();

5 int m = 0;

6 for (int i = 0; i < K_tot.GetLength(0); i++)

7 if (bdc_value[i] == 1)

8 int n = 0;

9 for (int j = 0; j < K_tot.GetLength(1); j++)

10 if (bdc_value[j] == 1)

11 K_redu[m, n] = K_tot[i, j];

12 n++;

13 load_redu.Add(load[i]);

14 m++;

Listing 4.4: CreateReducedGlobalStiffnessMatrix method for 2D Truss

1 K_red = Matrix<double>.Build.SparseOfMatrix(K);

2 List<double> load_redu = new List<double>(load);

3 for (int i = 0, j = 0; i < load.Count; i++)

4 if (bdc_value[i] == 0)

5 K_red = K_red.RemoveRow(i - j);

6 K_red = K_red.RemoveColumn(i - j);

7 load_redu.RemoveAt(i - j);

8 j++;

Listing 4.5: CreateReducedGlobalStiffnessMatrix method for 3D Truss

4.1.2 Processing by Cholesky-Banachiewicz Algorithm

After reducing the global stiffness matrix and load list, Eq. 2.3.1 can be solved for displace-

ments. Explanation of Cholesky Decomposition and reasons for choosing it over other

methods can be found in Ch. 2.9 and analysis of some solvers are performed in Ch. 5.3.1.

This part of the software is where the 2D and 3D Truss diverges more drastically.

While 2D Truss contains a self-written algorithm for solving with the Cholesky method

and matrix multiplication, the 3D Truss instead utilizes the Math.NET Numerics package

(Math.NET, 2018). In essence, Math.NET opens for use of readily built and optimized

methods and classes. Matrix and vector classes are introduced and matrix operations can

be performed by pre-built solver methods. The Cholesky algorithm as well as forwards

and backwards substitution can all be replaced with Math.NET functions. A runtime

comparison between our Cholesky and the Math.NET Cholesky is shown in Chapter 5.3.1.
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4.1 Calculation Component

Cholesky Decomposition and Restoration of Displacement list, 2D Truss

To construct L and LT from Eq. 2.9.1 a double for-loop goes through the whole KG
r -matrix

and calculates Eq. 2.9.6 for diagonal entries and Eq. 2.9.7 for remaining entries. The

sums are stored in a temporary variable, Lsum. Note that diagonal and general entries are

different.

LDsum = LDsum + L2
i,k LGsum = LGsum + Li,kLj,k (Eq. 4.1.20)

The implementation is presented in LST. 4.6

1 for (int i = 0; i < KGr.GetLength(0); i++)

2 for (int j = 0; j <= i; j++)

3 double L_sum = 0;

4 if (i == j)

5 for (int k = 0; k < j; k++)

6 L_sum += L[i, k] * L[i, k];

7 L[i, i] = Math.Sqrt(KGr[i, j] - L_sum);

8 L_T[i, i] = L[i, i];

9 else

10 for (int k = 0; k < j; k++)

11 L_sum += L[i, k] * L[j, k];

12 L[i, j] = (1 / L[j, j]) * (KGr[i, j] - L_sum);

13 L_T[j, i] = L[i, j];

Listing 4.6: Construction of L and LT

After L and LT has been constructed they can be forward substituted for given loads. As

per the procedure outlined in Ch. 2.9, this is done by solving for Eq. 2.9.10, and is shown

in Lst. 4.7

1 for (int i = 0; i < L.GetLength(1); i++)

2 double L_prev = 0;

3 for (int j = 0; j < i; j++)

4 L_prev += L[i, j] * y[j];

5 y.Add((load1[i] - L_prev) / L[i, i]);

Listing 4.7: Forwards substitution

When this is completed, the deformations can be found by backwards substitution as in

Eq. 2.9.11. The algorithm created for this is shown in Lst. 4.8.
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1 for (int i = L_T.GetLength(1) - 1; i > -1; i--)

2 double L_prev = 0;

3 for (int j = L_T.GetLength(1) - 1; j > i; j--)

4 L_prev += L_T[i, j] * x[j];

5 x[i] = ((y[i] - L_prev) / L_T[i, i]);

Listing 4.8: Backwards substitution

After solving KG
r for deformations by the Cholesky algorithm, the removed entries (from

reducing the load list) are restored by adding zeros at indices where displacements are

clamped, and entries from the reduced deformations list where they free. This process is

implemented as shown in Lst. 4.9.

1 List<double> def = new List<double>();

2 int index = 0;

3 for (int i = 0; i < bdc_value.Count; i++)

4 if (bdc_value[i] == 0)

5 def.Add(0);

6 else

7 def.Add(deformations_red[index]);

8 index += 1;

Listing 4.9: Restore deformation vector, 2D Truss

Cholesky Decomposition and Restoration of Displacement list, 3D Truss

In contrast to 2D the 3D Truss software utilizes the Math.NET Cholesky solver, then

preallocates the complete deformation vector with zeros and repopulates it with the calcu-

lated deformation values. The restoration process in this case becomes as shown in Lst. 4.10.

1 Vector<double> def_red = KGr.Cholesky().Solve(load_r);

2 Vector<double> def = Vector<double>.Build.Dense(bdc_value.Count);

3 for (int i = 0, j = 0; i < bdc_value.Count; i++)

4 if (bdc_value[i] == 1)

5 def[i] = def_red[j];

6 j++;

Listing 4.10: Solve and restore deformation vector, 3D Truss
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4.1 Calculation Component

4.1.3 Post-Processing

Reaction Forces

Reaction forces are found by postmultiplying the complete global stiffness matrix with the

complete deformation vector as per Eq. 2.3.1. The 3D Truss software solves this by matrix

multiplication methods provided by Math.NET, while Lst. 4.11 shows how the reaction

forces are found in 2D Truss.

1 for (int i = 0; i < K_tot.GetLength(1); i++)

2 if (bdc_value[i] == 0)

3 double R_temp = 0;

4 for (int j = 0; j < K_tot.GetLength(0); j++)

5 R_temp += K_tot[i, j] * def[j];

6 R.Add(Math.Round(R_temp, 2));

7 else {R.Add(0);}

Listing 4.11: Method CalculateReactionforces in 2D Truss

Note that the 2D Truss method only finds the reaction forces, while the 3D Truss method

will result in a reaction list which also contains the applied loads.

Internal Strains and Stresses

Strain is the difference in length divided by original length, as defined in Eq. 2.5.48. By

looping over each bar in the truss structure and calculating deformed and undeformed

length, the strains are easily obtained. Stresses are then found by Hooke’s Law, calculated

in accordance with Eq. 2.5.47. This is a very simple and basic prosess and will therefore

not be shown.

Outputs

After calculating the reaction forces, nodal deformations, in addition to internal strains

and stresses, the outputs are produced in forms of lists of numbers. The list of nodal

deformations can be given to the Deformed Geometry component if the user wishes to see

the deformed structure.
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4.2 Support Components

The support components, which are illustrated in blue on Fig. 4.1, are used to administer

the boundary conditions and loads in the correct format for the main calculation component.

The third support component, Deformed Geometry, draws the deformed geometry based

on the output from the Truss Calculation component. The relation between the support

component and the main component as it appears in Grasshopper is shown on Fig. 4.5.

Figure 4.5: Relation between support components and main component.

4.2.1 The BDC Truss Component

The boundary conditions (BDCs) are created in the BDC Truss component. The inputs

needed to define the boundary conditions are:

Points - Nodal coordinates (x, y, z) of each node containing a boundary condition. These

are given in the form of lists of Point3d objects (which is a Rhinocommons data type).

Since it was known that 2D would be extended to 3D eventually, the coordinate logic was

equipped to handle 3D from the start. In some cases it can also be useful to override all

other boundary conditions and clamp the entire structure in one direction (especially for 2D

Truss). In order to accommodate this, the component needs the coordinates of all the nodes

in the structure. By inputting the geometry, all points in the structure can retrieved and set

to clamped at request.

Boundary Conditions - Since a truss structure has three translational dofs per node,

each inputted node must (theoretically) be accompanied by three dof specifications. The

boundary conditions for the restrained points are given as a list of 1s (free) and 0s (clamped),

where every three numbers correspond to one node (e.g. 0,1,0). The component allows the
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user to set fewer numbers than points ∗ 3, with the stipulation that all remaining points will

be set according to the last three numbers in the list. This also means that three numbers

can be given and they will be applied to all specified BDC points.

The resulting output is given as a list of text strings with the coordinates followed by

the conditions. The conditions will be formatted as ”fx,fy,fz”. The complete output string

format looks like ”x,y,z:fx,fy,fz”. The reason for this format was explained in Ch. 4.1.1.

4.2.2 The SetLoads Component

Point loads are generated through the SetLoads component. As input, the component

requires:

Points - The points, also as Point3d objects, to which load shall be applied.

Load - The load magnitude(s) in Newtons, this can be given as one load which is to be

applied to all points, or a list of loads to apply to each corresponding point in the Points

input. If the point list happen to be longer than the load list, the last load entry will be

applied to the remaining points.

The angle(s) are not a necessary input as they are preset to give the loads in negative z

direction, and are formulated in degrees. While the 3D Truss works with angles both in

XY-plane (]xy) and from the XY-plane to the load vector (]xz), the 2D Truss has been

restricted to only the XZ-plane (which is equivalent to ]xz when ]xy = 0). The force is

directed towards the node, as can be observed on Fig. 4.6. By default, ]xz is set to 90

degrees and ]xy to 0 degrees.

Figure 4.6: Angles for load vector v
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The calculated load vectors are then decomposed to into the direction vectors vx, vy and vz
as in Eq. 4.2.1-4.2.3.

vx = cos (]xz ·
π

180
) cos (]xy ·

π

180
) (Eq. 4.2.1)

vy = cos (]xz ·
π

180
) sin (]xy ·

π

180
) (Eq. 4.2.2)

vz = sin (]xz ·
π

180
) (Eq. 4.2.3)

Similarly to the boundary conditions, the load is outputted as a list of text strings. These

are formatted as ”x,y,z:vx,vy,vz”, where x,y,z represents the point coordinates and vx,vy,vz

represents the decomposed vectors along each axis.

4.2.3 The Deformed Truss Component

Rather than placing more strain on the main calculation component than necessary, it would

be useful to have a separate component for generation of deformed geometry. Visualization

of the displacements can be very useful for spotting errors and understanding the struc-

tural response to given loading and boundary conditions. This new support component,

Deformed Truss, takes in the deformations calculated from the main component, as well

as original geometry and a scale factor. A deformation scale of 0 generates a geometry

similar to the initial geometry, a scale of 1 shows the actual deformed geometry, and a scale

of 1000 shows a deformed geometry with a thousand times larger displacements than the

actual values. The components basic logic can be seen in Lst. 4.12

1 int index = 0;

2 //loops through all points and scales x-, y- and z-dir

3 foreach (Point3d point in points)

4 //fetch global x,y,z placement of point

5 double x = point.X;

6 double y = point.Y;

7 double z = point.Z;

8 //scales x and z according to scale input

9 defPoints.Add(new Point3d(x + scale * def[index], y + scale *

def[index + 1], z + scale * def[index + 2]));

10 index += 3;

Listing 4.12: Excerpt of 3D Truss deformed geometry component
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4.3 Analysis

In this chapter, the accuracy of 2D and 3D truss software are compared with Robot Structural

Analysis, as well as analytical solutions where easily obtainable. Both 2D and 3D has been

tested for a small range of structures to ensure that the deformation patterns looks as one

would expect.

The first structure is a single bar of 2.0 m hinged in the left node and with a movable

hinge on the right, see Fig. 4.7. An axial force of 1000 kN is applied on the right node.

A = 10000 [mm2] E = 210000 [MPa]

Figure 4.7: 2D Truss in Robot

The results can be viewed in Tab. 4.2, the 2D Truss and 3D Truss software bundles are

referred to simply as 2D Truss and 3D Truss, while the solution from Robot Structural

Analysis is referred to as Robot.

Table 4.2: Axial compression of single bar

Solution Displacement [mm] Strain Stress [MPa]

Analytical -0.952381 -0.000476 -100

Robot -0.952381 N/A -100

2D Truss -0.952381 -0.000476 -100

3D Truss -0.952381 -0.000476 -100

As the 2D and 3D Truss software seems to work similarly as they gave the expected

same result, and all solutions were exactly alike. This gives a good indication that the

implemented stiffness relations and basic coding is working as intended.
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Another interesting check would be a more complex structure of three dimensions, which

mean the 2D Truss will not be included. The analytical solution would also be quite hard to

attain, and has not been prioritized as Robot is considered accurate enough for this test.

The structure in question can be seen in Fig. 4.8, where each of the five loads is set

to 10 kN, which gives a total og 50 kN distributed among the five top middle nodes. The

two boundary conditions on the left side in Fig. 4.8 has been set to pinned, while the two

supports on the right side is set to roller-supports, allowing for deformation in x direction.

A = 1836 [mm2] [m] E = 210000 [MPa]

Figure 4.8: 3D Truss in Grasshopper/Rhino

The deformed structure can be seen in Fig. 4.9 as the white structure. It has been colored

white so it would be easier to see the deformation, the scale for deformation is set to 300 to

give a clear view of the deformation.
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Figure 4.9: Deformed 3D Truss in Grasshopper/Rhino

The deformed structure looks very similar in Robot, which indicates that the structural

system responded in a similar way. The deformation values from Robot and Grasshopper

can be viewed in Tab. 4.3 below.

Table 4.3: Highest deformation and stress for truss in Fig. 4.9

Solution Displacement [mm] Stress [MPa]

Robot -1.7620 -21.7865

3D Truss -1.762047 -21.7861

As can be seen, Robot gave very similar results to our truss software. Which could qualify

the truss software as ”pretty exact” as it shows. For confirmation of the good results the

same test were repeated with Area A = 374 mm2, which gave the results in Tab. 4.4.

Table 4.4: Highest deformation and stress for truss with A = 374 mm2

Solution Displacement [mm] Stress [MPa]

Robot -8.6501 -106.9519

3D Truss -8.650051 -106.9421

Which again shows some very close values.
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4.4 Discussion

The organization of the components was found to be quite easy to use when separated

into several parts, the support and loading preparations gave a good way to check the

loads and boundary condition before they were sent to the main component. The separated

components also gave and opportunity to use several components to assemble different

loading and boundary conditions and merge them, or swiftly switch between them. This

gave a practical and fast way to check different supporting and loading conditions.

The implementation of the 2D and 3D Truss softwares gave a quite good introduction

to both simple FEM principles and how to implement them as software. Several methods

was found to improve the coding, and will hopefully give an advantage when moving to the

beam structures. The basic principles of finite element analysis for bars seemed simpler to

understand before attempting to implement them in an arbitrary software for all kinds of

structures. The process was not particularly difficult, but it may take some time to perfect

all the details to attain a realistic solution.

Some insight into the finite element analysis was attained even though the element

is the simplest possible. The creation of our own solver gave quite a good insight into

the mathematics behind the ”core” of the calculation. As was conjectured the ”core

and it’s logic” was surprisingly not the hardest part of the software but actually rather

interesting, especially as it proves to be the most time consuming process, which will

be more thoroughly examined in Ch. 5.3. The relatively more difficult part was the total

organization of all the data inside the main calculation component. This seems like an

important piece experience as the number of dofs and elements may be substantially higher

in the beam and shell softwares.

One unforeseen issue was the organization of the elements and dofs as the number of

element became higher. The total amounts of dofs made it severely difficult to get an good

overview of the results, and the Deformed Truss had to be made to be able to assert if the

solution was realistic or not. It could also be a valuable tool to have the component show

color-maps for stresses in the bars, so that critical point easily can be identified visually.

This is however an easy task to do for an experienced Grasshopper user.

It also became clear that one small error could make a huge impact on the solution,

and the software therefore should be tested extensively before being classified as finished.

The process of finding and fixing bugs in the code also proved to be a larger part of this

project than anticipated.
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The results in the analysis between Robot and our 3D Truss software was quite interesting.

They may show just how simple it is to make an easy and ”less advanced” calculation

software. As explained in Ch. 2, our software is based on some assumptions which

simplifies much of the calculations, and yet were the results very similar.

An interesting expansion to the software could be to expand the possibilities for

different materials and cross-sections for different bars in the same structure.

4.5 Truss Summary

The created 3D Truss software establishes the foundation for further development as

the organization and structure was found to be advantageous for checking results and

locating smaller and larger errors. The Truss softwares are very simple in theory and not

extensively hard to implement with some knowledge about finite element analysis, the field

of mechanics and programming.

There were made some mistakes that may prove useful for later advancement to more

complex finite elements as beams. One of these mistakes were the method for reducing the

global stiffness matrix used in 2D Truss versus the one used in 3D Truss. The ”upgraded

version” proves to be slower as it perform more unnecessary operations, and has given

some valuable experience for further work.

The 2D and 3D software packages worked very well compared to Robot, and gave

relatively very close results. The software can there be said to work properly and as

intended, which also means that they are quite simplistic.

The introduction of Math.NET Numerics greatly improved the solving process as

the Math.NET package are both more adaptive to problems and more general in solv-

ing methods. Another aspect of the Math.NET package, namely running time, will be

more thoroughly explored in Ch. 5.3, as the structures becomes more complex and time

consuming to calculate.

81



Chapter 4. Truss Calculation Software

82



Chapter 5
3D Beam Calculation Software

Similarly to the Truss software described in Ch. 4, the 3D Beam software is comprised of a

main component for calculation and three pre-processing support components as shown on

Fig. 5.1. In addition, there is of course a post-processing component for visualization of the

deformed geometry. The full source code for 3D Beam can be found in Appendix C.

Figure 5.1: Organization of 3D Beam Components.

The main differences between Truss and Beam software lies in the generation of the element

stiffness matrices and the utilization of shape functions. Multiple toggles have been added

to the graphics of the components so that they are easier to use. This is more thoroughly

explained in each individual component’s section.
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5.1 Calculation Component

The main calculation component BeamCalculation is shown in Fig. 5.2. Input geometry

must be given as lines, similarly to the Truss software. The boundary conditions and loads

are also given in the same format as for Truss. In addition, this component takes in moment

loads which are formatted in the same manner as point loads, except with moment force

instead of decomposed force vectors.

Figure 5.2: Main calculation component for 3D Beam

Material properties are given as a string of numbers, formatted as ”E, A, Iy, Iz, v, alpha”. It

must include the second moment of area about both beam axes (Iz and Iy), in addition to

Poisson’s ratio (v) and rotation about the local x-axis, alpha. The input named ”Elements”

refers the number of sub-elements the beam elements should be divided in, for calculation

of nodes within elements and better preview of the bending of the beam elements.

The outputs for deformations, reaction forces, applied loads, stresses and strains are

lists of doubles, following the ordering of nodes as they are given as input (Lines input).

The outputs called Matrix Deformations and New Base Points are to be handed over to the

Deformed Geometry component, and is further explained in Ch. 5.1.3 and Ch. 5.2.3.

A simplified workflow for the algorithm inside the BeamCalculation component is

shown on Fig. 5.3. The component is roughly divided into pre-processing, processing

and post-processing to simplify the organization of the internal programming. Note that

calculations performed inside elements could be interpreted as both part of processing and

post-processing.
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Figure 5.3: Simplified workflow of the main component in Beam

85



Chapter 5. 3D Beam Calculation Software

5.1.1 Pre-Processing

The creation of a point list, BDC list and load list is done the same way as for 3D truss, see

Ch. 4.1.1.

Global Stiffness Matrix

The element stiffness matrices ke must be constructed before the stiffnesses can be as-

sembled into KG. ke is built according to the procedure shown in Ch. 2.5.3. The main

difference between the Truss and Beam software is obviously the expansion to rotational

stiffness. The complete 12-dof ke-matrix that is used for the Beam component is shown in

Eq. 2.5.67.

The element stiffness matrix is then transformed from local to global coordinates

by Eq. 2.7.6. Since the transformation matrix tf utilizes directional cosines, only the

coordinates for start and end node is needed. The procedure outlined in Ch. 2.7 is used to

construct tf. The resulting 3x3 matrix is stacked diagonally like in Eq. 2.7.14 to form T as

needed.

After ke has been transformed to Ke, the last step is to place the stiffnesses at their

correct entries in the global stiffness matrix KG. This algorithm is similar to the one for

3D Truss.

Reduce

Drastic code improvements are made on the method to create the reduced global stiffness

matrix in comparison to Lst. 4.5 for 3D Truss. The 3D Truss method generated a completely

new matrix for every row and column removed, resulting in needlessly long runtime. The

new algorithm in Lst. 5.1 is more efficient and preallocates KG
r and loadr, then fills them

with the correct values by use of double for-loops while checking for unclamped bound-

ary conditions. Initially, the algorithm looped through the whole matrix while creating

KG
r . This was improved to exploit KG’s symmetric property after analysis done for shell

showed that the algorithm was surprisingly slow. More on the new algorithm can be found

in Ch. 6.1.1.
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1 int oldRC = load.Count;

2 int newRC = Convert.ToInt16(bdc_value.Sum());

3 KGr = Matrix<double>.Build.Dense(newRC, newRC);

4 load_r = Vector<double>.Build.Dense(newRC, 0);

5 for (int i = 0, ii = 0; i < oldRC; i++)

6 if (bdc_value[i] == 1) //is bdc_value in row i free?

7 for (int j = 0, jj = 0; j < oldRC; j++)

8 if (bdc_value[j] == 1) //is bdc_value in col j free?

9 //if yes, then add to new K

10 KGr[i - ii, j - jj] = K[i, j];

11 KGr[j - jj, i - ii] = K[i, j];

12 else //if not, remember to skip 1 column when adding next time

13 jj++;

14 load_r[i - ii] = load[i]; //add load to reduced list

15 else //if not, remember to skip 1 row when adding next time

16 ii++;

17 return KGr;

Listing 5.1: ReduceStiffnessMatrix method for 3D Beam
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5.1.2 Processing

Displacements

The nodal displacements are found by Cholesky Decomposition. Same as for 3D Truss,

this is accomplished by use of a Math.NET function. More on this in Ch. 2.9 and Lst. 4.10.

1 Vector<double> def_red = KGr.Cholesky().Solve(load_red);

Displacements Within Element

The approximate displacements within each element can be found by Eq. 2.5.1. The proce-

dure requires each element’s displacement vector ∆e, as well as its length L, transformation

matrix tf, and requested number of sub-elements n. The displacement fields are similar to

N and dN from Eq. 2.5.42-2.5.43.

The code variable for the element displacement vector ∆e is u. After retrieving u

from the global displacement vector, it is transformed to local coordinates by Eq. 2.5.2.

The displacement fields are constructed in a method called DisplacementF ield NB.

There, the shape functions from Eq. 2.5.29-2.5.34 and Eq. 2.5.35-2.5.40 are calculated for

the given x and L, and subsequently used to construct the fields. The resulting N and dN are

postmultiplied by the displacement vector u to get the nodal displacements, see Eq. 2.5.1.

These nodal displacements are then transformed to global coordinates, see Eq. 2.5.3.

1 foreach element in elements

2 L = DistanceBetween(endpoint1, endpoint2)

3 Get nodal displacements of endpoints, ug

4 ul = TT ∗ ug
5 x = 0

6

7 foreach node in subelements

8 N and dN = DisplacementField_NB(x, L)

9 [ux, uy , uz , θx]nl = N ∗ ul
10 [−, θz , θy ,−]nl = dN ∗ ul
11

12 [ux, uy , uz , θx, θy , θz ]ng = TT ∗ [ux, uy , uz , θx, θy , θz ]nl
13 x = x + L / n

Listing 5.2: Pseudocode for interpolated displacements
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5.1.3 Post-Processing

Reaction Forces

Same as for 3D truss, the general forces are found by postmultiplying KG with the

deformations. Since the applied loads are stored in a separate list, a list containing only the

reaction forces can be found by subtracting the applied loads from the general forces list.

Strains and Stresses

The shape functions can also be used to find the strains within each element, as explained

in Ch. 2.5.2. By similar procedure as was performed in Ch. 5.1.2, the displacement fields

dN and ddN are calculated. By reusing the nodal displacement vector u for each element,

the strains per node is found. Stresses are calculated by the relation σ = Eε.

Format Output

Since Grasshopper cannot operate on Math.NET matrices, deformations, strains and stresses

are converted to double[] lists. To make it easier for the Deformed Geometry component to

calculate deformed geometry, the deformations are also given as output in their original

Math.NET matrix form. The Deformed Geomtry component utilizes Math.NET, therefore

it has no problems interpreting the matrix. Lastly, nodal coordinates of the sub-elements

are found by interpolating the original geometry and sent along as output for the Deformed

Geometry component to apply the displacements to.

1 foreach Line line in lines

2 double[] t = LinSpace(0, 1, n + 1);

3 for (int i = 0; i < t.Length; i++)

4 var tPm = new Point3d();

5 tPm.Interpolate(line.From, line.To, t[i]);

6 tPm = new Point3d(Math.Round(tPm.X, 4), Math.Round(tPm.Y, 4),

Math.Round(tPm.Z, 4));

7 tempP.Add(tPm);

Listing 5.3: Pseudocode for interpolation of sub-element base points
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5.2 Support Components

5.2.1 Boundary Conditions

The boundary condition component BDCComponent has seen some major improvements

in terms of simplicity and ease of use. The previous boundary condition input has been

replaced with buttons to lock different directions or rotation. The ”X”, ”Y” and ”Z”

button will lock the respective direction they indicate and the same principle extends to the

rotational button below. The component is shown in Fig. 5.4.

Figure 5.4: The boundary condition component for beams

As before it also takes in the point for which to apply the boundary conditions, and gives

out the boundary conditions as a list of strings, but this time with the rotations added in the

same manner as translational dofs.

5.2.2 Loads and Moments

The SetLoads component has seen little change from Truss and is described in Ch. 4.2.2,

however the SetMoments component has been added. The two component can be seen in

Fig. 5.5 below.
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5.2 Support Components

(a) SetLoads component. (b) SetMoments component.

Figure 5.5: Support components for point load and moment load.

The SetMoments component requires the points to which the moment shall apply, and

the magnitude of the moment load, given in Newtonmeters. The component allows for

moments to be set about the X, Y and Z-axis of each node. Boolean toggles like on Fig. 5.5b

decide whether the moments should be added. Moment magnitude can vary for each point,

and if the input list of moment magnitudes is shorter than the input list for points, the last

entry in the moment magnitude list will be used for all remaining points.

5.2.3 Deformed Geometry

The component DeformedGeometry receives the calculated deformations from the main

component and redraws the geometry accordingly. The deformation can be scaled for

illustrative purposes. The new nodal coordinates are found by using the base nodes and

adding the calculated displacements (of ux, uy and uz). At the end of each global for-loop

(one for each element), the list of sub element nodes are used to create a polycurve, as can

be seen in Lst. 5.4. The polycurve does not go ”through” all nodes, but testing shows that

the shape is very close to correct when using 4 or more elements.

Figure 5.6: Deformed Geometry component for 3D Beam.
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1 def = scale * def; //Calculate new nodal points

2 for (int i = 0; i < def.RowCount; i++)

3 List<Point3d> tempNew = new List<Point3d>();

4 for (int j = 0; j < n; j++)

5 var tP = oldXYZ[i * n + j]; //original xyz

6

7 //add deformations

8 tP.X = tP.X + def[i, j * 6];

9 tP.Y = tP.Y + def[i, j * 6 + 1];

10 tP.Z = tP.Z + def[i, j * 6 + 2];

11

12 tempNew.Add(tP); //replace previous xyz with displaced xyz

13 //Create Curve based on new nodal points(degree = 3)

14 Curve nc = Curve.CreateInterpolatedCurve(tempNew, 3);

15 defCurve.Add(nc);

Listing 5.4: Generation of deformed geometry in 3D Beam

The component also receives the nodal strains and stresses from the calculation component

in order find values per element. This is only relevant if the user would like axial stress or

strain colored like on Fig. 5.7 or Fig. 5.8. This feature is still experimental and not fully

tested as of yet, but generally shows reasonable results. The element value is found by first

separating every third value in the list of stress/strain so that only pure axial stress/strain

can be found. This new list then averages every two nodal values and skips over one entry

whenever the correct number of sub-elements in one element has been calculated. These

lists are outputted as ”Pure axial stress/strain”. The process is repeated for bending stress/s-

train about y and z axes. Afterwards, maximum stress/strain are calculated by Eq. 2.5.55.

In time, this function might benefit from being moved to the calculation component instead.

1 for (int i = 0, ct = 0; s_avg.Count < el*n; i++)

2 if (ct == n)

3 ct = 0;

4 continue;

5 s_avg.Add((s[i] + s[i + 1]) / 2);

6 ct++;

Listing 5.5: Averaging of strains/stresses in sub-elements
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1 for (int i = 0; i < s_avg_x.Count; i++)

2 if (s_avg_x[i] > 0)

3 ss.Add(s_avg_x[i] + Math.Abs(s_avg_y[i]) + Math.Abs(s_avg_z[i]));

4 else

5 ss.Add(s_avg_x[i] - Math.Abs(s_avg_y[i]) - Math.Abs(s_avg_z[i]));

Listing 5.6: Maximum strains/stresses

Figure 5.7 and 5.8 shows colorized axial stresses for five top nodes vertically loaded. Red

is compression, blue is tension and green is somewhere in the middle.

Figure 5.7: Coloring of pure axial stresses

Figure 5.8: Coloring of maximum axial stresses

93



Chapter 5. 3D Beam Calculation Software

5.3 Analysis

5.3.1 Performance

To ensure the software package is a seamless addition to the parametric environment,

calculations should be completed as quickly as possible. Grasshopper has the function to

map the time-usage of each component in relation to other components. Unsurprisingly, the

calculation component is the largest time drain out of all components. Its completion time

typically varies between 50-99% of the main program, depending on structure complexity.

This is also true for truss and shell software.

The runtime completion analysis on Fig. 5.9 revealed a bottleneck in the component.

The Cholesky algorithm had the highest runtime of all code sections, by far, which was

anticipated since the algorithm entails a fair number of calculations. In second place comes

reduction of the global stiffness matrix and load list. This was more surprising, since

construction of the global stiffness matrix is a considerably more extensive task. The reduce

method shown used in Fig. 5.9 is the new reduction algorithm as shown in Lst. 5.1. It

builds a new matrix of preallocated size and fills it, thus amending the misstep (in terms of

runtime) from Lst. 4.5 in 3D truss.

Notice that the number of sub-elements in the figure is locked at four since this has

typically given a decent representation of element deformation. Complex structures may

need a slightly higher number. The affect from increasing the number of sub-elements are

visualized in Fig. 5.13.
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Figure 5.9: 3D Beam Calculation code section running time for 4 sub-elements

Table 5.1: Section partitioning in Fig. 5.9

Name Description
Fetch Fetch inputs from Grasshopper

Prep. vars Preparation of variables for geometry, boundary conditions and loads

El. & Glob. Construction of global stiffness matrix KG

Reduce Reduction of global stiffness matrix to KG
r

Cholesky Cholesky Decomposition and substitutions

Restore Restoration of deformation list

Reaction Calculation of reaction forces

Shape funcs. Calculation of internal displacements & strains

Output Formatting of output

Math.NET supports both sparse and dense storage format. The main difference between the

two is that sparse matrices only store nonzero entries, while dense matrices store all entries.

Sparse matrices can be beneficial in handling of large matrices with few nonzero entries

(Bell, 2013). However, Math.NET has not optimized their solvers for sparse matrices, and

only the regular Solve() function will consistently manage to solve a system of equations.

Fig. 5.10 shows the completion runtime for dense and sparse matrices, plotted against the
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number of reduced degrees of freedom in the structure. According to their documentation,

Math.NET has not optimized their solver for sparse matrices.

Figure 5.10: Runtime for dense vs sparse matrix.

A comparison was performed on five different solver algorithms provided by Math.NET.

Among else it contains a Solve() method which is based on QR decomposition. Further

documentation of the method could not be found. Next, it also has methods for Cholesky,

QR, Svd and LU decomposition. These have all been tested for a varied number of rdofs,

as shown on Fig. 5.11. It can be observed that Cholesky has a considerably smaller runtime

than the other methods. This is examined further in the logplot on Fig. 5.12 which shows

how the Cholesky algorithm performs in comparison to the others.
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Figure 5.11: Runtime of various solver algorithms.

Figure 5.12: Logplot of cholesky vs other solvers.

The section containing shape functions includes both displacement and strain calculation

of each sub-node in the structure. The displacement fields N, dN and ddN are found and

postmultiplied by the relevant displacement vector u, as explained in Ch. 5.1.2-5.1.3. A test
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performed for different amounts of sub-elements can be seen in Fig. 5.13. The algorithm

seems to have a running time close to O(n) and O(n2).

Figure 5.13: Plot of runtime for shape functions. 441 elements

As explained in Ch. 4.1.2, the 2D truss contained a self-made algorithm for Cholesky

Decomposition and substitution. Lst. 4.6-4.8 was ported over to 3D Beam and compared

against Math.NET’s solution. As visualized on Fig. 5.14, the Math.NET solution is clearly

better optimized, and likely utilizes multi-threading. This decrease in computation time led

to 3D Beam adopting the Math.NET algorithm instead.

Figure 5.14: Comparison of Cholesky algorithms.
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5.3.2 Accuracy
In this chapter, the beam software bundle is compared

against Robot Structural Analysis, as well as an ana-

lytical solution where easily obtainable. All tests have

been performed on beams of type HEB100 which has

the material properties listed to the right. Note that

Robot is based on Timoshenko beam theory while 3D

Beam is based on Euler-Bernoulli. This may lead to

small discrepancies between results.

E 210 000 [MPa]

Area 2 600 [mm2]

Iy 4.50 · 106 [mm4]

Iz 1.67 · 106 [mm4]

G 80800 [MPa]

v 0.3

Structure 1, load case 1

The first structure is a single horizontal beam of 10 meters, see Fig. 5.15. It is loaded

with a vertical force of 10kN on the rightmost node. The left node is fully fixed while the

right node is free. The analytical solution displacement w and rotation θ for such a beam

are derived from the Euler-Bernoulli equation in Eq. 5.3.1 by integrating and applying

boundary conditions.

EI
d4w

dx4
= q(x) (Eq. 5.3.1)

w(x) = −Px
2

6EI
(3L− x) wmax = w(L) = −PL

3

3EI
(Eq. 5.3.2)

θ(x) = − Px

6EI
(3L2 − 3Lx+ x2) θmax = θ(L) = −PL

3

6EI
(Eq. 5.3.3)

Table 5.2: Displacements in right node for vertically loaded fixed beam

Solution Displacements

ux [mm] uy [mm] uz [mm] θx [rad] θy [rad] θz [rad]

Analytical 0 0 -3527.337 0 0.529 0

Robot 0 0 -3531.260 0 0.530 0

Difference 0 0 -3.923 (0.1%) 0 0.01 (1.9%) 0

Beam 3D 0 0 -3527.337 0 0.529 0

Difference 0 0 0 0 0 0
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The shape functions are used to calculate displacements within the element. As can be

observed on Tab. 5.3, the displacements found by the displacement fields are identical to the

ones found by the analytical formulas, Eq. 5.3.2-5.3.3. Tab. 5.3 checks the displacements at

1/4, 2/4 and 3/4 along element, from left to right.

Table 5.3: Displacements within element for vertically loaded fixed beam

Solution Displacements [mm] [rad]

x = 2500mm x = 5000mm x = 7500mm

uz θy uz θy uz θy

Analytical -303.13 -0.5621 -1102.29 -0.6614 -2232.1429 -0.2976

Beam 3D -303.13 -0.5621 -1102.29 -0.6614 -2232.1429 -0.2976

Table 5.4: Internal strain and stress at rightmost node

Solution Strain Stress [MPa]

Analytical -0.005291 -1111.1̄

Robot N/A -1112.35

Difference N/A 1.24 (0.1%)

Beam 3D -0.005291 -1111.1̄

Difference 0 0

An important feature of the software is simulation of deformations. To this end, the element

from load case 1 is shown with a deformation scale of 1 on Fig. 5.15. The figures show how

the element gradually becomes more exact by incrementing the number of sub-divisions.

This affects the displacement within each element, as explained in Ch. 5.1.2. Fig. 5.15f

shows how Robot Structural Analysis displays the deformation.
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(a) 1 element, 1 sub-elements, 3D Beam (b) 1 element, 2 sub-elements, 3D Beam

(c) 1 element, 3 sub-elements, 3D Beam (d) 1 element, 4 sub-elements, 3D Beam

(e) 1 element, 5 sub-elements, 3D Beam (f) Robot Structural Analysis

Figure 5.15: Element deformation for increasing number of sub-elements

Structure 1, load case 2

The structure and boundary conditions are similar to case 1. Instead of a point load, the

structure is subjected to a uniformly distributed vertical load of 1 kN/m. Beam 3D can

simulate uniformly distributed load cases by setting multiple point loads along the element,

thereby splitting the element into multiple elements. The end node is loaded half as much

as the other nodes since it only represents half the area. The situation is shown in Fig. 5.16

from Robot.

Figure 5.16: Uniformly distributed load
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The relevant analytical equation is

w(x) = − qx2

24EI
(x2 + 6L2 − 4Lx) wmax = w(L) = −PL

4

8EI
(Eq. 5.3.4)

As can be seen on Fig. 5.17, the beam software requires a vast amount of elements in order

to properly converge towards the analytical solution.

Figure 5.17: Deformation comparison of uniformly distributed load

Structure 2

The second structure is a span of 4 meters between two fixed endpoints. It is loaded with

a vertical force of 10kN on the midpoint of the span (at 2 meters from left node). See

Fig. 5.18.

Figure 5.18: Span with vertical loading at midpoint
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Table 5.5: Displacement, stress and strain in middle of span for vertical load

Solution uz [mm] Strain Stress [MPa]

Analytical -3,52734 -0.000265 -55.5̄

Robot -3.53126 N/A -55.617

Difference -0.00392 (0.1%) N/A -0.062 (0.1%)

Beam 3D -3.52734 -0.000265 -55.5̄

Difference 0 0 0

Structure 3

The third structure is triangular structure spanning 4 meters between four fixed endpoints.

All horizontal beams are 1 meter long. Distance from bottom to top of structure is 1 meter.

Structure is loaded with a vertical force of 10kN on all top nodes. See Fig. 5.19.

Figure 5.19: Complex beam structure loaded at top nodes

Figure 5.20: Deformed 2D view. Sub-elements set to 4, deformation scale set to 10

103



Chapter 5. 3D Beam Calculation Software

Table 5.6: Maximum displacement and stress for complex structure

Solution umax,z [mm] Stressmax,x [MPa]

Robot -0.1368 -7.12

Beam 3D -0.1292 -7.04

These values remain the same even if the structure is divided into more elements. They

were also found at the same nodes (top middle node for displacement and top node 1/4’s

and 3/4’s for stress).
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5.4 Discussion

Time usage of the calculation component is unsurprisingly bottlenecked by the Cholesky

algorithm. As can be observed on Fig. 5.11, Cholesky is significantly faster than QR, Svd

and LU, and is generally regarded as an able solver for Finite Element Analysis. The bar

plot on Fig. 5.14 shows that Math.NET’s solution is superior to our self-made algorithm,

and plays a major role as to why the software bundles utilizes Math.NET.

While the algorithms plotted in Fig. 5.11 are based on dense matrices, there would be

advantages to employing sparse matrices instead. The global stiffness matrix will be very

large for sizable structures, leading to a potential shortage of memory when solving the

system of equations. Since sparse matrices only stores non-zero values, a lot of memory

can be freed. Ch. 7 also briefly discuss solver algorithms.

As evident from the tests in Ch. 5.3.1, the 3D Beam software results are (usually)

identical to the analytical solutions based on Euler-Bernoulli beam theory. This is not

surprising, since the shape functions derived in Ch. 2.5.1 are the exact solutions of the

Euler-Bernoulli beam equation. These shape functions are then used to derive the element

stiffness matrix, as explained in Ch. 2.5.3.

It can be observed on Fig. 5.13 that the visualization in 3D Beam is very similar to

Robot’s when using 4 or more sub-elements. Based on this, the number of sub-elements

can safely be set to 4 as default, with option to change as desired.

Although accurate for point loads and moment loads, Ch. 5.3.2 shows that the software

is ill-equipped for handling of uniformly distributed loads. One way of solving this is to

implement superposition of virtual moments (Barber, 2011). By this method, the system

of equations would be solved for displacements as usual, then a correcting term would

be added to those nodes subjected to uniformly distributed loading. This second term is

the deflection resulting from adding virtual moments around these nodes. The moment

magnitude is derived from simulating a fixed-end situation of the element. For a uniformly

distributed load q0, the load is transformed into Fz and My, where Fz is applied to both

nodes, while My is positive for left node and negative for right node.

Fz = −q0L

2
My =

q0L
2

12
(Eq. 5.4.1)
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(a) Actual situation (b) Interpreted situation

Figure 5.21: Uniform loading by superposition

For the more complex structure shown in Ch. 5.3.2, the maximum displacement and stress

were slightly divergent. Although the tests that include an analytical solution are identical

for point loads, it is hard to say whether this extends to complex structures. Further analysis

is needed, especially since the test results in Tab. 5.6 show that 3D Beam potentially is on

the ”unsafe side”.

As can be seen on Fig. 5.13, the number of sub-elements affects the running speed at a

low exponential rate which is within expectations. The test results show some divergence

from a trend line, but this is likely a result of a small sample size (ca. 5 per number of

elements) and the short time usage (max 70 ms). Small optimization could be made at the

cost of code readability. but as Fig. 5.3.1 shows, the shape function section is quick and

scales better than the Cholesky algorithm.

Currently, the software is built on Euler-Bernoulli rather than Timoshenko beam theory.

Accounting for shear deformations might be more accurate, but would come at the expense

of running time. Since target user of this software is architects rather than structures

engineers, Euler-Bernoulli has been deemed to give sufficient accuracy. A consideration for

further work would be adding dynamics, in which case implementing Timoshenko would

have to be reassessed.

The strains and stresses are one-dimensional for much the same reasons as for applying

Euler-Bernoulli. Since the target users are architects rather than structural engineers, the

solution should be approximately correct and quick rather than exactly correct and slow.
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5.5 Beam Summary

The beam software bundle is similar to truss in many aspects. It consists of five components,

a main component for calculation and four support components for point loads, moments,

boundary conditions and generating deformed geometry. However, the main component

has a more sophisticated transformation matrix, more dofs per node, and applies shape

functions for calculations within the element. Furthermore, the user friendliness of the

components has been vastly improved by adding toggles to the graphical layout of the

Boundary Conditions component and the SetMoments component.

Displacements, strains and stresses are very accurate for point loads and moments,

but would benefit from a proper implementation for uniformed loading. The deformed

geometry component incorporates preparation coloring of axial strains and stresses, but is

still dependent on a small cluster of Grasshopper components in order to give color to the

geometry. Furthermore, internal forces are not calculated and would be very relevant for

future work.

For structures of less than 1000 elements, the calculation component will not take

longer than approximately 1.2 seconds. The main bottleneck is the Cholesky algorithm

for solving of displacements, and cannot be easily optimized without extensive refactoring.

This would be a goal for further work.

The component calculates one-dimensional stresses and strains, and is based on the

Euler-Bernoulli beam theory. The software can only analyze line elements, meaning that

curved beams are not supported. Having 6 dofs per node has been determined as necessary

so as to account for general load applications, even though this leads to slightly slower

calculations.
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Shell Calculation Software

The shell calculation software consists of four components, where the three support com-

ponents are the Boundary Conditions (Shell BDC), Point Loads (PointLoads Shell) and

Deformed Shell (DeformedShell). These provides the Shell Calculation (ShellCalculation)

component with the necessary inputs and presents a deformed preview of the deformed

structure. The full source code for Shell can be found in Appendix D. Their relation can be

simplified as

Figure 6.1: Overall organization for the shell calculation software

The shell software employs the triangular CST-Morley element as described in Ch. 2.6.4 -

2.6.6. This element has three translational deformations in each node, and rotation about

each of the three edges, which results in 12 dofs per element.
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6.1 Calculation Component

The main part of the shell software is the ShellCalculation component shown in Fig. 6.2.

Figure 6.2: The main component for shell calculation

The inputs to this component are:

Mesh - The meshed structure must be a triangular mesh for the calculation to compute

correctly, which means the elements needs to be triangles. This is generated in Grasshopper.

Boundary conditions - These are given by the Shell BDC component, which will be

explored in Ch. 6.2.1.

Material Properties - The material properties themselves and their usage are more thor-

oughly covered in Ch. 2. They are given as a string of numbers in the following order:

1. Young’s Modulus, also called the Elastic Modulus, denoted E.

2. Poisson’s ratio ν.

3. The shell thickness t.

4. Shear modulus, or modulus of rigidity. If this is not given in a string, the program

will automatically set it as E
2(1+ν) .

