
Post-Quantum Multivariate Cryptography
A Study of Gui and GeMSS Signature

Schemes using Gröbner Bases

Øyvind Follan

Master of Science in Physics and Mathematics

Supervisor: Øyvind Solberg, IMF

Department of Mathematical Sciences

Submission date: July 2018

Norwegian University of Science and Technology

Sammendrag
Målet for denne oppgaven er å beskrive signatursystemene Gui og GeMSS, som
er to bidrag sendt inn til National Institute of Standards and Technology sin stan-
dardiseringsprosess for kvantesikre kryptografiske primitiver. Begge disse sys-
temene baserer seg på vanskeligheten av å løse simultane polynomligninger i flere
variable. Felles for systemene er at de tilhører familien Hidden Field Equations
(HFE). Sammen med sine modifikasjoner har HFE vist seg å være et sterkt funda-
ment for kryptografiske systemer. De mest effektive angrepene mot slike systemer
er per dags dato angrep ved hjelp av Gröbner-baser, både formulert for klassiske-
og kvantedatamaskiner. Et par andre interessante angrep vil bli presentert, der et
generisk møtes-i-midten-angrep viser seg å knekke en instans av Gui. Forfatterne
bak Gui foreslår å skru på et parameter for å motstå dette angrepet, i bytte mot re-
dusert effektivitet. Forfatterne hevder at kjøretiden for å generere en signatur øker
med omtrent 50%, men både eksperimentelle og analytiske resultater gitt i denne
oppgaven argumenterer for at kjøretiden øker med en faktor e, Eulers tall.

Abstract
The main goal of this thesis is to analyze and compare the two signature schemes
Gui and GeMSS, both submitted to the Post-Quantum Cryptography Standardiza-
tion Process initiated by the National Institute of Standards and Technology. Both
schemes are based on the hardness of solving a system of multivariate polynomial
equations, using the construction known as Hidden Field Equations (HFE). HFE
together with its modifications have been extensively studied for over 20 years
and has withstood the test of time. Today’s most promising attacks on HFE-based
schemes are Gröbner basis algorithms, both in the quantum and classical setting.
Gui and GeMSS will be analyzed with regards to a Gröbner basis approach, as
well as some other notable attacks. One instance of Gui and its proposed security
level is broken using a generic Meet-in-the-middle attack. The authors of Gui sug-
gest a tweak of parameters to counter this attack, resulting in reduced efficiency of
the scheme. The authors claim the run time of signature generation will increase
by approximately 50%, while both analytical and experimental results presented
in this thesis suggest an increase by a factor of e, Euler’s number.

i

ii

Preface

This thesis concludes a five-year integrated master’s degree in Applied Physics and
Mathematics at the Norwegian University of Science and Technology (NTNU),
with the main profile Industrial Mathematics. The field of study for this thesis
is cryptography, with the focus on secure multivariate cryptosystems in a post-
quantum world. This thesis was conducted under the supervision of Professor
Øyvind Solberg at the Algebra research group at the Department of Mathematical
Sciences at NTNU. The thesis is a direct extension of my specialization project
from last semester and accounts for 30 ECTS credits. I wish to express my sin-
cerest gratitude to Professor Kristian Gjøsteen and Dr. Martin Strand for valuable
feedback and for pointing me in the right direction, and to Ward Beullens, PhD
candidate at COSIC, KU Leuven, Belgium, for the helpful e-mail correspondence.
I would also like to thank Andreas Sandø Krogen for proofreading my thesis.

Øyvind Follan
Trondheim, Norway

July 2018

iii

iv

Table of Contents

Sammendrag i

Abstract i

Preface iii

Table of Contents vi

List of Tables vii

List of Figures ix

1 Introduction 1

2 Preliminaries and Gröbner basis Theory 3
2.1 Notions and general definitions 3
2.2 Elimination theory . 13
2.3 Fast Gröbner basis algorithms 16

3 Cryptography and Hidden Field Equations 19
3.1 HFE for Encryption Schemes . 21
3.2 HFE for Signature Schemes . 27

4 Modern HFE and its attacks 29
4.1 Hidden Field Equations Modifications 29
4.2 HFEv- for signatures . 31
4.3 Attacks on HFEv- . 33

4.3.1 Key recovery attacks . 33
4.3.2 Signature forgery attacks 37

4.4 Feistel-Patarin Construction . 39

v

5 Gui and GeMSS 43
5.1 Gui . 44
5.2 GeMSS . 49
5.3 Comparison and security assessment 52

6 Closing remarks and further work 57

Bibliography 59

vi

List of Tables

5.1 Parameter sets for Gui. 49
5.2 Parameter sets for GeMSS. 52
5.3 Key and signature sizes of all given parameter sets of Gui and

GeMSS. 52
5.4 NIST security categories. 53
5.5 Comparison of the log2 complexities of the attacks presented in

Section 4.3 against Gui and GeMSS for the various parameter sets.
From left to right, MinRank attack (MR), Brute Force (BF), Fast
Exhaustive Search (FES), Gröbner basis (GB), Feistel-Patarin at-
tack (FPA), Quantum Boolean Solve (QBS). The best classical at-
tacks are printed in bold. 54

5.6 Gui and GeMSS run times for the different parameter sets pre-
sented above, measured on a MacBook Pro 13-inch Early 2015
model having 2.7 GHz Intel Core i5 processor, 8GB memory. . . . 55

vii

viii

List of Figures

2.1 Illustration of the algorithmic workflow for finding a Gröbner basis
under lexicographic ordering. 17

3.1 Diagram showing the basic HFE construction. The maps (S, F, T)
are two-way maps and easy to invert. The public key P is a one-
way map. 24

3.2 Run times for algebraic attacks on HFE constructed in Macaulay2,
for increasing number of equations and variables. 27

5.1 Run times for signature generation with respect to the repetition
factor k for Gui-184. The figure also shows (5.13), with TRootFind

approximated by signing a message using k = 1. 56

ix

x

Chapter 1

Introduction

Cryptographers are no longer confident that quantum computers of large scale
are impossible. Both conventional Diffie-Hellman and RSA are broken by Shor’s
quantum computer factoring algorithm proposed in 1994 [1]. As of today, no quan-
tum attacks have been effectively formulated for solving systems of general multi-
variate polynomial equations. This motivates the use of such systems as a mathe-
matical foundation for cryptographic systems. The National Institute of Standards
and Technology, denoted NIST, has initiated a process to standardize quantum-
resistant cryptographic systems. Several viable candidates are built on multivari-
ate polynomial equations, and in this thesis schemes based on the so-called Hidden
Field Equations (HFE) are studied. HFE has effectively been broken, by the use
of Gröbner bases algorithms. Some modifications have been made to the original
HFE system, most notably the vinegar (v) and minus (-) modifications. HFE to-
gether with these modifications, denoted HFEv-, is considered resistant to Gröbner
basis attacks. In this paper, two proposals to the NIST standardization contest built
on HFEv- will be presented, namely Gui [2] and GeMSS [3]. The security of these
schemes will be evaluated from a Gröbner basis perspective, as well as some other
historically successful attacks.

The first part of this thesis, Chapter 2 is a summary of the semester project
performed and graded last semester.

1

Chapter 1. Introduction

2

Chapter 2

Preliminaries and Gröbner basis
Theory

The underlying mathematical foundation for the entire thesis is the theory of mul-
tivariate polynomial rings and algebraic extensions. To formally present crypto-
graphic schemes based on multivariate polynomial equations, some notions re-
garding these building blocks need to be introduced and precisely defined. Also,
the main tool for analyzing the security of these schemes, Gröbner bases, will be
presented.

2.1 Notions and general definitions

First of all, a polynomial and its components need to be defined.

Definition 1. A monomial in the variables (x1, x2, ..., xn) is a product

xλ = xλ11 x
λ2
2 ...x

λn
n , (2.1)

where λi ∈ Z≥0. A polynomial p in (x1, x2, ..., xn) is a finite linear combination
of monomials, with coefficients pλ from some commutative field k,

p(x1, x2, ..., xn) =
∑
λ

pλx
λ. (2.2)

The set of all such polynomials is denoted R = k[x1, x2, ..., xn], and is under
addition and multiplication a commutative ring. From here on, R denotes such a
polynomial ring.

3

Chapter 2. Preliminaries and Gröbner basis Theory

Definition 2. A system of polynomial equations is a set of equations

p1(x1, x2, ..., xn) = 0,

p2(x1, x2, ..., xn) = 0,

...

pm(x1, x2, ..., xn) = 0, (2.3)

where pi ∈ R. The solutions (if any) of the given system of polynomials is a set of
values of the form a = (a1, a2, ..., an) ∈ kn satisfying pi(a) = 0, for 1 ≤ i ≤ m.

Ideals are certain subsets of rings and are of great importance. An ideal is
defined as follows.

Definition 3. An ideal I in a commutative ring R is a subset of R satisfying the
following properties:

1. I is a subgroup of (R,+).

2. For every pair (a, b) ∈ I ×R, a · b ∈ I .

Example 4. Evidently, both {0} and R are ideals of R.

Example 5. The set of even numbers is an ideal in the ring of integers, since any
integer multiplied by an even number is an even number.

Explicitly writing out the terms of an ideal is unfeasible, since there are (often)
an infinite number of members. Therefore, ideals are commonly presented by
some generating set.

Definition 6. Let F = {f1, f2, ..., fm} ⊂ R. The ideal generated by F in R is
defined as

〈F 〉 =

{
m∑
i=1

gifi | gi ∈ R for 1 ≤ i ≤ m

}
. (2.4)

It is important to note that an ideal in general has several different generating
sets, as can be seen from the following example.

Example 7. The polynomial sets F1 = {x} and F2 = {x, x2} are obviously
different, but generate the same ideal in R = k[x] by definition.

This is a very important property, and will be further investigated later. Another
important result is that every ideal I in R = k[x1, ..., xn] can be expressed by a
finite set of generators. This is a famous result, and is a formulation of Hilbert’s
Basis Theorem.

4

2.1 Notions and general definitions

Theorem 8 (Hilbert’s Basis Theorem). For every ideal I ⊂ k[x1, ..., xn], there
exist a finite generating set. In other words, I = 〈f1, ..., fm〉, for some fi ∈ I .

Proof. See [4].

An interesting observation of ideals in polynomial rings is the following. Let
I be an ideal generated by a set of polynomials {f1, ..., fm} ⊂ R. A solution
a to the associated system of polynomial equations fi = 0, 1 ≤ i ≤ m also
satisfies p(a) = 0 for every p ∈ I . This is easily seen, directly from the definition
of the ideal I . This further motivates the study of ideals generated by a set of
polynomials, since the ideals in a sense ’share’ zeroes with a generating set of
the ideal. A practical notation for the solutions of such a polynomial system is
introduced.

Definition 9. Let F = {f1, f2, ..., fm} ⊂ R be a set of polynomials. One defines
the affine variety of F as

V (F) = {(a1, a2, ..., an) ∈ kn | fi(a1, a2, ..., an) = 0, for 1 ≤ i ≤ m} . (2.5)

One can immediately notice that the solutions of (2.3) are infact the same as
V (p1, p2, ..., pm). This motivates further analysis of affine varieties as an algebraic
structure, to develop more techniques of finding solutions of such polynomial sys-
tems. Similarly, one can define the affine variety of an ideal.

Definition 10. Let I be an ideal in R. Then the affine variety of I , denoted V (I)
is the set of all points in kn such that

V (I) = {v ∈ kn | p(v) = 0, ∀p ∈ I} . (2.6)

Since an ideal generally is infinite, finding its affine variety can be difficult.
Luckily, there is a strong correspondence between the affine variety of an ideal
and the affine variety of a generating set for the ideal.

Theorem 11. Let I be an ideal in R generated by F = {f1, ..., fm}. Then, the
following equalities hold.

V (I) = V (F) (2.7)

Proof. The inclusion V (I) ⊂ V (F) is evident. Since F is in I , any v ∈ V (I)
satisfies fi(v) = 0 for all 1 ≤ i ≤ m by definition.
The inclusion V (F) ⊂ V (I) also follows. Let v ∈ V (F). Any element p ∈ I can
be expressed as p = p1f1 + ...+pmfm. Since fi(v) = 0 for all 1 ≤ i ≤ m, indeed
p(v) = (p1f1)(v)+ ...+(pmfm)(v) = p1(v)f1(v)+ ...+pm(v)fm(v) = 0,which
implies v ∈ V (I).

5

Chapter 2. Preliminaries and Gröbner basis Theory

As systems of polynomial equations are of interest, some consideration has
to be put on the algebraic multiplicity of the solutions. Let f1 = (x + 1), f2 =
(y + 1) ∈ GF (2)[x, y], and define the two polynomial sets F = {f1, f2}, F̂ =
{f21 , f32 }. One can immediately notice that a = (1, 1) is in both V (F) and V (F̂).
However, the solutions for the polynomial equations F = 0 and F̂ = 0 have
indeed different degrees of algebraic multiplicities. This motivates the following
definition.

Definition 12. Let I be an ideal in R. The radical of I , denoted
√
I is an ideal in

R, defined as
√
I = {f | fα ∈ I, for some integer α ≥ 1}. (2.8)

Radical ideals are important for the correspondence between varieties and ide-
als. We are now ready for the most important result in this section. As previously
stated, an ideal need not have a unique generating set, but the affine variety of
the ideal is independent of the representation of the ideal. A different generating
set merely changes the way to represent a given polynomial in the ideal, but the
polynomial itself has the same properties. This means that any set of polynomi-
als generating the same ideal I yield the same affine variety. This result follows
immediately from Theorem 11 and is summarized in the following corollary.

Corollary 13. For any two generating sets of polynomials (F,G) for the same
ideal I , the following holds

V (F) = V (G). (2.9)

Proof. By Theorem 11, V (I) = V (F) and V (I) = V (G). Then it immediately
follows V (F) = V (G).

