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Abstract

Finite elements simulations of fluid diffusion for composite structures are becoming
more common in marine and offshore applications. Input parameters for such
simulations are the orthotropic diffusion constants for the materials. Diffusivity in fiber
direction is faster than diffusivity in transverse direction; it is therefore important to
determine all these constants to predict long-term fluid diffusion in composite
structures. Current standards for the determination of the diffusion constants prescribe
a sample geometry that enforces 1-D diffusion, but thin samples are not easy to
fabricate, especially from thick laminates. Edges with metallic coatings are also
prescribed, which can influence the calculation of the moisture saturation content and
may detach during the experiments. Furthermore, axial symmetrical structures are often
used offshore, requiring 3-D diffusion analysis in cylindrical coordinates. The aim of
this paper is to provide a 3-D theory and methods for obtaining diffusion constants for

plates, rods and pipes.

Keywords: Polymer-matrix composites (PMCs); Environmental degradation; Analytical modelling;

Moisture; Resin transfer moulding (RTM).



List of symbols

a Solution of the zero-th order Bessel function

c Moisture concentration

Co Moisture initial concentration

D11, D22, D33 Orthotropic diffusion constants in cartesian coordinates

Dy, D+t Parallel to fiber and transverse to fibers diffusion constants

Dg, Dz Composite orthotropic diffusion constants in cylindrical coordinates
h, I, w Laminate thickness, length and width

Jo, Yo Bessel functions of first and second order

L, R, Re, Ri Length of rod and pipe, rod radius, pipe external and internal radius
M(t), Meq Moisture content and moisture saturation content

rz o Cylindrical coordinate system

t Time

X, Y, Z Cartesian coordinate system

1. Introduction

The prediction of long-term performance of composite structures exposed to humid
environments requires knowledge of the fluid concentration profiles inside the component.
Such concentration profiles can be obtained by means of finite element (FE) analysis, which
require knowledge of the orthotropic diffusion constants and moisture saturation content of
the material. Obtaining the fluid diffusion orthotropic constants is often a bottleneck.
Composite materials have orthotropic diffusion constants, as shown by many studies [1-8].
Typically, diffusion in the fiber direction can be 3-15 times higher than in transverse

direction, and this can accelerate fluid saturation greatly [4-6, 9].

The gravimetric testing method proposed in ASTM Standard D5229 [10] is very useful for

obtaining the transverse diffusivity of a composite, but obtaining the other two orthotropic

2



diffusion constants using this method remains challenging. Furthermore, the applicability of

the standard is limited to thin plates. Rods and pipes are not dealt with using this method.

Using ASTM Standard D5229 it is possible to obtain the diffusivity of a composite material
in an arbitrary direction, by preparing a thin sample (the thickness to width ratio suggested is

1/100) and coating with a stainless-steel foil the edges of the sample.

Preparing such thin samples can be non-trivial, especially for the diffusion in the fiber
direction, because samples are often obtained from laminates having reduces initial thickness.
For example, from a 30 mm thick laminate, in order to study diffusion in the fiber direction it
IS necessary to slice the laminate orthogonally to the fiber, to a final thickness of 0.3 mm.
Such a sample would weigh only half gram and measuring a 0.1% mass increase in such case

would require a very sensitive, hence expensive, scale.

Another complication involved with this method is the use of stainless-steel foil for covering
the edges. Firstly, in order to bond the foil to the edges an adhesive is necessary, and this
adhesive would absorb water in most cases, influencing the weight gain measurements.
Furthermore, the bonding between a metallic foil and a thin composite edge surface is not
very strong, and the stainless-steel foil could peel off or fall off from the sample, severely

disturbing the data.

In order to overcome these issues, some authors have proposed measuring diffusivity of
composites without coating the samples edges but taking into account the 3-dimensional fluid

diffusion equations [6, 8, 11-13].

Composite structures used in offshore industry have often non-flat shapes, like pultruded
composite rods [14] and filament wound pipes [15, 16]. For such structures the test method
suggested in the standard [10] cannot be used to obtain radial and axial diffusion constants. In

this work exact and approximate analytical solutions are introduced for orthotropic diffusion



in pipes. Together with a novel test method, based on testing long radial diffusion dominated
and short axial diffusion dominated samples, it is possible to identify axial and radial
diffusion constants. The results are compared to known solutions for plates and rods made
from the same material and also tested in this work, to assess the accuracy of the method.
These geometries: plates, rods and pipes, are representative of structural applications of

composites offshore:

- Repair patches [17, 18],
- Tension-leg-platform (TLP) tethers [14],

- Offshore risers [15, 16].