Note that all material properties are assumed constant in this software. In the case

where nothing is given as input to Material Properties, the string is preset assuming steel

(E=200000 MPa and ν=0.3) with 10mm thickness. The preset string is of the format

”200000,0.3,10”.

Point Loads - Point loads are given by the support component Point Loads. This component

will be explained in Ch. 6.2.2.
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The outputs from ShellCalculation are:

Deformations - The global deformations for all dofs is formatted as a list with x, y and z

translation for each node, followed by all the rotations. This means that all translations are

ordered as they are found from the list of vertices in the given mesh. After all translations

are listed, the rotational deformations are listed in the order they are found from the list of

faces. If one face has three vertices A, B and C, the edges are ordered as edge AB, followed

by edge BC, followed by edge CA. None of the dofs (translational or rotational) occurs

more than once in the list. Also, the constrained dofs are included and will naturally have a

value of zero.

Reactions - The reaction forces are calculated from the global deformations, and therefore

follow the same ordering as the deformations. Reactions forces are given as point forces

in respectively x, y and z direction for all nodes, followed by all moment forces in the

edges. This means that the list of reaction forces will be the same length as the deformation

list. Some of the more important forces in this list will be the ones that corresponds to

the zeroes in the deformation output, as these are the forces in the supports. Note that the

list of reaction forces also includes the applied loads (the action forces). In this way one

can easily retrieve the needed forces as the reaction forces corresponds to the zeroes in the

deformation lists, and the applied forces generally corresponds to deformations larger than

zero.

Element Stresses - The stresses are given per element and in local axes. The reason for

this is explained in Ch. 6.1.1. Stresses are arranged according to faces since each face

represents an element, and therefore in the same order as the face-list from the given mesh.

Each face has a total of six stresses, ordered as follows[
σmx σmy τmxy σbx σby τ bxy

]
The letter m denotes membrane and b bending.

Element Strains - The strains are given in the same order as the stresses and also in local

axes. Since the stresses and strains are a linear combination of another, as seen from

Eq. 2.6.20 and 2.6.45, a relation can easily be spotted for the two lists. The strains are

ordered as [
εmx εmy γmxy εbx εby γbxy

]
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The tasks handled in the main calculation component can be separated into three groups,

namely pre-processing, processing and post-processing. The pre-processing will include the

preparations done before and outside the main calculation component, e.g. the preparation

of boundary condition and loads. In the same manner, most of the preparation of the results

after and outside the main component is part of the post-processing.

The calculation component can be considered to work in nine steps. Four of these

steps are parts of the pre-processing, one is the processing, and the remaining four belongs

to the post-processing. This is visualized in Fig. 6.3. It can also be observed that post- and

pre-processing are not necessarily separated in terms of dependencies.

6.1.1 Pre-Processing

Fetch Input

The mesh data structure in grasshopper gives easy access to faces and vertices (Ramsden,

2014), however it does not store the edges of the faces. As the CST-Morley element shown

in Fig. 2.14 has rotational dofs around each edge, the edges needs to be retrieved. The way

this is done is shown in the pseudo code in Lst. 6.1.

1 // Number of edges from Euler’s formula

2 No. of Edges = No. of nodes + No. of faces - 1

3 edges = create list with No. of edges entries

4

5 foreach face in faces

6 Create all possible lines //(eg. AB and BA)

7 if (the edgelist does not already contain the edge)

8 add edge to edges list

9

10 repeat for all edges

Listing 6.1: Pseudocode for extracting the edges of each element

To make sure there are no duplicate nodes a very similar procedure is utilized to create a

list of unique nodes.
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Figure 6.3: Simplified workflow of the main component
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Interpret Loads and Boundary Conditions

The next step is to interpret the boundary conditions and applied point loads, this is done by

the methods CreateLoadList and CreateBDCList. The creation of the load list is relatively

straight forward. It is simply a matter of decomposing the string given by the PointLoad

component, described in Ch. 6.2.2, converting them into numbers and place them in a load

list according to the dofs ordering. The dofs order is given by the unique node list followed

by the list of edges.

The boundary conditions is given as a list of strings, described in Ch. 6.2.1. The given

strings are handled as described in the pseudo code in Lst. 6.2 below. Note that if there are

fixed edges, they are given as edge indices and gathered in one string at the end of the list

input.

1 // Initiating the bdc_value with 1’s, where 1 = free and 0 = clamped

2 bdc_value = list with (No. of uniquenodes * 3 + No. of edges) entries,

filled with 1’s

3

4 foreach BDCstring input

5 if BDCstring does not contain ":" // indicating this is fixed edges

6 store the edge indices

7 else

8 store the clamped directions

9 store the specified point

10

11 // set stored clamped directions’ corresponding value in bdc_value to 0

12 foreach stored point

13 set the bdc_value to 0 for each of the clamped directions

corresponding to point placement in uniquenodes

14

15 // set the stored edge indices’ corresponding values in bdc_value to 0

16 foreach stored edge

17 set the corresponding rotational dof in bdc_value to 0

18

19 // bdc_value will have a 0 for every clamped dof, and 1’s otherwise

Listing 6.2: Pseudocode for creating the boundary condition list
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6.1 Calculation Component

Create Element Stiffness Matrices and Global Stiffness Matrix

With the load and boundary condition lists established, the global stiffness matrix is next.

To create the global stiffness matrix, each element stiffness matrix has to be derived. The

CST-Morley element can be assembled as shown in Eq. 2.6.105, for which the membrane

(CST) and the bending (Morley) stiffness matrices has to be found. Both matrices are

dependent upon the coordinates of each of the three nodes of the element, as can be seen

from Eq. 2.6.69 and Eq. 2.6.102, where among else the area is needed.

Because of the dependency on coordinates, creating the element stiffness has to be

repeated for every element. The process of establishing this has therefore been delegated

to its own method called ElementStiffnessMatrix. The first issue to overcome is that the

coordinates at hand is related to the global coordinate system. A transformation matrix is

therefore necessary, and it will also be unique for each element. The method of direction

cosines shown in Eq. 2.7.18 can be used. This is because the three points needed to define

the local axes are given by the element as vertices.

The local axes can easily be defined by appointing the first edge AB as the local x

axis, thereafter using the cross product to get the other axes as illustrated in Fig. 6.4, the

procedure will be as follows.

By the cross product and the right

hand rule, the axes becomes

x axis = AB

z axis = AB ×AC

y axis = x axis× z axis

Figure 6.4: Defining local axes

Where A, B and C is defined as

A = (X1, Y1, Z1) B = (X2, Y2, Z2) C = (X3, Y3, Z3)
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The defining of the local axes is a straightforward matter to implement with code. The

implementation used in Matlab can be examined in Appendix D.1, which outputs the full

expressions for the direction cosines in the C# language. These expressions can now easily

be evaluated when provided with the coordinates of the three nodes.

The transformation matrix can now be established from Eq. 2.7.18. The transformation

from global (X, Y, Z) coordinates to local (x, y ,z) is given by

Al =


x1

y1

z1

 =


cos(x,X) cos(x, Y ) cos(x, Z)

cos(y,X) cos(y, Y ) cos(y, Z)

cos(z,X) cos(z, Y ) cos(z, Z)



X1

Y1

Z1

 = tAg (Eq. 6.1.1)

Where t is the transformation matrix corresponding to each element. There are several

ways to use this to transform the coordinates from global to local, but the method chosen

here is through assembling the global coordinate matrix as

veg =


X1 X2 X3

Y1 Y2 Y2

Z1 Z2 Z3

 (Eq. 6.1.2)

And transforming it into local coordinates as

vel =


x1 x2 x3

y1 y2 y3

z1 z2 z3

 = t


X1 X2 X3

Y1 Y2 Y2

Z1 Z2 Z3

 (Eq. 6.1.3)

The local coordinates for the element is now established, and the stiffness matrices can now

be established.

First the task is to establish the Morley triangle stiffness matrix, which can be estab-

lished from Eq. 2.6.102. The process of deriving the Morley triangle as shown in Ch. 2.6.5

is a tedious process to repeat for every element. Instead, the Matlab script in Appendix D.2

was made to create an explicit expression for the BK matrix from Eq. 2.6.100 and export it

as C# code. The equation reads

keb =

∫
Ae

BT
KDBKdA

While the D matrix is constant, the BK matrix requires the local x and y coordinates in
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addition to γm, µm and αm from Eq. 2.6.90 to 2.6.92. These equations read

γm =
cmx32 − smy23

2A

µm =
cmx13 − smy31

2A

αm = γm + µm

The variables cm and sm can be seen from Fig. 2.13 and the notations thereunder. The

variables γm, µm and αm has been calculated unambiguously as illustrated in the pseudo

code in Lst. 6.3, with inspiration from (Bell, 2013).

1 x13 = x1 - x3

2 x32 = x3 - x2

3 y23 = y2 - y3

4 y31 = y3 - y1

5 Area = Area of triangular element

6

7 foreach edge i of triangle (i = 1,2,3)

8 length = length of edge i

9 if (xi+1 > xi) //note that x and y rotates cyclic -> x4 = x1

10 cm = (xi+1 − xi)/ length

11 sm = (yi+1 − yi)/ length

12 else if (xi+1 < xi)

13 cm = (xi − xi+1)/ length

14 sm = (yi − yi+1)/ length

15 else

16 cm = 0

17 sm = 1

18

19 γm = (cm*x32 - sm*y23)/(2*Area)

20 µm = (cm*x13 - sm*y31)/(2*Area)

21 αm = γm + µm

Listing 6.3: Pseudocode for creating the boundary condition list

All the variables required for calculating BK has now been determined and can now be

used to calculate the stiffness matrix as

keb = BT
KDBKAe (Eq. 6.1.4)
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Where with regard to Eq. 2.6.85

D =
Eh3

12(1− ν2)


1 ν 0

ν 1 0

0 0 1−ν
2

 =
h3

12
C (Eq. 6.1.5)

The membrane part of the shell element is represented by the CST triangle. Which also

receive its explicit expression for Bm matrix from the Matlab script in Appendix D.2.

The Bm matrix is only dependent on the elements coordinates and is therefore calculated

immediately after the Bm matrix is defined. It should also be noted that both B matrices

are saved for each element, this to calculate the strain easily in the post-processing.

The stiffness matrices for membrane and bending are now assembled as shown in

Eq. 2.6.105, and rearranged to correspond to the following deformation order

veshell =
[
u1 v1 w1 φ4 u2 v2 w2 φ5 u3 v3 w3 φ6

]
(Eq. 6.1.6)

The element stiffness matrix will thus look like

kelocal =


k11 k12 k13

k21 k22 k23

k31 k32 k33

 (Eq. 6.1.7)

Where kij is the stiffness relation between node/edge i and j.

The last step for the element stiffness matrix is to transform it back to global coordi-

nates, so as it can be assembled into the global stiffness matrix. This is done by diagonally

stacking the transformation matrix from Eq. 6.1.1 to fit the corresponding deformation

order. As the rotations is about the edges, the rotation will be the same as long as the

translational dofs are transformed correctly, and hence does not need to be transformed.

The transformation matrix therefore assembled as

T =



t 0 0 0 0 0

0 1 0 0 0 0

0 0 t 0 0 0

0 0 0 1 0 0

0 0 0 0 t 0

0 0 0 0 0 1


where t and 0 are 3x3 matrices (Eq. 6.1.8)
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Now the global element stiffness matrix can be calculated from Eq. 2.7.6, which reads

Ke
global = TTke

localT

Which is straightforward to implement with code using Math.Net matrix multiplication.

The next major step is to assemble the element stiffness matrices into a global stiffness

matrix. This operation is implemented in a similar fashion as Eq. 4.1.17, except the

placement becomes more complex as the edges also has to be placed correctly. The stiffness

matrices relating the nodal dofs are placed according to the element node indices in the

unique node list. This ensures the correct stiffnesses are added together. In a similar way is

the rotational stiffnesses placed according to edge indices in the edge list, and the stiffnesses

relating nodes to rotation are placed based on both edge and nodal indices. The procedure

is quite messy and may be hard to grasp as there are a lot of placement details that has to be

correct. Nevertheless, the principle is the same as for both beam and truss, and can with

some concentration be properly implemented.

Reduce the Global Stiffness Matrix and Load Vector

The last step in the pre-processing is the reducing of the global stiffness matrix and load list.

The reducing requires the boundary conditions to check if the current row and column shall

be removed. The method used utilizes two for loops, one for each row and one for each

column. The current method was not always the utilized one, but was optimized due to

excessive time usage, this is further examined in the analysis in Ch. 6.3. Both the reduced

global stiffness matrix and the reduced load list is pre-allocated for time optimization. They

are initialized with the sum of the bdc value list, described in Lst. 6.2. This is done as all

the free dofs have the value 1 and the clamped 0, the sum therefore gives the correct size of

the reduced matrix and load list.

The method works by running through all the rows in the outer for loop, where the

rows that correspond to the value 1 in the bdc value list, is taken to the inner for loop. The

rows that reach the inner for loop is looped through once more to check if the column

corresponds to the value 1 in the bdc value list. The rows taken to the inner loop is not

necessarily looped entirely through, this is because the global stiffness matrix is known to

be symmetric. By this reason only the lower triangular part of the matrix is looped through.

If the column in the inner loop corresponds to a bdc value of 1, the current element

in the global stiffness matrix is copied to the reduced global stiffness matrix. the value
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is inserted into both the lower triangular placement and the symmetric upper triangular

placement. This method is implemented similar to the pseudo code shown in Lst. 6.4 below.

1 oldSize = length of load list

2 newSize = sum of bdc_value

3 K_red = create matrix with newSizexnewSize filled with 0

4 load_red = create list with newSize entries filled with 0

5 for (row = 1 to oldSize)

6 skipR = 0

7 if (bdc_value(row) == 1) //is the row corresponding to a free dof?

8 for (col = 1 to row)

9 skipC = 0

10 if (bdc_value(col) == 1) //is the col corresp. to a free dof?

11 K_red(row-skipR,col-skipC) = KG(row,col)

12 K_red(row-skipC,col-skipC) = KG(row,col)

13 else

14 skipC += 1

15

16 load_red(row-skipR) = load(row)

17 else

18 skipR += 1;

Listing 6.4: Pseudocode for creating the boundary condition list

6.1.2 Processing

Based on the results from Ch. 5.3.1 the Math.Net Cholesky solver was chosen to solve the

global deformation-load relation. The solving of the global shell problem reads

1 Vector<double> def_reduced = K_red.Cholesky().Solve(load_red);

Listing 6.5: Solving the linear system of equations for shell structure

Which gives the reduced deformation list, where the word ”reduced” indicates that the

0-value deformations corresponding to the clamped dofs has not been inserted yet. This

may be the easiest line to implement in the shell code, however it is often the most time

consuming by far, as shall be seen in Ch. 6.3.
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6.1.3 Post-Processing

Restore Total Deformation Vector

The restoration of the complete deformation list is done by first creating a list of zeroes,

with the length of the bdc value list from Lst. 6.2, then looping through the bdc value list

and inserting the deformation from def red for each value that is 1. Like this, the total

deformation list is assembled with displacements at correct indices.

Calculate Reaction Forces

The calculation of the Reaction forces is also a straightforward process. As shown in

Eq. 2.3.1, it is done by right-multiplication of a matrix and a vector. This is done as shown

in Lst. 6.6 below

1 Vector<double> reactions = K_tot.Multiply(def_tot);

Listing 6.6: Solving for the Reaction forces

It should also be noted that since the total global stiffness matrix is used with the total

deformation vector, the result will include the action forces, which in this case means the

loads. This is done because it may be useful to get the applied loads together with the

reaction forces for later inspection or use.

Calculate Internal Strains and Stresses

The strains and stresses for each element is local values, therefore the transformation matrix

has to be established once again. This is done just as in Ch. 6.1.1 when the element stiffness

matrix was established and will therefore not be repeated.

The next step is to use the stacked B matrices also from Ch. 6.1.1 when the element

stiffness matrices was established. For each element the corresponding Bm and BK

matrices for respectively membrane and bending stresses are extracted. The corresponding

displacements are also extracted from the total deformation list as vm and vb, rearranged

correctly and transformed to local deformations so that they can be combined with the B

matrices.
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The strains are calculated separately for the membrane and bending in accordance with

Eq. 2.6.80, which gives the two equations

εm =


εx,m

εy,m

γxy,m

 = Bmvm and εb =


εx,b

εy,b

γxy,b

 = − t
2
BKvb (Eq. 6.1.9)

With the strains established, the stresses can be calculated from Eq. 2.6.30 and 2.6.45. The

equations becomes

σm =


σx,m

σy,m

τxy,m

 =
E

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2



εx,m

εy,m

γxy,m

 (Eq. 6.1.10)

σb =


σx,b

σy,b

τxy,b

 =
E

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2



εx,b

εy,b

γxy,b

 (Eq. 6.1.11)

The strains and stresses are then placed into the internal strains and internal stresses list,

and ordered according to the face list. In this way the output gives the membrane and the

bending strains and stresses for each element in the same order as the faces are listed.

Format Output

The lists of total deformations, reaction forces, internal strains and internal stresses are

simply given as outputs as they already are arranged as desired. If the ”Run”-button says

”Off”, all the outputs are set to zero.
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6.2 Support components

The shell software includes three support components. For the pre-processing there is a

component to defined boundary conditions namely Shell BDC, and one for defining point

loads namely SetLoads Shell. The last support component is named DeformedShell, and

will attempt to visualize the results.

6.2.1 Boundary Conditions

The Shell BDC component, seen in Fig. 6.5 takes two inputs, namely Points and Mesh.

The points is the points that shall be fixed in one or more directions. The nodes for a

CST-Morley element has no defined rotational dofs and therefore can only be clamped in

translation. The edges of an element can however be fixed in rotation. Therefore, to clamp

an edge in this software, at least two points must be given as input and they must have an

element edge connecting them. If the ”Fix Rotation” button is activated, the component

will attempt to find all the edges connecting the given points, and defining them as clamped

in the output. To fix rotational dofs on the edges, the mesh structure is needed as an input

for the component to be able to locate any edges.

The ”X”, ”Y” and ”Z” button on the component simply indicates which directions are

set as clamped, in Fig. 6.5 an example can be seen where all dofs are set as clamped.

Figure 6.5: Shell BDC Component and example output

The output format is similar to that of the truss and beam software where the strings are

formatted as x, y and z coordinate, followed by the corresponding condition values. The
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condition values can either be 1 for free or 0 for clamped. At the end of the list is one entry

with the fixed edges (the fixed rotations).

6.2.2 Point Loads

The nodal loading component works in the exact same way as for the truss software and

has been explained in Ch. 6.5, and will not be repeated here. Note that for distributed loads

to be applied, it has to be transformed into points and nodal loads to be applied with this

component.

6.2.3 Deformed Geometry

The support component DeformedShell in its hidden state is shown in Fig. 6.6a, and in its

displayed and colored state in Fig. 6.6b.

(a) The deformed structure is hidden (b) Deformation and stresses is visualized

Figure 6.6: The DeformedShell component in different states

There are only two required inputs, namely ”Deformation” and ”Mesh”, the rest are optional.

The deformation input is the outputs given from the main shell calculation component,

while the mesh is the same that is given as input to the main calculation component. The

”Scale” input is preset to 10 if no other input is given as a scaling parameter. The scaling

work by multiplying, so for a deformation of e.g. 3 mm, and scale 100, the component will

show 300 mm deformation.

For the ”Von Mises stress” output to supply any values, the stresses must be given as

input. The stresses are the ”Element Stresses” from the main calculation component. The
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”Von Mises stress” will give the Von Mises yield criterion for each element, and is ordered

according to the face list in the mesh structure.

The coloring of the deformed structure requires stresses to run, and can take an optional

yield strength. A maximum and a minimum value will be set inside the component, where

the maximum defines red, and minimum defines blue. Other stresses will be interpolated

and colored accordingly between these values. The yield strength can either be given as

one positive number, which will be interpreted as the maximum positive yield strength and

the minimum will be set to the equivalent negative number. Another option is to give a

list with two different values, and the component will automatically set the minimum and

maximum yield strength regardless of the order. If no value is given, the maximum

For the coloring of the mesh the component uses node averaging from all elements

who share the node. This means if three faces share one node, the node is colored according

to the average stress of the three. The colors are chosen as RGB values where red shades

indicates positive stress (elongation) and blue shades indicate negative stress (compression).

It is important to note that at this stage the coloring of shell meshes is not fully

functional, and may be very inaccurate. This is partly because of the definition of the local

element axes. There has not been implemented any method to align the local axes in the

same general direction. This means that in case of membrane stresses in x direction, some

of the element may have the x direction pointing toward the global y direction, and thus

the wrong value for some faces may be displayed. The Von Mises stress however has no

general direction and includes all directions to find the ”worst case”, it also become strictly

positive. The Von Mises is therefore more trustworthy than any specific direction, but

does not differentiate between negative and positive stress, which decreases the value of

the information. An example of how the Von Mises stresses in presented can be seen in

Fig. 6.7.
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Figure 6.7: Von Mises stress color-map on structure

For well behaved meshes the local axes can however often be seen to coincide with

each other and the global x direction. Some well behaved meshes can give remarkably

consistently colored results, as in Fig. 6.8. It is important to note that fancy color distribution

does not mean the results are correct in any way, this will be discussed further in Ch. 6.4.

Figure 6.8: Well behaved local axes with membrane stress in x direction
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6.3 Analysis

The following analyses has the focus on the main calculation component, the reasoning or

this is discussed in Ch. 6.4. This software is aimed at real-time or hasty usage, therefore the

two main parameters for usability is performance, which encompass the runtime of the shell

software, and accuracy which indicate how close the results are to the ”actual” solution.

6.3.1 Performance

The performance analyses for the shell software naturally requires some example structures

to analyze. Since the focus here will be on performance, the primary variable will be the

number of elements. The first example structure will be referred to as the ”hangar”, and is

shown in Fig. 6.9

(a) The hangar seen from the front (b) A slight side view of the hangar

Figure 6.9: The hangar example, dimensions 8 x 8 x 2.5 m

In Fig. 6.9 the nodes with arrows are loaded, and the sum of all the loads is 100 kN,

regardless of how fine the mesh. This type of distributed load is a simple matter to make if

one is familiar with Grasshopper. The boundary conditions are applied at the lower bounds

of the structure, illustrated with ”fixed” boxes, where fixed means that the edges between

the clamped nodes also are clamped in rotation.

To attain a sufficient overview of the time usage inside the calculation component,

each of the steps in Fig. 6.3 has been timed. The components often vary slightly in runtime,

therefore an average of five identical execution is used as the runtime for each part. The

computation was carried out in 6 steps from 200 to 450 elements, the results can be seen in

Fig. 6.10. The labels in the figure is clarified in Tab. 6.1.
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Figure 6.10: Runtime for the 9 steps in the main shell component

Table 6.1: Label clarification for analysis.

Name Description
Fetch Fetch Inputs

BDC & Load Interpret loads and boundary conditions

El. & Glob. Create element stiffness matrices and global stiffness matrix

Reduce Reduce global stiffness matrix and load vector

Cholesky Calculate reduced deformation vector using Cholesky

Restore Restore total deformation vector

Reaction Calculate reaction forces

S & S Calculate internal strains and stresses

Output Format output

Some small discrepancies can be noticed in Fig. 6.10 for the El. & Glob. and Reaction,

which will be discussed further in Ch. 6.4.
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In Ch. 6.1.1 it was mentioned that creating the reduced global stiffness matrix and load

vector in a former version of the software was responsible for a noticeable part of the

runtime. The average runtime for the old and new version of the Reduce part is shown in

Fig. 6.11. The difference is mainly that the old method looped through the entire global

stiffness matrix and the new only loops through the lower triangular part, as described in

Ch. 6.1.1.

Figure 6.11: Comparison of the old and new reduction methods

The saved time in the new method might seem inconspicuous, and for the given number of

elements it might be the case. However, for larger number of elements this might induce an

noticeable undesired delay of the results.

The average total runtime of the calculation component can be extracted from Fig. 6.10

as the sum of all parts for each element count. The average total runtime for the component

can be seen in Fig. 6.12.
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Figure 6.12: Hangar runtime of main component for 200 to 450 elements

It can be observed from Fig. 6.10 and Fig. 6.12 that, for these low numbers of elements, the

component has some irregularities in the runtimes disturbs the expected exponential growth

of the runtime curve. If the number of element is increased further up to 1152 elements as

in Fig. 6.13, it can be noticed that the discrepancies does not have a very noticeable impact

on the runtimes. The corresponding average calculation component runtime can also be

seen in Fig. 6.14

130



6.3 Analysis

Figure 6.13: Hangar shell parts runtime for 200 to 1152 elements.

Figure 6.14: Hangar runtime of main comp. for 200 to 1152 elements

The expected exponential curve seems to be more apparent at this point. It can also be

seen that the runtime for the calculation component with 1152 elements peaks just above

seven seconds, which is quite noticeable when designing and updating the calculations for

a structure.
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In order to have more than just one structure to base all the performance results on, another

example structure is introduced, namely the plate. The plate is shown in Fig. 6.15 and is

located in the x-y plane for simplicity. It is loaded with a sum of 20 kN distributed over the

mid area of the plate. The boundaries are fixed for translation and the connecting edges is

fixed for rotation. Thus, the plate can be viewed as fixed at both edges which is symbolized

with boxes in the figure.

Figure 6.15: The Plate with dimensions 4 x 2 m

The calculations for the plate were also performed in steps from 200 to 1152 elements.

The results can be previewed in Fig. 6.16, and the same pattern as in Fig. 6.13 seems to

emerge. In fact if one plots the total component runtime for the two structures together

as in Fig. 6.17, it is clear that they coincide very well and the differences is practically

unnoticeable. The runtime does depend on both the number of element, but also the number

of dofs. Which in the case of the hangar and the plate may be very much the same as they

are relatively similarly structures and supported in a similar fashion.
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Figure 6.16: Plate main parts runtime for 200 to 1152 elements.

Figure 6.17: Hangar vs Plate runtime for 200 to 1152 elements.

Because of the similarity between the two previous examples another double curved shell

will quickly be examined. The double curved shell structure in question is shown in

Fig. 6.18. The double curved structure is also loaded with 100 kN divided over all the free

nodes. Only four points are simply supported, and no rotations are restricted.
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Figure 6.18: Double curved shell structure with dimensions 10 x 10 x 2.5m

The performance of the double curved structure would logically have a slightly higher

runtime as the number of free dofs are greater than for the other two structures. The

increased number dofs is the result of fewer nodes standing clamped. The difference in

runtime is shown in Fig. 6.19, the difference is relatively beneath notice below roughly 500

elements, but becomes quite consequential when the runtime reaches several seconds.

Figure 6.19: Comparison of component runtime for double curved shell
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6.3.2 Accuracy

Considering that analytical solutions for shell structures are quite scarce and severely

limited, and only simple examples can be analytically solved. For this reason, Autodesk

Robot Structural Analysis software will be used as comparison for the results.

Firstly a simply supported plate will be examined. The plate can be analytically

solved by Kirchhoff-Love plate theory as described in Ch. 2.6.3. The plate in question is a

rectangular 4 by 2 meter plate with a constant distributed load, and is simply support along

all edges. This means that no rotations is restrained but all translational dofs along the edge

is clamped. The plate can be seen in Fig. 6.20, where the number of elements is very low

for visual purposes.

Figure 6.20: Plate to compare with analytical solution

A simply supported rectangular plate with a uniformly distributed load can be analytically

solved for deformations by Navier’s solution, which reads

w(x, y) =
16q0

π6D

∞∑
m=1,3,5,..

∞∑
n=1,3,5,..

1

mn(m
2

a2 + n2

b2 )2
sin(

mπx

a
)sin(

nπy

b
) (Eq. 6.3.1)

An important note is that the results from our created software is expected to converge

towards the solution to be considered acceptable. The results from the made software is also

preferred to be on the ”safe side” of the solution to which it converges. In this software the

”safe side” will be to get a larger deformation or higher stresses and strains than the ”correct”

solution. In the case of this plate the shell software solution will therefore hopefully give
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larger deformations than the analytical solution.

The focus for this accuracy test will be the midpoint of the plate, as this is the expected

point for maximal deformation in negative z direction (downwards). The Navier solution

has been implemented in Matlab, where the m and n variables had a maximum value of

1000. The solution from the Navier solution can be seen as the horizontal line in Fig. 6.21.

The plate is initially set for 200 elements, and the results up to 2738 elements can be viewed

in Fig. 6.21 below.

Figure 6.21: Deformation for the plate vs Navier’s solution

From the figure it can be seen that our software gives a deformation that is worse than the

analytical solution. It is also quite clear that as the element count increases the deformation

converges towards the analytical solution. However, the element count grows quite large

before the deformation approach Navier’s solution for the plate.

The curve in Fig. 6.21 seem to form steps, this is as a result of the method used to

refine the mesh. As the mesh is refined, it is simply split into a number in both x and y

directions. These lines create squares which are then divided into triangles. The steps in

the figure is a result of this refinement factor to be odd or even, where even numbers for

refinement creates a node in the midpoint of the plate, while for odd numbers an edge will

be in the midpoint. If an edge is at the midpoint of the plate the maximum deformation is
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”divided” between two nodes. This causes the even refinement factors to attain a slightly

larger deformation as a single node appear in the point that has the most deformation in the

plate.

The stresses in the plate can also be compared to that of the Navier solution. The

corresponding equation for the maximal stress in the x direction σxx becomes

σxx =
16hq0

2Ixπ4

∞∑
m=1,3,5,..

∞∑
n=1,3,5,..

n2

b2 + νm
2

a2

mn(m
2

a2 + n2

b2 )2
sin(

mπx

a
)sin(

nπy

b
) (Eq. 6.3.2)

As this equation is solved with Matlab for the midpoint, the stresses from the shell software

can now be plotted with the analytical solution as the target line. The plot can be seen in

Fig. 6.22

Figure 6.22: Maximum σxx stress for the plate vs Navier’s solution

It can be seen from the figure that the stresses follow the same pattern as the deformation,

and approaches the correct solution from the ”safe side”. It is clear from Fig. 6.22 that the

stresses are not relatively far from the correct solution for the larger amount of elements.
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The next structure to compare for accuracy will be a variation of the hangar from Ch. 6.3.1,

which this time has the dimension 4 x 4 x 1.5 meters. To achieve the same loading a

projected load of 6.25 kPa has been applied in robot, which over 4 x 4 meters gives a total

of 100 kN. The structure in our shell software has been loaded with a total of 100 kN

divided over the free nodes. This may not be entirely correct, but nevertheless is used as an

approximation. Self-weight is not included in any of the software packages. A steel shell

with a thickness of 15 mm and pinned support along the lower edges is set, and material

parameters E = 210000 MPa and G = 80800 MPa has been chosen. The shell structure can

be viewed in Fig. 6.23, with applied nodal loads and boundary conditions. The shell made

in Grasshopper was exported to Robot to ensure that the same geometrical shape is used.

Figure 6.23: The generated shell from Grasshopper

The corresponding shell in Robot can be seen in Fig. 6.24. And the results from the

calculation performed in robot can be seen in Tab. 6.2, and will be the approximate target

values. The made software in grasshopper will hopefully also converge towards these

results.
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Figure 6.24: The generated shell from Robot

Table 6.2: Results from Robot calculation for the hangar structure.

Direction Max def. Min def. Principal σmax Principal σmin
X 0.4414 mm -0.4220 mm

0.09 MPa -1.04 MPa
Z 0.4554 mm -0.3610 mm

A series of runs with varying number of elements gave the deformation in x direction as

shown in Fig. 6.25, along with the deformations in z direction in Fig. 6.26. The deformation

values are relatively much larger in the shell software than those from the Robot software.

The deformation are on the ”safe side”, but they can be seen to be about twice as much or

more. They do however converge towards the solution, but can, as seen from the figures,

not be assumed to be sufficiently close for a practical amount of elements.

The stresses were also measured as the principal stress directions and are given in

Fig. 6.27. The stresses can be observed to be extremely large compared to those from

Robot. This is, among other factors, due to the error in the deformations as the stresses

are calculated from Eq. 2.6.63 in combination with Eq. 2.6.30. Which makes the stresses

directly dependent on the deformations, and when almost all deformations are larger than

they should be, the cumulative effect results in amplified errors in the strains and therefore

the stresses.
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Figure 6.25: The measured x deformation for the hangar

Figure 6.26: The measured z deformation for the hangar
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Figure 6.27: The measured principal stresses for the hangar

The stresses obtained from Robot can in Fig. 6.27 not be seen separately as they are so

close due to the scale of the y axis. For steel, these values would be entirely incorrect as the

shell would be far from yield with the given load, but according to our shell software it will

yield. This is obviously an error of some sort and will be discussed in the next chapter.

The deformation shape however seems quite similar for the Shell software and Robot,

the deformations from Robot can be seen in Fig. 6.28.

Figure 6.28: The deformation shape for the shell structure from Robot
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And the deformations shape given by the shell software is shown in Fig. 6.29.

Figure 6.29: The deformation shape for the shell structure from Grasshopper
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6.4 Discussion

The complexity in the shell software is noticeable higher than of the truss and beam, as a

result of this the mishaps and bugs has proven a lot harder to locate. This made the shell

software quite a bit harder and more time consuming to perfect.

In terms of calculation speed, most of the steps, see Fig. 6.3, of the main component

can likely be sped up. But as of fig. 6.10 the runtime usage of the pre- and post-processing

steps is relatively negligible compared to the processing. Even though the Cholesky solver

was one of the most efficient solvers tested in this thesis, there are faster solvers, as for

instance the ALGLIB package (ALGLIB, 2018). And as seen from the performance versus

the accuracy, an increase in solving speed is needed. The solver may also be dependent on

the structure of the matrix to solve for, and the global stiffness matrix for the shell software

may be quite unfavorable if this is the case. This is a result of the decision to store all the

rotational dofs at the end of the list of dofs, and therefore creating a matrix with a high

spread. This could be corrected by locating the rotational dofs closer to the nodes they

belong to, and this way make the global stiffness matrix more concentrated close to the

diagonal. It is not certain if this will make any noticeable changes to the runtime, but it

would be an interesting subject for further work.

The DeformedGeometry component for the shell software can be labeled as a work in

progress, as it is capable of displaying color-maps for stresses, although this is not fully

functional at this time. One of the underlying problems that is known is the orientation of the

local axes of the elements. These are as of yet not oriented correctly for structures, but they

can happen to be oriented correctly depending on the mesh and its face-orientation. This

can be a very handy feature for designers to identify critical points, and should therefore

be perfected in future work. The method Grasshopper uses for coloring can however be

somewhat misleading if critical nodes are diluted by node averaging, this is also a problem

to be investigated further in future work. There has however been found one other way of

coloring meshes, this involves deconstructing the entire mesh and define each face as its

own mesh, in this method node averaging would not be used, but the result might be quite

chaotic and disconnected.

The shell software, at this point, aims to provide a relatively hasty solver for shell

structures of low complexity. The meaning of low complexity in this context covers

structures with few enough dofs and/or elements to be solved in a reasonable short time-

span. It can however be used on more comprehensive structures, but is not built nor tested

for such a purpose, and is therefore not recommended. For it to be a viable option in design
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it must not reduce the design process to mere than lingering for results. On the other hand,

if the calculation is only limited by the runtime it may not be of much use as the results can

be quite imprecise.

As seen from Fig. 6.10 the runtime of the pre- and post-processing steps in the main

calculation component has a larger impact on the runtime for lower amounts of elements.

This seems to only be noticeable beneath 500 elements, and even then, the variations is still

negligible compared to the Cholesky solver.

For element counts below approximately 1000, the accuracy can be relatively unsatis-

factory as seen in Fig. 6.21. This presents quite the predicament as the runtime for 1000

elements approaches five seconds according to Fig. 6.19. This may indicate that some major

performance enhancement is due if the shell software is to be used for higher accuracy.

However this software might still be of use as the deformation-patterns seems to be quite

correct for all tested structures, as seen from Fig. 6.28 and 6.29. In this manner the software

can be used with a relatively low number of elements while designing, and then be used for

more detailed calculation with more elements only when needed. This could present an

quicker way of approximating the behavior and locate critical areas in a structure, compared

to handing it over to someone for assessment.

In terms of accuracy the shell software did relatively well compared to the analytical

Navier solution of a Kirchhoff-Love plate. This might indicate that the handling of bending

and the Morley triangle behaves and represent the plate deformations quite adequately. Still

as seen in Fig. 6.25 - 6.27 there is something which does not work quite right in terms of

accuracy. The culprit might be the CST triangle, which is only able to present constant

stress and strain and therefore may be quite inaccurate for a low number of elements and

rapidly changing stresses (Bell, 2013). As the results for displacement was about 300% of

the expected value, there is reason to believe that there is still some unidentified mishap in

the pre- or post-processing steps.

In terms of stresses the values from our shell software was quite extreme compared to

that of those in Fig. 6.27. This might among else be the result of the inaccurate deformations,

the poorly represented stress distribution and stress concentration. As our software is at an

immature stage the stresses are not post-processed after being calculated which means it

does not handle stress concentration close to supports, or even in the plane, in an good way.

This is absolutely something that should be considered in future work.

Another inconsistency is the method of loading, as the loading in Grasshopper is done

by dividing the total force over all free nodes, this might not be correct enough as the force
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on the edge elements are just as large as the force on all other nodes. In the case of evenly

distributed loads with load lumping the force on the edge nodes is just half of the other

nodes. In this manner the over loaded nodes might induce a larger deformation of the edges

than the evenly distributed load in Robot. This could however be fixed by implementing

a method for evenly and correctly distributing load, but as this is quite a time-consuming

process it has not been prioritized as of yet. This could also be an interesting development

for the software in future work.

On the positive side the obtained values from the analysis were all on the ”safe side”,

some more than others. They were also seen to converge in the direction of the correct

solutions, even if the values would not seem to be close in the foreseeable future. It is

quite important for a finite element software to not be on the ”better” or ”unsafe side”

as this would lead the user to believe thing are in order if they are not. In addition, it is

imperative that the results are converging toward the correct solution, if not an increase of

mesh resolution could give all kinds of wrong results.

The final but maybe obvious way to improve the software is the implementation of

higher order elements. This could greatly improve the accuracy for lower amounts of

elements, but would also include more dofs. On the same note it may not have been optimal

to use the CST-Morley element in terms of accuracy, as it requires many elements in order

to be somewhat precise. As observed in the analysis there might be some grave issues with

the CST element in some structures and this could greatly benefit by being upgraded to e.g.

a linear stress strain triangle to represent the stresses more accurately. The advancement

of the element type could also include elements with four nodes, which could fit the way

Grasshopper meshes structures even better than triangular elements do, but this may come

with more work and problems than its worth.

The main calculation component could also benefit from being able to give even more

kinds of data from the calculation and post-processing. This could be like the Von Mises

stresses which is in this version of the software are given from the DeformedGeometry

component.
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6.5 Shell Summary

The shell software consists of four components, the main component is the calculation

software and would be the core of the software. The other three are support component

which support the main component by formatting boundary conditions, formatting loads

and gives a preview of the deformed structure and the internal stresses through a color-map.

Though the coloring is not fully functional as of yet, and needs some further work.

The software works surprisingly well in general and displays seemingly correct de-

formation patterns, however the deformations may not always be correct, depending on

the structure type. A plate problem solved with Navier’s analytical solution was compared

and the software gave satisfactory results. Another hangar-like structure was compared

against the solution from Robot Structural Analysis, and deviated very much. However, the

deformation was still converging in direction of the correct result, and has not yet given

lower results, which means it is on the ”safe side”.

The software need further work to be accurate enough, and still might not give the

desired accuracy in an adequate runtime. As it stands now the software could seemingly be

used to predict deformation patterns and to a limited extent give stress patterns. Which by

itself could provide the user with some valuable information in the design process.

It seems a parametric FEA software for shells can be done, but the time usage might

present some difficulties if good accuracy is sought. The created software for shell works

in a parametric environment, and therefore the intention has been reach to a certain degree.

However, some major improvements to the runtime and solving process can, and should, be

undertaken to perfect the software in terms of runtime.
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The reason for the support component to be excluded from the Analysis chapters is simply

due to that the support components has a minuscule amount of operations to perform

compared to the main calculation components. In this context it should be mentioned that

Grasshopper’s own timer, the profiler widget, would not even display the runtime for the

support components. This indicates that they execute so fast it is not worth mentioning.

The total runtime has also been perceived to heavily rely on the time usage of the main

calculation components, and compared, the support components runtimes are negligible.

All the software packages assume identical material properties for all members. While

support for individual properties would be a nice feature, the implementation of this has

been assumed to be more time-consuming than worthwhile. The largest difficulties would

presumably arise from organizing the various members and elements, which is outside the

scope of this thesis.

On the same note, none of the packages have implemented self-weight loads. This

is related to the lack of a proper solution for uniform load distributions. Some notes on

how distributed loads could be implemented has briefly been mentioned in Ch. 5.4 and

6.4. To summarize, a fast but not entirely correct way to implement this could be through

load-lumping, which would transform the distributed load into equivalent point-loads. This

could easily be implemented, but has not been prioritized as it would be a time-consuming

process.

As the different software packages has been analyzed, they have been compared to

solutions from Robot Structural Analysis. This could be a somewhat imprecise comparison
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as Robot includes more advanced elements and structural effects which either has been

neglected or simplified in these software packages. This in turn could impose some

deviations in the results which cannot be closed. Through deeper and more time-consuming

analyses of the structures in Robot, where these premises are accounted for, this gap could

likely be remedied. However, this has not been prioritized since the focus has been on

finding an approximate solution.

Among other goals for this thesis, one goal has been to attain some quick and ap-

proximate results which would indicate how the structure would react and deform, while

give some pointers to the critical areas for stresses. The deformation part has been rather

successful as all deformation shapes found so far has been very similar to the solutions from

e.g. Robot. The results regarding stresses has been more troublesome than expected as the

methods for visualizing the results has not been fully explored. This far the best solution

seems to be the option to display stresses as color-maps on the structure, but this feature

would benefit from more work and improvements. As mentioned in Ch. 6.4 the Shell

software feature for coloring may not always be entirely correct for directional stresses, for

stresses as Von Mises however, it gives some good pointers to the critical areas.

As first mentioned in Ch. 4.1.1, the Grasshopper interaction with C# proved problem-

atic when it came to errors arising from incorrect node coordinates. Whether the problem

stems from C# or Grasshopper is hard to say. Throughout the project, the double store for-

mat for numbers has been used rather than decimal, which has a higher accuracy. This may

have been related to the issue, since the former can ”only” store up to 15 or 16 significant

figures, while the latter is able to hold up to 28 or 29. However, this is unlikely to be the

culprit, as most coordinates used in testing has been integers. Rounding of the coordinates

is not much of an issue however, as the operation comes very cheaply, and the precision is

still accurate at up to 10−5 mm.

The software packages all use a direct solution method, Cholesky Decomposition,

when solving the systems of equations. For stable systems where speed is prioritized,

Cholesky is a very efficient solver, albeit applicable to fewer problems than some alternatives

(Bell, 2013). Cholesky being unable to solve matrices that are not positive-definite has been

helpful more often than not, by indicating incorrect boundary conditions and other errors

from preprocessing. An iterative solver like Jacobi or Gauss-Seidel would be beneficial

in terms of memory usage, however, memory is rarely a problem unless working with

especially large structures. Although useful, this has not been prioritized since most systems

are likely to be within functional parameters for direct solving. A general recommendation

from Poschmann et al. (1998) is to use direct solvers for 1D and 2D problems.
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Employing a sparse matrix format such as the skyline matrix storage would also use

less memory, and can be solved by Cholesky Decomposition for sparse matrices. This

would be very useful since symbolic Cholesky factorization (algorithm for finding non-zero

values) of a stiffness matrix can be reused even for different values (van Grondelle, 1999).

Reusing information for factorization of A (= K) is an incredibly convenient attribute in

a parametric work environment, since models are expected to undergo numerous small

changes. Note also that the values of A are independent of loads, meaning that the lower

triangular matrix L, and it’s transposed LT, are reusable for change in loading. Normally,

direct solver methods are recommended for large number of load cases (Poschmann et al.,

1998).

7.1 Further Work

If more time was available, it would have been worthwhile for this thesis to more deeply

explore the possibilities around optimization of Cholesky. Since Math.NET does not

support sparse matrix solvers, the Math.NET toolkit would likely be discarded in favor of

e.g. ALGLIB (2018). Potentially, the solve algorithm could be built from scratch.