In the hunt for solutions of multivariate polynomial equations, this result is of
utmost importance. Intuitively, this theorem states that a solution of such a system
can be found by first constructing the ideal generated by the polynomials, and then
try to find some ”well organized” generating set for this ideal. Since these poly-
nomial sets share the same affine variety, the hope is that the well-organized set is
easier to solve than the original one. This is actually the fundamental idea behind
Gröbner basis techniques for solving a set of multivariate polynomial equations.
Before a definition of Gröbner bases is given, we need to define multivariate poly-
nomial division. Polynomial division in one variable is trivial, but for polynomials
in many variables, several problems arise. For polynomials in one variable, there
is a natural way of comparing the orders of monomials, e.g. x2 is of lower de-
gree than x3. However, for polynomials with multiple variables, a problem occurs.
How should one determine the monomial of smallest degree given x21 and x1x2?
The notion of monomial ordering is introduced.

6

2.1 Notions and general definitions

Definition 14. A monomial ordering, �, for a set of monomials, M ⊂ R, is an
ordering on the set, for which all pairs (u, v) ∈M×M satisfy:

1. � is a total ordering on the set,

2. if u � v,∀w ∈M, u · w � v · w,

3. w � 1, ∀w ∈M.

Especially three monomial orderings need to be clarified, lexicographic, total
degree and graded reverse lexicographic order.

Let m1 = xλ
(1)
, m2 = xλ

(2)
be two monomials in R, where λ(1), λ(2) ∈ Zn≥0.

Definition 15. Lexicographic ordering, lex, first compares the exponents of x1,
then x2, and so on. More precisely, if m1 �lex m2, then the leftmost non-zero
value of λ(1) − λ(2) is positive.

An example illustrating �lex:

m1 = x51x
9
2x

2
3x

6
4, m2 = x31x2x

4
3x4 =⇒

λ(1) = (5, 9, 2, 6), λ(2) = (3, 1, 4, 1) =⇒ m1 �lex m2 since λ(1) − λ(2) = (2, 8,−2, 5)

Definition 16. Total degree ordering, tot, is simply defined as

m1 �tot m2 ⇐⇒
∑

λ(1) >
∑

λ(2).

An example illustrating �tot:

m1 = x51x
3
2x

5
3x

1
4, m2 = x11x

3
2x

2
3x

3
4 =⇒

λ(1) = (5, 3, 5, 1), λ(2) = (1, 3, 2, 3) =⇒ m1 �tot m2 since
∑

λ(1) = 14 >
∑

λ(2) = 9.

Definition 17. Graded reverse lexicographic ordering, grevlex, is defined as

m1 �grevlex m2 ⇐⇒
∑

λ(1) >
∑

λ(2),

or ∑
λ(1) =

∑
λ(2)

and the rightmost nonzero entry of λ(1) − λ(2) is negative.

In other words, grevlex first compares the total degree of each monomial, but
in the event of a tie, it picks the reverse of a lexicographic ordering would yield.
Two examples illustrating �grevlex:

λ(1) = (2, 3, 8, 4), λ(2) = (3, 2, 3, 4) =⇒ m1 �grevlex m2 since∑
λ(1) = 17 >

∑
λ(2) = 12

7

Chapter 2. Preliminaries and Gröbner basis Theory

λ(1) = (3, 8, 3), λ(2) = (6, 3, 5) =⇒ m1 �grevlex m2 since∑
λ(1) = 14 =

∑
λ(2) and λ(1) − λ(2) = (−3, 5,−2).

There is also need for some common definitions for important terms in a poly-
nomial.

Definition 18. Let p be a polynomial p =
∑

i cimi, for some monomials mi, and
let � be a monomial order. One defines the

• Leading monomial :

LM(p) = mi, such that mi � mj for all j 6= i.

• Leading coefficient :

LC(p) = ci, where ci is the coefficient of LM(p) in p.

• Leading term :
LT(p) = LC(p) LM(p).

• Least common multiple : Letm1 = xλ
(1)
, m2 = xλ

(2)
be two monomials in

R. Let γ = (γ1, ..., γn) ∈ Zn≥0 where γj = max(λ
(1)
j , λ

(2)
j) for 1 ≤ j ≤ n.

One defines the least common multiple, denoted LCM, of m1 and m2 as

LCM(m1,m2) = xγ . (2.10)

Example 19 (Illustrating LCM). Let m1 = x21x
3
2 and m2 = x21x2 be two mono-

mials in k[x1, x2]. This leads to γ = (2, 3). The LCM of m1 and m2 is then

LCM(m1,m2) = x21x
3
2 (2.11)

The least common multiple of two monomials m1 and m2 is the monomial of
minimal total degree that is divisible by both m1 and m2.

We expand Definition 18 to not only apply to single polynomials. For a set of
polynomials F , denote

LM(F) = {LM(f) | f ∈ F}, (2.12)

and
LT(F) = {LT(f) | f ∈ F}. (2.13)

8

2.1 Notions and general definitions

For an ideal I 6= 0, let LT(I) be the set of leading terms of I,

LT(I) = {LT(f) | ∀f ∈ I}. (2.14)

With these definitions under control, we can finally define multivariate polynomial
division.

Theorem 20 (Division algorithm in R). Let F = {f1, f2, ..., fm} ⊂ R. For a
fixed monomial ordering, any polynomial p ∈ R can be written as

p = a1f1 + a2f2 + ...+ amfm + r (2.15)

where r, ai ∈ R, for all 1 ≤ i ≤ m. The remainder of p divided by F is called r,
and is either zero or a linear combination of monomials not divisible by any of the
LT(F).

Proof. The proof is given by Algorithm 1.

Algorithm 1: Multivariate Division Algorithm
Input: A set of polynomials F = {f1, ..., fm}, a polynomial p, a monomial

ordering �
Output: {a1, ..., am, r} such that p = a1f1 + ...+ amfm + r

1 a1 ← 0, ..., am ← 0
2 r ← 0
3 while p 6= 0 do
4 i← 1
5 Div← False
6 while i ≤ m AND Div == False do
7 if LT(fi) divides LT(p) then
8 ai ← ai + LT(p)/LT(fi)
9 p← p− LT(p)/LT(fi) · fi

10 Div← True

11 else
12 i← i+ 1

13 if Div == False then
14 r ← r + LT(p)
15 p← p− LT(p)

16 return (a1, ..., am, r)

9

Chapter 2. Preliminaries and Gröbner basis Theory

For correctness and termination of this algorithm, see [4]. It is important to note
that the remainder r is not in general uniquely determined by the set F , and will
depend on the order of the division of the polynomials in F . However, using this
algorithm, one can actually investigate whether a polynomial is a member of a
given ideal or not, stated in the following corollary.

Corollary 21. Let I = 〈f1, f2, ..., fm〉 be an ideal in R. For any polynomial
p ∈ R, let r be the remainder of p when divided by {f1, ..., fm}. Then,

r = 0 =⇒ p ∈ I. (2.16)

Note that there is not an equivalence between ideal membership and a zero remain-
der after division, as illustrated in the following example.

Example 22. Let k = GF(2), R = k[x, y], and I = 〈y2 − 1, x2y − 1〉 under the
lexicographic monomial ordering, x �lex y. Divide p = x2y2 + xy2 + x+ y first
by f1 = y2 − 1, then by f2 = x2y − 1. We note that LT(f1) divides LT(p) by
a factor x2. Hence one can write p = x2f1 + x2 + xy2 + x + y. Here, neither
LT(f1) nor LT(f2) divides LT(x2 +xy2 +x+ y) = x2, so it is extracted into our
remainder, r1 = x2. The remaining leading term, xy2 is divisible by LT(f1) by a
factor x. We write p = (x2 + x)f1 + 2x + y + r1. Note that we are currently in
GF(2)[x, y], yielding 2x = 0. Evidently, y is not divisible by neither LT(f1) nor
LT(f2), arriving at the final remainder r = x2 + y. In this case, it seems p is not
in the ideal generated by f1 and f2.

This time, first divide p by f2, then by f1. We observe that LT(f2) divides
LT(p) by a factor y, yielding p = yf2 + xy2 + x. As LT(f2) no longer divides
LT(p), we move on to LT(f1). Here, the leading term of f1 divides xy2 + x by a
factor x, giving the final result p = yf2 + xf1. The remainder is here 0, hence p is
indeed in the ideal generated by f1 and f2. This illustrates the point that the order
of dividing p by the set F greatly affects the result.

Determining whether or not a polynomial is in an ideal is an important and
well-studied problem. This motivates the search for some representation of a given
set of polynomials, such that the remainder is independent of the order of the
division. It turns out that Gröbner bases satisfy this exact criterion. We are now
ready to present the following definition.

Definition 23 (Gröbner basis). For a fixed monomial ordering, a finite set of poly-
nomials G = {g1, g2, ..., gl} in an ideal I ⊂ R is a Gröbner basis of I if

〈LT(g1),LT(g2), ...,LT(gl)〉 = 〈LT(I)〉. (2.17)

In general, the ideal generated by a set of polynomials is different from the
ideal generated by the leading terms in the set. Also, as a direct consequence of
Theorem 8, the following corollary is evident.

10

2.1 Notions and general definitions

Corollary 24. Every non-zero ideal I ⊂ k[x1, ..., xn] has a Gröbner basis.

As shown in Example 22, chosing the correct order of division was crucial
for establishing whether or not p was in the ideal I . This leads to the following
important and useful trait of Gröbner bases.

Proposition 25. Let G = {g1, g2, ..., gl} be a Gröbner basis of an ideal I ⊂ R for
some monomial ordering, and let p ∈ R. Then, the remainder of p when divided
by G is independent of the order of division.

Proof. Suppose the remainder is not unique. Then, the division algorithm gives
p = a1g1 + a2g2 + ... + algl + r and p = a

′
1g1 + a

′
2g2 + ... + a

′
lgl + r

′
, where

ai, a
′
i, r, r

′ ∈ R for 1 ≤ i ≤ l. Since we know that 〈G〉 is an ideal, indeed

r − r′ = (a1 − a
′
1)g1 + (a2 − a

′
2)g2 + ...+ (al − a

′
l)gm ∈ 〈G〉. (2.18)

By the definition of a Gröbner basis we know that LT(r − r′) is not divisible by
any leading term in G, since no term of r nor r

′
is divisible by any LT(G). The

only option for r − r
′ ∈ 〈G〉 is r − r

′
= 0. The uniqueness of the remainder

follows.

It is important to note that even though the remainder r is unique, the elements
(ai, a

′
i) in the above representation need not be, meaning

p = a1g1 + ...+ algl + r = a
′
1g1 + ...+ a

′
lgl + r, (2.19)

where ai 6= a′i is perfectly possible. As a direct consequence of Propopsition 25,
the following can be stated regarding ideal membership.

Corollary 26. For an ideal I ⊂ R, let G be an associated Gröbner basis of I .
Any polynomial p ∈ R is a member of I if and only if the remainder of p divided
by G is zero.

Proof. If the remainder after division is zero, p is indeed in I by Corollary 21.
Conversely, if p is in I , and G = {g1, ..., gl} is a Gröbner basis for I , then there
exists a representation of p in the following form

p = a1g1 + ...+ algl. (2.20)

Since the remainder is unique after dividing p byG, and this representation clearly
shows a remainder of zero, the division of p by G always yields a zero remainder.

11

Chapter 2. Preliminaries and Gröbner basis Theory

This is an important result, both from a theoretical standpoint to determine
ideal memberships, but also from an algorithmic viewpoint, as this enables several
Gröbner basis algorithms to deterministically terminate. One of the most famous
algorithms for finding a Gröbner basis is called Buchberger’s Algorithm, named
after the German mathematician who is credited with the discovery of Gröbner
bases. Before an explanation of Buchberger’s Algorithm is presented, the notion
of S-polynomials needs to be introduced.

Definition 27. Let f, g be two elements in R. For a given monomial ordering, one
defines the S-polynomial of f and g as

S(f, g) =
LCM(LM(f),LM(g))

LT(f)
f − LCM(LM(f),LM(g))

LT(g)
g. (2.21)

By construction, the leading terms of f and g cancel out, resulting in a polynomial
satisfying f � S and g � S. These S-polynomials are crucial when calculating
a Gröbner basis, as they serve an important role in determining whether or not a
Gröbner basis has been found, stated in the following theorem.

Theorem 28 (Buchberger’s Criterion). For a given ideal I ⊂ R, a generating set
G = {g1, ..., gl} is a Gröbner basis for I if and only if the remainder of S(gi, gj)
divided by G is zero, for all pairs (gi, gj) ∈ G.

Proof. =⇒ : Since G is a Gröbner basis for the ideal I , and S(gi, gj) ∈ I , it
follows directly from Corollary 26.

⇐= : See [4]

Now, Buchberger’s Algorithm is ready to be presented, as one of the funda-
mental tools for finding Gröbner bases.

12

2.2 Elimination theory

Algorithm 2: Buchberger’s Algorithm
Input: A set of polynomials F = {f1, ..., fm} which generate an ideal I ,

A monomial ordering �
Output: A Gröbner basis G for I

1 G← F
2 repeat
3 G

′ ← G

4 for each pair (p, q) in G
′ do

5 S ← S(p, q)

6 S′ ← reduce S by the elements of G
′

using polynomial division
7 if S 6= 0 then
8 G← G ∪ {S}

9 until G = G
′

10 return G

For correctness and termination, the reader is referred to [4].
The Gröbner basis for an ideal is not necessarily uniquely determined. For this

reason, the reduced Gröbner basis is introduced, as it is indeed a unique represen-
tation of the ideal satisfying the criterion of a Gröbner basis.

Definition 29. A Gröbner basis G is a reduced Gröbner basis if

1. LC(p) = 1 ∀p ∈ G,

2. ∀p ∈ G, no monomial of p lies in 〈LT(G \ p)〉.

In other words, it is in some sense the smallest Gröbner basis for an ideal, as re-
moving any term yields a set not satisfying the criteria of a Gröbner basis. From
here on, the reader can assume that once a Gröbner basis is mentioned, it is indeed
reduced. As we are now comfortable discussing Gröbner bases, their applica-
tions can be further discussed. As this next section will show, solving a system
of multivariate polynomial equations and finding a Gröbner basis under a certain
monomial ordering are closely linked.

2.2 Elimination theory

To illustrate the power of Gröbner basis algorithms for solving systems of equa-
tion, we begin this section with an example.

