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SUMMARY 

This thesis studied reliability of power supply in Zambia following two major power 

blackouts that affected the whole country. The case study focussed on the generation and 

transmission network owned by Zambia’s biggest utility company Zesco. Three methods of 

study were selected. The first method looked at the transient stability simulations of Zesco 

generators when subjected to a large disturbance after a three phase short circuit was applied 

at three selected buses which are considered critical to the system. The simulations were 

carried out in SIMPOW. The results show that with fault duration of less than 200 

milliseconds, all generators regained synchronism after fault removal. However, extending the 

fault duration to 200 milliseconds resulted in loss of synchronism in generators at Victoria 

Falls power station. The second method studied the contingency of some critical components 

in the Zesco system. The contingency analysis was implemented using software called 

NETBAS. Study showed that the Zesco system is N-1 stable for contingencies involving 

transmission lines and transformers. However the system is vulnerable to contingencies 

involving major power stations such as Kafue gorge and Kariba North bank. The third study 

proposed modification to the distance protection system to include the effect of zero sequence 

mutual coupling resulting from parallel circuits following a fault involving earth on a 

protected line. Adaptive techniques were developed where the settings of the distance relay 

would change to suit the circuit configuration. This technique resulted in optimal performance 

of the distance relay under all conditions of parallel line operation.  

The thesis concludes by making recommendations based on the findings from the studies 

carried out. 
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1 INTRODUCTION 

1.1 Background 

Major power blackouts usually occur as a result of the inability of a transmission system to 

support the demand for generation and transportation of power. 

Fig 1 shows a typical power system 

 

 
 

Fig 1 Example of a power system 
  
In many cases, an initial incident results in the disconnection of a small amount of faulty 

primary plant. The incident may then escalate, either because the removal of primary plant 

item imposes additional stresses on the overall network, or because the initial incident cannot 

be contained and the consequences of the initial fault progressively spread into the rest of the 

power system. The role played by power system protection in power blackout situations is 

crucial. The protection is designed to detect specific types of primary plant fault and initiate 

rapid disconnection of the faulty components. 

A blackout incident may be caused as a result of the following protection limitations [1]: 

a) Failure to operate in the presence of an actual fault; 

b) Failure to operate rapidly within the required design operating times; 

c) Failure to provide a selective trip instruction to specific system circuit breakers, i.e. a non-

discriminative trip; 

d) Inadvertent operation during conditions where no system or plant fault is present; 



 11

Whilst the first three failure modes are self explanatory, an interesting and actual example of 

the forth failure mode was experienced in Zambia on the Zesco power network. In this case, 

the major transmission system voltage is 330 kV and, the network is interconnected. 

Protection of major transmission lines is via distance protection, used in a time-stepped mode 

with protection signalling. Backup protection is provided by over-current and earth fault 

relays with inverse-time characteristics. 

Even when correct operation of the distance protection successfully isolates a faulty circuit, 

the resultant loss of the circuit results in re-distribution of load current via adjacent lines. Due 

to the high load factor and (potentially) low fault levels under minimum system conditions, 

selecting settings for time-delayed over-current relays which will allow operation under 

minimum fault conditions but prevent operation under high transient load conditions during 

load redistribution is difficult. A number of incidents of loss of several circuits following 

isolation of a faulty circuit have occurred. 

No two blackouts appear identical according to the historical records [2]. But there is a 

common cascading process for different blackouts, which can be described as follows [3, 4]: 

 System state before the blackout: Before the blackout, system parameters usually 

remain within their normal operating reliability ranges. At the same time, some 

noticeable deviations that could potentially weaken the system, such as high electricity 

demands, heavy power flows, depressed voltages, and frequency variations, etc, could 

be observed. Some scheduled maintenances on the nearby generators and/or 

transmission facilities may also happen before the blackouts. 

  Contingency conditions: Before the blackouts, the system may be additionally 

weakened by unscheduled outages, such as several transmission line, transformer and 

generator outages due to the faults. Those conditions move the system to a more 

stressful stage. 

 Initiating events: At a certain point of the blackout development, a triggering event 

happened. Triggering event is the point separating a period where multiple 

contributing but not direct factors for final blackout are accumulated, from the direct 

sequence of events with clear cause/effect relationships. 

 Steady state progression with slow succession: The triggering event as well as the 

subsequent events in a blackout scenario may cause power flow surges, overloads, or 

voltage problems. The protection system may remove the equipment or a group of 

equipment from the rest of network if it detects the low voltage and high current even 
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though there may be no faults. Some load loss may accompany this process. This can 

result in more power flow surges, overloads, and voltage problems, and so on. In this 

initial stage, the cascading process can be relatively slow. 

 Transient state progression with fast succession: In this stage, the system begins to 

lose major parts which results in bigger power swing, overload or low voltage. The 

components begin to trip one by one in a very short time. Uncontrollable system 

separation, angle instability, and voltage collapse may occur. As a result, a significant 

load loss may be inflicted. Final large-scale blackout is reached in a very short period. 

From the above description, one can see that the cascading blackout is a result of 

accumulation of a chain of contingencies and system reactions. 

1.2 Problem Definition 

The reliability of the power supply system in Zambia is not satisfactory. Two recent power 

blackouts have been serious. The purpose of this Master Thesis is to investigate the system by 

means of stability analysis, contingency analysis and review of protection settings with the 

aim of improving the reliability of the system. The work includes data collection from Zesco 

Ltd, Zambia 

The following tasks are included: 

1. Dynamic stability studies of Zesco generators by use of SIMPOW 

2. Contingency analysis for critical components in the transmission grid by use of NETBAS. 

3. Investigation of protection settings for transmission, generation and consumption. 

4. Work out recommendations based on the above mentioned investigations. 

1.3 Methodology 

The thesis involved data collection from Zesco in Zambia. This was done by site visitations to 

substations and power stations across the country. Data collection was achieved through 

existing reports as well as conducting oral interviews from the personnel involved. 

1.4 Outline of the Thesis 

The thesis is organized as follows: 

 Chapter II describes the Zesco generation and transmission network and also gives a 

review of the power blackouts that occurred on the Zesco network in the recent past. 

 A discussion of small signal and transient stability is given in chapter III which 

includes low frequency oscillations (local and inter-area), system Eigenvalues and 

their significance to the stability of the power system. 
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 Chapter IV discusses the results of both the static and dynamic simulations of the 

Zesco network carried out in SIMPOW.   

 A contingency analysis for critical components in the transmission grid by use of 

NETBAS is presented in chapter V.  

 Chapter VI investigates the protection settings for transmission, generation and 

consumption.  

 Chapter VII concludes with recommendations based on the investigations carried out. 

 References and Appendices are attached at the end.  
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2 REVIEW OF POWER SYSTEM IN ZAMBIA 

2.1 Generation 

In Zambia, [5] the bulk of the generation is from hydropower (1608 MW), generated by three 

main power stations, namely Kafue Gorge (900 MW), Kariba North Bank (600 MW) and 

Victoria Falls (108 MW). 

Fig 2 is the map of Zambia showing the generation and transmission network at different 

voltage levels. 

 

Fig 2 Map of Zambia showing the power grid at different voltage levels 
 
These three plants are sufficient to support the power demand of Zambia but there is only 

some spare capacity available for export during the off peak period. Recently, the decision 

was made to rehabilitate these plants and upgrade the generating capacity of the units. There 

is also the possibility to increase by two the number of units installed in the Kariba North 

plant. In addition to these capacity extensions in progress, there are plans in Zambia to build 

two hydropower plants on the Kafue River to be located at Itezhi-Tezhi dam (120 MW) and 

Kafue Gorge Lower (600 MW). Following the completion of all these projects, Zambia will 

clearly have surplus power available for export for several years. The peak demand in Zambia 

is expected to grow from 1300 MW in 2004 to 2245 MW in 2025 
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2.2 Transmission 

The transmission system has a total of 4,638 km of transmission lines spread as follows:  

2,008 km of 330kV lines, 348 km of 220kV, 85 km of 132kV, 704 km of 88kV, and 2,823 km 

of 66kV lines (of which 2,180 km are under Zesco’s Distribution and Supply Directorate). 

 Fig 3, Fig 4 and Fig 5 show pictorial view of part of the Zesco transmission network at 

330kV level at Leopards Hill substation. 

 

Fig 3 Kariba and Kafue gorge 330kV lines at Leopards Hill substation 
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Fig 4 330/132kV transformers at Leopards Hill substation 
 

 

Fig 5 330kV SF6 circuit breakers type FXT15 at Leopards Hill substation 
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Fig 6 Schematic diagram of Zesco generation and transmission grid 
 

The transmission network, whose schematic diagram is shown in Fig 6, serves as a means of 

power transport from the generating stations to the Distribution Bulk supply points throughout 

the country and also to the Copperbelt Energy Corporation and Export points. The 

transmission system refurbishment under Power Rehabilitation Project (PRP) was completed 

in 2004. 

2.3 Southern African Power Pool (SAPP) 

Like NordPool, the countries in southern Africa have formed a power sharing Pool called 

Southern African Power Pool (SAPP). Zambia is a member of this Power Pool. The Southern 

Africa Power Pool, [6] (SAPP) was formed in late 1995 and its operations have been guided 

by a memorandum of understanding, which was signed in December 1996. SAPP includes 

twelve southern African power utilities, namely: Angola, Botswana, Lesotho, Malawi, 

Mozambique, Namibia, South Africa, Swaziland, Tanzania, Zambia, Zimbabwe and Zaire 

(now DRC). The main objectives of setting up the power pool are to ensure that all member 

utilities co-operate and co-ordinate in the operation of their systems to minimize costs while 

maintaining reliability; fully recover costs; and share equitably in the resulting benefits. The 

member countries of SAPP are shown in Fig 7. 
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Fig 7 SAPP member countries 

2.4 Recent Power Blackouts 

2.4.1 Blackout of 19th January 2008 

The blackout was initiated by a disturbance in the Zimbabwean grid which resulted in the loss 

of a major load and shut down of the Kariba North Bank power station. This caused 

overloading and subsequent tripping of the generators at Kafue Gorge and Victoria Falls 

power stations resulting in the blackout. The sequence of events leading to the blackout can 

be summarized as follows: 

 At 19:38hrs a system disturbance was observed on the Zesco network attributed to an 

external fault on the ZESA (Zimbabwe) network which resulted in the tripping of the 

400kV interconnector to ESKOM (South Africa) 

 This subsequently caused tripping on over-current protection of the Kariba – Leopards 

hill 330kV line which connects the kariba North bank power station to the rest of the 

Zambian grid. The interconnection to the Zimbabwean network was also lost when 

under frequency protection operated. 

 The rejected load could not be sustained by the two remaining power stations namely 

Kafue gorge and Victoria Falls so both stations tripped on overload protection. 

 The ZESA network registered power swings on the transmission grid in the western 

region bordering Botswana Power Corporation (BPC) and ESKOM (South Africa) 
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resulting in the loss of 330kV Hwange – Sherwood and 420kV Insukamini – Phokoje 

lines. 

 The lightly loaded grid of ZESA, Zesco, and SNEL (Congo DR) experienced over 

frequency and this resulted in instantaneous tripping of all the six generators at Kariba 

south bank and one unit at kariba North bank power stations. 

2.4.2 Blackout of 21st January 2008 

The blackout was initiated by a spurious tripping on the only 330 kV transmission line 

available at the time [line No.2] from Kariba North Bank power station to Leopards Hill 

substation. The failure of this line completely isolated Kariba North Bank Power Station from 

the national grid because on 30th December 2007, a tower on the only other line [Line No.1] 

had collapsed due to heavy rains making this line unavailable. This situation caused over 

loading of Kafue Gorge and Victoria Falls power stations and subsequent tripping on under 

frequency protection. 

2.4.3 Blackout of 22nd January 2008 

The blackout of 22nd January 2008 was caused by a collapse of the system voltage due to 

insufficient generation capacity. The Zambian system had been isolated from Zimbabwe and 

Kariba North Bank Power Station was not available on this day because both lines that 

transmit power from this station were out of service, as indicated in above. Kafue Gorge 

Power Station was operating at maximum available generation without any reserve margin at 

all and as the demand for power increased, the station tripped on under frequency protection.  
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3 SMALL SIGNAL AND TRANSIENT STABILITY 

3.1 Stability Definition 

In order to clearly determine the goals of this research, the concept of “stability” must be 

defined since this term represents different concepts to different persons involved with power 

system stability. A definition given is as follows: 

“Power system stability may be broadly defined as that property of a power system 

that enables it to remain in a state of operating equilibrium under normal operating 

conditions and to regain an acceptable state of equilibrium after being subjected to a 

disturbance.” [7] 

From this general definition, two categories of stability are derived: small-signal and transient 

stability. Small-signal stability is the ability of the system to return to a normal operating state 

following a small disturbance. Investigations involving this stability concept usually involve 

the analysis of the linearized state space equations that define the power system dynamics. 

Transient stability is the ability of the system to return to a normal operating state following a 

severe disturbance, such as a single or multi-phase short-circuit or a generator loss. Under 

these conditions, the linearized power system model does not usually apply and the nonlinear 

equations must be used directly for the analysis. 

3.2 Small Signal Stability 

Since small signal stability involves perturbations around the operating point, analysis can 

therefore be done by linearizing a set of state equations that describe the power system. 

3.2.1  State-Space Representation and Linearization 

Every dynamic system can be described with a state vector x, an input vector u, and an output 

vector y, as in Fig 8. The state vector x contains the n state variables of the dynamic system. 

 

Fig 8 A dynamic system 
 
A state variable is a variable in the system that has to be time-derived through a time 

simulation. If the derivatives of the state variables, x , and the output vector, y, are not explicit 

functions of time, the dynamic system in Fig 8 can be described with the two functions f and g: 

                                                ( )x f x,u                                                                             (3.1)  

                                                y = g(x,u)                                                                             (3.2) 
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By disturbing the system in Fig 8 with small deviations in both the state vector x and the input 

vector u, the linearized form of the dynamic system can be written as,  

                                             Δx = AΔx + BΔu                                                                      (3.3) 

                                             Δy = CΔx + DΔu                                                                      (3.4) 

 
The matrix A in equation (3.3) is the state matrix of size [nxn] and the poles of the dynamic 

system are the roots of the equation, 

                                              det( ) 0s I - A                                                                         (3.5) 

 where I is the identity matrix of dimension n. 
 
