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Problem Description

With the vast implementation of power-demanding devices, the grid is facing supply challenges in

terms of covering the peak power demand. One solution is to expand the existing grid, resulting

in large investment costs. Another solution could be to encourage end users to reduce their power

demand. Commercial users are subject to a peak demand charge, meaning they are charged for the

highest peak power drawn from the grid each month. The demand charge may be high, and the

resulting cost of peak power may contribute to a substantial part of the total electricity bill. As

such, there is a large incentive for commercial consumers to reduce their power demand.

Sports facilities are a special type of consumer, as they tend to have a high, continuous demand

with extreme peak power periods during busy hours or events. Moreover, load shifting is not always

an available option. A promising solution for reducing the peak demand is battery storage, where

energy can be bought from the grid to charge the battery during off-peak hours, and discharged to

supply the load during on-peak hours. This is called peak shaving, and would both relieve the grid

of stress and reduce the cost of peak power for the facility. With the introduction of local generation,

such as from solar modules, the battery may also be charged by excess production, thus increasing

self-consumption. However, due to the high investment cost of battery storage, it is important to

operate the battery in a way that ensures longevity such as to avoid early re-investments.

With basis in a medium-scale swimming facility, the objective is to analyze whether implementing

battery storage into the existing system can be beneficial in terms of reducing the overall system

costs. The candidate shall:

B Give a brief introduction to relevant system theory, with emphasis on the battery storage

system.

B Build an optimization model with the objective of minimizing the total system costs while

ensuring longevity of the battery.

B Simulate the system operation and analyze whether implementing battery storage is economi-

cally profitable today.

B Conduct sensitivity analysis on important system parameters, as well as simulating the system

operation for a future scenario.
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Abstract

With the vast implementation of power-demanding devices, the grid is facing supply challenges. A

promising solution could be to implement a peak demand charge, thus encouraging end users to

reduce their power demand. Commercial users are already subject to this demand charge, and are

billed for the highest peak power drawn from the grid each month. A special type of customer are

sports facilities, as they tend to have high, continuous load demand with extreme peak power periods

during busy hours or events. The resulting cost of peak power may be substantial, and contribute to

a large share of the total cost of electricity. As such, there is an incentive for the facilities to reduce

their power demand. However, doing so in terms of shifting the load to off-peak hours is not always

an available option, as the load demand may be highly dependent on external factors. An alternative

solution may be to implement battery storage, where energy is bought from the grid during off-peak

hours, and discharged to supply the load during on-peak hours. This is called peak shaving, and

could both relieve the grid of stress as well as reduce the cost of peak power for the facility.

In this thesis, the economic benefits of implementing battery storage into an existing grid-connected

PV system for a medium-scale swimming facility is studied. The objective is to minimize the total

cost of electricity, including the cost of energy and peak power demand, while ensuring longevity of

the battery. The degradation of the battery is modelled as an operational cost, and is included in the

objective function. An optimization model based on multi integer linear programming is built, and

simulated using a one year time horizon in GAMS and Matlab. Several studies are carried out using

an hourly real-time pricing scheme and data from Holmen swimming facility, however the model can

easily be adapted to fit any load and production profile.

The main results reveal that installing a battery storage system is economically attractive today,

with a net savings on the total system cost of 0.64% yearly. The cost of peak power is reduced by

13.9%, and the savings from peak shaving operation alone is enough to compensate for the yearly

cost of the battery. Moreover, the battery ensures additional revenue by performing price arbitrage

operations. The yearly degradation of the battery is found to be 7.15%, and the optimal battery size

is 150 kWh. When simulating the system for an assumed 2030 scenario, the battery is found to be

even more profitable with a yearly net savings of 4.15%.
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Sammendrag

Med et stadig økende effektforbruk har begrensninger i overføringskapasitet blitt en stor utfordring for

kraftnettet. En løsning kan være å innføre et effektledd i strømprisen for å oppfordre sluttbrukere til

å redusere effekttoppene. Dette er allerede implementert hos kommersielle sluttbrukere, som blir fak-

turert for det høyeste effektuttaket hver m̊aned. En interessant forbrukertype er idrettsanlegg, som er

preget av kontinuerlig høye lastbehov med ekstreme effekttopper under travle besøkstider og arrange-

menter. Den m̊anedlige effektkostnaden kan utgjøre en betydelig del av den totale strømregningen,

og anlegget vil dermed ha økonomiske insentiver for å redusere effekttoppene. En mulig løsning kan

være å implementere batteribasert energilagring, der batteriet lades opp under perioder med lav last

og lades ut under topplastperioder for å dekke effekttoppene. Dette kalles for effektutjevning, og kan

b̊ade avlaste kraftnettet samt redusere effektkostnadene for anlegget.

I denne oppgaven vurderes de økonomiske fordelene ved å implementere batterilagring i et nettilkoblet

PV-system for en svømmehall, nærmere bestemt Holmen svømmehall i Asker. Målet er å minimere

strømkostnadene, herunder kostnadene for importert energi og effekt, samtidig som batteriets levetid

maksimeres. Aldringen av batteriet er i denne oppgaven modellert som en driftskostnad og inng̊ar

i objektfunksjonen. En optimeringsmodell basert p̊a lineær heltallsprogrammering er utviklet, og

simulert over ett år i GAMS og Matlab. Flere ulike case-studier er utført basert p̊a last- og produk-

sjonsdata fra svømmehallen, med antagelsen om en timesbasert strømpris.

Resultatene viser at installasjon av et batterilagringssystem er økonomisk gunstig allerede i dag, med

en reduksjon i årlige systemkostnader p̊a 0,64%. Effektkostnadene reduseres med 13,9% totalt, og

besparelsene fra effektutjevning overg̊ar de årlige driftskostnadene til batteriet. Videre sikrer bat-

teriet ytterligere fortjenester ved å utnytte timesvariasjoner i strømprisen, s̊akalt prisarbitrasje. Den

optimale batteristørrelsen er funnet til å være 150 kWh, med en årlig aldring p̊a 7,5%. For et antatt

2030-scenario øker den økonomiske gevinsten ved å installere et batterilagringssystem ytterligere,

med en årlig reduksjon i systemkostnadene p̊a 4,15%.
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1 | Introduction

1.1 Background and objective

1.1.1 Motivation and Value of Adopting Battery Storage

With an ever increasing energy demand and the introduction of more and more power demanding

devices, the Norwegian grid is facing supply challenges. Especially a high power demand causes a

stress on the grid, as it is dimensioned with regards to the peak power it needs to deliver. One

solution would be to expand the existing grid, resulting in substantial investment costs. Another

promising solution could be to implement a peak demand charge, encouraging end users to shift or

reduce their power demand.

Commercial customers are already subject to a peak demand charge, and are billed for the highest

peak power drawn from the grid each month. A special type of customer are sports facilities, as they

tend to have high, continuous load demand with extreme peak power periods during busy hours or

events. The resulting cost of peak power may be substantial, and contribute to a large share of the

total cost of electricity. As such, there is a large incentive for the facilities to reduce their power

demand. However, doing so in terms of shifting the load to off-peak hours is not always an available

option, as the load demand may be highly dependent on external factors. An alternative solution

may be to implement battery storage, where energy is bought from the grid during off-peak hours,

and discharged to supply the load during on-peak hours. This is called peak shaving, and could both

relieve the grid of stress as well as reduce the cost of peak power for the facility.

With the introduction of local generation, such as from solar modules, the battery may be charged

by excess production, thus increasing self-consumption. These behind-the-meter applications, where

the battery is paired with photovoltaic (PV) installations, is one of the most promising markets for

1
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battery energy storage systems (BESS). It is estimated that by 2030, behind-the-meter storage could

account for up to 64% of all installed capacity in stationary applications. Moreover, the investment

costs are expected to fall by 50-66%, making them an attractive solution [4].

Along with being used for behind-the-meter applications, battery storage systems can also provide

a wide range of services for the grid. These include, among others, frequency regulation, improved

voltage quality, smoothing of renewable generation and uninterruptible power supply (UPS). More-

over, it can act as a potential source of flexibility, which is becoming an increasingly scarce resource

with the vast implementation of variable generation from solar and wind. Even in the Norwegian

market, where the share of fluctuating production have traditionally been low, a greater need for

flexibility services is expected in the future as their share of renewables grow [8].

With more electricity coming from variable power sources, the spot marked will see more volatile

prices with higher peaks and larger gaps throughout the day. If the end users are subject to an

hourly pricing scheme based on the spot market, which is likely to occur in the future due to the

roll-out of smart meters, implementing a BESS can provide an additional benefit in terms of price

arbitrage operations. In this way, the battery charges from the grid during hours of low spot prices,

and discharges to supply the load when they are higher, thus increasing its economical value.

1.1.2 Optimal Operation of Battery Storage

Even though the investment costs of batteries are expected to fall, they are still often too high for

behind-the-meter applications to be economically beneficial for most customers. This, however, may

often be due to over-sizing of the battery or its operation strategy being too simple. By optimally

sizing and controlling the battery storage system to fit its application purposes and system specifi-

cations, the battery can minimize its operational costs while maximizing economical benefits for the

customer.

Several papers have studied the optimal operation of batteries for behind-the-meter applications,

and a variety of different optimization models have been carried out depending on the complexity

of the problem and the desired results. Dagdougui et. al [9] used a rule-based algorithm, where

the aim was to find the optimal size of the BESS which maximized annual benefits when used for

2
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peak shaving. The model is however very simple, excluding the operational costs of the battery and

running an on-peak/off-peak circuit, resulting in no profitable solutions. Dufo-López [10] also used

a rule-based algorithm and real-time pricing to decide whether the gain from operating the battery

at a given time step exceeded the operational costs of the battery. The goal was to minimize the

net present cost of the battery, however no profitable solutions were found. Nottrott et. al [11] used

linear programming and forecast algorithms to optimally schedule a battery with regards to keeping

the net load demand under a pre-set power limit. Although proving more beneficial than running

the battery on an on-off-mode, the optimization model is very simple.

1.1.3 The Importance of Considering Battery Degradation

None of the papers described above consider the impact of battery degradation in their solution.

If the lifetime of the battery is studied, it is done after the optimal solution is found and the cal-

culations are largely simplified. This is true for many studies, where the lifetime of the battery is

often considered to be constant regardless of how it is operated. However, the operational patterns

of a battery can greatly affect its degradation process, and if run too aggressively its lifetime can

be considerably reduced. A reduction in lifetime will in turn create a need for early re-investments,

which is largely unfavourable due to the high investment costs of battery storage. As such, measures

taken to ensure longevity of the battery could potentially lead to a higher revenue for the customer

in the long run.

A few papers studying the optimal operation of battery storage include degradation models in their

work. Hesse et. al [12] propose a linear optimization method for cost-optimal sizing of a BESS, con-

sidering both minimizing the electricity costs and maximizing revenue generation. The degradation

of the battery is modelled as an operational cost, however the aging model is simple and the effects of

power peaks are neglected. Abdulla et. al [13] propose a stochastic dynamic programming technique

to optimally operate a BESS, integrating both load forecast and battery degradation models. The

results show that an optimally operated BESS increases the lifetime of the battery by 160%. How-

ever, no economics are included, and the peak demand charges are neglected. Ranaweera et. al [5]

use dynamic programming to optimize the daily operational cost, including the cost of electricity and

battery degradation. A time-dependent energy tariff is considered, however the simulation is only

carried out for 24 hours, and as such the capacity of the battery is considered constant regardless of

3
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the aging. Moreover, the peak demand charges are neglected.

1.1.4 Objective

In light of the shortcomings of the aforementioned publications, this thesis aims to build a more

comprehensive optimization model, considering both the degradation of the battery and the cost of

peak power. With basis in a medium-scale swimming facility, the main goal is to analyze whether

implementing battery storage into an existing system can be beneficial in terms of reducing the

overall system cost. The objectives of this thesis include:

B Giving a brief introduction to relevant system theory, with emphasis on the battery storage

system.

B Building an optimization model with the objective of minimizing the total system costs while

ensuring longevity of the battery.

B Simulating the system operation and analyzing whether implementing battery storage is eco-

nomically profitable today.

B Conducting sensitivity analysis on important system parameters, as well as simulating the

system operation for a future scenario.

1.2 Approach

The system model is built using mathematical equations and constraints, based on component the-

ory. The resulting multi integer linear optimization problem is written in The General Algebraic

Modeling System (GAMS) and solved using Gurobi. Data on the load demand and solar production

for the test case are collected using Gurusoft®, with access provided by the swimming facility under

study, and loaded to GAMS using functions in Matlab. The simulation results obtained from running

the optimization in GAMS are read back to Matlab and further manipulated, in order to make the

results presentable in the form of plots and graphs.
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1.3 Limitations

In order to keep the scope of this thesis within reasonable boundaries, some simplifications have been

made. Firstly, the BESS is simplified to contain only a battery and an inverter, hence the effects

of all other system components are neglected. Furthermore, the load and production data from the

swimming facility are assumed known prior to solving. As such, a perfect forecast model is assumed.

However, forecasting algorithms can easily be implemented in the model, and could be of interest for

future studies. Other suggestions for further work are mentioned in Section 8.1.

