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Abstract

This thesis assesses the reliability of methods for slender concrete column design, including

Non-Linear Finite Element Analysis (NLFEA). The applicability of the Eurocode in

slender column design is investigated, and the current safety format is assessed.

The Partial Safety Factor (PSF) method is a semi-probabilistic method where partial

safety factors have been calibrated based on a linear Limit State Function (LSF). In

slender structures, significant second-order effects cause geometric non-linearity. The

combination of geometric non-linearity and the non-linear behavior of concrete, assessed

in an NLFEA software, violate the assumption of a linear limit state. Nevertheless, the

Eurocode suggests applying the PSF method to problems solved with NLFEA.

The PSF method is compared with two alternative safety formats, namely the Global

Resistance Factor Method (GRFM) and the method of Estimate of Coefficient Of Variation

(ECOV). Since the PSF method currently is embedded in the Eurocode, a new approach

for applying PSFs to slender column design is sought. A new set of PSFs is inquired

through reliability analyses combined with both hand-calculation methods and NLFEA.

Five stochastic variables are used in the analyses, including: The concrete compressive

strength, the reinforcement yield strength, the concrete stiffness, the eccentricity and the

load. Inverse reliability analyses are conducted to find the optimal combination of PSFs

for the different slenderness ratios.

The minimum eccentricity in the Eurocode is considered too conservative and a new

approach to treat eccentricity is suggested. GRFM is a more conservative alternative to

the PSF method, while ECOV might be non-conservative if the material parameters are

included by the values given in Eurocode 2-1-1. It is, therefore, proposed to apply the

in-situ adjusted concrete strength with the ECOV method. The results from the inverse

analyses indicate that a new slenderness limit should be developed to distinguish between

compression and yield failure. Two separate sets of PSFs are proposed, for columns below

and above the slenderness limit.
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Sammendrag

I denne oppgaven er det gjort en pålitelighetsvurdering av beregningsmetoder for slanke

betongsøyler, inkludert ikke-lineær elementanalyse. Eurokodens anvendelighet for bruk i

beregninger av slanke betongsøyler er undersøkt, og det nåværende sikkerhetsformatet er

vurdert.

Metoden med partielle sikkerhetsfaktorer (PSF) er en semi-probabilistisk metode der

partielle sikkerhetsfaktorer har blitt kalibrert ved hjelp av en lineær grensetilstandsfunksjon,

eller limit state function (LSF). I slanke konstruksjoner vil betydelige andre ordens

effekter føre til geometrisk ikke-linearitet. Kombinasjonen mellom geometrisk ikke-linearitet

og de ikke-lineære materialegenskapene til betong er ikke forenelig med en lineær LSF.

Likevel anbefaler Eurokoden å benytte PSF-formatet i ikke-lineære elementanalyser.

PSF-formatet er sammenlignet med to alternative sikkerhetsformater som er mer forenlige

med en ikke-lineær LSF, kalt GRFM og ECOV. Siden PSF-formatet er dypt innebygd i

Eurokoden, er det tilstrebet å finne et nytt sett med PSF som er optimalisert for bruk

til beregninger av slanke betongsøyler. Dette er utført gjennom pålitelighetsanalyser i

kombinasjon med både håndberegningsmetoder og ikke-lineær elementanalyse.

Fem stokastiske variabler er inkludert i analysene; betongens trykkfasthet, armeringens

flytespenning, betongens E-modul, lasteksentrisiteten og lasten. Inverse analyser ble

benyttet for å finne den optimale kombinasjonen av partielle sikkerhetsfaktorer for søyler

med ulik slankhet.

Minimumseksentrisiteten i Eurokoden er for konservativ for søyler som går til brudd

grunnet trykk i betongen, og en ny tilnærming til minimumseksentrisiteten er foreslått.

GRFM er et konservativt alternativ til PSF-formatet. ECOV kan være ikke-konservativ

dersom materialegenskapene fra Eurokode 2-1-1 er benyttet. Det er derfor anbefalt å

bruke in-situ justerte verdier for betongstyrken. Resultatene fra de inverse analysene

indikerte at et nytt slankhetskriterium burde bli utviklet for å skille mellom søyler utsatt

for trykkbrudd og knekking. Det er foreslått et unikt sett med PSF for søyler over og

under slankhetskriteriet.

v



vi



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures xi

List of Tables xiii

List of Symbols xv

Abbreviations xix

1 Introduction 1

2 Column Specifications 5

2.1 Geometry and Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Eurocode 2 - material parameters . . . . . . . . . . . . . . . . . . 7

2.2.2 NLFEA - material parameters . . . . . . . . . . . . . . . . . . . . 7

2.2.3 Stochastic variables . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.4 Creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Capacity Calculation Methods 13

3.1 Design capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 MN-diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.2 Safety format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Nonlinear Finite Element Modeling . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Constitutive model . . . . . . . . . . . . . . . . . . . . . . . . . . 20

vii



CONTENTS

3.2.2 Geometric model . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.3 Finite element discretization . . . . . . . . . . . . . . . . . . . . . 21

3.2.4 Boundary conditions and load application . . . . . . . . . . . . . 22

3.2.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Structural Reliability Methods 25

4.1 Limit State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Reliability methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.2 First Order Reliability Method . . . . . . . . . . . . . . . . . . . 28

4.2.3 Response Surface Method . . . . . . . . . . . . . . . . . . . . . . 29

4.2.4 RSM-FORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Reliability assessment with NSM and NCM . . . . . . . . . . . . . . . . . 31

4.3.1 Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.2 FORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.3 RSM-FORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.4 System reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Reliability assessment with NLFEA . . . . . . . . . . . . . . . . . . . . . 35

4.5 Assessment of calculation methods . . . . . . . . . . . . . . . . . . . . . 36

4.6 Inverse analyses and PSF . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Results & Discussion 39

5.1 Design capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Impact of creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Safety format study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Reliability analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3.1 Simplified calculation methods . . . . . . . . . . . . . . . . . . . . 46

5.3.2 NLFEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Assessment of model deviation . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5 Inverse analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.6 Validation of PSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Conclusion 71

viii



CONTENTS

7 Further work 73

Bibliography 75

A Verification of NLFEA 77

ix



CONTENTS

x



List of Figures

2.1 Column geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Bi-linear stress-strain relation adapted from EC2 [1]. . . . . . . . . . . . 8

2.3 The three parts of the eccentricity variable adapted from the JCSS Probabilistic

Model Code [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Rectangular compressive stress distribution [1]. . . . . . . . . . . . . . . 14

3.2 Concrete stress-strain models [12]. . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Geometric and finite element discretization models for NLFEA. . . . . . 21

4.1 Probability density function of resistance, load and safety margin [16]. . . 26

4.2 Stress and strain in the cross-section for compression failure [8]. . . . . . 33

4.3 Stress and strain in the cross-section at the two end points of the line

representing yield failure [8]. . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Compression failure LS, yield failure LS and an arbitrary work-diagram

with NSM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 MN-diagram for the two analytic methods in EC2. . . . . . . . . . . . . . 40

5.2 Design loads for NSM, NCM and NLFEA. . . . . . . . . . . . . . . . . . 41

5.3 Ratio between NSM and NCM. . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Comparison of safety formats applied to NLFEA. . . . . . . . . . . . . . 44

5.5 Design capacities for all methods, relative to NLFEA PSF. . . . . . . . . 45

5.6 Monte Carlo for design loads calculated with NCM - 3000 mm column. . 47

5.7 Monte Carlo for design loads calculated with NCM - 5000 mm column. . 48

5.8 Concrete strength - Load for 4000 mm column. . . . . . . . . . . . . . . 48

5.9 Yield strength - Load for 4000 mm column. . . . . . . . . . . . . . . . . 49

5.10 Concrete stiffness - Load for 3000 mm column. . . . . . . . . . . . . . . . 49

xi



LIST OF FIGURES

5.11 Ratios between NLFEA and simplified methods for 20 random realizations. 56

5.12 Inverse FORM with NSM for the 2000 mm column. . . . . . . . . . . . . 58

5.13 Inverse FORM with NSM for the 3000 mm column. . . . . . . . . . . . . 58

5.14 Inverse RSM-FORM with NLFEA for 2000-4000 mm columns. . . . . . . 62

5.15 Results from inverse RSM-FORM with NLFEA. . . . . . . . . . . . . . . 62

5.16 Regression analyses based on ed for NLFEA. . . . . . . . . . . . . . . . . 63

5.17 Regression analyses based on ed for NSM, NCM and NLFEA. . . . . . . 63

5.18 Ratio between design capacities with new PSFs and best estimate. . . . . 69

A.1 The graphs illustrate the three critical load steps shown in Figure A.2-A.7. 78

A.2 Stress and strain distribution along the critical cross section for the column

of length 1000 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.3 Stress and strain distribution along the critical cross section for the column

of length 2000 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.4 Stress and strain distribution along the critical cross section for the column

of length 3000 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.5 Stress and strain distribution along the critical cross section for the column

of length 4000 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.6 Stress and strain distribution along the critical cross section for the column

of length 5000 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.7 Stress and strain distribution along the critical cross section for the column

of length 6000 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xii



List of Tables

2.1 Length-slenderness relation. . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 EC2 Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Mean, standard deviation and coefficient of variation for the material

parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Coefficients of variation for steel and concrete as recommended in Eurocode

2 Commentary [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Adopted Solution Strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Overview of the capacity calculation methods and the performed reliability

analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Strategy to calculate partial safety factors. . . . . . . . . . . . . . . . . . 38

5.1 Design capacities for NSM, NCM and NLFEA in kN. . . . . . . . . . . . 39

5.2 Design capacities for GRFM and ECOV relative to the PSF method. . . 44

5.3 Results from Monte Carlo with NSM and NCM. . . . . . . . . . . . . . . 47

5.4 β-values with FORM and NSM. . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Results from RSM-FORM with NSM. . . . . . . . . . . . . . . . . . . . . 50

5.6 Results from RSM-FORM with NCM. . . . . . . . . . . . . . . . . . . . 51

5.7 Results from RSM-FORM with NLFEA. . . . . . . . . . . . . . . . . . . 54

5.8 Ratio between capacities calculated with NLFEA and NSM/NCM. . . . . 56

5.9 Results from the inverse FORM analysis with NSM and βtarget = 3.8. . . 57

5.10 Results from the inverse RSM-FORM analysis with NSM and βtarget = 3.8. 59

5.11 Results from the inverse RSM-FORM analysis with NCM and βtarget = 3.8. 60

5.12 Results from the inverse RSM-FORM analysis with NLFEA and βtarget = 3.8. 61

5.13 Eccentricity as functions of column length. . . . . . . . . . . . . . . . . . 64

xiii



LIST OF TABLES

5.14 Proposed sets of PSFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.15 Design capacities in kN with the PSFs proposed in Table 5.14. . . . . . . 69

xiv



List of Symbols

θi Model uncertainty parameter

Φ Standard normal distribution

Φn n-dimensional standard normal distribution

ΩF Failure domain of series system

αcc Coefficient for long-term load

αfc Sensitivity of concrete strength

αi Sensitivity factors

β Reliability index

βsys System reliability index

βtarget Target reliability index

γCE Partial factor for Young´s modulus of concrete

γG Partial factor for permanent actions

γO Overall safety factor

γO’ Overall safety factor with model uncertainty

γR Global safety factor

γRd Model uncertainty for resistance

γc Partial factor for concrete

γs Partial factor for steel

εcu3 Ultimate concrete strain

εs Reinforcement strain

εFORM Convergence criterion in first order reliability method

η Effective concrete strength

xv



LIST OF TABLES

λ Slenderness ratio

µθ Mean model uncertainty

µE Mean Young’s modulus of concrete

µM Mean safety margin

µN Mean of the applied load

µR Mean of the resistance

µS Mean of the load action

µX Mean of normal distributed parameter

µfc Mean concrete compression strength

µfy Mean steel tensile strength

µln Lognormal mean

µx Mean of random variable X

φ Out of plumpness

φef Effective creep coefficient

φ(∞,t0) Final creep coefficient

σθ Standard deviation of model uncertainty

σG Standard deviation of permanent actions

σM Standard deviation of safety margin

σR Standard deviation of resistance

σS Standard deviation of load actions

σX Standard deviation of normal distributed parameter

σln Lognormal standard deviation

σx Standard deviation for random variable X

Ac Concrete compression area

As Reinforcement area

As,max Maximum reinforcement area

As,min Minimum reinforcement area

ai Constants of the first order reliability method

b Concrete column cross section width

d Effective cross section height

xvi



LIST OF TABLES

Ec Modulus of elasticity of concrete

Ecd Design modulus of elasticity of concrete

Ecm Mean modulus of elasticity of concrete

Ecm,is In-situ adjusted mean modulus of elasticity of concrete

Es Modulus of elasticity of steel

e Total eccentricity

e0 Average eccentricity

e2 Second order deflection

Fc Compressive force resultant from concrete

Fs Tensile force resultant from reinforcement

f Arbitrary factor

f0 Initial curvature

fc Concrete compressive strength

f̃c Concrete compressive strength for GRFM

fcd Design concrete compressive strength

fck Characteristic concrete compressive strength

fck,is In-situ adjusted characteristic concrete compressive strength

fcm Mean concrete compressive strength

fcm,is In-situ adjusted mean concrete compressive strength

fct Concrete tensile strength

fc Concrete compressive strength

fy Steel yield strength

f̃y Steel yield strength for GRFM

fym,is In-situ adjusted steel yield strength

G Limit state function

GF Fracture energy

ḡ Polynomial function for RS

h Concrete column cross section height

heq Equivalent length

hmax Maximum element size

xvii



LIST OF TABLES

k0.05 Inverse of the normal distribution for the 5%-fractile value

L Concrete column length

M Safety margin

M2 Nominal second order moment

M0Ed First order bending moment at ultimate limit state

M0Eqp First order bending moment at serviceability limit state

NEd Design load

Pf Probability of failure

R Resistance

Rbest,i Resistance from NLFEA with random realizations of input variables

Rd Design resistance

Rk Characteristic resistance

Rm Mean resistance

Rsimp,i Resistance from simplified method with random realizations of input variables

S Load action

U Random variable in standard normal space

VG Coefficient of variation for geometric uncertainties

VN Coefficient of variation for load

VR Coefficient of variation for resistance

Vf Coefficient of variation for material uncertainties

Vfc Coefficient of variation for concrete compression strength

Vfy Coefficient of variation for steel tensile strength

Vm Coefficient of variation for model uncertainties

Vx Coefficient of variation for random variable X

X Random variable

x Realization of random variable X

xviii



Abbreviations

COV Coefficient of variation

CQ16M Eight-node quadrilateral isoparametric plane stress element

EC2 Eurocode 2-1-1

ECOV Estimate of coefficient of variation

FORM First order reliability method

GRFM Global resistance factor method

JCSS Joint Committee on Structural Safety

LS Limit state

LSF Limit state function

MC Monte Carlo

NCM Nominal curvature method

NLFEA Non-linear finite element analysis

NSM Nominal stiffness method

PSF Partial safety factor

RS Response surface

RSM Response surface method

xix



Abbreviations

xx



1. Introduction

In the design of concrete structures, the Partial Safety Factor (PSF) method is usually

applied to ensure that the required safety level is obtained. The PSF method is a

semi-probabilistic method where partial safety factors have been calibrated based on

a linear Limit State Function (LSF). The partial factors are often related to the load

action, the geometry, the calculation model and the material parameters governing the

resistance of the structure. Certain assumptions concerning the sensitivity and the

probabilistic distribution of the variables form the basis for the development of PSFs.