3.2.2  Eigenvalues and Eigenvectors 

The values of s which satisfy (3.5) are known as eigenvalues of matrix A, and equation (3.5) 

is referred to as the characteristic equation of matrix A, see [7], page 707. 

The number of eigenvalues is always the same as the dimension of matrix A. Some of them 

can be multiple. The eigenvalues can be complex and therefore it is useful to depict them in 

the complex plane.  

For every eigenvalue there exist two eigenvectors, right and left eigenvector. For any 

eigenvalue λi, the column vector of dimension n, Φi, which satisfies equation (3.6), is called 

the right eigenvector of A, see [7], page 707. 

                                               i i iAΦ Φ                                                                             (3.6) 

The right eigenvector measures the activity of the state variables of mode
 
i, see [15]. It shows 

how observable an eigenvalue is among the state variables. The right eigenvector can be 

calculated in SIMPOW. 

For any eigenvalue λi, the row vector of dimension n, Ψi, which satisfies equation (3.7), is 

called the left eigenvector of A. 

                                          T T
i i iΨ A Ψ                                                                                (3.7) 

The left eigenvector weighs the contribution of the activity of the state variables to mode i, 

see [15]. It shows how able a state variable is to influence an eigenvalue.  The left eigenvector 

cannot be calculated in SIMPOW.  The eigenvectors can be normalized so that the product of 

them in each case is, 

                                               1T
i i Ψ Φ                                                                                (3.8) 
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Note that the product of the left and right eigenvectors that belong to different eigenvalues is 

0, 

                                              0T
j i Ψ Φ  for i ≠ j 

The eigenvalues may be real or complex, and are of the form j  where   is the 

damping constant and  is the frequency of oscillation in radians per second. (Note that 

SIMPOW calculates  in Hertz). Complex eigenvalues always occur in conjugate pairs. 

The stability of the operating point 0 0( , )  , where 0  is the power angle in radians, may be 

analyzed by studying the eigenvalues. The operating point is stable if all of the eigenvalues 

are on the left-hand side of the imaginary axis of the complex plane; otherwise it is unstable. 

If any of the eigenvalues appear on or to the right of this axis, the corresponding modes are 

said to be unstable, as is the system. This stability is confirmed by looking at the time 

dependent characteristic of the oscillatory modes corresponding to each eigenvalue i , given 

by ite . The latter shows that a real eigenvalue corresponds to a non-oscillatory mode. If the 

real eigenvalue is negative, the mode decays over time. The magnitude is related to the time 

of decay; the larger the magnitude, the quicker the decay. If the real eigenvalue is positive, the 

mode is said to have aperiodic instability. 

On the other hand, the conjugate-pair complex eigenvalues j   each correspond to an 

oscillatory mode. A pair with a positive  represents an unstable oscillatory mode since these 

eigenvalues yield an unstable time response of the system. In contrast a pair with a negative 

 represent a desired stable oscillatory mode. Eigenvalues associated with an unstable or 

poorly damped oscillatory mode are also called dominant modes since their contribution 

dominates the time response of the system. It is quite obvious that the desired state of the 

system is for all of the eigenvalues to be in the left-hand side of the complex plane. 

Other information that can be determined from the eigenvalues is the oscillatory frequency 

and the damping factor. The damped frequency of the oscillation in Hertz is given by 

                                          
2

f



                                                                                      (3.9) 

And the damping factor (or damping ratio) is given by 

                                         
2 2


 





                                                                           (3.10) 

3.3 Transient Stability 

The real power system is a dynamic system and the normal operation condition may be 

altered by certain disturbances caused by faults, load rejection, line switching, and loss of 
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excitation. Transient stability is defined as the ability of the power system to maintain 

synchronism when subjected to those disturbances [7, 8]. The protection system performance 

plays an important role to maintain the system transient stability after the fault. The basic idea 

of transient stability can be demonstrated using a simple two-machine system shown in Fig 9. 

For this system, if we neglect the resistance of the line, the active power eP  transferred 

between two generators can be expressed as, 

                                         
.

sinS R
e

E E
P

X
                                                                        (3.11) 

and S L RX X X X   . 

Where  

δ Angle difference between the two generators (power angle) in radians 

SE  Thevenin equivalent generator voltage magnitude at the source end in kV 

RE  Thevenin equivalent generator voltage magnitude at the receiving end in kV 

X  Combined reactance between the source and the receiving end generators in ohms 

SX  Thevenin equivalent source reactance in ohms 

LX  Equivalent transmission line reactance in ohms 

RX  Thevenin equivalent reactance at the receiving end in ohms 

If SE , RE  and X  are fixed, the relationship between eP  and   can be described using the 

power angle curve shown in Fig 10, where the two power angle curves correspond to the 

normal state and the fault situation respectively. The differential equation to model the motion 

of the generator rotor angle is known as the swing equation [7, 8]: 
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
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                                                              (3.12)          

H  Inertia constant of the generator 

o  Generator synchronous speed      

mP  Generator input mechanical power 

eP  Generator output electrical power 
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Fig 9 A two machine system 

  

 

 

Fig 10 The power angle curve 
 
As shown in Fig 10, during the normal state 0m eP P P  . The generator rotor runs at a 

constant speed and the rotor angle difference between the generators is constant, at 0 . When a 

fault occurs, the power transmission eP  is dropped to FP  from 0P . At the same time, the 

mechanical power mP of generator can not be changed at once to match the change of eP , 

resulting in the rotor acceleration and  increasing. When the fault is cleared at the time 

 reaches C , the power transmission eP returns to the CP , which is larger than mechanical 

power 0mP P . That causes the rotor to decelerate and  reaches F due to the inertia of the 

rotor system. At F , the deceleration area A2 is equal to the acceleration area A1. This is 

known as the equal-area criterion [7, 8]. If F  is smaller than L ,  can eventually go back to 

the original balance point 0  with sufficient damping. The system is transient stable in this 
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case. If area A1 is still larger than A2 at the time  reaches L , the rotor will accelerate again 

beyond recovery since eP < mP . The system is transient unstable and may cause big problem 

such as cascading blackouts. It is seen that the fault clearing time by the protection system 

will directly relate to the area of A1 and A2. The faster the fault is cleared, the more stable the 

system. Consider a large system; any disturbance such as fault, load rejection, line switching, 

loss of excitation; etc will cause similar behaviour of each system generator as demonstrated 

above, resulting in the oscillation of system bus voltages and angles. That will in turn have an 

impact on the relay operations, which will be explained in chapter 6. 

There are several ways to enhance system transient stability, such as high-speed fault clearing, 

reduction of transmission system reactance, single-pole switching, generator tripping, 

controlled system separation and load shedding, etc [8]. It is obvious that the fast and accurate 

response of transmission line protection system, which can precisely recognize the 

disturbances and take correct actions, is the first and most important requirement. 

3.4 Oscillations in Power Systems 

Electro-mechanical oscillations between interconnected synchronous generators are 

phenomena inherent to power systems. These oscillations can be created by small 

disturbances in the system, such as changes in the load, and are normally analyzed through the 

small-signal stability (linear response) of the power system. These small disturbances lead to 

a steady increase or decrease in generator rotor angle caused by the lack of synchronizing 

torque, or to rotor oscillations of increasing amplitude due to a lack of sufficient damping 

torque. The most typical instability is the lack of a sufficient damping torque on the rotor’s 

low frequency oscillations. Small-signal stability analytical tools aid in the identification and 

analysis of these oscillations. The stability of these oscillations is of vital concern, and is a 

prerequisite for secure system operation. For many years, the oscillations observed to be 

troublesome in power systems, were associated with a single generator, or a very closely 

connected group of units at a generating plant. Some low frequency unstable oscillations were 

also observed when large systems were connected by relatively weak tie lines, and special 

control methods were used to stabilize the interconnected system [9]. These low frequency 

modes were found to involve groups of generators, or generating plants, on one side of the tie 

oscillating against groups of generators on the other side of the tie. 

Oscillations associated with a single generator or a single plant, are called local modes, or 

plant modes. Local modes normally have frequencies in the range 0.7 to 2.0 Hz. The 

characteristics of these oscillations are well understood. They may be studied adequately, and 
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satisfactory solutions to stability problems developed, from a system which has detailed 

representation only in the vicinity of the plant [10]. 

Oscillations associated with groups of generators, or groups of plants, are called inter-area 

modes. Inter-area modes have frequencies in the range 0.1 to 0.8 Hz. When present in a 

power system, this type of oscillation limits the amount of power transfer on the tie-lines 

between the regions containing the groups of coherent generators. The characteristics of these 

modes of oscillation, and the factors influencing them, are not fully understood. They are far 

more complex to study, and to control. Generally, a detailed representation of the entire 

interconnected system is required to study inter-area modes [11]. 

In recent times, many instances of unstable oscillations, involving inter-area modes in large 

power systems, have been observed, both in studies and in practice [12, 13, and 14]. Such 

oscillations are increasingly becoming a cause of concern and the mitigation of these 

oscillations is commonly performed with power system stabilizers (PSS). 
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4 SIMULATIONS OF ZESCO NETWORK  IN SIMPOW 

4.1 Steady state analysis 

Load flow analysis was carried out on the Zesco network to determine the steady state 

solution. The following assumptions were made: 

 The load was modelled as constant power 

 The interconnecting lines to neighbouring countries are disconnected 

 The generators are operating with at least 30 percent stability margin 

 There is spinning reserve on the generators 

The network was created by writing a script in SIMPOW called an ‘optpow’ file. This file 

was used to generate the single line diagram shown in Fig 11. The detailed script is shown in 

appendix D. 

The solved load flow case generated by SIMPOW is shown graphically on a single diagram in 

Fig 11. The detailed loadflow results are shown tabulated in appendix A. 
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Fig 11 Zesco network showing voltages, currents, active and reactive powers 
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4.2 Dynamic Analysis 

4.2.1 Eigenvalue and Modal Analysis 

The Zesco transmission network shown in Fig 11 was analysed for eigenvalues at the 

operating point to determine the small signal stability at that point. Modal analysis which 

shows how synchronous generators feed a particular eigenvalue was also carried out. The 

results are shown in Fig 12 below.  

 

(a) 

 

(b) 
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(c) 

 

(d) 

 
Fig 12 Plots of eigenvalues and mode shape 

 

From Fig 12(a) we see that all the eigenvalues are located on the left hand side of the complex 

plane which is the requirement if the operating point is to be considered stable. It is clear from 

the figure that the operating point is stable against small perturbations. This means that when 

the system is subjected to a small disturbance the generators will oscillate with the following   

damped frequencies as shown in the table below 
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                         Table 1 Oscillation frequencies of generators 

Generator name Oscillation frequency(Hz) 
Kafgen 1.30851 

Karibgen 1.65370 
Vicgen 0.751142 

 
Next we consider the observability of the eigenvalues in relation to how the synchronous 

generators feed them. The table below summarizes the result. 

             Table 2 Observability of eigenvalues 

Eigenvalue Observability 
-0.546260±j1.30851 Observed only in Kafue gorge generators (Kafgen) 
-1.67234±j1.65370 Observed only in Kariba generators (Karibgen) 
-0.293906±751142 Observed the most in Victoria Falls generators (Vicgen) 

  

The results shown in the table can also be seen by looking at Fig 12 (b), (c) and (d). Note that 

in Fig 12 (d) the observability of Kafgen generators is very small. 

4.2.2 Transient Stability 

Transient stability analysis was carried out by simulating a three phase short circuit at selected 

buses which are considered critical to the Zesco system. The three selected critical buses are: 

1) Kariba North  

2) Leopards Hill 

3) Kafue gorge 

In each of these cases the duration of the fault was varied until stability was lost in some 

generators in the system. In some cases faulty components were disconnected and then 

reconnected. The transient behaviour of all the generators in the system as a result a fault at a 

particular bus was analysed. The interconnecting bus to neighbouring countries at Kariba 

South was selected as stiff bus and used as reference. 

4.2.2.1 Case 1 : Three phase fault at Kariba North Bus without loss of stability 

Using the ‘dynpow’ module in SIMPOW a three phase fault was applied at Kariba North bus 

at time t= 4.6seconds chosen arbitrarily. The fault was disconnected 0.1 seconds later together 

with one of the lines. The line was reconnected after a further 0.1 seconds. The transient 

behaviour of the generators as a result of this fault is depicted in the figures below. 
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Fig 13 Variation of electrical power, mechanical torque and speed with power angle   for 

generators at Kariba North 

 

 

Fig 14 Variation of electrical power, mechanical torque and speed with power angle   for 

generators at Kafue gorge 
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Fig 15 Variation of electrical power, mechanical torque and speed with power angle   for 

generators at Victoria Falls 

 
We see that with a three phase fault of duration 0.1 seconds all the generators regain 

synchronism and return to their original operating points after a fault is cleared and the line 

reconnected. We can therefore conclude that with a three phase fault lasting 0.1 seconds at 

Kariba North bus the generators are transiently stable. The mechanical torque is kept constant 

since the governors are assumed to be too slow act during this period. 
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The same behaviour can be viewed in the time domain as depicted in the figures below. 

 

Fig 16 Variation of electrical power, mechanical torque, speed and power angle   with time 

for generators at Kariba North 

 

Fig 17 Variation of electrical power, mechanical torque, speed and power angle   with time 

for generators at Kafue gorge 
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Fig 18 Variation of electrical power, mechanical torque, speed and power angle   with time 

for generators at Victoria Falls 

 

We observe that as time passes the electrical power tends to find a steady state value equal to 

the mechanical torque. Since the speed is in per unit the electrical power and the mechanical 

torque are the same when the speed is at 1pu. The results in the time domain are consistent 

with the fault scenario. Note that during the 0.1 seconds when the fault is present, electrical 

power is depressed to a smaller value and increases instantaneously to a higher value after the 

fault is cleared.  In this particular situation it is important to note that the system topology is 

restored to its original state after occurrence of the fault. This means that the steady state 

values for electrical power, speed, and power angle will be the same as before.  