1.4 Structure of the Report

This thesis starts off with a brief introduction to the proposed system and the characteristics of its

most important components, with emphasis on the battery storage system. This is done to present

the reader with the basic knowledge necessary for understanding the working principles of the system.

In this way, little previous knowledge of the terms and subjects presented in the study is required

prior to reading.

Chapter 2, A Grid-Connected Photovoltaic System with Battery Storage, gives an introduction to

the component theory and important aspects of the system. Emphasis is put on the battery storage

system, with a thorough explanation of the battery degradation.

In Chapter 3, Mathematical Formulation of the Problem, a mathematical model of the system is

presented. Moreover, the optimization model is built.

Chapter 4, Holmen Swimming Facility, gives a brief introduction to the main characteristics of the

facility under study.

Chapter 5, Solution Method, explains how the optimization model is implemented using available

commercial software, and how important system parameters are decided.

In Chapter 6, Case Study Results, the main results obtained from simulating the optimization model

are presented, along with the results from sensitivity analyses and a future scenario.
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In Chapter 7, Discussion, the main findings from the results are discussed.

Lastly, Chapter 8, Conclusion, summarizes and concludes the main aspects of the study, along with

shortcomings and suggestions for further work.
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2 | A Grid-Connected Photovoltaic Sys-

tem with Battery Storage

This chapter gives an introduction to the component theory and important aspects of the system,

so as to give the reader an understanding of its basic working principles and to lay a foundation

for building the optimization model. The system under study can be modelled simply as a grid-

connected photovoltaic (PV) system supplying a load. The main goal of this thesis is to see whether

introducing a battery energy storage system (BESS) can be beneficial in terms of reducing the overall

cost of electricity, while accounting for the operational cost of the battery.

When connecting a BESS to the system, two different configurations can be found: direct (DC) and

alternate current (AC) coupled systems [14]. In DC coupled systems, the batteries are connected to

the DC link of the PV system directly or through a bi-directional converter if the battery is to be

charged from the grid. In contrast, AC coupled batteries are connected to the AC bus through a

charge regulator and bi-directional converter. For this study, an AC coupling of battery storage is

chosen as it is suitable for the retrofitting of existing PV installations and offers flexibility in system

design [15].

A simplified single-line diagram of the proposed system with its most important components is shown

in Fig. 2.1. It should be noted that the BESS is simplified to contain only a battery bank and a

bi-directional converter, and the effects of all other storage components are neglected in this study.

The following sections give an introduction to the system components, as well as important aspects

relevant for building the optimization model. Seeing as this thesis is largely concerned about battery

operation, only a brief introduction of the other components will be given. Moreover, the load is first

presented in Chapter 4 and is not discussed here.
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Figure 2.1: The proposed system

2.1 Battery Energy Storage Systems

A BESS consists of several components, the main one being the battery bank. The other components

control the power flowing to and from the bank, typically including monitoring and control systems,

power electronics like DC switch and AC breakers, and a power conversion system [16]. The battery

bank consist of several batteries connected together, and its performance is strongly affected by the

nature of the batteries. The different battery technologies available on the market vary greatly in

their characteristics, and are therefore suited for different applications: while some batteries are

powerful but costly, others are cheap but short-lived. As such, it is important to classify the main

features needed before deciding on a specific technology. Table 2.1 gives an overview of the most

important battery aspects, based on [17].

For behind-the-meter storage systems, where the BESS is often paired with small-scale solar PV

systems and used for increased self consumption, load leveling or peak shaving, lithium-ion batteries

are by far the dominant battery technology of choice ([18], [4]). When compared to other technolo-

gies, they have the advantage of high energy and power density, making them ideal for both the

electromobility market and small-scale storage systems where size and weight are crucial factors.
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Table 2.1: Important battery concepts

Term Unit Description

Capacity Ah, kWh, MWh The maximum amount of energy that can be
stored in the battery.

State of charge (SOC) Ah, kWh, MWh, % The amount of energy stored in the battery at
any given time. Often given as a percentage of
the capacity.

Depth of discharge (DOD) % The amount of discharged capacity at any given
time, i.e. the inverse of SOC. The deeper the
DOD, the shorter the expected cycle life.

State of health (SOH) % The amount of capacity available in a battery
relative to its starting conditions.

Round-trip efficiency % The efficiency of which the battery is charged and
discharged, i.e. the fraction of energy coming into
the battery that can be retrieved.

Cycle life Number of cycles The number of charge and discharge cycles a
battery can complete before losing considerable
performance.

Calendar lifetime Years The number of years a battery can operate before
losing considerable performance.

Energy density Wh/kg Energy stored per kilogram.

They also have the ability of high power charge and discharge, as well as an excellent round-trip

efficiency and low self-discharge rate [17]. Moreover, their costs are rapidly declining: in Germany,

the cost of small-scale li-ion systems fell by over 60% between 2014 and 2017. Benefiting from the

massive growth of electric vehicles worldwide, the cost of stationary li-ion applications are expected

to decrease by another 55% by 2030 [4].

However, there is one initial drawback of lithium-ion batteries: their cycle life. Depending on the

cell chemistry, it can be as low as 500 full equivalent cycles1. A battery of this design performing one

full cycle each day would last short of one and a half years before needing replacement. Considering

their high investment cost, this would not be economically viable. As such, the degradation of a

battery is an important aspect to consider when deciding on its operational patterns such as to avoid

excessive cycling an the need for early re-investments.

1A full equivalent cycle is charging the battery from its maximum to its minimum DOD, before fully emptying it
again.
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2.1.1 Battery Degradation

The nature of a battery is such that its usable capacity decreases as it ages. The state of health

(SOH) of a battery is a measure of the current available capacity, given as a percentage of the nominal

capacity. When it drops below a certain value, the battery is considered at the end of its lifetime

and needs to be replaced. For lithium-ion batteries this value is normally set to 80% of the nomi-

nal capacity, matching a typical replacement criteria for electric vehicles. However, this end-of-life

threshold can vary depending of the battery chemistry, user preference and application area.

To estimate the SOH of a battery, either an analytical or a measurement based model can be used.

For lithium-ion batteries, it is common to differentiate between two factors influencing the SOH;

cyclic and calendric aging [19]. Cyclic aging is the degradation of a battery due to the battery going

through a full charging cycle, while the calendric aging is the inevitable time-dependant capacity

loss occurring regardless of operation. In addition, the aging of a battery is influenced by several

operating factors, such as inefficient charging, high charging voltages and currents, deep discharging

and extreme temperatures [5].

2.1.1.1 Cyclic Aging

Cyclic aging is caused by energy throughput in the battery, and for each cycle the battery goes

through, a certain percentage of available capacity is lost. The amount of capacity lost during a

cycle is highly dependant on the cell chemistry, and the various operating factors affect the battery

chemistries differently. For most lithium-ion batteries, the available capacity is sensitive to both

the maximum number of full cycles and the depth of discharge (DOD) level of each cycle [20]. Fig.

2.2 shows the number of cycles versus DOD for a nickel manganese cobalt oxide (NMC) battery, a

commonly used storage chemistry for small-scale behind-the-meter applications. The figure is based

on references [1] and [2] where a least square fitting method was applied to test data. The data was

acquired by repeatedly discharging the battery from full capacity to a specified DOD level, called a

regular cycle, and noting the number of cycles the battery could go through before reaching its end

of life capacity.
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Figure 2.2: Cycle life versus DOD for a NMC battery, based on data from [1] and [2]

However, a battery is not always operated using regular cycles. This is especially true for behind-

the-meter applications, where the battery operation is largely dependent on signals received from

outer factors such as the energy price, power demand and local power production. Seeing as these

signals may vary greatly from one period to another, the battery will largely go through irregular

cycles [1]. It is therefore necessary to build a cyclic degradation model which reflects the irregular

behaviour of the battery.

Modelling the cyclic aging of a battery is difficult as it depends on both the energy throughput,

cell chemistry and operating conditions, such as temperature, cell voltage and DOD. As such, no

single model can be used for all chemistries, and a near accurate representation of the cyclic aging

for each chemistry would be a highly non-linear function. As such, several simplified methods have

been proposed. In one article by Yang et. al [3], the cyclic degradation was found by measuring

the amount of coulombs through a battery for each full cycle and comparing it with the available

amount. A constant capacity reduction rate was assumed in order to simplify the analysis, meaning

the SOH decreased linearly with the number of cycles. However, the study only accounts for regular

cycles. Andre et. al [21] used a dual filter consisting of a standard Kalman filter and an Unscented

Kalman filter to predict the internal states of the battery and thus the total degradation. Although

producing accurate results, this method is both complex and time consuming.
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Other articles ([1], [22]) propose a simpler model for calculating the cyclic aging using the curve from

Fig. 2.2: the degradation of each regular cycle, i.e. when discharging the battery from full capacity

to a specified DOD level, is modelled as seen in Eq. (2.1). Lcyc is the cycle life of the resulting DOD

and ρ is the percentage degradation. Although being cell specific, it can easily be adapted to fit all

chemistries where such a curve is available, and can therefore produce accurate results for the chosen

battery technology.

ρ =
100%

Lcyc
(2.1)

As previously mentioned, it is desirable to build a model which accounts for irregular battery cycles.

In a paper by Wang et. al [1], an irregular cycle is modelled as the difference between two regu-

lar cycles, as seen in Eq. (2.2). Here, DPcyc represents the degradation in each time period. The

absolute value is due to the fact that both charging and discharging contributes to a degradation

of the battery, and the factor of 0.5 reflects that one charging or discharging process contributes

to half of the degradation of a full cycle. For example, if the battery is charged from 80% DOD to

20% DOD during one period, the degradation percentage is equal to 0.5·|1/3221−1/34917| = 0.014%.

DPcyc = 0.5 · |ρt − ρt−1| (2.2)

2.1.1.2 Calendric Aging

As opposed to cyclic aging, calendric aging is independent of energy throughput and comprises all

internal processes leading to the degradation of a battery when idle. The capacity lost during these

idle intervals is mainly dependent on the storage state of charge (SOC) and temperature. Several

papers ([3], [23]) have studied the change in the SOH for lithium-ion batteries when storing them at

different temperatures and SOCs, and found that the calendric aging did not increase linearly with

the SOC, nor with temperature. This can be seen in Fig. 2.3, taken from [3], showing the capacity

loss per day as a function of temperature for a lithium ferrophosphate (LFP) battery for different

levels of SOC.

Trying to create a mathematical model for the calendric aging based on this figure would require

different equations for different temperatures, making the model complex. However, assuming a
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Figure 2.3: Capacity loss as a function of temperature for different levels of SOC, taken from [3]

constant temperature can simplify the model. A constant temperature can be obtained by ensuring

a stable climate for the battery storage system, such as installing it indoors and providing a cooling

system if necessary. With this in mind, the calendric aging of the battery can be modelled as:

DPcal = a · SOC2 + b · SOC + c (2.3)

where DPcal is the degradation in each period, and a, b and c are constants depending on the chosen

temperature [3]. Seeing as the storage SOC is not constant - in fact, it changes with each cycling

of the battery - Eq. (2.3) is a non-linear equation. Several papers ([12], [24]) propose a further

simplification: a solely time-dependent model of the calendric aging. Here, the degradation in each

time step is expressed as:

DPcal =
100%

Lcal
(2.4)

where Lcal is the shelf time2 of the battery given by the manufacturer. This simplification can be

2The estimated lifetime of the battery if no charge throughput is applied, i.e. when idle.
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justified when assuming a constant, low temperature (10 or 20°C): when looking at Fig. 2.3, it can

be seen that the capacity loss for different levels of SOC is approximately equal for these temperatures.

2.1.1.3 Total Aging

As previously mentioned, both the cyclic and calendric aging affect the SOH of the battery. With

the total degradation expressed as DP, the battery is at the end of its lifetime for DP = 100%. If

the end-of-life criterion is set to 80% of full capacity, the SOH of the battery in each period can be

modelled as seen in Eq. (2.5), where DPt is the total degradation in per unit in time period t.

SOHt = SOHt−1 − 0.2 ·DPt (2.5)

According to the state of the art, the total degradation of the battery can be modelled in several

ways. Some articles ([12], [25]) model the total aging as a superposition of the cyclic and calendric

aging, while others ([3], [5]) argue that the two processes are independent of each other: the total

aging is equal to DPcyc if the battery is operating, and DPcal if it is idle, as seen in Eq. (2.6):

DP =


DPcal, Pcharge = Pdisch = 0

DPcyc, otherwise

(2.6)

Other articles again ([1], [24]) argue that the total degradation in each period can be modelled as the

larger one of the two aging processes. If DPcyc is higher than DPcal for all DOD levels, and noting

that DPcal is equal to zero when the battery is idle, this approach can be seen as a simplification of

Eq. (2.6). The resulting model is shown in Eq. (2.7).

