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Problem Description
Applying a numerical Path Integration method which utilises the Fast Fourier
transform to price fixed strike Asian options under Normal Inverse-Gaussian and
Variance Gamma dynamics.
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Abstract

In this thesis I combine the strengths of the Path Integration method and the
Fast Fourier transform to price discretely monitored, path dependent, fixed strike
Asian options in a fast and accurate manner. The presented method can be used
to accurately price various types of exotic options with greatly improved compu-
tation speed compared to the frequently used Monte Carlo simulations.
The method, in the form it is presented here, is implemented for underlying as-
sets modelled by advanced Lévy processes; namely the Normal Inverse-Gaussian
process and the Variance Gamma process in addition to the simpler Geometric
Brownian Motion for comparison. Some interesting characteristics of these pro-
cesses are uncovered and discussed.
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Sammendrag

I denne artikkelen kombinerer jeg styrkene til veiintegrasjonsmethoden og den
raske Fourier transformen til å prise diskrétobserverte, veiavhengige, l̊ast strike
asiatiske opsjoner p̊a en rask of presis måte.
Den presenterte metoden kan bli brukt til å prise et bredt spekter av eksotiske op-
sjoner med langt raskere kjøretider enn de mye brukte Monte Carlo-simuleringene.
Metoden, som den er presentert her, blir implementert for underliggende verdipros-
esser modellert med avanserte Lévyprosesser: nærmere bestemt Normal Inverse-
Gaussian prosessen og Variance Gamma prosessen i tillegg til den enklere ge-
ometrisk Brownske bevegelse brukt til sammenligning. Noen interessante egen-
skaper ved disse prosessene avdekkes og diskuteres.

iv



Contents

1 Introduction 1

2 Theory 4
2.1 Intro to Pricing Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Arbitrage Pricing Theory . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 European Options . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 American Options . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 European Barrier Options . . . . . . . . . . . . . . . . . . . 8
2.3.4 Spread Options . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.5 Lookback Options . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.6 Asian Options . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Review of Pricing Methods . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.1 Characteristic Function . . . . . . . . . . . . . . . . . . . . . 14

3 Modelling Financial Markets 17
3.1 Geometric Brownian Motion . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Weaknesses in Describing Asset Dynamics . . . . . . . . . . 20
3.2 The Normal Inverse-Gaussian Process . . . . . . . . . . . . . . . . . 21

3.2.1 Fit to Market . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 The Variance Gamma Process . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Fit to Market . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Testing Fit to Market 29
4.1 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 OSEBX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.2 DAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.3 Nasdaq 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.4 OMX Copenhagen 20 . . . . . . . . . . . . . . . . . . . . . . 34
4.1.5 OMX Stockholm 30 . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.6 S&P500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Goodness-of-Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Note on the effect of time . . . . . . . . . . . . . . . . . . . . . . . 41

5 Path Integration Method 45
5.1 Path Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Path Integration with Fast Fourier Transformation . . . . . . . . . 45

6 Implementation 48

7 Numerical Results 51
7.1 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

v



8 Discussion 58

Bibliography 61

Appendices 67

A Fourier Analysis 67
A.1 Discrete and Fast Fourier Transform . . . . . . . . . . . . . . . . . 68

B Fitted Parameters 70

C Types of Averaging 73
C.1 Arithmetic Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
C.2 Geometric Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

D Plots Associated with the Kolmogorov-Smirnov Test 74

E Code 75
E.1 MatLab Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

E.1.1 Main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
E.1.2 PIFFT - GBM . . . . . . . . . . . . . . . . . . . . . . . . . 77
E.1.3 PIFFT - NIG . . . . . . . . . . . . . . . . . . . . . . . . . . 80
E.1.4 PIFFT - VG . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

E.2 R Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
E.2.1 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . 86
E.2.2 Parameter Fitting . . . . . . . . . . . . . . . . . . . . . . . . 90
E.2.3 Kolmogorov’s Goodness-of-fit-test . . . . . . . . . . . . . . . 93

vi



List of Figures
1 Densities of fitted distributions - OSEBX . . . . . . . . . . . . . . . 30
2 QQ-plot - OSEBX . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3 Densities of fitted distributions - DAX . . . . . . . . . . . . . . . . 32
4 QQ-plot - DAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5 Densities of fitted distributions - NDX . . . . . . . . . . . . . . . . 33
6 QQ-plot - NDX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7 Densities of fitted distributions - OMXC20 . . . . . . . . . . . . . . 35
8 QQ-plot - OMXC20 . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
9 Densities of fitted distributions - OMXS30 . . . . . . . . . . . . . . 36
10 QQ-plot - OMXS30 . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
11 Densities of fitted distributions - SPX . . . . . . . . . . . . . . . . . 38
12 QQ-plot - SPX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
13 Density of log returns over time step dt = 1/250 with fitted DAX-

parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
14 Model characteristics as a function of the time step dt for the DAX

with fitted parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 42
15 Price paths for the GBM, NIG and VG model for different choices

of T and dt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
16 Imaginary part of the characteristic function of the NIG and VG

distribution with fitted DAX parameters . . . . . . . . . . . . . . . 54
17 Propagated probability density function at some key time steps

(DAX parameters) . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
18 Propagated probability density function at some key time steps with

controlled tails (DAX parameters) . . . . . . . . . . . . . . . . . . . 56
19 Cumulative Distributions associated with the Kolmogorov-Smirnov

Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

List of Tables
1 NIG-characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2 VG-characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 Relations between parameterisations for the NIG distribution. . . . 29
4 Parameters fitted to OSEBX . . . . . . . . . . . . . . . . . . . . . . 30
5 Evaluation of fitted distributions for OSEBX market. . . . . . . . . 30
6 Parameters fitted to DAX . . . . . . . . . . . . . . . . . . . . . . . 31
7 Evaluation of fitted distributions for DAX market. . . . . . . . . . . 31
8 Parameters fitted to NDX . . . . . . . . . . . . . . . . . . . . . . . 33
9 Evaluation of fitted distributions for NDX market. . . . . . . . . . . 33
10 Parameters fitted to OMXC20 . . . . . . . . . . . . . . . . . . . . . 34
11 Evaluation of fitted distributions for OMXC20 market. . . . . . . . 34
12 Parameters fitted to OMXS30 . . . . . . . . . . . . . . . . . . . . . 36
13 Evaluation of fitted distributions for OMXS30 market. . . . . . . . 36
14 Parameters fitted to SPX . . . . . . . . . . . . . . . . . . . . . . . . 37

vii



15 Evaluation of fitted distributions for SPX market. . . . . . . . . . . 37
16 Quantiles for the Kolmogorov distribution function. . . . . . . . . . 40
17 Values for

√
nDn for the fitted distributions. . . . . . . . . . . . . . 40

18 Option prices by PIFFT under GBM . . . . . . . . . . . . . . . . . 51
19 Option prices by 1 million Monte Carlo simulations under GBM . . 51
20 Option prices after 5 million Monte Carlo simulations under GBM . 52
21 Option prices by PIFFT under NIG . . . . . . . . . . . . . . . . . . 52
22 Option prices by 1 million Monte Carlo simulations under NIG . . . 52
23 Option prices after 5 million Monte Carlo simulations under NIG . 52
24 Option prices by PIFFT under VG . . . . . . . . . . . . . . . . . . 52
25 Option prices by 1 million Monte Carlo simulations under VG . . . 53
26 Option prices after 5 million Monte Carlo simulations under VG . . 53
27 Results under the VG model without numerical tricks. . . . . . . . 53

viii



1 Introduction

The main goal of this master thesis is to find useful and flexible models for time se-
ries describing financial price processes and adapt a Path Integration method with
the Fast Fourier transform to these models. Additionally, I aim to demonstrate
the use of this method by applying it to exotic option pricing by pricing arithmetic
Asian options. I will start with a brief introduction to financial markets and the
Geometric Brownian motion (GBM) used in Black & Scholes-analysis [21].
From there, I will look at some more advanced models which improve on the short-
comings of the GBM; namely the Normal-Inverse Gaussian model (NIG) and the
Variance Gamma model (VG).

With obvious applications, financial markets are heavily studied through the years.
The pricing of financial derivatives is one of the most open and active fields in fi-
nancial theory today. In this thesis I will study some models for emulating the
financial market in order to price financial derivatives; more specifically options.

A financial option is an agreement between two parts which gives the holder the
right, but not obligation to buy (call option) or sell (put option) a financial object
from/to the issuer at some agreed-upon time in the future called the ”maturity
time” for an agreed-upon price called the ”strike”. There is a vast pool of option
types (see Section 2.3) on a variety of financial objects such as assets, interest
rates and counterparty credit risk.

The introduction of Black & Scholes analysis in 1973 marked a majour step in
financial analysis. The traditional Black & Scholes analysis, however, uses the
Geometric Brownian motion (GBM) as model for asset dynamics. Empiric stud-
ies have shown this model to be too simplistic. Thus began the search for more
sophisticated models. The models I will consider in this thesis are the Geometric
Brownian Motion, the Negative Inverse Gaussian model (NIG) and the Variance
Gamma model (VG).

The pricing methods I will present is the popular Monte Carlo Simulations and a
more sophisticated method based on Path Integration (PI) with the Fast Fourier
transform (FFT). I will refer to the more sophisticated method as the PIFFT-
method. The PIFFT-method was successfully implemented for fixed strike Asian
options under GBM-dynamics in my project thesis [64]. This thesis will extend
that work by adopting the method to work under Advanced Lévy dynamics. The
NIG and VG distribution are both examples of advanced Lévy distributions.

Asian options consider the average asset price in some period before maturity
as well as the instantaneous price. This makes Asian options of higher dimension
than the equivalent European option which only considers the instantaneous price.
Furthermore, Asian options also offer some extra numerical difficulties which will

1



1. INTRODUCTION

be discussed later. These extra challenges are why I have chosen to consider Asian
options in particular. The presented method is applicable to a range of other op-
tions as well. Examples include lookback options (worked on by Østreim in 2009
[50]) and a range of more simple options such as barrier and spread options (ex-
plored in [65] for GBM-dynamics).

Furthermore, the computational cost of the commonly used Monte Carlo simu-
lations prove particularly troublesome for Asian options. PI also conveniently
tracks the evolution of the asset price and is therefore particularly useful for pric-
ing path dependent options. Combining Path Integration with the Fast Fourier
transform reduces computation times even further while retaining the required ac-
curacy. This motivates my research into Path Integration as an alternative pricing
technique for path dependent options.

The main idea behind the Path Integration method is to numerically propagate
the probability density function of the stochastic process of the asset price for-
ward in time until maturity. When the density of the asset price at maturity is
known, one can easily price the considered option by applying the risk-neutral
pricing formula. The propagation requires the evaluation of a sequence of con-
volution integrals. This evaluation will be done by the Fast Fourier transform.
The result is a pricing method which is faster than Monte Carlo simulations and
at the same time fully accurate with respect to the chosen model of asset dynamics.

Requirements for using Path Integration with the Fast Fourier transform is that
the characteristic function of the transition probability of the asset price is known
in closed form and that the stochastic process possesses the Markov property1.
These requirements are met by all Lévy processes2[60] which make up a large
class of commonly used models of asset dynamics.

The concept behind Path Integration dates back to Norbert Wiener[25] before
being developed further by P.A.M. Dirac in 1933[18]. The full method was in-
troduced by Feynman in 1948 for use in the world of quantum mechanics. It
was applied to the field of finance by Dash in 1989[17] and later by Linetsky [44]
and more recently by Skaug and Næss[12]. Kleppe [41] and Østreim [50] were
the first to successfully apply the Fast Fourier transform to Path Integration thus
improving computation times. As far as I know, this is the first time PIFFT is
successfully applied to Asian options under NIG and VG dynamics 3.
Path Integration belongs to the class of pricing methods which are based on
transform and quadrature theory. Methods from this class have been increas-

1The next value of a stochastic process is only dependent on the current value. i.e. A
stochastic process Xt possess the Markov property if and only if P(Xt+1|Xt, Xt−1, · · · , X0) =
P(Xt+1|Xt).[57]

2A stochastic process with independent increments that are statistically identical over time
intervals of the same length. Examples: The Wiener process and the Poisson process.

3As far as I know, it was also the first time PIFFT was successfully applied to pricing Asian
options under GBM-dynamics in [64]
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1. INTRODUCTION

ingly researched in recent years and are overrepresented in the pool of today’s
state-of-the-art methods. A common feature for these state-of-the-art option pric-
ing methods are that they rely on transforms to the frequency domain (More on
different pricing methods in Section 2.4).

3



2 Theory
In this section I will start by introducing the fundamental concepts behind the
pricing rules applied in this thesis. Then, I will describe a selection of financial
option and review some of the most important pricing methods we have today
before presenting some fundamental probability theory.

I begin by stating some notation before introducing the concept of arbitrage and
equivalent martingale measure and use this to arrive at the risk neutral pricing
formula [54].

2.1 Intro to Pricing Rules
Consider a market evolving in time t ∈ [0, T ] with Ω the set of scenarios of possible
realisations of the market in this period. Let (Ft)t∈[0,T ] be the filtration containing
all information in the history of the market up to time t. An underlying asset can
be described as a non-anticipating process with respect to the filtration (Ft). Let
Sit(w) denote the value of asset i in a market with d+ 1 assets under the scenario
w ∈ Ω at time t. That is

S : [0, T ]× Ω→ Rd+1

(t, w)→ (S0
t (w), S1

t (w), ..., Sdt (w)).
(2.1)

Here S0
t (w) is a numeraire which denominates all assets to make the Sit comparable.

A common choice of S0
t (w) is a cash account with constant risk-free interest rate

r; that is
S0
t = ert. (2.2)

This choice of S0
t is called the discounted price process[73] and discounting is done

by numeraire (2.2).

A contingent claim4 i is fully described by its payoff function H i(w) defined for
t = T (at maturity). Section 2.3 provides some examples of payoff functions. A
pricing rule, Π, then maps a value Πt(H) to payoff function H at time t.

Such rules must satisfy the following requirements:

1. Non-anticipation:
Πt(H) is only dependent on the history of the market up to time point t.

Πt(H|S0
t∈[0,T ], ..., S

d+1
t∈[0,T ]) = Πt(H|Ft)

4Common expression for a derivative with a payout that is dependent on the realisation
of some uncertain future event. Financial options are examples of contingent claims. Other
examples include, but are not limited to swaps, forward and future contracts[39].

4



2. THEORY

2. Positiveness:
The value of an option with a non-negative payoff function is non-negative.

H ≥ 0⇒ Πt(H) ≥ 0 (2.3)

3. Linearity:
The value of a portfolio of contingent claims is given by the value of each
claim.

Πt(
∑
j∈J

Hj) =
∑
j∈J

Πt(Hj). (2.4)

Consider now an Arrow security 1A. That is a contingent claim which pays 1 if an
event A ∈ F occurs and 0 otherwise. 1Ω is then a zero coupon bond paying 1 at
maturity with certainty. By the definition of the discounted price process, (2.2),
the value of the zero coupon bond is just the discount factor. That is

Πt(1Ω) =
St1Ω

St0
= 1
er(T−t)

= e−r(T−t).

Furthermore, let Q be defined as follows

Q(A) = Π0(1A)
Π0(1Ω) = ertΠ0(1A) (2.5)

A reasonable demand on Π is that Πt(1A) ≤ Πt(1Ω). Additionally, by the posi-
tiveness requirement (2.3), Q(A) ∈ [0, 1].
Consider two disjoint events, A and B. The linearity requirement, (2.4), yield

Q(A ∪B) = Π0(1A∪B)
Π0(1Ω) = Π0(1A + 1B)

Π0(1Ω) = erT (Π0(1A) + Π0(1B)) = Q(A) + Q(B).

By letting the number of disjoint events go to infinity, Q is just a probability
measure on the scenario space (Ω,F). Furthermore, consider a portfolio of a
linear combination of Arrow securities, H = ∑

i ci1Ai . Any random payoff H can
be replicated by a linear combination of Arrow securities. The risk-neutral pricing
formula can then be defined as follows:

Definition 1: Risk-neutral Pricing

Consider a payoffH in the set of all possible payoffs,H on which a dominated
convergence theorema holds. H is then valued by the risk-neutral pricing
formula for a probability measure Q as

Πt=0(H) = e−rTEQ(H) (2.6)
aNecessary to give sense to the Expectation EQ(H) [68][47].

It is important to note that the probability measure Q does not represent the
real world probability of occurrences of market scenarios. Q is rather a tangible
probability measure for convenient representation of pricing rules. More on this
in section 2.2

5



2. THEORY

2.2 Arbitrage Pricing Theory

As described in section 1, a financial option is an agreement between two parts
which gives the holder the right, but not obligation to buy (call option) or sell (put
option) an asset from/to the issuer at some time in the future for an agreed-upon
price called the strike or exercise price, K. To ensure a fair deal for both parties,
it is necessary to price such options correctly. To this end I will apply arbitrage
pricing theory.

Arbitrage pricing theory, introduced by Ross in 1976[67], is a pricing model which
uses arbitrage arguments to derive a pricing relation. The foundation of the pric-
ing rules used in this paper is the demand of no arbitrage opportunities.
An arbitrage opportunity is an opportunity to make money without taking risk.
There should be no such opportunities in a fair market. Definition 2 offers a more
rigid definition[8].

Definition 2: Arbitrage

An arbitrage opportunity is a value process of a self financing portfolio, θ,
such that

Vt(θ) = 0, t = 0,
P(Vt(θ) ≥ 0) = 1, t = T > 0

where P is some real world probability measure containing the probabilistic
views of investors regarding future scenarios.

The concept of martingales and the equivalent martingale measure are central
tools of arbitrage pricing theory. Before I can give a rigid definition of a martingale
according to [71], I need to define an adapted process.

Definition 3: Adapted process

A process X = (Xn : n ≥ 0) is called adapted (to the filtration {Fn}) if for
each n, Xn is Fn-measurable.

Williams[71] offers the intuitive interpretation of Definition 3 that the value of the
process X is known to us at time n if and only if X is adapted to Fn.

6



2. THEORY

Definition 4: Martingale

A process X is called a martingale (relative to the filtration {Fn} and the
probability measure Q) if

(i) X is adapted,

(ii) EQ(|Xn|) <∞,∀n

(iii) EQ[Xn|Fn−1] = Xn−1 a.s. (n ≥ 1).

Intuitively, this means that a martingale process has no expected growth.

Definition 5: Equivalent Martingale Measure

A probability measure Q is an equivalent martingale measure to P if

1. Q is equivalent to P if they define the same (im)possible events, i.e.
Q ∼ P : ∀A ∈ F : P(A) = 0 ⇐⇒ Q(A) = 0.

2. The discounted stock values e−rtSiT are martingales with respect to
the probability measure Q, i.e. EQ [e−rtSiT |Ft] = e−rtSit , ∀i ∈ D.

The following property holds for pricing rules on probability measures as defined
above.

Theorem 1: Risk-Neutral Pricing

In a market governed by a probability measure P, any arbitrage free pricing
rule, Πt, can be represented as

Πt(H) = e−r(T−t)EQ[H|Ft],

where Q is an equivalent martingale measure to P.

So far, I have assumed that an equivalent martingale measure exists and that this
implies that the market is arbitrage free. The converse result is more difficult to
prove and is called the First Fundamental Theorem of Asset Pricing:

Theorem 2: The First Fundamental Theorem of Asset Pricing

A market similar to (2.1) is arbitrage-free if and only if there exists a prob-
ability measure Q ∼ P such that the discounted assets Sit are martingales
with respect to Q.

Thus, when considering a model for the underlying asset, one has to make sure that

7



2. THEORY

the stochastic variable being modelled is a martingale under the chosen market
model. More on this in Section 3.1, 3.2.1 and 3.3.1.

2.3 Options
This section will briefly introduce some common types of financial options all of
which can be priced by numerical Path Integration with the Fast Fourier transform.
I will denote the price process of the underlying asset or stock by St, the time at
maturity T and the strike price K.

2.3.1 European Options

European options are the simplest type of option. A European call or put option
gives the holder the right to respectively buy or sell an asset for some agreed upon
strike price at some agreed upon maturity date.

The payoff of a European call option, C(K,ST ) and a European put option,
P (K,ST ) is

HEUcall = C(K,ST ) = max{ST −K, 0}
HEUput = P (K,ST ) = max{K − ST , 0}

The value of a European option at some initial time, t = 0, before maturity can
be expressed by the risk-neutral expectation of the option payoff:

Call: Π0 = e−rTEQ
[

max{ST −K, 0}
]

Put: Π0 = e−rTEQ
[

max{K − ST , 0}
]

This is easily generalised from the time period t ∈ [0, T ] to t ∈ [ta, tb]. I will use
t ∈ [0, T ] because of personal preference.

2.3.2 American Options

An American option is a generalisation of the European option where the holder
can choose to exercise the option at any time in the interval t ∈ [0, T ]. There
are several ways of valuing American options, e.g. solving the Black & Scholes
equation with finite differences [53]. I will restrict myself to claiming that the
value of an American call option must satisfy

Π0 ≥ e−rTEQ
[

max{ST −K, 0}
]

and refer to [53] for more details.