4.2.2.2 Case 1A : Three phase fault at Kariba North Bus with loss of stability 

The duration of the fault was extended to 200 milliseconds and a simulation repeated. From 

the results it is seen that the generators at Victoria Falls power station lost synchronism while 

those from Kariba North and Kafue gorge restored synchronism after the fault was cleared 

and line reconnected. The transient behaviour of the generators at Kariba North and Kafue 

gorge are almost the same as that shown in Fig 13 and Fig 14 above and will not be shown. 

However, for the generators at Victoria Falls power station the transient behaviour is depicted 

in the figures below.   
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Fig 19  Transient behaviour of Victoria Falls generators as a function of power angle 
 

 

Fig 20 Detailed view of power/angle characteristic 

 
From the Fig 20 above we see that at the time the fault was cleared the available electrical 

power was less than the mechanical power resulting in continued acceleration of the rotor. We 
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also see from the plot that the acceleration area is greater than the available deceleration area 

and from the equal area criterion the generator will not find a stable point.  

 

Fig 21  Transient behaviour in time domain 

 
If we view the results in time domain from Fig 21 it is quite clear what is happening. Observe 

that at t=4.6 seconds when the fault is applied the electrical power is depressed and after 200 

milliseconds when the fault is cleared the electrical power oscillates and cannot find a stable 

operating point. Correspondingly the power angle and speed also increase. This is an 

indication of loss of synchronism and unless protection acts quickly the generator can be 

damaged. Note that the mechanical torque is kept constant during the simulation. 

It can be concluded from the simulation that for a three phase fault at Kariba North lasting 

200 milliseconds or longer the generators at Victoria Falls power station will fall out of 

synchronism. So the critical clearing time for conditions described above should be less than 

200 milliseconds. This guarantees that the generators remain in synchronism after an external 

fault. The exact critical clearing time depends largely on the system loading level; the nature 

of fault and the changes in network topology after the fault is cleared. 

Next we move the fault to Leopards Hill and then Kafue gorge buses and apply the simulation 

as described in section 4.2.2. The results of the simulation are shown in appendix B  
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5 CONTINGENCY ANALYSIS 

5.1 Introduction 

Power systems are planned and operated so that the most probable and critical contingencies 

can be sustained without an interruption or a quality reduction. The power system should be 

able to continue its operation despite sudden outage of a production unit, transmission line, 

transformer, compensation device, etc. Outages of power system equipment are typically due 

to faults (short circuits and earth faults), overloads, malfunctions (false settings or operation 

actions) or breakdown of equipment. The occurrence of disturbances cannot be predicted, thus 

the security of the power system needs to be guaranteed beforehand. 

The security of the power system is commonly defined based on (n-1) criteria i.e. the system 

should withstand any single contingency. A system consisting of n components should be able 

to operate with any combination of n-1 components, thus for any single component outage. 

This criterion plays an important role in preventing major disturbances following severe 

contingencies. The use of criteria ensures that the system will at worst, transit from the normal 

state to the alert state. The probability of n-2 contingency increases e.g. when the weather is 

bad and the two transmission circuits are placed on the same towers, or when a generator may 

be relayed out due to a line outage.          

The security analysis is required to guarantee the power system’s secure operation in all 

conditions and at all operation points. The purpose of power system planning is to ensure 

power system adequacy. The analysis is based on forecast cases. Online security assessment is 

needed in the power system operation to guarantee security momentarily, because not all 

possible future scenarios can be checked beforehand. The purpose of power system operation 

is to guarantee that a single disturbance cannot cause cascading outages and finally a total 

blackout.    

5.2 Operating States of a Power System 

The operating condition of a power system may be classified as: (i) normal, (ii) emergency 

and (iii) restorative. The normal state is one, in which the total demand on the system is met 

by satisfying all the operating constraints. Contingencies, such as the outage of a generating 

unit, short circuit and subsequent tripping of a line, loss of a transformer, etc. can lead to two 

types of emergency conditions [16], [17]. In the first type, the system remains stable but 

operates with the violation of some of the operating constraints. Thus, while the consumer’s 

demand is met, an abnormal voltage and frequency condition may arise; loading limits of 

some lines and equipment may be violated, and so on. This type of emergency can be 

tolerated for a certain period. In the second type, the power system becomes unstable and 
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hence the loads cannot be fully supplied. The second type of emergency thus causes a 

violation of both the loading and the operating constraints, and unless corrective action is 

taken immediately, the system faces the risk of a total shutdown. In the restorative state, 

corrective action is taken so that the system goes back either to new normal state or to the 

previous normal state. This state is characterized by the interruption of the consumer’s 

demand, bringing into operation of rapid-start units. The above states and their mode of 

transition are shown in Fig 22. 

 

 

Fig 22 Three states of operation 

 
5.3 System state at peak loading 

The single line diagram of Zesco network is shown in Fig 23. Prior to implementing a 

contingency the load flow was run in NETBAS in order to determine the voltages and 

currents in the network at peak loading. A summary of the results is shown in the tables below.   

 

Fig 23 The 330kV Zesco network 
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                  Table 3 Voltage result of peak operating conditions 330kV system 
Bus ID Bus name Bus operating 

voltage (kV) 
1 Kafue Gorge 330 
2 Leopards Hill 338.3 
3 Kariba North 330 
4 Kafue Town (330) 333.2 
5 Kafue West 333.3 
6 Kabwe 353.7 
7 Kitwe 343.4 
8 Luano 347.2 
9 Pensulo 361.9 
10 Kansanshi 362 

 

                   Table 4 Voltage result of peak operating conditions 220kV system 
 

Bus ID 
Bus name Bus operating 

voltage (kV) 
1 Vic Falls 220 
2 Muzuma 226 
3 Sesheke 228.8 
4 Kafue Town 220 219.5 

 

 

              Table 5 Current result of peak operating conditions 
No Bus name Transmission 

operating 
current(A) 

1 Kafue Gorge - Leopards Hill No1 519 
2 Kafue Gorge - Leopards Hill No2 867 
3 Kafue Gorge – Kafue West 545 
4 Leopards Hill – Kabwe No1 675 
5 Leopards Hill – Kabwe No 2 675 
6 Leopards Hill – Kabwe No 3 675 
7 Kariba North - Leopards Hill No1 437 
8 Kariba North - Leopards Hill No2 437 
9 Vic Falls - Muzuma 214 
10 Muzuma – Kafue Town 220 128 
11 Kafue West -  Leopards Hill 359 
12 Kabwe – Kitwe No1 400 
13 Kabwe – Kitwe No2 400 
14 Kitwe - Luano 193 
15 Kabwe – Luano No1 379 
16 Kabwe – Luano No 2 383 
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Voltage Profile at 330kV
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Fig 24 Voltage profile at 330kV 
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Fig 25 Profile of current distribution (Bus No. according to Table 5) 

 
 
 
5.3.1 Implementation of contingencies in NETBAS 

Contingency analysis means that the consequences of line sections and transformers sections 

falling out (not three winding transformers) are examined. All contingencies are simple 

contingencies, where the consequence of components falling out one by one (N-1) is 

examined. For every contingency, a load flow is run and voltage problems as well as overload 

are checked.  A check is also carried out to see if the contingency results in the network being 

divided into two separate parts, i.e. islands. If this happens, NETBAS examines whether there 

is enough power available to operate the two different network parts separately. If there is not 

enough available power, NETBAS considers this part to be “lost”; i.e. it loses the supply. If 

the load flow does not converge for either the whole network or for one of the network islands, 
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NETBAS also considers the network “lost”. The situation where contingency in one section 

results in another contingency, is disregarded. If double contingencies is to be looked at, this 

can be carried out by taking out first one section and running a load flow with this section out, 

before starting contingency analysis.  

5.3.2 Applying a contingency on Zesco Network 

The Zesco network was uploaded in NETBAS so that contingency analysis could be carried 

out. Using a ‘contingency analysis module’ found in NETBAS, the program was able to 

identify all the possible contingencies and then applied a single contingency one at a time. 

The summary for the most critical ones are shown in the table below. A detailed report for all 

the contingencies is given in appendix C. 

Table 6 Contingency ranking according to NETBAS 
Data set : netbus. Year of calculation 2009. 

 ------------------------------------------------------------- 

   

 No of contingencies :   23     0 

 lines               :   21     0 

 transformers        :    2     0 

                                  

 Summary from Contingency Analysis 

                                   

       Lines ranked after contingency problems 

        ........ Name ...........       invalid   Volt.  Exceed    Interr. 

        From       -  To        split  Mainpart.  diff.   load.     power 

 ----------------------------------------------------------------------------- 

    1  VIC FALLS    - SESHEKE       X        ---     0     5 

    2  KAFUE WEST   - LUSAKA WEST   X        ---     1     3 

    3  KABWE        - PENSULO       X        ---     0     3 

    4  LUANO        - KANSANSHI     X        ---     0     3 

    5  KAFUE330     - KAFUE WEST    X        ***     7     1 

    6  L\HILL       - KABWE                          0     5       5.806 * 

    7  L\HILL       - KABWE                          0     5       5.806 * 

    8  L\HILL       - KABWE                          0     5       5.806 * 

    9  KAFUE GORGE- - L\HILL                         0     5       5.305 * 

   10  KAFUE GORGE- - L\HILL                         7     4       4.465 * 

   11  KABWE        - KITWE                          0     4      11.458 * 

   12  KABWE        - KITWE                          0     4      11.458 * 

   13  KARIBA NORTH - L\HILL                         0     4       4.027 * 

   14  KARIBA NORTH - L\HILL                         0     4       4.027 * 

   15  KAFUE GORGE- - KAFUE WEST                     0     4       3.326 * 

   16  KABWE        - LUANO                          2     3       9.844 * 

   17  KABWE        - LUANO                          0     3      10.337 * 

   18  KAFUE WEST   - L\HILL                         0     3       0.960 * 

   19  LUANO        - KITWE                          0     3       0.714 * 
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As seen from Table 6 the contingencies marked with X are considered ‘lost’ as outlined in 

section 5.3.1. These contingencies should be disregarded. NETBAS sorts the contingencies 

with the most critical ones coming first. We note from Table 6 that outage of Leopards Hill – 

Kabwe lines and Kafue gorge – Leopards Hill lines at peak load would result in 5 sections of 

the network being overloaded. This is followed by Kariba –Leopards Hill lines and Kabwe – 

Kitwe lines. Note that outage of power transformers have very little effect on the system. This 

is because they connect a smaller power station to the rest of the system. When this 

contingency occurs, it results in the network being split into two separate ‘islands’ each 

capable of supplying its own load.  

Generators outages are not considered here for two main reasons 

1) The contingency analysis module in NETBAS does not support generator outage. See 

section 5.3.1. 

2) The occurrence of entire power station outage is rare. Only sections of it may be taken 

out for scheduled maintenance. Note that the generators shown in Fig 11 are lumped. 

This means a single equivalent generator representing a group of actual generators. 
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6 TRANSMISSION LINE PROTECTION 

6.1 General 

The protective relay system, which is shown in the zoomed area in Fig 1, is the most 

important component in the power system to preserve the reliability of system operation. It 

detects the faults using its fault diagnosis mechanism and removes the faulted component by 

its associated circuit breaker action in a short time to avoid damage of the system equipment. 

The protection system for transmission lines is very important since the transmission lines are 

mostly extended across large geographic area to carry the power from sources to loads. They 

can easily experience a fault due to the lightning that causes loss of insulation. The 

performance of protection system is measured by several criteria including reliability, 

selectivity, speed of operation, etc. [18, 22]. Reliability has two aspects: dependability and 

security [23]. Dependability is defined as “the degree of certainty that a relay system will 

operate correctly when there is a fault on the system”. Security, “relates to the degree of 

certainty that a relay or relay system will not operate incorrectly when there is no fault on the 

system” [22]. For a weakened system that already lost several components, loss of reliability 

due to the relay mal-operation will have a large impact on the system that may contribute to 

the cascading blackout. There are two kinds of relay unintended operations: 

 Relay fails to operate. This situation is relative rare. But it is very harmful to the 

system stability when it happens. Even though the fault is cleared by the backup relays 

in a delayed time, there are healthy components removed from the system. This can 

result in more power flow surges, overloads, and voltage problems for a weakened 

system. 

 Relay operates in a non-fault situation. This situation is more common in most of 

blackouts involving the distance relay's unintended operations. For example, the relays 

may observe a low voltage and a high current, at the time during the overload, power 

swing or low voltage. Trip of the healthy components will also result in more power 

flow surges, overloads, and voltage problems for a weakened system. The event may 

unfold and spread out. 

Each transmission line protective relay (distance relay) has its own designated area known as 

primary zone, and usually it still has the opportunity to operate in overreached zones to 

provide backup protection to an adjacent transmission line section. To ensure the selectivity 

of transmission line protection systems, the relays need to be coordinated with the backup 

relays to operate only when the primary relay fails to clear the fault. Hence, selectivity is 

important to assure maximum service continuity and minimum system disconnection. The 
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speed of operation indicates how fast the relay can isolate a faulted area. Usually for 

transmission line protection, the high-speed relay is one that operates in less than 20 

milliseconds. Not in all situations the very high-speed operation is preferred. The relay must 

have the ability to differentiate fault and other tolerable transients very well before issuing 

high-speed operation. The most commonly used scheme for transmission line protection is the 

distance relay. The basic principle is shown in Fig 26. The voltage and current measured 

through voltage transformer (VT or PT) and current transformer (CT) are the inputs for 

protective relays. The distance relay algorithm is trying to extract the fundamental 

 

Fig 26 Basic principle of distance relay 

 
frequency phasor of voltage and current signals. Then through the calculation of certain 

nonlinear ratio of voltage and current phasors, the apparent impedance seen by the relay is 

obtained and compared to the preset thresholds. If the impedance falls into the protected zones, 

the relay will assume a fault occurred and will send a trip signal to the circuit breaker on the 

transmission line to disconnect the faulted line. Once triggered, the impedance calculation is 

continuously iterated using the moving data window. The relay algorithm is fixed by design. 