DP = max{DPcyc, DPcal} (2.7)

2.1.2 The Cost of Battery Storage

As previously mentioned, the degradation of the battery is an important factor to consider when

optimizing the battery operation. Excessive cycling of the battery is unwanted as this will decrease

the battery lifetime, potentially drastically. The battery should only be operated if the cost of

capacity loss during cycling is less than the economic savings from supplying the load with the battery

instead of buying from the grid. However, there is also a cost of keeping the battery idle, namely
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the gradual degradation due to calendric aging, which needs to be accounted for. The degradation

cost in each period is thus dependent on the total degradation of the battery. By assuming that the

degradation cost is a percentage of the initial investment cost, such that when the battery reaches

the end of its lifetime the initial investment is accounted for, the degradation cost can be expressed

as follows [22]:

γ = Cbat ·DP (2.8)

where Cbat is the initial cost of the battery. The initial cost is highly dependent on the size of the

battery, as seen in Eq. (2.9) where cbat is the specific cost in NOK per capacity and Enom
bat is the

nominal capacity of the battery.

Cbat = cbat · Enombat (2.9)

As seen from these equations, the degradation cost of the battery is strongly affected by the initial

investment cost, which in turn varies greatly for each cell chemistry: today’s average prices for a

BESS can range from NOK 2800 to NOK 8400 per kWh3. However, with increasing deployment

of li-ion batteries in various applications worldwide, costs are rapidly declining: in a study by the

International Renewable Energy Agency (IRENA) from 2017 [4], average battery system costs are

expected to lie between NOK 1000 and NOK 2800 per kWh in 2030, a reduction of around 55% from

today’s prices [4]. These estimations are further backed up by Bloomberg New Energy Finance [26].

Moreover, continued improvement in technology will increase the performance and cost competitive-

ness of li-ion batteries, and especially their lifetime is expected to improve drastically: by 2030, the

cycle lifetime of some cell designs could increase by as much as 90%. Fig. 2.4, taken from [4], gives

an overview of the current and projected properties of some important li-ion battery storage systems,

with the dots indicating the average, or central, estimates.

3Based on conversion from USD to NOK, with a exchange rate of 8.00 NOK/USD.

15



A Grid-Connected Photovoltaic System with Battery Storage

Figure 2.4: Current and projected properties for some important lithium-ion BESS, taken from [4]

2.1.3 The Battery Inverter

The following two paragraphs are extracts from the preceding specialization project, reference [27].

It should be noted that the words converter and inverter are used interchangeably throughout this

study when referring to the bi-directional converter of the BESS.

A power converter is an electronic device which controls and modifies the voltage and current to

desired values. In its simplest form it consist of several passive elements (capacitor, inductor, diode,

thyristor), but it can also contain controllable switches (IGBT, MOSFET). Due to the large number

of possible combinations, there are many different converter topologies on the market.

The battery converter transforms AC power from either the grid or the solar inverters to DC power

when charging, and from DC to AC power when discharging, meaning it acts as a bi-directional con-

verter. Its size can vary depending on the application, however it is typically matched to provide the

nominal power of the battery. The topologies commonly used for BESS are two- or three-level volt-

age source converters (VSC), however the more complex modular multilevel converter (MMC) may

also be a good choice. Although more costly than the conventional VSC, it offers several advantages

like low harmonic distortion, superb efficiency and high scalability and reliability. The efficiency of

the converter depends on the topology, however it commonly lies in the range between 90% - 98% [28].

The cost of the inverter is included in the total cost of the BESS from Section 2.1.2, and is thus not
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discussed further.

2.2 The PV System

A PV system is designed to supply loads with solar power, and is made up of several PV modules

wired together. These modules are in turn a number of series-connected solar cells, where each cell

produces electricity when exposed to sunlight. The system also commonly includes a power con-

verter, which converts the DC output from the solar panels to usable AC input for the loads.

By installing a PV system, the amount of power bought from the grid is reduced as the electricity

produced by the solar panels are used to supply the loads. If the solar production exceeds the load

demand at any point, the excess power is fed back to the grid. The owner of the PV system is

compensated for each kWh of energy sold to the grid by a feed-in tariff. This is known as the “plus

customer scheme”, and is a means of compensating prosumers4 for power delivered to the grid as long

as this never exceeds 100 kW [29]. However, with the vast deployment of PV systems compensation

becomes increasingly expensive, and hence the feed-in tariffs are likely to decrease in the near future.

With the inclusion of a BESS, the excess power can be used to charge the battery bank. When

the net load demand5 is high, the battery can be discharged to supply the load, thus increasing

self-consumption.

2.3 The Grid

The electrical grid is a network through which the power generated at the producer level is transmitted

and distributed to the end users. Each user, or consumer, is charged for the power delivered, and

the electricity bill normally consists of two parts [30]:

B The grid rent, comprising a fixed and variable amount. This rent is charged by the local

network company, and covers all cost related to transferring the energy.

B The price of electricity, which is the cost of the total amount of energy bought from the local

power supplier in each billing period.

4Customers who both consume and produce power
5The solar power production subtracted from the load demand
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Each kWh of energy delivered is subject to an energy tariff, which can be either a flat rate or a

time-dependant rate. With the flat rate tariff, the customer is charged a constant price for each

kWh consumed, which may or may not be seasonal dependant. Traditionally, the flat rate is the

most widespread tariff scheme in Norway. However, with the introduction of smart meters6 the

consumers will be more exposed to price signals in the power market, and time-based tariffs may

become increasingly deployed. Instead of charging a constant price, the cost per kWh is dependant

on the time in which that kWh is used. The two most common time-based tariff schemes are:

B Time-of-use pricing (TOU): The energy tariff is divided into time periods, with fixed electricity

prices within each period. The prices are higher during peak periods to encourage customers

to reduce their load demand, thus relieving the grid of high stress.

B Real-time pricing (RTP): The energy tariff is based on hourly rates, which depend on the spot

prices. In Norway these are decided by Nord Pool7.

In addition to being charged for both the grid rent and the total energy consumed, commercial cus-

tomers like swimming facilities are subject to a demand charge - a fee charged for the maximum

power drawn from the grid each billing period. This charge may be of a substantial amount, and is

set high to reflect that the consumption peaks cause a stress on the grid. For some customers, the

peak demand charge could be as high as their cost of energy, and flattening the peak demand may

thus be an efficient way of reducing their total electricity bill. This can be done by implementing a

BESS, where the battery is charged during off-peak hours and discharged during hours of high load

to shave the peaks.

Under a time-based tariff scheme the economic value of storage systems is further increased, as they

may be used for price arbitrage operations: the battery is charged from the grid when the price of

electricity is low, and discharged to supply the load when the price is high. This is especially beneficial

for areas where the difference between on and off-peak energy tariffs are high, which may be the case

for Norway in the near future: according to a study made by Statnett this year [8], the Norwegian

spot market will see more volatile prices and higher price peaks as the implementation of fluctuating

power sources like solar and wind continue to grow. If a RTP scheme is introduced, which may be

6Smart meters measure the hourly consumption for each customer, and sends this information to the network
company.

7Nord Pool runs the leading power market in Europe, and offers day-ahead and intraday markets. The day-ahead
market is the main arena for trading power, and the intraday market helps secure balance between supply and demand
[31].
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likely due to the vast roll-out of smart meters, a BESS can exploit these large price variations and

provide additional savings. Moreover, implementing a BESS in connection with the grid can provide

other benefits: seeing as the power output of renewable resources can vary greatly depending on the

weather, and since supply and demand need to be balanced in real time, a greater need for flexible

solutions is expected in the future. With a BESS, the battery can store the electricity generated

when production exceeds demand, and supply electricity when needed, thus effectively smoothing

the variable production and ensuring quality of supply. However, as this thesis is concerned with

behind-the-meter applications and customer benefits, this topic is not discussed further.
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2.3.1 The Total Cost of Electricity

The total cost of electricity for each billing period can be modelled as shown in Eq. (2.10), where

t indicates hours and T is the last hour of the billing period. cel,t is the energy tariff, cfeed-in,t is

the feed-in tariff, and cpeak is the peak demand charge. Pgrid,b,t is the power bought from the grid

each hour, Pgrid,s,t is the power fed back (or sold) to the grid each hour, and Ppeak is the maximum

amount of power drawn from the grid during the billing period.

Cel =
T∑
t

(cel,t · Pgrid,b,t∆t− cfeed−in,t · Pgrid,s,t∆t) + cpeak · Ppeak (2.10)
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Problem

The single-line diagram of the proposed system is reproduced in Fig. 3.1 for convenience, along with

the power flows. All power flows going into the AC bus are considered positive.

Figure 3.1: The proposed system with power flows
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3.1 Assumptions

The following assumptions have been made on the system characteristics in order to simplify the

problem:

B The hourly load demand and solar production are assumed to be known prior to solving the

problem, meaning we have a perfect forecast model which greatly simplifies the problem. Al-

though not a part of this study, forecasting algorithms can easily be implemented in the model

in order to produce more realistic results.

B The battery is based on the characteristics of a lithium-ion NMC battery.

B The C-rate of the battery is assumed equal to one, meaning the battery can charge or discharge

all available energy in one hour within the limits of the BESS inverter. This is chosen based

on the typical ratings of a NMC battery [32].

B All efficiencies are assumed to be constant.

3.2 Notations

Sets

T - Set of time periods, t ∈ T

M - Set of months, m ∈ M

I - Set of piecewise linear points, i ∈ I

System parameters

∆t - Time resolution [h]

Pload,t - Load demand [kW]

Ppv,t - Solar production [kW]

Pmax
grid - Maximum power that can be bought from the grid [kW]

Pnom
inv - Nominal power of the BESS inverter [kW]

ηinv - Efficiency of BESS inverter [-]

ηcharge - Charging efficiency of the battery [-]

ηdisch - Discharging efficiency of the battery [-]
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ηrt - Round-trip efficiency of the battery [-]

Enom
bat - Nominal battery size [kWh]

SOCmin - Minimum state of charge [p.u.]

SOCmax - Maximum state of charge [p.u.]

Lcal - Calendric lifetime of the battery [h]

Economic parameters

cel,t - Energy tariff [NOK/kWh]

cfeed-in,t - Feed-in tariff [NOK/kWh]

cpeak,m - Peak demand tariff [NOK/kWp/month]

System variables

Pgrid,b,t - Power bought from the grid [kW]

Pgrid,s,t - Power sold to the grid [kW]

Ppeak,m - Peak power demand [kWp]

Pcharge,t - Power charged to the battery [kW]

Pdisch,t - Power discharged from the battery [kW]

Ebat,t - Energy content in the battery [kWh]

Eusable
bat,t - Usable capacity [kWh]

SOCt - Battery state of charge [p.u.]

DODt - Battery depth of discharge [p.u.]

SOHt - Battery state of health [p.u.]

DPt - Total battery degradation [p.u.]

DPcyc, t - Cyclic degradation [p.u.]

DPcal, t - Calendric degradation [p.u.]

ρt - Cyclic degradation of a regular cycle [p.u.]

γt - Cost of degradation [NOK]
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Variables used for piecewise linearization

degt,i - Degradation in point i [p.u.]

dodt,i - DOD in point i [p.u.]

wt,i - SOS2 variable [-]

3.3 Mathematical Model

The most important aspect of the system is to ensure that the load demand is met at all times, and

that the power balance is obtained. As can be seen from Fig. 3.1, the power balance equation in

time step t can be written as:

Ppv,t + Pgrid,b,t + ηinvPdisch,t = Pgrid,s,t +
Pcharge,t
ηinv

+ Pload,t (3.1)

Both the PV production and load demand are given as parameters, while the battery charging and

discharging power as well as the power bought from or sold to the grid are variables. In order to

reduce the power peaks as seen from the grid, and thus enable peak shaving, a maximum limit on

the power that can be drawn from the grid in any time step is applied:

Pgrid,b,t ≤ Pmaxgrid (3.2)

Moreover, both the power bought from and sold to the grid must be of positive values:

Pgrid,b,t, Pgrid,s,t ≥ 0 (3.3)

3.3.1 Modelling the Battery

When the battery is operating, it can either charge or discharge - but never both at the same time.

In each time step, the charging or discharging powers are limited by the nominal power of the

bi-directional inverter to avoid over-voltages and high currents:

0 ≤ Pcharge,t ≤ ηinv · Pnominv (3.4)

0 ≤ Pdisch,t ≤ Pnominv (3.5)
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In each operating period, the energy in the battery is either increased or reduced according to Eq.

(3.6). Note that when the battery is idle, Pcharge,t = Pdisch,t = 0 and the energy content remains

unchanged.

Ebat,t = Ebat,t−1 + ηcharge · Pcharge,t∆t−
Pdisch,t
ηdisch

∆t (3.6)

The charging and discharging efficiencies depend on the current through the battery, however for

simplification they are assumed constant throughout the simulation. Furthermore, it is assumed

that the efficiencies are equal, and that they can be calculated based on the battery round-trip

efficiency (ηrt) ([5], [10], [12]):

ηcharge = ηdisch =
√
ηrt (3.7)

The energy content in the battery is limited by an upper and lower boundary, as given in Eq. (3.8),

to avoid overcharge or deep discharge:

Eusablebat,t · SOCmin ≤ Ebat,t ≤ Eusablebat,t · SOCmax (3.8)

The available energy is controlled by the usable capacity as well as the minimum and maximum

levels of the state of charge (SOCmin and SOCmax), which are set according to Fig. 3.2.