13

Chapter 2. Preliminaries and Gröbner basis Theory

Example 30. Let k = Z/13Z andR = k[x, y, z]. Examine the polynomial system
fi = 0 for i = 1, 2, 3,

f1 = xz2 − y − 1 = 0,

f2 = x2y − 2 = 0,

f3 = yz2 − 2 = 0. (2.22)

Let I be the ideal generated by F = {f1, f2, f3}. By computing the reduced
Gröbner basis for I under the lexicographic monomial order, we arrive at G =
{g1, g2, g3} where

g1 = x− 3z8 + 6z6 + 3z2 + 6,

g2 = y + 6z8 − 6z2 + 2,

g3 = z10 − z4 − 4z2 − 4. (2.23)

As previously stated, solving (2.22) is equivalent to finding the affine variety of
G. Clearly, the set G is easier to analyze, since g3 is a polynomial in one variable,
while both g1 and g2 are on the simple forms x−h1(z) and y−h2(z) respectively.
There are numerous efficient algorithms for finding roots of a polynomial in one
variable, e.g. Berlekamp’s Algorithm [5]. One can easily see that z = ±2 satisfies
g3 = 0. Next, one can observe that g1 = 0 =⇒ x = h1(z), meaning that x =
h1(±2) = 2 and similarly g2 = 0 =⇒ y = h2(±2) = 7 give all the solutions
in k. To summarize, there are two solutions to (2.22), namely (2, 7,±2). Note
that the degree of g3 is much higher than any of the polynomials in the original
set F . This is a recurring problem when finding Gröbner bases, the degrees of the
polynomials might grow exceptionally high.

The above example illustrates a particularly beautiful result, and needs to be
further investigated. Notice how g3 in the above example is a polynomial in I ∩
k[z], where I ∩ k[z] contains all the elements in the ideal I where x, y have been
eliminated. This itself is an ideal, and is in fact generated by the element g3.
Formally, this is called an elimination ideal, and is defined in the following way.

Definition 31. For an ideal I = 〈f1, ..., fm〉 ⊂ k[x1, ..., xn], the i-th elimination
ideal, denoted Ii, is defined as

Ii = I ∩ k[xi+1, ..., xn] (2.24)

Note that different monomial orderings lead to different elimination ideals.
Elimination ideals conserve some of the important underlying structure of a Gröbner
basis, formalized in the following Theorem.

14

2.2 Elimination theory

Theorem 32 (The Elimination Theorem). Let I be an ideal in k[x1, ..., xn], and
let G be a Gröbner basis of I with respect to the lexicographic ordering, x1 �lex

x2 �lex ... �lex xn. Then, a Gröbner basis for the i-th elimination ideal is given
by

Gi = G ∩ k[xi+1, ..., xn] (2.25)

Proof. For any i, it is clear that Gi ⊂ Ii, which implies

LT(Gi) ⊂ LT(Ii) =⇒ 〈LT(Gi)〉 ⊂ 〈LT(Ii)〉. (2.26)

Hence, it remains to show

〈LT(Ii)〉 ⊂ 〈LT(Gi)〉. (2.27)

Any p ∈ Ii is also in I . Hence, the leading term of p is divisible by a leading
term of some g ∈ G, since G is a Gröbner basis of I . But since p only involves
the variables (xk+1, ..., xn), then also g must be in the variables (xk+1, ..., xn), by
the lexicographic ordering. Hence, g ∈ 〈Gi〉. Together, this implies that Gi is a
Gröbner basis for Ii.

For finite fields, ideals with an affine variety consisting of a finite set of points
produce a very interesting reduced Gröbner basis under the lexicographic ordering.
This is an extremely important result and is the foundation of a Gröbner basis
approach to solving a system of multivariate polynomial equations.

Lemma 33 (Shape Lemma). For a finite field k, let I be a radical ideal where the
n−th coordinates of the points in V (I) are distinct. Then, denote the generator of
the n− 1th elimination ideal, I ∩ k[xn], as gn. Then,

1. The reduced Gröbner basis of I with respect to �lex is

G = {x1 − g1, x2 − g2, ..., xn−1 − gn−1, gn},

where gi ∈ k[xn]. for all 1 ≤ i ≤ n

2. The set of zeros of I is

V (I) = {(g1(ai), ..., gn−1(ai), ai) for i = 1, ...,deg(gn)},

where the ai are the roots of gn.

Proof. See [6].

15

Chapter 2. Preliminaries and Gröbner basis Theory

This Lemma formalizes the result found in Example 30. For our cryptographic
purposes, the base fields are always finite, and the most commonly used are GF(2)
and GF(28). By appending the so-called field equations (xqi − xi, where q is the
number of elements in the base field) the resulting ideal is radical, see [7]. The
solutions of the polynomial systems appearing in our cryptographic context are
always finite, and with high probability unique [8]. In this case, the generator
for the n-th elimination ideal has a single root. Hence, the criteria in the Shape
Lemma are indeed satisfied. The Shape Lemma is a powerful result since any
polynomial system represented in this form is practically solved. This is a problem
for cryptographic systems based on polynomial equations since they are broken if
the system is rewritten to such a form. However, even though the Shape Lemma
does indeed guarantee the existence of such a representation, it does not say much
about the complexity and hardness of finding it. Computing a Gröbner basis turns
out to be computationally challenging. The Buchberger Algorithm, Algorithm 2,
was proposed more than 40 years ago and was not initially constructed to be a fast
tool. More recently, several new algorithms have been proposed.

2.3 Fast Gröbner basis algorithms

The most computationally expensive part of Buchberger’s algorithm is the reduc-
tion of the S-polynomials. However, in 1999 Jean-Charles Faugère proposed a
new algorithm, named F4 [9]. The general idea behind F4 is very similar to Buch-
berger’s algorithm, but one major difference is that it uses ideas from linear algebra
to reduce several polynomials simultaneously. Later, Faugère also presented the
improved F5 Algorithm [10]. Common for these algorithms, is that they are much
faster when calculating a Gröbner basis under the degree reverse lexicographical
ordering or total degree ordering. As the Shape Lemma applies to a Gröbner basis
under lexicographical ordering, these algorithms are not quite enough to arrive at
the solution of a polynomial system. Luckily, there are algorithms for converting
a given Gröbner basis under a monomial ordering to a Gröbner basis for another
monomial ordering, most notably FGLM [11, 12].

The run time of the F5 algorithm is heavily dominated by row reduction of
huge matrices. The size of these matrices are determined by the number of equa-
tions and variables in the system of equations, as well as the so-called degree of
regularity, dreg, of the system of equations [13]. The degree of regularity of a
system of equations will be further discussed in 4.3. Particularly, for a system of
n equations in n variables, the complexity of F5 is dominated by row reducing
a matrix consisting of

(
n
dreg

)
columns and rows. Row reducing a matrix of size

16

2.3 Fast Gröbner basis algorithms

Input ideal

Total degree or degree reverse lexicographic Gröbner basis

Lexicographic Gröbner basis

Buchberger, F4 or F5

FGLM

Figure 2.1: Illustration of the algorithmic workflow for finding a Gröbner basis under
lexicographic ordering.

(
n
dreg

)
×
(
n
dreg

)
can be performed in

CRowReduce ∼ O
(
n

dreg

)ω
(2.28)

operations. The constant ω is called the linear algebra constant, and is determined
by the complexity of matrix multiplication. In [14] the authors present ω = 2.38,
the lowest value to our knowledge. The interested reader is referred to [15] to learn
about F5.

There are other techniques for solving general systems of polynomial equa-
tions, where one approach is linearization. If the polynomial system only con-
tains monomials of degree 2 or lower, the general idea is to replace each product
xixj by a new variable yij . To illustrate how effective this approach can be, let
F = {f1, ..., fm} be an overdetermined set of quadratic equations in (x1, ..., xn),
wherem = n(n+1)/2. Thesem quadratic equations give rise to n(n+1)/2 linear
equations in n(n + 1)/2 variables after linearization, which can easily be solved
by Gaussian Elimination. As we wish to solve the original system for (x1, ..., xn),
we proceed as follows. At most, two possible values xi satisfy x2i = yii. To chose
the correct value for each xi, the relations xixj = yij are used, and the correct
solutions are relatively easily found.

Linearization techniques are also useful for less overdetermined systems, with
the introduction of Relinearization [16]. Here, the same linearization is made,
but additional equations are introduced as well, to account for the commutative
properties of xixj , namely

(xixj)(xkxl) = (xixk)(xjxl) = (xixl)(xjxk) =⇒
yijykl = yikyjl = yilyjk (2.29)

These techniques can easily be combined with Gröbner basis algorithms, and in
fact direct links between Relinearization algorithms and Gröbner basis algorithms

17

Chapter 2. Preliminaries and Gröbner basis Theory

have been found [17]. Now that some theoretical foundation has been made, we
can commence discussing the applications of multivariate polynomial equations in
cryptography.

18

Chapter 3

Cryptography and Hidden Field
Equations

Secure communication has become incredibly important over the last few decades
with the development of the global communication infrastructure. There are end-
less areas where being able to communicate securely is of utmost importance, e.g.
economy, health, social networks, cloud computing, identification, and a lot more.
Public Key Cryptography has been shown to be an essential part of our commu-
nication protocols, both for encryption and digital signatures. It turns out multi-
variate polynomial systems can be used as a tool for both. Signature schemes are
important for the authenticity of a message. A signature scheme generally consists
of three algorithms.

Definition 34 (Signature scheme). A signature scheme is a collection of algo-
rithms (KeyGen, Sig,Ver), that ensure the authenticity of a communicated mes-
sage, where

• KeyGen generates a public key and a secret key (pk, sk).

• Sig takes as input a message M and the secret key sk and produces a signa-
ture σ.

• Ver takes as input a message M , the public key pk and a signature σ, and
produces a boolean.

For the correctness of the signature scheme, the following must be satisfied for a
given message M and a key pair (pk, sk),

Ver(M,pk,Sig(M, sk)) = True .

19

Chapter 3. Cryptography and Hidden Field Equations

Also, for any message M ′ 6= M ,

Ver(M ′, pk,Sig(M, sk)) = False,

with high probability.

When sending a message, the sender would simply attach the signature pro-
duced by Sig. Then, the receiver would input the message, the public key, and the
signature into Ver, and only trust the correspondence if it outputs True. This way,
any manipulation of the message over the insecure communication channel would
lead to a discarding of the message received.

Encryption schemes are also very important and are used to hide the informa-
tion in a message by converting it into seemingly random text. This is done with
the help of mathematical mappings, where only the designated party holding some
secret information is able to find the preimage of the map.

Definition 35 (Encryption scheme). An encryption scheme is a collection of al-
gorithms that provide confidentiality of messages. An encryption scheme usually
consist of the following three algorithms (KeyGen,Enc,Dec)

• KeyGen generates a public key and a secret key (pk, sk).

• Enc takes as input a plaintext, M , and the public key pk, and produces a
ciphertext, C.

• Dec takes as input a ciphertext C, the secret key sk and reproduces the
plaintext M .

For correctness of the encryption scheme, the following must be satisfied for a
given plaintext M and a pair (pk, sk),

Dec(Enc(M,pk), sk) = M.

These two families of schemes combined give a strong security setting around
communication. If a message is guaranteed to be unreadable for anyone other
than the intended receiver, and one can ensure that the sender is indeed the correct
sender, one can be fairly confident that the communication is secure.

Another important tool used extensively in cryptography is the use of hash
functions. Hash functions are one-way functions that generally accept an input of
any length, and returns an output of fixed length.

As mentioned in the introduction, many of the cryptographic systems currently
in use will be broken in the event of a large-scale quantum computer being built,
motivating the search for cryptosystems based on other primitives. Additionally,

20

3.1 HFE for Encryption Schemes

some of the already existing and implemented cryptosystems, e.g. AES [18], can,
in fact, be modeled by a set of multivariate polynomial equations. Hence, further
research within this field is of great interest, both as a means to find new quantum
secure systems, but also to further develop our understanding of currently imple-
mented cryptosystems.

Several cryptosystems based on multivariate polynomials have been proposed.
Common for all these systems is the need for fast evaluation and difficult inver-
sion. This means that a system of completely random multivariate polynomials
will not work, as such a system is hard to invert even for the intended entity. One
is dependent on having some secret information regarding the system, to ensure
fast inversion. This means that the polynomial equations need to be constructed
in some clever sense, such that inversion is easy for the intended party, while still
being nearly impossible for anyone else. Many of the so far suggested systems
based on multivariate polynomial equations are further developments on the C*
system proposed by Matsumoto and Imai in 1988 [19]. However, C* was fairly
quickly broken, but it inspired the community to further investigate cryptosystems
based on multivariate polynomials. One of the successors of C* is Hidden Field
Equations, denoted HFE [20].