In this article sample configurations and equations for obtaining orthotropic diffusion
constants are proposed. The approach is based on testing sample having geometries that
promote either mono-dimensional or multi-dimensional diffusion, in Cartesian or cylindrical
coordinates. A regression of the experimental results with the analytical or FE models
reported here enables identification of the orthotropic diffusion constants. Experiments were
carried out to demonstrate how the procedures work and to show typical analysis of the

results.

2. Materials and methods

The glass fibers used were HiPer-Tex™ unidirectional fabric from 3B. The epoxy was
supplied by Hexion and consisted in RIMR135™ resin and RIMH137™ hardener with a
mass mixing ratio of 100:30. A thick laminate was prepared by vacuum assisted resin
infusion of 32 plies. Curing was performed at room temperature for 24 hours and post-curing
was performed at 80°C for 16 hours, according to the manufacturer’s recommendations [19].

Three bars were cut from the laminate along the fiber direction. From one of the bars four



plates have been cut orthogonally to the fiber direction and four plates have been cut along
the fiber direction, using a water-cooled diamond saw. The samples were later milled and

ground to the dimensions: 24 x 24 x 1.5 mm.

Another bar obtained from the same laminate was used in order to prepare 6 mm diameter
rods, using a turning machine. Four “long” rods and four “short” rods were manufactured,

having length 30 and 6 mm respectively.

From another bar, obtained from the same laminate, pipes having internal diameter 20 mm
and external diameter 24 mm were manufactured, using a turning machine. Four “long” pipes

and four “short” pipes were turned, having length 24 and 2 mm respectively.

Composite pipes and rods are often obtained using different manufacturing processes,
typically filament winding and pultrusion. In this work it was decided to obtain all the
samples from the same laminate, in order to consistently compare the diffusion constants
obtained from the different samples configurations. The fiber volume fraction for all samples
was measured according to the burn off test [20] resulting in 54.4 %. Samples dimensions are

summarized in Table 1 and sample pictures are shown in Fig.1.

Table 1. Sample geometry for each configuration

Geometry  Samples for radial/transverse diffusivity Samples for axial diffusivity

Rods R=3,L=30 R=3,L=6
Pipes Re=12, Ri=10, L=24 Re=12, Ri=10, L=2
Plates =24, w=24,h=15

L: rod/pipe/plate length, R: rod radius, Re: pipe external radius, Ri: pipe internal radius, w: plate width, h: plate thickness



Fig. 1. Sample configurations tested

Before conditioning the samples were dried in oven for 72 hr at 40°C, in order to remove

moisture diffusing in the material during the manufacturing process.

The fluid diffusion test was performed according to the standard [10], in distilled water at
60°C = 1 °C. This temperature was chosen in order to opportunely accelerate fluid diffusion

while still remaining below the glass temperature of the material: 87.1°C, measured using
dynamic mechanical analysis (DMA). The samples were removed regularly from the water
bath four at a time, their surface dried with a cloth and their mass recorded immediately using

a Mettler Toledo AG 204 DeltaRange scale, having sensitivity 0.1 mg.

Fig. 2. Sample configurations for plates, rods and pipes. It can be noticed that for rods and pipes the axial

direction coincides with the laminate fiber direction

3. Analytical model
The analytical model reported here is based on the following assumptions:

- fickian diffusion;

- transversely isotropic material.

It is important to remark that the solutions reported here are valid for arbitrary dimension. It

IS not necessary to assume infinitely thin plates or infinitely long rods or pipes.
3.1 Composite plates

Fick’s 2" law for orthotropic materials in cartesian coordinates is:



dc d%c 9%c d%c
E=V'(DVC)=D115+D225+D33E (l)

where c(x,t) is fluid concentration, t is time, X,y,z are the coordinates in cartesian space, D is
the positive definite symmetric matrix of diffusion coefficients Djj, and D11, D22 and D33 are

the diffusion constants in directions 1, 2 and 3 respectively.

It is assumed here that direction 1 is the fiber axial direction, direction 2 is transverse in plane

direction and direction 3 is transverse out of plane direction, as shown in Fig. 2.