Figure 3.2: Open circuit voltage as a function of SOC for a lithium-ion battery, taken from [5]

From the figure it can be seen that the open circuit voltage of a lithium-ion battery is relative constant
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in the SOC range of 10% - 90%, so operation in this region is preferable [5]. Moreover, as discussed

in Section 2.1.1, the battery deteriorates due to calendric and cyclic aging processes. As such, the

usable capacity, Eusable
bat,t , decreases with each time step according to the state of health (SOHt). The

resulting limits on the energy content are shown below:

Enombat · SOHt · SOCmin ≤ Ebat,t ≤ Enombat · SOHt · SOCmax (3.9)

The SOC and the energy of the battery are interdependent, and the SOC can be expressed as:

SOCt =
Ebat,t

Eusablebat,t

=
Ebat,t

Enombat · SOHt
(3.10)

In addition, as previously mentioned, the SOC is limited to its minimum and maximum levels:

SOCmin ≤ SOCt ≤ SOCmax (3.11)

The DOD of the battery is dependent on the SOC, and vice versa, and is defined as:

DODt = 1− SOCt (3.12)

3.3.1.1 Battery Degradation

The degradation of the battery was described in Section 2.1.1, however the equations used in the

simulations are reproduced here for convenience. Considering the battery to be at the end of its

lifetime when its capacity is reduced by 20%, the SOH in each time step can be modelled as:

SOHt = SOHt−1 − 0.2 ·DPt (3.13)

where DPt is the total degradation in each time step, given as:

DPt = max{DPcyc,t, DPcal,t} (3.14)

The cyclic and calendric aging models used in this study are shown below:

DPcyc,t = 0.5 · |ρt − ρt−1| (3.15)
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DPcal,t =
100%

Lcal
(3.16)

where ρt is modelled as seen in Eq. (2.1) from Section 2.1.1.1. The calendric aging model was chosen

based on its simplicity and linearity as compared to the other models presented in Section 2.1.1.2.

3.3.2 The Objective Function

The objective of the model is to minimize the total system cost while satisfying the constraints de-

scribed above. The system cost consists of two parts: the total cost of electricity, and the operational

cost of the battery. The operational cost of the battery is assumed to only include the cost of degra-

dation, hence maintenance costs are neglected.

Based on Eq. (2.10) from Section 2.3.1, the total cost of electricity can be modelled as:

Cel =
∑
t∈T

(cel,t · Pgrid,b,t∆t− cfeed−in,t · Pgrid,s,t∆t) +
∑
m∈M

(cpeak,m · Ppeak,m) (3.17)

where Ppeak,m is the maximum power drawn from the grid in time t within month m, given as:

Ppeak,m ≥ Pgrid,b,t ∀t ∈M (3.18)

The total degradation cost of the battery can in turn be modelled as:

Cdeg =
∑
t∈T

γt (3.19)

where γt is the degradation cost in each time step, defined in Eq. (2.8) in Section 2.1.2.
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Considering the equations given above, the objective function becomes:

min
∀t∈T
∀m∈M

Ctot(t,m) =
∑
t∈T

(cel,t · Pgrid,b,t∆t− cfeed−in,t · Pgrid,s,t∆t+ γt) +
∑
m∈M

(cpeak,m · Ppeak,m) (3.20)

3.3.3 Linear Programming

The objective function and most of the equations and constraints have linear relationships, making

linear programming (LP) well suited to solve the optimization problem. It should be noted, however,

that some of the equations and constraints have been simplified in order to obtain a model which

can easily be solved to find the optimal solution. In reality, these models of real life scenarios may

be much more complex, e.g. the battery degradation model as described in Section 2.1.1. Never-

theless, the simplifications can be justified as linear optimization provides unambiguous, repeatable

results without requiring large computational efforts as compared to other optimization methods [12].

However, the battery degradation model still contains non-linear parts. Seeing as LP requires all

equations and constraints to be linear, linearization needs to be applied. Referring to reference [1],

the non-linear equations (3.14) and (3.15) are linearized as follows: Eq. (3.14) is transformed into

(3.21) and (3.22), and Eq. (3.15) is transformed into (3.23) and (3.24).

DPt ≥ DPcyc,t (3.21)

DPt ≥ DPcal,t (3.22)

DPcyc,t ≥ 0.5 · (ρt − ρt−1) (3.23)

DPcyc,t ≥ 0.5 · (−ρt + ρt−1) (3.24)

However, there are still non-linearities in this model: when looking at Fig. 2.2 from Section 2.1.1.1,

it becomes evident that there is a non-linear relationship between the DOD and the cycle life of the

NMC battery. Seeing as the cyclic degradation, ρt, is defined as the inverse of the cycle life, Eq.

(3.23) and (3.24) contain non-linear parts and need to be further linearized.
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3.3.3.1 Piecewise Linearization using Special Order Sets

In order to model the non-linear relationship between the cyclic degradation and DOD, piecewise lin-

earization is applied to the inverse of Fig. 2.2: the curve is divided into n linear segments, connected

through n+1 points, as seen in Fig. 3.3. For a specific DOD value located between two points, the

resulting degradation percentage is found based on the linear function of the segment connected by

these two endpoints. In LP, this can be modelled by using special order sets of type 2 (SOS2). A

SOS of type 2 is an ordered set of variables, where at most two variables can be non-zero for each

time period. If two variables are non-zero, these must be adjacent. These sets are used in ”branch

and bound”1 optimization methods to provide a more intelligent and efficient way of solving the

problem. A linear model containing such sets becomes a discrete optimization model, even though

the members of the set may themselves be continuous. As such, a mixed integer linear optimizer is

required to solve the problem [33].

Figure 3.3: Piecewise linearization of the cyclic degradation versus DOD curve for a NMC battery

1The solution method forms a rooted tree, where the root is the initial problem formulation. When optimizing,
branches are formed from the root, and each branch is a subset of the solution set. Each branch, with its distinct
solution, is checked against constraints and discarded if these are not met or if it cannot produce a better solution than
the best one found so far. More on this optimization method can be found in [33].
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The piecewise linearization using SOS2 is shown in equations (3.25) through (3.27), where index i

indicates point i on the piecewise linear curve. Here, degt,i represents the degradation, dodt,i the

depth of discharge, and wt,i the SOS2 variable of point i.

ρt =
∑
i∈I

degt,i · wt,i (3.25)

DODt =
∑
i∈I

dodt,i · wt,i (3.26)

∑
i∈I

wt,i = 1 (3.27)

The SOS2 property of having at most two non-zero variables which have to be adjacent, ensures

that we are always on the piecewise linear function. This could also have been modelled using

binary variables, however special ordered sets are usually preferred as they may provide significantly

computational savings [33].
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3.3.4 Model Formulation

The model formulation, including the objective function as well as all equations and constraints, is

shown below.

min
∀t∈T
∀m∈M

∑
t∈T

(cel,t · Pgrid,b,t∆t− cfeed−in,t · Pgrid,s,t∆t+ γt) +
∑
m∈M

(cpeak,m · Ppeak,m)

s.t. Ppv,t + Pgrid,b,t + ηinvPdisch,t − Pgrid,s,t − 1
ηinv

Pcharge,t − Pload,t = 0 ∀t ∈ T

Ebat,t − Ebat,t−1 − ηchargePcharge,t∆t+ 1
ηdisch

Pdisch,t∆t = 0 ∀t ∈ T

SOCt −
Ebat,t

Enom
bat ·SOHt

= 0 ∀t ∈ T

DODt + SOCt = 1 ∀t ∈ T

SOHt − SOHt−1 + 0.2DPt = 0 ∀t ∈ T

DPcal,t − 100%
Lcal

= 0 ∀t ∈ T

ρt −
∑
i∈I

degt,i · wt,i = 0 ∀t ∈ T

DODt −
∑
i∈I

dodt,i · wt,i = 0 ∀t ∈ T∑
i∈I

wt,i = 1 ∀t ∈ T

Pgrid,b,t ≤ Pmaxgrid ∀t ∈ T

Pcharge,t ≤ ηinvP
nom
inv ∀t ∈ T

Pdisch,t ≤ Pnominv ∀t ∈ T

Ebat,t ≤ Enombat · SOHt · SOCmax ∀t ∈ T

SOCt ≤ SOCmax ∀t ∈ T

SOCt ≥ SOCmin ∀t ∈ T

DPt ≥ DPcyc,t ∀t ∈ T

DPt ≥ DPcal,t ∀t ∈ T

DPcyc,t ≥ 0.5 · (ρt − ρt−1) ∀t ∈ T

DPcyc,t ≥ 0.5 · (−ρt + ρt−1) ∀t ∈ T

Ebat,t ≥ Enombat · SOHt · SOCmin ∀t ∈ T

Ppeak,m ≥ Pgrid,b,t ∀t,m ∈M

Pgrid,b,t, Pgrid,s,t, Pcharge,t, Pdisch,t ≥ 0 ∀t ∈ T
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4 | Holmen Swimming Facility

The system under study is Holmen swimming facility, located in Asker, Norway and opened in

mid-2017. With 45% annual energy savings1 and a PV system covering around 12% of the annual

electricity demand, it is considered a passive house and is one of the countries most energy efficient

swimming facilities [34]. However, their power peaks are high, meaning their total cost of electricity

may be substantial even with the annual energy savings. Implementing a BESS can shave these

peaks, and may prove economically beneficial if the savings from peak shaving operations are higher

than the operational cost of the battery.

All data on load demand and solar production was collected using Gurusoft®, with access provided

by Holmen swimming facility and Asker municipality. Here, Sections 4.1 and 4.2 give a brief intro-

duction to the loads and PV systems, respectively, while more details on the specific data is presented

in Chapter 5. Section 4.3 presents the cost of electricity for the facility.

4.1 The Loads

The electrical loads of the system consist of all units requiring electrical power, which can be provided

by either the grid or by the PV systems. The electrical loads of the swimming facility are listed below,

from the most to the least demanding as given in Gurusoft®:

B Saunas and ventilation

B Electric boiler

B Swimming pools

1Compared to swimming facilities built according to today’s regulations
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B Heat pump

B Lighting

B Energy plant and heaters

B Charging of electric vehicles

B Reserve

4.2 The PV System

Holmen swimming facility has installed several PV systems on both the rooftop and facades, using

Solel. Table 4.1 gives an overview of the characteristics of each one, based on information provided

by the installer [35].

Table 4.1: PV system characteristics of Holmen swimming facility

Location Size Tilt angle Solar angle PRa

Rooftop 53,5 kWp 10° 160°(S/SE) 80%

Facade 31,32 kWp 90° 160°(S/SE) 85%

Bike rack 4,32 kWp 10° 160°(S/SE) 85%

aThe performance ratio (PR) is the relationship between actual and theoretical energy output, and is less than 100%
due to system losses such as shading and heating.

4.3 The Cost of Electricity

As shown in Eq. (2.10) in Section 2.3.1, the total cost of electricity consists of three parts: the cost

of purchasing power from the grid, the revenue from selling power to the grid (if any), and the cost of

the highest peak power demand each month. These cost are based on tariffs set by the local network

company, which for Asker is Hafslund Net.

The cost of purchasing power from the grid depends on the energy tariff, set to be a seasonal depen-

dant flat rate by Hafslund Net. However, a time dependent rate is assumed in this study to reflect

the near future trends, as presented in Section 2.3. More specifically, a RTP scheme is chosen, based

on the Elspot day-ahead prices for Oslo in 2017, collected from Nord Pool [6]. The spot prices for
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two arbitrary winter and summer months are shown in Fig. 4.1, where it can be seen how the prices

are higher during the winter with an average price of 0.28 NOK per kWh, compared to 0.22 NOK per

kWh in the summer. It can also be seen that the prices fluctuate more during the summer month,

which may be due to a higher penetration of renewable energy.

(a) February (b) June

Figure 4.1: Spot prices for Oslo (2017), based on data from [6]

A revenue from selling power to the grid may be generated if the solar production exceeds the load

demand. The revenue is based on a feed-in tariff, which in turn is based on a deal the customer

makes with its local power supplier. For this study, a constant value of 0.04 NOK per kWh is chosen

based on the feed-in tariff provided by Agder Energy [36].

The cost of peak demand is subject to the charges presented in Table 4.2 as of 2018, based on data

from Hafslund Net [7].

Table 4.2: Peak demand tariffs, based on data from Hafslund Net [7]

Demand tariffs

Winter 1 (Jan, Feb, Dec) 150 NOK/kWp/month

Winter 2 (Mar, Nov) 77 NOK/kWp/month

Summer (Apr-Oct) 11 NOK/kWp/month
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This chapter gives a brief explanation on how the model presented in Section 3.3.4 is implemented

using available commercial software, and how important system parameters are decided. The model

is written in The General Algebraic Modeling System (GAMS) and solved using Gurobi. All large

parameter data is read from Excel, and loaded to GAMS using functions in Matlab. The results

obtained from running the optimization in GAMS are read back to Matlab and further manipulated,

in order to make the results presentable in the form of plots and graphs.

In order to capture the seasonal characteristics with regards to PV generation and load demand, a

planning horizon of one year with hourly time increments is considered in the simulations. A time

resolution of one hour was chosen based on the energy market operating on an hourly basis, and is a

compromise between obtaining accurate results and lowering the computational speed. As such, the

one-year simulation covers a total of 8760 time intervals.

Here, Section 5.1 gives an overview of the characteristics of the chosen optimization software, and

Section 5.2 describes how important system parameters are estimated.