3.1 HFE for Encryption Schemes

The general idea behind HFE is to arrive at a seemingly random system of polyno-
mial equations after composing several maps that are easy to invert. The seemingly
random system of equations is our public key, while the underlying composition
is the secret key. To explain the system more precisely, let F = GF(q), where q is
some power of a prime p. Fix some irreducible polynomial of degree n, denoted
g(x) ∈ F[x], and denote E an algebraic extension of F, constructed in the obvious
way E = F[x]/〈g(x)〉. Then |E| = qn, and there is a natural way to identify the
extension field E as a vector space over F. The basis vectors are the powers of a
primitive root of g(x) in E, denoted by ξ. This isomorphism between E and Fn is
fundamental for the HFE construction. Let φ denote such an isomorphism, defined
in the following way,

φ : Fn → E
φ(x1, ..., xn) = (x1 + x2ξ + ...+ xnξ

n−1). (3.1)

The fundamental idea of HFE is to find a polynomial F (X) in E[X], denoted the
central polynomial, with certain properties, and then find the representation of this

21

Chapter 3. Cryptography and Hidden Field Equations

polynomial as a map from Fn to Fn. The central map has the following form,

F : E→ E

F (X) =

qi+qj≤D∑
i,j

αi,jX
qi+qj +

qk≤D∑
k

βiX
qk + γ, (3.2)

where α, β, γ ∈ E, and D is some fixed degree. We fix some X ∈ E, which can
be represented as X = x1 + x2ξ + x3ξ

2 + ... + xnξ
n−1. After applying F on X

and calculating the result modulo the irreducible polynomial g(x), we obtain the
following element in E,

F (X) = f1 + f2ξ + f3ξ
2 + ...+ fnξ

n−1, (3.3)

where the fi depend on the given xi in the representation of X . By applying the
isomorphism (3.1), we define F ′ = φ−1 ◦ F ◦ φ,

F ′ : Fn → Fn

F ′(x1, ..., xn) = (f1(x1, ..., xn), f2(x1, ..., xn), ..., fn(x1, ..., xn)) . (3.4)

We note that F ′ represents the central map in its multivariate representation over
Fn, while F denotes the central map in its univariate representation over E. The
fi are quadratic by the choice of the central map F , since the Frobenius map
X → Xq is linear over E. A term in the first sum in (3.2) is simply the product of
two linear maps, resulting in a term of degree at most 2. Next, two affine bijections
S and T in Fn are introduced. They are crucial for the cryptosystem, as they are
used to hide the structure of the central polynomial. Both S and T can be written
as polynomials of total degree 1, and the composition of S, F ′ and T still yield
quadratic polynomials. The final system of polynomials produced by the HFE
construction is

P : Fn → Fn,
P = S ◦ φ−1 ◦ F ◦ φ ◦ T, (3.5)

which is the public key in our scheme. The system of polynomials is explicitly
written in its multivariate form as

p1(x1, ..., xn) =
∑

1≤i≤j≤n
α1,i,jxixj +

n∑
i=1

β1,ixi + γ1

...

pn(x1, ..., xn) =
∑

1≤i≤j≤n
αn,i,jxixj +

n∑
i=1

βn,ixi + γn. (3.6)

22

3.1 HFE for Encryption Schemes

Together, the three maps (S, F, T) comprise the secret key. An important observa-
tion of the system of equations, is that it is not necessarily bijective. The central
map F of degree D can have several solutions y to F (y) = a, for some a ∈ E. As
this map is essential to the encryption and decryption scheme, it is important that
one is able to retrieve the original message when decrypting an encrypted mes-
sage. To be able to retrieve the original message, some redundancy is introduced
in the plaintext, to be able to distinguish the correct plaintext from potential other
candidates found from another solution to F (y) = a. Instead of encrypting a mes-
sage M ′ directly, one common approach is to concatenate the message with its
hash value for some suitable hash function. This way, the intended party can dis-
tinguish between the potential several solutions by chosing the one corresponding
to the given hash value. Let M = (M1, ...,Mn) ∈ Fn be the intended message
with the redundancy attached. Encryption of M consists of simply evaluating the
n public polynomials in the points (M1, ...,Mn). Evaluation is extremely fast, and
can be done by anyone. Note that encrypting a message of arbitrary length is easily
achieved, by partitioning the message in blocks of length n and potentially adding
some padding at the last block. Hence, we assume message length n to simplify
notation. The encrypted ciphertext of M is

C = (p1(M1, ...,Mn), p2(M1, ...,Mn), ..., pn(M1, ...,Mn)). (3.7)

To restore the message M from a received ciphertext C, simply use the inverse
map of T , and map the result into the extension field by φ. Then, search for Y
in E such that F (Y) = T−1(C). Since there can be D solutions, the redundancy
is important here. If there are several possible roots of F (Y) − T−1(C), choose
the one compliant with the agreed-upon redundancy. Next, the element in E is
mapped into the vector space Fn by φ−1, and the inverse of S is applied. The
original message M is then retrieved.

Figure 3.1 illustrates how an entity with knowledge of the secret transforma-
tions can move between the different stages of the scheme. However, by only
using the public polynomials, it is much harder to go from c to M . To clear up
any confusion, the following extensive example shows how HFE can be used in
encryption.

Example 36 (HFE encryption example). Let F = GF(2) and g(x) = x3 +x2 +1.
Hence, our extension field is E ∼= F[x]/〈g(x)〉. Denote ξ some primitive root of
g(x) in E . Let the central map F be defined as

F (X) = X(22+21) +X(21+21) +X21 + 1 (3.8)

23

Chapter 3. Cryptography and Hidden Field Equations

M ′

M

y

Y

X

x

c

Redundancy

T

P = (p1, ..., pn)

φ

F−1

φ−1

S

Figure 3.1: Diagram showing the basic HFE construction. The maps (S, F, T) are two-
way maps and easy to invert. The public key P is a one-way map.

and the affine transformations T, S are given as

T : u→A1u+ b1 where A1 =

0 1 1
1 0 0
1 0 1

 and b1 =

0
1
0

 , (3.9)

S : u→A2u+ b2 where A2 =

0 1 1
1 1 0
0 0 1

 and b2 =

1
0
0

 . (3.10)

We wish to encrypt the message M = (M1,M2,M3) ∈ F3. First, we apply T on
M , and get

y = T (M) =

0 1 1
1 0 0
1 0 1

M1

M2

M3

+

0
1
0

 =

M2 +M3

M1 + 1
M1 +M3

 . (3.11)

By the isomorphism (3.1), this can be represented in E as Y = M2 + M3 +

24

3.1 HFE for Encryption Schemes

(M1 + 1)ξ + (M1 +M3)ξ
2. By applying the central map, one is left with,

Z = F (Y) = 1+(M2 +M3 + (M1 + 1)ξ + (M1 +M3)ξ
2)2

+(M2 +M3 + (M1 + 1)ξ + (M1 +M3)ξ
2)4

+(M2 +M3 + (M1 + 1)ξ + (M1 +M3)ξ
2)6

= (M1M3 +M2M3 +M1) + (M1M2 +M1 +M2 +M3)ξ

+(M1M2 +M2M3 +M3 + 1)ξ2, (3.12)

after reducing modulo the polynomial g(x). Using the bijection between E
and F3, we denote z = φ−1(Z),

z = (M1M3+M2M3+M1, M1M2+M1+M2+M3, M1M2+M2M3+M3+1).
(3.13)

Denote by zi the i-th component of z. The affine transformation S is applied to z,
resulting in

S(z) =

0 1 1
1 1 0
0 0 1

z1z2
z3

+

1
0
0

 =

z2 + z3 + 1
z1 + z2
z3

 . (3.14)

Hence, the resulting system of polynomials is

p1(M1,M2,M3) = M2M3 +M1 +M2,

p2(M1,M2,M3) = M1M2 +M1M3 +M2M3 +M2 +M3,

p3(M1,M2,M3) = M1M2 +M2M3 +M3 + 1, (3.15)

and comprises the public key. We wish to encrypt and send the message M =
(1, 1, 1). By evaluating the public key in the coordinates of M , we achieve the
ciphertext C = (C1, C2, C3), where

C1 = p1(1, 1, 1) = 1,

C2 = p2(1, 1, 1) = 1,

C3 = p3(1, 1, 1) = 0. (3.16)

To ensure correctness of the encryption scheme, we need Dec(C, sk) = M .
Simply, the transformations are performed in reverse. First, the inverse of S is
applied to C, resulting in

z = S−1(C) =

1 1 1
1 0 1
0 0 1

1
1
0

−
1

0
0

 =

1
0
0

 . (3.17)

25

Chapter 3. Cryptography and Hidden Field Equations

Next, we represent z in the extension field E as Z = 1, and search for a value
Y ∈ E such that F (Y) = Z. It is easily found that Y = 0 is a solution, and in fact
the single solution. In general, there might be several solutions at this step. Next,
we denote y = φ−1(Y), and the inverse of T is applied to y, yielding

M = T−1(y) =

0 1 0
1 1 1
0 1 1

0
0
0

−
0

1
0

 =

1
1
1

 . (3.18)

Hence, the encryption scheme is consistent, as Dec(Enc(M, pk), sk) = M .

One can also note that a Gröbner basis attack is extremely simple in this ex-
ample. Denote I the ideal generated by (p1 − C1, p2 − C2, p3 − C3). Under the
natural lexicographic ordering M1 �lex M2 �lex M3, the Gröbner basis is found
to be

G = {M1 + 1,M2 + 1,M3 + 1}, (3.19)

and has indeed the affine variety

V (G) = {(1, 1, 1)}, (3.20)

which is our original message M .

Naturally, for such a small example, the Gröbner basis attack was extremely
easy and took less than 10−4 seconds to perform using Macaulay2. However, for
the HFE construction for increasing n, increasing degree of the algebraic exten-
sion, and increasing D, it gets significantly harder. In Figure 3.2, some run times
are shown for computing a Gröbner basis under the lexicographic ordering for
HFE(D,n), ranging from n = 5 to n = 35, for D ∈ {6, 60} using Macaulay2.
Interestingly, for systems with a fairly low degree central map, the algebraic attack
is exceptionally much faster. For D = 60, the runtime is exponential in n.

26

3.2 HFE for Signature Schemes

5 10 15 20 25 30 35

Number of equations and variables (n)

0

100

200

300

400

500
T

im
e

(s
)

Run time of Gröbner basis attack on HFE
D = 60

D = 6

Figure 3.2: Run times for algebraic attacks on HFE constructed in Macaulay2, for in-
creasing number of equations and variables.

In the extended version of [20], Patarin proposed two HFE challenges with
a symbolic prize of 500 USD to the first person able to break one. Faugère and
Joux showed in 2003 that one of the challenges was indeed breakable [15]. The
challenge they broke was an HFE construction over GF(2) where the degree of the
central map was 96, and the polynomial system involved a total of 80 equations in
80 variables. This was a major breakthrough for Gröbner basis computations, as
this problem was thought to be intractable. The authors used the F5 algorithm, with
some custom modifications for binary arithmetics. As the original HFE system
was practically broken, something needed to be done to strengthen the security
of the scheme. Some of the measurements made to improve the scheme actually
make HFE less suited for encryption schemes, while being strong candidates for
signature schemes. Before the most notable modifications for HFE is given, the
fundamental idea behind HFE signature schemes is presented.

3.2 HFE for Signature Schemes

One of the most basic signature schemes based on HFE is simply a small tweak of
the encryption scheme proposed above. Let P = S ◦φ−1 ◦F ◦φ◦T = (p1, ..., pn)
be a set of public polynomials constructed as previously described. Then, let d =
H(M) be the hash value of a message M to be signed, for some suitable hash
function H. A signature for M can then simply be a decryption C of d using
the secret key (S, F, T). Then, the signature is verified by evaluating the public

27

Chapter 3. Cryptography and Hidden Field Equations

polynomials in the point C, and comparing

P (C) = H(M). (3.21)

Even though this is a very simple scheme it still shares the same fundamental idea
as more advanced schemes. However, as the central map F need not be a per-
mutation of the elements over the extension field, there is not necessarily a valid
signature for any digest, as the inversion of F might not be possible. For this rea-
son, some randomness is introduced to the digest. As will be evident in the next
chapter, the modifications made to HFE to strengthen its security make encryp-
tion and decryption less efficient and more complicated. However, in signature
schemes, these tweaks serve as great tools.

28

Chapter 4

Modern HFE and its attacks

The original HFE construction was practically broken by Faugère and Joux [15].
After several years of research, analysis of HFE lead to several tweaks of the basic
design. Together with these tweaks, HFE has been found to be a very secure
construction. In this chapter, these design rationales are presented, together with
the most effective attacks to the modified HFE as of 2018.

4.1 Hidden Field Equations Modifications

The most notable tweaks to HFE are the so-called vinegar and minus modifiers.
The basic idea of these modifiers is as follows.

• Vinegar (v): Some variables are added to the system of polynomials.

• Minus (−): Some equations are removed from the public key.

We denote HFE using the vinegar, minus or both modifications by HFEv, HFE-,
and HFEv-, respectively. The minus modifier was first introduced in the schemes
FLASH and SFLASH [21] in order to withstand linearization attacks, as mentioned
in Chapter 3, and is together with the vinegar modifier a foundation for promising
secure cryptographic schemes. The general construction of the public and secret
keys are almost identical to the scheme presented in Chapter 3, however, there are
some small changes.

Denote by v the number of vinegar variables added. The central map F in a

29

Chapter 4. Modern HFE and its attacks

HFEv scheme is defined in the following way,

F : E×Fv → E

F (X, v1, ..., vv) =

qi+qj≤D∑
0≤i≤j

αi,jX
qi+qj +

qk≤D∑
0≤k

βi(v1, ..., vv)X
qk + γ(v1, ..., vv).

(4.1)

The coefficients αi,j behave in the same way as in (3.2), while the βi and γ are
changed slightly. In the HFEv setting, βi and γ map these additional v vinegar
variables in Fv into elements of E. An important feature is that the βi are all affine
maps, while γ is at most quadratic, in (v1, ..., vv). This ensures that the resulting
multivariate map still only contain quadratic terms. This modification improves the
security of the scheme, which will be further discussed later in this chapter. Also,
this central map generates an overdetermined set of equations in its multivariate
representation. The idea is that the signer of a message can chose random values
for these vinegar variables, and still arrive at a consistent system of equations with
high probability. As a result, the modification is at no extra computational cost for
the signer, while providing improved security.

The affine transformation T from equation (3.5) also needs to be revamped to
account for the v extra vinegar variables. One arrives at the new affine transforma-
tion

T : Fn+v → Fn+v . (4.2)

The objective of this transformation is to mix the vinegar variables with the
other variables, effectively hiding the structure of this modified central map F .

The minus modifier is a very simple modification, but with many benefits. It
actually makes both the Gröbner basis attacks and linearization attacks mentioned
in Section 2.3 much more difficult. To remove a equations from the public key, the
previous affine transformation S of rank n is replaced with a map

S : Fn → Fn−a . (4.3)

Normally, one chooses S of maximal rank, i.e. S being surjective. The public
key in a HFEv- construction is composed in a similar way as in standard HFE

P : Fn+v → Fn−a

P = S ◦ φ−1 ◦ F ◦ (φ× idv) ◦ T, (4.4)

where idv denotes the identity map from Fv → Fv. Effectively, the HFEv- scheme

30

4.2 HFEv- for signatures

produces a set of n− a equations in n+ v variables of the following form,

p1(x, v) =
∑

1≤i≤j≤n
α1,i,jxixj +

n∑
i=1

β1,i(v)xi + γ1(v),

...

pn−a(x, v) =
∑

1≤i≤j≤n
αn−a,i,jxixj +

n∑
i=1

βn−a,i(v)xi + γn−a(v), (4.5)

where x = (x1, ..., xn) and v = (v1..., vv). Notice that this new set of polynomials
is almost identical to the set produced in (3.6), where the only differences are
the coefficients β and γ no longer being constants, and some of the equations
have been removed. For use in encryption, this scheme is very impractical, as the
mapping is even further from being a bijective map. However, it does serve as a
great tool for signature schemes.