When the relay is installed in the system, the most important task is to determine the 

thresholds (settings). The settings are obtained by comprehensive short-circuit system studies 

in a predefined system operating condition. To ensure the protection system maintains 

dependability when protecting the equipment as fast as possible, a backup scheme is provided 

for each relay. 
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The distance relay principle is straightforward and usually performs reliably. That is the 

reason why this principle is still dominantly used in the industry, although the relay hardware 

has advanced through the technologies of electromechanical, solid state, and microprocessor. 

6.2 Types of Transmission Line Relays 

In general, the transmission line faults are associated with increased currents and decreased 

voltages. Other changes of the AC quantities in one of the following parameters may also 

occur: phase angles of current and voltage phasors, harmonic components, active and reactive 

power, frequency of the power system, etc [18]. Those parameters can be the inputs of the 

relays to detect the faults. The operating principles of the relays in use on transmission lines     

may be classified as follows [18, 19]: 

 Magnitude Relays: These relays are based on the comparison of the magnitude of 

one or more operating quantities to the threshold. For example, the over-current relay 

responds to the changes in the magnitude of the input current. The load-shedding 

relay responds to the changes of the system frequency. 

 Directional Relays: These relays are based on the comparison of the phase angle 

between two AC inputs. The comparison can be based on current phasor and voltage 

phasor, and also on current phasor and another current phasor. 

 Ratio Relays: These relays are based on the comparison of the ratio of two phasors to 

the thresholds. The ratio of two phasors are complex number, therefore the threshold 

should be set in a complex plane. A typical example of a ratio relay is the distance 

relay. 

 Differential Relays: These relays are based on the algebraic sum of two or more 

inputs. In a general form, those inputs may be the currents entering (or leaving) a 

specific protection zone. According to the Kirchhoff’s law, the algebraic sum should 

be close to zero when there is no internal fault and should be a big value when there is 

an internal fault. 

 Pilot Relays: These relays are based on the communicated information obtained from 

the two ends of a transmission line. The decisions made by a local relay and by a 

remote end relay are combined to form the final decisions. The inside principle of 

each relay could be any of the four types described above. 

When applied to the transmission line protection, the above principles can be further 

classified into two broad categories: a) non-unit protection scheme and b) unit protection 

scheme. The non-unit protection scheme uses data from one end of a transmission line while 
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the unit protection scheme usually uses data from two or more ends. For non-unit schemes 

such as over-current relay and distance relay, they can not protect very accurately the entire 

length of the primary line because they can not differentiate the internal faults from external 

faults occurring around the line boundaries due to the imperfections caused by measuring 

errors, transformation errors, the inaccuracy of the line impedance, source and load changes, 

different fault parameters, etc. Backup protection needs to be introduced as a trade-off for 

protecting the entire length of the transmission line. Unit protection schemes such as 

differential relays and pilot relays can protect the entire length of the transmission line. They 

require a communication link to transmit the blocking or transfer tripping signals. Therefore, 

the reliability of the unit protection scheme highly depends on the reliability of the 

communication link. The cost of the communication link also needs to be taken into account. 

The primary goal of transmission line protection, whatever the principle it uses, is to rapidly 

and precisely detect the fault and disconnect the faulted component. If possible, it should also 

differentiate the internal faults from external faults so that only the faulted line is removed; 

provide the exact fault type selection so that advanced tripping and reclosing schemes (single 

pole tripping and reclosing) can be applied; locate the precise fault position on the 

transmission line so that the line can be repaired and restored quickly. 

6.3 Distance Relay 

Distance relay protection is the most common type used for multi-terminal transmission lines 

[18, 20, and 21]. As implied by its name, it calculates the impedance between the relay 

location and the fault location. The impedance is calculated through the measured voltage and 

current signals at the relay location. If the measured fault impedance is smaller than the line 

impedance, the relay will assume that an internal fault has occurred on the transmission line. 

Since the impedance per kilometre of a transmission line is a relatively constant parameter, 

the distance relay hence responds to the computed impedance that corresponds to the distance 

between the relay location and the fault location. 

6.3.1 Relay Coordination Scheme 

Due to the imperfections in the distance relay measurement caused by measuring errors, 

transformation errors, the inaccuracy of the line impedance, source and load changes, 

different fault parameters, etc, the distance relay may not be able to always protect the entire 

line length using only one end of measured data. A coordinated protection scheme using 

distance relays is applied today. As shown in Fig 27, the scheme is described for the relay at 

position “1” (relay 1). For relay 1, the security margin of 10-15% should be selected from the 

remote end (Bus B) to be absolutely sure that the relay 1 will not overreach to the next line in 
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some situations. Hence the first zone (Zone 1) of relay 1 is set to reach 85-90% of the line 

length A-B. If fault is found within Zone 1 of the distance relay, the trip signal will be sent to 

the circuit breaker instantaneously or with a very small time delay t1. The rest of the line A-B 

will be covered by an overreaching zone (Zone 2). The reach of the second zone is usually set 

at 120-150% of the line length A-B. If the adjacent line B-C has quite different impedance 

characteristics, Zone 2 can be also set as the line length of A-B plus 20-50% of the line length 

B-C [20]. A timer t2, usually 0.3-0.5 seconds, should 

 

Fig 27 Relay coordination scheme 

 
be set for Zone 2 to ensure that relay 1 is delayed to allow relay 3 to trip the fault at F3. Relay 

1 must provide enough time for relay 3 to respond the fault in its Zone 1 before relay 1 sends 

the trip signal. The Zone 2 of relay 1 will also provide a backup function for the relay 3 since 

it overreaches to the line B-C. However, it is only true for part of the line B-C because Zone 2 

of relay 1 can not reach beyond Zone 1 of relay 3 to ensure the similar selectivity mentioned 

above. Another zone (Zone 3) is used to provide the backup function for the entire line length 

of line B-C. Zone 3 of relay 1 is usually extended to the 250% of the line length of line A-B 

and the timer t3 for its delayed action is set for a delay in the order of 1 second. Similarly, the 

step distance settings for other relays in the system will follow the same principle. It should be 

noted that in this example only the typical system configuration is considered. In reality, the 

settings must be calculated and coordinated by a comprehensive short circuit study for more 

complicated network structures [20]. Such a tedious work may result in incorrect settings due 

to the human error or improper settings due to lack of consideration of unusual system 
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operating conditions. The relay settings may play a significant role in different stages of 

cascading blackouts [2]. 

6.3.2 R-X Diagram 

Since the distance relay respond to the impedance measurements, it is common to use an R-X 

diagram to analyze and demonstrate the behaviour of the distance relay. Consider an R-X 

diagram matching an ideal simple system shown in Fig 28. The origin of the R-X plane is the 

relay location. The axis R corresponds to the real part of the impedance Z, while the axis X 

corresponds to the imaginary part of the impedance Z. The apparent impedance at the relay 

location is calculated by the quotient of the measured secondary voltage and current phasors. 

                                                 s
a

s

V
Z

I
                                                                                  (6.1) 

 

Fig 28 The R-X diagram 
 

During the normal condition, the measured apparent impedance is close to the load impedance 

since L LoadZ Z . The load area shown in Fig 28 is far from the relay settings. When fault 

occurs, the apparent impedance seen by relay will change to '
f f fZ Z R 
 

 where fZ  is the 
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line impedance from the relay location to the fault location and fR  is the fault resistance. 

Since f LoadR Z , the line section behind the fault location as well as the load impedance can 

be neglected according to the circuit theory. As shown in Fig 26, the impedance during the 

fault will flow into the relay setting area. Due to the transient phenomenon during the fault, 

the impedance will not jump instantaneously from LoadZ  to '
fZ  . In R-X plane, it will move 

step by step to '
fZ  until the transient is gone after about one cycle. From the R-X diagram, it 

is not difficult to conclude that the performance of the distance relay will depend on the fault 

resistance. The fault resistance is a random value that may be influenced by the electrical arc 

between two phases of the transmission lines or between one phase and a grounded object. 

The magnitude varies with respect to the fault type, fault location, and fault inception time. 

Besides the fault resistance, the pre-fault load condition will also play a role for the distance 

relay performance. If the load is too high, it may float to the relay setting area, especially for 

the backup settings in Zone 2 and Zone 3. In that case, the relay may operate in the overload 

situation thinking that it is a real fault. When some of the healthy lines are removed from the 

system, the power flows in those lines are re-dispatched to the other lines. Similar overload 

situations will cause more healthy lines being tripped by the relays and unfolding cascades 

may start. 

6.3.3 Three Phase Distance Relay 

The previous illustration is based on a single phase system. On a three-phase power system, 

the apparent impedance can not be calculated using (6.1) directly. There are 11 different fault 

types in three-phase systems, which are single-phase-to-ground faults (A-G, B-G, C-G), 

phase-to-phase faults (A-B, B-C, C-A), phase-to-phase-to-ground faults (A-B-G, B-C-G, C-

A-G), three-phase fault (ABC) and three-phase-to-ground fault (ABC-G) [18]. For different 

fault type, a symmetrical component analysis may be used to obtain the relationship between 

voltages and currents measured at the relay location [21, 24]. It is known that regardless of the 

fault type, distance relay is able to measure the positive sequence impedance from relay 

location and fault location in a three phase system [18]. Therefore, the relay settings can be 

calculated based on the total positive sequence impedance of the transmission line regardless 

of the fault type. 

Consider the system shown in Fig 28 as a three-phase system and the fault as a B-C fault. The 

symmetrical network connection for this fault is shown in Fig 29, where the subscript “1” 

corresponds to positive network components and subscript “2” corresponds to negative 

network components. We can observe that 
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                                                  (6.2) 

 since 1 2F FZ Z  for a transmission line, we further get 
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The relationship between phase value and sequence value can be expressed as: 
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Fig 29 Symmetrical network connection for B-C fault 

  
Subtract the third row from the second row, we have 

                                              2
1 2( )( )b cV V a a V V   

   
                                                       (6.6) 

Similarly, we can also get 

                                               2
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   
                                                       (6.7) 

Substituting (6.6) and (6.7) in (6.3), we get 
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It relates the phasor measurements at relay location to the positive impedance measured from 

relay location to the fault location. For other fault types, we can also use different symmetrical 

component networks to get the voltage and current used to calculate the positive impedance. 

The result is shown in Table 7, where it can be seen that in order to detect a three-phase fault, 
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a pair of voltage and current may be used for phase fault detection or for ground fault 

detection since they are required to calculate the exact positive impedance in a three-phase 

fault. For traditional electromechanical relays and solid-state relays, we need six elements to 

respond to all eleven fault types. In a digital relay, the different voltage and current pairs 

shown in Table 7 can be organized by the relay software as long as the three-phase voltage 

and 

 Table 7 Voltages and currents used to calculate apparent impedance for each fault type  

 AB/ABG BC/BCG CA/CAG AG BG CG ABC/ABCG 

V  
a bV V
 

 b cV V
 

 c aV V
 

 aV


 bV


 cV


 
Any of the six V on the 
left 

I  
a bI I
 

 b cI I
 

 c aI I
 

 0 0aI k I
 

 0 0bI k I
 

 0 0cI k I
 

 Corresponding I 

 

0 1
0

1

Z Z
k

Z



 
  

 current inputs are available 

6.3.4 Specific applications 

The above introductions of distance relay principles are based on the very simple system 

configuration. In real practice, the distance relay needs to be tuned to face specific system 

configurations [26, 27]. Four typical system configurations are shown in Fig 30. For parallel 

lines that are on the same tower or share the same right-of-way, the mutual coupling between 

these lines must be taken into account for the relay schemes. For the multi-terminal lines, the 

infeed current from the tapped terminal plays a role in the fault detection. For a weak 

electrical system in which the source impedance is high, one should notice relative low values 

of fault current and relatively flat voltage profile along the line seen by the relay. For the 

series compensated line in which the series reactor or series capacitor is installed, the relay 

scheme must take into account the change of the line impedance due to the on/off switching 

of the compensation devices. 
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Fig 30 Specific system configurations for distance relay applications 

 
6.3.5 Power Swing 

The associated phenomenon with the transient stability issue is power swing, which is defined 

as “a variation in three phase power flow which occurs when the generator rotor angles are 

advancing or retarding to each other in response to changes in load magnitude and direction, 

line switching, loss of generation, faults and other system disturbances. [25]” The power 

swing is stable if the generator does not experience pole slipping and unstable (out-of-step) if 

one or a group of generators experience pole slipping. 

Distance relay for transmission line protection is designed to isolate faults occurring within 

the desired zone only. It is not supposed to trip the line during the power swing caused by the 

disturbances outside the protected zones. Even for the out-of-step conditions, the preferred 

operation is to separate the system with an out-of-step tripping (OST) protection at pre-

selected network locations and blocking other distance relays by out-of-step blocking (OSB) 

protection [25, 28]. Power swing, either stable or unstable, may have impacts on distance 

relay judgment. During the emergency state, such kind of relay unintended operation may 

cause more healthy lines removed from the system, resulting in the system becoming even 

more stressful. The reason is given below. 

For the two machine system shown in Fig 9, for steady state, assume the two sources have the 

terminal voltages as 0SOE   and 0 0RE  respectively, where the phase angle of the receiving 

end generator is always used as the angle reference. As for the two-machine system, the 

power swing appears to a relay as an oscillation of magnitudes and the angles of two 

generators. At certain time during the power swing, assume the voltages are SE  and 0RE  . 

Then we have 
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where S L RZ X Z X  
   

 

From Fig 9, we have  

 m S SV E jX I  
 

 (6.10) 

Therefore the apparent impedance seen by the relay at bus m can be expressed as 
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The trajectory of mZ


with respect to SE


and RE


can be found in [25, 28]. When the angle 

difference   becomes large enough, the trajectory of mZ


will float into the relay setting area 

and cause relay unintended operation. 

Now, let us extend the idea to regular multi-machine systems. Still look at Fig 9. Consider the 

line in the middle as one of the transmission lines in the system with the terminal voltages of 

m mV  and n nV  . The other parts outside the line represent the rest of the system. If there is 

no fault on the line, the impedance seen by relay at bus m is, 
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  
     (6.12) 

According to (6.12), CZ  is only related to the magnitude ratio  /n mV V  and angle difference 

( )nm n m    of the bus voltages at the two ends. When power swing occurs in the system, 

m mV   and n nV   will oscillate during the time. 