2.3.3 European Barrier Options

A barrier option deploys an additional condition where the option only has value
if the asset price is above (upper barrier options) or below (lower barrier options)

8



2. THEORY

some agreed upon barrier. Let I be an indicator function with value 1 if the option
is active, i.e. has value, and 0 otherwise. The value of a European barrier call
option becomes:

Πt=0 = e−rTEQ
[

max{S(T )−K, 0} × I
]

European barrier options are among the most commonly traded exotic options.
They are popular on the over-the-counter (OTC) market and traded with high
volume in currency, interest rates and commodity markets.

2.3.4 Spread Options

Spread options have a payoff equal to the difference between the difference of two
assets and some agreed upon strike. The spread could for example be induced
by differences in prices over different markets. In currency, for example, a certain
currency might be priced differently in two different countries. Other examples
include energy markets and commodities which may be priced differently according
to location and calendar. Spread options are used in market speculation and as a
risk management tool and are mostly traded OTC.
The price of a spread option is given by

Πt=0 = e−rTEQ[max(S1(T )− S2(T )−K, 0)] (2.7)

2.3.5 Lookback Options

The lookback option considers the optimal value of the underlying stock in the
lifetime of the option [50]. Clearly, this makes lookback options path dependent.
There are two main types of lookback options: Fixed strike lookback options and
floating strike lookback options.

For fixed strike lookback options, ”Optimal value” means that the holder of the
option can choose the value of the underlying in t ∈ [0, T ] which results in the
largest payoff. This has an obvious appeal to investors. However, lookback options
are often expensive.

The value of a fixed strike lookback call option is

Πt=0 = e−rTEQ
[

max
{

max{St∈[0,T ]} −K, 0
} ]

For the equivalent put option, one would select the minimum price of the under-
lying in its lifetime, min{St∈[0,T ]} instead of the maximum.

A floating strike lookback call (or put) option has the same payoff as its fixed
strike equivalent, except it is the strike that is set at maturity as the lowest (or
highest) value of the underlying in the options lifetime.

9



2. THEORY

2.3.6 Asian Options

Asian options consider the average price of the underlying over some period before
maturity, T , t ∈ [ta, tb], 0 ≤ ta < tb ≤ T . For simplicity, I choose t ∈ [0, T ] for
this paper. All theory is easily generalised to t ∈ [ta, tb]. In contrast to European
and American options, Asian options are clearly path dependent as they consider
the history of the asset price over a time interval as opposed to only at maturity.
The average price of the underlying is almost always5 less volatile than the price
of the underlying at maturity. Thus, Asian options cost less than the equivalent
European option. Asian options are also less prone to market manipulation as it
is more difficult to manipulate the average price than the price at a single point
in time.
Asian options appeal to contractors who wish to be less exposed to market volatil-
ity. They are commonly found in commodity and energy markets as well as cur-
rency markets.
The payoff, V (T ), equal to the value of the option at maturity, T , is on the form

V (T ) = max
{
S̄t∈[ta,tb] −K, 0

}
, (2.8)

where S̄t∈[ta,tb] is some representation of the average asset price over the period
t ∈ [ta, tb]. The price of an Asian option is thus given by

Πt=0 = e−rTEQ
[

max
{
S̄t∈[ta,tb] −K, 0

} ]
There are several traits distinguishing different types of Asian options. For exam-
ple the period of averaging (the values for ta and tb), the type of averaging (see
Appendix C), the weighting of the average (one could for example give greater
weights to more recent prices), the monitoring of the asset price (discretely or
continuous) and whether the strike is fixed or floating as discussed for lookback
options. I will consider arithmetic, uniformly weighted, discretely monitored op-
tions averaging over the time interval t ∈ [0, T ].

2.4 Review of Pricing Methods
There is a vast pool of pricing methods as this is a field which has received a
lot of attention. Many of these methods become vastly complicated or unappli-
cable by the introduction of multi-asset options, path dependency or other types
of higher dimensional options. Closed form solutions for example are not always
available. The flexibility and easy implementation of Monte Carlo simulations
makes this one of the most popular methods for pricing exotic options. Unfor-
tunately, Monte Carlo simulations are, as mentioned, computationally expensive;
especially in higher dimension. This is a major source of motivation for my re-
search into faster methods which uphold the required accuracy demands.

This section divides pricing methods into rough classes and gives a brief descrip-
tion. The classes are Monte Carlo methods, partial differential equation based
methods, tree methods and transform and quadrature based methods.

5Except in cases of measure zero
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Monte Carlo Methods

Monte Carlo simulation is a widely used tool and was first applied to finance by
Hertz in 1964 [29] and to option pricing by Boyle in 1977[10]. The easy implemen-
tation and flexibility with respect to the model of asset dynamics, payoff structures
and higher dimensions make Monte Carlo simulations a popular method among
practitioners today.
Monte Carlo simulations are based on producing many realisations of the chosen
model by drawing random numbers and then averaging to compute the expected
payoff at maturity. The expected payoff is then discounted back to the initial
point in time to find the value of the option today. The computational cost of
Monte Carlo simulations is considered the major drawback of the method where
one must keep producing realisations until achieving a desired level of accuracy.
Naturally, this becomes increasingly demanding with higher dimensions.

PDE Based Methods

The approach developed by Black and Scholes [21] introduced partial differen-
tial equations for modelling the asset dynamics and price simple options. For
more complex options and/or models, where these equations cannot be solved an-
alytically one applies numerical techniques; collectively named Partial Differential
Equation Based Methods. The Finite Difference method is the most common of
these where the asset value is predicted at the modes on a specified grid. Infinites-
imal derivatives are approximated by finite differences. The resulting difference
equations are then solved iteratively. Other methods in this class include Finite
Element methods [72] and Finite Volume methods [66]. One drawback of the PDE
Based Method is their often comprehensive requirements e.g. closed form expres-
sions of volatility and drift. More recent developments in this class of methods is
associated with the development of spectral methods which introduce global basis
functions in the pricing schemes. Several master thesis have been written on the
spectral method at NTNU in collaboration with Espen Jakobsen; most recently
Frida Bruun in the Autumn 2017 and Spring 20186.

Tree Methods

The use of binomial trees for pricing options was presented by Cox and Ross in
1979 [40]. The idea is to discretise the asset dynamics as well as the time such that
the asset price may either do an upward jump of rate u or downward jump of rate
d at each time step with a specific probability p and 1−p respectively. The price of
the option today can then be calculated recursively from the prices at all nodes at
maturity. In the limit where the number of time steps goes to infinity, tree methods
converge to the continuous random walk model [49]. Handling dividends, early
exercise and path dependency is easy with tree methods. A further development
of tree methods is the introduction of trinomial trees [9] where the price has three
different outcomes for each time step.

6Bruun’s work is yet unpublished
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Transform and Quadrature Methods

The methods in this class aims to numerically calculate the risk-neutral expec-
tation of the option payoff and discounting the payoff to present time. If the
probability density function of the payoff is known and available in closed form,
one can calculate this expectation by numerical integration.
However, closed form distributions are often unavailable for many asset price mod-
els. Stein and Stein [19] introduced the use of the Fourier transform to hurdle this
difficulty when deriving closed-form approximate expressions for the distribution
of the asset process where the volatility follows an Ornstein-Uhlenbeck process. In
1993, Heston [30] introduced a method for pricing European Options with stochas-
tic volatility by use of the inverse Fourier transform of the characteristic function7

A drawback of Heston’s method is that it cannot use the Fast Fourier transform
and thus exploit its computational efficiency. In 1999, Carr and Madan [52] in-
troduced a method based on the Fast Fourier transform. The method aims to
find an expression for the Fourier transform of the risk-neutral expectation of the
options payoff in terms of the characteristic function. The option value is then
found by applying the inverse Fourier transform to this expression by the Fast
Fourier transform. The method was demonstrated on European options where
the asset dynamics were modelled by the Variance Gamma process.

The pricing of more exotic derivatives, for example path dependent options, re-
quire more sophisticated methods. Sullivan [61] applied a Gaussian quadrature
method for pricing American options8 in the Black & Scholes framework in 2000.
Andricopoulos et al. [1] extended Sullivan’s work with the development of the
QUAD method in 2003 which is applicable to high-dimensional and path depen-
dent options in the Black & Scholes framework. In 2014, Chen et al. [14] aimed
to generalise the QUAD method to make it applicable to other models than the
Black & Scholes model. They proposed a quadrature based method using an ap-
proximation of the transition density of the asset price.

Moreover, O’Sullivan [51] combined the work of Carr & Madan and Andricopoulos
et al. in 2005 and introduced one of the first methods which combine the Fast
Fourier transform and quadrature schemes. O’Sullivans innovation is based on the
existence of closed-form expressions of the Characteristic functions for many use-
ful asset dynamic models where the probability density function is not available
in closed form. The probability density function is then available for numerical
integration schemes as the inverse Fourier transform of the characteristic function,
computed by the Fast Fourier transform.

In 2000, Reiner [56] made the observation that the risk-neutral valuation formula
can be written as a convolution. Lord et al. [55] used this observation in combina-
tion with Carr and Madan’s work to extend on O’Sullivan’s work in 2008 by the

7More on the characteristic function in Section 2.5.1.
8An American option is a generalisation of a European option which allows for early exercise

at any time between initiation and maturity. More on this is section 2.3.2
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introduction of the CONV method. Lord et al. used the Fast Fourier transform in
the evaluation of the associated convolution integrals thus reducing computational
costs considerably. The CONV method is also suitable for pricing options with
the possibility of early exercise, for example Bermudan options9. Fang and Oost-
erlee [22] achieved even faster pricing evaluation by using the COS-method where
the transitional density function is replaced by its Fourier-cosine expansion. The
idea is to exploit the relationship between this Fourier-cosine expansion and the
characteristic function of the driving density. An advantage of the COS-method
is that it can be applied to the Heston Stochastic volatility model.

2.5 Probability Theory

In this section, I follow [60] to define skewness and kurtosis before stating some
fundamental theory.

The skewness of a distribution determines to which degree the distribution is
asymmetric. Skewness is defined as the third moment about the mean divided by
the third power of the standard deviation.

Definition 6: Skewness

The skewness of the distribution of a random variable X with mean µX and
standard deviation σX is defined as

E[(X − µX)3]
σ3
X

.

Note that symmetric distributions such as the normal distribution has zero skew-
ness because they have E(X) = µX .

The kurtosis of a distribution determines how fat the tails are. That is the like-
lihood of extreme events. Kurtosis is defined as the fourth moment around the
mean divided by the fourth power of the standard deviation (or equivalently the
second power of the variance).

Definition 7: Kurtosis

The kurtosis of the distribution of a random variable X with mean µX and
standard deviation σX is defined as

E[(X − µX)4]
σ4
X

9Informally, Bermudan options are a discrete form of American options where early exercise
is allowed, but only at a set of predetermined dates
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The normal distribution has a kurtosis of 3 and is called mesokurtic. Distributions
with kurtosis less than 3 are called platykurtic and have a flatter behaviour around
the mean. The uniform distribution is an example of a platykurtic distribution.
Distributions with kurtosis greater than 3 are leptokurtic with a high, concentrated
peak at the mean. Examples include the Student-T distribution. The amount of
kurtosis above 3, if any, is called excess kurtosis.
The following follows[63]:

Definition 8: Stable Distribution

A random variable Y has a stable distribution if, for all n ≥ 1, it satisfies

Y1 + ...+ Yn
d= anY + bn

where Y1, ..., Yn are independently, identically distributed (iid) random vari-
ables with the same distribution as Y , an > 0 and bn ∈ R.

Definition 9: Random Walk

Sn is a random walk if, for some iid Zk for k ≥ 1,

Sn =
n∑
k=1

Zk, n ∈ N.

Theorem 3

Let Sn be a random walk. A random variable Z is said to have a stable
distribution if and only if, for every n, there exist an > 0 and bn ∈ R such
that

anSn + bn
d→ Z.

Definition 10: Infinite Divisability

A random variable Y is said to have an infinite divisible distribution if, for
every m ≥ 1,

Y
d= Y

(m)
1 + ...+ Y (m)

m

for some iid random variables Y (m)
1 , ..., Y (m)

m .

Note that stable distributions are infinitely divisible.

2.5.1 Characteristic Function

Being able to describe the distribution of a random variable is imperative when
working with stochastic differential equations. For many, the probability density
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function is the preferable way to do this. However, a closed form expressions for
the probability density functions are seldom available.

The characteristic function is a central aspect in probability theory as it provides
an alternative way of describing a random variable which also completely defines
the probability density function of the variable. The characteristic function exists
and is uniquely defined for all distributions [63].

Definition 11: Characteristic Function

The characteristic function of a random variable, X, with probability density
function, fX , is given by

φX(u) =
∞∫
−∞

exp(iux)fX(x)dx = E[exp(iuX)], u ∈ R (2.9)

One recognises (2.9) as the Fourier transform of the probability density function
of X (See Appendix A for more on Fourier Analysis). Thus, for a given, φX , one
can compute fX by taking the inverse Fourier transform.

fX(x) = 1
2π

∞∫
−∞

exp(−iux)φX(u)du. (2.10)

In Section 5, it will be useful to evaluate convolutions of a function g(x) and a
distribution fX(x). Combining (2.9) with the convolution theorem (Theorem 8)
yields

(fX ∗ g)(x) = F−1 [φX(u)F (g(u))] . (2.11)

The characteristic function can be expanded to higher dimensional random vari-
ables. In particular, let Zt denote a vector of the logarithmic returns of two GBM
driven stochastic variables. In this case

φZt(u) = exp
[
iu(µet− 1

2σ
2)′ − 1

2uΣu′t
]
, where Σ =

[
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2

]
.

Here e = (1, 1), µ = (µ1, µ2)′ is the mean vector, Σ is the covariance matrix,
σ2 = (σ2

1, σ
2
2)′ and ρ is the correlation between the two stochastic variables.

Skipping details, ([63, p. 32-33] and [59, Theorem 14.15]), we have that:

15



2. THEORY

Theorem 4

The distribution of a random variable, Y , is stable if and only if its charac-
teristic function can be written as

φY (u) = exp (iuη − c|u|α(1− iβsgn(u)g(u)) (2.12)

with

g(u) =
tan(πα/2) for α ∈ (0, 1) ∪ (1, 2],

2/π log |u| for α = 1

for α ∈ (0, 2], β ∈ [−1, 1], c > 0 and η ∈ R.

In Theorem 4, c is a scale parameter, η is the location parameter, α is the in-
dex of the distribution which determines the shape and β is called the skewness
parameter.
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3 Modelling Financial Markets

The theory in this chapter is mainly a combination of the theory from [63] and [60].

The common characteristic of the models used in this thesis is based on the
”Efficient Market Hypothesis”. This states that all information which is useful
for predicting future price changes is reflected in the current state of the price
process. This implies that past information cannot improve the prediction of fu-
ture prices. Thus, the Efficient Market Hypothesis assumes prices to be Markov
processes.

Definition 12: Markov Process

A process X = (Xt)t≥0 is called a Markov process if for all n ∈ N \ 0

P[Xtn+1|Xtn , Xtn−1 , ..., Xt0 ] = P[Xtn+1|Xtn ]

The underlying assets I will consider in this thesis will be driven by Lévy processes.
Lévy processes make up a large group of models used in finance and are defined
as follows [63].

Definition 13: Lévy Process

A real-valued (or Rd-valued) stochastic process X = (Xt)t≥0 is called a Lévy
process if

1. it has independent increments, i.e. the random variables Xt0 , Xt1−
Xt0 , ..., Xtn − Xtn−1 are independent for all n ≥ 1 and 0 ≤ t0 < t1 <
... < tn.

2. is has stationary increments, i.e. Xt+h−Xt has the same distribu-
tion as Xh for all h, t ≥ 0.

3. it is stochastically continuous: for every t ≥ 0 and ε > 0

lim
s→t

P [|Xs −Xt| > ε] = 0.

4. the paths t→ Xt are right-continuos with left limits with probability
1.

Note that an immediate consequence of point 1 in Definition 13 is that a Lévy
process is a Markov process.

An immediate consequence of point 2 is that P[Xt0 = 0] = 1. Inserting this
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into (2.9) yields φXt0 (u) = 1. Furthermore, (2.9) obviously implies that for two
independent random variables ∆1 and ∆2, φ∆1+∆2(u) = φ∆1(u)φ∆2(u). One un-
derstands from this that the process Xt can be expressed as a finite or infinite
product of characteristic functions. This characteristic is key for the Path Inte-
gration algorithm presented in Section 5.

Moreover, a Lévy process in Rd can be parameterised by its Lévy triplet, (γ,Σ, ν)
[63]. γ is a vector in Rd of drift coefficients, Σ is a matrix in Rd×d of Brownian
coefficients and ν is the Lévy measure10.

Theorem 5: Lévy-Khinchine Representation

Let X = {Xt}t≥0 be a Lévy process in Rd. Then, there are parameters
γ ∈ Rd, a positive definite matrix Σ ∈ Rd×d and a locally finite measure ν
on Rd \ {0} with

∫
Rd\{0}min(1, |x|2)ν(dx) <∞ such that

φXt(u) = E
[
eiuXt

]
= e−tψ(u) (3.1)

where the characteristic exponent ψ(u) is given by

ψ(u) = −iγ>u+ 1
2u
>Σu−

∫
Rd

(
eiu
>x − 1− iu>xI{|x|≤1}

)
ν(dx), u ∈ Rd,

(3.2)
where I is an indicator function.

The Lévy measure is on the form ν(dx) = u(x)dx where u(x) is called the Lévy
density [60]. The Lévy density is required to have 0 mass at the origin and it
does not have to be integrable. Beyond those two requirements, it behaves like a
probability density function.
Examining the characteristic exponent (3.2) one recognises the first two terms as
a Brownian motion with constant drift. The third term represents the jumps of
the process.

In one dimension, ν(dx) can be interpreted as follows when ν(R) < ∞. The
Lévy process, Xt, makes jumps of size Y ∈ R according to a Poisson process with
intensity ν(Y ) [60].

The processes I will consider in this thesis will be written on the form
St = S0 exp(Xt)

where Xt is a specific Lévy process. The log-returns for these processes will be
denoted Zt and are given by

Zt = ln St
S0
∼ Xt. (3.3)

10Theorem 5 is a generalisation of Theorem 2.2.9 from [63] from one dimensional Lévy pro-
cesses to Rd
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Some choices for Xt will be thoroughly discussed in this section.
The PIFFT method presented in this thesis is applicable only on Lévy models.
The rest of this section is devoted to present some important Lévy models and
reflect on their ability to model financial assets.

3.1 Geometric Brownian Motion
The Geometric Brownian Motion (GBM)[60] is the underlying model in the Black
and Scholes framework and is therefore widely used. The GBM uses the normal
distribution to model log-returns. That is, the choice for Xt, as discussed in
the introduction to this section, is a Lévy process with normally distribution
increments. We write

St = S0 exp(Xnormal
t )

Definition 14: Geometric Brownian Motion

A stochastic process, St, follows a Geometric Brownian Motion if it satisfies
the stochastic differential equation

dSt = St(µdt+ σdWt), S0 > 0, (3.4)

where µ is the drift, σ is the volatility and Wt is a standard Brownian motion
with mean 0 and variance dt.

Note that the GBM satisfies the weak form of the Efficient Market Hypothesis[67]
as the current price recursively reflects all past prices.

Applying Ito’s Lemma [53] to (3.4) yields the unique solution:

St = S0 exp
((
µ− 1

2σ
2
)
t+ σWt

)
.

Thus, the log-returns of the underlying for the GBM will follow

Zt ∼ N
((
µ− 1

2σ
2
)
t, σ2t

)
. (3.5)

Which means the underlying itself is log-normally distributed;

St ∼ lognormal
((
µ− 1

2σ
2
)
t, σ2t

)
.

The characteristic function of the normally distributed logarithmic returns, Zt, in
the GBM model is given by

φZt(u) = exp
(
iu
(
µ− 1

2σ
2
)
t− 1

2u
2σ2t

)
. (3.6)

A major advantage of the GBM is that it results in a convenient closed-form ex-
pression of the prices characteristic function (see section 2.5.1).
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Comparing (3.6) with (3.1), we observe that the Lévy triplet of the GBM is(
µ− 1

2σ
2, σ2, 0

)
. Note that the GBM is a continuous process as it has no jumps.

As discussed in Section 2.2, it is convenient in applications to be able to im-
pose the risk-neutral formulation of the market model. By applying Girsanov’s
theorem [27], we can see that the risk-neutral formulation of the GBM-model is
easily obtained by fixing the drift µ to r − q where r is the risk free rate and q is
the continuous dividend yield [46]. (3.4) then becomes

dSt = St ((r − q)dt+ σdWt) , S0 > 0 (3.7)

and (3.5) becomes
Zt ∼ N

((
r − q − 1

2σ
2
)
t, σ2t

)
. (3.8)

Options with payoffs depending on a stochastic variable evolving according to
(3.7), can therefore be priced using the risk-neutral formula.