4.2 HFEv- for signatures

Before a presentation of the two signature schemes Gui and GeMSS is given,
the common building block for these schemes is introduced. Essentially, ev-
ery signature scheme based on HFEv- incorporate the following algorithm. Let
(pk, sk) =

(
P, (S, F, T)

)
be a key pair as described above. Generating a sig-

nature for a message M consists of finding an element σ ∈ Fn−a such that
P (σ) = H(M ||r) for some hash function H. Since P is not necessarily sur-
jective, a random salt, denoted r, of length s is introduced. If a given hash value
does not have a signature, simply choose a new value for the random salt, and try

31

Chapter 4. Modern HFE and its attacks

again. The standard HFEv- signature generation is presented in Algorithm 3.

Algorithm 3: HFEv- signature generation
Input: sk = (S, F, T), message M
Output: (σ, r) such that P (σ) = H(M ||r)

1 v ∈R Fv, where ∈R denotes random sampling
2 repeat
3 r ∈R Fs
4 h← H(M ||r)
5 Find x ∈ Fn such that S(x) = h
6 X ← φ(x)
7 F ′V (·)← F ′(·, v), insert vinegar variables in the central map, resulting

in a map strictly over E
8 Y ← { Y ∈ E | F ′V (Y) = X} (by e.g. Berlekamp’s algorithm)
9 until |Y| > 0

10 Y ∈R Y
11 y = φ−1(Y)
12 σ = T−1(y||v)
13 return (σ, r)

To verify a given signature (σ, r) for a message M , simply compute P (σ) and
H(M ||r) and compare the two. If

P (σ) = H(M ||r), (4.6)

the signature is accepted. For correctness of the scheme, let (pk, sk) = (P, (S, F, T))
be a valid key pair, and assume (σ, r) is a legitimate output from the signature al-
gorithm for the message M . We note

P (σ) = S ◦ F ◦ T (σ) = S ◦ F (y||v) = S ◦ FV 1(y) = S(x) = h = H(M ||r).
(4.7)

The reader is referred to Section 3.1 for an extensive example on how similar
calculations are performed. This basic idea is the foundation of signature schemes
based on HFEv-. For the remainder of the paper, P−1(y) refers to the action
of finding elements x satisfying P (x) = y, and is only computationally feasible
for the entity holding the secret key. Now that the HFEv- construction has been
presented, some analysis regarding the most effective attacks against the scheme
will be given.

1FV denotes the multivariate map F where the v vinegar variables have been inserted.

32

4.3 Attacks on HFEv-

4.3 Attacks on HFEv-

There are two main types of attacks against the HFEv- signature scheme, which
are defined as follows.

Definition 37. Let (pk, sk) = (P, (S, F, T)) be a valid key pair. One has the
following two families of attacks.

• Key recovery attack: Reproduce the secret key sk from the public key pk.

• Signature forgery: For some messageM , find elements (σ, r) ∈ (Fn+v ×Fs)
such that P (σ) = H(M || r).

Clearly, a successful key recovery attack is stronger than a signature forgery
attack, since the recovered key permits the attacker to create signatures using the
signature generation algorithm.

As mentioned in Chapter 3, Gröbner basis techniques have been used to break
HFE systems [15]. However, the systems broken by Faugère et al. did not make
use of the minus and vinegar modifications. As it turns out, these tweaks greatly
increase the difficulty in algebraically solving the system of equations generated.
Other notable attacks include the so-called MinRank attack, proposed in [16]. The
authors were also able to defeat the classic HFE construction without the use of the
minus and vinegar modifiers. However, with the modifications, also the MinRank
approach seems to struggle. In the following, a brief introduction to several attacks
will be presented.

4.3.1 Key recovery attacks

MinRank, Kipnis-Shamir attack To explain the basic idea of the MinRank
attack it is easier to restrict the problem to a classic HFE instance, i.e. without
the minus and vinegar modification. In [16], the authors translated an HFE system
into an instance of the so-called MinRank problem, which is defined as follows.

Definition 38 (The MinRank problem). Let n, r, l be positive integers, and let
M0,M1, ...,Ml be square matrices of size n with coefficients in E. The MinRank
problem is then to find a vector (u1, ..., ul) where ui ∈ E such that

Rank

(
l∑

i=1

uiMi −M0

)
≤ r. (4.8)

In other words, the MinRank problem is to find a linear combination of some
matrices yielding a matrix bounded above by some rank. The key strategy in this
attack is to represent the maps S−1, T and the public key P as maps over the

33

Chapter 4. Modern HFE and its attacks

extension field E, denoted S∗−1, T ∗ and P ∗ respectively. As we are in the original
HFE case, both a and v are zero, meaning S is indeed invertible. For simplicity
we restrict S−1 and T to linear maps over Fn , which mean they can be expressed
over E as

S∗−1(X) =
n−1∑
i=0

siX
qi ∈ E[X], (4.9)

T ∗(X) =
n−1∑
i=0

tiX
qi ∈ E[X]. (4.10)

The important observation is that the central univariate HFE polynomial, F can be
written as a quadratic form over E. For simplicity, assume that F has the following
form

F (X) =

qi+qj≤D∑
i,j

αi,jX
qi+qj ∈ E[X], (4.11)

i.e. we neglect the linear and constant terms. With F in this shape, the equations
in the public key only consist of quadratic terms. Similarly, the public equations
P can be expressed over E as

P ∗(X) = S∗(F (T ∗(X))) =
n−1∑
i=0

n−1∑
j=0

pi,jX
qi+qj ∈ E[X]. (4.12)

By introducing the vector X = (Xq0 , Xq1 , ..., Xqn−1
) one can rewrite F and P ∗

as

F (X) = XAX>, (4.13)

P ∗(X) = XPX>, (4.14)

for some square coefficient matrices A = [ai,j] and P = [pi,j] with elements from
E. One can immediately note that the rank of the matrix A is heavily dependent
on D. As the degree of F is bounded by D, any pair (i, j) satisfying qi + qj > D
implies ai,j = 0. This means that the matrix A is of the form

A =

 A′
0
0

0 0 0

 , (4.15)

where A′ is of size (r × r) with r =
⌊
logq(D − 1)

⌋
+ 1. This is called the

rank of the map F . It follows that the rank of A is bounded from above by r. By
rewriting (4.12) to

S∗−1(P ∗(X)) = F (T ∗(X)), (4.16)

34

4.3 Attacks on HFEv-

it follows from the rank condition ofF that the matrix representation of S∗−1(P ∗(·))
does not exceed rank r. Denote the left hand side of (4.16) as P̄ . It follows that

P̄ (X) = S∗−1(P ∗(X)) =

n−1∑
i=0

si

n−1∑
j=0

n−1∑
k=0

(
pi,jX

qi+qj
)qk

=

n−1∑
i=0

si

n−1∑
j=0

n−1∑
k=0

p q
k

i,j

(
Xqi+qj

)qk

=X

(
n−1∑
i=0

siPi

)
X>. (4.17)

We have hence rewritten P̄ to be a quadratic form, where the matrices Pi are cal-
culated by cyclically rotating the columns and rows of P by i steps, and raising the
entries to the qi-th power. We know that the rank of the linear combination of the
matrices Pi cannot exceed r, since the right hand side of (4.12) has rank bounded
above by r. This formulation is exactly the MinRank problem stated above. By
solving an instance of MinRank, the values si are found, which indeed reveals the
transformation S in the secret key. The authors of [16] proposed to solve the given
MinRank instance by modeling the rank condition as a set of multivariate equa-
tions. Let s = (s0, ..., sn−1) be an unknown solution of the MinRank instance
considered and denote

P =
n−1∑
i=0

siPi. (4.18)

Since Rank(P) ≤ r, we have

Dim (Ker (P)) ≥ n− r. (4.19)

Hence, there exist (at least) n − r linearly independent vectors in the kernel of P
in En. Denote these vectors x(1), ..., x(n−r). As the vectors have n coordinates,
one can fix the first n − r coordinates to random values, and still expect to find
n− r linearly independent vectors in Ker(P), see [7]. This setup gives rise to the
following set of equations

Px(i) = 0, (4.20)

for 1 ≤ i ≤ n−r. For each i, each kernel equation (4.20) gives rise to n equations
in r variables, in addition to the n unknowns (s0, ..., sn−1). All in all, this system
consists of n(n−r) equations in n+r(n−r) variables. Since r << n, the resulting
system is very overdetermined. The relinearization technique explained in Section
2.3 can then be applied and quickly find a solution to the MinRank problem. It is

35

Chapter 4. Modern HFE and its attacks

important to note that the (s0, ..., sn−1) is one possible solution to the MinRank
instance, but not necessarily the only solution. The authors of [22] address this
issue and propose several methods to overcome this. Hence, the transformation
S−1 can be found. A similar argument can be made for retrieving T . Hence, the
secret key is practically exposed, by the obvious relation

P = S ◦ φ−1 ◦ F ◦ (φ× idv) ◦ T
=⇒ F = (φ× idv) ◦ S−1 ◦ P ◦ T−1 ◦ φ−1. (4.21)

We arrive at an attack where the complexity is dominated by the solution of the
MinRank problem.

Finding a solution to the MinRank problem can also be formulated slightly
differently, in what is known as the minors modeling [23]. Instead of searching for
a set of vectors in the kernel of P , they utilized the determinant in order to model
the rank condition of P , or more precisely, they utilized the minors of P which are
defined as follows.

Definition 39. A minor of a matrixA is the determinant of some square submatrix
of A. The degree of the minor is the size of said submatrix.

Clearly, if the rank of the matrix P is bounded above by r, any minor of P
of degree higher than r is zero. This means solving an instance of the MinRank
problem is equivalent to finding a vector (s0, ..., sn−1) such that all minors of
degree (r + 1) of P are zero. The number of distinct minors of degree (r + 1) in
a square matrix of size n is simply

m =

(
n

r + 1

)2

. (4.22)

This can be found by observing that any submatrix of size (r + 1) is simply a
selection of (r + 1) rows and (r + 1) columns, among a total of n possibilities
each. Under the constraint that all of these determinants should be zero, one arrives
at a system of m multivariate polynomial equations in n variables. The highly
overdetermined set of equations is in practice easier to solve than the set produced
using the kernel approach.

This MinRank attack is focused on the HFE construction without any modi-
fiers, but it can be extended to HFEv-. In introducing the vinegar variables and
removing some equations, the rank of the matrix representation of the central map
increases. In [13] the authors showed that adding v vinegar variables increases
the rank of the map by v. Similarly, in [24] the authors showed that removing a
equations leads to a rank increase of a. Summarized, the rank of an HFEv- map is

36

4.3 Attacks on HFEv-

bounded from above by r + a+ v. This leads to a complexity [25]

CMinRank,Classical ∼
(
n+ r + a+ v

r + a+ v

)ω
, (4.23)

where ω still is the linear algebra constant introduced in Section 2.3. There are
also other known key-recovery attacks for variants of HFE which are built on the
minors modeling idea, see [26].

4.3.2 Signature forgery attacks

Brute force In order to find elements (σ, r) ∈ Fn+v ×Fs such that P (σ) =
H(M ||r) ∈ Fn−a for some messageM , one first rewrites the equations as P (σ)−
H(M ||r) = 0. Then, by fixing v + a coordinates of σ, one arrives at a system of
(n − a) equations in (n − a) variables. By evaluating the (n − a) equations for
every possible combination, one arrives at a valid signature with high probability
[8]. If no combination is valid, simply chose a new random salt r, and try again.
Each equation in (n−a) variables can at most have (n−a)(n−a−1)/2 quadratic
terms2. Since F is of characteristic q, and each polynomial is seemingly random,
the probability of each coefficient being zero is 1/q. The average polynomial has
then

τ(n− a, q) =
(n− a)(n− a− 1)

2

q − 1

q
(4.24)

quadratic terms. Clearly, if an attempted σ fails to satisfy the first equation in the
system, it is discarded. Meaning, there are many choices of σ that will not be eval-
uated in all the polynomials. Denote hi the i-th component of the vectorH(M ||r).
The probability of pi(σ) − hi = 0 is 1/q, assuming that pi randomly distributes
elements into F. The expected number of equations needed to be evaluated for
each choice of σ is then

n−a∑
i=1

q1−i < q, (4.25)

hence the complexity of a brute force attack is approximately

CBruteForce,Classical ∼ · q · qn−aτ(n− a, q) · (n− a)

∼ · qn−a+1(n− a)3. (4.26)

In [27], the authors introduce a fast exhaustive search algorithm for polynomial
systems over GF(2). Again, the idea to first fix (v + a) variables is used. Using

2Over fields of characteristic 2, we need to subtract (n − a) from this formula, as x2 = x. The
magnitude still remains of the same order.

37

Chapter 4. Modern HFE and its attacks

the fast exhaustive search on the resulting system has a complexity of

CFastExhaustiveSearch,Classical ∼ log2(n− a) · 2n−a+2. (4.27)

In the quantum world, Grover’s algorithm [28] speeds up a brute force approach.
In [29] the authors provide a way to solve a system of (n−a) polynomial equations
in (n− a) variables over GF(2) using

CBruteForce,Quantum ∼ 2 · 2(n−a)/2 · (n− a)3, (4.28)

quantum bit operations. By fixing (v+a) components of σ, and then applying
Grover’s algorithm we arrive at almost quadratic speedup compared to classical
search algorithms.