For a plate having length I, width w and thickness h, the boundary conditions representing

immersion in a fluid of an initially dry sample are:
fort=0
c(x,y,z)=0 2

fort>0
c(+3)=c(-3) = @
(+2)=e (-2) =< ®

(+2)=e (- =e 0

the solution of this problem is provided by Crank [21]. For the transverse plate configuration,

Fig. 3 (a), the solution is:

8\ g yo oo 1 —2i-12(%) Dyqt 1 —@2j-12(E) Dyt
M(t) = Mg [1_(5) Zi=12j=12k=1(2i_1)29 @ )(1) 11 .me @] )(w) 225 .
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Fig. 3. (a) Transverse plate geometry, (b) Axial plate geometry

For a transversely isotropic material, having D22 = D33 = D+ and D11 = D), Eq. (6) becomes:

8}’ yoo g0 g 1 —@i-12(%) Dyt 1 —@j-0?(Z) put
M(t) = Meq [1 - (F) Zl=121=12k=1me t (l) Il .Q}T)Ze ] (W) .

1 e—(zk—1)2(%)2mt %
(2k—1)2

For the axial plate configuration, Fig. 3 (b), under the hypothesis of orthotropic material:

8\ g0 yioo 0o 1 —(2'—1)2520 t 1 —(2'—1)2520 t
M(t):Meq [1_(5) Zl=12]=12k=1(21_1)ze t (l) 33 .(ZJT)ZG J (W) 22t |
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For a transversely isotropic material, having D22 = D33 = D+ and D11 = Dy, Eq. (8) becomes:

8\3 o © s 1 -(i-1?(% ZD-Lt 1 —(2j-1)2(Z 2D_n_t
M(t) = Meq [1 - (;) i=12j=12k=1(2i_1)ze l (l) "G € J (w) .

1 e—(2k—1)2(%)2D||t )
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3.2 Composite rods

Fick’s 2" law for orthotropic materials in radial coordinates is [21, 22]:

ac 0%c 10 ac
5 = D25+ Deyan (7)) (10)
where c(x,t) is fluid concentration, t is time, r the radial coordinate, z the axial coordinate, Dr

the radial diffusion constant and Dz the axial diffusion constant. Eq. (10) assumes axial

symmetry and finite length.



For a cylinder having radius R and length 2L, as in Fig.4, the boundary conditions

representing immersion in a fluid of an initially dry sample are:

fort=0
c(rz) =0 (11)
fort>0
c(Rz) =c, (12)
c(r,xL)=c (13)

Fig. 4. Coordinate system and dimensions for a composite rod

the solution of this problem is reported in [9, 22] and is:

1 [_ (2n+1)?n?

32 w0 . 1 —of,Dr t
M(t) = Meq {1 = T Zm=12n=o (am)? eXp( R? - ) "@n+1? 412 DZt]} (14)
where L is the half length of the cylinder, Dr the radial diffusion constant, Dz the axial

diffusion constant and am the roots of Bessel function of order zero: Jo (om) = 0.

3.3 Composite pipes

For an orthotropic pipe, the radial and axial diffusion constants can be obtained from the

weight gain measurements of long and short pipes, as shown in Figs. 1-2.

Fluid diffusion in an orthotropic pipe is described by the same equation introduced for fluid

diffusion in a rod, Eq. (10):

ac d%c 10 ( Bc) (15)
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where c(x,t) is fluid concentration, t is time, r the radial coordinate, z the axial coordinate, Dr
the radial diffusion constant and Dz the axial diffusion constant.
For a hollow cylinder, having the geometry shown in Fig. 5, the boundary conditions

simulating immersion of an initially dry sample are:

fort=0
c(rz) =0 (16)
for t>0
c(Ryz) =c (17)
c(Rpz) =cq (18)
c(rtl) =c (19)

Fig. 5. Coordinate system and dimensions for a composite pipe

The solution of this problem can be obtained with simple derivation from [9, 21]:

_ Jo(Rian)—Jo(Reayn) _ 2 .
M(t) - Moo [1 2 (R 2 —R; Z)Zn = IZm 0 Olnz[fo(Rian)+]0(Rean)] exp( DRO(n t)

1 (2m+1)?n?
n+n)? XP ( az Dzt )] (20)

where a, are roots of the equation:

Jo(R; ay) Yo(Re @) — Jo(Re ay) Yo(Ry @) = 0 (21)

where Jo and Yy are the Bessel functions of first and second kind.
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The solution proposed in Eg. (20) is valid for arbitrary thick pipes. For thick-walled pipes, the
samples can take very long time to saturate. In this case an alternative possibility is slicing
plates from the pipes, as shown in Fig. 6. From the plates the directional diffusivities can be
obtained using the plate diffusion solutions reported in the previous paragraph, using Eq. (7)

for radial diffusivity and Eq. (9) for axial diffusivity.