Eurocode 2-1-1 [1] has defined a set of PSFs that is assumed applicable for the design

of concrete structures. In slender structures, significant second-order effects are causing

geometric non-linearity. Furthermore, the non-linear material properties of concrete and

the potential of different global failure mechanisms might call for a Non-Linear Finite

Element Analysis (NLFEA). The assumption that a linear limit state can be used to define

the PSFs is violated when the problem is highly non-linear and assessed in an NLFEA

software. Nevertheless, the Eurocode suggests applying the PSF method to non-linear

problems solved by NLFEA. Recent studies examine alternative safety formats, more

applicable for non-linear LSFs and NLFEA [2, 3, 4].

In this thesis, the procedure for slender concrete column design proposed by the Eurocode

is investigated. The investigation includes testing of the different calculation methods and

the PSFs by conducting reliability analyses. The simplified hand-calculation methods

suggested by the Eurocode are combined with multiple reliability methods to investigate

the calculation methods’ sensitivity to the uncertain variables and to verify that the

reliability methods work correctly. To obtain more accurate results, NLFEA is combined

with a suitable reliability method. There is no explicitly defined LSF for NLFEA, and

the LSF is, therefore, approximated by a response surface deducted from a regression
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procedure on several sample points. By combining the response surface with the First

Order Reliability Method (FORM), an applicable model is obtained, which balances

accuracy and time consumption.

The thesis evaluates alternative safety formats and their applicability for use with NLFEA.

Furthermore, since the PSF method currently is embedded in the Eurocode, a new

approach for applying PSFs to slender concrete column design is proposed. The aim is to

find a more effective way to design slender concrete columns and simultaneously satisfy

the reliability requirements of the Eurocode and avoid unnecessarily costly designs. New

PSFs are determined from inverse reliability analyses where the reliability index for a

50-year reference period of a residence/office building is inquired [5]. It is desirable to

find a standard set of PSFs that applies to all the three methods the Eurocode suggests

for use in slender concrete column design. Therefore, inverse analyses are carried out

for all the calculation methods to ensure that the optimal set is acquired. An essential

aspect of the study is to investigate how the slenderness ratio of the column impacts the

failure mode and the ideal combination of PSFs.

The content of the thesis is structured as follows:

Section 2 - Column Specifications

The predetermined geometry of the column is presented first. Secondly, both deterministic

and probabilistic material parameters are given. Then the probabilistic nature of the load

and the eccentricity is specified. Finally, it is given a description of how creep is treated

in the analyses.

Section 3 - Capacity calculation methods

This section presents the calculation methods used to determine the design capacities

of the columns. The theoretical background for the implementation of the simplified

methods is presented first. Then the different safety formats are described, before a

thorough description of the NLFEA model is given.

Section 4 - Structural reliability methods

This section covers the theory and methods regarding the reliability analyses. The Monte

Carlo method, the First Order Reliability Method and the Response Surface Method

2
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are introduced. The way these methods were implemented with the different capacity

calculation methods is described. Finally, the inverse analyses and the approach to

estimate PSFs is explained.

Section 5 - Results & Discussion

All the results are presented and discussed in this section. First, the design capacities

calculated in accordance with the Eurocode and current PSFs are examined. This includes

an investigation of the impact of creep and a comparison of the different safety formats.

Then the reliability analyses, with the design capacities used as input, are presented.

Finally, the inverse analyses are considered along with studies on the new approaches for

treating eccentricity and PSFs.

Section 6 - Conclusions

Conclusions that are based on the most important findings in the discussion.

Section 7 - Further Work

Suggestions for further work are given to evoke a more extensive study.
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2. Column Specifications

2.1 Geometry and Load

The geometry and materials for the column were selected in accordance with Eurocode

2-1-1 (EC2) and aimed to describe a general and realistic column. The column cross-section

was set to be quadratic with height (h) and width (b) equal to 200 mm. The column

length (L) was implemented as a variable ranging from 1000 mm to 6000 mm, to cover

columns with varying slenderness. The relations between lengths and slenderness ratios

(λ) calculated according to EC2 5.8.3.2 are shown in Table 2.1. The slenderness of all the

columns exceeded the slenderness limit given by EC2 5.8.3.1, implying that second-order

effects had to be considered.

Table 2.1: Length-slenderness relation.

Length [mm] 1000 2000 3000 4000 5000 6000

λ 17.3 34.6 52.0 69.3 86.6 103.9

To obtain an under-reinforced cross-section and to be within the longitudinal reinforcement

limits of As,min and As,max, four bars of φ14 were regarded as suitable reinforcement.

Minimum shear reinforcement, calculated in accordance with EC2 9.5.3, was implemented.

A concrete cover of 25 mm was also applied.

5
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(a) Column (b) Cross-section (c) Eccentricity

Figure 2.1: Column geometry.

No planned eccentricity was applied to the load because the load case was intended to be

general. Therefore, it was sufficient to add a minimum design eccentricity, e = 20 mm,

as suggested by EC2 6.1(4). Additional eccentricities described in EC2 Section 5.2 were

not necessary because these were smaller than the minimum eccentricity and would only

be necessary in the case of a planned eccentricity.

2.2 Materials

The materials that were considered in this thesis included ordinary C45/55 concrete and

reinforcement steel with steel grade S500. For design capacity calculations, deterministic

values were applied for all the material parameters, in accordance with Table 3.1 in EC2.

For the structural reliability analyses, some of the most important material parameters

were included as stochastic variables.
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2.2.1 Eurocode 2 - material parameters

The most important material parameters in the design capacity calculations included:

The concrete stiffness (Ec), the concrete compressive strength (fc) and the reinforcement

yield strength (fy). These values are listed in Table 2.2. The concrete tensile strength

(fct) was neglected in the simplified capacity calculation methods suggested by EC2 and

was, therefore, not used.

Table 2.2: EC2 Parameters.

CONCRETE

Characteristic compressive strength fck 45.00 MPa

Design compressive strength fcd = fck
γc

30.00 MPa

Mean Young’s modulus concrete Ecm 36.00 GPa

Design Young’s modulus concrete Ecd = Ecm
γCE

30.00 GPa

REINFORCEMENT

Characteristic yield strength fyk 500.00 MPa

Design yield strength fyd =
fyk
γs

434.78 MPa

The characteristic values given in EC2 Table 3.1 were scaled by partial safety factors in

accordance with EC2 2.4.2.4, to achieve the design values fcd and fyd. The values that

were used for the PSFs in this thesis were γc = 1.5 and γs = 1.15 for concrete and steel,

respectively. The mean stiffness was divided by γCE = 1.2, as prescribed in EC2 5.8.6(3),

to obtain the design concrete stiffness (Ecd). For the simplified design capacity analyses,

constant stress in the compression zone and the bi-linear stress-strain relation shown in

Figure 2.2 was applied. No post-yielding hardening was considered for the reinforcement.

2.2.2 NLFEA - material parameters

The NLFEA model intends to represent the column capacity as realistic as possible.

Therefore, a material set that represented the most realistic values for the material

parameters was implemented in the NLFEA model. The mean value of the concrete

strength and concrete stiffness from an assumed lognormal distribution was reduced to

account for the difference between laboratory and in-situ strength. Based on Eurocode
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Figure 2.2: Bi-linear stress-strain relation adapted from EC2 [1].

2 Commentary [6], the mean cylinder strength (fcm) was scaled by a factor of 1.15 to

obtain the mean in-situ strength (fcm,is), denoted µfc in Table 2.3. The reinforcement

steel was not scaled, because the difference between laboratory and in-situ is small. The

remaining material parameters are shown in Table 3.2 and were calculated using formulas

from Table 3.1 in EC2, where fcm is substituted by fcm,is. k0.05 is the inverse of the normal

distribution for the 5%-fractile, and Vfc and Vfy are the coefficients of variation (COV)

for concrete strength and yield strength, respectively.

2.2.3 Stochastic variables

Material parameters

For the probabilistic study, the material parameters that were assumed to carry most

uncertainty were implemented as stochastic variables. These variables were considered

to cover all material uncertainty and included:

• Concrete compressive strength, fc

• Concrete modulus of elasticity, Ec

• Reinforcement yield strength, fy

The above-mentioned variables were assumed to be lognormally distributed. The lognormal

distribution was chosen because the normal distribution can cause inconvenient results,

e.g., negative realizations when the coefficient of variation is large. For the lognormal

distribution, however, the probability of negative values will always be zero [7]. Lognormally
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distributed parameters are entirely defined by the mean value and the standard deviation.

The mean, standard deviation and coefficient of variation of the stochastic material

parameters are listed in Table 2.3. The remaining material parameters were assumed

to be deterministic. The mean values of the concrete compressive strength (µfc) and

the concrete stiffness (µE) were set to the in-situ adjusted mean values shown in Table

3.2. The coefficient of variation for both concrete and steel strength were chosen based

on recommendations in the EC2 commentary [6]. Those COVs were used to derive the

partial safety factors mentioned in Section 2.2.1 that are commonly used in EC2. The

coefficient of variation for the concrete stiffness (VE) was calculated by Eklund, Skorve

& Strand [8] based on recommendations in the Joint Committee on Structural Safety

(JCSS) Model Code [9].

Table 2.3: Mean, standard deviation and coefficient of variation for the material
parameters.

X µx σx Vx Probability Density Function (PDF)

fc
fck
1.15

e1.645Vfc µfcVfc 0.150 Lognormal

fy fyke
1.645Vfy µfyVfy 0.040 Lognormal

Ec 22(
fcm,is
10

)0.3 µEVE 0.158 Lognormal
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Eccentricity and Load

The eccentricity was assumed to be an essential variable, which covered all uncertainty

related to geometry in the model. The JCSS Probabilistic Model Code recommends using

a normally distributed eccentricity [9].

Figure 2.3: The three parts of the eccentricity variable adapted from the JCSS
Probabilistic Model Code [9].

JCSS divides the eccentricity into three different parts; the average eccentricity (e0), the

initial curvature (f0) and the out-of-plumbness (φ), as shown in Figure 2.3. All of them

are considered normally distributed with mean value zero. e0 and f0 have a standard

deviation of L
1000

while φ has a standard deviation of 0.0015 rad, which results in an

eccentricity of 0.0015L
2
at the middle of the column length. According to 5.2(7) in EC2,

the eccentricity that occurs due to an inclination of the column can be calculated as the

inclination angle times L
2
[1]. Considering that all the parameters are normally distributed

and independent, they can for simplicity be merged into one eccentricity variable (e). The

mean and standard deviation are given as:

µe = µe0 + µf0 + µφ = 0

σe =
√
σe0

2 + σf0
2 + σφ2 =

√(
L

1000

)2

+

(
L

1000

)2

+

(
0.0015L

2

)2

≈ 0.001601L

The eccentricity is a variable that depends highly on the structure surrounding the column

and how the loads are transferred into the column. It can be argued that the average

eccentricity is more likely to contain uncertainties than the initial curvature for concrete

columns. Because most of the references used in the JCSS Probabilistic Model Code

are based on steel columns, the standard deviations may not give the most accurate
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description for uncertainties related to concrete columns. However, for the generality of

the problem, the standard deviations advised by JCSS were used for the probabilistic

analyses.

The load is a critical variable because it contains high uncertainties. The load was

assumed to be normally distributed. In the JCSS, self-weight and live loads are treated

separately and are dependent on the applied materials and the kind of structure that is

examined. This thesis treats a general column problem, and the JCSS could, therefore,

not be used directly to find the coefficient of variation. It was assumed that a coefficient of

variation (VN) of 0.2 was appropriate for the load, based on the different values proposed

by JCSS. The mean load (µN) was given by NEd/γG, where NEd is the design capacity

and γG denotes the partial factor for self-weight. In Eurocode EN 1990 [5], the partial

factor γG is equal to 1.35 for situations where permanent loads are dominating. The

standard deviation was calculated by σN = µNVN.

2.2.4 Creep

EC2 states in Section 5.8.4 and 5.8.6 that creep should be considered when second-order

calculation methods are carried out. The effective creep ratio was calculated in accordance

with EC2:

φef = φ(∞,t0) ·
M0Eqp

M0Ed

The final creep coefficient (φ(∞,t0)) was determined from Figure 3.1 in EC2. It was

assumed relative humidity of 50% and loading of the concrete after 28 days. The

first-order bending moment at serviceability limit state (M0Eqp) was set equal to the

first-order bending moment at ultimate limit state (M0Ed) because the column considered

in this thesis was loaded until failure. φef was found to be 1.8. This was a simplified

creep calculation but was assumed a valid approximation considering that this was a

representation of a general case without knowledge of the loading history and the time

dependency of creep.

EC2 also suggests using a nonlinear creep calculation when the stresses in the concrete

are high. However, for a design case, it is unrealistic that the ultimate limit state design

load would be present over a long time period, and very high stresses would, therefore,
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not affect creep significantly. Consequently, it was assumed that the final creep coefficient

could be calculated without the inclusion of nonlinear creep. For the simplified capacity

calculation methods introduced in Section 3, the effective creep ratio was included directly

in the methods.

Due to limited knowledge of the loading history of the column, creep was not included

directly in the NLFEA analysis. Because the load case was general and the loading history

unknown, creep was not included through time-steps. A simplified method suggested in

EC2 proposes to include creep by multiplying the strains with (1+φef) and thus treat creep

as linearly proportional to the stress level. The most convenient way to incorporate this

in the NLFEA model was to scale the concrete stiffness by a factor of 1
1+φef

. The stresses

in the parabolic stress-strain relation in DIANA are proportional to the elastic modulus

until peak stress is reached. After softening of the concrete occurs, the stresses are no

longer dependent on the elastic modulus, but the strains will be well approximated also

in this region. It was, therefore, considered a good approximation to reduce the elastic

modulus to include creep in the NLFEA model.

