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Sammendrag

For aktører i energiindustrien er det svært viktig å ha tilgang til p̊alitelige prognoser for
fremtidig energietterspørsel. Disse bør nødvendigvis klare å tilpasse seg lokale, flyktige
forandringer s̊a vel som vesentlige endringer i selve forbrukslandskapet. I denne master-
oppgaven foresl̊as en løsning for predikering av energiforbruk som er basert p̊a gaussisk
prosess-regresjon. For å gjøre rede for de ulike valgene som er tatt i utforming av de pre-
diktive modellene, gis en grundig bakgrunnsteori for langtidsprediksjon av tidsrekker ved
bruk av gaussiske prosesser. Modellene testes p̊a virkelige data for energiforbruk innenfor
de tidsrammene som er p̊alagt aktører i det norske energimarkedet, og dens prognoser
overg̊ar en metode som i dag benyttes kommersielt til samme form̊al. I tillegg har model-
len mange nyttige egenskaper, slik som fravær av brukerdefinerte parametere, automatisk
estimering av usikkerhet og rask kjøretid.

Abstract

For participants in the energy industry, it is vital to have access to reliable forecasts
of future energy demands. The predictive routines should necessarily cope with local,
transient fluctuations as well as considerable changes in the electricity consumption land-
scape. In this thesis, a solution for electricity demand forecasting based on Gaussian
process regression is presented. To account for the choices taken in the process of design-
ing functional predictive models, a thorough background theory for long-term time-series
forecasting with Gaussian processes is established. The models are tested on a real-world
data set, and while complying with the limitations that apply for participants in the Nor-
wegian energy market, the results were found superior to a commercially employed model
designed for the same task. The models have, in addition, many useful properties such
as no user-defined parameters, a quantification of predictive uncertainties, and low time
complexity.
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1 Introduction
In the control and scheduling of power systems, having proper estimates of future electric-
ity demands are of utmost importance. The same holds true for brokers in the wholesale
energy market, who typically buy or sell energy at future contracts. For technical reasons,
supply and demand must be at close equilibrium at any time. If failing to accurately fore-
cast future demand, the balance must be upheld by trading the difference. Both in case
of energy deficit and surplus, prices are typically unfavorable compared to the wholesale
market. Inaccurate predictions can thus cause severe financial penalties, but predicting
electricity demands at long time-horizons is a problem of advanced statistical nature. In
this theses, we will discuss relevant aspects of time-series theory in the field of Gaussian
processes, and apply the theory to a data set provided by Nord-Trøndelag Elektrisitetsverk
(NTE), to test the performance of the suggested models.

NTE is one of the largest electric utilities in Norway, operating mainly in the county
of Nord-Trøndelag. Participants in the Norwegian energy market, such as NTE, must
report to Nord Pool1 every day before 10:00 and account for the quantities of electricity
that they wish to trade at each hour of the full next day. Developing forecasting models
which function optimally within this time frame is therefore of great interest to NTE, and
to this aim, they have provided historical data of energy consumptions in Nord-Trøndelag
from 2011 up to and including 2017. Figure 1.1 shows sections of this data.

The electricity demand is primarily dependent on temporal factors such as daily and
weekly cycles, but are also strongly influenced by meteorological conditions [1]. For short
time-frames, univariate forecasting models have been successfully applied, including ex-
ponential smoothing methods [2] and (S)ARMA models [3]. For lead times beyond one
day ahead, it is crucial to directly allow for weather-induced variations [4]. Such methods
include multiple regression [5] and Kalman filters [6], to mention a few. Recently, there
has been a surge of interest in artificial-intelligence methods such as recurrent neural
networks [7] and support-vector regression [5], among a host of others. For an extensive
review of classical as well as modern approaches, see Srivastava et. al. [8].

The current forecasting routine used by NTE and other electric utilities is a commercial
Kalman-filter-based model, of which details are unavailable to the public. However, the
provided dataset contains—in addition to true values—historical predictions from the
model that can be compared with other alternatives. In this thesis, we will consider a
solution to the forecasting problem by Gaussian process (GP) regression, which belongs
to a class of methods whose learning is based on probabilistic inference. Simply put,
these methods take a group of hypotheses and weights them based on how well their
predictions match some given data, yielding a more refined group. The specification of
the hypothesis group, which makes up a model, depends on how much a priori information
that can be inferred from the system under analysis. A recent rise in interest for GPs was

1A major European energy exchange market. Web: www.nordpoolgroup.com/

www.nordpoolgroup.com/


4 1 INTRODUCTION

Aug. 16 Dec. 16 Apr. 17 Aug. 17 Dec. 17

200

400
P

ow
er

lo
ad

[M
W

h
/h

]

(a) From May 2016 up to January 2018: the latest avaliable data.

23 Aug. 29 Aug. 04 Sep. 10 Sep.

150

200

250

P
ow

er
lo

ad
[M

W
h

/h
]

(b) A few weeks of 2017.

Figure 1.1: Sections of the electricity demand time-series data provided by NTE.

sparked through research on neural networks [9], which GPs share intimate connections
with. They have later been applied to a wide range of different problems, also within the
context of electricity demand forecasting [10, 11].

The thesis is divided into two main parts. In the first part, section 2 through 5, we
seek to establish a thorough background theory for long-term time-series modelling with
Gaussian processes which can utilise information from large datasets and predict for long
time-horizons. Some introductory theory and useful concepts are presented in section 2,
before a more thorough introduction to Gaussian processes is given in section 3. The
use of different covariance functions and how they impose useful model assumptions is
reviewed in section 4, and the consecutive section allows for a scalable GP inference. We
will assume that the reader has no prior experience with GP regression, but are acquainted
with standard statistical theory and nomenclature.

The second part, sections 6 through 9, treats the application of the presented theory in
the more narrow context of predicting future energy demands in Nord-Trøndelag within
the time-frames and limitations that are prescribed by the Norwegian energy exchange.
The dataset is reviewed in section 6, and a family of predictive models are presented in
section 7. A more in-depth analysis of the general method is performed in section 8.
Further discussion is presented in section 9, and by some closing remarks in section 10 we
bring the thesis to a conclusion.

Remark. In the relevant literature, there is seemingly no distinction made between the
terms “power load”, “electricity demand”, “energy consumption” and variations thereof.



5

In this thesis, these terms will be used interchangeably. The same holds true for the terms
“covariance function” and “kernel”, which will be introduced in section 3.
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2 Introductory theory and concepts
2.1 The Gaussian distribution

2.1.1 The univariate case

If the random variable y follow a Gaussian distribution with mean µ and variance σ2, the
probability density function (pdf) of y has a simple form given by

N (y | µ, σ2) , 1√
2πσ2

exp
(
−(y − µ)2

2σ2

)
. (2.1)

When the argument is clear from context it is often omitted: y ∼ N (µ, σ2).
The Gaussian is, for a composite set of reasons, the most widely used probability dis-

tribution throughout the statistics and machine learning communities [12, p. 38]. Firstly,
the two parameters of the pdf conveniently coincide with the mean and the variance,
which for the Gaussian unambiguously determine the entire distribution. Secondly, it
can be proven that the Gaussian, among every conceivable distribution, is the one that
makes the least assumptions about the data subject to the constraint of having a definite
mean and variance [12, p. 289]. Thirdly, the central limit theorem ensures that the sum
of m independent random variables can be approximated arbitrarily well by a Gaussian
distribution as long as m is sufficiently big. The latter is an important property justifying
the use of Gaussian distributions to model error residuals for an extensive range of data
sets.

2.1.2 The covariance matrix

A considerable amount of the upcoming discussion will be concerned with covariance,
so the definition will be stated here for reference and notational clearity, after which a
theorem useful in later derivations will follow.

Definition 1 (The covariance matrix). Let v = (v1, . . . , vd)> be a random vector with
elements of finite variance, and let µ = (µ1, . . . , µd)> be the corresponding vector of
means. Each entry of the covariance matrix Σ = cov(v) is then defined by

Σi,j = cov(vi, vj) , E [(vi − µi)(vj − µj)] (2.2)

for all i, j ∈ {1, . . . , d}. The relation can equivalently be formulated with the more
compact vector notation

Σ = E
[
(v − µ)(v − µ)>

]
. (2.3)

Quantitatively, the covariance measures to the degree of which two random variables
are linearly related. It is easily seen from the above definition that Σ is symmetric, and
along the diagonal, where i = j, we observe the covariance collapsing to var(vi). The next
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result fully determines which properties must hold for an arbitrary matrix A in order for
it to be a valid covariance matrix.

Theorem 1. A matrix A is the covariance matrix of a random vector y if and only if A
is symmetric and positive semi-definite.

Proof. Assume first that y is a random vector of dimension d and let A = cov(y).
Symmetry is apparent from equation (2.3). For any u ∈ Rd,

u>Au = E
[
u>(y − E[y])(y − E[y])>u

]
= E(ỹỹ>), (2.4)

where ỹ := u>(y − E[y]) is a random vector of zero mean. Thus, E(ỹỹ>) = var(ỹ) ≥ 0.
As u>Au ≥ 0 for all u ∈ Rd, A must be positive-semidefinite.

Conversely, suppose that A is a symmetric positive semi-definite d × d matrix. We
must show that there exists a random vector having A as covariance matrix. From the
spectral theorem of linear algebra we know that we can find a (unique) symmetric positive-
semidefinite square root of A and thus it makes sense to define the matrix B through the
relation B2 = A. Further, let y be a d-dimensional random vector whose covariance is
the p× p identity matrix. We then have

cov(By) = E
[
(By − E[By])(By − E[By])>

]
= B cov(y)B> = A (2.5)

after applying some fundamental rules from linear algebra. Hence, it is shown that A is
indeed the covariance matrix of a random vector, namely By.

2.1.3 The multivariate Gaussian distribution

The random vector y = (y1, . . . , yd)> is said to follow a multivariate Gaussian distribution
if and only if the linear combination a>y have a univariate Gaussian distribution for all
a ∈ Rd [13]. The corresponding pdf models the joint stochastic relationship between the
variables, and are as in the univariate case defined through the first two moments, namely
the mean µ := E(y) and the covariance Σ := cov(y). The equation for the joint Gaussian
pdf is

p(y) = N (y | µ,Σ) , 1√
(2π)d|Σ|

exp
(
−1

2(y − µ)Σ−1(y − µ)
)
, (2.6)

where | · | determines the determinant of the argument. The valuable properties stated
for univariate Gaussians hold likewise in the multivariate case.

2.1.4 Conditional Gaussian distributions

It can (and will) be exceedingly constructive to perform the partition y = (y1,y2)> and
then proceed to find the conditional distribution of one vector given the other, often
refered to as the posterior.
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Theorem 2 (Marginal and conditional Gaussian distributions). Assume the random vec-
tor y = (y1,y2) is jointly Gaussian with mean and covariance parameters defined as

µ =
µ1

µ2

 , Σ =
Σ11 Σ12

Σ21 Σ22

 . (2.7)

Then the marginal distributions are given by

p(y1) = N (y1 | µ1,Σ11)
p(y2) = N (y2 | µ2,Σ22),

(2.8)

and the posterior conditional distribution p(y2 | y1) = N (µ2|1,Σ2|1) have parameters

µ2|1 = µ2 + Σ21Σ−1
11 (y1 − µ1),

Σ2|1 = Σ22 −Σ21Σ−1
11 Σ12.

(2.9)

The proof is somewhat involved and will be skipped here, but can be found in most
textbooks on multivariate statistics, e.g. Murphy’s [12, p. 118].

The idea of theorem 2 is visualised in figure 2.1, where the following example is con-
sidered: let (x1, x2)> be a bivariate Gaussian random vector whose joint pdf is depicted in
figure 2.1 as elliptical contour lines. The corresponding marginal distributions p(x1) and
p(x2) are shown as projections on the horizontal and vertical axes respectively. Assume
now that we observe x2 at the location of the dashed vertical line. The distribution of
the resulting random variable x1 consitioned on x2, denoted by x1 | x2, is visualised with
a dashed curve. The variance of x1 | x2 is considerably lower than that of x1. Thus, by
observing one variable we are no longer in our initial state of ignorance about the other
and can infer more information about it, analytically so by employing theorem 2.

x1

x2

Figure 2.1: Probability density contours of a bivariate Gaussian, from which marginal
distributions (blue solid lines) are formed. Initially both marginals are wide, signifying
vague prior beliefs, but after observing x2 (straight dashed line) we become simultaneously
much more certain about x1 (dotted curve).
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2.2 Selected mathematical topics

Before continuing, we will review two mathematical concepts that will later be useful.

2.2.1 Cholesky decomposition

The Cholesky decomposition will have several applications in this thesis: matrix inversion,
calculation of determinants and sampling from Gaussian distributions. A symmetric
positive-definite matrix A of size n × n will (uniquely) decompose into a product of a
lower triangular matrix L, called the Cholesky factor, and its transpose,

A = LL>. (2.10)

The factor itself can be found using elemetary linear algebra, a procedure considered
numerically very stable and solved in n3/6 time [14, p. 202].

When the cholesky factor is already calculated, the determinant of A can very effi-
ciently be computed as

|A| =
n∏
i=1

L2
ii, or equivalently, log |A| = 2

n∑
i=1

logLii. (2.11)

To find the inverse of A we solve the linear system LL>A−1 = I in two steps: first
by applying forward substitution to solve Lu = I for u, and then follow up with back
subsitution, solving L>A−1 = u for A−1. The process requires n2 operations in total.

Lastly, to sample from the d-dimensional Gaussian distribution N (µ,Σ), having at
our disposal a method to draw samples from N (0, 1), we first find the cholesky factor L
of Σ and let y be a vector of size d whose elements are independent samples from N (0, 1).
Then x = µ+Ly will have the desired distribution as E(x) = µ and

cov(x) = LE(yy>)L> = LL> = Σ (2.12)

by the independence of the elements of y.