Fig. 6. Schematic drawing on obtaining axial and radial diffusion plates from a thick-walled pipe

3.4 Approximated 2-D plate solution for orthotropic pipes

An axial symmetric thin-walled pipe can be modelled as an equivalent infinitely wide plate,
having the same length of the pipe, 2 L, and thickness equal to the pipe wall thickness, Re —

Ri, as shown in Fig. 7.
Fig. 7. Approximation of thin-walled pipe to equivalent infinitely wide plate

In this case, the solution reported in Eq. (20) can be replaced by the two-dimensional solution
of fluid diffusion in an infinitely wide rectangular plate having the same length as the pipe
and thickness equal to the pipe wall thickness:

2
8 2 [e's) [e'e) 1 _(Zi_l)z % Dprt 1 _(2]'_1)2 s 2D t
M) = Mag |1 (5) 52,55 e (o=l Lo

(22)
It is interesting to obtain an equivalent plate solution, for two reasons. The first one is that

plate solutions are easier to implement as they don’t invoke the zeros of the Bessel function,
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while the second one is that several models have been published dealing with the influence of
matrix transverse cracks on diffusivity in composite plates [23, 24]. These models can be
easily implemented for composite pipes having transverse matrix cracks, using the

approximated plate solution as a starting point.

The accuracy of the approximated solution is shown, as a function of the wall thickness of the
pipe in the Appendix. For the material studied here, the approximated solution showed has a

good accuracy even for thick-walled pipes.

4. Numerical model

The previous paragraph has shown the exact analytical solutions for fluid diffusion in plates,
rods and pipes, and the approximated solution for pipes. The fluid diffusion of these
geometries can be analysed also by means of finite element (FE), as shown in this paragraph.
For complex geometries analytical solutions become hard to integrate and FE modelling
remains a strong alternative. For this reason, the numerical modelling methodology is shown

here.

The finite element analysis was performed in Abaqus™, using a diffusion step analysis. A
1/8 symmetric 3D model was used for the plates and axial symmetric 2D model for the rods

and pipes, Fig.8.

Fig. 8. FE models used for the plate, rod and pipe. The surfaces exposed to fluid diffusion are indicated by the

arrows
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The elements used were DC3D8 for the plates (8-node linear heat transfer brick) and DCAX4
for the rods and pipes (4-node linear axisymmetric heat transfer quadrilateral). Element size
for the plates was 0.25 mm and 0.1 in the thickness direction. Element size for the rods and

pipes was 0.1 mm overall. These element sizes were chosen after a mesh sensitivity analysis.

5. Results

The weight gain curves are shown in Fig. 9 (a-c) for composite plates, rods and pipes.

Fig. 9. Experimental weight gain curves of: (a) plates, (b) rods and (c) pipes.

Moisture saturation content for each configuration was obtained as an average of four parallel

measurements. Mean values and standard deviations are reported in Fig. 10.

Fig. 10. Moisture saturation content for each configuration

The average value obtained was 0.775%, with a minimum of 0.72% and a maximum of
0.86% (16% deviation between maximum and minimum, 2% standard deviation). The
moisture saturation content is a material property and should ideally be the same for all
configurations. The reason for this difference is attributed to the different manufacturing

processes, which lead to different surface roughness and porosity.

A regression analysis was performed on all sample geometries (plates, rods and pipes) based
on the analytical solutions, Egs. (9,14,20), in order to obtain the diffusivities for each
configuration. The diffusivities were obtained by performing nonlinear Generalized Reduced

Gradient (GRG) algorithm, while minimizing the residual sum of squares. The algorithm was
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used iteratively within each geometry (plates, rods and pipes) in order to obtain Dr (or D)

and Dz (or Dy). Diffusivities obtained via regression analysis are shown in Fig. 11.

Fig. 11. Diffusivities for each geometry (plates, rods, pipes)

Diffusivities obtained for all three geometries are in good agreement with each other. Results
indicate that diffusivities obtained for plate geometry provide less scatter than rods and even

more so than pipes.