A topic for further work would be the combinations of the different software packages

that has been made. The opportunity to combine different elements would greatly expand

the capabilities of the software. However, this is complicated to implement since the

packages are defined separately, and extensive groundwork would be required to facilitate

this.

Adding support for orthotropic materials and varying thickness for shell, could be

implemented without major changes. However, the issues concerning local axes directions

discussed in Ch. 6.4 needs to be addressed for this to work correctly. The theoretical

basis for both orthotropy and variable thickness are readily given in Ch. 2, and in the Shell

software only need to be taken through the derivations to be implemented in the CST-Morley

element. This could also open up for expansions as for materials like reinforced concrete,

which may be varying in thickness and be anisotropic.
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Through this thesis, four parametric Finite Element Analysis (FEA) software packages have

been created. The simplest were the 2D and 3D Truss which demonstrated great potential

when compared to the well-established FEA software, Robot. The speed performance of

the 2D and 3D Truss displayed great promise as running times were almost unnoticeable

for the tested structures. The accuracy of the 3D Beam software was also relatively good in

terms of accuracy compared to Robot, but could benefit from some improvement in running

time for larger structures. The Shell software had diverse results on accuracy, with some

being close to the analytical solution, but others being very distant. The Shell software

would greatly benefit from a faster solver algorithm, as the running time for larger shell

structures could quickly become very long.

The aim of providing a tool for a quick and rough assessment of a structure has been

reached to some extent, but could benefit from further development in terms of accuracy and

runtime. The software packages currently give a good indication of how the structure will

deform linearly. Deformation shapes were found to coincide very well with the compared

solutions from Robot Structural Analysis. There has also been implemented some coloring

options to locate critical areas for stresses in shells. These has proven to work quite well for

stresses independent of directions, as for instance Von Mises stress. Coloring of directional

stresses is not fully functional as of yet, but does work for some structures. The other

software packages do not have a component for coloring of stresses and strains, but this

can be performed in Grasshopper by anyone experienced in the environment. The software

packages can therefore be used as intended to assess early designs and structural behavior,
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naturally within some limitations.

In our opinion, the parametric environment of Grasshopper is well suited for im-

plementation of light-weight FEA tools. However, the environment will to some degree

limit how far the implementation and optimization of the FEA software can go. This is

partially due to the limitations of meshing in Grasshopper, even though meshing options

can probably be expanded by 3rd party components, much like our own. The foundation

of Grasshopper and Rhino is made for designing rather than calculating. This is a good

opportunity, since the design can be analyzed while designing, but it is also an impediment,

since the foundation of Grasshopper and Rhino is not optimized for efficient calculations.

Our understanding of the aspects related to combining a parametric environment and a

FEA software has been greatly expanded. During writing of this thesis, there have been

challenges regarding efficient solving of linear systems of equations, organization of dofs,

calculation of internal forces, visualization of results and much more. The parametric

environment provides simple and flexible design opportunities and requires quick FEA to

reach its potential. The running time has been found to be one of the main problems, but

for a software whose main goal is to show the deformation shape and indicate critical areas,

the runtime is usually satisfactory for design purposes.
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Appendix A
2D Truss

2D Truss Calculation Component

1 using System;

2 using System.Collections.Generic;

3 using System.Linq;

4 using Grasshopper.Kernel;

5 using Rhino.Geometry;

6 using TwoDTrussCalculation.Properties;

7

8 namespace TwoDTrussCalculation

9 {

10 public class TwoDTrussCalculationComponent : GH_Component

11 {

12 public TwoDTrussCalculationComponent()

13 : base("2D Truss Calc.", "2DTrussCalc",

14 "Description",

15 "Koala", "2D Truss")

16 {

17 }

18

19 protected override void

RegisterInputParams(GH_Component.GH_InputParamManager

pManager)

20 {

21 pManager.AddLineParameter("Lines", "LNS", "Geometry, in form

of Lines)", GH_ParamAccess.list);

22 pManager.AddTextParameter("Boundary Conditions", "BDC",
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"Boundary Conditions in form (x,z):1,1 where 1=free and

0=restrained", GH_ParamAccess.list);

23 pManager.AddNumberParameter("Crossection area", "A",

"Crossectional area, initial value 10e3 [mm*mm]",

GH_ParamAccess.item, 10000);

24 pManager.AddNumberParameter("Material E modulus", "E",

"Material Property, initial value 200e3 [MPa]",

GH_ParamAccess.item, 200000);

25 pManager.AddTextParameter("Loads", "L", "Load given as Vector

[N]", GH_ParamAccess.list);

26 }

27

28 protected override void

RegisterOutputParams(GH_Component.GH_OutputParamManager

pManager)

29 {

30

31 pManager.AddNumberParameter("Deformations", "Def",

"Deformations", GH_ParamAccess.list);

32 pManager.AddNumberParameter("Reactions", "R", "Reaction

Forces", GH_ParamAccess.list);

33 pManager.AddNumberParameter("Element stresses", "Strs", "The

Stress in each element", GH_ParamAccess.list);

34 pManager.AddNumberParameter("Element strains", "Strn", "The

Strain in each element", GH_ParamAccess.list);

35 }

36

37 protected override void SolveInstance(IGH_DataAccess DA)

38 {

39 //Expected inputs

40 List<Line> geometry = new List<Line>(); //initial

Geometry of lines

41 double E = 0; //Material

property, initial value 210000 [MPa]

42 double A = 0; //Area for

each element in same order as geometry, initial value

10000 [mmˆ2]

43 List<string> bdctxt = new List<string>(); //Boundary

conditions in string format

44 List<string> loadtxt = new List<string>(); //loads in

string format

45

46

47 //Set expected inputs from Indata
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48 if (!DA.GetDataList(0, geometry)) return; //sets

geometry

49 if (!DA.GetDataList(1, bdctxt)) return; //sets

boundary conditions

50 if (!DA.GetData(2, ref A)) return; //sets Area

51 if (!DA.GetData(3, ref E)) return; //sets

material

52 if (!DA.GetDataList(4, loadtxt)) return; //sets load

53

54

55 //List all nodes (every node only once), numbering them

according to list index

56 List<Point3d> points = CreatePointList(geometry);

57

58

59 //Interpret the BDC inputs (text) and create list of boundary

condition (1/0 = free/clamped) for each dof.

60 List<int> bdc_value = CreateBDCList(bdctxt, points);

61

62

63 //Interpreting input load (text) and creating load list

(double)

64 List<double> load = CreateLoadList(loadtxt, points);

65

66

67 //Create global stiffness matrix

68 double[,] K_tot = CreateGlobalStiffnessMatrix(geometry,

points, E, A);

69

70

71 //Create the reduced global stiffness matrix and reduced load

list

72 int dofs_red = points.Count * 2 - (bdc_value.Count -

bdc_value.Sum()); //reduced

number of dofs

73 double[,] K_red = new double[dofs_red, dofs_red];

//preallocate reduced K matrix

74 List<double> load_red = new List<double>();

//preallocate reduced load list

75 CreateReducedGlobalStiffnessMatrix(points, bdc_value, K_tot,

load, out K_red, out load_red); //outputs are reduced

K-matrix and reduced load list (removed free dofs)
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76

77

78 //Run the cholesky method for solving the system of equations

for the deformations

79 List<double> deformations_red = Cholesky_Banachiewicz(K_red,

load_red);

80

81

82 //Add the clamped dofs (= 0) to the deformations list

83 List<double> deformations =

RestoreTotalDeformationVector(deformations_red,

bdc_value);

84

85

86 //Calculate the reaction forces from the deformations

87 List<double> Reactions =

CalculateReactionforces(deformations, K_tot, bdc_value);

88

89

90 //Calculate the internal strains and stresses in each member

91 List<double> internalStresses;

92 List<double> internalStrains;

93 CalculateInternalStrainsAndStresses(deformations, points, E,

geometry, out internalStresses, out internalStrains);

94

95 //Set output data

96 string K_print = PrintStiffnessMatrix(K_red);

97 string K_print1 = PrintStiffnessMatrix(K_tot);

98

99 DA.SetDataList(0, deformations);

100 DA.SetDataList(1, Reactions);

101 DA.SetDataList(2, internalStresses);

102 DA.SetDataList(3, internalStrains);

103 } //End of main program

104

105 private void CalculateInternalStrainsAndStresses(List<double>

def, List<Point3d> points, double E, List<Line> geometry, out

List<double> internalStresses, out List<double>

internalStrains)

106 {

107 //preallocating lists

108 internalStresses = new List<double>(geometry.Count);

109 internalStrains = new List<double>(geometry.Count);

110
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111 foreach (Line line in geometry)

112 {

113 int index1 = points.IndexOf(line.From);

114 int index2 = points.IndexOf(line.To);

115

116 //fetching deformation of point in x and y direction

117 double u2 = def[index2 * 2];

118 double v2 = def[index2 * 2 + 1];

119 double u1 = def[index1 * 2];

120 double v1 = def[index1 * 2 + 1];

121

122 //creating new point at deformed coordinates

123 double nx1 = points[index1].X + u1;

124 double nz1 = points[index1].Z + v1;

125 double nx2 = points[index2].X + u2;

126 double nz2 = points[index2].Z + v2;

127

128 //calculating dL = (length of deformed line - original

length of line)

129 double dL = Math.Sqrt(Math.Pow((nx2 - nx1), 2) +

Math.Pow((nz2 - nz1), 2)) - line.Length;

130

131 //calculating strain and stress

132 internalStrains.Add(dL / line.Length);

133 internalStresses.Add(internalStrains[internalStrains.Count

- 1] * E);

134 }

135 }

136

137 private List<double> RestoreTotalDeformationVector(List<double>

deformations_red, List<int> bdc_value)

138 {

139 List<double> def = new List<double>();

140 int index = 0;

141

142 for (int i = 0; i < bdc_value.Count; i++)

143 {

144 if (bdc_value[i] == 0)

145 {

146 def.Add(0);

147 }

148 else

149 {

150 def.Add(deformations_red[index]);

5



151 index += 1;

152 }

153 }

154

155 return def;

156 }

157

158 private List<double> CalculateReactionforces(List<double> def,

double[,] K_tot, List<int> bdc_value)

159 {

160 List<double> R = new List<double>();

161

162 for (int i = 0; i < K_tot.GetLength(1); i++)

163 {

164 if (bdc_value[i] == 0)

165 {

166 double R_temp = 0;

167 for (int j = 0; j < K_tot.GetLength(0); j++)

168 {

169 R_temp += K_tot[i, j] * def[j];

170 }

171 R.Add(Math.Round(R_temp, 2));

172 }

173 else

174 {

175 R.Add(0);

176 }

177 }

178 return R;

179 }

180

181 private List<double> Cholesky_Banachiewicz(double[,] m,

List<double> load)

182 {

183 double[,] A = m;

184 List<double> load1 = load;

185

186 //Cholesky only works for square, symmetric and positive

definite matrices.

187 //Square matrix is guaranteed because of how matrix is

constructed, but symmetry is checked

188 if (IsSymmetric(A))

189 {

190 //preallocating L and L_transposed matrices
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191 double[,] L = new double[m.GetLength(0), m.GetLength(1)];

192 double[,] L_T = new double[m.GetLength(0),

m.GetLength(1)];

193

194 //creation of L and L_transposed matrices

195 for (int i = 0; i < L.GetLength(0); i++)

196 {

197 for (int j = 0; j <= i; j++)

198 {

199 double L_sum = 0;

200 if (i == j)

201 {

202 for (int k = 0; k < j; k++)

203 {

204 L_sum += L[i, k] * L[i, k];

205 }

206 L[i, i] = Math.Sqrt(A[i, j] - L_sum);

207 L_T[i, i] = L[i, i];

208 }

209 else

210 {

211 for (int k = 0; k < j; k++)

212 {

213 L_sum += L[i, k] * L[j, k];

214 }

215 L[i, j] = (1 / L[j, j]) * (A[i, j] - L_sum);

216 L_T[j, i] = L[i, j];

217 }

218 }

219 }

220 //Solving L*y=load1 for temporary variable y

221 List<double> y = ForwardsSubstitution(load1, L);

222

223

224 //Solving LˆT*x = y for deformations x

225 List<double> x = BackwardsSubstitution(load1, L_T, y);

226

227 return x;

228 }

229 else //K-matrix is not symmetric

230 {

231 //throw new RuntimeException("Matrix is not symmetric");

232 System.Diagnostics.Debug.WriteLine("Matrix is not

symmetric (ERROR!)");
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233 return null;

234 }

235 }

236

237 private List<double> ForwardsSubstitution(List<double> load1,

double[,] L)

238 {

239 List<double> y = new List<double>();

240 for (int i = 0; i < L.GetLength(1); i++)

241 {

242 double L_prev = 0;

243

244 for (int j = 0; j < i; j++)

245 {

246 L_prev += L[i, j] * y[j];

247 }

248 y.Add((load1[i] - L_prev) / L[i, i]);

249 }

250 return y;

251 }

252

253 private List<double> BackwardsSubstitution(List<double> load1,

double[,] L_T, List<double> y)

254 {

255 var x = new List<double>(new double[load1.Count]);

256 for (int i = L_T.GetLength(1) - 1; i > -1; i--)

257 {

258 double L_prev = 0;

259

260 for (int j = L_T.GetLength(1) - 1; j > i; j--)

261 {

262 L_prev += L_T[i, j] * x[j];

263 }

264

265 x[i] = ((y[i] - L_prev) / L_T[i, i]);

266 }

267 return x;

268 }

269

270 private static void

CreateReducedGlobalStiffnessMatrix(List<Point3d> points,

List<int> bdc_value, double[,] K_tot, List<double> load, out

double[,] K_red, out List<double> load_red)

271 {
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272 int dofs_red = points.Count * 2 - (bdc_value.Count -

bdc_value.Sum());

273 double[,] K_redu = new double[dofs_red, dofs_red];

274 List<double> load_redu = new List<double>();

275 List<int> bdc_red = new List<int>();

276 int m = 0;

277 for (int i = 0; i < K_tot.GetLength(0); i++)

278 {

279 if (bdc_value[i] == 1)

280 {

281 int n = 0;

282 for (int j = 0; j < K_tot.GetLength(1); j++)

283 {

284 if (bdc_value[j] == 1)

285 {

286 K_redu[m, n] = K_tot[i, j];

287 n++;

288 }

289 }

290

291 load_redu.Add(load[i]);

292

293 m++;

294 }

295 }

296 load_red = load_redu;

297 K_red = K_redu;

298 }

299

300 private double[,] CreateGlobalStiffnessMatrix(List<Line>

geometry, List<Point3d> points, double E, double A)

301 {

302 int dofs = points.Count * 2;

303 double[,] K_tot = new double[dofs, dofs];

304

305 for (int i = 0; i < geometry.Count; i++)

306 {

307 Line currentLine = geometry[i];

308 double mat = (E * A) / (currentLine.Length);

309 Point3d p1 = currentLine.From;

310 Point3d p2 = currentLine.To;

311

312 double angle = Math.Atan2(p2.Z - p1.Z, p2.X - p1.X);

313 double c = Math.Cos(angle);
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314 double s = Math.Sin(angle);

315

316 double[,] K_elem = new double[,]{

317 { c* c* mat, s*c* mat, -c*c* mat, -s * c* mat},

318 { s* c* mat, s*s* mat, -s * c* mat, -s*s* mat},

319 { -c*c* mat, -s * c* mat, c* c* mat, s*c* mat},

320 { -s* c* mat, -s* s* mat, s* c* mat, s*s* mat} };

321

322 int node1 = points.IndexOf(p1);

323 int node2 = points.IndexOf(p2);

324

325 //upper left corner of k-matrix

326 K_tot[node1 * 2, node1 * 2] += K_elem[0, 0];

327 K_tot[node1 * 2, node1 * 2 + 1] += K_elem[0, 1];

328 K_tot[node1 * 2 + 1, node1 * 2] += K_elem[1, 0];

329 K_tot[node1 * 2 + 1, node1 * 2 + 1] += K_elem[1, 1];

330

331 //upper right corner of k-matrix

332 K_tot[node1 * 2, node2 * 2] += K_elem[0, 2];

333 K_tot[node1 * 2, node2 * 2 + 1] += K_elem[0, 3];

334 K_tot[node1 * 2 + 1, node2 * 2] += K_elem[1, 2];

335 K_tot[node1 * 2 + 1, node2 * 2 + 1] += K_elem[1, 3];

336

337 //lower left corner of k-matrix

338 K_tot[node2 * 2, node1 * 2] += K_elem[2, 0];

339 K_tot[node2 * 2, node1 * 2 + 1] += K_elem[2, 1];

340 K_tot[node2 * 2 + 1, node1 * 2] += K_elem[3, 0];

341 K_tot[node2 * 2 + 1, node1 * 2 + 1] += K_elem[3, 1];

342

343 //lower right corner of k-matrix

344 K_tot[node2 * 2, node2 * 2] += K_elem[2, 2];

345 K_tot[node2 * 2, node2 * 2 + 1] += K_elem[2, 3];

346 K_tot[node2 * 2 + 1, node2 * 2] += K_elem[3, 2];

347 K_tot[node2 * 2 + 1, node2 * 2 + 1] += K_elem[3, 3];

348 }

349

350 return K_tot;

351 }

352

353 private List<double> CreateLoadList(List<string> loadtxt,

List<Point3d> points)

354 {

355 List<double> loads = new List<double>();

356 List<double> inputLoads = new List<double>();
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357 List<double> coordlist = new List<double>();

358

359 for (int i = 0; i < loadtxt.Count; i++)

360 {

361 string coordstr = (loadtxt[i].Split(’:’)[0]);

362 string loadstr = (loadtxt[i].Split(’:’)[1]);

363

364 string[] coordstr1 = (coordstr.Split(’,’));

365 string[] loadstr1 = (loadstr.Split(’,’));

366

367 inputLoads.Add(Math.Round(double.Parse(loadstr1[0])));

368 inputLoads.Add(Math.Round(double.Parse(loadstr1[1])));

369 inputLoads.Add(Math.Round(double.Parse(loadstr1[2])));

370

371 coordlist.Add(Math.Round(double.Parse(coordstr1[0])));

372 coordlist.Add(Math.Round(double.Parse(coordstr1[1])));

373 coordlist.Add(Math.Round(double.Parse(coordstr1[2])));

374 }

375

376 int loadIndex = 0; //bdc_points index

377

378 for (int i = 0; i < points.Count; i++)

379 {

380

381 double cptx = Math.Round(points[i].X);

382 double cpty = Math.Round(points[i].Y);

383 double cptz = Math.Round(points[i].Z);

384 bool foundPoint = false;

385

386 for (int j = 0; j < coordlist.Count / 3; j++) if

(loadIndex < coordlist.Count)

387 {

388 if (coordlist[j * 3] == cptx && coordlist[j * 3 +

1] == cpty && coordlist[j * 3 + 2] == cptz)

389 {

390 loads.Add(inputLoads[loadIndex]);

391 loads.Add(inputLoads[loadIndex + 2]);

392 loadIndex += 3;

393 foundPoint = true;

394 }

395 }

396

397 if (foundPoint == false)

398 {
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399 loads.Add(0);

400 loads.Add(0);

401 }

402 }

403

404

405 return loads;

406 }

407

408 private List<int> CreateBDCList(List<string> bdctxt,

List<Point3d> points)

409 {

410 List<int> bdc_value = new List<int>();

411 List<int> bdcs = new List<int>();

412 List<double> bdc_points = new List<double>(); //Coordinates

relating til bdc_value in for (eg. x y z)

413 int bdcIndex = 0; //bdc_points index

414

415 for (int i = 0; i < bdctxt.Count; i++)

416 {

417 string coordstr = (bdctxt[i].Split(’:’)[0]);

418 string bdcstr = (bdctxt[i].Split(’:’)[1]);

419

420 string[] coordstr1 = (coordstr.Split(’,’));

421 string[] bdcstr1 = (bdcstr.Split(’,’));

422

423 bdc_points.Add(double.Parse(coordstr1[0]));

424 bdc_points.Add(double.Parse(coordstr1[1]));

425 bdc_points.Add(double.Parse(coordstr1[2]));

426

427 bdcs.Add(int.Parse(bdcstr1[0]));

428 bdcs.Add(int.Parse(bdcstr1[1]));

429 bdcs.Add(int.Parse(bdcstr1[2]));

430 }

431

432 for (int i = 0; i < points.Count; i++)

433 {

434

435 double cptx = points[i].X;

436 double cpty = points[i].Y;

437 double cptz = points[i].Z;

438 bool foundPoint = false;

439

440 for (int j = 0; j < bdc_points.Count / 3; j++) if
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(bdcIndex < bdc_points.Count)

441 {

442 if (bdc_points[bdcIndex] == cptx &&

bdc_points[bdcIndex + 1] == cpty &&

bdc_points[bdcIndex + 2] == cptz)

443 {

444 bdc_value.Add(bdcs[bdcIndex]);

445 bdc_value.Add(bdcs[bdcIndex + 2]);

446 bdcIndex += 3;

447 foundPoint = true;

448 }

449 }

450

451 if (foundPoint == false)

452 {

453 bdc_value.Add(1);

454 bdc_value.Add(1);

455 }

456 }

457

458 return bdc_value;

459 }

460

461 private List<Point3d> CreatePointList(List<Line> geometry)

462 {

463 List<Point3d> points = new List<Point3d>();

464

465 for (int i = 0; i < geometry.Count; i++) //adds every point

unless it already exists in list

466 {

467 Line l1 = geometry[i];

468 if (!points.Contains(l1.From))

469 {

470 points.Add(l1.From);

471 }

472 if (!points.Contains(l1.To))

473 {

474 points.Add(l1.To);

475 }

476 }

477

478 return points;

479 }

480
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481 private static bool IsSymmetric(double[,] A)

482 {

483 int rowCount = A.GetLength(0);

484 for (int i = 0; i < rowCount; i++)

485 {

486 for (int j = 0; j < i; j++)

487 {

488 if (A[i, j] != A[j, i])

489 {

490 return false;

491 }

492 }

493 }

494 return true;

495 }

496

497 public override GH_Exposure Exposure

498 {

499 get { return GH_Exposure.primary; }

500 }

501

502 protected override System.Drawing.Bitmap Icon

503 {

504 get

505 {

506 return Resources.TwoDTrussCalculation; //Setting

component icon

507 }

508 }

509

510 public override Guid ComponentGuid

511 {

512 get { return new

Guid("beae0421-b363-41de-89a2-49cca8210736"); }

513 }

514 }

515 }
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2D Truss Point Loads Component

1 using System;

2 using System.Collections.Generic;

3 using Grasshopper.Kernel;

4 using Rhino.Geometry;

5

6 namespace TwoDTrussCalculation

7 {

8 public class Point_Load : GH_Component

9 {

10

11 public Point_Load()

12 : base("PointLoads", "PL",

13 "Set one or more pointloads on nodes",

14 "Koala", "2D Truss")

15 {

16 }

17

18 protected override void

RegisterInputParams(GH_Component.GH_InputParamManager

pManager)

19 {

20 pManager.AddPointParameter("Points", "P", "Points to apply

load(s)", GH_ParamAccess.list);

21 pManager.AddNumberParameter("Load", "L", "Load magnitude

[Newtons]. Give either one load to be applied to all

inputted points, or different loads for each inputted

loads", GH_ParamAccess.list);

22 pManager.AddNumberParameter("angle (xz)", "a", "Angle

[degrees] for load in xz plane", GH_ParamAccess.list, 90);

23 //pManager[2].Optional = true; //Code can run without a given

angle (90 degrees is initial value)

24 }

25

26 protected override void

RegisterOutputParams(GH_Component.GH_OutputParamManager

pManager)

27 {

28 pManager.AddTextParameter("PointLoads", "PL", "PointLoads

formatted for Truss Calculation", GH_ParamAccess.list);

29 }

30

31 protected override void SolveInstance(IGH_DataAccess DA)
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32 {

33 //Expected inputs and output

34 List<Point3d> pointList = new List<Point3d>();

//List of points where load will be applied

35 List<double> loadList = new List<double>();

36 List<double> anglexz = new List<double>();

//Initial xz angle 90

37 List<double> anglexy = new List<double> { 0 };

//Initial xy angle 0

38 List<string> pointInStringFormat = new List<string>();

//preallocate final string output

39

40 //Set expected inputs from Indata

41 if (!DA.GetDataList(0, pointList)) return;

42 if (!DA.GetDataList(1, loadList)) return;

43 DA.GetDataList(2, anglexz);

44

45 //initialize temporary stringline and load vectors

46 string vectorString;

47 double load = 0;

48 double xvec = 0;

49 double yvec = 0;

50 double zvec = 0;

51

52 if (loadList.Count == 1 && anglexz.Count == 1)

//loads and angles are identical for all points

53 {

54 load = -1 * loadList[0];

//negativ load for z-dir

55 xvec = Math.Round(load * Math.Cos(anglexz[0] * Math.PI /

180) * Math.Cos(anglexy[0] * Math.PI / 180), 2);

56 yvec = Math.Round(load * Math.Cos(anglexz[0] * Math.PI /

180) * Math.Sin(anglexy[0] * Math.PI / 180), 2);

57 zvec = Math.Round(load * Math.Sin(anglexz[0] * Math.PI /

180), 2);

58

59 vectorString = xvec + "," + yvec + "," + zvec;

60 for (int i = 0; i < pointList.Count; i++)

//adds identical load to all points in pointList

61 {

62 pointInStringFormat.Add(pointList[i].X + "," +

pointList[i].Y + "," + pointList[i].Z + ":" +

vectorString);

63 }
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64 }

65 else //loads and angles may be different => calculate new

xvec, yvec, zvec for all loads

66 {

67 for (int i = 0; i < pointList.Count; i++)

68 {

69 if (loadList.Count < i) //if pointlist is

larger than loadlist, set last load value in

remaining points

70 {

71 vectorString = xvec + "," + yvec + "," + zvec;

72 }

73 else

74 {

75 load = -1 * loadList[i]; //negative load

for z-dir

76

77 xvec = Math.Round(load * Math.Cos(anglexz[i]) *

Math.Cos(anglexy[i]), 2);

78 yvec = Math.Round(load * Math.Cos(anglexz[i]) *

Math.Sin(anglexy[i]), 2);

79 zvec = Math.Round(load * Math.Sin(anglexz[i]), 2);

80

81 vectorString = xvec + "," + yvec + "," + zvec;

82 }

83

84 pointInStringFormat.Add(pointList[i].X + "," +

pointList[i].Y + "," + pointList[i].Z + ":" +

vectorString);

85 }

86 }

87

88 //Set output data

89 DA.SetDataList(0, pointInStringFormat);

90 }

91

92 protected override System.Drawing.Bitmap Icon

93 {

94 get

95 {

96 // You can add image files to your project resources and

access them like this:

97 //return Resources.IconForThisComponent;

98 return Properties.Resources.PointLoad;
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99 }

100 }

101

102 public override Guid ComponentGuid

103 {

104 get { return new

Guid("f6167454-39ae-4204-bfde-0254a1dc6578"); }

105 }

106 }

107 }
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2D Truss BDC Component

1 using System;

2 using System.Collections.Generic;

3 using Grasshopper.Kernel;

4 using Rhino.Geometry;

5 using TwoDTrussCalculation.Properties;

6

7 namespace TwoDTrussCalculation

8 {

9 public class BoundaryConditions : GH_Component

10 {

11

12 public BoundaryConditions()

13 : base("BDC", "BDC",

14 "Set boundary conditions at nodes",

15 "Koala", "2D Truss")

16 {

17 }

18

19 protected override void

RegisterInputParams(GH_Component.GH_InputParamManager

pManager)

20 {

21 pManager.AddPointParameter("Points", "P", "Points to apply

Boundary Conditions", GH_ParamAccess.list);

22 pManager.AddIntegerParameter("Boundary Conditions", "BDC",

"Boundary Conditions x,y,z where 0=clamped and 1=free",

GH_ParamAccess.list, new List<int>(new int[] { 0, 0, 0

}));

23 }

24

25 protected override void

RegisterOutputParams(GH_Component.GH_OutputParamManager

pManager)

26 {

27 pManager.AddTextParameter("B.Cond.", "BDC", "Boundary

Conditions for 2D Truss Calculation",

GH_ParamAccess.list);

28 }

29

30 protected override void SolveInstance(IGH_DataAccess DA)

31 {

32 //Expected inputs
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33 List<Point3d> pointList = new List<Point3d>();

//List of points where BDC is to be applied

34 List<int> BDC = new List<int>(); //is

BDC free? (=clamped) (1 == true, 0 == false)

35 List<string> pointInStringFormat = new List<string>();

//output in form of list of strings

36

37

38 //Set expected inputs from Indata and aborts with error

message if input is incorrect

39 if (!DA.GetDataList(0, pointList)) return;

40 if (!DA.GetDataList(1, BDC)) {

AddRuntimeMessage(GH_RuntimeMessageLevel.Warning,

"testing"); return; }

41

42

43 //Preallocate temporary variables

44 string BDCString;

45 int bdcx = 0;

46 int bdcy = 0;

47 int bdcz = 0;

48

49

50 if (BDC.Count == 3) //Boundary condition input for identical

conditions in all points. Split into if/else for

optimization

51 {

52 bdcx = BDC[0];

53 bdcy = BDC[1];

54 bdcz = BDC[2];

55

56 BDCString = bdcx + "," + bdcy + "," + bdcz;

57

58 for (int i = 0; i < pointList.Count; i++) //Format

stringline for all points (identical boundary

conditions for all points)

59 {

60 pointInStringFormat.Add(pointList[i].X + "," +

pointList[i].Y + "," + pointList[i].Z + ":" +

BDCString);

61 }

62 }

63 else //BDCs are not identical for all points

64 {
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65 for (int i = 0; i < pointList.Count; i++)

66 {

67 if (i > (BDC.Count / 3) - 1) //Are there more points

than BDCs given? (BDC always lists x,y,z per

point)

68 {

69 BDCString = bdcx + "," + bdcy + "," + bdcz; //use

values from last BDC in list of BDCs

70 }

71 else

72 {

73 //retrieve BDC for x,y,z-dir

74 bdcx = BDC[i * 3];

75 bdcy = BDC[i * 3 + 1];

76 bdcz = BDC[i * 3 + 2];

77 BDCString = bdcx + "," + bdcy + "," + bdcz;

78 }

79 pointInStringFormat.Add(pointList[i].X + "," +

pointList[i].Y + "," + pointList[i].Z + ":" +

BDCString); //Add stringline to list of strings

80 }

81 }

82 DA.SetDataList(0, pointInStringFormat);

83 } //End of main program

84

85 protected override System.Drawing.Bitmap Icon

86 {

87 get

88 {

89 return Resources.BoundaryCondition; //Setting component

icon

90 }

91 }

92

93 public override Guid ComponentGuid

94 {

95 get { return new

Guid("0efc7b95-936a-4c88-8005-485398c61a31"); }

96 }

97 }

98 }
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2D Truss Deformed Geometry Component

1 using System;

2 using System.Collections.Generic;

3 using Grasshopper.Kernel;

4 using Rhino.Geometry;

5 using TwoDTrussCalculation.Properties;

6

7 namespace TwoDTrussCalculation

8 {

9 public class DrawDeformedGeometry : GH_Component

10 {

11 /// <summary>

12 /// Initializes a new instance of the DrawDeformedGeometry class.

13 /// </summary>

14 public DrawDeformedGeometry()

15 : base("Def.Geom.", "Def.Geom.",

16 "Displays the deformed geometry based on given

deformations",

17 "Koala", "2D Truss")

18 {

19 }

20

21 protected override void

RegisterInputParams(GH_Component.GH_InputParamManager

pManager)

22 {

23 pManager.AddNumberParameter("Deformation", "Def", "The Node

Deformation from 2DTrussCalc", GH_ParamAccess.list);

24 pManager.AddLineParameter("Geometry", "G", "Input Geometry

(Line format)", GH_ParamAccess.list);

25 pManager.AddNumberParameter("Scale", "S", "The Scale Factor

for Deformation", GH_ParamAccess.item);

26 }

27

28 protected override void

RegisterOutputParams(GH_Component.GH_OutputParamManager

pManager)

29 {

30 pManager.AddLineParameter("Deformed Geometry", "Def.G.",

"Deformed Geometry as List of Lines",

GH_ParamAccess.list);

31 }

32
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33 protected override void SolveInstance(IGH_DataAccess DA)

34 {

35 //Expected inputs and outputs

36 List<double> def = new List<double>();

37 List<Line> geometry = new List<Line>();

38 double scale = 0;

39 List<Line> defGeometry = new List<Line>();

40 List<Point3d> defPoints = new List<Point3d>();

41

42 //Set expected inputs from Indata

43 if (!DA.GetDataList(0, def)) return;

44 if (!DA.GetDataList(1, geometry)) return;

45 if (!DA.GetData(2, ref scale)) return;

46

47 //List all nodes (every node only once), numbering them

according to list index

48 List<Point3d> points = CreatePointList(geometry);

49

50 int index = 0;

51 //loops through all points and scales x- and z-dir

52 foreach (Point3d point in points)

53 {

54 //fetch global x,y,z placement of point

55 double x = point.X;

56 double y = point.Y;

57 double z = point.Z;

58

59 //scales x and z according to input Scale (ignores y-dir

since 2D)

60 defPoints.Add(new Point3d(x + scale * def[index], y, z +

scale * def[index + 1]));

61 index += 2;

62 }

63

64 //creates deformed geometry based on initial geometry

placement

65 foreach (Line line in geometry)

66 {

67 //fetches index of original start and endpoint

68 int i1 = points.IndexOf(line.From);

69 int i2 = points.IndexOf(line.To);

70

71 //creates new line based on scaled deformation of said

points
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72 defGeometry.Add(new Line(defPoints[i1], defPoints[i2]));

73 }

74

75

76 //Set output data

77 DA.SetDataList(0, defGeometry);

78 } //End of main program

79

80 private List<Point3d> CreatePointList(List<Line> geometry)

81 {

82 List<Point3d> points = new List<Point3d>();

83

84 for (int i = 0; i < geometry.Count; i++) //adds every point

unless it already exists in list

85 {

86 Line l1 = geometry[i];

87 if (!points.Contains(l1.From))

88 {

89 points.Add(l1.From);

90 }

91 if (!points.Contains(l1.To))

92 {

93 points.Add(l1.To);

94 }

95 }

96

97 return points;

98 }

99

100 protected override System.Drawing.Bitmap Icon

101 {

102 get

103 {

104 return Resources.DrawDeformedGeometry;

105 }

106 }

107

108 public override Guid ComponentGuid

109 {

110 get { return new

Guid("bc7b48e4-4234-4420-bd7a-5a59220aba67"); }

111 }

112 }

113 }
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Appendix B
3D Truss

3D Truss calculation Component

1 using System;

2 using System.Collections.Generic;

3 using Grasshopper.Kernel;

4 using Rhino.Geometry;

5 using MathNet.Numerics.LinearAlgebra;

6 using MathNet.Numerics.LinearAlgebra.Double;

7

8 namespace Truss3D

9 {

10 public class CalcComponent : GH_Component

11 {

12 public CalcComponent()

13 : base("Truss3DCalc", "TCalc",

14 "Description",

15 "Koala", "Truss3D")

16 {

17 }

18

19 protected override void

RegisterInputParams(GH_Component.GH_InputParamManager

pManager)

20 {

21 pManager.AddLineParameter("Lines", "LNS", "Geometry, in form

of Lines)", GH_ParamAccess.list);

22 pManager.AddTextParameter("Boundary Conditions", "BDC",
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"Boundary Conditions in form (x,z):1,1 where 1=free and

0=restrained", GH_ParamAccess.list);

23 pManager.AddNumberParameter("Crossection area", "A",

"Crossectional area, initial value 3600 [mmˆ2]",

GH_ParamAccess.item, 3600);

24 pManager.AddNumberParameter("Material E modulus", "E",

"Material Property, initial value 200e3 [MPa]",

GH_ParamAccess.item, 200000);

25 pManager.AddTextParameter("Loads", "L", "Load given as Vector

[N]", GH_ParamAccess.list);

26 }

27

28 protected override void

RegisterOutputParams(GH_Component.GH_OutputParamManager

pManager)

29 {

30 pManager.AddNumberParameter("Deformations", "Def",

"Deformations", GH_ParamAccess.list);

31 pManager.AddNumberParameter("Reactions", "R", "Reaction

Forces", GH_ParamAccess.list);

32 pManager.AddNumberParameter("Element stresses", "Strs", "The

Stress in each element", GH_ParamAccess.list);

33 pManager.AddNumberParameter("Element strains", "Strn", "The

Strain in each element", GH_ParamAccess.list);

34 }

35

36 protected override void SolveInstance(IGH_DataAccess DA)

37 {

38 //Expected inputs

39 List<Line> geometry = new List<Line>(); //initial

Geometry of lines

40 double E = 0; //Material

property, initial value 210000 [MPa]

41 double A = 0; //Area for

each element in same order as geometry, initial value

10000 [mmˆ2]

42 List<string> bdctxt = new List<string>(); //Boundary

conditions in string format

43 List<string> loadtxt = new List<string>(); //loads in

string format

44

45

46 //Set expected inputs from Indata

47 if (!DA.GetDataList(0, geometry)) return; //sets
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geometry

48 if (!DA.GetDataList(1, bdctxt)) return; //sets

boundary conditions

49 if (!DA.GetData(2, ref A)) return; //sets Area

50 if (!DA.GetData(3, ref E)) return; //sets

material

51 if (!DA.GetDataList(4, loadtxt)) return; //sets load

52

53

54 //List all nodes (every node only once), numbering them

according to list index

55 List<Point3d> points = CreatePointList(geometry);

56

57

58 //Interpret the BDC inputs (text) and create list of boundary

condition (1/0 = free/clamped) for each dof.

59 Vector<double> bdc_value = CreateBDCList(bdctxt, points);

60

61

62 //Interpreting input load (text) and creating load list

(double)

63 List<double> load = CreateLoadList(loadtxt, points);

64

65

66 //Create global stiffness matrix

67 Matrix<double> K_tot = CreateGlobalStiffnessMatrix(geometry,

points, E, A);

68

69

70 Matrix<double> K_red;

71 Vector<double> load_red;

72 //Create reduced K-matrix and reduced load list (removed free

dofs)

73 CreateReducedGlobalStiffnessMatrix(bdc_value, K_tot, load,

out K_red, out load_red);

74

75

76 //Calculate deformations

77 Vector<double> def_reduced = K_red.Cholesky().Solve(load_red);

78

79

80 //Add the clamped dofs (= 0) to the deformations list

81 Vector<double> def_tot =

RestoreTotalDeformationVector(def_reduced, bdc_value);
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82

83

84 //Calculate the reaction forces from the deformations

85 Vector<double> reactions = K_tot.Multiply(def_tot);

86 reactions.CoerceZero(1e-8);

87

88

89 List<double> internalStresses;

90 List<double> internalStrains;

91 //Calculate the internal strains and stresses in each member

92 CalculateInternalStrainsAndStresses(def_tot, points, E,

geometry, out internalStresses, out internalStrains);

93

94

95 DA.SetDataList(0, def_tot);

96 DA.SetDataList(1, reactions);

97 DA.SetDataList(2, internalStresses);

98 DA.SetDataList(3, internalStrains);

99 } //End of main program

100

101 private void CalculateInternalStrainsAndStresses(Vector<double>

def, List<Point3d> points, double E, List<Line> geometry, out

List<double> internalStresses, out List<double>

internalStrains)

102 {

103 //preallocating lists

104 internalStresses = new List<double>(geometry.Count);

105 internalStrains = new List<double>(geometry.Count);

106

107 foreach (Line line in geometry)

108 {

109 int index1 = points.IndexOf(new

Point3d(Math.Round(line.From.X, 5),

Math.Round(line.From.Y, 5), Math.Round(line.From.Z,

5)));

110 int index2 = points.IndexOf(new

Point3d(Math.Round(line.To.X, 5),

Math.Round(line.To.Y, 5), Math.Round(line.To.Z, 5)));

111

112 //fetching deformation of point

113 double x1 = def[index1 * 3 + 0];

114 double y1 = def[index1 * 3 + 1];

115 double z1 = def[index1 * 3 + 2];

116 double x2 = def[index2 * 3 + 0];
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117 double y2 = def[index2 * 3 + 1];

118 double z2 = def[index2 * 3 + 2];

119

120 //new node coordinates for deformed nodes

121 double nx1 = points[index1].X + x1;

122 double ny1 = points[index1].Y + y1;

123 double nz1 = points[index1].Z + z1;

124 double nx2 = points[index2].X + x2;

125 double ny2 = points[index2].Y + y2;

126 double nz2 = points[index2].Z + z2;

127

128 //calculating dL = length of deformed line - original

length of line

129 double dL = Math.Sqrt(Math.Pow((nx2 - nx1), 2) +

Math.Pow((ny2 - ny1), 2) + Math.Pow((nz2 - nz1), 2))

- line.Length;

130

131 //calculating strain and stress

132 internalStrains.Add(dL / line.Length);

133 internalStresses.Add(internalStrains[internalStrains.Count

- 1] * E);

134 }

135 }

136

137 private Vector<double>

RestoreTotalDeformationVector(Vector<double>

deformations_red, Vector<double> bdc_value)

138 {

139 Vector<double> def =

Vector<double>.Build.Dense(bdc_value.Count);

140 for (int i = 0, j = 0; i < bdc_value.Count; i++)

141 {

142 if (bdc_value[i] == 1)

143 {

144 def[i] = deformations_red[j];

145 j++;

146 }

147 }

148 return def;

149 }

150

151 private static void

CreateReducedGlobalStiffnessMatrix(Vector<double> bdc_value,

Matrix<double> K, List<double> load, out Matrix<double>
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K_red, out Vector<double> load_red)

152 {

153 K_red = Matrix<double>.Build.SparseOfMatrix(K);

154 List<double> load_redu = new List<double>(load);

155 for (int i = 0, j = 0; i < load.Count; i++)

156 {

157 if (bdc_value[i] == 0)

158 {

159 K_red = K_red.RemoveRow(i - j);

160 K_red = K_red.RemoveColumn(i - j);

161 load_redu.RemoveAt(i - j);

162 j++;

163 }

164 }

165 load_red = Vector<double>.Build.DenseOfEnumerable(load_redu);

166 }

167

168 private Matrix<double> CreateGlobalStiffnessMatrix(List<Line>

geometry, List<Point3d> points, double E, double A)

169 {

170 int gdofs = points.Count * 3;

171 Matrix<double> KG = SparseMatrix.OfArray(new double[gdofs,

gdofs]);

172

173 foreach (Line currentLine in geometry)

174 {

175 double lineLength = Math.Round(currentLine.Length, 6);

176 double mat = (E * A) / (lineLength); //material

properties

177 Point3d p1 = new Point3d(Math.Round(currentLine.From.X,

5), Math.Round(currentLine.From.Y, 5),

Math.Round(currentLine.From.Z, 5));

178 Point3d p2 = new Point3d(Math.Round(currentLine.To.X, 5),

Math.Round(currentLine.To.Y, 5),

Math.Round(currentLine.To.Z, 5));

179

180 double cx = (p2.X - p1.X) / lineLength;

181 double cy = (p2.Y - p1.Y) / lineLength;

182 double cz = (p2.Z - p1.Z) / lineLength;

183

184 Matrix<double> T = SparseMatrix.OfArray(new double[,]

185 {

186 { (cx), (cy), (cz), 0,0,0},

187 { (cx), (cy), (cz), 0,0,0},
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188 { (cx), (cy), (cz), 0,0,0},

189 {0,0,0, (cx), (cy), (cz)},

190 {0,0,0, (cx), (cy), (cz)},

191 {0,0,0, (cx), (cy), (cz)},

192 });

193

194 Matrix<double> ke = DenseMatrix.OfArray(new double[,]

195 {

196 { 1, 0, 0, -1, 0, 0},

197 { 0, 0, 0, 0, 0, 0},

198 { 0, 0, 0, 0, 0, 0},

199 { -1, 0, 0, 1, 0, 0},

200 { 0, 0, 0, 0, 0, 0},

201 { 0, 0, 0, 0, 0, 0,}

202 });

203

204 Matrix<double> T_T = T.Transpose();

205 Matrix<double> Ke = ke.Multiply(T);

206 Ke = T_T.Multiply(Ke);

207 Ke = mat * Ke;

208

209 int node1 = points.IndexOf(p1);

210 int node2 = points.IndexOf(p2);

211

212 //Inputting values to correct entries in Global Stiffness

Matrix

213 for (int i = 0; i < Ke.RowCount / 2; i++)

214 {

215

216 for (int j = 0; j < Ke.ColumnCount / 2; j++)