Alternatively, instead of using Girsanov’s theorem one could arrive at the same
conclusion by considering a risk free portfolio constructed through ”delta hedging”
[53]. Arbitrage arguments imply that such a portfolio must have the expected re-
turn rate equal to the risk free rate r. Note that delta hedging is only possible for
continuous models for the underlying like the GBM.

3.1.1 Weaknesses in Describing Asset Dynamics

The weaknesses of the GBM and the Black-Scholes framework is widely discussed
and is a subject in itself. I will only give a very brief indication of where the shoe
pinches.

Empirical studies show that the GBM is too simplistic to accurately emulate
movements in asset prices because of some rough assumptions. For example the
assumption of constant drift and volatility and log-normal asset prices. The tails of
the normal distribution are found to be too light to accurately model log-returns.
Observations show that large price swings happen more frequently in reality[38]
and thus a leptokurtic distribution is preferable. It is also more common with large
price swings downwards than upwards, meaning that the real life distribution of
log-returns in the financial market is skewed to the left.

Awareness and communication of the weaknesses of a chosen model is impera-
tive. This was experienced under the financial crisis of 2007-2008 where under-
communication of model weaknesses led to incorrect pricing of risk[70].

The search for better models gained momentum in the late 1980s and 1990s. One
required more sophisticated Lévy processes based on more general distributions
than the normal distribution which could handle for example excess kurtosis and
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skewness. Resulting models include the Normal Inverse Gaussian (NIG) model
and the Variance Gamma (VG) model.

3.2 The Normal Inverse-Gaussian Process

The Normal Inverse-Gaussian (NIG) distribution was initially introduced in 1977
by Barndorff-Nielsen [5]. In the search for more flexible distributions than the
normal distribution for modelling financial objects, Barndorff-Nielsen introduced
the NIG distribution to finance in 1997 [6]. Unlike the normal distribution, the
NIG distribution is flexible in regard to kurtosis and skewness.

There are several parameterisations of the NIG distribution. For continuity with
the code used in this thesis, I will follow [7] to define the four parameter NIG
distribution, NIG(α, β, δ, µ):

Definition 15: Normal Inverse-Gaussian Distribution

The normal inverse-Gaussian distribution is defined as the distribution on
the whole real line with probability density function

fX(x;α, β, δ, µ) = αδ

π
exp

(
δ
√
α2 − β2 + β(x− µ)

) K1
(
α
√
δ2 + (x− µ)2

)
√
δ2 + (x− µ)2

,

(3.9)
where K1 is the modified, third order Bessel function with index 1 and
0 ≤ |β| ≤ α, µ ∈ R and δ > 0.

The modified Bessel function of the third kind with index λ is given by

Kλ(x) = 1
2

∫ ∞
0

uλ−1 exp
(
−1

2x
(
u+ u−1

))
du, x > 0. (3.10)

For more details on Bessel functions, see [2]. µ is a location parameter (µ is the
mean when there is zero skewness), δ is a scale parameter, β is a skewness param-
eter (β = 0 implies zero skewness) and α affects the steepness of the probability
density function; thus affecting kurtosis.

The NIG distribution has the characteristics:
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NIG(α, β, µ, δ)
mean µ+ δβ/

√
α2 − β2

variance α2δ(α2 − β2)−3/2

skewness 3 β

α
√
δ(α2−β2)1/4

kurtosis 3
(

1 + α2+4β2

δα2
√
α2−β2

)
Table 1: NIG-characteristics.

The characteristic function of a NIG distribution with µ = 0 is:

φ̃NIG(u;α, β, δ) = exp
(
−δ

(√
α2 − (β + iu)2 −

√
α2 − β2

))
The introduction of the drift parameter µ to the characteristic function is achieved
by [60]

φNIG(u;α, β, δ, µ) = φ̃NIG(u;α, β, δ) exp(iuµ) (3.11)
and thus

φNIG(u;α, β, δ, µ) = exp
(
−δ

(√
α2 − (β + iu)2 −

√
α2 − β2

)
+ iuµ

)
(3.12)

Barndorff-Nielsen proven the NIG distribution to be infinitely divisible. Thus, one
can define the NIG-process

XNIG =
{
XNIG
t , t ≥ 0

}
(3.13)

where XNIG
0 = 0 and with stationary, independent increments XNIG

s+t − XNIG
s ∼

NIG(α, β, δt, µt).

The Lévy measure for the NIG process is

νNIG(dx) = δα

π

exp(βx)K1(α|x|)
|x|

dx

and γ is given by
γ = 2δα

π

∫ 1

0
sinh(βx)K1(αx)dx.

The Lévy triplet of the NIG process becomes (γ, 0, νNIG). Note that the NIG
process has no Brownian component and thus the stochastic behaviour of the
NIG process is given by a pure jump process.
In theory books one often describes the NIG-process as

XNIG
t = βδ2It + δWIt (3.14)

where It is an Inverse-Gaussian process, IG(a, b), with a = 1 and b = δ
√
α2 − β2

and Wt is a standard Brownian motion. The Inverse-Gaussian distribution is the
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distribution of the time it takes a a standard Brownian motion with drift b (that
is Ws + bs, s ≥ 0) to reach the positive level a > 0.

The IG-distribution has the characteristic function

φIG(u; a, b) = exp
(
− a(
√
−2iu+ b2 − b)

)
and the explicitly known probability density function

fIG(x; a, b) = a√
2π

exp(ab)x−3/2 exp
(
−1

2(a2x−1 + b2x)
)
, x > 0.

The Lévy measure of the IG law is

νIG(dx) = (2π)−1/2ax−3/2 exp
(
−1

2b
2x
)
I(x>0)dx

and
γ = a

b
(2N(b)− 1) ,

where N(x) is the cumulative probability density function of the standard Normal
distribution.

3.2.1 Fit to Market

As mentioned, the NIG-distribution provides a more flexible fit to the market than
the normal distribution. Defining a NIG market model works similarly as for the
GBM. I propose the model

St = S0 exp(XNIG
t )

for some initial value S0 > 0. Thus, increments are now NIG-distributed

lnSs+t − lnSs = XNIG
s+t −XNIG

s ∼ NIG(α, β, δt, µt).

As discussed in Section 2.1, one is often interested in the risk-neutral formulation
of the model with the associated risk-neutral probability measure. For the GBM,
this was achieved by fixing µ = r − q in accordance with Girsanov’s theorem.
A requirement for applying Girsanov’s theorem is that the process is continu-
ous. The NIG-process, however, allows for jumps and is therefore non-continuous.
Therefore it is slightly more complicated to transform to the risk-neutral formu-
lation of the NIG-process. There is, in fact no unique transformation.

One option is to use the Esscher transform. This transform is not always ap-
plicable and may give more than one possible transform. Another alternative is
to use the mean-correcting measure change by manipulating the drift term, µ,
according to [60] such that:

St = S0 exp
(
XNIG
t (α, β, δt, µ̃t)

)
, (3.15)

23



3. MODELLING FINANCIAL MARKETS

where µ̃ = (r − q) + ω and

ω = δ
(√

α2 − (β + 1)2 −
√
α2 − β2

)
.

I reintroduce the variable Zt, the log-returns of the underlying and reformulate
(3.15) to

Zt ∼ NIG(α, β, δt, µ̃t).
Under the mean-correcting measure change, the probability density function of Zt
becomes

fQ
NIG(z; t, α, β, δ, µ̃) = αδt

π
exp

(
δt
√
α2 − β2 + β(z − µ̃t)

)K1(α
√

(δt)2 + (z − µ̃t)2)√
(δt)2 + (z − µ̃t)2)

(3.16)
and the associated characteristic function

φQ
NIG(u; t, α, β, δ, µ̃) = exp

(
−δt

(√
α2 − (β + iu)2 −

√
α2 − β2

)
+ iuµ̃t

)
(3.17)

3.3 The Variance Gamma Process
Introduced by Madan, Carr and Chang in 1998 [13], the three parameter Variance
Gamma (VG) process is obtained by evaluating a Brownian motion with constant
drift and volatility at a random time change given by a gamma process.

In this section, I will introduce the VG process based on the theory from [60],
although with the slight tweak of including a location parameter µ. The location
parameter will be integrated into the VG distribution by replacing the variable of
the distribution by the Mahalanobis distance 11[15].

I will denote the Variance Gamma distribution by VG(σ, ν, θ) with σ being the
volatility of the Brownian motion, ν the variance rate of the time change and θ
the drift of the Brownian motion.
As for the NIG distribution, the Variance Gamma distribution offers more flex-
ibility than the normal distribution by allowing both skewness and excess kurtosis.

I will begin by introducing the Gamma process [13].

Definition 16: Gamma Distribution

The Gamma distribution, Gamma(a, b), with shape a and rate b is defined
as the distribution with the probability density function

fgamma(t; a, b) = ba

Γ(a)t
a−1 exp(−tb), t > 0.

11Mahalanobis distance: Q(x) = (x − µ)′Σ−1(x − µ), for some covariance matrix Σ. I will
consider the univariate VG distribution. Therefore, the Mahalanobis distance is reduced to
1
σ2 (x− µ)2 as seen in (3.20).
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3. MODELLING FINANCIAL MARKETS

The associated Gamma process, G(t; a, b) = {Gt, t ≥ 0} with G0 = 0, has station-
ary, independently Gamma distributed increments such that

(Gs+t −Gs) ∼ Gamma(ta, b).

The Variance Gamma process can now be defined in terms of a Brownian motion
and a Gamma process.

Definition 17: Variance Gamma Process

The Variance Gamma process, XVG = {XVG
t , t ≥ 0} with XVG

0 = 0 is
defined in terms of a Brownian motion with drift, b(t; θ, σ) = θt+ σWt and
a Gamma process with unit mean rate, G(t; 1, ν) as

XVG(t;σ, ν, θ) = b(G(t; 1, ν); θ, σ), (3.18)

where Wt is a standard Brownian motion.

The process has stationary, independent increments

XVG
s+t −XVG

s ∼ VG(σ
√
t, ν/t, θt)

The characteristic function of the Variance Gamma distribution is given by

φVG(u;σ, ν, θ) = (1− iθνu+ (σ2ν/2)u2)−1/ν (3.19)

and the probability density function is available in closed form as

fVG(x;σ, ν, θ, µ) = 2 exp((x− µ)θ/σ2)
ν1/ν
√

2πσΓ( 1
ν
)

K 1
ν
− 1

2

(
σ−2

√
(x− µ)2

(
2σ2

ν
+ θ2

))
(
(x− µ)2/

(
2σ2

ν
+ θ2

)) 1
4−

1
2ν

, (3.20)

Note that a location parameter µ has been introduced as mentioned. Furthermore,
K 1

ν
− 1

2
is the modified Bessel function of the third order with index 1

ν
− 1

2 . That is

K 1
ν
− 1

2
(x) = 1

2

∫ ∞
0

u
1
ν
− 3

2 exp(−1
2x(u+ u−1))du.

The characteristics of the Variance Gamma distribution, VG(σ, ν, θ), are sum-
marised in Table 2.

VG(σ, ν, θ)
mean µ+ θ

variance σ2 + νθ2

skewness θν(3σ2 + 2νθ2)/(σ2 + νθ2)3/2

kurtosis 3(1 + 2ν − νσ4(σ2 + νθ2)−2)

Table 2: VG-characteristics.
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To facilitate the programming in this thesis, I will consider another parameterisa-
tion of the probability density function of the VG distribution. This parameterisa-
tion is the one used in the ’ghyp’-package in R. This package delivers functionality
for the generalised hyperbolic distribution. The VG and the NIG distribution are
both special cases of the generalised hyperbolic distribution. The fitting of distri-
butions to data is performed in this parameterisation. After fitting, I will switch
to the parameterisation used in (3.20). The probability density function in (3.21)
is in the standard parameterisation of the generalised hyperbolic distribution (See
[15] for details).

fV G(x;λ, µ, γ, σ̃) = 2λλ(2λ+ γ2/σ̃2) 1
2−λ

√
2πσ̃Γ(λ)

exp
(
(x− µ)γ/σ̃2

)
Kλ− 1

2

(
σ−2

√
(x− µ)2(2λσ2 + γ2)

)
((x− µ)2(2λσ2 + γ2))

1
2( 1

2−λ)
(3.21)

When switching from the (λ, µ, γ, σ̃)-parameterisation to the (σ, ν, θ, µ)-parameterisation,
µ remains the same while the rest of the parameters are given by

σ ← σ̃ (3.22)
θ ← γ (3.23)

ν ← 1
λ
. (3.24)

In applications, two alternative formulations of the Variance Gamma process are
also often useful.
The first is that the Variance Gamma process can be expressed as the difference
between two independent, increasing Gamma processes (See [13] for details):

XVG(t;σ, ν, θ) = Gp(t;µp, νp)−Gn(t;µn, νn), (3.25)
where we have the relations to the parameters in (3.18):

µp = 1
2

√
θ2 + 2σ2

ν
+ θ

2

µn = 1
2

√
θ2 + 2σ2

ν
− θ

2

νp =
1

2

√
θ2 + 2σ2

ν
+ θ

2

2

ν

νn =
1

2

√
θ2 + 2σ2

ν
− θ

2

2

ν

In the parameterisation with the parameters from (3.25), the Lévy measure is
given by

νV G(x)dx =


µ2
n

νn

exp(−µnνn |x|)
|x| dx for x < 0

µ2
p

νp

exp
(
−µp
νp
x

)
x

dx for x > 0
(3.26)
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With the parameters from (3.18), the Lévy measure of the VG process is given by

νV G(x)dx = exp(θx/σ2)
ν|x|

exp
−

√
2
ν

+ θ2

σ2

σ
|x|

 dx (3.27)

One observes from (3.27) that θ = 0 eliminates the only non-symmetric part of
the Lévy measure thus resulting in a symmetric VG process. Negative θ yields
higher relative probability for negative x-values than positive x-values. Skewness
is therefore controlled by θ where negative θ corresponds to negative skewness.
Furthermore, increasing ν results in a decreasing exponential decay rate of the
Lévy measure around zero. Therefore, kurtosis is controlled by ν with which it
has a positive correlation.

The other mentioned useful formulation comes directly from (3.18). Carr, Madan
and Chang [13] showed that the process

XVG
t = θG

(
t
1
ν
,

1
ν

)
+ σWG(t 1

ν
, 1
ν ) (3.28)

follows a VG process with the parameters σ, ν and θ.

3.3.1 Fit to Market

As for the NIG-distribution, the VG-distribution provides a more flexible fit to
the market than the normal distribution. I propose the model

St = S0 exp(XV G
t )

for some initial value S0 > 0 such that

ln Ss+t
Ss
∼ V G(σ

√
t, ν/t, θt, µt)

or equivalently in the parameterisation from (3.21):

ln Ss+t
Ss
∼ V G(σ̃

√
t, λt, γt, µt).

Furthermore, we have that

φVG(u;σ
√
t, ν/t, θt, µt) = (φVG(u;σ, ν, θ))t exp(iuµt)

= (1− iθνu+ (σ2ν/2)u2)−t/ν exp(iuµt)

To impose the risk-neutral measure I introduce the mean-correcting measure change
for the VG-process by manipulating the drift, µ.

µ̃ = r − q + ωV G,

where
ωV G = 1

ν
ln
(

1− 1
2σ

2ν − θν
)
.
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The risk neutral formulation of the probability density function of the log re-
turns Zt = ln Ss+t

Ss
of the VG-process is then achieved by inserting the time scaled

parameters and making the change from µ to µ̃ in (3.20).
Its equivalent in the parameterisation from (3.21), after some rearranging, is

fVG(z; t, σ, λ, γ, µ) = 2λλt exp((z − µ̃)γ/σ2)√
2πσΓ(λt)

Kλt− 1
2

(
σ−2

√
(z − µ̃t)2 (2λσ2 + γ2)

)
((z − µ̃t)2/ (2λσ2 + γ2))

1
4−

1
2λt

(3.29)
and the characteristic function

φVG(u; t, λ, µ̃, γ, σ̃) =
(

1− iγ

λ
u+ σ̃2

2λu
2
)−tλ

exp(iuµ̃t) (3.30)
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4 Testing Fit to Market

As seen in Section 3, the NIG and VG distribution offers more flexibility when
fitting a model to data than the normal distribution. One expects therefore the
fit of the NIG and VG to outperform the fit of the GBM. This section aims to
test this hypothesis and provide a first glance at the NIG and VG distribution in
action. I will do this by fitting models to some selected markets and evaluating
the fit.

4.1 Parameter Estimation

To set parameters for the fitted distributions, I will use built-in R-functions which
find the maximum likelihood estimators of the parameters of the respective distri-
butions. I refer the reader to [57] for theory on maximum likelihood estimators.
The functions I use are from the ”ghyp”-package in R as mentioned in Section 3.3
[16], [15]. The code for fitting and evaluating the models are included in Appendix
E.2.2 and E.2.3.
The built-in functions return fitted parameters in the ”alpha-bar”-parameterisation.
A drawback of this parameterisation is that it is non-existent for the case of ᾱ = 0
and λ ∈ [−1, 0]. However, this corresponds to a student-t distribution with non-
existing variance which is an unlikely case considering the data I am fitting to.
Additionally, the program has a try-and-catch for this rare case and applies a limit
if necessary.

The alpha-bar parameterisation consists of the parameters (λ, ᾱ, µ,Σ, γ). Their
relations to the parameters in (3.29) are included in the ghyp-package. Their re-
lations to the parameters of the parameterisation used by Barndorff-Nielsen for
the NIG distribution (and indeed in this thesis in (3.9)), (α, µ, δ, β), are found by
little work (See Appendix B) and are summarised in Table 3.

(α, µ, δ, β) � (λ, ᾱ, µ,Σ, γ)
Shape: α = ᾱ + γ

Location: µ = µ

Shape: δ =
√

Σ
Skewness: β = γ

Table 3: Relations between parameterisations for the NIG distribution.

4.1.1 OSEBX

The first market I will consider is the Oslo Stock Exchange Benchmark Index
(OSEBX) from 29.04.2013 to 25.04.2018 found at [35]. The OSEBX consists of 82
stocks from mainly major Norwegian companies. Fitting parameters by maximum
likelihood estimation yielded the parameters in Table 4.
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4. TESTING FIT TO MARKET

Normal µ = 0.00045 σ = 0.00975
NIG α = 102.4702 µ = 0.00129 δ = 0.00965 β = −8.86944
VG λ = 1.474771 µ = 0.00120 Σ = 0.00963 γ = −0.00075

Table 4: Fitted parameters to the logreturns of the OSEBX index for the NIG,
VG and normal distribution.

Table 5 evaluates the fit of the models using the Akaike information criterion and
the Log Likelihood. Additionally, Figures 1 and 2 illustrates the fitted distributions
and displays a qq-plot.

AIC Log likelihood
Normal -8036.873 4020.437

NIG -8161.59 4084.795
VG -8158.093 4083.047

Table 5: Evaluation of fitted distributions for OSEBX market.

Fitted densities for OSEBX

Log returns

D
en

si
ty

−0.04 −0.02 0.00 0.02 0.04

0
10

20
30

40
50

Normal
VG
NIG
OSEBX

Figure 1: Densities of fitted distributions against a histogram of actual data from
OSEBX.
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Figure 2: QQ-plot of the fitted distributions for OSEBX.

4.1.2 DAX

The Deutscher Aktienindex (DAX) consists of 30 major German companies [31].
I do the same calculations as for the OSEBX.

Normal µ = 0.00036 σ = 0.01128
NIG α = 77.94258 µ = 0.001231431 δ = 0.01011801 β = −6.739988
VG λ = 1.10743 µ = 0.00142 Σ = 0.01134 γ = −0.00106

Table 6: Fitted parameters to the logreturns of the DAX index for the NIG, VG
and normal distribution.

AIC Log likelihood
Normal -7747.313 3875.657

NIG -7864.102 3936.051
VG -7879.517 3943.758

Table 7: Evaluation of fitted distributions for DAX market.
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Figure 3: Densities of fitted distributions against a histogram of actual data from
DAX.
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Figure 4: QQ-plot of the fitted distributions for DAX.

4.1.3 Nasdaq 100

The Nasdaq 100 (NDX) [32] consists of 100 major American companies.
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4. TESTING FIT TO MARKET

Normal µ = 0.00065 σ = 0.00957
NIG α = 82.97017 µ = 0.00177 δ = 0.00758 β = −12.05833
VG λ = 1.08930 µ = 0.00150 Σ = 0.00945 γ = −0.00085

Table 8: Fitted parameters to the logreturns of the NDX index for the NIG, VG
and normal distribution.

AIC Log likelihood
Normal -8115.697 4059.848

NIG -8300.992 4154.496
VG -8299.825 4153.913

Table 9: Evaluation of fitted distributions for NDX market.

Fitted densities for NDX

Log returns

D
en

si
ty

−0.04 −0.02 0.00 0.02 0.04

0
10

30
50

70
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Figure 5: Densities of fitted distributions against a histogram of actual data from
NDX.
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Figure 6: QQ-plot of the fitted distributions for NDX.