2.2.2 KL divergence

The Kullback-Leibler (KL) divergence is a measure of how far an approximated proba-
bility distribution q lies from a query distribution p. It can when considering continuous
probability densities be expressed as

KL(p || q) =
∫ ∞
−∞

p(x) log
(
p(x)
q(x)

)
dx. (2.13)

It is also often referred to as a measure of entropy.
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2.3 Bayesian time-series analysis

One of the motivating factors that drive researchers to consider time-series analysis, is
to gain a deeper understanding of the underlying forces and structures that govern the
behaviour of some quantity under observation. Another is to fit a model and proceed to
forecast, monitor or control said quantity. Naturally, the latter factor builds on the first:
the more we understand of the inherent forces that govern a system, the better we can
model it.

Thus, time-series analysis can be formulated as a regression problem where we seek a
function f that explains the observed quantity y through the relationship y(x) = f(x)+η,
where η is additive noise. Often the goal of inference is to understand how the input
variables interact to produce the observations we have of f . It is especially useful if we
are also able to quantify the uncertainty involved in the model. For example, by evaluating
the probability distribution of an unseen point y∗ given the model and input points x∗,
it can be quantified how confident the model is in, say, predicting new values f(x∗).

2.3.1 Bayesian model selection and Occam’s razor

This ability to quantify uncertainty is provided when considering inference under the
Bayesian formalism. In short, we seek an answer to the following: what is the probability
of a hypothesised regression model based on observed data? To understand why it is useful
to ask this question, consider the example of two-dimensional data points D = {ti, yi}i
shown in figure 2.2. A family of curves run through these points. Each of the curves is
able to explain the data identically, but their behaviour differs in regions far from data
points, significantly so on the extrapolated edges. Some curves have higher variation in
the form of larger curvature, while others do not spread out as much and are in that sense
simpler explanations of the data. If we were are to follow the reasoning of Occam’s razor,
where the simpler of two adequate explanations are to be favoured, we might be better
of using the least complex of the curves to model the system.

Figure 2.2: Eight different models explaining the same four data points. Some explana-
tions are more complex than others.
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As it turns out, Bayesian modelling incorporates this principle elegantly and allows us
to choose functions that are well balanced between data fit and complexity. We assume
that the curves are drawn from a probability distribution p(M | D), whereM represents
a model space. By Bayes we calculate the posterior,

p(M | D) = p(D | M)p(M)
p(D) , (2.14)

which has naming convention

posterior = likelihood× prior
marginal likelihood . (2.15)

Now we may perform Bayesian model selection and pick the model that maximises the
posterior distribution, m̂ = argmaxm∈M p(m | D), which is frequently referred to as the
MAP model [12]. However, if M can be parametrised, and we impose a uniform prior
distribution p(M) ∝ 1 on the model (i.e., we do not specifically favour any of the models),
then the probability of the data given the model class is

p(D | M) =
∫
p(D | θ,M)p(θ | M)dθ, (2.16)

where θ is the set of parameters for M. This is proportional to the marginal likelihood
p(D) from equation (2.14). Thus, the Bayesian model selection amounts to choosing the
model that maximises the marginal likelihood [12]. The approach has an built-in safeguard
against overcomplex models: the marginal likelihood quantity itself is the probability that
the data set is generated from randomly selected parameter values of the model class. Very
simple models (relative to the complexity of the data set D) will be very unlikely to have
generated D, whereas too complex models can generate vast arrays of different data sets
and are therefore unlikely to generate D, in particular, at random [15]. This is called the
Bayesian Occam’s razor effect [16].

2.3.2 Parametric and non-parametric models

As there exist a bewildering amount of functions that can equally well explain the data
we observe, it is often wise to attempt to reduce the complexity of the model space before
any inference is performed. In particular, if we have any strong prior belief about the
underlying process responsible for a set of observations, we can impose this knowledge
by directly specifying a subset of the model space; for the data set in figure 2.2, a family
of exponential functions might be a strong contender. Such models are called parametric
since a finite set of parameters must be determined in order to fit the model.

In many cases, however, we have limited prior knowledge regarding appropriate mod-
els to use. At the same time, it might be possible to pick out certain aspects of the
underlying process that are seemingly less definite. For example, when considering the
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x1 x2 x1 x2

Figure 2.3: The conditional distribution of the variables from figure 2.1 presented in a
different format. The left panel shows x1 prior to observing x2. In the right panel, both
the mean and variance of x1 is influenced by x2 being observed. The bars illustrate two
standard deviations.

power consumption data set provided by NTE, we see from figure 1.1 that it contains
several periodic components, from which we can pick out some typical amplitudes, and
the signal is seemingly continuous in the time scale that we are interested in. Working
mathematically with infinite function spaces of which their members share such features
are (remarkably!) entirely feasible. Moreover, we can turn the process of explaining,
modelling and extrapolating data into a matter of contemplating probability distributions
over such spaces, and then later refine the distributions so that samples from it agree with
the observed data [17]. Such models have no parameters that directly govern the resulting
function values, and so they are referred to as (Bayesian) non-parametric models, of which
one interesting flavour is the Gaussian process (GP).

2.3.3 A conceptual basis of Gaussian processes in a time-series context

Before we delve into the mathematical framework that allows for probabilistic GP in-
ference we will introduce a conceptual basis through a direct appeal to joint Gaussian
distributions, and see how they can be naturally extended to model continuous time-
series data. The simple but revealing interpretation is inspired by Roberts et al. [17].

Consider again the simple example displayed in figure 2.1. The information given by
the marginal distributions may, with a slight change of perspective, instead be presented
as in figure 2.3. As before, subsequent to observing one variable (x2), the variance and
most probable location of the other (x1) is affected.

Now we extend the example to higher dimensions. Let (x1, . . . , xn) be a vector of
random variables, the relationship between which are defined by an n×n-sized covariance
matrix, and associate with each variable an integer time label. The left tile of figure 2.4
depicts the conditional distributions for the specific case when n = 20 and two values have
been observed. Calculations are performed using equation (2.9). Keeping the observations
fixed, the right tile shows the effect of increasing n dramatically over the same time
interval. Note that the conditional distribution in the left tile perfectly fits within the
“dense” counterpart in the right tile. That is, from the random vector depicted in the right
tile we can marginalise out the points which are not included in the original 20-dimensional
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vector, and the result will be identical to the original “sparse” random vector.
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Figure 2.4: Associating each element of the random vector (x1, . . . , xn) with a time-label
allows us to illustrate the means (blue dots) and variances (vertical bars) along a timeline.
There are two observations (orange dots). In the left pane n = 20, while the right pane
employs n = 500.

Lastly, we let n → ∞ and in this limit see the joint distribution of all the points
become equivalent to a distribution over functions. Yet, even in this dense space, we are
able to work mathematically and computationally with the distribution—it is sufficient
that we are able to evaluate the pdf at any location in time, and that we can do so
with any finite number of simultaneous query points. This amounts to working with
continuous time-series—a Gaussian process. As the process is conceptually equivalent to
an infinite extension of the Gaussian distribution, it benefits from properties inherited
from multivariate Gaussians.
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3 Gaussian processes
Formally, a Gaussian process (GP) can be defined as the following:

Definition 2 (Gaussian process). For an index set X the collection of random variables
{f(x) | x ∈ X} is called a Gaussian process if for each finite subsetX = {x1, . . . ,xn} ⊂ X
the random vector f(X) = (f(x1), . . . , f(xn)) have a joint Gaussian distribution.

The index set X will henceforth be assumed to be Rd with input dimension d ∈ N,
and referred to as the input space. Let us consider the case where we are provided a set of
input points X ∈ X with corresponding observations y ∈ Rn from the function—possibly
corrupted by noise—and our objective is to estimate the latent function f : X 7→ R.
Through domain knowledge and analysis of observed samples we may have obtained
some idea of properties possessed by the latent function; it may show a certain degree of
smoothness, for example, or tend to repeat itself at some periodicity. Assumptions like
these are reflected in the choice of the mean function m : x 7→ E[f(x)] and the covariance
function κ : Rd × Rd → R, defined for any x,x′ ∈ X as

κ(x,x′) = E
[(
f(x)−m(x)

)(
f(x′)−m(x′)

)]
. (3.1)

Just as a Gaussian distribution is entirely determined by its first two moments, the mean
and covariance functions—the latter commonly referred to as the kernel—uniquely spec-
ifies a GP. That is, we may compactly convey all our prior beliefs about the function f

by the expression
f ∼ GP

(
m(x), κ(x,x′)

)
, (3.2)

signifying that f is distributed according to a GP. Note that it is over the input space X
that the mean and covariance are defined, as opposed to over the set of input points X,
allowing the covariance and mean to be evaluated for any finite combinations of input
elements. Specifically, for the set of vectors {x1, . . .xn} from X , we build a covariance
matrix K by evaluating each combination individually as

K := κ
(
(x1, . . . ,xn), (x1, . . . ,xn)

)
=


κ(x1,x1) κ(x1,x2) · · · κ(x1,xn)
κ(x2,x1) κ(x2,x2) · · · κ(x2,xn)

... ... . . . ...
κ(xn,x1) κ(xn,x2) . . . κ(xn,xn)

 . (3.3)

Here the off-diagonal elements define the covariance between two distinct variables. From
theorem 1 it follows that in order for K to be a proper covariance matrix it must be
symmetric and positive semi-definite, hence a valid covariance function κ must return
matrices having this property for each and every input combination from X . Conversely,
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we know from the same theorem that any kernel with this property will return only
legitimate covariance matrices.

One example function for which this property holds is the squared exponential2 (SE),
defined as

cov(f(x), f(x′)) = κSE(x,x′) := σ2
κ exp

(
−‖x− x

′′‖2

2l2

)
, (3.4)

where ‖·‖ denotes the Euclidean distance. The parameters l and σ2
κ governs the shape of

the kernel. The squared exponential encodes, among other things, the assumption that
if two inputs are similar, then their corresponding function values ought most likely also
to be similar. It is indubitably the most frequently used covariance function in the GP
literature, and will be discussed further in section 4.1.2.

3.1 Prior and posterior distributions

To simplify notation, we will throughout this thesis assume m(x) ≡ 0 for all inputs x,
which is a fairly common assumption in the GP literature.3 As soon as we have selected
and kernel κ, a prior distribution on the function f have been imposed from equation (3.2).
To sample from this distribution, we need first to pick a collection of points X∗ from X
at which to evaluate the function, and calculate the covariance matrix K∗ := κ(X∗,X∗)
using equation (3.3). Then, from the resulting random vector f∗ ∼ N (m∗,K∗), whose
Gaussian distribution is ensured by definition 2, it is a fairly standard exercise to draw
samples following the procedure described in section 2.2.1. Several prior samples of f are
shown in figure 3.1a for one-dimensional input points and a SE covariance function with
unit length-scale and variance.

As we are ultimately not interested in näıvely drawing samples from the prior until
we obtain a function that agrees with observed data, a natural next step is to refine the
distribution so that every sample will interpolate the observed target values. To achieve
this, let D := (X,y) = {(xi, yi)}ni=1 be a set of input vectors and corresponding
output values, respectively, and denote by f the latent function values at points that are
included in D and f∗ the function values at some finite set of query points X∗ not in D.
Under the GP prior, the joint distribution p(f ,f∗) is Gaussian by definition, specifically,

p(f ,f∗) = p

 f(X)
f(X∗)

 = N
0,

K K∗
>

K∗ K∗∗

 , (3.5)

with K := κ(X,X), K∗∗ := κ(X∗,X∗) and lastly K∗ := κ(X∗,X) = κ(X,X∗)>. To
make for a slightly more realistic scenario we will impose one final assumption, namely that

2It is supposedly difficult to agree on a name for this function in the GP community. Many call it a
“radial basis function” or simply “Gaussian” but more recently a name change has been proposed to the
more demonstrative “exponentiated quadratic”. However, the SE name still seems to be prevalent so we
will stick to that.

3The rationale behind this seemingly severe restriction will be made clear in section 4.
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Figure 3.1: Panel (a) depicts functions sampled from a GP prior distribution. Panel
(b) shows random samples drawn from the GP posterior, i.e. samples generated after
conditioning the prior on the five noiseless data points shown in black crosses. Shaded
areas illustrate two standard deviations.

we do not have access to exact values of the latent function f , only to noisy observations
thereof. In the simplest setting, and the one within the scope of this thesis, the noise
is Gaussian and assumed to be additive, independent and identically distributed with
variance σ2

n, i.e.,
yi = f(xi) + εi, where εi ∼ N (0, σ2

n). (3.6)

The above is called a Gaussian likelihood assumption because it leads a Gaussian
p(y | f), which is recognizable as the likelihood from equation (2.14). Still subject to
the GP prior, this assumption leads to the joint distribution p(y,f∗) also being Gaussian.
It follows from the independency of the noise that a diagonal matrix must be added to
the covariance of the observed target values, and by comparing to the noiseless case in
equation (3.5), we have

p(y,f∗) = p

f(X) + σ2
nI

f(X∗)

 = N
0,

K + σ2
nI K∗

K>∗ K∗∗

 . (3.7)

On the above distribution we can apply theorem 2 and readily obtain the posterior pre-
dictive mean and variance for the function evaluations f∗, which are the key predictive
equations in GP regression:

p(f∗ | D,X∗) = N
(
f̄∗, cov(f∗)

)
= N

(
K∗K

−1
n y, K∗∗ −K∗K−1

n K∗
>
)
.

(3.8)



3.2 Determining hyperparameters 17

Here we have, to save a drop of ink, introduced the notation

Kn := K + σ2
nI. (3.9)

The predictive variance in equation (3.8) is the difference between the prior covariance
and a term representing the information gained about the function f from observing y.
Note that the predictive variance is not dependent on the actual observed values, only
on the input points X where they are located. The predictive mean, on the other hand,
follows the observations as we would expect. In figure 3.1b, a few random samples from
the posterior GP are shown, with a SE covariance function having unit variance and
length-scale hyperparameters.

Remark. Instead of evaluating the distribution of the latent variables f∗, we wish often
in practice to compute the predictive distribution of the targets y∗ at the test points,
i.e., p(y∗ | D,X∗). This is easily achieved by adding σ2

nI to the expression for cov(f∗) in
equation (3.8).