Creep was considered an important variable, which can impact the design of slender

concrete columns significantly. However, given the general case that was examined in

this thesis, creep was not included as a stochastic variable in the reliability analyses.

Creep was merely included through deterministic factors as mentioned above.
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3. Capacity Calculation Methods

3.1 Design capacities

Eurocode 2-1-1 proposes three methods for capacity calculation of axially loaded concrete

columns subjected to second-order effects. The following methods are included:

• The general method (EC2-1-1, 5.8.6)

• The nominal stiffness method (EC2-1-1, 5.8.7)

• The nominal curvature method (EC2-1-1, 5.8.8)

The Nominal Stiffness Method (NSM) and the Nominal Curvature Method (NCM) are

simplified methods that estimate the second-order effects without the need of NLFEA.

Both methods aim to find the corresponding maximum bending moment to the applied

axial force when second-order effects are considered. NSM reduces the bending stiffness

of the column to account for cracking, nonlinear material properties and creep. The

first-order moment is then increased by a factor, which depends on the moment distribution

in the column and the Euler buckling load calculated with reduced stiffness. NCM

estimates the maximum second-order deflection (e2) from the column’s curvature and

calculates the second-order moment as M2 = NEde2. The relation between the axial

load and the moment is linear until the maximum moment capacity is reached. Beyond

the balance point, an increasing axial load results in a decreasing deflection because the

column response becomes stiffer. At some point, the second-order eccentricity is so small

that the moment decreases for higher axial loads.

The general method is the most sophisticated method suggested in the Eurocode, because

it applies NLFEA to handle both geometric and material non-linearity. The general
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rules for nonlinear analyses, proposed in EC2-1-1 5.7 and 5.8.6, applies for the analyses.

DIANA FEA was the software used for the NLFEA simulations. Assumptions made for

the analyses include:

• Perfect bond between concrete and reinforcement

• Parabolic stress-strain relationship for concrete in compression

• Post-yielding hardening for steel

The NLFEA model is further described in Section 3.2.

3.1.1 MN-diagram

The axial capacities estimated with NSM and NCM were found by identifying the points

where the work diagrams of NSM and NCM intersected with the MN-diagram. Matlab

scripts were developed based on the work of Eklund, Skorve & Strand [8] to create

MN-diagrams for the chosen geometry and material parameters. The MN-diagrams were

developed by demanding strain compatibility and force equilibrium over the cross-section.

The calculations were based on linear strain and rectangular compressive stress distribution.

The tensile strength of the concrete was neglected for the simplified calculation methods.

The concrete and the reinforcement were assumed perfectly bonded and, thus, obtained

the same strain at the same part of the cross-section.

Figure 3.1: Rectangular compressive stress distribution [1].

Figure 3.1 shows the assumptions made for the stresses and strains in the MN-diagrams,

for an arbitrary cross-section. Ac denotes the concrete area assumed in compression, As
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denotes the reinforcement area in tension, d is the effective height of the cross-section,

x is the distance from the top to the neutral axis, εcu3 is the ultimate concrete strain,

εs is the reinforcement strain, λx defines the effective height of the compression zone, η

defines the effective concrete strength, Fc is the compressive resultant force and Fs is the

resultant force from the tensile reinforcement.

3.1.2 Safety format

The safety format used in Eurocode 2-1-1 is based on partial safety factors. Partial

safety factors scale all parameters that are considered to contain uncertainties. Material

parameters are reduced to increase the level of safety for the structure. PSFs are found by

assuming a limit state function and defining a level of reliability that is acceptable for the

structure. The partial safety factors are based on empirical assumptions of the sensitivity

and variability of the different parameters. Partial safety factors can be applied to both

resistance and load. The variation of resistance is defined by

VR =
√
Vm

2 + VG
2 + Vf

2

where Vm, VG and Vf denotes the coefficient of variation of model, geometric and material

uncertainties respectively. The values for Vm, VG and Vf are given in Table 3.1, as

recommended in Eurocode 2 Commentary [6]. Equation 3.1 and 3.2 determined the

partial safety factors for steel and concrete recommended by the Eurocode.

γs = e(3.04VR−1.64Vf) (3.1)

γc = 1.15e(3.04VR−1.64Vf) (3.2)
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Table 3.1: Coefficients of variation for steel and concrete as recommended in Eurocode 2
Commentary [6].

Assumed coefficient of variation

Type of uncertainty Steel Concrete

Model Vm = 2.5% Vm = 5.0%

Geometry VG = 5.0% VG = 5.0%

Material Vf = 4.0% Vf = 15.0%

Eurocode 2-2 [10] introduces a different safety format called the Global Resistance Factor

Method (GRFM). This method uses an overall safety factor, which is applied on the final

capacity rather than on the uncertain parameters. The concrete compressive strength

and the reinforcement yield strength are modified as seen in Equation 3.4 and 3.3.

f̃c = 1.1
γs

γc
αccfck = 1.27fcd (3.3)

f̃y = 1.1fyk = 1.27fyd (3.4)

GRFM is developed based on the two abovementioned variables, and it is not clear how

the safety format should be used when more variables are considered. In this thesis, Ec

and fct are calculated with the formulas given in Table 3.2, where fcm,is and fym,is are

substituted with f̃c and f̃y, respectively. The design resistance is obtained by dividing the

resistance by an overall safety factor, γO = 1.20. The model uncertainty for resistance

(γRd) should be included and can be set to 1.06 when it is not explicitly considered in

the analysis, which changes the overall safety factor to γO’ = γOγRd = 1.27 [10].

The fib Model Code [11] introduces a method with similarities to GRFM, called Estimate

of Coefficient Of Variation (ECOV). The method is based on the concept that the

resistance is lognormally distributed, and that the coefficient of variation for the resistance

can be calculated. Two sample resistances are needed, the mean resistance (Rm) and the

characteristic resistance (Rk). The resistances are obtained by running analyses with

mean and characteristic material parameters, respectively. Both mean and characteristic

concrete strength were in this thesis in-situ adjusted as shown in Equation 3.5 and 3.6.

This was done because in-situ adjusted values for concrete are considered more realistic.
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The concrete stiffness was computed by the formula for mean Ec in Table 2.3. fcm,is was

replaced by fck,is for the characteristic analysis.

fcm,is =
fck

1.15
ek0.05Vfc (3.5)

fck,is =
fck

1.15
(3.6)

The coefficient of variation for resistance (VR) is approximated, as shown in Equation 3.7.

VR =
1

1.65
ln

(
Rm

Rk

)
(3.7)

The global safety factor (γR) can then be calculated by Equation 3.8. It is suggested

to use αR = 0.8 and β = 3.8, which results in Equation 3.9 [11]. Finally, the design

resistance is calculated, as shown in Equation 3.10. The model uncertainty (γRd) should

be set to 1.06 for well validated models [11].

γR =
Rm

Rd
= e(αRβVR) (3.8)

γR = e(3.04VR) (3.9)

Rd =
Rm

γRdγR
(3.10)

A study that compared the different safety formats was conducted, and the results are

presented in Section 5.2.

17



CAPACITY CALCULATION METHODS

3.2 Nonlinear Finite Element Modeling

The non-linear finite element model developed for this thesis was mainly based on the

work of Eklund, Skorve & Strand [8] and recommendations in the Guidelines for NLFEA

of concrete structures [12], hereafter referred to as the Dutch Guidelines.

The nonlinear finite element model of the column was created in DIANA FEA 10.1. The

purpose of the development of the model was to achieve a more accurate and realistic

column capacity, which satisfies the criteria for the General Method in EC2.

The solution strategy is shown in Table 3.2.
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Table 3.2: Adopted Solution Strategy.

CONCRETE
Finite element
Element type Plane stress element CQ16M
Interpolation scheme Quadratic
Integration scheme Full (2x2 Gauss integration)
Constitutive modelling

Model Total strain based
rotating crack model

Tensile behaviour Exponential softening
Compressive behaviour Parabolic softening
Reduction of compressive
strength due to lateral cracking Vecchio & Collins 1993

Lower bound reduction curve 0.4
Stress confinement model Selby & Vecchio
Poisson’s ratio reduction model Damage based
Material parameters (in-situ adjusted)
Mean compressive strength fcm,is = fck

1.15
ek0.05Vfc 50.08 MPa

Mean tensile strength fctm,is = 0.3( fck
1.15

)
2
3 3.46 MPa

Fracture energy GF,is = 0.073f 0.18
cm,is 0.148 Nmm/mm2

Compressive fracture energy GC,is = 250GF,is 37.00 Nmm/mm2

Modulus of elasticity Ecm,is = 22(
fcm,is
10

)0.3 35.67 GPa
Poisson’s ratio ν 0.15

REINFORCEMENT STEEL
Finite element
Embedded reinforcement Yes
Interpolation scheme Quadratic
Constitutive modelling
Hardening Strain hardening, isotropic
Material parameters
Modulus of elasticity Es 200 GPa
Reinforcement steel diameter 6mm 14mm
Yield stress, fym,is = fyke

k0.05Vfc 534.00 MPa 534.00 MPa
Ultimate stress, fuk = 1.08fym,is 576.72 MPa 576.72 MPa

LOADING, ITERATION AND CONVERGENCE CRITERION
Loading Displacement controlled
Load steps 0.1 mm
Equilibrium iteration Regular Newton-Raphson
Maximum number of iterations 50
Force norm 0.01
Energy norm 0.0001
No convergence Continue
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3.2.1 Constitutive model

As recommended in the Dutch Guidelines [12], a total strain based crack model was

chosen as the constitutive model for concrete. A rotating crack model was applied, which

is well suited for reinforced concrete structures [13]. In the DIANA model, the tensile

strength of the concrete was included and described by an exponential softening behavior

as shown in Figure 3.2 (a). When the tensile capacity was reached, the concrete cracked

but retained an exponentially decreasing strength. For the compressive behavior, the

parabolic model in Figure 3.2 (b) was preferred as recommended by the Dutch Guidelines.

The compressive model in EC2, shown in Figure 3.2 (c), was also evaluated. The EC2

model was based on an ultimate strain limit instead of being dependent on the fracture

energy. Abrupt changes in stresses between elements could then cause large deformations

locally, and the mesh dependency became an issue. The parabolic model was not sensitive

to the mesh and was, therefore, considered the best choice.

(a) Tension: Exponential (b) Compression: Parabolic (c) Compression: EC2

Figure 3.2: Concrete stress-strain models [12].

The model defined by Vecchio and Collins [14] was applied to account for losses in

compressive strength due to lateral cracking. As recommended in fib Model Code 2010,

a lower bound reduction curve of 0.4 was applied to avoid exaggerated reductions that

could cause an unrealistic response. The Poisson effect vanishes when concrete cracks

and was, therefore, reduced by a damage based reduction model for concrete in tension.
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3.2.2 Geometric model

Eklund, Skorve & Strand [8] achieved similar results when applying a 2D plane stress

model and a 3D solid model. Because the 2D model was considerably less computationally

expensive, this model was preferred for the NLFEA analyses. The column consisted

of two parts, one that described the concrete column and another that described the

loading platen. All sections were assigned a thickness of 200 mm into the plane. The

reinforcement was included as lines without any thickness but had cross-sectional areas

corresponding to two reinforcement bars assigned to each of them. Shear reinforcement

was also included with 200mm spacing to make the column more robust against lateral

cracking and to describe a realistic column. The reinforcement properties are shown in

Table 3.2. Figure 3.3 illustrates the implementation of the columns in DIANA.

(a) Geometric model (b) Finite element discretization

Figure 3.3: Geometric and finite element discretization models for NLFEA.

3.2.3 Finite element discretization

In accordance with the Dutch Guidelines [12], elements with quadratic interpolation of

the displacement field were applied. Quadratic regular plane stress elements, CQ16M,

with 2x2 Gauss integration were used. The reinforcement was embedded in the model,

meaning that it did not have degrees of freedom of its own but contributed with additional
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stiffness to the mother element. For embedded reinforcement, the reinforcement and the

concrete are perfectly bonded, which implies that the reinforcement strain is calculated

in the mother element. The element size was chosen based on the two criteria in the

Dutch Guidelines, given by Equation 3.11 and 3.12.

hmax ≤
heq

2
<
EcGF

2fct
2 (3.11)

hmax < min
(
L

50
,
h

5

)
(3.12)

Equation 3.11 is meant to avoid a snap-back behavior in the stress-strain relationship,

while Equation 3.12 prevents too coarse meshing that may lead to jumps in the stress

field. An element size of 25 mm was chosen to obtain a smooth mesh with evenly sized

elements in both vertical and horizontal direction. The latter criterion recommends a

maximum element size of 20mm for the column with a length of 1000 mm. However,

for consistency and based on a comparison with results where smaller element sizes were

applied, the chosen element size was considered sufficient.

3.2.4 Boundary conditions and load application

A symmetry line at the mid-length of the column was applied to reduce the computational

time. The applicability of using a symmetry line was verified by Eklund, Skorve & Strand

[8]. A 50 mm steel platen was placed on top of the column to avoid high concentrations

of stress around the point of load application. The platen had Young’s Modulus of 200

GPa and Poisson’s ratio of 0.3. The load was modeled as a prescribed displacement and

was placed at the top of the loading platen. The point of load application was supported

in the horizontal direction while the entire cross-section at the mid-length was supported

only in the vertical direction.

3.2.5 Analysis

Non-linear elasticity, plasticity and total strain based cracking were used in the non-linear

structural analysis. Creep was not directly included, as mentioned in Section 2.2.4.
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The geometric non-linearity was implemented by the Total Lagrange description, where

stresses and strains are defined with respect to the undeformed geometry [13]. The default

parallel direct sparse solver was used to solve the systems of equations.

The analysis was run with 60 load steps, which were kept constant at 2% of the prescribed

total vertical displacement of 5 mm. The regular Newton-Raphson iteration scheme

was preferred to solve the equilibrium equations. The method is considered effective in

most cases and may reach a quadratic convergence rate [15]. The model was tested for

smaller load steps to ensure that the load step size was adequate. The change in the

results was negligible, and the chosen load step size was applied to avoid unnecessary

computational time. In accordance with the Dutch Guidelines [12], a force norm check

in combination with an energy norm check was applied with convergence criteria of 0.01

and 0.0001, respectively. A maximum of 50 iterations was considered sufficient to ensure

convergence where it was possible, yet low enough to avoid excessive time consumption.