If power swings causes nm  large enough, the impedance seen by relay will reach the zone 

settings and relay will mal-operate. The right side of Fig 31 gives an example of typical actual 

impedance trajectories during a stable power swing and an unstable power swing. 
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Fig 31 Zc trajectory in the R-X diagram in different terminal conditions 

  
 

6.4 Zesco Transmission Protection Philosophy 

Prior to commencement of the Power Rehabilitation Project (PRP), the ZESCO 330 kV 

system consisting of transmission lines, power transformers, generators and bus-bars, were 

protected using old electromechanical relays. However, these old relays became obsolete due 

to changes in technology. This meant that there were no longer spare parts to repair broken 

down equipment as manufacturers had moved to new numerical technology. This made 

maintenance of relays and control equipment very difficulty and the system was at risk of 

becoming unsafe due to inadequate protection as some equipment became inoperable. The 

main purpose of the rehabilitation project was to enhance system security by replacing old 

equipment that had become obsolete with the introduction of modern protection equipment. 

Therefore, Zesco decided to replace all old relays with new numerical ones. In 2004 Zesco 

Limited completed the transmission system rehabilitation in which the main focus was on the 

upgrade and rehabilitation of the 330kv protection, control, metering and primary equipment 

such as circuit breakers.  

To enhance the protection system further, the old bulk oil and air blast circuit were replaced 

with faster and more reliable SF6 gas breakers, shown in Fig 5, with two trip coils for 

increased reliability.  

The DC system at the major substations, that consisted of battery sets and charger were also 

replaced. To increase the reliability two sets of batteries and chargers are each used to supply 

one of the two trip coils. 
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6.4.1 Old Protection Philosophy 

Before the transmission rehabilitation was implemented, the protection philosophy was based 

on the following:  

(a)  Main 1 Electro-mechanical Distance relay type TS and H were used on the 330 kV 

transmission lines and the scheme used was Permissive Under-reach based on mho 

characteristics for fault loops  

(b)  Backup Protection Electro-mechanical Over-current and Earth Fault relay with 

IDMT Characteristics  

(c)  Analogue Substation Control  

6.4.2 New Protection Philosophy 

As part of the preparation for the transmission rehabilitation project, A Norwegian firm 

Norconsult was hired to carry out an intensive review of the state of all the plant on the 

transmission system. This work was carried out over a period of one year. One of the main 

recommendations of the study was on the need for adopting a new protection philosophy. 

Norconsult and Zesco formulated the new protection philosophy jointly. 

The main principles of the philosophy are:  

(a) Main 1 protection: Numerical Differential  

(b)  Main 2 protection: Numerical Distance  

(c) Breaker failure protection  

(d) Backup protection: Directional earth fault (DEF) with direction comparison feature. 

Over-current and earth fault with IDMT characteristics.  

(e)  Generator protection for bus bars with two zones: main and check. Primary 

function is to protect bus-bars  

 (f)  Two tripping Supply system  

6.4.3 General Advantages of Numerical Relays 

(a)  Numerical line differential relays provide high speed current differential generator 

protection for transmission lines and transformers.  

(b)  Optimal selectivity is assured as the scheme measures the current entering and 

leaving the protected generator. Both solid and resistive faults are detected and 

instantaneously cleared. Most stable to out of zone faults than electromechanical 

because of internal vector group and current transformer matching.  

(c) Power up and continuous self monitoring and checking enhance reliability of 

relays.  
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(d) Numerical distance relays are far superior to electromechanical relay in detection 

of resistive faults because more accurate characteristics based on the quadrilateral 

and new algorithms used in fault detection.  

(e)  They have faster tripping times hence making the system more stable by clearing 

faults quicker than electromechanical relays.  

(f)  The new relays have inbuilt post fault analysis tools.  

(g)  They also have management functions like fault locators, disturbance recorders 

and event recorders to help in fault analyses  

(h)  Transformer protection relays have better algorithms for protecting power 

transformers against over fluxing and restricted earth fault protection and also 

inrush current detection uses more advanced and accurate algorithms.  

(i)  They come with integrated software for interrogating relays and easier relay 

programming and fault analysis.  

(j) User friendly and modular design for easier maintenance and installation.  

(k) Programmable digital outputs and inputs for easier and customized protection 

schemes.  

6.5 Review of  Transmission and Generation Protection Settings 

6.5.1 Transmission Protection Settings 

The existing distance protection on Zesco transmission lines does not take into consideration 

the effect of zero sequence mutual coupling although the transmission lines share a common 

way leave. This introduces errors in distance measurement for earth faults and may further 

cause the distance relay to either underreach or overreach depending on the direction of the 

zero sequence current in the adjacent parallel line. In single line applications, the measured 

fault impedance is proportional to the distance between the relay and the fault location. The 

measured impedance in faulted phase with zero fault impedance is 
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
  is the line zero sequence current compensation factor; 0LZ and 1LZ  are 

respectively the zero and positive sequence impedance of the line. sfaV  and sfaI  are the faulted 

phase (assuming fault on phase a) post-fault phase voltage and current at the relay location, 
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m is the per-unit distance between the relay and the fault location of the protected line and 0sfI  

the post-fault zero sequence current at the relay location.  

The same distance relay, when applied to protect a parallel line as shown in Fig 32 will 

encounter errors in distance measurement due to the mutual coupling effect. 

 

 

Fig 32 Typical parallel line system 
 
The measured fault impedance of a conventional distance relay using zero sequence current 

compensation on a parallel line as shown in Fig 32 is, 
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1 1L LmZ Z   

which contains an error 1LZ  because of the additional voltage drop 0 0M psfmZ I resulting from 

the coupling effect of the parallel line's zero sequence current (the positive and negative 

sequence current mutual coupling effects are very small and thus generally are negligible). 

The per unit error   in terms of 1LZ  is 
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( / )M L psf
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m Z Z I

I k I
 


 (6.15) 

In equation (6.14) and (6.15), 0MZ   is the total zero sequence mutual coupling line impedance 

and 0psfI is the parallel line’s zero sequence current. 
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The error may cause the relay either to overreach or underreach depending upon the relative 

direction of the parallel line’s zero sequence current 0psfI  verses the compensated 

current 0 0sfa sfI k I . The relay will overreach if they are in the opposite direction. The relay 

will underreach if they are in the same direction. In view of the problems outlined above the 

following adaptive techniques are proposed.  

6.5.1.1 Proposed Solutions 

A. Using line operating status 

When parallel line operating status is known, a distance relay could adjust its zone reach 

settings and/or zero sequence current compensation factor to take into account the mutual 

coupling effect corresponding to the prevalent line operating status. Properly selected zone 

reach settings and/or zero sequence current compensation factor would allow the distance 

relay to provide a better zone coverage and prevent possible overreach or underreach at each 

prevalent line operating condition. It may be preferred that either zone reach setting or zero 

sequence current compensation factor may be changed when line operating status is changed, 

since changing both of them at the same time may unnecessary complicate the application of 

the method. In distance relays where one zero sequence compensation factor setting is shared 

by different protection zones, changing zone reach settings may be the only choice. In a 

numerical distance relay, changing zero sequence compensation factor may be preferred, as it 

would allow the same zone reach setting (e.g., 80% to 85% for zone 1) to be used for different 

line operating status, which may be easier to understand. 

B. Using parallel line’s zero sequence current 

On faulted line, the error in distance measurement of a conventional relay caused by zero 

sequence mutual coupling effect could be fully compensated by using parallel line’s zero 

sequence current. Use of the parallel line’s zero sequence current provides a simple way to 

adapt distance measurement on the faulted line to the mutual coupling effect under different 

line operating conditions and/or bus configurations. For a phase-a-to-ground fault on the 

protected line the equation shown below could be used to calculate correct fault impedance on 

the faulted line 

 _ 1
0 0 0 0

sfa
measure a L

sfa sf M psf

V
Z mZ

I k I k I
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 
 (6.16) 

 
where 0 0 1/M M Lk Z Z . The distance measurement on the faulted line will always be correct 

under any line operating condition and/or bus configuration, since errors in distance 
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measurement caused by the mutual coupling effect of 0psfI  is fully compensated. Normal 80% 

to 85% zone coverage for zone 1 thus can be used, which will provide consistent zone 

coverage under all conditions for parallel lines. This method has a drawback if not 

implemented properly in that the distance relay may trip a healthy line in an event of a close-

in fault on a parallel line. To prevent this false trip the method called earth fault balance is 

implemented. It compares the earth currents of the two lines and blocks the parallel line 

compensation (coupled current), when the earth current of the parallel line exceeds the earth 

current on the protected line by a settable percentage margin. This principle is based on the 

fact that the earth current in the faulted line is always at least as large (fault at the end of the 

line) or greater than the earth current of the healthy parallel line. 

6.5.2 Generation Protection Settings 

The generation protection settings are based on recommendations and tests carried out by a 

team of experts that was tasked to investigate the causes of the nationwide power blackout. 

This thesis attempts to reproduce the review of the settings proposed by the team of experts. 

Most of these results are based on real time testing and monitoring and cannot be simulated 

using the available tools in SIMPOW and NETBAS. A summary of the proposed settings are 

given below. 

 Frequency Protection review: The frequency protection on the Zambia – Zimbabwe 

tie lines should be implemented as follows 

o  In case of Zesco or ZESA inadvertently losing a load of at least 450MW and if 

the frequency is sustained at 52Hz for 3 seconds then Zesco should trip the 

interconnector line circuit breakers. 

o Zesco should trip the interconnector lines if the frequency is sustained at 

47.75Hz for 1 second. 

o Zesco should trip the interconnector lines if a power swing detected in the 

ZESA network is sustained for more than 3 seconds. 

 Main and Backup Protection on the Zesco – ZESA (Zimbabwe) tie lines: 

o Existing line differential protection on the tie lines should remain in service. 

o Existing directional over-current and earth protection should remain in 

operation. 

o Zesco should trip the tie lines if the directional over-current and earth fault 

protection on the Zesco end detects a fault in the ZESA network sustained for 

1 second. 
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 Under Frequency Protection On Zesco – SNEL (Congo DR) Interconnector: 

In an event that SNEL loses generation, Zesco should, according to SAPP regulations, 

supply power to SNEL for 30 minutes. Thereafter Zesco should open the 220kV 

interconnector lines if the frequency is sustained below 48Hz.   

 Frequency Protection Settings for Kariba North Power Station 

The Kariba North bank generators are initially set at 47Hz with 5 seconds delay but this 

should be adjusted to 46Hz for 3 seconds. The droop characteristic for Zesco is 

150MW/Hz in the absence of interconnection. 
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7 CONCLUSIONS 

7.1 Transient Stability Study 

Transient stability of the generators in the Zesco system was studied. The system was 

modelled in SIMPOW by writing a script called an ‘optpow file’ for load flow simulations 

and the ‘dynpow file’ for transient stability simulations (see appendix D). In order to study the 

dynamic behaviour of the generators when subjected to a large disturbance, the generators 

were modelled as type 2A (i.e. model with one field winding, one damper winding in d-axis 

and one damper winding in q-axis. Saturation excluded). Generator parameters obtained from 

the Zesco catalogue were used. The simulations focussed on the dynamic behaviour of Zesco 

generators when subjected to a three phase short circuit applied at three selected buses namely 

Kariba North, Leopards Hill and Kafue gorge. These buses were selected because they are 

considered critical to the system. The duration of the short circuit in each case was varied 

until stability in at least one set of generators was lost. Results show that with the fault 

duration of 100 milliseconds, all generators in the system were able to regain synchronism 

after the fault was cleared but with the duration extended to 200 milliseconds the generators at 

Victoria Falls power station, which is the smallest of the three, were the first to lose 

synchronism. The simulations were carried out at peak load condition. It can therefore be 

concluded that at the current loading level, the critical clearing time should be less than 200 

milliseconds. This guarantees that no generator will lose synchronism.  

7.2 Contingency Study 

This study was implemented using software called NETBAS. Results show that although 

certain constraints are violated when a contingency is applied (because the analysis is done at 

peak load condition), the Zesco system can operate under (N-1) criteria. The violated 

constraints can be corrected by load-shedding. The power blackout of 21st January 2008 (see 

section 2.4.2 ) was caused by an N-2 contingency.  Appendix C gives the details of the 

consequences of each contingency. 

7.3 Protection System 

The study proposed that when calculating the distance relay protection settings, the effect of 

zero sequence mutual coupling that exists between parallel circuits should be considered. As 

seen in section 6.5.1 the performance of conventional distance relays on parallel lines is 

negatively impacted by the zero sequence mutual coupling effect between lines. Using 

settings based upon the worst case scenario results in sub-optimal performance of the relays 

under other operating conditions. It has been shown that it is feasible to achieve an optimal 

distance relay performance on parallel lines by accessing multiple additional locally available 
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signals and adapt relay operation based on the signals availability and the line status. The 

adaptive protection scheme could provide an enhanced distance protection for parallel lines as 

no remote signals are required for the scheme. The adaptation to the signal availability 

provides a built-in fallback scheme, which ensures the reliable operation of the relay under all 

conditions. The application of the new adaptive scheme would enhance the performance of 

distance protection on parallel lines. 

The settings for under/over frequency protection should be implemented as described in 

section 6.5.2. 

7.4 Other Considerations 

7.4.1 Automatic Under Frequency Load Shedding 

The absence of an effective automatic under-frequency load-shedding scheme contributed 

significantly to the failure to contain the disturbances. Implementation of such a scheme 

would enable Zesco respond to the loss of generation by automatically switching off 

appropriate loads, thereby balancing demand with the available generation. Zesco should 

consider implementing such a scheme to improve reliability of power supply. 

7.4.2 System Capacity and Spinning Reserve 

The other most important factor for the building up of faults into total blackouts has to do 

with the failure to maintain a generation spinning reserve (spare capacity at generation). 

While it’s understood that Zesco is currently under pressure to minimize load-shedding, the 

absence of a spinning reserve contributes to the inability of the system to contain the large 

disturbances. Zesco should review system operation and ensure that a reasonable reserve 

capacity is always maintained. 