4.1.4 OMX Copenhagen 20

The OMX Copenhagen 20 (OMXC20) [33] consists of 20 major Danish companies.

Normal µ = 0.00046 σ = 0.01086
NIG α = 95.51966 µ = 0.00136 δ = 0.01116 β = −7.66917
VG λ = 1.50567 µ = 0.00127 Σ = 0.01075 γ = −0.00081

Table 10: Fitted parameters to the logreturns of the OMXC20 index for the NIG,
VG and normal distribution.

AIC Log likelihood
Normal -7737.798 3870.899

NIG -7849.837 3928.919
VG -7848.505 3928.252

Table 11: Evaluation of fitted distributions for OMXC20 market.
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Figure 7: Densities of fitted distributions against a histogram of actual data from
OMXC20.
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Figure 8: QQ-plot of the fitted distributions for OMXC20.

4.1.5 OMX Stockholm 30

The OMX Stockholm 30 (OMXS30) [34] consists of 30 major Swedish companies.
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4. TESTING FIT TO MARKET

Normal µ = 0.00021 σ = 0.01036
NIG α = 103.5103 µ = 0.00093 δ = 0.01087 β = −6.85945
VG λ = 1.63512 µ = 0.00131 Σ = 0.01016 γ = −0.00110

Table 12: Fitted parameters to the logreturns of the OMXS30 index for the NIG,
VG and normal distribution.

AIC Log likelihood
Normal -7885.803 3944.901

NIG -8012.135 4010.068
VG -8007.279 4007.64

Table 13: Evaluation of fitted distributions for OMXS30 market.

Fitted densities for OMXS
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Figure 9: Densities of fitted distributions against a histogram of actual data from
OMXS30.
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Figure 10: QQ-plot of the fitted distributions for OMXS30.

4.1.6 S&P500

The Standard & Poor’s 500 (SPX) [36] consists of 500 large American companies.

Normal µ = 0.00040 σ = 0.00789
NIG α = 92.50443 µ = 0.00096 δ = 0.00590 β = −8.76121
VG λ = 0.95276 µ = 0.00055 Σ = 0.00786 γ = −0.00016

Table 14: Fitted parameters to the logreturns of the SPX index for the NIG, VG
and normal distribution.

AIC Log likelihood
Normal -8601.168 4302.584

NIG
VG -8802.772 4405.386

Table 15: Evaluation of fitted distributions for SPX market.
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Figure 11: Densities of fitted distributions against a histogram of actual data from
SPX.

●

●

●●

●
●●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●●
●

●

●

●●

●
●●

●

●

●●

●

●
●

●●
●●

●●
●

●●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●●

●
●

●

●

●
●●

●

●

●
●

●●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●●●
●

●●

●●

●

●

●

●

●
●

●
●●

●●●

●
●

●●
●

●●●●
●

●

●
●

●

●
●

●

●

●

●

●●●●

●●
●

●

●
●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●●
●

●

●

●

●●●●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●
●

●●

●

●

●

●

●●
●

●
●●

●
●

●

●●●
●●

●

●

●

●
●

●

●

●
●

●●

●

●

●●●

●

●
●●●
●

●●
●●

●
●

●
●●

●

●●●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●
●

●
●●●

●
●●●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●●●●●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●●
●●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●●●

●

●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●●

●●
●

●
●

●

●

●
●●●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●●

●●

●
●

●

●
●●

●

●

●

●●

●

●
●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●

●
●●●

●

●

●
●

●

●●●

●

●

●

●
●

●
●

●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●●

●
●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●●

●●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●●
●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●●

●●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●●
●

●

●
●

●

●●
●

●

●
●

●

●●
●●

●

●
●●

●

●●
●

●●
●

●

●

●

●

●

●

●
●●

●
●

●
●

●●

●

●

●●

●
●

●

●

●

●
●

●
●

●
●

●●
●

●
●●●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●
●●

●●
●●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●●

●●

●

●●●

●

●
●●

●
●●●●

●
●

●

●●●●
●

●

●

●
●●●

●
●

●
●

●

●●●

●

●
●●●

●

●●

●●
●

●
●

●●
●

●
●

●

●●

●

●

●
●

●●
●

●●
● ●

●
●●
●

●●

●

●

●

●
●●

●●
●

●●●

●
●

●●
●●●●

●

●●
●

●

●

●●
●●

●

●

●

●●●

●

●

●●

●

●
●

●●
●

●●●
●

●●●●
●●

●
●●

●
●

●

●

●

● ●

●

●
●

●

●●
●●●

●●
●

●

●
●●

●

●
●●
●●●●

●
●

●
●

●
●

●●●●
●

●●
●●

●
●●●●●

●

●

●

●

●

●

●
●●●

●●●●

●
● ●

●
●

●

●
●

●

●
●

●

●

●

●

●●
●

●
●

●
●●

●
●

●
●

●
●

●
●● ●●

●

●●
●

●

●●
●

●●

●

●

●

●
●

●
●●

●

●
●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●
●

●●
●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

−0.04 −0.02 0.00 0.02 0.04

−
0.

04
0.

00
0.

02
0.

04

QQ−Plot for  SPX

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●

●

●●

●
●●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●●
●

●

●

● ●

●
●●

●

●

●●

●

●
●

●●
●●

●●
●

●●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●●

●
●

●

●

●
●●

●

●

●
●

●●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●●
●

●

●●

●●

●

●

●

●

●
●

●
●●

●●●

●
●

● ●
●

●●● ●
●

●

●
●

●

●
●

●

●

●

●

●●●●

●●
●

●

●
●

●

●● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

● ●
●

●

●

●

● ●●●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●
●

●●

●

●

●

●

●●
●

●
●●

●
●

●

●●●
●●

●

●

●

●
●

●

●

●
●

●●

●

●

●●●

●

●
●●●
●

●●
●●

●
●

●
●●

●

●●●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●
●

●
●●●

●
●●●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●●●●●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●●
●●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●●●

●

●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●●

● ●
●

●
●

●

●

●
●●●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●●

●●

●
●

●

●
●●

●

●

●

●●

●

●
●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●

●
●●●

●

●

●
●

●

●●●

●

●

●

●
●

●
●

●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●●

●
●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●●

●●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●●
●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

●●

●●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●●
●

●

●
●

●

● ●
●

●

●
●

●

●●
●●

●

●
●●

●

●●
●

●●
●

●

●

●

●

●

●

●
●●

●
●

●
●

●●

●

●

●●

●
●

●

●

●

●
●

●
●

●
●

● ●
●

●
●●●

●

●●
●

●

●

●

●

●
● ●

●

●

●

●

●

●●
●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●
●●

●●
●●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●●

●●

●

●●●

●

●
●●

●
● ●●●

●
●

●

● ●●●
●

●

●

●
●●●

●
●

●
●

●

●●●

●

●
●●●

●

● ●

●●
●

●
●

● ●
●

●
●

●

●●

●

●

●
●

●●
●

●●
● ●

●
●●

●
●●

●

●

●

●
●●

●●
●

●●●

●
●

●●
●●●●

●

●●
●

●

●

●●
●●

●

●

●

●●●

●

●

●●

●

●
●

●●
●

●●●
●

●●●●
●●

●
●●

●
●

●

●

●

● ●

●

●
●

●

●●
●●●

●●
●

●

●
●●

●

●
●●

●●●●
●

●
●

●
●

●
●●●●

●

●●
●●

●
●●●●●

●

●

●

●

●

●

●
●●●

●●● ●

●
● ●

●
●

●

●
●

●

●
●

●

●

●

●

●●
●

●
●

●
●●

●
●

●
●

●
●

●
●● ●●

●

●●
●

●

●●
●

●●

●

●

●

●
●

●
●●

●

●
●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●
●

●●
●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●
●●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●●
●

●

●

●●

●
●●

●

●

●●

●

●
●

●●
●●

●●
●

●●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●●

●
●

●

●

●
●●

●

●

●
●

●●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●●
●

●

●●

●●

●

●

●

●

●
●

●
●●

●●●

●
●

●●
●

●●● ●
●

●

●
●

●

●
●

●

●

●

●

●●●●

●●
●

●

●
●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●●
●

●

●

●

●●●●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●
●

●●

●

●

●

●

●●
●

●
●●

●
●

●

●●●
●●

●

●

●

●
●

●

●

●
●

●●

●

●

●●●

●

●
●●●
●

●●
●●

●
●

●
●●

●

●●●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●
●

●
●●●

●
●●●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●●●●●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●●
●●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●●●

●

●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●●

●●
●

●
●

●

●

●
●●●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●●

●●

●
●

●

●
●●

●

●

●

●●

●

●
●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●

●
●●●

●

●

●
●

●

●●●

●

●

●

●
●

●
●

●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●●

●
●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●●

●●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●●
●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●●

●●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●
●●

●

●

●
●

●

●●
●

●

●
●

●

●●
●●

●

●
●●

●

●●
●

●●
●

●

●

●

●

●

●

●
●●

●
●

●
●

●●

●

●

●●

●
●

●

●

●

●
●

●
●

●
●

●●
●

●
●●●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●
●●

●●
●●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●●

●●

●

●●●

●

●
●●

●
●●●●

●
●

●

●●●●
●

●

●

●
●●●

●
●

●
●

●

●●●

●

●
●●●

●

●●

●●
●

●
●

●●
●

●
●

●

●●

●

●

●
●

●●
●

●●
●●

●
●●
●

●●

●

●

●

●
●●

●●
●

●●●

●
●

●●
●●●●

●

●●
●

●

●

●●
●●

●

●

●

●●●

●

●

●●

●

●
●

●●
●

●●●
●

●●●●
●●

●
●●

●
●

●

●

●

●●

●

●
●

●

●●
●●●

●●
●

●

●
●●

●

●
●●
●●●●

●
●

●
●

●
●

●●●●
●

●●
●●

●
●●●●●

●

●

●

●

●

●

●
●●●

●●●●

●
●●

●
●

●

●
●

●

●
●

●

●

●

●

●●
●

●
●

●
●●

●
●

●
●

●
●

●
●●●●

●

●●
●

●

●●
●

●●

●

●

●

●
●

●
●●

●

●
●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●
●

●●
●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●
●●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●●
●

●

●

● ●

●
●●

●

●

●●

●

●
●

●●
●●

●●
●

●●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●●

●
●

●

●

●
●●

●

●

●
●

●●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●●
●

●

●●

●●

●

●

●

●

●
●

●
●●

●●●

●
●

● ●
●

●●● ●
●

●

●
●

●

●
●

●

●

●

●

●●●●

●●
●

●

●
●

●

●● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

● ●
●

●

●

●

● ●●●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●
●

●●

●

●

●

●

●●
●

●
●●

●
●

●

●●●
●●

●

●

●

●
●

●

●

●
●

●●

●

●

●●●

●

●
●●●
●

●●
●●

●
●

●
●●

●

●●●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●
●

●
●●●

●
●●●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●●●●●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●●
●●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●●●

●

●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●●

● ●
●

●
●

●

●

●
●●●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●●

●●

●
●

●

●
●●

●

●

●

●●

●

●
●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●

●
●●●

●

●

●
●

●

●●●

●

●

●

●
●

●
●

●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●●

●
●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●●

●●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●●
●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

●●

●●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●●
●

●

●
●

●

● ●
●

●

●
●

●

●●
●●

●

●
●●

●

●●
●

●●
●

●

●

●

●

●

●

●
●●

●
●

●
●

●●

●

●

●●

●
●

●

●

●

●
●

●
●

●
●

● ●
●

●
●●●

●

●●
●

●

●

●

●

●
● ●

●

●

●

●

●

●●
●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●
●●

●●
●●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●●

●●

●

●●●

●

●
●●

●
● ●●●

●
●

●

● ●●●
●

●

●

●
●●●

●
●

●
●

●

●●●

●

●
●●●

●

● ●

●●
●

●
●

● ●
●

●
●

●

●●

●

●

●
●

●●
●

●●
● ●

●
●●

●
●●

●

●

●

●
●●

●●
●

●●●

●
●

●●
●●●●

●

●●
●

●

●

●●
●●

●

●

●

●●●

●

●

●●

●

●
●

●●
●

●●●
●

●●●●
●●

●
●●

●
●

●

●

●

● ●

●

●
●

●

●●
●●●

●●
●

●

●
●●

●

●
●●

●●●●
●

●
●

●
●

●
●●●●

●

●●
●●

●
●●●●●

●

●

●

●

●

●

●
●●●

●●● ●

●
● ●

●
●

●

●
●

●

●
●

●

●

●

●

●●
●

●
●

●
●●

●
●

●
●

●
●

●
●● ●●

●

●●
●

●

●●
●

●●

●

●

●

●
●

●
●●

●

●
●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●
●

●●
●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

Normal
VG
NIG

Figure 12: QQ-plot of the fitted distributions for SPX.

Discussion

The density plots clearly indicate that the fit of both the NIG and VG distribution
outperforms the fit of the Normal distribution. The QQ-plots provides further ev-
idence. The parameters of the fitted NIG and VG distribution reveals that all
the considered markets are slightly skewed. However, the possibility of describing
excess kurtosis looks to be more important. This is also reflected by the QQ-plots
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4. TESTING FIT TO MARKET

where the normal distribution is outperformed in the tails. Therefore, analyses
using the NIG and VG distribution will take into account the risk of large price
swings better than the normal distribution.

It is difficult to decide which fits the data best of the fitted NIG and VG dis-
tribution. One may notice, however, that the NIG distribution performs better
than the VG distribution in markets where there is less excess kurtosis (OSEBX,
OMXC, OMXS). For the Markets with high kurtosis (DAX, NDX, SPX), the VG
distribution looks like the best fit.

Furthermore, all distributions struggles in the left tail for the OMXS market which
is the most skewed of the considered markets.

4.2 Goodness-of-Fit

In addition to the statistics and visual evaluations presented above, I will apply
one of the most common tests for the goodness-of-fit of a distribution to data;
namely the Kolmogorov-Smirnov test [23].

The Kolmogorov-Smirnov test considers the largest difference between the cu-
mulative distribution of the fitted distribution and the observed cumulative step
function.

Let Sn(x) denote the observed cumulative step function of n data observations.
That is

Sn(x) = 1
n

n∑
i=1
I(Xi ≤ x),

where I(·) is the indicator function. Let F0(x) denote the cumulative distribution
of the distribution fitted to the data. Kolmogorov argues that if F0(x) truly is the
cumulative distribution of the data, then it must be fairly close to Sn(x). The null
hypothesis becomes: H0 : Sn(x) = F0(x).

For these functions, Kolmogorov provided the following theorem with proof in
1933 [42] which was later proved in a less intricate way by Feller in 1948 [24].
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4. TESTING FIT TO MARKET

Theorem 6: Kalmogorov Thm. 1

Suppose that F0(x) is continuous and define the random variable Dn by

Dn = sup
x
|Sn(x)− F0(x)|.

Then for every fixed z ≥ 0 as n→∞,

P(
√
nDn ≤ z)→ L(z) (4.1)

where L(z), often called the Kolmogorov distribution function, is the cumu-
lative distribution function which for z > 0 is given by

L(z) = 1− 2
∑
ν=1

(−1)ν−1e−ν
2z2
. (4.2)

Kolmogorov turns to this theorem for n > 35 in [23] which allows me to confidently
apply it to my market data with n > 1250. The quantiles of L(z) is given in Table
16.

α 0.8 0.9 0.95 0.975 0.99 0.999
Kα 1.0727 1.2238 1.3581 1.4802 1.6276 1.9495

Table 16: Quantiles for the Kolmogorov distribution function.

The null hypothesis is rejected with significance level α if
√
nDn > Kα; in accor-

dance with (4.1). I perform this test for the fitted NIG, VG and normal distribu-
tion. Their values for

√
nDn are presented in Table 17.

Market NIG VG Normal
DAX 0.6311 0.4313 2.4052
NDX 0.4939 0.7515 2.9443

OMXC 0.4883 0.3815 1.9466
OMXS 0.5604 0.6882 1.9174
OSEBX 0.4899 0.6245 1.9491

SPX 0.8800 0.8794 3.2049

Table 17: Values for
√
nDn for the fitted distributions.

Comparing Table 16 and Table 17, I observe that the normal distribution is re-
jected for all sensible significance levels, while both the VG and NIG distribution
is accepted for all considered significance levels. Based on the test, it is difficult
to decide which of the NIG and VG distribution fits the data best as they out-
perform each other for different markets. However, based on the test, one would
conclude that both of them are well suited for modelling financial markets. Plots
of the cumulative distributions used in the Kolmogorov-Smirnov test is included
in Appendix D.
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4. TESTING FIT TO MARKET

It is worth noting that drawing conclusions from the Kolmogorov-Smirnov Test
about which provides the best fit of the NIG and the VG distributions, lead to
different conclusions than those made solely on the density and QQ-plots. This in-
dicates the NIG and VG distribution is similarly suitable for describing log-returns
in the financial market.

An alternative, possibly interesting test would be the Anderson-Darling test [62].
The Anderson-Darling test gives more weights to the tails of the distributions
which would highlight the value of allowing excess kurtosis. The Anderson-Darling
test would therefore probably emphasise the dominance of the NIG and VG dis-
tributions over the Normal distribution in modelling financial markets. The dis-
advantage however, is that one would have to calculate the critical values for the
tests for the NIG and VG distribution as these are not available today [28].

4.3 Note on the effect of time

The goal of the presented Lévy processes is to accurately model the price path of
some underlying asset. I would like to make a note of an easy-to-miss potential
pitfall with regard to this goal. I will consider the DAX as an illustrative exam-
ple and use the parameters fitted to the DAX. I choose to consider the DAX in
particular because it is previously tested and concluded by Rydberg [58] that the
NIG process should fit frequently traded stocks (as those included in the DAX)
very well compared to less traded stocks for example like those from the Danish
market (OMXC).

In academic work in finance, it is common to choose T = 1 and dt = 1/250
corresponding to a year as time unit and daily measurements (there are approxi-
mately 250 business days in a year). I introduce the time step dt = 1/250 in the
respective fitted distributions and the mean correcting drift term.
The density function of the log returns over the time step dt in the risk-neutral
measure is shown in Figure 13 for the NIG and GBM model (the VG model
behaves similarly to the NIG model, but is not plotted here because of some nu-
merical difficulties close to the mean for the parameterisation used here12).

Note that the NIG (and VG) process obtains a very large excess kurtosis com-
pared to in Figure 3. This is because of the effect of dt on the characteristics of
the models as shown in Figure 14.

12This is only a problem for the probability density function. There is no problem with
drawing VG-distributed numbers or with the characteristic function of the VG distribution. See
[15] and [50] for more on this
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4. TESTING FIT TO MARKET

Figure 13: Density of log returns over time step dt = 1/250 with fitted DAX-
parameters.

(a) Mean (b) Variance

(c) Skewness (d) Kurtosis

Figure 14: Model characteristics as a function of the time step dt for the DAX
with fitted parameters.
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One recognises the large kurtosis when studying individual Monte Carlo simulated
price paths; illustrated in Figure 15. Observe that the NIG and VG processes make
a lot of very small, practically insignificant jumps before making a very large jump.
Consequently, the price paths become too ”discrete” to accurately mirror stock
movements from the DAX market. Furthermore, this strange behaviour persists
when increasing the fineness of the time grid (by decreasing dt by a factor 40).
Note, however, that the shape of the price paths from the GBM looks similar for
any choices of T and dt as long as the ratio T

dt
remains the same.

The strange behaviour of the NIG and VG model for T = 1 is of practical im-
portance, but has been overlooked as far as I have seen in other literature. The
result of the overly ”discrete” behaviour (stemming from overly discrete random
time governed by an IG and Gamma process respectively), is that some of the
simulated price paths have not ”converged” into meaningful, random price paths
yet. In fact, some have not yet experienced any significant jumps at all. Conse-
quently, the variance of the NIG and VG process for very small maturity times
becomes artificially small. Remember that the price of an option increases with
the volatility of the underlying. Consequently, the price of an Asian option with
T = 1 becomes significantly cheaper under the NIG and VG model compared to
the GBM model13.

The explanation for this is simple. I have fitted distributions to data of daily
measurements of the DAX. The time unit in the data is therefore one day and
the time step of the data dtD is one. The choice T = 1 therefore corresponds to a
maturity time of one day and dt = 1/250 corresponds to measurements approxi-
mately every five minutes. Clearly, the NIG and VG model is not well suited for
options with maturity times so close to the time step of the data. They simply
need more time to make enough random jumps to converge into realistic price
paths. Keeping this in mind, I accept the time unit of the data and let dt = 1
and for example T = 250. This would now correspond to an option with maturity
time of one year and with daily measurements14. We see that all models produce
sensible price paths when the maturity time is much larger than the time differ-
ence in the data. The prices of Asian options under the different models reflect
this as well. The relative difference between the prices is much smaller and the
price under the NIG and VG model is slightly higher than under the GBM model.
This makes sense because there is a larger probability for large payoffs under the
NIG and VG model because of the excess kurtosis.