The diffusion constants obtained from the regression analysis have been then used as input
material properties for the FE analysis. The weight gain curves obtained by theoretical and

FE analysis were plotted along with experimental results in Fig. 9 (a-c).
The values of diffusivities obtained from the regression analysis are reported in Table 2.

Table 2. Diffusion constants obtained from the regression analysis

Configuration Transverse/Radial diffusivity (mm?/h) Axial diffusivity (mm?/h)

Plates 0.0043 + 0.0004 0.0105 + 0.0004

Rods 0.0041 + 0.0005 0.0099 + 0.0012

Pipes 0.0038 + 0.0008 0.0133 + 0.0030
AVERAGE 0.0041 0.0113

From what has been shown, it is possible to obtain the transverse/radial diffusivity and axial
diffusivity for each configuration. The average values of transverse/radial and axial

diffusivities obtained are: 0.0041 mm?/h and 0.0113 mm?/h. Using the diffusion constants
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obtained from the regression for each geometry, the analytical and FE predictions were

compared to the experimental results, Fig.12.

Fig.12 Weight gain curves of; (a) plates, (b) rods and (c) pipes. Theoretical and FE predictions have been

obtained using the same material constants obtained from the regression analysis, in Table 2.

It is possible to observe that the average diffusion constants obtained with the methodology
reported here allow a quite accurate prediction of the diffusion behaviour of different
composite structures: plates, rods and pipes. Since all these samples have been obtained from
the same laminate and the diffusivity is a material constant, it is important to verify that the
weight gain for all geometries can be predicted starting from the same diffusivities. The

accuracy of the analytical solutions is further confirmed by the agreement with the FE results.

In Fig. 13, the exact solution, for fluid diffusion in an orthotropic pipe Eq. (20), is compared

to the approximated solution, Eg. (22). It is possible to notice that the agreement is very good.

Fig.13 Comparison of analytical exact solution (pipes) and approximated solution (plates).

6. Discussions

An experimental methodology, proposed here, enables identifying the orthotropic diffusion
constants and saturation level in the most common composite structures used in offshore and
marine applications. This is possible adopting short and long rods and pipes. The method

proposed here had the advantage of simplicity in manufacturing adequate specimens for each
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geometry studied, and the downside that a regression analysis needs to be performed to

identify the diffusion constants from the experimental results.

The values of the diffusion constants obtained are quite consistent for all geometries, as
shown in Fig. 11. The analytical solutions have been also verified by means of FE analysis,

yielding good agreement, Figs. 9,12.

It can be noticed that transverse/radial diffusivity values from all geometries are very close.
Axial diffusivity values are quite close for plates and rods, while pipes yield an
overestimation of the axial diffusivity. This effect is attributed to the shape of the samples,
having an internal surface that may be hard to reach and dry perfectly. Furthermore, the short
pipes need to be handled and dried very carefully, due to the absence of any hoop
reinforcement. This difference may limit the effectiveness of drying prior to weighting the

samples, hence overestimating the axial diffusivity.

For composite pipes, the approximated analytical solution in Eq. (22), yields very close
results to the exact solution, Eq. (20). The comparison of exact and approximated solution
can be seen in Fig. 13. The possibility of describing fluid diffusion in a pipe using 2-D plate
equations has an important application. The influence of matrix cracks in cross ply laminates
has been studied extensively for composite laminates [24, 25]. Analytical solutions obtained
for these cases can be extended directly for the prediction of fluid diffusion in a pipe having

matrix cracks.

Conclusions

The most frequently utilized composite structures in offshore and marine applications are
plates, rods (cylinders) and pipes. Due to the exposure to fluid these structures are subjected

to fickian diffusion, which influences the mechanical performance of the material. Prediction
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of the concentration profiles inside these structures after long exposure times is hard because
the knowledge of orthotropic diffusion constants is required for a correct prediction. In this
work a novel test method is proposed in order to identify radial/transverse and axial diffusion
constants. The diffusion constants are identified comparing the solutions of fluid diffusion
equations in cartesian and cylindrical coordinates to the experimental weight gain results.
This method is known for composite plates but has never been extended to composite pipes
before. In order to verify the validity of this method plates, rods and pipes were obtained
from the same laminate, in order to directly compare the diffusion constants obtained from
each geometry. The results showed good agreement for all the geometries tested, leading to
the conclusion that the method proposed here enables accurate measurement of fluid
diffusion constants in composite pipes. The accuracy of the analytical solution for each case

(plates, rods and pipes) has been further confirmed by a comparison with FE results.