Algebraic attack by Gröbner bases Gröbner basis attacks also attempt to solve
the system of equations P (σ)−H(M ||r) = 0 for σ. The idea to first fix (v + a)
coordinates of σ is used. Then, by using Gröbner basis techniques, e.g. F4 or F5,
the system of equations can be reduced to the shape presented in the Shape Lemma
(33), and the solutions are easily found. It has been experimentally found that sys-
tems of equations originating from an HFEv- construction are more easily solved
than random systems of equations [30, 13]. As mentioned in Section 2.3, the com-
plexity of finding a Gröbner basis heavily depends on row-reducing a large matrix.
The size of this matrix heavily depends on the so-called degree of regularity of a
system of equations, denoted dreg. As shown in [13] the degree of regularity for
HFEv- systems is upper bounded by

dreg ≤

{
(q−1)(r+a+v−1)

2 + 2 if q is even and (r + a) is odd,
(q−1)(r+a+v)

2 + 2 otherwise.
(4.29)

The parameter r is still the rank parameter defined above, r =
⌊
logq(D − 1)

⌋
+

1. More recently, a lower bound for the degree of regularity was experimentally
showed to be

dreg =

⌊
a+ r + v + 7

3

⌋
, (4.30)

when restricted to the case F = GF(2), see [31]. As this was experimentally
found for fairly low values (a, r, v), one should be cautious to extrapolate these re-
sults to arbitrary values. However, as a safety precaution it is reasonable to rather
utilize this lower bound than (4.29). As presented in Section 2.3, the most compu-
tationally challenging part of finding a Gröbner basis is to row reduce matrices of
enormous sizes. When restricted to the case q = 2, the complexity of this attack is

CGröbner basis ,Classical ∼ 3 ·
((

n− a
dreg

)ω)(n− a
2

)
, (4.31)

38

4.4 Feistel-Patarin Construction

see [32].
Very recently, in December 2017, a quantum algorithm restricted to solving

polynomial equations over GF(2) named Quantum Boolean Solve was presented
[33]. At the time of publishing, this algorithm was the fastest algorithm for solving
polynomial equations over GF(2). The algorithm is a Gröbner basis algorithm
combined with Grover’s algorithm. For a system of (n − a) equations in (n − a)
variables, this probabilistic algorithm uses

CQuantumBooleanSolve ∼ O(20.462·(n−a)) (4.32)

quantum bit operations. The complexity analysis of this algorithm is crucial to de-
termining secure parameters for an HFEv- scheme to be able to withstand quantum
computer attacks.

As previously mentioned, both Gui and GeMSS are built on the HFEv- con-
struction. However, due to a peculiar result called the birthday paradox, some extra
layers of protection are needed in order to avoid huge public keys. Both Gui and
GeMSS incorporate what is called Feistel-Patarin rounds. In the following section,
the Feistel-Patarin construction will be presented, together with a surprisingly ef-
fective attack.

4.4 Feistel-Patarin Construction

In a group of 23 individuals, there is a probability of around 1/2 that two per-
sons in the group share a birthday. This fascinating result is called the birthday
paradox [34] and has implications for the security of many cryptographic systems,
including HFEv- schemes.

Since the signature generation in HFEv- produces a vector σ ∈ Fn−a there is
a maximum total of qn−a different signatures. By the birthday paradox, one can
expect to find two messages with the same signature after approximately q(n−a)/2

trials. Hence, by precomputing P (x) for q(n−a)/2 different values x, andH(M ||r)
for q(n−a)/2 different choices of r, one should find a valid message-signature pair
with high probability. One way to prevent such attacks is to simply use a very
high value for (n − a). However, this would result in a very large public key and
slow performance in general. Instead, by using the idea of iterated Feistel ciphers,
commonly used in block ciphers, this birthday attack can be countered. In [35], the
author examines the so-called Feistel-Patarin construction, which can be defined
as follows.

Definition 40 (Feistel-Patarin construction). Let P be some invertible map3 of the
form Fn → Fn, and denote by k some repetition factor. For simplicity, let F =

3At least invertible for some entity.

39

Chapter 4. Modern HFE and its attacks

GF(2), and denote by ⊕ bitwise XOR. Let h = H(M ||r) = (h1, ..., hk) ∈ Fn·k
be the hash of some message M to be signed, partitioned into k vectors of equal
length n. Denote S0 ∈ Fn some predetermined vector, typically the zero vector.
Then, (σ, r) ∈ Fn×Fs is a signature for the message M , where σ is produced in
the following way,

σ = P−1(hk ⊕ P−1(hk−1 ⊕ P−1(...P−1(h1 ⊕ S0)))). (4.33)

Verifying a signature is done by computing

(h1, ..., hk) = H(M ||r),
S′0 = h1 ⊕ P (...P (hk−1 ⊕ P (hk ⊕ P (σ)))), (4.34)

and comparing S′0 = S0. If they are equal, the signature is accepted.

One important observation is that verifying a signature is not of the form
P (σ) = H(M ||r) presented in Equation (4.6), but rather f(σ,H(M ||r)) = 0,
where f is referring to the process in Equation (4.34). This means that the clas-
sical birthday attack no longer works, one is not able to simply pre-compute and
store a large table of values for P (x) and H(M |r) for arbitrary values x and r
and search for a collision. Under the assumption that this f : Fn → Fn is evenly
distributed, the probability of a random value σ satisfying f(σ,H(M ||r)) = 0 is
about 1/2n, meaning the expected number of guesses before a success approaches
2n. However, the classic Meet-in-the-middle attack [36] can be applied to the
Feistel-Patarin construction, resulting in what is called the Feistel-Patarin attack.

Feistel-Patarin attack To illustrate the attack, fix k = 2 to arrive at the follow-
ing signature generation,

(h1, h2) = H(M ||r),
σ = P−1(h2 ⊕ P−1(h1 ⊕ S0)). (4.35)

The signature of M is then (σ, r). Signature verification is done by computing

(h1, h2) = H(M ||r),
S′0 = h1 ⊕ P (h2 ⊕ P (σ)), (4.36)

and comparing S′0 with the predetermined vector S0. The signature is accepted if
the two are equal. In this illustration, we use S0 = 0n, the zero vector. Finding a
valid message-signature pair is done by the following. Assume that P uniformly
maps Fn into Fn, and is a reasonably fast-evaluated map. In order to forge a
signature on the message M , calculate h(j) = H(M ||r(j)) for a random salt r(j),

40

4.4 Feistel-Patarin Construction

where j is in some index set. Then, split each hash value into two equal parts h(j)1

and h(j)2 such that h(j) = (h
(j)
1 ||h

(j)
2). Pre-compute a total of 2n/3 tuples of the

form
(M (j), S

(j)
1 , S

(j)
1 ⊕ h

(j)
2), (4.37)

where S(j)
1 is any value satisfying P (S

(j)
1) = h

(j)
1 . Note that finding these tuples is

more costly than simply doing 2n/3 evaluations of the map P . Under the assump-
tion that P uniformly distributes Fn onto itself, obtaining 2n/3 distinct values for
the first 2n/3 random inputs is extremely unlikely, which again is due to the birth-
day paradox. We need approximately 22n/3 evaluations of P until 2n/3 distinct
values are found, i.e. we have to pick on average 22n/3 different random salts r(j).

Next, we search a value σ ∈ Fn such that P (σ) = S
(j)
1 ⊕ h

(j)
2 for any j. Since

we have a total of 2n/3 potential values on the right hand side of the equation,
the probability of a randomly sampled σ satisfying this is 2−2n/3. Hence, the ex-
pected number of trials before finding such a σ is 22n/3. After finding σ satisfying
P (σ) = S

(α)
1 ⊕h

(α)
2 for some index α, we have indeed created a message-signature

pair
(
M, (σ, r(α))

)
without the knowledge of the private key. To verify that the sig-

nature is indeed accepted, we first calculate

(h
(α)
1 ||h

(α)
2) = H(M ||r(α)), (4.38)

and insert it into the verification algorithm,

S′0 =h
(α)
1 ⊕ P (h

(α)
2 ⊕ P (σ))

=h
(α)
1 ⊕ P (h

(α)
2 ⊕ S(α)

1 ⊕ h(α)2)

=h
(α)
1 ⊕ P (S

(α)
1)

=h
(α)
1 ⊕ h(α)1

=0n. (4.39)

The signature is therefore accepted. By using approximately 22n/3 evaluations of
the public map P , one is able to forge a message-signature pair. This is a much
better attack than the one mentioned above, needing approximately 2n evaluations
of P . Keep in mind that this attack is completely generic, as it does not take into
account the form of the underlying function P . The attack can be extended to an
arbitrarily large k, where one can expect to find valid message-signature pairs after
∼ 2

kn
k+1 evaluations of P . This analysis shows that the parameters n and k must

be chosen with utmost care.
In the case where the said map is an HFEv- map, one can approximate the

computations needed to evaluate the map. As stated in (4.24), each polynomial in

41

Chapter 4. Modern HFE and its attacks

the public key has on average τ(n) quadratic terms. This means there are a total
of τ(n) multiplications for each polynomial. As the number of quadratic terms is
vastly superior to the number of linear terms, one can approximate the total number
of additions to be of the same order, τ(n). Hence, a total of

2 · τ(n) · (n− a) (4.40)

field operations are needed to evaluate the public map. This leads to a complexity
of the Feistel-Patarin Attack of approximately

CFeistel-Patarin Attack ∼ (n− a) · τ(n) · 2(n−a)·
k

k+1 . (4.41)

It would be interesting to formulate a similar attack in the quantum setting.
Now that the most common attacks to the HFEv- construction have been intro-

duced, we are ready to discuss the two NIST proposals Gui and GeMSS and assess
their security levels.

42

Chapter 5

Gui and GeMSS

In this chapter, a presentation of the schemes Gui and GeMSS will finally be given.
An analysis of the chosen parameter sets for the two contributions is presented. In
order to assess the security levels of the schemes, the NIST security definition for
digital signatures as well as the NIST security strength categories are introduced.

In the case of Gui and GeMSS, both the private keys and public keys are prac-
tically the same. They have some different naming conventions, so to remove
any confusion, for the rest of this paper the following naming convention will be
introduced. In the public key

P = S ◦ φ−1 ◦ F ◦ (φ× idv) ◦ T, (5.1)

defined for a standard HFEv- scheme, we rename the affine transformations, and
use the following convention,

P = L ◦ φ−1 ◦ F ◦ (φ× idv) ◦R. (5.2)

Here, L indicates the left affine transformation, while R stands for right. In con-
trast to the description of HFEv- given above, Gui and GeMSS are implemented
with invertible L transformations. The reason for this is a speed up in the signature
generation, at the cost of a slightly larger private key. This means that the public
key is not strictly

P = L ◦ φ−1 ◦ F ◦ (φ× idv) ◦R, (5.3)

but rather the (n − a) first components of this P . This calls for a tweak in the
construction of the signature and will be detailed later in this chapter. To further
ease notation, we remove any confusion by using these naming conventions for the
parameters of both Gui and GeMSS.

43

Chapter 5. Gui and GeMSS

Parameters and notation

• F = GF(2), finite field of 2 elements.

• E = GF(2n), extension of degree n of F.

• φ, canonical isomorphism between Fn and E.

• D, degree of the central polynomial.

• a, number of minus equations.

• v, number of vinegar variables.

• k, Feistel-Patarin repetition factor.

• r, a salt vector in Fs.

• H, hash function of the form H : {0, 1}∗ → {0, 1}κ, where κ is the output
size ofH.

With the common terminology given, we are ready to present Gui.

5.1 Gui

Key Generation Given the parameters mentioned above, the key generation al-
gorithm operates as follows. The private key is simply generated by sampling
random affine transformations in Fn and Fn+v until finding two that are invertible,
respectively L and R. The central map F is also sampled randomly, respecting the
shape as presented in (4.1). Next, the intermediate public key P ′ is calculated,

P ′ = L ◦ φ−1 ◦ F ◦ (φ× idv) ◦R. (5.4)

The public key P is then extracted by removing the a last entries in P ′. As the
signature generation in standard HFEv- relies on finding preimages, it is more
convenient to store the inverses of L and R in the private key. Hence, L−1 and
R−1 are calculated and stored in the private key together with the central map
F . Denote byMη(F) the set of all square matrices of size η with elements from
the field F. The function Aff(M, c) returns the affine transformation M · x +
c, and HFEv(F, n,D, v) returns a random central map in accordance with the
HFEv central map defined in (4.1). The key generation algorithm is presented in
Algorithm 4.

44

5.1 Gui

Algorithm 4: Gui key generation
Input: (F, n,D, a, v)
Output: Public key pk, Secret key sk

1 do
2 ML ∈RMn(F)
3 until ML is invertible
4 cL ∈R Fn
5 L← Aff(ML, cL)
6 do
7 MR ∈RMn+v(F)
8 until MR is invertible
9 cR ∈R Fn+v

10 R← Aff(MR, cR)
11 F ← HFEv(F, n,D, v)
12 P ′ ← L ◦ φ−1 ◦ F ◦ (φ× idv) ◦R
13 sk← (L−1, F,R−1)
14 pk← the a first components of P ′

15 return (pk, sk)

Signature Generation For a given message M we wish to produce a signature
σ. In the Gui scheme, the underlying hash function H is part of the SHA2 hash
family. A random salt r of length s is introduced in the digest to be signed, in the
following way,

h′ = (H(H(M)||r) ||H(H(H(M)||r))||...||Hl(H(M)||r)). (5.5)

There are several reasons for using such a random salt. As previously mentioned,
it serves as a safeguard for the signature generation, in the sense that there are hash
values that do not have valid signatures for a given key pair. There are also other
reasons for using a random modification, and some motivation can be found in
[37]. The length of h′ is limited by the constraint

k(n− a) ≤
∣∣h′∣∣ = l · κ. (5.6)

We choose the smallest such l satisfying this. For given parameters (k, n, a, κ) one
can explicitly calculate l as

l =

⌈
k(n− a)

κ

⌉
. (5.7)

The vector h′ is then partitioned into k vectors, (h1, ..., hk), each of (n − a) el-
ements from F. The last l · κ − k(n − a) elements of h are discarded. This

45

Chapter 5. Gui and GeMSS

preprocessing of the message is summarized in Algorithm 5.

Algorithm 5: Message preprocessing and partitioning

1 Function preprocessMessage(M , r)
2 l← dk(n− a)/κe
3 h′ ← (H(H(M)||r) ||...||Hl(H(M)||r))
4 for i = 1 to k do
5 hi =

(
h′(i−1)·(n−a)+1, ..., h

′
i·(n−a)

)
∈ Fn−a

6 return (h1, ..., hk)

Both the signature generation and verification use this preprocessing algo-
rithm. In the signature generation process, some random elements γ(i) ∈ Fa for
1 ≤ i ≤ k are introduced. These elements serve as dummy elements to find preim-
ages of the transformation L. In the description of HFEv- given in Chapter 4 the
mapLwas of the form Fn → Fn−a. As previously mentioned, Gui makes use of an
invertible L from Fn to Fn. Instead of looking for preimages of a certain element
h ∈ Fn−a, we append a random vector of length a to h and simply apply L−1. The
authors of Gui argue that this approach speeds up signature generation, at the cost
of a larger private key. The signature generation process is presented in Algorithm

46

5.1 Gui

6.