5.1 Modelling in GAMS

GAMS is a high-level modeling system for mathematical programming and optimization, specifically

designed for modelling linear, non-linear and mixed integer optimization problems [37]. As opposed to

languages using a matrix data structure where all equations and constraints need to be translated into

matrices, like Matlab, GAMS uses an algebraic modeling language. This implies that the optimization

model is a collection of algebraic equation, and closely resembles the mathematical model formulation

of Chapter 3. Other advantages of using GAMS are listen below, based on reference [38].
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B Due to the equation based modelling language, building large, complex models is easy, and the

models can quickly be adapted to new situations.

B The model formulation is independent of the model data, allowing you to run the model for

different data sets without changing the model formulation.

B It comes with several state-of-the-art sovlers, and the model formulation is independent of the

chosen solver: after formulating the equations, you simply tell GAMS which solver you want to

use and what type of problem you have (linear, non-linear etc.), meaning you can try different

solvers without changing the model formulation.

B The resulting solution report is easy to read, and you can choose which variables you want

to display. Moreover, the output can easily be transferred to other programs, like Matlab or

Excel, to represent the solution in a graphical way.

5.2 Estimating Important System Parameters

As previously mentioned, Holmen swimming facility was opened in mid-2017. However, due to initial

problems with installing measurement tools, no recorded data on load demand or solar production

is available before January 2018. Thus, in order to be able to analyze the system behaviour over one

full year, estimates on future demand and production have been made. Moreover, both the initial

battery size and the maximum power that can be drawn from the grid are parameters, hence they

need to be set prior to solving. Seeing as their chosen values may have a potential large impact

on the solution results, it is desirable to find close to optimal values before solving. The following

sections describe the estimation approaches used.

5.2.1 Estimating Yearly Load Demand

The yearly load demand was estimated based on historical data from January to April 2018, and the

following assumptions were made:

B The load data for similar months was ”mirrored” using actual load data, i.e. the load demand

for 31st of December was assumed equal to the demand for 1st of January, the load demand for

30th of December was set equal to the demand for 2nd of January, and so on. This was done

for September to December as only data from January to April was available.
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B The load demand for May was assumed equal to the load demand for April.

B The load demand for the first two weeks of June was assumed equal to the two last weeks of

May.

B The load demand for the second two weeks of June was assumed equal to the two first weeks,

reduced by 20% to reflect the start of the school’s summer holiday.

B The load demand for July was assumed equal to the load demand for June without reduction,

reduced by 40% to reflect the affects of the public holiday.

B The load demand for August was assumed equal to the ”mirrored” load demand of June.

The assumptions described above are based on load demand trends for other swimming facilities in

Norway [39], however the real load demand will vary from the estimations. This should be kept in

mind when analyzing the simulation results.

The yearly load profile with both historical and estimated data is shown in Fig. 5.1a, with a total

annual consumption of around 2,306 MWh. As seen from the figure, the load demand is higher

during the winter months and at its lowest in July due to the assumptions made on load estimations.

Moreover, high peaks can be observed for all months when looking at Fig. 5.1b. Seeing as the peak

demand tariff is high, especially for the winter months as shown in Table 4.2 from Section 4.3, peak

shaving may provide significant savings on the demand charge for the customer. It should be noted

that the peak power demands from Fig. 5.1b are the net peak demands after the solar production has

been subtracted from the load demand. The data on solar production is discussed in the following

section.

5.2.2 Estimating Solar Production

By using the data given in Table 4.1 from Section 4.3, the expected hourly solar production was

calculated for each individual system using PVWatts® Calculator. PVWatts® is an online product

from the National Renewable Energy Laboratory (NREL) that calculates annual production from

PV systems at any given location. To estimate production, it uses typical year weather data1 which

1Each month is selected from a different year, giving a more representative and long-term data than data collected
from a given year.
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(a) Yearly load demand (b) Net peak power demand

Figure 5.1: Estimated load demand for Holmen swimming facility

represents the long-term solar resource at a location and thus produces accurate estimates [40]. Al-

though Asker was not available as a location, data from Fornebu in Oslo was used as they lie at

approximately the same latitude and longitude.

The total annual solar production was calculated to be 62.4 MWh. Fig. 5.2a and 5.2b show the

solar production for each PV system for two arbitrary winter and summer weeks, respectively. The

chosen weeks are week 8 (mid-February) and week 24 (mid-June). As seen from the figures, the solar

production is higher during summer due to more irradiation. Moreover, since the irradiation data is

based on historical data, daily changes in weather are accounted for. This is especially evident when

looking at Fig. 5.2a, where the solar production is significantly lower for the two last days of the

week, most likely due to clouds or shading from snow.

Fig. 5.3 shows the load demand and total solar production in the same plot for week 8 and week 24.

As seen from the figure, the load demand is considerably higher than the solar production, even in

the summer.
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(a) Weekly solar production, week 8 (b) Weekly solar production, week 24

Figure 5.2: Weekly solar production for two arbitrary winter and summer weeks

(a) Weekly load demand and solar production, week 8 (b) Weekly load demand and solar production, week 24

Figure 5.3: Weekly load demand and solar production for two arbitrary winter and summer weeks

If the solar production never exceeds the load demand, there will be no excess power to charge a

potential battery. As such, inclusion of a BESS may not be economically profitable as it would have

to be charged from the grid, thus increasing the cost of energy. However, if the difference between the

off-peak and on-peak electricity prices are high, the battery may generate revenue as it can charge

from the grid during off-peak hours and discharge when prices are high. Moreover, using the battery

for peak shaving purposes may reduce the cost of peak power substantially.
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5.2.3 Estimating Enom
bat and Pmax

grid

Both the nominal battery capacity, Enom
bat , and the maximum amount of power that can be drawn

from the grid, Pmax
grid , are parameters in the simulation model, meaning they are set prior to solving.

Seeing as the cost of the battery and the peak demand charge are highly dependent on Enom
bat and

Pmax
grid , respectively, the chosen values will largely affect the simulation results. As such, it is important

to decide on the optimal parameter values before solving in order to minimize the objective function,

i.e. the total system cost.

In order to find the optimal parameter values, simulations of the proposed system were carried out

with a one month time horizon for different values of Enom
bat . The simulations returned both the

optimal value of Pmax
grid and the resulting system cost. A one month time horizon was chosen as it

significantly reduces the simulation time when compared to one year, while still being able to include

the peak demand charge. The peak power demand for the system without BESS is shown in Fig.

5.1b, where the highest peaks occur in February and November. Seeing as February has the highest

demand tariff of the two (150 versus 77 NOK/kWp/month), it was chosen as the test month in order

to capture the most extreme scenario. The resulting system cost as a function of Enom
bat is shown in

Fig. 5.4.
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Figure 5.4: Optimal system cost as a function of battery capacity for February

As can be seen from the figure, the optimal battery capacity is found to be 150 kWh, which in turn

sets the optimal value of Pmax
grid to be 455,38 kWp. It can also be observed that increasing the battery

size beyond the optimal value has little effect on the total system cost. A larger battery will be able

to provide more peak shaving while also being more expensive, causing only slight changes in the

total system cost. However, as long as the battery is large enough to provide sufficient peak shaving,

the smaller battery is preferred: the battery pack takes up less space, is lighter in weight and the

initial investment costs are lower.

43





6 | Case Study Results

In this chapter, results obtained from simulating the multi integer LP (MILP) optimization problem

in GAMS are presented. The simulations are carried out on the proposed system shown in Fig.

3.1, referred to as the base case (BC), with the equations and constraints as described in Chapter

3. All parameter values relevant for the system, as well as those used in the simulation model, are

shown in Table 6.1. A one year system simulation of the BC, with a total of 8760 time steps, took

approximately one hour on a computer with 64-bit Windows 10 Enterprise, Intel® CoreTM i7-6650U

2.20 GHz CPU and 16 GB of RAM.

Table 6.1: Parameter values used for the BC

(a) System parameters

Parameter Value

Pload,t Input data

Ppv,t Input data

cel,t Day-ahead prices,
Oslo (2017)

cfeed-in,t 0.04 NOK/kWh

cpeak,m See Table 4.2

Pnom
inv 150 kW

Enom
bat 150 kWh

ηinv 98%

ηrt 96%

SOCmin 10%

SOCmax 90%

Lcal 15 years

cbat 3,600 NOK/kWha

aBased on central estimates on the cost of NMC BESS
for 2016 (Fig. 2.4 from Section 2.1.2)

(b) Simulation parameters

Parameter Value

T 8760

M 12

∆t 1 h

Pmax
grid 455.38 kW

Einitbat 0 kWh

SOHinit 100%
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Several sensitivity analyses on important system parameters are also investigated for the BC alter-

native. This includes sensitivity on the cost of the battery, i.e. the BESS, as well as the energy

and peak demand tariffs. Lastly, a 2030 scenario is simulated in order to analyze the impacts of

implementing the proposed system in the future.

Several simplifications and assumptions have been made prior to solving the optimization problem,

which should be kept in mind when viewing and analyzing the results. Although presented throughout

the paper, they are summarized below for convenience:

B The load demand and solar production are estimated based on historical data, as described in

Section 5.2.

B The hourly load demand and solar production are known prior to solving the problem, i.e. a

perfect forecast model is assumed.

B The battery is based on the characteristics of a lithium-ion NMC battery.

B The C-rate of the battery is assumed equal to one, meaning the battery can charge or discharge

all available energy in one hour within the limits of the BESS inverter.

B Both the efficiency of the BESS inverter and the round-trip efficiency of the battery are con-

sidered constant.

B A RTP scheme is assumed, and the hourly energy tariffs are set equal to the Elspot day-ahead

prices in Oslo for 2017.

B The cost of the BESS is assumed to include all component cost and cost of installation, and is

set equal to the central cost estimates for NMC technologies from 2016, as seen in Fig. 2.4.

B The degradation cost of the battery is modelled as a percentage of the initial investment cost,

such that when the battery reaches the end of its lifetime the initial costs are accounted for.

All other operational costs, such as the cost of maintenance, are neglected.
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6.1 The Present Alternative

The present alternative, i.e. the system without a BESS, is shown in Table 6.2, calculated based

on the energy and peak power tariffs from Table 6.1. When analyzing the results from the model

simulations, these costs are used as a basis for interpreting whether the system under study is eco-

nomically beneficial. As seen from the table, the cost of peak power contributes to 34% of the total

cost of electricity, which is a substantial amount.

Table 6.2: The present alternative

Grid only

Energy drawn from the grid (net load) 2,243,653 kWh

Total cost of energy 612,767 NOK

Total cost of peak power 315,952 NOK

Total cost of electricity 928,719 NOK

6.2 The Base Case (BC)

The yearly operation of the proposed system was optimized using the parameters given in Table 6.1,

and the simulation results are shown below. It should be noted that for the rest of this chapter, the

battery power is considered positive when charging (as seen from the battery). Fig. 6.1a shows the

system operation in terms of hourly power flow to and from the different components. The net load

is the solar production subtracted from the load demand. The power flowing to and from the battery

is further highlighted in Fig. 6.1b. Fig. 6.1c and 6.1d show the degradation and the state of health

of the battery, respectively. More detailed figures of the system operation for an arbitrary week are

presented in Section 6.2.1.
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(a) System operation (b) Power to and from the battery

(c) Battery degradation (d) Battery state of health

Figure 6.1: BC results for one year

As can be seen from Fig. 6.1a, the net load is always positive and thus the battery is effectively

charged from the grid. Moreover, the power sold to the grid is equal to zero throughout the year as

it is more profitable to supply the loads with solar power than to sell that power back to the grid.

The operation of the battery is highlighted in Fig. 6.1b, where it can be seen how the battery sup-

plies the load with large amounts of power during hours of high peak demand to perform peak shaving.

However, peak shaving comes at a price: charging and discharging the battery with large amounts
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of power causes the battery to degrade faster, as seen in Fig. 6.1c, which in turn results in high

operational costs. In fact, the highest cost of degradation in one hour is found to be 85.3 NOK. In

order for peak shaving to be economically attractive, the operational cost of the battery (the cost of

degradation plus the cost of charging the battery, including losses) has to be less than the revenue

gained from shaving the peak in that hour. After one year of operation, the SOH of the battery is

reduced to 98.57% as seen from Fig. 6.1d.

The effect of peak shaving is further analyzed in Fig. 6.2, where Fig. 6.2a shows the monthly peak

power demand with and without BESS, and Fig. 6.2b shows the amount of peak power shaved for

each month. The highest amount of peak shaved, 85.6 kW, occurs in February, having both the

highest initial peak load demand and the highest peak demand charge. The savings from performing

peak shaving on the highest peak in February amounts to 12,874 NOK, which is substantially higher

than the corresponding operational cost of 64.7 NOK. The calculations are shown in Appendix A.

(a) Monthly peak power: with and without BESS (b) Monthly peak shaving with BESS

Figure 6.2: BC results for one year: peak shaving

A summary of the most important results are listed in Table 6.3, and analyzed below.
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Table 6.3: Results from the BC

Results: BC

Energy drawn from the grid 2,245,284 kWh

Compared to original system + 1,631 kWh

Total degradation 7.15%

Total cost of degradation 38,636 NOK

Compared to original system + 38,636 NOK

Total cost of energy 612,112 kWh

Compared to original system - 655 NOK

Total cost of peak power 271,998 NOK

Compared to original system - 43,954 NOK

Total system cost (objective function) 922,747 NOK

Compared to original system - 5,972 NOK

B During one year of operation, the battery degrades by 7.15%, leading to a 1.43% reduction

in the SOH. Assuming no changes in the system characteristics, the battery can thus operate

another 14 years before reaching the end of its lifetime.