If convergence was not obtained, the analysis continued to the next load step. The

occurrence of non-converging steps demanded a careful check of the results. However,

non-converging steps only appeared after failure had occurred. The continue option was

used to avoid that Matlab scripts, where many analyses were run consecutively, stopped

due to non-convergence after the occurrence of failure.

Output values chosen for further investigation included the horizontal displacement at the

mid-length, the stresses and strains in the longitudinal reinforcements and the concrete

elements along the cross-section at mid-length, as well as the moment and the vertical

reaction forces. The vertical force in the column was calculated by summation of the

reaction forces at mid-length. The moment was found from the composed line through

the vertical center line of the column.
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4. Structural Reliability Methods

Several reliability analyses were conducted to determine the reliability of the design

methods and to compare the different reliability methods. The different reliability methods

performed with the three design methods are listed in Table 4.1. Firstly, reliability

analyses were conducted with the design capacities found with NSM, NCM and NLFEA

used as input. The reliability indexes found for the different capacity calculation methods

were then compared to the target reliability index of 3.8. RSM-FORM was applied to

perform inverse analyses and calculate partial safety factors. The inverse analyses were

conducted by finding the design point where the reliability index was exactly 3.8, which

is the value of a 50-year reference period for a residence/office building [5].

Table 4.1: Overview of the capacity calculation methods and the performed reliability
analyses.

NSM NCM NLFEA

MC Yes Yes No

FORM Yes No No

RSM-FORM Yes Yes Yes

4.1 Limit State

The Limit State Function (LSF) represents the state of a structure when it no longer

satisfies the relevant design criteria. The ultimate limit state is given by G = R − S,

where R and S represent the resistance and the load, respectively. The load and the

resistance are associated with uncertainties and are represented by random variables.
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Therefore, they are assigned suitable probability density functions. When R and S have

been assigned probabilistic properties, the LSF can be used in the calculation of the

probability of failure (Pf). The structure will fail when the load is greater than the

resistance. Thus, the probability of failure is given as Pr(G ≤ 0).

Figure 4.1: Probability density function of resistance, load and safety margin [16].

A method developed by Basler [17], presented in the notation of Cornell [18], can be used

to calculate the exact probability of failure. The method is based on the LSF, rewritten

as the safety margin M = R − S. The safety margin is shown in Figure 4.1, where the

load and resistance are assumed normally distributed. From statistics, it follows that

the sum of two normally distributed random variables becomes a normally distributed

random variable. Hence M is normally distributed with mean and coefficient of variation

expressed by Equation 4.1 and 4.2.

µM = µR − µS (4.1)

σM =
√
σR

2 + σS
2 (4.2)

The reliability index (β) is calculated by Equation 4.3. The physical interpretation of

β is the number of times the standard deviation (σM) can be placed between 0 and the

mean value (µM) [16]. The probability of failure can be found from standard normal

distribution tables using Equation 4.4.

β =
µM

σM
(4.3)

Pf = Φ(−β) (4.4)
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Ditlevsen [19] discovered that the results from the procedure of Basler/Cornell were

dependent on how the safety margin was formulated and called it the invariance problem.

To avoid this issue, Hasofer and Lind [20] suggest converting the random variables and

the limit state to the standard normal space. In this space, all the random variables

have a mean and a standard deviation of 0 and 1, respectively. The eccentricity and the

load were assumed to be normally distributed and had to be converted into the standard

normal space to be used in the method proposed by Hasofer and Lind. The equations

below show the transformation between the normal space (Equation 4.5) and the standard

normal space (Equation 4.6). u is a realization of the random variable U in the standard

normal space. µx, σx, and Vx denote the mean, standard deviation and coefficient of

variation for a random variable X.

X(u) = uσx + µx (4.5)

U(x) =
x− µx

σx
(4.6)

The stochastic variables related to the material parameters (fc, fy and Ec) were assumed

to be lognormally distributed. Equation 4.7 and 4.8 show the transformations between

the lognormal space and the standard normal space, respectively.

X(u) = exp(uσln + µln) (4.7)

U(x) =
ln(x)− µln

σln
(4.8)

where the lognormal mean and lognormal standard deviation are given as

µln = ln

(
µx

2

√
1

σx
2 + µx

2

)
, σln =

√
ln(Vx

2 + 1)
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4.2 Reliability methods

4.2.1 Monte Carlo

The Monte Carlo (MC) method is the reliability method that obtains the probability

of failure with the potentially highest accuracy. The method is based on a series of

simulations where the stochastic variables are given random realizations at each simulation

run, dependent on their respective distribution functions. For every simulation, the

column resistance is calculated and compared to a realization of the load. The column

fails if the load exceeds the resistance. The probability of failure can then be estimated

as the number of failures divided by the number of simulations. The reliability index

can be calculated by use of the inverse normal cumulative distribution β = Φ−1(Pf). In

structural reliability problems, a low probability of failure is desired. Failure will then

occur when the stochastic variables get values from the tail region of the distributions.

A large number of simulations is required to obtain reliable results for the probability of

failure. This calls for a limit state function that is very fast to compute, which excludes

the use of Monte Carlo in combination with NLFEA.

4.2.2 First Order Reliability Method

The First Order Reliability Method (FORM) is a method that approximates the probability

of failure with a considerably lower computational cost than the MC method. FORM can

also indicate the sensitivity of the random variables on the limit state function, which is

a helpful tool for calculation of PSFs. In FORM, the limit state function is linearized

around the design point (xi) by use of the linear terms in a Taylor series expansion. The

limit state function will then be approximated on the form

G = a0 +
n∑
i=1

aiXi, (4.9)

where n denotes the number of random variables and ai is a set of constants.
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Schneider [16] proposes the following iteration procedure:

1. Approximate the limit state function by Equation 4.9

2. Determine ai = ∂G
∂Xi
|∗ and a0 = G(xi

∗)−
n∑
i=1

aixi
∗

3. Estimate the design point xi∗, e.g. by starting with mean values

4. Calculate the mean (µG) and standard deviation (σG) of G

5. Calculate the reliability index (β), the sensitivity factors (αi), and the next design

point (xi∗)

β =
µG

σG
αi =

ai(xi
∗)

σG
xi
∗ = −αiβ

6. Check for convergence of the design point,

εFORM =

√√√√ n∑
i=1

(xi,j − xi,j−1)2

where j denotes the iteration number

7. If convergence is acquired, compute Pf, else return to 3. with the new design point

xi
∗

4.2.3 Response Surface Method

The Response Surface Method (RSM) is an effective method when a closed-form limit

state is unavailable. When an NLFEAmodel is used for capacity calculations, a closed-form

limit state does not exist and needs to be approximated. RSM creates a polynomial

function to approximate the limit state (LS) dependent on the stochastic variables considered.

When used in combination with an NLFEA model, several simulations with different

sample points must be conducted. Each sample point includes realizations of the stochastic

variables. The resistances obtained from the analyses form the basis for the regression

procedure conducted by RSM. Computing the resistance for all possible combinations of

realizations of the stochastic variables will result in infinite time consumption. Therefore,

a simplified computational procedure must be conducted.
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Bucher and Bourgund [21], propose a polynomial function

ḡ(x) = a+
n∑
i=1

bixi +
n∑
i=1

cixi
2 (4.10)

where only 2n + 1 simulations are required to create a unique response surface (RS).

n denotes the number of stochastic variables, xi are the stochastic variables and a, bi

and ci are parameters that need to be determined. An alternative method to increase the

accuracy of the response surface is to extend the approximated LS, ḡ(x), by including cross

terms presented in Equation 4.11 [21]. This increase of accuracy requires 0.5(n+1)(n+2)

simulations to be conducted.

ḡ(x) = a+
n∑
i=1

bixi +
n∑
i=1

cixi
2 +

∑∑
i 6=j

dijxixj (4.11)

Bucher and Bourgund propose to set xi to the mean values x̄i of the stochastic variables

and include variations as xi = x̄i±fiσi, where fi is an arbitrary factor. For the polynomial

without cross terms given by Equation 4.10, the stochastic variables were all set to the

mean value for the first experiment and then changed one by one with ±fiσi for the

following experiments.

In the following, the stochastic variables and the undetermined coefficients are represented

by the vectors A = [1, x1, x2, x1
2, x2

2] and bT = [a, b1, b2, c1, c2], for an example with 2

stochastic variables. The undetermined coefficients can be found by b = A−1g, when

the number of sample points equals the number of parameters in the RS. g is a vector

containing the capacities computed with NLFEA at the different sample points.

4.2.4 RSM-FORM

RSM was applied in combination with FORM iterations, to obtain a better approximation

for the response surface. The FORM iterations were included to optimize the design

points and move them closer to the actual limit state, which reduces the error. The

iterative procedure was based on the work of Eklund, Skorve & Strand [8].
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1. A RS is created based on the initial sample points for the stochastic variables

2. FORM is used to find updated design points and β with the RS as input

3. Convergence check: εRSM =
√
β2
i+1 − β2

i

4. If convergence is obtained, the iterations are stopped

Else, the updated design points are used as initial sample points in the next iteration

The convergence criterion for RSM was set to 0.01. The probability of failure was

calculated with FORM when the RSM iterations had converged.

4.3 Reliability assessment with NSM and NCM

Reliability analyses conducted with the simplified calculation methods were mostly carried

out to verify the reliability analyses conducted in conjunction with NLFEA. The analyses

were also performed to investigate which parameters that were dominant in NCM/NSM,

which was important when the partial factors should be determined. Furthermore, the

analyses were meant to investigate the accuracy of the simplified methods.

4.3.1 Monte Carlo

Monte Carlo simulations were used for validation of FORM and RSM-FORM, to ensure

that they worked correctly. As previously mentioned, the MC method is in most cases

the most accurate method for calculating the probability of failure. In this case, however,

the MC simulations are based on the NSM/NCM methods, which are not considered

accurate representations of the reality.

MC was used to calculate the probability of failure when design loads computed with

NSM and NCM were used as input. For each MC simulation, an MN-diagram was

created and combined with a work-diagram calculated by either NSM or NCM. The

intersection gave the resistance of the column, which then was compared to a realization

of the load and checked for failure. The MC simulations could provide information

about how safe the partial safety factor method proposed by EC2 was for the simplified

methods. However, the results would only be completely reliable under the assumption
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that the method for calculating the resistance (NSM and NCM) described the physical

situation correctly. Considering that the two methods used different assumptions and

simplifications to compute the resistance, the results had to be compared with other

reliability methods to be verified. The most accurate results that could be drawn from

the MC simulations were related to how the variables impacted the safety margin for

different calculation methods and slenderness ratios and what the limit state function

should look like with respect to the random variables.

NCM showed some weaknesses for certain combinations of the random variables. In NCM,

the second-order eccentricity is dependent on the axial force and decreases when the axial

force increases. Therefore, the work-diagram of NCM shows a descending moment after

a specific axial force is reached. In some cases, the work-diagram and the MN-diagram

have a similar shape in the descending branch, and could, therefore, intersect multiple

times. The first intersection point was used to determine the capacity in those cases.

4.3.2 FORM

FORM was applied to differentiate the two considered failure modes of the different

columns. To distinguish between compressive failure of concrete and yield failure of

reinforcement, two different limit states were used. These limit states were originally

developed by Eklund, Skorve & Strand [8] and are rendered briefly here.

The two limit states that were introduced should represent compressive failure of the

concrete and buckling failure initiated by yielding of the tensile reinforcement. The

MN-diagram was, therefore, divided into two separate parts describing each failure mode.

The limit states were then represented by the intersection points between the work

diagram and the two MN-diagrams. The two MN-diagrams describing the failure modes

were found with Matlab’s solve function and symbolic variables. Compression failure

was described under the assumption of constant ultimate strain, εcu3, at the top of the

cross-section. It was also assumed no yielding of the reinforcement, even if the yield

strain was exceeded.
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Figure 4.2: Stress and strain in the cross-section for compression failure [8].

Figure 4.2 shows the stress and strain state that represent compression failure.

Figure 4.3: Stress and strain in the cross-section at the two end points of the line
representing yield failure [8].

Yield failure was as a simplification represented by the line ranging from the point of full

tension in the whole cross-section to the point where εcu3 was reached in the concrete and

simultaneously double yield strain was reached in the bottom reinforcement. The stress

and strain state in the two points can be seen in Figure 4.3.

33



STRUCTURAL RELIABILITY METHODS

Figure 4.4: Compression failure LS, yield failure LS and an arbitrary work-diagram with
NSM.

Figure 4.4 shows compression failure and yield failure for an arbitrary column, combined

with an arbitrary work-diagram calculated with NSM. The two intersection points indicate

the compression and yield limit state for the column. The limit states are given by

G1 = Mcompression − Mwork and G2 = Myield − Mwork, where Mcompression and Myield

represent the cross-section moments given for the strain states shown in Figure 4.2 and

4.3, respectively.

NSM was the only method used in conjunction with FORM. NCM has a more complex

work-diagram than NSM and could cause the limit state equations in Matlab to find

multiple solutions.

4.3.3 RSM-FORM

RSM-FORM analyses were conducted for both NSM and NCM to verify the Matlab

scripts developed for RSM-FORM with NLFEA. The verification was carried out by

comparing the results from RSM-FORM to the output from FORM andMC. The response

surface was generated by nine sample points surrounding an initially assumed design

point. The arbitrary factor f was set to 3.0. The results from the FORM analysis,

combined with engineering judgment, were used to estimate an appropriate starting point
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for RSM-FORM.

4.3.4 System reliability

System reliability should be taken into consideration whenever the structure has multiple

failure mechanisms. In this case, the system can be viewed as a chain that will fail

if one of the links fails, i.e. one of the limit states are below zero. This is called a

series system. The failure domain for a series system (ΩF), is given by Equation 4.12,

while the probability of failure (Pfsys) is approximated by Equation 4.13 [22]. Φn is the

n-dimensional standard normal distribution, where n is the number of limit states. B is

a vector containing β-values for the two limit states in the FORM analysis, and R is the

correlation coefficient matrix. R is approximated with Equation 4.14, where i denotes the

limit state and Ai contains the sensitivity factors from FORM. βsys is given by Equation

4.15 and is used to evaluate the significance of system reliability.

ΩF =
n⋃
i=1

{gi(x) ≤ 0} (4.12)

Pfsys = 1− Φn(B,R) (4.13)

ρij = AiA
T
j , i = 1, 2, ..., n j = 1, 2, ..., n (4.14)

βsys = Φ−1(Pfsys) (4.15)

4.4 Reliability assessment with NLFEA

RSM in combination with FORM was used in the reliability assessment with NLFEA.