217 {

218 //top left 3x3 of k-element matrix

219 KG[node1 * 3 + i, node1 * 3 + j] += Ke[i, j];

220 //top right 3x3 of k-element matrix

221 KG[node1 * 3 + i, node2 * 3 + j] += Ke[i, j + 3];

222 //bottom left 3x3 of k-element matrix

223 KG[node2 * 3 + i, node1 * 3 + j] += Ke[i + 3, j];

224 //bottom right 3x3 of k-element matrix

225 KG[node2 * 3 + i, node2 * 3 + j] += Ke[i + 3, j +

3];

226 }

227 }

228 }

229 return KG;
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230 }

231

232 private List<double> CreateLoadList(List<string> loadtxt,

List<Point3d> points)

233 {

234 List<double> loads = new List<double>(new double[points.Count

* 3]);

235 List<double> inputLoads = new List<double>();

236 List<Point3d> coordlist = new List<Point3d>();

237

238 for (int i = 0; i < loadtxt.Count; i++)

239 {

240 string coordstr = (loadtxt[i].Split(’:’)[0]);

241 string loadstr = (loadtxt[i].Split(’:’)[1]);

242

243 string[] coordstr1 = (coordstr.Split(’,’));

244 string[] loadstr1 = (loadstr.Split(’,’));

245

246 inputLoads.Add(Math.Round(double.Parse(loadstr1[0]), 5));

247 inputLoads.Add(Math.Round(double.Parse(loadstr1[1]), 5));

248 inputLoads.Add(Math.Round(double.Parse(loadstr1[2]), 5));

249

250 coordlist.Add(new

Point3d(Math.Round(double.Parse(coordstr1[0]), 5),

Math.Round(double.Parse(coordstr1[1]), 5),

Math.Round(double.Parse(coordstr1[2]), 5)));

251 }

252

253 foreach (Point3d point in coordlist)

254 {

255 int i = points.IndexOf(point);

256 int j = coordlist.IndexOf(point);

257 loads[i * 3 + 0] = inputLoads[j * 3 + 0];

258 loads[i * 3 + 1] = inputLoads[j * 3 + 1];

259 loads[i * 3 + 2] = inputLoads[j * 3 + 2];

260 }

261 return loads;

262 }

263

264 private Vector<double> CreateBDCList(List<string> bdctxt,

List<Point3d> points)

265 {

266 Vector<double> bdc_value =

Vector<double>.Build.Dense(points.Count * 3, 1);
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267 List<int> bdcs = new List<int>();

268 List<Point3d> bdc_points = new List<Point3d>(); //Coordinates

relating til bdc_value in for (eg. x y z)

269

270 for (int i = 0; i < bdctxt.Count; i++)

271 {

272 string coordstr = (bdctxt[i].Split(’:’)[0]);

273 string bdcstr = (bdctxt[i].Split(’:’)[1]);

274

275 string[] coordstr1 = (coordstr.Split(’,’));

276 string[] bdcstr1 = (bdcstr.Split(’,’));

277

278 bdc_points.Add(new

Point3d(Math.Round(double.Parse(coordstr1[0]), 5),

Math.Round(double.Parse(coordstr1[1]), 5),

Math.Round(double.Parse(coordstr1[2]), 5)));

279

280 bdcs.Add(int.Parse(bdcstr1[0]));

281 bdcs.Add(int.Parse(bdcstr1[1]));

282 bdcs.Add(int.Parse(bdcstr1[2]));

283 }

284

285 foreach (var point in bdc_points)

286 {

287 int i = points.IndexOf(point);

288 bdc_value[i * 3 + 0] = bdcs[bdc_points.IndexOf(point) * 3

+ 0];

289 bdc_value[i * 3 + 1] = bdcs[bdc_points.IndexOf(point) * 3

+ 1];

290 bdc_value[i * 3 + 2] = bdcs[bdc_points.IndexOf(point) * 3

+ 2];

291 }

292 return bdc_value;

293 }

294

295 private List<Point3d> CreatePointList(List<Line> geometry)

296 {

297 List<Point3d> points = new List<Point3d>();

298 foreach (Line line in geometry) //adds point unless it

already exists in pointlist

299 {

300 Point3d tempFrom = new Point3d(Math.Round(line.From.X,

5), Math.Round(line.From.Y, 5),

Math.Round(line.From.Z, 5));
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301 Point3d tempTo = new Point3d(Math.Round(line.To.X, 5),

Math.Round(line.To.Y, 5), Math.Round(line.To.Z, 5));

302

303 if (!points.Contains(tempFrom))

304 {

305 points.Add(tempFrom);

306 }

307 if (!points.Contains(tempTo))

308 {

309 points.Add(tempTo);

310 }

311 }

312 return points;

313 }

314

315 protected override System.Drawing.Bitmap Icon

316 {

317 get

318 {

319 return Properties.Resources.Calc;

320 }

321 }

322

323 public override Guid ComponentGuid

324 {

325 get { return new

Guid("b4e6e6ea-86b2-46dd-8475-dfa04892a212"); }

326 }

327 }

328 }
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3D Truss Set Loads Component

1 using System;

2 using System.Collections.Generic;

3 using Grasshopper.Kernel;

4 using Rhino.Geometry;

5

6 namespace Truss3D

7 {

8 public class SetLoads : GH_Component

9 {

10 public SetLoads()

11 : base("SetLoads", "Nickname",

12 "Description",

13 "Koala", "Truss3D")

14 {

15 }

16

17 protected override void

RegisterInputParams(GH_Component.GH_InputParamManager

pManager)

18 {

19 pManager.AddPointParameter("Points", "P", "Points to apply

load(s)", GH_ParamAccess.list);

20 pManager.AddNumberParameter("Load", "L", "Load originally

given i Newtons (N), give one load for all points or list

of loads for each point", GH_ParamAccess.list);

21 pManager.AddNumberParameter("angle (xz)", "axz", "give angle

for load in xz plane", GH_ParamAccess.list, 90);

22 pManager.AddNumberParameter("angle (xy)", "axy", "give angle

for load in xy plane", GH_ParamAccess.list, 0);

23 }

24

25 protected override void

RegisterOutputParams(GH_Component.GH_OutputParamManager

pManager)

26 {

27 pManager.AddTextParameter("PointLoads", "PL", "PointLoads

formatted for Truss Calculation", GH_ParamAccess.list);

28 }

29

30 protected override void SolveInstance(IGH_DataAccess DA)

31 {

32 //Expected inputs and output
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33 List<Point3d> pointList = new List<Point3d>();

//List of points where load will be applied

34 List<double> loadList = new List<double>();

//List or value of load applied

35 List<double> anglexz = new List<double>();

//Initial xz angle 90, angle from x axis in xz plane for

load

36 List<double> anglexy = new List<double>();

//Initial xy angle 0, angle from x axis in xy plane for

load

37 List<string> pointInStringFormat = new List<string>();

//preallocate final string output

38

39 //Set expected inputs from Indata

40 if (!DA.GetDataList(0, pointList)) return;

41 if (!DA.GetDataList(1, loadList)) return;

42 DA.GetDataList(2, anglexz);

43 DA.GetDataList(3, anglexy);

44

45 //initialize temporary stringline and load vectors

46 string vectorString;

47 double load = 0;

48 double xvec = 0;

49 double yvec = 0;

50 double zvec = 0;

51

52 if (loadList.Count == 1 && anglexz.Count == 1)

//loads and angles are identical for all points

53 {

54 load = -1 * loadList[0];

//negativ load for z-dir

55 xvec = Math.Round(load * Math.Cos(anglexz[0] * Math.PI /

180) * Math.Cos(anglexy[0] * Math.PI / 180), 2);

56 yvec = Math.Round(load * Math.Cos(anglexz[0] * Math.PI /

180) * Math.Sin(anglexy[0] * Math.PI / 180), 2);

57 zvec = Math.Round(load * Math.Sin(anglexz[0] * Math.PI /

180), 2);

58

59 vectorString = xvec + "," + yvec + "," + zvec;

60 for (int i = 0; i < pointList.Count; i++)

//adds identical load to all points in pointList

61 {

62 pointInStringFormat.Add(pointList[i].X + "," +

pointList[i].Y + "," + pointList[i].Z + ":" +
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vectorString);

63 }

64 }

65 else //loads and angles may be different => calculate new

xvec, yvec, zvec for all loads

66 {

67 for (int i = 0; i < pointList.Count; i++)

68 {

69 if (loadList.Count < i) //if pointlist is

larger than loadlist, set last load value in

remaining points

70 {

71 vectorString = xvec + "," + yvec + "," + zvec;

72 }

73 else

74 {

75 load = -1 * loadList[i]; //negative load

for z-dir

76

77 xvec = Math.Round(load * Math.Cos(anglexz[i]) *

Math.Cos(anglexy[i]), 2);

78 yvec = Math.Round(load * Math.Cos(anglexz[i]) *

Math.Sin(anglexy[i]), 2);

79 zvec = Math.Round(load * Math.Sin(anglexz[i]), 2);

80

81 vectorString = xvec + "," + yvec + "," + zvec;

82 }

83

84 pointInStringFormat.Add(pointList[i].X + "," +

pointList[i].Y + "," + pointList[i].Z + ":" +

vectorString);

85 }

86 }

87

88 //Set output data

89 DA.SetDataList(0, pointInStringFormat);

90 }

91

92 protected override System.Drawing.Bitmap Icon

93 {

94 get

95 {

96 return Properties.Resources.Loads;

97 }
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98 }

99

100 public override Guid ComponentGuid

101 {

102 get { return new

Guid("026f6903-826a-4012-9c39-2b18f883ba00"); }

103 }

104 }

105 }
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3D Truss BDC Component

1 using System;

2 using System.Collections.Generic;

3 using Grasshopper.Kernel;

4 using Rhino.Geometry;

5

6 namespace Truss3D

7 {

8 public class BDCComponents : GH_Component

9 {

10 public BDCComponents()

11 : base("BDC Truss", "BDC Truss",

12 "Set boundary conditions for the Truss 3D calculation",

13 "Koala", "Truss3D")

14 {

15 }

16

17 protected override void

RegisterInputParams(GH_Component.GH_InputParamManager

pManager)

18 {

19 pManager.AddPointParameter("Points", "P", "Points to apply

Boundary Conditions", GH_ParamAccess.list);

20 pManager.AddLineParameter("Geometry", "G", "Geometry",

GH_ParamAccess.list);

21 pManager.AddIntegerParameter("Boundary Conditions", "BDC",

"Boundary Conditions x,y,z where 0=clamped and 1=free",

GH_ParamAccess.list, new List<int>(new int[] { 0, 0, 0

}));

22 pManager.AddTextParameter("Locked direction", "Ldir", "Lock

x, y or z direction for deformation",

GH_ParamAccess.item, "");

23 }

24

25 protected override void

RegisterOutputParams(GH_Component.GH_OutputParamManager

pManager)

26 {

27 pManager.AddTextParameter("B.Cond.", "BDC", "Boundary

Conditions for 2D Truss Calculation",

GH_ParamAccess.list);

28 }

29
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30 protected override void SolveInstance(IGH_DataAccess DA)

31 {

32 //Expected inputs

33 List<Point3d> pointList = new List<Point3d>();

//List of points where BDC is to be applied

34 List<Line> geometry = new List<Line>();

35 List<int> BDC = new List<int>(); //is

BDC free? (=clamped) (1 == true, 0 == false)

36 List<string> pointInStringFormat = new List<string>();

//output in form of list of strings

37 string lock_dir = "";

38

39

40 //Set expected inputs from Indata and aborts with error

message if input is incorrect

41 if (!DA.GetDataList(0, pointList)) return;

42 if (!DA.GetDataList(1, geometry)) return;

43 if (!DA.GetDataList(2, BDC)) {

AddRuntimeMessage(GH_RuntimeMessageLevel.Warning,

"testing"); return; }

44 if (!DA.GetData(3, ref lock_dir)) return;

45

46 //Preallocate temporary variables

47 string BDCString;

48 int bdcx = 0;

49 int bdcy = 0;

50 int bdcz = 0;

51

52 if (lock_dir == "")

53 {

54 if (BDC.Count == 1) //Boundary condition input for

identical conditions in all points. Split into

if/else for optimization

55 {

56 bdcx = BDC[0];

57 bdcy = BDC[0];

58 bdcz = BDC[0];

59

60 BDCString = bdcx + "," + bdcy + "," + bdcz;

61

62 for (int i = 0; i < pointList.Count; i++) //Format

stringline for all points (identical boundary

conditions for all points)

63 {
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64 pointInStringFormat.Add(pointList[i].X + "," +

pointList[i].Y + "," + pointList[i].Z + ":" +

BDCString);

65 }

66 }

67 else if (BDC.Count == 3) //Boundary condition input for

identical conditions in all points. Split into

if/else for optimization

68 {

69 bdcx = BDC[0];

70 bdcy = BDC[1];

71 bdcz = BDC[2];

72

73 BDCString = bdcx + "," + bdcy + "," + bdcz;

74

75 for (int i = 0; i < pointList.Count; i++) //Format

stringline for all points (identical boundary

conditions for all points)

76 {

77 pointInStringFormat.Add(pointList[i].X + "," +

pointList[i].Y + "," + pointList[i].Z + ":" +

BDCString);

78 }

79 }

80 else //BDCs are not identical for all points

81 {

82 for (int i = 0; i < pointList.Count; i++)

83 {

84 if (i > (BDC.Count / 3) - 1) //Are there more

points than BDCs given? (BDC always lists

x,y,z per point)

85 {

86 BDCString = bdcx + "," + bdcy + "," + bdcz;

//use values from last BDC in list of BDCs

87 }

88 else

89 {

90 //retrieve BDC for x,y,z-dir

91 bdcx = BDC[i * 3];

92 bdcy = BDC[i * 3 + 1];

93 bdcz = BDC[i * 3 + 2];

94 BDCString = bdcx + "," + bdcy + "," + bdcz;

95 }

96 pointInStringFormat.Add(pointList[i].X + "," +
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pointList[i].Y + "," + pointList[i].Z + ":" +

BDCString); //Add stringline to list of

strings

97 }

98 }

99 }

100 else

101 {

102 bool lx = false;

103 bool ly = false;

104 bool lz = false;

105

106 if (lock_dir == "X" || lock_dir == "x")

107 {

108 lx = true;

109 bdcx = 0;

110 }

111 else if (lock_dir == "Y" || lock_dir == "y")

112 {

113 ly = true;

114 bdcy = 0;

115 }

116 else if (lock_dir == "Z" || lock_dir == "z")

117 {

118 ly = true;

119 bdcz = 0;

120 }

121

122 List<Point3d> points = CreatePointList(geometry);

123 for (int i = 0; i < pointList.Count; i++)

124 {

125 points.Remove(pointList[i]);

126 }

127 for (int i = 0; i < points.Count; i++)

128 {

129 if (!lx) bdcx = 1;

130 if (!ly) bdcy = 1;

131 if (!lz) bdcz = 1;

132

133 BDCString = bdcx + "," + bdcy + "," + bdcz;

134 pointInStringFormat.Add(points[i].X + "," +

points[i].Y + "," + points[i].Z + ":" +

BDCString);

135 }
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136

137 if (BDC.Count == 1) //Boundary condition input for

identical conditions in all points. Split into

if/else for optimization

138 {

139 if (!lx) bdcx = BDC[0];

140 if (!ly) bdcy = BDC[0];

141 if (!lz) bdcz = BDC[0];

142

143 BDCString = bdcx + "," + bdcy + "," + bdcz;

144

145 for (int i = 0; i < pointList.Count; i++) //Format

stringline for all points (identical boundary

conditions for all points)

146 {

147 pointInStringFormat.Add(pointList[i].X + "," +

pointList[i].Y + "," + pointList[i].Z + ":" +

BDCString);

148 }

149 }

150 else if (BDC.Count == 3) //Boundary condition input for

identical conditions in all points. Split into

if/else for optimization

151 {

152 if (!lx) bdcx = BDC[0];

153 if (!ly) bdcy = BDC[1];

154 if (!lz) bdcz = BDC[2];

155

156 BDCString = bdcx + "," + bdcy + "," + bdcz;

157

158 for (int i = 0; i < pointList.Count; i++) //Format

stringline for all points (identical boundary

conditions for all points)

159 {

160 pointInStringFormat.Add(pointList[i].X + "," +

pointList[i].Y + "," + pointList[i].Z + ":" +

BDCString);

161 }

162 }

163 else //BDCs are not identical for all points

164 {

165 for (int i = 0; i < pointList.Count; i++)

166 {

167 if (i > (BDC.Count / 3) - 1) //Are there more
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points than BDCs given? (BDC always lists

x,y,z per point)

168 {

169 BDCString = bdcx + "," + bdcy + "," + bdcz;

//use values from last BDC in list of BDCs

170 }

171 else

172 {

173 //retrieve BDC for x,y,z-dir

174 if (!lx) bdcx = BDC[i * 3];

175 if (!ly) bdcy = BDC[i * 3 + 1];

176 if (!lz) bdcz = BDC[i * 3 + 2];

177 BDCString = bdcx + "," + bdcy + "," + bdcz;

178 }

179 pointInStringFormat.Add(pointList[i].X + "," +

pointList[i].Y + "," + pointList[i].Z + ":" +

BDCString); //Add stringline to list of

strings

180 }

181 }

182 }

183

184 DA.SetDataList(0, pointInStringFormat);

185 } //End of main program

186

187 private List<Point3d> CreatePointList(List<Line> geometry)

188 {

189 List<Point3d> points = new List<Point3d>();

190

191 for (int i = 0; i < geometry.Count; i++) //adds every point

unless it already exists in list

192 {

193 Line l1 = geometry[i];

194 if (!points.Contains(l1.From))

195 {

196 points.Add(l1.From);

197 }

198 if (!points.Contains(l1.To))

199 {

200 points.Add(l1.To);

201 }

202 }

203

204 return points;
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205 }

206

207 protected override System.Drawing.Bitmap Icon

208 {

209 get

210 {

211 return Properties.Resources.BDC; //Setting component icon

212 }

213 }

214

215 public override Guid ComponentGuid

216 {

217 get { return new

Guid("1376de2c-8393-45c9-81c8-512c87f6061f"); }

218 }

219 }

220 }
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3D Truss calculation Component

1 using System;

2 using System.Collections.Generic;

3

4 using Grasshopper.Kernel;

5 using Rhino.Geometry;

6

7 namespace Truss3D

8 {

9 public class DeformedGeometry : GH_Component

10 {

11 public DeformedGeometry()

12 : base("Deformed Truss", "Def.Truss",

13 "Description",

14 "Koala", "Truss3D")

15 {

16 }

17

18 protected override void

RegisterInputParams(GH_Component.GH_InputParamManager

pManager)

19 {

20 pManager.AddNumberParameter("Deformation", "Def", "The Node

Deformation from 2DTrussCalc", GH_ParamAccess.list);

21 pManager.AddLineParameter("Geometry", "G", "Input Geometry

(Line format)", GH_ParamAccess.list);

22 pManager.AddNumberParameter("Scale", "S", "The Scale Factor

for Deformation", GH_ParamAccess.item, 1);

23 }

24

25 protected override void

RegisterOutputParams(GH_Component.GH_OutputParamManager

pManager)

26 {

27 pManager.AddLineParameter("Deformed Geometry", "Def.G.",

"Deformed Geometry as List of Lines",

GH_ParamAccess.list);

28 }

29

30 protected override void SolveInstance(IGH_DataAccess DA)

31 {

32 //Expected inputs and outputs

33 List<double> def = new List<double>();
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34 List<Line> geometry = new List<Line>();

35 double scale = 1;

36 List<Line> defGeometry = new List<Line>();

37 List<Point3d> defPoints = new List<Point3d>();

38

39 //Set expected inputs from Indata

40 if (!DA.GetDataList(0, def)) return;

41 if (!DA.GetDataList(1, geometry)) return;

42 if (!DA.GetData(2, ref scale)) return;

43

44 //List all nodes (every node only once), numbering them

according to list index

45 List<Point3d> points = CreatePointList(geometry);

46

47 int index = 0;

48 //loops through all points and scales x-, y- and z-dir

49 foreach (Point3d point in points)

50 {

51 //fetch global x,y,z placement of point

52 double x = point.X;

53 double y = point.Y;

54 double z = point.Z;

55

56 //scales x and z according to input Scale

57 defPoints.Add(new Point3d(x + scale * def[index], y +

scale * def[index + 1], z + scale * def[index + 2]));

58 index += 3;

59 }

60

61 //creates deformed geometry based on initial geometry

placement

62 foreach (Line line in geometry)

63 {

64 //fetches index of original start and endpoint

65 int i1 = points.IndexOf(line.From);

66 int i2 = points.IndexOf(line.To);

67

68 //creates new line based on scaled deformation of said

points

69 defGeometry.Add(new Line(defPoints[i1], defPoints[i2]));

70 }

71

72

73 //Set output data
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74 DA.SetDataList(0, defGeometry);

75 } //End of main program

76

77 private List<Point3d> CreatePointList(List<Line> geometry)

78 {

79 List<Point3d> points = new List<Point3d>();

80

81 for (int i = 0; i < geometry.Count; i++) //adds every point

unless it already exists in list

82 {

83 Line l1 = geometry[i];

84 if (!points.Contains(l1.From))

85 {

86 points.Add(l1.From);

87 }

88 if (!points.Contains(l1.To))

89 {

90 points.Add(l1.To);

91 }

92 }

93

94 return points;

95 }

96

97 protected override System.Drawing.Bitmap Icon

98 {

99 get

100 {

101 return Properties.Resources.Draw;

102 }

103 }

104

105 public override Guid ComponentGuid

106 {

107 get { return new

Guid("754421e3-67ef-49bc-b98c-354a607b163e"); }

108 }

109 }

110 }
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Appendix C
3D Beam

3D Beam Calculation Component

1 using System;

2 using System.Collections.Generic;

3

4 using Grasshopper.Kernel;

5 using Rhino.Geometry;

6 using System.Drawing;

7 using Grasshopper.GUI.Canvas;

8 using System.Windows.Forms;

9 using Grasshopper.GUI;

10

11 using MathNet.Numerics.LinearAlgebra;

12 using MathNet.Numerics.LinearAlgebra.Double;

13

14 namespace Beam3D

15 {

16 public class CalcComponent : GH_Component

17 {

18 public CalcComponent()

19 : base("BeamCalculation", "BeamC",

20 "Description",

21 "Koala", "3D Beam")

22 {

23 }

24

25 //Initialize moments
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26 static bool startCalc = false;

27

28 //Method to allow c hanging of variables via GUI (see Component

Visual)

29 public static void setStart(string s, bool i)

30 {

31 if (s == "Run")

32 {

33 startCalc = i;

34 }

35 }

36

37 public override void CreateAttributes()

38 {

39 m_attributes = new Attributes_Custom(this);

40 }

41

42 protected override void

RegisterInputParams(GH_Component.GH_InputParamManager

pManager)

43 {

44 pManager.AddLineParameter("Lines", "LNS", "Geometry, in form

of Lines)", GH_ParamAccess.list);

45 pManager.AddTextParameter("Boundary Conditions", "BDC",

"Boundary Conditions in form x,y,z,vx,vy,vz,rx,ry,rz",

GH_ParamAccess.list);

46 pManager.AddTextParameter("Material properties", "Mat",

"Material Properties: E, A, Iy, Iz, v, alpha (rotation

about x)", GH_ParamAccess.item,

"200000,3600,4920000,4920000, 0.3, 0");

47 pManager.AddTextParameter("PointLoads", "PL", "Load given as

Vector [N]", GH_ParamAccess.list);

48 pManager.AddTextParameter("PointMoment", "PM", "Moment set in

a point in [Nm]", GH_ParamAccess.list, "");

49 pManager.AddIntegerParameter("Sub-Elements", "n", "Number of

sub-elements", GH_ParamAccess.item, 1);

50 }

51

52 protected override void

RegisterOutputParams(GH_Component.GH_OutputParamManager

pManager)

53 {

54 pManager.AddNumberParameter("Deformations", "Def", "Tree of

Deformations", GH_ParamAccess.list);
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55 pManager.AddNumberParameter("Reaction Forces", "R", "Reaction

Forces", GH_ParamAccess.list);

56 pManager.AddNumberParameter("Applied Loads", "A", "Applied

Loads", GH_ParamAccess.list);

57 pManager.AddNumberParameter("Element stresses", "Strs", "The

Stress in each element", GH_ParamAccess.list);

58 pManager.AddNumberParameter("Element strains", "Strn", "The

Strain in each element", GH_ParamAccess.list);

59 pManager.AddGenericParameter("Matrix Deformations", "DM",

"Deformation Matrix for def. component",

GH_ParamAccess.item);

60 pManager.AddPointParameter("New Base Points", "NBP", "Nodal

points of sub elements", GH_ParamAccess.list);

61 }

62

63 protected override void SolveInstance(IGH_DataAccess DA)

64 {

65 #region Fetch input

66 //Expected inputs

67 List<Line> geometry = new List<Line>(); //Initial

Geometry of lines

68 List<string> bdctxt = new List<string>(); //Boundary

conditions in string format

69 List<string> loadtxt = new List<string>(); //loads in

string format

70 List<string> momenttxt = new List<string>(); //Moments in

string format

71 string mattxt = "";

72 int n = 1;

73

74

75 //Set expected inputs from Indata

76 if (!DA.GetDataList(0, geometry)) return; //sets

geometry

77 if (!DA.GetDataList(1, bdctxt)) return; //sets

boundary conditions as string

78 if (!DA.GetData(2, ref mattxt)) return; //sets

material properties as string

79 if (!DA.GetDataList(3, loadtxt)) return; //sets load

as string

80 if (!DA.GetDataList(4, momenttxt)) return; //sets moment

as string

81 if (!DA.GetData(5, ref n)) return; //sets number

of elements
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82 #endregion

83

84 //Interpret and set material parameters

85 double E; //Material Young’s modulus, initial value 200

000 [MPa]

86 double A; //Area for each element in same order as

geometry, initial value CFS100x100 3600 [mmˆ2]

87 double Iy; //Moment of inertia about local y axis,

initial value 4.92E6 [mmˆ4]

88 double Iz; //Moment of inertia about local z axis,

initial value 4.92E6 [mmˆ4]

89 double J; //Polar moment of inertia

90 double G; //Shear modulus, initial value 79300 [mmˆ4]

91 double v; //Poisson’s ratio, initial value 0.3

92 double alpha;

93

94

95 SetMaterial(mattxt, out E, out A, out Iy, out Iz, out J, out

G, out v, out alpha);

96

97 #region Prepares geometry, boundary conditions and loads for

calculation

98 //List all nodes (every node only once), numbering them

according to list index

99 List<Point3d> points = CreatePointList(geometry);

100

101

102 //Interpret the BDC inputs (text) and create list of boundary

condition (1/0 = free/clamped) for each dof.

103 Vector<double> bdc_value = CreateBDCList(bdctxt, points);

104

105

106 //Interpreting input load (text) and creating load list (do

uble)

107 Vector<double> load = CreateLoadList(loadtxt, momenttxt,

points);

108 #endregion

109

110 Matrix<double> def_shape, glob_strain, glob_stress;

111 Vector<double> reactions;

112 List<Point3d> oldXYZ;

113

114 List<Curve> defGeometry = new List<Curve>(); //output

deformed geometry
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115

116

117 if (startCalc)

118 {

119 #region Create global and reduced stiffness matrix

120 //Create global stiffness matrix

121 Matrix<double> K_tot = GlobalStiffnessMatrix(geometry,

points, E, A, Iy, Iz, J, G, alpha);

122

123

124 //Create reduced K-matrix and reduced load list (removed

free dofs)

125 Matrix<double> KGr;

126 Vector<double> load_red;

127 ReducedGlobalStiffnessMatrix(bdc_value, K_tot, load, out

KGr, out load_red);

128 #endregion

129

130

131 #region Calculate deformations, reaction forces and

internal strains and stresses

132 //Calculate deformations

133 Vector<double> def_red = KGr.Cholesky().Solve(load_red);

134

135

136 //Add the clamped dofs (= 0) to the deformations list

137 Vector<double> def_tot =

RestoreTotalDeformationVector(def_red, bdc_value);

138

139

140 //Calculate the reaction forces from the deformations

141 reactions = K_tot.Multiply(def_tot);

142 reactions -= load; //method for separating reactions and

applied loads

143 reactions.CoerceZero(1e-8); //removing values smaller

than 1e-8 arisen from numerical errors

144

145

146 //Interpolate deformations using shape functions

147 double y = 50;

148

149 var z = y;

150 InterpolateDeformations(def_tot, points, geometry, n, z,

y, alpha, out def_shape, out oldXYZ, out glob_strain);
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151

152

153 //Calculate stresses

154 glob_stress = E * glob_strain;

155 #endregion

156

157 }

158 else

159 {

160 #region Set outputs to zero

161 reactions = Vector<double>.Build.Dense(points.Count * 6);

162 def_shape = Matrix<double>.Build.Dense(geometry.Count, 6

* (n + 1));

163 glob_strain = def_shape;

164 glob_stress = def_shape;

165

166 oldXYZ = new List<Point3d>();

167 #endregion

168 }

169

170 #region Format output

171 double[] def = new double[def_shape.RowCount *

def_shape.ColumnCount];

172 for (int i = 0; i < def_shape.RowCount; i++)

173 {

174 for (int j = 0; j < def_shape.ColumnCount; j++)

175 {

176 def[i* def_shape.ColumnCount + j] = def_shape[i, j];

177 }

178 }

179

180 double[] strain = new double[glob_strain.RowCount *

glob_strain.ColumnCount];

181 double[] stress = new double[glob_stress.RowCount *

glob_stress.ColumnCount];

182 for (int i = 0; i < glob_stress.RowCount; i++)

183 {

184 for (int j = 0; j < glob_stress.ColumnCount; j++)

185 {

186 stress[i * glob_stress.ColumnCount + j] =

glob_stress[i, j];

187 strain[i * glob_stress.ColumnCount + j] =

glob_strain[i, j];

188 }
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189 }

190 #endregion

191

192 DA.SetDataList(0, def);

193 DA.SetDataList(1, reactions);

194 DA.SetDataList(2, load);

195 DA.SetDataList(3, stress);

196 DA.SetDataList(4, strain);

197 DA.SetData(5, def_shape);

198 DA.SetDataList(6, oldXYZ);

199

200 } //End of main component

201

202 private void InterpolateDeformations(Vector<double> def,

List<Point3d> points, List<Line> geometry, int n, double

height, double width, double alpha, out Matrix<double>

def_shape, out List<Point3d> oldXYZ, out Matrix<double>

glob_strain)

203 {

204 def_shape = Matrix<double>.Build.Dense(geometry.Count, (n +

1) * 6);

205 glob_strain = Matrix<double>.Build.Dense(geometry.Count, (n +

1) * 3);

206 Matrix<double> N, dN;

207 Vector<double> u = Vector<double>.Build.Dense(12);

208 oldXYZ = new List<Point3d>();

209 for (int i = 0; i < geometry.Count; i++)

210 {

211 //fetches index of original start and endpoint

212 Point3d p1 = new Point3d(Math.Round(geometry[i].From.X,

4), Math.Round(geometry[i].From.Y, 4),

Math.Round(geometry[i].From.Z, 4));

213 Point3d p2 = new Point3d(Math.Round(geometry[i].To.X, 4),

Math.Round(geometry[i].To.Y, 4),

Math.Round(geometry[i].To.Z, 4));

214 int i1 = points.IndexOf(p1);

215 int i2 = points.IndexOf(p2);

216 //create 12x1 deformation vector for element (6dofs),

scaled and populated with existing deformations

217 for (int j = 0; j < 6; j++)

218 {

219 u[j] = def[i1 * 6 + j];

220 u[j + 6] = def[i2 * 6 + j];

221 }
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222

223 //interpolate points between startNode and endNode of

undeformed (main) element

224 List<Point3d> tempOld = InterpolatePoints(geometry[i], n);

225

226 double L = points[i1].DistanceTo(points[i2]); //L is

distance from startnode to endnode

227

228 //Calculate 6 dofs for all new elements using shape

functions (n+1 elements)

229 Matrix<double> disp = Matrix<double>.Build.Dense(n + 1,

4);

230 Matrix<double> rot = Matrix<double>.Build.Dense(n + 1, 4);

231

232 //to show scaled deformations

233 Matrix<double> scaled_disp = Matrix<double>.Build.Dense(n

+ 1, 3);

234

235 //transform to local coords

236 var tf = TransformationMatrix(geometry[i].From,

geometry[i].To, alpha);

237 var T = tf.DiagonalStack(tf);

238 T = T.DiagonalStack(T);

239 u = T * u;

240

241 double x = 0;

242 for (int j = 0; j < n + 1; j++)

243 {

244 DisplacementField_NB(L, x, out N, out dN);

245

246 disp.SetRow(j, N.Multiply(u));

247 rot.SetRow(j, dN.Multiply(u));

248

249 var d0 = new double[] { disp[j, 0], disp[j, 1],

disp[j, 2] };

250 var r0 = new double[] { disp[j, 3], rot[j, 2], rot[j,

1] };

251 var t0 = ToGlobal(d0, r0, tf);

252

253 disp.SetRow(j, new double[] { t0[0], t0[1], t0[2],

t0[3] });

254 rot.SetRow(j, new double[] { rot[j, 0], t0[5], t0[4],

rot[j, 3] });

255 x += L / n;
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256 }

257 oldXYZ.AddRange(tempOld);

258

259 //add deformation to def_shape (convert from i = nodal

number to i = element number)

260 def_shape.SetRow(i, SetDef(n + 1, disp, rot));

261

262 glob_strain.SetRow(i, CalculateStrain(n, height, width,

u, tf, L, def_shape)); //set strains for all

subelement in current element to row i

263 }

264 }

265

266 private Vector<double> CalculateStrain(int n, double height,

double width, Vector<double> u, Matrix<double> tf, double L,

Matrix<double> def)

267 {

268 Matrix<double> dN, ddN;

269 double x = 0;

270 var strains = Vector<double>.Build.Dense((n + 1) * 3);

//contains all subelement strains (only for one element)

271 for (int j = 0; j < n + 1; j++)

272 {

273 DisplacementField_ddN(L, x, out ddN);

274 DisplacementField_dN(L, x, out dN);

275

276 //u and N are in local coordinates

277 var tmp1 = dN * u; //tmp1 = du_x, du_y, du_z, dtheta_x

278 var tmp2 = ddN * u; //tmp2 = ddu_x/dx, ddu_y/dx,

ddu_z_dx, ddtheta_x/dx

279

280 strains[j * 3] = tmp1[0];

281 strains[j * 3 + 1] = height * tmp2[2];

282 strains[j * 3 + 2] = width * tmp2[1];

283

284 x += L / n;

285 }

286 return strains;

287 }

288

289 private Vector<double> ToGlobal(double[] d, double[] r,

Matrix<double> tf)

290 {

291 var dr = Vector<double>.Build.Dense(6);
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292 for (int i = 0; i < 3; i++)

293 {

294 dr[i] = d[i];

295 dr[i + 3] = r[i];

296 }

297 tf = tf.DiagonalStack(tf);

298

299 dr = tf.Transpose() * dr;

300 return dr;

301 }

302

303 private double[] SetDef(int m, Matrix<double> disp,

Matrix<double> rot)

304 {

305 //m == n+1

306 double[] def_e = new double[m * 6];

307 for (int i = 0; i < m; i++)

308 {

309 //add displacements in x,y,z

310 def_e[i * 6 + 0] = disp[i, 0];

311 def_e[i * 6 + 1] = disp[i, 1];

312 def_e[i * 6 + 2] = disp[i, 2];

313 //add rotations

314 def_e[i * 6 + 3] = disp[i, 3];

315 def_e[i * 6 + 4] = rot[i, 2]; //theta_y = d_uz/d_x

316 def_e[i * 6 + 5] = rot[i, 1]; //theta_z = d_uy/d_x

317 }

318 return def_e;

319 }

320

321 private List<Point3d> InterpolatePoints(Line line, int n)

322 {

323 List<Point3d> tempP = new List<Point3d>(n + 1);

324 double[] t = LinSpace(0, 1, n + 1);

325 for (int i = 0; i < t.Length; i++)

326 {

327 var tPm = new Point3d();

328 tPm.Interpolate(line.From, line.To, t[i]);

329 tPm = new Point3d(Math.Round(tPm.X, 4), Math.Round(tPm.Y,

4), Math.Round(tPm.Z, 4));

330 tempP.Add(tPm);

331 }

332 return tempP;

333 }

10



334

335 private static double[] LinSpace(double x1, double x2, int n)

336 {

337 //Generate a 1-D array of linearly spaced values

338 double step = (x2 - x1) / (n - 1);

339 double[] y = new double[n];

340 for (int i = 0; i < n; i++)

341 {

342 y[i] = x1 + step * i;

343 }

344 return y;

345 }

346

347 private void DisplacementField_NB(double L, double x, out

Matrix<double> N, out Matrix<double> dN)

348 {

349 double N1 = 1 - x / L;

350 double N2 = x / L;

351 double N3 = 1 - 3 * Math.Pow(x, 2) / Math.Pow(L, 2) + 2 *

Math.Pow(x, 3) / Math.Pow(L, 3);

352 double N4 = x - 2 * Math.Pow(x, 2) / L + Math.Pow(x, 3) /

Math.Pow(L, 2);

353 double N5 = -N3 + 1;//3 * Math.Pow(x, 2) / Math.Pow(L, 2) - 2

* Math.Pow(x, 3) / Math.Pow(L, 3);

354 double N6 = Math.Pow(x, 3) / Math.Pow(L, 2) - Math.Pow(x, 2)

/ L;

355

356 N = Matrix<double>.Build.DenseOfArray(new double[,] {

357 { N1, 0, 0, 0, 0, 0, N2, 0, 0, 0, 0, 0},

358 { 0, N3, 0, 0, 0, N4, 0, N5, 0, 0, 0, N6 },

359 { 0, 0, N3, 0, -N4, 0, 0, 0, N5, 0, -N6, 0},

360 { 0, 0, 0, N1, 0, 0, 0, 0, 0, N2, 0, 0} });

361

362 //u = [u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12]

363 //u = [ux, uy, uz, theta_x]

364

365 double dN1 = -1 / L;

366 double dN2 = 1 / L;

367 double dN3 = -6 * x / Math.Pow(L, 2) + 6 * Math.Pow(x, 2) /

Math.Pow(L, 3);

368 double dN4 = 3 * Math.Pow(x, 2) / Math.Pow(L, 2) - 4 * x / L

+ 1;

369 double dN5 = -dN3;//6 * x / Math.Pow(L, 2) - 6 * Math.Pow(x,

2) / Math.Pow(L, 3);
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370 double dN6 = 3 * Math.Pow(x, 2) / Math.Pow(L, 2) - 2 * x / L;

371

372 dN = Matrix<double>.Build.DenseOfArray(new double[,] {

373 { dN1, 0, 0, 0, 0, 0, dN2, 0, 0, 0, 0,

0},

374 { 0, dN3, 0, 0, 0, dN4, 0, dN5, 0, 0, 0,

dN6 },

375 { 0, 0, dN3, 0, dN4, 0, 0, 0,dN5, 0, dN6,

0},

376 //{ 0, 0, dN3, 0, -dN4, 0, 0, 0,dN5, 0,

-dN6, 0},

377 { 0, 0, 0, dN1, 0, 0, 0, 0, 0, dN2, 0,

0} });

378

379 //theta_y = du_z/dx

380 //theta_z = du_y/dx

381 }

382

383 private void DisplacementField_dN(double L, double x, out

Matrix<double> dN)

384 {

385 double dN1 = -1 / L;

386 double dN2 = 1 / L;

387 double dN3 = -6 * x / Math.Pow(L, 2) + 6 * Math.Pow(x, 2) /

Math.Pow(L, 3);

388 double dN4 = 3 * Math.Pow(x, 2) / Math.Pow(L, 2) - 4 * x / L

+ 1;

389 double dN5 = -dN3;//6 * x / Math.Pow(L, 2) - 6 * Math.Pow(x,

2) / Math.Pow(L, 3);

390 double dN6 = 3 * Math.Pow(x, 2) / Math.Pow(L, 2) - 2 * x / L;

391

392 dN = Matrix<double>.Build.DenseOfArray(new double[,] {

393 { dN1, 0, 0, 0, 0, 0, dN2, 0, 0, 0, 0,

0},

394 { 0, dN3, 0, 0, 0, dN4, 0, dN5, 0, 0, 0,

dN6 },

395 { 0, 0, dN3, 0, dN4, 0, 0, 0,dN5, 0, dN6,

0},

396 { 0, 0, 0, dN1, 0, 0, 0, 0, 0, dN2, 0,

0} });

397

398 //theta_y = du_z/dx

399 //theta_z = du_y/dx

400 }
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401

402 private void DisplacementField_ddN(double L, double x, out

Matrix<double> ddN)

403 {

404 double ddN1 = 0;

405 double ddN2 = 0;

406 double ddN3 = -6 / Math.Pow(L, 2) + 12 * x / Math.Pow(L, 3);

407 double ddN4 = -4 / L + 6 * x / Math.Pow(L, 2);

408 double ddN5 = 6 / Math.Pow(L, 2) - 12 * x / Math.Pow(L, 3);

409 double ddN6 = 6 * x / Math.Pow(L, 2) - 2 / L;

410

411 ddN = Matrix<double>.Build.DenseOfArray(new double[,] {

412 { ddN1, 0, 0, 0, 0, 0, ddN2, 0, 0, 0, 0, 0},

413 { 0, ddN3, 0, 0, 0, ddN4, 0, ddN5, 0, 0, 0, ddN6 },

414 { 0, 0, ddN3, 0, -ddN4, 0, 0, 0, ddN5, 0, -ddN6, 0},

415 { 0, 0, 0, ddN1, 0, 0, 0, 0, 0, ddN2, 0, 0}

416 });

417 }

418

419 private Vector<double>

RestoreTotalDeformationVector(Vector<double>

deformations_red, Vector<double> bdc_value)

420 {

421 Vector<double> def =

Vector<double>.Build.Dense(bdc_value.Count);

422 for (int i = 0, j = 0; i < bdc_value.Count; i++)

423 {

424 //if deformation has been calculated, it is added to the

vector. Otherwise, the deformation is zero.

425 if (bdc_value[i] == 1)

426 {

427 def[i] = deformations_red[j];

428 j++;

429 }

430 }

431 return def;

432 }

433

434 private void ReducedGlobalStiffnessMatrix(Vector<double>

bdc_value, Matrix<double> K, Vector<double> load, out

Matrix<double> KGr, out Vector<double> load_red)

435 {

436 int oldRC = load.Count;

437 int newRC = Convert.ToInt16(bdc_value.Sum());
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438 KGr = Matrix<double>.Build.Dense(newRC, newRC);

439 load_red = Vector<double>.Build.Dense(newRC, 0);

440 for (int i = 0, ii = 0; i < oldRC; i++)

441 {

442 //is bdc_value in row i free?

443 if (bdc_value[i] == 1)

444 {

445 for (int j = 0, jj = 0; j <= i; j++)

446 {

447 //is bdc_value in col j free?