B There is a higher amount of energy drawn from the grid than for the original system, however,

the total cost of energy is reduced by 0.1%. This is likely due to the battery being able to

exploit volatile price signals: it may charge from the grid when the price of electricity is low,

and discharge when the price is high.

B The total cost of peak power is reduced by 13.9% due to the battery being used for peak

shaving, and the savings from peak shaving alone exceeds the total cost of degradation. The

cost of peak power now contributes to 30.7% of the total cost of electricity, a reduction from

the original system.

B By implementing a BESS, the yearly system costs are reduced by 5,972 NOK (0.64%).
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6.2.1 BC: an Arbitrary Week

In order to be able to study the system operation and battery degradation in more detail, the results

from an arbitrary week are shown in Fig. 6.3. Week 8 was chosen as it has both large variations in

net load demand and high power peaks. The same results for an arbitrary summer week (week 24)

are shown in Appendix B, however they are not further discussed.

(a) System operation (b) Battery operation and spot prices

(c) Battery degradation (d) Battery depth of discharge

Figure 6.3: BC results for week 8
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By studying the figures above, several interesting facts can be observed:

B As suspected, the battery is used for price arbitrage operation when subject to a RTP scheme,

as seen in Fig. 6.3b: the battery charges during hours of low spot prices, and discharges when

the spot prices are higher.

B During hours of high peaks, the battery is operated regardless of the spot price. For example, it

can be seen that for around hour 90 the battery is charged even though the price of electricity

is high, in order to discharge the following hour to shave the peak.

B Fig. 6.3c shows that the degradation is mostly constant and equal to the cyclic degradation,

even when the battery is operating. As seen, the battery chooses to charge or discharge only

small amounts whenever possible to exploit the volatile prices, while keeping the cost of degra-

dation low. Moreover, this ensures that the battery can load up on energy and discharge during

hours of high peaks.

B The correlation between the degradation percentage and the DOD becomes evident when com-

paring Fig. 6.3c and 6.3d: for deeper discharge levels, the degradation percentage is high. This

is especially true for around hour 120, where the battery is discharged from a DOD level of

45% to the maximum level of 90%, causing a degradation of 0.015% and a cost of degradation

of 82 NOK. Around hour 145 however, the degradation percentage is much lower even though

the net change in DOD is higher (from 10% to 70%).

6.3 Sensitivity Analyses

In order to investigate how different parameters affect the optimal solution, sensitivity analyses are

carried out on three important system parameters: the cost of the battery, the peak demand tariff

and the energy tariff. Seeing as one simulation of the BC took around one hour, all sensitivity

analyses have been carried out using a one month time horizon in order to save simulation time.

More specifically, February was chosen as the simulation month due to the characteristics described

in Section 5.2.3. It should be kept in mind that the simulation results obtained for one month will

differ from those obtained for a year, however they can be useful for noting trends when varying the

parameters.
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6.3.1 Sensitivity on the Cost of the Battery (SA1)

As discussed in Section 2.1.2, the cost of battery storage systems are rapidly decreasing, expected

to be halved by 2030. As such, it is important to see how reductions in these costs will affect the

optimal results. In the following analysis, the simulations have been carried out for different nominal

battery capacities while gradually decreasing the cost of the battery, cbat, from its initial value to a

50% decrease. The results are shown in Fig. 6.4. It should be noted that only battery capacities

from 100 to 500 kWh have been studied.

(a) System cost as a function of Enom
bat for different cbat (b) System costs as a function of cost decrease

Figure 6.4: Sensitivity on the cost of the battery (SA1)

As seen from Fig. 6.4a, the overall trend is for a decrease in the total system cost with decreasing

cost of the battery, however the savings depend on the size of the battery: when decreasing cbat by

50%, the system costs decrease 1% for a 150 kWh battery and 3.8% for a 500 kWh battery compared

to the BC. It can also be seen that different cost scenarios lead to different optimal storage capacities:

a decrease in the cost of the battery leads to an increase in the optimal battery size. However, this

has little effect on the system cost: for a 50% increase in cbat, the total system cost is reduced by

only 0.14% when increasing Enom
bat from 150 to 490 kWh.

Fig. 6.4b shows the energy and peak demand costs of the system with and without BESS as a

function of the percentage decrease in cbat. Moreover, the resulting peak demand for the system with
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BESS is plotted. It should be noted that the system costs with BESS are found when simulating

the system with the optimal battery capacities found from Fig. 6.4a. When looking at the figure,

several observations can be made:

B The energy costs with and without BESS are approximately similar, even though the battery

is charged by the grid. This was also shown for the BC, and is due to the battery being able

to exploit the hourly variations in the energy tariff.

B There is a correlation between the cost of peak power and the resulting peak demand for the

system with BESS, as can be expected. Moreover, it can be seen that the cost of peak power

decreases with decreasing cbat, which is related to the corresponding increase in the optimal

size of the battery: with increasing capacity, the battery is able to shave a larger amount of

peak power, thus reducing the peak power costs.

B The decrease in peak demand is high for a 20% to a 30% decrease in cbat, due to the optimal

battery size increasing drastically (from 240 to 490 kWh). It is however approximately constant

between a 30% and a 50% decrease in cbat. This can be explained by noting that these cases were

simulated using almost the same optimal battery capacity (490-500 kWh), as the sensitivity

analyses are only studied for battery sizes up to this value.

B For a 50% decrease in cbat, the cost of peak power is reduced by 22% by implementing a BESS

compared to the original system.

6.3.2 Sensitivity on the Peak Demand Tariff (SA2)

Due to the vast implementation of power-demanding devices like electric vehicles, there is an increased

pressure on the grid to deliver high amounts of power. If these power peaks start approaching the

capacity limit of the grid, the grid will need to be expanded. Seeing as grid expansion is extremely

costly, alternative measures in terms of reducing the power peaks is preferable. For commercial

customers who are already billed for their peak demand, a way of reducing their peaks could be to

increase the peak demand tariff. This would encourage the customers to either shave their peaks or

shift their load demand, thus relieving the grid of stress. In the following analysis, the simulations

have been carried out for different nominal battery capacities while gradually increasing the peak

demand tariff (cpeak) from its initial value to a 50% increase, to see how this affects the system costs.

The results are shown in Fig. 6.5.
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(a) System cost as a function of Enom
bat for different cpeak (b) System costs as a function of tariff increase

Figure 6.5: Sensitivity on the peak demand tariff (SA2)

As can be seen from Fig. 6.5a, the total system cost increase substantially when increasing the peak

demand tariff: with a battery capacity of 150 kWh, the system cost increase by 5.3% when increasing

cpeak only 10% - and by 26.4% when cpeak is increased by 50%. Moreover, as for SA1, increasing the

nominal battery size over 150 kWh has little effect on the total system.

Fig. 6.5b shows the energy and peak demand costs of the system with and without BESS as a

function of percentage increase in cpeak. As was the case for SA1, the energy cost with and without

BESS are approximately similar. The following other observations can be made:

B The cost of peak demand increases when increasing the demand tariff, as can be expected. For

a 50% increase in cpeak, the increase in peak demand costs are 38.7% and 50% for the system

with and without BESS, respectively.

B While the peak cost increases linearly for the system without BESS, this is not the case for the

system with BESS: between a 30% and 40% increase in cpeak, the slope is more gentle. This is

due to the optimal battery capacity being drastically increased (from 240 to 490 kWh), thus

decreasing the peak demand.

B As was the case for SA1, the peak demand is approximately constant between a 40% and a 50%

increase in cpeak due to the two cases being simulated using the same optimal battery capacity

of 500 kWh.
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The total system cost as a function of percentage change in both Cbat and cpeak is shown in Fig. 6.6.

When changing one parameter, the other is held constant. It should be noted that the problem is

simulated for each case using the optimal battery size found from Fig. 6.4a and 6.5a.

Figure 6.6: Total system cost as a function of percentage change for two system parameters

When studying the figure above, several observations can be made. Recall that the results are based

on one month.

B The total system cost is strongly affected by an increase in the peak demand tariff, however the

cost increase is higher for the system without BESS: for a 50% increase in cpeak, the system cost

without BESS increases by 29.2%, compared to a 25.6% increase for the system with BESS.

B The total cost savings of installing a BESS for a 50% increase in the peak demand tariff is

17,476 NOK (9.7%).

B The total system cost is not as strongly affected by a decrease in the initial battery cost: when

decreasing cbat by 50%, the system cost with BESS decrease by 2.6%. The cost of the system

without BESS is constant.

B The total cost savings of installing a BESS for a 50% decrease in the cost of the battery is

13,292 NOK (9.6%).
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6.3.3 Sensitivity on the Energy Tariff (SA3)

Seeing as the spot prices in the Norwegian market are expected to become more volatile with higher

price peaks in the future, as discussed in Section 2.3, it is important to see how this would affect

the system operation. The Elspot day-ahead prices for February in 2017 for three different Nordic

markets are shown in Fig. 6.7.

(a) Sweden (SE1) (b) Denmark (DK1)

(c) Norway (Oslo)

Figure 6.7: Elspot day-ahead prices for different areas (2017), based on data from [6]
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The last figure shows the day-ahead prices for Oslo, i.e. the spot prices used in all previous case

studies in this paper. As can be seen from the figures, the day-ahead prices for Oslo are relatively

stable compared to the prices for Sweden (SE1) and Denmark (DK1). Moreover, the prices for Den-

mark are more volatile with the day-ahead prices being negative for several hours. This phenomenon

can occur when the power generation from high inflexible sources, like nuclear power plants or wind

plants, exceeds the demand as they cannot be shut down and restarted in a cost-efficient manner

[41]. Although the market price is negative, owners of renewable power plants are still guaranteed

a revenue due to the Danish policy: all renewable generation receive a bonus on top of the market

price [42]. This poses a potential problem, as the owner of a renewable power plant has no incentive

to turn off the generation during negative prices, as this may be more expensive than selling power

for a negative price.

In the following analysis, the simulations have been carried out on a 150 kWh battery for different

Elspot day-ahead prices to see how this would affect the optimal results. Table 6.4 gives an overview

of the resulting total system cost, both with and without a BESS.

Table 6.4: Total system cost for an arbitrary month using different spot prices

Oslo Sweden (SE1) Denmark (DK1)

System without BESS 139,016 NOK 141,262 NOK 135,624 NOK

System with BESS 129,055 NOK 131,180 NOK 125,280 NOK

Net savings 9,961 NOK (7.17%) 10,082 NOK

(7.14%)

10,344 NOK

(7.63%)

In order to see how the system operates under more volatile prices, the results using the spot prices

from Denmark are presented in Fig. 6.8.
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(a) System operation (b) Battery operation and spot prices

Figure 6.8: System operation using the DK1 spot prices

As seen from Fig. 6.8a, the power sold to the grid is no longer zero as for the BC. This has a correla-

tion with the spot prices, as seen when comparing Fig. 6.8a and 6.8b: when the spot prices are zero

or negative, it is economically attractive to buy as much power as possible from the grid without

exceeding the limits, and feed the excess power back to the grid. However, this is not possible in real

life: in order for power to be fed back to the grid, it has to come from either excess solar production

or from discharging the battery. Moreover, it can be seen from Fig. 6.8b how the battery charges

when the spot prices are low and discharges when they are higher, thus performing price arbitrage

operation.

The battery operation under both Norwegian and Danish spot prices are shown in Fig. 6.9. As seen,

the battery is slightly more active when subject to Danish spot prices due to the prices being more

volatile.
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Figure 6.9: Battery operation: Norwegian and Danish spot prices

6.4 System Operation in the Future: a 2030 Scenario

While the sensitivity analyses presented above give an indication on the operational trends when

changing important parameter values, they are only simulated for an arbitrary month in order to

save simulation time. Moreover, the different analyses study the impact of changing one parameter

while keeping the others constant. In the following analysis, the system is simulated for one year

using parameter values corresponding to future trends. More specifically, the following assumptions

are made on the parameter values for the year 2030:

B The cost of the battery storage system, cbat is decreased by 50%. As discussed in Section 2.1.2,

the cost of a lithium-ion BESS using a NMC battery is expected to decrease by around 55%

by 2030.

B The peak demand tariff is increased by 30%.

B The energy tariff is subject to a RTP scheme, as for the BC, using day-ahead prices from

Denmark (D1). These prices are chosen to reflect that the Norwegian market is expected to

see more volatile prices with higher price peaks in the future due to the vast implementation

of inflexible power generation like solar and wind, as discussed in Section 2.3.
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6.4.1 The Present Alternative

Table 6.5 gives an overview of the present alternative, i.e. the system without BESS, for the assumed

2030 scenario. When analyzing the results obtained from simulating the proposed system, these val-

ues are used as a basis for interpreting whether installing a BESS is economically beneficial. When

compared to the present, the cost of energy peak power increase by 2.2% and 30% under a 2030

scenario, respectively. The total system cost is increased by 11.7%.