The method was chosen over the most accurate method with Monte Carlo simulations

due to computational time limitations. RSM-FORM was also necessary since FORM

alone demands a closed form limit state, which was impossible to obtain.

The development of the finite element model used in DIANA is described in Section 3.2

and summarized in Table 3.2. The table also contains the material parameters used in

the model. The verification of the model is described in further detail in Appendix A.
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Choosing appropriate starting values for the design point was essential to decrease the

computational time, and it also improved the response surface. Running RSM-FORM

analyses with NSM and NCM gave good estimations for the first design points. For each

RSM iteration, NLFEA was run in each of the sample points. Nine sample points were

created for each RSM iteration to satisfy the requirement of 2n + 1 analyses, which is

needed to create a RS by a second-order polynomial. For the resistance calculations,

the number of variables (n) was four because the load variable was not necessary for

resistance calculation.

Unlike NSM and NCM, where the capacity was found at the intersection between the

MN-diagram and the work diagram, the capacity was determined by the maximum

reaction force before failure. If the column was loaded further than this point it would

either collapse in compression or the second-order eccentricity would grow rapidly and

eventually cause buckling.

4.5 Assessment of calculation methods

The quantification of model uncertainty is a complex matter in structural reliability. A

wide set of physical experiments should be conducted, to thoroughly test the uncertainty

of a model. Even if physical experiments are carried out, there is no way of knowing

exactly the value of the material parameters of the test specimen. Therefore, general and

accurate quantification of model uncertainty is not established.

In this thesis, physical experiments were not carried out, and the model uncertainty

could, therefore, not be quantified. However, the ratio between the capacities found with

the different calculation methods could be quantified in a probabilistic manner, similar

to the model uncertainty. The NLFEA model with the PSF method was considered the

most accurate model available. Therefore, the design capacities found with this model

were assumed to represent the physical experiments, while NSM and NCM represented

the models to be tested. The probabilistic assessment of the calculation methods was

carried out to quantify the uncertainty of the simplified methods compared to the best

estimate model.

The resistances achieved with the different models were assumed lognormally distributed
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because the material parameters had a log-normal distribution. The resistances from the

ith simulation run of NLFEA and NSM/NCM are denoted Rbest,i and Rsimp,i, respectively.

For each simulation, the capacity ratio (θi) is estimated from the ratio between Rbest,i

and Rsimp,i, by Equation 4.16.

θi =
Rbest,i

Rsimp,i
(4.16)

The quantity X = ln(θ) is normally distributed with mean (µX) and standard deviation

(σX) from Equation 4.17 and 4.18, respectively.

µX =
1

n

n∑
i=1

ln(θi) (4.17)

σX =

√√√√ 1

n− 1

n∑
i=1

(ln(θi)− µX)2 (4.18)

n is the number of samples that were run for each of the calculation methods. The mean

value and the standard deviation of the lognormally distributed parameter θ could then

be found by Equation 4.19 and 4.20, respectively [23].

µθ = exp

(
µX +

σX
2

2

)
(4.19)

σθ =
√

exp (2µX + σX
2) [exp(σX

2)− 1] (4.20)

n simulations were run in Monte Carlo for the two simplified methods. The same random

realizations of the stochastic variables were then applied to the NLFEA model. Due to

computational limitations when conducting NLFEA, only a limited number of samples

could be run for each column length. The results were still considered valuable to quantify

the uncertainty of the results obtained by the simplified methods compared to the results

from NLFEA.
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4.6 Inverse analyses and PSF

Inverse analyses were conducted to evaluate the sensitivity of the stochastic variables

and to propose partial factors for use in slender column design. Inverse analyses were

carried out by changing the input variables to obtain a target reliability index, βtarget. In

accordance with EN-1990 [5], βtarget was set to 3.8, which is the target reliability index

for a reference period of 50 years. The mean values for the material parameters and the

eccentricity were predetermined, and the only variable that could be adjusted was the

load. For the reliability analyses conducted with the simplified calculation methods, the

mean value of the load was adjusted until βtarget was achieved. An accuracy of βtarget±0.01

was set as the criterion for the inverse analyses. Only FORM and RSM-FORM were used

in the inverse analyses because MC was too time-consuming for iteration procedures.

When βtarget was obtained, the corresponding design points could be used to calculate

appropriate PSFs. The design values for fcd, fyd, Ecd and NEd were used to find the

respective partial factors. The partial factors were calculated the same way the design

values are calculated in EC2. The calculation approach used to determine the different

PSFs is listed in Table 4.2.

Table 4.2: Strategy to calculate partial safety factors.

fc fy Ec N

Abbreviation γc γs γCE γG

Reference value Characteristic Characteristic Mean Nominal

Calculation fck/fcd fyk/fyd Ecm,is/Ecd NEd/NNom

PSF in EC2 1.50 1.15 1.20 1.35

The in-situ adjusted mean value of concrete stiffness, Ecm,is, was used as the reference

because this value was used in the reliability analyses. The load was assumed to originate

from self-weight and the nominal load value was used as the reference. The nominal load

was assumed to correspond to the mean capacity calculated in the inverse analyses. The

eccentricity was the last stochastic variable, but the eccentricity is not treated with a

PSF in EC2. In this thesis, the minimum eccentricity of 20mm was used for design, and

this value could be examined by comparing it to the design point of eccentricity.
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5.1 Design capacities

The design capacities for the different column lengths are presented in this section. The

design capacities are calculated with NSM, NCM and NLFEA. The material parameters

are reduced by partial safety factors, following the rules for design in Eurocode 2-1-1, for

all the three methods. The partial factors are given in Section 2.2.1 and the minimum

eccentricity of 20 mm is applied. The design capacities are listed in Table 5.1.

Table 5.1: Design capacities for NSM, NCM and NLFEA in kN.

Length [mm] NSM NCM NLFEA

1000 1112 1139 1069

2000 942 1034 930

3000 667 796 758

4000 423 550 596

5000 268 412 443

6000 184 252 330
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The two simplified methods in EC2 are compared for columns with different slenderness.

Figure 5.1 shows the MN-diagrams and the work-diagrams for the nominal stiffness

method and the nominal curvature method. The design capacities are found at the

intersection points between the MN-diagram and the work diagrams for the different

column lengths.

(a) NSM (b) NCM

Figure 5.1: MN-diagram for the two analytic methods in EC2.

Discussion

It was expected that the NLFEA analyses should yield the least conservative results

because the method is the most sophisticated of the three methods conducted in this

thesis. However, the results in Table 5.1 show that NLFEA was least conservative only

for the three slenderest columns. NCM, in particular, was non-conservative compared

to NLFEA when columns with low slenderness ratio were considered. The second-order

eccentricity in NCM is proportional to the square of the effective length, which seems to

be a conservative assumption only for columns where second-order effects are dominating.

NSM was more conservative than NCM for all column lengths. The underlying reasons

for the differences in the results between the two simplified methods can to some extent

be identified by examining Figure 5.1. The work-diagram of NCM is linearly increasing

until the axial load at the balance point of the MN-diagram is reached. For axial loads

above the balance point, the predicted second-order eccentricity decreases because the

response of the column becomes stiffer when it is loaded with high axial loads. Figure
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5.1 (b) shows that this effect arises before the intersection with the MN-diagram, for the

four least slender columns. Eventually, this leads to a decreasing second-order moment

when the axial loads are high.

The relative difference between the design capacities found with NSM and NCM was,

however, most significant for the slenderest columns. NSM is governed by a Euler

buckling load calculated with reduced stiffness. Figure 5.1 (a) shows that the work

diagram has a horizontal asymptote at this buckling load. The work-diagram for the

slenderest columns approach this asymptote before the intersection with the MN-diagram.

Therefore, the shape of the MN-diagram is of lesser importance for the slenderest columns.

The governing reason for the lower Euler buckling load in NSM is that creep is treated

differently in the two methods.

5.1.1 Impact of creep

How creep impacted the design capacities is examined in this section. The design loads

found with the different calculation methods are shown in Figure 5.2. Figure 5.2 (b)

shows the design loads when creep is neglected in the calculations.

(a) Creep included (b) Creep neglected

Figure 5.2: Design loads for NSM, NCM and NLFEA.
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The impact of creep is further investigated for the different calculation methods. Figure

5.3 shows the ratio between the design capacities calculated with NSM and NCM for

different slenderness ratios when creep was included and neglected.

Figure 5.3: Ratio between NSM and NCM.

Discussion

It is evident that creep has a significant impact on the design capacity when second-order

effects are considered. Figure 5.3 shows how the two simplified methods in EC2 yields

different results when creep is included and when it is neglected. For columns with

slenderness ratio roughly above 70, NCM was the most conservative method when creep

was neglected or when the impact of creep was small, while NSM became the most

conservative method when creep was substantial. It is, therefore, important which method

that is used in slender column design. For the columns with low slenderness ratio, NSM

was only slightly more conservative than NCM.

The reason for the differences originates from the criteria governing whether creep should

be included in the methods or not. In NSM, creep is included through a reduction of the

stiffness, like the way creep was applied to NLFEA in this thesis. The stiffness is scaled by

a constant, 1
1+φef

, and is included regardless of the column length. For NCM, however,

creep is included through a factor that also depends on the slenderness. Thus, creep is

not included when the slenderness ratio is higher than the limit given by Equation 5.1.

For the column geometry described in this thesis, creep was not included in NCM for
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columns of length 5000 mm or longer.

λ >
105

2
+

3

4
fck (5.1)

Figure 5.2 shows how the design capacities for all the three different methods were affected

by creep. For the NLFEA model, creep was most significant for the slenderest columns.

Since creep was included through a reduction of the concrete stiffness, as explained in

Section 2.2.4, it seems natural that the slenderest columns were most affected. That

is because a reduction in the concrete stiffness resulted in a higher strain of the tensile

reinforcement, and provoked yield failure at an earlier stage. The least slender columns

did not experience the same effect because the impact of the second-order moment was

small and, consequently, the stress in the tensile reinforcement was insignificant. The

relative difference between the design capacities found with NSM and NLFEA was not

drastically changed when creep was included, because creep was treated similarly in the

two methods. If NLFEA is used as a reference, NCM became far less conservative when

creep was included for columns with high slenderness ratio.

5.2 Safety format study

The safety format that was used for most of this thesis was the partial safety factor

method, recommended by EC2. In this section, the results from a safety format study

are presented. The three safety formats introduced in Section 3.1.2 were used to find

design capacities with NLFEA.
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Figure 5.4: Comparison of safety formats applied to NLFEA.

Figure 5.4 shows the design capacities calculated with NLFEA for the three safety

formats that were tested. In Table 5.2, the relative difference of the design capacities

are presented. The partial safety factor method is used as the reference, and the design

capacities computed with GRFM and ECOV are divided by the design capacities calculated

with the PSF method to find the relative differences. These results are also illustrated in

Figure 5.5, where the relative capacities for NSM and NCM are included.

Table 5.2: Design capacities for GRFM and ECOV relative to the PSF method.

Column length [mm] 1000 2000 3000 4000 5000 6000

PSF 1 1 1 1 1 1

GRFM 0.99 0.97 0.95 0.92 0.88 0.88

ECOV 0.99 1.00 1.00 0.99 0.97 0.96
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Figure 5.5: Design capacities for all methods, relative to NLFEA PSF.

Discussion

The partial safety factor method was for most of the columns the least conservative

safety format examined in this thesis. Figure 5.4 and Table 5.2 show that the two other

methods, particularly GRFM, became more conservative for higher slenderness ratios.

Recall that the eccentricity was treated equally for all the methods, considering that the

eccentricity was not treated by a partial safety factor but rather by a minimum value

of 20 mm. Thus, the most apparent difference between the methods was the treatment

of the stochastic material parameters. It is emphasized that international standards do

not entirely cover the way GRFM and ECOV should be implemented, and the obtained

results are based on certain assumptions.

GRFM has the drawback that it is only thoroughly formulated for two variables, namely,

fc and fy. It was, therefore, necessary to make appropriate assumptions to include

variables such as Ec and fct. It was considered a valid approximation to compute

these variables based on the two specified variables. For the method to be considered

as an equivalent alternative to the PSF method, a more detailed description for more

complex models should be developed. GRFM was more conservative than the PSF

method for all column lengths, and can, therefore, be considered safe. The difference

between GRFM and the PSF method increased for higher slenderness ratios because the

partial factors related to material parameters have less impact on the capacity when

the second-order effects are dominating. The partial factor of γc = 1.5, for instance, is
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far more dominant for shorter columns subjected to compression failure than columns

subjected to yield failure. In GRFM the total capacity is divided by the same overall

safety factor independent on the slenderness. Consequently, GRFM becomes considerably

more conservative than the PSF method for highly slender columns.

The primary challenge when applying ECOV as safety format is to define the mean and

characteristic material parameters. In this thesis, the method was implemented with

in-situ adjusted concrete strength, which was considered to give the most realistic mean

value. This resulted in very similar results between ECOV and the PSF method, with

ECOV mainly on the conservative side. However, it must be emphasized that this was

the case because of the assumption of in-situ reduced concrete strength, and reduction of

the other material parameters accordingly. It is, therefore, suggested to exercise caution

when ECOV is used, given that it has the potential of being less conservative than the

PSF method.

5.3 Reliability analyses

5.3.1 Simplified calculation methods

The results from the reliability analyses used in conjunction with analytic capacity

calculation methods are presented in this section. The analyses include Monte Carlo

simulations with NSM and NCM, FORM with NSM and RSM-FORM with NSM and

NCM.

Monte Carlo was run with 107 simulations for both NSM and NCM. Table 5.3 shows

the β-value and Pf for the different column lengths. 10 million simulations with NSM

resulted in zero failures for columns of length 1000 mm and 2000 mm. The probability of

failure could, therefore, not be calculated for these column lengths, but it indicated that

Pf < 10−7.
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Table 5.3: Results from Monte Carlo with NSM and NCM.

Column Length [mm] 1000 2000 3000 4000 5000 6000

NSM
β - - 3.46 2.24 1.95 1.78

Pf - - 2.69E-04 1.24E-02 2.56E-02 3.73E-02

NCM
β 5.20 5.07 4.31 3.05 2.61 2.16

Pf 1.00E-07 2.00E-07 8.30E-06 1.20E-03 4.50E-03 1.54E-02

Figure 5.6-5.10 show all 10 million MC simulations. The black dots indicate failure.