3.2 Determining hyperparameters

Most kernels depend on a set of parameters that regulate their behaviour. They are typ-
ically called hyperparameters because the role they play with respect to the underlying
function f under analysis is an indirect one: they specify the distribution of the func-
tion’s parameters.4 Before any inference can be performed about f , the hyperparameters
must be adjusted to suitable values. Luckily, the GP framework allows for closed-form
computation of the marginal likelihood, enabling fast and reliable model selection.

In the following, let the kernel hyperparameters be aggregated by θ, on which, although
not stated explicitly, GP covariance matrices always depend on. Under the GP prior and
the noise assumption in equation (3.6), it follows readily that the marginal likelihood is
Gaussian, specifically, p(y | X) ∼ N (y | 0,Kn). This quantity is so called because it
implicitly integrates, or marginalises, over all function values at all the locations where
we have no observations. Using equation (2.6), it follows that

L := log p(y |X,θ) = log
 1√

(2π)n|Kn|
exp

(
−1

2yK
−1
n y

)
= − 1

2y
>K−1

n y︸ ︷︷ ︸
data fit

− 1
2 log|Kn|︸ ︷︷ ︸

complexity penalty

−n2 log 2π.
(3.10)

As expected from the discussion surrounding figure 2.2, the marginal likelihood incorpo-
rates the prinsiples of Occam’s razor. The data fit term and complexity penalty term
elegantly balances the capacity of a model and how well it fits to the data. A small value

4For reference, the hyperparameters may themselves also have priors—they are referred to as hyper-
priors
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of the complexity penalty means that a restricted number of different datasets can be
accomodated by the model, while a large data fit term indicate that the model adapts
well to the data.

Many optimization routines benefit from gradient information. The gradient of the
log marginal likelihood with respect to θ is most easily derived component-wise, so we
write θ = (θ1, . . . , θk) and calculate for i = 1, . . . , k,

∂L
∂θi

= 1
2y
>K−1

n

∂Kn

∂θi
K−1

n y −
1
2 tr

(
K−1

n

∂Kn

∂θi

)

= 1
2 tr

(
(ββ> −K−1

n )∂Kn

∂θi

)
,

(3.11)

where β = K−1
n y, and we have used the following identities from matrix calculus:

∂ log |A|
∂a

= tr
(
A−1∂A

∂a

)
, and ∂A−1

∂a
= −A−1∂A

∂a
A−1 (3.12)

for an arbitrary matrix A. Given a GP prior, we can pass the expressions for the log
marginal likelihood and its derivative to a continous optimisation routine. We informally
say a hyperparameters is “learned” when it is optimised to a particular value. This does
not, however, imply that this value is optimal in the global sense, as the log likelihood
space is generally highly non-convex.

3.3 Efficient and numerically stable implementation

Computing K−1
n is in general a computationally demanding and unstable operation, scal-

ing cubically with the number of data points n in the input set. Luckily, as the covariance
matrix is positive-semidefinite, it can be decomposed into a product of Cholesky fac-
tors which enables numerically stable inverse and determinant evaluations, as seen in
section 2.2.1.

In algorithm 1, a complete and numerically stable GP regression routine is given. For
improved optimisation, one ought in addition to include in line 7 the analytical gradient of
L, equation (3.11), but this is not a prerequisite for a stable implementation. Calculating
the gradient requires an additional n2 time per kernel hyperparameter, but the expected
amount of time saved from potentially needing less evaluations of K−1

n , which is required
at every interation of the optimisation algorithm, is substantial.

Finding the Cholsky factor of Kn requires O(n3) operations, so algorithm 1 will not
scale well to datasets containing thousands of entries. A method to deal with the issue is
established in section 5.
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Algorithm 1: Gaussian process regression with a Gaussian likelihood assumption.
Input:

X ∈ X n (input points), y ∈ Rn (correponding observations), σ2
n ∈ R (noise variance),

X∗ ∈ X n∗ (test input points), κ : X × X → R (prior covariance function with hyper-
parameters θ).

Result:
f̄∗ ∈ Rn∗ (predicted mean at test points), cov(f∗) ∈ Rn∗×n∗ (covariance of predictions)

Procedure:
1: while optimality condition not satisfied do
2: K ← κ(X,X), K∗ ← κ(X,X∗), K∗∗ ← κ(X∗,X∗)
3: L← Cholesky factor of (K + σ2

nI)
4: Υ← solution of LΥ = I . by forward substitution
5: Φ← solution of Υ = L>Φ . by back substitution
6: L ← −1

2y
>Φy −∑i logLii − n

2 log 2π . a func. of θ; from equation (3.10)
7: θ ← argmaxθ(L) . by a cont. opt. routine

8: f̄∗ ←K>∗ Φζ . from equation (3.8)
9: cov(f∗)←K∗∗ −K>∗ ΦK∗ . from equation (3.8)

10: return f̄∗, cov(f∗)
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4 Kernels for time-series modelling
Correlations between values of the unknown function f evaluated at given input locations
are expressed by kernels, the choice of which can have a profound impact on the predictive
performance of the resulting GP models. The task of choosing suitable kernels is, however,
not simple and has been referred to as “black art” even for experts [18]. Moreover, the
space of available choices is extensive [19, 20]. In this section, we will discuss selected
kernels relevant to the present forecasting context and see how they can express structural
assumptions and be combined as required to build rich non-parametric models for time-
series.

4.1 Standalone kernels

4.1.1 Elemental kernels

The most basic kernels are, although extremely simple, very useful in the context of
modelling time-series. The constant or bias kernel κc(x,x′) := c where c is a positive
constant, is often used in place of a mean function m to add an uncertain offset to the
model. If the time-series are expected to have a linear trend, or if there are uncertainty
whether this might be the case, the linear kernel is a suitable option. It is defined as

κlin(x,x′) := σ2
κ(x− c)(x′ − c) (4.1)

where σ2
κ determines the magnitude of the slope of the line and c specifies the point on the

input axis at which all all the lines in the posterior intersect, i.e., where the contribution
to covariance from this kernel is zero. One-dimensional kernel evaluations and functions
drawn from the resulting prior distribution GP(0, κlin(x, x′)) are displayed in figure 4.1a.

As discussed in section 3.1 the Gaussian noise assumption can be used to incorporate
uncertainty from the observed data into the GP. If the noise is known in advance or can
be bounded from above, e.g. if the data source is a sensor with known resolution, then
it may be desirable to treat the variance σ2

n as a property of the data and keep it fixed.
Adding to the prior covariance a white noise kernel allows us to additionally entertain
uncertainty in the model; the definition is very simple:

κWN(xi,xj) = σ2
κδ(i, j), where δ(i, j) =

1, if i = j

0, otherwise.
(4.2)

4.1.2 Stationary kernels

In equation (3.4) the squared exponential kernel was defined. Note that this function
only depends on the relative distance between two points—it is a part of the stationary
function class whose members are translation invariant, meaning g(x,x′) ≡ g(‖x− x′‖).
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Stationary kernels are applied in situations were one expect values of f to be similar when
evaluated at points close to each other. In a time-series setting where the input space
is the timeline, for example, a prior with stationary kernels encodes the belief that the
informativeness of past observations in forecasting future data is dependent on how long
ago the observations were made.

The length-scale l in a stationary kernel regulates the input (length, or time) scale: a
larger value yields smoother functions and vice versa, because the contribution to covari-
ance is then shared across more of the input points. The signal variance hyperparameter
σ2
κ defines the output (i.e. covariance) scale; it determines the variability of samples around

the GP mean function m. A reasonable hyperprior for this value should encode how much,
on average, we expect the latent function to deviate from its mean.

The squared exponential kernel can be shown to correspond to a Bayesian linear
regression model with an infinite number of basis functions [14, sec. 4.3.1], Moreover, a
GP with a SE kernel can approximate arbitrarily well any function given enough data [21],
making it the default setting in many GP applications. It is also infinitely differentiable
and thus admits functions drawn from the GP prior that are very smooth. In some
situations, however, this assumption is unrealistic for f 5 and it is more suitable to adopt
a kernel from the Matérn family of functions, of which a useful branch follows the definition

κ
(υ)
Mat(x,x′) := exp

(
−
√

2υ + 1 · ‖x− x
′‖

l

)
Γ(υ + 1)
Γ(2υ + 1) ·

υ∑
i=0

(υ + i)!
i!(υ − i)!

(√
8υ + 4 · ‖x− x

′‖
l

)υ−i (4.3)

where Γ denotes the gamma function. The non-negative integer υ determines and equals
the order of differentiability of resultant function samples.

The Matérn kernel as defined above is interesting in the context of time-series mod-
elling, since for a one-dimensional input space (e.g. time) a GP with this kernel is equiva-
lent to a continuous-time AR(υ)-process [21]. Rasmussen and Williams [14, p. 85] argue
that υ = 1 and υ = 2 constitutes the most interesting cases for machine learning, because
for υ = 0 function samples becomes very rough—they are not differentiable at all—and
for higher υ it can, from a basis of noisy training data, be very hard to distinguish between
different values of υ. Indeed, it can be hard to differentiate even between finite values of
υ and the limit υ → ∞, in which the Matérn kernel becomes the squared exponential.
One-dimensional kernel evaluations and corresponding samples are for the SE and the
two Matérn variants displayed in figures 4.1b and 4.1c respectively.

5See Stein [22] for examples.
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Figure 4.1: Upper row: plot of κ(x, x′) for the respective kernel types. Lower row:
sample functions from the corresponding GP priors.

4.1.3 Expressing periodicity

Following Mackay [23] we can, given any covariance function κa(u,u′), introduce the
mapping x 7→ u(x) and retrieve a new covariance function by defining

κb(x,x′) := κa
(
u(x),u(x′)

)
. (4.4)

If κa is a stationary kernel the above mapping will, in general, be non-stationary with
uniform variance. The mapping u is arbitrary—it need not be linear, invertible or have
equal dimensionality of domain and codomain; consider for instance a one-dimensional
domain on which we define the mapping u(x) = [sin(x), cos(x)] and choose κa to be the SE
kernel in u-space. Then we attain a covariance function for a periodic random function,

κSE;per(x, x′) := σ2
κ exp

−2 sin2
(

1
2(x− x′)

)
l2

 , (4.5)

after making use of some trigonometric identities. The hyperparameter l of the periodic
kernel determine the period of the resulting function samples. Our choice of kernel is
not limited to the squared exponential: any stationary covariance functions will work,
incorporating different assumptions of smoothness.
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4.2 Compound kernels

Two kernels will, when composed together additively or multiplicatively, yield a new
valid covariance function in the sense that the resulting covariance matrix is symmetric
positive-semideinite [14, sec. 4.2.4]. Hence we may add or multiply known kernels freely
and doing so allows us to build priors expressing many different qualities.

For instance, multiplying q linear kernels results in a prior for polynomials of degree
q. A product of the periodic kernel in equation (4.5) and the linear kernel can model
functions with growing amplitude, where the marginal standard deviation of the function
grows linearly away from the location c in the kernel definition [18]. Adding to the
covariance function a linear or a white noise kernel incorporates assumptions of global
trend or additive noise, respectively. The possibilities are extensive and a more in-depth
examination can be found e.g. in the works of Duvenaud [18, ch. 2].

4.2.1 Local periodicity

One interesting combination that will become exceedingly useful is the product of a pe-
riodic and a stationary covariance function. Whereas the family of standalone periodic
kernels models exact periodic structure globally across all the training data, they have
in combination with a stationary kernel the ability to model local periodic structure. To
expand on this, assume that we are provided a periodic kernel κper(t, t′) where t and t′ are
elements on the timeline. If we multiply it by a stationary kernel κstat(t, t′), the resulting
covariance function models a periodic structure that can change as time goes by, at a rate
of change that is governed by the length-scale of κstat.

If we relax the condition that κstat is defined on the timeline and allow instead inputs
from any real-valued input space X , we can model functions with a periodic structure
that change over this general space. In a pertinent example, we choose X to be a space of
weather features and thus achieve a GP prior for periodic functions whose exact periodicity
is dependent on the current weather conditions.

4.3 Remarks on the use of multi-dimensional input

Most time-series are not purely dependent on its former temporal states, but changes
additionally with respect to exogenous factors. Of the kernels defined so far, most of
them accept multi-dimensional input and can be used as-is, but there are certain aspects
to keep in mind when deciding how to best combine kernels over multiple dimensions.

4.3.1 Multiplicative kernels allow for automatic relevance determination

Multiplying together many one-dimensional stationary kernels, each defined on an individ-
ual input dimension, leads to flexible GP models with Automatic relevance determination
(ARD). As an example, a product of SE kernels, each with variance σ2

j and length-scale
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lj, becomes

κSE-ARD(x,x′) :=
d∏
j=1

σ2
j exp

−1
2

(xj − x′j)
2

l2j

 = σ2
κ exp

−1
2

d∑
j=1

(xj − x′j)
2

l2j

 , (4.6)

where d is the dimensionality of the input. The length-scales ld implicitly determines
how relevant each input dimension is in explaining the variation in the function being
modelled. A short length-scale implies that small variations along the corresponding
input dimension can still impact the function values to some degree. The opposite is true
for long length-scales, where variations in the input dimension is essentially neglected.

Pure multiplicative covariance structures allow models to learn distinct features for
each combination of input values, potentially leading to very flexible distributions over
functions. There are, however, some problems involved with using multiplicative kernels
like the multi-dimensional SE defined above: they are smoothing interpolators, and so
for any dimension d we can typically not extrapolate more than ld units away from the
closest known training point on this dimension before the GP mean function takes over
as the most dominant correlating factor. In high-dimensional input spaces, the problem
can manifest itself as an instance of the more general curse of dimensionality, to which
multiplicative kernels are especially susceptible [24]. The phenomenon occurs when there
are large amounts of possible combinations the input can take, and exponentially many
training examples are required in order to sufficiently cover the relevant parts of the input
space.

4.3.2 Additive kernels aid extrapolations away from training data

Having additive structure present in the kernels yield distributions that are more re-
stricted, but which allow us to confront the curse of dimensionality with the blessing of
abstraction: the more structure we explicitly account for, the less data we need. We
have already covered one method of adding structure, namely by employing covariance
functions of the (locally) periodic type. Adding kernels together over different dimensions
also automatically encodes more structure, because it results in models for which it is
sufficient that some of the inputs correspond with historical data in order to confidently
predict into new, unseen situations [25]. Not all situations are fit for additive kernels,
however—time-series have additive dependence on covariates only occasionally.