Finally, an approximated solution has been proposed for the prediction of fluid diffusion
behaviour in composite pipes, based on the analogy between a pipe and an infinitely wide
plate. The approximated solution was compared to the exact one and yielded a very accurate
prediction. This is an interesting fact, because the possibility of predicting the fluid diffusion
behaviour of a pipe using a plate solution allows direct use of the equations for the prediction

of diffusion in cracked laminates developed for orthotropic plates.

Acknowledgements

This work is part of the DNV GL led Joint Industry Project “Affordable Composites” with
nine industrial partners and the Norwegian University of Science and Technology (NTNU).
The authors would like to express their thanks for the financial support by The Research

Council of Norway (Project 245606/E30 in the Petromaks 2 programme).

17



The authors would like to thank Prof. Astrid S. de Wijn for interesting discussion on fluid

diffusion theory and Mr. Erik Seeter, for the assistance in the samples preparation.

References

n

10.

11.

12.

13.

14.

15.

16.

17.

18.

Springer, G., Environmental Effects on Composite Materials. VVol. 1. 1984: Technomic
Publishing Company.

Springer, G., Environmental Effects on Composite Materials. Vol. 2. 1984: CRC Press.
Weitsman, Y.J., Fluid Effects in Polymers and Polymeric Composites. Mechanical
Engineering Series. 2012: Springer US.

Whitney, J.M., Three-Dimensional Moisture Diffusion in Laminated Composites. AIAA
Journal, 1977. 15(9): p. 1356-1358.

Rocha, 1.B.C.M., et al., Combined experimental/numerical investigation of directional
moisture diffusion in glass/epoxy composites. Composites Science and Technology, 2017.
151: p. 16-24.

Gagani, A, Fan Y., Muliana, A.H., Echtermeyer, A.T., Micromechanical modeling of
anisotropic water diffusion in glass fiber epoxy reinforced composites. Journal of Composite
Materials, 2017. 52(17): p. 2321-2335.

Blikstad, M., P.O.W. Sjoéblom, and T.R. Johannesson, Long-Term Moisture Absorption in
Graphite/Epoxy Angle-Ply Laminates. Journal of Composite Materials, 1984. 18(1): p. 32-46.
Beringhier, M., et al., Identification of the orthotropic diffusion properties of RTM textile
composites for aircraft applications. Composite Structures, 2016. 137(Supplement C): p. 33-
43.

Gagani, A., A. Krauklis, and A.T. Echtermeyer, Anisotropic fluid diffusion in carbon fiber
reinforced composite rods: Experimental, analytical and numerical study. Marine Structures,
2018. 59: p. 47-59.

ASTM, Standard Test Method for Moisture Absorption Properties and Equilibrium
Conditioning of Polymer Matrix Composite Materials. 2014, ASTM International, West
Conshohocken, PA.

Chilali, A., et al., Effect of geometric dimensions and fibre orientation on 3D moisture
diffusion in flax fibre reinforced thermoplastic and thermosetting composites. Composites
Part A: Applied Science and Manufacturing, 2017. 95: p. 75-86.

Saidane, E.H., et al., Assessment of 3D moisture diffusion parameters on flax/epoxy
composites. Composites Part A: Applied Science and Manufacturing, 2016. 80: p. 53-60.
Beringhier, M. and M. Gigliotti, A novel methodology for the rapid identification of the water
diffusion coefficients of composite materials. Composites Part A: Applied Science and
Manufacturing, 2015. 68: p. 212-218.

Gustafson, C.-G. and A. Echtermeyer, Long-term properties of carbon fibre composite
tethers. International Journal of Fatigue, 2006. 28(10): p. 1353-1362.

Echtermeyer, A.T., Integrating Durability in Marine Composite Certification, in Durability of
Composites in a Marine Environment, P. Davies, Rajapakse Yapa D.S., Editor. 2014,
Springer Netherlands: Amsterdam. p. 179-194.

Salama, M.M., et al., The First Offshore Field Installation for a Composite Riser Joint.
Offshore Technology Conference.

Grabovac, I. and D. Whittaker, Application of bonded composites in the repair of ships
structures — A 15-year service experience. Composites Part A: Applied Science and
Manufacturing, 2009. 40(9): p. 1381-1398.