The absolute value of the eccentricity was used, and the mean value of the load was

given by the design capacities in Table 5.1 divided by 1.35, which is the safety factor for

governing self-weight. Figure 5.6 and 5.7 show the Monte Carlo results where the design

capacities calculated with NCM were examined for columns of length 3000 mm and 5000

mm, respectively.

(a) Concrete strength - Load (b) Yield strength - Load (c) Eccentricity - Load

Figure 5.6: Monte Carlo for design loads calculated with NCM - 3000 mm column.

47



RESULTS & DISCUSSION

(a) Concrete strength - Load (b) Yield strength - Load (c) Eccentricity - Load

Figure 5.7: Monte Carlo for design loads calculated with NCM - 5000 mm column.

Figure 5.8-5.10 compare the stochastic variables related to resistance for NSM and NCM.

All the material parameters are plotted against realizations of the load.

(a) NSM (b) NCM

Figure 5.8: Concrete strength - Load for 4000 mm column.
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(a) NSM (b) NCM

Figure 5.9: Yield strength - Load for 4000 mm column.

(a) NSM (b) NCM

Figure 5.10: Concrete stiffness - Load for 3000 mm column.

Table 5.4 shows the β-values calculated with FORM for the two closed-form failure modes

using NSM. βsys denotes the system reliability index, which is described in Section 4.3.4.

Table 5.4: β-values with FORM and NSM.

Column Length [mm] 1000 2000 3000 4000 5000 6000

βcomp 5.43 5.96 3.66 2.53 2.26 2.08

βyield 6.97 7.30 3.68 2.40 2.10 1.93

βsys 5.43 5.96 3.63 2.39 2.09 1.92
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The results from the analytic RSM-FORM analyses are summarized in Table 5.5 and 5.6

for NSM and NCM, respectively. The mean loads are the design capacities presented in

Section 5.1 divided by the partial safety factor for governing self-weight.

Table 5.5: Results from RSM-FORM with NSM.

Column Length [mm] 1000 2000 3000 4000 5000 6000

NSM mean load [kN] 824 698 494 313 199 136

β 5.30 5.69 3.54 2.41 2.14 1.98

αfc 0.700 0.574 -0.224 -0.335 -0.284 -0.241

αfy 0.052 0.041 0.004 0.007 0.007 0.006

αEc 0.002 0.082 0.304 0.262 0.222 0.193

αe -0.157 -0.445 -0.560 -0.434 -0.414 -0.385

αN -0.695 -0.681 -0.737 -0.794 -0.836 -0.870

fcd [MPa] 28.5 30.4 55.8 55.9 54.2 53.2

fyd [MPa] 528 529 533 533 533 533

Ecd [GPa] 35.18 32.73 29.75 31.90 32.69 33.18

ed [mm] 1.3 8.1 9.6 6.7 7.1 7.3

NEd [kN] 1431 1269 752 433 270 183
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Table 5.6: Results from RSM-FORM with NCM.

Column Length [mm] 1000 2000 3000 4000 5000 6000

NCM mean load [kN] 844 766 590 407 305 187

β 5.16 5.30 4.25 3.18 2.80 2.37

αfc 0.700 0.648 0.414 0.423 0.296 0.201

αfy 0.051 0.020 -0.229 -0.208 -0.195 -0.201

αEc 0.000 -0.002 -0.026 0.001 -0.002 0.000

αe -0.145 -0.396 -0.694 -0.525 -0.578 -0.516

αN -0.698 -0.650 -0.542 -0.709 -0.734 -0.815

fcd [MPa] 28.9 29.7 38.1 40.5 43.8 46.1

fyd [MPa] 528 531 555 548 545 542

Ecd [GPa] 35.23 35.30 35.85 35.25 35.27 35.23

ed [mm] 1.2 6.7 14.2 10.7 13.1 12.0

NEd [kN] 1451 1294 862 591 430 259

Discussion

The β-values from the Monte Carlo simulations, shown in Table 5.3, were used to verify

that the other reliability methods were sufficiently accurate and worked as expected. The

β-values were highly dependent on the slenderness of the columns considered. The reason

for the increased probability of failure with higher slenderness ratio can be explained by

the different calculation methods’ sensitivity of the stochastic variables. Generally, Figure

5.6-5.10 show that the axial load is the governing variable regardless of calculation method

or column length. Figure 5.6 and 5.7 show that the 3000 mm column failed solely for

high realizations of the eccentricity while the 5000 mm column failed for all eccentricities.

This observation is supported by the results from RSM-FORM with NCM in Table 5.6,

where αe was very dominant for the 3000 mm column, in particular, while αN was much

more significant for the slenderest columns.

The α-values in Table 5.5 and 5.6 show that the impact of the material parameters was

lower for the slenderest columns and, consequently, the corresponding partial factors

influenced the capacity calculation to a lesser extent. The decreased influence of the
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partial factors is part of the explanation why β was lower for the slenderest columns. The

1000 mm and 2000 mm columns were assumed to get such high β-values partly because of

the significant impact fc, and thus γc, had on this failure mode. The RSM-FORM results

with NSM and NCM show that αfc was equally big as αN for the two shortest columns,

which indicates that the impact of fc is substantial. Another considerable contribution to

the decrease in β for higher slenderness ratios was caused by the eccentricity, which was

included in the design capacity calculations with the same deterministic value independent

on the column length. The effect of the eccentricity is further discussed in Section 5.5.

Figure 5.8 shows that fc and, thus, γc influence the results differently in NCM than in

NSM. For realizations of the concrete strength above the mean value, NCM had few

failures. For NSM, however, failures occurred almost independently of fc. It was more

remarkable that NSM had fewer failures for realizations of very low concrete strengths.

Table 5.5 and 5.6 show that αfc was substantial for the shortest columns in both methods.

For the four columns dominated by yield failure, the value of αfc was very different for

the two methods. In the formulation of NSM, fc is included in the relative axial force,

which causes a reduction in the bending stiffness when fc increases. The RSM-FORM

results in Table 5.5 show this effect through a negative αfc for columns where yield failure

is dominating. Negative values for αfc indicate that the partial factor for the concrete

strength is counterproductive. The yield strength is not an important variable in NSM

but has a slight impact in NCM. Again, the partial factor is counterproductive because

a lower yield strength would decrease the probability of failure. In the formulation of

NCM, the yield strain is proportional to the yield strength, which results in a larger

second-order eccentricity when the yield strength is higher. Ec is not included in NCM

at all, while it has an impact in NSM as shown in Figure 5.10. There was a good

correspondence between the failure patterns from the MC analyses and the α-values

from the RSM-FORM analyses, which indicates that the RSM-FORM procedure worked

correctly.

Generally, the reliability analyses with NSM and NCM indicate that existing PSFs and

emin make the simplified EC2 methods safe for columns with low slenderness ratio. For the

slenderer columns, partial factors are less influential either because second-order effects

are dominant or in some cases because the partial factors work against their purpose. It
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should be emphasized that failure in this context refers to a load realization that exceeds

the capacity yielded by the examined method and not the actual column capacity. The

simplified methods are considered less accurate than NLFEA and the β-values from Table

5.5 and 5.6 are, thus, not given much emphasis.

The FORM analyses with NSM and two separate failure modes, presented in Table 5.4,

support the assumption that compression failure was dominant for the two shortest

columns. For the 3000 mm column, however, βcomp and βyield were very close to each

other. Since βcomp was slightly lower than βyield, the design capacity was equivalent to

an intersection with the MN-diagram just above the balance point. A column length of

3000 mm, which corresponds to λ=52, seems to indicate where the transition zone from

compression to yield failure occurs. The NLFEA model, which is carefully studied in

Appendix A, indicated that yield failure initiated the failure of the 3000 mm column.

Since the NLFEA model was considered more accurate than NSM, the results from

NLFEA were used to identify the most probable failure mode. Yield failure was dominant

for the three slenderest columns. βcomp was close to βyield also for the slenderest columns

because of the buckling load asymptote in NSM, described in Section 5.1. Figure 4.4

shows that the axial capacity was similar at the two limit states for the slenderest columns.

Hence, the βcomp-values for the three slenderest columns were considered inaccurate. The

impact of including system reliability was negligible for all columns except for the 3000

mm column. System reliability for NLFEA would give a more accurate evaluation of the

importance of system reliability. However, it was not examined in this thesis as it would

demand models that evoked both failure modes separately for all column lengths.

A comparison of the β-values calculated for the simplified methods reveal that FORM and

RSM-FORM yield higher β-values than MC. The results from MC for the two shortest

columns are somewhat inaccurate considering that no failures occurred for NSM and only

one or two occurred for NCM. For the four other columns, however, MC was considered

the most accurate reliability method. The reason why FORM yielded higher β-values

than MC, is that FORM can miss a part of the failure domain for a non-linear limit

state. MC covers the whole area of the failure domain for a sufficiently high number of

simulations. Figure 5.12 (b) gives a graphical representation of this situation, where the

compression LS is non-linear and has a larger failure domain than the FORM LS.
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5.3.2 NLFEA

The output from the RSM-FORM analyses with NLFEA is listed in Table 5.7

Table 5.7: Results from RSM-FORM with NLFEA.

Column length [mm] 1000 2000 3000 4000 5000 6000

NLFEA mean load [kN] 791 689 561 441 328 244

β 5.29 5.72 4.88 4.12 3.67 3.35

αfc 0.652 0.570 0.228 0.109 0.066 0.055

αfy 0.077 0.092 0.108 0.066 0.007 0.002

αEc -0.034 0.241 0.472 0.547 0.506 0.517

αe -0.001 -0.112 -0.449 -0.340 -0.418 -0.400

αN -0.753 -0.772 -0.716 -0.754 -0.751 -0.755

fcd [MPa] 29.6 30.4 41.9 46.3 47.8 48.2

fyd [MPa] 525 522 522 528 533 533

Ecd [GPa] 36.24 28.37 24.53 24.71 26.29 26.84

ed [mm] 0.01 2.0 10.5 9.0 12.3 12.9

NEd [kN] 1423 1297 954 716 509 368

Discussion

The NLFEA model was expected to give the most accurate results and describe the

failure mechanisms most precisely. Thus, the β-values in Table 5.7 are expected to be

considerably more realistic than the ones calculated with the simplified methods. In NCM

and NSM, it is crucial how the material parameters are included in the equations for the

partial factors to have an impact. In NLFEA the most influential material parameters are

directly determined from the mechanics in the different columns. The β-values in Table

5.7 are, as expected, higher for the slenderest columns than the ones calculated with NSM

and NCM. However, β was below βtarget=3.8 for the two slenderest columns. The design

capacities for the two shortest columns, on the other hand, were very conservative for

NLFEA as well as for NSM and NCM. These results indicate that the partial factors in

EC2 should be modified for use in slender column design. New PSFs are proposed in the
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discussion in Section 5.5.

Table 5.7 shows that αN is less dependent on the column length when NLFEA is conducted

than when the simplified methods are used. The load is the most important variable for

all the columns. There is a clear distinction between the remaining α-values for the two

shortest columns and the four slenderest columns. The two columns associated with

compression failure are governed by the concrete strength, while the eccentricity and

concrete stiffness dominate the capacity of the slenderest columns. The most apparent

difference between the α-values from NLFEA versus NSM/NCM is the significance of Ec.

The concrete stiffness influence the capacity calculated with NLFEA substantially, for the

slenderest columns. Ec is significant for slender columns because a lower concrete stiffness

will allow for higher strains at a lower load level and increase the stresses in the tensile

reinforcement. The failure mechanisms in the NLFEA models are further described in

Appendix A.

5.4 Assessment of model deviation

Several analyses were run with NLFEA and the simplified methods, with the same random

realizations for the stochastic variables, to estimate the consistency and deviation of the

different calculation methods. The number of analyses was limited to 20 for each column

length due to time constraints. Figure 5.11 (a) shows the ratio between the capacity from

NLFEA and NSM, while NSM is substituted with NCM in (b). The red line inside the

boxes indicates the median value while the top and bottom box edges represent the 75th

and 25th percentile, respectively. The whiskers outside the boxes mark the maximum

and minimum ratios that were found, except points that are considered outliers, which

are marked by red crosses.
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(a) NSM (b) NCM

Figure 5.11: Ratios between NLFEA and simplified methods for 20 random realizations.

The mean and the standard deviation for the ratio between NLFEA and NSM/NCM were

calculated with the equations in Section 4.5. This was done for all of the column lengths

for both simplified methods. The outcome is presented in Table 5.8. The coefficient of

variation is the standard deviation divided by the mean.

Table 5.8: Ratio between capacities calculated with NLFEA and NSM/NCM.

Column length [mm] 1000 2000 3000 4000 5000 6000

NSM

µ 0.9622 0.9322 1.4459 2.1137 2.4765 2.6372

σ 0.0091 0.0361 0.0797 0.1472 0.2219 0.2874

COV 0.0095 0.0387 0.0551 0.0696 0.0896 0.1090

NCM

µ 0.9577 0.8324 0.8248 1.3036 1.4044 1.7727

σ 0.0090 0.0521 0.1342 0.1542 0.1757 0.2268

COV 0.0094 0.0626 0.1627 0.1183 0.1251 0.1280

Discussion

Figure 5.11 and Table 5.8 show the tendencies of how the capacities resulting from

NSM/NCM compare to the NLFEA results. For columns expected to fail in compression,

the results indicate that all the three methods yield similar capacities independent of

the input variables. For the three slenderest columns, the tendency is clearly that the
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simplified methods become more conservative for increasing slenderness ratios. The most

noticeable results are related to NCM for the 3000 mm column because the capacity can be

much less conservative when NCM is conducted than when NLFEA is used. When NCM is

applied to columns around the transition zone between compression and yield failure, the

intersection with the MN-diagram can occur in the ascending or descending branch of the

work-diagram. Thus, small changes in the parameters affecting the resistance can cause

significant differences in the capacity yielded by NCM. This effect is elaborated in Section

5.5. It is difficult to use the numbers in Table 5.8 directly, given the limited number of

analyses and that the model uncertainty of the NLFEA model is absent. However, it

provides useful information concerning how conservative results the methods are expected

to give for different slenderness ratios and how consistent results they provide.

5.5 Inverse analyses

The results from the inverse analyses with β = 3.8, are presented in this section. Table

5.9 shows the results from the inverse FORM analyses. Recall that FORM only was used

in conjunction with NSM and used equation solving to find the two different limit states.

The design points listed in Table 5.9 refer to the limit state that reached βtarget for the

lowest load. The three shortest columns reached βtarget first for the compression failure

limit state, while the yield limit state governed the three slenderest columns.

Table 5.9: Results from the inverse FORM analysis with NSM and βtarget = 3.8.