4.4 A recursive kernel to mimic deep architecture

As previously stated, the connection between single-layer neural networks and GPs have
long been known. More recently—motivated by the wish to combine the intriguing recent
successes of deep architectures, such as multilayer neural nets, with the “elegance of kernel
methods”—Cho and Saul [26] formulated a family of kernels that “mimic the computation
on large neural nets”. They did so through a recursive kernel definition, which was later
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used in the GP literature with empirical success [27], and will be tested in this thesis in
relation to power demand forecasting.

The recursive kernel class is expressed in terms of the angle ϑ between two vectorial
inputs, which may be written as

ϑ(x,x′) := cos−1
(

x · x
‖x‖ ‖x′‖

)
. (4.7)

This relation leads to the following covariance function being referred to as the arc-cosine
kernel:

κ(η)
acos(x,x′) := 1

π
‖x‖η ‖x′‖η Jη(ϑ), (4.8)

where η ∈ N denotes the order of the recursion and Jη is a family of functions that
captures all the angular dependence. The arguments of ϑ have been ignored for simplicity.
Although Jη can be defined for arbitrary order η, we will confine ourselves with the first
and second orders, following

J1(ϑ) = sinϑ+ (π − ϑ) cosϑ
J2(ϑ) = 3 sinϑ cosϑ+ (π − ϑ)(1 + cos2 ϑ).

(4.9)

Analyses regarding positive-semidefiniteness and an examination of the properties of the
arc-cosine kernel can be found by consulting the original paper [26].

4.5 The spectral mixture kernel

As discussed in section 4.2 we can achieve sophisticated kernels by combining a few basic
ones. However, these compositions often involve tight restrictions and the kernels must be
hand-crafted for specialised applications. Moreover, operations other than simple addition
in many cases entail a lack of interpretability and change the resulting GPs in ways that
are difficult to identify.

From a machine learning perspective, a requirement of human intervention in discov-
ering patterns is not desirable, especially when it due to lack of interpretability involves
imposing unknown inductive biases. To be able to use GPs as expressive statistical tools
that can automatically discover hidden patterns in the data and also extrapolate intel-
ligently away from the training examples, we will need to consider a more flexible class
of kernels. However, it is not trivial to ensure positive-definiteness in kernel construc-
tions that go beyond combining simple analytical forms while allowing simultaneously
for truly adaptive basis functions. Besides, we still ought to maintain a requirement of
interpretable results.

One method to bypass these obstacles was proposed by Wilson and Adams [28] and
considers instead of direct kernel construction the design of the spectral density (or power
spectrum) of the process, which is tied to an appurtenant covariance function through
the inverse Fourier transform. A sufficient condition for kernel positive-semidefiniteness
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is strict positivity of the spectral density, which is much easier to enforce. The method
embeds an assumption of stationarity, but no further inductive biases are imposed.

The derivation here will follow the original treatment of the authors [28], in which the
following theorem is employed as theoretical support:

Theorem 3 (Bochner). A complex-valued function on RP is the covariance function of
a weakly stationary mean square continous complex-valued random process on RP if and
only if it can be represented as

κ(τ ) =
∫
RP
e2πis>τψ(ds), (4.10)

where ψ is a positive finite measure.

A stationary kernel is shift-invariant, depending only on x − x′; hence if we denote
τ = x − x′, Bochners theorem states that every stationary kernel can be expressed by
an integral. Moreover, if ψ has density S(s), then S is the spectral density of k and fully
determines the properties of k through the Fourier duality relation

κ(τ ) =
∫
S(s)e2πis>τds, (4.11)

S(s) =
∫
κ(τ )e−2πis>τdτ . (4.12)

Next, we must consider how to design the power spectrum of a process in terms of func-
tions that we can easily evaluate. From the universal function approximation theorem
that considers Gaussian mixtures we can approximate the power spectrum to arbitrary
precision given enough mixture components. Thus, we may assume that S(s) is a Q-
component mixture of P -dimensional Gaussian distributions of which the qth component
has mean µq = (µ(1)

q , . . . , µ(P )
q ) and covariance matrix Σq = diag(σ(1)

q , . . . , σ(P )
q ). The

integral in equation (4.10) is tractable for this composition of S and evaluates to

κSM(τ ) =
Q∑
q=1

wq cos(2πτ>µq)
P∏
p=1

exp(−2π2τ 2
q σ

(p)
q ), (4.13)

where τp denotes the pth component of τ . The above is referred to as the spectral micture
(SM) kernel. The hyperparameters are relatively simple to interpret: wp weights the
contribution of each mixture component, 1/µq are the componenent periods and 1/

√
σ

are length-scales determining the input scale, analogous to the variance hyperparameter
of other kernels.

The SM kernel is from theorem 3 in theory able to approximate any stationary co-
variance function to arbitrary precision as long as the number of mixture components
Q in the spectral representation is sufficiently large. It was applied to time-series in the
original paper, successfully so in regards to both pattern discovery and extrapolation, and
will in this thesis be tested on the power load data set with the same rationale in mind.
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5 Scalable Gaussian process regression

Although the GP framework is elegant and powerful, it involves both in the training and
prediction phases the inversion of a potentially gigantic n × n covariance matrix. This
limits the usefulness whenever large data sets are involved: the memory and processing
requirement scales quadratically and cubically with the number of data points, respec-
tively. In the training step, especially, the covariance matrix must be inverted at every
single iteration of the optimisation routine.

Many methods exist that allows sacrificing a bit of accuracy for much greater com-
putability, many of which utilise the fact that it is generally unnecessary to evaluate the
full covariance matrix and hence perform exact GP inference. Inverting instead an ap-
proximation may still yield adequate results. Having lately gained much attention and
approval [29, 30], we will consider one approach which approximates the GP posterior by
a variational method. But first, we discuss briefly a much simpler approach.

5.1 Sparse GP formulations

5.1.1 Choosing a subset of data

Contemplating different methods of scaling down the computational demand, the most
intuitive approach is likely to simply split the data into subsets and perform inference
on each set separately. In addition to reducing the computational demand this can have
beneficial side effects; as an example, consider that we split the electricity demand data
with respect to each hour of the day and applies exact GP regression on each hour
separately. This procedure will avoid the need to specify complex intraday patterns,
commonly called load profiles, that a full model would require in any useful inference
scheme. In a review of load forecasting papers, trouble involved in modelling load profiles
were observed to be very common [31].

When subsets of the training data are considered separately we may, however, severely
restrict the ability of the regression model to pick up correlations between the different
partitions or to get a realistic picture of the uncertainties [32]. In short: the quality of
the inference may suffer. For this reason, we will also consider a more advanced approach
involving inducing variables, which has to a greater degree the ability to capture rich
patterns from data.

In the upcoming derivations we will neglect the explicit conditioning on the input
data—it is always the case that the expressions related to posterior GP models are con-
ditional on the inputs.



28 5 SCALABLE GAUSSIAN PROCESS REGRESSION

5.1.2 Inducing variables

Inducing variable6 methods introduce an additional set of m� n latent variables u ∈ Rm

corresponding to some arbitrary inducing input points Z ∈ X . The inducing variables
lie on the posterior GP similar to f∗ and are not (necessarily) restricted to coincide with
training (or test) data. Instead of considering inference in the full GP in equation (3.8), an
approximated posterior p(f∗ | u) is instead formulated, in which all the information flow
through u, hence the name inducing variable. In figure 5.1 a one-dimensional example is
displayed, in which a set if inducing inputs are chosen at random from the input space—we
can thus not expect them to capably approximate the posterior GP.

Input space

Fu
nc

tio
n 

sp
ac

e

Figure 5.1: Inducing variables (red dots) and predicted function values (blue dots) are
placed on the same posterior GP (blue line). The actual observations from which the
GP is derived are depicted as black crosses. At inputs where we have corresponding
observations, 95% confidence intervals are illustrated with vertical bars. The shaded area
illustrates the same interval for inputs in-between observations.

To find a more optimal set of inducing variables we must define a suitable training
procedure to select Z as well as the hyperparameters (σ2

n,θ) of the kernel and the likeli-
hood. These two problems are tightly conjoint: the set of inducing points depends on the
latent function f , and f itself depends on the hyperparameters (thought the prior spec-
ification). Clearly, then, the optimal approach is to simultaneously pick inducing points
and hyperparameters, that is, optimise some objective function that solves for (Z, σ2

n,θ)
jointly.

An approximation to the exact log marginal likelihood,

L̃ = logN (y | 0, K̃ + σ2I), (5.1)
6Often also referred to as auxiliary, support or pseudo variables.
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can be used to infer these quantities. Here, K̃ is an m-rank approximation to the true
covariance K. Former state-of-the-art inducing variables methods considered different
ways of approximating this matrix; this includes the projected process method [33] and
the sparse pseudo-input method [34]. However, when optimising equation (5.1) with
joint learning of inducing variables and hyperparemeters, there are no guarantee that
the approximation will not surpass the true log marginal likelihood of the training data,
in which case severe overfitting may occur. Titsias [35] adressed this issue by instead
considering a lower bound of the true marginal likelihood using a variational procedure.

5.2 Variational learning of inducing variables

The approach of Titsias, which will be applied in this thesis, is, in essence, to formulate
a variational distribution to approximate the true GP posterior (whose predictive variant
is given in equation (3.8)). With some clever specifications, this leads to a lower bound
for the marginal likelihood which may then be maximized with respecfurther workt to the
inducing inputs and the hyperparameters simultaneously with continuous optimization.

To start of, imagine that the m latent function values u are associated with arbitrary
inputs Z.7 The values of u reside in the same space as the test and training data points,
but are otherwise independent of these. Consider a simple augmented model given by
p(f ,u); by standard statistical identities we may write

p(y,f ,u) = p(y | f)p(f | u)p(u), (5.2)

which, we notice, is equivalent to the original model p(y,f) as we can always recover the
latter by marginalising out u from the former. So in essence the inducing points plays no
active role at the moment (they are not model parameters, unlike σ2

n and θ), and there
is no fear of overfitting when we specify them.

The ultimate goal is to use the auxiliary variables (Z,u) to facilitate inference about f ,
and so they should be picked to be optimally useful for this inference. In his paper, Titsias
defines the inducing variables as optimal if they result in y and f being conditionally
independent given u, in other words,

p(f | u,y) = p(f | u), (5.3)

so that at optimality, the true augmented posterior will factorize as

p(f ,u | y) = p(f | u)p(u,f). (5.4)

The question is then: how can we locate these optimal inducing variables?

7The notation fm and Xm are in the paper used for inducing variables and inputs, respectively, but
u and Z have later become more standard in the literature.



30 5 SCALABLE GAUSSIAN PROCESS REGRESSION

5.2.1 A variational lower bound on the marginal likelihood

One possible optimisation procedure would be to minimise a distance metric between the
true augmented posterior p(f ,u | y) and a variational distribution q(f ,u) with respect to
the inducing input points Z. The distance metric could, as in standard variational infer-
ence, be the KL divergence between the two distributions. This is exactly the approach of
Titsias, but with the additional key specification that the variational distribution q(f ,u)
must satisfy the factorisation that holds for optimal inducing variables, as given in equa-
tion (5.3). The two distributions to be compared under the KL divergence are then

True: p(f ,u | y) = p(f | u,y)p(u | y),
Approximate/variational: q(f ,u) = p(f | u)φ(u),

(5.5)

where φ(u) is a unconstrained (“free”) variational Gaussian distribution over u that
depend only on a mean and a covariance parameter. We call q(f ,u) an approximation to
the posterior because in general it may be difficult, and often even impossible, to locate
inducing inputs that are sufficient statistics for f . This holds true especially if the number
m of inducing inputs is very low compared to n, in which case the flexibility of φ(u) can
be severely strangled.

What remains now is to perform the actual minimisation of the KL divergence with
respect to φ(u), which can be shown to be equivalent to maximising a variational lower
bound on the true log marginal likelihood,

L(Z, φ) ≥
∫
f ,u

p(f | u)φ(u) log p(y | f)p(u)
φ(u) dfdu. (5.6)

As the calculations involved in maximising the above with respect to φ are rather spaceous
we will not repeat them here; they can be found in a technical report by Titsias [36]. The
resulting bound are

L(Z) ≥ L̃(Z) := logN
(
y | 0,Qff + σ2I

)
− 1

2σ2 tr(Kff −Qff ), (5.7)

with
Qff := KfuK

−1
uuKuf . (5.8)

The quantity in equation (5.7) is a lower bound for the true marginal log likelihood for
any number of inducing inputs m. The first term says to fit the data y, whereas the
second term encourages minimisation of the variance of f given u (the term inside the
trace operator is cov(f | u)). Evaluating the bound has complexity O(nm2) and can be
maximised with respect to (Z,θ, σ2) using any continous optimisation tool. If the bound
becomes tight, i.e., L̃ = L,8 the trace term tends to zero and the original log marginal

8Which may happen if there are redundancy in the data, or if m ≥ n, which is in practical terms
pointless.
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likelihood is recovered.