7.4.3 New Generation Capacity 

Until significant new generation capacity is developed, there will be difficulties and 

compromises in running the Zambian system. However plans are currently underway to build 

a new power station at Itezhi tezhi and Kafue lower. This will greatly improve power supply 

reliability and reduce load shedding. 

7.4.4 System Monitoring 

It is currently difficult to reconstruct some of the events that occur during the disturbances 

because the recorders and protective relays on the system are not time-synchronized. It is 

therefore, recommended that Zesco takes immediate steps to acquire equipment that is needed 

to synchronise the so-called ‘time stamping’ on all event recorders.  
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APPENDIX A 

A.1. Load flow results from SIMPOW 

Job Ident:ZESCO 

DATE  3 MAY 2009 TIME 14:04:19 

OPTPOW FILE FOR ZESCO SYSTEM 

------------------------------------------------------------------------------- 

Table A 1 Load flow results  
KAFUEGORGE   (   1)                                               1.00202 P.U.      330.666 KV      -2.40994 DEGREES                      
 POWER FROM                                                                                                                 MW             MVAR 
LINE KAFUEGORGE  LEOPARDSHILL   1                                                               -307.379        22.3434 
LINE KAFUEGORGE  LEOPARDSHILL   2                                                               -307.379        22.3434 
LINE KAFUEGORGE  KAFUEWEST      0                                                                  -214.199        12.5117 
TR2  KAFUEGENKAFUEGORGE     0                                                                         828.957        -57.1985 
 

LEOPARDSHILL (   1)                                         0.999373 P.U.         329.793KV          -5.06948 DEGREES 

POWER FROM                                                                                                                  MW            MVAR 

LINE KAFUEGORGE  LEOPARDSHILL   1                                                                 305.607      -19.0999 

LINE KAFUEGORGE  LEOPARDSHILL   2                                                                 305.607      -19.0999 

LINE KARIBANORTH LEOPARDSHILL   1                                                                246.948      -11.3099 

LINE KARIBANORTH LEOPARDSHILL   2                                                                246.948      -11.3099 

LINE KAFUEWEST   LEOPARDSHILL   0                                                                   98.0404      -3.14714 

LINE LEOPARDSHILLKABWE      1                                                                            -301.051       54.6556 

LINE LEOPARDSHILLKABWE      2                                                                            -301.051       54.6556 

LINE LEOPARDSHILLKABWE      3                                                                            -301.051       54.6556 

LOAD LEOPARDSHILL   0                                                                                           -300.000      -100.000 
 

KAFUEWEST    (   1)                               0.999399     P.U.            329.802  KV        -4.10036     DEGREES 

POWER FROM                                                                                                                   MW          MVAR 

LINE KAFUEGORGE  KAFUEWEST                                                                        0    213.413      -2.86466 

LINE KAFUETOWN330KAFUEWEST                                                                      0   -18.5776      -2.39876 

LINE KAFUEWEST   LUSAKAWEST                                                                       0   -96.5872      -15.8153 

LINE KAFUEWEST   LEOPARDSHILL                                                                    0   -98.2484       21.0787 
 

KAFUETOWN330 (   1)              0.999348     P.U. 329.785     KV                           -4.11039     DEGREES 

POWER FROM                                                                                                                   MW          MVAR 

LINE KAFUETOWN330KAFUEWEST      0                                                                18.5771       3.50396 

TR2  KAFUETOWN330KAFUETOWN88                                                                     0   -18.5771      -3.50396 
 

L U S A K A W E S T    (    1 )      0 . 9 9 3 9 9 7      P . U .      3 2 8 . 0 1 9      K V              - 4 . 9 1 1 3 3      D E G R E E S 

POWER FROM                                                                                                                 MW          MVAR 

LINE KAFUEWEST   LUSAKAWEST                                                                       0    96.4000       31.6000 

LOAD LUSAKAWEST     0                                                                                          -96.4000      -31.6000 
 

K A R I B A N O R T H   (    1 )       1 . 0 0 2 9 4      P . U .      3 3 0 . 9 7 1      K V    0 . 5 7 4 9 0 1      D E G R E E S                       

POWER FROM                                                                                                                  MW          MVAR 

LINE KARIBANORTH LEOPARDSHILL   1                                                               -250.000       32.5742 

LINE KARIBANORTH LEOPARDSHILL   2                                                               -250.000       32.5742 

LINE KARIBANORTH KARIBASOUTH    0                                                               0.307133E-04  0.744360 

TR2  KARIBAGEN   KARIBANORTH    0                                                                    500.000      -65.8927 
 

 KARIBASOUTH  (   1)      1.00294     P.U.           330.972     KV                     0.574884     DEGREES 

POWER FROM                                                                                                                     MW          MVAR 

LINE KARIBANORTH KARIBASOUTH                                                            0  -0.406500E-18  0.254307E-16 
 

KABWE    (    1)      1 .00359     P.U.           331.186     KV                      -10.4871     DEGREES 

POWER FROM                                                                                                            MW          MVAR 
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LINE LEOPARDSHILLKABWE      1                                                                      297.486      -47.1590 

LINE LEOPARDSHILLKABWE      2                                                                      297.486      -47.1590 

LINE LEOPARDSHILLKABWE      3                                                                       297.486      -47.1590 

LINE KABWE   KITWE      1                                                                                    -213.274       16.8535 

LINE KABWE   KITWE      2                                                                                    -213.274       16.8535 

LINE KABWE   LUANO      1                                                                                  -186.737       31.3663 

LINE KABWE   LUANO      2                                                                                   -186.737       31.3663 

LINE KABWE   PENSULO    0                                                                                -52.4370       56.0374 

LOAD KABWE      0                                                                                                  -40.0000      -11.0000 
 

KITWE    (    1 )      0 .980971      P .U .        323 .720      KV                     -18 .7136      DEGREE S 

POWER FROM                                                                                                             MW          MVAR 

SHUN KITWE      0                                                                                               0.152712E-06   34.6429 

LINE KABWE   KITWE      1                                                                                   209.445       29.8020 

LINE KABWE   KITWE      2                                                                                    209.445       29.8020 

LINE KITWE   LUANO      0                                                                                      -18.8901       36.7531 

LOAD KITWE      0                                                                                                    -400.000      -131.000 
 

LUANO    (   1)                                                        0.984598     P.U.             324.917     KV                     -18.8892     DEGREES 

POWER FROM                                                                                                                                             MW          MVAR 

SHUN LUANO      0                                                                                                                             -0.496729E-06   33.9302 

LINE KABWE   LUANO      1                                                                                                                  183.310       32.2992 

LINE KABWE   LUANO      2                                                                                                                 183.310       32.2992 

LINE KITWE   LUANO      0                                                                                                                      18.8689      -22.2653 

LINE LUANO   KANSANSHI      0                                                                                                             -85.4881       22.2367 

LOAD LUANO      0                                                                                                                                -300.000      -98.5000 
 

PENSULO  (   1)                                              0.998806     P.U.              329.606     KV                     -13.2941     DEGREES 

POWER FROM                                                                                                                                           MW          MVAR 

SHUN PENSULO    0                                                                                                                              -0.386136E-06  -35.9141 

LINE KABWE   PENSULO    0                                                                                                                52.0000       52.9141 

LOAD PENSULO    0                                                                                                                                -52.0000      -17.0000 
 

KANSANSHI    (   1)                                                  0.977105     P.U.        322.445     KV                 -21.4132     DEGREES 

POWER FROM                                                                                                                                          MW          MVAR 

LINE LUANO   KANSANSHI      0                                                                                                        85.0000       30.0000 

LOAD KANSANSHI      0                                                                                                                    -85.0000      -30.0000 
 

KAFUEGEN (   1)                                  1.00000     P.U.            SWING BUS       18.0000     KV                0.00000     DEGREES 

POWER FROM                                                                                                                                               MW          MVAR 

TR2  KAFUEGENKAFUEGORGE     0                                                                                                          -828.957       22.2463 

PROD KAFGEN                                                                                                                                                 828.957      -22.2463 
 

KARIBAGEN    (   1)                                                                  1.00000     P.U.        18.0000     KV                    1.98613     DEGREES 

POWER FROM                                                                                                                                               MW          MVAR 

TR2  KARIBAGEN   KARIBANORTH    0                                                                                             -500.000       53.4015 

PROD KARIBGEN                                                                                                                                     500.000      -53.4015 
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APPENDIX B 

B.1  Transient Stability Simulations in SIMPOW 

B.1.1 Cases 

In this section the effect of the three phase short circuit applied at Leopards Hill and Kafue 

gorge bus will be studied. In particular the transient behaviour of the generators in response to 

the fault will be analysed. As described in section 4.2.2 each case will be simulated starting 

with a stable scenario and then gradually increasing the fault duration until stability is lost in 

one of the generators. The explanation of the various curves follows the one given in chapter 

4. Here an illustration and brief explanation is given. 

B.1.1.1  Case 1: Three phase fault at Leopards Hill without loss of stability 

The transient response of the generators to this fault is shown below. 

 
Fig B 1 Transient response of Kariba North generators to a fault at Leopards Hill 
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Fig B 2 Transient response of Kafue gorge generators to fault at Leopards Hill 

 
Fig B 3 Transient response of Victoria Falls generators to a fault at Leopards Hill  
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Fig B 4 Transient response of Kariba North generators in time domain 

 
Fig B 5 Transient response of Kafue gorge generators in time domain 
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Fig B 6 Transient response of Victoria Falls generators in time domain 
 

B.1.1.2 Case 2: Three phase fault at Leopards Hill with loss of stability of Victoria 

Falls generators  

   

 
Fig B 7 Transient response of Victoria Falls generators showing loss of synchronism 
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Fig B 8 Transient response of Victoria Falls generators observed in time domain 

 
Fig B 9 Transient response of Kariba North generators observed in time domain 
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Fig B 10 Transient response of Kafue gorge generators observed in time domain 
 

B.1 Case 3: Fault at Kafue gorge with loss of stability of generators at Victoria Falls 

In this case the fault was applied at Kafue gorge bus and the duration varied until the 

generators in one of the power stations lost synchronism. The generators to first lose 

synchronism were those at Victoria Falls power station. Synchronism was lost when the 

fault duration was set at 100 milliseconds. The results are shown graphically below. 

 
Fig B 11 Loss of synchronism at Victoria Falls  
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Fig B 12 Loss of synchronism at Victoria Falls seen in time domain 

 
Fig B 13 Response of generators at Kariba North 
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Fig B 14 Response of generators at Kafue gorge 
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APPENDIX C 

C.1  Detailed results of contingency analysis 
% *************************************************************************** 
% ***** File name : studadm-utfall.lis          2009-05-13 18:49:39     ***** 
% *************************************************************************** 
  
 
 Contingency analysis with KAFUE GORGE- as swingbus 
 
  
  
% *************************************************************************** 
% ****  Contingency no.   1  line   KAFUE GORGE- - L\HILL       SPG : 330.000 **** 
% *************************************************************************** 
  
  
  
       Node voltages and power flows 
                                               ...........  Load   ........... 
   Node         Voltage        Generation       Vol.indep.        Vol.dep 
     Name           kV        MW      MVAr       MW      MVAr     MW      MVAr 
 -------------------------------------------------------------------------------- 
 KAFUE GORGE-    330.000   1000.807 -412.655 < 
 KARIBA NORTH    330.000    420.000 -294.914 < 
 VIC FALLS       220.000 -   76.000 -103.814 < 
 PENSULO         364.096 >                       60.000  29.059           85.212 
 KANSANSHI       364.789 >                       70.000  33.903 
 #12             219.817 < 
 KAFUE220        219.817 <                                                19.967 
 -------------------------------------------------------------------------------- 
  
  
  
        Power flow in line sections 
  
 Node          Node                 Loadflow          Powerloss    Curr.  Load 
 From           To                 MW       MVAr     kW      kVAr     A   (%) 
 ------------------------------------------------------------------------------- 
 KAFUE GORGE-- L\HILL            625.773 -271.177  8529.6 26192.3   1193  170     
 KAFUE GORGE-- KAFUE WEST        375.034 -141.478  2674.4  -15830    701  100     
 KAFUE88     - #14               -34.735  -27.805     0.3     0.3    297  531     
 KAFUE88     - #13               -45.265  -10.941     0.3     0.3    311  555     
  
  
  
% *************************************************************************** 
% ****  Contingency no.   2  line   KARIBA NORTH - L\HILL       SPG : 330.000 **** 
% *************************************************************************** 
  
        Power flow in line sections 
  
 Node          Node                 Loadflow          Powerloss    Curr.  Load 
 From           To                 MW       MVAr     kW      kVAr     A   (%) 
 ------------------------------------------------------------------------------- 
 KARIBA NORTH- L\HILL            420.000 -135.429  8999.5  -36266    772  110     
 KAFUE GORGE-- L\HILL            445.937 -229.957  4557.6 -4952.0    878  125     
 KAFUE88     - #14               -34.734  -27.503     0.3     0.3    297  529     
 KAFUE88     - #13               -45.266  -11.242     0.3     0.3    312  557     
  
  
  
% *************************************************************************** 
% ****  Contingency no.   3  line   KARIBA NORTH - L\HILL       SPG : 330.000 **** 
% *************************************************************************** 
  
        Power flow in line sections 
  
 Node          Node                 Loadflow          Powerloss    Curr.  Load 
 From           To                 MW       MVAr     kW      kVAr     A   (%) 
 ------------------------------------------------------------------------------- 
 KARIBA NORTH- L\HILL            420.000 -135.429  8999.5  -36266    772  110     
 KAFUE GORGE-- L\HILL            445.937 -229.957  4557.6 -4952.0    878  125     
 KAFUE88     - #14               -34.734  -27.503     0.3     0.3    297  529     
 KAFUE88     - #13               -45.266  -11.242     0.3     0.3    312  557     
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% *************************************************************************** 
% ****  Contingency no.   4  line   KAFUE GORGE- - L\HILL       SPG : 330.000 **** 
% *************************************************************************** 
  