Algorithm 6: Gui signature generation
Input: sk = (L−1, F,R−1), M ∈ F∗, repetition factor k
Output: σ ∈ F(n−a)+k(a+v)+s

1 S0 ← 0n−a, initialization vector comprising of n− a zeros.
2 γ(1), ..., γ(k) ∈R (Fa)k

3 v(1), ..., v(k) ∈R (Fv)k
4 r ∈R Fs
5 (h1, ..., hk)← preprocessMessage(M, r).
6 for i← 1 to k do
7 x← L−1(hi ⊕ Si−1, γ(i)1 , ..., γ

(i)
a)

8 X ← φ(x) ∈ E
9 FV (·)← F (·, v(i))

10 Ŷ ← gcd(FV (Y)−X,Y 2n − Y), by Berlekamp’s algorithm
11 if Deg(Ŷ) == 1 then
12 Y ← root(Ŷ), pick the single root of Ŷ
13 else
14 break and jump to line 4

15 y ← φ−1(Y) ∈ Fn

16 z ← R−1(y, v
(i)
1 , ..., v

(i)
v) ∈ Fn+v,

17 Si ← (z1, ..., zn−a)
18 ζi ← (zn−a+1, ..., zn+v).

19 return σ = (Sk||ζk||...||ζ1||r) ∈ F(n−a)+k(a+v)+s

Note that in line 11 of Algorithm 6 they chose to only accept a linear poly-
nomial Ŷ , as this speeds up the root finding step and the signature generation.
Also note that the salt r is appended to the calculated signature, yielding the self-
contained signature σ.

47

Chapter 5. Gui and GeMSS

Signature Verification The algorithm for verifying a message-signature pair
(M,σ) is presented in Algorithm 7.

Algorithm 7: GUI signature verification

Input: pk = P , M ∈ F∗, σ = (Sk||ζk||...||ζ1||r) ∈ F(n−a)+k(a+v)+s

Output: Approve or Reject
1 (h1, ..., hk)← preprocessMessage(M, r)
2 for i← k to 1 do
3 w ← P (Si||ζi) ∈ Fn−a
4 Si−1 ← w ⊕ hi
5 if S0 == 0n−a then
6 return Approve
7 else
8 return Reject

Signature Correctness For signature correctness, we reintroduce the intermedi-
ate public key P ′ = L ◦φ−1 ◦F ◦ (φ× idv) ◦R, i.e. the full transformation where
the last a elements of the public key are included. We note for every iteration i in
the signature verification,

w′ = P ′(Si||ζi) =L ◦ φ−1 ◦ F ◦ (φ× idv) ◦R(Si|| ζi)
=L ◦ φ−1 ◦ F ◦ (φ× idv)(y, v

i
1, ..., v

i
v)

=L ◦ φ−1 ◦ FV (Y)

=L ◦ φ−1(X)

=L(x)

=(hi ⊕ Si−1, γi1, ..., γia). (5.8)

Then by removing the last a terms of w′, we get

w = P (Si||ζi) = hi ⊕ Si−1. (5.9)

Then we have indeed

w ⊕ hi = hi ⊕ Si−1 ⊕ hi = Si−1. (5.10)

This shows that in every iteration i in the verification algorithm, we are able to
retrieve Si−1. As Sk is indeed given, by recursion S0 is retrieved.

In particular, the inventors chose three parameter sets for Gui, named Gui-184,
Gui-312, Gui-448, presented in Table 5.1.

48

5.2 GeMSS

Table 5.1: Parameter sets for Gui.

F n D a v k κ

Gui-184 2 184 33 16 16 2 256
Gui-312 2 312 129 24 20 2 384
Gui-448 2 448 513 32 28 2 512

These parameter sets were determined by analyzing the complexity of the most
common attacks to multivariate cryptographic systems, to be able to satisfy certain
security levels. Estimates of the attacks from Chapter 3 are presented in Section
5.3.

5.2 GeMSS

GeMSS shares some design rationales with Gui. However, there are some differ-
ences.

Key Generation The key generation in GeMSS is very similar to the one in Gui,
but they use a slightly different approach of sampling random invertible matrices
for the transformations L and R. Instead of trial and error, they produce invert-
ible matrices by utilizing the LU decomposition. They generate a lower and an
upper triangular matrix, with ones on the diagonal to ensure that the matrices are
invertible. The remaining values are chosen randomly. Then, the product of these
matrices is indeed invertible, without using any trial and error. However, there are
invertible matrices that cannot be produced in this manner, meaning the method
is biased toward certain matrices. The authors argue that this approach does not
impact the security of the scheme, as the number of unattainable matrices is suffi-
ciently small. We define ∈LU as the process of randomly sampling a matrix using
the described LU decomposition technique. The resulting private and public keys
are then created in the same way as explained above, and presented in Algorithm 8.

49

Chapter 5. Gui and GeMSS

Algorithm 8: GeMSS key generation
Input: (F, n,D, a, v)
Output: Public key pk, Secret key sk

1 ML ∈LUMn(F)
2 cL ∈R Fn
3 L← Aff(ML, cL)
4 MR ∈LUMn+v(F)
5 cR ∈R Fn+v
6 R← Aff(MR, cR)
7 F ← HFEv(F, n,D, v)
8 P ′ ← L ◦ φ−1 ◦ F ◦ (φ× idv) ◦R
9 pk← the a first components of P ′

10 sk← (L−1, F,R−1)
11 return (pk, sk)

Signature Generation The signature generation of GeMSS is similar to Gui,
however, they chose to preprocess the message M slightly differently. In GeMSS,
the random salt is not utilized before hashing. In the implementation of GeMSS,
the salt serves the same purpose as the dummy vectors γi in Gui, namely as a
means to use the inverse of L 1. The underlying hash function used in GeMSS is

1 In [3] the authors also present a version of their algorithm utilizing a salt in somewhat the same
manner as Gui, but they have chosen not to implement this version for reasons regarding efficiency.

50

5.2 GeMSS

SHA3. Signature generation is presented in Algorithm 9.

Algorithm 9: GeMSS signature generation
Input: sk = (L−1, F,R−1),M
Output: σ = Sk ∈ F(n−a)+k(a+v)

1 S0 ← 0n−a, initialization vector comprising of n− a zeros.
2 H0 ← SHA3(M)
3 for i← 1 to k do
4 hi ← first n− a elements of the binary representation of Hi−1
5 γ ∈R Fa
6 x← L−1(hi ⊕ Si−1||γ)
7 X ← φ(x) ∈ E
8 v ∈R Fv
9 FV (·)← F (·, v)

10 Ŷ ← gcd(FV (Y)−X,Y 2n − Y)

11 if Deg(Ŷ) > 0 then
12 Y ∈R roots(Ŷ), pick a random root of the polynomial
13 else
14 break and jump to line 5

15 y ← φ−1(Y) ∈ Fn
16 z ← R−1(y, v1, ..., vv)
17 Si ← (z1, ..., zn−a)
18 ζi ← (zn−a+1, ..., zn+v)
19 Hi ← SHA3(Hi−1)

20 return σ = (Sk||ζk||...||ζ1) ∈ F(n−a)+k(a+v)

Signature Verification The algorithm for verifying a message-signature pair
(M,σ) is given in Algorithm 10.

Signature Correctness Showing signature correctness is identical to Gui, and is
left as an exercise for the reader.

The inventors chose the following three parameter sets for GeMSS, named
GeMSS128, GeMSS192, GeMSS256, presented in Table 5.2.

51

Chapter 5. Gui and GeMSS

Algorithm 10: GeMSS signature verification

Input: pk = P , M ∈ F∗, σ = (Sk||ζk||...||ζ1) ∈ F(n−a)+k(a+v)

Output: Approve or Reject
1 H0 ← SHA3(M)
2 for i← 1 to k do
3 hi ← first n− a elements of the binary representation of Hi−1
4 Hi ← SHA3(Hi−1)

5 for i← k to 1 do
6 w ← P (Si||ζi) ∈ Fn−a
7 Si−1 ← w ⊕ hi
8 if S0 == 0n−a then
9 return Approve

10 else
11 return Reject

Table 5.2: Parameter sets for GeMSS.

F n D a v k κ

GeMSS128 2 174 513 12 12 4 128

GeMSS192 2 265 513 22 20 4 192

GeMSS256 2 354 513 30 33 4 256

5.3 Comparison and security assessment

Comparing different cryptosystems is hard, as they each have their own strengths
and weaknesses. Before a comparison of their security is given, we first present
the sizes of the keys and signatures for the different parameter sets of Gui and
GeMSS.

Table 5.3: Key and signature sizes of all given parameter sets of Gui and GeMSS.

public key (KB) private key (KB) signature size (bit)
Gui-184 416.3 19.1 360

GeMSS128 352.18 13.9 384

Gui-312 1955.1 59.3 504

GeMSS192 1273.6 38.5 704

Gui-448 5789.2 155.9 664

GeMSS256 3519.3 80 832

52

5.3 Comparison and security assessment

As shown in Table 5.3, GeMSS has slightly larger signatures than Gui for all
parameter sets. This is simply because of the repetition factor chosen in each
scheme, where Gui chooses to use k = 2 for all its parameter sets, while GeMSS
choose k = 4. Nevertheless, both schemes supply incredibly short signatures.

In order to assess their security levels, NIST has proposed six security cate-
gories. These six categories are chosen to be somewhat equivalent to a key search
on AES and collision search of SHA3 for different instances of these. The quan-
tum security categories are determined by a factor MAXDEPTH introduced by
NIST. This MAXDEPTH parameter is an estimate of the maximum circuit depth
of a quantum computer, where they propose the three plausible values 240, 264 and
296. For further details regarding the security categories, see [38]. For the differ-
ent values of MAXDEPTH one arrives at the security categories presented in Table
5.4.

Table 5.4: NIST security categories.

Category log2 classical complexity log2 quantum complexity
MAXDEPTH = (240, 264, 296)

I 143 (130, 106, 74)

II 146

III 207 (193, 169, 137)

IV 210

V 272 (258, 234, 202)

VI 274

Now that the Gui and GeMSS signature schemes have been presented, some
analysis of the chosen parameter sets will be given. The inventors have chosen pa-
rameter sets for Gui and GeMSS based on the most common attacks to the HFEv-
scheme, presented in Section 4.3. In Table 5.5, the complexities of these attacks
are explicitly presented for each parameter set of both Gui and GeMSS. Keep in
mind that most of the attacks presented in Section 4.3 were attacks to the general
HFEv- construction. As both Gui and GeMSS incorporate a repetition factor, the
attacks must be scaled accordingly.

As shown in the table, both Gui and GeMSS have certain weaknesses versus
the Quantum Boolean Solve algorithm, even when assuming the lowest bound of
the quantum security. As the algorithm was presented in December 2017, after
the deadline for the submissions to NIST was passed 2, some more consideration
needs to be made. The table also shows that the classical Gröbner basis attack is

2Actually, the authors of GeMSS are the same as the authors of [33], and they do mention Quan-
tum Boolean Solve in their proposal of GeMSS.

53

Chapter 5. Gui and GeMSS

Table 5.5: Comparison of the log2 complexities of the attacks presented in Section 4.3
against Gui and GeMSS for the various parameter sets. From left to right, MinRank at-
tack (MR), Brute Force (BF), Fast Exhaustive Search (FES), Gröbner basis (GB), Feistel-
Patarin attack (FPA), Quantum Boolean Solve (QBS). The best classical attacks are printed
in bold.

Category MR BF FES GB FPA QBS
I, II

Gui-184 286 191 174 157 132 79

GeMSS128 260 186 169 149 149 77

III, IV
Gui-312 423 313 294 222 214 134

GeMSS192 400 269 250 211 216 114

V, VI
Gui-448 583 443 422 293 301 193

GeMSS256 550 351 331 281 282 152

the most effective attack for most of the parameter sets for both Gui and GeMSS.
In fact, the Gröbner basis complexity was the determining factor when choosing
most of the parameters for both schemes. This further motivates the future study
of Gröbner basis algorithms, both in the quantum and classical setting.

The most interesting point regarding these attacks is that the generic Feistel-
Patarin attack described in Section 4.4 breaks the proposed security level of Gui-
184, as it does not satisfy the Category I and II requirements. The main reason
Gui fails to withstand this attack, while GeMSS counters it, is the choice of the
repetition factor k. If Gui-184 used a higher repetition factor, e.g. 3 or 4, the
Feistel-Patarin attack would have a complexity of approximately

CFeistel-Patarin Attack(k = 3) ∼ O(2146), (5.11)

CFeistel-Patarin Attack(k = 4) ∼ O(2154), (5.12)

where both would satisfy the Category I and II requirement. Of course, increas-
ing the repetition factor leads to a decreased efficiency of the scheme, as well as
an increase in the size of the signature, by 32 or 64 bits respectively. In the doc-
umentation for Gui [2], the authors have not mentioned this attack, even though
the attack itself is not particularly new. In April 2018, Ward Beullens, PhD can-
didate at COSIC, KU Leuven, Belgium, made a comment in the official NIST
Post-Quantum Cryptography forum addressing this issue [39]. Two months later,
the authors of Gui made an official comment regarding this attack [40]. They pro-
posed to change the repetition factor to k = 3 in the Gui-184 scheme while leaving
the other parameter sets of Gui unchanged. They claim that this modification will

54

5.3 Comparison and security assessment

increase the run time of the signature generation by 50%. By modifying the imple-
mentation submitted by the authors, the run times have indeed been investigated,
and are presented in Table 5.6. The run times for key generation, signature gener-
ation, and signature verification are shown for all the parameter sets for both Gui
and GeMSS, including a version of Gui-184 where the repetition factor has been
increased to 3 and 4. The average run times for all algorithms were found after
performing 10 runs.

Table 5.6: Gui and GeMSS run times for the different parameter sets presented above,
measured on a MacBook Pro 13-inch Early 2015 model having 2.7 GHz Intel Core i5
processor, 8GB memory.