13The option price from the cases with T = 1 in Figure 15 was found to be approximately 43
with the NIG and VG model and 46 with the GBM model when doing one million Monte Carlo
simulations. The volatility of the Monte Carlo simulated prices were around 0.05.

14It is important to also remember to scale the risk-free rates accordingly. I have found
interest rates with time unit of one year [20]. To scale them to the time unit of one day I divide
the rates by 250.
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4. TESTING FIT TO MARKET

(a) GBM with dt = 0.004, T =
1.

(b) GBM with dt = 1 · 10−4,
T = 1.

(c) GBM with dt = 1, T = 250.

(d) NIG with dt = 0.004, T =
1.

(e) NIG with dt = 1 ·10−4, T =
1.

(f) NIG with dt = 1, T = 250.

(g) GBM with dt = 0.004, T =
1.

(h) GBM with dt = 1 ·
10−4, T = 1.

(i) GBM with dt = 1, T = 250.

Figure 15: Price paths for the GBM, NIG and VG model for different choices of
T and dt. Dashed lines show price paths, solid lines show running means.
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5 Path Integration Method
In this section I will present the Path Integration method and state a Path Inte-
gration algorithm using the Fast Fourier transform.

5.1 Path Integration
A path integral is defined as a limit of a sequence of finite-dimensional integrals.
Path integration can be thought of as the integral version of the Riemann integral
because a Riemann integral is defined as a limit of a sequence of finite sums. Path
integrals is a frequently used tool in quantum physics for which it was originally
introduced by Richard Feynman in 1942 [25]. In quantum mechanics, a dynam-
ical system can evolve from an initial state to a final state along many different
paths. The expected path (average time evolution) is thus of interest in quantum
mechanics.

A financial system is similar in many ways. The dynamical asset price can evolve
along many different paths from an initial value to some value at maturity. Ac-
cording to the risk-neutral pricing formula, I aim to find the expected price path.
To achieve this, I integrate over all possible realisations over the risk-neutral prob-
ability measure.
The concept of Path Integration is to propagate the probability density function of
an asset price as a continuous stochastic process, S = {St ≥ 0, t ≥ 0}, forward in
time. I will use the law of total probability to find the probability density function
of St+1 given the probability density function of St thus iteratively calculating the
distribution of St for a set of equidistant time points 0 < t1 < · · · < tm = T . In
this manner, the probability density function, g, of Sti+1 given Sti is calculated by

gi+1(si+1) =
∫ ∞

0
pi+1|i(si+1|si)gi(si)dsi, for i = 1, ...,m, (5.1)

where pi+1|i(si+1|si) is a known transition probability density of Sti+1 given Sti = si
and ∆t = ti+1 − ti. Note that if one knows the initial distribution g1(s1), one can
propagate this distribution forward in time iteratively as was desired. In this way
one finds the distribution of Stm to be

gm(sm) =
∫ ∞

0
· · ·

∫ ∞
0

pm|m−1(sm|sm−1) · · · p2|1(s2|s1)g1(s1)dsm−1 · · · ds1. (5.2)

With the distributions of Stm known one can apply Theorem 1 to calculate the
risk-neutral expectation.

5.2 Path Integration with Fast Fourier Transformation
In order to calculate the distribution of Stm numerically one must evaluate m− 1
integrals. For this task I opt to apply Fourier Analysis15.

15There are numerous alternative approches e.g. the Trapezodial rule, Simpson’s method and
Gaussian quadrature.
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5. PATH INTEGRATION METHOD

I start by rewriting equation (5.1) as a convolution integral:

gi+1(si+1) =
∫ ∞

0
pi+1|i(si+1|si)gi(si)dsi =

∫ ∞
0

p̃(si+1 − si)gi(si)dsi (5.3)

with p̃ representing an altered density function such that (5.3) is satisfied.
I then consider the logarithmic returns of the asset price and use equation (3.3)
to show that:

ln
(
si+1

si

)
= ln

( si+1
s0
si
s0

)
= ln

(
si+1

s0

)
− ln

(
si
s0

)
(3.3)= zi+1 − zi. (5.4)

Because of the independent increments of the Geometric Brownian motion, I can
introduce the following notation

f(z1) = p1|0(z1|z0)
f(zi+1 − zi) = pi+1|i(zi+1|zi)

z0 = 0.
(5.5)

With this notation, one can write an expression for the distribution of the cumu-
lative logarithmic return of the asset process, St, up to maturity, tm by

gm(zm) =
∫ ∞
−∞
· · ·

∫ ∞
−∞

f(zm − zm−1) · · · f(z2 − z1)g1(z1)dzm−1 · · · dz1 (5.6)

which one recognises as a series of convolution integrals.
Note that implicit in (5.3) and (5.6) is the assumption that the asset process, S,
possess the Markov property. That is, the increments Sti+1 − Sti are independent
of Stj for j 6= i, i+1. The approach to evaluation of integrals made in this paper is
only applicable for asset processes with the Markov property. Many models mod-
elling asset behaviour possess the Markov property which justifies the acceptance
of this limitation.

For a path-dependent option, the forward recursive expression (5.6) can be calcu-
lated if the initial distribution g1(z1) and the transition density f(zi − zi−1) are
known. Evaluation of the density gm(sm) is made by iterative deployment of the
Convolution Theorem (Theorem 8). Thus, one arrive at the following algorithm:
Here φ is the characteristic function (see section 2.5.1) of the transition probability
density.

For path-dependent options one must perform the inverse transformation in each
time step to accord for the dependency structure. For path-independent options,
like European- and American options, one can do all iterations in the frequency
domain before doing the inverse transformation after completing the loop. Manag-
ing the calculation of the gi with the help of Fourier transforms greatly reduce the
computational time required by reducing integration in the price domain to mul-
tiplication in the frequency domain. Additionally, as discussed in section A.1, the
Fast Fourier transform will reduce the computational time required by algorithm
1 even further.
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5. PATH INTEGRATION METHOD

Algorithm 1: Calculation of gm
1 Initialise gm
2 for i = 2 : m do
3 F (gi) = ĝi(ui)
4 ĝi+1 = ĝiφ
5 gi+1 = F−1(ĝi+1)
6 end
7 Return gm

Extention to 2D

The same procedure can be applied to bi-variate distributions. The two dimen-
sional equivalent to (5.1) becomes

gi+1(si+1, si+2) =
∫ ∞

0

∫ ∞
0

pi+1|i(s1,i+1, s2,i+1|s1,i, s2,i)gi(s1,i, s2,i)ds1,ids2,i

=
∫ ∞

0

∫ ∞
0

p̃(s1,i+1 − s1,i, s2,i+1 − s2,i)gi(s1,i, s2,i)ds1,ids2,i

I do the transformation for sj = (s1, s2),

ln
(
sj,i+1 − sj,i

sj,i

)
= ln

(
sj,i+1

sj,0

)
− ln

(
sj,i
sj,0

)
= zj,i+1 − zj,i

and arrive at the following expression for the distribution at maturity

gm(z1,m, z2,m) =
∫ ∞

0

∫ ∞
0
· · ·

∫ ∞
0

∫ ∞
0

f(z1,m − z1,m−1, z2,m − z2,m−1) . . .

f(z1,2 − z1,1, z2,2 − z2,1)g1(z1,1, z2,1)dz1,m−1dz2,m−1 . . . dz1,1dz2,1

(5.7)
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6 Implementation
When pricing Asian options one must consider both the evolution of the asset
price and the running mean. To keep track of the evolution of the asset price I
consider the log-returns, Zi = ln Si

S0
, for i = 1, ...,m. I let Ai denote the average

at time ti. Using the joint density, fZm,Am , the price of a fixed strike Asian option
can be expressed as

Πt=0 = e−rT
∫ ∞

0

∫ ∞
−∞

max(ym −K, 0)fZm,Am(zm, ym)dzmdym. (6.1)

The arithmetic average at time ti of some asset, Sj for j = 0, ..., i is given by

Ai = 1
i+ 1

i∑
k=0

Sk = S0

i+ 1

i∑
k=0

eZk .

This can be expressed as a running average as

Ai = i− 1
i

Ai−1 + S0

i
eZi for i = 2, ...,m.

With A0 = S0 and A1 = S0
2

(
1 + eZ1

)
. That is, Ai is given by a deterministic

relation to Zi. Consequently, I can define the transition probability for the process
(Zi, Ai)mi=0 as

fZi,Ai|Zi−1,Ai−1(zi, yi|zi−1, yi−1) = δ
(
yi −

i− 1
i

yi−1 −
S0

i
ezi
)
pi|i−1(zi|zi−1),

where δ denotes the Dirac measure16 and pi|i−1(zi|zi−1) is the transition probability
for (Zi)mi=0 as defined in (5.5). By the law of total probability, the joint density is
thus given by

fZi,Ai(zi, yi) =
∫ ∞

0

∫ ∞
−∞

δ
(
yi −

i− 1
i

yi−1 −
S0

i
ezi
)
pi|i−1(zi|zi−1)

fZi−1,Ai−1(zi−1, yi−1)dzi−1dyi−1

(6.3)

I can now perform the integration in the y-dimension to simplify the expression
of the joint probability from a double integral to a single integral. Integrating the
y-dependent terms in (6.3) yields∫ ∞

0
δ
(
yi −

i− 1
i

yi−1 −
S0

i
ezi
)
fZi−1,Ai−1(zi−1, yi−1)dyi−1

= i

i− 1fZi−1,Ai−1(zi−1,
i

i− 1yi −
S0

i− 1e
zi)

16Dirac measure: For any set B,

δ(B) =
{

1, if 0 ∈ B
0, if 0 /∈ B

(6.2)
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Consequently, the joint density can be expressed as

fZi,Ai(zi, yi) = i

i− 1

∫ ∞
−∞

f(zi− zi−1)fZi−1,Ai−1(zi−1,
i

i− 1yi−
S0

i− 1e
zi)dzi−1 (6.4)

Observe that (6.4) is a recursive expression which propagates the probability den-
sity one step forward in time and yields the joint density at ti as a convolution in-
tegral over zi−1. In (6.4), I have used the notation from (5.5) to write pi|i−1(zi|zi−1)
as f(zi − zi−1). The transition density f(zi − zi−1) is model specific and available
in closed form for the GBM, NIG and VG model. They are easily obtained by
setting t = ∆t = ti − ti−1 in (3.8), (3.16) and (3.29) respectively. For simplicity,
∆t is assumed to be constant for all i.

Algorithm 1 requires the characteristic functions of the transition densities to
be known in closed form. These are all found by setting t = ∆t in (3.6), (3.17)
and (3.30):

ΦGBM
zi−zi−1

(u) = exp
(
iu
(
r − q − 1

2σ
2
)

∆t− 1
2u

2σ2∆t
)
,

ΦNIG
zi−zi−1

(u) = exp
(
−δ∆t

(√
α2 − (β + iu)2 −

√
α2 − β2

)
+ iuµ̃∆t

)
,

ΦV G
zi−zi−1

(u) =
(

1− iγ

λ
u+ σ̃2

2λu
2
)−∆tλ

exp(iuµ̃∆t).

It is necessary to determine some initial joint density for Zi and Ai. Given initial
conditions z0 = 0 and y0 = S0 one obtain the initial joint density

fZ0,A0(z0, y0) = δ(z0)δ(y0)

This distribution is clearly singular which is inconvenient numerically. Inspired
by Skaug and Næss [11], I aim to derive a non-singular initial density. Note that
because of the deterministic relationship between Z1 and A1, the joint density
fZ1,A1(z1, y1) is singular in the y-dimension. Therefore, I consider the joint density
after two time steps which will be non-singular. In the following, I derive an
expression for fZ2,A2(z2, y2) and plan to use this as the starting point for the
recursions in (6.4). The law of total probability yields that

fZ2,A2(z2, y2) = fA2|Z2(y2|z2)fZ2(z2), (6.5)

where
fZ2(z2) =

∫ ∞
−∞

fZ2|Z1(z2|z1)fZ1(z1)dz1 (6.6)

and the conditional density fA2|Z2(y2|z2) can be obtained by a variable transfor-
mation. Because A2 is dependent on Z1 and Z2 only, there exists some function
w(Z1) such that A2|Z2 = w(Z1).
The average after two time steps, A2, is given by

A2 = S0

3 (1 + eZ1 + eZ2) (6.7)
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6. IMPLEMENTATION

It is obvious from (6.7) that the function w(Z1) is one-to-one which is true if and
only if the inverse of w(Z1) exists. That is, Z1 = w−1(A2|Z2). I denote w−1(A2|Z2)
as u(A2|Z2). Rearranging terms in (6.7) yields

Z1 = u(A2|Z2) = ln
(3A2

S0
− 1− eZ2

)
(6.8)

Consequently, one has that

z1 = u(y2|z2) = ln
(3y2

S0
− 1− ez2

)
and

δu(y2|z2)
δy2

= 3
3y2 − S0 − S0ez2

.

Using the well-known transformation formula now yields

fA2|Z2(z2|y2) = fZ1

(
u(y2|z2)

) ∣∣∣∣∣δu(y2|z2)
δy2

∣∣∣∣∣ , (6.9)

where fZ1(z1) ∼ N
(
µZ1 = (µ− 1

2σ
2)∆t, σZ1 = σ2∆t

)
for the GBM.

In order to state the joint density fZ2,A2(z2, y2), I also need to express (6.6)
by y2 and z2 only. The independent increments of the Lévy models imply that
fZ2|Z1(z2|z1) = fZ1(z2 − z1) (see (5.5)). Equation (6.6) becomes

fZ2(z2) =
∫ ∞
−∞

fZ1(z2 − z1)fZ1(z1)dz1. (6.10)

Now, using (6.8) to substitute17 z1 with u(y2|z2) in fZ1(z2 − z1) yields

fZ2(z2) = fZ1(z2 − u(y2|z2))
∫ ∞
−∞

fZ1(z1)dz1

= fZ1(z2 − u(y2|z2))

= 1√
2πσZ1

exp
(
−1

2
z2 − u(y2|z2)− µZ1

σ2
Z1

)

which now only contain z2 and y2 as variables.
The joint density, fZ2,A2(z2, y2), from (6.5) is now given by

fZ2,A2(z2, y2) = fZ1

(
ln
(3y2

S0
− 1− ez2

)) ∣∣∣∣∣ 3
3y2 − S0 − S0ez2

∣∣∣∣∣ fZ1

(
z2 − ln

(3y2

S0
− 1− ez2

))
.

(6.11)
Using (6.11) as starting point for the recursions in (6.4) one can use Algorithm 1
to find the joint density at maturity. At this point, one can apply any numerical
integration scheme to (6.1) to price the option. I will use a built in function for
the trapezoidal rule to evaluate the integration in (6.1).

17Note that this is neither a transformation of random variables (I still consider fZ1)) or a
substitution of integral variable (I still integrate over dz1).

50



7 Numerical Results

In addition to implementing the pricing method described in section 6, I imple-
mented a pricing method based on Monte Carlo simulations for verification of the
”PIFFT-prices”. Both codes were written in both MATLAB and R. Distributions
are fitted to data in R where the ”ghyp”-package is available. The PIFFT-pricing
requires interpolation for which I have used the built-in function ”interp2”. This
function has been translated from MATLAB to R, but the translation is much
slower than the original. Therefore, the pricing is performed in MATLAB. The
majority of the codes are included in Appendix E. Implementation in a lower-level
language like C# and Java would yield much faster results. However, the aim is
to derive and implement the PIFFT method for GBM, NIG and VG dynamics
and compare it to the conventional Monte Carlo simulations. This is achieved in
Matlab and R. The functions were run on a computer with Intel Core i7-6600U
CPU @ 2.60-2.8 GHz with 16 GB RAM.

I have used the fitted parameters for the DAX and considered strike values equal to
N = {0.99S0, S0, 1.01S0}. The numerical representations of the probability den-
sity functions and the transition probabilities are set on an N ×N -grid. The fast
Fourier transform is most efficient on grids where N is power of 2. With the current
code, my computing equipment limits my choices of N to {256, 512, 1024, 2048, 4096}
(or smaller grids). I performed both 1 million and 5 million Monte Carlo simula-
tions to ensure converged results and to compare runtimes for different accuracy
levels. The option price from the Monte Carlo simulations will have some stan-
dard deviation. Therefore, I also computed a 95 % confidence interval (CI) of the
Monte Carlo prices by performing the pricing procedure 100 times. The results
are summarised in the following tables.

Strike \N 128 256 512 1024 2048 4096
12298,1 2321,4213 293,8632 293,8396 293,8518 293,8504 293,8508
12422,3 2214,7912 227,2636 227,2524 227,2590 227,2577 227,259
12546,5 2111,3409 171,5270 171,5286 171,5296 171,5306 171,5307

Time (sec) 0,871 1,919 8,316 37,160 218,467 570,475

Table 18: Values of Asian options for the given parameters under the GBM model.

Strike \N MC CI
12298,1 293.4762 292.0418 294.9105
12422,3 226.8964 225.6124 228.1804
12546,5 171.1875 170.0637 172.3112

Time (sec) 50.2277

Table 19: Values of Asian options for the given parameters under the GBM model
found by Monte Carlo simulations.
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Strike \N MC CI
12298.1 293.5583 293.2630 293.8537
12422.3 226.8827 226.7630 227.3023
12546.5 171.3337 171.0897 171.5777

Time (sec) 390.700

Table 20: Values of Asian options for the given parameters under the GBM model
found by 5 million Monte Carlo simulations.

Strike \N 256 512 1024 2048 4096
12298,1 374,5544 296,3830 296,3861 296,3846 296,3847
12422,3 306,1695 229,4202 229,4175 229,4162 229,4171
12546,5 248,3562 173,3334 173,3249 173,3259 173,3257

Time (sec) 1,113 4,643 20,573 111,007 595,022

Table 21: Values of Asian options for the given parameters under the NIG model.

Strike \N MC CI
12298,1 296.1317 294.7474 297.5160
12422,3 229.1588 227.9190 230.3986
12546,5 173.0742 172.0118 174.1366

Time (sec) 53.158

Table 22: Values of Asian options for the given parameters under the NIG model
found by Monte Carlo simulations.

Strike \N MC CI
12298.1 296.1354 295.7614 296.5095
12422.3 229.1594 228.8199 229.4989
12546.5 173.0722 172.7716 173.3728

Time (sec) 401.080

Table 23: Values of Asian options for the given parameters under the NIG model
found by 5 million Monte Carlo simulations.

Strike \N 256 512 1024 2048 4096
12298,1 574,2738 294,8053 295,5703 295,3597 295,3487
12422,3 504,4907 228,8755 228,6386 228,4125 228,4025
12546,5 444,1492 173,6401 172,5962 172,3612 172,3501

Time (sec) 1,113 4,643 20,573 111,007 595,022

Table 24: Values of Asian options for the given parameters under the VG model.
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Strike \N MC CI
12298,1 295.0672 293.5469 296.5875
12422,3 228,1431 227,4306 228,8556
12546,5 172.0797 170.9097 173.2496

Time (sec) 57,233

Table 25: Values of Asian options for the given parameters under the VG model
found by Monte Carlo simulations.

Strike \N MC CI
12298.1 295.0282 294.6411 295.4154
12422.3 228.0854 227.7428 228.4280
12546.5 172.0482 171.7739 172.3626

Time (sec) 423.020

Table 26: Values of Asian options for the given parameters under the VG model
found by 5 million Monte Carlo simulations.

7.1 Experimentation

The results presented above are the conclusive results obtained after some nu-
merical tricks to achieve convergence. Initially, there were some problems with
pricing under the VG model. Numerical difficulties with the VG model have been
experienced in several theses and articles in the past - most often resulting in ap-
plying only the NIG model. I too experienced some difficulties with the VG model.

The initial results, without any numerical tricks, under the VG model are given
in Table 27. There is clearly no convergence.

Strike \N 256 512 1024 2048 4096
12298,1 2762,7405 2549,1258 2482,7738 2623,5155 2281,6870
12422,3 2649,7535 2445,4906 2375,3518 2508,9662 2178,6244
12546,5 2537,4608 2342,4221 2268,8926 2395,5219 2076,7844

Time (sec) 1,088 4,617 20,268 114,496 577,765

Table 27: Results under the VG model without numerical tricks.

Searching for the source of the numerical issues with the VG model, I compared
the characteristic functions of the VG and NIG distribution with the fitted DAX
parameters. The imaginary part of the characteristic functions are plotted in
Figure 16.
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(a) NIG (b) VG

Figure 16: Im(Φ) for the NIG and VG distribution with the fitted DAX param-
eters and N = 1024.

The imaginary part of the characteristic function of the VG distribution clearly
has a discontinuity which may cause numerical problems. Although reluctant to
tamper with the distribution, several experimental alterations were tested. For
example Local Regression Smoothing [37] around the discontinuity. The smooth-
ing somewhat improved the results. However, the most effective solution turned
out to be to set an area of the probability density function far out in the tails in
the z-direction to zero.