5.3 Variational predictive posterior

In order to perform predictions with the newly learned parameters (Z,θ, σ2
n) we must

state the approximate GP posterior that arise from the variational formulation. When
φ is chosen to be a “free” Gaussian with mean µ and covariance matrix Σ, it can be
shown that the augmented model (in combination with the definition of optimal inducing
variables and the Gaussian likelihood assumption) leads quite straightforwardly to an
approximate predictive posterior on the form

p(f∗ | u) = N
(
f̄u∗ , cov(fu∗ )

)
= N

(
K∗uK

−1
uuµ, K∗∗ −Q∗∗ +KfuK

−1
uu ΣK−1

uu

)
,

(5.9)

with Q∗∗ as in equation (5.8) for test points rather than data points. Up until now the
distribution φ have been completely free—the lower bound was maximised without the
need to specify the mean and covariance parameters—but to perform predictions using
equation (5.9) they must be calculated. Titsias derives them analytically by diffentiating
equation (5.6) with respect to φ(u) without imposing any further restrictions on φ. The
optimised parameters of the distribution are

µopt = σ−2KuuCKufy,

Σopt = KuuCKuu,
(5.10)

where C := [Kuu +σ−2
n KufKfu]−1. The above may be substituted into equation (5.9) to

perform approximate GP predictions with time complexity O(nm2).
Figure figure 5.2 displays how the approximated predictive distribution is affected by

the placement of m = 15 inducing inputs for a short slice of the power load dataset with
n = 170 data points. In the above panel, an optimisation routine has maximised the
marginal likelihood lower bound with respect to (θ, σ2

n), whereas in the lower panel we
allow additionally for optimisation of Z. A more evenly spaced distribution of inducing
variables are here favoured, and the result is more expressive and better fit to the data.
Both cases had the same prior imposed: a one-dimensional SE plus a linear kernel.

Figure 5.3 illustrates how changing the number of inducing variables affects the flex-
ibility of the resulting GPs for a segment of power load data of length n = 360. In each
panel the GP is equipped with a SE plus a linear kernel and each undergo the same
optimisation routine over (θ, σ2

n,Z). Clearly, the flexibility of the resulting GP suffers
greatly when m is set very low. The optimal m depends on the situation, and the choice
constitutes a balancing argument between accuracy and computability. Note that the
data points seem to always fit well within the calculated confidence intervals; in fact,
overestimation of the noise is a known drawback of the method [30].
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Figure 5.2: The placement of inducing inputs changes the representative power of the
posterior GP. Blue and red curves represent (interpolated) true values and GP predictions,
respectively. Red dots indicate the placement of the inducing inputs (their position in
regard to the y-axis is coincidental). In the upper panel, Z are initialised randomly,
whereas in the lower panel the same initial Z-values are fitted according to the variational
method. Shaded areas depict 95% confidence intervals.
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Figure 5.3: For a different number of inducing inputs m, as indicated in each respective
panel, the corresponding approximated posterior is shown. Blue and red curves repre-
sent (interpolated) true values and GP predictions, respectively. Red dots indicate the
placement of the inducing inputs; their position in regards to the y-axis is coincidental.
Shaded areas depict 95% confidence intervals.
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6 NTE’s data set of electricity demand
The dataset provided by NTE includes historical values of power load and predictions
thereof, weather data and weather forecasts. To establish domain knowledge, from which
we can build functional GP models to forecast electricity consumption in Nord-Trøndelag,
we here provide a more in-depth look at the data set, in order to search for exploitable
patterns.

An overview of the time-series included in the data set is given in table 6.1. Each
series consist of 61,368 measurements, spanning from the year 2011 up to and including
the year 2017. A predictive counterpart complements each series; details for predictive
electricity demands and weather data are found in sections 6.1 and 6.2, respectively.

Table 6.1: Complete list of time-series present in the
dataset. Each series have a corresponding predictive dual.

Type Included time-series Unit
Electricity demand 1 MWh/h
Air temperature 3** ◦C
Wind speed 3** m/s
Solar irradiance 3** W/m2

** At selected county locations.

6.1 Analysis of the power load data

The principal information contained in the dataset is the power demand time-series, each
entry giving electricity demand in MWh/h (megawatt-hours per hour) averaged over the
whole preceding hour relative to the time-label. The slight redundancy in the unit defi-
nition conveys the fact that we are not considering momentary demands. Moreover, the
values are the aggregated demand for the whole of Nord-Trøndelag, from residential as well
as industrial sources, which together constitute the primary source of electricity demand
in the county. A simple plot of the values was given in figure 1.1 in the introduction.

A time-series of predicted electricity consumption is also included in the set; the values
are calculated by NTE’s current predictive model which utilises Kalman-filtering. The
algorithm is originally developed by SINTEF9 and commercially maintained by Powel
AS10; it is proprietary and hence no further information are granted to us about its inner
workings.

6.1.1 Linear trend

After calculating monthly means for every year in the data set, a least-squares regression
line are fitted to the points as shown in figure 6.1. The slope indicates a yearly average

9An independent research organisation headquartered in Trondheim, Norway. Web: www.sintef.no
10A Norwegian supplier of software solutions. Web: www.powel.com/no/

www.sintef.no
www.powel.com/no/
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Figure 6.1: Linear regression for mean monthy values (blue crosses) grouped by year.
The orange dots show yearly averages. Translucent band indicate 95% confidence in the
regression line.

increase in power demand of 4.8 MW.

6.1.2 Seasonalities

Annual, weekly and daily periodic patterns, which are very clearly present in the power
load time-series, are portrayed in figure 6.2. To remove some variability, and with that
more clearly demonstrating the annual and weekly periodic patterns, a rolling mean func-
tion with weekly and daily window sizes have been applied to the data in figures 6.2a
and 6.2b, respectively.
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Figure 6.2: Known seasonalities in the power load time-series. In (a), annual periodic
patterns of the complete span of the data set is shown. In (b), a data slice containing
multiple weeks from 2017 shows weekly patterns. To emphasize the periodic patterns, a
rolling mean operator with a weekly and daily window has been applied to reduce data
variability in (a) and (b), respectively. In (c), a data segment from February 2017 depicts
daily periodic patterns. The labels on the horizontal axis are here centred at noon.

.
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6.1.3 Load profiles

The intraday patterns of the data set, often referred to as load profiles, change depending
on various latent factors, of which some can be estimated from domain knowledge. Holi-
days, for example, induce a pattern that is distinct from any other days. In figure 6.3 the
electricity consumption values are grouped with respect to various factors and averaged
over each hour. Most notably are the differences between weekdays, weekends and holi-
days, but some clear disparity exists also between Saturdays and Sundays. More subtle,
when compared to the rest of the weekdays, Fridays exhibit a slightly lower consump-
tion in the evenings, while Mondays show a trend of having generally lower consumption
throughout the day.
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Figure 6.3: Daily profiles. The complete data set are partitioned with respect to factors
as indicated by the labels, then averaged by hour.

6.1.4 Seasonal heteroscedasticity

The variance in the observations is not stable throughout the day. Figure 6.4 illustrate
the hourly distribution of points by a box-plot for two different parts of the year, where we
observe that the early morning hours have the greatest variability. Another interesting
observation is that values recorded in March appear to follow a notably heavier-tailed
distribution than corresponding observations from August.

The figure brings to light two cases of seasonal heteroscedasticity present in the data.
The phenomenon could potentially cause difficulties if we attempt to formulate a model
with the intention of capturing too much structure at once.
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Figure 6.4: The distribution of power consumption values for each hour of the day,
shown for two different months. Included data are from 2015 and newer; weekends and
holidays are excluded. The streaks inside the boxes indicate the median and the box
bodies extend from the lower to the upper quartiles. The whisker lengths extend an
additional 1.5 times the interquartile ranges. Data points outside this range are marked
with diamonds.

6.2 Weather data

Temperature, solar irradiance and wind speeds are recorded at the three most populous
locations in Nord-Trøndelag: Stjørdal, Steinkjer and Namsos along with forecast variants
thereof. The weather forecasts are provided by StormGeo11 and are exactly those which
NTE’s currently employed model for power demand had access to at prediction time.

Even as Nord-Trøndelag is a sizable county, the weather conditions on the three differ-
ent metering locations are strongly correlated, so to reduce the amount of redundancy a
simple dimensionality reduction scheme will be applied in which for each distinct weather
type a single time-series are constructed as a weighted average over the three locations.
From NTE a suggestive set of location weights are provided, which are approximated
based on demographic considerations and will be used here without further verification.
In the following, whenever temperature, solar irradiance or wind speed is mentioned, it is
tacitly referred to the respective weighted version.

6.2.1 Correlation of weather and power loads

In order to reveal possible relationships between the time-series in the data set, power
load values of 2016 and 2017 are plotted with respect to the coincident weather conditions
in figures 6.5a to 6.5c. Each time-series is standardised to zero mean and unit variance
so that values can more easily be compared across data types. Moreover, to remove

11Privately held supplier of meteorological services, headquartered in Bergen, Norway.
Web: www.stormgeo.com

www.stormgeo.com
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correlations due to daily cycles, a twenty-four-hour difference operator is applied to each
time-series before they are plotted against each other and fitted with a least-squares
regression routine that de-weights outliers.
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(a) Power load w.r.t. temperature. The regr-
ession slope is -0.27.
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(b) Power load w.r.t. solar irradiance. The
slope of the regression is -0.08.
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(c) Power load w.r.t. wind speed. No signifi-
cant linear relationship were found.
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(d) Solar irradiance w.r.t. temperature. No lin-
ear relationship was discovered whatsover.

Figure 6.5: Power load values from 2016 and 2017 are plotted with respect to different
weather measurements. All time-series are standardised and exposed to a daily-difference
transformation. A least-squares regression line is fitted to the data in each panel.

The resulting lines show that temperature is by far the most important linear psre-
dictor of the three. The slope is -0.27, which is intuitively reasonable, since when the
temperature is higher today than yesterday, then the power demands today are likely to
be lower than yesterday. In regards to wind speed, no linear relationship of significance
was found, whereas the solar irradiance attains a slope of -0.09. To analyse if this depen-
dency can potentially be attributed to the temperature differences—or vice versa—due
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to correlations between the two weather components, one is plotted with respect to the
other in figure 6.5d. Surprisingly, no relationship was found between them. As more sunny
days are by most attended with warmer weather, this result might appear nonsensical.
However, sunless days implies a cloud cover, which has a warming effect on temperature.
These two factors, and presumably many more latent ones, appear to annul any linear
relationship between the two time-series. In conclusion, solar irradiance seems to pro-
vide information about the power demands that are not contained in the temperature
measurements, and are likely a useful covariate to include in a power load forecast model.

6.3 Pattern recognition with the spectral mixture model

To look for additional patterns in the data, a GP model fitted with a spectral mixture
kernel is applied to a quarter-year slice of power demand data, with time as the only input
feature. The resulting spectral density is depicted in figure 6.6 together with the empirical
spectrum, calculated as the mean of the absolute values of the squared discrete fourier
transform of the data. For a review of this algorithm, see e.g. Press et al. [37, Chp. 12].
The density peaks at daily, weekly and two-day frequencies, as is to be expected. However,
the amount of useful information the kernel provides is, sadly, slightly underwhelming.
We will discuss the SM kernel in the context of forecasting power demands in section 9.4.

Figure 6.6: A spectral mixture kernel with Q = 10 components is applied to a section
of power demand data, and the resulting spectral density is displayed together with the
empirical spectrum.
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6.4 Other considerations

6.4.1 Outliers

By inspection, there are no missing values in the dataset. Whether or not there are
outliers present, however, is much harder to answer in general, and automated attempts
at outlier detection have been unsuccessful. Occasionally the power consumption peaks
drastically at a rate that seems unlikely, but when looking in parallel at the weather
conditions the spike can often be attributed to a sudden and severe drop in temperature.
For this reason, we should be reluctant to disregard abrupt spikes as outliers. On the
other hand, abnormal vallies in the power load data often happens despite stable weather
conditions. There are two evident explanations for this: measurement errors or power
outages in parts of the county. Both will be considered outliers and removed from the
training set manually. This way erroneous values will not pollute model predictions for
other points, while the validity of the test results is preserved.

Figure 6.7 displays an example where points are believed to be collective outliers from
a power outage. The load profile of the affected day is somewhat preserved, but the
constant factor by which the power values differ from neighbouring days are extreme
and could bear witness to a situation where the electricity is cut off from parts of the
consumers.
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Figure 6.7: Electricity consumption of 2014, where red crosses indicate values that are
believed to be outliers caused by power failure.

6.4.2 Daylight Saving Time

Due to the practice of Daylight Saving Time (DST), considerations must be taken around
the transition points to avoid offsets in the model. At spring every year, usually a Sunday
in March or April, a leap from 02:59 to 04:00 occurs. In the fall, usually a Sunday in
October or November, the hour 02:00 appears twice. To handle the issue, certain authors
correct for DST by adding an hour to the time-series at the spring transition, filling it
with the mean of the two adjacent time-series values, while the extra hour occurring in
the fall is simply removed. Hinman et.al.[38] argues that electricity consumers are likely
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to treat the original 02:00 hour as they normally would do, and simply treat the added
02:00 hour as extra sleeping time.

To avoid imposing additional assumptions, a different approach will be considered.
All time-labels are converted into UTC format, and all internal procedures in the code
use these instead of time-zone aware labels. Whenever user interaction is concerned, the
time-labels are converted back to the current time-zone with an additional parameter
added to all time-labels, indicating whether it is summer or winter time; e.g., 03:00 + 02
in summer and 03:00 + 01 in winter. With this procedure, when the values of a time-series
are shifted by k hours, the lag order is automatically adjusted to k+ 1 or k− 1 whenever
a DST transition is crossed.
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7 A family of power load forecasting models
Theory and knowledge of the preceding sections will here be unified with the motivation
of obtaining a family of predictive models for electricity consumption that incorporates
necessary structure while still being flexible and expressive. Various tests will in sec-
tions 7.4 to 7.6 experimentally estimate an optimal member of said family, leading to a
satisfactory final model choice that can ably predict future electricity consumption. More
general model properties will be tested in section 8, and a more in-depth discussion of the
results is provided in section 9.

7.0.1 Precise formulation of the prediction problem

Our main goal is to formulate a set of models that can optimally forecast electricity
consumption while being subject to the limitations that apply in the Norwegian power
market. As previously mentioned, NTE must every day at 10:00 report to Nord Pool
estimated electricity consumption values for Nord-Trøndelag for the full next day. This
exact time-point is in this thesis referred to as prediction time. If we let hour h at a date
d be denoted by tdh, then td10 is the prediction time for this day. The problem at hand can
then be stated as to predict power loads at all the time-points in the set {td+1

0 , . . . , td+1
23 },

that is, an interval from 14 to 38 hours into the future from td10. This set will be referred
to as the predictive window.