448 if (bdc_value[j] == 1)

449 {

450 //if yes, then add to new K

451 KGr[i - ii, j - jj] = K[i, j];

452 KGr[j - jj, i - ii] = K[i, j];

453 }

454 else

455 {

456 //if not, remember to skip 1 column when

adding next time (default matrix value is

0)

457 jj++;

458 }

459 }

460 //add load to reduced list

461 load_red[i - ii] = load[i];

462 }

463 else

464 {

465 //if not, remember to skip 1 row when adding next

time (default matrix value is 0)

466 ii++;

467 }

468 }

469 }

470

471 private Matrix<double> TransformationMatrix(Point3d p1, Point3d

p2, double alpha)

472 {

473 double L = p1.DistanceTo(p2);

474

475 double cx = (p2.X - p1.X) / L;

476 double cy = (p2.Y - p1.Y) / L;

477 double cz = (p2.Z - p1.Z) / L;
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478 double c1 = Math.Cos(alpha);

479 double s1 = Math.Sin(alpha);

480 double cxz = Math.Round(Math.Sqrt(Math.Pow(cx, 2) +

Math.Pow(cz, 2)), 6);

481

482 Matrix<double> t;

483

484 if (Math.Round(cx, 6) == 0 && Math.Round(cz, 6) == 0)

485 {

486 t = Matrix<double>.Build.DenseOfArray(new double[,]

487 {

488 { 0, cy, 0},

489 { -cy*c1, 0, s1},

490 { cy*s1, 0, c1},

491 });

492 }

493 else

494 {

495 t = Matrix<double>.Build.DenseOfArray(new double[,]

496 {

497 { cx, cy,

cz},

498 {(-cx*cy*c1 - cz*s1)/cxz,

cxz*c1,(-cy*cz*c1+cx*s1)/cxz},

499 { (cx*cy*s1-cz*c1)/cxz, -cxz*s1,

(cy*cz*s1+cx*c1)/cxz},

500 });

501 }

502 return t;

503 }

504

505 private void ElementStiffnessMatrix(Line currentLine, double E,

double A, double Iy, double Iz, double J, double G, double

alpha, out Point3d p1, out Point3d p2, out Matrix<double> Ke)

506 {

507 double L = Math.Round(currentLine.Length, 6);

508

509 p1 = new Point3d(Math.Round(currentLine.From.X, 4),

Math.Round(currentLine.From.Y, 4),

Math.Round(currentLine.From.Z, 4));

510 p2 = new Point3d(Math.Round(currentLine.To.X, 4),

Math.Round(currentLine.To.Y, 4),

Math.Round(currentLine.To.Z, 4));

511
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512 Matrix<double> tf = TransformationMatrix(p1, p2, alpha);

513 var T = tf.DiagonalStack(tf);

514 T = T.DiagonalStack(T);

515

516 Matrix<double> T_T = T.Transpose();

517

518 double A1 = (E * A) / (L);

519

520 double kz1 = (12 * E * Iz) / (L * L * L);

521 double kz2 = (6 * E * Iz) / (L * L);

522 double kz3 = (4 * E * Iz) / L;

523 double kz4 = (2 * E * Iz) / L;

524

525 double ky1 = (12 * E * Iy) / (L * L * L);

526 double ky2 = (6 * E * Iy) / (L * L);

527 double ky3 = (4 * E * Iy) / L;

528 double ky4 = (2 * E * Iy) / L;

529

530 double C1 = (G * J) / L;

531

532 Matrix<double> ke = DenseMatrix.OfArray(new double[,]

533 {

534 { A1, 0, 0, 0, 0, 0, -A1, 0, 0,

0, 0, 0 },

535 { 0, kz1, 0, 0, 0, kz2, 0, -kz1, 0,

0, 0, kz2 },

536 { 0, 0, ky1, 0, -ky2, 0, 0, 0, -ky1,

0, -ky2, 0 },

537 { 0, 0, 0, C1, 0, 0, 0, 0, 0,

-C1, 0, 0 },

538 { 0, 0, -ky2, 0, ky3, 0, 0, 0, ky2,

0, ky4, 0 },

539 { 0, kz2, 0, 0, 0, kz3, 0, -kz2, 0,

0, 0, kz4 },

540 {-A1, 0, 0, 0, 0, 0, A1, 0, 0,

0, 0, 0 },

541 { 0, -kz1, 0, 0, 0, -kz2, 0, kz1, 0,

0, 0, -kz2 },

542 { 0, 0, -ky1, 0, ky2, 0, 0, 0, ky1,

0, ky2, 0 },

543 { 0, 0, 0, -C1, 0, 0, 0, 0, 0,

C1, 0, 0 },

544 { 0, 0, -ky2, 0, ky4, 0, 0, 0, ky2,

0, ky3, 0 },
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545 { 0, kz2, 0, 0, 0, kz4, 0, -kz2, 0,

0, 0, kz3 },

546 });

547

548 ke = ke.Multiply(T);

549 Ke = T_T.Multiply(ke);

550 }

551

552 private Matrix<double> GlobalStiffnessMatrix(List<Line> geometry,

List<Point3d> points, double E, double A, double Iy, double

Iz, double J, double G, double alpha)

553 {

554 int gdofs = points.Count * 6;

555 Matrix<double> KG = DenseMatrix.OfArray(new double[gdofs,

gdofs]);

556

557 foreach (Line currentLine in geometry)

558 {

559 Matrix<double> Ke;

560 Point3d p1, p2;

561

562 //Calculate Ke

563 ElementStiffnessMatrix(currentLine, E, A, Iy, Iz, J, G,

alpha, out p1, out p2, out Ke);

564

565 //Fetch correct point indices

566 int node1 = points.IndexOf(p1);

567 int node2 = points.IndexOf(p2);

568

569 //Inputting Ke to correct entries in Global Stiffness

Matrix

570 for (int i = 0; i < Ke.RowCount / 2; i++)

571 {

572 for (int j = 0; j < Ke.ColumnCount / 2; j++)

573 {

574 //top left 3x3 of k-element matrix

575 KG[node1 * 6 + i, node1 * 6 + j] += Ke[i, j];

576 //top right 3x3 of k-element matrix

577 KG[node1 * 6 + i, node2 * 6 + j] += Ke[i, j + 6];

578 //bottom left 3x3 of k-element matrix

579 KG[node2 * 6 + i, node1 * 6 + j] += Ke[i + 6, j];

580 //bottom right 3x3 of k-element matrix

581 KG[node2 * 6 + i, node2 * 6 + j] += Ke[i + 6, j +

6];
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582 }

583 }

584 }

585 return KG;

586 }

587

588 private Vector<double> CreateLoadList(List<string> loadtxt,

List<string> momenttxt, List<Point3d> points)

589 {

590 Vector<double> loads =

Vector<double>.Build.Dense(points.Count * 6);

591 List<double> inputLoads = new List<double>();

592 List<Point3d> coordlist = new List<Point3d>();

593

594 for (int i = 0; i < loadtxt.Count; i++)

595 {

596 string coordstr = (loadtxt[i].Split(’:’)[0]);

597 string loadstr = (loadtxt[i].Split(’:’)[1]);

598

599 string[] coordstr1 = (coordstr.Split(’,’));

600 string[] loadstr1 = (loadstr.Split(’,’));

601

602 inputLoads.Add(Math.Round(double.Parse(loadstr1[0]), 4));

603 inputLoads.Add(Math.Round(double.Parse(loadstr1[1]), 4));

604 inputLoads.Add(Math.Round(double.Parse(loadstr1[2]), 4));

605

606 coordlist.Add(new

Point3d(Math.Round(double.Parse(coordstr1[0]), 4),

Math.Round(double.Parse(coordstr1[1]), 4),

Math.Round(double.Parse(coordstr1[2]), 4)));

607 }

608

609 foreach (Point3d point in coordlist)

610 {

611 int i = points.IndexOf(point);

612 int j = coordlist.IndexOf(point);

613 loads[i * 6 + 0] = inputLoads[j * 3 + 0]; //is loads out

of range? (doesn’t seem to have been initialized with

size yet)

614 loads[i * 6 + 1] = inputLoads[j * 3 + 1];

615 loads[i * 6 + 2] = inputLoads[j * 3 + 2];

616 }

617 inputLoads.Clear();

618 coordlist.Clear();
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619 for (int i = 0; i < momenttxt.Count; i++) if (momenttxt[0] !=

"")

620 {

621 string coordstr = (momenttxt[i].Split(’:’)[0]);

622 string loadstr = (momenttxt[i].Split(’:’)[1]);

623

624 string[] coordstr1 = (coordstr.Split(’,’));

625 string[] loadstr1 = (loadstr.Split(’,’));

626

627 inputLoads.Add(Math.Round(double.Parse(loadstr1[0]),

4));

628 inputLoads.Add(Math.Round(double.Parse(loadstr1[1]),

4));

629 inputLoads.Add(Math.Round(double.Parse(loadstr1[2]),

4));

630

631

632 coordlist.Add(new

Point3d(Math.Round(double.Parse(coordstr1[0]),

4), Math.Round(double.Parse(coordstr1[1]), 4),

Math.Round(double.Parse(coordstr1[2]), 4)));

633 }

634

635 foreach (Point3d point in coordlist)

636 {

637 int i = points.IndexOf(point);

638 int j = coordlist.IndexOf(point);

639 loads[i * 6 + 3] = inputLoads[j * 3 + 0];

640 loads[i * 6 + 4] = inputLoads[j * 3 + 1];

641 loads[i * 6 + 5] = inputLoads[j * 3 + 2];

642 }

643 return loads;

644 }

645

646 private Vector<double> CreateBDCList(List<string> bdctxt,

List<Point3d> points)

647 {

648 //initializing bdc_value as vector of size gdofs, and entry

values = 1

649 Vector<double> bdc_value = Vector.Build.Dense(points.Count *

6, 1);

650 List<int> bdcs = new List<int>();

651 List<Point3d> bdc_points = new List<Point3d>(); //Coordinates

relating til bdc_value in for (eg. x y z)
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652

653 //Parse string input

654 for (int i = 0; i < bdctxt.Count; i++)

655 {

656 string coordstr = (bdctxt[i].Split(’:’)[0]);

657 string bdcstr = (bdctxt[i].Split(’:’)[1]);

658

659 string[] coordstr1 = (coordstr.Split(’,’));

660 string[] bdcstr1 = (bdcstr.Split(’,’));

661

662 bdc_points.Add(new

Point3d(Math.Round(double.Parse(coordstr1[0]), 4),

Math.Round(double.Parse(coordstr1[1]), 4),

Math.Round(double.Parse(coordstr1[2]), 4)));

663

664 bdcs.Add(int.Parse(bdcstr1[0]));

665 bdcs.Add(int.Parse(bdcstr1[1]));

666 bdcs.Add(int.Parse(bdcstr1[2]));

667 bdcs.Add(int.Parse(bdcstr1[3]));

668 bdcs.Add(int.Parse(bdcstr1[4]));

669 bdcs.Add(int.Parse(bdcstr1[5]));

670 }

671

672 //Format to correct entries in bdc_value

673 foreach (var point in bdc_points)

674 {

675 int globalI = points.IndexOf(point);

676 int localI = bdc_points.IndexOf(point);

677 bdc_value[globalI * 6 + 0] = bdcs[localI * 6 + 0];

678 bdc_value[globalI * 6 + 1] = bdcs[localI * 6 + 1];

679 bdc_value[globalI * 6 + 2] = bdcs[localI * 6 + 2];

680 bdc_value[globalI * 6 + 3] = bdcs[localI * 6 + 3];

681 bdc_value[globalI * 6 + 4] = bdcs[localI * 6 + 4];

682 bdc_value[globalI * 6 + 5] = bdcs[localI * 6 + 5];

683 }

684 return bdc_value;

685 }

686

687 private void SetMaterial(string mattxt, out double E, out double

A, out double Iy, out double Iz, out double J, out double G,

out double v, out double alpha)

688 {

689 string[] matProp = (mattxt.Split(’,’));

690
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691 E = (Math.Round(double.Parse(matProp[0]), 2));

692 A = (Math.Round(double.Parse(matProp[1]), 2));

693 Iy = (Math.Round(double.Parse(matProp[2]), 2));

694 Iz = (Math.Round(double.Parse(matProp[3]), 2));

695 v = (Math.Round(double.Parse(matProp[4]), 2));

696 G = E / (2 * (1 + Math.Pow(v, 2)));

697 alpha = (Math.Round(double.Parse(matProp[5]),

2))*Math.PI/180; //to radians

698

699 J = Iy + Iz;

700 }

701

702 private List<Point3d> CreatePointList(List<Line> geometry)

703 {

704 List<Point3d> points = new List<Point3d>();

705 foreach (Line line in geometry) //adds point unless it

already exists in pointlist

706 {

707 Point3d tempFrom = new Point3d(Math.Round(line.From.X,

4), Math.Round(line.From.Y, 4),

Math.Round(line.From.Z, 4));

708 Point3d tempTo = new Point3d(Math.Round(line.To.X, 4),

Math.Round(line.To.Y, 4), Math.Round(line.To.Z, 4));

709

710 if (!points.Contains(tempFrom))

711 {

712 points.Add(tempFrom);

713 }

714 if (!points.Contains(tempTo))

715 {

716 points.Add(tempTo);

717 }

718 }

719 return points;

720 }

721

722 protected override System.Drawing.Bitmap Icon

723 {

724 get

725 {

726 return Properties.Resources.Calc;

727 }

728 }

729
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730 public override Guid ComponentGuid

731 {

732 get { return new

Guid("d636ebc9-0d19-44d5-a3ad-cec704b82323"); }

733 }

734

735

736 /// Component Visual//

737 public class Attributes_Custom :

Grasshopper.Kernel.Attributes.GH_ComponentAttributes

738 {

739 public Attributes_Custom(GH_Component owner) : base(owner) { }

740 protected override void Layout()

741 {

742 base.Layout();

743

744 Rectangle rec0 = GH_Convert.ToRectangle(Bounds);

745

746 rec0.Height += 22;

747

748 Rectangle rec1 = rec0;

749 rec1.X = rec0.Left + 1;

750 rec1.Y = rec0.Bottom - 22;

751 rec1.Width = (rec0.Width) / 3 + 1;

752 rec1.Height = 22;

753 rec1.Inflate(-2, -2);

754

755 Bounds = rec0;

756 ButtonBounds = rec1;

757

758 }

759

760 GH_Palette xColor = GH_Palette.Grey;

761

762 private Rectangle ButtonBounds { get; set; }

763

764 protected override void Render(GH_Canvas canvas, Graphics

graphics, GH_CanvasChannel channel)

765 {

766 base.Render(canvas, graphics, channel);

767 if (channel == GH_CanvasChannel.Objects)

768 {

769 GH_Capsule button =

GH_Capsule.CreateTextCapsule(ButtonBounds,
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ButtonBounds, xColor, "Run", 3, 0);

770 button.Render(graphics, Selected, false, false);

771 button.Dispose();

772 }

773 }

774

775 public override GH_ObjectResponse

RespondToMouseDown(GH_Canvas sender, GH_CanvasMouseEvent

e)

776 {

777 if (e.Button == MouseButtons.Left)

778 {

779 RectangleF rec = ButtonBounds;

780 if (rec.Contains(e.CanvasLocation))

781 {

782 switchColor("Run");

783 if (xColor == GH_Palette.Black) {

CalcComponent.setStart("Run", true);

Owner.ExpireSolution(true); }

784 if (xColor == GH_Palette.Grey) {

CalcComponent.setStart("Run", false); }

785 sender.Refresh();

786 return GH_ObjectResponse.Handled;

787 }

788 }

789 return base.RespondToMouseDown(sender, e);

790 }

791

792 private void switchColor(string button)

793 {

794 if (button == "Run")

795 {

796 if (xColor == GH_Palette.Black) { xColor =

GH_Palette.Grey; }

797 else { xColor = GH_Palette.Black; }

798 }

799 }

800 }

801 }

802 }

3D Beam SetLoads Component
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1 using System;

2 using System.Collections.Generic;

3

4 using Grasshopper.Kernel;

5 using Rhino.Geometry;

6

7 namespace Beam3D

8 {

9 public class SetLoads : GH_Component

10 {

11 public SetLoads()

12 : base("SetLoads", "SL",

13 "Description",

14 "Koala", "3D Beam")

15 {

16 }

17 protected override void

RegisterInputParams(GH_Component.GH_InputParamManager

pManager)

18 {

19 pManager.AddPointParameter("Points", "P", "Points to apply

load(s)", GH_ParamAccess.list);

20 pManager.AddNumberParameter("Load", "L", "Load originally

given i Newtons (N), give one load for all points or list

of loads for each point", GH_ParamAccess.list);

21 pManager.AddNumberParameter("angle (xz)", "axz", "give angle

for load in xz plane", GH_ParamAccess.list, 90);

22 pManager.AddNumberParameter("angle (xy)", "axy", "give angle

for load in xy plane", GH_ParamAccess.list, 0);

23 }

24

25 protected override void

RegisterOutputParams(GH_Component.GH_OutputParamManager

pManager)

26 {

27 pManager.AddTextParameter("PointLoads", "PL", "PointLoads

formatted for Truss Calculation", GH_ParamAccess.list);

28 }

29

30 protected override void SolveInstance(IGH_DataAccess DA)

31 {

32 #region Fetch inputs

33 //Expected inputs and output
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34 List<Point3d> pointList = new List<Point3d>();

//List of points where load will be applied

35 List<double> loadList = new List<double>();

//List or value of load applied

36 List<double> anglexz = new List<double>();

//Initial xz angle 90, angle from x axis in xz plane for

load

37 List<double> anglexy = new List<double>();

//Initial xy angle 0, angle from x axis in xy plane for

load

38 List<string> pointInStringFormat = new List<string>();

//preallocate final string output

39

40 //Set expected inputs from Indata

41 if (!DA.GetDataList(0, pointList)) return;

42 if (!DA.GetDataList(1, loadList)) return;

43 DA.GetDataList(2, anglexz);

44 DA.GetDataList(3, anglexy);

45 #endregion

46

47 #region Format pointloads

48 //initialize temporary stringline and load vectors

49 string vectorString;

50 double load = 0;

51 double xvec = 0;

52 double yvec = 0;

53 double zvec = 0;

54

55 if (loadList.Count == 1 && anglexz.Count == 1)

//loads and angles are identical for all points

56 {

57 load = -1 * loadList[0];

//negativ load for z-dir

58 xvec = Math.Round(load * Math.Cos(anglexz[0] * Math.PI /

180) * Math.Cos(anglexy[0] * Math.PI / 180), 4);

59 yvec = Math.Round(load * Math.Cos(anglexz[0] * Math.PI /

180) * Math.Sin(anglexy[0] * Math.PI / 180), 4);

60 zvec = Math.Round(load * Math.Sin(anglexz[0] * Math.PI /

180), 4);

61

62 vectorString = xvec + "," + yvec + "," + zvec;

63 for (int i = 0; i < pointList.Count; i++)

//adds identical load to all points in pointList

64 {
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65 pointInStringFormat.Add(pointList[i].X + "," +

pointList[i].Y + "," + pointList[i].Z + ":" +

vectorString);

66 }

67 }

68 else //loads and angles may be different => calculate new

xvec, yvec, zvec for all loads

69 {

70 for (int i = 0; i < pointList.Count; i++)

71 {

72 if (loadList.Count < i) //if pointlist is

larger than loadlist, set last load value in

remaining points

73 {

74 vectorString = xvec + "," + yvec + "," + zvec;

75 }

76 else

77 {

78 load = -1 * loadList[i]; //negative load

for z-dir

79

80 xvec = Math.Round(load * Math.Cos(anglexz[i]) *

Math.Cos(anglexy[i]), 4);

81 yvec = Math.Round(load * Math.Cos(anglexz[i]) *

Math.Sin(anglexy[i]), 4);

82 zvec = Math.Round(load * Math.Sin(anglexz[i]), 4);

83

84 vectorString = xvec + "," + yvec + "," + zvec;

85 }

86

87 pointInStringFormat.Add(pointList[i].X + "," +

pointList[i].Y + "," + pointList[i].Z + ":" +

vectorString);

88 }

89 }

90 #endregion

91

92 //Set output data

93 DA.SetDataList(0, pointInStringFormat);

94 }

95

96 protected override System.Drawing.Bitmap Icon

97 {

98 get
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99 {

100 return Properties.Resources.Pointloads;

101 }

102 }

103

104 public override Guid ComponentGuid

105 {

106 get { return new

Guid("97664d05-2d53-4d61-a027-b71beebb9f48"); }

107 }

108 }

109 }

3D Beam SetMoments Component

1 using System;

2 using System.Collections.Generic;

3

4 using Grasshopper.Kernel;

5 using Rhino.Geometry;

6 using System.Drawing;

7 using Grasshopper.GUI.Canvas;

8 using System.Windows.Forms;

9 using Grasshopper.GUI;

10

11 namespace Beam3D

12 {

13 public class SetMoments : GH_Component

14 {

15 public SetMoments()

16 : base("SetMoments", "Nickname",

17 "Description",

18 "Koala", "3D Beam")

19 {

20 }

21 //Initialize moments

22 static int mx;

23 static int my;

24 static int mz;

25

26

27 //Method to allow c hanging of variables via GUI (see Component

Visual)

27



28 public static void setMom(string s, int i)

29 {

30 if (s == "MX")

31 {

32 mx = i;

33 }

34 else if (s == "MY")

35 {

36 my = i;

37 }

38 else if (s == "MZ")

39 {

40 mz = i;

41 }

42 }

43

44 public override void CreateAttributes()

45 {

46 m_attributes = new Attributes_Custom(this);

47 }

48

49 protected override void

RegisterInputParams(GH_Component.GH_InputParamManager

pManager)

50 {

51 pManager.AddPointParameter("Points", "P", "Points to apply

moment", GH_ParamAccess.list);

52 pManager.AddNumberParameter("Moment", "M", "Moment Magnitude

[kNm]", GH_ParamAccess.list);

53 }

54

55 protected override void

RegisterOutputParams(GH_Component.GH_OutputParamManager

pManager)

56 {

57 pManager.AddTextParameter("MomentLoads", "ML", "MomentLoads

formatted for Beam Calculation", GH_ParamAccess.list);

58 }

59

60 protected override void SolveInstance(IGH_DataAccess DA)

61 {

62 #region Fetch inputs

63 //Expected inputs and output

64 List<Point3d> pointList = new List<Point3d>();
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//List of points where load will be applied

65 List<double> momentList = new List<double>();

//List or value of load applied

66 List<string> pointInStringFormat = new List<string>();

//preallocate final string output

67

68 //Set expected inputs from Indata

69 if (!DA.GetDataList(0, pointList)) return;

70 if (!DA.GetDataList(1, momentList)) return;

71 #endregion

72

73 #region Format output

74 string vectorString;

75

76 for (int i = 0, j = 0; i < pointList.Count; i++) //Format

stringline for all points (identical boundary conditions

for all points)

77 {

78 vectorString = momentList[j] * mx + "," +

momentList[j] * my + "," + momentList[j] * mz;

79 pointInStringFormat.Add(pointList[i].X + "," +

pointList[i].Y + "," + pointList[i].Z + ":" +

vectorString);

80 if (j < momentList.Count - 1)

81 {

82 j++;

83 }

84 }

85 #endregion

86

87 //Set output data

88 DA.SetDataList(0, pointInStringFormat);

89 }

90

91 protected override System.Drawing.Bitmap Icon

92 {

93 get

94 {

95 return Properties.Resources.Moments;

96 }

97 }

98

99 public override Guid ComponentGuid

100 {
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101 get { return new

Guid("540c5cd8-b017-45d3-b3d1-cb1bf0c9051c"); }

102 }

103

104 /// Component Visual//

105 public class Attributes_Custom :

Grasshopper.Kernel.Attributes.GH_ComponentAttributes

106 {

107 public Attributes_Custom(GH_Component owner) : base(owner) { }

108 protected override void Layout()

109 {

110 base.Layout();

111

112 Rectangle rec0 = GH_Convert.ToRectangle(Bounds);

113

114 rec0.Height += 22;

115

116 Rectangle rec1 = rec0;

117 rec1.X = rec0.Left + 1;

118 rec1.Y = rec0.Bottom - 22;

119 rec1.Width = (rec0.Width) / 3 + 1;

120 rec1.Height = 22;

121 rec1.Inflate(-2, -2);

122

123 Rectangle rec2 = rec1;

124 rec2.X = rec1.Right + 2;

125

126 Rectangle rec3 = rec2;

127 rec3.X = rec2.Right + 2;

128

129 BoundsAllButtons = rec0;

130 Bounds = rec0;

131 ButtonBounds = rec1;

132 ButtonBounds2 = rec2;

133 ButtonBounds3 = rec3;

134 }

135

136 GH_Palette xColor = GH_Palette.Grey;

137 GH_Palette yColor = GH_Palette.Grey;

138 GH_Palette zColor = GH_Palette.Grey;

139

140 private Rectangle BoundsAllButtons { get; set; }

141 private Rectangle ButtonBounds { get; set; }

142 private Rectangle ButtonBounds2 { get; set; }
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143 private Rectangle ButtonBounds3 { get; set; }

144

145 protected override void Render(GH_Canvas canvas, Graphics

graphics, GH_CanvasChannel channel)

146 {

147 base.Render(canvas, graphics, channel);

148 if (channel == GH_CanvasChannel.Objects)

149 {

150 GH_Capsule button =

GH_Capsule.CreateTextCapsule(ButtonBounds,

ButtonBounds, xColor, "MX", 2, 0);

151 button.Render(graphics, Selected, Owner.Locked,

false);

152 button.Dispose();

153 }

154 if (channel == GH_CanvasChannel.Objects)

155 {

156 GH_Capsule button2 =

GH_Capsule.CreateTextCapsule(ButtonBounds2,

ButtonBounds2, yColor, "MY", 2, 0);

157 button2.Render(graphics, Selected, Owner.Locked,

false);

158 button2.Dispose();

159 }

160 if (channel == GH_CanvasChannel.Objects)

161 {

162 GH_Capsule button3 =

GH_Capsule.CreateTextCapsule(ButtonBounds3,

ButtonBounds3, zColor, "MZ", 2, 0);

163 button3.Render(graphics, Selected, Owner.Locked,

false);

164 button3.Dispose();

165 }

166 }

167

168 public override GH_ObjectResponse

RespondToMouseDown(GH_Canvas sender, GH_CanvasMouseEvent

e)

169 {

170 if (e.Button == MouseButtons.Left)

171 {

172 RectangleF rec = ButtonBounds;

173 if (rec.Contains(e.CanvasLocation))

174 {
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175 switchColor("MX");

176 }

177 rec = ButtonBounds2;

178 if (rec.Contains(e.CanvasLocation))

179 {

180 switchColor("MY");

181 }

182 rec = ButtonBounds3;

183 if (rec.Contains(e.CanvasLocation))

184 {

185 switchColor("MZ");

186 }

187 rec = BoundsAllButtons;

188 if (rec.Contains(e.CanvasLocation))

189 {

190 if (xColor == GH_Palette.Grey) { setMom("MX", 0);

}

191 else { setMom("MX", 1); }

192 if (yColor == GH_Palette.Grey) { setMom("MY", 0);

}

193 else { setMom("MY", 1); }

194 if (zColor == GH_Palette.Grey) { setMom("MZ", 0);

}

195 else { setMom("MZ", 1); }

196 Owner.ExpireSolution(true);

197 }

198 return GH_ObjectResponse.Handled;

199 }

200 return base.RespondToMouseDown(sender, e);

201 }

202

203 private void switchColor(string button)

204 {

205 if (button == "MX")

206 {

207 if (xColor == GH_Palette.Black) { xColor =

GH_Palette.Grey; }

208 else { xColor = GH_Palette.Black; }

209 }

210 else if (button == "MY")

211 {

212 if (yColor == GH_Palette.Black) { yColor =

GH_Palette.Grey; }

213 else { yColor = GH_Palette.Black; }
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214 }

215 else if (button == "MZ")

216 {

217 if (zColor == GH_Palette.Black) { zColor =

GH_Palette.Grey; }

218 else { zColor = GH_Palette.Black; }

219 }

220 Owner.ExpireSolution(true);

221 }

222 }

223 }

224 }

3D Beam BDC Component

1 using System;

2 using System.Collections.Generic;

3

4 using Grasshopper.Kernel;

5 using Rhino.Geometry;

6 using System.Drawing;

7 using Grasshopper.GUI.Canvas;

8 using System.Windows.Forms;

9 using Grasshopper.GUI;

10

11 namespace Beam3D

12 {

13 public class BDCComponent : GH_Component

14 {

15 public BDCComponent()

16 : base("BDCComponent", "BDCs",

17 "Description",

18 "Koala", "3D Beam")

19 {

20 }

21

22 //Initialize BDCs

23 private static int x;

24 private static int y;

25 private static int z;

26 private static int rx;

27 private static int ry;

28 private static int rz;
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29

30

31 //Method to allow c hanging of variables via GUI (see Component

Visual)

32 private static void setBDC(string s, int i)

33 {

34 if (s == "X")

35 {

36 x = i;

37 }

38 else if (s == "Y")

39 {

40 y = i;

41 }

42 else if (s == "Z")

43 {

44 z = i;

45 }

46 else if (s == "RX")

47 {

48 rx = i;

49 }

50 else if (s == "RY")

51 {

52 ry = i;

53 }

54 else if (s == "RZ")

55 {

56 rz = i;

57 }

58 }

59

60 public override void CreateAttributes()

61 {

62 m_attributes = new Attributes_Custom(this);

63 }

64

65 protected override void

RegisterInputParams(GH_Component.GH_InputParamManager

pManager)

66 {

67 pManager.AddPointParameter("Points", "P", "Points to apply

Boundary Conditions", GH_ParamAccess.list);

68 }
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69

70 protected override void

RegisterOutputParams(GH_Component.GH_OutputParamManager

pManager)

71 {

72 pManager.AddTextParameter("B.Cond.", "BDC", "Boundary

Conditions for 3D Beam Calculation", GH_ParamAccess.list);

73 }

74

75 protected override void SolveInstance(IGH_DataAccess DA)

76 {

77 #region Fetch inputs

78 //Expected inputs

79 List<Point3d> pointList = new List<Point3d>();

//List of points where BDC is to be applied

80 List<string> pointInStringFormat = new List<string>();

//output in form of list of strings

81

82

83 //Set expected inputs from Indata and aborts with error

message if input is incorrect

84 if (!DA.GetDataList(0, pointList)) return;

85 #endregion

86

87 #region Format output

88 string BDCString = x + "," + y + "," + z + "," + rx + "," +

ry + "," + rz;

89

90 for (int i = 0; i < pointList.Count; i++) //Format

stringline for all points (identical boundary conditions

for all points)

91 {

92 pointInStringFormat.Add(pointList[i].X + "," +

pointList[i].Y + "," + pointList[i].Z + ":" +

BDCString);

93 }

94 #endregion

95

96 DA.SetDataList(0, pointInStringFormat);

97 } //End of main program

98

99 private List<Point3d> CreatePointList(List<Line> geometry)

100 {

101 List<Point3d> points = new List<Point3d>();
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102

103 for (int i = 0; i < geometry.Count; i++) //adds every point

unless it already exists in list

104 {

105 Line l1 = geometry[i];

106 if (!points.Contains(l1.From))

107 {

108 points.Add(l1.From);

109 }

110 if (!points.Contains(l1.To))

111 {

112 points.Add(l1.To);

113 }

114 }

115 return points;

116 }

117

118 protected override System.Drawing.Bitmap Icon

119 {

120 get

121 {

122 return Properties.Resources.BDCs;

123 }

124 }

125

126 public override Guid ComponentGuid

127 {

128 get { return new

Guid("c9c208e0-b10b-4ecb-a5ef-57d86a4df109"); }

129 }

130

131

132 /// Component Visual//

133 private class Attributes_Custom :

Grasshopper.Kernel.Attributes.GH_ComponentAttributes

134 {

135 public Attributes_Custom(GH_Component owner) : base(owner) { }

136 protected override void Layout()

137 {

138 base.Layout();

139

140 Rectangle rec0 = GH_Convert.ToRectangle(Bounds);

141

142 rec0.Height += 42;
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143

144 Rectangle rec1 = rec0;

145 rec1.X = rec0.Left + 1;

146 rec1.Y = rec0.Bottom - 42;

147 rec1.Width = (rec0.Width) / 3 + 1;

148 rec1.Height = 22;

149 rec1.Inflate(-2, -2);

150

151 Rectangle rec2 = rec1;

152 rec2.X = rec1.Right + 2;

153

154 Rectangle rec3 = rec2;

155 rec3.X = rec2.Right + 2;

156

157 Rectangle rec4 = rec1;

158 rec4.Y = rec1.Bottom + 2;

159

160 Rectangle rec5 = rec4;

161 rec5.X = rec4.Right + 2;

162

163 Rectangle rec6 = rec5;

164 rec6.X = rec2.Right + 2;

165

166 Bounds = rec0;

167 BoundsAllButtons = rec0;

168 ButtonBounds = rec1;

169 ButtonBounds2 = rec2;

170 ButtonBounds3 = rec3;

171 ButtonBounds4 = rec4;

172 ButtonBounds5 = rec5;

173 ButtonBounds6 = rec6;

174

175 }

176

177 GH_Palette xColor = GH_Palette.Black;

178 GH_Palette yColor = GH_Palette.Black;

179 GH_Palette zColor = GH_Palette.Black;

180 GH_Palette rxColor = GH_Palette.Black;

181 GH_Palette ryColor = GH_Palette.Black;

182 GH_Palette rzColor = GH_Palette.Black;

183

184 private Rectangle BoundsAllButtons { get; set; }

185 private Rectangle ButtonBounds { get; set; }

186 private Rectangle ButtonBounds2 { get; set; }
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187 private Rectangle ButtonBounds3 { get; set; }

188 private Rectangle ButtonBounds4 { get; set; }

189 private Rectangle ButtonBounds5 { get; set; }

190 private Rectangle ButtonBounds6 { get; set; }

191

192 protected override void Render(GH_Canvas canvas, Graphics

graphics, GH_CanvasChannel channel)

193 {

194 base.Render(canvas, graphics, channel);

195 if (channel == GH_CanvasChannel.Objects)

196 {

197 GH_Capsule button =

GH_Capsule.CreateTextCapsule(ButtonBounds,

ButtonBounds, xColor, "X", 2, 0);

198 button.Render(graphics, Selected, Owner.Locked,

false);

199 button.Dispose();

200 }

201 if (channel == GH_CanvasChannel.Objects)

202 {

203 GH_Capsule button2 =

GH_Capsule.CreateTextCapsule(ButtonBounds2,

ButtonBounds2, yColor, "Y", 2, 0);

204 button2.Render(graphics, Selected, Owner.Locked,

false);

205 button2.Dispose();

206 }

207 if (channel == GH_CanvasChannel.Objects)

208 {

209 GH_Capsule button3 =

GH_Capsule.CreateTextCapsule(ButtonBounds3,

ButtonBounds3, zColor, "Z", 2, 0);

210 button3.Render(graphics, Selected, Owner.Locked,

false);

211 button3.Dispose();

212 }

213 if (channel == GH_CanvasChannel.Objects)

214 {

215 GH_Capsule button4 =

GH_Capsule.CreateTextCapsule(ButtonBounds4,

ButtonBounds4, rxColor, "RX", 2, 0);

216 button4.Render(graphics, Selected, Owner.Locked,

false);

217 button4.Dispose();
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218 }

219 if (channel == GH_CanvasChannel.Objects)

220 {

221 GH_Capsule button5 =

GH_Capsule.CreateTextCapsule(ButtonBounds5,

ButtonBounds5, ryColor, "RY", 2, 0);

222 button5.Render(graphics, Selected, Owner.Locked,

false);

223 button5.Dispose();

224 }

225 if (channel == GH_CanvasChannel.Objects)

226 {

227 GH_Capsule button6 =

GH_Capsule.CreateTextCapsule(ButtonBounds6,

ButtonBounds6, rzColor, "RZ", 2, 0);

228 button6.Render(graphics, Selected, Owner.Locked,

false);

229 button6.Dispose();

230 }

231 }

232

233 public override GH_ObjectResponse

RespondToMouseDown(GH_Canvas sender, GH_CanvasMouseEvent

e)

234 {

235 if (e.Button == MouseButtons.Left)

236 {

237 RectangleF rec = ButtonBounds;

238 if (rec.Contains(e.CanvasLocation))

239 {

240 switchColor("X");

241 }

242 rec = ButtonBounds2;

243 if (rec.Contains(e.CanvasLocation))

244 {

245 switchColor("Y");

246 }

247 rec = ButtonBounds3;

248 if (rec.Contains(e.CanvasLocation))

249 {

250 switchColor("Z");

251 }

252 rec = ButtonBounds4;

253 if (rec.Contains(e.CanvasLocation))

39



254 {

255 switchColor("RX");

256 }

257 rec = ButtonBounds5;

258 if (rec.Contains(e.CanvasLocation))

259 {

260 switchColor("RY");

261 }

262 rec = ButtonBounds6;

263 if (rec.Contains(e.CanvasLocation))

264 {

265 switchColor("RZ");

266 }

267 rec = BoundsAllButtons;

268 if (rec.Contains(e.CanvasLocation))

269 {

270 if (xColor == GH_Palette.Black) {

BDCComponent.setBDC("X", 0); }

271 else { BDCComponent.setBDC("X", 1); }

272 if (yColor == GH_Palette.Black) {

BDCComponent.setBDC("Y", 0); }

273 else { BDCComponent.setBDC("Y", 1); }

274 if (zColor == GH_Palette.Black) {

BDCComponent.setBDC("Z", 0); }

275 else { BDCComponent.setBDC("Z", 1); }

276 if (rxColor == GH_Palette.Black) {

BDCComponent.setBDC("RX", 0); }

277 else { BDCComponent.setBDC("RX", 1); }

278 if (ryColor == GH_Palette.Black) {

BDCComponent.setBDC("RY", 0); }

279 else { BDCComponent.setBDC("RY", 1); }

280 if (rzColor == GH_Palette.Black) {

BDCComponent.setBDC("RZ", 0); }

281 else { BDCComponent.setBDC("RZ", 1); }

282 Owner.ExpireSolution(true);

283 }

284 return GH_ObjectResponse.Handled;

285 }

286 return base.RespondToMouseDown(sender, e);

287 }

288

289 private void switchColor(string button)

290 {

291 if (button == "X")
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292 {

293 if (xColor == GH_Palette.Black) { xColor =

GH_Palette.Grey; }

294 else { xColor = GH_Palette.Black; }

295 }

296 else if (button == "Y")

297 {

298 if (yColor == GH_Palette.Black) { yColor =

GH_Palette.Grey; }

299 else { yColor = GH_Palette.Black; }

300 }

301 else if (button == "Z")

302 {

303 if (zColor == GH_Palette.Black) { zColor =

GH_Palette.Grey; }

304 else { zColor = GH_Palette.Black; }

305 }

306 else if (button == "RX")

307 {

308 if (rxColor == GH_Palette.Black) { rxColor =

GH_Palette.Grey; }

309 else { rxColor = GH_Palette.Black; }

310 }

311 else if (button == "RY")

312 {

313 if (ryColor == GH_Palette.Black) { ryColor =

GH_Palette.Grey; }

314 else { ryColor = GH_Palette.Black; }

315 }

316 else if (button == "RZ")

317 {

318 if (rzColor == GH_Palette.Black) { rzColor =

GH_Palette.Grey; }

319 else { rzColor = GH_Palette.Black; }

320 }

321 }

322 }

323 }

324 }

3D Beam Deformed Geometry Component

1 using System;
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2 using System.Collections.Generic;

3

4 using Grasshopper.Kernel;

5 using Rhino.Geometry;

6 using System.Drawing;

7 using Grasshopper.GUI.Canvas;

8 using System.Windows.Forms;

9 using Grasshopper.GUI;

10

11 using MathNet.Numerics.LinearAlgebra;

12

13 namespace Beam3D

14 {

15 public class DeformedGeometry : GH_Component

16 {

17 public DeformedGeometry()

18 : base("DeformedGeometry", "DefG",

19 "Description",

20 "Koala", "3D Beam")

21 {

22 }

23

24 ////Initialize startcondition

25 //static bool startDef = true;

26

27

28 ////Method to allow C# hanging of variables via GUI (see

Component Visual)

29 //public static void setToggles(string s, bool i)

30 //{

31 // if (s == "Color")

32 // {

33 // startDef = i;

34 // }

35 //}

36

37 //public override void CreateAttributes()

38 //{

39 // m_attributes = new Attributes_Custom(this);

40 //}

41

42 protected override void

RegisterInputParams(GH_Component.GH_InputParamManager

pManager)

42



43 {

44 pManager.AddNumberParameter("Stress", "Ss", "Nodal stress",

GH_ParamAccess.list);

45 pManager.AddNumberParameter("Strain", "Sn", "Nodal strain",

GH_ParamAccess.list);

46 pManager.AddGenericParameter("Deformation", "Def",

"Deformations from 3DBeamCalc", GH_ParamAccess.item);

47 pManager.AddPointParameter("New base points", "NBP", "New

base points from Calc component", GH_ParamAccess.list);

48 pManager.AddNumberParameter("Scale", "S", "The Scale Factor

for Deformation", GH_ParamAccess.item, 1000);

49 }

50

51 protected override void

RegisterOutputParams(GH_Component.GH_OutputParamManager

pManager)

52 {

53 pManager.AddNumberParameter("Pure Axial stress", "PA SS",

"Pure axial stress per sub-element", GH_ParamAccess.list);

54 pManager.AddNumberParameter("Pure Axial strain", "PA SN",

"Pure axial strain per sub-element", GH_ParamAccess.list);

55 pManager.AddNumberParameter("Axial stress", "A SS", "Axial

stress per sub-element", GH_ParamAccess.list);

56 pManager.AddNumberParameter("Axial strain", "A SN", "Axial

strain per sub-element", GH_ParamAccess.list);

57 pManager.AddCurveParameter("Deformed Geometry", "Def.G.",

"Deformed Geometry as List of Lines",

GH_ParamAccess.list);

58 }

59

60 protected override void SolveInstance(IGH_DataAccess DA)

61 {

62 #region Fetch

63 //Expected inputs and outputs

64 List<Curve> defC = new List<Curve>();

65 List<double> stress = new List<double>();

66 List<double> strain = new List<double>();

67 Matrix<double> def = Matrix<double>.Build.Dense(1, 1);

68 List<Point3d> oldXYZ = new List<Point3d>();

69 double scale = 1000; //input deformation scale

70

71

72 //Set expected inputs from Indata

73 if (!DA.GetDataList(0, stress)) return;
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74 if (!DA.GetDataList(1, strain)) return;

75 if (!DA.GetData(2, ref def)) return;

76 if (!DA.GetDataList(3, oldXYZ)) return;

77 if (!DA.GetData(4, ref scale)) return;

78 #endregion

79

80 #region Deformed geometry

81 //no. of sub-nodes per main element

82 int n = def.ColumnCount / 6;

83 //number of sub-elements

84 int ns = n - 1;

85

86 //scale deformations

87 def = scale * def;

88

89 if (oldXYZ.Count == 0) return;

90 //Calculate new nodal points

91 for (int i = 0; i < def.RowCount; i++)

92 {

93 List<Point3d> tempNew = new List<Point3d>();

94 for (int j = 0; j < n; j++)

95 {

96 //original xyz

97 var tP = oldXYZ[i * n + j];

98

99 //add deformations

100 tP.X = tP.X + def[i, j * 6];

101 tP.Y = tP.Y + def[i, j * 6 + 1];

102 tP.Z = tP.Z + def[i, j * 6 + 2];

103

104 //replace previous xyz with displaced xyz

105 tempNew.Add(tP);

106 }

107 //Create Curve based on new nodal points(degree = 3)

108 Curve nc = Curve.CreateInterpolatedCurve(tempNew, 3);

109 defC.Add(nc);

110 }

111 #endregion

112

113 List<double> ss_x = new List<double>();

114 List<double> sn_x = new List<double>();

115 List<double> ss_y = new List<double>();

116 List<double> sn_y = new List<double>();

117 List<double> ss_z = new List<double>();
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118 List<double> sn_z = new List<double>();

119

120 for (int i = 0; i < stress.Count / 3; i++)

121 {

122 ss_x.Add(stress[i * 3]);

123 sn_x.Add(strain[i * 3]);

124 ss_y.Add(stress[i * 3 + 1]);

125 sn_y.Add(strain[i * 3 + 1]);

126 ss_z.Add(stress[i * 3 + 2]);

127 sn_z.Add(strain[i * 3 + 2]);

128 }

129

130 ss_x = GetAverage(ss_x, ns, defC.Count);

131 sn_x = GetAverage(sn_x, ns, defC.Count);

132 ss_y = GetAverage(ss_y, ns, defC.Count);

133 sn_y = GetAverage(sn_y, ns, defC.Count);

134 ss_z = GetAverage(ss_z, ns, defC.Count);

135 sn_z = GetAverage(sn_z, ns, defC.Count);

136

137 List<double> ss = new List<double>();

138 List<double> sn = new List<double>();

139

140 for (int i = 0; i < ss_x.Count; i++)

141 {

142 if (ss_x[i] > 0)

143 {

144 ss.Add(ss_x[i] + Math.Abs(ss_y[i]) +

Math.Abs(ss_z[i]));

145 sn.Add(ss_x[i] + Math.Abs(sn_y[i]) +

Math.Abs(sn_z[i]));

146 }

147 else

148 {

149 ss.Add(ss_x[i] - Math.Abs(ss_y[i]) -

Math.Abs(ss_z[i]));

150 sn.Add(sn_x[i] - Math.Abs(sn_y[i]) -

Math.Abs(sn_z[i]));

151 }

152 }

153

154

155

156 DA.SetDataList(0, ss_x);

157 DA.SetDataList(1, sn_x);
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158 DA.SetDataList(2, ss);

159 DA.SetDataList(3, sn);

160 DA.SetDataList(4, defC);

161 }//End of main program

162

163 protected override System.Drawing.Bitmap Icon

164 {

165 get

166 {

167 return Properties.Resources.Draw;

168 }

169 }

170

171 public override Guid ComponentGuid

172 {

173 get { return new

Guid("6391b902-2ec8-487c-94fd-b921479620b3"); }

174 }

175

176 private List<double> GetAverage(List<double> s, int n, int el)

177 {

178 var s_avg = new List<double>();

179 for (int i = 0, ct = 0; s_avg.Count < el*n; i++)

180 {

181 if (ct == n)

182 {

183 ct = 0;

184 continue;

185 }

186 s_avg.Add((s[i] + s[i + 1]) / 2);

187 ct++;

188 }

189 return s_avg;

190 }

191 }

192 }

46



Appendix D
Shell

D.1 Local axes and direction cosine

Matlab code for generating local axes from a triangular element, calculation the directional

cosines and a function for exporting the direction cosine as C# code. With transformation

of a triangle from global to local coordinates, graphs and example code.