This alteration was motivated from observing the propagated probability den-
sity function after each time step. Figure 17 displays the propagated probability
density function at some key time steps. One observes that the numerical prob-
lems start in the tails at the corners of the grid and that the problems increase
with each time step. Numerical problems at the edges of a grid is a common
problem in numerical mathematics.
Controlling the tails after each time step stops the problems from increasing be-
fore they become significant. Special care was taken to ensure that the controlled
area was far enough out in the tails to be statistically insignificant for the purpose
of discovering the mean of the distribution. Figure 18 shows the corresponding
controlled propagation to Figure 17.

54



7. NUMERICAL RESULTS

(a) t = 5 (b) t = 15

(c) t = 25 (d) t = 45

Figure 17: Propagated probability density function at some key time steps (DAX
parameters, N = 1024).
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(a) t = 5 (b) t = 15

(c) t = 25 (d) t = 45

Figure 18: Propagated probability density function at some key time steps with
controlled tails (DAX parameters, N = 1024).

As one would expect, option prices when controlling the tails are slightly lower
than when not controlling the tails because option prices increase with the pos-
sibility of large returns. However, this effect can be made as small as desired
by expanding the grid and moving the controlled area further out in the tails.
By testing the control alternation on the NIG-prices where I get meaningful val-
ues with and without controlling the tails, I find its effect on the price to be
around 0.037 with the current grid size. The calculated prices when controlling
the tails stay within the 95 % confidence interval found by Monte Carlo simu-
lations. Furthermore, when controlling the tails of the NIG distribution, I also
achieved converged prices for smaller grids. Specifically, for N = 512. The prices
when controlling are given in Table 21. When not controlling, the price under
NIG dynamics for N = 512 had not converged (and was calculated to 309.4829).
Interestingly, similarly as for the VG distribution, the characteristic function of
the NIG distribution features a discontinuity for N equal to or smaller than 512.
Under these conditions, the propagation of the probability density function of the
NIG behaves similarly as in Figure 17. Note that the discontinuity in the charac-
teristic function does not disappear for the VG distribution even for N = 8192.
The GBM distribution first gets a discontinuity in the characteristic function for
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N = 128. However, meaningful prices under GBM dynamics were achieved for
N = 256 only when controlling the tails.

Lastly, I would like to add that in order to test the robustness of the PIFFT
method under GBM, NIG and VG, the method was also tested for different matu-
rity times and time steps and different markets with equaly satisfying results. It is
worth mentioning that the effect of small maturity times, as discussed in Section
4.3, was also observed with the PIFFT method.
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8 Discussion

The results in this project thesis undoubtedly present Path Integration combined
with the Fast Fourier transform as a worthy of mentioning alternative to Monte
Carlo simulations for pricing Asian options. Furthermore, the NIG and VG model
is found to fit log returns of stocks prices much better than the traditional GBM.

When comparing Monte Carlo simulations to PIFFT, any PIFFT-prices within
the confidence intervals from the MC simulations should be accepted. Therefore,
PIFFT under GBM dynamics prices Asian options on the DAX over 26 times
faster than 1 million Monte Carlo simulations achieve. Under NIG dynamics, the
PIFFT method is over 11 times faster than 1 million Monte Carlo simulations.
PIFFT under VG dynamics is about 2.8 times faster than 1 million Monte Carlo
simulations.
When considering the Monte Carlo results after 5 million simulations, PIFFT cal-
culated acceptable prices over 10 times faster than the simulations under GBM
dynamics. Under NIG dynamics, PIFFT was over 86 times faster and under VG
dynamics, PIFFT was about 4 times faster. The phenomenal performance of the
PIFFT method under NIG dynamics compared to Monte Carlo simulations is
probably partly because of luck with the limits of the confidence interval. The
results in Table 21 suggests that N ≥ 1024 is required to accurately calculate
option prices under the given parameters. In this case, PIFFT is around 20 times
faster than 5 million Monte Carlo simulations under NIG dynamics.
The size of the confidence interval of the option prices found by 1 million Monte
Carlo simulations is arguably too large. The results when performing 5 million
simulations are more acceptable. Therefore, the comparison with 5 million Monte
Carlo simulation is the most informative.

Furthermore, an additional advantage of the presented method is how intuitive
it is and easy to grasp under the assumption of basic understanding of the Fourier
transformation. The recursions in (6.4) for example, are merely consecutive appli-
cations of the Law of Total Probability while I have also used the transformation
formula, the definition of an expected value and some probability theory. Al-
though the required statistical theory is basic, Path Integration with the Fast
Fourier transform also requires some numerical theory. For instance in express-
ing the recursions as convolution integrals such that the Fast Fourier transform
can be used. This is perhaps why it is less popular with practitioners than Monte
Carlo simulations which mainly demands statistical skills and little numerical skill.

Generally, the choice of grid and its fineness is of great importance. Conver-
gence was not achieced on the roughest grids. Meanwhile, the run times increased
rapidly with finer grids. Reducing run times is at the essence of numerical theory.
One cannot avoid the numerous transformations and inverse transformations, but
one could improve the speed of the interpolations in each time step used in com-
puting the joint density between grid points. Any improvements in the run time
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of these computations will greatly affect the run time of the method because they
are performed in each time step. For example, one could use interpolation once
again to reduce the number of grid points at which computations are performed.
One could perform computations at some subset of the grid and obtain values at
the grid points outside the subset by interpolation.

Furthermore, one could argue that a grid expanding with time would be use-
ful. Figure 15 shows that the probability mass is more centred around the mean
at early time steps before becoming more smeared out at later time steps. An
initially smaller grid would imply fewer grid points in total over all time steps.
When attempting to improve the grid, it is important to remember that the Fast
Fourier transformation requires equidistant grids. This is a major disadvantage
of the PIFFT as for example intervals with inverse linear boundaries can be very
useful - especially when working with distributions with excess kurtosis [60].

It should also be noted that the PIFFT method was shown to perform very well
for a range of other options in earlier theses. For example Barrier and Lookback
[50] and Spread options [65]. In fact, flexibility must be regarded as one of the
advantages of the method. The requirements for the method is that the transition
probability preserves the Markov property and that its characteristic function is
known in closed form (the transition probability itself does not need to be known in
closed form). This makes it possible to implement the method for Lévy processes
which is a large class of market models. It also implies great freedom of choice
of the transition probability and that the transition probability can be altered for
each time step. Thus, the method is flexible regarding complex path-dependent
structures and makes it possible to change the distribution parameters in each
iteration. In finance, this is particularly useful because for example ∆t is often
non-constant (due to weekends and similar) and empirical studies show that also
the volatility of an asset is non-constant (motivating the introduction of stochastic
volatility [60]).

The swiftness of the method for Barrier and Spread options compared to Monte
Carlo simulations was demonstrated in 2014[65]. While runtimes for Barrier and
Spread options were approximately 50 and 40 times better than the equivalent
Monte Carlo run times, Asian options prove to be more demanding. An impor-
tant reason for this is that Asian options require the inverse Fast Fourier transform
to be performed in each iteration in order to calculate the running mean. Barrier
and Spread options can do all time steps in the frequency domain before applying
the inverse Fast Fourier transform once at maturity. This suggests that when
considering higher dimensional derivatives, Path Integration is more suitable for
derivatives with dimensions that are independent (e.g. Spread Options on assets).

Furthermore, informally one can think of Path Integration and Monte Carlo sim-
ulations doing something very similar, only in a different order. Monte Carlo
simulation considers one realisation over the entire time interval in each iteration
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while Path Integration considers all possibilities at the current time step in each
iteration. In this regard, Path Integration is conceptually very satisfying in the
sense that one covers the entire sample space in one completion of the algorithm
compared to Monte Carlo simulations which will not cover the entire sample space
in finite time. Consequently, the price computed by Monte Carlo simulations will
always have some uncertainty while the Path Integration method yields one sharp
value. However, for option pricing this difference is of little importance. In risk
analysis for example, where tail behaviour is essential, this difference can be im-
portant.

It is also important to note that the run time of the Monte Carlo simulations
possibly could be reduced by a more thorough investigation into the minimal
number of realisations required to obtain meaningful confidence intervals. The
easiest, but also most time consuming approach would be to do this empirically.
Alternatively, one could make a more theoretical approach. Monte Carlo simu-
lations use the mean estimator for the option price. For the GBM model, one
could derive the theoretical variance of this estimator by realising that the mean
estimator consists of a scaled sum of a scaled sum of log-normally distributed
random variables18. Then, one could perform simulations until the empirical vari-
ance of the mean estimator19 becomes satisfyingly close to the theoretical variance.
However, the properties of a sum of non-independent log-normally distributed ran-
dom variables are quite complicated and have not been extensively investigated
in the work on this thesis. I refer the reader to the work of Hcine and Bouallegue
[45] for more on the properties of a sum of correlated log-normal random variables.

Comparing the PIFFT method to other methods in the Transform and Quadra-
ture class, the CONV and COS method are the most comparable. The CONV
method is very similar, but propages the payoff function forward in time instead
of the density function. The immediate availability of the payoff function with the
CONV method makes it well suited for pricing options with the possibility of early
exercise. The CONV method also exploits the efficiency of the Fast Fourier trans-
form. Additionally, the COS method also uses the Fast Fourier transform and is
the most efficient method of the three. However, the COS method is also the most
complicated and is therefore less likely to become popular with practitioners.

18The stochastic part of the price of an Asian option is the average at maturity. The average
is a scaled sum the log-normally distributed asset prices. The mean estimator used in the Monte
Carlo simulations is again a scaled sum of these prices.

19S2 = 1
n−1

∑n
i=1(Xi − X̄)2
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[59] K. Sato. Lévy Processes and Infinitely Divisable Distributions. Cambridge
University Press, 1999.
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Appendices

A Fourier Analysis

This section gives a brief introduction to the Fourier transform and the Fast Fourier
transform which will be central in estimating the characteristic function of the
transition probability for stochastic differential equations driven by Levy processes.

The Fourier transformation transforms a function from its original domain, e.g.
x, to the frequency domain, u, by representing the function as an infinite sum of
sine- and cosine terms with distinct frequencies. The Fourier transform, F (·), of
a function f(x) and its inverse transform is defined as follows [43].

Definition 18: Fourier Transform and its Inverse

F (f) = f̂(u) =
∫ ∞
−∞

f(x)e−iuxdx

F−1(f̂) = f(x) = 1
2π

∫ ∞
−∞

f̂(u)eiuxdu
(A.1)

For the Fourier transform of a function f(x) to exist, the following conditions must
be fulfilled

Theorem 7: Existence of the Fourier Transform

Let the function f(x) be piecewise continuous on every finite interval and
absolutely integrable on the x-axis, i.e.∫ ∞

−∞
|f(x)|dx <∞. (A.2)

Then, the Fourier transform f̂(u) = F (f(x)) exists.

Note that a probability density function, P (x) have that P (x) ≥ 0 for all x and∫∞
−∞ P (x)dx = 1. Thus, the Fourier transform exists for all piecewise continuous

probability density functions.

The Fourier transform can be extended into higher dimensions. Because Asian
options are two dimensional, with the price of the underlying and its average
being the two dimensions, it is sufficient to define the 2 dimensional Fourier trans-
formation.
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A. FOURIER ANALYSIS

Definition 19: 2D Fourier Transform and its Inverse

f̂(u1, u2) =
∫ ∞
∞

f(x1, x2)e−i(u1x1+u2x2)dx1dx2

f(x1, x2) = 1
2π

∫ ∞
−∞

f̂(u1, u2)ei(u1x1+u2x2)du1du2

(A.3)

An advantage of using Fourier transformation is its effect on convolutions. A
convolution is defined as

Definition 20: Convolution

h(x) = (f ∗ g)(x) =
∫ ∞
−∞

f(p)g(x− p)dp =
∫ ∞
−∞

f(x− p)g(p)dp.

On such convolutions, one has the following relation.

Theorem 8: Convolution Theorem

Let f(x) and g(x) be piecewise continuous, bounded and absolutely inte-
grable functions on the x-axis. Then

F (f ∗ g) = F (f)F (g). (A.4)

Informally, Theorem 8 means that the Fourier transform simplifies a convolution
integral in the original domain to a product in the frequency domain. This result
will be central for the numerical solution algorithm presented in section 5.2.

A.1 Discrete and Fast Fourier Transform

A common scenario in applications is to have a finite number of measurements
of some function of interest. This is the case with financial derivatives where the
price of the underlying is measured at discrete time points. The discrete Fourier
transform was developed for such scenarios.
Assume N measurements are taken of a function f(x) over an interval x ∈ [0, T ]
at equidistant points, x = [x0, x1, ..., xN−1], such that

xk = Tk

N
, k = 0, 1, ..., N − 1. (A.5)

Then, the discrete Fourier transform is defined as follows.
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Definition 21: Discrete Fourier Transform

Let fk denote f(xk) of some function f(x) with xk from (A.5). Then, the
discrete Fourier transform of a signal f = [f0, ..., fN−1]T , is the signal f̂ =
[f̂0, ..., f̂N−1] with components

f̂n =
N−1∑
k=0

fke
−inxk , n = 0, 1, ..., N − 1, (A.6)

Note, the superscript T denotes the transpose in Definition 21. f̂n is the frequency
spectrum of the signal. In vector notation, Definition 21 becomes

f̂ = FNf , (A.7)

where the N ×N Fourier matrix FN = [enk] has the entries (given from (A.6))

enk = e−inxk = e−2πink/N = wnk, w = wN = e−2πi/N ,

where n, k = 0, ..., N − 1.

Solving the system in (A.7) with standard solution techniques requires O(N2)
operations. The fast Fourier transform is an improved computational method for
solving (A.7) which requires O(Nlog2N) operations. There are several variations
of the fast Fourier transform. I will not give a detailed description of these in this
paper, but refer to [69] and [48] for a thorough review.
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B Fitted Parameters
This appendix elaborates on the relations in Table 3.
I have used built-in functions from the ”ghyp” package in R to perform the fitting
of NIG and VG distributions to several markets (See Section 4).

The functionality in the package considers initially a generalised hyperbolic distri-
bution of which the NIG and VG distribution are special cases. In the following, let
X be a d-dimensional, generalised hyperbolic distributed random variable. Under
the ”standard” parameterisation used in ghyp, the generalised hyperbolic distri-
bution of X is defined as the distribution with the probability density function

fX(x;λ, χ, ψ, µ,Σ, γ) =
(
√
ψ/χ)λ(ψ + γ′Σγ)d/2−λ

(2π)d/2|Σ|1/2Kλ(
√
χψ) ×

Kλ−d/2(
√

(χ+Q(x))(ψ + γ′Σ−1γ))

(
√

(χ+Q(x))(ψ + γ′Σ−1γ))d/2−λ
exp((x− µ)′Σ−1γ), (B.1)

where Q(x) = (x− µ)′Σ(x− µ).
For computational purposes (details in [15]), the fitting is performed under the
(λ, ᾱ, µ,Σ, γ)-parameterisation. This parameterisation has a given relation to the
(λ, α, µ,∆, δ, β)-parameterisation. This parameterisation is similar to the ones
used in (3.9) and (3.20).

We are interested in the univariate case and set d = 1. We also need the ob-
servation discussed in [15] that the Bessel function is symmetric with respect to
the index λ.

The switch from (λ, ᾱ, µ,Σ, γ) to (λ, χ, ψ, µ,Σ, γ) are given by the relations (B.2),
(B.3) and that Σ and γ are unchanged.

ψ = ᾱ
Kλ+1(ᾱ)
Kλ(ᾱ) (B.2)

χ = ᾱ2

ψ
= ᾱ

Kλ(ᾱ)
Kλ+1(ᾱ) (B.3)

The switch from (λ, χ, ψ, µ,Σ, γ) to (λ, α, µ,∆, δ, β) is given by:

∆ = |Σ|−1Σ
β = Σ−1γ

δ =
√
χ|Σ|

α =
√
|Σ|−1(ψ + γ′Σ−1γ)

The opposite switch is made by

Σ = ∆, γ = ∆β, χ = δ2, ψ = α2 − β′∆β
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∆ in the (λ, α, µ,∆, δ, β)-parameterisation is a matrix with determinant 1. In the
univariate case, this simplifies to ∆ = 1 [15]. Therefore, in this parameterisation,
in the univariate case, some of the relations simplifies. The results are

∆ = Σ = 1 (B.4)
β = γ (B.5)
δ = √χ (B.6)
ψ = α2 − β2 (B.7)

NIG Distribution
The NIG distribution is the special case of the generalised hyperbolic distribution
where λ = −1/2, χ > 0 and ψ > 0. Note that this simplifies (B.2) and (B.3) to

ψ = ᾱ (B.8)
χ = ᾱ (B.9)

Taking one step at a time, d = 1 and λ = −1/2 simplifies (B.1) to

fX(x;χ, ψ, µ,Σ, γ) = (ψ/χ)− 1
4 (ψ + γ2)

(2π)1/2K− 1
2
(
√
χψ)×

K−1(
√

(χ+Q(x))(ψ + γ2))√
(χ+Q(x))(ψ + γ2)

exp((x− µ)γ),

where Q(x) = (x − µ)2. Furthermore, the Modified Bessel function of the third
order can be stated explicitly for λ = −1/2:

K−1/2(x) sym.= K1/2 =
√
π

2xe
x, x > 0. (B.10)

Writing K− 1
2
(
√
χψ) explicitly and rearranging yields

fX(x;χ, ψ, µ,Σ, γ) = ψ1/2(ψ + γ2)
π

e
√
χψ
K1(

√
(χ+ (x− µ)2)(ψ + γ2))√

(χ+ (x− µ)2)(ψ + γ2)
e(x−µ)γ

Using the relations (B.4),(B.5),(B.6) and (B.7), rearranging and merging the ex-
ponential functions yields

fX(x;α, µ,∆ = 1, δ, β) = α(α2 − β2)1/2

π
exp

(
δ
√
α2 − β2 + (x− µ)β

) K1
(
α
√
δ2 + (x− µ)2

)
√
δ2 + (x− µ)2

Combining (B.6) with (B.9), we have that δ2 = χ = ᾱ. Furthermore, from (B.8),
ᾱ is also equal to ψ. Finally, combined with (B.7), this yields that (α − β)1/2 =
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δ. Conclusively, when excluding the parameter ∆ which was equal to 1 in the
univariate case, one gets

fX(x;α, µ, δ, β) = αδ

π
exp

(
δ
√
α2 − β2 + β(x− µ)

) K1
(
α
√
δ2 + (x− µ)2

)
√
δ2 + (x− µ)2

,

which we recognise as (3.9).

This proves that the relation between the fitted parameters and the parameters
initially used by Barndorff-Nielsen (and me in this thesis), is indeed given by 3.

VG Distribution

The Variance Gamma distribution is the special case of the generalised hyperbolic
distribution where χ→ 0 and λ > 0.
The Variance Gamma distribution as presented in Section (3.21) is already in the
standard parameterisation of the ghyp-package.

To avoid unnecessary confusion, it is however worthy of mentioning that the code
returns a value for a parameter ψ which is excluded in (3.21). The parameter ψ
is the same ψ as found in (B.1) and satisfies the relation in (B.2). However, for
the Variance Gamma distribution, (B.2) simplifies to

ψ = ᾱ
Kλ+1(ᾱ)
Kλ(ᾱ) = 2λ.

I therefore limit myself to only using the parameters (λ, µ, σ, γ).
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C Types of Averaging
In finance there are two frequently used methods for finding the average of a set
of numbers [53, p. 223-225].