McGeorge, D., et al., Repair of floating offshore units using bonded fibre composite
materials. Composites Part A: Applied Science and Manufacturing, 2009. 40(9): p. 1364-
1380.

18



19. HEXION, Technical Data Sheet, in EPIKOTE Resin MGS RIMR 135 and EPIKURE Curing
Agent MGS RIMH 137 2006.

20. ASTM, Standard Test Methods for Constituent Content of Composite Materials. 2015, ASTM
International, West Conshohocken, PA.

21. Crank, J., The mathematics of diffusion. 1956, Oxford: Clarendon Press.

22. Barjasteh, E. and S.R. Nutt, Moisture absorption of unidirectional hybrid composites.
Composites Part A: Applied Science and Manufacturing, 2012. 43(1): p. 158-164.

23. Roy, S., et al., Modeling of moisture diffusion in the presence of bi-axial damage in polymer
matrix composite laminates. International Journal of Solids and Structures, 2001. 38(42—43):
p. 7627-7641.

24. Gagani, A.l. and A.T. Echtermeyer, Fluid diffusion in cracked composite laminates —
Analytical, numerical and experimental study. Composites Science and Technology, 2018.
160: p. 86-96.

25. Roy, S. and T. Bandorawalla, Modeling of Diffusion in a Micro-Cracked Composite Laminate
Using Approximate Solutions. Journal of Composite Materials, 1999. 33(10): p. 872-905.

Appendix
In this appendix are reported the results of a parametric study comparing the exact solution of
the mass increase with time, Eq. (20), and the approximated solution, (Eq. 22), for fluid

diffusion in an orthotropic pipe.

The material constants used for this parametric analysis are the same ones measured in this

study:

- Meq = 0.775%
- Dr=0.0041 mmh

- Dz=0.0113 mm?h

The dimensions chosen are also based on the geometry analysed in this work: the external
radius was 12 mm, the length of the pipe was 20 mm. The values of internal radius analysed
were 4 mm, 6 mm, 8 mm and 10 mm, equivalent to a wall thickness to external radius ratio

t/re: 0.667, 0.5, 0.33 and 0.167.

For most engineering applications, a t/re ratio smaller that 0.33 is adopted, which results in a
deviation between the slope predicted by the exact solution and by the analytical solution

below 1 %, Fig. A.1. Since both theoretical models employ the same diffusivity constants,
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the slopes of the mass increase curves are compared. Examples of mass increase curves are

shown in Figs. 9, 12, 13.

For a very thick-walled pipe, having a wall thickness equal to half of the external radius (t/re
= 0.5), the deviation is 6.1 %, which is still a quite reasonable estimate. Finally, for an
extremely thick-walled pipe, having a wall thickness equal to 2/3 of the external radius (t/re =
0.667), the deviation is 15.7 %, which suggests that the limit of validity of the approximated

solution has been reached.

Fig.A.1 Parametric comparison of analytical exact solution (pipes) and approximated solution (plates)

It can be concluded that for the set of material properties studied here, which is representative
of a fiber reinforced composite, the approximated solution for the analysis of fluid diffusion
in pipes is quite accurate in a wide range of pipe wall thickness values. In particular the
deviation between the weight gain slope predicted is below 1 % for a wall thickness up to 1/3

of the external radius of the pipe.
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Fig. 1. Sample configurations tested
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Fig. 2. Sample configurations for plates, rods and pipes. It can be noticed that for rods and pipes the axial

direction coincides with the laminate fiber direction
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Fig. 3. (a) Transverse plate geometry, (b) Axial plate geometry
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Fig. 5. Coordinate system and dimensions for a composite pipe
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Fig. 7. Approximation of thin-walled pipe to equivalent infinitely wide plate
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Fig. 8. FE models used for the plate, rod and pipe. The surfaces exposed to fluid diffusion are indicated by the

arrows
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Fig. 9. Experimental weight gain curves of: (a) plates, (b) rods and (c) pipes.
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Fig. 11. Diffusivities for each geometry (plates, rods, pipes)
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Fig.12 Weight gain curves of: (a) plates, (b) rods and (c) pipes. Theoretical and FE predictions have been

obtained using the same material constants obtained from the regression analysis, in Table 2.
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Fig.A.1. Parametric comparison of analytical exact solution (pipes) and approximated solution (plates).
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