Category, name key generation (s) generate signature (s) verify (ms)
I, II

Gui-184 (k = 2) 0.319 0.0070 0.049

Gui-184 (k = 3) 0.311 0.0211 0.108

Gui-184 (k = 4) 0.316 0.0612 0.075

GeMSS128 0.046 0.422 0.283

III, IV
Gui-312 1.3965 0.23038 0.249

GeMSS192 0.2506 0.9993 0.376

V, VI
Gui-448 7.4141 3.8197 0.441

GeMSS256 0.5763 1.2578 0.707

The interesting observation is the increase in run time for signing a message.
The run time almost tripled from k = 2 to k = 3, and increased by nearly a
ninefold from k = 2 to k = 4, which is quite contradictory of the claim made by
the authors. One possible explanation for this might be that the root finding step
over the extension field, which is the most time-consuming step of the signature
generation, needs to be repeated several times. The probability of finding a single
root in this step (line 10-12 in Algorithm 6) is about 1/e, see [8], where e is Euler’s
number. This means that on average, in order to find a unique root k times, the
root finding algorithm is run approximately ek times. As this step is the most
computationally expensive during signature generation, the run time of the signing
algorithm can be approximated as

TSig(k) = ek · TRootFind + T0, (5.13)

where TRootFind denotes the run time of the root finding step, and T0 denotes other
calculations. For increasing k, the value T0 becomes less and less relevant. Some

55

Chapter 5. Gui and GeMSS

more experiments were conducted for even higher values of k, to investigate if the
exponential run times in k were observed. The results are presented in Figure 5.1,
with the chosen TRootFind = 0.002559 s based on the timing results for signature
generation in Gui-184 using k = 1.

1 2 3 4 5 6 7 8
Repetition factor k

0

1

2

3

4

5

6

7

8

9

T
im

e
(s

)

Run time of signature generation of Gui-184 for increasing k
Measured run times

TSig(k)

Figure 5.1: Run times for signature generation with respect to the repetition factor k for
Gui-184. The figure also shows (5.13), with TRootFind approximated by signing a message
using k = 1.

Under this argument, the threefold increase in run time for each increase in k
seems to be reasonable, and seems supported by the experimental results given.
I am curious why the authors of Gui claimed an increase in run time of 50%. I
also attempted to modify the submitted code for Gui-312 and Gui-448 to further
investigate the run times, but the signatures produced ended up not being accepted
by the verification algorithm.

56

Chapter 6

Closing remarks and further
work

The signature schemes Gui and GeMSS have several advantages and limitations.
One of the main advantages is the short length of the signatures produced. As a
comparison, both ECDSA and DSA signatures are approximately 4λ bits where λ
is the given security level, while Gui and GeMSS offer signatures of sizes close to
2λ. Another advantage of these schemes is the simplicity of the signature verifica-
tion. As this is merely an evaluation of equations, it can be performed extremely
rapidly, as shown in Table 5.6. Also, having small private keys, the schemes are
suitable for use in small devices with scarce resources, e.g. smartcards. One of
the main disadvantages is the size of the public key. For the highest security levels
presented, the public keys are of order 4 − 5 MB, being almost a thousand times
as large as an RSA public key at the same classical security level.

The implementation of Gui-184 as proposed by the authors failed to meet the
claimed security level, as it was broken by the Feistel-Patarin attack. The solution
proposed by the authors to increase the repetition factor k makes said attack infea-
sible, and the modified Gui-184 is able to withstand all the classical attacks men-
tioned in this thesis. The authors claimed that the new parameter choice k would
increase the run time of signature generation by 50%. However, experimental re-
sults and analytical arguments presented in this thesis suggest a time increase of a
factor e, Euler’s number. The authors of Gui might have some clever trick to cir-
cumvent this efficiency drop. Nevertheless, the run times of signature generation
for the parameter sets Gui-184 still outperform GeMSS128. Exchanging ideas
between GeMSS and Gui seems to be a good approach to find the best possible
cryptosystem, as the fast key generation of GeMSS paired with the fast signature
generation of Gui might serve as a great tool in post-quantum cryptography.

57

Chapter 6. Closing remarks and further work

58

Bibliography

[1] Peter W. Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM Journal on Computing, 26
(5):1484–1509, Oct 1997.

[2] Jintai Ding, Ming-Shing Chen, Albrecht Petzoldt, Dieter Schmidt,
and Bo-Yin Yang. Gui documentation, 2017. https://csrc.
nist.gov/Projects/Post-Quantum-Cryptography/
Round-1-Submissions.

[3] A. Casanova, J.-C. Faugère, G. Macario-Rat, J. Patarin, L. Per-
ret, and J. Ryckeghem. Gemss: A great multivariate short
signature, 2017. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-1-Submissions.

[4] David A Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algo-
rithms: An Introduction to Computational Algebraic Geometry and Commu-
tative Algebra (Undergraduate Texts in Mathematics). Springer, 2015.

[5] E. R. Berlekamp. Factoring polynomials over finite fields. Bell System Tech-
nical Journal, 46(8):1853–1859, oct 1967.

[6] Eberhard Becker, Teo Mora, Maria Grazia Marinari, and Carlo Traverso. The
shape of the shape lemma. In Proceedings of the international symposium on
Symbolic and algebraic computation - ISSAC '94. ACM Press, 1994.

[7] Jean-Charles Faugère, Françoise Levy-dit Vehel, and Ludovic Perret. Crypt-
analysis of MinRank, pages 280–296. Springer Berlin Heidelberg, 2008.
ISBN 978-3-540-85174-5.

[8] Giordano Fusco and Eric Bach. Phase transition of multivariate polynomial
systems. In Jin-Yi Cai, S. Barry Cooper, and Hong Zhu, editors, Theory
and Applications of Models of Computation, pages 632–645. Springer Berlin
Heidelberg, 2007. ISBN 978-3-540-72504-6.

59

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

[9] Jean-Charles Faugére. A new efficient algorithm for computing gröbner
bases (f4). Journal of Pure and Applied Algebra, 139(1-3):61–88, jun 1999.

[10] Jean Charles Faugère. A new efficient algorithm for computing gröbner bases
without reduction to zero (f5). In Proceedings of the 2002 international sym-
posium on Symbolic and algebraic computation - ISSAC '02. ACM Press,
2002.

[11] J.C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of
zero-dimensional gröbner bases by change of ordering. Journal of Symbolic
Computation, 16(4):329–344, oct 1993.

[12] Jean-Charles Faugère and Chenqi Mou. Fast algorithm for change of ordering
of zero-dimensional gröbner bases with sparse multiplication matrices. In
Proceedings of the 36th international symposium on Symbolic and algebraic
computation - ISSAC '11. ACM Press, 2011.

[13] Jintai Ding and Bo-Yin Yang. Degree of regularity for hfev and hfev-
. In Philippe Gaborit, editor, Post-Quantum Cryptography, pages 52–66.
Springer Berlin Heidelberg, 2013. ISBN 978-3-642-38616-9.

[14] François Le Gall. Algebraic complexity theory and matrix multiplication. In
Proceedings of the 39th International Symposium on Symbolic and Algebraic
Computation, ISSAC ’14, pages 23–23. ACM, 2014. ISBN 978-1-4503-
2501-1.

[15] Jean-Charles Faugère and Antoine Joux. Algebraic cryptanalysis of hidden
field equation (HFE) cryptosystems using gröbner bases. In Advances in
Cryptology - CRYPTO 2003, pages 44–60. Springer Berlin Heidelberg, 2003.

[16] Aviad Kipnis and Adi Shamir. Cryptanalysis of the hfe public key cryp-
tosystem by relinearization. In Proceedings of the 19th Annual International
Cryptology Conference on Advances in Cryptology, CRYPTO ’99, pages 19–
30. Springer-Verlag, 1999. ISBN 3-540-66347-9.

[17] Gwénolé Ars, Jean-Charles Faugère, Hideki Imai, Mitsuru Kawazoe, and
Makoto Sugita. Comparison Between XL and Gröbner basis Algorithms,
pages 338–353. Springer Berlin Heidelberg, 2004. ISBN 978-3-540-30539-
2.

[18] Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer Berlin
Heidelberg, 2002. doi: 10.1007/978-3-662-04722-4.

60

[19] Tsutomu Matsumoto and Hideki Imai. Public Quadratic Polynomial-Tuples
for Efficient Signature-Verification and Message-Encryption. Springer Berlin
Heidelberg.

[20] Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of poly-
nomials (IP): Two new families of asymmetric algorithms. In Advances in
Cryptology — EUROCRYPT ’96, pages 33–48. Springer Berlin Heidelberg,
1996.

[21] Jacques Patarin, Nicolas Courtois, and Louis Goubin. Flash, a fast multi-
variate signature algorithm. In David Naccache, editor, Topics in Cryptology
— CT-RSA 2001, pages 298–307. Springer Berlin Heidelberg, 2001. ISBN
978-3-540-45353-6.

[22] Xin Jiang, Jintai Ding, and Lei Hu. Kipnis-shamir attack on hfe revisited. In
Dingyi Pei, Moti Yung, Dongdai Lin, and Chuankun Wu, editors, Informa-
tion Security and Cryptology, pages 399–411. Springer Berlin Heidelberg,
2008. ISBN 978-3-540-79499-8.

[23] Jean-Charles Faugère, Mohab Safey El Din, and Pierre-Jean Spaenlehauer.
Computing loci of rank defects of linear matrices using grÖbner bases and
applications to cryptology. In Proceedings of the 2010 International Sympo-
sium on Symbolic and Algebraic Computation, ISSAC ’10, pages 257–264.
ACM, 2010. ISBN 978-1-4503-0150-3.

[24] Jeremy Vates and Daniel Smith-Tone. Key recovery attack for all parameters
of hfe-. In Tanja Lange and Tsuyoshi Takagi, editors, Post-Quantum Cryp-
tography, pages 272–288. Springer International Publishing, 2017. ISBN
978-3-319-59879-6.

[25] Albrecht Petzoldt, Ming-Shing Chen, Bo-Yin Yang, Chengdong Tao, and Jin-
tai Ding. Design principles for HFEv- based multivariate signature schemes.
In Advances in Cryptology – ASIACRYPT 2015, pages 311–334. Springer
Berlin Heidelberg, 2015.

[26] Jeremy Vates and Daniel Smith-Tone. Key recovery attack for all parameters
of HFE-. In Post-Quantum Cryptography, pages 272–288. Springer Interna-
tional Publishing, 2017.

[27] Charles Bouillaguet, Chen-Mou Cheng, Tony (Tung) Chou, Ruben Nieder-
hagen, Adi Shamir, and Bo-Yin Yang. Fast exhaustive search for polynomial
systems in F2. Cryptology ePrint Archive, Report 2010/313, 2010.

61

[28] Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing - STOC '96. ACM Press, 1996.

[29] Bas Westerbaan and Peter Schwabe. Solving binary mq with grover’s algo-
rithm. In Claude Carlet, Anwar Hasan, and Vishal Saraswat, editors, Security,
Privacy, and Advanced Cryptography Engineering, volume 10076 of Lecture
Notes in Computer Science, pages 303–322. Springer-Verlag Berlin Heidel-
berg, 2016.

[30] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the complex-
ity of gröbner basis computation of semi-regular overdetermined algebraic
equations. 2004.

[31] Jintai Ding, Ray Perlner, Albrecht Petzoldt, and Daniel Smith-Tone. Im-
proved cryptanalysis of hfev- via projection. In Tanja Lange and Rainer
Steinwandt, editors, Post-Quantum Cryptography, pages 375–395. Springer
International Publishing, 2018. ISBN 978-3-319-79063-3.

[32] Albrecht Petzoldt. On the complexity of the hybrid approach on hfev-. IACR
Cryptology ePrint Archive, 2017:1135, 2017.

[33] Jean-Charles Faugère, Kelsey Horan, Delaram Kahrobaei, Marc Kaplan,
Elham Kashefi, and Ludovic Perret. Fast quantum algorithm for solv-
ing multivariate quadratic equations. CoRR, abs/1712.07211, 2017. URL
http://arxiv.org/abs/1712.07211.

[34] Marc Girault, Robert Cohen, and 2)Mireille Campana. A generalized birth-
day attack. In Lecture Notes in Computer Science, pages 129–156. Springer
Berlin Heidelberg.

[35] Nicolas T. Courtois. Generic attacks and the security of quartz. In Yvo G.
Desmedt, editor, Public Key Cryptography — PKC 2003, pages 351–364.
Springer Berlin Heidelberg, 2002. ISBN 978-3-540-36288-3.

[36] Ralph C. Merkle and Martin E. Hellman. On the security of multiple encryp-
tion. Communications of the ACM, 24(7):465–467, jul 1981.

[37] Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari. On provable security
of uov and hfe signature schemes against chosen-message attack. In Bo-
Yin Yang, editor, Post-Quantum Cryptography, pages 68–82. Springer Berlin
Heidelberg, 2011. ISBN 978-3-642-25405-5.

62

http://arxiv.org/abs/1712.07211

[38] National Institute of Standards and Technology. Submission requirements
and evaluation criteria for the post-quantum cryptography standardiza-
tion process, 2016. https://csrc.nist.gov/CSRC/media/
Projects/Post-Quantum-Cryptography/documents/
call-for-proposals-final-dec-2016.pdf.

[39] Ward Beullens. Official comment: Gui, 2018. https:
//groups.google.com/a/list.nist.gov/forum/#!topic/
pqc-forum/8VE6gtFPSH8.

[40] Bo-Yin Yang. Official comment: Gui, 2018. https://
groups.google.com/a/list.nist.gov/forum/#!topic/
pqc-forum/v7vrS-_jMrA.

63

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/8VE6gtFPSH8
https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/8VE6gtFPSH8
https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/8VE6gtFPSH8
https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/v7vrS-_jMrA
https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/v7vrS-_jMrA
https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/v7vrS-_jMrA

64

	Sammendrag
	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Preliminaries and Gröbner basis Theory
	Notions and general definitions
	Elimination theory
	Fast Gröbner basis algorithms

	Cryptography and Hidden Field Equations
	HFE for Encryption Schemes
	HFE for Signature Schemes

	Modern HFE and its attacks
	Hidden Field Equations Modifications
	HFEv- for signatures
	Attacks on HFEv-
	Key recovery attacks
	Signature forgery attacks

	Feistel-Patarin Construction

	Gui and GeMSS
	Gui
	GeMSS
	Comparison and security assessment

	Closing remarks and further work
	Bibliography