Column Length [mm] 1000 2000 3000 4000 5000 6000

µN [kN] 1085 1003 483 248 151 101

fcd [MPa] 33.8 36.8 55.9 56.7 55.5 54.8

fyd [MPa] 534 534 534 532 532 532

Ecd [GPa] 35.22 33.44 29.07 30.27 31.02 31.48

ed [mm] 0.7 5.4 8.9 12.1 14.6 16.9

NEd [kN] 1688 1553 770 397 246 167

Figure 5.12 and 5.13 show the two separate limit states with respect to fc and Ec for

the 2000 mm and 3000 mm column, respectively. The limit states are dependent on five
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variables, and the limit state functions are, therefore, five-dimensional. To be able to plot

the limit states, three of the variables were kept constant at their final design points. The

yield LS was simplified to be linear, as described in Section 4.3.2, which makes FORM

and the closed-form limit state to overlap perfectly.

(a) Real Space (b) Standard Normal Space

Figure 5.12: Inverse FORM with NSM for the 2000 mm column.

(a) Real Space (b) Standard Normal Space

Figure 5.13: Inverse FORM with NSM for the 3000 mm column.
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Table 5.10 and 5.11 show the results from the inverse RSM-FORM analyses with NSM and

NCM, respectively. For comparison purposes, the two RSM-FORM analyses were used

to calculate appropriate partial factors for NSM and NCM, which are presented in the

lower section of the tables. Table 5.12 displays the output from the inverse RSM-FORM

analyses with NLFEA and the corresponding partial factors calculated in compliance

with Section 4.6.

Table 5.10: Results from the inverse RSM-FORM analysis with NSM and βtarget = 3.8.

Column Length [mm] 1000 2000 3000 4000 5000 6000

µN [kN] 1065 972 477 249 152 103

fcd [MPa] 33.8 37.4 56.1 58.0 57.3 56.0

fyd [MPa] 530 531 533 533 532 532

Ecd [GPa] 35.21 33.19 29.10 30.18 30.74 31.24

ed [mm] 0.9 5.7 9.8 11.9 14.5 14.6

NEd [kN] 1652 1507 747 398 249 170

αfc 0.672 0.500 -0.219 -0.277 -0.239 -0.215

αfy 0.043 0.032 0.010 0.011 0.017 0.016

αEc -0.001 0.100 0.321 0.259 0.226 0.201

αe -0.141 -0.465 -0.540 -0.488 -0.437 -0.401

αN -0.726 -0.724 -0.747 -0.786 -0.837 -0.867

γc 1.33 1.22 0.81 0.78 0.79 0.82

γs 0.94 0.94 0.94 0.94 0.94 0.94

γCE 1.01 1.07 1.23 1.18 1.16 1.14

γG 1.55 1.55 1.57 1.61 1.64 1.65
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Table 5.11: Results from the inverse RSM-FORM analysis with NCM and βtarget = 3.8.

Column Length [mm] 1000 2000 3000 4000 5000 6000

µN [kN] 1066 1012 660 365 256 148

fcd [MPa] 33.8 34.6 39.2 38.2 41.6 43.7

fyd [MPa] 530 532 549 551 549 547

Ecd [GPa] 35.24 35.31 35.36 35.27 35.23 35.24

ed [mm] 0.8 4.3 12.5 10.9 17.4 19.5

NEd [kN] 1653 1541 947 569 399 238

αfc 0.675 0.636 0.401 0.460 0.302 0.217

αfy 0.043 0.020 -0.192 -0.214 -0.187 -0.163

αEc -0.000 -0.000 -0.006 -0.002 -0.000 -0.000

αe -0.133 -0.355 -0.689 -0.445 -0.585 -0.540

αN -0.725 -0.685 -0.572 -0.737 -0.730 -0.797

γc 1.33 1.30 1.15 1.17 1.08 1.03

γs 0.94 0.94 0.91 0.91 0.91 0.91

γCE 1.01 1.01 1.01 1.01 1.01 1.01

γG 1.55 1.52 1.44 1.55 1.56 1.61
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Table 5.12: Results from the inverse RSM-FORM analysis with NLFEA and βtarget = 3.8.

Column Length [mm] 1000 2000 3000 4000 5000 6000

µN [kN] 1004 914 669 465 321 225

fcd [MPa] 33.9 35.4 43.6 46.6 47.7 48.0

fyd [MPa] 528 528 526 528 533 533

Ecd [GPa] 35.85 31.55 26.98 25.45 26.08 26.16

ed [mm] 0.003 0.02 6.9 7.1 13.6 19.1

NEd [kN] 1571 1458 1063 739 501 343

αfc 0.667 0.590 0.223 0.108 0.066 0.054

αfy 0.058 0.071 0.099 0.054 0.007 0.002

αEc -0.029 0.185 0.446 0.546 0.503 0.498

αe -0.001 -0.002 -0.378 -0.291 -0.447 -0.522

αN -0.743 -0.783 -0.774 -0.775 -0.737 -0.691

αR 0.670 0.622 0.508 0.559 0.507 0.501

αS -0.743 -0.783 -0.861 -0.828 -0.862 -0.866

γc 1.32 1.27 1.03 0.97 0.94 0.94

γs 0.95 0.95 0.95 0.95 0.94 0.94

γCE 0.99 1.13 1.32 1.40 1.37 1.36

γG 1.56 1.60 1.59 1.59 1.56 1.52

The response surface and FORM limit state from the inverse RSM-FORM analyses with

NLFEA are presented in Figure 5.14. The concrete stiffness in Figure 5.14 is reduced due

to the effect of creep in the NLFEA analyses, as explained in Section 2.2.4. In Table 5.12,

Ecd is scaled by a factor of 2.8 to represent the initial concrete stiffness. The columns

ranging from 2000-4000 mm are denoted L2, L3 and L4 respectively.
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(a) Real Space (b) Standard Normal Space

Figure 5.14: Inverse RSM-FORM with NLFEA for 2000-4000 mm columns.

The α-values from the inverse RSM-FORM analyses with NLFEA are shown in Figure

5.15 (a). The figure shows how the impact of the stochastic variables changes with the

different column lengths. In Figure 5.15 (b) the PSFs from Table 5.12 are plotted for all

the considered columns.

(a) α-values (b) PSF

Figure 5.15: Results from inverse RSM-FORM with NLFEA.

Eccentricity

An important aspect in the inverse analyses is the effect of the first-order eccentricity,

which for existing practice have a considerable impact on the safety margin of the shortest

columns considered in this thesis. A new approach to treat eccentricity is sought based on
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the design points in Table 5.10-5.12. It is assumed a relationship between the eccentricity

and the column length. This section presents the results from the regression analyses

on the design eccentricities from Table 5.10-5.12. Only the design points from inverse

RSM-FORM with NLFEA were included in the regression analyses in Figure 5.16. Figure

5.17 shows the regression analyses when ed for all the three calculation methods were

included. Figure 5.16 (a) and 5.17 (a) display three different approaches to estimate the

design eccentricity as a function of column length. A least square approach was used

to find a linear, a second-order and an exponential function to describe the relationship

between eccentricity and column length.

(a) Least squares results (b) Suggested relation

Figure 5.16: Regression analyses based on ed for NLFEA.

(a) Least squares results (b) Suggested relation

Figure 5.17: Regression analyses based on ed for NSM, NCM and NLFEA.
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The top three functions in Table 5.13 are plotted in Figure 5.16 (a) and 5.17 (a). The

bottom part displays simplified versions of the exact solutions. Figure 5.16 (b) and 5.17

(b) show the best-fit second-order function, and the modified version plotted together.

Modifications were made to make the functions simpler and to give the function a shift

towards the conservative side, i.e., an upward shift.

Table 5.13: Eccentricity as functions of column length.

ed NLFEA ed all methods

Linear 3.90L− 5.86 3.47L− 2.74

2nd-order 0.46L2 + 0.66L− 1.54 −0.10L2 + 4.20L− 3.70

Exponential 1.04e(0.49L) 2.53e(0.34L)

2nd-order modified L
2
(L+ 1) L

4
(20− L)

Exponential modified e
L
2 2.5e

L
3

Discussion

The inverse RSM-FORM analysis with NLFEA, presented in Table 5.12 is considered

the most accurate source for determining PSFs and is used as the reference to compare

the different calculation methods. Table 5.10-5.12 show that there is a clear distinction

between the α-values for the two shortest columns and the four slenderest columns, for all

the calculation methods. The slenderness limit in EC2 determines whether second-order

effects must be considered. However, there is no slenderness limit differentiating between

the expected failure modes and the corresponding, appropriate set of PSFs. It is advised

that a different slenderness criterion is developed to more effectively differentiate between

columns subjected to compression failure and yield failure.

The results from RSM-FORM with NLFEA cannot be compared to MC results because

MC was not used in conjunction with NLFEA, due to time limitations. It is, therefore,

cumbersome to state the accuracy of the RSM-FORM approximation for NLFEA. Figure

5.14 shows that FORM increases the failure domain compared to the RS, for the 3000 mm

and 4000 mm columns, if only Ec and fc are examined. The increase of the failure domain

indicates that RSM-FORM might be a conservative approximation of the RS for NLFEA.

It is, however, emphasized that the RS is five-dimensional and it is only assumed that

64



RESULTS & DISCUSSION

the RSM-FORM approximation did not cause considerably non-conservative results. The

uncertainty related to the reliability methods and the approximation of the limit state is

not quantified.

Eccentricity

Table 5.10-5.12 show that the design points for the eccentricity were below 20 mm for

all the columns, which confirms that the minimum value from EC2 is a conservative

assumption. It should, however, be emphasized that very low values of ed imply that

using the minimum eccentricity of 20 mm will cause highly conservative results. If the

design capacities from Table 5.1 are compared to the design capacities in Table 5.10-5.12,

it is evident that the three shortest columns become highly conservative if the eccentricity

is implemented as 20 mm. This raises the discussion of which variables that should

be assigned partial factors and assure that the safety margin is sufficient. Either the

minimum eccentricity or γG should be reduced to avoid excessively conservative design

capacities for columns where compression failure is dominating. Based on the α-values

from RSM-FORM with NLFEA given in Table 5.12, the eccentricity should be given less

emphasis for the shortest columns, and most of the safety should be covered by γG and

γc.

The design eccentricities in Table 5.10-5.12 seem to be dependent on the column length,

which is reasonable considering that σe also is a function of the length. As shown in

Table 5.13, a linear, a second-order and an exponential relation between the eccentricity

and the column length were examined. At first, it was considered a relation based on

only the design points from NLFEA. This would, however, make the simplified methods

non-conservative for certain column lengths because they had considerably higher design

points for eccentricity. It was considered more desirable to make the eccentricity more

conservative than introducing different partial factors for the three methods. The modified,

second-order function based on the design points of all the methods, is considered the

best-fit relation between eccentricity and column length. Thus, the proposed relationship

is given by Equation 5.2.

e(L) =
L

4
(20− L) (5.2)
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Compression failure

The two columns dominated by compression failure are governed by the concrete strength

in addition to the load. Even though βcomp was slightly lower than βyield for the 3000 mm

column in Table 5.4, the α-values in Table 5.10-5.12 imply that the failure mode is more

similar to the slenderer columns than to the shorter ones. Figure 5.12-5.13 show how

the two separate limit states with NSM change from the 2000 mm column to the 3000

mm column. For the 3000 mm column, the compression failure LS is almost identical to

the yield LS, and the design points are coinciding. The response surface generated with

NLFEA, plotted in Figure 5.14, shows how the RS and the design point for the 3000 mm

column coincide much better with the 4000 mm column than the 2000 mm column. It

is, therefore, assumed that the slenderness limit is located between the 2000 mm(λ = 34)

and 3000 mm(λ = 52) columns in this thesis.

The partial factors calculated for the two shortest columns are coinciding well for the three

methods. The design capacities for the 1000 mm and 2000 mm columns in Table 5.10-5.12

indicate that NLFEA yields more conservative results than the hand calculation methods

if the calculated partial factors from Table 5.10-5.12 are used. The partial factor for load

resulting from NLFEA is, however, slightly higher than γG calculated with NSM/NCM.

If the same γG is applied to all the methods, the design capacities with NSM/NCM will

get closer to the NLFEA results.

If the results are compared to the PSFs recommended in EC2, it is proposed that γG

should be increased and that PSFs related to material parameters could be given less

emphasis. The results in Table 5.12 indicate that γG should be in the order of magnitude

of 1.60 combined with γc = 1.30. However, it is favorable to allocate the safety more

equally between the load and the resistance side. It is, therefore, proposed to reduce

the partial factor for the load to 1.50, and compensate by increasing γc to 1.40. A

recommended set of PSFs for columns that are expected to fail in compression is presented

below.

γc = 1.40 γs = 1.00 γCE = 1.00 γG = 1.50
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Yield failure

It is considered that yield failure dominates the four slenderest columns. Table 5.10-5.12

show that the three methods give aberrant α-values for the slenderest columns. The

design capacities from NLFEA are higher than NEd found with the simplified methods,

for all the four slenderest columns. However, Table 5.11 shows how the design eccentricity

was particularly high for the 3000 mm column, which can give a misleading low value

for NEd. Table 5.1 and 5.8 show that NCM is likely to be less conservative than NLFEA

when the design capacity for the 3000 mm column is considered. αe is considerably higher

for the 3000 mm column when NCM is applied because the eccentricity governs whether

the intersection with the MN-diagram occurs in the increasing or descending branch of

the work-diagram. The capacity given by NCM will be significantly higher if ed from

NLFEA is used than if the design point from inverse RSM-FORM with NCM is applied.

Caution should be exercised when NCM is applied for columns around the transition

zone between compression failure and yield failure. It is essential that the minimum

eccentricity is sufficiently large when NCM is applied to columns with slenderness ratio

in this area.

Figure 5.11 indicates that the 3000 mm column calculated with NCM is the only considered

case where the simplified methods are less conservative than NLFEA. Thus, the α-values

for this column are carefully considered in addition to the NLFEA results when PSFs

are proposed. Table 5.10-5.12 show that αN is higher for NSM than for the two other

methods. However, as shown in Table 5.8, NSM is highly conservative for the slenderest

columns. It is, therefore, less critical to account for the high αN when determining γG.

Based on Table 5.12, γG should be increased to 1.60. However, it is desirable to apply

the same value for γG for all column lengths, given that the load is normally treated in a

different part of EC2. Thus, a γG of 1.50 is proposed, which should be compensated for

by an increase of the PSFs on the resistance side.