Table 6.5: The present alternative: 2030 scenario

Grid only

Energy drawn from the grid (net load) 2,243,653 kWh

Total cost of energy 626,480 NOK

Total cost of peak power 410,737 NOK

Total cost of electricity 1,037,217 NOK

6.4.2 The Proposed System

The yearly operation of the proposed system is optimized for the assumed 2030 scenario, with all

other parameters being similar to the ones used in the BC. The simulations were carried out for a

battery capacity of both 150 kWh (the optimal value found for the BC) and 490 kWh (the optimal

value found for a 50% reduction in cbat for an arbitrary month), showing that a 150 kWh battery

resulted in the lowest total system cost. As such, the following results are obtained with a 150 kWh

battery.
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(a) System operation (b) Battery operation

(c) Battery degradation (d) Battery state of health

Figure 6.10: Results for one year: a 2030 scenario

Unlike for the BC (see Fig. 6.1), some power is sold to the grid as seen in Fig. 6.10a. In fact,

the total amount of power fed back to the grid during one year is equal to 25,574 kWh. As shown

for SA3 in Section 6.3.3, this is due to the spot prices being zero or negative in some hours of the

year. It can also be seen that when compared to the BC, the battery is more active due to more

volatile prices. However, the SOH at the end of the year for the two scenarios are the same, which

is surprising. This can be explained by noting that the battery operation is mostly within the same

limits as for the BC, i.e. the battery charges or discharges only small amounts whenever possible to

keep the degradation equal to the calendric degradation.
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As for the BC, the battery is discharged during high peak demand periods, thus shaving the peaks.

An interesting find is that although increasing the peak demand tariff, the amount of peak shaved

is equal to that of the BC for all months. This is due to the size of the battery being equal for the

two cases, and the peak power demand being limited by the usable capacity of the battery.

A summary of the most important results are listed in Table 6.6, and analyzed below.

Table 6.6: Results from simulating the proposed system using a 2030 scenario

Results: a 2030 scenario

Energy drawn from the grid 2,272,023 kWh

Compared to original system (2030) + 28,370 kWh

Compared to the BC + 26,739 kWh

Feed-back to the grid 25,574 kWh

Revenue generated from feed-back 1,023 NOK

Total degradation 1.47%

Total cost of degradation 19,836 NOK

Compared to original system (2030) + 19,836 NOK

Compared to the BC - 18,800 NOK

Total cost of energy 622,383 kWh

Compared to original system (2030) - 4,097 NOK

Compared to the BC + 10,271 kWh

Total cost of peak power 353,041 NOK

Compared to original system (2030) - 57,696 NOK

Compared to the BC + 81,043 kWh

Total system cost (objective function) 994,238 NOK

Compared to original system (2030) - 42,979 NOK

Compared to the BC + 71,491 kWh
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When comparing the obtained results with the original system under a 2030 scenario, the following

observations can be made:

B There is a much higher amount of energy drawn from the grid than for the original system.

This is due to the battery being charged by the grid, but also because there is a large amount

of power fed back to the grid.

B Although the amount of energy drawn from the grid is higher, the cost of energy is lowered

by 0.7% when implementing a BESS due to the battery being used for price arbitrage oper-

ation. This is an increase of 0.6% from the BC results. As such, price arbitrage operation is

increasingly beneficial with more volatile spot prices, as can be expected.

B The cost of peak power is reduced by implementing a BESS, more specifically by 14.1% - an

increase of 0.2% from the BC results.

B The total system cost is reduced by 4.15% by implementing a BESS. This is a substantial

improvement from the BC, where the system cost is reduced by 0.64%.

When compared to the BC however, it can be seen that:

B The cost of energy is increased by 1.68%. This is likely due to the spot prices for Denmark

being higher on average than the Norwegian prices. However, the percentage increase is lower

than for the original system (2.2%).

B The cost of peak power is increased by 29.8% due to the increase in the peak demand tariff.

However, the percentage increase is lower than for the original system (30%).

B The total cost of degradation is almost halved due to the reduction in the cost of the battery.

B The total system cost increases by 7.8%. For comparison, the system cost for the original

system increases by 11.7%.

In order to be able to study the system operation in more detail, the results for an arbitrary week 8

are shown in Fig. 6.11.
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(a) System operation (b) Battery operation and spot prices

(c) Battery degradation (d) Battery depth of discharge

Figure 6.11: Results for week 8: a 2030 scenario

By studying the figures above, several observations can be made:

B As shown for SA3 in Section 6.3.3, when subject to spot prices equal to or below zero the

system chooses to buy as much power as possible from the grid within limitations, and feed

the excess power back to the grid after supplying the load and charging the battery. Doing so

generates a revenue for the customer, however it is not a valid result due to physical limitations

as discussed in Section 6.3.3.

B As for the BC, the battery chooses to charge during hours of low spot prices, and discharge
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when the prices are high, resulting in net savings on the energy bill. During hours of high peaks

the battery operates regardless of the spot price: for around hour 90, it can be seen how the

battery needs to be charged during a relatively high spot price (0.27 NOK) in order to shave

the peak in the next hour.

B As for the BC, the battery degradation is high during hours of high peaks.

B When looking at Fig. 6.11b and Fig. 6.11c and comparing them with the BC, it becomes

evident that the battery operations are approximately similar. This is due to the load profile

being equal for both cases, and the battery prioritizing shaving peaks due to the high peak

demand tariffs. However, the battery under a 2030 scenario is more active due to the Danish

spot prices being more volatile. This is also seen when comparing the DOD-curve for the two

cases.
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The purpose of this study is to see whether implementing a battery storage system into an existing

grid-connected photovoltaic (PV) system could provide benefits for the customer in terms of cost

savings, while optimally operating the battery such as to minimize its degradation. Recall that the

customer in this case is an energy efficient swimming facility located in Norway. In this chapter, the

main findings from the results presented in Chapter 6 are discussed, as well as the validity of the

simulation model and the assumptions made.

7.1 The Base Case (BC)

The simulation results from the BC reveal that installing a battery energy storage system (BESS)

is economically attractive for the customer already today, with a net savings on the total system

cost of 0.64% yearly. This includes the cost of the battery, which is accounted for in the degra-

dation cost. Interestingly, this finding collides with other research. Hesse et. al [12] found that

including a BESS gave almost consistently negative rate of investments for nickel manganese cobalt

oxide (NMC) batteries, except for very small load demands, when using flat-rate energy tariffs from

Germany. Dufo-Lõpez [10] found that even when considering a reduction in the cost of battery stor-

age and an hourly real-time pricing (RTP) scheme, the optimal battery size was not profitable for

the system under study. However, these articles are concerned about residential customers and do

not consider the impact of the peak demand charge, hence the battery is not used for peak shaving

purposes. The simulation results from the BC show that using the battery for peak shaving purposes

is highly beneficial, which was also found in a different case study by Shi et. al [43]. For the BC,

the cost of peak demand is reduced by 13.9%, making peak shaving operation by far the largest

contributor to the net cost savings. In fact, the savings from peak shaving alone exceeds the cost of

battery degradation, and is thus enough to compensate for the yearly cost of the battery. However,

keep in mind that the yearly cost of the battery is a percentage of the initial investment cost - a
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one-time investment which may be substantial. Moreover, net present cost calculations are omitted

in this study, and would have to be included if the simulations are to be done over several years.

The results from the BC also show that the net load demand is always positive, i.e. solar production

never exceeds load demand. As such, for the battery to operate it needs to be charged by the grid,

which is generally considered unfavorable due to losses in the BESS. In a study by Ranaweera et. al

[5], the optimal solution for the case with a positive net load demand was to keep the battery idle,

i.e. non-operative, for all hours. The study considered time-of-use (TOU) pricing, however under a

RTP scheme the battery offers an advantage: price arbitrage. As shown in the results, the battery

charges from the grid during hours of low spot prices, and discharges to supply the load when the

spot prices are high. As such, even though the amount of energy drawn from the grid is higher than

for the original system, implementing a BESS reduces the cost of energy by 0.1%. By performing

price arbitrage operations, the battery is thus able to account for all the energy it draws from the grid

and still provide cost savings, implying that implementing a battery could be beneficial even without

a PV system. However, Holmen swimming facility is currently billed using a flat rate energy tariff,

making price arbitrage operation unachievable. Nevertheless, RTP schemes are expected to become

more popular with the introduction of smart meters as discussed in Section 2.3. When the time

comes that customers can choose a pricing scheme based on the hourly spot prices, implementing a

BESS would be economically attractive for the facility.

An interesting find from the BC is related to the operational pattern of the battery: for most hours,

the battery chooses to charge or discharge only small amounts whenever possible. This is related to

the degradation model, where the total degradation in each time step is equal to the maximum of

either the calendric or the cyclic aging. Seeing as the objective function includes the cost of degra-

dation, which in turn is proportional to the total degradation, the optimization model attempts to

minimize the degradation in each time step. However, the minimum value the total degradation can

take is the calendric aging, which is modelled as a constant. Moreover, this ensures that the battery

can load up on energy which can later be used for discharging during hours of high peaks. However,

these results highlight a flaw in the model formulation. Recall that the degradation model used in

the simulations, where the total degradation is set to be the maximum of either the calendric or

the cyclic aging, is based on the assumption that the cyclic aging will always be higher than the

calendric aging when the battery is operating. The results from the BC show that this does not hold.
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However, using a more complex degradation model would not necessarily lead to a different result:

there would still be a cost of keeping the battery idle, and the results show that it is more beneficial

to operate the battery while ensuring minimal cyclic degradation. It should also be noted that the

cyclic degradation model is based on the DOD versus cycle life curve of a NMC battery (Fig. 2.2),

and the results will therefore vary depending on the battery chemistry.

The results also reveal a correlation between the degradation and the DOD in each time step, due to

the cyclic degradation model being based on the DOD versus cycle life curve. More specifically, it is

shown how deep discharge operation amounts to a high cost of degradation due to the low expected

cycle life of high discharge levels. As such, deep discharge is avoided whenever possible, which is in

line with the theory. Nevertheless, during hours of high power peaks, the battery chooses to discharge

large amounts of power regardless of the degradation costs. This is due to the cost savings from peak

shaving far exceeding the resulting operational costs. An example was shown for February, where

the savings from peak shaving in one hour amounted to 12,874 NOK compared to the operational

costs of 64.7 NOK.

The total degradation of the battery for a one year operation is found to be 7.15%, meaning it could

theoretically operate another 14 years assuming no changes in the system characteristics. With a

calendric lifetime of 15 years, i.e. the expected lifetime when keeping the battery idle, using the

battery for both peak shaving and price arbitrage operations only reduces the expected lifetime by

one year, while providing yearly net savings for the customer. This shows the importance of including

the cost of battery degradation in the objective function: without considering this cost, the battery

would have been operated in a more aggressive manner. Although perhaps providing higher yearly

revenue, the battery lifetime would be decreased, likely resulting in an overall loss as compared to

the case where the cost of degradation is included.

7.2 Sensitivity Analyses

7.2.1 SA1 and SA2

The simulation results from SA1 (decreasing the cost of the battery) and SA2 (increasing the peak

demand tariff) reveal that an increase in the peak demand tariff has the highest impact on the simu-

lation results: compared to the BC, a 50% increase in cpeak increases the total system costs by 25.6%,
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while a 50% decrease in cbat decreases the system costs by only 2.6%. Recall that these results are

obtained using a one month time horizon, and with the optimal size of the battery for each scenario.

These findings imply that the system is more sensitive to changes in the peak demand tariff than

changes in the cost of the battery, due to the cost of peak power contributing to a large part of the

total system costs. This is further shown when comparing the cost of peak power and the cost of

energy for the system with and without BESS: for a 50% increase in cpeak, the increase in the peak

demand costs are 38.7% and 50% for the system with and without BESS, respectively. The cost of

energy is however approximately equal for the two systems. This shows how the cost of peak power

will contribute to a larger share of the total cost of electricity with increasing peak demand charges,

but also how peak shaving will provide even higher cost savings. As such, even though installing a

BESS is beneficial today, it will be even more so with increasing demand charges. The same is true

for decreasing battery costs.

The fact that the cost of energy is approximately equal for the system with and without BESS for

SA1 and SA2 shows how the power drawn from the grid to charge the battery is compensated for by

price arbitrage operation. However, even though price arbitrage provides some benefits, it amounts

to only a small percentage of the cost savings as compared to performing peak shaving.