7.1 Integration of periodic load components

It is apparent from the discussion in section 6.1 that any operative power load forecast
method must at a bare minimum incorporate structure in the form of weekly, daily and
annual periodicities. From section 4, we know how to design kernels that incorporate
certain periodicities and, moreover, that assembling kernels multiplicatively will allow the
resulting GP model to learn different functional characteristics for each combination of
inputs. We therefore define

κper(x,x′) := (κdaily · κweekly · κannual)(x,x′), (7.1)

where the component kernels are of any stationary type. The kernels κdaily and κweekly

take as input two-dimensional vectors of sine-cosine transformed time labels, as discussed
in section 4.1.3, with respective periods pday = 24 and pweek = 24× 7. To learn the yearly
seasonalities, κannual recieves as input a transformation of the time labels with periodicity
pyear = 24 · 365.25 = 8766. However, when observing that the annual periodic pattern of
the data closely resembles the output of a pure periodic function, the cosine component
is ommitted from κannual to reduce redundancy.

The kernel in equation (7.1) incorporates all known seasonal patterns of the electricity
consumption data, but are in its current state globally periodic and unable to learn local
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features. Figure 7.1a shows an example where the periodic structure of july 2016 are
learned and used to predict for july 2017; clearly, no departure from absolute periodicity
is allowed. In section 7.2, κper will be extended to allow for local deviations.
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Figure 7.1: Training on data from july 2016, two periodic GP models predicts for july
2017. Dotted blue lines are predictions, solid green lines are target values. Panel (a)
shows periodic patterns resulting from κper. In panel (b), a one-dimensional SE kernel,
recieving the single temperature prediction time-series as input, are multiplied by κper,
yielding a much more compromising periodic structure.

7.2 Incorporating recent knowledge and weather outlook

It is undeniably the case that weather conditions in general—and temperature specifically—
affects the electricity consumption. At prediction time the best information we have avail-
able about the weather in the predictive window is from the weather forecasts. On the
basis of the discussion in section 4.2.1, it is reasonable to incorporate these forecasts into
the model as inputs to a stationary kernel, or a compound thereof, that is multiplied
with κper to create a locally periodic covariance function of which the exact periodicities
are weather dependent. To the best of my knowledge, this is a novel approach to the
problem of electricity demand forecasting. In figure 7.1b the effect is illustrated: a single
one-dimensional SE kernel, taking as input the time-series of temperature forecasts, are
multiplied by κper and the resulting GP model is fit to the same strip of data as the
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example in the former section. We observe that the rigid periodic pattern loosen, leading
to notably improved predictions.

Further improvements can be readily obtained by incorporating additional information
into the localizing kernel. This can be recently observed data, whether it be electricity
consumption data or historic weather data, holiday information or other potential covari-
ates. If we model correlations due to known, observed data with κobs and let data that are
based on estimated future information, e.g. the weather forecasts, be handled by κoutlook,
then all possible combinations of localized periodic models can be expressed by

κload(x,x′) := [κper · ζ(κoutlook, κobs) + κWN](x,x′), (7.2)

where the white-noise kernel is included so that we can fix σ2
n if so desired, and ζ is

a function that relates the observed and estimated data under the sole constraint of
having to preserve positive-semideiniteness. For simplicity only two choices of ζ will be
considered: a sum of the two input kernels, and a product thereof—we will refer to ζ as
additive and multiplicative for these two cases, respectively. As discussed in section 4.3,
purely multiplicative models are flexible but often requires much data. Incorporating some
additive properties can help overcome the curse of dimensionality but does not necessarily
lead to models that fits well to the data.

Equation (7.2) defines a family of covariance functions from which specific members
can be formulated. This induces GP priors and, after data is presented, posterior pre-
dictive models. This follows from the main assumption that for the latent function f ,
responsible for the power load observations, it holds that f ∼ GP(0, κload) with Gaussian
likelihood. It is, however, not clear at this point which composite kernels are good choices
in regards to optimally forecasting power demands. In addition to choosing the functional
form of the kernels, the input over which they are defined must also be specified. To re-
duce the option space slightly, the covariance functions κobs and κoutlook are restricted to
be of equal type.

With these considerations in mind, we can continue with some implementation details.

7.3 The testing environment

To arrive at test results that can most easily be compared and discussed, a common
implementational framework will here be stated which applies to all the results in this
thesis.

7.3.1 All tests must comply with the availability of data at prediction time

The difficulty of the prediction problem in section 7.0.1 is slightly aggravated by the
fact that for any date d, the most recently available power load data at prediction time
is typically from td05, that is, five hours from prediction time. This gives an effective
predictive horizon of 43 hours for the farthest prediction time point, td+1

23 . For accurate
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results, all tests must comply with this condition.

7.3.2 Error metric and benchmark model

The mean absolute percentage error (MAPE) will be used to measure the quality of
predictions. If we denote the target values by {yi : i = 1, . . . , n∗} and the predicted time
series by {ŷi : i = 1, . . . , n∗}, then the corresponding MAPE is given by

MAPE = 1
n∗

n∗∑
i=1

∣∣∣∣∣yi − ŷiyi

∣∣∣∣∣ · 100%. (7.3)

This error measure is scale-independent, hence it is meaningful to compare MAPE-values
across different datasets. It does not, however, tackle well data sets that have any values
in near proximity to zero, generating indefinite loss values. The electricity consumption
time series have values in the range 100-500 MW, but when transformations are con-
sidered, for example, if data is shifted to have zero empirical mean, the corresponding
inverse transformation must be applied to predictions and targets alike before MAPE is
calculated.

As a final benchmark of performance, the GP forecasts will be compared to the
Kalman-filter based predictions included in the dataset. This model is at the time of
writing used by NTE and will thus serve as an interesting comparison to a real-world,
commercially employed method. The predictive errors are registered in table 7.1.

Table 7.1: MAPE values of the Kalman-filter predictions.

2011 2012 2013 2014 2015 2016 2017

5.26 3.45 3.96 4.17 3.17 4.34 3.21

7.3.3 Remarks on implementation

Unless otherwise specified, m = 450 inducing inputs will be used, which are in the initial-
isation phase uniformly sampled from the training set. Initial kernel hyperparameters are
drawn from wide distributions12 and are, together with the inducing variables, allowed
20 optimisation iterations. This procedure will be repeated in five independent retries,
after which the best model (with respect to marginal likelihood) are given 30 additional
iterations before predictions are made. This will be referred to as the initialisation al-
gorithm. All optimisation is done with the L-BFGS algorithm [39], which is well-proven
and popular in the GP community.

In a pre-processing phase, all weather data, including the values in the test sets, are
standardized to zero mean and unit variance with respect to the training sets. All power
load values are shifted to zero mean, also with respect to the training set.

12Gamma distributions with shape 1 and scale 4 are used as hyperpriors.
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Finally, every test will be subject to the chaining strategy, meaning that the predictions
are performed in batches, and the training set for each batch is built from all the data
that are historical with respect to the time-labels in the batch. That is, we train on all
available data without using any data “of the future”, so to speak, which would add a
possibly favourable—but unwanted—bias to the results.

All implementation is done in Python using the open libraries Numpy [40], Pandas [41]
and GPFlow [42] for computations and Matplotlib [43] for generating plots.

7.3.4 Covariate identifiers

To declutter the notation, all the input covariates that will be considered are given an
identifier; see table 7.2. The time-series might additionally be affected by an hourly
backshift operator, the order of which is indicated by a subscript; for example, P48 denotes
the power load time-series shifted 48 hours back in time.

Table 7.2: List of covariate identifiers. All the time-series may additionally
appear subscripted with a value that indicates time-lag in hours.

Identifier Covariate

P power load
T, T̃ temperature: measurement, prediction
V, Ṽ wind speed: measurement, prediction
S, S̃ solar irradiance: measurement, prediction
D, W daily, weekly periodic components (includes sine and cosine)
A annual periodic component (includes sine only)
H holiday* binary

* Norwegian public holidays and Christmas eve

Further, in a slight misuse of notation, covariate indicators appearing as input to
kernels denotes ARD over the respective input dimensions. As an example, κSE(P, T )
corresponds to the SE-ARD kernel in equation (4.6) taking as input two-dimensional
vectors of augmented power load and temperature values. With this little trick we can
write the periodic kernel in equation (7.1) equivalently as κper = κ(D,W,A).

7.4 Which weather data are relevant?

It is evidently the case that temperature largely affects the electricity consumption, at
least at the residential level, but it is less obvious how long it takes for fluctuations in
temperature to take effect in the demand. Another interesting question is to which degree
solar irradiance and wind speeds are useful predictors. To test this further, GP models
are trained on various weather covariates and tasked to predict for the whole of 2017. The
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model kernels will follow

κ(a),(b)(x,x′) = κse(D,W,A) ·

κse(T̃k + S̃k + Ṽk), test case (a)
κse(T̃k · S̃k · Ṽk), test case (b),

(7.4)

where k is some arbitrary positive lag number and x takes one covariate along each di-
mension. The posterior SE length-scales will be used to determine the relative importance
of each weather covariate. Note that the above covariance functions follows the form of
equation (7.2) with additive ζ and κobs = 0.

The results are shown in figure 7.2, where a lag value of k = 2 stand out as the better
choice in case (a) as well as (b). The temperature dimension obtains shorter length-
scales than that of solar irradiance and wind speed; of these two the former is considered
somewhat relevant at lower lags k, whereas the latter are deemed generally unimportant.
Wind speeds will thus not be utilized in further test cases.
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Figure 7.2: Length-scales of lagged temperature, solar irradiance and wind speed co-
variates, with errors of the corresponding predictions (MAPE, 2017).

7.5 Impact from increasing the number of lagged covariates

To check how an increasing number of lagged covariates affects the predictive performance,
κload will receive an incrementally expanded number of covariates as input—table 7.3
states the covariates in detail. For simplicity, the components kernels of κload will be
squared exponentials. Results are calculated for all test years with at least one year of
training data available, so that we may examine the development of the forecast quality
as the training set grows bigger.

The plot of the results, figure 7.3, shows that for the cases considered here, adding
more covariates are exclusively beneficial. The additive model variants are markedly
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Table 7.3: Each table row specifies inputs to equation (7.2), where κper always recieve
as input (D,W,A) unless otherwise mentioned. Wheter the function ζ is additive or
multiplicative will be stated. Labels are included for convenient referencing. For the
model with label iv., the kernel κobs comprise two seperate kernels that are in symmetry
with ζ either added or multiplied together.

Label Input to κobs Input to κoutlook

i. H48, P48 H, T̃2
ii. H48, P48, T50 H, T̃2, T̃6
iii. H48, P48, T50, T60 H, T̃2, T̃6, T̃12
iv. (H48, P48, T50, T60), (H43, P43, T45, T48) H, T̃2, T̃6, T̃12, T̃24

better, especially so when data is scarcer. The predictive error shrinks considerably from
2011 to 2014 as more data becomes available; from there the trend is less marked but still
present.
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Figure 7.3: Error of predictions with respect to input size where κload are comprised of
only SE kernels. The inputs corresponding to each label are detailed in the accompanying
table 7.3

7.6 Finding optimal kernel compositions

Defining κload with combinations of the SE covariance function, as have been done in the
past few sections, results in distributions of very smooth functions. To test if other kernels
are better suited, the input arrangement from table 7.3 which yielded the best predictive
results, label iv., are here applied to different compositions of kernels.

The results are shown in figure 7.4. Here, a tuple of kernels, e.g. (κ1, κ2), denotes that
κper are of type κ1 while both κobs and κoutlook are of type κ2. A single kernel type is
specified in the case where all three covariance functions are of equal type.
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By selecting the two best-predicting models from this test, two reasonably good mem-
bers of the family defined by equation (7.2) have been found. They utilize the kernel
compositions κ(2)

acos with multiplicative ζ, and (κSE, κ
(1)
Mat) with additive ζ, where the latter

yields slightly better results. The estimated optimal input covariates are that of label iv.
in table 7.3. For future referencing, we will denote the models by ω× and ω+, respectively.

κSE κ
(1)
Mat κ

(2)
Mat κ

(1)
acos κ

(2)
acos (κSE, κ

(2)
Mat)

2.6

2.7

2.8

2.9

M
A

P
E

2016

2017

(a) Multiplicative ζ.

κSE κ
(1)
Mat κ

(2)
Mat (κSE, κ

(1)
Mat) (κSE, κ

(2)
Mat) (κ

(1)
Mat, κSE)

2.6

2.7

2.8

2.9

M
A

P
E

2016

2017

(b) Additive ζ.

Figure 7.4: Predictive results of various combinations of κper, κobs and κoutlook, where
the horizontal axis labels indicate the respective types. When all three kernels are of the
same type, the respective type is indicated by a single label. Tuples express by its first
entry which type κper is defined as, while the second entry state the type of both κobs and
κoutlook.
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8 Model analysis
In this section we analyse how a direct strategy affects the predictive performance of the
models. Model convergence with respec to hyperparameters and the variational lower
bound is covered in sections 8.2 and 8.3, respectively. The main forecasting results is
presented in section 8.4.

8.1 Direct modelling routines

In section 6.1.4 we observed that the variance of the data points was distributed unevenly
with respect to the hour of the day, as well as part of the year. Hence, by partitioning
the data set by hour or by month, allowing for different model hyperparameters for each
separate partition, this aspect can be dealt with more directly. The procedure is often
referred to as a direct modelling strategy.

Figure 8.1 shows losses of predictions performed with the two best-performing GP
models that was found in section 7: ω+ and ω×. Partitions are performed on the basis of
hours, months and—for completion—days. The input to κper are adjusted slightly to fit
each case, because there is no need to explicitly include D, W or A as input to the periodic
kernel when considering direct procedures over days, weeks or months, respectively.

2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3
MAPE

ω×

ω+

Partitions

by hour

by day

by month

none

2017

2016

2017

2016

Figure 8.1: Different partition schemes are compared for ω+ and ω× with respect to
2017 MAPE. The direct routine with respect to hour shows a gain in predictive results.