1 c l e a r ;

2 syms ax ay az bx by bz ;

3 syms x1 y1 z1 x2 y2 z2 x3 y3 z3 ;

4

5 % Cross product g i v e s vec to r pe rpend i cua l r to both ve c to r s

6

7 cx = ay*bz − az*by ;

8 cy = az*bx − ax*bz ;

9 cz = ax*by − ay*bx ;

10

11 ax = x2−x1 ;
12 ay = y2−y1 ;
13 az = z2−z1 ;

14

15 bx = x3−x1 ;
16 by = y3−y1 ;
17 bz = z3−z1 ;
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18

19 cx = subs ( cx ) ;

20 cy = subs ( cy ) ;

21 cz = subs ( cz ) ;

22

23 % a i s now x−ax i s and c i s z ax is , need to f i nd y−ax i s as b

24

25 c l e a r ( 'bx' , 'by' , 'bz' ) ;

26

27 syms bx by bz ;

28

29 bx = cy*az − cz *ay ;

30 by = cz *ax − cx*az ;

31 bz = cx*ay − cy*ax ;

32

33 a = [ ax ay az ] ;

34 b = [ bx by bz ] ;

35 c = [ cx cy cz ] ;

36

37 Lx = sq r t ( axˆ2 + ayˆ2 + az ˆ2) ;

38 Ly = sq r t (bxˆ2 + byˆ2 + bz ˆ2) ;

39 Lz = sq r t ( cxˆ2 + cyˆ2 + cz ˆ2) ;

40

41 x = [ x1 x2 y1 y2 z1 z2 ] ;

42 y = [ x1 bx+x1 y1 by+y1 z1 bz+z1 ] ;

43 z = [ x1 cx+x1 y1 cy+y1 z1 cz+z1 ] ;

44

45 cosxX = ( ax ) /Lx ;

46 cosxY = ( ay ) /Lx ;

47 cosxZ = ( az ) /Lx ;

48 cosyX = (bx ) /Ly ;

49 cosyY = (by ) /Ly ;

50 cosyZ = ( bz ) /Ly ;

51 coszX = ( cx ) /Lz ;

52 coszY = ( cy ) /Lz ;

53 coszZ = ( cz ) /Lz ;

54

55 s = [ cosxX cosxY cosxZ cosyX cosyY cosyZ coszX coszY coszZ ] ;
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56

57 exportCosXX ( s , 'cosxX . txt ' ) ;

58

59 % Test ing by i n s e r t i n g va lue s

60

61 runte s t = 1 ;

62

63 i f r un t e s t

64 x1 = 0 ;

65 x2 = 2125 ;

66 x3 = 0 ;

67

68 y1 = 0 ;

69 y2 = 0 ;

70 y3 = 2382 . 5 ;

71

72 z1 = 0 ;

73 z2 = 1827 ;

74 z3 = 1358 ;

75

76 m = [ x1 x2 x3 ; y1 y2 y3 ; z1 z2 z3 ] ;

77

78 ax = double ( subs ( ax ) ) ;

79 ay = double ( subs ( ay ) ) ;

80 az = double ( subs ( az ) ) ;

81 bx = double ( subs (bx ) ) ;

82 by = double ( subs (by ) ) ;

83 bz = double ( subs ( bz ) ) ;

84 cx = double ( subs ( cx ) ) ;

85 cy = double ( subs ( cy ) ) ;

86 cz = double ( subs ( cz ) ) ;

87

88 Lx = double ( subs (Lx) ) ;

89 Ly = double ( subs (Ly) ) ;

90 Lz = double ( subs (Lz ) ) ;

91

92 a = [ ax ay az ] . / Lx ;

93 b = [ bx by bz ] . / Ly ;
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94 c = [ cx cy cz ] . / Lz ;

95

96 x = [ x1 ( a (1 )+x1 ) y1 ( a (2 )+y1 ) z1 ( a (3 )+z1 ) ] ;

97 y = [ x1 (bx/Ly+x1 ) y1 (by/Ly+y1 ) z1 ( bz/Ly+z1 ) ] ;

98 z = [ x1 ( cx/Lz+x1 ) y1 ( cy/Lz+y1 ) z1 ( cz /Lz+z1 ) ] ;

99

100 Lx = sq r t ( a (1 ) ˆ2 + a (2) ˆ2 + a (3) ˆ2) ;

101 Ly = sq r t ( ( y (2 )−y (1 ) ) ˆ2 + (y (4 )−y (3 ) ) ˆ2 + (y (6 )−y (5 ) ) ˆ2) ;
102 Lz = sq r t ( ( z (2 )−z (1 ) ) ˆ2 + ( z (4 )−z (3 ) ) ˆ2 + ( z (6 )−z (5 ) ) ˆ2) ;
103

104 % dot product o f two vec t o r s should be 0 when perpend i cu la r

105

106 dotxy = a (1) *b (1) + a (2) *b (2) + a (3) *b (3) ;

107 i f round ( dotxy , 1 0 ) == 0

108 f p r i n t f ( 'x and y ax i s are perpend icu lar , OK!\n' ) ;
109 e l s e

110 f p r i n t f ( 'x and y ax i s are NOT perpend i cu la r . . \ n' ) ;
111 end

112 dotxz = a (1) *c (1 ) + a (2) *c (2 ) + a (3 ) *c (3 ) ;

113 i f round ( dotxz , 1 0 ) == 0

114 f p r i n t f ( 'x and z ax i s are perpend icu lar , OK!\n' ) ;
115 e l s e

116 f p r i n t f ( 'x and z ax i s are NOT perpend i cu la r . . \ n' ) ;
117 end

118 dotyz = b (1) *c (1 ) + b (2) *c (2 ) + b (3) *c (3 ) ;

119 i f round ( dotyz , 1 0 ) == 0

120 f p r i n t f ( 'y and z ax i s are perpend icu lar , OK!\n' ) ;
121 e l s e

122 f p r i n t f ( 'y and z ax i s are NOT perpend i cu la r . . \ n' ) ;
123 end

124

125 i f round (Lx , 1 0 ) == 1

126 f p r i n t f ( 'Length o f x i s OK!\n' )
127 e l s e

128 f p r i n t f ( 'Length o f x i s NOT ok !\n' )
129 end

130 i f round (Ly , 1 0 ) == 1

131 f p r i n t f ( 'Length o f y i s OK!\n' )
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132 e l s e

133 f p r i n t f ( 'Length o f y i s NOT ok !\n' )
134 end

135 i f round (Lz , 1 0 ) == 1

136 f p r i n t f ( 'Length o f z i s OK!\n' )
137 e l s e

138 f p r i n t f ( 'Length o f z i s NOT ok !\n' )
139 end

140

141 f i g u r e ;

142 p lo t3 (x ( 1 : 2 ) , x ( 3 : 4 ) , x ( 5 : 6 ) ) ;

143 hold on

144 p lo t3 (y ( 1 : 2 ) , y ( 3 : 4 ) , y ( 5 : 6 ) ) ;

145 p lo t3 ( z ( 1 : 2 ) , z ( 3 : 4 ) , z ( 5 : 6 ) ) ;

146 p lo t3 ( [ x1 x2 x3 x1 ] , [ y1 y2 y3 y1 ] , [ z1 z2 z3 z1 ] ) ;

147 g r id on

148 ro tate3d on

149 pbaspect ( [ 1 1 1 ] ) ;

150 t i t l e ( '3D graph o f t r i a n g l e in g l oba l coo rd ina t e s ' ) ;

151

152 T = ze ro s (3 , 3 ) ;

153 T(1 , 1 : 3 ) = subs ( s ( 1 : 3 ) ) ;

154 T(2 , 1 : 3 ) = subs ( s ( 4 : 6 ) ) ;

155 T(3 , 1 : 3 ) = subs ( s ( 7 : 9 ) ) ;

156 T = double (T) ;

157

158 ml = T*m;

159 a l = T* t ranspose ( a ) ;

160 bl = T* t ranspose (b) ;

161 c l = T* t ranspose ( c ) ;

162

163 x l = [ ml (1 , 1 ) ( a l (1 ) /Lx+ml (1 , 1 ) ) ml (2 , 1 ) ( a l (2 ) /Lx+ml (2 , 1 ) )

ml (3 , 1 ) ( a l (3 ) /Lx+ml (3 , 1 ) ) ] ;

164 y l = [ ml (1 , 1 ) ( b l (1 ) /Ly+ml (1 , 1 ) ) ml (2 , 1 ) ( b l (2 ) /Ly+ml (2 , 1 ) )

ml (3 , 1 ) ( b l (3 ) /Ly+ml (3 , 1 ) ) ] ;

165 z l = [ ml (1 , 1 ) ( c l (1 ) /Lz+ml (1 , 1 ) ) ml (2 , 1 ) ( c l (2 ) /Lz+ml (2 , 1 ) )

ml (3 , 1 ) ( c l ( 3 ) /Lz+ml (3 , 1 ) ) ] ;

166
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167 x l = x l − [ x l ( 1 ) x l (1 ) x l (3 ) x l (3 ) x l (5 ) x l (5 ) ] ;

168 y l = y l − [ y l ( 1 ) y l (1 ) y l (3 ) y l (3 ) y l (5 ) y l (5 ) ] ;

169 z l = z l − [ z l ( 1 ) z l (1 ) z l (3 ) z l (3 ) z l ( 5 ) z l (5 ) ] ;

170 ml = ml− repmat (ml ( : , 1 ) , [ 1 , 3 ] ) ;

171

172 f i g u r e ;

173 p lo t3 ( x l ( 1 : 2 ) , x l ( 3 : 4 ) , x l ( 5 : 6 ) ) ;

174 hold on

175 p lo t3 ( y l ( 1 : 2 ) , y l ( 3 : 4 ) , y l ( 5 : 6 ) ) ;

176 p lo t3 ( z l ( 1 : 2 ) , z l ( 3 : 4 ) , z l ( 5 : 6 ) ) ;

177 p lo t3 ( [ ml (1 , 1 ) ml (1 , 2 ) ml (1 , 3 ) ml (1 , 1 ) ] , [ ml (2 , 1 ) ...

178 ml (2 , 2 ) ml (2 , 3 ) ml (2 , 1 ) ] , [ ml (3 , 1 ) ml (3 , 2 ) ...

179 ml (3 , 3 ) ml (3 , 1 ) ] ) ;

180 g r id on

181 ro tate3d on

182 pbaspect ( [ 1 1 1 ] ) ;

183 t i t l e ( '3D graph o f t r i a n g l e in l o c a l c oo rd ina t e s with

z−ax i s ' ) ;
184

185 f i g u r e ;

186 p lo t (ml ( 1 , : ) ,ml ( 2 , : ) , [ ml (1 , 3 ) ml (1 , 1 ) ] , [ ml (2 , 3 ) ml (2 , 1 ) ] ) ;

187 t i t l e ( 'Tr iang l e in x and y l o c a l c oo rd ina t e s ' ) ;

188 hold on

189 p lo t ( [ ml (1 , 1 ) ml (1 , 1 )+a l (1 ) ] , [ ml (2 , 1 ) ml (2 , 1 )+a l (2 ) ] ) ;

190 p lo t ( [ ml (1 , 1 ) ml (1 , 1 )+bl (1 ) ] , [ ml (2 , 1 ) ml (2 , 1 )+bl (2 ) ] ) ;

191

192 % f i g u r e ;

193 % plo t ( [ ml (1 , 1 ) ml (1 , 1 )+a l (1 ) ] , [ ml (3 , 1 ) ml (3 , 1 )+a l (3 ) ] ) ;

194 % hold on}end

1

2 f unc t i on [ ] = exportCosXX ( s , txt )

3

4 temptxt = {} ;
5 temptxtindex = 1 ;

6 f o r i = 1 :1

7 f o r j= 1 :9

8 j t = num2str ( j − 1) ;
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9 s1 = s t r c a t ( 'cosxX =' ) ;

10 s2 = char ( s ( j ) ) ;

11 hatt = s t r f i n d ( s2 , 'ˆ' ) ;

12 s2temp = s2 ;

13 placements = [ ] ;

14 power = [ ] ;

15

16 f o r l = hatt

17 power = [ s2 ( l +1) power ] ;

18 count = 0 ;

19 hasChanged = f a l s e ;

20 found = f a l s e ;

21 rev = 1 ;

22 pos = l − rev ;

23 whi le found == f a l s e

24 i f s2 ( pos ) == ' ) '

25 count = count + 1 ;

26 e l s e i f s2 ( pos ) == ' ( '

27 count = count − 1 ;

28 e l s e i f count == 0 && ( i s l e t t e r ( s2 ( pos ) ) | |
isempty ( str2num ( s2 ( pos ) ) ) == 0)

29 var i ab l e count = 0 ;

30 i f ( i s l e t t e r ( s2 ( pos−1) ) | |
isempty ( str2num ( s2 ( pos−1) ) ) == 0)

31 var i ab l e count = 1 ;

32 i f ( i s l e t t e r ( s2 ( pos−2) ) | |
isempty ( str2num ( s2 ( pos−2) ) ) == 0)

33 var i ab l e count = 2 ;

34 i f ( i s l e t t e r ( s2 ( pos−3) ) | |
isempty ( str2num ( s2 ( pos−3) ) ) ==

0)

35 var i ab l e count = 3 ;

36 end

37 end

38 end

39 pos = pos − var i ab l e count ;

40 break ;

41 end
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42 i f hasChanged == f a l s e && count > 0

43 hasChanged = true ;

44 e l s e i f hasChanged == true && count == 0

45 found = true ;

46 end

47 i f found == f a l s e

48 pos = pos − rev ;

49 end

50 end

51 placements = [ placements pos ] ;

52 end

53

54 p l s r = f l i p l r ( placements ) ;

55 hat t r = f l i p l r ( hatt ) ;

56 p l s r = so r t ( p l s r , 'descend ' ) ;

57 whi le ( isempty ( p l s r )==0 | | isempty ( hat t r )==0)

58 i f isempty ( hat t r ) | | p l s r (1 ) > hat t r (1 )

59 s2temp = s t r c a t ( s2temp ( 1 : p l s r (1 )−1) , ...
60 'Math .Pow( ' , s2temp ( p l s r (1 ) : end ) ) ;

61 p l s r = p l s r ( 2 : end ) ;

62 e l s e

63 s2temp = s t r c a t ( s2temp ( 1 : hat t r (1 )−1) , ...
64 ' , ' , s2temp ( hat t r (1 )+1) , ...

65 ' ) ' , s2temp ( hat t r (1 ) +2:end ) ) ;

66 hat t r = hat t r ( 2 : end ) ;

67 end

68 end

69 i f ˜ strcmp ( s2temp , '0' )

70 temptxt ( temptxtindex ) = s t r c a t ( s1 ,{ ' '} , s2temp , ' ; ' ) ;

71 temptxtindex = temptxtindex + 1 ;

72 end

73

74 end

75

76 f i d = fopen ( txt , 'w' ) ;

77 f o r i = 1 : l ength ( temptxt )

78 f p r i n t f ( f i d , '%s \n' , char ( temptxt ( i ) ) ) ;

79 end

8



80 f c l o s e ( f i d ) ;

81 end
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D.2 Derivation of element stiffness matrix for CST and
Morley

1

2 c l e a r ;

3 %

4 %

5 % −−−−−−−−−−−−−−−−−−−−−−−− START BENDING TRIANGLE

6 %

7 %

8 %NB numbering counter c l o ckw i s e !

9 %

10 % ˆ y−ax i s o 3

11 % | / \ The Morley t r i ang l e , the

12 % | / \ s imp l e s t bending t r i a n g l e

13 % | / \ po s s i b l e !

14 % | 6 o o 5 node 4 ,5 ,6 have only

15 % | / \ r o t a t i on along the

16 % | / ˆn4 \ t r i a n g l e edge . phi6

17 % | / | \ r o t a t e s the ax i s from 1 to

18 % | 1 o − − − >> −> − o 2 3 , whi l e phi4 from 1 to 2

19 % | 4 t4 and 5 from 3 to 2 . As shown

20 % | f o r node 4 . Each o f the se

21 % | v e r t i c e s has t h e i r owncoordinate system n( perpend ivcu la r

22 % | to the v e r t i c e , upwards . The ang le between the l o c a l

23 % | t−ax i s and the x−ax i s i s denoted a ( i e . a (1 ) f o r node 4)

24 % |
25 % |
26 % o − − − − − − − −> x−ax i s
27 %

28 % v = [w1 w2 w3 phi4 phi5 phi6 ]

29 %

30 % x = c* t − s *n c = cos ( a ) , s = s i n ( a )

31 % y = s * t + c*n

32 % t = c*x + s *y

33 % n = −s *x + c*y

34 %
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35 % df /dt = c*df /dx + s *df /dy

36 % df /dn = −s *df /dx + c*df /dy

37 %

38 % df /dx = 1/2A * ( df / dxi1 * y23 + df / dxi2 * y31 + df / dxi3 * y12 )

39 % df /dy = 1/2A * ( df / dxi1 * x32 + df / dxi2 * x13 + df / dxi3 * x21 )

40 % ( r e f FEA Be l l s149 )

41 %

42 % Bq = Delta *Nq

43 %

44 % [ −z*dˆ2/dxˆ2*N1 , −z*dˆ2/dxˆ2*N2 , . . . −z*dˆ2/dxˆ2*Nn ]

45 % Bq = [ −z*dˆ2/dyˆ2*N1 , −z*dˆ2/dyˆ2*N2 , . . . −z*dˆ2/dyˆ2*Nn ]

46 % [ −2z*dˆ2/dxdy*N1 , −2z*dˆ2/dxdy*N2 , . . .

−2z*dˆ2/dxdy*Nn]
47 %

48 % B = Bq * Aˆ−1
49 % ( r e f FEA Be l l s167 )

50 %

51

52 syms x i1 x i2 x i3 x i4 x i5 x i6 ;

53

54 %xi3 = 1 − x i1 − x i2 ;

55

56 Nq = [ x i1 ˆ2 x i2 ˆ2 x i3 ˆ2 x i1 * x i2 x i2 * x i3 x i3 * x i1 ] ;

57

58 syms w1 w2 w3 phi1 phi2 phi3 ;

59 syms x i1 x i2 x i3 ;

60 syms x1 y1 x2 y2 x3 y3 z ;

61 syms Area t ;

62 syms x13 x21 x32 y12 y23 y31 ;

63 syms E nu ;

64 syms c4 c5 c6 s4 s5 s6 ga4 ga5 ga6 my4 my5 my6 a4 a5 a6 ;

65

66 s = [ s4 s5 s6 ] ;

67 c = [ c4 c5 c6 ] ;

68 ga = [ ga4 ga5 ga6 ] ;

69 my = [my4 my5 my6 ] ;

70 a = [ a4 a5 a6 ] ;

71 % a (1) = ga (1 ) + my(1) ;
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72 % a (2) = ga (2 ) + my(2) ;

73 % a (3) = ga (3 ) + my(3) ;

74

75 A21 = [ ga (1 ) my(1) 0 ; 0 my(2) −a (2 ) ; ga (3 ) 0 −a (3 ) ] ;

76 A22 = 1/2 * [ a (1 ) −a (1 ) −a (1 ) ; ga (2 ) −ga (2 ) ga (2 ) ;my(3) my(3)

−my(3) ] ;

77 I = [ 1 0 0 ;0 1 0 ;0 0 1 ] ;

78 A = [ I , z e r o s (3 , 3 ) ; A21 A22 ] ;

79 A inv = [ I z e r o s (3 , 3 ) ;− inv (A22) *A21 inv (A22) ] ;

80

81 % Pr i c i npa l usage o f the A matrix :

82 % | 1 0 0 |
83 % −−> Aˆ−1 = | 0 1 0 |
84 % | 0 0 1 |
85 % | | |
86 % | | |
87 % V V V

88 % N1 N2 N3

89 % N1 = xi1

90 % N2 = xi2

91 % N3 = xi3

92

93 % Create shape func t i on s

94 f o r i = 1 : l ength ( A inv )

95 Nb( i ) = A inv (1 , i ) *Nq(1) + A inv (2 , i ) *Nq(2) +

A inv (3 , i ) *Nq(3) + ...

96 A inv (4 , i ) *Nq(4) + A inv (5 , i ) *Nq(5) + A inv (6 , i ) *Nq(6) ;

97 Nbt( i ) = A inv (1 , i ) *Nq(1) + A inv (2 , i ) *Nq(2) +

A inv (3 , i ) *Nq(3) ;

98 end

99

100 % syms B11 B12 B13 B14 B15 B16 ;

101 % syms B21 B22 B23 B24 B25 B26 ;

102 % syms B31 B32 B33 B34 B35 B36 ;

103 %

104 %

105 % Bq = [ B11 B12 B13 B14 B15 B16 ; B21 B22 B23 B24 B25 B26 ; B31 B32

B33 B34 B35 B36 ] ;

12



106 %

107 %

108

109 % Bq = [ d i f f (Nq, xi1 , 2 ) ; d i f f (Nq, xi2 , 2 ) ; d i f f ( d i f f (Nq, x i1 ) , x i2 ) ] ;

110 % Bq = double (Bq) ;

111

112 Bq = [2 0 2 0 0 −2;0 2 2 0 −2 0 ;0 0 2 1 −1 −1];

113

114

115 H add i t i ona l = 1/(4*Area ˆ2) ;

116 H = [ y23ˆ2 y31ˆ2 2*y31*y23 ; x32ˆ2 x13ˆ2 2*x13*x32 ; ...

117 2*x32*y23 2*x13*y31 2*( x13*y23+x32*y31 ) ] ;

118

119 Bb = H*Bq*A inv ;

120 % Bb = Bb * H add i t i ona l ;

121 Bb T = transpose (Bb) ;

122 exportKmatrix ( s imp l i f y (Bb) , 'Bk b' , 'Bk b . txt ' )

123

124 C add i t i ona l = E/(1−nuˆ2) ;
125 C = [1 nu 0 ; nu 1 0 ;0 0 (1−nu) / 2 ] ;
126 exportKmatrix ( s imp l i f y (C) , 'C' , 'C. txt ' )

127 % ( r e f FEA Be l l s85 )

128 %

129 % Further k = BˆT*C*B*Area* t

130 % ( r e f FEA Be l l s167 /127)

131

132 k add i t i o na l = (Area* t ˆ3) /12 ;

133 kb = Bb T*C*Bb ;

134 kb = k add i t i o na l *C add i t i ona l *H add i t i ona l ˆ2 *kb ;

135

136 %

137 %

138 % −−−−−−−−−−−−−−−−−−−−− END BENDING TRIANGLE

139 %

140 %

141 %

142 %

143 %
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144 % −−−−−−−−−−−−−− START CONSTANT STRAIN/STRESS TRIANGLE

145 %

146 %

147 % Now we w i l l look at a plane t r i a n g l e with deformation

148 % in x and y d i r e c t i o n in node 1 , 2 and 3 .

149 % For s imp l i c i t y we w i l l use the s imp l e s t t r i ang l e ,

150 % the Constant St ra in Tr iang l e (CST) .

151 % This g i v e s us thus 6 do f s .

152 %

153 % [ u1 ]

154 % [ v1 ]

155 % U = [ u ] = [ x i1 0 x i2 0 x i3 0 ] = [ u2 ]

156 % [ v ] [ 0 x i1 0 x i2 0 x i3 ] [ v2 ]

157 % [ u3 ]

158 % [ v3 ]

159 %

160 % u = a1 + a2*x + a3*y

161 % v = b1 + b2*x + b3*y

162 %

163 % s t r a i n s : ex = a2 , ey = b3 , yxy = a3 + b2 ( constant )

164 %

165 % u1 = a1 + a2*x1 + a3*y1

166 % u2 = a2 + a2*x2 + a3*y2

167 % u2 = a3 + a2*x3 + a3*y3

168 %

169 % v1 = b1 + b2*x1 + b3*y1

170 % v2 = b2 + b2*x2 + b3*y2

171 % v3 = b3 + b2*x3 + b3*y3

172 %

173 % (u1 )

174 % (v1 )

175 % (u) [ N1 0 N2 0 N3 0 ]{ u2 )
176 % (v) = [ 0 N1 0 N2 0 N3 ]{ v2 )
177 % (u3 )

178 % (v3 )

179 %

180 syms x y x1 x2 x3 y1 y2 y3 ;

181
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182 u1 = [1 x1 y1 ] ;

183 u2 = [1 x2 y2 ] ;

184 u3 = [1 x3 y3 ] ;

185

186 v1 = [1 x1 y1 ] ;

187 v2 = [1 x2 y2 ] ;

188 v3 = [1 x3 y3 ] ;

189

190 Am = [ u1 0 0 0 ; 0 0 0 v1 ; u2 0 0 0 ; 0 0 0 v2 ; u3 0 0 0 ;

0 0 0 v3 ] ;

191 Am inv addit iona l = ( x1*y2 − x2*y1 − x1*y3 + x3*y1 + x2*y3 −
x3*y2 ) ;

192 Am inv = inv (Am) *Am inv addit iona l ;

193

194 Nm = sym ( [ ] ) ;

195 f o r i = 1 :3

196 % fo r j = 1 : l ength (A)

197 Nm( i ) = (Am inv (1 , i *2−1) + Am inv (2 , i *2−1)*x + ...

198 Am inv (3 , i *2−1)*y + Am inv (4 , i *2−1) +

Am inv (5 , i *2−1)*x +...

199 Am inv (6 , i *2−1)*y ) /Am inv addit iona l ;

200 % end

201 end

202

203 Bm = sym ( [ ] ) ;

204 f o r i = 1 :3

205 temp = [ d i f f (Nm( i ) , x ) 0 ; 0 d i f f (Nm( i ) , y ) ; ...

206 d i f f (Nm( i ) , y ) d i f f (Nm( i ) , x ) ] ;

207 Bm = [Bm temp ] ;

208 end

209

210 exportKmatrix (Bm, 'Bk m' , 'Bk m . txt ' ) ;

211

212 Bm t = transpose (Bm) ;

213 km = Bm t*C*Bm*C add i t i ona l *Area* t ;

214

215 %

216 %
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217 % −−−−−−−−−−−−−−− END CONSTANT STRAIN/STRESS TRIANGLE

218 %

219 %

220

221 [m, n ] = s i z e (km) ;

222 [ g , h ] = s i z e ( kb ) ;

223

224 k = [km ze ro s (m, h) ; z e r o s ( g , n ) kb ] ;

225

226 % so r t k matrix by [ x1 y1 w1 phi1 x2 y2 w2 phi2 x3 y3 w3 phi3 ]

227 %k = k ( [ 1 2 7 10 3 4 8 11 5 6 9 12 ] , [ 1 2 7 10 3 4 8 11 5 6 9

12 ] ) ;

228 %exportKmatrix ( s imp l i f y ( k ) , ' kmatrix . txt ')

229

230 % Test 1 (0 , 0 , 0 ) 2 (4 , 1 , 0 ) 3 (2 , 5 , 0 )

231 i f 1

232 x1 = −2020;
233 x2 = 0 ;

234 x3 = 0 ;

235

236 y1 = −4000;
237 y2 = −4000;
238 y3 = 0 ;

239

240 z1 = 0 ;

241 z2 = 0 ;

242 z3 = 0 ;

243

244 x4 = x1+(x2−x1 ) /2 ;
245 x5 = x2+(x3−x2 ) /2 ;
246 x6 = x3+(x3−x1 ) /2 ;
247

248 y4 = y1+(y2−y1 ) /2 ;
249 y5 = y2+(y3−y2 ) /2 ;
250 y6 = y3+(y3−y1 ) /2 ;
251 x13 = x1 − x3 ;

252 x21 = x2 − x1 ;

253 x32 = x3 − x2 ;
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254 y12 = y1 − y2 ;

255 y23 = y2 − y3 ;

256 y31 = y3 − y1 ;

257 xu = [ x1 x2 x3 x1 ] ;

258 yu = [ y1 y2 y3 y1 ] ;

259 t = 10 ;

260 Area = abs ( ( x1 *( y2−y3 )+x2 *( y3−y1 )+x3 *( y1−y2 ) ) /2) ;
261 nu = 0 . 3 ;

262 E = 200000;

263

264 f o r m = [ 1 , 2 , 3 ]

265 L(m) = sq r t ( ( xu (m+1)−xu (m) ) ˆ2+(yu (m+1)−yu (m) ) ˆ2) ;

266 i f xu (m+1)>xu (m)

267 c (m)=(xu (m+1)−xu (m) ) /L(m) ;

268 s (m)=(yu (m+1)−yu (m) ) /L(m) ;

269 e l s e i f xu (m+1)<xu (m)

270 c (m)=(xu (m)−xu (m+1) ) /L(m) ;

271 s (m)=(yu (m)−yu (m+1) ) /L(m) ;

272 e l s e

273 c (m)=0;

274 s (m)=1;

275 end

276

277 ga (m) = ( c (m) *x32−s (m) *y23 ) /(2*Area ) ;

278 my(m) = ( c (m) *x13−s (m) *y31 ) /(2*Area ) ;

279 a (m) = ga (m) + my(m) ;

280 end

281

282 ga4 = double ( ga (1 ) ) ;

283 ga5 = double ( ga (2 ) ) ;

284 ga6 = double ( ga (3 ) ) ;

285 my4 = double (my(1) ) ;

286 my5 = double (my(2) ) ;

287 my6 = double (my(3) ) ;

288 a4 = ga4 + my4 ;

289 a5 = ga5 + my5 ;

290 a6 = ga6 + my6 ;

291
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292

293 Bb = double ( subs (Bb) ) ;

294 Bm = double ( subs (Bm) ) ;

295 k = double ( subs (k ) ) ;

296 kb = double ( subs ( kb ) ) ;

297 km = double ( subs (km) ) ;

298

299 % d i s p l = [ 0 0 1 0 1 1 ] ;

300 % R = [0 0 −0.5 0 0 .5 1 ] ;

301 %

302 % fo r i = 1 : l ength (km)

303 % i f d i s p l ( i ) == 0

304 % km( i , : ) = 0 ;

305 % km( : , i ) = 0 ;

306 % km( i , i ) = 1 ;

307 % end

308 % end

309

310

311 % plo t ( [ x1 x2 x3 x1 ] , [ y1 y2 y3 y1 ] )

312 % hold on

313 % old =[x1 y1 x2 y2 x3 y3 ] ;

314 % gr id on

315 % new = [ x1 y1 x2 y2 x3 y3]+ res ' ;

316 % plo t ( [ new (1) new (3) new (5) new (1) ] , [ new (2) new (4) new (6)

new (2) ] )

317 %

318 % x = 0 . 4 ;

319 % y = 0 . 2 ;

320 % xi1 = 0 . 4 ;

321 % xi2 = 0 . 4 ;

322 % xi3 = 1 − x i1 − x i2 ;

323 %

324 % Nm = subs (Nm) ;

325 % Nb = subs (Nb( 1 : 3 ) ) ;

326 % f p r i n t f ( ' Shapefunct ion membrane sum : %f \n' , sum(Nm) )

327 % f p r i n t f ( ' Shapefunct ion bending sum : %f \n' , sum(Nb) )

328 end
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1 f unc t i on [ ] = exportKmatrix ( k , s , txt )

2

3 [m, n ] = s i z e ( k ) ;

4 temptxt = {} ;
5 temptxtindex = 1 ;

6 f o r i = 1 :m

7 f o r j= 1 : n

8 i t = num2str ( i − 1) ;

9 j t = num2str ( j − 1) ;

10 s1 = s t r c a t ( s , ' [ ' , i t , ' , ' , j t , ' ] =' ) ;

11 s2 = char (k ( i , j ) ) ;

12 hatt = s t r f i n d ( s2 , 'ˆ' ) ;

13 s2temp = s2 ;

14 placements = [ ] ;

15 power = [ ] ;

16

17 f o r l = hatt

18 power = [ s2 ( l +1) power ] ;

19 count = 0 ;

20 hasChanged = f a l s e ;

21 found = f a l s e ;

22 rev = 1 ;

23 pos = l − rev ;

24 whi le found == f a l s e

25 i f s2 ( pos ) == ' ) '

26 count = count + 1 ;

27 e l s e i f s2 ( pos ) == ' ( '

28 count = count − 1 ;

29 e l s e i f count == 0 && ( i s l e t t e r ( s2 ( pos ) ) | |
isempty ( str2num ( s2 ( pos ) ) ) == 0)

30 var i ab l e count = 0 ;

31 i f ( i s l e t t e r ( s2 ( pos−1) ) | |
isempty ( str2num ( s2 ( pos−1) ) ) == 0)

32 var i ab l e count = 1 ;

33 i f ( i s l e t t e r ( s2 ( pos−2) ) | |
isempty ( str2num ( s2 ( pos−2) ) ) == 0)

34 var i ab l e count = 2 ;

35 i f ( i s l e t t e r ( s2 ( pos−3) ) | |
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isempty ( str2num ( s2 ( pos−3) ) ) ==

0)

36 var i ab l e count = 3 ;

37 end

38 end

39 end

40 pos = pos − var i ab l e count ;

41 break ;

42 end

43 i f hasChanged == f a l s e && count > 0

44 hasChanged = true ;

45 e l s e i f hasChanged == true && count == 0

46 found = true ;

47 end

48 i f found == f a l s e

49 pos = pos − rev ;

50 end

51 end

52 placements = [ placements pos ] ;

53 end

54 % t e l = 1 ;

55 p l s r = f l i p l r ( placements ) ;

56 hat t r = f l i p l r ( hatt ) ;

57 % fo r i t = p l s r

58 % i f hat t r (1 ) >= length ( s2temp )+2 && i t == p l s r (1 )

59 % s2temp = s t r c a t ( s2temp ( 1 : i t ) , 'Math .Pow ( ' , . . .

60 % s2temp ( i t : ha t t r ( t e l )−1) , ' , ' , power ( t e l ) , ') ') ;

61 % e l s e

62 % s2temp = s t r c a t ( s2temp ( 1 : i t −1) , 'Math .Pow ( ' , . . .

63 % s2temp ( i t : ha t t r ( t e l )−1) , ' , ' , power ( t e l ) , ') ' , . . .

64 % s2temp ( hat t r ( t e l )+2:end ) ) ;

65 % end

66 % t e l = t e l + 1 ;

67 % end

68 p l s r = so r t ( p l s r , 'descend ' ) ;

69 whi le ( isempty ( p l s r )==0 | | isempty ( hat t r )==0)

70 i f isempty ( hat t r ) | | p l s r (1 ) > hat t r (1 )

71 s2temp = s t r c a t ( s2temp ( 1 : p l s r (1 )−1) , ...
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72 'Math .Pow( ' , s2temp ( p l s r (1 ) : end ) ) ;

73 p l s r = p l s r ( 2 : end ) ;

74 e l s e

75 s2temp = s t r c a t ( s2temp ( 1 : hat t r (1 )−1) , ...
76 ' , ' , s2temp ( hat t r (1 )+1) , ...

77 ' ) ' , s2temp ( hat t r (1 ) +2:end ) ) ;

78 hat t r = hat t r ( 2 : end ) ;

79 end

80 end

81 i f ˜ strcmp ( s2temp , '0' )

82 temptxt ( temptxtindex ) = s t r c a t ( s1 ,{ ' '} , s2temp , ' ; ' ) ;

83 temptxtindex = temptxtindex + 1 ;

84 end

85

86 end

87

88 f i d = fopen ( txt , 'w' ) ;

89 f o r j = 1 : l ength ( temptxt )

90 f p r i n t f ( f i d , '%s \n' , char ( temptxt ( j ) ) ) ;

91 end

92 f c l o s e ( f i d ) ;

93 end
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D.3 Shell source code

Shell Calculation Component

1 using System;

2 using System.Collections.Generic;

3

4 using Grasshopper.Kernel;

5 using System.Drawing;

6 using Grasshopper.GUI.Canvas;

7 using System.Windows.Forms;

8 using Grasshopper.GUI;

9

10 using MathNet.Numerics.LinearAlgebra;

11 using MathNet.Numerics.LinearAlgebra.Double;

12 using System.Diagnostics;

13 using Rhino.Geometry;

14

15 namespace Shell

16 {

17 public class ShellComponent : GH_Component

18 {

19 public ShellComponent()

20 : base("ShellCalculation", "SC",

21 "Description",

22 "Koala", "Shell")

23 {

24 }

25

26 static bool startCalc = false;

27

28 public static void setStart(string s, bool i)

29 {

30 if (s == "Run")

31 {

32 startCalc = i;

33 }

34 }

35

36 public override void CreateAttributes()

37 {

38 m_attributes = new Attributes_Custom(this);

39 }

40
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41 protected override void

RegisterInputParams(GH_Component.GH_InputParamManager

pManager)

42 {

43 pManager.AddMeshParameter("Mesh", "M", "The Meshed shell

structure", GH_ParamAccess.item);

44 pManager.AddTextParameter("Boundary Conditions", "BDC",

"Boundary Conditions in form x,y,z,vx,vy,vz,rx,ry,rz",

GH_ParamAccess.list);

45 pManager.AddTextParameter("Material Properties", "Mat",

"Material Properties: E,v,t,G", GH_ParamAccess.item,

"200000,0.3,10");

46 pManager.AddTextParameter("Point Loads", "PL", "Load given as

Vector [N]", GH_ParamAccess.list);

47 }

48

49 protected override void

RegisterOutputParams(GH_Component.GH_OutputParamManager

pManager)

50 {

51 pManager.AddNumberParameter("Deformations", "Def",

"Deformations", GH_ParamAccess.list);

52 pManager.AddNumberParameter("Reaction Forces", "R", "Reaction

Forces", GH_ParamAccess.list);

53 pManager.AddNumberParameter("Element Stresses", "Strs", "The

Stress in each element", GH_ParamAccess.list);

54 pManager.AddNumberParameter("Element Strains", "Strn", "The

Strain in each element", GH_ParamAccess.list);

55 //pManager.AddTextParameter("Part Timer", "", "",

GH_ParamAccess.item);

56 }

57

58 protected override void SolveInstance(IGH_DataAccess DA)

59 {

60 #region Fetch inputs and assign to variables

61

62 //Expected inputs

63 Mesh mesh = new Mesh(); //mesh in

Mesh format

64 List<MeshFace> faces = new List<MeshFace>(); //faces of

mesh as a list

65 List<Point3d> vertices = new List<Point3d>(); //vertices of

mesh as a list

66
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67 List<string> bdctxt = new List<string>(); //Boundary

conditions in string format

68 List<string> loadtxt = new List<string>(); //loads in

string format

69 List<string> momenttxt = new List<string>(); //Moments in

string format

70 string mattxt = ""; //Material in

string format

71

72 if (!DA.GetData(0, ref mesh)) return; //sets

inputted mesh into variable

73 if (!DA.GetDataList(1, bdctxt)) return; //sets

boundary conditions as string

74 if (!DA.GetData(2, ref mattxt)) return; //sets

material properties as string

75 if (!DA.GetDataList(3, loadtxt)) return; //sets load

as string

76

77 foreach (var face in mesh.Faces)

78 {

79 faces.Add(face);

80 }

81

82 foreach (var vertice in mesh.Vertices)

83 {

84 Point3d temp_vertice = new Point3d();

85 temp_vertice.X = Math.Round(vertice.X, 4);

86 temp_vertice.Y = Math.Round(vertice.Y, 4);

87 temp_vertice.Z = Math.Round(vertice.Z, 4);

88 vertices.Add(temp_vertice);

89 }

90

91 // Number of edges from Euler’s formula

92 int NoOfEdges = vertices.Count + faces.Count - 1;

93 List<Line> edges = new List<Line>(NoOfEdges);

94 #region Create edge list

95 Vector<double> nakedEdge =

Vector<double>.Build.Dense(NoOfEdges,1);

96 foreach (var face in faces)

97 {

98 Point3d vA = vertices[face.A];

99 Point3d vB = vertices[face.B];

100 Point3d vC = vertices[face.C];

101 Line lineAB = new Line(vA, vB);
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102 Line lineBA = new Line(vB, vA);

103 Line lineCB = new Line(vC, vB);

104 Line lineBC = new Line(vB, vC);

105 Line lineAC = new Line(vA, vC);

106 Line lineCA = new Line(vC, vA);

107

108 if (!edges.Contains(lineAB) && !edges.Contains(lineBA))

109 {

110 edges.Add(lineAB);

111 }

112 else

113 {

114 int i = edges.IndexOf(lineAB);

115 if (i == -1)

116 {

117 i = edges.IndexOf(lineBA);

118 }

119 nakedEdge[i] = 0;

120 }

121 if (!edges.Contains(lineCB) && !edges.Contains(lineBC))

122 {

123 edges.Add(lineBC);

124 }

125 else

126 {

127 int i = edges.IndexOf(lineBC);

128 if (i == -1)

129 {

130 i = edges.IndexOf(lineCB);

131 }

132 nakedEdge[i] = 0;

133 }

134 if (!edges.Contains(lineAC) && !edges.Contains(lineCA))

135 {

136 edges.Add(lineAC);

137 }

138 else

139 {

140 int i = edges.IndexOf(lineAC);

141 if (i == -1)

142 {

143 i = edges.IndexOf(lineCA);

144 }

145 nakedEdge[i] = 0;
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146 }

147 }

148 #endregion

149

150 List<Point3d> uniqueNodes;

151 GetUniqueNodes(vertices, out uniqueNodes);

152 int gdofs = uniqueNodes.Count * 3 + edges.Count;

153

154 //Interpret and set material parameters

155 double E; //Material Young’s modulus, initial value

210000 [MPa]

156 double G; //Shear modulus, initial value 79300 [mmˆ4]

157 double nu; //Poisson’s ratio, initially 0.3

158 double t; //Thickness of shell

159 SetMaterial(mattxt, out E, out G, out nu, out t);

160

161 #endregion

162

163 Vector<double> def_tot;

164 Vector<double> reactions;

165 Vector<double> internalStresses;

166 Vector<double> internalStrains;

167 List<double> reac = new List<double>();

168 Matrix<double> K_red;

169 Vector<double> load_red;

170 Vector<double> MorleyMoments =

Vector<double>.Build.Dense(faces.Count * 3);

171

172 #region Prepares boundary conditions and loads for calculation

173

174 //Interpret the BDC inputs (text) and create list of boundary

condition (1/0 = free/clamped) for each dof.