C.1 Arithmetic Mean
The arithmetic mean, µA, of a series, S, is given by

Discrete: µA = 1
N

N∑
i=1

S(ti)

Continuous: µA = 1
T

∫ T

0
S(τ)dτ

C.2 Geometric Mean
The geometric mean, µG, of a series, S is given by

Discrete: µG =
(
N∏
i=1

S(ti)
) 1
N

Continuous: µG = exp
(

1
T

∫ T

0
logS(τ)dτ

)

The geometric mean is more complicated to compute than the arithmetic mean,
but it has the advantage of taking compounding into account when dealing with
non-independent values such as return rates.
When considering independent values, the arithmetic mean is more accurate and
when considering non-independent values, the geometric mean is more accurate.
Furthermore, µG ≤ µA [4], with the difference depending on the variance of the
underlying in the following manner

µG ≈ µA −
1
2Var[Ω]

[3].
I will consider Asian options with a stock price as the underlying which does not
require the same compounding as for example return rates. Thus, I will consider
arithmetic Asian options which are the most common type of Asian option [26].
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D. PLOTS ASSOCIATED WITH THE KOLMOGOROV-SMIRNOV TEST

D Plots Associated with the Kolmogorov-Smirnov
Test
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Figure 19: Cumulative distributions associated with the Kolmogorov-Smirnov Test
discussed in Section 4.2.
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E Code

E.1 MatLab Codes

E.1.1 Main

1 c l e a r a l l ;
2 c l c ;
3 in i t ia l i seAndGetParams ;
4 o v e r a l l r u n t i m e = t i c ;
5

6 g r i d s i z e s = 2 . ˆ [ 8 9 10 11 1 2 ] ;
7 s t r i k e s = [ 0 . 9 9 ∗ s t r i k e , s t r i k e , 1 .01∗ s t r i k e ] ;
8

9 %% Pr i c ing
10 gbmpipr ices = ze ro s ( l ength ( s t r i k e s ) +2, l ength ( g r i d s i z e s )+1)

; % G r i d s i z e s a long columns , s t r i k e s a long rows
11 [ rows , c o l s ] = s i z e ( gbmpipr ices ) ;
12 gbmpipr ices ( : , 1 ) = [ 0 , s t r i k e s , 0 ] ;
13 gbmpipr ices ( 1 , : ) = [ 0 , g r i d s i z e s ] ;
14 f o r c = 2 : ( co l s −1)
15 p i t ime = t i c ;
16 gbmpipr ices ( 2 : ( l ength ( s t r i k e s )+1) , c ) = p i f f t a s i a n g b m

( s0 , s t r i k e s , sd , r , q ,T, dt , g r i d s i z e s ( c−1) ) ; % y−l i m i t s
s e t f o r DAX

17 gbmpipr ices ( l ength ( s t r i k e s ) +2,c ) = toc ( p i t ime ) ;
18 f p r i n t f (” PI − GBM:\n Gr id s i z e : %i , s t r i k e : %i , r e s u l t :

%d , runtime : %d \n” , g r i d s i z e s ( c−1) , s t r i k e ,
gbmpipr ices ( round ( rows /2) , c ) , gbmpipr ices ( rows , c ) ) ;

19 end
20

21 n i g p i p r i c e s = ze ro s ( l ength ( s t r i k e s ) +2, l ength ( g r i d s i z e s )+1)
; % G r i d s i z e s a long columns , s t r i k e s a long rows

22 [ rows , c o l s ] = s i z e ( n i g p i p r i c e s ) ;
23 n i g p i p r i c e s ( : , 1 ) = [ 0 , s t r i k e s , 0 ] ;
24 n i g p i p r i c e s ( 1 , : ) = [ 0 , g r i d s i z e s ] ;
25 f o r c = 2 : c o l s
26 p i t ime = t i c ;
27 n i g p i p r i c e s ( 2 : ( l ength ( s t r i k e s )+1) , c ) = p i f f t a s i a n n i g

( s0 , s t r i k e s , alpha , de l ta , beta , munig , r , q ,T, dt ,
g r i d s i z e s ( c−1) ) ;

28 n i g p i p r i c e s ( l ength ( s t r i k e s ) +2,c ) = toc ( p i t ime ) ;
29 f p r i n t f (” PI − NIG:\n Gr id s i z e : %i , s t r i k e : %i , r e s u l t :

%d , runtime : %d \n” , g r i d s i z e s ( c−1) , s t r i k e ,
n i g p i p r i c e s ( round ( rows /2) , c ) , n i g p i p r i c e s ( rows , c ) ) ;

30 end
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31

32 v g p i p r i c e s = ze ro s ( l ength ( s t r i k e s ) +2, l ength ( g r i d s i z e s )+1) ;
% G r i d s i z e s a long columns , s t r i k e s a long rows

33 [ rows , c o l s ] = s i z e ( v g p i p r i c e s ) ;
34 v g p i p r i c e s ( : , 1 ) = [ 0 , s t r i k e s , 0 ] ;
35 v g p i p r i c e s ( 1 , : ) = [ 0 , g r i d s i z e s ] ;
36 f o r c = 2 : c o l s
37 p i t ime = t i c ;
38 v g p i p r i c e s ( 2 : ( l ength ( s t r i k e s )+1) , c ) = p i f f t a s i a n v g (

s0 , s t r i k e s , sigma , lambda , vggamma , muvg , r , q ,T, dt ,
g r i d s i z e s ( c−1) ) ;

39 v g p i p r i c e s ( l ength ( s t r i k e s ) +2,c ) = toc ( p i t ime ) ;
40 f p r i n t f (” PI − VG:\n Gr id s i z e : %i , s t r i k e : %i , r e s u l t : %

d , runtime : %d \n” , g r i d s i z e s ( c−1) , s t r i k e , v g p i p r i c e s (
round ( rows /2) , c ) , v g p i p r i c e s ( rows , c ) ) ;

41 end
42

43 %% Saving Resu l t s
44 o v e r a l l r u n t i m e = toc ( o v e r a l l r u n t i m e ) ;
45 x l s w r i t e ( ’ gbmpipr ices . x l sx ’ , gbmpipr ices ) ;
46 x l s w r i t e ( ’ n i g p i p r i c e s . x l sx ’ , n i g p i p r i c e s ) ;
47 x l s w r i t e ( ’ n i g p i p r i c e s c o r r e c t e d . x l sx ’ , n i g p i p r i c e s c o r r e c t e d

) ;
48 x l s w r i t e ( ’ v g p i p r i c e s . x l sx ’ , v g p i p r i c e s ) ;
49 x l s w r i t e ( ’ vgpipr ices unsmoothed . x l sx ’ , vgpipr ices unsmoothed

) ;
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E.1.2 PIFFT - GBM

1 f unc t i on [ p r i c e ] = p i f f t a s i a n g b m ( s0 , s t r i k e s , sigma , r , q ,T,
dt ,N)

2

3 %% Parameters
4 mu = r−q ; % Arbitrage−f r e e d r i f t o f S t
5 m = round (T/dt ) ; % Number o f time s t ep s
6 T = m∗dt ; % Avoiding rounding e r r o r
7 % Mean and v o l a t i l i t y o f z 1 and t r a n s i t i o n s
8 mu z1 = (mu−0.5∗ sigma ˆ2) ∗dt ;
9 s igma z1 = sigma∗ s q r t ( dt ) ;

10

11 %% I n i t i a l i s i n g g r id
12 % Def in ing the z range based on chebyshev ’ s i n e q u a l i t y
13 k = 10 ; % 1−1/kˆ2 o f the p r o b a b i l i t y inc luded . 99 %
14 zmin = T∗(mu−0.5∗ sigma ˆ2) − k∗ s q r t (T∗sigma ˆ2) ;
15 zmax = T∗(mu−0.5∗ sigma ˆ2) + k∗ s q r t (T∗sigma ˆ2) ;
16 % I n i t i a l i s i n g g r id
17 dz = (zmax−zmin ) /(N−1) ;
18 z = ( zmin : dz : zmax) ;
19 ymax = 1.2651 e+04 + 4000 ;
20 ymin = 1.2651 e+04 − 4000 ;
21 dy = (ymax−ymin ) /(N−1) ;
22 y = ymin : dy : ymax ;
23 % Def in ing the y , z g r id
24 [Y, Z ] = meshgrid (y , z ) ;
25

26 %% Def in ing the t rans fo rmat ion var i ab l e , z 1 = u( y 2 | z 2 ) ,
f o r f {A 2 | Z 2}

27 u = 3∗Y/ s0 − 1 − exp (Z) ; % u( y 2 | z 2 ) = ln ( tranz1 )
28 c o r r e c t i o n = (u <= 0) ; % because eˆ z 1 > 0
29 u( c o r r e c t i o n ) = 10ˆ(−60) ;
30 u = log (u) ; % transz1 = u( y 2 | z 2 )
31 ind = ones (N) ;
32 ind ( c o r r e c t i o n ) = 0 ;
33 uder = 3 ./ (3∗Y−s0−s0 ∗exp (Z) ) ;
34

35 %% Calcu l a t ing the i n i t a l d e s i t y f {A 2 , Z 2 }( y 2 , z 2 ) :
36 % f {Z1}( z2−z1 ) :
37 f t r a n s = (1/( s q r t (2∗ p i ) ∗ s igma z1 ) ) ∗ exp (−0.5∗(((Z−u)−

mu z1 ) . ˆ 2 ) / . . .
38 ( s igma z1 ˆ2) ) . ∗ ind ;
39 % f {Z 1 } ( ( u( y 2 | z 2 ) ) :
40 f = (1/( s q r t (2∗ p i ) ∗ s igma z1 ) ) ∗ exp (−0.5∗((u−mu z1 ) . ˆ 2 ) /(

s igma z1 ˆ2) ) . ∗ ind ;
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41 % f {A 2 , Z 2 }( y 2 , z 2 ) ( ove rwr i t e s f {Z 1} which i s no
l onge r needed )

42 f = f t r a n s . ∗ f . ∗ abs ( uder ) ;
43 neg = ( f < 0) ;
44 f ( neg ) = 0 ;
45 % Sca l i ng − Secur ing that the j o i n t pdf i n t e g r a t e s to 1
46 w = trapz ( z , f , 1 ) ;
47 w = trapz (y ,w) ;
48 f = f /w;
49

50 %% I n i t i a l i s i n g the c h a r a c t e r i s t i c func t i on o f the
t r a n s i t i o n prob .

51 f r e q = mod(1/2+(0 : (N−1) ) /(N) ,1 ) −1/2;
52 v = f r e q ∗ (2∗ p i /dz ) ;
53 v = v ’ ;
54 phi = exp (−0.5∗ s igma z1 ˆ2∗v . ˆ 2 ) . ∗ exp(−1 i ∗v∗mu z1 ) ;
55 phi m = repmat ( phi , 1 , l ength ( phi ) ) ;
56

57 %% Recurs ions
58 f o r j = 3 :m
59 % I n t e r p o l a t i n g , s e t t i n g f i −1
60 YI = ( j /( j−1) ) ∗Y − s0 /( j−1)∗exp (Z) ;
61 f = in t e rp2 (Y, Z , f , YI , Z , ’ s p l i n e ’ ) ;
62 co r r = isnan ( f ) ;
63 f ( c o r r ) = 0 ;
64

65 % Calcu l a t ing the convo lut ion
66 f = f f t ( f ) ;
67 f = ( phi m .∗ f ) ;
68 f = ( r e a l ( i f f t ( f ) ) ) ;
69 neg = ( f<=0) ;
70 f ( neg ) = 0 ;
71

72 % Making sure the f i n a l j o i n t dens i ty i n t e g r a t e s to 1
73 w = trapz (y , f , 1 ) ;
74 w = trapz ( z ,w) ;
75 f = f /w;
76

77 % Fixing numerica l problems :
78 p1 = ( abs (Z) > 0 . 5 ) ;
79 f ( p1 ) = 0 ; % Very dangerous c o r r e c t i o n . Use with

caut ion
80

81 % i f (mod( j , 1 0 ) == 0)
82 % f i g u r e ;
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83 % s u r f (y , z , f )
84 % end
85 end
86

87 %% Calcu l a t ing the r i s k neu t ra l expectat ion , us ing the
t r a p e s o i d a l r u l e

88 V = trapz ( z , f ) ;
89 p r i c e = ze ro s (1 , l ength ( s t r i k e s ) ) ;
90 f o r i = 1 : l ength ( s t r i k e s )
91 func = max( y − s t r i k e s ( i ) , 0 ) . ∗V;
92 p r i c e (1 , i ) = exp(−r ∗T) ∗ trapz (y , func ) ;
93 end
94

95 end
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E.1.3 PIFFT - NIG

1 f unc t i on [ p r i c e ] = p i f f t a s i a n n i g ( s0 , s t r i k e s , alpha , de l ta ,
beta ,mu, r , q ,T, dt ,N)

2

3 %% Parameters
4 omega = de l t a ∗( s q r t ( alphaˆ2−(beta+1)ˆ2) − s q r t ( alphaˆ2−

beta ˆ2) ) ;
5 mu = ( r − q + omega ) ; % Mean c o r r e c t i o n
6 m = round (T/dt ) ; % Number o f time s t ep s
7 T = m∗dt ; % To avoid rounding e r r o r
8

9 %% I n i t i a l i s i n g g r id
10 % Def in ing the z range based on chebyshev ’ s i n e q u a l i t y (

approx f o r NIG,
11 % based on GBM)
12 k = 10 ; % 1−1/kˆ2 o f the p r o b a b i l i t y inc luded . 99 %
13 zmin = T∗(mu + de l t a ∗ beta /( s q r t ( alphaˆ2−beta ˆ2) ) ) − k ∗ . . .
14 alpha ∗ s q r t ( d e l t a ∗T∗( alphaˆ2−beta ˆ2) ˆ(−3/2) ) ;
15 zmax = T∗(mu + de l t a ∗ beta /( s q r t ( alphaˆ2−beta ˆ2) ) ) + k ∗ . . .
16 alpha ∗ s q r t ( d e l t a ∗T∗( alphaˆ2−beta ˆ2) ˆ(−3/2) ) ;
17 % I n i t i a l i s i n g g r id
18 dz = (zmax−zmin ) /(N−1) ;
19 z = ( zmin : dz : zmax) ;
20 ymax = 16651; % Approx . mean +/− 4000 ( Set from

obse rva t i on s o f MC sims )
21 ymin = 8651 ;
22 dy = (ymax−ymin ) /(N−1) ;
23 y = ymin : dy : ymax ;
24 % Def in ing the y , z g r id
25 [Y, Z ] = meshgrid (y , z ) ;
26

27 %% Def in ing the t rans fo rmat ion var i ab l e , z 1 = u( y 2 | z 2 ) ,
f o r f {A 2 | Z 2}

28 u = 3∗Y/ s0 − 1 − exp (Z) ; % u( y 2 | z 2 ) = ln ( tranz1 )
29 c o r r e c t i o n = (u <= 0) ; % because eˆ z 1 > 0
30 u( c o r r e c t i o n ) = 10ˆ(−60) ;
31 u = log (u) ; % transz1 = u( y 2 | z 2 )
32 ind = ones (N) ;
33 ind ( c o r r e c t i o n ) = 0 ;
34 uder = 3 ./ (3∗Y−s0−s0 ∗exp (Z) ) ;
35

36 %% Calcu l a t ing the i n i t a l d e s i t y f {A 2 , Z 2 }( y 2 , z 2 ) :
37

38 % f {Z1}( z2−z1 ) :
39 f t r a n s = alpha ∗dt∗ de l t a / p i ∗ exp ( dt∗ de l t a ∗ s q r t ( alphaˆ2−
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beta ˆ2) + . . .
40 beta ∗(Z−u−dt∗mu) ) . ∗ b e s s e l k (1 , alpha ∗ s q r t ( dt ˆ2∗ de l t a ˆ2

+ . . .
41 (Z−u−dt∗mu) . ˆ 2 ) ) . / ( s q r t ( dt ˆ2∗ de l t a ˆ2 + (Z−u−dt∗mu)

. ˆ 2 ) ) . ∗ ind ;
42 % f {Z 1 } ( ( u( y 2 | z 2 ) ) :
43 f = alpha ∗dt∗ de l t a / p i ∗ exp ( dt∗ de l t a ∗ s q r t ( alphaˆ2−beta ˆ2)

+ . . .
44 beta ∗(u−dt∗mu) ) . ∗ b e s s e l k (1 , alpha ∗ s q r t ( dt ˆ2∗ de l t a ˆ2

+ . . .
45 (u−dt∗mu) . ˆ 2 ) ) . / ( s q r t ( dt ˆ2∗ de l t a ˆ2 + (u−dt∗mu) . ˆ 2 ) )

. ∗ ind ;
46 % f {A 2 , Z 2 }( y 2 , z 2 ) ( ove rwr i t e s f {Z 1} which i s no

l onge r needed )
47 f = f t r a n s . ∗ f . ∗ abs ( uder ) ;
48 neg = ( f < 0) ; % I n d e c i e s to negat ive va lue s
49 f ( neg ) = 0 ;
50 nan = isnan ( f ) ;
51 f ( nan ) = 0 ;
52 % Sca l i ng − Secur ing that the j o i n t pdf i n t e g r a t e s to 1
53 w = trapz ( z , f , 1 ) ;
54 w = trapz (y ,w) ;
55 f = f /w;
56

57 %% I n i t i a l i s i n g the c h a r a c t e r i s t i c func t i on o f the
t r a n s i t i o n prob .

58 f r e q = mod(1/2+(0 : (N−1) ) /(N) ,1 ) − 1/2 ;
59 v = f r e q ∗ (2∗ p i /dz ) ;
60 v = v ’ ;
61 phi = conj ( exp ( −de l t a ∗dt ∗( s q r t ( alphaˆ2−(beta+1 i ∗v ) . ˆ2 )

− . . .
62 s q r t ( alphaˆ2−beta ˆ2) ) + 1 i ∗v∗mu∗dt ) ) ;
63 phi m = repmat ( phi , 1 , l ength ( phi ) ) ;
64

65 %% Recurs ions
66 f o r j = 3 :m
67 % I n t e r p o l a t i n g , s e t t i n g f i −1
68 YI = ( j /( j−1) ) ∗Y − s0 /( j−1)∗exp (Z) ;
69 f = in t e rp2 (Y, Z , f , YI , Z , ’ s p l i n e ’ ) ;
70 co r r = isnan ( f ) ;
71 f ( c o r r ) = 0 ;
72

73 % Calcu l a t ing the convo lut ion
74 f = f f t ( f ) ;
75 f = ( phi m .∗ f ) ;
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76 f = ( r e a l ( i f f t ( f ) ) ) ;
77 neg = ( f<=0) ;
78 f ( neg ) = 0 ;
79

80 % Making sure the f i n a l j o i n t dens i ty i n t e g r a t e s to 1
81 w = trapz (y , f , 1 ) ;
82 w = trapz ( z ,w) ;
83 f = f /w;
84

85 % Fixing numerica l problems :
86 p1 = ( abs (Z) > 0 . 5 ) ;
87 f ( p1 ) = 0 ; % Very dangerous c o r r e c t i o n . Use with

caut ion .
88

89 % i f (mod( j , 5 ) == 0)
90 % f i g u r e ;
91 % s u r f (y , z , f )
92 % end
93 end
94

95 %% Calcu l a t ing the r i s k neu t ra l expectat ion , us ing the
t r a p e s o i d a l r u l e

96 V = trapz ( z , f ) ;
97 p r i c e = ze ro s (1 , l ength ( s t r i k e s ) ) ;
98 f o r i = 1 : l ength ( s t r i k e s )
99 func = max( y − s t r i k e s ( i ) , 0 ) . ∗V;

100 p r i c e (1 , i ) = exp(−r ∗T) ∗ trapz (y , func ) ;
101 end
102

103 end
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E.1.4 PIFFT - VG

1 f unc t i on [ p r i c e ] = p i f f t a s i a n v g ( s0 , s t r i k e s , sigma , lambda ,
vggamma ,mu, r , q ,T, dt ,N)

2 % Note : Ca l l i ng gamma f o r vggamma to avoid problems us ing
the gamma

3 % func t i on
4 %% Parameters
5 omega = lambda∗ log (1 − 1/2∗ sigma ˆ2/ lambda − vggamma/lambda )

;
6 mu = r − q + omega ; % Mean c o r r e c t i o n .
7 m = round (T/dt ) ; % Number o f time s t ep s
8 T = m∗dt ; % To avoid rounding e r r o r
9

10 %% I n i t i a l i s i n g g r id
11 zmin = −0.8127; % DAX l i m i t s from NIG−code
12 zmax = 0 . 8 0 7 7 ;
13 % I n i t i a l i s i n g g r id
14 dz = (zmax−zmin ) /(N−1) ;
15 z = ( zmin : dz : zmax) ;
16 ymin = 8651 ;
17 ymax = 16651;
18 dy = (ymax−ymin ) /(N−1) ;
19 y = ymin : dy : ymax ;
20 % Def in ing the y , z g r id
21 [Y, Z ] = meshgrid (y , z ) ;
22

23 %% Def in ing the t rans fo rmat ion var i ab l e , z 1 = u( y 2 | z 2 ) ,
f o r f {A 2 | Z 2}

24 u = 3∗Y/ s0 − 1 − exp (Z) ; % u( y 2 | z 2 ) = ln ( tranz1 )
25 c o r r e c t i o n = (u <= 0) ; % because eˆ z 1 > 0
26 u( c o r r e c t i o n ) = 10ˆ(−60) ;
27 u = log (u) ; % transz1 = u( y 2 | z 2 )
28 ind = ones (N) ;
29 ind ( c o r r e c t i o n ) = 0 ;
30 uder = 3 ./ (3∗Y−s0−s0 ∗exp (Z) ) ;
31

32 %% Calcu l a t ing the i n i t a l d e s i t y f {A 2 , Z 2 }( y 2 , z 2 ) :
33 % f {Z1}( z2−z1 ) :
34 f t r a n s = 2∗lambda ˆ( lambda∗dt ) ∗exp ( (Z−u−mu∗dt ) ∗vggamma/

sigma ˆ2) / . . .
35 ( s q r t (2∗ p i ) ∗ sigma∗gamma( lambda∗dt ) ) . . .
36 . ∗ b e s s e l k ( lambda∗dt−1/2 , 1/ sigma ˆ2∗ s q r t ( (Z−u−dt∗mu)

. ˆ 2 ∗ . . .
37 (2∗ lambda∗sigmaˆ2+vggammaˆ2) ) ) . / ( (Z−u−mu∗dt ) . ˆ 2 / . . .
38 (2∗ lambda∗sigmaˆ2+vggammaˆ2) ) .ˆ(1/4−1/2∗ lambda∗dt ) . ∗ ind
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;
39 % f {Z 1 } ( ( u( y 2 | z 2 ) ) :
40 f = 2∗ lambda ˆ( lambda∗dt ) ∗exp ( ( u−mu∗dt ) ∗vggamma/sigma ˆ2) /(

s q r t (2∗ p i ) ∗ . . .
41 sigma∗gamma( lambda∗dt ) ) . ∗ . . .
42 b e s s e l k ( lambda∗dt−1/2 , 1/ sigma ˆ2∗ s q r t ( ( u−dt∗mu)

. ˆ 2 ∗ . . .
43 (2∗ lambda∗sigmaˆ2+vggammaˆ2) ) ) . / . . .
44 ( (u−mu∗dt ) . ˆ2/(2∗ lambda∗sigmaˆ2+vggammaˆ2) ) .ˆ(1/4−1/2∗

lambda∗dt ) . ∗ ind ;
45 % f {A 2 , Z 2 }( y 2 , z 2 ) ( ove rwr i t e s f {Z 1} which i s no

l onge r needed )
46 f = f t r a n s . ∗ f . ∗ abs ( uder ) ;
47 neg = ( f < 0) ; % I n d e c i e s to negat ive va lue s
48 f ( neg ) = 0 ;
49 nan = isnan ( f ) ;
50 f ( nan ) = 1e−60;
51 % Sca l i ng − Secur ing that the j o i n t pdf i n t e g r a t e s to 1
52 w = trapz ( z , f , 1 ) ;
53 w = trapz (y ,w) ;
54 f = f /w;
55

56 %% I n i t i a l i s i n g the c h a r a c t e r i s t i c func t i on o f the
t r a n s i t i o n prob .