Forecast performance improves slightly when a direct strategy over the hourly parti-
tions are used, but suffers considerably when the same strategy is applied with respect to
discrete days or months. Note that no distinction is made between the models in terms
of inducing variable number m, even as the training sets are much smaller in the direct
approaches. The effect of different m-values will be analysed further in section 8.3.
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8.2 Optimality of hyperparameters

It is of primary interest to investigate whether the initialization routine in combination
with marginal likelihood maximisation is an adequate enough set of tools for the task
of locating optimal hyperparameters. Unfortunately, this analysis is complicated by the
fact that the sparse model merely upper bounds the marginal likelihood. Thus, if we
were somehow able to locate the global maximum of the marginal likelihood for the
approximated posterior we could still be very far away from the true marginal likelihood.
Moreover, even if it was computationally tractable to evaluate the exact GP posterior, the
space over which to optimize is almost guaranteed to be highly multimodal. Consequently,
even knowing if optima have been reached is a difficult and resource demanding numerical
optimization problem.

One approach to the inspection of hyperparameter optimality is based on the following
statement: if the hyperparameters of a specific model, given that they are initialised from
very wide hyperprior distributions, are consistently optimized to the same values in a
large number of trials, then there is a high likelihood that this value is optimal for the
model.

Naturally, we can only assess optimality within the limitations induced by the sparse
formulation, since the space over which we optimize is merely an approximation to the
true marginal likelihood space. Nevertheless, by checking if the above statement holds
true for a model, i.e., if the optimisation routine provides consistent results, we may
assume that it to some extent holds true also for similar models induced from the κload

family. Whether the optimised values are not immensely far away from whichever values
we would obtain by optimising instead the exact marginal log likelihood is hard to tell,
but a convergence analysis of the marginal likelihood lower bound will be performed in
section 8.3.

The length-scale values of the inputs to the component kernels of κload, each using the
SE as parametric form with multiplicative ζ, are portrayed in figure 8.2. The hyperpa-
rameters are along with m = 350 inducing variables optimised with 20 independent runs
of the initialisation routine. The testing was performed with one, five and ten retries in
the algorithm, however, a visual comparison between the results from five and ten retries
showed no substantial difference so the latter case has been left out to prevent clutter.

Figure 8.2a shows the length-scales for all the periodic components of the model. The
two length-scale pairs of D and W determine the interplay between the sine and cosine
components. As we observe the variance in the length-scale values are generally quite
low, which presumably indicates that five retries of the initialisation routine are adequate
to reach consistent values for the periodic length-scale components.

All severe outliers in the estimated hyperparameter distributions belong to the one-
retry case, which we can observe from figures 8.2b and 8.2c to hold true for most of the
other length-scales as well. The exceptions are T̃4, T̃24 and T60, whose distributions are
very obscure—spectacularily so for T̃4, for which the interquantile range reach far out of
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Figure 8.2: Boxplot of optimised length-scales (shown on the horizontal axis) of a pure
SE-ARD variant of κload from 20 trials, each with the indicated number of retries in the
initialisation routine. Diamond markers indicate outliers, where severe outliers are clipped
and represented on the panel edges.
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the visible window limits. One reason may be that T̃4 strongly correlates with T̃1, which
are likely to be the better predictor of the two, and having short length-scales on both of
them is superfluous.

8.3 Convergence assessment of the variational lower bound

The variational marginal likelihood L̃ is a lower bound to the true marginal likelihood
for every m ≥ 1. However, for a given data set, GP prior and m we have no assurance
that the geometry of the space described by L̃ even remotely resembles the geometry of
the corresponing L-space. That is, unless the inducing variables coincide exacly with the
observed data, but letting m = n and comparing L̃ with L is computationally intractable
for any data set sizable enough to give meaningful results.

If the evaluations of L̃ are indeed very distant from the true marginal likelihood
values, the resulting models will fit poorly to the data and consequently yield substandard
predictions. However, the primary interest is not really to assess the convergence of
the variational lower bound directly, but to find out when the approximations are good
enough. That is, find out how large m must be in order for the load forecasting models
to fit adequately to the data and yield good predictions. To analyse this we look at
how the predictive performance varies with respect to changing the number of inducing
variables. If the error in the predictions converges, we can choose an appropriate value of
m accordingly.

Figure 8.3a displays MAPE values of 2017 as a function of m for predictions by the
model induced by κload when component kernels are of type κ(1)

Mat and ζ is additive. As
input we use label iv. from table 7.3. The log marginal likelihood estimates L̃ of the
chained training data are plotted in parallel. Two independent trials are performed, each
with the settings described in section 7.3.3.

The error in the predictions shrinks as m increases, and the opposite is true for the
marginal likelihood bound. None of the quantities has seemingly yet fully converged,
which holds true in particular for the bound L̃. Figure 8.3b displays the corresponding
training times,13 in which the five retries of the initialisation routine are included. With
m ≈ 500 the training times are below fifteen minutes while still giving decent predictive
results.

13The running times are clocked on a single Intel R© CoreTM i7-4770 CPU at 3.40GHz × 4 processor.
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Figure 8.3: Varying m, MAPE for 2017 is calculated along with the log marginal like-
lihood estimate of the optimised model, and visualised in tile (a). In (b), corresponding
training times are shown. The numbers include five retries of the initialisation routine. In-
creasing the number of inducing variables m leads to higher marginal likelihood and lower
predictive error at the cost of rapidly increasing training time. The solid and stippled
lines represent two independent trials.

8.4 Main forecasting results

In the experiments, ω+ were found to be the most well-functioning model. To summarize,
it is induced by the following specific member of κload:

κω+
load :=

κper︷ ︸︸ ︷
κSE(D,W,A)

[ κobs︷ ︸︸ ︷
κ

(1)
Mat(H48, P48, T50, T60) + κ

(1)
Mat(H43, P43, T45, T48)

+ κ
(1)
Mat(H, T̃2, T̃6, T̃12, T̃24)︸ ︷︷ ︸

κoutlook

] (8.1)

through the assumption f ∼ GP(0, κω+
load). The covariate indicators are explained in

table 7.2. As shown in section 8.1, a direct strategy over hourly partitions had a beneficial
effect on the forecasts. In this case, the kernel use the same formulation as equation (8.1),
but the the covariate which capture the daily periodic structure, D, is omitted from κper.

The forecasting results with a comparison to the benchmark Kalman-filter method are
given in table 8.1. Five initialisation retries and m = 500 inducing inputs are used, found
to be sufficient from the analysis in sections 8.2 and 8.3.
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Table 8.1: MAPE of power load predictions using three different
models. The models operate with the time horizon {td+1

0 , . . . , td+1
23 },

where the errors shown are averaged by year for each day d in the data
set.

2012 2013 2014 2015 2016 2017

ω+ 3.93 3.61 2.94 2.91 2.64 2.77
ω+, direct w.r.t. hour 4.19* 3.50 3.21 2.87 2.63 2.68
Kalman-filter 3.45 3.96 4.17 3.17 4.34 3.21
* Uses 250 inducing variables, otherwise m > n for the partitioned sets.
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Figure 8.4: Compared to the actual demand, forecasts made with ω+ often outperforms
the Kalman-filter-based predictions. The plot shows a slice of November 2017. Shaded
areas illustrate the 95% confidence interval of the GP model.
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9 Discussion
In this section we will draw important conclusions from the experimental results in sec-
tions 7 and 8. Afterwards, the discussion will concern properties that hold for the models
induced from κload, including how they can be extended for future changes in the electric-
ity demand landscape. Lastly, we compare the approach considered in this thesis with
some closely related work.

9.1 Main conclusions from the experimental results

9.1.1 Lagged temperature values correlate well with power demands

Figure 7.2 suggested that the temperature time-series are by far the most advantageous
linear predictor to include in the GP models for power demand; moreover, a time-lag of
around two hours seems ideal. This indicates that it takes a few hours before temperature
fluctuations start taking effect in the power demands, which is intuitively reasonable
because buildings in Norway generally have high thermal inertia due to being well isolated.
The differences between the tested lag values are small, but this is to be expected from a
high degree of correlation between the lagged series. All in all the results of the test are
on par with what we could expect from figure 6.5.

9.1.2 The GP models tackle well an increased amount of input covariates

Figure 7.3 implied that adding more covariates were exclusively beneficial to the predictive
performance. Comparing with figure 8.2, we see that “irrelevant” inputs will have their
optimised length-scales distributed according to vague distributions with high means and
not affect the resulting model much one way or another.

However, for each new input dimension, the space in which the optimisation algorithm
must search for the optimal solution grows in dimensionality and, most likely, complexity.
A different aspect is the curse of dimensionality, which is known from section 4.3 to affect
pure multiplicative models primarily. Thus, we ought to expect that at some point the
model will get saturated with input, loosing predictive power, but the test is inconclusive
in that regard and further testing must be performed to reveal more about the general
case.

9.1.3 SE kernels capture the periodic structure well, but models poorly the influence of
weather

The overall best-predicting model, ω+, uses a SE kernel to learn the periodicities in the
electricity consumption data. It is not very surprising that a relatively severe smoothness
assumption works well in this case: The time-series is an aggregated demand from a whole
county and are thus smooth by nature, at least in the time-scales that we are interested
in.
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In situations where SE kernels are tasked to model the influence of weather conditions,
like for (κSE), κ(2)

Mat in figure 7.4, the opposite situation arise: the results becomes relatively
poor. Recall that the weather time-series are weighted averages of only three locations
and must be expected to be much more volatile, so less severe smoothness assumptions
implied by, say, Matérn kernels, stand out as a more capable choice.

9.1.4 A direct modelling strategy with respect to hours yields good results

Figure 8.1 show that training separate models for each hour of the day are indeed—by
a slight margin—superior to modelling the hours jointly with a daily-periodic sine-cosine
combination. This result may be due to heteroscedasticity in the daily profile, as observed
in figure 6.4. Another explanation, which may be closely tied to the former, is that the
degree of correlations between weather and power demands can in general not be expected
to be constant throughout the day. As an example, temperature drops likely affects the
power demand more if they happen during daytime, because buildings are in general
warmer at daytime, resulting in more heat loss to the surroundings and higher electricity
demands to keep up temperature levels.

With direct modelling, the discrete data sets are smaller and can doubtless be more
easily approximated, when compared to the full dataset, by m inducing variables. But
the effect is likely small, as monthly and daily direct approaches have the same advantage
but still performs poorly.

9.1.5 Hyperparameters generally reach consistent values, at least those who matter

One central observation from figure 8.2 is that more retries in the initialisation algorithm
lead to hyperparameters having fewer outliers and less diffuse distributions, despite the
fact that they are initially drawn from very wide hyperprior distributions. There are at
the same time input dimensions, most notably T̃4, which are attended with length-scales
whose distributions are very vague and wide. Crucially, however, these all have relatively
high mean values, meaning that the resulting GP models are not much affected by their
inability to reach consistent values. Variability in these inputs is simply ignored from the
ARD property.

Figure 8.2a shows the length-scales for all the periodic components of the model. As
mentioned, the two length-scale pairs attended with D and W determine the relative
interplay between the sine and cosine components of the transformed input. The values
are themselves somewhat hard to interpret, contrary to all the other length-scales, for
which the values determine relative input importance. It is, on the other hand, essential
that the values for D and W are consistent throughout the trials, since they represent the
only cardinal model components that are not correlated with any other input series. In
other words, two very distinct sets of sine-cosine pairs constitute two radically different
solutions. Variations in other length-scales are more forgiving because information is to a
larger degree shared with other components: the power load time-series is, for example,



9.2 On the sparse GP model approximation 59

strongly correlated with temperature—as is the annual sine component.
In conclusion, the analysis of section 8.2 provides empirical evidence that a small

number of retries in the initialisation algorithm in combination with widely defined hy-
perpriors is, albeit very simple, a powerful combination to overcome multimodality in the
log likelihood estimate so that hyperparameters of relevant inputs can be consistently
optimised. This holds true at least for the specific model that was examined, and within
the limitations brought forward by the sparse formulation.

9.1.6 A failed attempt to explore the hyperparameter posterior

To investigate the hyperparameter space and directly assess whether hyperparameters
reach optimality, a Hamiltonian Monte Carlo (HMC) method was applied to different
models trained to maturity14 in an attempt to generate samples from the hyperparameter
posterior p(θ | y). HMC is, through the use of first-order gradient information, in the-
ory able to ensure quicker convergence rate than the more standard Metropolis-Hastings
or Gibbs sampling approaches, especially in spaces of higher dimensions. The specific
algorithm can be found in a review by Neil [44, p. 14].

After considerable trial and error to tune the parameters of the algorithm (the step
size and number of steps to take each iteration) the results were unfortunately rather
inconclusive: either all the steps were rejected or the step size was so small that accepted
steps ended up in a very close proximity to each other. This would indicate that the local
maxima into which the L-BFGS routine optimises the hyperparameters are quite narrow,
or that there are large areas without much support in the posterior probability space.
The method did not, however, provide any satisfactory results in regards to exploring the
hyperparameter posterior, so the theory and details of this method have been skipped.

9.2 On the sparse GP model approximation

9.2.1 The predictive performance is closely tied to the estimated marginal likelihood

In figure 8.3 the predictive error shrinks as m increases, and vice versa for the marginal
log likelihood estimate, which does not come as a surprise. Interestingly, though, the form
of the two graphs closely resembles reflections of each other, indicating that the predictive
performance of the model is very closely tied to L̃. Indeed, even small indentations in the
marginal likelihood estimate seem to bring about (somewhat more pronounced) humps
in the corresponding MAPE values. The reason why these bumps in L̃ occur at all—
and likewise why there is a slight discrepancy between the two trials—are not known,
but the asymmetries could presumably be reduced by using more than five retries in the
initialisation routine.

14Meaning that a strict stopping criteria in the optimisation algorithm (L-BFGS) was reached.
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9.2.2 Using 5-600 inducing variables is a well-balanced choice

To find a balanced choice of m in regards to both complexity and accuracy, we turn again
to figure 8.3b. In theory, the training times scales quadratically with m when n is fixed,
and the empirical evidence in the figure agrees. The rugged form of the graph can be
attributed to a varying number of extraneous processing task running in the background.
Ignoring useless choices of m (with respect to MAPE), a complete training procedure
takes from about six minutes up to an hour for m = 1000.