        Power flow in line sections 
  
 Node          Node                 Loadflow          Powerloss    Curr.  Load 
 From           To                 MW       MVAr     kW      kVAr     A   (%) 
 ------------------------------------------------------------------------------- 
 KAFUE GORGE-- L\HILL            512.646 -184.911  5440.3 32100.7    953  136     
 KAFUE GORGE-- KAFUE WEST        489.001 -177.431  4538.7 -1261.0    910  130     
 KAFUE WEST  - L\HILL            358.829 -211.287  3366.6  -21008    717  102     
 KAFUE88     - #14               -34.736  -28.506     0.3     0.3    299  534     
 KAFUE88     - #13               -45.264  -10.240     0.3     0.3    309  552     
  
  
  
% *************************************************************************** 
% ****  Contingency no.   5  line   KAFUE GORGE- - KAFUE WEST   SPG : 330.000 **** 
% *************************************************************************** 
  
        Power flow in line sections 
  
 Node          Node                 Loadflow          Powerloss    Curr.  Load 
 From           To                 MW       MVAr     kW      kVAr     A   (%) 
 ------------------------------------------------------------------------------- 
 KAFUE GORGE-- L\HILL            373.732 -144.377  2910.5 -1675.3    701  100     
 KAFUE GORGE-- L\HILL            625.936 -265.403  8479.6 25833.3   1189  169     
 KAFUE88     - #14               -34.743  -30.129     0.3     0.3    304  542     
 KAFUE88     - #13               -45.257   -8.617     0.3     0.3    304  543     
  
  
  
% *************************************************************************** 
% ****  Contingency no.   6  line   KAFUE WEST   - L\HILL       SPG : 330.000 **** 
% *************************************************************************** 
  
        Power flow in line sections 
  
 Node          Node                 Loadflow          Powerloss    Curr.  Load 
 From           To                 MW       MVAr     kW      kVAr     A   (%) 
 ------------------------------------------------------------------------------- 
 KAFUE GORGE-- L\HILL            544.909 -270.838  6750.6 12136.0   1065  152     
 KAFUE88     - #14               -34.739  -24.964     0.3     0.3    290  517     
 KAFUE88     - #13               -45.261  -13.782     0.3     0.3    321  572     
  
  
  
% *************************************************************************** 
% ****  Contingency no.   7  line   L\HILL       - KABWE        SPG : 330.000 **** 
% *************************************************************************** 
  
        Power flow in line sections 
  
 Node          Node                 Loadflow          Powerloss    Curr.  Load 
 From           To                 MW       MVAr     kW      kVAr     A   (%) 
 ------------------------------------------------------------------------------- 
 KAFUE GORGE-- L\HILL            447.265 -192.625  4311.9 -6664.2    852  121     
 L\HILL      - KABWE             491.843 -278.189 11073.0 -3827.1    970  138     
 L\HILL      - KABWE             491.843 -278.189 11073.0 -3827.1    970  138     
 KAFUE88     - #14               -34.734  -27.056     0.3     0.3    295  527     
 KAFUE88     - #13               -45.266  -11.689     0.3     0.3    314  560     
  
  
  
% *************************************************************************** 
% ****  Contingency no.   8  line   L\HILL       - KABWE        SPG : 330.000 **** 
% *************************************************************************** 
  
        Power flow in line sections 
  
 Node          Node                 Loadflow          Powerloss    Curr.  Load 
 From           To                 MW       MVAr     kW      kVAr     A   (%) 
 ------------------------------------------------------------------------------- 



 79

 KAFUE GORGE-- L\HILL            447.265 -192.625  4311.9 -6664.2    852  121     
 L\HILL      - KABWE             491.843 -278.189 11073.0 -3827.1    970  138     
 L\HILL      - KABWE             491.843 -278.189 11073.0 -3827.1    970  138     
 KAFUE88     - #14               -34.734  -27.056     0.3     0.3    295  527     
 KAFUE88     - #13               -45.266  -11.689     0.3     0.3    314  560     
  
  
  
% *************************************************************************** 
% ****  Contingency no.   9  line   L\HILL       - KABWE        SPG : 330.000 **** 
% *************************************************************************** 
  
        Power flow in line sections 
  
 Node          Node                 Loadflow          Powerloss    Curr.  Load 
 From           To                 MW       MVAr     kW      kVAr     A   (%) 
 ------------------------------------------------------------------------------- 
 KAFUE GORGE-- L\HILL            447.265 -192.625  4311.9 -6664.2    852  121     
 L\HILL      - KABWE             491.843 -278.189 11073.0 -3827.1    970  138     
 L\HILL      - KABWE             491.843 -278.189 11073.0 -3827.1    970  138     
 KAFUE88     - #14               -34.734  -27.056     0.3     0.3    295  527     
 KAFUE88     - #13               -45.266  -11.689     0.3     0.3    314  560     
  
  
  
% *************************************************************************** 
% ****  Contingency no.  10  line   KABWE        - PENSULO      SPG : 330.000 **** 
% *************************************************************************** 
  
 ------------------------------------------------ 
      * Total gen. :    1492.342 ->  1430.214 MW 
      * Total load :                 1383.400 MW 
 
        Power flow in line sections 
  
 Node          Node                 Loadflow          Powerloss    Curr.  Load 
 From           To                 MW       MVAr     kW      kVAr     A   (%) 
 ------------------------------------------------------------------------------- 
 KAFUE GORGE-- L\HILL            398.729 -150.801  3303.5  -14387    746  106     
 KAFUE88     - #14               -29.912  -28.455     0.2     0.2    278  496     
 KAFUE88     - #13               -50.088  -10.291     0.4     0.4    344  614     
  
  
 No new swingbus isolated area   60.000 MW load                                                               
  
  
% *************************************************************************** 
% ****  Contingency no.  11  line   KABWE        - LUANO        SPG : 330.000 **** 
% *************************************************************************** 
  
  
  
       Node voltages and power flows 
                                               ...........  Load   ........... 
   Node         Voltage        Generation       Vol.indep.        Vol.dep 
     Name           kV        MW      MVAr       MW      MVAr     MW      MVAr 
 -------------------------------------------------------------------------------- 
 LUANO           292.031 <                      350.000 169.513           70.481 
 KITWE           293.170 <                      450.000 217.945           71.032 
 -------------------------------------------------------------------------------- 
  
  
  
        Power flow in line sections 
  
 Node          Node                 Loadflow          Powerloss    Curr.  Load 
 From           To                 MW       MVAr     kW      kVAr     A   (%) 
 ------------------------------------------------------------------------------- 
 KAFUE GORGE-- L\HILL            451.030  -47.630  3830.4 -9593.2    793  113     
 KAFUE88     - #14               -34.738  -25.342     0.3     0.3    291  519     
 KAFUE88     - #13               -45.262  -13.404     0.3     0.3    319  570     
  
  
  
% *************************************************************************** 
% ****  Contingency no.  12  line   KABWE        - LUANO        SPG : 330.000 **** 
% *************************************************************************** 
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        Power flow in line sections 
  
 Node          Node                 Loadflow          Powerloss    Curr.  Load 
 From           To                 MW       MVAr     kW      kVAr     A   (%) 
 ------------------------------------------------------------------------------- 
 KAFUE GORGE-- L\HILL            451.348  -41.209  3829.9 -9559.1    793  113     
 KAFUE88     - #14               -34.738  -25.266     0.3     0.3    291  519     
 KAFUE88     - #13               -45.262  -13.479     0.3     0.3    320  570     
  
  
  
% *************************************************************************** 
% ****  Contingency no.  13  line   KABWE        - KITWE        SPG : 330.000 **** 
% *************************************************************************** 
  
        Power flow in line sections 
  
 Node          Node                 Loadflow          Powerloss    Curr.  Load 
 From           To                 MW       MVAr     kW      kVAr     A   (%) 
 ------------------------------------------------------------------------------- 
 KAFUE GORGE-- L\HILL            451.695  -56.614  3852.5 -9471.9    796  113     
 KABWE       - KITWE             344.331   89.020 12752.9  -57690    725  103     
 KAFUE88     - #14               -34.737  -25.446     0.3     0.3    291  520     
 KAFUE88     - #13               -45.263  -13.300     0.3     0.3    319  569     
  
  
  
% *************************************************************************** 
% ****  Contingency no.  14  line   KABWE        - KITWE        SPG : 330.000 **** 
% *************************************************************************** 
  
        Power flow in line sections 
  
 Node          Node                 Loadflow          Powerloss    Curr.  Load 
 From           To                 MW       MVAr     kW      kVAr     A   (%) 
 ------------------------------------------------------------------------------- 
 KAFUE GORGE-- L\HILL            451.695  -56.614  3852.5 -9471.9    796  113     
 KABWE       - KITWE             344.331   89.020 12752.9  -57690    725  103     
 KAFUE88     - #14               -34.737  -25.446     0.3     0.3    291  520     
 KAFUE88     - #13               -45.263  -13.300     0.3     0.3    319  569     
  
  
  
% *************************************************************************** 
% ****  Contingency no.  15  line   LUANO        - KITWE        SPG : 330.000 **** 
% *************************************************************************** 
  
        Power flow in line sections 
  
 Node          Node                 Loadflow          Powerloss    Curr.  Load 
 From           To                 MW       MVAr     kW      kVAr     A   (%) 
 ------------------------------------------------------------------------------- 
 KAFUE GORGE-- L\HILL            444.541 -214.027  4413.5 -5992.6    863  123     
 KAFUE88     - #14               -34.734  -27.315     0.3     0.3    296  528     
 KAFUE88     - #13               -45.266  -11.431     0.3     0.3    313  558     
  
  
  
% *************************************************************************** 
% ****  Contingency no.  16  line   LUANO        - KANSANSHI    SPG : 330.000 **** 
% *************************************************************************** 
  
 ------------------------------------------------ 
      * Total gen. :    1492.342 ->  1419.828 MW 
      * Total load :                 1373.400 MW 
 
        Power flow in line sections 
  
 Node          Node                 Loadflow          Powerloss    Curr.  Load 
 From           To                 MW       MVAr     kW      kVAr     A   (%) 
 ------------------------------------------------------------------------------- 
 KAFUE GORGE-- L\HILL            397.321 -176.565  3421.4  -13613    761  108     
 KAFUE88     - #14               -31.371  -28.195     0.2     0.2    283  505     
 KAFUE88     - #13               -48.629  -10.551     0.3     0.3    334  596     
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 No new swingbus isolated area   70.000 MW load                                                               
  
  
% *************************************************************************** 
% ****  Contingency no.  17  line   KAFUE330     - KAFUE WEST   SPG : 330.000 **** 
% *************************************************************************** 
  
 ------------------------------------------------ 
      * Total gen. :    1416.342 ->  1380.544 MW 
      * Total load :                 1335.400 MW 
 
   
 ** No nodes selected 
   
        Power flow in line sections 
  
 Node          Node                 Loadflow          Powerloss    Curr.  Load 
 From           To                 MW       MVAr     kW      kVAr     A   (%) 
 ------------------------------------------------------------------------------- 
 KAFUE GORGE-- L\HILL            407.019 -234.950  3974.7 -9597.2    822  117     
  
 
 New swingbus isolated area    ....: VIC FALLS    
 ------------------------------------------------ 
      * Total gen. :      76.000 ->   108.000 MW 
      * Total load :                  108.000 MW 
 
 
 No convergence in loadflow .....: VIC FALLS    
  
  
% *************************************************************************** 
% ****  Contingency no.  18  line   KAFUE WEST   - LUSAKA WEST  SPG : 330.000 **** 
% *************************************************************************** 
  
 ------------------------------------------------ 
      * Total gen. :    1492.342 ->  1398.759 MW 
      * Total load :                 1353.000 MW 
 
   
 ** No nodes selected 
   
        Power flow in line sections 
  
 Node          Node                 Loadflow          Powerloss    Curr.  Load 
 From           To                 MW       MVAr     kW      kVAr     A   (%) 
 ------------------------------------------------------------------------------- 
 KAFUE GORGE-- L\HILL            422.547 -234.830  4215.4 -7691.2    846  120     
 KAFUE88     - #14               -34.344  -27.996     0.3     0.3    296  528     
 KAFUE88     - #13               -45.656  -10.749     0.3     0.3    313  559     
  
  
 No new swingbus isolated area   90.400 MW load                                                               
  
  
% *************************************************************************** 
% ****  Contingency no.  19  line   MUZUMA       - KAFUE220     SPG : 220.000 **** 
% *************************************************************************** 
  
 ------------------------------------------------ 
      * Total gen. :    1416.342 ->  1463.278 MW 
      * Total load :                 1415.400 MW 
 
        Power flow in line sections 
  
 Node          Node                 Loadflow          Powerloss    Curr.  Load 
 From           To                 MW       MVAr     kW      kVAr     A   (%) 
 ------------------------------------------------------------------------------- 
 KAFUE GORGE-- L\HILL            386.426 -216.913  3528.8  -13014    775  110     
 KAFUE88     - #14               -80.057  -56.119     1.4     1.4    683 1218     
 KAFUE88     - #13                 0.057   17.373     0.0     0.0    121  216     
  
        Power flow in two-winding transformers 
  
 Node          Node                Loadflow           Powerloss  No-ld.l  TD.  Load 
 From           Til                 MW      MVAr      kW    kVAr    kW   (%)  (%) 
 ------------------------------------------------------------------------------- 
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 #14         - #15              -80.058  -56.120  1803.9  9019.5    0   0.0  173      
  
 
 New swingbus isolated area    ....: VIC FALLS    
 ------------------------------------------------ 
      * Total gen. :      76.000 ->    28.949 MW 
      * Total load :                   28.000 MW 
 
   
 ** No nodes selected 
   
  
  
% *************************************************************************** 
% ****  Contingency no.  20  line   VIC FALLS    - MUZUMA       SPG : 220.000 **** 
% *************************************************************************** 
  
 ------------------------------------------------ 
      * Total gen. :    1416.342 ->  1480.862 MW 
      * Total load :                 1432.400 MW 
 