57 f r e q = mod(1/2+(0 : (N−1) ) /(N) ,1 ) − 1/2 ;
58 v = f r e q ∗ (2∗ p i /dz ) ;
59 v = v ’ ;
60 phi = conj ( (1 − 1 i ∗vggamma/lambda∗v + sigma ˆ 2 / . . .
61 (2∗ lambda ) ∗v . ˆ 2 ) .ˆ(−dt∗lambda ) . ∗ exp (1 i ∗v∗mu∗dt ) ) ;
62

63 % % Smoothing and Fix ing numerica l i s s u e s :
64 % r e a l p a r t = r e a l ( phi ) ;
65 % imagpart = imag ( phi ) ;
66 % px = ( round (N∗ 0 . 5 ∗ 0 . 7 ) ) : ( round (N∗ 0 . 5 ∗ 1 . 3 ) ) ; % Problem

area indece s
67 % py = imagpart ( px ) ;
68 % py = smooth (py , l ength ( px ) , ’ r l o e s s ’ ) ;
69 % imagpart ( px ) = py ;
70 % neg = ( r e a l ( r e a l p a r t )<=0) ;
71 % r e a l p a r t ( neg ) = 0 ;
72 % phi = r e a l p a r t + 1 i ∗ imagpart ;
73

74 phi m = repmat ( phi , 1 , l ength ( phi ) ) ;
75

76 %% Recurs ions
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77 f o r j = 3 :m
78 % I n t e r p o l a t i n g , s e t t i n g f i −1
79 YI = ( j /( j−1) ) ∗Y − s0 /( j−1)∗exp (Z) ;
80 f = in t e rp2 (Y, Z , f , YI , Z , ’ s p l i n e ’ ) ;
81 co r r = isnan ( f ) ;
82 f ( c o r r ) = 0 ;
83

84 % Calcu l a t ing the convo lut ion
85 f = f f t ( f ) ;
86 f = ( phi m .∗ f ) ;
87 f = ( r e a l ( i f f t ( f ) ) ) ;
88 neg = ( f<=0) ;
89 f ( neg ) = 0 ;
90

91 % Making sure the f i n a l j o i n t dens i ty i n t e g r a t e s to 1
92 q = trapz (y , f , 1 ) ;
93 w = trapz ( z , q ) ;
94 f = f /w;
95

96 % Fixing numerica l problems :
97 p1 = ( abs (Z) > 0 . 5 ) ;
98 f ( p1 ) = 0 ; % Very dangerous c o r r e c t i o n . Use with

caut ion
99

100 % i f (mod( j , 2 5 ) == 0)
101 % f i g u r e ;
102 % s u r f (y , z , f )
103 % end
104 end
105 q = trapz (y , f , 1 ) ;
106 w = trapz ( z , q ) ;
107 f = f /w;
108

109

110 %% Calcu l a t ing the r i s k neu t ra l expectat ion , us ing the
t r a p e s o i d a l r u l e

111 V = trapz ( z , f ) ;
112 p r i c e = ze ro s (1 , l ength ( s t r i k e s ) ) ;
113 f o r i = 1 : l ength ( s t r i k e s )
114 func = max( y − s t r i k e s ( i ) , 0 ) . ∗V;
115 p r i c e (1 , i ) = exp(−r ∗T) ∗ trapz (y , func ) ;
116 end
117

118 end
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E.2 R Codes

E.2.1 Monte Carlo Simulation

1 as ianMC str ikes = func t i on ( params , s t r i k e s , q=0,T=1,dt =250 ,no
=1000000 , i f P l o t=FALSE, n p lo tpaths =10){

2 # See ”main” f o r d e s c i r p t i o n s o f v a r i a b l e s
3 t i c t o c : : t i c (0 )
4

5 r = params$GLOBAL$riskfreeRate
6 s0 = params$GLOBAL$s0
7 days = round (T/dt )
8 T = days∗dt
9

10 s impr i c e = data . frame ( matrix (0 , nco l = 3 , nrow = length (
s t r i k e s ) ) )

11 colnames ( s impr i c e ) = c (” NIG price ” ,” VG price ” ,” GBM price
”)

12 rownames ( s impr i c e ) = s t r i k e s
13

14 f o r ( i in 1 : 3 ) { # 1 = NIG, 2 = VG, 3 = GBM
15 t i c t o c : : t i c ( i )
16

17 i f ( i == 1){ # NIG
18 alpha = params$NIG$alpha
19 beta = params$NIG$beta
20 de l t a = params$NIG$delta
21 omega = de l t a ∗( s q r t ( alphaˆ2−(beta+1)ˆ2) − s q r t ( alpha

ˆ2−beta ˆ2) )
22 mu = r − q + omega # Mean c o r r e c t e d mu
23

24 dx = matrix ( rghyp (n=days∗no , ob j e c t=NIG. ad ( alpha =
alpha , d e l t a = ( de l t a ) ∗( dt ) , beta = beta , mu = mu∗
dt ) ) , nrow = no , nco l = days )

25 s = matrix ( s0 , nrow = no , nco l = days )
26

27 p r i c e = matrix (NA, nrow = length ( s t r i k e s ) , nco l = no )
28

29 f o r ( i in 1 : no ) {
30 f o r ( t in 2 : days ) {
31 s [ i , t ] = s [ i , t − 1 ] ∗ exp ( dx [ i , t ] )
32 i f ( t==days & i%%10000 == 0){ pr in t ( i )}
33 }
34 f o r ( i s t r i k e in 1 : l ength ( s t r i k e s ) ){
35 p r i c e [ i s t r i k e , i ] = exp(−r ∗ T) ∗ max( c ( ( mean( s [ i

, ] ) − s t r i k e s [ i s t r i k e ] ) , 0) )
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36 }
37 }
38

39 f o r ( i s t r i k e in 1 : l ength ( s t r i k e s ) ){
40 s impr ice$NIG pr ice [ i s t r i k e ] = mean( p r i c e [ i s t r i k e , ] )
41 }
42 nigt ime = t i c t o c : : toc ( i , qu i e t = TRUE)
43 nigt ime = as . numeric ( n igt ime$toc − n i g t i m e $ t i c )
44

45 i f ( i f P l o t ) {
46 t i t l e = ”NIG”
47 MC plot ( s , no , days , n p lotpaths , t i t l e )
48 }
49

50 } e l s e i f ( i == 2){ # VG
51 lambda = params$VG$lambda
52 mu = params$VG$mu
53 sigma = params$VG$sigma
54 gamma = params$VG$gamma
55 omega = lambda∗ log ( 1 − sigma ˆ2/(2∗ lambda ) − gamma/

lambda )
56 mu = r − q + omega # Mean c o r r e c t e d mu
57

58 VGobject t = VG( lambda = lambda∗dt , mu = dt∗mu, sigma
= sigma∗ s q r t ( dt ) , gamma = dt∗gamma)

59 dx = matrix ( rghyp (n=days∗no , ob j e c t=VGobject t ) , nrow
= no , nco l = days )

60

61 s = matrix ( s0 , nrow = no , nco l = days )
62

63 p r i c e = matrix (NA, nrow = length ( s t r i k e s ) , nco l = no )
64

65 f o r ( i in 1 : no ) {
66 f o r ( t in 2 : days ) {
67 s [ i , t ] = s [ i , t − 1 ] ∗ exp ( dx [ i , t ] )
68 i f ( t==days & i%%10000 == 0){ pr in t ( i )}
69 }
70 f o r ( i s t r i k e in 1 : l ength ( s t r i k e s ) ){
71 p r i c e [ i s t r i k e , i ] = exp(−r ∗ T) ∗ max( c ( ( mean( s [ i

, ] ) − s t r i k e s [ i s t r i k e ] ) , 0) )
72 }
73 }
74

75 f o r ( i s t r i k e in 1 : l ength ( s t r i k e s ) ){
76 s impr ice$VG price [ i s t r i k e ] = mean( p r i c e [ i s t r i k e
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, ] )
77 }
78 vgtime = t i c t o c : : toc ( i , qu i e t = TRUE)
79 vgtime = as . numeric ( vgt ime$toc − vgt ime$t i c )
80

81 i f ( i f P l o t ) {
82 t i t l e = ”VG”
83 MC plot ( s , no , days , n p lotpaths , t i t l e )
84 }
85

86 } e l s e{#i = 3 # GBM
87 mu = params$GBM$mean
88 sd = params$GBM$sd
89 mu = r − q − 1/2∗ sigma ˆ2 # Mean c o r r e c t e d mu
90

91 dx = matrix ( rnorm (n=days∗no , mean=mu∗dt , sd=s q r t ( dt ) ∗
sd ) , nrow = no , nco l = days )

92 s = matrix ( s0 , nrow = no , nco l = days )
93

94 p r i c e = matrix (NA, nrow = length ( s t r i k e s ) , nco l = no )
95

96 f o r ( i in 1 : no ) {
97 f o r ( t in 2 : days ) {
98 s [ i , t ] = s [ i , t − 1 ] ∗ exp ( dx [ i , t ] )
99 i f ( t==days & i%%10000 == 0){ pr in t ( i )}

100 }
101 f o r ( i s t r i k e in 1 : l ength ( s t r i k e s ) ){
102 p r i c e [ i s t r i k e , i ] = exp(−r ∗ T) ∗ max( c ( ( mean( s [ i

, ] ) − s t r i k e s [ i s t r i k e ] ) , 0) )
103 }
104 }
105

106 f o r ( i s t r i k e in 1 : l ength ( s t r i k e s ) ){
107 simprice$GBM price [ i s t r i k e ] = mean( p r i c e [ i s t r i k e

, ] )
108 }
109 gbmtime = t i c t o c : : toc ( i , qu i e t = TRUE)
110 gbmtime = as . numeric ( gbmtime$toc − gbmtime$tic )
111

112 i f ( i f P l o t ) {
113 t i t l e = ”GBM”
114 MC plot ( s , no , days , n p lotpaths , t i t l e )
115 }
116

117 } #e l s e
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118

119 } # f o r ( i in 1 : 3 )
120

121 t o t a l t i m e = t i c t o c : : toc (0 , qu i e t = TRUE)
122 t imes = data . frame ( t ( c ( n igt ime=nigtime , vgtime=vgtime ,

gbmtime=gbmtime , t o t a l t i m e=t o t a l t i m e ) ) )
123

124 r e turn ( l i s t ( p r i c e s=s impr ice , t imes=times ) )
125 }
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E.2.2 Parameter Fitting

1 f i tParams = func t i on ( data , i f P l o t=FALSE, i f T e s t=FALSE,
i fPlotKS=FALSE){

2 # data : Data Frame conta in ing : Time | l o g r e t u r n s
3 # i f P l o t : Log i ca l . True => Plot f i t t e d models and d i sp l ay

eva lua t ing s t a t i s t i c s
4 # i f T e s t : Log i ca l . True => Perform a Goodness−of− f i t t e s t (

Kologorov Smirnov )
5

6

7 # Bui l t in f u n c t i o n a l i t y to ID best f i t t e d model based on
AIC alone

8 bestmodel = stepAIC . ghyp ( data [ , 2 ] ) $best . model
9 bestmodel name = getElement ( bestmodel , ”model ”) [ 3 ]

10

11

12 # F i t t i n g ####
13 f ittedVG = ghyp : : f i t .VGuv( data [ , 2 ] )
14 f i t tedNIG = ghyp : : f i t . NIGuv( data [ , 2 ] )
15 f i t t edno rma l = MASS : : f i t d i s t r ( data [ , 2 ] , ” normal ”)
16

17

18 # Goodness−of− f i t t e s t ( Kolmogorov−Smirnov t e s t ) ####
19 ks = NULL # avoids e r r o r when i f T e s t = FALSE
20 i f ( i f T e s t ){
21

22 f i l ename = f i l e . path (”C: ” , ” Users /marku/Dropbox/Master/
Code/ f i g / f i t ” , paste ( deparse ( s u b s t i t u t e ( data ) ) , ” k s .
pdf ” , sep = ””) )

23 ks = kolmogorovSmirnovTest v2 ( data , f ittedNIG , fittedVG ,
f i t t ednorma l , i fPlotKS , f i l ename )

24 dev . s e t (2 )
25

26 }
27

28 # Extract Parameters ####
29 nigparams = data . frame ( cbind ( as . data . frame ( c o e f ( f ittedNIG

, type = ” alpha . d e l t a ”) ) , data . frame (AIC( f i t tedNIG ) ,
l ogL ik ( f i t tedNIG ) ) ) )

30 vgparams = data . frame ( cbind ( as . data . frame ( c o e f ( fittedVG ,
type = ” ch i . p s i ”) ) , data . frame (AIC( fittedVG ) , l ogL ik (
f ittedVG ) ) ) )

31 normalparams = data . frame ( cbind ( as . data . frame ( t (
f i t t edno rma l$ e s t imat e ) ) , data . frame (AIC( f i t t edno rma l ) ,
f i t t e d n o r m a l $ l o g l i k ) ) )
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32

33 # Store r e s u l t s
34 parameters = l i s t (NIG=nigparams ,VG=vgparams ,GBM=

normalparams ,KS=ks ,BESTMODEL=bestmodel name ,GLOBAL=
NULL)

35

36 # Plo t t i ng ####
37 i f ( i f P l o t ){
38

39 pr in t ( noquote ( paste ( c ( ’ Best model ( based on AIC alone )
f o r ’ , paste ( deparse ( s u b s t i t u t e ( data ) ) , ’ i s ’ ,
bestmodel name ) ) ) ) )

40

41 # D e n s i t i e s :
42 # f i l ename = f i l e . path (”C: ” , ” Users /marku/Dropbox/Master

/Code/ f i g / f i t ” , paste ( deparse ( s u b s t i t u t e ( data ) ) , ”
d e n s i t y . pdf ” , sep = ””) )

43 # pdf ( f i l e = f i l ename , width=6, he ight =4)
44

45 main = paste (” F i t t ed d e n s i t i e s f o r ” , toupper ( deparse (
s u b s t i t u t e ( data ) ) ) , sep = ””)

46 xlim = c (min ( data [ , 2 ] ) ,max( data [ , 2 ] ) )
47 x = seq ( xlim [ 1 ] , xl im [ 2 ] , ( d i f f ( xl im ) ) /99)
48 h i s t ( data [ , 2 ] , breaks = x , f r e q = FALSE, border = ” gray

” , main = main , xlab = ”Log r e tu rn s ” , ylab = ”
Density ”)

49 l i n e s ( fittedVG , c o l = ” blue ”)
50 l i n e s ( f ittedNIG , c o l = ” red ”)
51 l i n e s (x , dnorm(x , mean = normalparams$mean , sd =

normalparams$sd ) , type = ’ l ’ , c o l = ” black ”)
52 l egend ( x = ” t o p l e f t ” , c (” Normal ” ,”VG” ,”NIG” , toupper (

deparse ( s u b s t i t u t e ( data ) ) ) ) , f i l l = c (” black ” ,” blue
” ,” red ” ,” gray ”) , bty = ”n”)

53 # dev . o f f ( )
54

55 # QQ−Plot
56 # f i l ename = f i l e . path (”C: ” , ” Users /marku/Dropbox/Master

/Code/ f i g / f i t ” , paste ( deparse ( s u b s t i t u t e ( data ) ) , ” qq
. pdf ” , sep = ””) )

57 # pdf ( f i l e = f i l ename , width=6, he ight =4)
58

59 # main = paste (”QQ−Plot f o r ” , toupper ( deparse (
s u b s t i t u t e ( data ) ) ) )

60 # ghyp : : qqghyp ( f ittedNIG , data = data [ , 2 ] , ghyp . pch =
1 , gauss . pch = 1 , ghyp . c o l = ” red ” , gauss . l t y = 1 ,
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ghyp . l t y = 0 , gauss ian = TRUE, main = main , gauss .
c o l = ” black ” , p l o t . l egend = FALSE)

61 # ghyp : : qqghyp ( fittedVG , data = data [ , 2 ] , ghyp . c o l = ”
blue ” , gauss . pch = 1 , gauss . l t y = 0 , main = main ,
add = TRUE, p l o t . l egend = FALSE)

62 # legend ( x = ” t o p l e f t ” , c (” Normal ” ,”VG” ,”NIG”) , f i l l =
c (” black ” ,” blue ” ,” red ”) , bty = ”n”)

63 # dev . o f f ( )
64 # dev . s e t (2 )
65 }
66

67 r e turn ( parameters )
68

69 }
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E.2.3 Kolmogorov’s Goodness-of-fit-test

1 kolmogorovSmirnovTest v2 = func t i on ( data , f ittedNIG , fittedVG
, f i t t ednormal , i fPlotKS=FALSE, f i l ename ){

2 # data : Data Frame conta in ing : Time | l o g r e t u r n s
3 # f i t t e d . . . : D i s t r i b u t i o n s to t e s t the f i t o f ( Code

adapted to the s p e c i f i c ob j e c t types o f r e l evance )
4 # ifPlotKS : i f TRUE, p l o t cumulat ive d i s t r i b u t i o n s
5 # f i l ename : Filename o f ks−p lo t .
6

7 x = s o r t ( data [ , 2 ] )
8 n = length ( x )
9

10 # Empir ica l Cumulative D i s t r i b u t i o n Function Fn( x ) : ####
11 Fn = numeric (n)
12 f o r ( i in 1 : n){
13 Fn [ i ] = i ∗(1/n)
14 }
15

16 # Reference Cumulative D i s t r i b u t i o n F0( x ) : ####
17 # NIG:
18 Fnig = pghyp ( q = x , ob j e c t = f i ttedNIG )
19 # VG:
20 Fvg = pghyp ( q = x , ob j e c t = fittedVG )
21 # Normal :
22 params = c o e f ( f i t t edno rma l )
23 Fnormal = pnorm( q = x , mean = params [ ” mean ” ] , sd = params

[ ” sd ” ] )
24

25 Dnnig = max( abs (Fn−Fnig ) )
26 Dnvg = max( abs (Fn−Fvg) )
27 Dnnormal = max( abs (Fn−Fnormal ) )
28

29 ks = round ( c (NIG = s q r t (n) ∗Dnnig , VG = s q r t (n) ∗Dnvg ,
Normal = s q r t (n) ∗Dnnormal ) , d i g i t s = 4)

30

31 i f ( i fPlotKS ){
32

33 # pdf ( f i l e = f i l ename , width=6, he ight =4)
34

35 main = paste (” Culumative D i s t r i b u t i o n s .\n Kolmogorov−
Smirnov Test − ” , toupper ( deparse ( s u b s t i t u t e ( data ) ) ) ,

sep = ””)
36 p lo t (x , Fvg , type=’ l ’ , c o l=”blue ” , main=main , xlab=”log−

r e tu rn s ” , ylab=”Pr obab i l i t y ”)
37 l i n e s (x , Fnig , c o l = ” red ”)
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38 l i n e s (x , Fnormal , c o l = ” black ”)
39 l i n e s (x , Fn , c o l = ” gray ”)
40 l egend (” t o p l e f t ” , c (” Normal ” ,”VG” ,”NIG” , toupper ( deparse

( s u b s t i t u t e ( data ) ) ) ) , f i l l = c (” black ” ,” blue ” ,” red
” ,” gray ”) , bty = ”n”)

41 # dev . o f f ( )
42 }
43

44 r e turn ( ks )
45 }
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