Updating the model hyperparameters as infrequently as once every year (as is effec-
tively done when using chaining) is quite reasonable, and in this case, training times of
one hour are insignificant. However in practice, there are few reasons not to train the
model more often, perhaps also train a multitude of models and average their collective
predictions to avoid overfitting. In this scenario, the training times will become more
significant, and we can pick e.g. m = 600 with a barely noticeable loss in predictive per-
formance as compared to higher choices of m. Indeed, the method learns very complex
patterns with few inducing variables, as illustrated in figure 9.1 with m = 450.
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Figure 9.1: An interval of 2017, with a particularily non-regular power consumption
pattern, are with m = 450 inducing variables predicted for. Shaded areas show two
standard deviations of the GP distribution.

Note that the prediction times follow the exact same form as the optimisation times
in figure 8.3b, but since predicting for a full yearly batch, after training is completed,
requires only a few seconds even for m = 1000, the differences are insignificant.

Remark. Naturally, m should be chosen relative to the number of points n in the training
data, so using the models for their designated purpose—predicting future power loads—
the number of inducing variables must change accordingly. However, there is likely no
simple relation that maps an optimal m to any given n. A fair assumption is that a larger
m-values are required for the sparse method to handle the increasing complexity inherent
in larger data sets, but a more exact relation ought to be examined at a later time when
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substantially more data is available.

9.2.3 Using an abundance of inducing variables will likely not affect the results consider-
ably

The fact that L̃ in figure 8.3 have seemingly not yet converged are of little concern. As
mentioned, convergence of L̃ does not indicate that the lower bound is tight, and we
do not possess the computational power to find out whether it is. Looking instead at
the MAPE values, which we included in the analysis for this specific reason, any further
increments of m seemingly result in only marginal improvements—and, if we assume
that it is meaningful to extrapolate the curve, then convergence is imminent and using
m > 1000 is not worthwhile.

Another key observation is that increasing m does not encourage overfitting, and so
there is seemingly little hazard involved in choosing large values of m other than long-
winded training times.

9.3 Useful properties of the model family

There are several useful properties which the model family induced by κload benefits from.
Some are inherent to GPs, while others follow from the concrete model formulation.

9.3.1 It is intuitive and easy to modify

The covariance function κload is divided into seperate components that models tempo-
ral structures and the influence of observations and weather forecasts, respectively. This
construction is intuitively simple. Depending on future needs, e.g if we gain access to addi-
tional weather forecast time-series, the relevant kernel component can easily be extended
with additional input features.

As another example, we could consider as input feature the Norwegian general staff
holiday (GSH) period, which typically takes place the last three weeks of July each year,
during which many workplaces run on lower capacity. Ignoring this altogether may lead
to slight systematic overpredictions at weekdays with GSH, as an indirect effect, under-
predictions on other dates of july or August where values may be inferred from days with
GSH.

9.3.2 The additive variant is robust to outliers

In the precense of outliers, the additive branch of the model family will still function:
The kernel component recieving a faulty input, either κoutlook or κobs, will not find any
corresponding input points in the training data, effectively “turning off” the kernel, while
the other kernel components will function as normal. Note that outliers can be detrimental
if ζ is multiplicative, because κload as a whole will be heavily affected by a single outlier.
This makes a strong argument for using models with additive ζ.
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9.3.3 There are no user-defined parameters

Being able to compute marginal likelihood (estimate) of training data provides a principled
way of comparing different models. Thus, there is no need for slow procedures such as
exhaustive grid searches or cross-validation to optimise hyperparameters. Compared to
other regression methods such as neural networks, there are very few hyperparameters,
all of which are interpretable through ARD.

9.3.4 It is adaptable to considerable changes in the energy demand landscape

A model from the family will adapt to the energy consumption patterns present in a
training set. In its current form it makes no distinction to the freshness of the data, as
the provided training set is simply not large enough for such a procedure to be beneficial.
This will get much more important in the future, as the introduction of smart-grids will, in
all probability, change the current consumption patterns considerably. Also, as electrical
vehicles become more common, the overall power demands are expected to rise markedly.
Fortunately, it is trivial to extend the model such that older information is penalized:
simply by multiplying κload with any stationary kernel taking any monotonously growing
time-feature as input, such as year, we ensure that the resulting models correlate higher
with data-points of newer date. The rate of which the model de-weights old information
is automatically optimised along the other hyperparameters.

Another approach is to explicitly capture the linear of the data by adding a linear
kernel, taking time-labels as input, to κload. The result will, however, not adapts as
flexible to severe changes in consumption patterns as the formerly mentioned approach.

9.4 The spectral mixture model for extrapolations

Unfortunately, the spectral mixture kernel performed insufficiently with respect to fore-
casting electricity demands. Predictions were excessively focused on extrapolating pat-
terns from two days before, which makes sense considering figure 6.6 and the distance to
the nearnest training examples in the prediction setting. One possible explanation is the
following: the kernel have, unlike κload, the ability to use neighbouring hours to fit the
training data, and this likely results in much higher marginal likelihood than learning to
extrapolate on the basis of more distant points. In the test senario there are no immediate
neighbors are present, so extrapolations to distant points are therefore poor.

A considerable effort was needed to have the kernel learn even the most obvious weekly
and daily patterns. The final initialisation algorithm consisted of sampling the means µq
uniformly from values between zero and the Nyquist frequency of the samples, i.e. once
per halv hour, while initializing the weights wq to the empirical standard deviation of the
data. Lastly, the length-scales 1/

√
σ were sampled from a truncated Gaussian distribution

with mean proportional to the maximum value range of the data. The effort it took to
achieve the learning of any non-trivial patterns were not ideal when considering the prime
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motivations for introducing the kernel in the first place: using GPs as expressive statistical
tools that can automatically discover hidden patterns while intelligently extrapolate away
from training data.

9.5 Related work

Blum and Riedmiller [11] proposed a similar approach to the solve the power demand
forecasting problem. They construct a covariance function on the form

κpower(x,x′) := (κdaily + κweekly + κweather)(x,x′), (9.1)

where κweekly and κdaily are periodic SE kernels with periods pday = 24 and pweek = 7 ·24 =
172, respectively. The kernel κpower allows modelling of correlations between daily and
weekly power usages, and while serving as a point of inspiration, the pure additive nature
of κpower offers many important disadvantages and would not fit our problem well.

Firstly, the daily periodic component κdaily does not directly depend on which day
of the week it is. As a result, when κdaily is tasked to learn the daily patterns in the
data, it will ignore which day of the week information is inferred from. To exemplify, the
kernel will learn the patterns of, say, a Saturday by taking a smoothed average over all
the days in the data set, and not, as would be more ideal, a smoothed average over all
the saturdays in the data set. The weekly component has, by construction, a relatively
long length-scale and will not be able to learn the more subtle differences present in the
daily profiles that exist for a specific day given that the day is a specific day of the week,
as was illustrated in in figure 6.3.

In equation (9.1) the weather was introduced additively through κweather, a sum of
one-dimensional SE kernels, each receiving as input a time-series of relevant weather
data. Yet again the additivity is troublesome: κweater will ensure correlation between
function values that have similar weather conditions, without any concern about when
the conditions occur. Assume for example that the temperature one specific night is
forecast to be relatively high, just as high as it was at daytime for any other data points
in the dataset. These values are, although having similar temperature conditions, likely to
be very different as the temporal influence on the electricity consumption is, for the most
part, much greater than the influence due to weather conditions. Hence, the temperature
component of κweather will not learn properly. Similar cases can be constructed for other
weather features as well, and in conclusion, κweather is not very useful, especially when big
data sets are concerned for which a lot of these “rare cases” are likely to be present.

Note that Blum and Riedmiller were concerned with a curve fitting approach, where
only the last few weeks of data points were used in predictions, as opposed to a function
mapping approach we consider in this thesis, where all the avaliabl edata is used simul-
taneously. Constructing κweather as a pure additive kernel makes more sense it the curve
fitting scenario.
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10 Closing remarks
10.1 Further work

As discussed in section 9.3.4, the kernel family κload can be trivially extended to be more
flexible to substantial changes in the energy demand landscape. Another extension that
is doable without any significant efforts, potentially, is to consider a generalisation of the
SE-ARD kernel,

κM(x,x′) := σ2
κ exp

(
− 1

2l2 (x− x′)>Q(x− x′)
)
, (10.1)

which is often refered to as a Mahalanobis covariance function. IfQ is the identity matrix,
the kernel collapses to κSE-ARD in equation (4.6), but Q can in general be any positive-
definite matrix. It models the covariance between input features directly by the usual
marginal likelihood maximisation. As we use multiple lagged time-series as input to our
models, correlations are high and κM are potentially a very useful extension. However,
it introduces in general D2 additional hyperparameters, where D is the dimension of the
input vectors x. Consequently, the resulting models can be much harder to train, espe-
cially when D is large, so some effort might be required to ensure consistent convergence
of the hyperparameters.

One principle downside of the direct strategy we consider is that no information is
shared between the input partitions or between model predictions, potentially restrain-
ing the inference quality. Potential future work could be involved in modelling these
relationships in a more sophisticated way.

The spectral mixture kernel require some work before it will be a possible contender
to κload as a tool in forecasting electricity demands. As the kernel was prone to using
information from neighbouring hours to fit the training data, and this information is not
avaliable in the test scenario, extrapolations to far-away points suffered. A possible so-
lution to this problem is to consider dropout, a method for regularizing neural networks,
which has recently been discussed in the context of GPs [45]. The method essensially
drops random elements from the training set in an attempt to learn more general struc-
tures. An interesting future work could consider how the spectral mixture is affected by
dropout. To arrive at a useful forecasting tool, however, it should also be attempted to
include temperature forecasts as a second input feature in addition to time labels. Other
interesting works included combining the SM kernel with κload.
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10.2 Conclusion

With the motivation of constructing reliable forecasting models for electricity demand, we
have established a thorough theoretical background for the use of Gaussian processes in
long-term time-series forecasting with multidimensional inputs. Various properties of co-
variance functions have been discussed, with a focus on finding combinations that capture
the seasonal structure present in the data while adapting to local conditions. We arrive at
a family of Gaussian process regression models that utilise temporal information, histor-
ical data and weather forecasts to make capable predictions with quantified uncertainty.
To utilise the richness of the historical data while still allowing for low time complex-
ity, a sparse approximation was successfully applied. The predictive performance of the
methods was assessed on an electricity demand data set provided by Nord-Trøndelag Elek-
trisitetsverk (NTE), while complying with the time-frames and limitations that apply to
participants in the Norwegian energy market. Compared to a model under current com-
mercial use, the Gaussian process models yields superior results with a 26.5 % reduction
in MAPE when averaged over the last two years.

In addition to good predictive performance, many beneficial properties hold for the
models. They are intuitively simple to modify with additional input features, and contain
a small number of hyperparameters which are all interpretable and optimised within
minutes. The models can, with a trivial extension, flexibly capture changes in the energy
demand landscape.
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Appendix A: Notation and abbreviations
A.1 Notation

I have tried my best to keep the notation consistent with current standards in the statistics
and machine learning literature, but some disparity exist between as well as and within
the communities. Bold Latin or Greek letters always denotes matrices when uppercase,
vectors when lowercase. Scalars are lowercase and non-bold. No notational distinction is
made beween stochastic and non-stochastic variables. The following list includes abbre-
viations and symbols used in this thesis.

A.2 List of abbreviations

acos arc-cosine
ARD automatic relevance determination
DST daylight saving time
GP Gaussian process
GSH general staff holiday
HMC Hamiltonian Monte Carlo
KL Kullback-Leibler
L-BFGS limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm
MAP maximum a posteriori
MAPE mean absolute percentage error
Mat Matérn
NTE Nord-Trøndelag Elektrisitetsverk
pdf probability density function
SE squared expontential
SM spectral mixture
UTC coordinated universal time

A.3 List of symbols

A sine-transformation with yearly period applied to time labels
D two-dimensional sine-cosine-transformation with daily periods applied

to time labels
D input data
E expected value
GP Gaussian process distribution
H holiday binary variables
I identity matrix
Jn n-th order angle-capturing function
K GP covariance matrix
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Kn covariance matrix for locations where we have observations
K∗ covariance matrix for query (test) locations
L lower triangular matrix; Cholesky factor
L log marginal likelihood
L̃ log marginal likelihood lower bound
M model space
N (µ, σ2) univariate Gaussian distribution with mean µ and variance σ2

N (µ,Σ) multivariate Gaussian distribution with mean µ and variance Σ
Ph h-lagged power load time-series
Q number of spectral mixture components
Rd d-dimensional Euclidian space
Sh h-lagged solar irradiance time-series
S̃h h-lagged solar irradiance forecast time-series
Th h-lagged temperature time-series
T̃h h-lagged temperature forecast time-series
Vh h-lagged wind speed time-series
Ṽh h-lagged wind speed forecast time-series
W two-dimensional sine-cosine-transformation with weekly periods ap-

plied to time labels
X input (index) set
X ∈ X input points
Z inducing input points
l length-scale hyperparameter
log natural logarithm
m number of inducing variables
p probability density function (pdf)
tdh time point: hour h of date d
u inducing variables
var(vi) variance of random variable vi
Σi|j covariance of xi given xj
δ(i, j) the Kronecker-delta
η additive Gaussian white noise
κ covariance function
κc constant kernel; bias kernel
κlin linear kernel
κM Mahalanobis kernel
κ

(υ)
Mat Matérn kernel
κobs kernel for modelling observed data
κoutlook kernel for modelling predicted data
κSE squared exponential covariance function
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κWN white noise kernel
µ univariate mean
µ vector of means
µi|j mean of xi given xj
ω+ specific additive model; defined in section 7.6
ω× specic multiplicative model; defined in section 7.6
σ2 univariate variance
σ2
κ kernel variance parameter
σ2
n likelihood variance
θ hyperparameter
θ vector of hyperparameters
ϑ = ϑ(x,x′) Angle between x and x′

υ parameter of κ(υ)
Mat

ζ function combining κobs and κoutlook

| · | determinant
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