175 Vector<double> bdc_value = CreateBDCList(bdctxt, uniqueNodes,

faces, vertices, edges);

176

177 Vector<double> nakededge = Vector<double>.Build.Dense(gdofs,

0);

178 for (int i = uniqueNodes.Count*3; i < gdofs; i++)

179 {

180 if (bdc_value[i] == 1)

181 {

182 nakededge[i] = (nakedEdge[i - uniqueNodes.Count * 3]);

183 }

184 }
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185 List<double> test1 = new List<double>(nakededge.ToArray());

186

187 //Interpreting input load (text) and creating load list

(double)

188 List<double> load = CreateLoadList(loadtxt, momenttxt,

uniqueNodes, faces, vertices, edges);

189 #endregion

190

191 if (startCalc)

192 {

193 #region Create global and reduced stiffness matrix

194

195 //Create global stiffness matrix

196

197 Matrix<double> B; // all B_k matrices collected

198 List<int> BOrder; //

199 Matrix<double> K_tot;

200 //GlobalStiffnessMatrix(faces, vertices, edges,

uniqueNodes, gdofs, E, A, Iy, Iz, J, G, nu, t, out

K_tot, out B, out BOrder);

201 GlobalStiffnessMatrix(faces, vertices, edges,

uniqueNodes, gdofs, E, G, nu, t, out K_tot, out B,

out BOrder);

202

203 //Create reduced K-matrix and reduced load list (removed

clamped dofs)

204 CreateReducedGlobalStiffnessMatrix(bdc_value, K_tot,

load, uniqueNodes, nakededge, out K_red, out

load_red);

205

206 #endregion

207

208

209 #region Calculate deformations, reaction forces and

internal strains and stresses

210

211 //Calculate deformations

212

213 Vector<double> def_reduced =

Vector<double>.Build.Dense(K_red.ColumnCount);

214 def_reduced = K_red.Cholesky().Solve(load_red);

215

216 //Add the clamped dofs (= 0) to the deformations list

217 def_tot = RestoreTotalDeformationVector(def_reduced,
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bdc_value, nakededge);

218

219 //Calculate the reaction forces from the deformations

220 reactions = K_tot.Multiply(def_tot);

221

222 // strains and stresses as [eps_x eps_y gamma_xy eps_xb

eps_yb gamma_xyb ... repeat for each face...]ˆT b for

bending

223 CalculateInternalStrainsAndStresses(def_tot, vertices,

faces, B, BOrder, uniqueNodes, edges, E, t, nu, out

internalStresses, out internalStrains, out

MorleyMoments);

224

225 #endregion

226 }

227 else

228 {

229 def_tot = Vector<double>.Build.Dense(1);

230 reactions = def_tot;

231

232 internalStresses = Vector<double>.Build.Dense(1);

233 internalStrains = internalStresses;

234 }

235

236 DA.SetDataList(0, def_tot);

237 DA.SetDataList(1, reactions);

238 DA.SetDataList(2, internalStresses);

239 DA.SetDataList(3, internalStrains);

240 }

241

242 private void CalculateInternalStrainsAndStresses(Vector<double>

def, List<Point3d> vertices, List<MeshFace> faces,

Matrix<double> B, List<int> BOrder, List<Point3d>

uniqueNodes, List<Line> edges, double E, double t, double nu,

out Vector<double> internalStresses, out Vector<double>

internalStrains, out Vector<double> MorleyMoments)

243 {

244 //preallocating lists

245 internalStresses = Vector<double>.Build.Dense(faces.Count*6);

246 internalStrains = Vector<double>.Build.Dense(faces.Count*6);

247 MorleyMoments = Vector<double>.Build.Dense(faces.Count*3);

248 Matrix <double> C = Matrix<double>.Build.Dense(3, 3);

249 C[0, 0] = 1;

250 C[0, 1] = nu;
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251 C[1, 0] = nu;

252 C[1, 1] = 1;

253 C[2, 2] = (1 - nu) * 0.5;

254 double C_add = E / (1 - Math.Pow(nu, 2));

255 C = C_add * C;

256

257 for (int i = 0; i < faces.Count; i++)

258 {

259 #region Get necessary coordinates and indices

260 int indexA = uniqueNodes.IndexOf(vertices[faces[i].A]);

261 int indexB = uniqueNodes.IndexOf(vertices[faces[i].B]);

262 int indexC = uniqueNodes.IndexOf(vertices[faces[i].C]);

263

264 Point3d verticeA = uniqueNodes[indexA];

265 Point3d verticeB = uniqueNodes[indexB];

266 Point3d verticeC = uniqueNodes[indexC];

267

268 int edgeIndex1 = edges.IndexOf(new Line(verticeA,

verticeB));

269 if (edgeIndex1 == -1) { edgeIndex1 = edges.IndexOf(new

Line(verticeB, verticeA)); }

270 int edgeIndex2 = edges.IndexOf(new Line(verticeB,

verticeC));

271 if (edgeIndex2 == -1) { edgeIndex2 = edges.IndexOf(new

Line(verticeC, verticeB)); }

272 int edgeIndex3 = edges.IndexOf(new Line(verticeC,

verticeA));

273 if (edgeIndex3 == -1) { edgeIndex3 = edges.IndexOf(new

Line(verticeA, verticeC)); }

274

275 double x1 = verticeA.X;

276 double x2 = verticeB.X;

277 double x3 = verticeC.X;

278

279 double y1 = verticeA.Y;

280 double y2 = verticeB.Y;

281 double y3 = verticeC.Y;

282

283 double z1 = verticeA.Z;

284 double z2 = verticeB.Z;

285 double z3 = verticeC.Z;

286 #endregion

287

288 #region Find tranformation matrix
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289

290 // determine direction cosines for tranformation matrix

291 double Lx = Math.Sqrt((Math.Pow((x1 - x2), 2) +

Math.Pow((y1 - y2), 2) + Math.Pow((z1 - z2), 2)));

292 double cosxX = -(x1 - x2) / Lx;

293 double cosxY = -(y1 - y2) / Lx;

294 double cosxZ = -(z1 - z2) / Lx;

295 double Ly = Math.Sqrt((Math.Pow(((y1 - y2) * ((x1 - x2) *

(y1 - y3) - (x1 - x3) * (y1 - y2)) + (z1 - z2) * ((x1

- x2) * (z1 - z3) - (x1 - x3) * (z1 - z2))), 2) +

Math.Pow(((x1 - x2) * ((x1 - x2) * (y1 - y3) - (x1 -

x3) * (y1 - y2)) - (z1 - z2) * ((y1 - y2) * (z1 - z3)

- (y1 - y3) * (z1 - z2))), 2) + Math.Pow(((x1 - x2) *

((x1 - x2) * (z1 - z3) - (x1 - x3) * (z1 - z2)) + (y1

- y2) * ((y1 - y2) * (z1 - z3) - (y1 - y3) * (z1 -

z2))), 2)));

296 double cosyX = ((y1 - y2) * ((x1 - x2) * (y1 - y3) - (x1

- x3) * (y1 - y2)) + (z1 - z2) * ((x1 - x2) * (z1 -

z3) - (x1 - x3) * (z1 - z2))) / Ly;

297 double cosyY = -((x1 - x2) * ((x1 - x2) * (y1 - y3) - (x1

- x3) * (y1 - y2)) - (z1 - z2) * ((y1 - y2) * (z1 -

z3) - (y1 - y3) * (z1 - z2))) / Ly;

298 double cosyZ = -((x1 - x2) * ((x1 - x2) * (z1 - z3) - (x1

- x3) * (z1 - z2)) + (y1 - y2) * ((y1 - y2) * (z1 -

z3) - (y1 - y3) * (z1 - z2))) / Ly;

299 double Lz = Math.Sqrt((Math.Pow(((x1 - x2) * (y1 - y3) -

(x1 - x3) * (y1 - y2)), 2) + Math.Pow(((x1 - x2) *

(z1 - z3) - (x1 - x3) * (z1 - z2)), 2) +

Math.Pow(((y1 - y2) * (z1 - z3) - (y1 - y3) * (z1 -

z2)), 2)));

300 double coszX = ((y1 - y2) * (z1 - z3) - (y1 - y3) * (z1 -

z2)) / Lz;

301 double coszY = -((x1 - x2) * (z1 - z3) - (x1 - x3) * (z1

- z2)) / Lz;

302 double coszZ = ((x1 - x2) * (y1 - y3) - (x1 - x3) * (y1 -

y2)) / Lz;

303

304 // assembling nodal x,y,z tranformation matrix tf

305 Matrix<double> tf = Matrix<double>.Build.Dense(3, 3);

306 tf[0, 0] = cosxX;

307 tf[0, 1] = cosxY;

308 tf[0, 2] = cosxZ;

309 tf[1, 0] = cosyX;

310 tf[1, 1] = cosyY;
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311 tf[1, 2] = cosyZ;

312 tf[2, 0] = coszX;

313 tf[2, 1] = coszY;

314 tf[2, 2] = coszZ;

315

316 Matrix<double> T = tf.DiagonalStack(tf);

317 T = T.DiagonalStack(tf);

318 Matrix<double> one =

Matrix<double>.Build.DenseIdentity(3, 3);

319 T = T.DiagonalStack(one); // rotations are not transformed

320 Matrix<double> T_T = T.Transpose();

321 #endregion

322

323 #region Extract B matrices from CST and Morley

324 Matrix< double> CSTB = Matrix<double>.Build.Dense(3, 6);

325 Matrix<double> MorleyB = Matrix<double>.Build.Dense(3, 6);

326 for (int row = 0; row < 3; row++)

327 {

328 for (int col = 0; col < 6; col++)

329 {

330 CSTB[row, col] = B[row + 6 * i, col];

331 MorleyB[row, col] = B[row + 3 + 6 * i, col];

332 }

333 }

334 //CSTB = B.SubMatrix(6 * i, 3, 0, 6);

335 //CSTB = B.SubMatrix(6 * i + 3, 3, 0, 6);

336 #endregion

337

338 #region Extract displacement/rotations corresponding to B

matrices

339 Vector<double> CSTv = Vector<double>.Build.Dense(6);

340 Vector<double> Morleyv = Vector<double>.Build.Dense(6);

341 for (int j = 0; j < 6; j++)

342 {

343 CSTv[j] = def[BOrder[i * 12 + j]];

344 Morleyv[j] = def[BOrder[i * 12 + 6 + j]];

345 }

346 #endregion

347

348 #region Sort the displacements/rotations to use the

tranformation matrix

349 Vector<double> v = Vector<double>.Build.Dense(12);

350 int cstc = 0;

351 int morleyc = 0;
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352 for (int k = 0; k < 11; k++)

353 {

354 if (k < 9)

355 {

356 if (k == 2 || k == 5 || k == 8)

357 {

358 v[k] = Morleyv[morleyc];

359 morleyc++;

360 }

361 else

362 {

363 v[k] = CSTv[cstc];

364 cstc++;

365 }

366 }

367 else

368 {

369 v[k] = Morleyv[morleyc];

370 morleyc++;

371 }

372 }

373 #endregion

374

375 // Transform global deformations to local deformations

376 Vector<double> vlocal = T_T.Multiply(v);

377

378 #region Sort the (now local) dofs vlocal and separate CST

and Morley dofs

379 cstc = 0;

380 morleyc = 0;

381 for (int k = 0; k < 11; k++)

382 {

383 if (k==2 || k==5 || k==8 || k > 8)

384 {

385 Morleyv[morleyc] = vlocal[k];

386 morleyc++;

387 }

388 else

389 {

390 CSTv[cstc] = vlocal[k];

391 cstc++;

392 }

393 }

394 #endregion
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395

396 // Calculate CST strain and stress

397 Vector<double> CSTstrains = CSTB.Multiply(CSTv);

398 Vector<double> CSTstress = C.Multiply(CSTstrains);

399

400 // Calculate Morley strain and stress

401 Vector<double> Morleystrains = -t * 0.5 *

(MorleyB.Multiply(Morleyv));

402 Vector<double> Morleystress = C.Multiply(Morleystrains);

403 Vector<double> MorleyMoment = t * t / 6.0 *

C.Multiply(Morleystrains);

404

405 for (int j = 0; j < 3; j++)

406 {

407 internalStrains[i * 6 + j] = CSTstrains[j];

408 internalStrains[i * 6 + 3 + j] = Morleystrains[j];

409 internalStresses[i * 6 + j] = CSTstress[j];

410 internalStresses[i * 6 + 3 + j] = Morleystress[j];

411 MorleyMoments[i * 3 + j] = MorleyMoment[j];

412 }

413 }

414 }

415

416 private Vector<double>

RestoreTotalDeformationVector(Vector<double>

deformations_red, Vector<double> bdc_value, Vector<double>

nakededges)

417 {

418 Vector<double> def =

Vector<double>.Build.Dense(bdc_value.Count);

419 for (int i = 0, j = 0; i < bdc_value.Count; i++)

420 {

421 if (bdc_value[i] == 1)

422 {

423 def[i] = deformations_red[j];

424 j++;

425 }

426 }

427 return def;

428 }

429

430 private void CreateReducedGlobalStiffnessMatrix(Vector<double>

bdc_value, Matrix<double> K, List<double> load, List<Point3d>

uniqueNodes, Vector<double> nakededges, out Matrix<double>
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K_red, out Vector<double> load_red)

431 {

432 List<string> placements = new List<string>();

433 int oldRC = load.Count;

434 int newRC = Convert.ToInt16(bdc_value.Sum());

435 K_red = Matrix<double>.Build.Dense(newRC, newRC, 0);

436 load_red = Vector<double>.Build.Dense(newRC, 0);

437 double K_temp = 0;

438 for (int i = 0, ii = 0; i < oldRC; i++)

439 {

440 //is bdc_value in row i free?

441 if (bdc_value[i] == 1)

442 {

443 for (int j = 0, jj = 0; j <= i; j++)

444 {

445 //is bdc_value in col j free?

446 if (bdc_value[j] == 1)

447 {

448 //if yes, then add to new K

449 K_temp = K[i, j];

450 K_red[i - ii, j - jj] = K_temp;

451 K_red[j - jj, i - ii] = K_temp;

452 }

453 else

454 {

455 jj++;

456 }

457 }

458 //add to reduced load list

459 load_red[i - ii] = load[i];

460 }

461 else

462 {

463 ii++;

464 }

465 }

466 }

467

468 private void GetUniqueNodes(List<Point3d> vertices, out

List<Point3d> uniqueNodes)

469 {

470 uniqueNodes = new List<Point3d>();

471 for (int i = 0; i < vertices.Count; i++)

472 {
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473 Point3d tempNode = new Point3d(Math.Round(vertices[i].X,

4), Math.Round(vertices[i].Y, 4),

Math.Round(vertices[i].Z, 4));

474 if (!uniqueNodes.Contains(tempNode))

475 {

476 uniqueNodes.Add(tempNode);

477 }

478 }

479 }

480

481 private void GlobalStiffnessMatrix(List<MeshFace> faces,

List<Point3d> vertices, List<Line> edges, List<Point3d>

uniqueNodes, int gdofs, double E, double G, double nu, double

t, out Matrix<double> KG, out Matrix<double> B, out List<int>

BDefOrder)

482 {

483 int NoOfFaces = faces.Count;

484 int nodeDofs = uniqueNodes.Count * 3;

485

486 // Want to keep the B matrices for later calculations, we

also should keep the indices for nodes and edges for speed

487 B = Matrix<double>.Build.Dense(NoOfFaces * 6, 6);

488 BDefOrder = new List<int>(NoOfFaces * 6);

489 int Bcount = 0;

490

491 KG = Matrix<double>.Build.Dense(gdofs, gdofs);

492

493 foreach (var face in faces)

494 {

495 int indexA = uniqueNodes.IndexOf(vertices[face.A]);

496 int indexB = uniqueNodes.IndexOf(vertices[face.B]);

497 int indexC = uniqueNodes.IndexOf(vertices[face.C]);

498

499 Point3d verticeA = uniqueNodes[indexA];

500 Point3d verticeB = uniqueNodes[indexB];

501 Point3d verticeC = uniqueNodes[indexC];

502

503 int edgeIndex1 = edges.IndexOf(new Line(verticeA,

verticeB));

504 if (edgeIndex1 == -1) { edgeIndex1 = edges.IndexOf(new

Line(verticeB, verticeA)); }

505 int edgeIndex2 = edges.IndexOf(new Line(verticeB,

verticeC));

506 if (edgeIndex2 == -1) { edgeIndex2 = edges.IndexOf(new
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Line(verticeC, verticeB)); }

507 int edgeIndex3 = edges.IndexOf(new Line(verticeC,

verticeA));

508 if (edgeIndex3 == -1) { edgeIndex3 = edges.IndexOf(new

Line(verticeA, verticeC)); }

509

510 int[] eindx = new int[] { edgeIndex1, edgeIndex2,

edgeIndex3 };

511 int[] vindx = new int[] { indexA, indexB, indexC };

512

513 double x1 = verticeA.X;

514 double x2 = verticeB.X;

515 double x3 = verticeC.X;

516

517 double y1 = verticeA.Y;

518 double y2 = verticeB.Y;

519 double y3 = verticeC.Y;

520

521 double z1 = verticeA.Z;

522 double z2 = verticeB.Z;

523 double z3 = verticeC.Z;

524

525 double[] xList = new double[3] { x1, x2, x3 };

526 double[] yList = new double[3] { y1, y2, y3 };

527 double[] zList = new double[3] { z1, z2, z3 };

528

529 Matrix<double> Ke; // given as [x1 y1 z1 phi1 x2 y2 z2

phi2 x3 y3 z3 phi3]

530 Matrix<double> Be;

531 ElementStiffnessMatrix(xList, yList, zList, E, nu, t, out

Ke, out Be);

532 for (int r = 0; r < 6; r++)

533 {

534 for (int c = 0; c < 6; c++)

535 {

536 B[Bcount * 6 + r, c] = Be[r, c];

537 }

538 }

539 //B.SetSubMatrix(Bcount * 6, 0, Be);

540 Bcount++;

541 BDefOrder.AddRange(new int[] { indexA * 3, indexA * 3 +

1, indexB * 3, indexB * 3 + 1, indexC * 3, indexC * 3

+ 1, indexA * 3 + 2, indexB * 3 + 2, indexC * 3 + 2,

nodeDofs + eindx[0], nodeDofs + eindx[1], nodeDofs +
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eindx[2] });

542

543 for (int row = 0; row < 3; row++)

544 {

545 for (int col = 0; col < 3; col++)

546 {

547 //top left 3x3 of K-element matrix

548 KG[indexA * 3 + row, indexA * 3 + col] += Ke[row,

col];

549 //top middle 3x3 of k-element matrix

550 KG[indexA * 3 + row, indexB * 3 + col] += Ke[row,

col + 4];

551 //top right 3x3 of k-element matrix

552 KG[indexA * 3 + row, indexC * 3 + col] += Ke[row,

col + 4 * 2];

553

554 //middle left 3x3 of k-element matrix

555 KG[indexB * 3 + row, indexA * 3 + col] += Ke[row

+ 4, col];

556 //middle middle 3x3 of k-element matrix

557 KG[indexB * 3 + row, indexB * 3 + col] += Ke[row

+ 4, col + 4];

558 //middle right 3x3 of k-element matrix

559 KG[indexB * 3 + row, indexC * 3 + col] += Ke[row

+ 4, col + 4 * 2];

560

561 //bottom left 3x3 of k-element matrix

562 KG[indexC * 3 + row, indexA * 3 + col] += Ke[row

+ 4 * 2, col];

563 //bottom middle 3x3 of k-element matrix

564 KG[indexC * 3 + row, indexB * 3 + col] += Ke[row

+ 4 * 2, col + 4];

565 //bottom right 3x3 of k-element matrix

566 KG[indexC * 3 + row, indexC * 3 + col] += Ke[row

+ 4 * 2, col + 4 * 2];

567

568 // insert rotations for edges in correct place

569 //Rotation to rotation relation

570 KG[nodeDofs + eindx[row], nodeDofs + eindx[col]]

+= Ke[row * 4 + 3, col * 4 + 3];

571

572 //Rotation to x relation lower left

573 KG[nodeDofs + eindx[row], vindx[col] * 3] +=

Ke[row * 4 + 3, col * 4];
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574 //Rotation to x relation upper right

575 KG[vindx[row] * 3, nodeDofs + eindx[col]] +=

Ke[row * 4, col * 4 + 3];

576

577 //Rotation to y relation lower left

578 KG[nodeDofs + eindx[row], vindx[col] * 3 + 1] +=

Ke[row * 4 + 3, col * 4 + 1];

579 //Rotation to y relation upper right

580 KG[vindx[row] * 3 + 1, nodeDofs + eindx[col]] +=

Ke[row * 4 + 1, col * 4 + 3];

581

582 //Rotation to z relation lower left

583 KG[nodeDofs + eindx[row], vindx[col] * 3 + 2] +=

Ke[row * 4 + 3, col * 4 + 2];

584 //Rotation to z relation upper right

585 KG[vindx[row] * 3 + 2, nodeDofs + eindx[col]] +=

Ke[row * 4 + 2, col * 4 + 3];

586 }

587 }

588 }

589 }

590

591 private void ElementStiffnessMatrix(double[] xList, double[]

yList, double[] zList, double E, double nu, double t, out

Matrix<double> Ke, out Matrix<double> B)

592 {

593

594 #region Get global coordinates and transform into local

cartesian system

595

596 // fetching global coordinates

597 double x1 = xList[0];

598 double x2 = xList[1];

599 double x3 = xList[2];

600

601 double y1 = yList[0];

602 double y2 = yList[1];

603 double y3 = yList[2];

604

605 double z1 = zList[0];

606 double z2 = zList[1];

607 double z3 = zList[2];

608

609 // determine angles for tranformation matrix
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610 double Lx = Math.Sqrt((Math.Pow((x1 - x2), 2) + Math.Pow((y1

- y2), 2) + Math.Pow((z1 - z2), 2)));

611 double cosxX = -(x1 - x2) / Lx;

612 double cosxY = -(y1 - y2) / Lx;

613 double cosxZ = -(z1 - z2) / Lx;

614 double Ly = Math.Sqrt((Math.Pow(((y1 - y2) * ((x1 - x2) * (y1

- y3) - (x1 - x3) * (y1 - y2)) + (z1 - z2) * ((x1 - x2) *

(z1 - z3) - (x1 - x3) * (z1 - z2))), 2) + Math.Pow(((x1 -

x2) * ((x1 - x2) * (y1 - y3) - (x1 - x3) * (y1 - y2)) -

(z1 - z2) * ((y1 - y2) * (z1 - z3) - (y1 - y3) * (z1 -

z2))), 2) + Math.Pow(((x1 - x2) * ((x1 - x2) * (z1 - z3)

- (x1 - x3) * (z1 - z2)) + (y1 - y2) * ((y1 - y2) * (z1 -

z3) - (y1 - y3) * (z1 - z2))), 2)));

615 double cosyX = ((y1 - y2) * ((x1 - x2) * (y1 - y3) - (x1 -

x3) * (y1 - y2)) + (z1 - z2) * ((x1 - x2) * (z1 - z3) -

(x1 - x3) * (z1 - z2))) / Ly;

616 double cosyY = -((x1 - x2) * ((x1 - x2) * (y1 - y3) - (x1 -

x3) * (y1 - y2)) - (z1 - z2) * ((y1 - y2) * (z1 - z3) -

(y1 - y3) * (z1 - z2))) / Ly;

617 double cosyZ = -((x1 - x2) * ((x1 - x2) * (z1 - z3) - (x1 -

x3) * (z1 - z2)) + (y1 - y2) * ((y1 - y2) * (z1 - z3) -

(y1 - y3) * (z1 - z2))) / Ly;

618 double Lz = Math.Sqrt((Math.Pow(((x1 - x2) * (y1 - y3) - (x1

- x3) * (y1 - y2)), 2) + Math.Pow(((x1 - x2) * (z1 - z3)

- (x1 - x3) * (z1 - z2)), 2) + Math.Pow(((y1 - y2) * (z1

- z3) - (y1 - y3) * (z1 - z2)), 2)));

619 double coszX = ((y1 - y2) * (z1 - z3) - (y1 - y3) * (z1 -

z2)) / Lz;

620 double coszY = -((x1 - x2) * (z1 - z3) - (x1 - x3) * (z1 -

z2)) / Lz;

621 double coszZ = ((x1 - x2) * (y1 - y3) - (x1 - x3) * (y1 -

y2)) / Lz;

622

623 // assembling nodal x,y,z tranformation matrix tf

624 Matrix<double> tf = Matrix<double>.Build.Dense(3, 3);

625 tf[0, 0] = cosxX;

626 tf[0, 1] = cosxY;

627 tf[0, 2] = cosxZ;

628 tf[1, 0] = cosyX;

629 tf[1, 1] = cosyY;

630 tf[1, 2] = cosyZ;

631 tf[2, 0] = coszX;

632 tf[2, 1] = coszY;

633 tf[2, 2] = coszZ;
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634

635 // assemble the full transformation matrix T for the entire

element (12x12 matrix)

636 Matrix<double> one = Matrix<double>.Build.Dense(1, 1, 1);

637 var T = tf;

638 T = T.DiagonalStack(one);

639 T = T.DiagonalStack(tf);

640 T = T.DiagonalStack(one);

641 T = T.DiagonalStack(tf);

642 T = T.DiagonalStack(one);

643 Matrix<double> T_T = T.Transpose(); // and the transposed

tranformation matrix

644

645 // initiates the local coordinate matrix, initiated with

global coordinates

646 Matrix<double> lcoord = Matrix<double>.Build.DenseOfArray(new

double[,]

647 {

648 { x1, x2, x3 },

649 { y1, y2, y3 },

650 { z1, z2, z3 }

651 });

652

653 //transforms lcoord into local coordinate values

654 lcoord = tf.Multiply(lcoord);

655

656 // sets the new (local) coordinate values

657 x1 = lcoord[0, 0];

658 x2 = lcoord[0, 1];

659 x3 = lcoord[0, 2];

660 y1 = lcoord[1, 0];

661 y2 = lcoord[1, 1];

662 y3 = lcoord[1, 2];

663 z1 = lcoord[2, 0];

664 z2 = lcoord[2, 1];

665 z3 = lcoord[2, 2]; // Note that z1 = z2 = z3, if all goes

according to plan

666

667 #endregion

668

669 double Area = Math.Abs(0.5 * (x1 * (y2 - y3) + x2 * (y3 - y1)

+ x3 * (y1 - y2)));

670

671 // Establishes the general flexural rigidity matrix for plate
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672 Matrix<double> C = Matrix<double>.Build.Dense(3, 3);

673 C[0, 0] = 1;

674 C[0, 1] = nu;

675 C[1, 0] = nu;

676 C[1, 1] = 1;

677 C[2, 2] = (1 - nu)*0.5;

678

679 double C_add = E / (1 - Math.Pow(nu, 2)); // additional part

to add to every indice in C matrix

680

681 #region Morley Bending Triangle -- Bending part of element

gives [z1 z2 z3 phi1 phi2 phi3]

682

683 Matrix<double> lcoord_temp =

Matrix<double>.Build.DenseOfArray(new double[,] { { x1 },

{ y1 }, { z1 } });

684 lcoord = lcoord.Append(lcoord_temp);

685

686 // defines variables for simplicity

687 double x13 = x1 - x3;

688 double x32 = x3 - x2;

689 double y23 = y2 - y3;

690 double y31 = y3 - y1;

691

692 double[] ga = new double[3];

693 double[] my = new double[3];

694 double[] a = new double[3];

695

696 for (int i = 0; i < 3; i++)

697 {

698 double c, s;

699 double len = Math.Sqrt(Math.Pow(lcoord[0, i + 1] -

lcoord[0, i], 2) + Math.Pow(lcoord[1, i + 1] -

lcoord[1, i], 2));

700 if (lcoord[0, i + 1] > lcoord[0, i])

701 {

702 c = (lcoord[0, i + 1] - lcoord[0, i]) / len;

703 s = (lcoord[1, i + 1] - lcoord[1, i]) / len;

704 }

705 else if (lcoord[0, i + 1] < lcoord[0, i])

706 {

707 c = (lcoord[0, i] - lcoord[0, i + 1]) / len;

708 s = (lcoord[1, i] - lcoord[1, i + 1]) / len;

709 }
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710 else

711 {

712 c = 0.0;

713 s = 1.0;

714 }

715 ga[i] = (c * x32 - s * y23) / (2 * Area);

716 my[i] = (c * x13 - s * y31) / (2 * Area);

717 a[i] = ga[i] + my[i];

718 }

719

720 double ga4 = ga[0];

721 double ga5 = ga[1];

722 double ga6 = ga[2];

723 double my4 = my[0];

724 double my5 = my[1];

725 double my6 = my[2];

726 double a4 = a[0];

727 double a5 = a[1];

728 double a6 = a[2];

729

730 Matrix<double> Bk_b = Matrix<double>.Build.Dense(3, 6); //

Exported from Matlab

731 Bk_b[0, 0] = -(2 * (ga4 * my6 * Math.Pow(y23, 2) - a4 * my6 *

Math.Pow(y23, 2) - a4 * ga6 * Math.Pow(y31, 2) + ga4 *

my6 * Math.Pow(y31, 2) + 2 * ga4 * my6 * y23 * y31)) /

(a4 * my6);

732 Bk_b[0, 1] = -(2 * (ga5 * my4 * Math.Pow(y23, 2) - a4 * my5 *

Math.Pow(y23, 2) - a4 * ga5 * Math.Pow(y31, 2) + ga5 *

my4 * Math.Pow(y31, 2) + 2 * ga5 * my4 * y23 * y31)) /

(a4 * ga5);

733 Bk_b[0, 2] = (2 * (ga5 * my6 * Math.Pow(y23, 2) - a5 * my6 *

Math.Pow(y23, 2) - a6 * ga5 * Math.Pow(y31, 2) + ga5 *

my6 * Math.Pow(y31, 2) + 2 * ga5 * my6 * y23 * y31)) /

(ga5 * my6);

734 Bk_b[0, 3] = (2 * Math.Pow((y23 + y31), 2)) / a4;

735 Bk_b[0, 4] = -(2 * Math.Pow(y23, 2)) / ga5;

736 Bk_b[0, 5] = -(2 * Math.Pow(y31, 2)) / my6;

737 Bk_b[1, 0] = -(2 * (ga4 * my6 * Math.Pow(x13, 2) - a4 * my6 *

Math.Pow(x32, 2) + ga4 * my6 * Math.Pow(x32, 2) - a4 *

ga6 * Math.Pow(x13, 2) + 2 * ga4 * my6 * x13 * x32)) /

(a4 * my6);

738 Bk_b[1, 1] = -(2 * (ga5 * my4 * Math.Pow(x13, 2) - a4 * my5 *

Math.Pow(x32, 2) + ga5 * my4 * Math.Pow(x32, 2) - a4 *

ga5 * Math.Pow(x13, 2) + 2 * ga5 * my4 * x13 * x32)) /
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(a4 * ga5);

739 Bk_b[1, 2] = (2 * (ga5 * my6 * Math.Pow(x13, 2) - a5 * my6 *

Math.Pow(x32, 2) + ga5 * my6 * Math.Pow(x32, 2) - a6 *

ga5 * Math.Pow(x13, 2) + 2 * ga5 * my6 * x13 * x32)) /

(ga5 * my6);

740 Bk_b[1, 3] = (2 * Math.Pow((x13 + x32), 2)) / a4;

741 Bk_b[1, 4] = -(2 * Math.Pow(x32, 2)) / ga5;

742 Bk_b[1, 5] = -(2 * Math.Pow(x13, 2)) / my6;

743 Bk_b[2, 0] = -(4 * (ga4 * my6 * x13 * y23 - a4 * my6 * x32 *

y23 - a4 * ga6 * x13 * y31 + ga4 * my6 * x13 * y31 + ga4

* my6 * x32 * y23 + ga4 * my6 * x32 * y31)) / (a4 * my6);

744 Bk_b[2, 1] = -(4 * (ga5 * my4 * x13 * y23 - a4 * my5 * x32 *

y23 - a4 * ga5 * x13 * y31 + ga5 * my4 * x13 * y31 + ga5

* my4 * x32 * y23 + ga5 * my4 * x32 * y31)) / (a4 * ga5);

745 Bk_b[2, 2] = 4 * x13 * y23 + 4 * x13 * y31 + 4 * x32 * y23 +

4 * x32 * y31 - (4 * a5 * x32 * y23) / ga5 - (4 * a6 *

x13 * y31) / my6;

746 Bk_b[2, 3] = (4 * (x13 + x32) * (y23 + y31)) / a4;

747 Bk_b[2, 4] = -(4 * x32 * y23) / ga5;

748 Bk_b[2, 5] = -(4 * x13 * y31) / my6;

749

750 double Bk_b_add = 1 / (4.0 * Math.Pow(Area, 2)); //

additional part to add to every indice in B matrix

751

752 Matrix<double> Bk_b_T = Bk_b.Transpose();

753

754 Matrix<double> ke_b = C.Multiply(Bk_b); // the bending part

of the element stiffness matrix

755 ke_b = Bk_b_T.Multiply(ke_b);

756 double ke_b_add = (Area * t * t * t) / 12; // additional part

to add to every indice in ke_b matrix

757 ke_b_add = ke_b_add * Bk_b_add * C_add * Bk_b_add; //

multiply upp all additional parts

758 ke_b = ke_b.Multiply(ke_b_add);

759

760 #endregion

761

762

763 #region Constant Strain/Stress Triangle (CST) -- Membrane

part of element gives [x1 y1 x2 y2 x3 y3]

764

765 Matrix<double> Bk_m = Matrix<double>.Build.Dense(3, 6); //

Exported from Matlab

766
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767 Bk_m[0, 0] = (y2 - y3) / (x1 * y2 - x2 * y1 - x1 * y3 + x3 *

y1 + x2 * y3 - x3 * y2);

768 Bk_m[0, 2] = -(y1 - y3) / (x1 * y2 - x2 * y1 - x1 * y3 + x3 *

y1 + x2 * y3 - x3 * y2);

769 Bk_m[0, 4] = (y1 - y2) / (x1 * y2 - x2 * y1 - x1 * y3 + x3 *

y1 + x2 * y3 - x3 * y2);

770 Bk_m[1, 1] = -(x2 - x3) / (x1 * y2 - x2 * y1 - x1 * y3 + x3 *

y1 + x2 * y3 - x3 * y2);

771 Bk_m[1, 3] = (x1 - x3) / (x1 * y2 - x2 * y1 - x1 * y3 + x3 *

y1 + x2 * y3 - x3 * y2);

772 Bk_m[1, 5] = -(x1 - x2) / (x1 * y2 - x2 * y1 - x1 * y3 + x3 *

y1 + x2 * y3 - x3 * y2);

773 Bk_m[2, 0] = -(x2 - x3) / (x1 * y2 - x2 * y1 - x1 * y3 + x3 *

y1 + x2 * y3 - x3 * y2);

774 Bk_m[2, 1] = (y2 - y3) / (x1 * y2 - x2 * y1 - x1 * y3 + x3 *

y1 + x2 * y3 - x3 * y2);

775 Bk_m[2, 2] = (x1 - x3) / (x1 * y2 - x2 * y1 - x1 * y3 + x3 *

y1 + x2 * y3 - x3 * y2);

776 Bk_m[2, 3] = -(y1 - y3) / (x1 * y2 - x2 * y1 - x1 * y3 + x3 *

y1 + x2 * y3 - x3 * y2);

777 Bk_m[2, 4] = -(x1 - x2) / (x1 * y2 - x2 * y1 - x1 * y3 + x3 *

y1 + x2 * y3 - x3 * y2);

778 Bk_m[2, 5] = (y1 - y2) / (x1 * y2 - x2 * y1 - x1 * y3 + x3 *

y1 + x2 * y3 - x3 * y2);

779

780 Matrix<double> Bk_m_T = Bk_m.Transpose();

781

782 Matrix<double> ke_m = C.Multiply(Bk_m); // the membrane part

of the element stiffness matrix

783 ke_m = Bk_m_T.Multiply(ke_m);

784 ke_m = ke_m.Multiply(C_add * Area * t);

785

786 #endregion

787

788 B = Bk_m.Stack(Bk_b*Bk_b_add);

789

790 // input membrane and bending part into full element

stiffness matrix

791 // and stacking them from [x1 y1 x2 y2 x3 y3 z1 z2 z3 phi1

phi2 phi3]

792 // into [x1 y1 z1 phi1 x2 y2 z2 phi2 x3 y3 z3 phi3] which

gives the stacking order: { 0 1 6 9 2 3 7 10 4 5 8 11 }

793 Matrix<double> ke = ke_m.DiagonalStack(ke_b);

794 ke = SymmetricRearrangeMatrix(ke, new int[] { 0, 1, 6, 9, 2,
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3, 7, 10, 4, 5, 8, 11 }, 12); //strictly not necessary,

but is done for simplicity and understandability

795

796

797 Ke = ke.Multiply(T);

798 Ke = T_T.Multiply(Ke);

799 }

800

801 private Matrix<double> RearrangeMatrixRows(Matrix<double> M,

int[] arrangement, int row, int col)

802 {

803 Matrix<double> M_new = Matrix<double>.Build.Dense(row, col);

804

805 for (int i = 0; i < row; i++)

806 {

807 for (int j = 0; j < col; j++)

808 {

809 M_new[i, j] = M[arrangement[i],j];

810 }

811 }

812 return M_new;

813 }

814

815 private Matrix<double> SymmetricRearrangeMatrix(Matrix<double> M,

int[] arrangement, int rowcol)

816 {

817 Matrix<double> M_new =

Matrix<double>.Build.Dense(rowcol,rowcol);

818

819 for (int i = 0; i < rowcol; i++)

820 {

821 for (int j = 0; j < rowcol; j++)

822 {

823 M_new[i, j] = M[arrangement[i], arrangement[j]];

824 }

825 }

826 return M_new;

827 }

828

829 private List<double> CreateLoadList(List<string> loadtxt,

List<string> momenttxt, List<Point3d> uniqueNodes,

List<MeshFace> faces, List<Point3d> vertices, List<Line>

edges)

830 {
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831 //initializing loads with list of doubles of size gdofs and

entry values = 0

832 List<double> loads = new List<double>(new

double[uniqueNodes.Count * 3 + edges.Count]);

833 List<double> inputLoads = new List<double>();

834 List<Point3d> coordlist = new List<Point3d>();

835

836 //parsing point loads

837 for (int i = 0; i < loadtxt.Count; i++)

838 {

839 string coordstr = (loadtxt[i].Split(’:’)[0]);

840 string loadstr = (loadtxt[i].Split(’:’)[1]);

841

842 string[] coordstr1 = (coordstr.Split(’,’));

843 string[] loadstr1 = (loadstr.Split(’,’));

844

845 inputLoads.Add(Math.Round(double.Parse(loadstr1[0]), 2));

846 inputLoads.Add(Math.Round(double.Parse(loadstr1[1]), 2));

847 inputLoads.Add(Math.Round(double.Parse(loadstr1[2]), 2));

848

849 coordlist.Add(new

Point3d(Math.Round(double.Parse(coordstr1[0]), 4),

Math.Round(double.Parse(coordstr1[1]), 4),

Math.Round(double.Parse(coordstr1[2]), 4)));

850 }

851

852 //inputting point loads at correct index in loads list

853 foreach (Point3d point in coordlist)

854 {

855 int gNodeIndex = uniqueNodes.IndexOf(point);

856 int lNodeIndex = coordlist.IndexOf(point);

857 loads[gNodeIndex * 3 + 0] = inputLoads[lNodeIndex * 3 +

0];

858 loads[gNodeIndex * 3 + 1] = inputLoads[lNodeIndex * 3 +

1];

859 loads[gNodeIndex * 3 + 2] = inputLoads[lNodeIndex * 3 +

2];

860 }

861 //resetting variables

862 inputLoads.Clear();

863 coordlist.Clear();

864

865 return loads;

866 }
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867

868 private Vector<double> CreateBDCList(List<string> bdctxt,

List<Point3d> uniqueNodes, List<MeshFace> faces,

List<Point3d> vertices, List<Line> edges)

869 {

870 //initializing bdc_value as vector of size gdofs, and entry

values = 1

871 Vector<double> bdc_value =

Vector.Build.Dense(uniqueNodes.Count * 3 + edges.Count

,1);

872 List<int> bdcs = new List<int>();

873 List<Point3d> bdc_points = new List<Point3d>(); //Coordinates

relating til bdc_value in for (eg. x y z)

874 List<int> fixedRotEdges = new List<int>();

875 int rows = bdctxt.Count;

876

877 //Parse string input

878 int numOfPoints = bdctxt.Count;

879 for (int i = 0; i < numOfPoints; i++)

880 {

881 if (bdctxt[i] == null)

882 {

883 continue;

884 }

885 else if (!bdctxt[i].Contains(":"))

886 {

887 string[] edgestrtemp = bdctxt[i].Split(’,’);

888 List<string> edgestr = new List<string>();

889 edgestr.AddRange(edgestrtemp);

890 for (int j = 0; j < edgestr.Count; j++)

891 {

892 fixedRotEdges.Add(int.Parse(edgestr[j]));

893 }

894 continue;

895 }

896 string coordstr = bdctxt[i].Split(’:’)[0];

897 string bdcstr = bdctxt[i].Split(’:’)[1];

898

899 string[] coordstr1 = (coordstr.Split(’,’));

900 string[] bdcstr1 = (bdcstr.Split(’,’));

901

902 bdc_points.Add(new

Point3d(Math.Round(double.Parse(coordstr1[0]), 4),

Math.Round(double.Parse(coordstr1[1]), 4),
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Math.Round(double.Parse(coordstr1[2]), 4)));

903

904 bdcs.Add(int.Parse(bdcstr1[0]));

905 bdcs.Add(int.Parse(bdcstr1[1]));

906 bdcs.Add(int.Parse(bdcstr1[2]));

907 }

908

909 //Format to correct entries in bdc_value

910

911 foreach (var point in bdc_points)

912 {

913 int index = bdc_points.IndexOf(point);

914 int i = uniqueNodes.IndexOf(point);

915 bdc_value[i * 3 + 0] = bdcs[index * 3 + 0];

916 bdc_value[i * 3 + 1] = bdcs[index * 3 + 1];

917 bdc_value[i * 3 + 2] = bdcs[index * 3 + 2];

918 }

919

920 foreach (var edgeindex in fixedRotEdges)

921 {

922 bdc_value[edgeindex+uniqueNodes.Count*3] = 0;

923 }

924

925

926 return bdc_value;

927 }

928

929 private void SetMaterial(string mattxt, out double E, out double

G, out double nu, out double t)

930 {

931 string[] matProp = (mattxt.Split(’,’));

932 E = (Math.Round(double.Parse(matProp[0]), 2));

933 nu = (Math.Round(double.Parse(matProp[1]), 3));

934 t = (Math.Round(double.Parse(matProp[2]), 2));

935 if (matProp.GetLength(0) == 4)

936 {

937 G = (Math.Round(double.Parse(matProp[3]), 2));

938 }

939 else

940 {

941 G = E / (2.0 * (1.0 + nu));

942 }

943

944 }
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945

946 protected override System.Drawing.Bitmap Icon

947 {

948 get

949 {

950

951 return Properties.Resources.Calc1;

952 }

953 }

954

955 public override Guid ComponentGuid

956 {

957 get { return new

Guid("3a61d696-911f-46cd-a687-ef48a48575b0"); }

958 }

959

960 /// Component Visual//

961 public class Attributes_Custom :

Grasshopper.Kernel.Attributes.GH_ComponentAttributes

962 {

963 public Attributes_Custom(GH_Component owner) : base(owner) { }

964 protected override void Layout()

965 {

966 base.Layout();

967

968 Rectangle rec0 = GH_Convert.ToRectangle(Bounds);

969

970 rec0.Height += 22;

971

972 Rectangle rec1 = rec0;

973 rec1.X = rec0.Left + 1;

974 rec1.Y = rec0.Bottom - 22;

975 rec1.Width = (rec0.Width) / 3 + 1;

976 rec1.Height = 22;

977 rec1.Inflate(-2, -2);

978

979 Rectangle rec2 = rec1;

980 rec2.X = rec1.Right + 2;

981

982 Bounds = rec0;

983 ButtonBounds = rec1;

984 ButtonBounds2 = rec2;

985

986 }
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987

988 GH_Palette xColor = GH_Palette.Black;

989 GH_Palette yColor = GH_Palette.Grey;

990

991 private Rectangle ButtonBounds { get; set; }

992 private Rectangle ButtonBounds2 { get; set; }

993 private Rectangle ButtonBounds3 { get; set; }

994

995 protected override void Render(GH_Canvas canvas, Graphics

graphics, GH_CanvasChannel channel)

996 {

997 base.Render(canvas, graphics, channel);

998 if (channel == GH_CanvasChannel.Objects)

999 {

1000 GH_Capsule button;

1001 if (startCalc == true)

1002 {

1003 button =

GH_Capsule.CreateTextCapsule(ButtonBounds,

ButtonBounds, xColor, "Run: On", 3, 0);

1004 }

1005 else

1006 {

1007 button =

GH_Capsule.CreateTextCapsule(ButtonBounds,

ButtonBounds, yColor, "Run: Off", 3, 0);

1008 }

1009 button.Render(graphics, Selected, false, false);

1010 button.Dispose();

1011 }

1012 }

1013

1014 public override GH_ObjectResponse

RespondToMouseDown(GH_Canvas sender, GH_CanvasMouseEvent

e)

1015 {

1016 if (e.Button == MouseButtons.Left)

1017 {

1018 RectangleF rec = ButtonBounds;

1019 if (rec.Contains(e.CanvasLocation))

1020 {

1021 switchColor("Run");

1022 if (xColor == GH_Palette.Black) { setStart("Run",

true); Owner.ExpireSolution(true); }
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1023 if (xColor == GH_Palette.Grey) { setStart("Run",

false); Owner.ExpireSolution(true); }

1024

1025 sender.Refresh();

1026 return GH_ObjectResponse.Handled;

1027 }

1028 rec = ButtonBounds2;

1029 if (rec.Contains(e.CanvasLocation))

1030 {

1031 switchColor("Run Test");

1032 if (yColor == GH_Palette.Black) { setStart("Run

Test", true); }

1033 if (yColor == GH_Palette.Grey) { setStart("Run

Test", false); }

1034 sender.Refresh();