The material parameter that had the highest sensitivity factor for the four slenderest

columns was the concrete stiffness. Table 5.12 shows that γCE also should be higher

than the value recommended in EC2. Based on Table 5.12, a value of 1.40 for γCE is

proposed. NCM is not affected by the PSF of concrete stiffness, while NSM will become

more conservative if γCE = 1.40 is introduced. It is, however, desirable to make NLFEA
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less conservative for the 3000 mm column and, thus, make the design capacities from

NCM and NLFEA coincide better. If γCE is reduced to 1.35, it will make the NLFEA

results less conservative. A larger eccentricity than ed in Table 5.12 will compensate the

reduction in γCE. A partial factor for concrete strength will impact the design capacity

calculated by NCM more than the NLFEA result because αfc is higher for NCM than for

NLFEA. Thus, by including γc > 1.0, the NCM results would become more conservative,

particularly for the 3000-4000 mm columns. Table 5.10 shows that αfc is negative when

NSM is used. As a consequence, a γc > 1.0 yields slightly less conservative results for

NSM, which is favorable.

The yield strength was not dominant for any of the methods, and it could be set to 1.0

without affecting the NLFEA results considerably. The negative αfy in Table 5.11 implies

that NCM yields less conservative results than presented in Table 5.11 if γs is higher than

the proposed value of 0.91. A proposed set of PSFs for columns where yield failure is the

governing failure mechanism is presented below.

γc = 1.20 γs = 1.00 γCE = 1.35 γG = 1.50

5.6 Validation of PSF

Two new sets of PSFs are presented in Table 5.14. The set on the left is produced to suit

columns expected to fail in compression, while the other should be applied to columns

subject to yield failure. The proposed approach to treat eccentricity is also included.

Table 5.14: Proposed sets of PSFs.

Column Length[mm] 1000 2000 3000 4000 5000 6000

e(L) = L
4
(20 − L)[mm] 4.75 9.00 12.75 16.00 18.75 21.00

γc 1.40 1.20

γs 1.00 1.00

γCE 1.00 1.35

γG 1.50 1.50
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The PSFs and the eccentricity from Table 5.14 were applied to NSM, NCM and NLFEA

and the resulting design capacities are presented in Table 5.15. The top row includes the

design capacities from Table 5.12.

Table 5.15: Design capacities in kN with the PSFs proposed in Table 5.14.

Column Length[mm] 1000 2000 3000 4000 5000 6000

Estimated NEd, βtarget = 3.8 1571 1458 1063 739 501 343

NSM 1477 1281 748 407 250 170

NCM 1484 1336 1036 586 408 240

NLFEA 1448 1227 911 650 444 313

The ratios between the design capacities computed with the new PSFs and the best

estimate NEd are plotted in Figure 5.18. The best estimate refers to the design capacity

found with RSM-FORM and NLFEA given in Table 5.12.

Figure 5.18: Ratio between design capacities with new PSFs and best estimate.

Discussion

Table 5.15 shows that all the methods yield conservative results compared to the reference

capacity. When the design capacities in Table 5.15 and Table 5.1 are compared to each

other, it is clear that the results for the three shortest columns are considerably less

conservative with the new PSFs and the eccentricities from Table 5.14. The 4000 mm
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column got slightly more conservative results with NSM, while the results became less

conservative for the two other methods. For the two slenderest columns, the results

became slightly more conservative because the β-values in Table 5.7 were below 3.8.

The capacity for the 5000 mm column calculated with NLFEA, in Table 5.15, is slightly

higher than the corresponding capacity in Table 5.1. However, since the PSF for load is

increased from 1.35 to 1.50, the result from Table 5.15 is more conservative.

Because of the general way the load was treated in this thesis, it is difficult to quantify how

much the reduction of γG, from the estimated value of 1.60 to 1.50, should be compensated

for on the resistance side. Table 5.15 shows that the results have an additional safety

margin to account for this reduction of γG. It could, however, be argued that either γG

or γc should be further increased to ensure that NCM is conservative for the shortest

columns subjected to yield failure.

The proposed combination of PSFs and eccentricity is assumed applicable for the columns

examined in this thesis. It should, however, be emphasized that the model uncertainty

of the NLFEA model was not quantified. The assumption that the NLFEA model

provides the true capacity introduces more uncertainty to the problem. Without physical

experiments, this uncertainty can only be approximated. The comparison between the

NLFEA capacities from the inverse RSM-FORM analyses and the design capacities found

with the new PSFs is, therefore, not an exact validation procedure.
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6. Conclusion

The results of this thesis indicate the applicability of existing procedures and provide

proposals for improvements that can increase the accuracy of slender column design. The

results can form a foundation for further studies on slender column design. Proposals for

further work are given in Section 7.

The impact of creep should be considered in slender column design. NSM is highly

conservative for columns subject to yield failure, compared to NCM and NLFEA, when

creep is included in the analysis.

GRFM is a conservative alternative to the PSF method, particularly for highly slender

columns. The material properties for concrete, given in EC2, can make the ECOV method

non-conservative. It is proposed to apply in-situ reduced concrete strength, and reduce

the concrete stiffness accordingly, to make the ECOV method a good alternative to the

PSF method.

The reliability analyses indicate that existing partial factors and emin = 20 mm might

yield excessively conservative results for columns subject to compression failure. For

highly slender columns the design capacity with NLFEA might be non-conservative, and

the total impact of the PSFs should be increased.

There is a clear distinction between the α-values for columns subject to compression

failure and columns where yield failure is dominating. It is, therefore, proposed to develop

a different slenderness criterion to effectively differentiate between the two failure modes.

For the geometry that was investigated in this thesis, the transition between compression

failure and yield failure occurred for slenderness ratios approximately between 35 and 50.

It is proposed a relationship between the minimum eccentricity and the column length.

The proposed relation leads to a less costly design for columns that are likely to fail in
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compression. The nominal curvature method is particularly sensitive to the eccentricity

for columns near the transition zone between the failure modes. Caution should be

exercised to ensure that the minimum eccentricity is sufficiently large when NCM is

applied to columns with slenderness in the mentioned area. Based on the design points for

eccentricity from the inverse RSM-FORM analyses, the following second-order polynomial

is proposed:

e(L) =
L

4
(20− L)

The inverse analyses indicated that the partial factor for load should be increased from

the existing value, while the PSFs related to resistance should be reduced. It is advised to

apply the same value for γG independent of the slenderness limit. PSFs on the resistance

side should be assigned different values depending on the expected failure mode related

to the slenderness limit. Compression failure is governed by the concrete strength, while

the concrete stiffness is the most crucial variable related to resistance for columns subject

to yield failure. The recommended sets of PSFs, for columns with slenderness ratio over

and under the slenderness limit, are presented below.

Compression failure γc = 1.40 γs = 1.00 γCE = 1.00 γG = 1.50

Yield failure γc = 1.20 γs = 1.00 γCE = 1.35 γG = 1.50

The necessity of NLFEA in slender column design seems to increase with higher slenderness

ratio. For columns where compression failure is dominating, NSM and NCM give consistent

and similar results to NLFEA. NLFEA is advised for highly slender columns because the

hand-calculation methods are variable and excessively conservative. It is likely that the

3000 mm and 4000 mm columns in this thesis reflect the most realistic slender column

designs. The simplified methods yield variable capacities for these column lengths and

NLFEA is advised. If the hand-calculation methods are used, it is advised to apply both

NSM and NCM to reveal huge discrepancies that can indicate non-conservative results

with NCM.
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7. Further work

Amore extensive study on slender column design can be conducted based on the procedures

in this thesis. In this thesis, only one cross-section was examined. A broader variety of

columns should be examined, to establish conclusions for general concrete column design.

A variety study can include different cross-sections, amounts of reinforcement, concrete

strengths and boundary conditions. It would be interesting to compare rectangular and

circular cross-sections where the columns have the same slenderness ratio. By following

the same procedure conducted in this thesis, a variety study can potentially find a set of

PSFs that is applicable for concrete columns in general.

Another important study would be to shrink the interval where the transition from

compression failure to yield failure occur. It would be advantageous to quantify the

slenderness ratio that best indicates the transition between the two failure modes. The

results in this thesis indicate a gradual transition, which can make it necessary to adjust

the PSFs at one side of the limit. The determination of the slenderness limit is a natural

side study to the variation study requested above.

GRFM and ECOV are not thoroughly formulated by international model codes. GRFM

should be specified for more variables than the concrete strength and the yield strength.

ECOV needs specifications for how the mean and characteristic material parameters

should be determined. In this thesis, ECOV was non-conservative compared to the PSF

method if the mean and characteristic values from EC2 were applied. This finding should

be further investigated, and a standard formulation of the method should be established.
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FURTHER WORK

Uncertainty related to the RSM-FORM approximation of the limit state should be

included to verify if the method is substantially conservative or non-conservative. A

possible approach would be to run a moderate amount of Monte Carlo simulations with

NLFEA and compare to the RS and the FORM approximation in the design point. MC

simulations with NLFEA requires substantial computing power, and the study might be

limited in accuracy due to the time cost.
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A. Verification of NLFEA

A thorough study was conducted to validate that the NLFEA model worked correctly.

The response of the column was examined and the stress and strain distribution at

the critical cross section was studied. This was also meant as a study on the failure

mechanism for the different columns, which was difficult to extract explicitly from the

NLFEA analysis. The analyses in this section were run with the model and material

parameters described in Table 3.2 and Section 3.2. The Figures A.2-A.7 show the stress

and strain distribution over the cross section at mid length for the different column

lengths. The values for stress and strain displayed for the concrete elements are the

average nodal value in each element. The column has 8 concrete elements along the cross

section and these are displayed along the x-axis in the Figures A.2-A.7, from left to right.

The bars indicate the stress or strain in the reinforcement, while the graphs indicate the

stress or strain in the concrete. The reinforcement at the left side of the cross section

is represented by the bar plot on the left side on the Figures A.2-A.7, and vice versa on

the right. The load was applied on the right side of the vertical symmetry line. Negative

stress values imply compression and positive stress values represent tension. Strains and

stresses in three critical load steps are shown for each column length:

• The step where the maximum reaction force was detected in the column. This force

indicated the column capacity

• The step where the maximum moment occurred, which often was related to yielding

of the reinforcement

• One load step after maximum moment, to identify how the redistribution of stresses

change when failure has propagated
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VERIFICATION OF NLFEA

Figure A.1 (a) shows the relation between force and moment for the 4000 mm column

with design values, while (b) displays the horizontal displacement in the middle of the

column against the applied load. The three critical load steps listed above are marked

with a cross, an asterix and a plus sign, respectively.

(a) Force-moment (b) Force-displacement

Figure A.1: The graphs illustrate the three critical load steps shown in Figure A.2-A.7.

The three load steps that were examined could to some extent indicate the initiation,

propagation and final rupture stage of the failure mechanism.
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(a) Stress (b) Strain

Figure A.2: Stress and strain distribution along the critical cross section for the column
of length 1000 mm

The behaviour of the shortest column is described in Figure A.2. From the stress plot, it

can be seen that the compressive strength of the concrete was fully utilized in nearly half

of the cross section at the load step that indicate max reaction force. The compression

reinforcement was yielding while the reinforcement on the left side of the column still was

in compression at this stage. When the maximum moment was reached, the furthermost

right concrete elements had started softening while the elements at the middle of the

cross section had reached maximum compressive stress. The tensile reinforcement was

far from yielding and the compressive reinforcement was in the yield hardening stage.

The next load step shows the same development with further softening of the concrete

on the right side and increasing stresses in the reinforcement. The column was failing in

compression and buckling did not occur at any stage for the column of length 1000 mm.
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(a) Stress (b) Strain

Figure A.3: Stress and strain distribution along the critical cross section for the column
of length 2000 mm

The 2000 mm column, shown in Figure A.3, experienced compressive stresses in nearly

all the elements along the cross section at the stage of maximum reaction force. The

compressive strength of the concrete had been reached in the outermost right element.

The reinforcement on the left side was still in compression while the reinforcement on the

right side had reached yield stress. At the load step where maximum moment occurred,

nearly half of the cross section had reached maximum compressive stress and compressive

concrete softening was initiated at the right edge of the column. The tensile reinforcement

had just reached yield stress and the concrete at the left side had started cracking as the

stresses were minor. At the next load step, concrete softening had developed in the right

half of the cross section and the reinforcement took up all the stresses at the tensile side.

The failure mechanism seemed to be initiated by crushing of the concrete at the right

side of the cross section, resulting in cracking of the concrete at the left side and yielding

of the tensile reinforcement. Local compressive failure initiated buckling of the column.
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(a) Stress (b) Strain

Figure A.4: Stress and strain distribution along the critical cross section for the column
of length 3000 mm

For the 3000 mm column, maximum compressive stress in the concrete was not reached

at the step of maximum reaction force. However, the left side of the column had started

cracking as the concrete tensile strength was reached. When the concrete at the left side

lost strength, the reinforcement stresses increased and reached yield stress at the step

of maximum moment. At this step, the two outermost compressive concrete elements

was crushing. At the next load step, it can be seen that the concrete experienced tension

failure in almost all of the cross section and the reinforcement went to failure. As opposed

to the 2000 mm column, the failure in this column seemed to be initiated by tensile stresses

in the left side of the column. The failure mechanism was more complicated than for the

shorter ones, as this column had a combination of tension and compression failure, which

eventually resulted in buckling of the column. However, yield failure was the dominating

failure mechanism.
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(a) Stress (b) Strain

Figure A.5: Stress and strain distribution along the critical cross section for the column
of length 4000 mm

(a) Stress (b) Strain

Figure A.6: Stress and strain distribution along the critical cross section for the column
of length 5000 mm
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(a) Stress (b) Strain

Figure A.7: Stress and strain distribution along the critical cross section for the column
of length 6000 mm

The three slenderest columns showed a similar behaviour and it was evident that the

second-order effects were dominating. Large lateral displacement at mid length of the

column caused large tensile forces at the left side of the cross section. The maximum

compressive strength was not reached at the point of maximum reaction nor at maximum

moment. The concrete at the left side reached maximum tensile stress when failure was

initiated and when maximummoment occurred the concrete had cracked over approximately

half of the cross section. Therefore, the reinforcement on the left side had to take all the

tensile stresses and went to failure before concrete crushing had developed. The slenderest

columns were therefore clearly failing in tension.

The failure mechanisms that were found seemed to coincide with the expected response

for the columns and the model seemed to work correctly. The columns with lengths

2000 mm(λ = 34) and 3000 mm(λ = 52) indicated the area in which the transition from

compressive failure to yield failure happened.
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