The simulation results also show that the optimal size of the battery increases with both increasing

cpeak and decreasing cbat. This is due to the battery being able to discharge larger amounts of power

in each time step, thus reducing the peak power demand and the total system cost. It should be

noted that a C-rate of 1 is assumed for the battery, meaning it is able to charge or discharge with

the nominal power rating of the inverter in each hour. However, this may not be an acceptable

assumption for all battery technologies and sizes. Nevertheless, increasing the battery capacity does

not provide substantial cost savings: for a 50% decrease in cbat, increasing the battery capacity from

150 kWh to 500 kWh amounts to only a 0.14% decrease in the system cost. The same trend is true

for an increase in the peak demand tariff. As such, a battery capacity of 150 kWh may be preferable

regardless of the parameter values due to it being lighter, smaller and having less initial investment

costs. It should also be noted that the sensitivity analyses have been carried out for battery capacities

up to 500 kWh to save simulation time as the parameters had to be changed manually, which may

result is some errors regarding the optimal battery size.
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7.2.2 SA3

The simulation results from SA3 (more volatile spot prices) reveal some interesting findings. For one,

the Elspot day-ahead market for Denmark (D1) has several hours where the spot prices are zero or

negative. Customers under a RTP scheme will thus earn money from drawing more power from the

grid when the spot prices are negative, as this will help balance the grid. This is confirmed by the

results: during hours of negative spot prices, the power drawn from the grid is as high as possible

without exceeding the set limit. This power is used to supply the load and to charge the battery

while generating a revenue for the facility. However, the battery is not charged to full capacity as

could be expected when the price of electricity is negative: it is only charged up to the limit where

the cost of cycling the battery is equal to the cost of calendric aging. Charging the battery with more

power would lead to a higher degradation cost, exceeding the possible revenue from charging during

hours of negative pricing. Finding the spot price for when it would be economically attractive to fully

charge the battery is difficult, as this depends on both the energy in the battery and the DOD at the

given hour. However, if assuming a fresh battery and an initial DOD of 90% (the maximum DOD for

the simulation model), the resulting spot price would have to be -0.90 NOK/kWh (calculations are

shown in Appendix C). Seeing as some of the most negative spot prices for Germany in 2017 were

around -0.8 NOK/kWh, and due to the high availability of flexible resources in Norway, like hydro

power, this may not be a likely scenario.

The results also show that the remaining power after supplying the load and charging the battery is

sold back to the grid directly. With a single metering system and the same contract for buying and

selling power, this is not physically possible. However, with two meters and two separate contracts

- one for the power bought for the grid, and another for the power sold to the grid - an interesting

phenomenon can occur. By drawing large amounts of power from the grid during hours of negative

spot prices, and selling the remaining power back to the grid for a feed-in remuneration, the end

user can effectively achieve a net income for zero exchange. This highlights a potential problem for

the grid in the future, as negative spot prices are an indication of inflexible production exceeding

demand, and should encourage users to draw power from the grid for balancing purposes. If the

power is sold back to the grid directly, the purpose of balancing is gone. However, as of today there

is only one meter. In order to simulate a more realistic scenario, a constraint saying that the power

fed to the grid must come from either excess solar production or from discharging the battery could

thus be implemented in the model.
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As shown for the BC, it is not beneficial to charge the battery and later use that power for feed-in

purposes. This is also true for SA3, showing how the battery is never discharged simultaneously as

power is fed back to the grid - in fact, it is charged due to the negative spot prices. This is due

to the cost of degradation and losses in the battery being higher than the potential revenue from

discharging the battery for feed-in remuneration. Moreover, a revenue is gained when charging the

battery during negative spot prices. If using the battery for feed-in purposes is to become beneficial

for the customer, the feed-in tariff needs to increase. However, this is not a likely scenario: as the

installations of small-scale renewables continue to grow, the feed-in tariffs are expected to decrease

even further.

7.3 A 2030 Scenario

The results from simulating the assumed 2030 scenario, using a one year time horizon and parameter

values as described in Section 6.4, reveal that installing a BESS is even more profitable in the future:

the total system cost is decreased by 4.15%, which is a substantial improvement from the 0.64%

decrease for the BC. While the percentage reduction in the cost of energy and peak power is not that

different from the BC results, the total cost of degradation is almost halved due to the decrease in

the cost of the battery. As such, even if the energy and peak demand tariffs remain constant up to

2030, the expected reduction in battery costs will make installing a BESS economically attractive.

The results also show that power is fed back to the grid when the spot prices are negative. As

discussed for SA3, this can pose a potential problem for the grid in the future if separate metering

systems and contracts are made available. However, as of today this is not yet possible. Nevertheless,

the revenue from selling power back to the grid only amounts to 2.4% of the total cost savings. As

such, it is not a crucial part of the system economics.

An interesting find is that although the battery is more active in a 2030 scenario, due to the spot

prices being more volatile, the degradation is the same as for the BC. This is due to the battery only

charging or discharging small amounts of power whenever possible, as previously discussed, to keep

the cyclic aging equal to the constant calendric aging, thus minimizing the cost of degradation. Recall

that the same battery size of 150 kWh has been used for both scenarios. Moreover, the peak shaving

profile remains unchanged for the 2030 scenario, and as such the degradation during peak hours is
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similar to the BC. This shows how increasing the peak demand tariff has no effect on the resulting

peak shaving amount - the optimization model will always choose to minimize the peak demand due

to the high cost of peak power, and as such the peak shaving amount is only limited by the battery

capacity. Moreover, these results show how the battery will prioritize peak shaving operations regard-

less of the spot price due to the savings from performing peak shaving exceeding the cost of operation.

7.4 Assumptions

When viewing and analyzing the results, it should be kept in mind that several simplifications and

assumptions have been made in order to model the system. In this section, key assumptions that

have not been discussed in the previous sections are explored. Firstly, the load demand and solar

production are estimated based on historical data. Seeing as the actual load and production profiles

for Holmen swimming facility will deviate from these estimations, perhaps by a lot, the simulation

results will differ from the BC. However, the operational trends will stay the same: the battery will

choose to operate in a way that minimizes the cost of degradation while both performing price arbi-

trage and peak shaving, hence the resulting cost of energy and peak power are likely to be reduced.

Nevertheless, the operational trends can differ if the solar production exceeds the load demand in

any hour. If so, the excess production can either be used to charge the battery or for feed-in remu-

neration. However, this is not a likely scenario as the PV system is much too small to ever exceed

the load demand as of today.

Secondly, due to the simulation being carried out using estimations on the hourly load demand and

solar production, as well as the energy tariffs, a perfect forecast model is assumed. As such, the

results obtained for hourly operation are optimized using known values. In reality, the load demand

and solar production are not known prior to solving, and are affected by a range of external factors:

outside temperature, the number of visitors to the swimming facility, solar irradiation, if there are

clouds in the sky or not, and so on. As such, if the battery is to be optimally controlled hour by

hour, a forecasting algorithm taking these factors into account should be implemented in the model.

However, this is outside the scope of this thesis and is thus not discussed further.
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8 | Conclusion

In this thesis, the economic benefits of implementing battery storage into an existing grid-connected

PV system is studied. The objective is to minimize the total system cost, including the cost of energy,

the cost of peak power and the operational cost of the battery. The main purpose of the battery

is to shave the peak power demand, as this contributes to a large part of the monthly energy bill.

An optimization model based on multi integer linear programming is built, and simulated using a

one year time horizon in GAMS and Matlab. Several studies are carried out using Holmen swim-

ming facility as test case, however the model can easily be adapted to fit any load and solar profile.

In this chapter, the most important conclusions drawn from the results and discussions are presented.

The results reveal that installing a battery storage system is economically attractive for the customer

already today, with a net savings on the total system cost of 0.64% yearly. The cost of peak power

demand is reduced by 13.9%, and the savings from peak shaving operation alone is enough to com-

pensate for the yearly cost of the battery. The results also show that even though the battery is

charged by the grid, the cost of energy is reduced by 0.1%. As such, the battery is able to account for

all energy bought from the grid while still providing cost savings through price arbitrage operations.

It should be kept in mind that these results are only valid for a real-time pricing scheme based on

hourly spot prices: for constant energy rates, price arbitrage operation is unattainable. It is also

found that, due to the low feed-in tariffs of today, it is never beneficial to discharge the battery for

feed-in remuneration.

An interesting finding is that the battery chooses to operate in a matter that keeps the cyclic aging

equal to the calendric aging, thus charging or discharging only small amounts of power each time

step. In this way, the battery can perform price arbitrage operations while keeping the cost of degra-

dation to a minimum. Even during hours of negative spot prices the battery only charges up to this

limit, as the cost of degradation exceeds the possible revenue from charging with negative prices.
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The resulting degradation is found to be 7.15% yearly, meaning the battery could operate another

14 years assuming no changes in the system characteristics.

The results from the sensitivity analyses show that the system is more sensitive to changes in the

peak demand tariff than changes in the cost of the battery: compared to the BC, a 50% increase

in cpeak increases the total system costs by 25.6%, while a 50% decrease in cbat decreases the costs

by only 2.6%. Moreover, it is found that increasing the size of the battery over 150 kWh does not

provide substantial cost savings, regardless of the parameter values. As such, a battery capacity of

150 kWh is recommended for the system as it is both lighter, smaller and has less initial investment

costs. It is also shown that for negative spot prices, maximum power is drawn from the grid, and

the remaining power after supplying the load and charging the battery is sold back for a feed-in

remuneration. This can be made possible with two separate metering systems and contracts, and

may pose a potential problem for the grid in the future as the end user can effectively achieve a net

income for zero exchange.

The simulations are also carried out using an assumed 2030 scenario, where the cost of the battery is

reduced, the peak demand charge is increased and the spot prices are more volatile. The results reveal

that implementing a battery storage system is even more profitable in the future: the total system

costs decrease by 4.15%. Moreover, due to the spot prices being more volatile, the battery performs

more price arbitrage operation and is thus more active than for the BC. Interestingly, the total

degradation for the two scenarios is the same. This is due to the battery keeping its operation within

the limits of the calendric degradation when performing price arbitrage as previously mentioned.

Moreover, due to the battery capacities being equal, the resulting amount of peak shaved is similar.

As such, it can be concluded that the peak shaving is only limited by the battery capacity, as the

optimal solution will always be to shave as much of the peak demand as possible due to the high

costs of peak power.

8.1 Shortcomings and Further Work

Below, the main shortcomings of the study and suggestions for further work are listed.

B As proven by the results, the assumption that the cyclic aging is always higher than the

calendric aging when the battery is operating does not hold. A more realistic modelling of
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the total degradation could improve the simulation results, however this would also make the

model more complex.

B As mentioned, the results show that during negative spot prices, power is bought from the

grid and directly fed back to the grid for a feed-in remuneration. Although posing a potential

problem for the grid in the future, this is not yet made possible due to the single metering

system. As such, the model could be made more realistic by imposing a constraint on the

power sold to the grid: it can only come from excess solar production, or from discharging the

battery.

B A perfect forecasting algorithm is assumed in this thesis, meaning the load demand, solar

production and spot prices are known prior to solving the optimization problem. In reality,

this is not possible, however the model needs a way to estimate these parameters in order to

optimally control the battery. A further improvement of the model could thus be implementing

a forecasting algorithm.

B The yearly load demand and solar production used in the simulation model are based on

estimates, as historical data was only available for the first part of 2018. As such, to validate

the profitability of implementing battery storage, the model should be run when data is available

for a whole year.
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Appendices

A Calculating the Operational Cost of the Battery

The revenue from peak shaving operation is given as:

Sshaving,t = cpeak,t · (P orgpeak,t − P
new
peak,t) (1)

where cpeak,t is the peak demand charge, Porg
peak,t the original peak demand without BESS, and Pnew

peak,t

the peak demand with BESS.

The operational cost of the battery can be modelled as:

Coperation,t = γt + cel,avg · (P orgpeak,t − P
new
peak,t) · η2inv · ηrt (2)

where cel,avg is the energy tariff. Seeing as the charging of the battery occurs in several time steps,

the energy tariff is assumed to be equal to the average price of electricity for the given month. The

total power discharged from the battery is the original power bought from the grid (assumed to be

the total amount of power shaved) minus losses in the inverter and battery.

The parameter values of the month with the highest amount of peak shaving, February, are listed in

Table 1.
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Table 1: Associated parameter values for February

Variable Value

t 1342

Porg
peak,t 541.23

Pnew
peak,t 455.40

γt 42.54

cpeak,t 150

cel,avg 0.28
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B BC Results for Week 24

(a) System operation (b) Battery operation and spot prices

(c) Battery degradation (d) Battery depth of discharge

Figure 1: BC results for week 24
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C Calculating the Resulting Spot Price

With a fresh battery and an initial DOD of 90%, the energy content in the battery before time t is:

Ebat,t−1 = Enombat · SOCt−1 = Enombat · (1−DODt−1) = 150kWh · 0.1 = 15kWh (3)

In order to fully charge the battery, the charging power has to be equal to:

Pcharge,t = ηcharge·(Enombat ·(SOCmax−SOCmin−Ebat,t−1) = 0.98·(150·(0.9−0.1)−15)kWh = 102.9kWh

(4)

The power that has to be bought from the grid in order to charge the battery is equal to:

Pgrid,b,t =
Pcharge,t
ηinv

=
102.9

0.98
kWh = 105kWh (5)

The degradation cost of fully charging the battery (from 90% DOD to 10% DOD) is:

γt = Cbat ·DPt = cbat · Enombat · 0.5 · |(ρt − ρt−1)| = 3, 600 · 150 · 0.5 · | 1

45000
− 1

2700
| = 94NOK (6)

In order for it to be beneficial to fully charge the battery, the revenue from buying power from the

grid at a negative spot price has to be greater than or equal to the cost of charging the battery:

cel,t · Pgrid,b,t ≥ γt (7)

As such, the resulting spot price is:

cel,t ≥
γt

Pgrid,b,t
=
−94NOK

105kWh
= −0.90NOK/kWh (8)
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