1035 return GH_ObjectResponse.Handled;

1036 }

1037 }

1038 return base.RespondToMouseDown(sender, e);

1039 }

1040

1041 private void switchColor(string button)

1042 {

1043 if (button == "Run")

1044 {

1045 if (xColor == GH_Palette.Black) { xColor =

GH_Palette.Grey; }

1046 else { xColor = GH_Palette.Black; }

1047 }

1048 else if (button == "Run Test")

1049 {

1050 if (yColor == GH_Palette.Black) { yColor =

GH_Palette.Grey; }

1051 else { yColor = GH_Palette.Black; }

1052 }

1053 }

1054 }

1055 }

1056 }
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Shell Set Loads Component

1 using System;

2 using System.Collections.Generic;

3

4 using Grasshopper.Kernel;

5 using Rhino.Geometry;

6

7 namespace Shell

8 {

9 public class SetLoads : GH_Component

10 {

11 public SetLoads()

12 : base("PointLoads Shell", "PL",

13 "Point loads to apply to a shell structure",

14 "Koala", "Shell")

15 {

16 }

17 protected override void

RegisterInputParams(GH_Component.GH_InputParamManager

pManager)

18 {

19 pManager.AddPointParameter("Points", "P", "Points to apply

load(s)", GH_ParamAccess.list);

20 pManager.AddNumberParameter("Load", "L", "Load originally

given i Newtons (N), give one load for all points or list

of loads for each point", GH_ParamAccess.list);

21 pManager.AddNumberParameter("angle (xz)", "axz", "give angle

for load in xz plane", GH_ParamAccess.list, 90);

22 pManager.AddNumberParameter("angle (xy)", "axy", "give angle

for load in xy plane", GH_ParamAccess.list, 0);

23 //pManager[2].Optional = true; //Code can run without a given

angle (90 degrees is initial value)

24 }

25

26 protected override void

RegisterOutputParams(GH_Component.GH_OutputParamManager

pManager)

27 {

28 pManager.AddTextParameter("PointLoads", "PL", "PointLoads

formatted for Calculation Component",

GH_ParamAccess.list);

29 }

30
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31 protected override void SolveInstance(IGH_DataAccess DA)

32 {

33 #region Fetch inputs

34 //Expected inputs and output

35 List<Point3d> pointList = new List<Point3d>();

//List of points where load will be applied

36 List<double> loadList = new List<double>();

//List or value of load applied

37 List<double> anglexz = new List<double>();

//Initial xz angle 90, angle from x axis in xz plane for

load

38 List<double> anglexy = new List<double>();

//Initial xy angle 0, angle from x axis in xy plane for

load

39 List<string> pointInStringFormat = new List<string>();

//preallocate final string output

40

41 //Set expected inputs from Indata

42 if (!DA.GetDataList(0, pointList)) return;

43 if (!DA.GetDataList(1, loadList)) return;

44 if (!DA.GetDataList(2, anglexz)) return;

45 if (!DA.GetDataList(3, anglexy)) return;

46 #endregion

47

48 #region Format pointloads

49 //initialize temporary stringline and load vectors

50 string vectorString;

51 double load = 0;

52 double xvec = 0;

53 double yvec = 0;

54 double zvec = 0;

55

56 if (loadList.Count == 1 && anglexz.Count == 1)

//loads and angles are identical for all points

57 {

58 load = -1 * loadList[0];

//negativ load for z-dir

59 xvec = Math.Round(load * Math.Cos(anglexz[0] * Math.PI /

180) * Math.Cos(anglexy[0] * Math.PI / 180), 5);

60 yvec = Math.Round(load * Math.Cos(anglexz[0] * Math.PI /

180) * Math.Sin(anglexy[0] * Math.PI / 180), 5);

61 zvec = Math.Round(load * Math.Sin(anglexz[0] * Math.PI /

180), 5);

62
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63 vectorString = xvec + "," + yvec + "," + zvec;

64 for (int i = 0; i < pointList.Count; i++)

//adds identical load to all points in pointList

65 {

66 pointInStringFormat.Add(pointList[i].X + "," +

pointList[i].Y + "," + pointList[i].Z + ":" +

vectorString);

67 }

68 }

69 else //loads and angles may be different => calculate new

xvec, yvec, zvec for all loads

70 {

71 for (int i = 0; i < pointList.Count; i++)

72 {

73 if (loadList.Count < i) //if pointlist is

larger than loadlist, set last load value in

remaining points

74 {

75 vectorString = xvec + "," + yvec + "," + zvec;

76 }

77 else

78 {

79 load = -1 * loadList[i]; //negative load

for z-dir

80

81 xvec = Math.Round(load * Math.Cos(anglexz[i]) *

Math.Cos(anglexy[i]), 2);

82 yvec = Math.Round(load * Math.Cos(anglexz[i]) *

Math.Sin(anglexy[i]), 2);

83 zvec = Math.Round(load * Math.Sin(anglexz[i]), 2);

84

85 vectorString = xvec + "," + yvec + "," + zvec;

86 }

87

88 pointInStringFormat.Add(pointList[i].X + "," +

pointList[i].Y + "," + pointList[i].Z + ":" +

vectorString);

89 }

90 }

91 #endregion

92

93 //Set output data

94 DA.SetDataList(0, pointInStringFormat);

95 }
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96

97 protected override System.Drawing.Bitmap Icon

98 {

99 get

100 {

101 return Properties.Resources.Pointloads;

102 }

103 }

104

105 public override Guid ComponentGuid

106 {

107 get { return new

Guid("2935c931-2647-4bc5-b851-68e7d4af9001"); }

108 }

109 }

110 }
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Shell BDC Component

1 using System;

2 using System.Collections.Generic;

3

4 using Grasshopper.Kernel;

5 using Rhino.Geometry;

6 using System.Drawing;

7 using Grasshopper.GUI.Canvas;

8 using System.Windows.Forms;

9 using Grasshopper.GUI;

10

11 namespace Shell

12 {

13 public class BDCComponent : GH_Component

14 {

15 public BDCComponent()

16 : base("Shell BDC", "BDCs",

17 "Description",

18 "Koala", "Shell")

19 {

20 }

21

22 //Initialize BDCs

23 static int x = 0;

24 static int y = 0;

25 static int z = 0;

26 static int rx = 0;

27

28 //Method to allow c hanging of variables via GUI (see Component

Visual)

29 public static void setBDC(string s, int i)

30 {

31 if (s == "X")

32 {

33 x = i;

34 }

35 else if (s == "Y")

36 {

37 y = i;

38 }

39 else if (s == "Z")

40 {

41 z = i;
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42 }

43 else if (s == "RX")

44 {

45 rx = i;

46 }

47 }

48

49 public override void CreateAttributes()

50 {

51 m_attributes = new Attributes_Custom(this);

52 }

53

54 protected override void

RegisterInputParams(GH_Component.GH_InputParamManager

pManager)

55 {

56 pManager.AddPointParameter("Points", "P", "Points to apply

Boundary Conditions", GH_ParamAccess.list);

57 pManager.AddMeshParameter("Mesh", "M", "Give mesh if edges

should be fixed", GH_ParamAccess.item);

58 pManager[1].Optional = true;

59 }

60

61 protected override void

RegisterOutputParams(GH_Component.GH_OutputParamManager

pManager)

62 {

63 pManager.AddTextParameter("B.Cond.", "BDC", "Boundary

Conditions for Shell element", GH_ParamAccess.list);

64 }

65

66 protected override void SolveInstance(IGH_DataAccess DA)

67 {

68 #region Fetch inputs

69 //Expected inputs

70 List<Point3d> pointList = new List<Point3d>();

//List of points where BDC is to be applied

71 List<string> pointInStringFormat = new List<string>();

//output in form of list of strings

72

73 //Expected inputs

74 Mesh mesh = new Mesh(); //mesh in

Mesh format

75 List<MeshFace> faces = new List<MeshFace>(); //faces of
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mesh as a list

76 List<Point3d> vertices = new List<Point3d>(); //vertices of

mesh as a list

77

78 //Set expected inputs from Indata and aborts with error

message if input is incorrect

79 if (!DA.GetDataList(0, pointList)) return;

80 DA.GetData(1, ref mesh); //sets inputted mesh into

variable

81 #endregion

82

83 for (int i = 0; i < pointList.Count; i++)

84 {

85 Point3d temp_point = new Point3d();

86 temp_point.X = Math.Round(pointList[i].X, 4);

87 temp_point.Y = Math.Round(pointList[i].Y, 4);

88 temp_point.Z = Math.Round(pointList[i].Z, 4);

89 pointList[i] = temp_point;

90 }

91

92

93 List<Line> edges = new List<Line>();

94 #region If mesh is given and rotations should be fixed

95 if (mesh.Faces.Count != 0 && rx == 0)

96 {

97 foreach (var face in mesh.Faces)

98 {

99 faces.Add(face);

100 }

101

102 foreach (var vertice in mesh.Vertices)

103 {

104 Point3d temp_vertice = new Point3d();

105 temp_vertice.X = Math.Round(vertice.X, 4);

106 temp_vertice.Y = Math.Round(vertice.Y, 4);

107 temp_vertice.Z = Math.Round(vertice.Z, 4);

108 vertices.Add(temp_vertice);

109 }

110 int NoOfEdges = vertices.Count + faces.Count - 1;

111 edges = new List<Line>(NoOfEdges);

112 foreach (var face in faces)

113 {

114 Point3d vA = vertices[face.A];

115 Point3d vB = vertices[face.B];
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116 Point3d vC = vertices[face.C];

117 Line lineAB = new Line(vA, vB);

118 Line lineBA = new Line(vB, vA);

119 Line lineCB = new Line(vC, vB);

120 Line lineBC = new Line(vB, vC);

121 Line lineAC = new Line(vA, vC);

122 Line lineCA = new Line(vC, vA);

123

124 if (!edges.Contains(lineAB) &&

!edges.Contains(lineBA))

125 {

126 edges.Add(lineAB);

127 }

128 if (!edges.Contains(lineCB) &&

!edges.Contains(lineBC))

129 {

130 edges.Add(lineBC);

131 }

132 if (!edges.Contains(lineAC) &&

!edges.Contains(lineCA))

133 {

134 edges.Add(lineAC);

135 }

136 }

137 }

138 #endregion

139

140 #region Find edge indexes if fixed rotation and Format output

141 string BDCString = x + "," + y + "," + z;

142

143

144 if (rx == 1 || !mesh.IsValid)

145 {

146 for (int i = 0; i < pointList.Count; i++) //Format

stringline for all points (identical boundary

conditions for all points), no fixed rotations

147 {

148 pointInStringFormat.Add(pointList[i].X + "," +

pointList[i].Y + "," + pointList[i].Z + ":" +

BDCString);

149 }

150 }

151 else

152 {
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153 int rot = -1;

154 List<int> edgeindexrot = new List<int>();

155 List<List<int>> mIndices = GetMeshIndices(pointList,

faces, vertices);

156 for (int i = 0; i < pointList.Count; i++)

157 {

158 if (mIndices.Count == 0) { break; }

159 int facenum = -1;

160 if (mIndices[i].Count == 1)

161 {

162 facenum = mIndices[i][0];

163 }

164 else if (mIndices[i].Count == 2)

165 {

166 facenum = mIndices[i][1];

167 }

168 else

169 {

170 break;

171 }

172 List<Point3d> connectedPoints = new

List<Point3d>();

173 for (int j = 0; j < pointList.Count; j++)

174 {

175 if (j != i && mIndices[j][0] == facenum)

176 {

177 connectedPoints.Add(pointList[j]);

178 }

179 }

180 Line bdcline;

181 if (connectedPoints.Count >= 1)

182 {

183 bdcline = new Line(pointList[i],

connectedPoints[0]);

184 if (edges.Contains(bdcline))

185 {

186 rot = edges.IndexOf(bdcline);

187 }

188 bdcline = new Line(connectedPoints[0],

pointList[i]);

189 if (edges.Contains(bdcline))

190 {

191 rot = edges.IndexOf(bdcline);

192 }
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193 if (!edgeindexrot.Contains(rot) && rot != -1)

194 {

195 edgeindexrot.Add(rot);

196 }

197 }

198

199 if (connectedPoints.Count == 2)

200 {

201 bdcline = new Line(pointList[i],

connectedPoints[1]);

202 if (edges.Contains(bdcline))

203 {

204 rot = edges.IndexOf(bdcline);

205 }

206 bdcline = new Line(connectedPoints[1],

pointList[i]);

207 if (edges.Contains(bdcline))

208 {

209 rot = edges.IndexOf(bdcline);

210 }

211 if (!edgeindexrot.Contains(rot) && rot != -1)

212 {

213 edgeindexrot.Add(rot);

214 }

215 }

216 }

217

218 for (int i = 0; i <= pointList.Count; i++) //Format

stringline for all points (identical boundary

conditions for all points), no fixed rotations

219 {

220 if (i < pointList.Count)

221 {

222 pointInStringFormat.Add(pointList[i].X + ","

+ pointList[i].Y + "," + pointList[i].Z +

":" + BDCString);

223 }

224 else

225 {

226 string rotindex = null;

227 foreach (var item in edgeindexrot)

228 {

229 if (item == edgeindexrot[0])

230 {

61



231 rotindex += item;

232 }

233 else

234 {

235 rotindex = rotindex + ’,’ + item;

236 }

237 }

238 pointInStringFormat.Add(rotindex);

239 }

240 }

241 }

242 #endregion

243

244 DA.SetDataList(0, pointInStringFormat);

245 } //End of main program

246

247 private List<List<int>> GetMeshIndices(List<Point3d> pointList,

List<MeshFace> faces, List<Point3d> vertices)

248 {

249 //initiates list of lists with -1s

250 List<List<int>> indices = new List<List<int>>();

251 for (int i = 0; i < pointList.Count; i++)

252 {

253 List<int> tempL = new List<int>();

254 //tempL.Add(-1);

255 for (int j = 0; j < faces.Count; j++)

256 {

257 //is point in mesh?

258 if (pointList[i] == vertices[faces[j].A])

259 {

260 //are any of the other mesh vertices in pointList?

261 if (pointList.Contains(vertices[faces[j].B]) ||

pointList.Contains(vertices[faces[j].C]))

262 {

263 //indicates that the mesh j contains 2+

vertices and that their edge should be

fixed

264 tempL.Add(j);

265 //check if other mesh faces share points

(otherwise would have used break;)

266 continue;

267 }

268 }

269 else if (pointList[i] == vertices[faces[j].B])
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270 {

271 if (pointList.Contains(vertices[faces[j].A]) ||

pointList.Contains(vertices[faces[j].C]))

272 {

273 tempL.Add(j);

274 continue;

275 }

276 }

277 else if (pointList[i] == vertices[faces[j].C])

278 {

279 if (pointList.Contains(vertices[faces[j].A]) ||

pointList.Contains(vertices[faces[j].B]))

280 {

281 tempL.Add(j);

282 continue;

283 }

284 }

285 }

286 if (tempL.Count > 0)

287 {

288 indices.Add(tempL);

289 }

290 //indices.Add(tempL);

291 }

292 return indices;

293 }

294

295 protected override System.Drawing.Bitmap Icon

296 {

297 get

298 {

299 return Properties.Resources.BDCs;

300 }

301 }

302

303 public override Guid ComponentGuid

304 {

305 get { return new

Guid("58ccdcb8-b1c3-411b-b501-c91a46665e86"); }

306 }

307

308 /// Component Visual//

309 public class Attributes_Custom :

Grasshopper.Kernel.Attributes.GH_ComponentAttributes
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310 {

311 public Attributes_Custom(GH_Component owner) : base(owner) { }

312 protected override void Layout()

313 {

314 base.Layout();

315

316 Rectangle rec0 = GH_Convert.ToRectangle(Bounds);

317

318 rec0.Height += 42;

319

320 Rectangle rec1 = rec0;

321 rec1.X = rec0.Left + 1;

322 rec1.Y = rec0.Bottom - 42;

323 rec1.Width = (rec0.Width) / 3 + 1;

324 rec1.Height = 22;

325 rec1.Inflate(-2, -2);

326

327 Rectangle rec2 = rec1;

328 rec2.X = rec1.Right + 2;

329

330 Rectangle rec3 = rec2;

331 rec3.X = rec2.Right + 2;

332

333 Rectangle rec4 = rec1;

334 rec4.Y = rec1.Bottom + 2;

335 rec4.Width = rec0.Width - 6;

336

337 Bounds = rec0;

338 BoundsAllButtons = rec0;

339 ButtonBounds = rec1;

340 ButtonBounds2 = rec2;

341 ButtonBounds3 = rec3;

342 ButtonBounds4 = rec4;

343

344 }

345

346 GH_Palette xColor = GH_Palette.Black;

347 GH_Palette yColor = GH_Palette.Black;

348 GH_Palette zColor = GH_Palette.Black;

349 GH_Palette rxColor = GH_Palette.Black;

350

351 private Rectangle BoundsAllButtons { get; set; }

352 private Rectangle ButtonBounds { get; set; }

353 private Rectangle ButtonBounds2 { get; set; }
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354 private Rectangle ButtonBounds3 { get; set; }

355 private Rectangle ButtonBounds4 { get; set; }

356

357 protected override void Render(GH_Canvas canvas, Graphics

graphics, GH_CanvasChannel channel)

358 {

359 base.Render(canvas, graphics, channel);

360 if (channel == GH_CanvasChannel.Objects)

361 {

362 GH_Capsule button =

GH_Capsule.CreateTextCapsule(ButtonBounds,

ButtonBounds, xColor, "X", 3, 0);

363 button.Render(graphics, Selected, false, false);

364 button.Dispose();

365 }

366 if (channel == GH_CanvasChannel.Objects)

367 {

368 GH_Capsule button2 =

GH_Capsule.CreateTextCapsule(ButtonBounds2,

ButtonBounds2, yColor, "Y", 2, 0);

369 button2.Render(graphics, Selected, Owner.Locked,

false);

370 button2.Dispose();

371 }

372 if (channel == GH_CanvasChannel.Objects)

373 {

374 GH_Capsule button3 =

GH_Capsule.CreateTextCapsule(ButtonBounds3,

ButtonBounds3, zColor, "Z", 2, 0);

375 button3.Render(graphics, Selected, Owner.Locked,

false);

376 button3.Dispose();

377 }

378 if (channel == GH_CanvasChannel.Objects)

379 {

380 GH_Capsule button4 =

GH_Capsule.CreateTextCapsule(ButtonBounds4,

ButtonBounds4, rxColor, "Fix Rotation", 2, 0);

381 button4.Render(graphics, Selected, Owner.Locked,

false);

382 button4.Dispose();

383 }

384 }

385
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386 public override GH_ObjectResponse

RespondToMouseDown(GH_Canvas sender, GH_CanvasMouseEvent

e)

387 {

388 if (e.Button == MouseButtons.Left)

389 {

390 RectangleF rec = ButtonBounds;

391 if (rec.Contains(e.CanvasLocation))

392 {

393 switchColor("X");

394 }

395 rec = ButtonBounds2;

396 if (rec.Contains(e.CanvasLocation))

397 {

398 switchColor("Y");

399 }

400 rec = ButtonBounds3;

401 if (rec.Contains(e.CanvasLocation))

402 {

403 switchColor("Z");

404 }

405 rec = ButtonBounds4;

406 if (rec.Contains(e.CanvasLocation))

407 {

408 switchColor("RX");

409 }

410 rec = BoundsAllButtons;

411 if (rec.Contains(e.CanvasLocation))

412 {

413 if (xColor == GH_Palette.Black) {

BDCComponent.setBDC("X", 0); }

414 if (xColor == GH_Palette.Grey) {

BDCComponent.setBDC("X", 1); }

415 if (yColor == GH_Palette.Black) {

BDCComponent.setBDC("Y", 0); }

416 if (yColor == GH_Palette.Grey) {

BDCComponent.setBDC("Y", 1); }

417 if (zColor == GH_Palette.Black) {

BDCComponent.setBDC("Z", 0); }

418 if (zColor == GH_Palette.Grey) {

BDCComponent.setBDC("Z", 1); }

419 if (rxColor == GH_Palette.Black) {

BDCComponent.setBDC("RX", 0); }

420 if (rxColor == GH_Palette.Grey) {
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BDCComponent.setBDC("RX", 1); }

421 sender.Refresh();

422 Owner.ExpireSolution(true);

423 }

424 return GH_ObjectResponse.Handled;

425 }

426 return base.RespondToMouseDown(sender, e);

427 }

428

429 private void switchColor(string button)

430 {

431 if (button == "X")

432 {

433 if (xColor == GH_Palette.Black) { xColor =

GH_Palette.Grey; }

434 else { xColor = GH_Palette.Black; }

435 }

436 else if (button == "Y")

437 {

438 if (yColor == GH_Palette.Black) { yColor =

GH_Palette.Grey; }

439 else { yColor = GH_Palette.Black; }

440 }

441 else if (button == "Z")

442 {

443 if (zColor == GH_Palette.Black) { zColor =

GH_Palette.Grey; }

444 else { zColor = GH_Palette.Black; }

445 }

446 else if (button == "RX")

447 {

448 if (rxColor == GH_Palette.Black) { rxColor =

GH_Palette.Grey; }

449 else { rxColor = GH_Palette.Black; }

450 }

451 }

452 }

453 }

454 }
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Deformed Shell component

1 using System;

2 using System.Collections.Generic;

3 using Grasshopper.Kernel;

4 using Rhino.Geometry;

5 using System.Drawing;

6 using Grasshopper.GUI.Canvas;

7 using System.Windows.Forms;

8 using Grasshopper.GUI;

9 using MathNet.Numerics.LinearAlgebra;

10

11 namespace Shell

12 {

13 public class DeformedGeometry : GH_Component

14 {

15 public DeformedGeometry()

16 : base("DeformedShell", "DefS",

17 "Displays the deformed shell, with or without coloring",

18 "Koala", "Shell")

19 {

20 }

21

22 //Initialize startcondition and polynomial order

23 static bool startDef = true;

24 static bool setColor = false;

25 static bool X = false;

26 static bool Y = false;

27 static bool VonMisesButton = false;

28 static bool RX = false;

29 static bool RY = false;

30

31 //Method to allow c hanging of variables via GUI (see Component

Visual)

32 public static void setToggles(string s, bool i)

33 {

34 if (s == "Run")

35 {

36 startDef = i;

37 }

38 if (s == "setColor")

39 {

40 setColor = i;

41 }
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42 if (s == "X")

43 {

44 X = i;

45 }

46 if (s == "Y")

47 {

48 Y = i;

49 }

50 if (s == "VonMises")

51 {

52 VonMisesButton = i;

53 }

54 if (s == "RX")

55 {

56 RX= i;

57 }

58 if (s == "RY")

59 {

60 RY = i;

61 }

62 }

63

64 public override void CreateAttributes()

65 {

66 m_attributes = new Attributes_Custom(this);

67 }

68

69 protected override void

RegisterInputParams(GH_Component.GH_InputParamManager

pManager)

70 {

71 pManager.AddNumberParameter("Deformation", "Def",

"Deformations from ShellCalc", GH_ParamAccess.list);

72 pManager.AddNumberParameter("Stresses", "Stress", "Stresses

from ShellCalc", GH_ParamAccess.list, new List<double> {

0 });

73 pManager.AddMeshParameter("Mesh", "M", "Input Geometry (Mesh

format)", GH_ParamAccess.item);

74 pManager.AddNumberParameter("Scale", "S", "The Scale Factor

for Deformation", GH_ParamAccess.item, 10);

75 pManager.AddNumberParameter("Yield Strength", "YieldS", "The

Yield Strength in MPa", GH_ParamAccess.list, new

List<double> { 0, 0 });

76 }

69



77

78 protected override void

RegisterOutputParams(GH_Component.GH_OutputParamManager

pManager)

79 {

80 pManager.AddMeshParameter("Deformed Geometry", "Def.G.",

"Deformed Geometry as mesh", GH_ParamAccess.item);

81 pManager.AddNumberParameter("Von Mises stress", "VMS", "The

Von Mises yield criterion", GH_ParamAccess.list);

82 }

83

84 protected override void SolveInstance(IGH_DataAccess DA)

85 {

86 #region Fetch input

87 //Expected inputs and outputs

88 List<double> def = new List<double>();

89 List<double> stresses = new List<double>();

90 List<double> VonMises = new List<double>();

91 Mesh mesh = new Mesh();

92 double scale = 10;

93 List<double> yieldStrength = new List<double>();

94 List<Line> defGeometry = new List<Line>();

95 List<Point3d> defPoints = new List<Point3d>();

96

97 int[] h = new int[] { 0, 0, 0 };

98 //Set expected inputs from Indata

99 if (!DA.GetDataList(0, def)) return;

100 if (!DA.GetDataList(1, stresses)) return;

101 if (!DA.GetData(2, ref mesh)) return;

102 if (!DA.GetData(3, ref scale)) return;

103 if (!DA.GetDataList(4, yieldStrength)) return;

104 #endregion

105

106 #region Decompose Mesh and initiate the new deformed mesh

defmesh

107

108 List<Point3d> vertices = new List<Point3d>();

109 List<MeshFace> faces = new List<MeshFace>();

110

111 foreach (var vertice in mesh.Vertices)

112 {

113 vertices.Add(vertice);

114 }

115 foreach (var face in mesh.Faces)
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116 {

117 faces.Add(face);

118 }

119

120 Mesh defmesh = new Mesh();

121

122 defmesh.Faces.AddFaces(mesh.Faces); // new mesh without

vertices

123

124 #endregion

125

126 if (stresses.Count > 0 && !(stresses.Count == 1 &&

stresses[0] == 0))

127 {

128 #region Von Mises

129 for (int j = 0; j < faces.Count; j++)

130 {

131 double sigma11 = stresses[j * 6];

132 if (sigma11 >= 0)

133 {

134 sigma11 += Math.Abs(stresses[j * 6 + 3]);

135 }

136 else

137 {

138 sigma11 += -Math.Abs(stresses[j * 6 + 3]);

139 }

140

141 double sigma22 = stresses[j * 6 + 1];

142 if (sigma22 >= 0)

143 {

144 sigma22 += Math.Abs(stresses[j * 6 + 4]);

145 }

146 else

147 {

148 sigma22 += -Math.Abs(stresses[j * 6 + 4]);

149 }

150

151 double sigma12 = stresses[j * 6 + 2];

152 if (sigma12 >= 0)

153 {

154 sigma12 += Math.Abs(stresses[j * 6 + 5]);

155 }

156 else

157 {
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158 sigma12 += -Math.Abs(stresses[j * 6 + 5]);

159 }

160

161 VonMises.Add(Math.Sqrt(sigma11 * sigma11 - sigma11 *

sigma22 + sigma22 * sigma22 + 3 * sigma12 *

sigma12));

162 }

163

164 #endregion

165 }

166

167 if (startDef)

168 {

169 #region apply deformations to vertices and add them to

defmesh

170

171 List<Point3d> new_vertices = new List<Point3d>(); // list

of translated vertices

172 int i = 0;

173

174 foreach (var p in vertices)

175 {

176 new_vertices.Add(new Point3d(p.X + def[i]*scale, p.Y

+ def[i + 1]*scale, p.Z + def[i + 2]*scale));

177 i += 3;

178 }

179

180 defmesh.Vertices.AddVertices(new_vertices);

181 #endregion

182

183 int dimension = 123;

184 if (X)

185 {

186 dimension = 0;

187 }

188 else if (Y)

189 {

190 dimension = 1;

191 }

192 else if (VonMisesButton)

193 {

194 dimension = 7;

195 }

196 else if (RX)
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197 {

198 dimension = 3;

199 }

200 else if (RY)

201 {

202 dimension = 4;

203 }

204

205 Mesh coloredDefMesh = defmesh.DuplicateMesh();

206 if (setColor && (stresses.Count > 1 || (stresses.Count ==

1 && stresses[0] != 0) || VonMises.Count > 1 ||

(VonMises.Count == 1 && VonMises[0] != 0)) &&

(dimension < 8))

207 {

208 // Direction can be 0 -> x ...

209 SetMeshColors(defmesh, stresses, VonMises,

new_vertices, faces, dimension, yieldStrength,

out coloredDefMesh);

210 }

211

212 //Set output data

213 DA.SetData(0, coloredDefMesh);

214 DA.SetDataList(1, VonMises);

215 }

216 } //End of main program

217

218 private void SetMeshColors(Mesh meshIn, List<double> stresses,

List<double> VonMises, List<Point3d> vertices, List<MeshFace>

faces, int direction, List<double> yieldStrength, out Mesh

meshOut)

219 {

220 meshOut = meshIn.DuplicateMesh();

221

222 List<int> R = new List<int>(faces.Count);

223 List<int> G = new List<int>(faces.Count);

224 List<int> B = new List<int>(faces.Count);

225 int[,] facesConnectedToVertex = new int[faces.Count,3];

226

227 double max = 0;

228 double min = 0;

229

230 if (yieldStrength.Count == 1 && yieldStrength[0] > 1)

231 {

232 max = yieldStrength[0];
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233 min = -yieldStrength[0];

234 }

235 else if ((yieldStrength.Count == 1 && yieldStrength[0] == 0)

|| (yieldStrength[0] == 0 && yieldStrength[1] == 0) ||

yieldStrength.Count == 0)

236 {

237 for (int i = 0; i < stresses.Count / 6; i++)

238 {

239 double stress;

240 if (direction < 6)

241 {

242 stress = stresses[i * 6 + direction];

243 }

244 else

245 {

246 stress = VonMises[i];

247 }

248 if (stress > max)

249 {

250 max = stress;

251 }

252 else if (stress < min)

253 {

254 min = stress;

255 }

256 }

257 }

258 else

259 {

260 if (yieldStrength[0] >= 0 && yieldStrength[1] <= 0)

261 {

262 max = yieldStrength[0];

263 min = yieldStrength[1];

264 }

265 else if (yieldStrength[1] >= 0 && yieldStrength[0] <= 0)

266 {

267 max = yieldStrength[1];

268 min = yieldStrength[0];

269 }

270 else

271 {

272 AddRuntimeMessage(GH_RuntimeMessageLevel.Warning,

"Warning message here");

273 }
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274

275 }

276

277

278

279 List<double> colorList = new List<double>();

280

281 for (int i = 0; i < faces.Count; i++)

282 {

283 double stress;

284 if (direction < 6)

285 {

286 stress = stresses[i*6+direction];

287 }

288 else

289 {

290 stress = VonMises[i];

291 }

292

293 R.Add(0);

294 G.Add(0);

295 B.Add(0);

296

297 if (stress >= max)

298 {

299 R[i] = 255;

300 }

301 else if (stress >= max*0.5 && max != 0)

302 {

303 R[i] = 255;

304 G[i] = Convert.ToInt32(Math.Round(255 * (1 - (stress

- max * 0.5) / (max * 0.5))));

305 }

306 else if (stress < max*0.5 && stress >= 0 && max != 0)

307 {

308 G[i] = 255;

309 R[i] = Convert.ToInt32(Math.Round(255 * (stress) /

(max * 0.5)));

310 }

311 else if (stress < 0 && stress > min*0.5 && min != 0)

312 {

313 G[i] = 255;

314 B[i] = Convert.ToInt32(Math.Round(255 * (stress) /

(min * 0.5)));

75



315 }

316 else if (stress <= min*0.5 && min != 0 && stress > min)

317 {

318 B[i] = 255;

319 G[i] = Convert.ToInt32(Math.Round(255 * (1 - (stress

- min * 0.5) / (min * 0.5))));

320 }

321 else if (stress <= min)

322 {

323 B[i] = 255;

324 }

325 }

326

327 for (int i = 0; i < vertices.Count; i++)

328 {

329 List<int> vertex = new List<int>();

330 int vR = 0, vG = 0, vB = 0;

331 for (int j = 0; j < faces.Count; j++)

332 {

333 if (faces[j].A == i || faces[j].B == i || faces[j].C

== i)

334 {

335 vertex.Add(j);

336 }

337 }

338 for (int j = 0; j < vertex.Count; j++)

339 {

340 vR += R[vertex[j]];

341 vG += G[vertex[j]];

342 vB += B[vertex[j]];

343 }

344 vR /= vertex.Count;

345 vG /= vertex.Count;

346 vB /= vertex.Count;

347

348 meshOut.VertexColors.Add(vR, vG, vB);

349 }

350 }

351

352 private List<Point3d> CreatePointList(List<Line> geometry)

353 {

354 List<Point3d> points = new List<Point3d>();

355

356 for (int i = 0; i < geometry.Count; i++) //adds every point
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unless it already exists in list

357 {

358 Line l1 = geometry[i];

359 if (!points.Contains(l1.From))

360 {

361 points.Add(l1.From);

362 }

363 if (!points.Contains(l1.To))

364 {

365 points.Add(l1.To);

366 }

367 }

368

369 return points;

370 }

371

372 protected override System.Drawing.Bitmap Icon

373 {

374 get

375 {

376 return Properties.Resources.Draw1;

377 }

378 }

379

380 public override Guid ComponentGuid

381 {

382 get { return new

Guid("4b28fb40-2e66-4d19-a629-c630c079725a"); }

383 }

384

385

386 /// Component Visual//

387 public class Attributes_Custom :

Grasshopper.Kernel.Attributes.GH_ComponentAttributes

388 {

389 public Attributes_Custom(GH_Component owner) : base(owner) { }

390 protected override void Layout()

391 {

392 base.Layout();

393

394 Rectangle rec0 = GH_Convert.ToRectangle(Bounds);

395

396 if (setColor)

397 {
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398 rec0.Height += 82;

399 }

400 else

401 {

402 rec0.Height += 22;

403 }

404

405 Rectangle rec1 = rec0;

406 rec1.X = rec0.Left + 1;

407

408 if (setColor)

409 {

410 rec1.Y = rec0.Bottom - 82;

411 }

412 else

413 {

414 rec1.Y = rec0.Bottom - 22;

415 }

416 rec1.Width = (rec0.Width) / 2;

417 rec1.Height = 22;

418 rec1.Inflate(-2, -2);

419

420 Rectangle rec2 = rec1;

421 rec2.X = rec1.Right + 2;

422

423 Rectangle rec3 = rec2;

424 rec3.X = rec1.X;

425 rec3.Y = rec1.Bottom + 2;

426

427 Rectangle rec4 = rec3;

428 rec4.X = rec3.X;

429 rec4.Y = rec3.Bottom + 2;

430

431 Rectangle rec5 = rec3;

432 rec5.X = rec4.X;

433 rec5.Y = rec4.Bottom + 2;

434

435 Rectangle rec6 = rec3;

436 rec6.X = rec5.Right + 2;

437 rec6.Y = rec3.Bottom + 2;

438

439 Rectangle rec7 = rec3;

440 rec7.X = rec6.X;

441 rec7.Y = rec6.Bottom + 2;
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442

443 Bounds = rec0;

444 ButtonBounds = rec1;

445 ButtonBounds1 = rec2;

446 ButtonBounds2 = rec3;

447 ButtonBounds3 = rec4;

448 ButtonBounds4 = rec5;

449 ButtonBounds5 = rec6;

450 ButtonBounds6 = rec7;

451

452 }

453

454 GH_Palette displayed = GH_Palette.Black;

455 GH_Palette setcolor = GH_Palette.Grey;

456 GH_Palette xColor = GH_Palette.Grey;

457 GH_Palette yColor = GH_Palette.Grey;

458 GH_Palette VonMisesColor = GH_Palette.Grey;

459 GH_Palette rxColor = GH_Palette.Grey;

460 GH_Palette ryColor = GH_Palette.Grey;

461

462 private Rectangle ButtonBounds { get; set; }

463 private Rectangle ButtonBounds1 { get; set; }

464 private Rectangle ButtonBounds2 { get; set; }

465 private Rectangle ButtonBounds3 { get; set; }

466 private Rectangle ButtonBounds4 { get; set; }

467 private Rectangle ButtonBounds5 { get; set; }

468 private Rectangle ButtonBounds6 { get; set; }

469

470 protected override void Render(GH_Canvas canvas, Graphics

graphics, GH_CanvasChannel channel)

471 {

472 base.Render(canvas, graphics, channel);

473 if (channel == GH_CanvasChannel.Objects)

474 {

475 GH_Capsule button;

476 if (startDef == false)

477 {

478 button =

GH_Capsule.CreateTextCapsule(ButtonBounds,

ButtonBounds, displayed, "Hidden", 3, 0);

479 button.Render(graphics, Selected, Owner.Locked,

false);

480 button.Dispose();

481 }
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482 else

483 {

484 button =

GH_Capsule.CreateTextCapsule(ButtonBounds,

ButtonBounds, displayed, "Displayed", 3, 0);

485 button.Render(graphics, Selected, Owner.Locked,

false);

486 button.Dispose();

487 }

488 if (setColor == true)

489 {

490 GH_Capsule button2 =

GH_Capsule.CreateTextCapsule(ButtonBounds1,

ButtonBounds1, setcolor, "Colored", 2, 0);

491 button2.Render(graphics, Selected, Owner.Locked,

false);

492 button2.Dispose();

493 }

494 else

495 {

496 GH_Capsule button2 =

GH_Capsule.CreateTextCapsule(ButtonBounds1,

ButtonBounds1, setcolor, "Uncolored", 2, 0);

497 button2.Render(graphics, Selected, Owner.Locked,

false);

498 button2.Dispose();

499 }

500 if (setColor == true)

501 {

502 GH_Capsule button3 =

GH_Capsule.CreateTextCapsule(ButtonBounds2,

ButtonBounds2, xColor, "X Stresses", 2, 0);

503 button3.Render(graphics, Selected, Owner.Locked,

false);

504 button3.Dispose();

505 }

506 if (setColor == true)

507 {

508 GH_Capsule button4 =

GH_Capsule.CreateTextCapsule(ButtonBounds3,

ButtonBounds3, yColor, "Y Stresses", 2, 0);

509 button4.Render(graphics, Selected, Owner.Locked,

false);

510 button4.Dispose();
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511 }

512 if (setColor == true)

513 {

514 GH_Capsule button5 =

GH_Capsule.CreateTextCapsule(ButtonBounds4,

ButtonBounds4, VonMisesColor, "Von Mises", 2,

0);

515 button5.Render(graphics, Selected, Owner.Locked,

false);

516 button5.Dispose();

517 }

518 if (setColor == true)

519 {

520 GH_Capsule button6 =

GH_Capsule.CreateTextCapsule(ButtonBounds5,

ButtonBounds5, rxColor, "RX Stresses", 2, 0);

521 button6.Render(graphics, Selected, Owner.Locked,

false);

522 button6.Dispose();

523 }

524 if (setColor == true)

525 {

526 GH_Capsule button7 =

GH_Capsule.CreateTextCapsule(ButtonBounds6,

ButtonBounds6, ryColor, "RY Stresses", 2, 0);

527 button7.Render(graphics, Selected, Owner.Locked,

false);

528 button7.Dispose();

529 }

530 }

531 }

532

533 public override GH_ObjectResponse

RespondToMouseDown(GH_Canvas sender, GH_CanvasMouseEvent

e)

534 {

535 if (e.Button == MouseButtons.Left)

536 {

537 RectangleF rec = ButtonBounds;

538 if (rec.Contains(e.CanvasLocation))

539 {

540 switchColor("Run");

541 }

542 rec = ButtonBounds1;
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543 if (rec.Contains(e.CanvasLocation))

544 {

545 switchColor("setColor");

546 }

547 rec = ButtonBounds2;

548 if (rec.Contains(e.CanvasLocation))

549 {

550 switchColor("X");

551 }

552 rec = ButtonBounds3;

553 if (rec.Contains(e.CanvasLocation))

554 {

555 switchColor("Y");

556 }

557 rec = ButtonBounds4;

558 if (rec.Contains(e.CanvasLocation))

559 {

560 switchColor("VonMises");

561 }

562 rec = ButtonBounds5;

563 if (rec.Contains(e.CanvasLocation))

564 {

565 switchColor("RX");

566 }

567 rec = ButtonBounds6;

568 if (rec.Contains(e.CanvasLocation))

569 {

570 switchColor("RY");

571 }

572

573 if (displayed == GH_Palette.Black) {

DeformedGeometry.setToggles("Run", true); }

574 if (displayed == GH_Palette.Grey) {

DeformedGeometry.setToggles("Run", false); }

575 if (setcolor == GH_Palette.Black) {

DeformedGeometry.setToggles("setColor", true); }

576 if (setcolor == GH_Palette.Grey) {

DeformedGeometry.setToggles("setColor", false); }

577 if (xColor == GH_Palette.Black) {

DeformedGeometry.setToggles("X", true); }

578 if (xColor == GH_Palette.Grey) {

DeformedGeometry.setToggles("X", false); }

579 if (yColor == GH_Palette.Black) {

DeformedGeometry.setToggles("Y", true); }
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580 if (yColor == GH_Palette.Grey) {

DeformedGeometry.setToggles("Y", false); }

581 if (VonMisesColor == GH_Palette.Black) {

DeformedGeometry.setToggles("VonMises", true); }

582 if (VonMisesColor == GH_Palette.Grey) {

DeformedGeometry.setToggles("VonMises", false); }

583 if (rxColor == GH_Palette.Black) {

DeformedGeometry.setToggles("RX", true); }

584 if (rxColor == GH_Palette.Grey) {

DeformedGeometry.setToggles("RX", false); }

585 if (ryColor == GH_Palette.Black) {

DeformedGeometry.setToggles("RY", true); }

586 if (ryColor == GH_Palette.Grey) {

DeformedGeometry.setToggles("RY", false); }

587 sender.Refresh();

588 Owner.ExpireSolution(true);

589 return GH_ObjectResponse.Handled;

590

591 }

592 return base.RespondToMouseDown(sender, e);

593 }

594

595 private void switchColor(string button)

596 {

597 if (button == "Run")

598 {

599 if (displayed == GH_Palette.Black) { displayed =

GH_Palette.Grey; }

600 else { displayed = GH_Palette.Black; }

601 }

602 if (button == "setColor")

603 {

604 if (setcolor == GH_Palette.Black)

605 {

606 setcolor = GH_Palette.Grey;

607 xColor = GH_Palette.Grey;

608 yColor = GH_Palette.Grey;

609 VonMisesColor = GH_Palette.Grey;

610 rxColor = GH_Palette.Grey;

611 ryColor = GH_Palette.Grey;

612 }

613 else { setcolor = GH_Palette.Black; }

614 }

615 if (button == "X" && setcolor == GH_Palette.Black)

83



616 {

617 if (xColor == GH_Palette.Black) { xColor =

GH_Palette.Grey; }

618 else

619 {

620 xColor = GH_Palette.Black;

621 yColor = GH_Palette.Grey;

622 VonMisesColor = GH_Palette.Grey;

623 rxColor = GH_Palette.Grey;

624 ryColor = GH_Palette.Grey;

625 }

626 }

627 if (button == "Y" && setcolor == GH_Palette.Black)

628 {

629 if (yColor == GH_Palette.Black) { yColor =

GH_Palette.Grey; }

630 else

631 {

632 yColor = GH_Palette.Black;

633 xColor = GH_Palette.Grey;

634 VonMisesColor = GH_Palette.Grey;

635 rxColor = GH_Palette.Grey;

636 ryColor = GH_Palette.Grey;

637 }

638 }

639 if (button == "VonMises" && setcolor == GH_Palette.Black)

640 {

641 if (VonMisesColor == GH_Palette.Black) {

VonMisesColor = GH_Palette.Grey; }

642 else

643 {

644 VonMisesColor = GH_Palette.Black;

645 xColor = GH_Palette.Grey;

646 yColor = GH_Palette.Grey;

647 rxColor = GH_Palette.Grey;

648 ryColor = GH_Palette.Grey;

649 }

650 }

651 if (button == "RX" && setcolor == GH_Palette.Black)

652 {

653 if (rxColor == GH_Palette.Black) { rxColor =

GH_Palette.Grey; }

654 else

655 {
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656 xColor = GH_Palette.Grey;

657 yColor = GH_Palette.Grey;

658 VonMisesColor = GH_Palette.Grey;

659 rxColor = GH_Palette.Black;

660 ryColor = GH_Palette.Grey;

661 }

662 }

663 if (button == "RY" && setcolor == GH_Palette.Black)

664 {

665 if (ryColor == GH_Palette.Black) { ryColor =

GH_Palette.Grey; }

666 else

667 {

668 xColor = GH_Palette.Grey;

669 yColor = GH_Palette.Grey;

670 VonMisesColor = GH_Palette.Grey;

671 rxColor = GH_Palette.Grey;

672 ryColor = GH_Palette.Black;

673 }

674 }

675 }

676 }

677 }

678 }
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