        Power flow in line sections 
  
 Node          Node                 Loadflow          Powerloss    Curr.  Load 
 From           To                 MW       MVAr     kW      kVAr     A   (%) 
 ------------------------------------------------------------------------------- 
 KAFUE GORGE-- L\HILL            381.567 -223.878  3511.2  -13197    774  110     
 KAFUE88     - #14               -97.383  -13.674     1.3     1.3    660 1177     
 KAFUE88     - #13                17.383  -25.072     0.1     0.1    205  365     
  
        Power flow in two-winding transformers 
  
 Node          Node                Loadflow           Powerloss  No-ld.l  TD.  Load 
 From           Til                 MW      MVAr      kW    kVAr    kW   (%)  (%) 
 ------------------------------------------------------------------------------- 
 #14         - #15              -97.384  -13.675  1684.9  8424.6    0   0.0  167      
  
 
 New swingbus isolated area    ....: VIC FALLS    
 ------------------------------------------------ 
      * Total gen. :      76.000 ->    11.373 MW 
      * Total load :                   11.000 MW 
 
  
  
% *************************************************************************** 
% ****  Contingency no.  21  line   VIC FALLS    - SESHEKE      SPG : 220.000 **** 
% *************************************************************************** 
  
 ------------------------------------------------ 
      * Total gen. :    1492.342 ->  1480.871 MW 
      * Total load :                 1432.400 MW 
 
        Power flow in line sections 
  
 Node          Node                 Loadflow          Powerloss    Curr.  Load 
 From           To                 MW       MVAr     kW      kVAr     A   (%) 
 ------------------------------------------------------------------------------- 
 KAFUE GORGE-- L\HILL            404.822 -227.336  3880.9  -10291    812  116     
 KAFUE88     - #14               -12.740  -36.724     0.2     0.2    261  466     
 KAFUE88     - #13               -67.260   -2.021     0.6     0.6    452  807     
 VIC FALLS   - MUZUMA             89.004  -45.967  2375.5  -33659    263  114     
  
        Power flow in two-winding transformers 
  
 Node          Node                Loadflow           Powerloss  No-ld.l  TD.  Load 
 From           Til                 MW      MVAr      kW    kVAr    kW   (%)  (%) 
 ------------------------------------------------------------------------------- 
 #12         - #13               68.054    5.986   792.7  3963.7    0   0.0  114      
  
  
 No new swingbus isolated area   11.000 MW load                                                               
  
  
% *************************************************************************** 
% ****  Contingency no.  22  trans  #15          - #14          SN  :  60.000 **** 
% *************************************************************************** 
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 ------------------------------------------------ 
      * Total gen. :    1416.342 ->  1380.544 MW 
      * Total load :                 1335.400 MW 
 
        Power flow in line sections 
  
 Node          Node                 Loadflow          Powerloss    Curr.  Load 
 From           To                 MW       MVAr     kW      kVAr     A   (%) 
 ------------------------------------------------------------------------------- 
 KAFUE GORGE-- L\HILL            406.996 -235.452  3978.4 -9571.0    823  117     
  
 
 New swingbus isolated area    ....: VIC FALLS    
 ------------------------------------------------ 
      * Total gen. :      76.000 ->   108.000 MW 
      * Total load :                  108.000 MW 
 
 
 No convergence in loadflow .....: VIC FALLS    
  
  
% *************************************************************************** 
% ****  Contingency no.  23  trans  #12          - #13          SN  :  60.000 **** 
% *************************************************************************** 
  
 ------------------------------------------------ 
      * Total gen. :    1416.342 ->  1463.278 MW 
      * Total load :                 1415.400 MW 
 
        Power flow in line sections 
  
 Node          Node                 Loadflow          Powerloss    Curr.  Load 
 From           To                 MW       MVAr     kW      kVAr     A   (%) 
 ------------------------------------------------------------------------------- 
 KAFUE GORGE-- L\HILL            386.171 -220.656  3553.1  -12846    778  111     
 KAFUE88     - #14               -80.000  -38.746     1.1     1.1    609 1087     
  
        Power flow in two-winding transformers 
  
 Node          Node                Loadflow           Powerloss  No-ld.l  TD.  Load 
 From           Til                 MW      MVAr      kW    kVAr    kW   (%)  (%) 
 ------------------------------------------------------------------------------- 
 #14         - #15              -80.001  -38.747  1435.3  7176.4    0   0.0  154      
  
 
 New swingbus isolated area    ....: VIC FALLS    
 ------------------------------------------------ 
      * Total gen. :      76.000 ->    28.949 MW 
      * Total load :                   28.000 MW 
 
******************************************************************************** 
  
  Data set : netbus. Year of calculation 2009. 
 ------------------------------------------------------------- 
                                                               
                                                               
 No of contingencies :   23     0 
 lines               :   21     0 
 transformers        :    2     0 
                                  
 Summary from Contingency Analysis 
                                   
       Lines ranked after contingency problems 
        ........ Name ...........       invalid     Volt.  Exceed Interr. 
        From       -  To        split  Mainpart.  diff. load.  power 
 ----------------------------------------------------------------------------- 
    1  VIC FALLS    - SESHEKE       X        ---     0     5 
    2  KAFUE WEST   - LUSAKA WEST   X        ---     1     3 
    3  KABWE        - PENSULO       X        ---     0     3 
    4  LUANO        - KANSANSHI     X        ---     0     3 
    5  KAFUE330     - KAFUE WEST    X        ***     7     1 
    6  L\HILL       - KABWE                          0     5       5.806 * 
    7  L\HILL       - KABWE                          0     5       5.806 * 
    8  L\HILL       - KABWE                          0     5       5.806 * 
    9  KAFUE GORGE- - L\HILL                         0     5       5.305 * 
   10  KAFUE GORGE- - L\HILL                         7     4       4.465 * 
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   11  KABWE        - KITWE                          0     4      11.458 * 
   12  KABWE        - KITWE                          0     4      11.458 * 
   13  KARIBA NORTH - L\HILL                         0     4       4.027 * 
   14  KARIBA NORTH - L\HILL                         0     4       4.027 * 
   15  KAFUE GORGE- - KAFUE WEST                     0     4       3.326 * 
   16  KABWE        - LUANO                          2     3       9.844 * 
   17  KABWE        - LUANO                          0     3      10.337 * 
   18  KAFUE WEST   - L\HILL                         0     3       0.960 * 
   19  LUANO        - KITWE                          0     3       0.714 * 
 ----------------------------------------------------------------------------- 
  
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 85

APPENDIX D 

D.1   A script in Simpow for the Zesco network (optpow file) 

OPTPOW FILE FOR ZESCO 
***** 
GENERAL 
SN=100 
LBASE=100 
END 
 
NODES 
KAFUEGORGE UB=330 AREA=1 
LEOPARDSHILL UB=330 AREA=1 
KAFUEWEST UB=330 AREA=1 
KAFUETOWN330 UB=330 AREA=1 
KAFUETOWN220 UB=220 AREA=2 
KAFUETOWN88 UB=88 AREA=2 
VICFALLS UB=220 AREA=2 
SESHEKE UB=220 AREA=2 
MUZUMA UB=220 AREA=2 
LUSAKAWEST UB=330 AREA=1  
KARIBANORTH UB=330 AREA=1 
KARIBASOUTH UB=330 AREA=1 
KABWE UB=330 AREA=1 
KITWE UB=330 AREA=1 
LUANO UB=330 AREA=1 
PENSULO UB=330 AREA=1 
KANSANSHI UB=330 AREA=1 
KAFUEGEN UB=18 AREA=1 
VICFALLSGEN UB=11 AREA=2 
KARIBAGEN UB=18 AREA=1 
END 
 
TRANSFORMERS 
KAFUETOWN220 KAFUETOWN88 SN=60 UN1=220 UN2=88 ER12=0 EX12=0.13 
KAFUETOWN330 KAFUETOWN88 SN=60 UN1=330 UN2=88 ER12=0 EX12=0.13 
VICFALLSGEN VICFALLS SN=110 UN1=11 UN2=220 ER12=0 EX12=0.13 
KAFUEGEN KAFUEGORGE SN=846 UN1=18 UN2=330 ER12=0 EX12=0.043 
KARIBAGEN KARIBANORTH SN=668 UN1=18 UN2=330 ER12=0 EX12=0.033 
END 
 
LINES 
KAFUEGORGE LEOPARDSHILL NO=1 TYPE=12 R=0.00004 X=0.00032 B=0.0037 L=47 
KAFUEGORGE LEOPARDSHILL NO=2 TYPE=12 R=0.00004 X=0.00032 B=0.0037 L=47 
KAFUEGORGE KAFUEWEST TYPE=12 R=0.00004 X=0.00032 B=0.0037 L=43 
KARIBANORTH LEOPARDSHILL NO=1 TYPE=12 R=0.00004 X=0.00032 B=0.0037 L=123 
KARIBANORTH LEOPARDSHILL NO=2 TYPE=12 R=0.00004 X=0.00032 B=0.0037 L=123 
KARIBANORTH KARIBASOUTH  TYPE=12 R=0.00004 X=0.00032 B=0.0037 L=2 
VICFALLS MUZUMA TYPE=12 R=0.00008 X=0.00064 B=0.0037 L=200 
VICFALLS SESHEKE TYPE=12 R=0.00008 X=0.00064 B=0.0037 L=200 
MUZUMA KAFUETOWN220 TYPE=12 R=0.00008 X=0.00064 B=0.0037 L=189 
KAFUETOWN330 KAFUEWEST TYPE=12 R=0.00004 X=0.00032 B=0.0037 L=3 
KAFUEWEST LUSAKAWEST TYPE=12 R=0.00004 X=0.00032 B=0.0037 L=47 
KAFUEWEST LEOPARDSHILL TYPE=12 R=0.00004 X=0.00032 B=0.0037 L=53 
LEOPARDSHILL KABWE NO=1 TYPE=12 R=0.00004 X=0.00032 B=0.0037 L=97 
LEOPARDSHILL KABWE NO=2 TYPE=12 R=0.00004 X=0.00032 B=0.0037 L=97 
LEOPARDSHILL KABWE NO=3 TYPE=12 R=0.00004 X=0.00032 B=0.0037 L=97 
KABWE KITWE NO=1 TYPE=12 R=0.00004 X=0.00032 B=0.0037 L=211 
KABWE KITWE NO=2 TYPE=12 R=0.00004 X=0.00032 B=0.0037 L=211 
KABWE LUANO NO=1 TYPE=12 R=0.00004 X=0.00032 B=0.0037 L=247 
KABWE LUANO NO=2 TYPE=12 R=0.00004 X=0.00032 B=0.0037 L=247 
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KABWE PENSULO TYPE=12 R=0.00004 X=0.00032 B=0.0037 L=298 
KITWE LUANO TYPE=12 R=0.00004 X=0.00032 B=0.0037 L=41 
LUANO KANSANSHI TYPE=12 R=0.00004 X=0.00032 B=0.0037 L=157 
END 
 
SHUNT IMPEDANCES 
PENSULO Q=36 
KAFUETOWN220 Q=50 
LUANO Q=-35 
SESHEKE Q=20 
KITWE Q=-36 
VICFALLS Q=40 
END 
 
LOADS 
LEOPARDSHILL P=300 Q=100 MP=0 MQ=0 
SESHEKE P=40 Q=6.5 MP=0 MQ=0 
KAFUETOWN88 P=60 Q=27.6 MP=0 MQ=0 
MUZUMA P=17 Q=5.58 MP=0 MQ=0 
LUSAKAWEST P=96.4 Q=31.6 MP=0 MQ=0 
KABWE P=40 Q=11 MP=0 MQ=0 
KITWE P=400 Q=131 MP=0 MQ=0 
LUANO P=300 Q=98.5 MP=0 MQ=0 
PENSULO P=52 Q=17 MP=0 MQ=0 
KANSANSHI P=85 Q=30 MP=0 MQ=0 
END 
 
POWER 
VICFALLSGEN TYPE=NODE RTYP=UP U=11 P=100 NAME=VICGEN  
KARIBAGEN TYPE=NODE RTYP=UP U=18 P=500 NAME=KARIBGEN  
KAFUEGEN TYPE=NODE RTYP=SW U=18 FI=0 NAME=KAFGEN  
END 
END 
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D.1  A dynamic simulation file (Dynpow file) 
 

DYNPOW FILE FOR ZESCO 
** 
CONTROL DATA 
TEND=10 
TETL=10E6 
END 
 
GENERAL 
FN=50 
END 
 
NODES 
KARIBASOUTH TYPE=1 
END 
 
SYNCHRONOUS MACHINES 
VICGEN VICFALLSGEN TYPE=2A SN=127 UN=11 
                  XA=0.17 
                  XD=1.1 XQ=0.70 
                  XDP=0.4 
                  XDB=0.3 XQB=0.3 
                  TD0P=6 
                  TD0B=0.06 TQ0B=0.06 
                  H=3.3 
KARIBGEN KARIBAGEN TYPE=2A SN=668 UN=18 
                  XA=0.16 
                  XD=0.8 XQ=0.49 
                  XDP=0.288 
                  XDB=0.233 XQB=0.233 
                  TD0P=8.0 
                  TD0B=0.1 TQ0B=0.2 
                  H=4.3 
KAFGEN KAFUEGEN TYPE=2A SN=1008 UN=18 
                  XA=0.12 
                  XD=0.72 XQ=0.49 
                  XDP=0.235 
                  XDB=0.1945 XQB=0.1945 
                  TD0P=9.5 
                  TD0B=0.07 TQ0B=0.06 
                  H=3.28 
END 
 
FAULTS 
MYFAULT TYPE=3PSG NODE=KAFUEGORGE 
END 
 
RUN INSTRUCTIONS 
 AT 4.600 INST CONNECT FAULT MYFAULT 
 AT 4.70 INST DISCONNECT FAULT MYFAULT 
 AT 4.70 INST DISCONNECT LINE KAFUEGORGE LEOPARDSHILL NO=1 
 AT 4.800 INST CONNECT LINE KAFUEGORGE LEOPARDSHILL NO=1 
END 
 
END 
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APPENDIX E 
E.1  System Parameters 
E.1.1 Transmission line parameters 
 

 
Fig E 1 Transmission line parameters 
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E.1.2 Generator Parameters 

 
Fig E 2 Kariba North generator parameters 

 

 
Fig E 3 Victoria Falls generator parameters 
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